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Abstract

Radio frequency identification (RFID) is a key technology for the Internet of Things era. One
important advantage of RFID over barcodes is that line-of-sight is not required between readers
and tags. Therefore, it is widely used to perform automatic and unique identification of objects
in various applications, such as product tracking, supply chain management, and animal identi-
fication. Due to the vulnerabilities of wireless communication between RFID readers and tags,
security and privacy issues are significant challenges. The most popular passive RFID proto-
col is the Electronic Product Code (EPC) standard. EPC tags have many constraints on power
consumption, memory, and computing capability. The field of lightweight cryptography was cre-
ated to provide secure, compact, and flexible algorithms and protocols suitable for applications
where the traditional cryptographic primitives, such as AES, are impractical. In these lightweight
algorithms, tradeoffs are made between security, area/power consumption, and throughput.

In this thesis, we focus on the hardware implementations and optimizations of lightweight
cryptography and present the Simeck block cipher family, the WG-8 stream cipher, the Warbler
pseudorandom number generator (PRNG), and the WGLCE cryptographic engine.

Simeck is a new family of lightweight block ciphers. Simeck takes advantage of the good
components and design ideas of the SIMON and SPECK block ciphers and it has three instances
with different block and key sizes. We provide an extensive exploration of different hardware
architectures in ASICs and show that Simeck is smaller than SIMON in terms of area and power
consumption.

For the WG-8 stream cipher, we explore four different approaches for the WG transformation
module, where one takes advantage of constant arrays and the other three benefit from the tower
field constructions of the finite field F28 and also efficient basis conversion matrices. The results
in FPGA and ASICs show that the constant arrays based method is the best option. We also
propose a hybrid design to improve the throughput with a little additional hardware.

For the Warbler PRNG, we present the first detailed and smallest hardware implementations
and optimizations. The results in ASICs show that the area of Warbler with throughput of 1 bit
per 5 clock cycles (1/5 bpc) is smaller than that of other PRNGs and is in fact smaller than that of
most of the lightweight primitives. We also optimize and improve the throughput from 1/5 bpc
to 1 bpc with a little additional area and power consumption.

Finally, we propose a cryptographic engine WGLCE for passive RFID systems. We merge
the Warbler PRNG and WG-5 stream cipher together by reusing the finite state machine for
both of them. Therefore, WGLCE can provide data confidentiality and generate pseudorandom
numbers. After investigating the design rationales and hardware architectures, our results in
ASICs show that WGLCE meets the constraints of passive RFID systems.

iii



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors Professor
Mark Aagaard and Professor Guang Gong for their tremendous support, guidance, and encour-
agement during the past four and a half years. The continuous help and advice have solved a
lot of difficulties I encountered during my research. Their extensive knowledge and expertise in
the field have always inspired and motivated me for my research from both the theoretical and
practical points of view. Throughout their guidance, I have gained a lot of confidence, which
help me think deeply to shorten the gap of the theoretical cryptographic research, hardware im-
plementations, and actual applications. Thanks to the positive attitude towards work and life that
the professors have provided, the past four and a half years have been an unforgettable time in
my entire life that has given me a tremendous development, both academically and personally.

I would also like to express my appreciation to Professor Yunsi Fei From Northeastern U-
niversity for serving as my external examiner and giving me many valuable suggestions and
comments. I am also grateful to my thesis committee members Professor Anwar Hasan, Profes-
sor Hiren Patel, and Professor Alfred Menezes for their valuable comments and time spent on
my thesis, which help to improve the quality of my thesis a lot. This thesis would not have been
possible without their guidance and assistance.

I would like to give special thanks to all my colleagues and friends during my PhD studies for
their enormous support and valuable discussions. I thank Dr. Xinxin Fan for his help, guidance,
and collaboration during the first two years of my study. I thank Dr. Bo Zhu and Dr. Valentin
Suder for collaborating on writing a paper with me. I thank Dr. Fei Huo and Nusa Zidaric for
helping me polish my English writings. I thank Dr. Kalikinkar Mandal for his help during my
last term of studies. Thanks are also given to all the members from the Communication Security
(ComSec) lab at University of Waterloo for their support and friendship. They are: Dr. Yin
Tan, Kaveh Fazli, Dr. Teng Wu, Shasha Zhu, Yao Chen, Qiao Liu, Bo Yang, Khaled Nassar, Dr.
Hayssam EI-Razouk, Ahmed Ayoub, Meng Yang, and many others.

I would like to thank ComSec seminars and the conferences that I have attended (WESS 2013,
NIST lightweight workshop 2015, CHES 2015, SAC 2016), which broadened my knowledge and
provided me opportunities to exchange ideas with others.

Last but not least, I would like to thank my family for their unconditional and endless love.
I am indebted to my parents and my brother for their support, encouragements and sacrifices
throughout my life. My deepest gratitude goes to my mother for her endless support and love.
None of my work would have been possible without them.

iv



Dedication

To my dearest father
To my loved mother

To my brother

v



Table of Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Finite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Feedback Shift Register Sequences . . . . . . . . . . . . . . . . . . . . 8

2.1.3 The WG Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Symmetric Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Lightweight Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Lightweight Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Lightweight Stream Ciphers . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Hardware Design and Optimization . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Hardware Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Reuse, Parallelism and Clock Gating . . . . . . . . . . . . . . . . . . . . 24

vi



2.4.3 Choice of Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 Tower Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 EPC Passive RFID Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 The Simeck Family of Lightweight Block Ciphers 31

3.1 Design Specification and Rationale . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Specification of Simeck . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Hardware Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Metrics and Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Two Different Hardware Architectures for Simeck . . . . . . . . . . . . 37

3.2.3 Hardware Evaluations of Simeck . . . . . . . . . . . . . . . . . . . . . 42

3.3 Results Comparison between Simeck and SIMON . . . . . . . . . . . . . . . . . 45

3.4 Comparisons with Other Lightweight Block Ciphers . . . . . . . . . . . . . . . 48

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Design Space Exploration of the Lightweight Stream Cipher WG-8 51

4.1 Description of WG-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Parameters for WG-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Overview of WG-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.3 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Design Strategies for the WG-8 Transformation Module . . . . . . . . . . . . . 56

4.2.1 Using Constant Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Using Tower Field 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Using Tower Field 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Using Tower Field 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.5 Hybrid Design Architectures for WG-8 . . . . . . . . . . . . . . . . . . 69

4.3 Design Strategies for the Multiplication by ω Module . . . . . . . . . . . . . . . 70

vii



4.3.1 Using Finite Field Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Using Constant Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Hardware Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 FPGA Implementations and Results . . . . . . . . . . . . . . . . . . . . 72

4.4.3 ASIC Implementations and Results . . . . . . . . . . . . . . . . . . . . 74

4.5 Results Analysis and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Different Tower Field Methods Analysis . . . . . . . . . . . . . . . . . . 75

4.5.2 Comparisons with Other Lightweight Stream Ciphers . . . . . . . . . . . 77

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Warbler Pseudorandom Number Generator 79

5.1 Description of Warbler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 ASIC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Entire Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.3 Datapath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.4 Throughput Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Results Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 ASIC Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.2 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Comparisons with Other Lightweight Primitives . . . . . . . . . . . . . . . . . . 94

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 WGLCE: A Cryptographic Engine for Passive RFID Systems 98

6.1 WGLCE: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 A New Efficient Hardware Implementations of Ultra-lightweight Stream Cipher
WG-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



6.2.1 Description of WG-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Hardware Architecture of WG-5 . . . . . . . . . . . . . . . . . . . . . . 102

6.2.3 ASIC Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Design and Implementations of WGLCE . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Hardware Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Implementation Results and Analysis . . . . . . . . . . . . . . . . . . . 107

6.3.3 Interface of WGLCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Conclusions and Future Work 113

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

References 117

ix



List of Tables

2.1 Ten SIMON and SPECK Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 SIMON and SPECK Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Differences between SIMON and Simeck . . . . . . . . . . . . . . . . . . . . . 36

3.2 The Areas of Basic Gates in the Libraries . . . . . . . . . . . . . . . . . . . . . 37

3.3 Our Implementation Results of Simeck32/64, 48/96, 64/128 in 130nm . . . . . 42

3.4 Our Implementation Results of SIMON32/64, 48/96, 64/128 in 130nm . . . . . 43

3.5 Our Implementation Results of Simeck32/64, 48/96, 64/128 in 65nm . . . . . 44

3.6 Our Implementation Results of SIMON32/64, 48/96, 64/128 in 65nm . . . . . . 45

3.7 Breakdown of the Implementation Results for Simeck before the Place and
Route in 130nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Comparisons of Hardware Implementations of Lightweight Block Ciphers . . . . 49

4.1 Tower Construction F(24)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Exponentiation Table Texp in Hexadecimal Notation . . . . . . . . . . . . . . . . 59

4.3 Logarithm Table Tlog in Hexadecimal Notation . . . . . . . . . . . . . . . . . . 59

4.4 Tower Construction F(24)2 with Normal Bases . . . . . . . . . . . . . . . . . . . 62

4.5 Tower Construction F((22)2)2 with Normal Bases . . . . . . . . . . . . . . . . . . 64

4.6 Multiplexers and Registers During the Two-clock Computation of WGP-8(x19) . 68

4.7 The Area, Speed, and Power Consumption Results of FPGA Implementations . . 73

4.8 Area, Speed, and Power Consumption Results for ASIC Implementations in 65nm 75

x



4.9 Area, Speed, and Power Consumption Results for ASIC Implementations in 130nm 76

4.10 The Best Choice of the Tower Field Methods for Different Metrics . . . . . . . . 76

4.11 The Number of Multipliers and Multiplexers, and the Area of Them in FPGA . . 77

5.1 States Transition Conditions for FSM . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Throughput Improvement of Warbler . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Our Implementation Results of Warbler in CMOS 65nm and CMOS 130nm . . . 91

5.4 The Sequential Logic Ratios of Warbler . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Breakdown of the Implementation Results of Warbler before the Place and Route
Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 The Area Reduction Percentages by using Compile Ultra and Compile Ultra plus
Clock Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 The WGT1-5 and WGT2-5 Constant Arrays . . . . . . . . . . . . . . . . . . . 94

5.8 Comparisons with Hardware Implementations of Lightweight Primitives . . . . . 95

6.1 Different Design Options for WGLCE . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 States Transition Conditions for FSM in WG-5 . . . . . . . . . . . . . . . . . . 103

6.3 ASIC Implementation Results of WG-5 in CMOS 65nm and 130nm . . . . . . . 104

6.4 States Transition Conditions for FSM in WGLCE . . . . . . . . . . . . . . . . . 106

6.5 ASIC Implementation Results of WGLCE in CMOS 65nm . . . . . . . . . . . . 108

6.6 ASIC Implementation Results of WGLCE in CMOS 130nm . . . . . . . . . . . 108

6.7 Breakdown of the Area Results for WGLCE before the Place and Route in 130nm 108

6.8 The Old Initial Value Pattern for the Internal States of Warbler . . . . . . . . . . 109

6.9 The New Initial Value Pattern for the Internal States of Warbler . . . . . . . . . 110

6.10 The Location of Keys and IVs . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.11 Comparisons with the Existing Cryptographic Engines . . . . . . . . . . . . . . 112

xi



List of Figures

2.1 Feedback Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Block Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Block Cipher Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 General Structure of a Stream Cipher . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Design Tradeoffs between Security, Area, and Throughput . . . . . . . . . . . . 12

