Software Architecture Recovery based on
Pattern Matching

Kamran Sartipi

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2003

(©Kamran Sartipi 2003

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Pattern matching approaches in reverse engineering aim to incorporate domain
knowledge and system documentation in the software architecture extraction pro-
cess, hence provide a user/tool collaborative environment for architectural design
recovery. This thesis presents a model and an environment for recovering the high
level design of legacy software systems based on user defined architectural patterns
and graph matching techniques.

In the proposed model, a high-level view of a software system in terms of the
system components and their interactions is represented as a query, using a de-
scription language. A query is mapped onto a pattern-graph, where a module and
its interactions with other modules are represented as a group of graph-nodes and
a group of graph-edges, respectively. Interaction constraints can be modeled by
the description language as a part of the query. Such a pattern-graph is applied
against an entity-relation graph that represents the information extracted from the
source code of the software system. An approximate graph matching process per-
forms a series of graph edit operations (i.e., node/edge insertion/deletion) on the
pattern-graph and uses a ranking mechanism based on data mining association to
obtain a sub-optimal solution. The obtained solution corresponds to an extracted
architecture that complies with the given query.

An interactive prototype toolkit implemented as part of this thesis provides an
environment for architecture recovery in two levels. First the system is decomposed
into a number of subsystems of files. Second each subsystem can be decomposed

into a number of modules of functions, datatypes, and variables.

111

Acknowledgment

There are several individuals who made contributions to this work. I would like
to express my sincere appreciation to Prof. Kostas Kontogiannis who exposed me to
the field of reverse engineering and supervised this thesis. He spent countless hours
discussing different aspects of my research and his friendly attitude and scientific
support are admirable. I would also like to thank Prof. Farhad Mavaddat for his
guidance and support. Special thanks to my external examiner Prof. Panos Linos
for carefully reading this thesis and providing constructive criticism, as well as for
traveling to Waterloo. Also, special gratitude to Prof. Paulo Alencar for reading
the early drafts of my thesis and providing valuable comments to improve it. [
appreciate Professors Michael Godfrey and Sagar Naik for participating in my PhD
committee and making precious suggestions.

I learned many lessons throughout the years of discussion, encouragement, and
debate with my friends in the School of Computer Science and Department of
Electrical and Computer Engineering. I was also blessed to have a warm community
of Iranian friends in Waterloo during my studies. I consider this as my most valuable
asset which provided me and my family an enjoyable environment in Waterloo.

This thesis is offered to my beloved family Noushin, Melody, and Ramona whose
love and emotional support were always the driving force for me. Also, the love and
blessing of my father Hojatollah, my mother Soghra, and the support of my brother
Dr. Kambiz Sartipi gave me energy and endurance throughout this unforgettable

journey.

v

Contents

1 Introduction 1
1.1 Software architecture oo 2
1.2 Software architecture recovery 4
1.3 Motivation Lo 5)
1.4 Thesis hypotheses and problem description 6

1.4.1 Views of the system to recover 9
1.4.2 Representation of the software system. 9
1.4.3 Modeling high-level representation 9
1.4.4 Tractability of the recovery process 10
1.4.5 User assistance L oo 10
1.4.6 Validation of the recovered architecture 11
1.5 Scope of the proposed solution 12
1.6 Proposed solution 15
1.6.1 Environment for architecture recovery 15
1.6.2 Process for architecture recovery. 17
1.7 Thesis contributions oo 19

1.8 Limitation of the approach 21

1.9 Thesis overview 22
Related work 25
2.1 Architecturerecovery Lo 25
2.2 Architectural viewso o 27
2.3 Architecture description languages 28
24 Datamining e 30
2.5 Concept lattice analysis Lo 31
2.6 Clustering L e 33
2.7 Graph matching L oL 36
2.8 Constraint satisfaction oL 37
2.9 Architectural pattern matchingo 38
System representation 43
3.1 Graph representation of a software system 44

3.1.1 Abstract domain model 44

3.1.2 Source graph Lo 51
3.2 Computing maximal association 35

3.2.1 Mathematical concept analysis. 56

3.2.2 Datamining Lo 59
3.3 Similarity measure between two entities L. 63

3.3.1 Source reglono 68

3.3.2 Domainofanode 71
3.4 Similarity measure between two groups of entities 72

Vi

3.5 System representation Lo 74

3.6 Summary ..o e 75
Architecture query specification 7
4.1 System componento 78
4.2 Architecture Query Language (AQL) 80
4.2.1 Domain model of AQL 81
422 Syntaxof AQLo 84
4.2.3 AQL query exampleo 85
424 Semanticsof AQL. o oo 85
4.3 Query generation o 101
4.4 Summary ... o e e 101
Pattern graph generation 103
5.1 Graphs based on software system 104
5.2 Graphs based on AQL pattern, 105
5.2.1 Query graph oL 105
53.2.2 Patternregion 106
5.2.3 Matched region Lo 107
5.2.4 Graph connectors and graph summations 107
5.2.5 Matched graph 109
5.2.6 Pattern-graph Lo 111
5.2.7 Input-graph 115
5.3 SWIIMATY . . v v v v e e e e e e e e e e e 115

Vil

6 Graph pattern matching 117

6.1 Overview of the graph matching process 119
6.1.1 Step 1: System representation 119
6.1.2 Step 2: pattern representation 120
6.1.3 Step 3: graph matching process 121

6.2 Software architecture recovery as graph
pattern matching Lo 124

6.3 Modeling the graph matching process 125

6.4 Graph distance L L 127
6.4.1 Edge insertion cost Lo 129
6.4.2 Edge deletion cost oo 130
6.4.3 Node insertion/deletion cost 141

6.5 Bounded queue A* search algorithm (BGQ-A*) 142

6.6 Example of the matching process 145
6.6.1 Phase 1 of matching example 149
6.6.2 Phase 2 of matching example 152

6.7 Summary e e 155

7 Overview of algorithms and complexity 157

7.1 TImplementation view of graphs 158

7.2 Overview of algorithms Lo 161

7.3 Complexity analysis overview 167
7.3.1 Implementation of connector-edges 168
7.3.2 Computational complexity of algorithms 170

V1ii

7.4 Trade-off, optimality vs. performance 175

Case studies 177
8.1 Objectives and categories of case-studies 177
8.1.1 Experimentation suiteo oL 178
8.1.2 Experimentation hardware platform 179
8.2 Alborz: software reverse-engineering toolkit 179
8.2.1 Off-line pre-process phase, 180
8.2.2 On-line analysis 182
8.3 Tractability of the recovery process 183
8.3.1 Architectural design of Alborz toolkit 184
8.4 Off-line experimentations 188
8.4.1 Off-line space complexity 188
8.4.2 Off-line time complexity 194
8.5 On-line experimentations L. 197
8.5.1 On-line time complexity 198
8.5.2 On-line space complexity 200
8.5.3 Stability of the recovery, 201
8.5.4 Quality of the recovery 203
8.5.5 Accuracy of the recovery 204
8.6 User-assistance features 205
8.6.1 Graph visualization oL 206
8.6.2 Main-seed selectiono oL 208
8.7 Architectural recovery case studies 209

X

8.7.1 Incremental pattern generation and recovery
8.7.2 Architecture recovery of Xfig. Lo
8.7.3 Architecture recovery of Clips

8.8 Summary e

9 Conclusion and future work

9.1 Future work

A TFormal definitions for domain models
A.1 Source-level domain model

A2 Formal definition of relations

B Graph definitions
B.1 Querygraph
B.2 Pattern-region L. L
B.3 Graph connectors and graph summation

B.4 Expanding query-edge into edge-bundles

C Algorithms

D AQL query example

E Glossary of terms

Bibliography

223
226

231
231
234

241
241
244
247
248

251

263

267

275

List of Tables

3.1 Description of the class Entity-abs. 47
3.2 Description of the classes File-abs, Function-abs, Type-abs, and Variable-
abs. The relations imp-R, exp-R, cont-R, and use-R will be defined
later in this Section. 48
4.1 Description of the class attributes in the AQL domain model. . . . 83
4.2 Description of the class attributes in the AQL domain model. . . . 84
8.1 Source-code statistics of the six case-study software systems. The
presented data include: 1) size of the system in Kilo Lines Of Code
(KLOC); 2) number of system files; 3) to 5) numbers of system’s
functions, aggregate datatype, and global variables, as defined in
the abstract domain model in Section 3.1.1. 179
8.2 Off-line space utilization statistics of the six experimented software
SYSEEIIS. o e e e e e e e 188
8.3 Off-line time statistics of the six studied software systems. 196
A.1 Description of the class attributes. 233

x1

A.2 Description of the class attributes

xi1

List of Figures

1.1

1.2

3.1

3.2

The set of architectural views and system features to be used for
architectural recovery. The grey region highlights the scope of our
approach to software architecture recovery.
The interactive environment and process for the proposed pattern-
based software architecture recovery. The numbered solid circles

locate the places where the thesis has contributions.

The class diagram of an abstract domain model suitable for archi-
tectural recovery task. This domain model is an abstraction of the
source-level domain model that is presented in Appendix A. This do-
main model defines the node and edge attributes of the source-graph
G* to be discussed in Section 3.1.2.
The correspondence between the entities and relationships in ab-
stract domain model (Figure 3.1) and source-level domain model of

a software system. The source-level domain model is presented in

Appendix A. L

X111

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11

4.1

An attributed relational graph representation of a source-graph G* =

(N*,R°, A®, E* 1u®, €*) according to the abstract domain model Fig-
ure 3.1, . oL L e
Mapping the “object and attribute-value” in concept lattice analysis
and “basket and item” in data mining domain onto the “entity and

relation-entity” in the reverse engineering domain.

An example of a formal context and its corresponding concept lattice.

(a),(b),(c) Application of data mining in extracting frequent item-
sets. (d) Representation of the frequent itemsets for system analysis.
The relation between the domains of concept lattice analysis and data
MENING. « o o o o e e e e e e e e e e e
The notion of association in a group as the extension of association
in clustering and data mining domains.
Application of data mining on the source-graph G* = (N*, R*) to
represent it as a number of source-regions G¥" = (N;", RY").
The transformation of source-region Gi" into domain D™.
A system of six files representing the group association similarity
between two files L2 and L5. Parts (a) and (b) compute the same

similarity value. L

The notions of abstract component and abstract connector in AQL,

where the placeholders of abstract component C1 have been matched.

x1v

o4

37

38

61

63

66

69

71

74

81

4.2

4.3

4.4
4.5
4.6
4.7
4.8

5.1

5.2

3.3

5.4

The domain model of the proposed Architecture Query Language
(AQL). This domain model is used to define the attributes for nodes
and edges of the ARG query-graph in Section 5.2.1.
The syntax of the proposed Architecture Query Language (AQL)
described in EBNF notation.
An example of a subsystem in an AQL query.
The structure of an AQL query.
An AQL subsystem.
Rest-of-system in AQL query.,
An AQL module.

(a) Generation of a query-graph with 5 composite nodes from the
AQL query text, where the edges represent import/export of re-
sources. (b) Expansion of a query-node gn; into pattern-region GY".
Two sets of imported and exported edge-bundles with reference to
the pattern-region G¥".
(a) The notion of graph summation operator “+” that allows to
compose two graphs G1 and G2 and represent them as a connected
graph G. (b) The notion of graph-and-edge summation operator
“@” that allows to compose a graph G1 and a set of edges R =
{(f,a), (e,9)} and represent them as a graph G..

Representing the matched-graph G7" as a recursive equation.

Xv

82

100

106

3.5

3.6

6.1

6.2

6.3

6.4

6.5

6.6

(a) query-graph with five query-nodes. (b) Edge-bundles correspond-
ing to the query-edges grs, gry, and grs connect the pattern-region

G to the matched-regions G7'" and G5'". (c) The pattern-graph at

Generation of pattern graph G| from the query-graph G? at phase 4

using the imported/exported edge-bundles. 114

Demonstration of a multi-phase search strategy using: (a) an A*
optimal search algorithm to match the placeholder-nodes at each
phase and; (b) backtracking between phases. 122
The recursive equations for the proposed multi-phase, incremental,

and approximate graph matching process. 126
Modeling a software architecture recovery process as a graph-matching
problem. The graph pattern-matching process iteratively matches a
pattern-graph with an nput-graph and yields a matched-graph. A
query-graph provides all required information for different phases of

an iterative matching process. Lo 128
(a) Definition of inside-pattern edge deletion cost c¢f¢. (b) Diagram

for cost versus similarity when only one node already matched in
GYoie k=1, .. . 131
An average of the inside-pattern edge deletion cost compensates for

the number of nodes in the pattern-region GY". 132
The cost evaluation for deleting import/export connector-edges cor-

responding to the pattern-region. 134

xXvi

6.7

6.8

6.9

6.10

6.11

6.12

Examples of edge deletion from imported edge-bundles Y™ 7" that

connect an already matched-region G (a link-module) to the pattern-

Examples of edge deletion from ezported edge-bundles R;""™ """ that
connect the pattern-region GY" to an already matched-region G™"
(link-module).o 140
(a) Bounded queue A* search tree with existing and deleted paths.

(b) The costs that are associated with a search-tree node. (¢) Bounded
queue, where the number of paths in the queue is bounded between

two thresholds. oo 143
Mlustration of a two-phase graph pattern-matching problem. (a) A

raw source-graph G* = (N®, R*) as the whole search-space. (b) The
source-graph G is decomposed into a collection of source-regions

that are represented as domains of nodes D(N?®) and the set of
edges R® from G”, that collectively represent (G*, D(N*)). (c) A
query-graph that is directly mapped from an AQL query and will

be expanded into a pattern-graph GP. The problem is to find a sub-
optimal approximate match between the pattern-graph G? and two
source-regions from (G°, D(N®)). 146
Phase 1 of the 2-phase matching example. At each tree-node (state)

one node from the selected source-region G 1s matched against one
placeholder-node from pattern-graph GY".. 150

The cost evaluation for phase 1 of the matching example. 152

xXvil

6.13

6.14

7.1

7.2

7.3

8.1

8.2

Phase 2 of the 2-phase graph-matching example. In this phase the
cost of edge-deletion for both the edges that are inside the pattern-
region and the connector-edges are evaluated to assign a total cost
for each tree-node.o oL

The cost evaluation for phase 2 of the matching example.

(a) A pattern-graph G! as a list of its graph elements. (b) A BQ-A*
search-tree is implemented as a queue of pattern-graphs QG?. Main-
taining a list of multi-phase search-trees LQGP allows to implement
backtracking at module-level.o
A summary of algorithms for architectural recovery based on graph
pattern matching. The flow-chart indicates the sequence of invoca-
tion, where the first two algorithms provide control mechanism and
the remaining algorithms perform the pattern matching operation. .
(a) Importing the same node more than once from the link-module
G is not correct (repeated import), whereas, exporting more than
one node to the same node in the link-module is correct. (b) The
second node (current matched-node) has been matched, and the set
of (not previously imported) source-nodes N¢, and the set of sink-

nodes N#"* in the linked-module are highlighted.

The interactive environment for the proposed pattern-based software
architecture recovery. o

The architectural design of the Alborz reverse-engineering tool. . . .

XViil

163

8.3

8.4

8.5

8.6

8.7
8.8

(a) The relation-to-node ratio: 1) in the case studies before data
mining; 2) in the generated frequent-1-itemsets and higher; and 3)
in the frequent-2-itemsets and higher. The ratio increases in each
subsequent frequent-itemsets. (b) and (¢) The number of generated
frequent-itemsets versus the number of nodes (or relations) in the
studied software systems. Systems with higher relation-to-node ratio

in part (a) generate more associated groups with a given number of

Quantity and time characteristics for generating frequent itemsets
versus size of itemsets for different systems. (a) All the generated
intermediate frequent itemsets are considered. (b) The unique fre-
quent itemsets extracted from (a) are shown. (c) Time of generating
frequent itemsets in (a). oo L
Time of generating frequent itemsets versus minimum support value
for the studied systems. Except for one system the number of fre-
quent itemsets with minimum support 2 explodes and after 50 hours
no result is obtained.o
(a) Time complexity of the matching algorithm in term of the visited
tree-nodes. (b) Space complexity of matching algorithm in term of
the stored paths in the search path-queue.
The stability of the searching algorithm.
The modularity quality measure of five studied systems based on

intra-/inter-connectivity among the recovered subsystems.

X1X

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

(a) Precision and Recall metrics are used as the measure of accuracy.
(b) The accuracy of the pattern matching process and the average
ACCUTACY. « + « « v e v v e e e e e e e e e e
(a) Module-interconnection representation. (b) Module association
representation.o
(a) Distribution and (b) Classification of the file association values
in the Clips system. (c) Strength of association between file L2 and
other files in a system of six files.
Three methods provided by the proposed environment to generate
AQL query main-seeds.
(a) The architectural pattern of the Xfig system where the subsys-
tems S1 and S4 have been merged. (b) The recovered architecture
where the link constraints have been satisfied.
(a) Details of the recovered subsystems using the Netscape browser
and the import/export of the system functions as “resources”, where
both the module sizes and link constrains have been satisfied. (b)
Architectural evaluation using “Precision” and “Recall” metrics. . .
Graph visualization of the recovered subsystems for the Xfig system
using the file association graph with different strengths for associa-
tion links.o
(a) The architectural pattern of the Clips system with five abstract
subsystems. (b) The recovered architecture where the constraints

are satisfied. L L

XX

215

8.17 Architectural recovery and evaluation of the Clips system.
8.18 Graph visualization of the Clips recovered architecture using “strong”
and “medium” association links among system files and among sub-

SYSEEINS. L L e e e e e e e e e

A.1 The class diagram of a simplified source-level domain model for a typ-
ical procedural programming language such as C [84]. This domain
model is used to extract an abstract domain model for architecture-
level system analysis. The instantiation of the classes and their asso-
ciation links (not shown here) during the parsing process generates

an abstract syntax tree for the software system.

B.1 A query-graph with five query-nodes and eleven query-edges.
B.2 (a) Three query-nodes with different node-types and their corre-

sponding pattern-regions. Lo

C.1 Algorithm: control iterative-recovery
C.2 Algorithm: BQ-A*
C.3 Algorithm: evaluate node matching cost
C.4 Algorithm: import edge matching cost
C.5 Stepwise description of the algorithm import-edge-matching-cost

C.6 Algorithm: export edge matching cost

xx1

221

Chapter 1

Introduction

For several decades we have been witnessing the impact of large software systems
on our every day life. Legacy software systems are mission critical, large, and com-
plex systems that are operational for approximately 10 to 15 years [110]. Due to
prolonged maintenance such legacy systems are difficult to maintain, evolve, or inte-
grate and in most cases their architectural design deviates from the original design.
In this context, architectural recovery is a key activity in supporting maintenance
tasks such as re-engineering, objectification, or restructuring.

In a nutshell, the approaches to software architectural recovery can be classified
as clustering-based techniques and pattern-based techniques. The clustering-based
techniques generate architectural components by gradually grouping the related
system entities using a similarity measure [63, 112, 15, 107]. On the other hand,
the pattern-based techniques first compose a high-level mental model of the system
architecture (also known as conceptual architecture or architectural pattern) using

a modeling means such as a query language [56, 55, 79, 48, 39] or a block diagram

2 CHAPTER 1. INTRODUCTION

[38, 78], and then a pattern matching engine searches to identify an instance of the

architectural pattern in the software system.

1.1 Software architecture

There is no standard, universally-accepted definition for the term Software archi-
tecture. A number of researchers have attempted to provide a precise definition for
software architecture and the Software Engineering Institute (SEI) has provided a
collection of these definitions in [10]. In this Section, first two generic definitions of
software architecture are presented, and then a definition of software architecture
within the scope of this thesis is provided.

A classic definition by Garlan and Shaw [97] is as follows:

“software architecture involves the description of elements from which systems
are built, interactions among those elements, patterns that guide their composition,
and constraints on these patterns.”

In this definition, a software architecture is identified by its components and
connectors (as elements) and an style that are defined below.

A component represents the encapsulation of the system’s computation corre-
sponding to a compilation unit of programming languages. A component’s interface
defines the signature and functionality of the services provided by the component.
Examples of components include: filter, process, layer, client, server, memory [97].

A connector represents the encapsulation of the interactions among two com-
ponents. The connector protocol defines the form of communication, the type and

order of the transported data, and the way of assuring the protocol execution.

1.1. SOFTWARE ARCHITECTURE 3

Examples of the connectors include: RPC, event broadcast, and pipe [97].

An architectural style (also known as architectural pattern) captures the broad
properties, vocabulary, and configuration constraints that apply to all instances
of a family of systems. [77]. A collection of architectural styles, defined in [44],
include: pipe and filter, client and server, implicit invocation, layered, blackboard,
object-oriented, interpreter, state transition, module and interconnection, and main
program and procedure [97].

An alternative definition for software architecture that is used in Nortel’s Soft-
ware Engineering Analysis Lab. is presented below. This definition is adapted from
[42], focusing on the evaluation properties of a software architecture and the role
of stakeholders:

“software architecture consists of: a collection of software and system com-
ponents, connections, and constraints; a collection of system stake-holders’ needs
statements; and a rationale which demonstrates that the components, connections,
and constraints define a system that, if implemented, would satisfy the collection of

system stake-holders’ needs statements.”

In this thesis the software architecture, component, connector, and architectural

pattern are defined as follows.

Software architecture: a partition of the software system entities into cohesive
components that reflect the system characteristics and domain knowledge,

and meets the structural constraints defined by a given architectural pattern.

4 CHAPTER 1. INTRODUCTION

Component: anamed grouping of system entities (e.g., files, functions, datatypes,
and variables) that interacts with other groups through using or providing the

required system entities (e.g., functions, datatypes, and variables).

Connector: defined between two components as a group of system entities (e.g.,
functions, datatypes, and variables) that are defined in the source component

and are used by the destination component.

Architectural pattern: a set of partially specified components and a number
of (size and type) constrained connectors among the components that collec-
tively represent a macroscopic view of the core functionalities and interactions

within the software system.

Therefore, the architectural pattern in this thesis can be categorized as a “module
and interconnection” pattern. For simplicity an “architectural pattern” is also

referred to as a “pattern”.

1.2 Software architecture recovery

Software architectural recovery encompasses various methods for extracting archi-
tectural information from a lower level representation of a software system such
as the source code. The whole architecture recovery process is divided into two
phases. In the first phase, namely the extraction phase, a tool automatically builds
a more abstract system representation, i.e., the source model, out of the program
representation. In the second phase, namely the analysis phase, a user-assisted tool

constructs a high-level view of the system from the source model. Most approaches

1.3. MOTIVATION 3

to software architecture recovery view the recovery process either as: i) a pattern
matching problem that models the recovery by identifying groups of system enti-
ties whose properties closely match with the user-defined queries [56, 79, 55, 48];
ii) a clustering problem that models the recovery by grouping the related parts of
a software system into cohesive components [63, 78, 59, 72, 107]; iii) a constraint
satisfaction problem that models the recovery by identifying groups of entities that
meet the conditions defined in a repository of plans [113]; iv) a lattice partition-
ing problem that models the recovery by classifying maximally related groups of
entities that are arranged in a lattice [98, 68, 109]; or v) a composition and vi-
sualization problem that models the recovery by aggregating system entities into

containment-hierarchy of components [78, 38, 69].

1.3 Motivation

The reverse engineering community has paid particular attention to the pattern
matching approaches since they allow the use of domain knowledge and system
documents in composing the architectural pattern, hence provide a user/tool coop-
erative environment for architectural recovery. Moreover, the software systems are
intuitively represented as graphs and the reverse engineering community is on the
verge of adopting a graph standard for information exchange among the existing
reverse engineering tools [19, 49, 23].

The motivation for this research stems from the lack of a reflective and uni-
form model for pattern-based software architectural recovery, whereby the software

system, architectural pattern, and pattern matching process, are all uniformly rep-

6 CHAPTER 1. INTRODUCTION

resented using a graph formalism, and the recovered architecture conforms with

detailed constraints of the architectural pattern.

1.4 Thesis hypotheses and problem description

In this Section, we consider four hypotheses that are used to formulate the thesis
in this dissertation and also to define a coherent problem description. Then, the
corresponding issues that must be addressed by an approach to software architec-

ture recovery, are discussed.

Hypothesis 1: it is generally accepted that the software architecture recovery
should be performed with respect to specific objectives, such as increasing under-
standability, maintainability, or adaptability of the software system. Also the result
of the recovery must be testable to indicate the degree of success in achieving such

objectives.

Hypothesis 2: the design decisions governing the allocation of software sys-
tem’s functionality onto its structure mainly originate from the knowledge within
the software system’s application domain. Such design decisions are considered as
an important part of the design documentation of the system. Both types of infor-

mation significantly assist in the recovery of the system’s structure.

Hypothesis 3: the clustering-based approaches to architectural recovery can

only implicitly guide the result of the recovery toward a constrained objective. In

1.4. THESIS HYPOTHESES AND PROBLEM DESCRIPTION 7

contrast, the pattern-based approaches can use an expressive formalism to model
structural constrains that are derived from the application domain and system doc-

umentation and can be used to link the analysis results with intended objectives.

Hypothesis 4: the pattern-based architecture recovery approaches suffer from
the lack of a semantically rich and expressive representation of the architectural
patterns, and in most cases an expert user is required to formulate the architec-

tural pattern.

Thesis: this dissertation argues that a pattern-based environment for software
architecture recovery with an expressive architectural pattern language that incor-
porates knowledge from the system’s domain and documentation, and a process
that ensures a repeatable recovery result would best suit to the requirements of the

architectural recovery mission.

Specifically, this thesis proposes a pattern-based architecture recovery approach
whose objectives can be specified in terms of the structural properties that are
defined through an architectural pattern. The proposed architectural pattern is
defined based on the expressive features of the architecture description languages
(ADLs) and is incrementally generated via an interactive procedure that allows to
incorporate the knowledge from the application domain and system documentation.
The result of the recovery can be directly tested against the recovery objectives

through: i) conformance checking with the available documentation that ensures

8 CHAPTER 1. INTRODUCTION

the decomposition of the core system functionality into components; ii) measuring
the modularity quality of the recovered architecture to ensure the recovery of a
maintainable system; and iii) conformance with the component and connector size

and type constraints imposed by the pattern.

Problem description: the following observations are the basis for the problem
definition in this thesis. Despite several attempts for automating the architectural
recovery process (i.e., clustering) it is generally accepted that a fully-automated
technique is not feasible. It is rather impossible to define the architecture of a
large system at once, hence, the architectural recovery should be an incremental
process. Software systems usually consist of architectural patterns in their design
which form the basis for the recovery process. Most recovery processes focus on the
structural properties of a system, ignoring the high-level behavior of the system.
Finally, the role of the user is increasingly important in incorporating the domain
knowledge and system documents into the recovery process. Based on the above

discussion, this thesis defines software architectural recovery problem as:

devising a tractable process, required techniques, and sup-
porting tools for interactively and incrementally extracting a

system’s structure using domain and system knowledge.

Specifically, an approach to software architecture recovery must address the

following issues.

1.4. THESIS HYPOTHESES AND PROBLEM DESCRIPTION 9

1.4.1 Views of the system to recover

The views of a software system are the result of applying separation of concerns on
a development or reverse-engineering process of the software in order to classify the
related knowledge about that process into more understandable and manageable
forms. Unfortunately, reverse engineering is much more difficult to achieve than
forward engineering. Recovering the functionality of a large and poorly documented
legacy system is a non-trivial, if not impossible, task. In this respect, the structural
view is the most tractable architectural view to recover, and a number of approaches
and tools [56, 79, 38, 106, 98, 68, 72, 1, 116] already exist to address this issue in

various ways. Other views to be considered are behavior [28] and data [51, 22].

1.4.2 Representation of the software system

In software architecture recovery an appropriate representation of the software sys-
tem is important in both extracting the desired properties from the software, and
providing support for programming language independent analysis. In general, the
preserved information and the level of abstraction for analysis are trade-offs that
need to be considered at this stage. The source code of the system being analyzed
is parsed or scanned and an annotated abstract syntax tree (AST) [33, 39, 48, 45]

or an entity-relation model such as GXL [49], TA [38] or RSF [1] can be derived.

1.4.3 Modeling high-level representation

The software architecture recovery is mostly viewed as a top-down process where

the high-level view of the system (also known as the conceptual architecture or

10 CHAPTER 1. INTRODUCTION

architectural pattern) is built as the user’s mental model of the system architecture.
The model serves as an hypothesis and should be able to represent an abstraction
of components and their interactions as well as, a mechanism to constrain the type
of such system entities and data/control dependencies. The existing approaches
use either proprietary languages to model high-level architectural pattern of the
system [79, 48, 39, 55], SQL queries to model the system that is to be validated
against the source code representation [56], or box and arrow diagrams to visualize

a subsystem view of the application being analyzed [38, 78].

1.4.4 Tractability of the recovery process

Searching for a particular property or groups of related properties in a large data
base is a computationally intensive process. In some cases, the search algorithms
are intractable for a large number of inputs, for example finding a subgraph pat-
tern in a graph representation of a large system. Efficient techniques and heuristics
are essential in managing the inherent complexity of architectural recovery tasks
[55, 114]. In the case of very large systems, strategies such as considering nam-
ing conventions for files, using directory structure, and producing a containment

hierarchy structure are often used [24].

1.4.5 User assistance

The role of the user, as an integral part of an architectural recovery process, is
important for the validation of the obtained results. In fact, the ambitious goal

of fully automating the recovery process is no longer supported by the research

1.4. THESIS HYPOTHESES AND PROBLEM DESCRIPTION 11

community. Instead, a cooperative environment of human and tool is the most
promising solution for relaxing the recovery complexity [56, 27, 38, 79]. This trend
necessitates that the domain knowledge and system documents be incorporated in
the recovery process by the user involvement. In such a cooperative environment,
the mission of the tools has also been shifted from complex search and recovery
strategies to semi-automatic, user assisted based strategies allowing a variety of
domain-specific information to be considered during the recovery process [38, 27].
In this context, the new terms such as librarian and patron [38] refer to the system

information accumulation for human usage.

1.4.6 Validation of the recovered architecture

Similar to a validation test in forward engineering, a reverse engineering process is
expected to prove the conformance of the recovered high-level hypothesis specifica-
tion with the actual architecture of the software system. However, the validation
of a recovered architecture is still in its early stages and requires more attention
from the research community. In most cases, validation is performed by the user
who evaluates the conformance of the obtained results with the system’s archi-
tectural documents (if available and updated). Moreover, when the architectural
documents and domain knowledge are available the Precision and Recall metrics
(i.e., measuring the degree of conformance between the recovered architecture and
the documented architecture) from the information retrieval domain can be used as
a reliable objective measure. Recently, some approaches proposed other objective

measures for validation of the recovery result [76, 60, 64].

12 CHAPTER 1. INTRODUCTION
1.5 Scope of the proposed solution

As part of this work, a survey on a number of industrial and experimental architec-
ture description languages and reverse engineering tools' has been conducted. As
a result, a collection of essential features used for describing software architectures
has been identified and categorized into three architectural views that we believe
are suitable for architectural recovery purposes. Figure 1.1 illustrates the proposed
views where the grey region identifies the scope of recovery approach to be pre-
sented in this thesis. The set of views consist of structure view, behavior view, and
surrounding view which are almost orthogonal and carry most of the important
information about the software systems to be recovered.

The features and views in this classification encompass the systems in different
domains such as information, concurrent, reactive, distributed, and command and

control. The identified views of a software system for recovery are discussed bellow.

Structure view: refers to the building blocks and interconnections (glues) that
statically describe the architecture of a software system. Structure view con-

sists of two parts:

o Static features are the property of the source code, hence can be ex-
tracted by statically analyzing the source program. The static features
are divided into three parts: i) an entity refers to a language construct,

as a basic block, that constitutes in building a software’s structure; ii) a

!The survey was conducted on the ADLs: Unicon [96], Rapide [70, 71], ACME [43], ARDEC
DSSA [103], Wright [14], ControlH [20], PBS [38, 2], Polylith [82], Genoa [33], and DECODE [83].

A more detailed discussion on these ADL’s is presented in the Section 2.3.

1.5. SCOPE OF THE PROPOSED SOLUTION 13

Module
Compilation unit File
Entity Package
Function
Data
Type

Message passing

. Access (Imp/Exp, Formal/Actual Param)
Structure || Static Data~flow

(Source) Connectivity
Control-flow (Calling, Control coupling)

Visibility
Scoping
Encapsulation

Snapshot: Instantiation (Process, Object, ...)

Orthogonal

Traces Temporal
Behavior]
Pre / Post-condition Functional

II<— SMaIN

Platform Kernel

Surrounding Ope_rating system File system
Devices Window system

Figure 1.1: The set of architectural views and system features to be used for archi-
tectural recovery. The grey region highlights the scope of our approach to software

architecture recovery.

connectivity refers to an interconnection between two entities; iii) a scope

refers to the maximum range that a definition is effective.

o Snapshot features change over time, hence represent dynamic aspects
of a program. These features can be detected statically by interrupt-
ing a running program and registering the program’s context and state.
Spawned concurrent processes, class instances (objects), etc. are typical

pieces of information to be discovered.

14 CHAPTER 1. INTRODUCTION

Behavior view: refers to the services that a system provides through its interac-
tions with the surrounding systems. Behavior view can be regarded as two

orthogonal set of features:

e In one aspect, the system’s behavior can be expressed by event traces
and pre/post-conditions which is more appropriate for inspection by an
analyst. Event traces represent the state transition model of a system.
Pre/post-condition predicates specify the input/output constraints of a

system’s function [47].

e In another aspect, the system’s behavior can be expressed by its temporal
and functional properties which are difficult to be analyzed and recov-
ered. The temporal properties of the system’s behavior (also known as
dynamic, run-time, and execution) refer to time-dependent characteris-
tics, such as concurrency, synchronization, and communication. These
properties are often too complex to be recovered. The functional proper-
ties of the system’s behavior refer to data transformation characteristics.
The algorithmic aspects of transformation such as computational com-

plexity and memory usage are also important issues.

Surrounding view: refers to all supporting facilities, including hardware/software
and interface, that encompass the software system (an application program)

and enable it to operate and provide its services to its interfacing systems.

1.6. PROPOSED SOLUTION 15
1.6 Proposed solution

We propose an interactive reverse engineering environment for incremental recovery
and evaluation of the architecture of a software system in the form of cohesive
modules (or subsystems) that comply with the constraints of a given user-defined

architectural pattern.

1.6.1 Environment for architecture recovery

Figure 1.2(a) illustrates the proposed interactive architectural recovery environ-
ment where the thick arrows signify the automatic or user-assisted processes in
the environment; boxes represent the different forms of information in the environ-
ment; the thin arrows indicate the inputs and output of the graph matching engine;
and the user is the high-level decision maker that produces a mental model of the
architecture and verifies the result of recovery. Also the computational expensive
operations are highlighted. The proposed architectural recovery environment con-
sists of two phases. During the off-line pre-process phase the required architectural
information are extracted from the software system and are stored in a database for
further use. This phase is usually time-consuming, however, it is performed once
for each software system.

During the on-line analysis phase, the user specifies the architectural pattern of
the software system and uses an interactive and iterative recovery process to recover
the system architecture in terms of components and interactions that conform with
the constraints of the architectural pattern. The proposed environment employs

techniques from data mining in the off-line phase and techniques from approximate

16 CHAPTER 1. INTRODUCTION
DU, sy

I

§ Off-line: § § On-line: §
3 pre-process I % analysis _
SSSSSSSHESS MOdU'e"“tifCO“”eC“O”
: pattern
i - System analysis
Software System : - Domain & Document AQL query
¢ - Decision making
C/Pascal/ : e
Resie Pattern
generation
RSF/
TA
Software | Graph
as graph Architecture generation
Data : & Metrics
mining

e Pattern graph
User-assisted »
(a) Environment Automatic —

expensive computation

Graph regions Graph matching
& Similarity matrix (search & evaluation)

(PATTERN GENERATION)

Select main-seeds

SR Domain & Document of AQL query
' & AQL Modules &
Compose AQL query Interconnections (—)
E (PRE-PROCESS) query text :
5 Parse (Sg(oftware (Chapter 4) —| (USER-INTERFACE)
> :
n Generate View architecture ' 5
w database of uing HTML pages [0
%: > graph-regions (PATTERN MATCHING) | & Rigi graphs 2
using Match the graph
E data mining regions against (Chapter 8)
L :
O (Chapter 3) pattern-graph that is :
2 ‘ drived from AQL query Matched A —
Source 1 (Chapters 5 & 6) i graph
code Database : : : ;
of reqi : : i Metrics
gions : O et :

(EVALUATION)
: H Analyze and evaluate
"""""""""" P> system and its decompostition

(Chapter 8)

(b) Process

Figure 1.2: The interactive environment and process for the proposed pattern-based
software architecture recovery. The numbered solid circles locate the places where
the thesis has contributions.

1.6. PROPOSED SOLUTION 17

graph matching, clustering, and architecture description languages in the on-line
analysis phase. In Figure 1.2(a), the numbered solid circles indicate the contribu-
tions of the thesis in different parts of the environment. In the following Section,

the architectural recovery process for the proposed environment is discussed.

1.6.2 Process for architecture recovery

Figure 1.2(b) illustrates the architectural recovery process which serves as a com-
plement to the information provided by the environment in Figure 1.2(a). The
recovery process diagram indicates the techniques used in different stages and pro-
vides references to the corresponding Chapters of the thesis. The steps for off-line

and on-line phases are as follows.

Off-line phase

Step 1, parsing: the software system, written in a procedural language such
as C, is parsed and presented as a graph whose nodes and edges conform with a
domain model that is suitable for architectural recovery and provides programming
language independence for the recovery process.

Step 2, information extraction: the graph representation of the software
system is further processed using data mining techniques, and consequently it is di-
vided into a collection of subgraphs (as graph regions) where the appropriate graph
regions are selected by the graph matching process as the subspaces for recovery
of the system components. Also, a similarity matrix is generated that contains the

association-based similarity values between every two system entities to be used for

18 CHAPTER 1. INTRODUCTION

recovery of cohesive components.

On-line phase

The on-line analysis phase consists of three steps that are iteratively performed in
a loop until the user stops the process based on the inspection of the quality of the
recovered components, or the amount of overlap between the recovered components.
The architectural recovery can be performed at two levels of abstraction. At the
file-level, the software system is partitioned into a number of subsystems of files, and
at the function-level each recovered subsystem can be decomposed into a number
of modules of functions, datatypes, and variables. At each iteration of the on-line
phase the following steps are performed.

Step 3, pattern generation: in the first iteration of the on-line phase, the
user specifies an architectural pattern that consists of only one component (mod-
ule or subsystem). In the subsequent iterations, the user augments a constrained
architectural pattern of the system components and their interactions as defined in
Section 1.1, based on: domain knowledge, system documentation, or tool-provided
system analysis information. This architectural pattern is defined using a propri-
etary language that we call Architecture Query Language (AQL).

Step 4, pattern matching: the approximate pattern matching engine gen-
erates a pattern-graph from the user-defined architectural pattern defined as an
AQL query, and performs a sub-optimal match between the pattern-graph and the
software system graph regions stored in the database during the off-line phase. The

result of the matching process is a partially recovered architecture for the current

1.7. THESIS CONTRIBUTIONS 19

iteration.

Step 5, result evaluation: using the means provided by the environment,
such as: 1) metrics for measuring the modularity quality of the partially recov-
ered architecture; ii) inspection of the overlap between the currently recovered
component with previous components; and iii) visualization of the interactions or
assoclation among the recovered components, the user may decide to proceed with

a new iteration by branching to Step 3, or stop the recovery process.

1.7 Thesis contributions

This thesis presents an environment for software architecture recovery that employs
techniques from approximate graph pattern matching, data mining, clustering, and
architecture description languages. Specifically, the major contribution of this the-
sis 1s:

an environment for modeling software architecture recovery as graph

pattern matching problem.

where the conceptual architecture of the system is formulated using a query-
graph whose expansion is matched by the system entities and relationships through
an incremental and iterative approximate graph matching process. Specifically, the
contributions of the thesis with respect to the solid circles in the environment of

Figure 1.2(a) are as follows:

Circle 1: A new domain model that allows to represent the software system as an

attributed relational graph at a higher-level of abstraction than the source-

20 CHAPTER 1. INTRODUCTION

code which is suitable for architectural recovery (presented in Chapter 3).

Circle 2: Two new similarity metrics that are based on the structural properties
of the groups of entities with maximal association generated by data mining
techniques. These similarity metrics are defined between two system entities
and between two groups of system entities and are used to recover cohesive

components through pattern matching process (presented in Chapter 3).

Circle 3: A novel technique to limit the computational complexity of the graph

matching process for architectural recovery using graph regions (presented in

Chapter 3).

Circle 4: An architecture query language (AQL) to model an architectural pattern

of components and their interactions (presented in Chapter 4).

Circles 5 and 6: A new approximate graph matching algorithm to match a pattern-
graph that represents a modular architectural pattern of the software system
with a graph that represents a software system entities and their data and

control dependencies (presented in Chapters 5 and 6).

As a part of this work, a toolkit (called Alborz) to perform interactive and incre-
mental architectural recovery and evaluation has been implemented that provides
the recovery environment illustrated in Figure 1.2(a). The toolkit and related ex-

perimentations are discussed in Chapter 8.

1.8. LIMITATION OF THE APPROACH 21
1.8 Limitation of the approach

The proposed approach in this thesis has the following limitations that could form

the basis for further research:

Limitations pertinent to the recovery scope: the recovery scope of the pro-
posed approach is limited to the structural view of a system as illustrated in
Figure 1.1, hence the approach currently can not recover the behavioral and
dynamic properties of the software system; ii) the current recovery technique
is best suited for the recovery of monolithic software systems, however the
technique can be extended to cover the object oriented systems by design-
ing a new domain model to represent the entities and relationships in the
object orientation paradigm, and then recover the group of related classes
into subsystems; iii) the current approach is not intended for analysis of the
distributed systems, since it is meaningless to group in one place a number
of related entities that are used in different locations; and iv) the current
approach assists on the recovery of module interconnection patterns. The
recovery of the architectural styles such as pipe and filter, or client and server
requires that the proposed AQL language be augmented to handle typed con-

nector such as files and sockets.

Limitations pertinent to computational complexity: the data mining and
graph matching operations that are highlighted in the recovery environment
of Figure 1.2(a) are computationally expensive. In Sections 6.5, 7.3.1, 7.4,

8.4.2, and 8.5 of the thesis several techniques have been employed that deal

22 CHAPTER 1. INTRODUCTION

with limiting the complexity and increasing the tractability of the expensive

operations in both phases of the recovery environment.

1.9 Thesis overview

The remaining Chapters of this thesis are organized as follows:

Chapter 2: provides an overview of the related work in the area of software ar-

chitecture representation and recovery.

Chapter 3: discusses the pre-process operations that represent the software sys-
tem at a higher level of abstraction for the on-line analysis. In these operations
the software system is represented as an entity relationship graph. Using a
data mining technique two association-based similarity measures at different
granularity levels of the system entities are introduced. In this way, the graph
of the system is decomposed into graph regions as means to reduce the pattern

matching run-time complexity.

Chapter 4: discusses the details of the proposed architecture query language (AQL).
An AQL query provides a model of an abstract module-interconnection pat-
tern that denotes a number of structural constrains to be satisfied in the

recovered architecture.

Chapter 5: presents means for an AQL query to be presented as a pattern-graph

that is to be matched with an entity relation graph of the software system.

Chapter 6: presents a new model for the software architecture recovery based on

1.9. THESIS OVERVIEW 23

approximate graph pattern matching. For such a graph matching model, the
input graphs consist of a software system graph (defined in Chapter 3) and a
pattern-graph (defined in Chapters 4 and 5). Moreover, the characteristics of
a multi-phase graph matching algorithm and the corresponding cost functions
for graph edit operations are discussed and an example of a two-phase graph

pattern matching process is provided.

Chapter 7: presents an overview of the pattern matching algorithms and the cor-

responding complexity analysis.

Chapter 8: provides the experimentation with a number of middle-size industrial
software systems. The experimentations are divided into off-line analysis and
on-line analysis, as well as evaluating the stability, quality, and accuracy of

the proposed pattern matching technique.

Chapter 9: provides a conclusion for the whole thesis and the possible extensions

to the proposed environment.

Appendices: A) Formal definition of an architectural level domain model pre-
sented in Chapter 3. B) Formal definitions of graphs presented in Chapter
5. C) Pseudocode for the pattern matching algorithms. D) AQL query for a
system that is experimented in Chapter 8. E) Glossary of terms used in this

thesis.

Chapter 2

Related work

In this Chapter we present the work related to this thesis in the area of software

architecture recovery.

2.1 Architecture recovery

A brief taxonomy of the current architecture recovery frameworks has been pre-

sented in [74] as follows:

o Clustering frameworks: a parser extracts a relational source model from source
code and stores it in a database. Using a number of clustering operations
based on properties such as low-coupling and high-cohesion, system com-
ponents are identified. Rigi [104], PBS [38], and concept lattice techniques

[98, 68, 109] are examples in this category.

o Compliance checking frameworks: the extraction phase is identical to the

previous method. However, in the analysis phase, the analyst first defines

25

26

CHAPTER 2. RELATED WORK

his/her assumed high level model of the software in an appropriate form
(e.g., modules and interconnection, inheritance hierarchy, design pattern, or
architectural style). The tool then checks the degree of conformance between
the proposed model and the source model. Software reflexion model is an

example [79].

Analyzer generators frameworks: a parser generates an abstract syntax tree
and stores it in a repository. A query language is used to generate queries to
analyze the source model of the software system for the existence of specific
properties. Abstract syntax trees are language dependent, hence, the engineer

must be familiar with the language syntax. Genoa [33] is an example.

Program understanding frameworks: this method uses the knowledge of an
expert to automatically generate high level views of the system’s functionality.
The knowledge of the expert is captured in a knowledge-base, and the source
model is represented in an abstract syntax tree. A recognition engine then
searches through the source model and knowledge-base with the goal of finding
possible matches. The result is a hierarchy of recognized patterns which are
the user-guided views of the system. DECODE is a tool in this category [83].
Also in [114] a technique that models program understanding as constraint

satisfaction problem is presented.

Pattern matching frameworks: a query language is used to model the high-
level view of the system either as architectural styles [48], graph of architec-

tural elements [55], or a series of SQL queries [56]. The pattern matching

2.2. ARCHITECTURAL VIEWS 27

process searches the source model which is either an abstract syntax tree, a
repository of architectural elements, or a relational database, respectively, to

find the exact or approximate match of the queries in the source model.

In this context, the software architecture recovery technique proposed in this thesis

can be categorized as a “pattern matching framework”.

2.2 Architectural views

The significance of software architecture views as a means for separating the de-
signer’s concerns has been investigated in the research literature [117, 61, 100, 80,
105, 66].

In a broad sense, a view can be defined as “a projection of a process according
to a well-defined characteristic” [16]. Examples of such characteristics in a software
development environment include: roles (e.g., manager, designer), products (e.g.,
specification, design document), and activities (e.g., review, implementation). In
other words, views are the result of applying separation of concerns on a devel-
opment process in order to classify the related knowledge about that process into
more understandable and manageable forms.

The selection of an appropriate set of views is a common concern both in soft-
ware development and in reverse engineering. The different sets of views proposed
for specifying or developing a system consists of: data, function, and network [117];
function, process, development, and physical [61]; and module-interconnection, con-
ceptual, execution, and code [100]. The functional view seems to be the central

view. The data view is important in the design of a database for an information

28 CHAPTER 2. RELATED WORK

system. The process view is required in the design of concurrent systems. The
development view is mostly required for task assignment and scheduling in project
management. The network view (physical view) is essential in designing distributed
systems. The user-interface view is helpful in designing interactive systems.

During the reverse engineering, it is ideal to recover the same set of views of
a system that are also appropriate for its development. Unfortunately, reverse
engineering is a much more difficult task than forward engineering. Recovering
some aspects, e.g., functionality, of a large and poorly documented legacy system
is a non-trivial task (if not impossible). The structural view is considered to be the
most appropriate architectural view to be recovered [38, 1, 116]. Other views to be
considered are data and behavior [28].