2.6 The Round Function of SIMON . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 The Key Expansion of SIMON . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 The Round Function of SPECK . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 SPECK Key Expansion, where Ri is the SPECK Round Function with i acting as
the Round Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 The Trivium Stream Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.11 The Grain Stream Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.12 The WG Stream Cipher Family . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.13 Hardware Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.14 Reuse the Multiplier in Two Consecutive Clock Cycles. . . . . . . . . . . . . . . 24

2.15 Clock Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.16 The Description of an RFID System . . . . . . . . . . . . . . . . . . . . . . . . 27

2.17 The Inventory and Access Protocol between the Reader and the Tag . . . . . . . 28

2.18 Threats of an RFID System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 The Round Function of Simeck . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xii



3.2 The Key Expansion of Simeck, where RC⊕(zj)i is the Simeck Round Function
with C ⊕ (zj)i Acting as the Round Key . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Parallel Architecture for Simeck . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Fully Serialized Architecture for Simeck . . . . . . . . . . . . . . . . . . . . . 40

3.5 The Top-level I/O Interface between the Cipher and the Outside Environment . . 41

3.6 Comparison of Areas (before the Place and Route) between the Implementation
Results of the NSA Researchers’ and Ours in CMOS 130nm . . . . . . . . . . . 46

4.1 The Initialization Phase of the Stream Cipher WG-8 . . . . . . . . . . . . . . . 54

4.2 The Running Phase of the Stream Cipher WG-8 . . . . . . . . . . . . . . . . . . 55

4.3 The High-Level Hardware Architecture of the Stream Cipher WG-8 . . . . . . . 56

4.4 The Hardware Architecture of the WG-8 Transformation Module WGT-8(x19) . 61

4.5 The Hardware Architecture of Module (·)23−1 . . . . . . . . . . . . . . . . . . . 61

4.6 The Integrated Hardware Architecture for Computing WGP-8(x19) and WGT-8(x19) 68

4.7 The Hybrid Design for the Constant Array based Method . . . . . . . . . . . . . 70

5.1 Key/IV Initialization and Running Phases of Warbler . . . . . . . . . . . . . . . 81

5.2 The Top-level Architecture of Warbler . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Datapath of Warbler for Throughput of 1/5 bpc . . . . . . . . . . . . . . . . . . 87

5.4 Datapath of Warbler for Throughput of 1 bpc . . . . . . . . . . . . . . . . . . . 90

6.1 The Initialization and Running Phases of WG-5 . . . . . . . . . . . . . . . . . . 101

6.2 The Top Level Hardware Architecture of WG-5 . . . . . . . . . . . . . . . . . . 102

6.3 The Datapath of WG-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Hardware Architecture with FSM Reuse for WGLCE . . . . . . . . . . . . . . . 106

6.5 Hardware Architecture without FSM Reuse for WGLCE . . . . . . . . . . . . . 107

xiii



Chapter 1

Introduction

In recent years, the Internet of Things (IoT) has become pervasive, with many resource con-
strained and tiny devices deployed on a large scale and communicating wirelessly with each
other and with the Internet at large. Traditional cryptographic primitives, which are designed for
desktop computing, do not fit into the constraints of these tiny devices. Therefore, developing
security and privacy solutions for these devices and protecting the transmitted and stored data
are increasingly important.

1.1 Motivation

Among IoT devices, the Radio Frequency Identification (RFID) system is widely used to perform
automatic and unique identification of objects [93]. One important advantage of RFID over
barcodes is that line-of-sight is not required. Therefore, it is deployed in various applications,
such as product tracking, supply chain management, and animal identification [40]. The growth
of RFID has been astounding, and the number of RFID tags is expected to grow to 25 billion by
2020 just for retail apparel and shoes with more tags deployed on high value items [4].

A typical RFID system consists of three components: tags, readers and a back-end database
[110, 40, 43]. Each tag is issued with an unique identification number and is attached to an
object. Complex tags store information about the object, such as model and serial number, date of
production, etc. The readers wirelessly communicate and track these objects via the interrogation
process to the tag in order to obtain their data. After that, the readers exchange information
about the object with the database through a secure channel. Depending on the power sources
of RFID tags, they can be classified into three categories: active, semi-passive, and passive.

1



Active and semi-passive tags contain batteries. In contrast, passive tags perform computation
and communication by using the energy received from the reader’s RF electromagnetic signal.
We focus on passive RFID systems in this thesis.

The most popular and widely adopted standard for passive RFID systems is the Electronic
Product Code (EPC) Class 1 Generation 2 (EPC C1 G2) standard [2, 3], which is also included
in the ISO 18000-6 standard. EPC systems operate on the ultra high frequency (UHF) band
(860 MHz-960 MHz), the unique identification number is an EPC number, and the read range is
around 10 meters. The passive EPC RFID tags are required to be very tiny and inexpensive, i.e.,
about 5 to 10 cents for each tag, due to large scale deployment [110]. These properties dictate that
EPC tags have inherent limited capabilities, such as very limited power consumption, constrained
memory and computing capability.

Since the first version of the EPC C1 G2 standard released in 2008 [2], the security and
privacy concerns have attracted a lot of attention [104, 59, 9], because there are no cryptographic
mechanisms to protect the tags’ data. Due to the vulnerabilities of wireless communication
between readers and tags, the attacker can easily get the EPC number and access the stored
data through an unauthorized reader by eavesdropping, leading to unexpected behaviour, such as
malicious tracking of the object and modification of tags’ stored data, etc.

Traditional cryptographic primitives which are normally well-suited for desktop computing,
such as AES, are often too big and impractical due to the tags’ constrained resources. Moreover,
public-key cryptography is infeasible for these applications [77]. In general, the well accept-
ed maximum area limit of the security functions for the tags are 2000 GEs (Gate Equivalents)
[60, 9, 119, 100], which is around 10% of the total area of an entire tag. However, the small-
est available hardware implementation of AES in CMOS 180nm Application Specific Integrated
Circuit (ASIC) requires 2400 GEs [82]. In order to overcome this challenge, lightweight cryp-
tography is devised to provide secure, compact, and flexible algorithms and protocols that fit into
the constraints of resource constrained devices. The term lightweight is used broadly to mean
that an algorithm is suitable for use on a constrained platform. In these lightweight algorithm-
s, tradeoffs are made between security, area/power consumption, and throughput. Generally, a
lower security level than AES is often sufficiently enough, because the amount of encrypted data
is tiny during the device’s lifetime [12]. There are currently no well accepted power consump-
tion and throughput requirements. The power consumption depends on multiple factors, such as
activity factor, clock speed, operating voltage, and the adopted CMOS technology. Thus, it is
hard to give an upper bound on the allowed power or energy, but it should be kept as small as
possible. The minimum throughput requirement relies on the specific applications.

In recent years, a lot of lightweight algorithms were proposed, such as the stream ciphers Triv-
ium [27], Grain [55] and lightweight WG (Welch-Gong) stream ciphers (WG-5 [7], WG-7 [71],
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WG-8 [35]); block ciphers TEA [112], XTEA [86], HIGHT [56], SEA [105], PRESENT [17],
KATAN and KTANTAN [26], CLEFIA [103], LED [49], PRINCE [18], EPCBC [117], K-
LEIN [47], LBlock [113], Piccolo [102], Twine [106], SIMON and SPECK [11] and QTL [68].
In particular, CLEFIA, PRESENT, and Trivium have been adopted by the ISO/IEC Standard
29192. PRESENT-80 and Grain-128 have been adopted by ISO/IEC Standard 29167, which
provides the cipher suite for the RFID air interfaces. This cipher suite has been specified in the
second version of the EPC C1 G2 standard released in 2013 [3], which includes a security exten-
sion framework, such as encryption, authentication, etc. Recently, National Institute of Standards
and Technology (NIST) began an effort to standardize lightweight cryptography [5].

According to the aforementioned area, power consumption and throughput requirements, the
highly optimized hardware implementations of lightweight cryptography are important for con-
strained applications. Different cryptographic primitives, such as block ciphers, stream ciphers,
and pseudorandom number generators (PRNGs) have different parameters and structures, which
affect the hardware implementations and optimizations. Moreover, the hardware performance of
the primitive will also influence the parameters and structure selections. As a result, significant
emphasis has been given to the hardware implementations in cryptography competition projects,
such as stream ciphers in eSTREAM [34], lightweight cryptography in NIST [5], and authenti-
cated encryption candidates in CAESAR [20]. To support multiple security needs, implementing
multiple cryptography primitives on a constrained device is non-trivial. For example, integrating
a PRNG and an encryption algorithm to EPC tags with minimal cost is challenging.

The main research presented in this thesis is to explore efficient low area/power consumption
hardware implementations and optimizations of lightweight cryptography, including lightweight
stream cipher, lightweight block cipher, lightweight PRNG, and a lightweight cryptographic
engine with multiple security functions. With evaluations of the hardware architectures, the
impact on selecting appropriate design parameters for a smaller cipher design is also investigated.

1.2 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 provides some background and related work. The mathematical background relat-
ed to finite field, feedback shift register sequences, and the WG transform are firstly reviewed.
Then, the related work of lightweight cryptography is provided, and lightweight block ciphers
SIMON and SPECK, lightweight stream ciphers Trivium, Grain, and WG are described in de-
tail. We give several efficient hardware implementation techniques, including exploitation of
parallelism, clock gating, component reuse and optimizations achieved by choosing appropriate
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subfields and different bases representations. Finally, we present the description of the EPC C1
G2 passive RFID system. Additional related work appears in each chapter.

Chapter 3 proposes Simeck, a new family of lightweight block ciphers, which is very suit-
able for resource constrained devices. Simeck takes advantage of the good components and
design ideas of SIMON and SPECK, and it targets low area/power consumption implementations
while still keeping a reasonable throughput and maximum frequency. We provide an extensive
exploration of different hardware architectures in order to make a balance between area, through-
put, and power consumption for SIMON and Simeck in both CMOS 65nm and CMOS 130nm
ASICs. We show that it is possible to design a smaller cipher than SIMON in terms of area and
power consumption.

Chapter 4 presents the design space exploration of the lightweight stream cipher WG-8 for
low-cost FPGA and CMOS 65nm and CMOS 130nm ASICs. We explore four different ap-
proaches for the WG transformation module, where one takes advantage of the constant arrays
and the other three benefits from the tower constructions of finite field F28 and also efficient ba-
sis conversion matrices. Many design options have been explored to make trade-offs in terms of
area, power consumption as well as throughput. Consequently, the results for FPGA and ASICs
are given, and comparisons with other lightweight stream ciphers are provided.

Chapter 5 evaluates hardware implementations and optimizations of Warbler PRNG in C-
MOS 65nm and CMOS 130nm ASICs. We propose an architecture and a standard interface for
the implementations of Warbler with throughput of 1 bit per 5 clock cycles (1/5 bpc). More
importantly, we also improve the throughput from 1/5 bpc to 1 bpc with a little additional area
and power consumption. In addition, the LFSR counter-based design is better than the binary
counter-based design in terms of smaller area and lower total power consumption. The compar-
isons with other PRNGs and lightweight primitives are also given.

Chapter 6 proposes a lightweight cryptographic engine WGLCE for passive RFID systems.
WGLCE is a fusion of the Warbler PRNG and the lightweight stream cipher WG-5, which can
be easily integrated into the RFID systems. We investigate the rationale and design choices for
WGLCE and explore its different hardware architectures and implementations in CMOS 65nm
and CMOS 130nm ASICs. Moreover, we provide an interface for its usage. Finally, we compare
our results with other lightweight cyptographic engines.

Chapter 7 concludes this thesis and discusses the future potential research directions.

1.3 Contributions

The main contributions of this thesis are summarized as follows:
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1. The Simeck family of lightweight block ciphers.

• The smallest block cipher family with key schedule.

• Improved SIMON’s round function by choosing new shift numbers.

• Reduced size of Simon’s key schedule by choosing a new LFSR polynomial.

• First published detailed implementation of fully-serialized Feistel architecture.

2. The lightweight WG-8 stream cipher.

• A hybrid design architecture for providing parallelism from 1 bit per clock cycle
(bpc) to 11 bits per clock cycle.

• Hardware implementation and analysis of constant arrays and three tower field based
methods.

3. The lightweight Warbler PRNG.

• Detailed and smallest hardware implementations of Warbler.

• Throughput improvement from 1 bit per five clock cycles to 1 bit per clock cycle.

4. The lightweight WGLCE cryptographic engine.

• A cryptographic engine which merges WG-5 and Warbler to provide two function-
alities: data confidentiality and generating pseudorandom numbers.

• Hardware implementation analysis of different architectures.

• Loading pattern that simplifies the work of the external environment.

5. Overall lessons.

• Analysis of effects on area and power consumption by use of clock gating and binary
vs LFSR counters.
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Chapter 2

Background

In this chapter, we first recall some mathematical background in Section 2.1. Then, Section 2.2
presents the description of symmetric key cryptography. Section 2.3 reviews a selection of related
lightweight symmetric ciphers. In addition, several typical hardware optimization techniques are
discussed in Section 2.4. Finally, Section 2.5 describes the system and security issues for a
typical passive RFID system.

2.1 Mathematical Background

In this section, we review some mathematical background on finite fields, sequences, and the
WG transformation. For details, the readers are referred to [45, 44, 52, 80].

2.1.1 Finite Field

Let F2 be the finite field with two elements 0 and 1, and F2t be an extension field over the finite
field F2 with 2t elements, defined by an irreducible polynomial.

A polynomial f(x) is irreducible over F if f(x) is only divisible by c or by cf(x), where
c ∈ F. An irreducible polynomial f(x) of degree t over F2 is primitive polynomial if f(x) |
(x2

t−1 − 1) but f(x) - (xr − 1) when r < 2t − 1.

Polynomial and Normal Bases

The basis is used to represent the elements in finite field.
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Definition 1 Let α be a defining element of F2t , which is a root of an irreducible polynomial
p(x), i.e., p(α) = 0, where p(x) is an irreducible polynomial of degree t over F2. Then, the
polynomial basis of F2t is given by {1, α, α2, · · · , αt−1}. Thus, any element in F2t can be
represented as A = a0 + a1α + a2α

2 + · · ·+ at−1αt−1, ai ∈ F2.

Definition 2 Let β ∈ F2t , and if the t elements of the set {β, β2, β22 , · · · , β2t−1} are linearly
independent over F2t , then we call this set as a normal basis of F2t over F2. Thus, every element
in F2t can be written as A = a0β + a1β

2 + a2β
22 + · · ·+ at−1β2t−1

, ai ∈ F2.

Change of Bases

For every element A ∈ F2t , it can be represented using any basis. We choose two bases Ψ1 =
{α0, α1, · · · , αt−1} and Ψ2 = {β0, β1, · · · , βt−1} of F2t . Assume {ai} ∈ F2 and {bi} ∈ F2

are coordinates of A with respect to Ψ1 and Ψ2 respectively. Let a = (a0, a1, · · · , at−1) and
b = (b0, b1, · · · , bt−1), and assume ΨT

2 = C ·ΨT
1 , then,

A =
∑t−1

0 aiαi = a ·ΨT
1 ,

=
∑t−1

0 biβi = b ·ΨT
2 = b · C ·ΨT

1 .

Thus, a = b · C, where C is defined as the conversion matrix.

Subfield

Definition 3 Let F2n be a finite field with q = 2n elements, and F2n contains a subfield F2m if
and only if m is a positive divisor of n. An element α ∈ F2n is in the subfield α ∈ F2m if and only
if α2m = α.

Let n = m · k. Then we may consider F2n as an extension field of F2m . Thus, an element
of F2n (i.e., A ∈ F2n) can be expressed as a linear combination of elements in F2m based on
a basis with k elements. Assume {γ0, γ1, · · · , γk−1} is a basis of F2n over F2m , then we have
A =

∑k−1
0 aiγi, ai ∈ F2m .

Trace

Definition 4 Let x ∈ F2t , and the trace function for x from F2t to F2 is defined by: Trace(x) =
x+ x2 + x2

2
+ · · ·+ x2

t−1
. For α ∈ F2t , we simply denote it as Tr(α).
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Theorem 1 The trace function satisfies the following properties.

i. Tr(x+ y) = Tr(x) + Tr(y) for all x, y ∈ F2t .

ii. Tr(cx) = cTr(x) for all c ∈ F2, and x ∈ F2t .

iii. Tr(c) = tc (mod 2) for c ∈ F2.

iv. Tr(x2
i
) = Tr(x)2

i
= Tr(x) for any positive i.

2.1.2 Feedback Shift Register Sequences

Feedback shift registers (FSRs) are common building block for cryptography. A binary sequence
{ai}i≥0, ai ∈ F2 can be generated by an n-stage FSR, as shown in Figure 2.1. The recursive

a0a1a2an−1 · · ·an−2 an−3

f

Output

Sequence

· · ·

Figure 2.1: Feedback Shift Register

relation of the FSR is defined as

an+k = f(ak, ak+1, · · · , an+k−1), k ≥ 0,

where (a0, a1, · · · , an−1) is an initial state and any n consecutive terms of the sequence represent
a state of the shift register, i.e., Sk = (ak, ak+1, · · · , an+k−1) is the k-th state of the shift register.

The sequence {ai}i≥0 is called a linear feedback shift register (LFSR) sequence if the function
f is linear, i.e., it is of the form:

f(x0, x1, · · · , xn−1) = c0x0 + c1x1 + · · ·+ cn−1xn−1, ci ∈ F2.

Otherwise, it is called a nonlinear feedback shift register (NLFSR) sequence.

The internal state of the FSR can be a non-binary variable, for example, it takes from F2t ,
and in this case, a sequence generated by the FSR is a non-binary sequence. In other words, the
k-th state of the FSR is Sk = (ak, ak+1, · · · , an+k−1), ai ∈ F2t . The coefficients of f are also
non-binary, i.e., ci ∈ F2t , in order to generate the corresponding feedback for the FSR.
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Definition 5 The sequence {ai}i≥0 is called a periodic sequence with period T if ai = ai+T ,
i ≥ 0.

Definition 6 Let a = {ai}i≥0 be a periodic binary sequence with period T . The autocorrelation
function of a, denoted by Ca(τ), is defined as

Ca(τ) =
T−1∑

i=0

(−1)ai+τ+ai .

Definition 7 A binary sequence with period 2n − 1 generated by an n-stage LFSR is called an
m-sequence.

Definition 8 The linear span or linear complexity of a sequence is the length of the shortest
LFSR that can generate the entire sequence.

Definition 9 A binary sequence with period 2n − 1 is called a span n sequence if each non-zero
n-tuple occurs exactly once in one period.

2.1.3 The WG Transformation

Let t 6≡ 0 mod 3, 3k ≡ 1 mod t, and h(x) = x+ xq1 + xq2 + xq3 + xq4 , where qi are given by

q1 = 2k + 1,

q2 = 22k + 2k + 1,

q3 = 22k − 2k + 1,

q4 = 22k + 2k − 1.

Then the function WGP(·) : F2t → F2t given by

WGP(x) = h(x+ 1) + 1

is called the Welch-Gong (WG) permutation and the function WGT(·) : F2t → F2 given by

WGT(xd) = Tr(WGP(xd))

is known as the Welch-Gong (WG) transformation with decimation d, where d is coprime to
2t − 1 [46].
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2.2 Symmetric Key Cryptography

In symmetric key cryptography, a secret key is shared between the sender and the receiver. Public
key cryptography uses two different keys for encryption and decryption. Public key cryptography
involves intensive computations, and it is not feasible, at current research stage, for EPC tags due
to the area constraint [77]. The security service of confidentiality can be achieved by ciphers, and
authentication can be achieved by challenge/response based protocol, where random numbers are
used as challenges. In order to meet these requirements, we mainly focus on the block cipher,
stream cipher, and pseudorandom number generator in our following work, therefore we give an
overview of them.

Block cipher: A block cipher encrypts an n-bit block of plaintext with a secret key and
outputs an n-bit block of ciphertext at a time. Figure 2.2(a) shows the general structure of a
block cipher. In general, the block cipher includes two parts: round function and key schedule,
as shown in Figure 2.2(b). The round function is iterated multiple times (called round number),
in order to increase the unpredictability between the plaintext and ciphertext [23]. The key
schedule is used to provide round keys (ki) for the round function in each round. There are two
common architectures for round functions: the Feistel structure and substitution permutation
network (SPN) structure, as shown in Figure 2.3. In the Feistel structure, the input message for
each round is split into two parts: left half part and right half part. The right half part of the
output message directly comes from the input left part and the output left part equals the XORed
result of input right half and the output of the function F with inputs of round key and input left
half. For the SPN structure, each round function includes adding round key, substitution, and
permutation layers. The typical cipher of Feistel structure is DES, and that of SPN structure is
AES.

Block Cipher

key

xn−1

n n

x0
x1...

yn−1

y0
y1...