In this respect, the scope of the architectural recovery approach in this thesis
has been restricted to structural view of the system and the features of the system
to be recovered have been described in Section 1.5 and are also illustrated in Figure

1.1.

2.3 Architecture description languages

An Architecture Description Language (ADL) is used to document architectural
information in order to describe and analyze a system. From the linguistic point of
view, an ADL is characterized by six properties [97]:

1) composition/decomposition: integration of system components into larger sub-
systems, decomposition of a system into its constituents, and integration of ar-

chitectural styles; ii) abstraction: defining abstract views of high-level or low-level

2.3. ARCHITECTURE DESCRIPTION LANGUAGES 29

design; iii) reusability: using generic patterns of components and connectors; iv)
configurability: changing a software’s structure independent of the components; v)
heterogeneity: integrating different styles in one system, or integrating modules
written in different languages; and vi) analysis: reasoning about the system by
checking architectural properties, providing metrics, or simulating run-time char-
acteristics.

A variety of architectural features have been proposed or implemented on ADLs
such as: Unicon [96], Rapide [70, 71], ACME [43], ARDEC DSSA [103], Wright [14],
ControlH [20], Polylith [82], DECODE [83], Kaptur [17], and also in [67]. However,
no single ADL can handle a good portion of these features.

Finally, Module Interconnection Languages (MIL) [81] provide syntactic and
semantic means for integrating separately developed modules in a distributed envi-
ronment. A variety of MILs exist which differ in aspects such as: type of interfacing,
complex data-type handling, and language independence. Polylith [82] is an exam-
ple of an MIL.

In this context, the design of the proposed architecture query language (AQL)
has been influenced by the structural design of ADLs and is used to specify the
abstract architectural components and connectors which are then instantiated by
the actual subsystems (or modules) and their interconnections during the pattern

matching process.

30 CHAPTER 2. RELATED WORK
2.4 Data mining

Data mining or Knowledge Discovery in Databases (KDD), refers to a collection of
algorithms for discovering or verifying interesting and non-trivial relations among
data in large databases [37]. A substantial number of data mining approaches in the
related literature are based on extensions of the Apriori algorithm by Agrawal [12].
These approaches are pertinent to the concept of market baskets (or transactions®)
and their contained items. A market basket (or simply basket) contains different
kinds of items, where the quantity of items of the same kind in the basket is not
considered.

The data mining algorithms search the data in large databases to extract fre-
quently occurring patterns, trends, and generalizations about the data items with-
out user intervention. In this context, the interesting relationships may be discov-
ered among groups of items in baskets (association rules) [12], among sequences of
groups of items in baskets (sequential patterns) [13], or among the time of occur-
rences of transactions (time-series clustering) [11].

The association rules express the frequency of pattern occurrences such as 30%
of baskets that contain the set of items X also contain the set of items Y (shown as
X =Y). The Apriori algorithm can be used to discover the association rules in two
steps. The first step extracts all combinations of items where the number of common
container baskets for each combination exceeds a minimum level (each combination

is known as a frequent itemset). The second step generates association rules using

!The notion of a transaction in the data mining context emphasizes on the containment prop-
erties, which is different from the notion of a transaction in distributed systems domain which
emphasizes on the communication properties.

2.5. CONCEPT LATTICE ANALYSIS 31

such frequent itemsets. The general idea is that if, for example, {A,B,C,D} and

{A B} are frequent itemsets, then one can determine whether the rule {A, B} =

no. of common baskets({4,B,C,D})
no. of common baskets({4,B})

{C, D} holds by computing the ratio r = known
as confidence r. The rule holds only if r > minimum confidence.

The reverse engineering approaches using data mining are very few. Montes and
Carver [31] use data mining association rules and a visual representation model to
graphically present the subsystems that are identified from the database represen-
tation of the subject system. In contrast, the approach taken in this thesis uses a
by-product of association rules, by considering frequent-itemsets along with their
container baskets. This information is used to encode the structural property of

the groups of entities with maximum-level of interaction as a similarity measure

between system entities.

2.5 Concept lattice analysis

The mathematical concept analysis was first introduced by Birkhoff in 1940 [21]. In
this formalism, a binary relation between a set of “objects” and a set of “attribute-
values” 1s represented as a lattice. Recently, the application of concept analysis in
reverse engineering has been investigated [98, 68, 109]. In such applications, a for-
mal concept is a maximal collection of objects (i.e., system functions) sharing max-
imal common attribute-values (i.e., called/used functions, datatypes, variables). A
concept lattice can be composed to provide significant insight into the structure of
a relation between objects and attribute-values such that each node of the lattice

represents a concept. However, even in medium software systems (+50 KLOC) the

32 CHAPTER 2. RELATED WORK

concept lattice becomes so complex that the visual characteristic of the lattice is
obscured. In such cases, the researchers seek automatic partitioning algorithms to
assist the user in finding distinct clusters of highly related concepts.

The steps of using concept lattice for the modularization of a software sys-
tem have been presented in [98] as follows. First, a matrix of functions and their
attribute-values is built. Second, based on this matrix a concept lattice is con-
structed, using a bottom-up iterative process. Finally, a collection of the concept
partitions is identified, where each partition is a group of disjoint sets of concepts,
and the attribute-values in each set of concepts have large overlap. Each partition
corresponds to a potential decomposition of the system into modules.

Sif [98] uses a repair technique by adding extra relations to make the gener-
ated concept lattice well-formed in order to provide easier partitioning. The main
drawback of this approach is the large number of generated partitions that requires
high user-involvement for reducing the number of partitions to a manageable set
for investigation. Snelting [68] uses a technique called “horizontal decomposition”
to partition a lattice of procedures and variables into modules. However, the over-
whelming number of interferences between concepts in the lattice of a real system
prevents such an horizontal partitioning.

In contrast to concept lattice approaches, this thesis defines a similarity measure
which encodes the structural characteristics of the neighboring concepts and use
this metric to collect the groups of closely related concepts into one module or

subsystem.

2.6. CLUSTERING 33

2.6 Clustering

The pattern-based software architecture recovery presented in this thesis can be
also viewed as a clustering technique provided that in the AQL query specification
of the architecture the user does not constrain the number of interactions between
the modules or subsystems.

The cluster analysis is defined as the process of classifying entities into subsets
that have meaning in the context of a particular problem [54]. The clustering
techniques are designed to extract group of related entities. However, the choice
of a technique affects the detected clusters, which may or may not be the existing
structure. The clustering approaches usually determine a “similarity metric” and
a “clustering algorithm”. Wiggerts [112], Anquetil [15], and Tzerpos [107] have
surveyed different aspects of clustering algorithms for software systems.

A similarity measure is defined so that two entities that are alike possess higher
similarity value than two entities that are not alike. There is a number of similarity
measures proposed in the literature, and Wiggerts provides a summary of different
categories namely association coefficients, correlation coefficients, and probabilistic
measures [112]. Based on the size ratio of different unions and weights of the
sets of shared features, a variety of association based similarity metrics have been
suggested [36] such as Jaccard and matching coefficient®.

This thesis proposes a new association-based similarity metric in Chapter 3

which has two advantages over the existing association-based similarity metrics:

2 Jaccard = Iﬁﬂg} and Maching = M%lu&, where A and B are the sets of features for two

entities, C is the set of features not in either entities, and D is the set of whole features.

34 CHAPTER 2. RELATED WORK

1) it identifies the members of a group of maximally related entities in a system;
and ii) it considers the datatypes and variables as members of a group including
functions, as opposed to considering them as attribute-values of functions which
cause only the functions to be grouped.

Lakhotia [63] provides a unified framework that categorizes and compares the
different software clustering techniques. Furthermore, the clustering-based ap-
proaches to software architecture recovery can fall into two groups. The first group
of approaches utilizes automatic or semi-automatic techniques [89, 59, 15, 26, 30,
109, 72, 107, 112, 52, 62] using a similarity metric and a clustering algorithm (e.g.,
agglomerative, optimization, graph-based, or construction) to partition the system
into groups of related entities [112]. The second group of approaches [38, 78] is
based on tool usage, domain knowledge, and visualization means, to perform a
user/tool cooperative clustering process, and to view and evaluate the properties
of the clustered system. Such techniques have been proven useful in handling large
systems [38].

In [72] a partitioning method is used to partition a group of system files into
a number of clusters. The method uses a hill-climbing search to consider different
alternatives based on neighboring partitions, where the initial partition is randomly
selected. In comparison, our method carefully finds a collection of rather separated
and highly qualified sub-spaces that can be viewed as an initial partition of clusters,
and then a search algorithm selects a sub-optimal group of files for each cluster.
Therefore, the chance of being trapped in a local optimum caused by random par-

titioning and hill-climbing search, is eliminated.

2.6. CLUSTERING 35

In [106], a number of system structural properties are used to cluster the system
files into a hierarchy of clusters. The method uses subgraph dominator nodes to
find subsystems of almost 20 members, and builds up the hierarchy of subsystems
accordingly. To simplify the computation, the interactions of more than 20 links
to/from a file are disregarded. In contrast, our technique does not assume any
pre-existing structure for the system such as directory structure. Instead, it relies
on an overall data/control flow dependencies among the system entities to be used
for clustering.

In the PBS approach [38], the user defines a containment structure for a hier-
archy of subsystems which is derived from: developers, documentation, directory
structure, and naming conventions. The tool then reveals the relations between
subsystems and represent the system as layouts in HTML pages for the user’s in-
spection and manipulation. In the Rigi tool [78], the extracted facts in the form
of RSF tuples are represented as an entity-relation graph of attributed boxes and
arrows. The tool then provides interactive facilities for graph filtering and clus-
tering operations to build and explore subsystem hierarchies. In a semi-automatic
method [59], an interactive clustering environment uses a suite of known clustering
techniques and the Rigi tool, to incrementally detect components of a system.

In comparison, we propose an interactive software architecture recovery tech-
nique and an environment that emphasizes on pre-processing the raw system data
to a level that either the tool or the user can perform the recovery operation. Visual-
ization of the graphs whose edges are labeled by quantized association values allows

the evaluation and fine-tuning of the automatically generated system architecture.

36 CHAPTER 2. RELATED WORK
2.7 Graph matching

The architectural recovery technique proposed in this thesis is based on approximate
graph matching, hence this Section outlines the related work in this area. Graph
matching refers to algorithms for comparing two graphs G and G, [95, 25, 108, 75],
by means of a function f that maps the nodes and edges of G; onto the nodes and
edges of Gy (f : G; — G3). Three types of mappings between two graphs G,
and Gy are of particular importance, namely: 1) homomorphism where f allows
two or more nodes in G4 map to one node in Gy; ii) monomorphism (or subgraph
isomorphism) where f allows one node in Gy to match only with one node in Gy;
and iii) isomorphism where f allows one-to-one matching in both directions, i.e., f
is one-to-one from G; to Gy and f~! is one-to-one from G, to G, [95]. Furthermore,
graph matching can be classified as ezact or approzimate. In exact graph matching,
the problem is to find a subgraph of graph G1 that is isomorphic with another
graph G2. However, in most real applications due to the effect of noise, distortion,
sampling error, or lack of a known or fixed pattern, exact matching is not feasible.
In such cases, finding a subgraph of the input-graph that is similar to a given
pattern-graph, within the boundary of a threshold value, is the primary objective.

A number of researchers have investigated the application of graph matching in
different problem domains. Messmer and Bunke [75] compare an input graph with
a collection of prototype graphs by first decomposing the prototypes into primitive
graphs which are stored in a database, and then comparing them against the prim-
itives of the input graph. Eshera and Fu [34] decompose the matching graphs into

simple trees to be matched. Shapiro and Haralick [95] define a graph structural de-

2.8. CONSTRAINT SATISFACTION 37

scription with weighted nodes and edges to compute the cost for inexact matching.
Bunke and Allermann [25] use graph edit operations and generate a state space to
be searched for a minimum path. In our approach, we generate a database of graph
regions and incrementally match a pattern graph against this database, which is

close to the approaches proposed by Messmer and by Eshera.

2.8 Constraint satisfaction

The software architecture recovery approach presented in this thesis is also related
to the approaches that model the problem of program understanding as a constraint
satisfaction problem (CSP). In CSP the values of a set of variables are restricted
by the constraints that are defined between the variables. A solution to a CSP is
an assignment of values to variables such that the constraints are satisfied. In the
CSP problems the constraints are considered as “hard” that can not be violated.
Woods [114] generalizes the problem of program understanding as an instance of
the constraint satisfaction problem. The approach uses templates (as patterns to be
recovered) to model the structure of the pieces of source code. A search algorithm
instantiates the variables in the templates with the source code entities so that,
the structural constraints are satisfied. In this approach two sets of constraints are
considered, i.e., one set between source code entities and one set between template
variables. In comparison, the AQL query presented in this thesis and the templates
in the Wood’s approach have been intended for the same objective but with different
languages and levels of abstraction. However, in our approach the constraints can

be violated with some cost.

38 CHAPTER 2. RELATED WORK

In [92] an approach to software architecture recovery is presented that uses an
extension to the CSP problem known as Valued Constraint Satisfaction Problem
framework (VCSP) [93], that allows over-constraint problems to be dealt. In the
VCSP framework a cost function assigns a cost for violation of each constraint, and
the cost for a certain value to variable assignment is the overall cost of constraints
that are violated by such an assignment. The goal is to find a complete assignment
of minimum cost.

In comparison, the approach in this thesis uses graph matching that assigns
a cost to each graph edit operation (i.e., edge/node insertion/deletion) and the
goal is to find a match between a graph that represents the software system and
a pattern-graph that represents the architecture in query so that the overall graph
edit cost is minimized. Moreover, the graph model of a software system is more
intuitive than the VCSP model since the data/control flow dependencies can be

directly matched and dealt with.

2.9 Architectural pattern matching

The following approaches to software architectural recovery use search techniques
to recover a defined pattern in a software system.

Kazman and Carriere [56] propose Dali as a workbench that allows different
light-weight tools and techniques to integrate for an architectural recovery task.
Dali extracts elements (function, files, variables, objects), a collection of relations
(e.g., function calls), and a set of attributes of elements and relations (e.g., function

calls function N times), and stores them in a relational database. A pattern con-

2.9. ARCHITECTURAL PATTERN MATCHING 39

sists of a collection of SQL queries that have been integrated via Perl expressions.
The primitive SQL queries collect the architectural components and their derived
relations by querying the relational database. The recovery process requires the
involvement of the user who is familiar with the system’s domain (domain expert)
and has experience with composing SQL queries. In order to recover the architec-
ture of a system the user composes two sets of pattern queries namely “common
application patterns” that are used for all systems and “application-specific pat-
terns” that require knowledge about the domain’s reference architecture. In each
set of queries the smaller entities are collapsed into larger components, and relations
between components are derived. In contrast, the approach in this thesis presents a
modular pattern of the software system using the more expressive AQL queries and
a tool provides useful information on how to generate the pattern, hence requires
less user involvement.

Kazman and Burth [55] introduce an interactive architecture pattern recognition
to recover user defined patterns of architectural elements in a system. The system
is modeled as a graph of architectural elements, i.e., components and connectors.
Each component or connector is defined using common features, namely static
and temporal features, causing the elements to be treated in the same way [57].
The user defines an architectural pattern or style as a graph of elements. The
tool then searches to identify instances of that graph in the system model. The
tool uses the constraint satisfaction paradigm [114] to restrict the search space.
The hard/soft features of the elements allow to relax the exact matching (i.e.,

approximate matching). The approach provides statistics about the regularity of

40 CHAPTER 2. RELATED WORK

a system in terms of its coverage by a particular pattern. This approach has very
interesting capabilities in modeling the architectural elements. The pattern in this
approach describes the interaction between individual elements in the system model
as opposed to our approach that the AQL query defines a macroscopic pattern on
the groups of system entities and the interaction among the groups of entities.

Murphy and Notkin [79] have proposed the software reflexion model to assist
the user in testing his/her mental model of the system. The user employs a textual
declarative form to define a high-level model of the system, and link this model to
the source model. The source model is a call graph or an inheritance hierarchy. A
software reflexion model is then computed to determine where the user’s high-level
model conforms with the source model and where does not conform. The user inter-
prets the reflexion model and defines new relations based upon the results. Regular
expressions are used in the forms to facilitate the link of a group of source model
entities to a high-level entity. In contrast, our approach uses a structured query as
pattern and architectural constraints to be satisfied in the recovered architecture,
as opposed to checking the validation of the facts in the pattern.

Harris et al. [48] identify architectural styles (about nine styles) in source code.
The method uses an annotated AST of the system as the search domain and an
architectural query language, built on top of the Refine language, that codifies
the desired architectural styles. A number of style recognition queries (around 60)
constitute the base of the recognition process. A specialized query is composed to
search for specific style related properties in the source model. This query triggers

a set of more specific style queries as subgoals, and then reports on the degree

2.9. ARCHITECTURAL PATTERN MATCHING 41

of success in recognizing that style and its code-coverage. In a similar approach,
Fuitem et al. [39, 40] use recognizers and flow analysis techniques in architectural
recovery. The expected architecture has a hierarchical model with components and
connectors at different levels (e.g., system, program, and module), and different
views at each level (e.g., system, module, task, code, data/call graphs).

The two approaches above, use program understanding techniques at a higher-
level of abstraction to recognize architectural styles using plan-like queries. How-
ever, in order to compose a query the engineer needs to be familiar with the system
using the recognizers in the repository. In contrast, the abstract query in our
approach needs no repository of recognizers and allows the engineer to recover a
modular view of the whole software system incrementally.

Dean and Cordy [32] describe a software architecture using a pattern language
that is based on typed nodes and connections. The pattern language can model the
architectural structure of a system by defining the semantics of individual compo-
nents and the system as a whole. At a higher level, a framework can be defined to
abstract away the details of particular components and provide a means of catego-
rizing architectural paradigms.

Kontogiannis [58] et al. propose a program understanding approach namely
concept-to-code pattern matching, where a concept language captures the abstract
properties of a desired code fragment. The pattern matching process is based on
the Markov model and the similarity measure between an abstract pattern and a
piece of code is defined in terms of the probability that the abstract pattern can

generate that piece of code. Dynamic programming has also been used to reduce the

42 CHAPTER 2. RELATED WORK

complexity of the required computations. This approach differs from our approach

at the level of abstraction used and the employed pattern matching technique.

Chapter 3

System representation

As the first step of any software analysis technique the source-code of the software
system is parsed and represented as an Abstract Syntax Tree (AST) or as a set of
entity relationship tuples. Since, the source-code representation is too detailed to
perform any meaningful architectural analysis, it must be represented at a higher
level of abstraction. In this Chapter, a domain model is presented to define an
abstract representation of the system entities and the relationships that are suitable
for architectural analysis. This domain model provides means for representing a
software system as an Attributed Relational Graph (ARG) [95, 25, 35]. However,
searching and analyzing such a graph representation of a large software system is
inherently intractable. In order to address the tractability problem and to provide
an incremental analysis of the system architecture, the graph representation of
the software system is partitioned into a number of smaller subgraphs using the
association property.

This Chapter is organized as follows. First, a software system is modeled as an

43

44 CHAPTER 3. SYSTEM REPRESENTATION

attributed relational graph using an abstract domain model. Second, the notion of
maximal association is presented and two techniques for identifying entities that
are related by maximal association are introduced. Third, two association based
similarity metrics at file-level and function-level granularity are defined. Finally, a
technique for decomposing the software system’s graph into a collection of graph

regions 1s presented.

3.1 Graph representation of a software system

Modeling system entities and relationships as an attributed graph has been tra-
ditionally used in image processing and pattern matching domains [95, 25, 35].
Modeling a software system as an attributed graph has also been adopted by a
number of software analysis approaches [19, 49, 50, 72, 78], where the nodes and

edges of the graphs and their attributes are specified by a domain model.

3.1.1 Abstract domain model

A domain model provides a schema to represent the software system entities and
their interactions using different diagrammatic techniques such as entity relation
graphs, module interconnection graphs, structure charts, program dependency graphs,
and abstract syntax graphs [73]. For example, the domain model of a programming
language can be used to obtain the entity relation graph of a system at the source-
code level by considering: i) source-code constructs as instantiations of the domain
model classes (i.e., file, function, statement, expression, type-specifier, and vari-

able); and ii) relationships between source-code entities as instantiations of the

3.1. GRAPH REPRESENTATION OF A SOFTWARE SYSTEM 45

associations between domain model classes. Such a source-level domain model for
the C programming language is presented in Appendix A. The instantiation of the
“classes and associations” of the domain model into “objects and relationships” is
the result of parsing a software system. Recent approaches [49] use XML notation
[7] to define a domain model using Domain Type Definition (DTD) that is derived
from the grammar of the programming language being modeled.

In reverse engineering, the level of granularity of the selected source-code repre-
sentation is determined according to the purpose of the analysis. In the context of
software architecture recovery, functions, global variables, and aggregate datatypes
have been extensively used [63, 30, 15] as the proper granularity for function-level
system analysis. However for file-level analysis, file and directory information have
been used instead [24, 72, 106]. The architecture recovery approach in this thesis
alms at analyzing a software system at both levels, hence the proposed domain
model must cover the entities and relations for both levels of architectural recovery.

In Figure 3.1 the UML class diagram of the proposed domain model, namely
the abstract domain model is illustrated. In this model the different types of entities
are a subset of the types of entities in the software system’s source-code, and each
relation in the abstract domain model is an aggregation of one or more relations in
the software system’s source-code. The advantage of this domain model is that it
is simpler than the detailed source-code domain model; it is language independent
for procedural programming paradigm; and yet it is adequate for architecture level
analysis. The class attributes of the different entities in the abstract domain model

are presented in Tables 3.1 and 3.2.

CHAPTER 3. SYSTEM REPRESENTATION

46

Jaba Jeyd :pi-uswajdwi

J8ba1u| :# aul|
19691 :# 9y

sqe-

uone|ay

SSBJO UONeI0SSY

uonebhalbby

b

uonez|eIausn

L |

sge-uonoun4 0}
S ge-uonound :wouj

sqe-adA] :0)
Sge-uonoun4 :Wouj

sqe-a|qeLieA 01
SQe-UONOUNS (WO

sqe—u3dwis ;01
Sqe-9|i4 ‘wolj

sqe—u3zdwis ;01
Sqe-9|i4 ‘wol

sqe-ju3zdwis ;o)
sqe-aji4 :wouy

sqe-u3zdwis ;01
Sge-a|l4 :wolj

4-asn 1-asn A—asn y-dxa d-dwi y-asn y-1uod
L (sqe—uzdwis) 1S :sasn
, " (sqe—-s|qeleA) 19s :siepasn ” B (sqe—u3dwIS) 198 :SURIL0D
0 (sqe—-adA]) 19s :sadAjasn I . . ! (sge-1uzdwis) 18s :suodxa
(sge-uonoun4) 18s :soun4asn u’o u-o L (sqe_u5dwIS) 198 “suodwn
T 1ebaul 4, :p! 1B L. :p! Jaba| A, :p! : 19Bayu) 7, :p!
sge-uonoun4 sqe—adA L sqe-a|geuep PAV soe-a)i4

v

sqe—u3zdwis

SIS S| <
S|o|c|o

\Vi

J19ba1u| Jey) :pi-juswajdwi
Jabau| :# aul|
19b91u| :# 9y
Buins :aweu

sge-Amu3

Figure 3.1: The class diagram of an abstract domain model suitable for architectural

recovery task. This domain model is an abstraction of the source-level domain

model that is presented in Appendix A. This domain model defines the node and

edge attributes of the source-graph G* to be discussed in Section 3.1.2.

3.1. GRAPH REPRESENTATION OF A SOFTWARE SYSTEM 47

‘ Entity-abs

‘ Attribute ‘ Ezample ‘ Description
name “foo” Name of the entity in the source-code
file # 5 File number of the source-code file where entity is defined
line # 79 Line number of the entity in the source-code file

Unique identifier of the object (entity) in the

implement-id 13 source-level domain model that implements

the entity-abstraction in the abstract domain model. The
object of an “id” is returned by the function Obj(id)

Table 3.1: Description of the class Entity-abs.

In Figure 3.1, the class Entity-abs (Relation-abs) presents the common attributes
that are inherited by every entity (relation) in the abstract domain model. These
attributes identify a source-code construct (e.g., definition, declaration, statement,
function-call, assignment) that implement a specific entity or relation. The class
SitmpFEnt-abs is used to separate a file entity from other types of entities since they
belong to different granularity levels. Each relation in the abstract domain model
is an object of an “association class” and contains the attributes “from” and “to”
denoting the source and destination entity for that relation. The relations in the
abstract domain model are categorized into function-level and file-level relations as
defined below. The formal definitions of these relations are provided in Appendix
A

The entities in the abstract domain model are denoted as file-abstraction, function-

abstraction, datatype-abstraction, and variable-abstraction.

48 CHAPTER 3. SYSTEM REPRESENTATION
File-abs
‘ Attribute ‘ Ezample ‘ Description
id L3 Unique identifier of a file-abstraction object that is
implemented by a source-file with “id” 13
imports | {F3, T7, ..} | Set of imported entity-abstraction by the relation imp-R
exports | {V2, T8, ..} | Set of exported entity-abstraction by the relation ezp-R
contains | {F9, V1, ..} | Set of contained entity-abstraction by the relation cont-R
uses {F13, T1, ..} Set of used entity-abstraction by the relation use-R
Function-abs
‘ Attribute ‘ Ezample ‘ Description
id F5 Unique identifier of a function-abstraction that is
implemented by a source-code function with “id” £5
useFuncs {F2, ..} Set of function-abstraction that are related to this
function-abstraction by the relation use-F.
useTypes {T5, ..} Set of datatype-abstraction that are related to this
function-abstraction by the relation wuse-T.
useVars {V6, ..} Set of variable-abstraction that are related to this
function-abstraction by the relation use-V.
Type-abs
‘ Attribute ‘ Ezample Description
id T9 Unique identifier of a datatype-abstraction that is
implemented by an aggregate-type or array-type.
Variable-abs
‘ Attribute ‘ Ezample Description
id Vo6 Unique identifier of a variable-abstraction that is
implemented by a global-variable

Table 3.2: Description of the classes File-abs, Function-abs, Type-abs, and Variable-
abs. The relations imp-R, exp-R, cont-R, and use-R will be defined later in this

Section.

3.1. GRAPH REPRESENTATION OF A SOFTWARE SYSTEM 49

Abstract F: Function-abs F’: Function—abs L: File-abs F: Function—-abs L: File-abs F: Function—-abs
domain L] — [] — [L] — [
: use-F : : cont-R : : use-R :
I: File 3 I: File
5
= f: Function f': Function . f: Function . i f: Function
© Source— f:Function | gefine f: Function cal
5 level call p— — - — callf — "
g domain call f
= p—
E
(c) Relation "use-R"

(a) Relation "use—F" (b) Relation "cont-R"

Figure 3.2: The correspondence between the entities and relationships in abstract
domain model (Figure 3.1) and source-level domain model of a software system.
The source-level domain model is presented in Appendix A.

Function level relations

Relation use-F': is defined between two function-abstractions F and F’, denoting
that the implementation of F' (i.e., a source-code function f) calls the imple-

mentation of F’ (i.e., source-code function f’). Figure 3.2(a) illustrates such

a relationship.

Relation use-T : is defined between a function-abstraction F' and a datatype-
abstraction T, denoting that the implementation of F (i.e., function f) up-
dates/reads the value of a variable v, and the variable v is of type aggregate-

type/array-type t, and t is the implementation of the datatype-abstraction

T.

Relation use-V : is defined between a function-abstraction F and a variable-
abstraction V', denoting that the implementation of F' (i.e., function f) up-

dates/reads the value of the implementation of V' (i.e., global variable v).

30 CHAPTER 3. SYSTEM REPRESENTATION

File level relations

Relation cont-R (interpreted as contain-resource): is defined between a file-
abstraction L and either a function-abstraction F', or a datatype-abstraction
T, or a variable-abstraction V', denoting that:

i) the implementation of L (i.e., source-file [) defines the implementation of
F (i.e., function f). This relation is illustrated in Figure 3.2(b);

ii) the implementation of L (i.e., source-file /) either defines the implemen-
tation of T (i.e., the aggregate-type/array-type t), or a library-file h globally
defines the datatype ¢ but the source-file [“has the highest number of refer-
ences” (i.e., uses) to datatype t among all other source-files; or

iii) the implementation of L (i.e., source-file 1) either defines the implemen-
tation of V (i.e., the global-variable v), or a library-file h globally defines
variable v but the source-file [“has the highest number of references” (i.e.,

uses) to variable v among all other source-files.

In this context, a file-abstraction is called a composite entity and a function-
abstraction, a type-abstraction, or a variable-abstraction is called a simple-

entity such that a composite entity contains a set of simple entities.

Relation use-R (interpreted as use-resource): is defined between a file-abstraction
L and either a function-abstraction F', or a datatype-abstraction T, or a
variable-abstraction V', denoting that:

i) the implementation of L (i.e., source-file /) defines a function f’, and func-
tion f’ calls function f, and function f is the implementation of function-

abstraction F. This relation is illustrated in Figure 3.2(c);

3.1. GRAPH REPRESENTATION OF A SOFTWARE SYSTEM 51

ii) the implementation of L (i.e., source-file [) defines a function f’, and func-
tion f’ updates/reads the value of a variable v’ whose type is the aggregate-
type/array-type ¢, and t is the implementation of datatype-abstraction T'; or
iii) the implementation of L (i.e., source-file [) defines a function f’, and
function f’ updates/reads the value of global variable v, and v is the imple-

mentation of variable-abstraction V.

Relation imp-R (interpreted as import-resource): is defined between a file-abstraction
L and an entity-abstraction R (i.e., function-abstraction / datatype-abstraction

/ variable-abstraction), denoting that L uses R but does not contain R'.

Relation exzp-R (interpreted as export-resource): is defined between a file-abstraction
L and an entity-abstraction R (i.e., function-abstraction / datatype-abstraction

/ variable-abstraction), denoting that L contains R and another file-abstraction

L’ uses R.

3.1.2 Source graph

In this Section, the graph representation of a software system at architectural anal-
ysis level, namely source-graph is discussed. This is one of the core data models
for the proposed graph pattern based software architecture recovery. In this the-
sis, the notation for Attributed Relational Graph (ARG) that is presented in [34] is

adopted to define all graphs. The attributed relational graphs are frequently used

'In the graph representation of the entity-abstraction and relation-abstraction the relation
(L, R) € use-R is shown as an edge: L ' R. However, when the same relation is re}gresented as

imp

the import relation (L, R) € imp-R then the corresponding edge is shown as: I 4— R. Similar
notation applies for the ezp-R relation which is defined next.

52

CHAPTER 3. SYSTEM REPRESENTATION

for modeling systems in graph matching problems [75, 34, 95, 25].

the attributed relational graph representation of the source-graph is a six-tuple

G =

(N*, Rs, A% E*, 1*,€*)? that is defined as:

N#: {ni,nq,...,n,} is the set of attributed nodes, obtained from the abstract

domain model.

R : {ri,ry, ..., } is the set of attributed edges, obtained from the abstract

domain model.

A® . alphabet for node attributes and node attribute values such as node

labels, node types, and their values.

E? : alphabet for edge attributes and edge attribute values such as edge

labels, edge types, and their values.

' N* — (A® x A*)? : a function for returning the “node attribute, node
attribute value” pairs where p is a constant and denotes the number of node

attributes.

€ : R — (E°* x E*) : a function for returning “edge attribute, edge
attribute value” pairs where ¢ is a constant and denotes the number of edge

attributes.

In the source-graph G* the node and edge attributes are obtained from the

abstract domain model presented in Section 3.1.1, where each graph node is an

2Without loss of generality, we can refer to source-graph G* = (N*, R*, A*, E*, p*, €®) as G* =
(N*, R*).

3.1. GRAPH REPRESENTATION OF A SOFTWARE SYSTEM 33

object of a subclass of the Entity-abs class, and each graph edge is an object of a
subclass of the Relation-abs class. A node n; represents either a file-abstraction,

3. An edge r,

function-abstraction, datatype-abstraction, or variable-abstraction
represents a relation-abstraction such as use-F, use-T, or use-V for function-level

analysis; and cont-R, use-R, tmp-R, or exp-R for file-level analysis. In the source-

graph G the major attributes for the nodes and edges are:

e [abel: denotes: i) a full path-name as a unique name for each entity in the
software system; ii) a unique object identifier to refer to an entity, e.g., F4,

L6, T32; and iii) source and sink nodes to identify an edge, e.g., (nz2, ns).

o type: denotes the type of each node or edge in the graph. For example,
File-abs, Function-abs, Type-abs, Variable-abs are different types for nodes;
and use-F, use-T, use-V, cont-R, use-R, imp-R, exp-R are different types for

edges.

e [ocation: denotes the source file number and line number in file where the
entity (e.g., function F4) or the relation between two entities (e.g., use-V) is

implemented in the software system.

Graph edges correspond to a ternary relation node-typex edge-type X node-type and
are represented as the triples such as (Function-abs, use-F, Function-abs) and
(Function-abs, use-V, Variable-abs) with the intuitive interpretations of: function

calls function and function updates/reads variable, respectively.

3For simplicity, in the rest of this Chapter, file-abstraction, function-abstraction, datatype-
abstraction, and variable-abstraction are referred to as file, function, datatype, and variable, re-
spectively.

54 CHAPTER 3. SYSTEM REPRESENTATION

Nodes of types:
File—abs / Function—abs / Type-abs / Variable—-abs

Edges of types: use-F / use-T / use-V
use-R / cont-R /imp-R / exp-R
p_s (n2) = ((type, Function-abs),
(name, "/u/../foa"), (id, F6),
(line#, 37), (file#, 5))

Es(rs) = ((from, n2), (to, n8), (type, use-F),
(line#, 92), (file#, 5))

Figure 3.3: An attributed relational graph representation of a source-graph
G* = (N*,R*, A® E* 1*,€) according to the abstract domain model Figure 3.1.
Figure 3.3 illustrates the ARG of a small source-graph with 19 nodes and the

examples of node and edge labeling functions p® and €® that are explained below:

e *(ny) = ((type, Function-abs), (name, “/u/../foo”), (id, F6), (line#, 37),
(file#, 5)) indicating that node 2 of the source-graph G* is an entity of type
Function-abs with name “/u/../foo” and id F6 and it has been defined in line

37 of the source file 5; and

o *(rg) = ((from,ny), (to,ns), (type, use-F), (line#,92), (file#,5)) indicat-
ing that the edge rg of the source-graph G* is an object of type use-F' that
relates the function ny (discussed above) to the function ng with a function-

call relation in line 92 of file 5.

3.2. COMPUTING MAXIMAL ASSOCIATION 55
3.2 Computing maximal association

The proposed approach to software architecture recovery aims at extracting a collec-
tion of components (as modules or subsystems) with maximal intra-relation associa-
tion according to data/control flow dependencies between the component elements.
Mazimal association can be extracted by data mining and concept lattice analysis
and 1s considered as an interesting property for grouping the entities into cohesive
modules [98, 68, 109]. This property is mostly used to visualize the structure of
relations among groups of entities in small programs using a lattice, that provides
insight into the program under analysis. In this thesis we use the notion of maxi-
mal association to define two similarity metrics. Informally, maximal association is
defined in a group of entities in the form of a maximal set of entities that all share
the same relation to every member of another maximal set of entities.

For every set of functions, denoted as F, we can determine a set of shared
entities , denoted as &£, where every function f in F has a relation rel to an entity
e in £. For example, two functions fand ¢ can share the datatype t and variable v
by the relations use-T and wuse-V, respectively. The operation sh-ents(F) returns

the set of shared entities & for the set F as follows:
sh-ents(F) ={e| Vfe F; drel: X o X € {use-F, use-T, use-V} A (f, €) € rel}

Similarly, for every set &£ of entities we can determine a set of functions F, where

every function f in F has a relation rel to an entity e in £. The operation sh-

36 CHAPTER 3. SYSTEM REPRESENTATION

funcs(E) returns the set of sharing functions F for the set & as follows:

sh-funcs(E) = {f| Vee€ &, Trel: X o X € {use-F, use-T, use-V} A (f, €) € rel}

A set of functions F and a set of entities £ are related by maximal association, iff:
F = sh-funcs(E) AN & = sh-ents(F)

In this form, no larger set of functions F’ (F' O F) exists such that F’ and the set
of entities & are related by maximal association. Similarly, no larger set of entities
E' (&' D E) exists such that F and &' are related by maximal association.

In the following Sections, a technique from mathematical concept analysis and a
technique from data mining that extract groups of entities with maximal association

are discussed and briefly compared.

3.2.1 Mathematical concept analysis

In mathematical concept analysis a formal context is a triple C = (O, A, R), where
O and A are the sets of objects and attribute-values, and R is a binary relation
“has” between objects and attribute-values. A formal context can be represented
as a table of objects and attribute-values, referred to as the context table.

A formal concept is a mazimal collection of objects sharing maximal common
attribute-values. A formal concept c is represented as a two-tuple ¢ = (O, A), where
O and A are called the eztend and intend of concept ¢, respectively [21].

In order to apply concept lattice analysis on the reverse engineering domain, a

mapping from objects and attribute-values in the concept lattice onto the entities

3.2. COMPUTING MAXIMAL ASSOCIATION 37

Container Relation Containment

-
g3 ibute-val
8 object has attribute—value
cC =
o ®
O
c @ . .
T = basket contains item
el

€

> 5 o .
& % entity has relation—entity (pair)
function Fi use-F .- function Fx
£ o
o d £ function Fi use-T ---------- type Ty
%_§ Y| function Fi has use-V e var Vz
% 2 %,’ file Lj Use-R - function Fx / type Ty / var Vz
L>u< S file L imp—-R /exp-R --- function Fx/type Ty /var Vz
file Lj cont-R - ----vee function Fx / type Ty / var Vz

Figure 3.4: Mapping the “object and attribute-value” in concept lattice analysis
and “basket and item” in data mining domain onto the “entity and relation-entity”
in the reverse engineering domain.
and relations in a software system’s domain model must be provided. Figure 3.4
demonstrates such a mapping, where an “object” is mapped onto a system “entity”
such as a function or a file, and an “attribute-value” is mapped onto a pair of
“relation and entity”. For example, a function F1 (as an object) can have a “use-
F function F27, a “use-T type T3”, and a “use-V variable V2”7 as the attribute-
values of the function F1%.

In this mapping, the set of functions F (as objects O) and the set of “relation
and entity” pairs A (as attribute-values) correspond to a “maximal rectangle” in

the context table. Therefore a concept ¢ provides maximal association between the

*In this example, the attribute-values function F2, type T3, and variable V2 are stored in the
attributes useFuncs, use Types, and useVars of the function F1 (an object of class Function-abs)
in the abstract domain model of Figure 3.1.

38 CHAPTER 3. SYSTEM REPRESENTATION
({F1, F3, F5}, {F2, F7,T3}) ({F1, F4, F5}, {T1,V3})

Attr-Val
Obj F2 F7 T3 T1 V2 V3 T2

F1| X X X X X X

F2 X

F3| X X X

F4 X X X

F5| X X X X X

Attribute—value Interpretation

F2 "use-F function F2" (b) Concept lattice
T3 "use-T type T3"
V2 "use-V variable V2"

(a) Context table

Figure 3.5: An example of a formal context and its corresponding concept lattice.

set of functions in F and the set of entities in A by the equations:
F = sh-funcs(A) N A= sh-ents(F)

To simplify the representation of objects and attribute-values we adopt the
following: 1) an object is represented by its identifier, e.g., function F2 and type
T5 are shown as F2 and T5; and ii) an attribute-value consisting of a “relation and
entity” pair is replaced by only the entity’s identifier, e.g., “use-V variable V27 is
replaced by V2. Therefore, the term “function F1 has wuse-V variable V27 is
represented by “F1 has V27.

Figure 3.5(a) illustrates the context table of a formal context with five objects
F1 to F5, and seven attribute-values F2, F7, T1, T2, T3, V2, V3. In this context
table, a concept corresponds to a mazimal rectangle consisting of particular rows
and columns, where every two rows (or two columns) can be swapped without

change of concepts. Figure 3.5(b) illustrates the concept lattice of the context table

3.2. COMPUTING MAXIMAL ASSOCIATION 39

in Figure 3.5(a). A concept lattice can be composed to illustrate the structure of
the relations between objects and attribute-values such that each node of the lattice

represents a concept. A concept lattice has the following characteristics:

e Fach lattice node (i.e., a concept) is labeled with objects (functions) and

attribute-values, except the top and bottom nodes that may be unlabeled.

e Every object has all attribute-values that are above it in the lattice (directly

above or separated by some links).

e Every attribute-value exists in all objects that are below it in the lattice

(directly below or separated by some links).

For example, the node labeled |52"""® in the lattice of Figure 3.5(b) corre-

sponds to the concept ¢, = ({F1,F3,F5},{F2,F7,T3}) which means each of
the functions F'1, F'3, F'5 shares all attribute-values F2, F'7,T3. In other words,
all the functions F'1, F'3, F'5 use the functions F2 and F7 and use the aggregate
datatype T'3. Also the node labeled “T'1, V37 in the lattice corresponds to the con-
cept ¢, = ({F1,F4,F5},{T1,V3}) with similar interpretation. Such interesting
properties are not easily observable in the context table of a large software system.

In the next Section, we discuss data mining as an alternative technique to extract

maximal association and compare it against the concept lattice analysis.

3.2.2 Data mining

The data mining domain was introduced in Section 2.4. The association rules

in the data mining domain express the frequency of pattern occurrences such as

60 CHAPTER 3. SYSTEM REPRESENTATION

30% of baskets that contain the set of items X also contain the set of items Y.
The association rules are generated by frequent-itemsets and the frequent itemsets
can be generated by the Apriori algorithm [12]. A frequent itemset has the same
interpretation as a concept in the concept lattice analysis. A k-itemset is a set
of items with cardinality & > 0 and a frequent k-itemset is a k-itemset (or simply
itemset) whose elements are contained in every basket of a group of baskets (called
supporting transactions). The cardinality of this group of baskets must be greater
than a user-defined threshold called minimum-support.

In order to apply the data mining techniques on the reverse engineering domain,
a mapping from the notions of baskets and items in the data mining domain onto
the notions of entities and relations in a software system domain must be provided.
The mapping is similar to that of concept lattice analysis discussed earlier. Figure
3.4 illustrates such a mapping, where a “basket” is mapped onto a system “entity”
such as function F1 or file L2, and an “item” is mapped onto a pair of “relation and
entity”. In this mapping the “contains” relation in data mining is mapped onto the
“has” relation. For example, a function F2 (as a basket) can have a “use-F function
F57, a “use-T type T3”, and a “use-V variable V27 as the items of the basket
F2.°

In order to apply the Apriori algorithm on the source-graph G*, we define B(G?)
as the basket representation of the source-graph G* = (N*, R*):

B(G?*) = {b: Function-abs; I : set(Entity-abs) |

>Similar to the discussion on concept lattice analysis, in data mining for simplicity of the
representation of an item such as “use-F function F5” only the identifier “F5” is shown. Therefore,
“function F2 has wuse-F function F5” is represented as “F2 contains F5” and “function F2
has use-V variable V37 is represented as “F2 contains V3.

3.2. COMPUTING MAXIMAL ASSOCIATION 61

- . frequent frequent
Relationships Baskets of items: B(G)® 2-itemset 3-itemset
between entities in
_ S
source-graph G F1 F2 F3 F4 F5 | F1 | F4 | 5 F1lF3|Fs
Pre— E2 T2 F2 T1 F2 | Apriori
F1 call-F F2 process F7 F7| |[v2]| |F7| algorithm ‘(b\.“q/‘
FL call-F F7 ’ T 13| |v3| T2 » PN Vo T

F4 use V2 T3 T
e V2 V3

F5 use V3 v3 (F1,F4,F5), {TLV3}) (F1,F3FS}, {F2F7.T3})
Baskets itemset
(@) (b) ©

({Baskets}, {ltemset})

({F774, F800, F807}, {F209, F811, F812, T5, V250}) Fx: function-id

F(GS) | {F774, F798, F80T}, {F209, F308, F812, V259, V312}) Ty: type-id
({F738, F788, F800}, {F171, F173, T40, V298, V324}) Vz: variable-id
(d)

Figure 3.6: (a),(b),(c) Application of data mining in extracting frequent itemsets.
(d) Representation of the frequent itemsets for system analysis.
be N* AN I=buseFuncs U b.useTypes U b.useVars}

Figure 3.6 illustrates the process of generating frequent itemsets from the source-
graph G*. In Figures 3.6(a) and 3.6(b), the entities and relationships in source-
graph G® are represented as a database of baskets and items B(G®). In Figure
3.6(c), two frequent-itemsets generated by the Apriori algorithm on B(G*) are
shown. Each frequent-itemset is presented as a tuple ({baskets}, {items}), where
{baskets} is the set of functions and {itemns} is the set of “relation and entity” pairs,

such that:
{baskets} = sh-funs({items}) A {items} = sh-ents({baskets})

Hence the set of functions in {baskets} and the set of entities in {items} are related

by maximal association.

62 CHAPTER 3. SYSTEM REPRESENTATION

In Figure 3.6(c) the resulting frequent itemsets, i.e., ({F1, F4, F5},{T1,V3})
and ({F1,F3,F5},{F2,F7,T3}) are the same as the two formal concepts illus-
trated in Figure 3.5.

The generated frequent itemsets are categorized into groups, based on the car-
dinality ¢ of the itemset (¢ € [1..k]) and are stored in a database, denoted as F(G?*),
for further analysis in Section 3.3.

Finally, Figure 3.6(d) represents a small portion of frequent 5-itemsets (5 items
in each itemset) extracted from a software system’s source-graph. The first line is
interpreted as: all the functions F774, F800, F807 use functions F209, F811, F812,
and use aggregate type T5H and global variable V259. Each frequent 5-itemset is

equivalent to a concept with intend size 5.

Data mining versus concept lattice analysis

Both concept lattice and data mining techniques identify groups of entities related
by maximal association in the form of “concepts” or “frequent-itemsets”, respec-
tively. Below, a discussion on the applicability of these techniques for software

modularization is provided.

e The approaches to concept lattice analysis mostly rely on visualizing and
understanding the structural properties of the neighboring concepts in the
lattice to generate cohesive modules, hence these approaches are highly user-
dependent (see the related work in Section 2.5). In this Chapter, we propose
a new similarity measure that maps the structural properties of neighboring

groups with maximal association generated by data mining techniques to be

3.3. SIMILARITY MEASURE BETWEEN TWO ENTITIES 63

Concep.t Object Attr-value| Concept Extend Intend
Analysis

Data Basket Frequent

Mining (Transaction) Item itemset Support Itemset

Figure 3.7: The relation between the domains of concept lattice analysis and data
mining.

used for the proposed pattern matching process.

o In concept lattice analysis, the large number of generated concepts is a bot-
tleneck for partitioning algorithms, and there is no implemented mechanism
to restrict the number of generated concepts. In data mining techniques the
quantity of the generated frequent-itemsets can be controlled by a user-defined
parameter minimum-support (i.e., minimum-baskets). For example, in Fig-
ure 3.5 the concept ¢ = ({F2},{T2}) is not generated in the data mining

technique, if the value of minimum-support is 2 or more.

Figure 3.7 illustrates the relation between the domains of concept lattice analysis
and data mining. In the following Section, we use the maximal association property
among the group of system entities to define a new similarity measure between two

entities.

3.3 Similarity measure between two entities

In the previous Sections the significance of maximal association property in soft-
ware modularization using concept lattice analysis to produce cohesive modules was

discussed. However, even in medium software systems (450 KLOC) the concept

64 CHAPTER 3. SYSTEM REPRESENTATION

lattice becomes so complex that the visual characteristic of the lattice is obscured.
Therefore, an objective measure that allows to use the maximal association relation
in the recovery of cohesive modules in large systems would be necessary.

A similarity measure is defined so that two entities that are alike possess higher
similarity value than two entities that are not alike. The clustering research litera-
ture provides a rich collection of techniques for extracting groups of related software
entities using different similarity metrics namely association metrics, correlation
metrics, and probabilistic metrics [36, 54, 112]. The Jaccard metric® is commonly
used as an association similarity metric, and according to an evaluation of a number
of similarity metrics in [112], the Jaccard metric produces better clusters than the
others, and moreover it is considered more intuitive as a metric.