(a) General Structure of a Block Cipher

Round function

msgi

Key schedule
ki

msgi+1

(b) Round Function and Key Schedule

Figure 2.2: Block Cipher

Stream cipher: A stream cipher encrypts each bit of plaintext individually and the general
structure of a stream cipher is given in Figure 2.4. Each bit of the ciphertext is obtained by
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⊕

Input left half Input right half

Output right halfOutput left half

F

Round key

(a) Feistel Structure

Input

Substitution

⊕

Permutation

Output

Round key

(b) SPN Structure

Figure 2.3: Block Cipher Structures

conducting a bitwise exclusive-or (XOR) operation of each bit of the plaintext and a key bit
stream. The key bit stream is implemented by a pseudorandom number generator using a secret
key as input [23].

key

⊕

Keystream

Generator

x0x1 · · ·xn−1

1

y0y1 · · · yn−1

1

keystream

Figure 2.4: General Structure of a Stream Cipher

Pseudorandom number generator: PRNG is also known as deterministic random number
generator, which is constructed from a deterministic function with a secret key, and its output has
good statistical properties and approximates a sequence of truly random numbers [89].
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2.3 Lightweight Cryptography

The goal of lightweight cryptography is to achieve a balance of the tradeoffs between security,
area and throughput. To illustrate it in a block cipher, as depicted in Figure 2.5, the key size
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Area Through-
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Architecture
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Figure 2.5: Design Tradeoffs between Security, Area, and Throughput

provides a tradeoff between security and area, the round number provides a tradeoff between
security and throughput, and the implementation architecture provides the area and throughput
tradeoff. In general, it is easy to optimize two of them, but it is difficult to consider all of them
[93, 62, 63].

Generally, the proposals of lightweight symmetric ciphers can be divided into three approach-
es [93]. The first approach involves optimized and compact hardware implementations of stan-
dardized algorithms, e.g., compact AES implementations [82, 50, 39, 38]. The second method
leverages the slight modification of a well-studied cipher, such as DESXL [94], a lightweight
variant of DES. Finally, the third method is to design new ciphers with the goal of having low
hardware implementation costs.

Recent proposals include lightweight block ciphers TEA [112], XTEA [86], HIGHT [56],
SEA [105], PRESENT [17], KATAN and KTANTAN [26], CLEFIA [103], LED [49], PRINCE [18],
EPCBC [117], KLEIN [47], LBlock [113], and Piccolo [102], Twine [106], and the more recent
SIMON and SPECK [11]. There exist also some lightweight stream ciphers, such as Trivium [27],
Grain [55] and lightweight WG (Welch-Gong) stream ciphers (WG-5 [7], WG-7 [71], WG-
8 [35]). Additionally, several surveys of recently published lightweight cryptographic imple-
mentations can be found in [29, 75, 66]. In particular, lightweight ciphers have attracted a lot of
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attention from industry. CLEFIA, PRESENT, and Trivium have been adopted by the ISO/IEC
Standard 29192. PRESENT-80 and Grain-128 have been adopted by ISO/IEC Standard 29167,
which provides the cipher suites for the RFID air interfaces.

In this section, we give a review of the lightweight block ciphers SIMON and SPECK which
are related to our cipher Simeck, lightweight stream ciphers Trivium, Grain and WG.

2.3.1 Lightweight Block Ciphers

SIMON and SPECK are two lightweight block cipher families, designed by the NSA’s researchers
in 2013 [11, 13, 12]. Each of SIMON and SPECK contains ten instances with various block sizes
and key sizes. SIMON and SPECK offer excellent performance on both hardware and software
platforms, such as ASIC, FPGA, and 4/8/16/32-bit microcontrollers, and are designed to perform
well across the full spectrum of lightweight applications [11]. SIMON is optimized for hardware
implementations, and SPECK is tuned for optimal performance in software. The round functions
of SIMON and SPECK are based on the Feistel structure.

The following notations are used to describe SIMON, SPECK and our Simeck in Chapter 3.

– x≪ c and x≫ c denote the cyclic shift of x to the left and right by c bits respectively.

– x� y is the bitwise AND of x and y.

– x⊕ y is the exclusive-or (XOR) of x and y.

– x� y is the integer addition modular 2n of x and y, where n is the word size.

The SIMON and SPECK block ciphers with n-bit word size (2n-bit block size), and m-word
(mn-bit) key is denoted as SIMON2n/mn and SPECK2n/mn. There are ten instances for each of
SIMON and SPECK family for the combination of n and m, where n ∈ {16, 24, 32, 48, 64} and
m ∈ {2, 3, 4}. The details of them are listed in Table 2.1.

In this thesis, we only consider SIMON2n/mn and SPECK2n/mn with word size n equals 16,
24, and 32, the key words m equals 4 here, in order to be consistent with our Simeck in Chap-
ter 3. They are SIMON32/64, SIMON48/96, SIMON64/128 and SPECK32/64, SPECK48/96,
SPECK64/128.
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Table 2.1: Ten SIMON and SPECK Instances

SIMON SPECK
SIMON32/64 SPECK32/64
SIMON48/72 SPECK48/72
SIMON48/96 SPECK48/96
SIMON64/96 SPECK64/96

SIMON64/128 SPECK64/128
SIMON96/96 SPECK96/96

SIMON96/144 SPECK96/144
SIMON128/128 SPECK128/128
SIMON128/192 SPECK128/192
SIMON128/256 SPECK128/256

li ri

ki

li+1 ri+1

≪1

≪8

≪2

Figure 2.6: The Round Function of SIMON
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SIMON

The i-th round function of SIMON (as shown in Figure 2.6) is a two-stage Feistel map Rki which
is defined by

(li+1, ri+1) = Rki(li, ri) = (ri ⊕ f(li)⊕ ki, li),
where f(li) = ((li≪ 1)� (li≪ 8))⊕ (li≪ 2), ki is the round key, and (li, ri), (li+1, ri+1) are
two internal words in the i-th and (i+1)-th rounds respectively. li and ri are the left part and right
part of the internal words respectively. ki is generated from the key schedule and 0 ≤ i ≤ T − 1,
where T is the number of rounds. The number of rounds for different SIMON instances are given
in Table 2.2.

The key schedule (expansion) of SIMON is depicted in Figure 2.7. The round keys for the
first four rounds (k0, k1, k2, k3) are the four key words, i.e., the input key, of the key schedule,
which is used to generate other round keys. The other round keys are generated by

ki+4 = C ⊕ (zj)i ⊕ ki ⊕ [ki+3≫ 3⊕ ki+1]⊕ [(ki+3≫ 3⊕ ki+1)≫ 1],

where 0 ≤ i < T − 4. The constant C equals 2n − 4 = 0xff · · · fc. The version depen-
dent constant sequence zj is listed in Table 2.2. z0 = 1111101000100101011000011100110,
a period 31 sequence generated by the primitive polynomial X5 + X4 + X2 + X + 1. z1 =
1000111011111001001100001011010, a period 31 sequence generated by the primitive polyno-
mialX5+X3+X2+X+1. z2 = 1101101110101100011001011110000001001000101001110011
0100001111, a period 62 sequence formed by bitwise XOR of the period 2 sequence (01) with
z1. In addition, (zj)i is the i-th bit of zj .

ki+3 ki+2 ki+1 ki

C ⊕ (zj)i

≫3

≫1

Figure 2.7: The Key Expansion of SIMON
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Table 2.2: SIMON and SPECK Parameters

block key word SIMON SPECK

size size size constant rounds rotation rotation rounds
2n 4n n sequence zj T α β T
32 64 16 z0 32 7 2 22
48 96 24 z1 36 8 3 23
64 128 32 z2 44 8 3 27

SPECK

li ri

li+1 ri+1

ki

≫α

≪β

Figure 2.8: The Round Function of SPECK

The i-th round function of SPECK,shown in Figure 2.8, is defined by

(li+1, ri+1) = Rki(li, ri) = ((li≫ α� ri)⊕ ki, ri≪ β ⊕ (li≫ α� ri)⊕ ki),

where 0 ≤ i ≤ T − 1. The number of rounds T and the rotations α and β are different for each
instance and they are listed in Table 2.2.

The key schedule reuses the round function to generate the round key ki, as shown in Fig-
ure 2.9. The four key words, which are taken from the input key, of SPECK are (t2, t1, t0, k0),
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where k0 is the first round key. The other round keys are generated by

ti+3 = (ti≫ α� ki)⊕ i,
ki+1 = (ki≪ β)⊕ ti+3,

where 0 ≤ i ≤ T − 1.

ti+2 ti+1 ti ki

Ri

Figure 2.9: SPECK Key Expansion, where Ri is the SPECK Round Function with i acting as the
Round Key

2.3.2 Lightweight Stream Ciphers

In this subsection, we present three hardware-oriented lightweight stream ciphers (Trivium,
Gain, and WG), where Trivium and Gain are the top finalist of eSTREAM [34] project, and
the original WG parameter are also in the phase 2 of eSTREAM [34] project.

Trivium

Trivium [24, 25] was designed in 2005 to be compact in constrained environments. It can gen-
erate up to 264 bits of keystream from an 80 bits key (k0, · · · , k79) and an 80 bits initialization
vector (IV0, · · · , IV79). The cipher itself consists of three NLFSRs (93-bit NLFSR1, 84-bit
NLFSR2, 111-bit NLFSR3), and they are denoted as {a0, a1, · · · , a92}, {b0, b1, · · · , b83}, and
{c0, c1, · · · , c110} respectively. The feedback of one NLFSR is generated by the output of an-
other NLFSR, as shown in Figure 2.10. The process of Trivium contains initialization phase and
keystream generation phase. More specifically, the 288-bit states of NLFSRs are first initialized
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with the key and IV as follows.

(a0, a1, · · · , a92) = (0, · · · , 0, k79, · · · , k0),
(b0, b1, · · · , b83) = (0, · · · , 0, IV79, · · · , IV0),

(c0, c1, · · · , c110) = (1, 1, 1, 0, · · · , 0).

Then, the states are rotated for 4× 288 times based on the following update function.

ai+93 = ci + ci+45 + ci+1ci+2 + ai+24,

bi+84 = ai + ai+27 + ai+1ai+2 + bi+6,

ci+111 = bi + bi+15 + bi+1bi+2 + ci+24.

After that, assume the values in the NLSFRs are the starting point of the key generation phase,
an output keystream, denoted by s = {si}i≥0, can be generated by

si = ai + ai+27 + bi + bi+15 + ci + ci+45.

The output sequence does not possess any determined randomness properties [23].

a0a1a24a92 · · · a2· · ·· · ·a27

b0b1b6b83 · · · b2· · ·· · ·b15

c0c1c24c110 · · · c2· · ·· · ·c45

⊗

⊕
⊕

⊕

⊗

⊕
⊕

⊕

⊗

⊕
⊕

⊕

⊕ si
keystream

Figure 2.10: The Trivium Stream Cipher

Grain

Grain [54, 55, 53] is a lightweight stream cipher designed in 2005 for applications which have
very limited hardware resources. The first version of Grain uses an 80 bits key and a 64 bits
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IV [54], and the second version supports key size of 128 bits and IV size of 96 bits [53]. This
subsection specifies the details of the first version. Grain consists of three main building parts,
a pair of linked 80 bits shift registers and a non-linear filter function. One of the two 80 bits
shift registers is LFSR and another one is NLFSR, which are denoted as {a0, a1, · · · , a79} and
{b0, b1, · · · , b79} respectively. In particular, the feedback function of the NLFSR is masked by
the output of the LFSR. The nonlinear filter function is used to introduce nonlinearity to the
cipher. Moreover, Grain has a lower bound of periods of output sequences [23].

Before the keystream generation phase, the cipher must be initialized with the key (ki, 0 ≤
i ≤ 79) and IV ( IVi, 0 ≤ i ≤ 63). During this phase, the NLFSR is loaded with the key bits,
where bi = ki, and the first 64 bits of LFSR are loaded with IV, as ai = IVi, 0 ≤ i ≤ 63. The
remaining bits of the LFSR are filled with ones, i.e., ai = 1, 64 ≤ i ≤ 79. Then the cipher is
clocked for 160 times without producing any keystream, which is called the initialization phase.
After that, the running phase starts, the output keystream si is generated clock cycle by clock
cycle. The description of them are shown in Figure 2.11.

80-bit LFSR NLFSR80-bit
⊕⊕

h(x)

⊕

4 1

7

si
keystream

Figure 2.11: The Grain Stream Cipher

In the initialization phase, the feedback update functions of LFSR and NLFSR are XORed
with the output keystream si (as shown in the dashed lines of Figure 2.11). Therefore, the
feedback function of the LFSR is
ai+80 = siai+62 + ai+51 + ai+38 + ai+23 + ai+13 + ai, 0 ≤ i ≤ 159,
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and the feedback function of the NLFSR is

bi+80 = si + ai + bi+62 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21 +

bi+14 + bi+9 + bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9 +

bi+60bi+52bi+45 + bi+33bi+28bi+21 + bi+63bi+45bi+28bi+9 +

bi+60bi+52bi+37bi+33 + bi+63bi+60bi+21bi+15 +

bi+63bi+60bi+52bi+45bi+37 + bi+33bi+28bi+21bi+15bi+9 +

bi+52bi+45bi+37bi+33bi+28bi+21,

where 0 ≤ i ≤ 159.

The output sequence si is filtered by a non-linear function h(x). The filtering function h(x)
is defined as:

h(x) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4,

where x0, x1, x2, x3, x4 correspond to the tap positions ai+3, ai+25, ai+46, ai+64, and bi+63 respec-
tively. The output keystream, denoted by s = {si}i≥0, is defined as:

si = h(ai+3, ai+25, ai+46, ai+64, bi+63) + bi+1 + bi+2 + bi+4 + bi+10 + bi+31 + bi+43 + bi+56.

In the running phase, the feedback function of LFSR is
ai+80 = ai+62 + ai+51 + ai+38 + ai+23 + ai+13 + ai, i ≥ 160,
and the feedback function of the NLFSR is

bi+80 = ai + bi+62 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21 +

bi+14 + bi+9 + bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9 +

bi+60bi+52bi+45 + bi+33bi+28bi+21 + bi+63bi+45bi+28bi+9 +

bi+60bi+52bi+37bi+33 + bi+63bi+60bi+21bi+15 +

bi+63bi+60bi+52bi+45bi+37 + bi+33bi+28bi+21bi+15bi+9 +

bi+52bi+45bi+37bi+33bi+28bi+21,

where i ≥ 160. Accordingly, the keystream s = {si}i≥160 is outputed as shown in the solid lines
of Figure 2.11.

WG

The WG stream cipher family is hardware-oriented stream ciphers based on the WG transfor-
mation. It was firstly proposed in 2005 [84] and a complete version was published in 2008 [85].
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The structure of the WG stream cipher family is described in Figure 2.12. The WG stream ci-
pher is composed of a length l LFSR, followed by a WG transformation with decimation d over
F2m . The optimal decimation parameters which can achieve the highest security level for each
WG instance are investigated in [74]. The WG transformation module can be split into WG
permutation module and trace module. The characteristic polynomial of the LFSR is a primitive
polynomial f(x) of degree l over F2m , i.e., f(x) = xl +

∑l−1
0 cix

i, ci ∈ F2m . The WG transfor-
mation with decimation d is described in Section 2.1.3, and it exists only when m 6= 0 (mod 3).
Thus, the WG stream cipher family is defined when m 6= 0 (mod 3) over F2m . We denote each
specific instance in the family as WG-m stream cipher. Several instances of them have been
explored in hardware, such as WG-29 [30], WG-16 [36, 37, 31], WG-7 [67], and WG-5 [7].
The lightweight WG stream ciphers, WG-5[7], WG-7 [71], and WG-8 [35] have been proposed
for the resource constrained environments. Their security has been analyzed [87, 99, 74] and can
be used in protecting communication in these applications, such as ensuring data confidentiality
and performing entity authentication [71].

⊕⊕

⊕
a0a1al−2al−1

⊕· · ·

· · ·

· · ·

WGP(xd)

WGT(xd)

Tr(·)

c0c1cl−2cl−1

mmm

mmm

m

m

m

m

m

1

INIT

Keystream

Figure 2.12: The WG Stream Cipher Family

The WG stream cipher contains two phases, the initialization phase and the running phase as
shown in the dashed line of Figure 2.12. It is executed 2l clock cycles in the initialization phase
with the recursive values from WGP(xd) and feedback value of the LFSR. After the initialization
phase, the running phase starts and output the one bit keystream generated by the trace function
clock cycle by clock cycle with the recursive value from LFSR only. We define the internal
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states of the LFSR over F2m by {ak}k≥0 and the output keystream over F2 by {sk}k≥0. Then,
the mathematical expressions for updating the LFSR internal states and generating the output
keystream sequence of WG-m are given by:

ak+l =





∑l−1
i=0 ciai+k + WGP(adk+l−1) 0 ≤ k < 2l,

∑l−1
i=0 ciai+k k ≥ 2l.

sk = WGT(adk+3l), k ≥ 0.

Theorem 2 The keystream sequence of the WG-m stream cipher has the following properties.

i. Period is 2n − 1, where n = ml.

ii. It is balanced, i.e., the number of 0’s is only one less than the number of 1’s in one period
of the keystream.

iii. It has an ideal 2-level autocorrelation property.

iv. Any t-tuple is equally likely distributed (ideal t-tuple distribution) for 1 ≤ t ≤ l.

v. The linear span or linear complexity of the keystream can be determined exactly, and in-
creased exponentially with m.

2.4 Hardware Design and Optimization

In this section, we discuss hardware implementation technologies and several efficient approach-
es for cryptographic primitives.

2.4.1 Hardware Implementations

Application specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs)
are typical hardware implementation techniques. ASIC is much cheaper than FPGA when the
quantity of items is large, while FPGA provides more flexibility. Due to the massive deployment
of passive RFID tags, the ASIC implementation of cryptographic primitive is more critical. Our
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optimizations and benchmarking emphasize ASICs more than FPGAs. We use CMOS 130n-
m and CMOS 65nm for our implementations because EPC tags use older processes with the
consideration of cost and compatibility with analog components.

A typical hardware design process is described in Figure 2.13. Firstly, we write our ideas
and specification into Register Transfer Level (RTL) code. Then, we synthesis a RTL code to
gate level netlist using logic synthesis tool. We use physical synthesis tool to map the gate level
netlist to the actual hardware resources in ASIC or FPGA. Finally, the area, power consumption,
and clock speed are generated after the physical implementation.

RTL Code

Logic Synthesis

Physical Synthesis

(VHDL, Verilog)

Gate-level Netlist

Implementation File

Figure 2.13: Hardware Design Process

The total power consumption is a combination of static and dynamic power consumption,
i.e.,

Ptotal = PStatic + PDynamic.

The static power consumption is caused by leakage currents inside transistors. The dynamic pow-
er consumption is caused by switching activity by charging and discharging of load capacitance
Cload, and short circuit currents when transistors switch [58]. However, the switching power
consumption dominates the dynamic power consumption, thus the dynamic power consumption
is approximately defined as

PDynamic = α · Cload · fCLK · V 2,

where, α is the switching activity, defined as the number of signal transitions in a clock period.
fCLK is the operating clock frequency and V is the supply voltage. For ASIC designs, the
total power consumption correlates to the used area. However, for the FPGA designs, the static
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power consumption correlates to the entire FPGA device and the dynamic power consumption
correlates to the used area for a specific design [58].

2.4.2 Reuse, Parallelism and Clock Gating

To get an efficient design in hardware, we can use a number of techniques to optimize the design,
such as, reuse of a component, parallelism, and clock gating [97, 67, 82, 98]. Reuse means that
we can reuse the existing modules (combinational modules or registers) in different clock cycles
in order to decrease the total area. An example of reuse technique over two clock cycles is shown
in Figure 2.14.

8M
8M

8M
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b
c

e

d
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c

b
d

esel

sel

1

2

Figure 2.14: Reuse the Multiplier in Two Consecutive Clock Cycles.

Parallelism means that we can improve throughput by adding some extra logic but with s-
maller area than using several identical designs. These techniques are popular in hardware design
which are used to optimize the designs for achieving better results in terms of area, clock speed,
and throughput.

Clock gating is a technique for reducing dynamic power consumption and area. For reducing
dynamic power consumption, the clock gating reduces the activity factor by turning off the clock
when the circuit is not needed. For reducing area, clock gating can replace n registers with chip-
enable with n registers without chip-enable and a clock gating cell, as shown in Figure 2.15.
The area of a register with chip-enable is larger than that of a register without chip-enable, as
a result the total area is decreased. In our implementation, the power consumption results are
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Figure 2.15: Clock Gating

conventionally got by letting the primitives continuous run with stopping. Clock gating is part of
the circuit and it is for the cryptographic benchmarking purpose.

2.4.3 Choice of Bases

The design of many cryptosystems involve finite field arithmetic operations. Arithmetic addition
can be performed using bit-wise XOR operation under the binary representation, but multipli-
cation operation is complex and time consuming. The complexity is based on the selection of
irreducible polynomial for F2m and the basis used to represent the finite field elements. During
the past years, a lot of research have been given to efficient implementations of arithmetic com-
putations in finite field [69]. In addition, the hardware cost of the ciphers is related to the basis
selected for performing computation in F2m [23].

Polynomial basis is very good for exploring hardware optimization of multiplication oper-
ation, because the multiplication operation using polynomial basis can be implemented using
simple shift and XOR operations [28]. Normal basis is efficient and cost effective for hardware
implementation of squaring. It is simply a cyclic shift of coordinates of the element [61]. Howev-
er, the multiplication operation in normal basis is more complex in terms of hardware resources.
Optimal normal basis (ONB) [41] is proposed to deal with the constraints in normal basis, which
allows not only fast squarings but also fast multiplications with less XOR and AND gates. There
are two types of optimal normal bases in F2m , i.e., type-I and type-II, defined as follows:

1) Type-I: m + 1 is a prime p, and 2 is primitive modulo p.