In this Section, we define the entity association similarity measure between two

system entities such as functions, datatypes, and variables in the system graph.

Entity association similarity measure

The entity association measure is an extension to the notion of association in the

clustering and data mining domains that are briefly compared below:

e clustering: the association similarity is defined between two entities as the

proportion of the numbers of shared and total attribute-values, Figure 3.8(a).

e data mining: the association rule (confidence) is defined between two sets of

items as the proportion of the numbers of the shared and total baskets, Figure

3.8(b).

S Jaccard = %, where A and B are the sets of attribute-values for two entities.

3.3. SIMILARITY MEASURE BETWEEN TWO ENTITIES 65

Therefore, the association property is defined between either: sharing entities (clus-
tering), or shared entities (data mining). In this context, we are interested in defin-
ing an association based similarity measure to apply it on a group of both sharing
entities and shared entities (Figure 3.8(c)) in the graph that models the software
system being analyzed.

An associated group of graph nodes is defined, when two or more source nodes
share one or more sink nodes (through direct graph edges). A source node is a node
where an edge emanates from it. A sink node is a node where an edge points to
it. In this sense, the whole group of source nodes and sink nodes are denoted as an

associated group. In analogy with data mining terminology, we refer to the source

nodes as the “basketset” and the sink nodes as the “itemset”.

The entity association between two system entities e; and e; in an associated
group, denoted as entAssoc(e;,e;), is defined as the maximum of the association
value between e; and e;, considering that e; and e; may belong to more than one

associated groups g, with a different association value in each group ¢g,. Formally:

entAssoc(e;, €;) = maxg, (|itemset(gy)| + w * |basketset(g,)|)

where, 0 < w < 1 is the weight of the sharing entities compared with the shared
entities and is discussed later. The entity association is considered as a measure of

similarity between two entities in a software system and allows to:
o identify the members of a group of maximally related entities in a system.

o consider the datatypes and variables as members of a group including func-

66 CHAPTER 3. SYSTEM REPRESENTATION

bl b2
i2,i3
Jaccard (b1, b2) = &
[{i1, i2, i3, i4}|

[[J
il i2 i3 i4
a) "Association measure in clustering": association between baskets
based on the number of shared items.

bl b2 b3 b4

. . . [{b2, b3}|
confidence (i1 =>i2)= ——M——————
[{b1, b2, b3, ba}|

i1 i2
b) "Association rule in data mining": association between items
based on the number of shared baskets.

bl b2

entAssoc (b1, b2) = entAssoc (i1, i2) = |{i1, i2}| + 0.5 * |{b1, b2}|
([
i1 i2

¢) "Proposed association in a group": association in a maximal group of
baskets and items based on the numbers of baskets and items.

entAssoc = entAssoc = 4.5 entAssoc =
Basketset
W E ;I % Itemset
(d) Associated groups with the same number of entities

entAssoc = 4

entAssoc =5

Oy O Extra nodes

@ Shared nodes
between groups

9y

--# Extra edges

entAssoc = 3.5

(e) Associated groups with extra elements and shared-entities

Figure 3.8: The notion of association in a group as the extension of association in
clustering and data mining domains.

3.3. SIMILARITY MEASURE BETWEEN TWO ENTITIES 67

tions, as opposed to considering them as attribute-values of functions which

cause only the functions to be grouped.

In general, the number of shared entities (itemset) contributes more on closeness
of the entities than the number of sharing entities (baskets), if a group of entities
are examined for their similarity. We justify this property using a social analogy
to software systems:

“Consider 10 people that eat in the same restaurant and go to the same library.
These people can be friends or not. If the number of these people increases from 10 to
20 it does not necessarily increase the level of mutual friendship among them. Now
consider the same 10 people and increase the number of their commonalities. For
example, suppose they also live in the same building and go to the same club. These
people have high likelihood to be friends, since a high number of shared interests is
most often an indication of a high level of friendship among people.”

The lower values of w (close to 0) cause that the entAssoc(e;, €;) be less sensitive
to the number of sharing entities in an associated group, and vice versa. Based on
the empirical results and the above mentioned property, we use a value of w = 0.5.
The value of entAssoc(e;,e;) is a positive real number which is not normalized
since it measures a property in a single group of entities, not between two groups
of entities which allows to normalize the metric (such as Jaccard metric). Hence,
its value is not restricted between 0 and 1, instead it depends on the size and
form of the group of entities in g,. A possible way for normalization is to find
the maximum association value in the system and divide all other values to it. In

Figure 3.8(d), three associated groups with the same number of entities along with

68 CHAPTER 3. SYSTEM REPRESENTATION

their association values “entAssoc” are shown.

Figure 3.8(e)(left) illustrates the extra nodes and edges that may exist among
the nodes and edges of an association group. However, only the solid nodes are
the members of the associated group and extra edges do not affect the association
value. Figure 3.8(e)(right) illustrates two associated groups ¢, and g, with shared
nodes. The grey-color nodes denote the members of both groups with different
association values. In this form, the association value of a node is inherited from
the group with larger association value.

In the following Section, we define the source regions in the source graph to rep-

resent a large graph of a software system as a collection of intra-related subgraphs.

3.3.1 Source region

A source-region G¥ = (N£", R, AY B3, 3", €%") of a source-graph

G* = (N°,R°, A, E°, pi®, €°) is a subgraph of G* (i.e., N;" C N°, RY C R*, .., €7 C
¢”) and corresponds to a node n; € N°. In the source-region G3" each node n; # n;
satisfies the association property entAssoc(n;,n;) > 0 with respect to node n;. We

call n; the main-seed of the source-region G7" and use it as the identity of this

source-region. Formally:

N ={n; |n; € N° A dn; € N° e entAssoc(n;,n;) >0} U {n,}

R;’":{ns; nt|n5,ntENj’° A drp e rp=(ns,ny) AN rp € R}

For a given source-graph G* = (N*, R*) we generate |N*®| source-regions. In
general, different source-regions of a source-graph have a number of shared nodes,

and some source-regions may be identical.

3.3. SIMILARITY MEASURE BETWEEN TWO ENTITIES 69

Node of type:
Function—abs / Type—-abs / Variable-abs

—~

Edge of type:
use-F / use-T / use-V

S S S
(a) A source—graph G = (N, R) at function—level represented as an ARG

main-seed

(b—-2) Source-region Gsévith node 6 as main-seed

main-seed
1

(c—1) Source-region Gséfter applying Apriori. (c—2) Source-region Gzéfter applying Apriori.

N'={1,7,10, 2,13, 11, 16, 15, 6} Ne=1{6,5,9,4,18,1,7,10,2}

Figure 3.9: Application of data mining on the source-graph G* = (N* R®) to
represent it as a number of source-regions G% = (N, R}").

70 CHAPTER 3. SYSTEM REPRESENTATION

For example, Figures 3.9(b-1) and (b-2) represent two source-regions G§" and
G¢ of the source-graph G*, that satisfy the association property, 1.e., each node of
G7{" 1s a member of an associated group with respect to main-seed n;. However,
it 1s not clear what is the highest association value of each node with regard to
main-seed n; since each node can be a member of several associated groups, thus
different association values in each group g, with respect to node n; are possible.
The Apriori algorithm computes all the associated groups in a source-region and
allows to determine the maximum association value of each node with respect to
the source-region’s main-seed, as a measure of similarity. Figures 3.9(c-1) and (c-2)
demonstrate the application of the Apriori algorithm on the source-regions in Figure
3.9(b-1) and (b-2). For example, in the source-region G§" with node 1 as main-seed
in Figure 3.9(c-1), we consider two associated-groups with nodes: 1, 7, 10, 2, 13
with entAssoc of 4; and 1, 6, 10, 7, 2 with entAssoc of 3.5. The similarity value
of node 10 to the main-seed node 1 is 4 and is obtained from the first associated
group.

At phase 1 of the incremental graph matching process, the user may select a
main-seed n; that corresponds to the source-region G5 for the current matching
phase 7. In this context, the main-seed selection can be viewed as a mapping
function ¢ : Integer — Integer that maps the current matching phase ¢ onto the
index j of the selected source-region, i.e., g(i) = j. Therefore, a selected source-

region is represented as G,y = (N;(Z»), R;’(”i)) which maps to G = (N;", RY") .

3.3. SIMILARITY MEASURE BETWEEN TWO ENTITIES 71

Dnl:

Domain of
Main-seed 1

L dediiiny

Main-seed

i
i
7 10 2 13 6 11 16 15

: 4 4 4 35 3 3 3

entAssoc(nl, n7)

sr

A sr
(a) Source-region G (b) Source-region G with () D" domain representation of G 7

added edges

—+-—-—- shSrc ~— use-F
<---- shSink <+— usedBy-F

Figure 3.10: The transformation of source-region G{" into domain D™ .

3.3.2 Domain of a node

The domain of a node n; in source-graph G*, denoted as D", is defined as: a
collection of tuples (ng, sq), where the node ng exists in an associated group with
node n; and sq is the stmilarity value between n; and ng. The node n; is called the

main-seed of domain D™ and is not included in its domain D™ . Formally:

D% ={ng; sq | na € NI A dnj e main-seed(nj,G;T) N sq = entAssoc(nj,ng)}

where, G3" = (N;", RY") is a source-region of the source-graph G* and the predicate
main-seed(n;, GF") indicates that n; is the main-seed of G3". The nodes of a domain
are ranked in descending order according to their similarity values with respect to
main-seed n;, as illustrated in Figure 3.10(c).

A domain D" also relates each node of a source region G3" with a similarity
value that is extracted from the association structure of that source region, and

provides means for simple representation of the source-graph as a group of source-

72 CHAPTER 3. SYSTEM REPRESENTATION

regions. Figure 3.10, illustrates the computation of a domain from a source-region,

as:

e Two new edge types shSink and shSrc (denoted as sharing sink node and
sharing source node) are added to each source-region. These types of edges
link the main-seed n; to any unlinked nodes within the source-region, Figure

3.10(b).

o Fach edge ending to the main-seed n; is replaced by an edge starting from

the main-seed with inverse relation, e.g., use-F is replaced by usedBy-F.

o A tree with the main-seed n; as the root and other source-region nodes as the
leaves is built, where, the leaves are the domain D" of the root node n;, and

each leaf is labeled by its similarity value to the root node, Figure 3.10(c).

3.4 Similarity measure between two groups of
entities

In this Section, we proceed to define group association, denoted as groupAssoc(gi, g;),
as a similarity measure between two groups of system entities g; and g; based on
the similarity between two entities (entAssoc) in a graph. This similarity measure
allows to extend the scope of the proposed architectural recovery process to file-level
granularity and decompose a system into a number of subsystems of files.

In the clustering literature three methods of similarity measures between two

groups of entities are commonly used. In the single linkage (complete linkage)

3.4. SIMILARITY MEASURE BETWEEN TWO GROUPS OF ENTITIES 73

method, the maximum (minimum) similarity value between every pair of entities,
one in each group, is considered as the similarity between two groups. The single
linkage computes higher similarity value for the groups that are non-compact and
isolated, whereas, complete linkage computes higher similarity values for cohesive
and compact groups. To avoid the two extremes, the group average similarity
method defines the similarity between two groups as the average of similarities
between all pairs of entities that are made up of one entity from each group [36].
In this thesis, the group average similarity method is adopted to compute the

proposed group association metric groupAssoc, as follows:

lgil =gl -

|9i| + |91]

groupAssoc(gi, gr) = such that,

. {0 if nm €ge A (N, Sm) ¢ D™
SUM gy =

Smo i nm €ge A (N, $m) € D
In this equation, the first summation iterates over every entity in group ¢; and
the second summation iterates over every entity in group g in order to add the sim-
ilarity values sim; ,, between every pair of entities, one entity in each group. Sim;
refers to the similarity value between node n; in group ¢; and node n,, in group gy.
For every entity n,, € g that does not exist in the domain of node n; (i.e., in D™)
the similarity value sim,,, between n; and n,, is zero (i.e., ent Assoc(nj, ny,) = 0).
Therefore, only those entities in g that exist in the domains D" (where n; € ¢;)
are considered for similarity calculation between two groups. The terms |¢;| and

|gr| denote to the cardinality of each group.

This equation is symmetric with respect to the groups g¢; and gy, i.e.,

74 CHAPTER 3. SYSTEM REPRESENTATION

L3 L1 J\
Shaded area:
| groupAssoc L2

L6 Shaded area:
L4 L5 groupAssoc

Each curve is a domain of a function in file L5.

L1 L3

This area L4

represents the
functionsin — "
file L4

(a) Group association of file L5 onto file L2. (b) Group association of file L2 onto file L5

Figure 3.11: A system of six files representing the group association similarity
between two files L2 and L5. Parts (a) and (b) compute the same similarity value.
groupAssoc(gi,gr) = groupAssoc(gr,g;). This is because in a pair of entities
(ns,n:) whose similarity value is non-zero, n, exists in the domain of n; and n;
exists in the domain of n, with the same similarity values.

In order to illustrate the group association similarity, we consider file as a group
of entities and function as an entity, where each file contains (defines) a number
of functions. In Figure 3.11(a), the domain of each entity (function) in file L5 is
shown as the area in a closed curve. The Figures 3.11(a) and 3.11(b) illustrate the
group association similarities groupAssoc(L5, L2) and groupAssoc(L2, L5) whose

values would be the same. The unit for groupAssoc(g;, gr) is “entAssoc per entity”.

3.5 System representation

Based on the discussion in the previous Sections, we can represent a software system

at a higher-level of abstraction in the form of a source-graph G* along with the

3.6. SUMMARY 75

collection of domains, which is defined as a two-tuple:
system = (G*, D(N*))

where G°=(N°,R*) AN D(N°)=[D"| 5 € [1..|N?|]]

D(N?) is an ordered sequence of entity domains D™ by the average similarity of
each domain, where each domain is a search-space for a module (or subsystem)
recovery. In this model, the matching process searches only within the appropriate
domains not the whole source graph.

This representation allows to access a source-region G3" for the pattern matching
process in Chapter 6, where the nodes and edges of the source-region G3" are
obtained from the domain D™ and source-graph G?, respectively.

This system representation has two variations for the types of entities in the
domains with respect to two levels of architectural analysis. For the file-level anal-
ysis, the entities are of types File-abs, Function-abs, Type-abs, Variable-abs, and
the relations are cont-R, use-R, tmp-R, exp-R. For the function-level analysis, the
nodes are simple entities of types Function-abs, Type-abs, Variable-abs, and the

relations are use-F, use-T, use-V.

3.6 Summary

The source-graph G* is a core data model for the representation of a software
system in the proposed architecture recovery approach. Based on the relations

among the entities in the source-graph G*, we defined two similarity metrics between

76 CHAPTER 3. SYSTEM REPRESENTATION

two entities and between two groups of entities (i.e., entAssoc and groupAssoc,
respectively) that use the maximal association property among the group of system
entities. The maximal association property is obtained by the application of data
mining techniques on the source-graph G*.

Based on the observation that the size of a typical legacy software system is
large and any search or analysis algorithm is intractable for the whole set of system
entities, a technique that decomposes the whole search space into a collection of
domains based on association property can be of a great value on applying complex
analysis algorithms. The search space decomposition, presented in this Chapter,
aims to reduce the complexity of the architecture recovery process that will be
discussed in Chapter 6. For this work, the software system is presented in the form
of a list of domains where each domain will serve as a search-space for the recovery

process.

Chapter 4

Architecture query specification

The pattern-based approaches to software architecture recovery first compose a
high-level mental model of the system architecture (also known as the conceptual
architecture or architectural pattern) using a modeling means such as a query lan-
guage [56, 55, 79, 48, 39] or a block diagram [38, 78]. In this context, a query
language allows the user to compose a query that corresponds to an hypothesis
architectural pattern in terms of modules (or subsystems) whose type, size, and
interactions form the constraints of the recovery process. Such a query language
can query the features that are usually specified by the architecture description
languages (ADL) to specify the high level components and connectors in large sys-
tems.

This Chapter presents the syntax and the semantics of a query language that
we call Architecture Query Language (AQL). The Architecture Query Language is
based on the concept of architecture description languages and can model a wide

range of architectural features and constraints, including: i) constructing the system

7

78 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

architecture both at the file-level (i.e., partition of the system files into subsystems),
and at the function-level (i.e., partition of the system functions/datatypes/variables
into modules); ii) defining a typed import, export and containment properties of the
subsystems and modules; and iii) constraining the composition and interconnection
size and type between subsystems or modules. The AQL provides the syntactic and
semantic means for the user to define an architectural pattern of the system that
can be matched against the artifacts extracted from the source-code. The pattern
matching process can compute a sub-optimal match for the architectural pattern
and yields a concrete architecture. The details of generating a pattern-graph from
an AQL textual query and matching the pattern-graph with the software system
source-graph are discussed in Chapters 5 and 6, respectively.

This Chapter is organized as follows: first the notion of system component used
in this thesis is defined; second the AQL domain model is discussed; and finally the

syntax and semantics of the AQL are defined in detail.

4.1 System component

In this Section, we provide a formal definition for a software system component

that was briefly defined in Section 1.1.

Informal definition

We define a software system entity to be a file, function, aggregate/array type, or
global variable according to the abstract domain model in Section 3.1.1. A function,

aggregate/array type, or global variable is called a “simple entity”, while a file is

4.1. SYSTEM COMPONENT 79

considered to be a “composite entity” as it may contain a set of simple entities.
We note that for any given software system, each simple entity must be contained
in exactly one file; that is, the set of files form a partitioning of the simple entities.
Simple entities may engage in relations, for example: functions may call functions
or use aggregate/array types or global variables. For simplicity, we define the uses
relation to model any such relation between simple entities.

We note that for a given software system, we are interested in modeling only
the entities that are defined within the system. In particular, we ignore entities
that are defined in external libraries, as well as any relations that they may engage
in within the system (e.g., calls to library functions).

We define a “system component” to be a named grouping of system entities. A
component may import and export simple entities; these relations are determined

by the relations of the contained simple entities. That is:

e A component imports all of the (simple) entities that are used by its contained

(simple) entities, but are not contained by that component.

e A component exports all of its contained (simple) entities that are used by

(simple) entities that it does not contain.

There are two kinds of system components:

Module: a component that contains only simple system entities.

Subsystem: a component that contains files (as composite system entities) as well

as their contained simple entities, such as functions, datatypes, and variables.

80 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

A component may not contain other components. Typically, for a given software
system we are concerned with a set of components that forms a partitioning of the
software system’s entities. We do not mix subsystems and modules; a system

partition consists of either all modules or all subsystems.

Formal definition

Let S be a software system. Let N*® denote the set of system entities of S, and let
R* denote the uses relation among the simple entities of 5.

Let P(N*) = {P,..., Py} be a partitioning of N*. For each P;, we define:

={e1:N°\ P, | de; € P, AN ¢y uses e1}

timports

={e1: P, | de € N°\ P, A ey uses e}

texports

Where, uses = {use-F U wuse-T U wuse-V } corresponds to the relations
defined in Section 3.1.1. For each P;, we can define component C; as a triple:

Ci=(P, P B,

imports ? ea:ports>

We will use these concepts in this dissertation.

4.2 Architecture Query Language (AQL)

The syntactic constructs that define AQL conform with a domain model. An AQL
query consists of a number of abstract components and abstract connectors. Each
abstract component is specified as a collection of placeholders. The interconnection
among the abstract components is established by the means of abstract connectors,
where an abstract connector is also specified by a number of placeholders. A place-

holder is a node in the graph expansion of the AQL query that can be matched

4.2. ARCHITECTURE QUERY LANGUAGE (AQL) 81

abstract-component

to C1

from C2 from C1 { }» | abstract-
{ 1| [o][®][@ {o>{ (@[] [] connecto r
imports | contains |exports
component C1 component C2
Entity @ Matched-placeholder @]
Placeholder [] Import / export link ~ —»

Figure 4.1: The notions of abstract component and abstract connector in AQL,
where the placeholders of abstract component C1 have been matched.

(or instantiated) by a system entity during the matching process. The notions of
abstract component and abstract connector are illustrated in Figure 4.1.

The user can constrain the minimum and maximum numbers of the matched
placeholders as well as the type of the placeholders in the recovered components and
connectors by formulating the AQL query. The pattern matching process matches
the placeholders with system entities so that the specified constraints in AQL query

are satisfied. In the following Sections, the domain model, syntax, and semantics

of the AQL are discussed.

4.2.1 Domain model of AQL

The domain model of the AQL is illustrated in Figure 4.2 as an UML class diagram,

and the attributes of each class in Figure 4.2 are described in Tables 4.1 and 4.2.

82 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

Conn-entity

entity: Entity—abs

type: Relation—abs
index: Integer
from: Component I
to: Component
0..n
|
1 1O Ln 1
Comp-placeholders on Conn-placeholders
grouplD:'$ CL/CF/CT/CV’ - grouplD: "2 R/ F/ T/ V' Integer
minCont: Integer Entity-abs type: Relation-abs
maxCont: Integer 7~ minEntities: Integer
entities: set (Entity-abs) 1.n| 1.n maxEntities: Integer
imports: set (Conn-placeholders) entities: set (Conn—-entity)
exports: set (Conn—placeholders) from: Component
3 to: Component
—
1 1 <> 1 <>
Subsystem Module
name: String name: String
mainSeeds: set (Entity—abs) mainSeeds: set (Entity—abs) Relation—abs
part: Comp-placehoders parts: seq (Comp-placehoders)
\ |
vl
Component
[1.n
1O [[[[|
_ - use-V imp—-R exp—-R
AQL-query use-F || use-T p p
name: String
contains: seq (Component) SimpEnt-abs
0.n Class—name ‘ [‘
- ile— jon— Type- Variable-
\v4 1 Attributes File-abs Function-abs ype—abs ariable—abs

Generalization Aggregation

Figure 4.2: The domain model of the proposed Architecture Query Language
(AQL). This domain model is used to define the attributes for nodes and edges
of the ARG query-graph in Section 5.2.1.

4.2. ARCHITECTURE QUERY LANGUAGE (AQL)

83

AQL query
‘ Attribute ‘ Ezample ‘ Description
name Qy Unique identifier for each query
contains [S1, 52, -] list of components (subsystems or modules)
contained in the AQL query
Subsystem / Module
‘ Attribute ‘ Ezample ‘ Description
name S1 /] M, Unique identifier for subsystem or module
mainSeeds {foo} Entities that specify the source-regions as
search space for subsystem or module recovery
part(s) Specifies the containment constraints, and the relation
constraints to other components in the AQL query.
Subsystem has only one part for File-abs. Module
has three parts for Func-abs, Type-abs, Variable-abs.
Comp-placeholders
‘ Attribute ‘ Ezample ‘ Description
groupID | $CL, $CF, Identifier for a group of placeholders to be matched
$CT, $CV with entities that are subtype of Entity-abs.
minCont 5 Min number of entities to match with the placeholders.
maxCont 10 Max number of entities to match with the placeholders.
Actual entities that match with the placeholders.
entities Entities of type File-abs for subsystem. Entities
of a type Func-abs, Type-abs, Variable-abs for module.
imports Specifies the constraints for the set of entities
that are imported from other components.
exports Specifies the constraints for the set of entities
that are exported to other components.

Table 4.1: Description of the class attributes in the AQL domain model.

84

CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

Conn-placeholders

‘ Attribute ‘ Ezample ‘

Description

grouplD TR2, 7F1, Identifier for a group of placeholders to be matched
T4, 7V1 with simple entities that are imported/exported.
The type of relation that must exist between the
type use-F recovered entities in the destination component
and the imported/exported entities.
minEntities 6 Minimum number of entities to be imported/exported.
maxEntities 9 Maximum number of entities to be imported/exported.
entities Actual imported/exported entities.
from Ss3 The source component that exports the entity.
to S The destination component that imports the entity.

Conn-entity

‘ Attribute ‘ Ezample ‘

Description

entity inputKey | An entity of type Func-abs, Type-abs, or Variable-abs
that is imported/exported.
type use-F The relation between this entity and the
corresponding entity in the destination component.
index 4 Used to generate a single id from a groupID in the class
Conn-placeholder, e.g., TR2-4.
from Ss3 The source component that exports the entity.
to S The destination component that imports the entity.

Table 4.2: Description of the class attributes in the AQL domain model.

4.2.2 Syntax of AQL

The exstended BNF notation (also known as EBNF) [101] is used for denoting the

syntax of the proposed Architecture Query Language. The notation of the EBNF

[44 ”

are as follows: i) “::=" means is defined; ii) “< >” delimits the non-terminals;

iii) “|” means or; iv) “[|7 denotes optional syntax; and v) “{ }” denotes zero or

more instances. Moreover in the syntax of AQL, “()” denotes a sequence of non-

4.2. ARCHITECTURE QUERY LANGUAGE (AQL) 85

terminals and terminals, “{ }*” is used for zero or more instances, and “{ }*7 is

used for one or more instances. The syntax of the AQL is presented in Figure 4.3.

4.2.3 AQL query example

A part of an AQL query, consisting of a subsystem S1 of files and its import /export
connectors to other subsystems is shown in Figure 4.4.

This AQL fragment is interpreted as follows: after the matching process, the
subsystem S1 will IMPORT minimum six and maximum ten resources from sub-
system S2 (relating to the matching for “?R1(6 .. 10) S2”); it will EXPORT mini-
mum 10 and maximum 15 resources to subsystem S2 (relating to the matching for
“?R3(10 .. 15) S27); and it will CONTAIN between seven to ten files (by matching
the placeholder nodes “§CL(7 .. 10)” including the files e_edit and e_update that
are main seeds). A similar interpretation holds for the sections related to importing
from S4 and exporting to S3. The notations 7IR and 7ER in the imports and ex-
ports parts denote the unconstrained connectors to other subsystems that are not
defined in this AQL query, e.g., importing any number of resources from S3 and

exporting any number of resources to S4.

4.2.4 Semantics of AQL

In this Section, we define the semantics of the AQL language.

86 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

< AQLquery > := BEGIN-AQL < directives > {< component >}*
< restOfSys > END-AQL
< directives > = dir; diry ... diry,
< component > = < compType > : < compName > < mainSeeds >

< shEx > <aimport > < export> < contain >
< relocate > END-COMPONENT

< compType > == SUBSYSTEM | MODULE
< compName > = < identifier >
< mainSeeds > = MAIN-SEEDS : ({< srcEntities >}*
| MANUAL-COMPONENT)
< srcEntities > = {file < identifier > |} |

(F: {func < identifier > ,}* T: {type < identifier > ,}*
V: {var < identifier > ,}7)

< shEx > = SHRINK-EXPAND : E|G|S

< amport > = IMPORTS : < absLinks >

< export > = EXPORTS : < absLinks >

< absLinks > = (FUNCTIONS: < funcLinks > TYPES: < typeLinks >

VARIABLES: < varLinks >)
| RESOURCES: < rsrcLinks >

< funcLinks > == func (?IF | 7EF),

{func 7F < integer > < intRange > < compName > ,}*
< typeLinks > == type (?IT | ?ET),

{type IT < integer > < intRange> < compName > ,}*
<warLinks > = var (?7IV | TEV),

{var 7V <nteger > < intRange > < compName > ,}*
< rsrcLinks > = rsrc (?7IR | 7ER),

{rsrc TR < integer > < intRange > < compName > ,}*
< contain > = CONTAINS: < contEnts > | < contFiles >
< contEnts > ::= FUNCTIONS: func $CF < intRange > |,

{func < identifier > ,}*
TYPES: type $CT < intRange > ,

{type < identifier > ,}T
VARIABLES: var $CV < intRange >

{var < identifier > |}

4.2. ARCHITECTURE QUERY LANGUAGE (AQL) 87

< contFiles > ::= FILES: file $CL < intRange > |,
{file < identifier > ,}*
< relocate > ::= RELOCATES: (YES: | NO:)
{< relocateEnts > TO: < compName > ,}*
< relocateEnts > = (files | funcs | types | vars) {< identifier > ;}*
<restOfSys > == REST-OF-SYSTEM :

IMPORTS: < restShEx >
EXPORTS: < restShEx >
CONTAINS: < restShEx >
CLOSENESS: < restCloseness >
DISTRIBUTES:
{< restDistribute > ;}* |
({F: <restDistribure > ;}*
{T: < restDistribure > ;}*
{V: < restDistribure > ;}*

)
<restShEx > == S|E
< restCloseness > = L: < integer >

| (F: <integer > T: < integer > V: < integer >)
< restDistribute > = (files | funcs | types | vars) {< identifier > | }*
TO: ({< compName > ,}* | ALL)

<antRange > = “(“ <integer > .. < integer > “)”
< tdentifier > = a string of Characters
< integer > = an Integer value

Figure 4.3: The syntax of the proposed Architecture Query Language (AQL) de-
scribed in EBNF notation.

88 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

SUBSYSTEM: S1
MAIN-SEEDS: file e_edit, file e_update
IMPORTS:
RESOURCES: rsre ?IR,
rsre TR1(6 .. 10) S2,
rsre TR2(12 .. 20) S4
EXPORTS:
RESOURCES: rsrc TER,
rsre TR3(10 .. 15) S2,
rsrc TR4(1 .. 5) S3

CONTAINS:
FILES: file $CL(7 .. 10),
file e_edit, file e_update
RELOCATES: NO:

files e_allign, u-scale TO: S3
END-COMPONENT

Figure 4.4: An example of a subsystem in an AQL query.
AQL query

At the file-level analysis, an AQL query consists of one or more subsystems and
the rest-of-system, where a subsystem is defined as a collection of files and their
contained simple entities. At the function-level analysis, an AQL query consists
of one or more modules and the rest-of-system, where a module is a collection of
simple entities such as functions, datatypes, and variables. Each AQL query has a
file name, e.g., @, as an identification, and a set of directives dir, to control the
recovery process. The general structure of an AQL query is illustrated in Figure
4.5.

In the following discussion, the semantics of a subsystem and the rest-of-system

4.2. ARCHITECTURE QUERY LANGUAGE (AQL) 89

BEGIN-AQL
diry ... dir,,
SUBSYSTEM (or MODULE) END-COMPONENT
SUBSYSTEM (or MODULE) END-COMPONENT
REST-OF-SYSTEM

END-AQL

Figure 4.5: The structure of an AQL query.

are defined. Finally the semantics of a module are briefly discussed. The semantics
of the AQL constituents are defined in terms of a semantic denotational function

“§” that is:

0 1 AQL syntax — semantic description

AQL directives

The AQL directives (diry dir,) control the recovery process by allowing the user
to define specific parameters. The directives allow the user to: i) select the type
of analysis as file-level or function-level analysis; ii) select the type of entities that
are considered for import/export among components; iii) perform non-stop recov-
ery for all components, or stop after each component recovery to allow change of
parameters and redo the same component recovery; iv) change the order of compo-
nent recovery as a requirement for the matching process; v) control the distribution
and relocation of entities among the recovered components; vi) merge the abstract
components and their abstract connectors to simplify a part of the AQL query; vii)

and generate different views of the system such as control passing, data exchange,

90 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

and data sharing views [88].

Subsystem

A subsystem S; in an AQL query @), is a five-tuple, as presented below, that is
defined between two keywords SUBSYSTEM and END-COMPONENT. A subsys-
tem is an architectural component denoted as a set of source-code files and their
contained simple entities, excluding the libraries. A subsystem has a constrained
fan-in/fan-out interaction pattern with other subsystems. The structure of a sub-
system S; is illustrated in Figure 4.6.
§ (SUBSYSTEM S;) £
(MAIN-SEEDS, CONTAINS, IMPORTS, EXPORTS, RELOCATES)

Different parts of a subsystem S; are defined as follows:

o MAIN-SEEDS: denotes one or more files where each file corresponds to a
domain D" (defined in Section 3.3.2) as the search space for the selection
of the files that would be contained in the subsystem S;. The collection of
the domains for all main-seeds n;’s, denoted as “domain of the subsystem S;”

D%, constitutes the search space for the matching process.

§ (SUBSYSTEM : S,

A

MAIN-SEEDS: file Inamen,) =
{lmm : File-abs | l,, = Obj(Iname,,)'}

!Function Obj(Iname,,) returns the object of the file name lname,y, .

4.2. ARCHITECTURE QUERY LANGUAGE (AQL)

SUBSYSTEM: S,
MAIN-SEEDS:
IMPORTS:

RESOURCES:

EXPORTS:

RESOURCES:

CONTAINS:
FILES:

RELOCATES:

END-COMPONENT

file lname,,, ...

rsrc TIR,
rsre IRy (ming .. max,) Sj,

rsrc TER,

rsre IR, (miny .. max,) Sk,

file $CL(muin..max),

file lname,,, file Iname,

NO: / YES:
files Iname,, ... TO: S

Figure 4.6: An AQL subsystem.

91

The domain of the subsystem S; consists of “file, association-value” tuples,

as:

D% = Unj € MAIN-SEEDS (S;) D" and V(nkvsk) € D% e ny : File-abs

where, the function MAIN-SEEDS(S;) returns the set of main-seeds in the

subsystem S;. The keyword “file” above indicates that the main-seed is a file.

All the main-seeds of a subsystem are also contained in that subsystem.

92 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

e CONTAINS: denotes a collection of system files that are selected from the
subsystem’s domain D% and are related to each other by a binary relation
R such as the association relation. The number of selected files is restricted
within a size range (min, maz). We say that a subsystem contains a group
of placeholders with group-id $CL (as Contains fiLe) and size “maz” which
will be matched with at least “min” system files after the recovery process.
The placeholders are first matched with the main-seeds and zero or more
user-defined fixed files (called seeds) from the subsystem’s domain D*. The

CONTAINS part is defined as follows:

§ (SUBSYSTEM : S,
CONTAINS:
FILES: file $CL(min, mag),
file Iname,,

file Iname;) L

CLs, U CEg, where:
CLs, = {lyn, ls: File-abs} U
{ly : File-abs | (Ix,sx) € D* N min < |CLg,| < maz— 2} o

I = Obj(lnamen,) A ;= Obj(lnames) N (l5,35) € D%,

CEs, = {e; : AnyType | AnyType € {Function-abs, Type-abs, Variable-abs} A
Ve, i € CLg, o (lg,€:) € cont-R}

4.2. ARCHITECTURE QUERY LANGUAGE (AQL) 93

In the above, Iname,, and Iname, are the names of a main-seed file and a
seed file; CLg, and CEg, are the set of files and the set of simple entities that
are contained in the subsystem S;; and CLg, satisfies the properties of the

contains part of a component defined in Section 4.1.

The keywords “FILES” and “file” indicate that only the files of the subsystem
S; that are contained in CLg, are considered for the size constraint checking

against (min, maz).

o IMPORTS: denotes a set of zero or more simple entities, i.e., functions,
datatypes, or variables, that are used (relation use-R) by the files of the
subject subsystem S; but are contained (relation cont-R) in the files of an-
other subsystem S; 2. The identifier 7R, denotes a group of the imported
resources (i.e., simple entities) from the subsystem S;, where the size of the
group is restricted within a size range (min,, maz,). Two characteristics of

the imported entities include:

— Each entity is imported once to the same subsystem, hence, an already
imported entity does not match with another imported placeholder to

the same subsystem.

— All other imported entities from the other subsystems that are not de-
fined in the IMPORTS part of the subject subsystem S;, are identified
as 7IR. There is no constraint on the number of the imported entities in

the 7IR group.

ZSince the containment relation is transitive, the subsystem S; contains the simple entities
that are contained in its files.

94

CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

The IMPORTS part is defined as follows:

d (SUBSYSTEM : §;
IMPORTS:
RESOURCES: rsrc 7IR,

rsrc TRy (ming, maz,) S;) =

|subsystemns| .
Rx U Uk:l, k4,5 IRSk where:

R, = {R : Entity-abs | 3L,L': File-abs o L € CONTAINS(S;)® A
L' € CONTAINS(S;) A (L,R) € use-R A (L',R) € cont-R A
i£j A min, < |R,| < maz,}

IRs, = {R: Entity-abs | 3L,L': File-abs o L € CONTAINS(S;) A
L’ € CONTAINS(St) A (L,R) € use-R A (L', R) € cont-R}

The keywords “RESOURCES” and “rsrc¢” (abbreviation of resource) indicate
that the entities in this group are simple entities of types Function-abs, Type-

abs, or Variable-abs.

EXPORTS: denotes a set of zero or more simple entities (i.e., functions,
datatypes, variables) that are contained (relation cont-R) in the files of the
subject subsystem S; and are used (relation use-R) by the files of the other

subsystems, e.g., S;. The identifier 7R, denotes a group of exported resources

3Function CONTAINS(S;) returns the system files that are contained in the subsystem S;.

4.2. ARCHITECTURE QUERY LANGUAGE (AQL) 95

(i.e., simple entities) to the subsystem S, where the size of the group is re-

stricted within a size range (min,, maz,).

All other exported entities to the other subsystems that are not defined in the
EXPORTS part of the subject subsystem 5;, are identified as TER. There is
no constraint on the number of the exported entities in the TER group. The

EXPORTS part is defined as follows:

d (SUBSYSTEM : §;
EXPORTS:
RESOURCES: rsrc 7ER,

rsre 7R, (min,, maz,) S,) =

|subsystemns| .
Ry U Upi prix ERs, where:

R, = {R: Entity-abs | 3L,L': File-abs o L € CONTAINS(S;) A
L’ € CONTAINS(Si) A (L,R) € cont-R A (L',R) € use-R A
i#k A min, < |Ry| < maz,}

ERs, = {R : Entity-abs | 3L, L' : File-abs o L € CONTAINS(S;) A
L’ € CONTAINS(S,) A (L.R) € cont-R A (L', R) € use-R}

The keywords “RESOURCES” and “rsrc¢” (abbreviation of resource) indicate
that the entities in this group are simple entities of types Function-abs, Type-

abs, or Variable-abs.

96

CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

e RELOCATES: denotes zero or more files in the subject subsystem §; that

are selectively assigned to a destination subsystem, e.g., S;. The relocation
operation is effective after the recovery process is terminated, all subsystems
are recovered, and the size constraints are satisfied. The file relocation is
performed in order to possibly improve the size or quality of the recovered

subsystems, however it may violate the size and/or interaction constraints of

the subsystems. The RELOCATES part is defined as follows:

d (SUBSYSTEM : §;
RELOCATES: YES:
files lname, TO: S;) L

it 3l : File-abs | I, = Obj(lname,) A 1, € CONTAINS(S;) then
CONTAINS(S;)* = CONTAINS(S;) less I, A
CONTAINS(S;)) = CONTAINS(S;) with I,

The keywords “NO / YES” are used to turn-off/on the relocation operation,
and the keyword “files” indicates that only the files of the subsystem may be

relocated.

Manual-subsystem

A manual-subsystem is a subsystem that all of its contained files have been selected

4Function CONTAINS(S;)" returns the contained files in subsystem S; after the relocation

operation.

4.2. ARCHITECTURE QUERY LANGUAGE (AQL) 97

by the user. There are no constraints on the selection of the files and at the end
of the recovery process all the recovered subsystems will become mutually disjoint
against every manual-subsystem. The files of a manual-subsystem may be cho-
sen from different domains. The syntax of a manual subsystem is similar to the
syntax of a constrained subsystem with the following differences: i) The keyword
<<MANUAL-COMPONENT>> is used instead of the list of main-seed files; ii) all
the lines that are used for constraining the sizes in the parts IMPORTS, EXPORTS,
and CONTAINS, are removed. The CONTAINS part of a manual-subsystem is de-

fined as follows:

6 (SUBSYSTEM : Spanua;
CONTAINS:
FILES: file Iname,,

file Iname;) L

{ls, l; : File-abs} | 15 = Obj(lnames) A 1 = Obj(Iname;) A
€ AQL-query o {l,, ,} N CONTAINS(S;) =¢

ii;emanualj
Rest of system

The rest-of-system contains the remaining of the system files, after termination of
the recovery process. The syntax of the rest-of-system in subsystem recovery is
shown in Figure 4.7.

In the proposed incremental architectural recovery process, initially all the files

are contained in the rest-of-system, and during the recovery process the files are

98 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

REST-OF-SYSTEM:
IMPORTS: S
EXPORTS: S
CONTAINS: E

DISTRIBUTES:
files Inamey, ... TO: S;, S, ...

Figure 4.7: Rest-of-system in AQL query.

removed from the rest-of-system to match with the expanded form of the AQL
query. After the termination of the constraint-based recovery process the user can
distribute a part of the files in the rest-of-system among the recovered subsystems.
All the remaining files in the rest-of-system are ranked based on their average
closeness values to every recovered subsystem in the AQL query. This allows the
user to select different groups of files from the ranked list and distribute them
among the subsystems based on their closeness values.

The semantics of IMPORTS and EXPORTS parts of the rest-of-system are sim-
ilar to 7IR and 7ER parts of the IMPORTS and EXPORTS defined earlier. The
CONTAINS part denotes the remaining files in the system after the recovery pro-
cess or the distribution operation. To simplify the representation of a large number
of imported, exported, or contained entities in the rest-of-system, the expand (E)
or shrink (S) is used to switch between detailed representation of the entities or
just the quantities of the entities in these parts, respectively. The CONTAINS part

and DISTRIBUTES parts of the rest-of-system are defined as follows:

4.2. ARCHITECTURE QUERY LANGUAGE (AQL) 99

§ (REST-OF-SYSTEM)
CONTAINS: E) £
{ly : File-abs | VS; € AQL query o [, ¢ CONTAINS(S;)}

5 (REST-OF-SYSTEM)
DISTRIBUTES:
files Inamegs TO: S;, Sk) 4

ly: File-abs o 1y = Obj(lnamey) A

CONTAINS(REST-OF-SYSTEM)’ = CONTAINS(REST-OF-SYSTEM) less Iy A

if average-closeness(ly, S;) > average-closeness(ly, Sy) then
CONTAINS(S;) = CONTAINS(S,) with I,

else

CONTAINS(S,)’ = CONTAINS(S,) with Iy

Module

A module M; in an AQL query is defined between two keywords MODULE and
END-COMPONENT and refers to the analysis performed at the function-level. A
module is an architectural component consisting of three groups of simple entities
of types Function-abs, Type-abs, and Variable-abs that are collected based on a
binary relation R. The sizes of different parts of a module M; and its interaction

with other modules are constrained by the AQL statements. A complete module

100 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

MODULE: M;
MAIN-SEEDS: F: func ... T: type ... V: var ...
IMPORTS:
FUNCTIONS: func 7IF,
func ?F,(ay .. by) M,, func ...
TYPES: type 7IT,
type T,(cy, .. d,) Mgz, type ...
VARIABLES: var 71V,
var Vy(ew .. fu) M,, var ..
EXPORTS:
FUNCTIONS: func 7EF,
func ?F.(gy .. hy) Ms, func ..
TYPES: type 7ET,
type T,(k, .. 1,) M., type ...
VARIABLES: var 7EV,

var IVi(m,..n,) M,, var..

CONTAINS:
FUNCTIONS: func $CF(o .. p),
func ..., func ...
TYPES: type $CT(q .. 1),
type ..., type ...
VARIABLES: var $CV(s .. t),
var ..., var ...
RELOCATES: NO: / YES:
funcs ... TO: M;; types...; vars ..

END-COMPONENT

Figure 4.8: An AQL module.

4.3. QUERY GENERATION 101

specification example in an AQL query is illustrated in Figure 4.8. However, in
most applications only a subset of these parts are defined. The semantics of AQL
constructs for modules is the same as for subsystems with the only difference that

files are replaced by functions, datatypes, or variables.

4.3 Query generation

An important step in a pattern based architectural recovery process is the genera-
tion of the initial pattern. We propose the following methods to generate a pattern
in an AQL query: i) analyzing the association relation among the system entities
[88]; ii) applying a clustering technique [89]; iii) comparing the source code of the
system with its reference architecture; or iv) using the available system architecture
document or consulting with the system developers. The objective in any of these
methods is to extract small groups of system entities which represent the core func-
tionality of the modules (or subsystems) in the system architecture. These groups
are then used to generate an initial query-graph represented by an AQL query. The

details of the query generation will be discussed in Chapter 8.

4.4 Summary

In this Chapter, the syntax and the semantics of the Architecture Query Language
(AQL) were presented. The AQL allows to specify a model of the conceptual archi-
tecture of a software system that is used as a pattern in an architectural recovery

process. More specifically, the generated pattern is defined in terms of abstract

102 CHAPTER 4. ARCHITECTURE QUERY SPECIFICATION

components (subsystems or modules) whose interactions can be constrained. The
pattern generation has an exploratory and incremental nature that is performed as
a part of the pattern matching process. The following Chapters will discuss how the
proposed architectural pattern, as an AQL query, is used to incrementally recover

the architecture of a software system.

Chapter 5

Pattern graph generation

In chapter 4 we defined the AQL language that allows to specify the high-level
architecture of a software system in terms of abstract components and abstract
connectors as an AQL query. The next step would be to transform the textual
specification of an AQL query into a graph representation (called query-graph) and
derive a collection of graphs that are required for the graph matching algorithm to
be discussed in chapter 6.

In this chapter, first, the graph of a software system and its regions are sum-
marized from chapter 3. Second, the query-graph is defined. Finally, the group
of graphs that are generated from the query-graph during the iterative matching
process are defined. The generated graphs are related by recursive graph algebraic

equations.

103

104 CHAPTER 5. PATTERN GRAPH GENERATION
5.1 Graphs based on software system

Below, a summary of the concepts of a source-graph and a source-region initially
presented in chapter 3 are given. The source-graph is the central data model in the

proposed graph pattern matching approach.

Source graph: the source-graph G* is an attributed relational graph that models
the software system under analysis. The nodes (n;) represent files, functions,
datatypes, and variables. The edges (r,) represent call and use relationships.
The nodes and edges comply with the specific domain model defined for ar-

chitectural analysis in chapter 3. The source-graph is denoted as:
GS — (N57 RS)

Source region: the source-region G5 is a subgraph of the source-graph G* that
corresponds to a node n; of G°, where n; is called the main-seed of G3". In
G*" every node ny, # n; satisfies the association property with respect to node
nj. From the source-graph G* = (N*, R*) a collection of |N*| source-regions
are generated, one for each node n; in the source-graph. The details of the
source-region ;" have been presented in Section 3.3.1. At matching phase i
the user would select a main-seed n; (where j = g(7)) that assigns the source-
region G for the matching process. Therefore, a “selected source-region” at

matching phase 7 is represented as:

Gi = Gy = (Ngiy: Bygs))

5.2. GRAPHS BASED ON AQL PATTERN 105

5.2 Graphs based on AQL pattern

In order to model the architectural recovery as a graph pattern matching process,
six graphs are defined. The first graph, denoted as query-graph G, is the product of
mapping the textual representation of an AQL query onto an attributed relational
graph (ARG). The other five graphs include: i) the pattern-region GY" that is
produced from the expansion of the :’th node in the query-graph G¢; ii) the matched-
region G that denotes the result of matching the pattern-region GY" with a source-
region G;’(”i) at phase 7 of the matching process; iii) the pattern-graph G? that denotes
the incremental expansion of a part of the query-graph; iv) the input-graph G} that
denotes the graph to be matched against the pattern-graph G¥; and v) the matched-
graph G'™ that denotes the result of matching the pattern-graph G and input-graph

G! . The details of the pattern matching process will be discussed in chapter 6.

5.2.1 Query graph

The query-graph G* = (N?, R?) is a multigraph ARG with composite nodes (de-
noted as query-nodes) and composite edges (denoted as query-edges). The formal
definition of the query-graph GY is presented in Appendix B. The query-graph
G? can be directly derived from an AQL query, as illustrated in Figure 5.1, where
the attributes of the query-nodes and query-edges conform with the domain model
of the Architecture Query Language in Section 4.2.1. These attributes are filled
with attribute values that are obtained from the corresponding AQL query text.
Each query-node gn; models an AQL component (module or subsystem), and each

query-edge gry models a collection of import/export relations between two AQL

106 CHAPTER 5. PATTERN GRAPH GENERATION

Function-abs: (min 2, max 4)

AQL query text arg o g
uery node
any

Expand E

=
5]

o
c

©
=
=3

=
o

%
c

@
<
N

— ; N1 nio
: Pattern—-region /
. GPr
Module M5 1 e
— r:j N3
(a) Query graph (b) Pattern-region

Figure 5.1: (a) Generation of a query-graph with 5 composite nodes from the AQL
query text, where the edges represent import/export of resources. (b) Expansion
of a query-node gn; into pattern-region G} .
components. A query-graph is expanded during the incremental graph matching
phases to generate a pattern-graph, as follows: each query-node is expanded into
a pattern-region, and each query-edge is expanded into a number of edge-bundles.
Pattern-region, edge-bundles, and pattern-graph are defined below.

In the following Sections, the different graphs that are generated from a query-
graph G? = (N?, R?) will be discussed.

5.2.2 Pattern region

The pattern-region at matching phase ¢ is an ARG G = (N}, RY") that is gener-
ated by expanding the composite node gn; of the query-graph G¢. The cardinality
of the expanded nodes, denoted as placeholder-nodes n; ; 1s the maximum number
of entities specified for the 2’th component in the AQL query. The placeholder-
nodes and their in-between edges are to be matched against the nodes and edges

of a subgraph of a selected source-region Gyf;. Figure 5.1(b) illustrates the ex-

5.2. GRAPHS BASED ON AQL PATTERN 107

pansion of the query-node gn; into pattern-region GG7". The rationale for such a
pattern-region is to create a fully-connected graph for any given subset of nodes in
GY", in terms of functions that call each other and functions that all use the same
group of datatypes and variables. Since this is the strongest possible connection
pattern among the software system entities the approximate matching process will

match only a subset of such edges in the pattern-region. The formal definition of

pattern-region G¥" is presented in Appendix B.

5.2.3 Matched region

The matched-region at matching phase ¢ is an ARG G = (N, R"") which is
the result of matching a pattern-region GY" with a source-region G;’(”i) at phase 1,
such that the AQL query import/export link constraints from phase 1 to ¢ — 1
have already been satisfied. We refer to G*" as the “recovered subsystem ¢ 7 or
the “recovered module i 7 to denote a subsystem or module of the recovered system

architecture at phase i. Figure 5.2(a) illustrates a matched-region G whose nodes

and edges have been matched at phase u (u < 7).

5.2.4 Graph connectors and graph summations

This Section defines the concepts that are used for specifying the pattern-graph
and the input-graph. The formal definitions of these concepts are presented in

Appendix B.

Edge-bundle: is a group of edges that correspond to the partial expansion of

a query-edge gry in query-graph G? at matching phase . An edge-bundle

108 CHAPTER 5. PATTERN GRAPH GENERATION

expanded edge =~ -

@ ar, :use—F (1,2) @ matched edge —
@ ary -use-F (1, 2) @

G, G’

matched-region biy pattern—region

bi ,
(a) Imported edge-bundles (b) Exported edge—bundles

Figure 5.2: Two sets of imported and exported edge-bundles with reference to the

pattern-region G*".
connects every node in a matched-region G (u < 1) to one node (either a
sink-node or a source-node) in the pattern-region GY". The types of the con-
nected nodes in both sides of the edge-bundle must conform with the type of
the edge-bundle. Figures 5.2(a) and 5.2(b) illustrate two sets of imported and
exported edge-bundles for edge-type use-F. Since the maximum cardinality
of the imported or exported edges is 2 (defined by the query-edge gry), two

edge-bundles are generated in either case of the example in Figure 5.2.

Connector-edges: are denoted by R <% and represent a group of edges that
connect two graphs Gy and G5. The connector-edges represent the interac-
tion between two graphs in uni-directional (using < or —) or bidirectional
(using <») mode. The connector-edges between a matched-region G7'" and
the source-region G;’(”i) at phase ¢ are denoted by R!I™* and the edge-
bundles between a matched-region G'™" and the pattern-region G¥" at phase

i are denoted by R!™P"". Where there is no ambiguity, the indices of the

5.2. GRAPHS BASED ON AQL PATTERN 109

T, 48T T, > pr
R R,

connected graphs can be omitted, as: and for the above

connector-edges, respectively.

Graph summation: the binary operator sum “+” is defined in order to compose
a graph in terms of its constituent subgraphs. For this thesis the definition
of graph summation found in [111] is adopted, where the graph summation
is defined as: “if two graphs Gi and Gy are connected (as graph G), then
G + G, is a disconnected graph with two components G and G3” as shown
in Figure 5.3(a). We also use the binary operator o-plus “6” to represent the
summation of a graph and a set of edges that yield a new graph as illustrated

in Figure 5.3(b).

We can use the graph summation operators “+” and “6” to compose different
graphs. If two graphs G and G (possibly with shared nodes) are connected
via a set of connector-edges R <2 then we can define G as:

G = (G, @RGlHG"’)—I—Gz or

G =G+ (RN @ Gy)
Figures 5.3(a) and (b) illustrate two examples of graph summation using “+”
and “@”. These notations are used to provide an equational form for the

matching process.

5.2.5 Matched graph

The matched-graph at phase ¢ is an ARG G = (N, R™) that is a subgraph of
the source-graph G*. The matched-graph G} is the result of the matching process

applied on two graphs namely the pattern-graph G¥ and the input-graph GI. The

110 CHAPTER 5. PATTERN GRAPH GENERATION

a b
b a c a
S
c d e d e
d
Gl+ G2 G
@
a f f
a 5 a —*
d e e.\“ 9 d e ~e 0
Gl1®R G

(b)

Figure 5.3: (a) The notion of graph summation operator “+” that allows to compose
two graphs G1 and G2 and represent them as a connected graph G. (b) The notion
of graph-and-edge summation operator “4” that allows to compose a graph G1
and a set of edges R = {(f,a), (e,¢)} and represent them as a graph G.

matched-graph is represented as:

G = match(GY,GH) = G™, + (RI'™ @ G™)

where G? and G/ are defined in the following Sections. The matched-graph at phase
1 of the matching process can be represented using the graph summation notations,
as a collection of matched-regions and their corresponding connector-edges, such

as:

5.2. GRAPHS BASED ON AQL PATTERN 111

GI'= (GP" & RYO™) + o + (G @RI ™) that yields

7

Gm _ Z (GZW D RZW*HmTu)

7
u=1

where, G is a matched-region at phase u < ¢, and R™ <™« is the group of
connector-edges between G7" and every other matched-region G such that
1<j<i A j#u. Inother words, the connector-edges R™" <™« constitute all
the import/export links from/to every recovered subsystem S; or module M;.

Such a representation provides a “modular view” of the matched-graph G that
allows us to access an individual constituent module G?'" and its import/export
links R™" ™ within the matched-graph from the first match to the last match
at phase 1 by indexing. This indexing is necessary for generating the pattern-graph
discussed bellow. As mentioned previously, the matched-graph G* can also be
represented as a recursive equation using the graph summation notations, as shown
in Figure 5.4.

G =G + (R @ G)

5.2.6 Pattern-graph

The Pattern-graph at phase ¢ is an ARG GY = (N}, RY) that is generated by
incrementally expanding the query-graph G? at different graph matching phases. At
each phase 1 only those query-edges that exist between the current query-node ¢n;

and the previously matched query-nodes gn; to gn;_; are expanded. The pattern-

112 CHAPTER 5. PATTERN GRAPH GENERATION

7

Gm — Z (GZW @ RZW*HmTu)

2

u=1
Gy =¢ % No matched-graph exists at phase 0.
GV =G % No connector-edges R{“™" exist at phase 1
G;n — (ngr D R(lemTl) T (G;nr D Rgnr*e)mm) % R;nr*HmTQ _ Rg’leTQ

Gy = Gyt + (RY“™ & Gy

Gyt = Gy + (R & G

2

Figure 5.4: Representing the matched-graph G as a recursive equation.

graph is represented using the graph summation, as:

Gl =G + (R @ GY)

where Gf' = ¢. The above equation is interpreted as: at phase ¢ the pattern-
graph G? is the sum of the matched-graph at previous phase G, pattern-region

m<spr

. between the

at current phase GY", and the imported/exported edge-bundles R
pattern-region and the matched-regions inside G ;.

Figure 5.5 illustrates an example of pattern-graph generation. In Figure 5.5(a)
a query-graph with 5 query-nodes is shown. In Figure 5.5(b) the pattern-graph is
expanded at phase 4, where the edge-bundles in R} 7*™* connect the pattern-region

GY" to the matched-regions at phases 1 and 2. Figure 5.5(¢) illustrates the expansion

of the same pattern-graph at phase 5, where the pattern-graph at phase 4 G4 has

5.2. GRAPHS BASED ON AQL PATTERN 113

Each edge represents
one edge-bundle.

Expanded in Expanded in
part (b) of Fig. part (c) of Fig.

(a) Query graph

(c) Pattern graph at phase 5

Figure 5.5: (a) query-graph with five query-nodes. (b) Edge-bundles corresponding
to the query-edges grs, qry, and grs connect the pattern-region G4 to the matched-
regions G7'" and G5'". (c) The pattern-graph at phase 5.

already been matched. The summation representation of the matched-graph G
allows such access to the matched-regions at previous phases.

Figures 5.6(a) and (b) illustrate the detailed generation of a pattern graph G
from the query-graph G? at phase 4. The procedure for expanding a query-edge gry
into edge-bundles generates p (max size ¢ry) edge-bundles with proper edge-types
and direction that connect the nodes of the corresponding matched-regions G to

the first p nodes in the pattern-region. The details of generating edge-bundles are

114 CHAPTER 5. PATTERN GRAPH GENERATION

| Already |
matched

(a) Query—graph with 4 query-nodes (b) Generated pattern—graph at phase 4

Figure 5.6: Generation of pattern graph G’ from the query-graph G? at phase 4
using the imported/exported edge-bundles.
also discussed in Appendix B.

The rationale for such a query-edge expansion is to consider “all possible situa-
tions where a subset of the source nodes can connect to a subset of the sink nodes
which can be used in the context of graph pattern matching process”. The match-
ing process then computes a group of edges that satisfy in a suboptimal way the
min/max cardinality requirement for edge quantities among the group of nodes,
according to the AQL query.

The pattern-graph G? at phase [= |N9| (where |N?| is the number of query-
graph nodes) is referred to as the complete pattern-graph GP = (NP, RP), where all
query-nodes and query-edges have been expanded and the full pattern-graph has
been generated. However, the incremental nature of the process allows to add more
query-nodes and query-edges to the query-graph and extend the matching process

by providing a more detailed AQL query.

5.3. SUMMARY 115

5.2.7 Input-graph

The input-graph at phase 7 is an ARG G! = (N{, R!) which is a subgraph of the
source-graph G* = (N*, R*). The input-graph G/ is represented using the graph
summation, as:

Gi =Gy + (RYTT & Gyjy)

where G, 1s the matched-graph at previous phase and Gf' = ¢ G;’(”i) is the
“selected source-region” for the current phase i; and the connector-edges R*<*"
are edges from the source-graph G* between two subgraphs G, and Gg(;. The
input-graph G! and pattern-graph G? are supplied to the matching process at phase

¢ to be matched and produce the matched-graph G".

5.3 Summary

In this chapter, the steps for generating a pattern-graph from an AQL query text
that models the conceptual architecture of a system as an abstract module inter-
connection pattern, and the necessary graphs that model the matching process
were discussed. Specifically, the macroscopic view of the pattern-graph consists of
a number of smaller patterns to be matched with the graphs of the system mod-
ules, and groups of interconnection links to match with the import/export links
among the modules. During the matching process the pattern-graph is incremen-
tally matched at successive graph matching phases which simplifies the represen-
tation of the pattern-graph as a pattern-region that is connected to a collection

of already matched graphs and their import/export links. The use of graph sum-

116 CHAPTER 5. PATTERN GRAPH GENERATION

mation notations and the modular structure of the AQL query pattern allows to
represent the architectural recovery as an incremental process that is modeled in

terms of a recursive graph algebraic equation.

Chapter 6

Graph pattern matching

In most current approaches, software architecture recovery is viewed either as: a
pattern matching problem [56, 79, 55, 48, 39]; a constraint satisfaction problem [113,
92]; a clustering problem [91, 78, 59, 107]; a composition and visualization problem
[78, 38]; or a lattice partitioning problem [98, 68, 109]. The reverse engineering
community has paid particular attention to the pattern matching approaches since
they allow the use of domain knowledge and system constrains to be considered,
and they can provide a user-assisted environment for architectural recovery. These
pattern-matching approaches incorporate various strategies to identify the existence
of a pattern in an information base that models the actual system being analyzed.

The most commonly used models for system representation are various forms of
entity relationship graphs that are also currently used as means to represent high-
level abstraction of a software system and serve as data exchange formats among
various reverse-engineering tools [19, 49]. Motivated by the expressiveness and

simplicity of entity relationship graphs this thesis proposes a model whereby archi-

117

118 CHAPTER 6. GRAPH PATTERN MATCHING

tecture recovery is considered as an approximate graph matching problem between
a graph that serves as an hypothesis (pattern) for the architecture of the system,
and a graph that denotes the source-code of the system being analyzed (input). To
limit the computational complexity of the matching process, an incremental algo-
rithm is applied on specific regions of the software system entity relationship graph
that represent different search domains.

In a nutshell, graph matching refers to algorithms for comparing two graphs G,
and G, [95, 25, 108, 75] by the means of a function f that maps the nodes and
edges of Gy onto the nodes and edges of G3. In the proposed software architecture
recovery the process of generating the pattern-graph is exploratory in nature and
the pattern-graph is not a fix graph. Therefore, finding the exact match between
the pattern-graph and a subgraph of the software system graph is not feasible. On
the other hand, in approximate graph matching the goal is to identify a subgraph of
the input-graph that is similar to a given pattern-graph within a certain threshold
value that will be further investigated by the user. In this context, an approximate
graph matching algorithm can identify an optimal sequence of graph edit operations
(i.e., node or edge insertion / deletion / relabeling) that are applied on one graph
in order to make the two graphs isomorphic [95, 34, 25].

The contributions of this Chapter focus on: i) modeling the software architecture
recovery as graph pattern matching problem; ii) proposing a multi-phase search
algorithm to perform incremental matching of a modular pattern-graph at file-level
or function-level; iii) proposing new cost functions for inter /intra-module node/edge

insertion/deletion that incorporates hard constrains and similarity measure; and

6.1. OVERVIEW OF THE GRAPH MATCHING PROCESS 119

iv) proposing a bounded-queue heuristic that relaxes the exponential running time
complexity of the A* algorithm.

This Chapter is structured as follows. First, an overview of the graph matching
process is presented. Second, the graph pattern matching model of the architecture
recovery is discussed. Third, a new graph distance based on different cost evalua-
tions is provided. Fourth, the proposed bounded path-queue A* search algorithm is

presented. Finally, an example of a two-phase graph matching process is discussed.

6.1 Overview of the graph matching process

In this Section, an overview of the graph matching process is discussed. A formal

representation of the matching process will be presented later in this Chapter.

6.1.1 Step 1: System representation

The software system is parsed and the source-code entities and data/control de-
pendencies are abstracted according to an architectural-level domain model which
yields the entity-relationship source-graph G*. The source-graph provides a search-
space for the matching process. However, since even in a medium-size software sys-
tem the number of entities and relationships that are generated are prohibitively
high, any matching algorithm will be intractable. To address this problem, the
search space is decomposed using data mining techniques to generate a collection
of sub-spaces, each providing a subset of the initial search-space. Each sub-space
corresponds to a source-region G3" which is distinguished by the main-seed node

n]‘.

120 CHAPTER 6. GRAPH PATTERN MATCHING

Each node in a source-region is labeled with a similarity (or closeness) value to
the main-seed of the source-region as a means for the matching process to operate
on groups of highly associated entities. The high-level representation of a software

system is defined as:

system = (G®, D(N?))

where, G* = (N*,R*) and D(N*®) = [D" | j € [1 .. [N?|]] is the collection
of domains of system entities in N°. Each domain D™ consists of the source-
region nodes along with the corresponding similarity values to the main-seed of
the given source-region. At file-level analysis the source-region nodes are files func-
tions, datatypes, variables, and at function-level analysis the source-region nodes

are functions, datatypes, and variables.

6.1.2 Step 2: pattern representation

An abstract pattern of modules-and-interconnections for the software system is
modeled as a query in the proposed Architecture Query Language (AQL). An AQL
query can be further represented as a query-graph consisting of composite nodes
that are linked through composite edges as discussed earlier. The composite nodes
and composite edges of the query-graph (i.e., pattern) are expanded into pattern-
regions and edge-bundles that are consequently matched against the source-regions
and their connector-edges. The rationale for expanding the composite-edges is to
allow every subset of the nodes in a source module to be connected to every subset
of the nodes in the destination module, according to the constraints modeled in the

AQL query.

6.1. OVERVIEW OF THE GRAPH MATCHING PROCESS 121

6.1.3 Step 3: graph matching process

The matching process computes a sub-optimal match between a pattern-graph that
originates from an AQL query and an input-graph that originates from the system
source-graph. The matching process is performed in k phases (k is the number of
AQL query modules) with the requirement that the obtained results conform with
the constraints specified by the AQL query. The current matching phase is denoted
as “7’.

We use the A* search algorithm modified by a “bounded-queue heuristic” to
compute a sub-optimal matching cost between the pattern-graph and input-graph
while the AQL query constraints are not violated. The search algorithm generates
a search-tree that corresponds to the recovery of each module M; in AQL query
(Figure 6.1(a)), that consists of: i) a root node for matching the main-seed n; of the
source-region G¥" with the first placeholder-node n;; in the pattern-region GY'; ii) a
number of non-leaf tree-nodes at different levels of the search-tree that correspond to
different alternative matching of the placeholders in the pattern-region with nodes
in the source-region; and iii) leaf tree-nodes that correspond to solution paths where
the placeholders have been matched and constrains have been met. At each node
of a search-tree the cost of graph edit operations for matching “a node nj and its
edges” from the source-region with a “placeholder-node n; ; and its edges” from the
pattern-region are evaluated and the search-tree is expanded from a tree-node that
has the minimum cost. Each search-tree has a maximal depth equal to the number

of placeholder-nodes in the pattern-region (or equivalently to the maximum number

of placeholders in the AQL module M7).

122

Search for
module M1

Search for
module M2

Search for
module M3

Phase 1

Phase 2

Phase 3

CHAPTER 6. GRAPH PATTERN MATCHING

Main-seed—— 1) — N1
® Discarded costly node

@® Maintained node
i3 n; Placeholder-node to be matched
(1),(2),(3).(4),(5): Sequence of branching

Nis

(a) A* search tree

Complete Incomplete Level

path path Root 0

5 > @ 1

2

e 3

(3) Leafnode L. (2
' T
I ®) Lo @
77777777 Tree paths (2), (4): Search-trees that

failed to produce result
Solution path

(1),(2),(3),(4),(5): Sequence of generating search—trees.
(2) — (1) and (4) — (3): Backtracking to previous phase.

(b) Multi-phase search space and backtracking

Figure 6.1: Demonstration of a multi-phase search strategy using: (a) an A* op-
timal search algorithm to match the placeholder-nodes at each phase and; (b)
backtracking between phases.

Multi-phase matching and backtracking

A pattern-graph G% by its definition is composed of a number of smaller patterns

(i.e., individual pattern-regions G¥" at different matching phases ¢ € [1..|N?|], where

|N?| is the number of nodes in the query-graph G9). This composition property

allows to manage the complexity of the matching process of a large source-graph by

applying it on a region-by-region basis. In this form, the whole matching process

6.1. OVERVIEW OF THE GRAPH MATCHING PROCESS 123

is divided into k incremental phases (as k partial-matchings) so that the recovery
process performs a multi-phase matching. Each partial-matching at phase ¢ (7 :
1,2,3, ..., k) generates a search-tree which is a part of the multi-phase search-space,
illustrated in Figure 6.1(b).

If the current phase 1 of the matching process fails to identify a matched-graph
G? (i.e., AQL link constraints can not be satisfied) then the control algorithm
backtracks by: 1) discarding the result of the previous phase, G ; ii) restoring the
search-tree for previous phase ¢ — 1; iii) expanding the search-tree to find another
solution G, and; iv) advancing to the current phase i and generating a new search-
tree from G'™,. In Figure 6.1(b), each search-tree with dashed lines represent an
unsuccessful search that caused the search mechanism to backtrack to the previous
search-space, generate another leaf-node, and then create a new search-tree (shown
as solid-lines). A thick line from the root of the first tree to a leaf of the last tree
represents a path that yields a sub-optimal solution, since the number of alternative

paths is bounded by the “bounded queue” heuristic.

124 CHAPTER 6. GRAPH PATTERN MATCHING
6.2 Software architecture recovery as graph
pattern matching

In this Section, “software architecture recovery” is defined as a “graph pattern
matching problem”, and is modeled in the form of recursive graph equations that
correspond to an iterative graph matching process. In defining the problem, the
notion of graph distance is used as follows:

Graph distance: the distance between two attributed relational graphs G1
and G2, denoted as dist(G1l,G2), is defined as the minimum cost of a sequence of
graph edit operations that must be performed on one graph (e.g., G1) so that it
becomes isomorphic to the other graph (i.e., G2). These changes are usually in the

form of node or edge deletion, insertion, or relabeling [34].

Software Architecture Recovery (4, G*, d,)

Given an AQL query A that specifies an interaction pattern between
system modules (or subsystems) and is represented as a pattern-
graph GP, a source-graph G* that represents the data/control de-
pendencies in a software system, and a graph distance threshold d;
that corresponds to the interaction constraints between the mod-
ules, the problem is to find a subgraph of G° (namely G™) among
the different alternative subgraphs whose graph distance with re-
spect to the pattern-graph G? is both minimum and less than the

distance threshold d;, that is:

dist(GP,G™) A dist(GP,G™) < d,

|min

6.3. MODELING THE GRAPH MATCHING PROCESS 125

In this problem definition, the distance threshold d; ensures that: i) the hard
constraints imposed by the module-interconnection pattern of the AQL query A
with respect to the minimum/maximum number of import/export relations will
be satisfied; and ii) the minimum required quality of the recovered modules with
respect to the average closeness value of each module will be satisfied, otherwise no
result can be produced. A search algorithm such as the proposed bounded-queue
A* is applied to find a sub-optimal graph-distance between the pattern-graph and
all the alternative subgraphs of the source-graph G*.

The details of measuring the distance between two graphs and the search algo-

rithm to implement the matching process are discussed in the following Sections.

6.3 Modeling the graph matching process

The proposed multi-phase, incremental, and approximate graph matching process
can be modeled in the form of the recursive equations illustrated in Figure 6.2.

In this equational form, the whole graph-matching process is performed in | N9|
iterations (phases), where |N9| is the number of nodes in the query-graph G9. At
each phase ¢ (¢ € [1..|N?|]) the result of matching at previous phase G¥*, is used
to build an input-graph G! and a pattern-graph G? to be matched and produce
a matched-graph G, which in turn is used to build GL,; and G¥, for the next
matching phase ¢ + 1, and so on. In this context, Gf' is defined as a Nil graph

with zero number of nodes and edges, and when i = |N4| then G = G, G¥ = GP,

G = G™, and the matching process terminates.

126 CHAPTER 6. GRAPH PATTERN MATCHING

1. Gn =, i€[l..|NY|

2. GI=GPr, + (R @ G,)

3. GV=G", + (R @ G

4. G = match(GY,GY) | dist(G?,G™) = Min {dist(G?,G¥) | G¥ C G!}
5. Gr=Gr, + (R & GI)

6. G =Y. (G @ Ry omm)!

. GI=Gl, GP=Gr, Gm=Gm if i=|NY

Figure 6.2: The recursive equations for the proposed multi-phase, incremental, and
approximate graph matching process.

In the above equations, the input-graph G/ (equation 2) consists of the matched-
graph at previous phase G7",, the selected source-region G;’(”i), and the source-
graph connector-edges R["™*". The pattern-graph G? (equation 3) consists of
the matched-graph at previous phase G |, the pattern-region G, and the edge-
bundles R “*"". The approximate matching process (equation 4) aims to compute
a match between the pattern-graph G¥ and the input-graph G! by comparing dif-

T

ferent subgraphs G

? of the input-graph G! against the pattern-graph G?. A sub-
graph G¥ with minimum graph distance to the pattern-graph is the solution of the
matching process, i.e., GI*. The resulting matched-graph G (equation 5) consists

of matched-graph at previous phase GI",, matched-region G7"", and connector-

1
GP = (G & RT™ O™ 4 o+ (GPT @R

6.4. GRAPH DISTANCE 127

Rm(—)mri
2

edges . The modular view of the resulting matched-graph G?* (equation 6)
consists of a collection of matched-regions G (i.e., recovered modules) and their
connector-edges (i.e., import/export links) to other matched-regions.

Figure 6.3(a) illustrates a model of the problem and solution for software archi-

tecture recovery in the form of graph equations. Figure 6.3(b) illustrates an example

of the matching process at phase 2 that will be further discussed in Section 6.6.

6.4 Graph distance

This Section outlines the concepts pertinent to measuring the distance between the
pattern-graph G? and a subgraph of the input-graph G! so that a sub-optimal match
can be computed. The measured graph distance is used by the graph-matching
algorithm to select a sub-optimal minimum distance subgraph of G as the matched-
graph G*. The graph distance is related to the cost of graph edit operations on
the “pattern-region G?" and its connector-edges R." """ to match them against a
subgraph of the “selected region Gy, and the connector-edges R These edit
operations result in a transformation or instantiation of G¥" that yields a “matched-
region G and the connector-edges R"™™"” (Figure 6.3(b)).

A certain cost is associated with each graph edit operation that corresponds to
matching a node ni from the selected source-region Gyi;) with a placeholder-node
n; ; from the pattern-region GY". The costs for edge-insertion, edge-deletion, node-

ed ni

insertion, and node-deletion, denoted as ¢, ¢*¢, ¢™, and ¢*? are discussed below.

Y

In this thesis, the following graph distance function is used, whose elements are

128 CHAPTER 6. GRAPH PATTERN MATCHING

m me Sr Sr |

s s
G =(N,R) G. +(Ri ® G _)=G Match

i-1 10} i m
» G
m me«pr r p !

p
G, +R o G)

a_.d 9 = G,
G =(N',R) i m_
G, = Nil
(a-1) Model of problem (a—2) Model of solution: iterative matching process.

(a) Modeling the software architecture recovery as a graph matching problem.

Phase 1 Phase 2
matched being matched

/ N\ / \

, (b-3) Input-graph (b-4) Matched-graph

+ 1 @
Graph
summations

®

Main-seed

[]
Node

F: (2, 4) F:(2, 3)

use—F : (1,2) O (b—1) Query-graph Source—-graph
‘ 6 ; T 1. generates pattern—graph edge
! and input—graph -

Gy Gz Un-matched

edge

Main-seed

(b) An example of matching process at phase 2.

Figure 6.3: Modeling a software architecture recovery process as a graph-matching
problem. The graph pattern-matching process iteratively matches a pattern-graph
with an input-graph and yields a matched-graph. A query-graph provides all required
information for different phases of an iterative matching process.

6.4. GRAPH DISTANCE 129

defined below:

INZ| |
dist(GY,GY) = Y (e + cong T Cou +)

=1

n; j matches with Nk,

where, ng, € N and |N7| < |N"| because of possible deletion of node n; ; from G} .
Two subscripts “in” and “out” denote the costs that occur inside the pattern-region

m&Spr;

. . The resulting costs are defined below.

or on the connector-edges R

6.4.1 Edge insertion cost

Two cases are defined as follows:

a) Inside-pattern edge insertion cost, '
This cost is not applicable, since the pattern-region is already maximally expanded
by its definition.

et
out

b) Connector-edge insertion cost, c
If there exist edge-bundles between the pattern-region G and the matched-region
G (u < 1) in the pattern-graph G? then the cost of inserting a connector-edge
(in the same direction as the edge-bundles) in R;"™ """ is mazCost. Otherwise the
cost is zero, which means the inserted connector-edge is not part of the constrained
interconnection pattern specified in the pattern-graph, hence inserting one or more

new connector-edges does not violate the interconnection pattern.

130 CHAPTER 6. GRAPH PATTERN MATCHING

6.4.2 Edge deletion cost

Two cases are defined as follows:

a) Inside-pattern edge deletion cost, c5?
The objective of defining the inside-pattern edge deletion cost c£¢ is to be able
to recover cohesive modules and subsystems as matched-regions GI*" during the
matching process at phase i. In order to recover cohesive modules, a pattern-region
G?" is generated as a fully connected graph so that the matching process can reveal

the most intra-related group of entities in the source-region Gyf,). The cost ccd is

defined as:
ed _ ed ed
Cin = Ciny T i, where
cinl - k an cinQ - k

where, M is the maximum similarity value among all pairs of entities in the cor-
responding source-region G;?i); s 1s the similarity value between two entities that
the edge to be deleted is connected; d is the number of deleted edges; and k is the
number of already matched nodes.

The sub-cost ¢! is denoted as the default dissimilarity value between the
pr

candidate-node nj; and each matched node in G;"; whereas, the sub-cost ¢

ed __

o

0.22& depends on the number of deleted edges "d” between two nodes. The co-
efficient “0.25” indicates the significance of each missing edge compared to the

dissimilarity value between two nodes. Hence, each missing edge adds a value of

822 to the default cost value Mk_s, and at worst case (two edge deletion) the dis-

similarity value doubles. Therefore, increasing the coefficient 0.25 causes that the

6.4. GRAPH DISTANCE 131

d=0 d=1 d=1 d=2

Mx My Ny
Similarity
n

"y Ny ® 'y s

M-s M- 0.75s M-05s
c= = =

k k k

M = Maximum similarity between two entities
in the current source-region.

s = similarity value between n and n

y
k = number of already matched nodes

d = number of deleted edges

@) (b)

Figure 6.4: (a) Definition of inside-pattern edge deletion cost 4. (b) Diagram for
cost versus similarity when only one node already matched in G¥", i.e., k = 1.

missing edge to become more important than the dissimilarity value, and vice versa.

The costs for different cases of inside-pattern edge deletion are as follows:

ed _ M

o ¢ = zero edge deletion d =0

gd: M — 0.75s .

o one edge deletion d =1

mn k
o 4 = w : two edge deletion d =2

Figure 6.4(a) illustrates different cases for inside-pattern edge deletion costs,
and the diagram in Figure 6.4(b) demonstrates the variation of the cost versus
similarity between two nodes with the number of deleted edges d as the parameter.

In defining cost ¢¢¢ the following properties are considered:

e The cost ¢4 depends on both the similarity value entAssoc(n,,n,) between

132 CHAPTER 6. GRAPH PATTERN MATCHING

. r
Pattern-region Gf’

(a) One edge deleted (b) Two edges deleted (c) Three edges deleted
cost: 1/1=1 cost: 1/2+1/2=1 cost: 1/3+1/3+1/3=1
— Matched edge O Candidate node to be matched
------ »> Deleted edge ® Already matched node

Figure 6.5: An average of the inside-pattern edge deletion cost compensates for the
number of nodes in the pattern-region G".
the candidate-node n, and each of the already matched node n, in GY", and
the number of deleted edges between n, and those nodes. Note that, the
similarity metric entAssoc(n,,n,) is independent of the edges between n,
and n,. Specifically, in an associated group ¢., defined in Section 3.3, there
may be no edges between two nodes in the itemset (shared nodes) or basketset

(sharing nodes) but still these nodes are considered similar to each other.

e In the clustering literature, the cost measure (dissimilarity or distance) is

commonly defined as the complement of the similarity measure [36] such as:

c=M—s

Where, ¢ and s are the cost and similarity values between two entities, re-
spectively; and M is the maximum similarity value among all pairs of entities
in the corresponding source-region (i.e., M = 1, if the similarity metric is

normalized).

6.4. GRAPH DISTANCE 133

e The cost of matching is proportional to the number of already matched nodes
in pattern-region G*". Figure 6.5 illustrates three cases with different number
of nodes already matched in GY" which can result in different cost values.
However, in all cases the candidate-node has one edge to each node in graph
GY" which implies a similar relation to the group of matched nodes. In order

to compensate for the number of matched nodes in GY", the cost for each edge

deletion is divided by the number of matched nodes in G*" which yields the
same average value for all three cases.

ed

out

b) Connector-edge deletion cost, ¢
The cost in this Section is calculated based on the number of remaining edge-
bundles “r” during the matching process at phase 1 where the placeholder-node
n;; 1s to be matched with candidate-node n;. At this time, the placeholder-nodes
Ni1yMigy .., N j—1 i pattern-region GY" and their connector-edges (to previously
matched-regions G, u < 1) have already been matched. In Appendix B, the pro-
cedure for generating edge-bundles R “P" for pattern-region G¥" indicates that for
each connector-edge that is to be matched, one edge-bundle is generated. As an ex-
ample, for a query-edge gry with minimum cardinality 1 and maximal cardinality 3,
three edge-bundles are initially generated. Therefore, during the matching process,
for each connector-edge that is matched, one edge-bundle must be deleted. The
number of remaining edge-bundles indicates the number of connector-edges that
can still be matched to reach to the maximum number of allowed connector-edges.

To perform cost evaluation, the connector-edges are further classified into two

groups “emported’ and “exported’ as follows:

134 CHAPTER 6. GRAPH PATTERN MATCHING

Cost evaluation steps Example: r = 3 and 2 edges are matched
e = ini deleted: cost Current
1- r» = ngmber of remaining edge-bundles T S edge-bundle
including the current edge-bundle —x025 C
3
2- Keep "r"* edges from the current edge-bundle r
(including edges that will be matched) matched edge

and delete the rest with cost "zero".
matched edge

3- Match the edges from “r* edges in edge-bundle.

4- From "r* edges, each edge that is not deleted: cost zero

matched, is deleted with cost: matched node

1 ed deleted: cost zero _

— x025x C. n..—nk
r in ij

(a) Imported connector-edge deletion

Example: 2 edges are matched

Current

Cost evaluation steps edge-bundle
deleted edge
If one or more edges matched from edge-bundle
then delete unmatched edges with cost "zero" matched edge
else
delete all edges with cost: deleted edge
025x C &
matched edge
matched node
Cost = zero

nii= Nk

(b) Exported connector-edge deletion

Figure 6.6: The cost evaluation for deleting import/export connector-edges corre-
sponding to the pattern-region.

e b-1) Imported connector-edge deletion: as discussed above, for match-
ing each imported connector-edge a whole imported edge-bundle must be
deleted with no-cost. However, within the edge-bundle that is connected to
the current place-holder node n, ;, for each edge deletion a cost is applied.
The cost evaluation steps along with an example are illustrated in Figure
6.6(a). In this cost, “r” is the number of remaining edge-bundles including
the current edge-bundle, and is equal to the difference between maximum
number of allowed edges to be matched and the number of currently matched

edges. The value of this cost depends on the success of the candidate-node ny,

6.4. GRAPH DISTANCE 135

in augmenting the number of matched imported edges to reach to its maxi-
mum number. Therefore, matching more imported edges by the current node
means less cost. The cost is calculated based on the eligibility of the node
to produce a cohesive module, by taking into account the inside-pattern edge
deletion cost ¢§3. The coefficient “0.25” has been empirically determined to
give more weight for collecting a group of related nodes as opposed to satis-
fying the max number of imported connector-edges. The edge deletion cost

1s as follows:

ed

out —

{ 0 for extra edges that are more than "r” edge
cd

Lx 0.25x g for edges that are not matched within ”r” edges

However, this cost evaluation is applied only if the minimum (maximum) num-
ber of imported connector-edges for pattern-region G*" still can be reached
(not exceeded) by the number of matched connector-edges for the current
node-matching n; ; with ng. Otherwise, the cost is mazCost and this node-

matching will be discarded.

Example: cost evaluation for imported connector-edge deletion
Figure 6.7 illustrates several cases of matching imported connector-edges
where the maximum cardinality is 2. The following explanations are with

reference to the parts of Figure 6.7.

136 CHAPTER 6. GRAPH PATTERN MATCHING

edge-bundle

(a) A portion of the pattern—graph

Ght phase .

first matched node

(b) One edge matched from edge-bundle 'bil":
i) rest of edges of 'bil’ are deleted with cost.

first matched node
N, =4

(c) Two edges matched from edge-bundle 'bil’:
i) edge—-bundle 'bi2’ is deleted with no cost;
ii) third edge of 'bil’ is deleted with no cost.

first matched node

exceeds max edges
ni,= 7

(d) Three edges matched from edge—bundle 'bil’:
i) edge—bundle 'bi2’ is deleted with no cost;
i) no edge—bundle remains to be deleted,
hence, the third edge is matched with maxCost.

5
duplicate
import

second matched node

(e) Two edges matched from edge—bundle 'bi2":
i) second matched edge imports node 9 that is already
imported, hence, no edge-bundle is deleted for it.
ii) rest of edges of 'bi2’ are deleted with no cost.

matched node

(f) Second matched node causes no edge-match,
(or the matched-edges already imported):
i) redirect edge—-bundle to next node with cost.

L =3
o

Mo > nig =16

third

8 Ni2 =11 matched node

(g9) Third matched—-node has no import-edge to
be matched with re-directed edge—bundle:
i) edge—-bundle is deleted with cost
ii) if min—edges not matched, cost is maxCost.

Figure 6.7: Examples of edge deletion from imported edge-bundles R:*™~P" that
connect an already matched-region G (a link-module) to the pattern-region G".

6.4. GRAPH DISTANCE 137

Part (a): a portion of pattern-graph G? with two imported edge-bundles by

and biy from an already matched-region G (a link-module) to the pattern-

T, —pPri

. , and

region G} is shown, where the collection bi; and bi; constitute R
r=2.

Part (b): from the first edge-bundle one edge is matched, one edge is deleted

ed

with cost zero, and one edge is deleted with cost 1 x 0.25 x ¢£7. One more
edge can still be matched since bi; has not been considered yet.

Part (c¢): from the first edge-bundle two edges are matched and the third
edge 1s deleted with cost zero. The whole second edge-bundle is deleted with
cost zero, and no other edges can be matched since the maximum number of
imported edges has been reached.

Part (d): from the first edge-bundle all three edges are matched; the second
edge-bundle 1s deleted with cost zero. Since the number of the matched edges
exceeds the maximum number of edges (r = 2), the third edge is matched
with mazCost (see cost assignment for ¢,).

Part (e): from the second edge-bundle two edges are matched; the sec-
ond matched edge imports a duplicate node, hence it is not considered as a
matched edge and only one edge is considered as matched?. The third edge
of the edge-bundle is deleted with cost zero. This case can occur after the
case in part (b).

Part (f): from the second edge-bundle no edges are matched and the remain-

ing edge-bundles r = 1: cost for not matching one edge is applied which is

2This restriction is in conformance with semantics of IMPORTS part of a COMPONENT in
the AQL query Section 4.2.4.

138

CHAPTER 6. GRAPH PATTERN MATCHING

% % 0.25 x c£¢, and the edge-bundle is redirected to the third placeholder-node.
This case can occur after part (b)

Part (g): this case can occur after part (f) where the remaining edge-bundles
is r = 1 and from the second edge-bundle no edges are matched. In this
case, the edge-bundle can not be redirected since no placeholder-node is left,
therefore all edges of edge-bundle are deleted with cost for not matching one
connector-edge, i.e., % x 0.25 x ¢4, However, if the minimum number of
the connector-edges that is specified in the AQL query is 2, then the cost
i1s mazCost since only one connector-edge has been imported to the current

matched-region G7*" which violates the minimum threshold.

b-2) Exported connector-edge deletion: the cost of deleting edges from
the current edge-bundle is as follows: if one or more edges are matched then
the rest of unmatched edges are deleted with cost zero; otherwise the edge-

bundle is redirected or deleted with cost:?

ed ed
Cor = 0.25 X ¢,

However, this cost evaluation is valid only if the minimum (maximum) num-
ber of the exported edges from the pattern-region G¥" still can be reached

(not exceeded) by the current node-matching. Otherwise, the cost is maz-

3For any number of exported connector-edges that are matched during the current node-

matching n; ; with ng, only one exported edge-bundle (i.e., current edge-bundle) is affected and
a part of its edges can be deleted. The reason is that no matter how many exported edges exist

mr

between the matched node ny and the nodes in linked-module G7'", still only one node ny is
exported, and hence one edge-bundle must be affected.

6.4.

GRAPH DISTANCE 139

Cost and the current node-matching will be discarded. Figure 6.6 illustrates
the corresponding cost assignment. The justification of this cost assignment

is similar to that of imported connector-edge deletion.

Example: cost evaluation for exported connector-edge deletion
Figure 6.8 illustrates several cases of matching exported connector-edges where
the maximum cardinality is 2. The following explanations are with reference

to the parts of Figure 6.8.

Part (a): a portion of the pattern-graph GY with two exported edge-bundles

be; and bey from the pattern-region GY to a matched-region G (link-

T, pri

module) is shown, where the collection be; and bey constitute R;

Part (b): from the first edge-bundle one connector-edge is matched and the
rest of edges are deleted with cost zero.

Part (c): from the second edge-bundle three edges are matched, no edges
are deleted, and the cost is zero. This case can occur after part (b).

Part (d): from the second edge-bundle no edges are matched, hence the cost
of not matching one edge is applied which is 0.25 x 4. The edge-bundle is
redirected to the third placeholder-node n; 3.

Part (e): from the third node-matching one edge is matched: no edge-
bundle is there for edge-matching; one connector-edge must be inserted for
edge-matching with cost mazCost (see cost assignment for ¢<,). The reason

is that the maximum number of connector-edges is exceeded. This case can

140

edge-bundle
el
I

second
matched node

(c) Three edges matched from edge-bundle 'be2’.
Cost is zero.

ni;=7 third
matched
node
nis= 16

(e) Third matched-node has one export-edge:
i) no edge-bundle was there for matching.
i) one export edge must be inserted to be matched.
The cost is maxCost since max edges exceeded.

CHAPTER 6.

GRAPH PATTERN MATCHING

first matched node
niy=7

(b) One edge matched from edge-bundle 'bel’.

Rest of edges of 'bel’ deleted with cost zero.

o matched node

(d) Second matched-node n ; has no export edges.
Edge-bundle 'be2’ is redirected to n jwith cost.

ni, =7 third
9 matched
node
: nis= 20
8 n, =11

(f) Third matched-node has no export-edge
to be matched with redirected edge-bundle:
i) edge-bundle is deleted with cost.
ii) if min-edges is violated, cost is maxCost.

Figure 6.8: Examples of edge deletion from ezported edge-bundles R that
connect the pattern-region G to an already matched-region G (link-module).

6.4. GRAPH DISTANCE 141

occur after part (c).

Part (f): this case can occur after part (d) where the second edge-bundle was
redirected to the third placeholder-node. In this case no edge is matched from
the third node-matching and the edge-bundle is deleted with cost 0.25 x ¢52.
However, if the minimum number of connector-edges that is specified in the
AQL query is 2 (i.e., the originally expanded query-edge is ¢ri(2,2)), then the

cost 1s mazCost since only one node is exported.

6.4.3 Node insertion/deletion cost

Two cases are defined as follows:

a) Node insertion cost, c™
This cost is not applicable, since the nodes of pattern-region G¥" are already max-
imally expanded by definition, therefore, any node insertion inside G¥" violates the

maximum number of nodes defined in the AQL query.

b) Node deletion cost, ¢™¢
In this cost, the number of nodes in the result of matching at phase 7 (i.e., matched-
region G) must be within a size range (min, maz) associated with the query-node
qn;. Therefore, some of the nodes in GY" can be deleted and still produce a valid
result. This situation occurs when there is no combination of p (p = |N"|) nodes
from the selected source-region G;’(”i) that can produce a matching result. In this
case, during the matching process the algorithm reduces the number of nodes in

the pattern-region G¥" to produce a result. This is performed by matching some of

142 CHAPTER 6. GRAPH PATTERN MATCHING

the nodes from G with the null node A, and replacing their connected edges by
null edges, either (A,n;) or (ngy,A). During the matching process, if the number
of null nodes in the pattern-region G%" is less than the value “max — min” then
the cost of deleting the current node is the cost ¢5? of matching an example node

ny (with minimum similarity value s,,;, in the source-region G;’(”i)) where no edges

exist between n, and the already matched nodes in the pattern-region G¥", i.e.:

A =M — 0.5 X Spmin

where M and s,,;, are the maximum and minimum similarity values between two

entities in the current source-region G;?i)' If the number of null nodes in the pattern-

region is more than “max — min” then the cost ¢ is mazCost.

6.5 Bounded queue A* search algorithm (BQ-A*)

In the A* algorithm [86] a search-tree with incomplete tree-paths is built, as illus-
trated in Figure 6.9(a). The sequence of expanded tree-nodes from the root of the
search-tree to any other tree-node is called a tree-path. There are two costs associ-
ated with a tree-node tn in a search-tree which are illustrated in Figure 6.9(b), as:
1) path-cost cparn, which is the cost of a tree-path from the root to the tree-node tn;
and ii) underestimated-cost cyest, which is the estimated cost of the cheapest path
from tn to the goal tree-node. The function that computes such a cost is known
as heuristic function [86]. The estimated cost of the cheapest solution through

tree-node tn, denoted as ¢4, 1s defined using these two costs. At each step the al-

6.5. BOUNDED QUEUE A* SEARCH ALGORITHM (BQ-A*) 143

Complete path: ~ =— 1, 2, 3, ...:
Incomplete path:

c
Root Sequence of total Root

expanding paths

[—
Incomplet e

path deleted c
2 3 from queue path path
[R— : tn
4o . Clest
[— path in ﬁueue

) Solution

6 ¢ ® & Sub-optimal

complete match

Level (a) Search tree (b) Two costs for a node

Number of paths
in queue

Max - determined by Sorted
77777777777 cost ratio -
Min Annnnnn Path queue

—_—

Time

(c) Bounded queue

Figure 6.9: (a) Bounded queue A* search tree with existing and deleted paths. (b)
The costs that are associated with a search-tree node. (c) Bounded queue, where
the number of paths in the queue is bounded between two thresholds.

gorithm expands an incomplete tree-path with the lowest cost for ¢iotar = Cpath+ Cuest
among all other incomplete paths. Upon expansion, new incomplete paths are gen-
erated and added to the previous paths. The procedure continues until a complete
tree-path which is an optimal solution is found. A valuation function allocates a
cost to each node of the A* search tree to guide the search process according to the
costs that were defined in the Section 6.4.

Bounded queue

A major drawback of the optimal search algorithms is the requirement to maintain
all incomplete tree-paths (partially-matched graphs) in a sorted queue that allows
to select the cheapest tree-path to expand next. This queue grows very fast and

in the worst case can have an exponential size, which makes the process of storing

144 CHAPTER 6. GRAPH PATTERN MATCHING

and sorting the paths in the queue as a bottleneck for the algorithm. Since the
path queue is sorted, all of the eligible paths to be expanded (i.e., low cost paths)
are located toward the head of the queue. Therefore, most of the paths with high
cost at the end of a large path-queue will never get a chance to be expanded, and
remain at the tail of the path-queue until the end of a successful search. This
property allows us to restrict the size of the path queue within a reasonable range
(e.g., multiple hundreds of paths) at the expense of obtaining possibly a suboptimal
solution. Figure 6.9(c) illustrates the oscillation of the number of paths in the path
queue. Once the size of queue passes a maximum threshold, it is truncated to
the minimum size. However, we only delete the paths from the tail of the path
queue whose costs are much higher than those on the head of the queue. Therefore,
when we collect paths whose costs are close to each other, the size of queue is kept
around the maximum size, as shown in Figure 6.9(c). As a result the bounded
queue heuristic yields a sub-optimal version of the A* search algorithm as a trade
for increasing the performance*. We denote the “bounded queue A*” algorithm
as: BQ-A* algorithm through out this thesis. In Figure 6.9(a), an example of a
sub-optimal search with the sequence of path expansion is shown. In this simplified

example, each incomplete path will expand to three paths and the (max, min)

threshold is (16, 10).