2) Type-II: 2m + 1 is a prime p and either

i. 2 is primitive modulo p, or

ii. p ≡ 3 (mod 4) and the multiplicative order of 2 modulo p is m.
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However, most of F2m do not have a type-I ONB, such as odd prime m. Thus, type-II ONB
gives more advantages when m is odd prime [109]. In conclusion, we need to make a trade-off
by choosing an irreducible polynomial for the finite field and by carefully selecting a basis in
order to achieve the best performance for the entire design.

2.4.4 Tower Field

A wide variety of efficient hardware implementations of AES has been proposed during the past
years. Among them, the best method for achieving a very compact S-box is to use subfield [96,
101, 21, 108]. Rijmen [96] suggested using subfield arithmetics in the crucial step of computing
an inverse in F28 by reducing an 8-bit calculation to several 4-bit ones. Satoh et al. [101]
further extended this idea, using the tower field approach of Paar [88], by breaking up 4-bit
calculations into 2-bit ones, which resulted in a smaller AES circuit. A number of different
tower field constructions for S-box had been explored by Canright in [21], and the smallest one
is to use three level tower constructions with normal basis in each level. Recently, Ueno et al.
[108] introduced using PRR (Polynomial Ring Representation), RRB (Redundantly Represented
Basis) in the tower field constructions for the inversion circuit in S-box. This method leads to a
smaller area of the inversion circuit than Canright’s and the corresponding area and time product
of S-box is also smaller than that of Canright. Therefore, from the observations of AES, the
tower constructions could be useful for efficient implementations of other ciphers.

2.5 EPC Passive RFID Systems

EPCglobal Inc.[2] promotes and leads the standardization of RFID systems, especially for RFID
systems operating at 860 MHz - 930 MHz. The Electronic Product Code (EPC) provides iden-
tification of items for companies worldwide by storing the EPC number in the so-called EPC
memory inside the tags. The EPC Class 1 Generation 2 (EPC C1 G2) UHF (Ultra High Frequen-
cy) RFID standard [2, 3] is the most popular one for passive RFID systems. In this section, we
give an overview of this type of RFID system.

A typical RFID system consists of three entities: a database, a reader, and a tag. In the
current EPC C1 G2 standard [2, 3], there is a tag selection phase for the scenario where the
reader communicates with multiple tags. After that, the reader has selected one tag. Therefore,
we only consider the situation where one reader communicates with one tag. The diagram of an
RFID system is shown in Figure 2.16. We assume that the back-end database and the reader are
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Figure 2.16: The Description of an RFID System

connected with a secure channel via communication protocols such as SSL/TLS. The wireless
communication channel between the reader and the tag is insecure.

The reader initiates all the communication between the reader and tag, and it follows a com-
mand/response pattern, where the reader sends a command and the tag responds. As shown in
Figure 2.16, each tag contains an RF analog frontend, a digital baseband, and four memories.
The RF part is used to perform two-way communication with the reader and harvest energy from
the reader’s signal. The digital baseband is used to process all the commands and data. The
four memories are EPC memory, TID (Tag Identification) memory, Reserved memory, and User
memory. The EPC number is used for unique identification, and it is stored in the EPC memory.
The TID memory stores the unique tag identification number set by the manufacturer. The kill
and access passwords are stored in the Reserved memory. The extra item information, such as
the weight, place of origin, and so forth, are stored in the optional User memory. The readers’
database contains the EPC numbers and the associated passwords of all tags.

According to the EPC C1 G2 standard, the inventory and access protocol between the reader
and the tag is shown in Figure 2.17. In which, the reader has two states: inventory and access.
The tag has five states: ready, reply, acknowledged, open, and secure. More specifically, the
inventory and access protocol is executed as follows. The reader sends a Query command to the
tag, and the tag replies with a 16-bit random number, denoted as RN16 Init. After the reader
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Figure 2.17: The Inventory and Access Protocol between the Reader and the Tag

receives the RN16 Init, it sends an ACK command with the same RN16 Init to the tag. Then the
tag sends the EPC number and PC code to the reader if the RN16 Init it received is correct. PC
code is the protocol control bits. Upon receiving it, the reader sends a Req RN command with
the RN16 Init to the tag, the tag will reply with a RN16 Handle to the reader after checking the
correctness of RN16 Init. The RN16 Handle is another 16-bit random number. After the reader
receives the RN16 Handle, the reader may request the tag to execute a command.

Command execution is a multi-round process of bi-directional communication between the
reader and tag. The command here can be an access command or a kill command, where the
access command transfers the tag from the open state to the secure state, and the kill command
transfers the tag from the open state to the killed state. The kill command will disable the tag
forever, and the tag cannot respond to the reader any more. However, after the reader successfully
sends an access command to the tag which means that the 32-bit access password is correct,
the tag will send the same RN16 Handle back and ends up in the secure state. Note that the
RN16 Handle is used in the entire procedure of the access command. Then, the reader can send
read, write, etc., commands to the tag and the tag will only execute them when it is in the secure
state. The exchanged message between the reader and the tag, such as EPC number, RN16
and so on, are very short, and they are typically below 100 bits. Furthermore, RN16 is used
for providing verification of the reader identity, and provide cover-code (mask) for the data in
access, kill, and write commands.
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It is worth mentioning that the two 32-bit passwords for the access and kill commands are
designed to be two security features in the first version of the EPC C1 G2 standard [2]. However,
the research [111, 40, 43, 51, 22] shows that the two 32-bit passwords can be broken easily
if the attacker has the ability to eavesdrop on the bi-directional communications between the
reader and the tag. As a result, some optional security requirements are provided in the second
version of the EPC C1 G2 standard [3], which was released in 2013. For example, some of
these optional security requirements include Authenticate and SecureComm commands. The
Authenticate command allows the RFID system to perform reader, tag or mutual authentication.
The SecureComm command allows encrypted communication between the reader and the tag.

Since the link between the reader and tag is a wireless channel, all the existing attacks on
the wireless link also apply to the link between the reader and tag [23]. Moreover, the resource
constrained properties of the tag and insecure channel between the reader and tag lead to many
vulnerabilities [59, 111, 95]. A diagram about threats on passive RFID systems is depicted in
Figure 2.18. It describes the authorized and unauthorized entities, including an authorized read-

Unauthorized
reader

Authorized 
reader

Eavesdropping

Insecure

Side channel

Unauthorized
Tag

Authorized 
tag

Figure 2.18: Threats of an RFID System

er, an unauthorized reader, an authorized tag, and an unauthorized tag. Figure 2.18 also shows
the interactions of the entities in the security model. An unauthorized reader can interrogate an
authorized tag, and the unauthorized tag can impersonate an authorized one. The unauthorized
reader and unauthorized tag can eavesdrop on the insecure wireless channel between the autho-
rized reader and authorized tag. The unauthorized reader can observe the external information
emitted from the authorized tag through the side channel.

Consequently, the attacker can take advantage of the capabilities of the unauthorized reader
and unauthorized tag to launch many attacks [42, 90, 81, 95], such as unauthorized tag reading
attack, tag data modification attack, man-in-the-middle attack, eavesdropping attack and side
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channel attack. These attacks may lead to information disclosure and cause the system to respond
in an unexpected or damaging way.

The typical security solution for the attacks is to adopt cryptography to the passive RFID sys-
tem, which can provide confidentiality, integrity check, and authentication. Due to the resource
constrained properties of the passive RFID tag, lightweight cryptography is devised to solve
this problem. Therefore, exploring the hardware performance and optimizations of lightweight
cryptography is increasingly important in the IoT era.
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Chapter 3

The Simeck Family of Lightweight Block
Ciphers

The security of the recently proposed lightweight block ciphers, SIMON and SPECK [11], have
been investigated [15, 8, 19] by the research community since they were public. These ciphers
are recognized to be the smallest block ciphers in each of the block/key size categories when used
in resource-constrained environments. SIMON is optimized for hardware implementation, while
SPECK is optimized for software. Inspired by the designs of SIMON and SPECK, we combine
their good components in order to get a new block cipher family, called Simeck We use a slightly
modified version of SIMON’s round function, and reuse it in the key schedule like SPECK does.
Moreover, we take the benefits of using Linear Feedback Shift Register (LFSR) based constants
in the key schedule in order to further reduce hardware implementation footprints. The new
family of lightweight block ciphers Simeck aims to have comparable security levels but more
efficient hardware implementations.

Based on the aforementioned motivations, we have the detailed design goals as follows.

Hardware. First, we want to minimize the area and power consumption of the Application
Specific Integrated Circuit (ASIC) implementations. Secondly, we also wish to allow a
range of options in the area, throughput, and power consumption. Finally, we would like
to keep the maximum operating frequency as high as possible.

Applications. Considering the application of passive RFID tags as an example, Simeck should
satisfy the following requirements in order to be used in practice: 1) The area of Simeck
should be less than 2000 GEs [60, 9]. 2) The power consumption of Simeck should be very
small. 3) The typical passive RFID tag’s operating frequency is 2 MHz and the data rate
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is from 5 Kbps to 320 Kbps depending on different modulation settings [3, 118]. Thus the
throughput is from 5K/2M = 1/400 to 320K/2M = 4/25. Therefore, if the tag’s operating
frequency is 100 KHz (for a benchmarking purpose), the throughput of Simeck should at
least be from 100 K · 1/400 bps = 0.25 Kbps to 100 K · 4/25 bps = 16 Kbps.

Security. Although SIMON and SPECK were designed with small, simple round functions, they
are iterated a sufficient number of times in order to resist attacks. We follow the same
strategy with Simeck, and due to its similarity with SIMON, we benefit from its analysis
carried so far.

Remark 1 The design and cryptographic analysis of the Simeck algorithm were done in col-
laboration with colleagues in the ComSec lab. My contribution to the design of the Simeck
algorithm was to provide in-depth knowledge of hardware design and guide the mathematical
design choices to optimize the hardware. The hardware design and analysis are entirely my own
work.

This chapter is organized as follows. In Section 3.1, we describe the specifications and de-
sign rationales of the Simeck family. Section 3.2 first presents our metrics and design flow in
CMOS 130nm and CMOS 65nm ASICs. Then, we give two different hardware architectures of
Simeck in order to make a trade-off between area, throughput, and power consumption. Later,
the hardware evaluations in CMOS 130nm and CMOS 65nm are given with a thorough analy-
sis. In Section 3.3, we compare our results of Simeck and SIMON with the results in [11]. The
comparisons with other lightweight ciphers are given in Section 3.4. Section 3.5 concludes this
chapter.

3.1 Design Specification and Rationale

In this section, we give specification as well as design rationale of our block cipher family
Simeck.

3.1.1 Specification of Simeck

Our lightweight block cipher family Simeck is denoted as Simeck2n/mn, where 2n is the block
size and mn is the key size. The n is the word size and n is required to be 16, 24, or 32 and m
equals 4. Thus, our Simeck family includes Simeck32/64, Simeck48/96, and Simeck64/128.
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For example, Simeck32/64 operates on 32-bit message blocks using a 64-bit key. These choices
of the ciphers aim to fit different applications of embedded systems including RFID systems.