“In practice, for a medium size system (#50 KLOC) we use a (max, min) queue size threshold
of (400, 200) with ratio marscore — 9 (),

minScore

6.6. EXAMPLE OF THE MATCHING PROCESS 145
6.6 Example of the matching process

In this Section, an example of a two-phase graph pattern-matching process is
discussed. In Figure 6.10, the graph matching is shown as the problem of find-
ing a sub-optimal match between a subgraph of the source-graph G*, against
a pattern represented as a query-graph G? with two composite-nodes and one
composite-edge. The collection of source-regions in Figure 6.10(b) are represented
as the region representation of the source-graph, i.e., (G°, D(N®)). The incre-
mental matching is performed in two phases. In the first phase, the matched-
graph G = match(GY,GL) is computed, where the pattern-graph is G = G}"
and the input-graph is GI = Gy = G& (Figure 6.11). In the second phase,
the matched-graph G5 = match(G5, GL) is computed, where the pattern-graph
Gh =G + (R 7P ¢ GY) and the input-graph G = G7 4 (R ™" @ G;’Ez)), and
Giloy = GY" (Figure 6.13).

The selected source-regions to be matched against the pattern-regions are indi-
cated in the query-graph through the main-seed of each query-node, Figure 6.10(c).
An algorithm for selecting a source-region (or equivalently a main-seed) is discussed
in detail in [90]. The algorithm provides a ranked list of source-regions for the user
to select from. The best source-region to select should be large, contain highly
related entities, and be sufficiently distinct from the previously recovered modules.
In this simple example, the source-regions G¢ (i.e., G;’El)) is the best among the
three regions and hence, is selected for matching with G}" at phase 1. G&" has
the highest average similarity value among the regions and has a high number of

nodes. Next, the source-region G (i.e., G;’(’z)) 1s selected to be matched against

146 CHAPTER 6. GRAPH PATTERN MATCHING

1,2, 3, =Ny Ny Ng .

Domain of main-seed 1 Domain of main-seed 6 Domain of main-seed 10
[node [7 10 2 13 6 11 16 15 | [node [5 9 4 18 1 7 10 2 | [rode [1 7 13 2 6 |
[sm |4 4 4 4 35 3 3 3 | [sim |4 4 4 4 35353535 | [sm |4 4 4 4 35|

S S
(b) Three source-regions of source-graph G r%presenting (G ,D(N))

. F: (2, 4) F:(2, 3)
main-seed
use-F : (1,2)
16
O ar, >@
any an,

(c) A query-graph with two composite-nodes and one composite-edge.

Figure 6.10: Illustration of a two-phase graph pattern-matching problem. (a) A
raw source-graph G* = (N*, R®) as the whole search-space. (b) The source-graph
G* 1s decomposed into a collection of source-regions that are represented as do-
mains of nodes D(N*) and the set of edges R* from G*, that collectively represent
(G*, D(N?)). (¢) A query-graph that is directly mapped from an AQL query and
will be expanded into a pattern-graph GP. The problem is to find a sub-optimal
approximate match between the pattern-graph GP and two source-regions from

(G*, D(N?)).

6.6. EXAMPLE OF THE MATCHING PROCESS 147

the pattern-region G5 at phase 2.

Cost function

The following cost function is applied for both phases of the example matching pro-
cess. At each phase a search-tree is generated where each tree-node is associated
with a cost that is used for searching the tree with the employed search strategy.
The applicable costs at each node of a search-tree was discussed in Section 6.5. In
this example, the cost of matching a placeholder-node n; ; and a candidate-node ny
at each tree-node, i.e., costyoar, consists of different parts as shown below, where

each underlined cost is defined in the next line:

COStiotal = COStpath + oSt yest
COStpath = COStpath—1 + COStpmch

costpen, = 53 4 ¢4 4 et

out out

These costs are defined as:

® c0Sten: cost of matching the current node with the placeholder-node which

is caused by edge deletion / insertion and node deletion. This cost is further

ed et

&, and ¢ as discussed in Section 6.4.

: ed
broken down into costs ¢7, ¢,

ed.

— &4 cost of deleting an edge inside the pattern-region. The cost is calcu-

lated as: M-s M-0.75s or M-—0.5s

=, 22, if zero, one, or two edges are deleted

between the candidate-node n; and an already matched node in the

pattern-region. This cost assignment was discussed in detail in Section

148

CHAPTER 6. GRAPH PATTERN MATCHING

6.4.2. In these formulae, M is the maximum similarity between two enti-
ties in the corresponding source-region; s is the similarity value between
the candidate-node and an already matched-node in the pattern-region;
and k is the number of already matched nodes in the pattern-region.
In our example of Figure 6.10, s is shown in the table for domain of

main-seeds as sim, and M is the maximum of sim in each table.

c<d, (applicable for phase 2): cost of edge deletion from the “imported”
edge-bundles of the pattern-region as ¢, = Lx 0.25 x & where, r

is the number of remaining edge-bundles, including the current edge-
bundle. This cost assignment was discussed in Section 6.4.2. The cost
of edge deletion from the ezported edge-bundles is not applicable, since
no exported query-edge is defined for query-node ¢ns.

et

cout

(applicable for phase 2): cost of edge insertion on the imported
edge-bundles for G5 is mazCost since the edge-bundles are maximally
generated and edge insertion exceeds the maximum number of matched
edges. The cost of inserting ezported connector-edges for G5 is zero,

since they are not constrained by the query-graph (see Section 6.4.1).

™ cost of node deletion is not applicable for this example, hence it is

not considered for computation of cost,,cp.

o costpath (COStpatn—1): total cost of matching the nodes at different tree-nodes
along a tree-path from the root of tree to the current tree-node (parent tree-

node).

6.6. EXAMPLE OF THE MATCHING PROCESS 149

® coStyes: an under-estimation of the remaining cost from the current tree-
node to a leaf tree-node. In reality, at each level of the search-tree that a
new node is matched at least k inside-pattern edges are deleted (% is number
of already matched nodes). We assume that the similarity value s of the
rest of nodes to be matched from the current tree-node to a leaf tree-node is
the highest similarity value. Also, we assume that the matched-nodes with
underestimate-cost satisfy the constraints for the connector-edges, hence both

costs ¢, and ¢, are zero. Therefore, the under-estimation cost for matching

1
uest?

ed

et as follows:

each remaining node, denoted as cost is defined using only ¢

cost! == M=0T5s o I (M =4 and s =4)

uest k

=4-073x4=1

1
oSt

The under-estimation cost cost,.s 1s defined as the total of under-estimation

costs for the remaining placeholder-nodes to be matched, as:

1

costyest = number of remaining placeholder-nodes X cost,,.

6.6.1 Phase 1 of matching example

Figure 6.11 illustrates phase 1 of the matching example of Figure 6.10. The pattern-
graph GY consists of only the pattern-region GY" which is the maximal expansion
(four nodes) of the query node gn; from the query-graph G?. The input-graph is the
source-region G¢". The search-tree has four levels, each corresponding to matching

a placeholder-node n; ;. Each tree-node is identified by a number, cost of matching

150

CHAPTER 6. GRAPH PATTERN MATCHING

Pattern-graph G ;
(expansion of node q),
/

Input-graph G '1

g™
1

ny,=6
no= 5
n 1‘3:4
n“:9 n“:18 anl n“:7 n“:10 n“:Z
|
|
6 Domain of main-seed 6
Result of
. node | 5 9 4 18 1 7 10 2
matching -
sim 4 4 4 4 35 35 35 35
at phase 1
G mr_ G m 2 tree-node number (1), (2), (3), (4), (5), (6)
1 r Y cost of matching Sequence of branching to
Mz matched nodes different tree-nodes.
1.2

Figure 6.11: Phase 1 of the 2-phase matching example. At each tree-node (state)
one node from the selected source-region G¢" is matched against one placeholder-

node from pattern-graph GV".

6.6. EXAMPLE OF THE MATCHING PROCESS 151

a placeholder-node with a candidate-node from the source-region, and the pairs of
matched nodes. The node-matching is shown as n,, = k, where n,, and n; are
the placeholder-node and the candidate-node, respectively.

Figure 6.12 shows the cost evaluation of a number of tree-nodes in Figure 6.11.

The costiorar and its applicable elements for phase 1 are as follow:

Phase 1: coStiotal = €OStparn—1 + cfff 4 coStyest

To clarify the notation used in the cost evaluation, we repeat below the total-

cost at tree-node number 36 which is defined further in this Section.

c'36(77,174=27 £=3.5,0,0, k=3) = cllpath —I_ c36in —I_ c36uest

c36(..) 18 the abbreviation of costyeiar at tree-node number 36. The parenthesis specify
the parameters for cost evaluation, including: placeholder-node ny 4, candidate-
node ng, similarity values between the candidate-node and already matched nodes

s, and number of already matched-nodes k. Cl1 g, 18 COStpath—1, C36,, 18 cfff, and
finally cs6,.., 1s under-estimation cost.

Based on the cost evaluation at different tree-nodes, the BQ-A* algorithm ex-
pands the tree-node with lowest total cost. In Figure 6.11, the search-tree expansion
is shown as the sequence of tree-nodes: 1, 2, 11, 4, 5, and 31. A thick line indicates
the tree-path that produces a sub-optimal match at phase 1, i.e., the matched-

region G7". In Figure 6.11, G7'" consists of nodes ng, ns, n4,ng which have the

highest number of edges and average similarity value compared with any other four

152 CHAPTER 6. GRAPH PATTERN MATCHING

=00+00+3x1.0=3.0
cz(n172=5,s=4,k=1) = clpath —I_ czin —I_ czuest
c=00+104+2x1.0=3.0
c4(n172=4,s=4,k=1) = clpath —I_ c4in —I_ c4uest

s =00+104+2x1.0=3.0
cS(n172=10,s=3.5,k=1) = clpath —I_ cgin —I_ cSuest
cs=00+14+2x1.0=34

011(77,173=47 s=4,4, k=2) = czpath —I_ cllin —I_ clluest
021(77,173:7, s=3.5,0, k=2) = c4path
1 =10+314+1.0=5.1
c31(n174:9, s=4,44, k=3) — llpaen T 315, T C31yeu

c36(n1 4=2, 2=3.5,0,0, k=3) = cllpath —I_ c36in —I_ c36uest

c36=20+344+0.0=5.4

cl("1,1=6)

—I_ chin —I_ chuest

Figure 6.12: The cost evaluation for phase 1 of the matching example.

nodes in the source-region G§'. At phase 1, the resulting matched-region G7'" is

the matched-graph G7".

6.6.2 Phase 2 of matching example

Figure 6.13 illustrates phase 2 of the matching example of Figure 6.10. The pattern-
graph G consists of the summation of: 1) matched-graph at phase 1 G7*; ii) pattern-
region G5 which is the expansion of the query node ¢ny; and iii) connector-edges
Ry 7P, The input-graph GJ consists of the summation of: i) matched-graph at
phase 1 GT*; ii) selected source-region G;’Ez) = (%"; and iiil) connector-edges R 72,

At phase 2, the matching algorithm incrementally matches “source-region G{"

. H. . . .
and its connector-edges R5' 72" against “pattern-region G% and its connector-

6.6. EXAMPLE OF THE MATCHING PROCESS 133

Pattern—graph Gg |
(expansionofq andq) Input—graph G,
Ve N\

m
Gl

(a) Matching G’;r and its connector-edges, against Gg(2)= Gsénd its connector—edges.

State 4: complete match, State 5: complete match,
node 6 imported twice. two different nodes imported.
"SOLUTION"
(b) Steps of matching process at phase 2. Domain of
main-seed 1
node | sim
® Main-seed of region e Un-matched edges 7|4
e Node -—— Source-graph edges ;0 2
Main-seed or seeds " n,,=6 13 | 4
of other modules L n,,=5 6 | 35
are not matched. — ny =9 11 | 3
n =4 16 | 3
h 15 | 3

Figure 6.13: Phase 2 of the 2-phase graph-matching example. In this phase the
cost of edge-deletion for both the edges that are inside the pattern-region and the
connector-edges are evaluated to assign a total cost for each tree-node.

154 CHAPTER 6. GRAPH PATTERN MATCHING

Rm Fpron
2 .

edges

The search-tree has three levels, each corresponding to matching a placeholder-
node ng1,n22, and ng 3. In Figure 6.13, the process of matching at different tree-
nodes (states) of the search-tree is shown. Each tree-node contains a fixed part
related to the matched-graph at phase 1 (G} shown as a black rectangle) and a
changing part related to matching the nodes between source-region and pattern-
region.

Also, in defining the AQL query in this example, the user assigns node ny from
source-region G¢ as a fixed node (a seed) to appear in the result of the matching
at phase 2 without searching. This causes at level 2 of the search-tree only node n,
be matched against the placeholder-node nj 3, hence, the search-tree is pruned to
exclude the matching of the remaining nodes of G7".

The costiorar and its applicable elements for phase 2 (below) are obtained from

the cost evaluation discussed earlier.

. _ ed ed el
Phase 2: COStiotal = COStpath—1 + Cipy + Cout T Cour T COSTyest

The cost evaluation at some of the tree-nodes are shown in Figure 6.14. In this
evaluation, we use the same abbreviations and cost,.s as in phase 1. However, the
sum of two costs ¢4, + ¢, are shown by a single cost, e.g., ¢y, in Figure 6.14;
and “t” (which is applicable for phases 2 and more) is defined as the number of
remaining edge-bundles including the current edge-bundle, has been added to the
parameter list for the cost evaluation.

At the end of the matching process, the BQ)-A* algorithm identifies the leaf node

6.7. SUMMARY 135

, =00+00+00+4+2x1.0=2.0
02(77,272=27 s=4, k=1, r=1) = clpath —I_ czin —I_ czout —I_ czuest
c=00+10+025+1.0=23

c4(n273=10, s=4,4, k=2, r=1) = czpath —I_ c4in —I_ c4out —I_ c4uest
e =1.25+1.54+0.375+0.0=3.1

05(77,273=137 s=4,4, k=2, r=1) = czpath —I_ c5in —I_ c5out —I_ c5uest
s =125+15+0.04+0.0=28

c7(n2 3=16, s=3,0, k=2, r=1) = czpath —I_ c7in —I_ c7out —I_ c7uest

cr=1.25432540.81+0.0=5.3

cl(n271 =1, r=2

Figure 6.14: The cost evaluation for phase 2 of the matching example.

5 with minimum graph edit cost 2.8 which generates the matched-region G5 with
three nodes and two connector-edges that import two nodes from matched-region
G7". The resulting matched-graph G%' conforms with the constraints defined in
the query-graph GY in Figure 6.10. Note that the matched-graph at tree-node 4
is not the solution since two connector-edges import the same node ng, therefore,

only one connector-edge is effective.

6.7 Summary

In this Chapter, the software architecture recovery has been presented as a graph
matching problem between an input-graph and a pattern-graph. The first graph
originates from the software system and the second graph originates from an ab-
stract pattern that is defined by an AQL query. The software system graph is
represented as a collection of source-regions, where each region node is annotated

with the similarity value to the source-region’s main-seed. Similarly, the abstract

156 CHAPTER 6. GRAPH PATTERN MATCHING

pattern in the AQL query is represented as a pattern-graph with placeholders as
module nodes and edge-bundles as import/export links between modules. The
matching process incrementally matches the placeholder-nodes with source-region
nodes and compares different alternatives of the partially-matched pattern-graphs
using the bounded-queue A* (BQ-A*) algorithm to recover a system partition in
a way that best matches with the AQL model. The matching process is based
on a cost evaluation function that evaluates the graph edit operations that sub-
optimally align the source-graph with the pattern-graph. The evaluated costs are
set so that they ensure the link constraints in the abstract pattern of the AQL
query are not violated while cohesive modules or subsystems are recovered. The
use of two heuristics, one for search-space reduction and the other for path-queue
size limitation of the A* algorithm make the exponential complexity of the A* more
tractable with the penalty of obtaining a sub-optimal result instead of an optimal

one.

Chapter 7

Overview of algorithms and

complexity

The design of tractable algorithms for the proposed graph pattern-matching ap-
proach is the most challenging part of this work. When the size of the graphs
are large, then the standard techniques to graph matching are not tractable since
the computational complexity becomes very high. The major source of the com-
putational complexity for an architectural recovery process is the employed search
algorithm. Hence, in the case of using an optimal search algorithm such as A* a
trade-off between the optimality of the result and the search effort is inevitable.
In order to tackle the inherent complexity of the A* algorithm, we utilize two
heuristics: 1) decomposing the whole search space into source-regions whose graph-
nodes are ranked using data mining association; and ii) reducing the storage space
and sorting time of the tree-paths queue using a bounded queue mechanism. The

resulting algorithm, i.e., Bounded-Queue A* (BQ)-A*) was discussed in Section 6.5.

157

158 CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY

This Chapter is organized as follows. First, the implementation view of the
graphs in Chapter 5 are defined. Second, an overview of the graph pattern-matching
algorithms are discussed. Finally, the computational complexity of the algorithms

and the employed trade-offs are briefly discussed.

7.1 Implementation view of graphs

In order to improve the processing performance, the graphs presented in Chapter
5 are implemented as lists. In the list representation of the graphs the notation
G (the caligraphic notation for graph G) is used. Figures 7.1(a) and (b) illustrate
the different lists that are used to implement a multi-phase search-tree in Figure

7.1(d). These lists are as follows:

e G: a pattern-region at phase ¢ is implemented by a list of matched node
pairs, such as:
67" = ([(ni3m2), (i), o (migos)]y)
where, in (n; ;,nx) n;; denotes a placeholder-node from pattern-region G,
and ny denotes a node from source-region G;’(”i) that matches with n; ;. The
matched edges among the matched nodes n,, ny, n. are a subset of the source-
graph edges R®, and t < p where ¢ is the size of the list and p = |N}"| is the
number of the placeholder-nodes in G?". The pattern-region G represents

an incomplete single-phase tree-path.

e G a matched-region is the same as a pattern-region G at phase u, where

all the placeholder-nodes have been matched, i.e, t = p = [N""| in the above

IMPLEMENTATION VIEW OF GRAPHS 159

list. The matched-region G'" represents a complete single-phase tree-path.

g:r (g;(i)): a selected source-region at phase ¢ is implemented by the domain
D" and the source-graph edges R®, such as:

gjr = ggs(i) - ([(navsa)v (nbvsb)v e (ndvsd)]v Rs)

where, s, = entAssoc(n;,n,). The source-region g;(l.) represents a search

domain for the nodes to be matched with the placeholders nodes G¥".

GP: a pattern-graph at phase i is implemented as a list of ¢ — 1 matched-

regions and a pattern-region at the end of the list, such as:

G = [(Gy", Ryw o) [we (L. i—1]] concat [(G, Ry ™))

where RY" <™ represents all the matched connector-edges between every

matched-region (shown by mr*) and the matched-region G*"; and R
represents all the connector-edges (i.e., both edge-bundles and matched connector-
edges) between every matched-region (shown by mr*) and the pattern-region
GP. A pattern-graph G? represents an incomplete multi-phase tree-path con-
sisting of zero or more complete tree-paths for the matched-regions and one
incomplete tree-path for the pattern-region. In Figure 7.1(d) every tree-path
from the root to the end of a tree-path in different phases (except the thick

path) is an incomplete multi-phase tree-path, whose list implementation is

shown in Figures 7.1(a).

G™: amatched-graph at phase 7 is a pattern-graph G where all the placeholder-
nodes in the pattern-region G have been matched. In other words, G"

represents a complete multi-phase tree-path. In Figure 7.1(d) the thick line

160 CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY
" e} oY
Previously e — Being
matched - ' matched
63

(a) List representation of a pattern—graph at phase 3

A list of search-trees: LQG P

Phase 1 Phase 2 Phase 3
p P P
QG; QG; QG;)
| — g — | g e — | A multl—phase
/' — P ——] P m——— .
S — P —— Pl ——] search-tree is
| — ; [— / C—T —mm -=— jmplemented as
— / [—— —]
i — ; f—T [e——] aqueue of
H — : [—— ——— pattern—graphs
! — ! C—ma ! [— |
i —_— i i .
[; A A
N { {
N sort N sort N sort
e o —---- - - - ——— -
L A== \:: e :
i .
m m m 1 Solution
Gy G, Ga [

Main-seed—— 1) niq
n ® Discarded costly node
i,2
@® Maintained node
ni3 njx Placeholder-node to be matched
— nig (2),(2),(3),(4),(5): Sequence of branching
— Nis

(c) BQ-A* search tree

Complete Incomplete Level
path path Root .0
- > (€8 O 1
Search for g
module M1 8 2
o
2 -3
N
Search for @
module M2 <
< N
o Ny
Search for 2
module M3 @
ey
o >

(2), (4): Search-trees that

Tree paths i
failed to produce result

Solution path
(2),(2),(3),(4),(5): Sequence of generating search-trees.
(2) —(1) and (4) —(3): Backtracking to previous phase.
(d) Multi-phase search-tree with backtracking

Figure 7.1: (a) A pattern-graph G! as a list of its graph elements. (b) A B@-A*
search-tree is implemented as a queue of pattern-graphs QGY. Maintaining a list of
multi-phase search-trees LQG? allows to implement backtracking at module-level.

7.2. OVERVIEW OF ALGORITHMS 161

from the root to a leaf node at phase 3 is a matched-graph or a recovered

architecture.

e (QG’: a multi-phase search-tree at phase ¢ in Figure 7.1(d) is implemented as
a queue of incomplete multi-phase tree-paths (i.e., partially-matched pattern-
graphs) in Figure 7.1(b), such as:

QG =16/ [z€l,2, ..]]

e LQGP: a list of multi-phase search-trees at different phases is implemented as
a list of queues of incomplete multi-phase tree-paths, as illustrated in Figure
7.1(b). LQG" allows to implement a backtracking mechanism at the module

level, where:

LQGr =[QG; | ke[l .. 1]

To simplify the description of the algorithms, in the remaining of this Section every
“search-tree” is a “multi-phase search-tree” and every “tree-path” is a “multi-phase

tree-path”.

7.2 Overview of algorithms

In this Section, an overview of the algorithms that collectively implement the pro-
posed graph pattern-matching algorithms is provided. The pseudocode of these
algorithms is presented in Appendix C. Also, Figure 7.2 illustrates a summary of
the algorithms and a flowchart that sketches the sequence of algorithm invocations.
The first two algorithms provide the top-level control mechanism to handle different

types of entities as well as backtracking between phases. The other six algorithms

162 CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY

implement a BQ-A* search algorithm for a sub-optimal graph-matching based on

graph-edit costs.

1. Algorithm main-analysis (AQLquery, S)
The main-analysis algorithm, as the top-level control mechanism, essentially
handles the semantic checking of the AQL query and controls the analysis as
discussed in Section 4.2.4. The operations of this algorithm are as follows:
i) invoking the AQL parser to parse the AQL query in the file AQLquery;
ii) controlling the analysis process for each single entity-type in the query
(i.e., Function-abs, Type-abs, and Variable-abs) and accumulating the result
of recovery for each entity-type; iii) resolving the shared entities in the result of
recovery; and iv) presenting the generated solution for the system architecture

through HTML pages and graphs to be visualized.

2. Algorithm control-iterative-recovery (G4, entType, S)
The second-level control mechanism performs an iterative matching-process
at different phases ¢ € [1..|N9|] for the recovery of modules that contain only
one entity-type (i.e., Function-abs / Type-abs / Variable-abs). This control
mechanism operates on the collection of the stored multi-phase search-trees in
the list LQGP that are generated by the BQ-A* search algorithm at different
phases. The multi-phase search-tree at phase 1, i.e, QGP, is in the form of a
queue of incomplete search-paths. The control mechanism is responsible for
supervising the matching process at module level, by: i) retrieving a multi-
phase search-tree either from the list LQGP (if it is already generated) or by

creating it from the AQL query information that exist in the query-graph G¢;

7.2. OVERVIEW OF ALGORITHMS 163

1 main-analysis (AQLquery, S) 2 | control-iterative-recovery (Gq, entType, S)

% Control the iterative generation of the architectural solution.
% All computations are based on current “entType" F or T or V.

% S represents the 'source—-graph’ and 'domains of nodes’

- "GQ" := Parse "AQL query" and check its semantics - LOOP for every module in "Gq" till "all fail’ or "all success’ DO
~ LOOP for every "entType™: F/T/V DO - "QGp" := retrieve search-tree from global list "LQGp"
- "Gm" := control-iterative-recovery using - IF no "QGp" for this phase, THEN _create one gsing
- "Gm" := resolve-shared-entities ("Gm") - Glr‘n : search QGp? for "Gm" using E,EQ_A* n
- "solution” := accumulate resuling "Gm" for F / T/ V ~ IF "Gm" found in the last phase THEN "all success
- IF "Gm" found in a middle phase THEN go to next phase
- "HTML pages & Graphs" := generate HTML pages - IF no "Gm" found THEN Backtrack to previous phase
and Rigi graphs from the "solution” - IF no "Gm" found in the first phase THEN ‘all fail’
- output "HTML pages & Graphs" - restore partially expanded "QGp" to global list "LQGp"
- STOP - RETURN "Gm"
4 BQ-A* (QGp, Gsr', i, S) 3 | create-and-initialize-tree (Gg, Gm, i, S)
- WHILE search-tree "QGp" is not empy OR - "Gp" := generate and initialize a tree—path using "Gq" and "Gm"
"Gm" not found DO - "QGp" := create a single—path search-tree for BQ—-A* using "Gp"
- "Gp" := remove multi-phase tree—path from head of "QGp" - "Gsr™ := get elligible region—-nodes of "Gsr" as search-space

- RETURN ("QGp", "Gsr™)

—"Gpr" := get single—phase tree—path from "Gp"
- IF "Gpr" is fully-matched THEN

- "Gm":="Gp" with "Gpr"in "Gp", and exit the loop 6 | inside—edge—deletion—cost (Gp, nd, i, S)
- ELSE
- "ph" := get the current placeholder-node from "Gpr" - FOR every matched "node" in the matching—pairs of "Gpr" Do
- FOR every region—-node "nd" in "Gsr DO % test edges between "node" and "nd"
- IF new tree—path with "nd" is not duplicate THEN - "cost" := cost for deleting 0/ 1/ 2 edges using similarity
% perform node / edge matching for "ph = nd" - "Cin" : = sum of "cost"
% evaluate graph—edit cost for match "ph = nd" — RETURN "Cin"
- "Gp" := restore "Gpr" in "Gp"
- ("Gp", "cost") := evaluate-node—-matching—cost . . .
Gp) 9 5] import-edge-matching-cost (Gp, nd, i, S)
- IF "cost" < "maxCost" THEN 5))
- "QGp" := insert new "Gp" into queue and sort it 7 | 8 | export-edge-matching-cost (Gp, nd, i, S)
- RETURN ("Gm", "QGp") - For every link-module "Gmr" in "Gp" that is linked to "Gpr" DO

- check edge-bundles between "Gpr" and "Gmr"
— get existing edges between "Gpr" and "Gmr" in source—graph

5 evaluate-node-matching—cost (Gp, nd, i, S) - IF existing edges violate Min or Max threshold THEN
e - "Cimp" / "Cexp" := maxCost % exit loop

:= insert matching—pair ("ph", "nd") into tree—path "Gp" ~ IF existing edges are within range THEN
= get inside—edge—deletion—cost using ... - generate matched edges and add to connector-edges

= get import-edge-matching—cost using - "Cimp" / "Cexp" := total cost of edge deletion / insertion
:= get export—-edge—-matching—cost using ... - perform consistency checking to delete the duplicate
- "cost" := get total of "Cin", "Cimp", "Cexp" un-linked nodes in other modules.

- RETURN ("Gp", "cost") - RETURN "Cimp"/ "Cexp"

Gg=G"1
Gp=G/
Gm=G"
Gsr:Ga’(i) 1 |-
Gpr:G'iJr

Gmr=G"

QGp =Gk
LQGp = LQG

y
N

Figure 7.2: A summary of algorithms for architectural recovery based on graph pat-
tern matching. The flow-chart indicates the sequence of invocation, where the first
two algorithms provide control mechanism and the remaining algorithms perform
the pattern matching operation.

164

CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY

ii) invoking the BQ-A* search algorithm to search and expand the search-tree

m.
[

QG? and produce a solution as the matched-graph G™; and iii) backtracking
to the previous phase i — 1 using the stored multi-phase search-tree QG |
in the list LQGP in order to find another solution for the module G, and
then return to the current phase i. Figure 7.1(d) illustrates the sequence
of generating the multi-phase search-trees and backtracking to the previous

phases.

Algorithm create-and-initialize-tree (G4,G™,1,5)

This algorithm generates a multi-phase search-tree QG? with a single-path
for phase ¢ to be explored by the B(Q)-A* search algorithm. The generated
search-tree contains a single incomplete-path G!' (i.e., a pattern-graph) where
the tree-nodes of its G have been initialized with matching pairs of nodes
for main-seeds and seeds (i.e., one or more placeholder-nodes from pattern-
region G;" in G have been matched). For example, in Figure 6.13 at phase 2,
the tree-nodes 1 and 2 have been generated in this algorithm. The algorithm
also prepares the search-space for the B()-A* search algorithm by excluding
specific nodes, such as: main-seeds, seeds, and already matched-and-linked
nodes, from the selected source-region g;(l.). The resulting search-space is

denoted as g;(;) .

Algorithm BQ-A* (QGF, G:pi), i, S)
The bounded-queue A* search algorithm (BQ-A*) iterates in a while loop until
either all the incomplete tree-paths G (partially-matched pattern-graphs) in

the search-tree QG! are exhausted (i.e., search failed), or a complete tree-

7.2. OVERVIEW OF ALGORITHMS 165

path G™ is generated (i.e., a sub-optimal solution has been found). The
generated matched-graph G™ is returned as the solution for phase ¢. In the
loop, the algorithm first removes the lowest-cost partially-matched pattern-
graph G? from the head of queue QG? and obtains the current pattern-region
G to work on it. If all the placeholder-nodes in G have already been
matched then a solution has been found and the search is over for this phase.
Otherwise, a number of new partially-matched pattern-graphs are generated
by matching a new placeholder-node “ph” from G with a remaining source-
region node "nd” from g;’“’. The new partially-matched G must not be
repeated, otherwise it is discarded. This duplication detection is achieved by
a History checking and updating mechanism. Then the graph edit cost for
each matching-pair (ph,nd) is evaluated and if the cost (i.e., costioar) is less
than maxCost then the corresponding pattern-graph G is inserted into the
queue QG? and the queue is sorted. Otherwise, the new G? is discarded as
a costly graph. mazCost occurs when the minimum (maximum) number of

matched connector-edges are not reached (are exceeded).

5. Algorithm evaluate-node-matching-cost (G, nq, 1, S)
This algorithm performs the actual matching of two nodes "ph” and "nd” in
pattern-region G as a part of GF. In doing so, three algorithms are invoked to
evaluate inside-edge deletion cost (¢;,) and connector-edge deletion/insertion

cost for imported and exported connector-edges (¢;mp and ceyp). The resulting

G? and the total cost are returned.

166

6. Algorithm inside-edge-deletion-cost (G¥

CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY

P ong, 1, S)

This algorithm applies the cost function for inside-edge deletion based on two
criteria: i) number of edges that exist between the candidate-node "nd” and
each individual node “node” already matched in G¥", and ii) similarity values

between the corresponding nodes, which are intended to produce a cohesive

module. This cost was discussed in detail in Section 6.4.1.

& 8. Algorithms import- / export-edge-matching-cost (GY, nq, i, S)
These two algorithms evaluate the cost of matching edge-bundles R %" (i.e.,

Rmr*e}pri
1

) that connect matched-graph G™ | to pattern-region G against the
connector-edges R that connect G, to source-region Gytiy- This match-
ing is done in a loop that checks the edge-bundles between pattern-region
and each of already recovered module G*". For each linked-module G, the

7 are obtained by examining

actual import/export connector-edges R;""™
the edges in source-graph G* and if possible they are matched with the edge-
bundles in R]""™“""". For each node-matching, three cases are checked: i)
and ii) if the number of matched connector-edges are less than minimum or
more than maximum then the cost is mazCost which causes the new pattern-
graph G7 (i.e., tree-path) to be discarded; and iii) the number of matched
connector-edges are within the specified range, where ¢,/ cerp 18 evaluated
according to the number of matched edges. For the import part, the cost
¢imp Of matching a pair of nodes (ph,ng) is evaluated based on the success

of node ng in augmenting the number of imported connector-edges to reach

to its maximum number. Different cases for deleting/inserting edges from

7.3. COMPLEXITY ANALYSIS OVERVIEW 167

imported edge-bundles or exported edge-bundles are presented in Figures 6.7

and 6.8, respectively.

Whenever the connector-edges are matched, a consistency checking operation
is performed to delete the unlinked-nodes in other recovered modules that are

the same as the nodes that are just linked (i.e., repeated nodes).

7.3 Complexity analysis overview

All the complexity analysis has been performed based on the worst case running
time. However, the average running time of the BQ-A* algorithm is very promising
and is close to its best case running time (as in the A* algorithm), provided that
a good underestimation cost function is used. This allows to analyze middle size
software systems in a tractable process.

mr*≺

In this section, first the implementation details of the connector-edges R;

(between the pattern-region G and the linked-modules G*"’s) and the matrix
representation of the source-graph G* are discussed. Second, an overview of the
computational complexity of the graph matching algorithms in section 7.2 (using
the pseudocode of the algorithms in Appendix C) is provided. Finally, a trade-off
between the optimality and performance of the proposed approach is discussed.

The complexity analysis starts from the algorithms for matching imported/exported
connector-edges and inside-edges. Then, the algorithms BQ)-A* search and iterative-

recovery are considered.

168 CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY

7.3.1 Implementation of connector-edges

The implementation of the connector-edges is crucial in reducing the complexity
of the matching process. The main ideas are as follows: i) preventing highly re-
peated operations on the source/sink nodes of the connector-edges by caching the
source/sink nodes; ii) simplifying the edge-bundle representation; and iii) accessing

the information about an edge in time O(1).

mru_}prilbdl mTquTilbdl

o R, (R,): a group of imported edge-bundles biy, by, ..., bi;,

(or exported edge-bundles bey, bey, ..., be.,) between the pattern-region Gr"
and the link-module G is simply represented as a positive integer 7, (or
similarly e,) that indicates the first ¢, (or e,) placeholder-nodes n; ;’s as the
sink (or source) nodes of the corresponding edge-bundles. Therefore, deleting
a whole edge-bundle or matching a part of edges in an edge-bundle simply
means decrementing the integer ¢, (or e,) by one; and redirecting an edge-
bundle means no change on this value. These operations are performed in

constant time O(1).

o RO (RMITOMILY: the group of “all connector-edges” to the pattern-

region G (or matched-region G™") is implemented as a tuple (R} 7P R P7)

to separate the collection as imported and exported connector-edges. In this
form, R?T*_}p” (or similarly R?”*Hm) is implemented as a list of tuples:

R =i Bu| wel.i=1] A ((inB)=NIL Vv

[
MV —Pr; |mch

(i.>0 A E,=R

7

{(nsres i) | nsre € NI A np € N 1))]

7.3.

COMPLEXITY ANALYSIS OVERVIEW 169

where, each list entry is either a NIL tuple or a tuple consisting of the num-
ber of edge-bundles and the list of matched connector-edges. Therefore, at
phase 7 accessing to the connector-edge information of each link-module G
is performed in constant time O(1) by accessing a list entry that is indexed
by the link-module’s id-number, e.g., u. This implementation conforms with

the domain model of the AQL presented in section 4.2.1.

M(G?) matriz of source-graph: the source-graph G* = (N*,R*) is a cen-
tral artifact in the proposed graph matching process. Fast testing the pres-
ence/absence of an edge between two graph-nodes ny and n;, and also access-
ing the similarity value between two nodes, i.e., ent Assoc(ng, n;) is crucial to
the performance characteristics of the matching process. For this reason, the

source-graph G* is implemented as a matrix M(G*):

M(Gs) == [TOU),’ | row, = [am | V Z,] € [1 . |Ns|] ® a;; = (6,’7]‘78,'7]‘) A
if (ni,nj) € R® then (e;;,s:;) = (1, entAssoc(n;,n;))

else (e j,5:;) = (0, entAssoc(ni, nj))] .

If the graph nodes n; and n; are of type File-abs then the similarity measure
entAssoc(n;,nj) is replaced by the groupAssoc(n;,n;) measure. The matrix
M(G?) allows to test the edge between two nodes and obtain the similarity
value between two nodes in constant time O(1) since elements are accessed
by index position. The matrix M(G?) is generated off-line and is kept in a

database to be used for the matching process. The space complexity of matrix

M(G?) is O(n?), where n = |N*|.

170 CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY

The complexity analysis is performed based on the following quantities:
n = |N*| number of nodes in the source-graph G*.
s = |N;(Z»)| number of nodes in the selected source-region G
p = |NP"| number of nodes in the pattern-region or any matched-region'.

g = |N9| number of modules to be recovered in the whole pattern-graph GP».

kE = number of operations with running time O(1) in an algorithm.

7.3.2 Computational complexity of algorithms

The complexity analysis is performed with respect to the overview of the algorithms

in Figure 7.2 and the pseudocode of the algorithms in Appendix C.

Complexity: import-/ export-edge matching cost: the operations of this al-
gorithm (corresponding to boxes 7 and 8 in Figure 7.2) are enclosed in a loop
that checks the imported/exported connector-edges from every link-module
G™ to the pattern region G, where the upper-bound of the loop iteration
is O(q). The costly operations belong to obtaining the source nodes of the
connector-edges in the link-module G" that are imported by the currently
matched node, but are not already imported by the previously matched nodes
at phase 1. Figure 7.3 highlights the sets of “not already imported” source-
nodes N/ in the link-module at matching phase :. The sets of nodes N

are used to generate new imported matched connector-edges between the link-

module and the pattern-region, that take the time O(sp), as discussed in the

Ip is approximately 10 for a subsystem of files, and approximately 20 for a module of simple
entities.

7.3. COMPLEXITY ANALYSIS OVERVIEW 171

footnote?. This complexity has been achieved because of the pre-processed
data as baskets of items in B(G?®) that store the source/sink nodes of the
connector-edges to every node in the source-graph G*. The set of sink-nodes
N2k that is required for generating the matched exported connector-edges,
can already been exported to (as illustrated in Figure 7.3(a)). However, com-

puting N2 has the same complexity as computing N2, i.e., time O(sp).

The implementation of the edge-bundles (as an integer number) simplifies the
cost evaluation for deletion/insertion of the edge-bundles as decrementing a
number from an integer in time O(1). Therefore, after computing the set of
source-nodes N (or sink-nodes N2"*) generating the matched connector-

mry&opri|

edges and adding them to the list of matched connector-edges R;

in both linked-module and pattern-region is performed in a loop with |N¢|

(or |N2"k|) iterations, and in time O(p).

After generating the imported/exported connector-edges for each module, a
consistency operation is performed on G to delete the other instances of the

linked nodes, ngye (0r ngink) and ny so that the linked nodes become unique in

.
INgETe = {ngpe | Nsre € N A dny € mech o (ngec,n;) € R® A
m"'u—>'p7'l|mch

V(ne,ny) € R, ® Ny £ Nyt

All the imported connector-edges for a node ny, i.e., (nsrc, ;) € R® have already been extracted
in the form of a basket nj of items ng..’s in B(G*) (data mining in section 3.2.2). Therefore,
in computing N;"¢ two loops are executed: in the first loop, every source-node ng,. should be
compared against all nodes N]*" to select those source-nodes that exist in the corresponding link-
module; in the second loop, every selected source-node should be compared against all source-
nodes of the matched connector-edges Rznru—wr, lmer to exclude the already imported source-nodes.
These operations take the time O(sp) + O(p?) = O(sp) since s > p.

172 CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY

Current
matched—node

2 ;
o<: Import
1

(a) Difference in importing and exporting nodes

matched node: [

matched edge: E——

Already imported
source node

o ' Nsmk
G u
u i Sink nodes in
-~ link-module

sc
u -
Source nodes

N

pr
in link—-module Gi
Current matched-node
Connector-edge .
mr
mr
G 1 G >

(b) Source / sink nodes in link—-module.

unMatched node: o
unMatched edge: = ----------- >

Figure 7.3: (a) Importing the same node more than once from the link-module G*"
is not correct (repeated import), whereas, exporting more than one node to the
same node in the link-module is correct. (b) The second node (current matched-
node) has been matched, and the set of (not previously imported) source-nodes
N#7e and the set of sink-nodes N#"* in the linked-module are highlighted.

recovery result. This operation takes the time O(gp) for each module G™".?

Therefore, the overall complexity of matching the imported (or exported)

connector-edges for all ¢ linked-modules, as a result of matching the current

node ny, can be simplified as: O((sp + p + ¢p) * ¢) = O(gsp) since p can be

neglected and g < s.

3Since the previously imported source-nodes can not be imported again, we can assume that
“on average” at each node-matching at most one source-node can be imported.

7.3. COMPLEXITY ANALYSIS OVERVIEW 173

Complexity: evaluate node-matching cost: the time complexity of this algo-
rithm (corresponding to box 5 in Figure 7.2) is the total complexity of three al-
gorithms: inside-edge-deletion-cost, import-edge-matching-cost, and export-
edge-matching-cost. In the first algorithm, in a loop with iteration O(p) all
the already matched nodes “node” in the pattern-region G are tested against
the current node “nd” for possible edges and obtaining the in-between simi-
larity values. The access to the information about each edge is performed in
O(1) by looking-up the source-graph matrix M(G?). Therefore, the total time
complexity of the evaluate node-matching cost, using the complexity analysis

of the above three algorithms is O(p + gsp + gsp) = O(gsp).

Complexity: BQ-A*: the BQ-A* algorithm (corresponding to box 4 in Figure 7.2)
generates the search-tree by expanding the tree-nodes. The search-tree has
“p” levels and each tree-node is expanded (with branching factor “s”) to yield

s” new tree-nodes, each corresponding to a new incomplete tree-path that

is put in the bounded-queue of tree-paths QG? with maximum size “b”.

In the worst case running time of an A* algorithm all tree-paths of the search-
tree are expanded. In this case, all the tree-nodes of the search-tree have been
visited and the total number of tree-paths in QG! are measured as follows: i)
at each level k the number of all the expanded tree-paths is O(s*); ii) at the
last level p the number of tree-paths is O(s?); iii) since the search-tree has
p levels then the total number of tree-paths (or equivalently the number of

tree-nodes to be visited) is O(ps?).

In the proposed B@Q-A* the number of tree-paths in the bounded-queue is

174 CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY

maintained at size b, therefore, a large number of tree-paths are pruned and
never get a chance to be expanded. This causes the number of expanded

tree-paths in the bounded-queue be a sub-exponential number.

According to BQ)-A* in Figure 7.2, for each expanded tree-path three major

operations are performed as follows:

o The BQ-A" algorithm checks for the repeated states in the search-tree
that have already been encountered and their costs of node-matching
have been evaluated. A state represents the set of matched-nodes in a
tree-path. The problem of repeated states is inherent to the informed
search algorithms. For efficiency considerations, all the repeated states
(tree-paths) are usually stored in a hash-table. Since the states are only
inserted in the hash-table and searched (no deletion), hence the use of a
proper hashing mechanism such as double hashing with open addressing

[29] greatly enhances the performance. In this analysis we assume that

the hash-table required time O(h) for duplicate checking.

e evaluating the cost of graph node-matching takes the time O(g¢sp), as

discussed earlier.

o The B(@-A* algorithm uses insertion sort to sort the tree-paths in the
queue QG? according to the cost of node-matching. Since before each

insertion the queue is already sorted, then the sorting requires time O(b).

Therefore, the total complexity of the BQ-A* algorithm is O(psP(h+g¢sp+D)).

Complexity: control-iterative recovery: The algorithm (corresponding to box

7.4. TRADE-OFF, OPTIMALITY VS. PERFORMANCE 175

2 in Figure 7.2) consists of a while loop that allows to go back and forth
between different phases of a multi-phase search-tree QG? that are stored in
the list LQGP. The two major operation of this algorithm are: i) invoking the
algorithm create-and-initialize-tree which generates a multi-phase search-tree
for phase ¢ with a single tree-path for matching the main-seeds and seeds of the
current module that take time O(gps); and ii) invoking the BQ-A* algorithm
for each phase ¢ to generate a matched-graph GI* which at worst case runs in
time O(ps?(h + gsp+b)). Therefore, the worst case running time complexity
of the proposed architecture recovery is O(q) x O(ps?(h+qsp+b)+ gps) which
is simplified as O(gpsP(h + gsp + b)).

In the best case performance, the B()-A* algorithm expands exactly one tree-
path on each level of the search-tree. Since there are “p” levels and each tree-path
can be expanded into maximally “s” successor tree-paths, the total number of tree-
paths in the search-tree will be limited to O(ps). Given a good underestimation

cost for the remaining graph node-matching in G improves the performance of the

B(@)-A* and saves the number of expanded states.

7.4 Trade-off, optimality vs. performance

The search techniques play an important role in exploring non-trivial relationships
in a software system as a part of a reverse engineering task. Because of the pro-
hibitive size of the search space in dealing with large systems, it is imperative to
aim for a trade-off between quality and search complexity. In this context, some

researchers use non-complete and non-optimal but fast search techniques such as

176 CHAPTER 7. OVERVIEW OF ALGORITHMS AND COMPLEXITY

hill climbing [72]. In this thesis, the focus is on using an optimal search technique
such as A* and limiting its exponential time and space complexity at worse case
using two heuristics. The resulting version of A* is tractable but is “sub-optimal”,
that is it does not always find the optimal solution. The proposed heuristics are as

follows:

e We use the “bounded-queue” heuristic (discussed in section 6.5) which limits
the number of tree-paths in the queue QG to a fix number “b”. While
generally this restriction does not necessarily exclude the optimal solution, it
reduces the exponential time and space complexity of maintaining and sorting
the queue of tree-paths to time and space complexity O(b), where “b” is the

maximum size of the bounded-queue.

e The whole search process is divided into a multi-phase search process, where
at each phase the modified A* search (BQ-A*) recovers an individual module
using a reduced search space known as a source-region. Therefore, the whole
search space, i.e., all nodes of the source-graph with the quantity n = |N?|
is reduced into s = |N;(i)| nodes. Considering the time complexity of the
proposed multi-phase search process using BQ-A*, i.e., O(gps?(h + ¢sp + b)),
the search space reduction will relax the complexity of the search algorithm
to O(gp({5)? (h+ q({5)p + b)), assuming that each source-region is a 10’th of

the whole search-space.

Chapter 8

Case studies

8.1 Objectives and categories of case-studies

This Chapter presents a set of experimentations related to the time complexity,
space complexity, and accuracy of the architecture recovery technique in this the-
sis. The proposed technique has been implemented in Alborz [87], a prototype
toolkit that aims to recover the architecture of medium size systems implemented
in a procedural language such as C. The limitations of the proposed technique have
been discussed in Section 1.8 of the thesis. Basili and Selby [18] have proposed
four paradigms for experimentation and empirical studies in software engineering
that are meant as guidelines for setting up and conducting experimentation. These
paradigms consist of: 1) improvement paradigm, ii) goal-question-metric paradigm,
iii) experimentation framework paradigm, and iv) classification paradigm. In this
respect, the case studies in this Chapter belong to the “experimentation framework

paradigm” that consists of four categories corresponding to the phases of the experi-

177

178 CHAPTER 8. CASE STUDIES

mentation process, as: “definition”, “planning”, “operation”, and “interpretation”.
The definitions of the group of experimentations in this Chapter are presented be-
low and the operations and interpretations of the experimentations are presented
in the corresponding Sections.

The experimentations in this Chapter have been organized to:

1. Demonstrate the generality of the proposed approach by experimenting with
systems in different domains such as expert systems, operating systems, dis-

tributed systems, and monolithic applications.

2. Evaluate the off-line time and space complexity of the architectural recovery

technique as a function of source-code size, in Section 8.4.

3. Evaluate the on-line time and space complexity of the architectural recovery

based on the size of the recovered components, in Sections 8.5.1 and 8.5.2.

4. Evaluate the usefulness of the approach in terms of stability, quality, and
accuracy of the proposed pattern-matching process, in Sections 8.5.3, 8.5.4,

and 8.5.5.

5. Demonstrate the user involvement and the incorporation of domain/system

knowledge in the architecture recovery process, in Section 8.6.