Simeck is designed to be extremely small in hardware. The round function and the key
schedule follow the Feistel structure. A plaintext block of 2n bits to be encrypted is first divided
into two words l0 and r0, where l0 contains the most significant n bits, and r0 consists of the
least significant n bits. Then these two words are processed by the Simeck round function for a
certain number of rounds, and finally the two output words lT and rT are concatenated to form
a complete ciphertext, where T denotes the total number of rounds. In the following, we give
the details of the design. The notations are the same as that in SIMON and SPECK described in
Section 2.3.

Round Function

We define the round function (of the i-th round) as the following function,

Rki(li, ri) = (ri ⊕ f(li)⊕ ki, li),

where li and ri are the two words of the internal state of Simeck at the i-th round , ki is the round
key, and the function f is defined as

f(x) = (x� (x≪ 5))⊕ (x≪ 1).

Figure 3.1 illustrates the operations of the round function Rki . The inverse of the round function,
used for decryption, is

R−1ki
(li, ri) = (ri, li ⊕ f(ri)⊕ ki).

Key Schedule/Expansion

To generate the round key ki from a given master keyK, the master keyK is first segmented into
four words and loaded as the initial states (t2, t1, t0, k0) of the feedback shift registers as shown
in Figure 3.2. The least significant n bits of K are loaded into k0; while the most significant n
bits are put into t2. To update the registers and generate round keys, we reuse the round function
with a round constant C ⊕ (zj)i acting as the round key, i.e., RC⊕(zj)i . The updating operation
can be expressed as {

ki+1 = ti,
ti+3 = ki ⊕ f(ti)⊕ C ⊕ (zj)i,

where 0 ≤ i ≤ T − 1. The value ki is used as the round key of the i-th round.
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Figure 3.1: The Round Function of Simeck

The value of the constant C is defined by C = 2n−4, where n is the word size. (zj)i denotes
the i-th bit of the sequence zj . Simeck32/64 and Simeck48/96 use the same sequence z0, i.e.
j = 0, which is an m-sequence with period 31 and can be generated by the primitive polynomial
X5 + X2 + 1 with the initial state (1, 1, 1, 1, 1). When the rounds number is larger than 31, the
sequence repeats itself. Simeck64/128 uses another m-sequence z1 with period 63, which is
generated by the primitive polynomial X6 +X + 1 with the initial state (1, 1, 1, 1, 1, 1).

ti+2 ti+1 ti ki

RC⊕(zj)i

Figure 3.2: The Key Expansion of Simeck, where RC⊕(zj)i is the Simeck Round Function with
C ⊕ (zj)i Acting as the Round Key
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Number of Rounds

The number of rounds T for Simeck32/64, Simeck48/96, and Simeck64/128 are 32, 36, and
44 respectively.

3.1.2 Design Rationale

In Simeck, we use a slightly simplified version of the round function of SIMON. The round
function of SIMON can be expressed as

R′ki(li, ri) = (((li≪ 1)� (li≪ 8))⊕ (li≪ 2)⊕ ri ⊕ ki, li),

where li and ri are the input words, and ki is the round key. The operations of the round func-
tion only contain bitwise AND, XOR and cyclic shifts, and they are very efficient for hardware
implementations. In particular, for Simeck, we change these shift numbers from (1, 8, 2) to
(0, 5, 1). We choose our shift numbers in order to realize an acceptable trade-off between hard-
ware performance and security. These modifications will improve the efficiency of hardware
implementations, but will have comparable security strengths against certain attacks. More dis-
cussions will be given in the following sections.

For the key expansion/schedule algorithm of Simeck, we learn the idea of re-using the round
function to update the round-key registers from the design of SPECK.

Concerning the number of rounds for Simeck, we choose the same numbers as the corre-
sponding block ciphers in the SIMON family, in order to have comparable security levels and fair
hardware implementation evaluations.

To defeat certain self-similarity attacks such as slide attacks and rotational attacks, we add the
round constants C and (zj)i into the key expansion process. The constant C = 2n−4 is also used
in the key expansion of SIMON. The polynomials for the two m-sequences z0 and z1 are chosen
to have minimum numbers of non-zero coefficients, such that their hardware implementations
will have small footprints.

Due to its similarity with SIMON and SPECK, most of the security analysis of Simeck follow
from the best recent known attacks against the SIMON and SPECK families of block ciphers.
The initial security analysis of Simeck is shown in [116], where the security level of Simeck
is comparable to those of SIMON and it is reasonable to be used in practice. After that, more
security analysis of Simeck is given in [10, 65, 83, 70].

In summary, the differences of the round function and key schedule in SIMON and Simeck
are shown in Table 3.1. The round function and key schedule of SIMON are given in Section 2.3.
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Table 3.1: Differences between SIMON and Simeck

SIMON Simeck Comments
Round function three shift numbers (1, 8, 2) two shift numbers (5, 1)

Key schedule
4 XORs 3 XORs + 1 AND except the C ⊕ (zj)i

two shift numbers (3, 1) two shift numbers (5, 1)
Key constant SIMON32/64: Simeck32/64, Simeck48/96:
(generating X5 +X4 +X2 +X + 1 X5 +X2 + 1
polynomial) SIMON48/96, SIMON64/128: Simeck64/128:

X5 +X3 +X2 +X + 1 X6 +X + 1

3.2 Hardware Implementations

We discuss the hardware implementations of the Simeck family of block ciphers in this section.

3.2.1 Metrics and Design Flow

We use the Synopsys Design Compiler Version D-2010.03-SP4 to synthesize the RTL of the
designs into netlist based on the STMicroelectronics CMOS 65nm CORE65LPLVT 1.20V and
IBM CMOS 130nm CMR8SF-LPVT Process SAGE v2.0 standard cell libraries with both having
a typical 1.2V voltage, and 25◦C temperature. Cadence SoC Encounter v09.12-s159 1 is used to
finish the Place and Route phase in order to generate the layout of the designs. We use Mentor
Graphics ModelSim SE 10.1a to conduct functional simulation of the designs and perform timing
simulation by using the timing delay information generated from SoC Encounter as well. The
areas of the designs after the logic synthesis are provided for comparison with previous ciphers,
and a more accurate area after the Place and Route is also provided for deploying the ciphers in
practical cases. The densities used for the Place and Route phase for CMOS 130nm and 65nm
are 0.92 and 0.93 respectively, in order to make a trade-off between area and maximum operating
frequency when the densities are high enough. We choose them because the area after the place
and route phase will decrease when the density is higher. Correspondingly, the critical path will
also increase in this case; leading to potential DRC (Design Rule Check) and LVS (Layout Versus
Schematic) violations. As usual, the area is measured in gate equivalents (GEs), and one GE is
equivalent to the physical area required for the two-input one-output NAND gate with the lowest
driving strength of the corresponding technology. The areas of one GE are 2.08 (µm)2 and 5.76
(µm)2 for ST CMOS 65nm and IBM CMOS 130nm respectively.

We use SoC Encounter v09.12-s159 1 to generate the accurate power consumption based on
the activity information generated from the timing simulation with frequencies of 100 KHz and
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2 MHz, and a duration time of 0.1 s and 5 ms respectively. We do so because the 100 KHz clock
frequency is widely used for benchmarking purpose in resource-constrained applications and 2
MHZ is the typical practical operating frequency in passive RFID tags [100]. 0.1 s and 5 ms are
long enough to provide an accurate activity information for all the signals in these two cases.
Moreover, the maximum clock frequency which can be operated for a specific design is obtained
by using the critical path after the place and route phase.

Table 3.2: The Areas of Basic Gates in the Libraries

IBM130nm-8RF (NSA [11]) IBM130nm-CMR8SF-LPLVT ST CMOS65nm
NAND 1 1 1
AND 1.25 1.25 1.25
OR 1.25 1.25 1.5

NOT 0.75 0.75 0.75
XOR 2 2 2.25

XNOR 2 2 2.25
2-1 MUX 2.25 2.25 2

DFF 4.25 4.25 3.75
1-bit full adder 5.75 5.75 4.5

Scan FF 6.25 5.5 4.75

In fact, during the analysis of the previous results [11, 26, 82, 92, 98], the ASIC results for
various implementations differ not only in the basic gate technology but also in the types of flip-
flops used. In order to compare our results with the previous ones fairly, we provide the areas
of some basic gates in our specific libraries and the library used in [11] by the researchers from
the NSA for SIMON in Table 3.2. In addition, all the areas of basic gates provided here are the
smallest ones in the library, and we normalize the area of the two-input one-output NAND gate
to be 1. We observe that our IBM 130nm library is almost the same as the IBM 130nm library
used by the researchers from the NSA [11] except the scan flip-flops in terms of the areas of the
basic gates.

3.2.2 Two Different Hardware Architectures for Simeck

In this section, we target low-area implementations of Simeck and make a trade-off between
area and throughput. Meanwhile, we still keep a very high operating frequency. We give two
architectures for the implementations: one is parallel architecture, and another is fully serialized
architecture. Moreover, we provide a block diagram of the top-level I/O interface between the ci-
pher and the outside environment in order to provide a benchmark for the future implementations
and comparison with other ciphers.
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Parallel Architecture

The parallel architecture processes one round of the message in one clock cycle, and one round
of the key schedule at the same clock cycle, as shown in Figure 3.3. This architecture provides
a very high throughput while keeping a compact design. The round function in Figure 3.3(a) in-
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Figure 3.3: Parallel Architecture for Simeck

cludes three parts: 2n flip-flops, a n-bit width 2-to-1 multiplexer, a combinational circuit (dashed
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box) to compute the feedback data for the multiplexer. Inside the 2n flip-flops, n flip-flops are
for the message b, and the other n ones are for the message a, where b and a are the left and right
parts of the entire message respectively. The multiplexer is used to select the initial plaintext or
the feedback data from the combinational circuit for the message b. The combinational circuit
includes one n-bit AND gate, three n-bit XOR gates, and two shift modules (cyclic shift to the
left by 5 bits and 1 bit). The shift modules cost no extra hardware resources, because they can
be done by rewiring the corresponding signals. When the cipher runs, the n-bit data from the
message block b shifts to message block a, and simultaneously, the message block b loads a new
n-bit data from the multiplexer until the cipher stops. The round key ki in the combinational
circuit for every round comes from the key schedule function, which generates a key for every
rounds until the cipher outputs the ciphertext.

The key schedule in Figure 3.3(b) is similar to the round function in Figure 3.3(a), where the
key schedule has four n-bit key blocks and one input to the combinational circuit (dashed box) is
different, compared to the round function. This n-bit input to the key schedule is a combination
of an (n− 1)-bit constant and a 1-bit signal generated from the control circuit.

All the flip-flops in the round function and key schedule are standard flip-flops without chip-
enable in our architecture. In addition, there are only two n-bit width 2-to-1 multiplexers in total
in our architecture to select the initial data or feedback data, where one is for the round function,
and the other is for the key schedule. Moreover, the latency for generating a ciphertext using our
parallel architecture is T + 4, where T is the total number of rounds.