8.1.1 Experimentation suite

The experimentations are performed on six middle-size industrial systems, namely:

1) Xfig drawing editor [3], ii) Clips expert system builder [4], iii) Bash Unix shell

8.2. ALBORZ: SOFTWARE REVERSE-ENGINEERING TOOLKIT 179

1 2 3 4 5
Source || No. of | No. of No. of No. of
System KLOC || files | functions | Aggr. types | Global vars
Xfig 3.2.3 74 98 1662 37 1356
Clips 4.20 40 44 736 54 161
Apache 1.2.4 38 42 709 42 95
Bash 2.03 44 47 1017 45 365
Elm 2.5.6 35 62 420 19 244
GhostView 3.5.8 39 47 469 10 382

Table 8.1: Source-code statistics of the six case-study software systems. The pre-
sented data include: 1) size of the system in Kilo Lines Of Code (KLOC); 2)
number of system files; 3) to 5) numbers of system’s functions, aggregate datatype,
and global variables, as defined in the abstract domain model in Section 3.1.1.

[5]; iv) Apache http server [6]; v) Elm Unix mail system [§]; and vi) Ghostview

postscript file viewer and navigator [9]. Table 8.1 presents the source-code related

characteristics of the experimentation suite.

8.1.2 Experimentation hardware platform

The hardware platform for the experimentation consists of a Sun Ultra 10 with
440MHZ CPU, 256M memory, and 512M swap disk. The experimentations are

performed in a single-user load environment.

8.2 Alborz: software reverse-engineering toolkit

As a part of this work, the proposed pattern matching approach to architectural
recovery has been implemented in a toolkit (Alborz) [87]. The toolkit offers an

interactive environment for recovering and evaluating the architecture of a software

180 CHAPTER 8. CASE STUDIES

system in terms of high-cohesive components. In addition to the pattern matching
technique presented in this thesis, the Alborz toolkit provides: i) a partitioning clus-
tering as presented in [91], ii) an incremental optimization clustering as presented
in [89], and iii) an evaluation of the recovered software design views as presented
in [88]. The tool has been built using the Software Refinery environment (Refine)*
[85], Refine’s built-in parser to parse the software systems written in C, and the
built-in parser generator to design a parser for the Architecture Query Language
(AQL).

The pattern-matching environment provided by the Alborz tool is illustrated in
Figure 8.1 and consists of two phases, the off-line phase and the on-line phase that

are discussed below.

8.2.1 Off-line pre-process phase

In the pre-process phase, illustrated on the left part of Figure 8.1, the source-code
information is extracted from the software system. This information is processed
and stored in a database in order to be used for the on-line analysis phase. The
stored information is general enough to allow a programming language independent
software architecture analysis. Currently, the software system is either parsed into
an abstract syntax tree AST (using the Refine parser for C language) or parsed into
an entity-relationship format (namely RSF) using the Rigi parser [1]. Based on the
abstract domain model defined in Chapter 3 the parsed software system is repre-

sented as an attributed relational graph suitable for architectural analysis. Using

!The current version of Alborz consists of 30 KLOC written in the Refine’s language.

8.2. ALBORZ: SOFTWARE REVERSE-ENGINEERING TOOLKIT 181
SR S E A

=

§Off-line: 3 § On-line: 3

I pre-process § i< analysis §)

SSSSSSSSSESSSSSSS Modu'e-'nt?tfconnectlon
: pattern
i - System analysis

Software System . - Domain & Document AQL query

¢ - Decision making

C/Pascal/ :

Parsing
Pattern
generation
RSF
1| Software : Graph
* | as graph Architecture generation
Data : & Metrics
mining

‘ AEEEEmnE S, Pattern graph

Graph regions Graph matching

& Similarity matrix : (search & evaluation))

: User-assisted »

Automatic —

Expensive computation

Figure 8.1: The interactive environment for the proposed pattern-based software
architecture recovery.

data mining techniques the graph of the system is divided into graph regions (i.e.,
source-regions G%¥") which are then stored in a database. The off-line analysis can
be a very time consuming process depending on the number of the system entities
and the level of inter-relationship among them, however the off-line operations are

performed only once for each system.

182 CHAPTER 8. CASE STUDIES

8.2.2 On-line analysis

In the right part of Figure 8.1(a), using the Alborz tool system analysis [89, 91], do-
main knowledge, and/or system documents, the user develops a hypothesis about
the architecture of the system (i.e., conceptual architecture) that can be repre-
sented as a “module interconnection” pattern using the Architecture Query Lan-
guage (AQL) discussed in Chapter 5. The minimum/maximum sizes and types of
both the modules (subsystems) and their interconnections are considered as pa-
rameters to be decided by the user. An AQL query represents a pattern for a
part or the whole system architecture to be recovered. The AQL query is parsed to
generate a pattern-graph which is the expanded form of the AQL query. A pattern-
graph consists of smaller patterns one for each module that are connected through
groups of edges, where hard and soft constraints control the number of node/edge
insertions/deletions in the matching process.

The pattern-graph and the selected graph regions from the database are sup-
plied to the graph-matching engine that computes a sub-optimal match between
the two graphs. The graph-matching engine performs approximate matching by
minimizing an association-based cost function in an optimization search algorithm.
The result of matching is presented to the user through easily understood informa-
tion in HTML pages or graphs via graph visualization tools. The user investigates
the results, and if needed, he/she expands the pattern in the AQL query and/or ad-
justs the interaction constraints between the components and repeats the matching
process.

In the proposed pattern-based architectural recovery the pattern is incremen-

8.3. TRACTABILITY OF THE RECOVERY PROCESS 183

tally generated using: association relation among the system entities [88]; clustering
techniques [89]; domain related reference architectures; available system architec-
ture documents; or consultation with the system developers. The objective in any
of these methods is to extract small groups of system entities which represent the
core functionality of the modules (or subsystems) in the system architecture. These
groups are used to incrementally generate a constrained graph of modules and in-
terconnection links represented by an AQL query. The steps for pattern generation
are discussed in Section 8.7.1.

The Alborz toolkit also provides metrics for the evaluation of the software
system and its architecture based on inter/intra-component association [88] and

inter /intra-component connectivity [72].

8.3 Tractability of the recovery process

The proposed environment for architectural recovery in Figure 8.1 incorporates
several techniques in order to tackle the inherent complexity of the architectural
recovery process and to provide a tractable and interactive recovery environment.

These techniques are enumerated below:

1. Increasing minimum-support in data mining: in Section 8.4 the tech-
niques for dealing with expensive computations of extracting data mining
frequent itemsets are discussed. The frequent itemsets are the basis for gen-
erating smaller search spaces and association-based similarity metrics to pro-

duce cohesive components.

184

CHAPTER 8. CASE STUDIES

Sub-optimality to achieve performance: in Section 6.5 the algorithm
Bounded-path Queue A* (B()-A*) is defined to reduce the space complexity
of the search algorithm at the expense of obtaining possibly a sub-optimal

solution. The on-line experimentations in Section 8.5 discusses this issue.

Search space reduction: in Section 7.4 the effect of reducing the whole
search space into smaller search spaces on relaxing the complexity of the

search algorithm B@)-A* is discussed.

. Implementation considerations: in Section 7.3.1 the efficient implemen-

tations of the connector-edges and edge-bundles are discussed that are crucial

in reducing the complexity of the matching process.

Hierarchical recovery: the proposed recovery environment in Figure 8.1
allows to perform architectural recovery at two levels of granularity for the
system entities, as “file-level” and “function-level”, that contributes towards
limiting the complexity of the recovery of modules of simple entities within a

large software system.

8.3.1 Architectural design of Alborz toolkit

The architectural design of the Alborz tool consists of a number of components

with simple and well-defined interfaces and with a pipe and filter architectural style.

Each component (filter) processes its input data in the form of a repository file or a

memory data-structure (pipe) and stores the results in another file or data structure

for the next component. Figure 8.2 illustrates the architecture of the Alborz tool

8.3. TRACTABILITY OF THE RECOVERY PROCESS 185

(inside a dashed box) and its interaction with the surrounding environment. The
contents of the repositories and memory units as well as key interface commands
are shown in Figure 8.2.

Toolkit environment: the interactive environment of the Alborz tool is shown
outside the dashed box in Figure 8.2, and consists of: i) the repository Rl to store
the parsed software system as AST artifacts generated by the Refine’s parser, or
RSF tuples generated by the Rigi parser; ii) Intervista, a GUI tool in the Software
Refinery environment, for formulating the AQL query and launching the commands;
iii) the Gnu Emacs editor for developing and debugging the Alborz tool; iv) a Web
browser such as Netscape for viewing and navigating the source-code, the results
of analysis, and the tool generated metrics; and v) the Rigi tool for visualizing the
recovered architecture of the system where, the boxes are the analyzed components
and the arrows are either the resource interaction (i.e., import/export) between the

components or their association strengths.

Toolkit components

o Pre-process component: during the off-line analysis this component is respon-
sible for: i) extracting the system’s entity-relationship data from the AST
or RSF format of the parsed software system and storing it in the repos-
itory R1; ii) generating the system data such as frequent-itemsets, entity
domains, and similarity matrix for the system entities; and iii) storing the
entity-relationships and system data in the repository R2. The products of
this phase have been discussed in Chapter 3. During the on-line analysis this

component restores all the stored data in repository R2 into the memory M1

186

CHAPTER 8. CASE STUDIES

Source code Connector;)
‘ Component: :|
Parser: Memory: (:
Refine / Rigi
Reporistory: 8
Parsed code Comand: R
AST / RSF '
: - Pre—process C1
m component C3
Stored Alborz
system-data Reverse Engineering
from memory (M1) Tool

M1
System-data

H

¥ v

Incr. clustering
component

Partitioning
component

Views / Eval
component

Patt. matching
component

1t 1

1

1

Commands to
components

ca——]

Query analyzer

|
M2
Working data

HTML
source code

C5 Component Output - HTML gen. H Source
AQL query component E component code
P file
Result of
analysis
C:l : | Editor / Launcher: HTM browser Graph visualize
(:-5 - | Emacs/ Intervista Netscape Rigi
L [|
Memory Repository Command
M1 M2 R1 (nput) |C1l: Generate system data °
-~)]] and store them in R2 <
- Entities & relations | — Search tree of graphs - Refine AST objects .) T
. o C2: Annotate source files =
- Baskets of items - Recovered components | — Rigi RSF tuples and store them in R5 o
— Frequent itemsets - Association views
— Domains of entities | — Partitioned clusters R4 (output) |c3: Inititialize tool)
. . . . c
- Similarity matrix - Metrics - g_et_scsspi |f_'||TML pages |c4: Generate query T;
al res C5: Analyze query O

— Emacs Text files

Figure 8.2: The architectural design of the Alborz reverse-engineering tool.

8.3.

TRACTABILITY OF THE RECOVERY PROCESS 187

to be used by the on-line analysis.

Analysis components: the major tasks of the tool in the on-line analysis are
performed by four analysis components in Figure 8.2. The operations of the
pattern matching component are the subject of this thesis, however the oper-
ations of the other components, i.e.; incremental clustering [89], partitioning
clustering [91], and software design views and evaluation [88], are not pre-

sented in this thesis as these are independent applications.

Query analyzer component: this component performs two tasks: i) generates a
template AQL query including the tool-suggested main-seeds, default sizes for
abstract-components, and unconstrained sizes for abstract-connectors in order
to allow the user to tailor the sizes and types and proceed with the on-line
analysis; and ii) parses the query file using the AQL grammar and domain-
model; checks the semantics of the query information; and dispatches the

activation commands to an appropriate component according to the directives

in the header of AQL query.

Output component: generates both the HTML pages and the graph represen-

tation for the recovered architecture, design views, and the computed metrics.

HTML generator component: produces HT'ML source-code by annotating the

system’s source-code files.

188 CHAPTER 8. CASE STUDIES
1 2 3 4 5 6 7 8
source # # AST in stored stored | stored Stored
System code | nodes | edges || disk/mem. | node/edge | FQI | Domains | Matriz
(KLOC) (MB) (KB) (KB) (KB) (KB)
Xfig 74 3055 | 16387 || 54 / 232 90 / 129 353 4800 5500
Clips 40 951 | 3584 9.1/30 25/ 28 61 478 556
Apache 38 846 2176 14.5 / 47 24 /19 34 155 183
Bash 44 1427 | 4562 20.5 /71 45 / 37 71 358 421
Elm 35 683 2766 11.2 / 37 19 /21 120 383 441
GV 39 861 1970 || 36.5 /146 | 26/ 17 21 80 102
Table 8.2: Off-line space utilization statistics of the six experimented software
systems.

8.4 Off-line experimentations

In this Section, the off-line phase experimentations are presented. The groups of
frequent itemsets, entity domains, and the similarity matrix constitute the major
input data for the pattern-matching process. These data are generated and stored
once and are used several times.

8.4.1 Off-line space complexity

In the off-line analysis, the main effort focuses on generating frequent itemsets that
include all the relations use-F, use-T, use-V having the lowest possible minimum-
support value, i.e, 2. Unfortunately, the number of intermediate frequent itemsets
is very sensitive to the chosen minimum-support value and for small minimum-
support values the number of frequent itemsets increases very rapidly hence they
require a large swap disk and execution time.

In Table 8.2 the required space for the six case study systems at the “function-

8.4. OFF-LINE EXPERIMENTATIONS 189

level” are shown. These measures pertain to major system data that are contained
in memory M1 and repository R2 in Figure 8.2. Columns 2 and 3 show the size of
entities and relationships that constitute the source-graph G* = (N*, R*). The en-
tities (nodes) are of different types Function-abs, Type-abs, and Variable-abs whose
details are shown in Table 8.1; and the relations (edges) are of different types use-F,
use-T, and wuse-V. The last five columns present the disk or memory space require-
ments for storing the different system data to be used for on-line analysis. Column
4 presents both the memory and disk space utilization of the system’s abstract syn-
tax tree (AST) that is generated by the Refine’s parser as they are related to the
source-code size. Column 5 presents the required disk space for storing the system
entities and relationships (quantities are in columns 2 and 3) that are extracted
from the corresponding AST.

By storing the extracted entity-relationships on disk a large amount of memory
space is saved during the on-line analysis. On average the space reduction ratio

obtained by storing/restoring entity-relationships on disk as opposed to uploading

AST disk space

entity—relation disk space

or computing the AST is = 303. Therefore, it is necessary to
compute and store the entity relationships in the pre-process phase. Moreover, the

size of AST in memory is very large and the size increase ratio from file to memory

is Aig}nzzzryspﬁ:w = 3.86. The large size of AST in memory (e.g., 232 MBytes for
Xfig) is one of the major obstacles in analyzing large systems at once. Columns 6
to 8 present the sizes of the stored frequent-itemsets, entity domains, and similarly

matrix on disk, respectively.

Figure 8.3(a) illustrates the ratio between the total number of relations of types

190

1) System relations
2) Freg-1-itemsets-up
K 3) Freg-2-itemsets-up

a1

IN

w
L

N

[
L

of relations / #of nodes

o
\

Elm | Clips | Bash |Apache | GV

of
entities 683 951 | 1427 | 846 861

f
oo | 2766 | 3584 | 4562| 2176 | 1970

Systems before data mining process

CY

CHAPTER 8. CASE STUDIES

No. of frequent-itemsets
(associated groups)

A (Minimum support for all systems is 3)
1600 4 : : S :
1400 1
Bash
1200 1
1000 1

800

600 -

400

No. of nodes
> - in source-graph
o e ; ; ; ; ; ; T —

0 150 300 450 600 750 900 1050 1200 1350 1500

200

(b)
No. of frequent-itemsets
(associated groups)
i (Minimum support for all systems is 3)
1600 S :

1400 -
1200 A
1000 -
800 -
600 -

400

No. of edges
in source-graph

200

—

T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

©

Figure 8.3: (a) The relation-to-node ratio: 1) in the case studies before data mining;
2) in the generated frequent-1-itemsets and higher; and 3) in the frequent-2-itemsets
and higher. The ratio increases in each subsequent frequent-itemsets. (b) and
(¢) The number of generated frequent-itemsets versus the number of nodes (or

relations) in the studied software systems. Systems with higher relation-to-node
ratio in part (a) generate more associated groups with a given number of nodes.

8.4. OFF-LINE EXPERIMENTATIONS 191

use-F, use-T, use-V to the total number of nodes of types Function-abs, Type-abs,

Variable-abs in each studied software system. This ratio is an indication of the

overall data/control-flow complexity of a system. In the group of bars labeled

#relations —4

“1) system relations” the highest ratio belongs to Elm system with the Tnodes

and the lowest belongs to Ghostview with ratio 2. The application of Apriori
algorithm generates the frequent-itemsets of entities from frequent-1-itemsets to
frequent-k-itemsets where k is the maximum size of the extracted itemsets. As it
is seen in Figure 8.3(a):

ratio for frequent-2-itemsets > ratio for frequent-1-itemsets > ratio for original system

However, the number of associated groups decrease for a higher itemset size.
Since the associated groups in frequent-1-itemsets have only one shared entity in
common, it makes sense to consider frequent-1-itemsets as noise and delete them,
hence consider the associated groups in frequent-2-itemsets and up (i.e., two, three,
etc. entities in common). This causes to compute the similarity between system
files based on only large associated groups of entities, hence recovering more related
components.

Figure 8.3(b) illustrates a comparison of the tested systems in terms of the
number of generated associated groups versus the number of entities in the systems,
all having the relations use-F, use-T, use-V and minimum-support 3. The following
observations can be made from the curve of each system in Figure 8.3(b): i) the rate
of generating associated groups is increasing with respect to the size of the entities,
where this increase is caused by forming new associated groups whose entities are

partly in the newly added entities and partly in the previous entities; ii) systems

192 CHAPTER 8. CASE STUDIES

with higher relation-to-node ratio in Figure 8.3(a) generate more associated groups
with a given number of nodes, e.g., Elm has higher relation-to-node ratio than Clips
and the curve of Elm is above of the curve of Clips in Figure 8.3(b); and iii) the
number of the generated groups are kept within a tractable size by this increase.

Figure 8.3(¢) provides complementary information to the above discussion, where
the number of generated associated groups versus the total number of relations use-
F, use-T, use-V and minimum-support 3, are shown. An interesting observation in
this case is that almost all the curves (except for the Elm system) mostly overlap
as shown in Figure 8.3(c). The comparison of the Figures 8.3(b) and (c) suggests
that: i) the number of generated associated groups is almost proportional to the
number of a system’s relations and not the number of entities; and ii) the number
of edges in a system is a good indication of the number of frequent-itemsets in a
particular minimum support.

Figures 8.4(a) and (b) illustrate the application of the Apriori algorithm by
considering the number of the generated intermediate frequent-itemsets versus the
size of itemsets, for different systems. The data mining Apriori algorithm [12] is
an iterative process, where the frequent k-itemsets are obtained by k passes over
the database of baskets and items. In the first pass, the algorithm only counts the
occurrence of each item in all baskets to determine the frequent 1-itemsets. In each
subsequent pass, e.g., pass 1, the frequent i-itemsets are computed from the frequent
'i-1’-itemsets obtained in the previous pass. In Figure 8.4(a) all the intermediate
frequent-itemsets are shown. In the beginning the number of generated frequent-

itemsets increases rapidly by the size of the generated itemsets. As Figure 8.4(a)

8.4. OFF-LINE EXPERIMENTATIONS 193

No. of generated
Frequent itemsets

28000
26000 713l 2[3l3l3
24000 Min-support
22000
20000
18000
16000
14000
12000
10000
8000
6000
4000 Itemset
2000 size
0 m

No. of "unique" @
Frequent itemsets

400 - mm e e e e e 7131 2131313

300 F--------f---
200
100
80
60
40 Itemset
20 size
0

”””””””””””””””””””””””””””””” Min-support

Time of generating
Frequent itemsets

min-support = 7 Xfig
””” 40 Hours
min-support = 2 Apache
777 @@= - — @ ——-— @ —--—@& 20 Hours
min-support = 3 i
,,, pROMt=3 CPS oo
_ Em Ghostview
X 3 .- 8- ®------- 1 Hour
min-support = 3
** 1 Minute
Iltemset
t t U t t t > size
7 8 11 12 13 14 15 16

©
Figure 8.4: Quantity and time characteristics for generating frequent itemsets ver-
sus size of itemsets for different systems. (a) All the generated intermediate frequent
itemsets are considered. (b) The unique frequent itemsets extracted from (a) are
shown. (c¢) Time of generating frequent itemsets in (a).

194 CHAPTER 8. CASE STUDIES

shows, the number of generating frequent-itemsets highly increases for the itemset
sizes 4 to 8. However, after passing the maximum size that occurs around itemset
size 7 and 8 the numbers decrease with almost the same speed that they increased.
However the number of final frequent-itemsets is small and in all studied systems
it 1s less than 5.

Figure 8.4(b) illustrates the number of frequent-itemsets at each itemset size,
where no associated group is a subset of any other associated-group. In other words
these associated-groups are “unique”. The unique associated-groups are used to
compute the entity association “entAssoc” similarity metric defined in Section 3.3,
and consequently generate the group of entity-domains and similarity matrix for
cost evaluation in the pattern-matching process.

As opposed to the highly-increasing number of the intermediate frequent-itemsets
in Figure 8.4(a), the number of the unique frequent-itemsets in Figure 8.4(b) are
monotically decreasing from frequent-2-itemsets. As it will be discussed later,
the number of intermediate frequent-itemsets are very sensitive to the value of
minimum-support which allows the user to control the space and time complexity

of the pre-process phase.

8.4.2 Off-line time complexity

The experimentation in Figure 8.5 illustrates the time of generating the frequent-
itemsets versus the minimum support value for the studied systems. The itemset
size of the final frequent-itemsets is shown at the top of each bar.

This experimentation signifies the process of obtaining a feasible minimum-

8.4. OFF-LINE EXPERIMENTATIONS 195

Time for generating S

@)
Frequent itemsets o %é\@ N Xfig System
A (}\Q ?Q & _\;_\\0) only variables as items
49 Hours
I T e 16

50 Hrs ~
45 Hrs 4

.. Not generated
after +50 hours

-=-- 40 Hours

30 Hrs]
25Hrs

--- 20 Hours

[
N
L
[

Il

L

--- 10 Hours

3 Hrs
2 Hrs

50 Min

10 Min

-~ - [---- 1 Minute
50 Sec

10 Sec Minimum
- suppor t

Figure 8.5: Time of generating frequent itemsets versus minimum support value for
the studied systems. Except for one system the number of frequent itemsets with
minimum support 2 explodes and after 50 hours no result is obtained.

support value to extract the frequent-itemsets for a system. Except for the Apache
system that yields the set of frequent-itemsets with minimum support 2 in 20
hours, the other systems failed to produce any result after 50 hours and more.
Therefore, the user would increase the minimum-support value to 3 and run the
Apriori algorithm again. With this value, four other systems except the Xfig system
produce frequent-itemsets that are stored in the repositories for further analysis. In
order to obtain a result for Xfig system, the user may increase the minimum-support
value to 4 and higher until the Xfig system yields the frequent-itemsets at minimum-
support 7 in 49 hours. At it is seen in Figure 8.5 the generation time for the

frequent-itemsets decreases very fast with the increase of minimum-support value.

196 CHAPTER 8. CASE STUDIES
1 2 3 4
source || parsing Frequent itemsets Similarity
System code time | Min-sup quantity time Matrix
(KLOC) || (Min) | [Maz-items] (Hr : Min) (Sec)
Xfig 74 45 7 [16] 3167 49 : 18 274
Clips 40 3 3 [16] 810 8: 53 11
Apache 38 8 2 [16] 678 20 : 32 12
Bash 44 5 3 [11] 1225 0:03 13
2 [max 4] 18926 0: 46
Elm 35 10 3 [13] 1525 1:42 28
GV 39 27 3 [15] 411 1:04 6

Table 8.3: Off-line time statistics of the six studied software systems.

Therefore, the minimum-support value can be considered as a control mechanism to
perform a tractable computation of the Apriori algorithm in generating the frequent
itemsets.

In Figure 8.4(c) the time of generating frequent-itemsets versus the itemset size
during the Apriori algorithm operation with an optimum minimum-support value
for each system (discussed above) is shown. The required time highly increases
for the itemset sizes between 5 to 9. This property suggests to run the Apriori
algorithm with a small minimum-support value, and stop the algorithm before the
itemset size 5 to obtain more association relations between entities. We will use
such a property later.

In Table 8.3 the time statistics of the generated frequent-itemsets for the selected
systems are presented. For the Xfig system, even though the minimum-support

threshold has been increased to 7 still the maximum size of the generated itemsets

1s 16 that means large associated groups have been extracted. The combination

8.5. ON-LINE EXPERIMENTATIONS 197

of the maximum-itemset size and the number of extracted associated group, (i.e.,
3167 for Xfig), is a criterion for the user to assess the quality of the generated
associated groups. Ideally, we would like to generate the frequent itemsets with
minimum-support 2 to take into account all the associated groups. However, the
explosive increase in the number of associated groups prevents such a computa-
tion. In such cases, still it is possible to obtain enough relations among the system
entities by multiple application of the Apriori algorithm with different minimum-
support values, as in case of the Bash system in Table 8.3. For the Bash system,
the minimum-support 3 produces 1225 associated groups with maximum itemset
size 11. However to increase the number of associated groups of entities, the al-
gorithm is applied again with minimum-support 2, but it is forced to terminate
after generating frequent-4-itemsets, that is before the number of associated groups
becomes very high. In this case, the resulting associated groups produce entity as-
sociation similarity measures among those entities that did not exist in the previous
run of the algorithm with minimum-support 3. Since the algorithm is prematurely
stopped, the recovered association values are probably lower than the actually val-
ues. In the case of the Clips system, the minimum-support is 3 which produces
810 frequent itemsets with different itemset sizes and max-itemset size of 16. This

group of frequent-itemsets are enough to produce an accurate analysis result.

8.5 On-line experimentations

In this Section, the different aspects of the pattern matching search engine such

as time/space complexity, stability, accuracy, and quality are presented through a

198 CHAPTER 8. CASE STUDIES

series of experimentations.

8.5.1 On-line time complexity

Figure 8.6(a) illustrates the time complexity of the pattern-matching algorithm
versus the number of placeholder-nodes at function-level and for one module. In
this case, the estimation of the remaining cost for matching a system entity with a
placeholder is used as parameter. The under-estimate cost “cost,ey”? is based on
the assumption that all the remaining nodes to be matched from the current tree-
node down to a leaf tree-node have maximum similarity values to the main-seed.

However, to limit the complexity of the A* algorithm we use overestimate costs
and the bounded-queue heuristic at the expense of obtaining a sub-optimal solution.
An over-estimate cost is the cost of matching a node with a placeholder such that
the similarity of the node with the main-seed is less than the maximum similarity
and more than average similarity to the main-seed. The computation time for each
curve is shown beside each cost.

Moreover, as discussed in Section 7.4 the following trade-offs have already been
made which reduce the complexity of the A* search to produce sub-optimal results:
i) decomposition of the search-space into domains; and ii) using bounded path-
queue for incomplete tree-paths. Without such heuristic trade-offs the search time
and space complexity would be intractable even for a small system.

In Figure 8.6(a), for either the under-estimate cost or an over-estimate cost the

B(@Q-A* search first collects all the entities of an “associated group” with maximum

2In this experimentation the similarity metrics are normalized, hence under-estimate cost is

0.25.

8.5. ON-LINE EXPERIMENTATIONS

Number of
visited tree-nodes

T il
8000 -+
2000
1000

o B Nwsa
OOOOOO
o O O o o

N oW oA
o O O

[N
o

PN WSO N 0O

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
T T T T T T T

Time

Under-estim?te cost (H: M: 9)

025 (6:13:43)
0.30 (5:59:34)

0.35 (0:04:08)

0.41 (0:00:09)
0.46 (0:00:08)
and up

i

Cost estimation
for one node-matching

Number of
placeholders

P

T T T T T T T T T T T T

|
t
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of stored (a) Time complexity

\

paths in path-queue Under-estimate cost

A

100000 f === == = = - - m s s m e m s ——— oo — oo ————g
90000 +
80000
70000
60000
50000 — =~ """ - - - - T T T oo s oo oo - oo - -
40000 T
30000 +
20000 +
10000 T - - - - -~ - - """ - - - - - - - - - - - - - - -
5000 —
4000 +
3000 +
2000 +
B0 e e e/ e it
900 +
800 +
700 +
600 +
500 +
400

300 \Noundeﬂ ath-queue min/max sizes y
200 e S 3

100 +

y 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
¢ T T T T T T

0.25

0.30

0.35

!

Cost estimation
for one node-matching

0.41
0.46 and up

Number of
placeholders

T T T T T T T T T T T

PR
+—t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) Space complexity

199

Figure 8.6: (a) Time complexity of the matching algorithm in term of the visited
tree-nodes. (b) Space complexity of matching algorithm in term of the stored paths

in the search path-queue.

200 CHAPTER 8. CASE STUDIES

in-between similarity values (entAssoc). This case was shown in detail in the exam-
ple of Figure 6.11 in page 150, where four entities with the in-between entAssoc = 4
were selected. After selecting all the entities in the associated-group with maximum
entAssoc the search proceeds with selecting further entities from other associated

groups which produce a minimum total cost (costiotar = €08tpath + COStyest).

8.5.2 On-line space complexity

Figure 8.6(b) illustrates the space complexity of the pattern-matching algorithm in
terms of the number of stored paths in the path-queue QG? versus the number of
placeholders at function-level and for one module.

In this experimentation, the same parameters as in the time complexity exper-
imentation are used to obtain space utilization results. In the case of the under-
estimate cost, the size of the path-queue is rapidly increasing. The original A*
search keeps all the evaluated tree-paths in the path-queue, therefore the space ex-
plosion usually occurs long before the time explosion occurs. The trade-off between
optimality and performance discussed in Section 7.4 can save a lot in both space
and time performance of the searching process. At the bottom of Figure 8.6(b) a
shaded area highlights the restricted sizes for path-queue when the bounded-queue
heuristic, discussed in section 6.5, is used. In this case the number of stored paths
in the bounded path-queue oscillates between the minimum and maximum sizes of

the bounded path-queue as illustrated in Figure 6.9(c) in page 143.

8.5. ON-LINE EXPERIMENTATIONS 201

8.5.3 Stability of the recovery

In this Section the stability of the search engine with respect to the change of the
seeds in a module (or subsystem) is presented. The steps for stability checking at

function-level are as follows:

o A subsystem is selected using the file-level analysis of the software system.
This subsystem contains the related files that ensure their entities have high

degree of interaction.

e Using the main-seed selection algorithm provided by the Alborz tool select a
main-seed with large domain and generate a query with one module and a

maximum size e.g., 20.

e From the file that contains the main-seed select 19 functions (or less, if 19 is

not possible) and assign them to the module as the seeds of the query.

e In a series of 19 iterations do the following: i) delete the lowest similarity
seed from the module; and ii) recover the module with the remaining seeds.
At the last iteration all the seeds have been deleted and the recovery is based

on solely the main-seed.

The stability of the recovery process is high if deleting the seeds has less affect
on the result of the recovery. In other words, the recovery process is not distracted
by the noise seeds and recovers the members of the same group of entities once a
noise seed is deleted. Figures 8.7(a) to (c) illustrate the stability analysis of the

search engine using three systems Clips, Apache, and Bash, respectively. For the

202 CHAPTER 8. CASE STUDIES

Recovered Recovered
functions in module functions in module
\ 19!— Apache (Function: standalone_main)
18
17 Clips (Function: if_parse) 17+
16 16
15 15+
14 14+ http_main.c
13 13 7
12 12
11 114
10 file: expressn.c 10+

other files

scanner.c 7+
61

51

other files 4+

alloc.c

©
———t—t—t—t+—t—t+—+—+—+—+—+—+—++
©
+

No. of Seeds 24
in module 1+
15 " 9 7 s 3 10 7 15 13 um 9 7 5 3 10 o
. No. of Seeds
Recovered () Clips (b) Apache in module

functions in module

‘ Bash (Function: execute_command-internal)

3 execute_cmd.c
L2 L] L o - L 3 L]
L L 3 L] L2 L] LI Ll {3 L]

.
15)

e e e e e e e e i
[}
.
.

8 ¢ Other files

7 .

6 [

5 .

4 °

3 L3

2 . No. of Seeds

1 . in module
1‘8 ' lé ' 111 ' 1‘2 ' iO ‘ ‘8 ‘ ‘6 ‘ A ‘ 2‘ ‘ ‘D

(c) Bash

Figure 8.7: The stability of the searching algorithm.

Clips system, 15 seeds are selected from the file ezpressn.c and in a sequence of
15 recovery processes the seeds are deleted one-by-one. The first deleted seeds are
replaced by functions from the file scanner.c and also by functions from other files.
These newcomer functions constitute a stable group and most of them remain up
to the end of the recovery. After deleting 8 seeds, the whole module becomes stable
and each deleted seed is returned back to the module by the recovery process, up

to the time that all seeds are deleted and only the main-seed is remained. In the

8.5. ON-LINE EXPERIMENTATIONS 203

other two cases for Apache and Bash in Figures 8.7(b) and (c), the same pattern
as the case of Clips is repeated. However, for the Bash the pattern is more smooth
than Clips, and in the case of Apache the recovery of the http_main.c functions is

stable around 12 functions by an error margin of 2 functions.

8.5.4 Quality of the recovery

Figure 8.8 illustrates an experimentation to assess the modularity quality of the
recovery process on five software systems. For each system, the experimentation is
performed in a sequence of five recovery processes. In the first experimentation, a
query with one module is recovered that yields two subsystems (including the rest-
of-system). In the second experimentation, a query for two subsystems is recovered
that yields three subsystems, and so on. At each iteration the modularity quality
is measured according to a metric from the relevant literature, as defined below:
In this metric [72], the modularity quality is measured in terms of intra-/inter-
connectivity among the entities in a collection of subsystems that form an archi-
tecture for the software system. This metric is referred to as the connectivity

modularity-quality metric and is denoted as MQ)..,. This metric is defined below:

MQcon —

3 G
£ N2 E-k o< 2NN,

7,7=1 J

T =

where, k is the number of subsystems, e; (¢, ;) is the number of relations of types
use-F, use-T, use-V among the functions, datatypes, and variables in a recovered
subsystem S, (among two recovered subsystems S;, S;); and N; (NV;) is the number

of entities in the subsystem S, (5;). The first term evaluates the average intra-

204 CHAPTER 8. CASE STUDIES

MQ

con

0.0120
0.0110
0.0100 L)
0.0090
0.0080 | | | |
0.0070F
00060+ S

0.0050 - ,;_,__;_','i.._,..-,y,Ghostview
0.0080- oot AT e
R o
0.0010 . - o Number of
..... ! : 3 : . recovered subsystems
: : -
1 2 3 4 5 6

Figure 8.8: The modularity quality measure of five studied systems based on intra-
/inter-connectivity among the recovered subsystems.
connectivity among entities in a subsystem 5; and the second term evaluates the
average inter-connectivity among entities in every two subsystems 5; and S;.

In Figure 8.8 the modularity quality of all five systems are increasing as more
subsystems are recovered, which means the recovery process monotonically collects

files with high degree of interaction to form subsystems (or modules).

8.5.5 Accuracy of the recovery

In this Section, the accuracy of the pattern matching process is demonstrated us-
ing the information retrieval Precision and Recall metrics [46]. These metrics are

illustrated in Figure 8.9(a). In Figure 8.9(b) each node corresponds to the Pre-

8.6. USER-ASSISTANCE FEATURES 205

Precision
Software System 100
All files 90
Recovered 80 () '
A subsystem [] []
_ 70 P Average
< o % accuracy %
B \ Documented 60
subsystem
50 ° Precision = 68.5%
‘ Recall = 66.3%
Recovered-documented 40 (4
subsystem
30
Precision = ANB 20
A
Recall = ﬂ 10
N B Recall

10 20 30 40 50 60 70 80 90 100
@ (b)

Figure 8.9: (a) Precision and Recall metrics are used as the measure of accuracy.
(b) The accuracy of the pattern matching process and the average accuracy.

cision and Recall measure of a recovered subsystem in two case studies that will
be discussed in Sections 8.7.2 and 8.7.3. The average accuracy, “Precision 68.5%”
and “Recall 66.3%”, is obtained by averaging the values of Precision and Recall
for the nodes. The average accuracy represents the conformance of the recovered
architecture with the documented subsystem structure of the two case studies and

can be considered as a very promising accuracy.

8.6 User-assistance features

The proposed environment provides statistics and metrics at different stages of the
recovery process to familiarize the engineer with the software system, and to assist

in the recovery process. In this Section, the graph visualization and main-seed

206 CHAPTER 8. CASE STUDIES

General — 1 Root <<ACTIVE-:>

(a) Import / export of entities among 8 modules (b) Association among modules in part (a)

Figure 8.10: (a) Module-interconnection representation. (b) Module association
representation.

selection features of the environment are discussed.

8.6.1 Graph visualization

The proposed environment provides means for visualizing the interaction among
the software system files as well as the recovered modules/subsystems using i)
import/export relation between entities, and ii) the association relation. Figures
8.10(a) illustrates the import/export interaction among 8 recovered modules of a
software system, however, the import/export interaction is usually complex and
difficult to interpret.

An alternative form of interaction visualization is through association relation
among the components (i.e., files, modules, or subsystems). The association among
two files is extracted from the groupAssoc similarity measure between two files (de-
fined in Section 3.4), where the denominator of the formula for association is the
size of one file instead of the total sizes of two files. As in the case of entity im-

port/export, the number of associations among the files is also high. However, the

8.6. USER-ASSISTANCE FEATURES 207

Number of Links Number of Links

between files between files Strong .
Medium I

»80 Weak Loose [

944 Weak [

707 L4 L5 L6
60 (c) Strength of association

50

j 200
40

301
1 100 Loose
204 64
4 Medium Strong
104 24 22
E Association value Distribution range

1 10 20 30 40 50 60 70 80 90 100 110 120 140 1 22 34 47 127

(a) Distribution (b) Classification

Figure 8.11: (a) Distribution and (b) Classification of the file association values in
the Clips system. (c) Strength of association between file L2 and other files in a
system of six files.

association values are distributed over a large range of values, hence they can be
classified into several ranges, namely “strengths of association.” This classification
of values allows to simplify the visualization of the association graph of the system
components (i.e., files, modules, or subsystems). A detailed discussion on generat-
ing the “component association graph” has been presented in [91]. Figures 8.11(a)
and (b) sketch a typical distribution of the association values among the files in the
Clips system and their classification into four ranges: strong, medium, loose, and
weak. The group of edges in each class have been color-coded to be visualized or
be selectively filtered out. The obtained graph of components and association links
can be used to visualize and simplify the association structure of the system files.
Figure 8.10(Db) illustrates an example of an association graph with 8 modules which

has been simplified to show only strong and medium association links.

208 CHAPTER 8. CASE STUDIES

Software system General - | foot <<ACTIVE->

Software system
Domain

/_,- = .
./ \‘\
K N,
!\. ~ f Main-seed
T
A 7 y
N P f
. i i
o :
i i
\,]
i

Shared-node
Main-seed

(a) Domain analysis (b) Graph analysis (c) Graph visualization

Figure 8.12: Three methods provided by the proposed environment to generate
AQL query main-seeds.

8.6.2 Main-seed selection

The challenging step in defining an architectural pattern corresponds to main-
seed selection for the abstract components in the AQL query. The engineer may
decide to use one or more of the following methods: i) utilize knowledge about
the related domain such as a reference architecture with well-defined components,
design documentation, informal information embedded in the source-code, naming
conventions, or directory structures; and ii) consider system analysis and metrics
such as association structure of the system files and different methods of clustering.
The adopted method(s) should be able to suggest important and rather distinct
main-seeds as the cores of the abstract module/subsystems in the AQL query. The
proposed environment provides three methods for main-seed selection as illustrated
in Figure 8.12. The first two methods are automatic and the third method is

manual, as discussed bellow.

Domain analysis (Figure 8.12(a)): uses a ranking mechanism to select the main-

seeds whose domains are large, sufficiently distinct, and the entities in the

8.7. ARCHITECTURAL RECOVERY CASE STUDIES 209

core part of the domains have high level of association to the main-seed. This

method is discussed in detail in [89].

Graph analysis (Figure 8.12(b)): uses the association graph of system entities
and a ranking mechanism selects the main-seeds whose total association to
other nodes is maximum. Where, the association value of a shared node
decreases if it was already visited for selecting a previous main-seed. This

technique is discussed in detail in [91].

Graph visualization (Figure 8.12(c)): uses the tool provided simplified associa-
tion graph of the system files (as discussed earlier in this Section), where only
the strong and medium association links are shown. The user can visualize
the graph using a visualization tool such as Rigi [1] in order to drag the nodes

around the screen and select the highly associated files as main-seeds.

The experimentations with the six software systems show a high degree of con-

formance among the obtained main-seeds by the above three methods.

8.7 Architectural recovery case studies

In this Section, two software systems Xfig and Clips are analyzed and the architec-
ture of each system is recovered in terms of the collection of files using the steps

for incremental pattern generation and architectural recovery as discussed below.

210 CHAPTER 8. CASE STUDIES

8.7.1 Incremental pattern generation and recovery

The architectural pattern defined in the AQL query is generated through an incre-

mental and evolving pattern, as described in the following steps:

Step 1: Decide on a method of main-seeds selection for the AQL abstract mod-
ules/subsystems as discussed in Section 8.6.2. Initialize an AQL query with

zero modules /subsystems.

Step 2: Select the main-seed for the next module/subsystem to create, and assign
the number of placeholders, e.g., 10 for subsystem recovery and 20 for module
recovery. Recover the new module/subsystem where no links are defined for

the new module/subsystem.

Step 3: Investigate the quality of the new recovered module/subsystem and its
interaction with the already recovered modules/subsystems®. If the recov-
ery is satisfactory go to Step 5. Otherwise, define (or adjust) the mini-
mum /maximum link constraints between the new module/subsystem and one
or more previous modules/subsystems, considering: i) increasing the maxi-
mum range causes the matching process to allocate higher scores to the group
of entities that can augment the number of interactions to this maximum

range; and ii) the minimum range is used to restrict the number of interaction

to a minimum threshold, however it does not affect the scoring mechanism.

Step 4: Repeat the recovery process for the new module/subsystem with the con-

3The user’s knowledge about the functionality of the modules/subsystems is required in order
to impose meaningful constraints on the modules/subsystems interaction.

8.7. ARCHITECTURAL RECOVERY CASE STUDIES 211

strained links. If the process is very lengthy due to backtracking, then inter-
rupt the process and observe the tool-provided run-time information about

the critical constrained links. Go to Step 3.

Step 5: If the number of the recovered modules/subsystems is not sufficient ac-
cording to the user’s preferences go to Step 2. Otherwise stop the recovery

process and succeed.

If the number of remaining entities in the rest-of-system is high, an extra
step, namely “constrained distribution” can be performed. In this step a part
of the remaining entities in the rest-of-system are allocated to the recovered mod-
ules/subsystems based on the highest average closeness of each entity to one of the
recovered modules/subsystems, provided that this allocation does not violate the
link constraints. If a link constraint is violated the next highest module/subsystem
is tried until the allocation to any of them violates the link constraints, where the

entity is returned to the rest-of-system.

8.7.2 Architecture recovery of Xfig

The source-code statistics of the Xfig system were presented in Section 8.1.1. Ac-
cording to personal communication with the maintainer of the Xfig system [99], Xfig
lacks any documentation on its structure and only the user manual exists. However,
a consistent naming convention is used throughout the system files which can be
used as an aid for inferring its structure. The system naming conventions in Xfig
are as follows: d_x files relate to drawing shapes; e_x files relate to editing shapes;

u_x files are utilities for drawing or editing shapes; f_x files have file-related proce-

212 CHAPTER 8. CASE STUDIES

main-seeds No. of Placeholders
\ u_elastic Recovered files + Distributed files
u_drag e_edit
25Phs ! aqaq b v 20 Phs 23 + 14 files 17 + 6 files
\ 5154 L, 82) 598 funcs 668 funcs
’4) _ ,4 \ Pattefn
S S ' ' matching
i = S . S\
iy ' RS =
o S R S
ol 'S © =¥
= | g ng\/' =
P\? \‘ ', ~ f'l; L o~ ’:
4444 - - --d
' = . N 13 + 7 files 9+ 1files
13Phs ' S3 ’:' '\ S5 ’:' 10 Phs 327 funcs 54 funcs
e_scale f_readtif
(a) Architectural pattern using AQL query (b) Recovered architecture

Figure 8.13: (a) The architectural pattern of the Xfig system where the subsys-
tems S1 and S4 have been merged. (b) The recovered architecture where the link
constraints have been satisfied.

dures; and w_x files have X11 window calls in them to do all of the window-related
functions.

Figure 8.13(a) illustrates the generated architectural pattern of the Xfig sys-
tem with four abstract subsystems and corresponding link constraints. During the
incremental and iterative recovery process this pattern yields the recovered archi-
tecture in Figure 8.13(b) where the size constraints for both the subsystems and
links have been satisfied. The rationale for such a pattern is as follows. The initial
observation from the file association graph of the Xfig system indicates that the files
from editing, drawing, and utility subsystems are highly inter-related. This char-
acteristic can be observed from the Xfig file association graphs in Figure 8.15(a)
to (e) in page 217. Therefore, recovery of a well separated group of subsystems
for Xfig is almost impossible. In this case, a proper strategy is to put these three
subsystems into two subsystems with high-level of interaction, and separate them

from the other subsystems of Xfig. With this objective the following pattern is

8.7. ARCHITECTURAL RECOVERY CASE STUDIES 213

generated. The tool provides the main-seeds according to the discussion of Section

8.6.2.

o The subsystems S1 and S4 collect the files from the inter-related subsystems
editing, drawing, and utility subsystems. Therefore, during the iterative pro-
cess two subsystems S1 and S4 have been merged into subsystem S1-S4, and
the collection of domains for two main-seeds u_elastic and u_drag is used for

the recovery of S1-54.

o The subsystem S2 with main-seed e_edit recovers most of the windowing files,
hence, it is independent of S1-S4 and no link constraints are needed between

them.

o The subsystem S3 with main-seed e_scale also collects the files from utility
and editing subsystems, hence the interaction between S3 and S1-S4 has been
increased in both directions to encourage S3 to collect more files from the edit-
ing and utility subsystems to achieve our goal of generating two subsystems

for editing, drawing and utility files.

o In order to capture the “file manipulation” operations of the Xfig system into
a separate subsystem S5, the main-seed f readtif is selected. It turns out that
the windowing and file-manipulation files are recovered in both S2 and S5
which is not a good separation between these two subsystems. Therefore, the
interaction between these two subsystem is restricted to a minimum so that
while the related files can be grouped in the same subsystem, the interactions

are limited.

214 CHAPTER 8. CASE STUDIES

In general, the assigned constrained links among the subsystems must be limited to
important links and a complex pattern with cyclic links be avoided. The user can
also change the order of the subsystems so that the most constrained subsystems
be recovered first.

In Figured 8.14(a) the hypertext representation of the recovered subsystems
using the Netscape browser is illustrated. Each subsystem consists of three parts
“Imports”, “Exports”, and “Contains”, where the import/export parts are shown
as groups of entities, 1.e., resources. For example the second line of the “Exports”
part of subsystem S1-S4, i.e., “To: S3 7R2(100)”, means that subsystem S1-
S4 exports 100 functions to subsystem S3 which are the result of matching with
the constrained link “7R2(40..100)” in the AQL pattern. The user can also view
the individual imported/exported entities and browse their source-code. In this
experimentation, the resources are of type function, however the user can select any
combination of function, datatype, and variable as the imported/exported resource
types. In the “Contains” part, each hypertext line is allocated to one Xfig file. For

example, the information in the first line of subsystem 51-S4 is as follows:
1. (L-54) wu_elastic (f :52) (0.449) * *

indicating that the main-seed file “u_elastic” (symbol “**” means main-seed) with

file-id “L-54" has “52” functions and its average similarity value to the remaining
36 files of the subsystem S1-S4 is “0.449”. The files that are marked by the symbol
“I have been assigned to a subsystem during the “constrained distribution” step

discussed in Section 8.7.1. The distributed files do not violate the link constrains

of the recovered architecture. The files in the Rest-of-system are ranked based on

8.7. ARCHITECTURAL RECOVERY CASE STUDIES

215

(b) Arcitectural recovery evalution

Subsystem S1-$4 Subsystem S2 Subsystem S3
Exports: Tmports: Exports: Imports: Exports: Imports:
: R : » Resonrces: ® Resources * Resources
e (92) R o 2 (53) e st 53 1. From:$1-81 (92) 1 I g5 s 1 Eon 51.8 20
. . . To: 2. From: 53 FR3(66) ° 3. From: 55 (5
2. Te:33 FRZ(100) 2. From: 33 7RI(130) 2 Tocs3 (24 3 To g5 [14) &)
3 Te:s5 (18) 3 Ta:§5 (17) 3 From: 85 7R4(10) . o
ontains :
o Contains:
Contains :
® Files
® Files: 1. (L-28 als 43 0.165] b
® Files 1. (L-20) e editc(f111) 0317+ 2 EL—SO) :::zu;dcc((f 11)) ((nngn))
1 (L-54) u_elastice(f 52) (D.4dgy e 2. (L-86) w library.c (f: 24) (0.108) 3. (L-21) e flip.c(f:18) (0.077)
2. (L-52) u_dragc (f.30) 0334 3. (L-71) w_cmdpenelc (f 38) (0.143) 4. (L-59) w_liste (f. 67) {0.118)
3. (L-25) e moveptc (27} (0.286) 4. (L-77) wfilec(t 24) (0.120) 5 (L-22) e _glue.c(f:20) (0.059)
4. (L-27) e_rotate.cif:23) (0.138) 5. (L-46) main.c(f2) (0177) 6 (L-33) freade(f.29) (0.078}
5. (L-53) u_draw.c (£ 38) (0.231) 6 (L-80) w_ghdc(f2) (0.208) ; Uﬁ:f? ;'_“nﬂﬂc("i’?) (C[IJUU:;)
6 (L-26) e placelibc(f 10} (0130} ; (tf;g) W_Expurtcf.(!ngS) n(%ﬂe?) 5 Ebss; “-j;::sirfmc()f 12 ((0)051)
7OL-11) e addpre(f:12) (0.147) : (Liw) mrn‘ﬁntc() 3)5 { 0151 100 {L-58) w_geom.c (f 10) (0051}
8. (L-23) e joinsplitc (f: 16) (0.175) - (L—SA) :_mder:nil(c- 1)105 (! A 11 (L-15) e compound.c (f 6) (0.052)
9 (L-16) e convertc(f8) (0134) b (L es) 4 p '(5) 01(25) 12, (L-385) f readfigore.c (1) (0.077)
10. (L-18) e_deletec(f8) (0121) - (L-88) o browsec(t 5) (0125) 13. (L-19) &_deleteptc (£ 4) (0.084)
11, (L-24) e movec(f4) (0.431) g &-ggg Z'\if:lf;ffus 15)9) ‘ E](21182)8) g Er{ggi w_error.c (1: 5) p 2)(0.002)(00 U”4) .
- - (L- il (f; : - w_menneny.e (f [
g Uii? H?”h;;“"” mg%iﬁ?) 140 (L-80) s _mousefun.c (f 27) {0.108) 16, (L-57) u__ﬁaac(f?g) o1y 1l
- 15. (L-79) w_fontpanel.c (f. & 0.107 17. (L-36 f_readgif.c(f: 5 0.003; [
o e O T e (79 wimpmde(ts) (0107) (L-3) reatgie(rs
- (L-65) o searcho(f3) - (0.208) 16, (L-96) w_ orchreple (£ 19) (0.099) 18 (L-73) w_owsorc(t3) (002() I
15, (L-60) w markers.c (f: 34) (0.134) 17, (L-81) w msgpanelc (f.13) (0089 19 {L-47) mideo (f 4 003 1
16. (L-31 d boxc(f 4 (0.166) 18] (L-31) f nencitsb.c (F 17) o041 200 (L-12) e _alignc(f:21) ©gr2y
17. (L-8) d_spline.c(f 6) (0.124) 190 (L-61) & panet) oot 1
%g- ETi-i)B) df_;iadvld Ef('li;? ((3;15%) 20 (L-62) u_printe (i 6) ooz Sub 5
- _ellipse.c 2l (L-95) w_semp.c[f:1) 0o1s) 1l em
20, (L-1) d_arce(f7) (0181 22 (L-89) w_modepanelc (f 52) 0050; N syst
2 (L-2) dscboxcif 4) (0165 23. (L-85) wlayers.c(f.21) @or) 1l Exporis: Tmports:
i Sewelts) o)
- & _COpY.C & Ry : s R
""""" BT P et (6 0828 Rest-of-system S Tes2 rReiD) O e §1-81 (14)
5 Sg Ei'éig furdle (f 362f . (003210) nas!)! , 2. To:S3 (5) g grum gg 83
= | W_CANVAs.C ine: . YOI
2 zom muim em o o
= - u_redrase.c # Files: ® Eiles:
N I s S N Lo B 1(L-56) wimsc(t3) S1-54(000) S2(000). L -a1) tresdnforr) oogm
S (L-6h usalec(f13) - (0067) 2 (L-45) fwpeeclhS) 51-54(000).52(000). 2 (L-74) w_diwe(f18) (0005
3. (L-29) e wpdstec(fZ) (0076 1 (L-45) - fwrpecs(f:3) (000} 52(0.00)
B P J ; 3. (L-48) objecte (f:0) 51-54(0.00). 52(0.00) 3. (L-30) {lead.cif 4) oo
Q32 (L-93) w rotextc(f18) ordy 1 1 (19 - o sad 0o 20000 4. (L-70) w_csptore.c [f: 6) [0.012)
. 73 (L-13) e amow.c [£.9) o8 0 < (L-481 resowces.c (£.0) -84(0.00). 32(0.00]. 5 (L-32) 1 piesbic (f3) (0.003
SR {L-98) v zoomnc(f12) 0084 1 5. (L-78) w_fonrbirs ¢ (£.0) §1-54(0.00). 52(0.00) 5 (I_39) {readpes (£5) 0ol
UCS 35 (L-9) d_subsplinec (f 5) (0088 1 6. (L-82) w_ilBnc(f 0) $1-54(0.00)..52(0.00). 7. (L-37) {readjpg.cif 4} (0.008)
5 2l Tmia” omd Dm0, SEEmEE,L 1 e e
O 37 (L-14) e breskc(td) [0110) 1l (L-87) w listwidget ot 7) (0.00)..52(0.00) 10 {430 4_x_ead1;pm.c(4.l) o0
(a) Recovered subsystems of the Xfig system
Recovered No. of Xfig subsystems No. of | precision Recall
subsystems ! files files
: editing & 63% e-
S1-S4 37 utility & 47 81% 45% u-
drawing 100% d-
S92 23 X-windowing 28 78% 64% w-
editing & 31% e-
. 0,
S3 20 utility & 87 65% 39% u-
S5 10 file manipulation 16 70% 44% f-
rest-of-sys 8 5 zero size files —_— _— —_—
1) editing: 19 files 4) file manipulation: 16 files
Xfig subsystems: 2) utility: 18 files 5) X-windowing: 28 files
3) drawing: 10 files

Figure 8.14: (a) Details of the recovered subsystems using the Netscape browser and

the import/export of the system functions as “resources”, where both the module
sizes and link constrains have been satisfied. (b) Architectural evaluation using
“Precision” and “Recall” metrics.

216 CHAPTER 8. CASE STUDIES

their average similarity values to the recovered subsystems which allow the user to
select a subset of the files for the tool to perform constrained distribution. The files
that possess very low closeness values to the recovered subsystems will remain in
the Rest-of-system.

Figure 8.15 illustrates the file association graph feature of the proposed envi-
ronment for viewing the Xfig recovered architecture. Figure 8.15(a) corresponds to
the interaction among the five selected main-seeds and Rest-of-system, where only
the strong and medium association links are shown. Figure 8.15(b) illustrates the
result of the recovery process, where the highly associated files are grouped into
subsystem 51-S4 and the association among the subsystems are limited. Figures
8.15(d) and (e) illustrate the inclusion of the loose and weak association links to
Figure 8.15(Db), respectively. Figure 8.15(c) illustrates the association links among
the recovered subsystems as a simplified view of the other figures. The subsystem
S1-S4 has high association with subsystem S3 but low association with subsystems
S2 and S5 as it was aimed for. Also in Figure 8.15(c) the lines across the boxes for
the subsystems S1-S4, S2, and S3 indicate high intra-subsystem association that
can be interpreted as the recovery of high cohesive subsystems.

Figure 8.14(b) presents the accuracy of the Xfig recovery process in terms of
the Precision and Recall metrics. The subsystem S1-54 recovers all the drawing
files and together with S3 recover almost all the editing and utility files. S2 is
allocated to windowing files and S5 recovers file-manipulation files. The obtained
Precision and Recall values indicate the accuracy for the proposed pattern matching

technique. The AQL query used for the Xfig architectural recovery is presented in

8.7. ARCHITECTURAL RECOVERY CASE STUDIES 217

(a) Five Selected main-seeds
for five subsystems and the
rest-of-system are shown
using "strong" and "medium"
association links.

] H] Hal Y N .]
S5 u_drag " ', e_scale e_edit S2

(b) Final recovery of Xfig system:
the subsystems S1 and S4 are
merged into subsystem S1-S4

. o
B - -
womousefun WA, Dop @

S a a w_setup N
sr_rodapansl wr_util

o
w_liyers

N s —————]
o WL I ¥ \ \ = =
o) g N nellor— L e Genelal — 1 Root =:..e
|\ v SRIASCERD | b . g '
\ - k t A o h B
eslye /" g SR ! M/w_/m“m.‘, Y
<o amon u i : K —— !
w_omdpanel
o g z
womipane "3 o =4 = P
S a N
Jofepec udems N NSRS 4 e -
. a o el o0 et
/ obEe oy fontis
- N
N j S SS REST-TF-S¥STEM =3
s o ;o ~J = i e 7
w_lstwidget ¢/ oo™ 2 ugeom N U8 w_apurs , D \
N L . \ e \ 1 fpiobi - g readtt 1
R U e u,ﬂq,;ﬁ a@,‘, o_glue R \ | ket ; II\I | B
rest-of-system \ ® ol adbiepr, G e \, fresdpoc
Ky ! =] - o - f readppm ‘
~ w ey ummer g o freadgf .’ N, mAseR i
A = fsave fread _,»’ - -
~.‘__~_“ —-‘___,—’ 7 o .
&) = (c) Association links among the

resulting subsystems in part (b).

Genefal — 1 Root <<ACTIVE-> Caene - 1 Root <<ACTIVE->

(d) Adding "loose" association links to part (b) (e) Adding "weak" association links to part (d)

Figure 8.15: Graph visualization of the recovered subsystems for the Xfig system
using the file association graph with different strengths for association links.

218 CHAPTER 8. CASE STUDIES

Appendix D.

8.7.3 Architecture recovery of Clips

The Clips system provides an environment for implementing rule based expert sys-
tems and is supported by an architectural manual [94] which serves as a reference
in this experimentation. According to the architectural documentation of the Clips
system it consists of 8 “modules” as is shown in Figure 8.17(a). The source-code
statistics of Clips has been presented in Section 8.1.1. Figure 8.16(a) illustrates
the generated architectural pattern for the Clips system with five abstract subsys-
tems and link constrains. The incremental and iterative recovery process yields the
recovered architecture in Figure 8.16(b) where the size constrains for the subsys-
tems and links have been satisfied. The hypertext representation of the recovered
subsystems using the Netscape browser is shown in Figure 8.17(b), along with
the number of matched imported/exported links such as: “Subsystem SI1 Imports
From: S4 7TR1(20)".

The pattern for the Clips has been generated based on the tool suggested main-
seeds and the documented modules for Clips in Figure 8.17(a). According to the
Clips documentation, the recovered subsystem S1 with main-seed file generate (cor-
responding to Clips module 4) should have less interaction with the subsystems S2
and S3 (corresponding to Clips modules 1 and 6, respectively). Therefore, no link
constraints are needed between S1 and either S2 or S3. The main-seeds for sub-

systems S1 and S4 (i.e., generate and expressn) are contained in the Clips Parsing

*Please note that the notion of “module” in the Clips documentation is the same as “subsys-
tem” in our terminology.

8.7. ARCHITECTURAL RECOVERY CASE STUDIES 219

Recovered files + Distributed files

generate ?RA(10.40) retract generate ?R4(39) retract
R S et TN 10 + 1 files 10 files
10 Phs S1 | ~85_ , 10Phs 177 funcs 179 funcs
4 .o Pattern
§ : L’o\ , 2 N matching —~
' o Y @
=1 &5 o N <
o @& 20N # <
fa)) < [V
= I <)
T H <. <
& s ! ¢ i 3+ 1files
‘ . i 86 funcs
10Phs | S4 A R 4 fles v 101
N R " 10Phs+ S2 79 funcs les
~- 3Phs: S3 \ ’ 207 funcs
expressn A Seeaet expressn
method math method math

(a) Architectural pattern using AQL query (b) Recovered architecture

Figure 8.16: (a) The architectural pattern of the Clips system with five abstract
subsystems. (b) The recovered architecture where the constraints are satisfied.
modules, hence in order to accumulate related files in both S1 and S4 the link
7R1(10..20) is defined whose maximum value 20 imposes more interaction between
two subsystems. Also since four of the recovered files in subsystem S1 are from Clips
module 2 and subsystem S5 is intended to collect files from module 2, therefore the
link ?R4(10..40) is defined to attract more files from Clips module 2 to be recovered
in subsystem S5. The link ?R2(10..40) between S2 and S5 is also defined to collect
more related files in the subsystems S2 and S5 which correspond to closely related
Clips modules 1 and 2. The subsystem S3 is a rather isolated Clips module with
main-seed method, however its interaction with subsystem S5 was high. The link
7R3(0..5) is defined to restrict this interaction and hence generate a more isolated
subsystem.

Figures 8.18(a) and (b) illustrate the graph visualization of the recovered Clips
subsystems with the strong and medium association links, where the subsystems
S1 and S5 and also S1 and S4 are highly associated and subsystem S3 is isolated.

These associations completely conform with the above description for link definition

Inference Engine Modules

CHAPTER 8. CASE STUDIES

Parsing Modules

Rule Manager Deruledru c o Evatu Object System Function
ru|emngr 6 rulestructures Xpression Evaluation object SySdep
rulepars scanner method ** memory
- - - Ihsparse expressn ** bc ﬂ; symbol
Rule Manipulation Inference Engine reorder evaluatn router ﬁ“
sysprime drive variable commline g No-document
red nain generate **
syspre engine build deffacts User Interface
sysio match uid Main-seed for textoro -
syssecnd utility analysis ﬁ subsystem S1 m -20urceS !ntrbrws
multivar factmngr ru)llecomp mtr;elxec
ok *x intrfile
math (1] retract* (7| NexTeall (X| (8]
(a) Clips subsystems according to its architectural documentatoion
Subsystem S1 ref Subsystem S2 ref Subsystem S3 ref
Exports: Imports: Exports: Imports: Exports: Tmports:
® Resources: ® Resources: ® Resources: ® Resowrces ® Resources: * Rasn{m;;m s
1. Te:S4 (15) 1. From:34 7R1(20) 1. To:S1 (2) 1 From: 81 (39) 1. Ta:85 (16) 2. From:S5 TR3(4
2. Fi by 4
Phmoy LEmERe i o ¢ Fo
3. To:32 (3 . To
P Tes 54)) 4. Te:3 (1) o
- €5
tains: Clontains: 1 (L-22) method.c (f25) 0440y = 6
Contains: on 3 IL-28) objecte(tdd) (0384 6
 Files ® Files 3 (L-1) MNeHTealle(f:1) [0.150) X
1. (L-13) generate.c(f 20) (0.595) Z‘ 1. (L-20) math.c (f: 65) (0.180) i 4 L3 bec(f17) oo 1 6
2. (L-34) rilepars.c [£12) (0.292) g (ifi;i) mulﬂvar;(ffi’%i (UZGU%Z
P N et L 4 it e S -
- o[} - e (f)
5 (L-8) dnvecit?) (0.317) 2 3. (L-18) mebrws.c (1: 13) (0.087) 8
6. (L-12) factmnge.c(f 34) [0.293) 2 6. (L-42) textpro.c(f24) (0078) X
7. (L-9) mgmf&w) 0.247) 5 7{L-37) sysdep.c(f12) {0.049) 7
8 (L-7) deffacts.c (1 24) (0274) X 8. (L-26) my_sowrced.c(f &) 0024) | x
9 [L-43) iy (f35) 27 5 9. (L-32) rulecomp.c (1:28) (0.015) X
100 (L-29) reorderc(f4) {0.226) 2 0. (L-39) syspred.c(f:20) {0.082) 1
1. (L-21) memory.c(f 4) 14y 1 7
Subsystem $4 ref Subsystem S5 ref Rest of System
Exports: Trports: Exports: Tmports: Contains:
- Rasn{][nTgs J— . Resnlumgiom- st s ® Resonrces # Resources ® Files
PR3 e ERR PRRE® ihene LW eta, o,
: . g - compile.c (f: J .00].
3 To: 2 () 3 From:52 (1) 3 To §2 TR2(3S) 3 From 32 Eigi 3 (L-23) mapmndsFllac((1) S1(000) $4000)
Contains: 4. To: 53 TRA(4) 4. (L-25) my_methods3.c(f:1) $1(0.00) $4{0 00)
ontains: o 5. (L-20) my_sowced.c(f 1) 51{0.00).54{0.00)..
‘ontains :
®» Files
A I D ,
- (L 1, (L-30 e (17 0190) **
3 (L-35) scamners(f20) - (0190) 5 2 ELfaﬁg rsi‘z:{nahcslcc((l 1)1) ((013)6) 7
4 (-5 commline c{£15) (0.074) 5 3 (L-31 rowterc(f18) (0111) 7
4, (L-33) rlennge.c (f.15) (0.093) 3
5 (L-15) mwexece (f:39) (0.091
6 (L-2) analysis.c(f.15) (0.072) f
7. {L-40) sysprme.c(f: 21) (0.105) 1
8 (L-19) matche(f4) {0120y >
9 {L-10) evalusmc(f19) (0.080) H
10, (L-18) inwfile.c (f: 31) (0.073) 3

(b) Recovered subsystems of Clips and the reference numbers to the Clips documented subsystems in part (a)

Recovered i No. of Clips subsystems No. of .

subsystems i files (documented) files Precision | Recall
stoou | e 18 | e | 70w
S2 10 - Rule manipulation 6 50% 83%
S3 - Object 3 75% 100%
S4 4 - Expression evaluation 4 75% 75%
s5 10 - System function 7 20% 57%

- User interface
rest-of-sys 5 — — E—

(c) Architectural recovery evalution

Figure 8.17: Architectural recovery and evaluation of the Clips system.

8.8. SUMMARY 221

General — 1 Root <<ACTIVE=>

General — 1 Root <::'<::ACTI

S1- B E O
. d = [Bt
: SNEY=) e
e S nbeee amabes it ! \ q:l K =
+ mamons < . N D [p % N el
\ (T n=a T e R Tt---77 S3
Lo T]
N ! 2 ' L7 AR 2 REST-OF-SYSTEM EH
- o -S4 S,Z/D O N 7
————— " \\ ; rukecame th o ‘\‘ N b
" ! | sysemend syedep o \HQWS I'I
] “w@d o m,l:l.-,ea S b) A o link h
N R ", (b) Assocition links among the
- .- .- rest-of-sys DR I' 7 recovered subsystems.
]
ArcType: weak Fillered: 0 nodes, 1008 arcs ‘

(a) Recovered subsystems

Figure 8.18: Graph visualization of the Clips recovered architecture using “strong”
and “medium” association links among system files and among subsystems.
between the subsystems.

Figure 8.17(c) presents the accuracy of the Clips architecture recovery process
in terms of Precision and Recall metrics, corresponding to the Clips documentation.
Such Precision and Recall values indicate the high accuracy of the recovery process

on the Clips system.

8.8 Summary

The design of a sound technique and the development of supporting tools are fun-
damental requirements for any reverse engineering approach. In this Chapter, the
important aspects of the proposed approach to software architecture recovery were
tested through a series of experimentations. A reverse engineering toolkit Alborz
provides an interactive environment for architecture recovery presented in this the-

sis. The proposed environment consists of an off-line and an on-line analysis phase.

222 CHAPTER 8. CASE STUDIES

The set of experimentations for the off-line analysis focused mostly on the extrac-
tion of the maximal association property among the system entities using the data
mining frequent-itemsets. The time and space complexity for generating associated
groups of entities is governed by the density of relationships among the system enti-
ties. The important aspects of the pattern matching process including the stability,
quality, and accuracy were also tested. The effect of the bounded-queue heuristic in
restricting the space complexity and the trade-off for obtaining a tractable match-
ing process with a sub-optimal recovery result were evaluated. The toolkit provides
main-seed selection techniques and visualization means to assist in comprehending
the structure of the system files and the recovered architecture. Finally, the de-
tailed steps for an incremental and iterative pattern generation and architectural

recovery of two middle-size industrial systems were presented.

Chapter 9

Conclusion and future work

This thesis contributes to the reverse engineering research area by providing an
interactive environment for architectural recovery, a sound incremental graph pat-
tern matching model of the recovery process, and a prototype toolkit to support
the proposed environment. This work uses the techniques from approximate graph

matching, data mining, clustering, and architecture description language design.

Architecture recovery technique

In the proposed approximate pattern-matching technique the high-level pattern-
graph of the system is matched against a graph representation of the system entities
and data-/control-dependencies. During the off-line information extraction phase,
the software system is parsed and presented as an attributed relational graph whose
nodes and edges conform with an abstract domain model that is suitable for archi-
tectural recovery. Such a domain model provides programming language indepen-

dence for the recovery process as it abstracts away the details of the programming

223

224 CHAPTER 9. CONCLUSION AND FUTURE WORK

languages. The graph representation of the software system is further processed to
allow the recovery of highly associated components, i.e., cohesive components. In
order to generate such components, data mining techniques are used to define two
association-based similarity metrics between two entities and between two groups
of entities.

During the on-line analysis phase, the user generates an architectural pattern
(i.e., conceptual architecture) of the system using a proprietary language namely
Architecture Query Language (AQL). This language stems from the modular design
of the Architecture Description Languages (ADL) to represent system components
and their interactions. During the incremental recovery process, the abstract pat-
tern in the AQL query is gradually expanded into a pattern-graph which is matched
against an input-graph that is a subset of the system graph. The graph matching
process is implemented by a search algorithm that uses both the similarity values
among the system entities and their in-between relationships to assign a graph edit
cost for each node matching. This pattern matching process is general enough to in-
vestigate all possible interactions between two system components using graph-edit
operations (i.e., edge insertion/deletion).

In modeling the incremental graph matching approach for architecture recovery,
a number of intermediate graphs and connector edges were defined. Such intermedi-
ate graphs allowed to represent the pattern-graph and input-graph at each iteration
step in terms of their constituents (i.e., a number of recovered modules and their
import/export links) and consequently formulate them using recursive graph sum-

mation equations. This formulation provides a valuable means for modeling and

225

implementing the whole incremental pattern matching process. Finally, in order to
address the tractability issues inherent in the approximate graph pattern matching
process, two heuristic techniques are used. The first heuristic divides the graph
of the software system into a number of graph regions using the data mining as-
sociation. The second heuristic reduces the optimal search algorithm A* used in
the pattern matching process into a sub-optimal search BQ)-A*, by restricting the
size of queue for the search-tree paths. While this restriction does not necessarily
excludes the optimal solution, it reduces the exponential time and space complexity
of the search operation.

Also the architecture recovery is performed hierarchically into two levels. First
the system is decomposed into a number of subsystems of files. Second each sub-
system can be decomposed into a number of modules of functions, datatypes, and

variables.

Architecture recovery environment

To experiment the characteristics of the proposed approach a reverse engineering
toolkit (Alborz) is implemented. The toolkit provides an interactive environment
for recovery and evaluating the architecture of a software system as cohesive com-
ponents. The toolkit has been built in the Software Refinery environment (Refine)
and uses the Refine’s built-in parsers to parse the software systems, and built-in
parser generator to implement the AQL pattern language. The toolkit provides
statistics and metrics to assist in the recovery process. Specifically, the toolkit

provides means for visualizing the interaction among the software system files and

226 CHAPTER 9. CONCLUSION AND FUTURE WORK

the recovered modules/subsystems using import/export of entities, and association
links.

The challenging step for defining an architectural pattern in the proposed ap-
proach corresponds to main-seed selection for the abstract components in the AQL
query. The engineer may decide to use one or more of the following methods: i)
utilize knowledge about the related domain such as a reference architecture with
well-defined components; ii) study the existing design documentation, informal in-
formation embedded in the source-code, naming conventions, directory structures;
and iii) perform system analysis based on association structure of the system files
or different methods of clustering. The adopted method(s) should be able to sug-
gest important and rather distinct main-seeds as the cores of the abstract mod-
ule/subsystems in the AQL query. The toolkit assists the engineer by providing
three main-seed selection techniques based on entity-domain analysis, association-
graph analysis, and association-graph visualization.

Finally, in order to assess the usefulness of the proposed approach, a compre-
hensive set of experiments for off-line and on-line phases were conducted. The
experiments focus on evaluating the time/space complexity, stability, quality, ac-
curacy, and tractability of the approach. The generality of the approach was also

demonstrated by experimenting with systems in different domains.

9.1 Future work

Possible extension to the work presented in this thesis may focus on four areas.

Clustering: the first extension to this thesis deals with the incorporation of clus-

9.1. FUTURE WORK 227

tering techniques to the matching process. Specifically, an incremental opti-
mization clustering technique may provide a relaxed version of the proposed
pattern-matching approach, where there are no constraints on the interaction
among the recovered components. Moreover, a partitioning clustering tech-
nique may be implemented that starts from an initial partition of singleton
clusters and rest-of-system, and performs file relocation between the clusters
(subsystems), where the average closeness of a file to the original cluster and
to the other clusters is the criteria for file relocation, until the clusters are
stable. Finally, an architectural evaluation technique may be used to assess

the recovered design of a software system based on different views.

Behavior recovery: the second extension to the thesis deals with behavioral re-
covery using data mining. The scope of the work in this thesis is limited to
structural recovery. However, behavior recovery is a more challenging task
that is most often ignored in the current approaches. The existing framework
can be augmented to allow behavioral recovery using a data mining technique
known as sequential pattern discovery [13]. This technique is used to extract
relationships among sequences of groups of items in a database of baskets.
An application of this technique in extracting a sequence pattern of events in
the run-time execution of a program can be exemplified as: 15% of the oper-
ations of the subject system, first execute function A, then execute function
C, and finally execute function F. The discovery of such a sequence pattern is
not affected by any in-between function invocations. The sequential pattern

discovery can be applied on an event trace data set obtained from the execu-

228 CHAPTER 9. CONCLUSION AND FUTURE WORK

tion of a software system during its normal operation, in order to recover the
highly repeated traces of events. This extension adds an important recovery

view of the system to the framework.

Architectural styles: the third extension to this thesis deals with the recovery of
pipe and filter and client server styles. Specifically, the syntax and semantics
of the AQL can be enhanced to handle these architectural styles. The AQL
language has been designed based on the features of the architecture descrip-
tion languages (ADL) with the objective that it can query the same features
that are usually described by the ADL languages. An architectural style con-
sists of the description of the components along with a set of constrains on
how they can be connected. For example, the following extensions are re-
quired to model the above styles. First, the definition of the similarity metric
between entities needs to be revised to include the association (or maximal
association) based on new relations such as file read/write (for pipe-and-filter
style) and message send/receive (for client-server style). The entity domains
should be generated accordingly. Second, the main-seed for a component
should be selected according to the expected functionality of the component,
e.g., acting as a server, a client, or a filter. The semantics of the connectors
(i.e., current import/export parts) must be enhanced to allow the specifica-
tion of more details about the entities that establish a connection between
two components, such as: writing/reading to a specific port or file, using a
particular data structure, and importing/exporting entities with constrained

naming. The pattern matching process will then be a constraint satisfaction

9.1. FUTURE WORK 229

search that allocates entities from the domains to components while satisfies

the constraints of the connectors.

Information exchange: finally, another possible extension to this thesis is to
adopt a standard information exchange format such as GXL [49] to commu-
nicate with a repository of graph-based tools. This standard data interchange
format that can be populated by an appropriate parser can be used to receive
input entities and relations from a tool and return the recovered results for

visualization and further evaluation to appropriate tools.

Appendix A

Formal definitions for domain

models

A.1 Source-level domain model

Figure A.1 illustrates a simplified class diagram of the domain model for a typical
procedural language. The class attributes of this class diagram are illustrated in

Tables A.1 and A.2.

231

232 APPENDIX A. FORMAL DEFINITIONS FOR DOMAIN MODELS

General
file #: Integer
line #: Integer
id: Char Integer
N
A
[]
N Generalization
File Set of attributes

path-name: String
includes: set (File)

defines: set (Declaration) Statement

A ——1
£\

l Source-file l l Library—file l l Iterate l l If—then—elsel l Return l l Block l lswitch l Assignment
[] [] I 11 [] src: Expression
dest: Experssion

Expression

type: Type-specifier
return-value: Expression

Declaration
name: String
type: Type-specifier
p— , ——" A
Arithmetic—expressions: Function-cal
X &] > < <<>>, -
name: String
""" arguments: seq (Experssion;
9 4 Exp) Variable Function
value: Expression parameters: seq (Declaration)

declarations : seq (Declaration)
statements: seq (Statement)

Type-specifier

| : |

Scalar-type: Aggregate-type Array-type Pointer-type
Int, Real, String, Char, ..

elements: seq (Declaration) size: Expression type-deref: Type-specifier
""" type: Type-specifier

Figure A.1: The class diagram of a simplified source-level domain model for a
typical procedural programming language such as C [84]. This domain model is
used to extract an abstract domain model for architecture-level system analysis.
The instantiation of the classes and their association links (not shown here) during
the parsing process generates an abstract syntax tree for the software system.

AL

SOURCE-LEVEL DOMAIN MODEL

233

General
‘ Attribute ‘ Ezample ‘ Description
file # 5 File number of the source-code file where entity is defined
line # 79 Line number that an entity appears in a file
id f4 Unique identifier for each object (entity). The
object of an “id” is returned by the function Obj(id).
Source-file / Library-file
‘ Attribute ‘ Ezample ‘ Description
path-name | “/u/../main.c” Unique path name of the file
includes {“user.h”} User-defined library-files whose defined
entities are used by the entities in this file
A sequence of functions (for source-file)
defines and a sequence of datatypes and variables
(for both source-file and library-file)
that are accessible by all entities in this file.
Function
‘ Attribute ‘ Ezample ‘ Description
name “foo” Name of the function to be called with
parameters | [x: Integer, ..] A list of parameters each having
a name and a type
declarations | [y: String, ..] A list of variable and datatype declarations
that are local to the function
statements | [x :=x + 1; ..] A list of statements that perform the
function’s operation
type String Type of value that is returned by the function
Declaration
‘ Attribute ‘ Ezample ‘ Description
name “bar” Name of the declared function, type, or variable
type Real Type-specifier for the declared entity

Table A.1: Description of the class attributes.

234

APPENDIX A. FORMAL DEFINITIONS FOR DOMAIN MODELS

Type specifier

Description

Defines the value of a computation or a declaration to be an instance of

one of the classes Scalar-type, Aggregate-type, Array-type, or Pointer-type

Aggregate type

‘ Attribute ‘ Ezample ‘ Description

elements | [fieldl: String, ..] List of type declarations for the

different fields of the aggregate type

Array type

‘ Attribute ‘ Ezample ‘ Description
size 15 Cardinality of the array entries
type Integer Type-specifier for every array entry

Variable

‘ Attribute ‘ Ezample ‘ Description
name “count” Name of the defined variable
type Integer Type of the variable’s value
value 6 Value of the variable

Table A.2: Description of the class attributes.

A.2 Formal definition of relations

In this Section, the relations in the abstract domain model are defined that are

categorized into function-level and file-level relations. The Z notation [115, 65] is

used to formally define each relation.

In the Z notation, a “set” can be defined as {D | P o E} denoting a set of values

consisting of all values of the term E for the declared variables in D that satisfy

the constraint P. The predicate P and term FE contain the free variables defined

A.2. FORMAL DEFINITION OF RELATIONS 235

in D. For example, {z : N' | x <5 e 2%} denotes the set {1,4,9,16,25}. The term
FE and its preceding “heavy dot” can be omitted which results {z : N | 2 < 5} =
{1,2,3,4,5}.

The ezistential quantifier “3” is used to define a new variable. The general
form of the existential quantifier is 3D | P o) where D represents declarations,
P represents a predicate acting as the constraint and () represents the predicate

being quantified. The constraint bar

“I” and the constraining predicate P can be
omitted, which results: 4D o ().

An existential quantifier 3D | P e @ can be recast as 3D o (P A @),
and if the predicate () contains another existential quantifier then the result is
dD1 e (P1 A dD2 e (P2 AQ2))

The wniversal quantifier “V” is used to define all variables that have certain

properties. The general form of the universal quantifier is VD | P o . The

constraint bar “|”

and the constraining predicate P can be omitted, which results:
VD e (). A binary relation can be defined as {z : T1; y : T2 | P} which yields a set
of binary tuples {(x1, y1), (%2, y2), ...} where each pair (z;,y;) satisfies the predicate
P.

236 APPENDIX A. FORMAL DEFINITIONS FOR DOMAIN MODELS

In the following definitions, the predicate inherits(a,b) indicates that the object
a inherits all the attributes of the object b (since class A is a subclass of class B). In
Figure A.1, the classes: Iterate, If-then-else, Return, Block, Switch, and Assignment
are subclasses of class Statement, each containing one or more attributes whose
values are of type Expression (directly or indirectly). These attributes and their
“attribute-values” are not shown in Figure A.1, however, it is assumed that we can

access to these attribute-values.

Function level relations

Relation wuse-F C Function-abs x Function-abs is defined as:
use-F & {F : Function-abs; F': Function-abs |

df : Function e (F.implement-id = f.id A

f": Function e (F'.implement-id = f'.ud A

ds : Statement o (s € seq-to-set(f.statements) A

s’ : AnyType! o
(AnyType € {Iterate, If-then-else, Return, Block, Switch, Assignment} A
inherits(s',s) A

Jda : Expression o (x € s'.attribute-values A

dfc: Function-call o (inherits(fe,x) A fename = f'.name))))))};

V(F,F') € use-F — F'¢€ FuseFuncs

'The type AnyType can be of any types Iterate, If-then-else, Return, Block, Switch, or Assignment.

A.2. FORMAL DEFINITION OF RELATIONS 237

Relation wuse-T C Function-abs x Type-abs is defined as:
use-T 2 {F : Function-abs; T : Type-abs |
df : Function e (F.implement-id = f.ud A
dt: X; 3t : Type-specifier o (X € {Aggregate-type, Array-type} A
inherits(t,t') N T.implement-id = t.ad A

ds : Statement o (s € seq-to-set(f.statements) A

ds": AnyType o
(AnyType € {Iterate, If-then-else, Return, Block, Switch, Assignment} A
inherits(s',s) A

dx : Expression; Jv: Variable o = € ' .attribute-values A

(v.ovalue= 2 V = =vwalue) A v.itype =1))))};

V(F,T) € use-T = T € F.useTypes

Relation wuse-V C Function-abs x Variable-abs is defined as:
use-V = {F: Function-abs; V : Variable-abs |

df : Function e (F.implement-id = faud A

dv: Variable; 3d: Declaration; 3l: File e
(inherits(v,d) N v € ldefines N V.implement-id = v.id A

ds : Statement o (s € seq-to-set(s.statements) A

ds": AnyType o
(AnyType € {Iterate, If-then-else, Return, Block, Switch, Assignment} A
inherits(s',s) A

dx : Expression o x € s'.attribute-values A

(vovalue=2 V x=v.waue)))))}

238 APPENDIX A. FORMAL DEFINITIONS FOR DOMAIN MODELS

V(F,V) € use-V = V € F.useVars

File level relations

Relation cont-R C File-abs x Entity-abs (contain-resource) is defined as:
cont-R 2
{L : File-abs; F : Function-abs |
Jis? : Source-file o (L.implement-id = ls.id A
df : Function; 3d: Declaration e inherits(f,d) A
f €lsdefines A F.mplement-id = f.ud)}
U
{L : File-abs; T : Type-abs |
dls : Source-file o (L.implement-id = ls.ad A
dt . AnyType; 3t': Type-specifier; Id : Declaration e
(AnyType € {Aggregate-type, Array-type} A inherits(t,t’) A
d € ls.defines A ditype=t A T.implement-id =t.id)}
U
{L : File-abs; V : Variable-abs |
dls : Source-file o (L.implement-id = ls.ad A
dv: Variable; 3d: Declaration o d € ls.defines A

inherits(v,d) A V.implement-id = v.id)};

Y(L,R) € cont-R = R € L.contains

2Every source-file {s inherits the attributes of its superclass file { as:

Al : File; s : Source-file o inherits(ls,!).

A.2. FORMAL DEFINITION OF RELATIONS

Relation wuse-R C File-abs x Entity-abs (use-resource) is defined as:
use-R &
{L : File-abs; F : Function-abs |
dF" : Function-abs e (L, F') € cont-R N (F',F) € use-F}
U
{L : File-abs; T : Type-abs |
dF" : Function-abs e (L, F') € cont-R N (F'.,T) € use-T}
U
{L : File-abs; V : Variable-abs |
JF" : Function-abs e (L, F') € cont-R N (F',V) € use-V};

V(L,R) € use-R =— R € L.uses

Relation imp-R C File-abs x Entity-abs (import-resource) is defined as:
imp-R & {L : File-abs; R : Entity-abs |
(L,R) € use-R AN (L, R) ¢ cont-R};

V(L,R) € imp-R = R € L.mports

Relation ezp-R C File-abs x Entity-abs (export-resource) is defined as:
etp-R 2 {L : File-abs; R : Entity-abs |
(L,R) € cont-R AN 3IL': File-abs o (L', R) € use-R};

V(L,R) € exp-R =— R € L.exports

239

Appendix B

Graph definitions

This Appendix presents the formal definition of the graphs introduced in Chapter
3.

B.1 Query graph

The query-graph G* = (N, R, A4, EY 19, €?) or simply G? = (N? R?) is a multi-
graph' [53, 41, 102] with composite nodes (query-nodes) and composite edges (query-

edges). Formally:
o N%: {qni,qna,...,qn} is the set of attributed nodes in the query-graph.

e RI: {qri,qra,...,qry} is the set of attributed edges in the query-graph such
that R = {qri | ¢ri = (qnu, qnis t) A qny, qn; € NYAt € {use-F, use-T, use-V}},

where t is a type attribute for graph edges.

'In a multigraph, more than one edge in each direction between a pair of nodes are allowed.

241

242

APPENDIX B. GRAPH DEFINITIONS

A% alphabet for node attributes and node attribute values, e.g., node-types

and cardinalities.

E?: alphabet for edge attributes and edge attribute values, e.g., edge types

and cardinalities.

pt s N7 — (A% x A?)Y a function for returning “node attribute, node

attribute value” pairs, where v is a constant.

e RI — (E?x EY a function for returning “edge attribute, edge

attribute value” pairs, where w is a constant.

Query nodes: each query-node gn; is an instance of the class Module at function-

level (or class Subsystem at file-level) analysis in the AQL domain model of
Figure 4.2 in Section 4.2.1. At function-level a query-node ¢n; denotes three
groups of nodes with types Function-abs, Type-abs, Variable-abs. The major
attributes for each node include: i) a name corresponding to the AQL query
module; ii) one or more distinguished nodes (called main-seeds), where each
main-seed n; associates a source-region G%" with the query-node gn,; iii) zero
or more known nodes from the source region G%" (called seeds); iv) a group-id
that represents a set of placeholder-nodes with a cardinality within the range

(min, maz) to be matched with source-graph nodes.

The node labeling function p?(gn;) returns the “attribute, attribute value”
pairs of the query-node gn; pertaining to all three types in the query-node.
An example of the node labeling function is as follows:

14 (gn1) = ((name, “M17),

B.1. QUERY GRAPH 243

(mainSeedp, “/../ foo”), (seedp, “/../bar”), (groupld;, $CF), (ming,5), (maxg,9),
(mainSeedr, “/../tpl”), (grouplds, $CT), (ming,3), (maxz,6),

(mainSeedy, “/../vrl”), (seedy, “/../vr2”), (groupldy,, $CV), (miny,2), (maxy,4)

The above attribute values are interpreted as: the query-node number 1
with name M1 identifies three groups of placeholder-nodes. The group of
placeholder-nodes with type Function-abs are identified with the group-id
$CF whose size is restricted between minimum 5 and maximum 9, and two
placeholder-nodes have been initially matched with the main-seed node “fo0”
and seed node “bar”. Similar explanation can be given for the other two

groups of placeholder-nodes $CT and $CV.

Query edges: each query-edge gry is an instance of the class Conn-placeholders
in the AQL domain model of Figure 4.2 in Section 4.2.1. A query-edge qry
denotes a group of edges with a particular edge typet € {use-F, use-T, use-V}
between two query-nodes gn, and ¢n;. The major attributes of a query-edge
include: i) source and sink query-nodes (i.e., modules) for the group of edges;

ii) a group-id for the group of edges and a cardinality range (min, maz).

The edge labeling function €¥(¢ry) returns the “attribute, attribute value”

pairs of the query-edge gri. An example of the edge labeling function is as
follow:

qra = (qna, gny, use-F)

€(qrz) = ((from,qnas), (to,qny), (type, use-F), (groupld,?F1), (min,3), (max,7)).
The above attribute values are interpreted as: the query-edge number 2 iden-

tifies a group of graph edges of type use-F and the group-id 7F1 that emanate

244 APPENDIX B. GRAPH DEFINITIONS

Figure B.1: A query-graph with five query-nodes and eleven query-edges.

from the source-graph nodes (represented by ¢n4) and point to the source-
graph nodes (represented by ¢n;) whose size is restricted between minimum

3 and maximum 7.

Figure B.1 illustrates a query-graph consisting of five query-nodes and eleven
query-edges, where at most three query-edges (i.e., between ¢ny and gn;) can exist

between a pair of query-nodes in each direction.

B.2 Pattern-region

The pattern-region graph at matching phase ¢ is an ARG defined as:
G = (N}, R, AP" EP" 1P" €™, or simply GY = (NF", RY"), corresponding to a
composite-node gn; of the query-graph G?. At phase i, the pattern-region G¥" is

partially matched against the selected source-region G;?i)' Graph G¥" is defined as:

o NI {nii,niz,...,n;.} set of attributed placeholder-nodes that correspond

to a query-node gn;, where z is the total size of the placeholders in gn;. Each

B.2. PATTERN-REGION 245

placeholder-node will be matched against a node from the selected source-

region G;?i)'
o R : {ri,ry,...,7m} set of attributed edges,

o A C A* U {nil} : source-graph node attributes and node attribute
values for the matched placeholder-nodes and nillabel for the yet not-matched

placeholder-nodes.

o EP" C E*: source-graph edge attributes and edge attribute values for the

matched edges and type for yet not-matched edges.

o P C u® and € C € : functions for returning “node attribute, node
attribute value” pairs and “edge attribute, edge attribute value” pairs, re-

spectively.
The steps for generating a pattern-region G*" from a query-node ¢n; are as follows:

Step A (generic nodes): for each type t € {Function-abs, Type-abs, Variable-
abs} and with size-range (min;, maz;) in gn;, generate as many as ma;
(e.g., maxp for type Function-abs) placeholder-nodes n;’s with node-type
t and nel labels. For each placeholder-node n;x, ¢ is the matching phase
number and k is an ordering number which first enumerates all placeholder-
nodes of type Function-abs (F), then enumerates all placeholder-nodes of type
Type-abs (T), and finally, enumerates all placeholder-nodes of type Variable-
abs (V).

246 APPENDIX B. GRAPH DEFINITIONS

F:(2, 3)
F: (2, 4) T:(0, 2)
F: (2, 4) V:i(1,2) V:(0, 1)
Query node an, O
Expand g G’fr
v N1 Ny o
Pattern-region O O
~_ ™= n
Nia 13
(a) Nodes of type F (b) Nodes of types F and V (b) Nodes of types F, T, V
F: Functioon-abs ® node of type: F — call-F
T: Type-abs 2 nodeoftype: T - = use-T
V: Variable-abs m nodeoftype:V. - ------ > use-V

Figure B.2: (a) Three query-nodes with different node-types and their correspond-

ing pattern-regions.

Step B (generic edges): connect every placeholder-node of type F to every other
placeholder-node of type F, T, and V, using the edge types use-F, use-T, and
use-V, respectively. This yields a fully connected graph with respect to the

allowed edges between nodes.

Figure B.2 illustrates the expansion of three query-nodes with different types
into three pattern-regions. For example, gn; is expanded into four nodes, i.e., its

maximum number of nodes, which are fully connected to generate GY".

B.3. GRAPH CONNECTORS AND GRAPH SUMMATION 247
B.3 Graph connectors and graph summation

Edge-bundle

An edge-bundle 1s a group of edges corresponding to the partial expansion of a

query-edge gry at phase 1 of the matching process. Two cases exist as follows:

o Imported edge-bundle bi,: each single edge in the composite query-edge qry =
(qny, qn;,t) generates an imported edge-bundle bi,, where, the edges in bi,
connect every node with type ¢; in the matched-region G}'" to one node with
type t3 (i.e., sink-node) in the pattern-region G}, such that the triple (¢1,¢,t3)
is a valid triple (node-type, edge-type, node-type) in the source-graph G*. For
example, if in a query-edge ¢r. the maximum number of edges is 5, then

z € [1..5] and five imported edge-bundles biq, biy, ..., bis are generated.

o Exported edge-bundle be,: each single edge in the composite query-edge gry =
(qni, qny,t) generates an exported edge-bundle be,, where, the edges in be,
connect one node with type t; (i.e., source-node) in the pattern-region G}
to every node with type ¢; in the matched-region G}, such that the triple

(t1,t,t2) is a valid triple (node-type, edge-type, node-type) in the source-graph
G*.

Connector edges

Formally, the group of connector edges R <% is defined between two graphs, as:
Let G1 = (N1,Rl); G2 =(N2,R2) then

REeG = Loy | (ze€Ny AyeN,) V (z€ Ny A ye Ny}

248 APPENDIX B. GRAPH DEFINITIONS

Graph summation

Formally, the binary operator sum “+7 is defined between two graphs, as:
Let G =(N,R); Gl =(N1,Rl); G2=(N2,R2) then

G=G1+G2 iff

N=N1UN2 AN R=Rl1 U R2

Formally, the binary operator o-plus “4” is defined between a graph and a set
of edges, as:
Let G =(N,R); Gl=(NL,Rl); G°=(N°,R°); RRCR® then
G=Gl @ R iff
N=NlU{n|JdzeN* o (nz)eR V (z,n) € R'};
R=Rl UR

B.4 Expanding query-edge into edge-bundles

The steps for expanding a query-edge gry into a number of edge-bundles are as
follows: consider the query-node gn; and for every imported query-edge gri =

(qny, qni,t) or exported query-edge qry = (qn;, qny,t) where u < i do:

1. Using the edge-type t in gry (t € {use-F, use-T, use-V}) identify the pair of
allowed node-types (t1,t3) for the source and sink nodes in pattern-region G}"

and link module GI'", where, t1,t; € { Function-abs, Type-abs, Variable-abs}.

2. Based on the discussion on Section B.3 generate p (max size ¢ry) edge-bundles

with edge type t between p nodes of GY" and all nodes of G according to the

B.4. EXPANDING QUERY-EDGE INTO EDGE-BUNDLES 249

direction of grg. Initially, the first p nodes in the pattern-region are selected

as the source-nodes or sink-nodes of the edge-bundles.

Appendix C

Algorithms

251

252 APPENDIX C. ALGORITHMS

Algorithm control-iterative-recovery (G, entType, S) =

Description:

This algorithm generates an iterative matching-process consisting of ¢ phases
(1 € [1..|NY]). The control mechanism for advancing to the next phase or
backtracking to the previous phase is illustrated in Figure 7.1(d), where the
control mechanism maintains a list of multi-phase search-trees LQGP and
invokes the BQ)-A* search algorithm at different phases to generate the
search-trees.

Input:

GY: query-graph (NY, RY) used for creating and initializing multi-phase
search-trees at different matching phases ¢ € [1..|NY]].

entType: the type of entities to be recovered in the components.

S: system representation as the tuple (G°, D(N®)).

Output:
result of the recovery process as either matched-graph G™ or Nil.

Local variables:

QG?, newQgG?: multi-phase search-tree for current phase 7,
implemented as a queue of incomplete multi-phase tree-paths GF.

LQGP: list of all multi-phase search-trees from phase 1 to 1.

result: result of the search algorithm as matched-graph G or Nil.

Continued in the next page

OO =~ O Ut = W DN —

DN DN DN DN = = = === == O
W N H O WO =IO Tk W~ O

253

LQGr =] 1:=1 result := Nil stop := false
while stop = false do
if |ILQG?| < i then
(ng,g;(;)) := create-and-initialize-tree(G9, i,result, S)
LQG? := append(LQG", QG;)

else-if |LQGP| =1 then
QG; = LQG"[1]
(newQGY, result) := BQ-A*(QGY, Gyt i, S)
LQGP[i] := newQG?

if result # Nil A i=|N9 then

stop := ture %(SOLUTION)
else-if result # Nil then
im0l %(GO NEXT PHASE)

else-if result = Nil then
if © > 1 then
LQG? := delete-list-entry(LQGP, 1)

=i 1 %(BACKTRACK)
else-if i =1 then
stop := true %(FAIL)

return result

Figure C.1: Algorithm: control iterative-recovery

254 APPENDIX C. ALGORITHMS

Algorithm BQ-A* (QG?, Q;(Q), i, S) =

Description:

At each matching phase i, the BQ-A* algorithm receives a multi-phase
search-tree that can be just created-and-initialized (i.e., starting a new
phase 7), or can be a partially expanded multi-phase search-tree (i.e.,
backtracking has occurred). The algorithm expands the search-tree to
generate a matched-graph as a result, and returns both the result and
the search-tree which is further expanded.

Input:

QG?, newQgG?: multi-phase search-tree for current phase 7,
implemented as a queue of incomplete multi-phase tree-paths GF.

Q;Z), 1: search-space for current phase 1.

S: system representation as the tuple (G°, D(N?)).

Output:
if search succeeded then return solution G and expanded multi-phase
search-tree QG?, otherwise return Nil and empty search-tree.

Local variables:

NI . set of already matched nodes in G”.

c0Styen: cost of matching node ny with placeholder-node n; ;.

costpan: accumulated cost of matching nodes/edges in G

costyes: under-estimated cost of matching the remaining nodes in G
cost: total estimated cost of matching to get to an optimal solution.

G matched-graph as solution of the search at phase i.

Global variables:

History: list of incomplete tree-paths G"’s, used for repeated state checking.

Continued in the next page

O ~I O U = W N~

W WNNNNDNNNNDNNNN PP, PP PP, PR P22 = QO
N R O QW - WNNREFRE O O©OW-1O0C s WwWwinEF—~Lo

255

found := false
while QG # [] AN —found do

G? .= dequeue(QG?) % get lowest-cost pattern-graph.
(G (R R) =
ni; := current-placeholder-node(Gr") % get matching info.

NI = matched-nodes(G!")
COStpath 1= COSt-Of‘P“th(gfr)

if n,; = last-placeholder-node(N!") then
G =7

found := true

else
for n; € Q;Z) do
if not-repeated(History, (N/” ~ with ng)) then
(newG?, costmen) := evaluate-node-matching-cost(GY, ny, i, S)
COStpath = COStpatn + COSTmen
cost 1= coStpan + COStyest
if cost < maxCost then
G? [i] := update-pathCost (newG?[i], costpatn)
History := add-to-history(History, newG?)
Q3! = enqueue-path(QG?, newG?r)
QG? := sort(QG?, cost) % put new GP in proper slot
else
“costly newG? is discarded”
else
“repeated G? is discarded”

if found then
return (QG’, G")

else
return ([], Nil)

Figure C.2: Algorithm: B(Q)-A*

256 APPENDIX C. ALGORITHMS

Algorithm evaluate-node-matching-cost (G7, n,, i, S) =
Description:
This algorithm combines two algorithms evaluate-node-matching-cost and
inside-edge-deletion-cost discussed in Section 7.2. The algorithm matches the
current node n, from the search-space g;(;) with a placeholder-node n; ;
from the pattern-region G¥', and evaluates the overall graph-edit cost for
such matching. For each node-matching pair (n, ;,n,) in G, the edge-

matching is performed in two steps: i) inside-edge matching for G using

the edge-deletion cost ¢§? discussed in Section 6.4.2; and ii) connector-edge

matching separately for imported and exported connector-edges using

the costs discussed in Section 6.4.2.

Input:
?, ¢: multi-phase tree-path (i.e., pattern-graph) at phase 1.
ng: node to be matched from search-space Q;Z).

S: system representation as the tuple (G*, D(N*®)).

Output: pattern-graph G? (such that the pair of nodes (n; ;,n,) in G
have been matched) along with the cost of matching cost .

Local variables:

NI . set of already matched nodes in G”.

k: number of already matched nodes in G¥".
er, er: forward and reverse edges between two nodes n, and n, in G°.

M: max similarity value between two nodes in the search-space g;(;)
ed.

cd: cost of inside-edge deletion.
Cimp» Cexp: cOst of matching for imported and exported connector-edges.

€0Sten: cost of matching node n, with placeholder-node n; ;.

C

Continued in the next page

OO ~I O U = W N~

W W N NN NNNNDNDNNNDNNDNNNNPFP, PP PP PR PR RPR PR =0
— O © 0 -1 Uik WINEPE O WOW-TOC i Wi+~ o

257

% retrieve G and its attributes.

(G (R R = P

T ¢ K
n;; = get-new-unmatched-node(G")
NP .= get-matched-nodes(GF")

tmeh
k:=|N
cfff =0.0 c¢imp:=0.0 Ceap 1= 0.0
% get cost ¢ based on similarity values and existing edges.

for n, € N' do

er 1= (Ng,ny) er 1= (ny, ny) s := entAssoc(ng, ny)
if er € R° AN egp€ R° then % zero edge deletion cost
ced . ced_l_ M-—s

else-if e € R* V egp € R° then % one edge deletion cost
ed . ed + M-0.75s

Cin *— Cin L

else-if e ¢ R® A erp¢ R® then % two edge deletion cost
ced . ed + M—k0.5s

in *— Cin

% append the new matching pair (n; ;,n,) to the tree-path G.

T

G := append-to-matching-pairs (G, (ni j,nz))
gilil == g;"

% get costs Cimp and ¢y, for phase two and higher.
if = > 1 then.

(GY, Cimp) 1= import-edge-matching-cost(G, ng, i, S)

(GY, Cewp) := export-edge-matching-cost(Gr, ng, i, S)
oSt ymen 1= 54+ 0.25 X 54 (Cimp + Cerp)
return (G7, costpen)

79

Figure C.3: Algorithm: evaluate node matching cost

258 APPENDIX C. ALGORITHMS

Algorithm import-edge-matching-cost (G, ny, ¢, S) =

Description:
This algorithm matches two groups of edges as a result of matching the pair
of nodes (n; ;,nk). Two groups of edges are: i) imported edge-bundles

* .
R P from some of gmrs to G

.5 and ii) imported connector-edges
R 7 from the same G™'s to Gg(i)- In this matching, the graph-edit cost
is computed according to the imported connector-edge deletion/insertion

costs defined in Section 6.4. The steps of algorithm are in Figure C.5.

Input:

?, ¢: multi-phase tree-path (i.e., pattern-graph) at phase 1.
ny: node to be matched from search-space Q;Z).
S: system representation as the tuple (G*, D(N*®)).

Output:

pattern-graph G; (such that the connector-edges corresponding to the

pair of nodes (n; ;, ng) have been matched and updated in both pattern-region
G and link-module GI*") along with the cost of matching ¢,

Local variables:
R TP all connector-edges (i.e., edge-bundles and matched
connector-edges) between every matched-region G and

pattern-region G
R emru: 4]l connector-edges (i.e., only matched connector-edges)

between every matched-region and matched-region G'".
mry—prq . T
R; Prilbar, group of imported edge-bundles from G to G".
fnru_}prilmch .

; : set of all imported matched connector-edges from G™" to G".

mru_}prilbdl

r: number of edge-bundles in the group of all edge-bundles R,
w: id-number of link-module G

min,: minimum number of imported connector-edges to be matched.
NZre : set of all nodes in the link-module G that are impoited by
mrqy prllmch

node ny but were not previously imported by R,
Cimp: cost of matching for imported connector-edges.

Continued in the next page

= O 0 -~ O Ot = W N —

259

(G, (RY™7P7, RITEPT) = GPLi]
ni; = current-placeholder-node(GF")

Cimp 1= 0.0

% get import edges: from a link-module G to pattern-region G".
for w € [1..i—1] while ¢, < maxCost do

(if R 7Pi[u] £ NIL then % check if import link defined.
MU P g s A I

(R; , R,) = RIMTTPu]

(;)’1,7’7 (R?’lT*—)mTu7 R;’nr*%mTu)) — gf[u]
min, = €!((u, 1, edge-type)).min % get min No. of import-edges.

MPy—pr|
— bdl
ri= |Rl |no. of bundles
MPy—pry|
mch

src ,__ mr
N .= get-new-source-nodes(ng, N7, R;

R?)

b

% less than minimum number of ir_r)lport connector-edges are matched.
GE = NPT A Nge| R e

Cimp 1= maxCost

sreNodes << TNy then

7

% more than maximum number of import connector-edges matched.
else-if |N:°| > r then
Cimp 1= maxCost

% number of matched connector-edges (if any) is within the range.
else
Cimp ‘= Cimp + (
Rznru_”ﬂ”bdl
Nge = N U source-nodes(R
for ns,. € N do
if (nge,nk) € R* then

mru_}prilmch Rmru_}prilmch

| vy

T

:= delete-edge-bundles(R,

mru_}prilmch

mru_}prilbdl

IVl

) % get all source nodes.

7

with (Rsre, k)

)

[[

mru_}prilbdl mru_}prilmch

R U] = (R . R,
mry—=pri| o

R{TCmi] = (0, R,)

)
gf[u] — (mr (R:nr —>mru7 R;nr emru))

u 0

G/1i) 1= (91", (RY™™7", Ry 7))

PR))

return (G7, ¢imp)

Figure C.4: Algorithm: import edge matching cost

260 APPENDIX C. ALGORITHMS
Steps of the algorithm: import-edge-matching-cost

(1) lines 5 to 12: Iterate in a loop and at each iteration consider one matched-
region G (u € [1 .. 7 — 1]) that pattern-region GI" has import-links from it
(this is defined in AQL query text). At each iteration u perform the follow-
ing operations: i) obtain the partially-matched imported connector-edges to

Ty —PTs ..
bmeh and remaining edge-bundles

G (i.e., matched connector-edges R;
Rmru_}prllbdl); ii) obtain G and its corresponding matched connector-edges
R “emru 6 be updated at the end of the loop; iii) obtain min, to be
used for constraint violation checking; iv) obtain the number of remaining
edge-bundles r to be used for cost evaluation; and v) obtain the set of “non
previously-imported” source nodes NS (see Figure 7.3(b)) to be used for
generating the matched connector-edges. The nodes N¢ generate imported

connector-edges that are used for min/max checking and cost evaluation.

(2) lines 14 to 15: Check for violating minimum number of imported connector-
edges min,. In this case, the current placeholder-node n;; is the last
placeholder-node to be matched with ny, and the total number of imported
nodes from G;'" is less than min,. Therefore, n; is rejected with maxCost.

(3) lines 18 to 19: Check for violating maximum number of imported connector-
edges. FEach candidate node nj can potentially import between zero to all
nodes of the link-module G7". If the imported nodes in N are more than
the remaining edge-bundles r, then node ny is rejected with maxCost.

(4) lines 22 to 36: Match the imported connector-edges of ni with the im-
ported edge-bundle of n, ; as followings: i) evaluate the cost ¢;y,, of deleting
connector-edges from edge-bundle of n,; (Section 6.4.2); ii) delete n edge-
bundles from the remaining edge-bundles Rmru_}pnlbdl, where n is the num-
ber of imported fresh nodes. iii) generate all connector-edges (.., ng) that
ny imports from G (Note: ng,.. entitles both new and already imported
nodes) and add the connector-edges to the set of matched connector-edges

R:wu_)pmmh; iv) restore the new partially-matched edge-bundles (i.e., new
remaining edge-bundles and new matched connector-edges) to the group of
all connector-edges R™ ©P": and v) restore the link-module G/ with its

updated export connector-edges to the pattern-graph G7.

After all linked-modules G of the pattern-region G have been examined
in the loop, the pattern-region and its updated partially-matched connector-
edges are restored in the pattern-graph G?, which is returned along with the
accumulated cost ¢y

Figure C.5: Stepwise description of the algorithm mport-edge-matching-cost

261

Algorithm export-edge-matching-cost (G7, ny,,5) =

Description:

This algorithm matches the exported edge-bundles R™ " (from G to
some of the GI""s defined in the AQL query) with the exported connector-
edges R er (from Ggi;) to the same G'"s), that are caused by matching
the pair of nodes (n; j,nk). The corresponding costs are defined in Section
6.4. This algorithm is similar to algorithm import-edge-matching-cost, and
the only difference is that “at most one node (i.e., ny) can be exported”.
This affects the checking for minimum/maximum number of connector-edges
(lines 13 to 19) and the number of exported edges (lines 27 and 28).

Input:

P ng, : pattern-graph and node to be matched from G;’(”i),

!

at phase 1.

S: region representation of source-graph as tuple (G*, D(N?)).

Output:

pattern-graph G; (such that the connector-edges corresponding to the

pair of nodes (n; ;, ng) have been matched and updated in both pattern-region
G?" and link-module G*") along with the cost of matching ceyp.

Local variables:
Rmr*Hpr,’

. : all connector-edges (i.e., edge-bundles and matched

connector-edges) between every matched-region G/*"
and pattern-region G".
R emru: 4]l connector-edges (i.e., only matched connector-edges)
between every matched-region and matched-region G"".
P group of exported edge-bundles from G to G™".

M nen s et of all exported matched connector-edges from G to G™".

R

[

mTquTilbdl

r: number of edge-bundles in the group of all edge-bundles R,
u: id-number of link-module G".
min,: minimum number of exported connector-edges to be matched.

N#nk - set of all nodes in the link-module G™" that import the node ny.
Cezpt cost of matching for exported connector-edges.

Continued in the next page

262

OO =~ O U = W N

QO W W W WW WDNNNDNDNNNDNDNINNAFE,EFERFRERFERFERFEP B2 B2 = O
Y UL W N OO I Ui W NEHE O W10 0 Wi~ O

APPENDIX C. ALGORITHMS

(G (RJ R = g

ni; = current-placeholder-node(GF")

Ceap 1= 0.0

% get export edges: from pattern-region G to a link-module G™".
for w € [1..i—1] while ¢, < maxCost do

(if R “Pi[u] £ NIL then % check if export link defined.
(Rznru%pr“bdl? R;mm(—p?““mch) — R;nr*epri [U]
(G, (R 7mre, RETEM)) = GPlu]
min, = €!((¢,u, edge-type)).min % get min No. of export-edges.

TPy
ri= |Rl |no. of bundles

Nk = get-sink-nodes(ng, N™', R®)

u b

% less than minimum number of export connector-edges are matched.
mTquTilmch

Gf (IN7'[=7) + R,

Cezp := maxCost

no. of srcNodes < many then

% more than maximum number of export connector-edges matched.
else-if r=0 A |N:"*| >0 then
Cezp := maxCost

% number of matched connector-edges (if any) is within the range.
else

Cexp +— Ceap +1

if |N:"%| >0 then

Ceap i= Cegp — 1
Rznmep”'bdl = delete-edge-bundles(Rzn“Hm'bdl, 1)

for ngn € Ng’”k do
mTquTilmch mTquTilmch
i =R,

with (nk, nsmk)

)

mr*—pr; mry <_p”|bdl mry epr“mch
mraspri|_ o

Rl = (0, R,)

)
gf[u] . (g;nr’ (R;nr*—wnru7 R;nr*emru))

gf[l] — (gfr7 (Rmr*%pri7 R;nr*%pri))

[

return (G7, ceqp)

Figure C.6: Algorithm: export edge matching cost

Appendix D

AQL query example

This Appendix presents the AQL query for the Xfig system that is experimented

in Chapter 8.

263

264

BEGIN-AQL

TYPE-OF-ANALYSIS:
ANALYSIS-OR-DISTRIBUTE: ANA
LINK-CONSTRAINTS:

ITEM-RELOCATION:

ITEM-DISTRIBUTION:
I0-SHRINK-OR-EXPAND:
AUTO-OR-INCREMENTAL:
AUTO-ANALYSIS-SEQ:
INCREMENTAL-STEPS:
ANALYSIS-COMPONENTS:
MANUAL-COMPONENTS:

MERGE-ANALYSIS-COMPS:

DECOMPOSE-SUBSYSTEM:
COMPONENT-ASSOCIATION: YES, REST-SYSTEM, 5-STEPS
ASSOCIATION-VIEWS:

OUT--GRAPH-HTML:

SUBSYSTEM: S1-54
MAIN-SEEDS:

SHRINK-EXPAND:
IMPORTS:
RESOURCES:

EXPORTS:
RESOURCES:

CONTAINS:

FILES:

RELOCATES:
END-COMPONENT

file
file
E

rsrc
rsrc

rsrc
rsrc

file
file
file
NO:

APPENDIX D. AQL QUERY EXAMPLE

SYSTEM = I0-F = SCORE-F2

YES

NO

YES

G

AUTO

FILE

FIRST: FILE: YES
S1, S2, S3, 54, Sb

YES: S1: S4: RUN
NO: S1: 4-MODULES: STOP

YES, F, T, V, FTV, 10-STEPS
YES, CODE, ss-LINK

u_elastic,
u_drag

?7IR,
7R1(50 .. 150) S3

7ER,
7R2(40 .. 100) S3

$CL(4 .. 25),
u_elastic,
u_drag

SUBSYSTEM: S2
MAIN-SEEDS:

SHRINK-EXPAND:

IMPORTS:
RESOURCES:

EXPORTS:
RESOURCES:

CONTAINS:
FILES:

RELOCATES:
END-COMPONENT

SUBSYSTEM: S3
MAIN-SEEDS:

SHRINK-EXPAND:

IMPORTS:
RESOURCES:

EXPORTS:

RESOURCES:

CONTAINS:

FILES:

RELOCATES:
END-COMPONENT

SUBSYSTEM: Sb
MAIN-SEEDS:

SHRINK-EXPAND:

IMPORTS:
RESOURCES:

EXPORTS:
RESOURCES:

CONTAINS:
FILES:

RELOCATES:
END-COMPONENT

file

rsrc
rsrc
rsrc

rsrc

file
file
NO:

file

rsrc
rsrc

rsrc
rsrc
rsrc

file
file
NO:

file

rsrc

rsrc
rsrc

file
file
NO:

e_edit

7IR,

7R3(40 .. 100) s3,

7R4(0 .. 10) S5
7ER

$CL(4 .. 20),
e_edit

e_scale

7IR,

7R2(40 .. 100) S1-S4

7ER,

7R1(50 .. 150) S1-54,

7R3(40 .. 100) S2

$CL(4 .. 13),
e_scale

f_readtif

7IR

7ER,
7R4(0 .. 10) 82

$CL(4 .. 10),
f_readtif

265

266 APPENDIX D. AQL QUERY EXAMPLE

IMPORTS:
EXPORTS:
CONTAINS:
CLOSENESS:
DISTRIBUTES:
files e_break, d_text, d_subspline, w_zoom, e_arrow TO: ALL;
files e_align, w_rottext, e_update, w_layers, u_scale TO: ALL;

o n

files w_drawprim, u_redraw, u_create, w_modepanel, w_canvas TO: ALL;
files f_util, mode, f_readxbm, w_cursor, w_setup TO: ALL;
files f_readgif, u_print, u_pan, u_free, w_menuentry TO: ALL;
files f_neuclrtab, f_readppm, u_error TO: ALL
END-COMPONENT
END-AQL

Appendix E

Glossary of terms

267

268 APPENDIX E. GLOSSARY OF TERMS

KRRk A RRRORR

Alborz: a toolkit that implements the proposed architecture recovery and
evaluation technique in this thesis (Section 8.2 Page 179).

AQL: Architecture Query Language is a textual language for composing a
query specification that represents the architectural pattern of a software system

(Section 4 Page 77, and Section 4.2 Page 80).

abstract component: a set of placeholders where the minimum/maximum
cardinalities and the types of the placeholders are specified via the AQL query. An
abstract component interacts with other abstract components through abstract
connectors (Section 4.2 Page 80).

abstract connector: a set of placeholders that establish the interconnec-
tion among two abstract components. The minimum/maximum cardinalities and
the types of the placeholders are specified via the AQL query (Section 4.2 Page 80).

abstract domain model: a schema to represent the software system entities
and their interactions in an abstraction level that is suitable for an architectural
recovery task (Section 3.1.1 Page 44).

architectural pattern: a set of partially specified components and a number
of (size and type) constrained connectors among the components that collectively
represent a macroscopic view of the core functionalities and interactions within
the software system (Section 1.1 Page 4).

ik B woekRks

BQ-A~: Bounded queue A* search algorithm proposed in this thesis,
where the size of the sorted queue for the incomplete tree-paths has been re-
stricted within a range, typically multiple hundreds of paths (Section 6.5 Page 142).

sk (O Rk

component: A named grouping of system entities (such as files, functions,
datatypes, and variables) that imports and exports simple entities (such as
functions, datatypes, and variables) from/to other groups of entities. A component
is either a subsystem or a module (Section 4.1 Page 78).

composite entity: a file in the abstract domain model that contains a set
of simple entities such as functions, datatypes, and variables (Section 3.1.1 Page 50).

269

connector: defined between two components as a group of simple entities that
are defined in the source component and are used by the destination component
(Section 1.1 Page 4).

connector-edges: a group of edges, denoted by R“1 %2 that connect two
graphs G; and Gy in uni-directional (using + or —) or bidirectional (using <)
mode (Section 5.2.4 Page 108).

cont-R: containment relation between a file and a simple entity in the abstract
domain model, such that each simple entity can be contained in only one file

(Section 3.1.1 Page 50).

SRR E I D IS

domain of a node (entity) D"i: a set of source-graph nodes (along with
their similarity values to n;) that are associated with node n;, where n; is called
the main-seed of the domain (Section 3.3.2 Page 71).

oo | Rk

edge-bundle: a group of edges with a specific type that connect every node
in a matched-region G?7" to one node (either a common sink-node or a common
source-node) in the pattern-region G¥" such that the types of the nodes conform
with the type of edge-bundle and u < i. (Section 5.2.4 Page 107).

entity association: similarity measure between two simple entities e; and e;
based on the maximal association among a group of simple entities including e;
and e;, and denoted as entAssoc(e;, e;) (Section 3.3 Page 64).

environment: a set of techniques along with a process that collectively perform
a specific task (Section 1.6 Page 15, and Section 8.2 Page 179).

export: a component (or a file) exports all its contained simple entities that
are used by the simple entities that it does not contain (Section 4.1 Page 78, and
page 94).

exp-R: relation export that is defined between a file and a simple entity
(resource) in the abstract domain model (Section 3.1.1 Page 51).

270 APPENDIX E. GLOSSARY OF TERMS

RS T NS

file-level: an abstraction level where “file” is the highest granularity level of
the system entities (Section 3.1.1 Page 50).

frequent itemset: in data mining algorithms, a set of items that is contained
in every basket of a group of baskets (called supporting transactions). The
cardinality of this group of baskets must be greater than a user-defined threshold
called minimum support (Section 3.2.2 Page 60).

function-level: an abstraction level where “function” is the highest granularity
level of the system entities (Section 3.1.1 Page 49).

spoor (3 RRRRRx

graph summation: the notations “plus +” for connecting two graphs, and
“oplus &7 for connecting a graph to a group of connector-edges are used to model
the pattern matching process as graph algebraic equations (Section 5.2.4 Page 109).

group association: similarity measure between two groups of entities g; and
g; such as two files, based on the “entity association” similarity between every
pair of entities one entity in each group, denoted as groupAssoc(g;, g;) (Section 3.4

Page 72).

sk [Rk

import: a component (or a file) imports all the simple entities that are used
by its contained simple entities, but are not contained by that component (file)

(Section 4.1 Page 78, and Page 93).

imp-R: relation import that is defined between a file and a simple entity
(resource) in the abstract domain model (Section 3.1.1 Page 51).

input-graph G/: a sub-graph of the source-graph G?®. The input-graph and
pattern-graph G* are supplied to the matching process at phase 7 to be matched
and produce the matched-graph G7* (Section 5.2.7 Page 115).

itemset: refer to “frequent itemset” in this glossary.

271

s N[Rk

main-seed: refer to “domain of a node” in the glossary.

matching phase: the whole pattern matching process is divided into k
incremental phases, where k£ is the number of AQL query abstract-components
and the current matching phase is denoted by “¢” (Section 6.1.3 Page 121).

matched-graph Gi": the result of the matching process applied on two graphs,
pattern-graph G? and input-graph G!. (Section 5.2.5 Page 109).

matched-region GJ'": the result of matching a pattern-region GY" with a
source-region G,y at matching phase i (Section 5.2.3 Page 107).

maximal association: defined in a group of entities in the form of a maximal
set of entities that all share the same relation to every member of another maximal
set of entities (Section 3.2 Page 55).

minimum support: refer to “frequent itemset” in this glossary.

module: a component that contains simple entities and imports/exports simple
entities (Section 4.1 Page 78, and Page 99).

ik P Rk

pattern: refer to “architectural pattern” in this glossary.

pattern-graph G*: generated by incrementally expanding the query-graph
G? at different matching phases. At matching phase i: i) the iy, node of the
query-graph is expanded into a pattern-region GY"; and ii) each edge of the
query-graph between the 1;;, node and the already expanded nodes are expanded

into edge-bundles (Section 5.2.6 Page 111).

pattern-region G*": generated by expanding the 7;, node of the query-graph G¢
(gn;) at matching phase ¢, through: i) generating maximum number of placeholder
nodes defined by ¢n;; and ii) connecting every node in the pattern-region to every
other node that is allowed based on the types of the nodes (Section 5.2.2 Page 106).

placeholder: a node in the pattern-region G that can be matched with a
system entity in the source-region Gy, during the matching process (Section 4.2

Page 80).

272 APPENDIX E. GLOSSARY OF TERMS

ok ok ok ok Q ok ok ok ok

query-edge: an edge of the query-graph G (Section 5.2.1 Page 105).

query-graph G?%: a multi-graph with composite nodes (denoted as query-nodes)
and composite edges (denoted as query-edges) that describes a macroscopic pattern
of the system components and their interaction constraints (Section 5.2.1 Page 105).

query-node: a node of the query-graph (Section 5.2.1 Page 105).

rpoor Q0 Rk

simple entity: a function, aggregate/array datatype, or global variable,
defined in the abstract domain model, that is contained in a file as a composite
entity (Section 3.1.1 Page 50).

software architecture: a partition of the software system entities into cohesive
components that reflect the system characteristics and domain knowledge, and
meets the structural constraints defined by a given architectural pattern (Section

1.1 Page 3).

software architecture recovery: refers to the problem of devising a tractable
process, required techniques, and the supporting tools for interactively and
incrementally extracting a system’s structure using domain and system knowledge
(Section 1.2 Page 4, and Section 1.4 Page 8).

source-level domain model: a schema to represent the software system
entities and their interactions at the source-code level that are defined by the

corresponding programming language constructs (Appendix A.1 Page 231, and
Section 3.1.1 Page 45).

source-graph G*: graph representation of a software system for architectural
analysis that is obtained using the proposed abstract domain model (Section 3.1.2

Page 51).

subsystem: a component that contains files (composite entities) and their
contained simple entities, and imports/exports simple entities (Section 4.1 Page

78, and Page 90).

273

spopor [J 0 soewoekx

use-F': relation between two functions in the abstract domain model whose
implementations at the source-level domain model are related by the call relation

(Section 3.1.1 Page 49).

use-R: a relation between a file and a simple entity in the abstract domain
model that corresponds to a relation between a file and a simple entity in the
source-level domain model, where the file contains a function and the function
calls/reads/updates the simple entity (Section 3.1.1 Page 50).

use-T: a relation between a function and a datatype in the abstract domain
model, where the implementation of the function in the source-level domain model
reads/updates a variable, and the variable is of an aggregate/array type (Section

3.1.1 Page 49).

use-V: a relation between a function and a variable in the abstract domain
model whose implementations in the source-level domain model are related by the
read/update relation (Section 3.1.1 Page 49).

R VARE S S LT

views: views are the result of applying separation of concerns on a de-
velopment or recovery process in order to classify the related knowledge about
that process into more understandable and manageable forms (Section 2.2 Page 27).

Bibliography

[1] Rigi, URL = http://www.rigi.csc.uvic.ca/rigi/rigiindex.html.

[2] PBS: The Portable Bookshelf,

URL = http://www.turing.toronto.edu/pbs/.
[3] Xfig User Manual, URL = http://www.xfig.org/userman/.

[4] CLIPS expert system builder,
URL = http://www.ghg.net/clips/CLIPS.html.

[5] Bash Unix shell, URL = http://www.delorie.com/gnu/docs/bash/.
[6] Apache HTTP Server, URL = http://www.apache.org/httpd.html.
[7] XML: Extensible Markup Language, URL = http://www.w3.org/XML/.

[8] ELM Pages,

URL = http://www.math.fu-berlin.de/ guckes/elm/elm.index.html.

[9] Ghostview postscript file viewer,

URL =http://wwwthep.physik.uni-mainz.de/ plass/gv/.

275

276

[10]

[11]

[12]

[13]

[14]

[16]

BIBLIOGRAPHY

SEI Software Architecture Definitions,

URL = http://www.sei.cmu.edu/architecture/definitions.html.

Rakesh Agrawal, K. Lin, H. S. Sawhney, and K. Shim. Fast similarity search
in the presence of noise, scaling, and translation in time-series databases. In
Proceedings of the 21st International Conference on Very Large Databases,
pages 490-501, 1995.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-
sociation rules. In Proceedings of the 20th International Conference on Very

Large Databases, pages 487499, 1994.

Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In
Proceedings of the International Conference on Data Engineering (ICDE),
pages 3-14, 1995.

Robert Allen and David Garlan. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, 6(3):213-249,

1997.

Nicolas Anquetil and Timothy C. Lethbridge. Experiments with clustering as
a software remodularization. In Proceedings of the Sizth Working Conference

on Reverse Engineering, pages 235-255, 1999.

Denis Avrilionis and Pierre-Yves Cunin. View-based mechanisms for struc-

tured and distributed enactment. In Proceedings of the International Work-

BIBLIOGRAPHY 277

[17]

18]

[21]

[22]

23]

shop on Multiple Pespectives in Softwre Development (viewpoints '96), pages
259-262, 1996.

Sidney Bailin. Kaptur: a tool for the preservation and use of engineering

legacy. Unpublished paper, copyright Sidney Bailin, 1992.

Victor R. Basili and Richard W. Selby. Paradigm for experimentation and
empirical studies in software engineering. Reliability Engineering and System

Safety, 32(1-2):171-191, 1991.

Bell, IBM. Workgroup on Standard Exchange Format (WoSEF), Limerick,
Ireland, June 06 2000.

Pam Binns, Matt Englehart, Mike Jackson, and Steve Vestal. Domain-specific
software architectures for guidance, navigation and control. Technical report,

Honeywell Technology Center, 1994.

Garrett Birkhoft. Lattice Theory. American Mathematical Society, 1st edition,

1940.

Michael Blaha. A retrospective on industrial database reverse engineering
projects- parts 1 and 2. In Proceedings of the Working Conference on Reverse

Engineering, pages 136-153, 2001.

Ivan Bowman, Michael W. Godfrey, and Ric Holt. Connecting architecture
reconstruction frameworks. Journal of Information and Software Technology,

42(2):93-104, February 2000.

278

[24]

[25]

[26]

28]

[31]

BIBLIOGRAPHY

Ivan T. Bowman, R.C. Holt, and N.V. Brewster. Linux as a case study: its
extracted software architecture. In Proceedings of the ICSE’99, pages 555—

363, 1999.

H. Bunke and G. Allermann. Inexact graph matching for structural pattern

recognition. Pattern Recognition Letters, 1(4):245-253, 1983.

Gerardo Canfora, Jorg Czeranski, and Rainer Koschke. Revisiting the delta
ic approach to component recovery. In Proceedings of the WCRE 00, pages
140-149, 2000.

David N. Chin and Alex Quilici. Decode: A co-operative program under-
standing environment. Software Maintenance: Research and Practice, 8:3-33,

1996.

Jonathan E. Cook and Alexander L. Wolf. Automating process discovery
through event-data analysis. In IEEE 17th International Conference on Soft-

ware Engineering (ICSE), pages 73-82, 1995.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. McGraw-Hill, 1990.

John Davey and Elizabeth Burd. Evaluating the suitability of data cluster-
ing for software remodularisation. In Proceedings of the Seventh Working

Conference on Reverse Engineering, pages 268-276, 2000.

Carlos Montes de Oca and Doris L. Carver. A visual representation model for

BIBLIOGRAPHY 279

[33]

[34]

[36]

[37]

[38]

[39]

software subsystem decomposition. In Proceedings of the Working Conference

on Reverse Engineering, pages 231-240, 1998.

Thomas R. Dean and James R. Cordy. A syntactic theory of software archi-

tecture. IEEE Transactions on Software Engineering, 21(4):302-313, 1995.

Prem. T. Devanbu. Genoa - a customizable, language and front_end indepen-

dent code analyzer. In Proceedings of the 14th ICSE, pages 307-317, 1992.

M. A. Eshera and K. S. Fu. A similarity measure between attributed relational
graphs for image analysis. In Seventh International Conference on Pattern

Recognition, pages 75-77, 1984.

M. A. Eshera and King-Sun Fu. A graph distance measure for image analysis.
IEEE Transactions on Systems Man and Cybernetics, SMC-14(3):398-408,
May/June 1984.

Brian S. Everitt. Cluster Analysis. John Wiley, 1993.

Usama M. Fayyad. Advances in knowledge discovery and data mining. MIT
Press, Menlo Park, Calif., 1996.

P.J. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, et al. The software
bookshelf. IBM Systems Journal, 36(4):564-593, November 1997.

R. Fiutem, E. Merlo, G. Antoniol, and P. Tonella. Understanding the archi-
tecture of software systems. In Proceedings of the 4th Workshop on Program

Comprehension, pages 187-196, 1996.

280

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

BIBLIOGRAPHY

R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo. A cliche-based environ-
ment to support architectural reverse engineering. In IEEE International

Conference on Software Maintenance (ICSM), pages 319-328, 1996.
L. R. Foulds. Graph Theory Applications. Springer-Verlag, 1991.

C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm. On the definition of
software system architecture. In ICSE 17 Software Architecture Workshop,

April 1995.

David Garlan, Robert Monroe, and David Wile. Acme: An architecture
description interchange language. In Proceedings of CASCON’97, pages 169—
183, 1997.

David Garlan and Mary Shaw. An introduction to software architecture. In
V. Ambriola and G. Tortora, editors, Advances in Software Engineering and
Knowledge Engineering, pages 1-39. World Scientific Publishing Company,
1993.

Jean-Francois Girard and Rainer Koschke. Finding components in a hierarchy
of modules: a step towards architectural understanding. In Proceedings of the

International Conference on Software Maintenance (ICSM), 58-65 1997.

David A. Grossman and Ophir Frieder. Information Retrieval: algorithms

and Heuristics. Kluwer Academic Publishers, 1998.

John Guttag and James J. Horning. Larch : languages and tools for formal

specification. Springer Verlag, 1993.

BIBLIOGRAPHY 281

[48]

[49]

[50]

[52]

D. R. Harris, H. B. Reubenstein, and A. S. Yeh. Reverse engineering to the
architectural level. In Proceedings of the 17th ICSE, pages 186-195, 1995.

R.C. Holt, A. Winter, and A. Schurr. Gxl: Toward a standard exchange
format. In Proceedings of the Working Conference on Reverse Engineering,

pages 162-171, 2000.

Richard C. Holt. Structural manipulations of software architecture using
tarski relational algebra. In Proceedings of the Working Conference on Re-

verse Engineering, 1998.

Gerard Huet. From an informal textual lexicon to a well-structured lexical
database: an experiment in data reverse engineering. In Proceedings of the

Working Conference on Reverse Engineering, pages 127-135, 2001.

David H. Hutchens and Victor R. Basili. System structure analysis: Clus-
tering with data bindings. IEEE Transactions on Software Engineering, SE-
11(8):749-757, August 1985.

Wilfried Imrich and Sandi Klavzar. Product Graphs: Structure and Recogni-

tion. John Wiley, 2000.

Anil K. Jain. Algorithms for Clustering Data. Prentice Hall, Englewood

Cliffs, N.J., 1988.

Rick Kazman and Marcus Burth. Assessing architectural complexity. In

Proceedings of the CSMR, pages 104-112, 1998.

282

[56]

[58]

[59]

[60]

BIBLIOGRAPHY

Rick Kazman and S. Jeromy Carriere. Playing detective: Reconstruction
software architecture from available evidence. Technical Report CMU/SEI-
97-TR-010, Carnegie Mellon University, 1997.

Rick Kazman, Paul Clements, Gregory Abowd, and Len Bass. Classifying ar-
chitectural elements as a foundation for mechanism matching. In Proceedings

of the COMPSAC, pages 14-17, 1997.

Kostas Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E. Merlo. Pat-
tern matching for design concept localization. In Proceedings of the Working

Conference on Reverse Engineering (WCRE’95), pages 96-103, 1995.

Rainer Koschke. An incremental semi-automatic method for component re-
covery. In Proceedings of the Sizth Working Conference on Reverse Engineer-

ing, pages 256-267, 1999.

Rainer Koschke and Thomas Eisenbarth. A framework for experimental eval-
uation of clustering techniques. In Proceedings of the IWPC, pages 201-210,
2000.

Philippe B. Kruchten. The 441 view model of architecture. IEEFE Software,
12(6):42-50, 1995.

Thomas Kunz and James P. Black. Using automatic process clustering for
design recovery and distributed debugging. IEEE Transactions on Software
Engineering, 21(6):515-527, June 1995.

BIBLIOGRAPHY 283

[63]

[64]

[65]

[66]

[68]

[70]

Arun Lakhotia. A unified framework for expressing software subsystem clas-

sification techniques. Journal of Systems and Software, 36(3):211-231, 1997.

Arun Lakhotia and John Gravley. Toward experimental evaluation of sybsys-
tem classification recovery techniques. In Proceedings of the WCRE, pages
262-269, 1995.

K. Lano. Formal Object-Oriented Development. Springer, 1995.

Kurt Lichtner, Paulo Alencar, and Don Cowan. Using view-based models to
formalize architecture description. In Proceedings of the Third International

Software Architcture Workshop, ISAW-3, 1998.

Kurt Lichtner, Paulo Alencar, and Don Cowan. An extensible model of archi-
tecture description. In Proceedings of the 2000 ACM Symposium on Applied

Computing, pages 156-165, 2000.

Christian Lindig and Gregor Snelting. Assessing modular structure of legacy
code based on mathematical concept analysis. In Proceedings of the 19th In-

ternational Conference on Software Engineering, pages 349-359, 1997.

P. Linos, L. Aubet, Y. Dumas, P. Helleboid, and P. Tulula. Visualizing pro-
gram dependencies. Journal of Software-Practice and Experience, 24(4):387-
403, 1994.

David C. Luckham, John J. Kenny, Larry M. Augustin, James Vera, Doug

Bryan, and Walter Mann. Specification and analysis of system architecture

284

[71]

[72]

[75]

[77]

BIBLIOGRAPHY

using Rapide. IEEE Transactions on Software Engineering, 21(4):336-355,
April 1995.

David C. Luckham and James Vera. An event-based architecture defini-
tion language. IEEE Transactions on Software Engineering, 21(9):717-734,

September 1995.

S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and E. Gansner. Using
automatic clustering to produce high-level system organizations of source

code. In Proceedings of the IWPC' pages 45-53, 1998.

James Martin and Carma McClure. Diagramming Techniques for Analysts

and Programmers. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.

Nabor C. Mendonca and Jeff Kramer. Requirements for an effective architec-
ture recovery framework. In Proceedings of the Second International Software

Architecture Workshop (ISAW-2), pages 101-105, 1996.

Bruno T. Messmer and H. Bunke. A new algorithm for error-tolerant sub-

graph isomorphism detection. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 20(5):493-503, May 1998.

Brian S. Mitchell and Spiros Mancoridis. Craft: A framework for evaluating
software clustering results in the absence of benchmark decompositions. In

Proceedings of the WCRE, pages 93-102, 2001.

Robert T. Monroe. Capturing design expertise in software architecture design

BIBLIOGRAPHY 285

[79]

[81]

[82]

[84]

environments. In Proceedings of the Second International Software Architec-

ture Workshop (ISAW-2), pages 87-89, 1996.

Hausi A. Muller, Mehmet Orgun, et al. A reverse-engineering approach

to subsystem structure identification. Software Maintenance: Research and

Practice, 5:181-204, 1993.

G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion model: Bridging
the gap between source and higher-level models. In In proceedings of the 3rd
ACM SIGSOFT SFSE, pages 18-28, 1995.

Jeffery S. Poulin. Evolution of a software architecture for management infor-

mation systems. In Proceedings of the Second International Software Archi-

tecture Workshop (ISAW-2), pages 134-137, 1996.

Ruben Prieto-Diaz and James M. Neighbors. Module interconnection lan-

guages. The Journal of Systems and Software, 6(4):307-334, November 1986.

James M. Purtilo. The polylith software bus. Technical Report UMIACS-TR-
90-65, CS-TR-2469, Department of Computer Science, University of Mary-

land, College Park, MD 20742, May 1990.

A. Quilici and D. N. Chin. Decode: A cooperative environment for reverse-
engineering legacy software. In Proceedings of the 2nd Working Conference

on Reverse Engineering, pages 156-165, 1995.

Reasoning Inc., 700 E. El Camino Real, Mountain View, CA 94040, USA.

286

[85]

[36]

[87]

[39]

BIBLIOGRAPHY

Software Development Kit: Refine/C User’s Guide for Version 1.2, April

1998.

Reasoning Systems Inc., Palo Alto, CA. Refine User’s Guide, version 3.0

edition, May 1990.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, 1995.

Kamran Sartipi. Alborz: A query-based tool for software architecture recov-
ery. In Proceedings of the IEEE International Workshop on Program Com-
prehension (IWPC’01), pages 115-116, Toronto, Canada, May 2001.

Kamran Sartipi. A software evaluation model using component association
views. In Proceedings of the IEEE International Workshop on Program Com-
prehension (IWPC’01), pages 259-268, Toronto, Canada, May 2001.

Kamran Sartipi and Kostas Kontogiannis. Component clustering based on
maximal association. In Proceedings of the IEEE Working Conference on Re-
verse Engineering (WCRE’01), pages 103-114, Stuttgart, Germany, October

2001.

Kamran Sartipi and Kostas Kontogiannis. Interactive software architecture

recovery: An incremental supervised clustering approach. Technical Re-
port UW-E&CE#2002-06, Dept. E&CE, University of Waterloo, Waterloo,
Canada, April 2002.

BIBLIOGRAPHY 287

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

Kamran Sartipi and Kostas Kontogiannis. A user-assisted approach to compo-

nent clustering. Accepted for the Journal of Software Maintenance: Research

and Practice (JSM), 2002.

Kamran Sartipi, Kostas Kontogiannis, and Farhad Mavaddat. A pattern
matching framework for software architecture recovery and restructuring. In

Proceedings of the IEEE IWPC, pages 37-47, Limerick, Ireland, June 2000.

Thomas Schiex, Helene Fargier, and Gerard Verfaillie. Valued constraint
satisfaction problems: Hard and easy problems. In Proceedings of the IJCAI-
95, pages 631-637, 1995.

Artificial Intelligence Section. CLIPS Architectural Manual Version 4.3. Lyn-

don B. Johnson Space Center, jsc-23047 edition, May 1989.

Linda G. Shapiro and Robert M.Haralick. Structural descriptions and inexact
matching. IEEE Transactions on Pattern Analysis and Matching Intelligence,
PAMI-3(5):504-519, September 1981.

Mary Shaw, Robert DeLine, et al. Abstractions for software architecture
and tools to support them. IEFEE Transactions on Software Engineering,

21(4):314-335, April 1995.
Mary Shaw and David Garlan. Software Architecture. Prentice-Hall, 1995.

Michael Siff and Thomas Reps. Identifying modules via concept analysis.
IEEE Transactions on Software Engineering, 25(6):749-768, Nov./Dec. 1999.

288

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

BIBLIOGRAPHY

Brian V. Smith. Xfig architecture, September 2000. Personal e-mail corre-

spondence with author.

Dilip Soni, Robert L. Nord, and Christine Hofmeister. Software architecture
in industrial applications. In Proceedings of the 17th International Conference

on Software Engineering, pages 196-207, 1995.

Ryan D. Stansifer. The Study of Programming Languages. Prentice-Hall,
Englewood Clifts, New Jersey, 1995.

Janos Sztipanovits et al. Multigraph: An architecture for model-integrated

computing. In Proceedings of the IEEE ICECCS 95, pages 361-368, 1995.

Allan Terry et al. An annotated repository schema, domain-specific software

architecture. Technical report, TFS and ARDEC, October 1993.

S. R. Tilley, H. A. Muller, M. J. Whitney, and K. Wong. Domain-retargetable
reverse engineering. In Proceedings of the International Conference on Soft-

ware Maintenance, pages 142-151, 1993.

Qiang Tu and Michael W. Godfrey. The build-time software architecture
view. In Proceedings of the International Conference on Software Maintenance

(ICSM01), pages 398-407, 2001

Vassilios Tzerpos and R. C. Holt. Acdc: An algorithm for comprehension-
driven clustering. In Proceedings of the Seventh Working Conference on Re-

verse Engineering, pages 258267, 2000.

BIBLIOGRAPHY 289

[107]

[108]

109]

[110]

[111]

[112]

[113]

[114]

Vassilios Tzerpos and Richard C. Holt. Software botryology: Automatic
clustering of software systems. In Proceedings of the International Workshop

on Large-Scale Software Composition, pages 811-818, 1998.

J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM,
23(1):31-42, January 1976.

Arie van Deursen and Tobias Kuipers. Identifying objects using cluster and
concept analysis. In Proceedings of the 1999 International Conference on

Software Engineering, pages 246255, 1999.

Ernest Wallmuller. Software Quality Assurance: A Practical Approach. Pren-
tice Hall, New York, 1994.

Douglas B. West. Introduction to Graph Theory. Prentice Hall, 1996. Page
19.

T. A. Wiggerts. Using clustering algorithms in legacy systems modularization.
In Proceedings of the Fourth Working Conference on Reverse Engineering,
pages 33-43, 1997.

Steven G. Woods, A. Quilici, and Q. Yang. Constraint-Based Design recov-
ery for Software Reengineering: Theory and Ezperiments. Kluwer Academic

Publishers, 1998.

Steven G. Woods and Qiang Yang. Program understanding as constraint

satisfaction. In Proceedings of Second Working Conference on Reverse Engi-

neering, pages 314-323, 1995.

290 BIBLIOGRAPHY

[115] J. B. Wordsworth. Software Development with Z. Addison-Wesley, 1992.

[116] Jingwei Wu and Margaret-Anne D. Storey. A multi-perspective software vi-
sualization environment. In Proceedings of the CASCON conference, pages

41-50, 2000.

[117] John. A. Zachman. A framework for information systems architecture. IBM

Systems Journal, 26(3):276-292, 1987.