Partially Serialized Architecture

In order to make a trade-off between area, throughput, and power consumption, we provide a
partially serialized architecture. This architecture processes only several bits in the round func-
tion and the key schedule during one clock cycle. The specific partially serialized size (par sz)
of Simeck are summarized as follows:

Simeck32/64 : 1, 2, 4, 8,

Simeck48/96 : 1, 2, 3, 4, 6, 8, 12,

Simeck64/128 : 1, 2, 4, 8, 16.

Besides the round counter (i in Figures 3.3 and 3.4) in the control circuit, there is another
counter to control the rounds of the specific serialized size in the partially serialized architecture.
The range of this serialized counter (l in Figure 3.4) is between 0 and n/par sz− 1. In total, the
latency for generating a ciphertext is (n/par sz) · (T + 4), where T is the total number of rounds.
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Figure 3.4: Fully Serialized Architecture for Simeck

A fully serialized architecture is shown in Figure 3.4. In this architecture, the multiplexer
(MUX), and combinational circuit (dashed box) are all 1-bit width, which save a lot of area.
Compared to the parallel architecture, there are two more multiplexers, due to the two shift
numbers. They are used to select the cyclic shift inputs. The MUX1 is used for the left shift by 1
bit, and MUX5 is used for left shift by 5 bits. The MUX1 selects bn−1 as input when the serialized
counter equals 0, and chooses an−1 when the serialized counter is larger than 0. Similarly, the
MUX5 selects bn−5 when the serialized counter is smaller than or equal to 4, and chooses an−5
when the serialized counter is larger than 4.

The partially serialized architecture with par sz larger than 1 is similar to the fully serialized
architecture, where the multiplexer and combinational circuit are par sz-bit width and the selec-
tion signals for the multiplexers (MUXes selection circuitry) are different for various values of
par sz.
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The Top-level I/O Interface for Different Architectures

As discussed in Section 3.2.1, the area of the chip depends on not only the area of the basic gates,
but also the adopted types of flip-flops. We provide a top-level I/O interface between the cipher
and the outside environment as shown in Figure 3.5. We do not have a Finite State Machine

Key Scheduling

Round Function

Control

DatapathClk

i mode

Key[par sz-1:0]

Plaintext[par sz-1:0]

Ciphertext[n-1:0]

Figure 3.5: The Top-level I/O Interface between the Cipher and the Outside Environment

(FSM) to control the circuit with the purpose of reducing the entire area as much as possible. In
our top-level architecture, the cipher is always running and it is controlled by the outside signal
i mode. Therefore, we only have two modes in our architecture: loading phase and running
phase. The cipher goes into loading phase when i mode equals 0, and it loads the initial data
from the inputs Key and Plaintext. Later on, the cipher begins running phase when i mode
equals 1. The user obtains the Ciphertext at the end of the running phase. Then, i mode
returns back to 0, another Plaintext encryption begins. As our architecture never stops, all
the flip-flops in the datapath are standard flip-flops without chip-enable signals. This property
makes our design ever smaller in terms of area. This architecture presents a benchmark ASIC
implementation of Simeck and can be used to fairly compare with the hardware results of other
ciphers.

It is worth mentioning that the parallel architecture can be viewed as a special case of the par-
tially serialized case when par sz equals n. However, the two cases have different architectures
as depicted in Figure 3.3 and Figure 3.4.

Our top-level architecture includes two parts: the control circuit and the datapath. The con-
trol circuit for the parallel architecture is used to provide the key constant from the LFSR as
described in Section 3.1. However, an extra serialized counter in the control circuit is needed for
the partially serialized architecture. The binary counter is used for our serialized counter. The
datapath includes round function and key scheduling, and they are described as above for the
parallel architecture and partially serialized architecture.
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3.2.3 Hardware Evaluations of Simeck

We use three different compilation techniques in the Design Compiler to perform hardware opti-
mizations: simple compile, compile ultra and compile ultra with clock gating. The simple com-
pile option can provide us the hierarchical architectures of the design, and the areas of specific
sub-modules. The compile ultra option can make deeper optimizations in a way of optimizing the
entire module together, thereby reducing the area and power consumption significantly [26, 64].
The clock gating technique can further reduce the area and power consumption [26] We use al-
l standard flip-flops without chip-enable signals for the parallel architecture. For the partially
serialized architecture, only the LFSR, which generates the key constant in the control circuit,
uses the flip-flops with chip-enable signals, which costs 5, 6, and 6 flip-flops for Simeck32/64,
Simeck48/96, and Simeck64/128 respectively. Therefore, the clock gating optimization affects
only a little of our results in terms of area and power consumption.

Table 3.3: Our Implementation Results of Simeck32/64, 48/96, 64/128 in 130nm

Simeck
Partial

CMOS 130nm
Area (GEs) Max Throughput Total Power Total Power

serial Before P&R After P&R
Frequency @100 KHz @100 KHz @2 MHz

(MHz) (Kbps) (µW) (µW)

Simeck32/64

1-bit 505∗ 549∗ 292 5.6 0.417 8.3
2-bit 510† 555† 288 11.1 0.431 8.5
4-bit 533† 579† 312 22.2 0.463 9.2
8-bit 591† 642† 289 44.4 0.523 10.4

16-bit 695∗ 756∗ 526 88.9 0.606 11.9

Simeck48/96

1-bit 715† 778† 299 5.0 0.576 11.4
2-bit 722† 785† 294 10.0 0.593 11.8
3-bit 731† 794† 268 15.0 0.611 12.1
4-bit 748† 813† 284 20.0 0.628 12.5
6-bit 770† 837† 287 30.0 0.651 12.9
8-bit 801† 871† 284 40.0 0.688 13.6

12-bit 858† 933† 283 60.0 0.742 14.7
24-bit 1027∗ 1117∗ 512 120.0 0.875 17.3

Simeck64/128

1-bit 924∗ 1005∗ 288 4.2 0.754 14.9
2-bit 933† 1015† 303 8.3 0.778 15.4
4-bit 958† 1041† 271 16.7 0.803 15.9
8-bit 1013† 1101† 280 33.3 0.834 16.6

16-bit 1132† 1231† 301 66.7 0.977 19.4
32-bit 1365∗ 1484∗ 512 133.3 1.162 23.0

* Area obtained by using compile ultra only.
† Area obtained by using compile ultra and clock gating.
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The ASIC implementation results of Simeck and SIMON in CMOS 130nm are shown in
Table 3.3 and Table 3.4, and the corresponding results of Simeck and SIMON in CMOS 65nm
are shown in Table 3.5 and Table 3.6.

Table 3.4: Our Implementation Results of SIMON32/64, 48/96, 64/128 in 130nm

SIMON

Partial
CMOS 130nm

Area (GEs) Max Throughput Total Power Total Power

serial Before P&R After P&R
NSA Frequency @100 KHz @100 KHz @2 MHz

Before P&R (MHz) (Kbps) (µW) (µW)

SIMON32/64

1-bit 517† 562† 523 331 5.6 0.421 8.3
2-bit 532∗ 578∗ 535 306 11.1 0.439 8.7
4-bit 563† 612† 566 283 22.2 0.479 9.5
8-bit 623∗ 677∗ 627 367 44.4 0.540 10.7

16-bit 715∗ 778∗ 722 456 88.9 0.645 12.8

SIMON48/96

1-bit 733† 796† 739 258 5.0 0.579 11.5
2-bit 745† 810† 750 289 10.0 0.601 11.9
3-bit 756† 822† 763 291 15.0 0.615 12.2
4-bit 778† 846† 781 287 20.0 0.642 12.7
6-bit 800† 869† 804 289 30.0 0.670 13.3
8-bit 833† 905† 839 238 40.0 0.706 13.9

12-bit 895† 973† 898 307 60.0 0.777 15.4
24-bit 1055∗ 1147∗ 1062 467 120.0 0.929 18.4

SIMON64/128

1-bit 944† 1026† 958 225 4.2 0.762 15.1
2-bit 955† 1038† 968 244 8.3 0.780 15.4
4-bit 988† 1074† 1000 290 16.7 0.818 16.2
8-bit 1043† 1134† 1057 296 33.3 0.866 17.2

16-bit 1174† 1276† 1185 293 66.7 1.024 20.3
32-bit 1403∗ 1524∗ 1417 465 133.3 1.239 24.6

* Area obtained by using compile ultra only.
† Area obtained by using compile ultra and clock gating.

We provide the best area results before and after the Place and Route phase using compile
ultra or compile ultra plus clock gating. These results can be used for comparing with other
ciphers or for practical purpose. The maximum frequency corresponding with the best optimiza-
tion technique is given and it is calculated by using the critical path. The calculated throughput is
based on the latency in our architectures and it is the same as SIMON. The difference of the total
power consumption among the three different optimizations is marginal. Therefore, we provide
the total power consumption using compile ultra at both 100 KHz and 2 MHz. 100 KHz is typical
for benchmarking purpose and 2 MHz is used for the passive RFID tags in practice.

For the total power consumption at 100 KHz, it is larger in CMOS 65nm than that in CMOS
130nm. The reason is that because the 100 KHz operating frequency is so small, the static power
consumption dominates the total power consumption. However, the static power consumption is
larger in CMOS 65nm than that in CMOS 130nm in this case. The opposite case is true for the
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Table 3.5: Our Implementation Results of Simeck32/64, 48/96, 64/128 in 65nm

Simeck
Partial

CMOS 65nm
Area (GEs) Max Throughput Total Power Total Power

Serial Before P&R After P&R
Frequency @100 KHz @100 KHz @2 MHz

(MHz) (Kbps) (µW) (µW)

Simeck32/64

1-bit 454∗ 488∗ 1754 5.6 1.292 5.5
2-bit 465† 500† 1428 11.1 1.311 5.6
4-bit 494† 531† 1388 22.2 1.376 5.9
8-bit 550∗ 592∗ 1250 44.4 1.512 6.4

16-bit 644∗ 692∗ 1428 88.9 1.716 6.8

Simeck48/96

1-bit 645† 693† 1562 5.0 1.805 7.8
2-bit 656† 706† 1538 10.0 1.825 8.0
3-bit 663† 712† 1282 15.0 1.857 8.4
4-bit 686† 738† 1333 20.0 1.886 8.2
6-bit 701† 753† 1282 30.0 1.919 8.4
8-bit 732† 787† 1388 40.0 2.009 8.8

12-bit 794∗ 854∗ 1219 60.0 2.212 9.3
24-bit 951∗ 1022∗ 2325 120.0 2.44 9.6

Simeck64/128

1-bit 828∗ 891∗ 1369 4.2 2.304 10.2
2-bit 838† 901† 1408 8.3 2.325 10.3
4-bit 869† 935† 1098 16.7 2.372 10.5
8-bit 918† 987† 1190 33.3 2.492 10.9

16-bit 1042∗ 1121∗ 1086 66.7 2.869 12.3
32-bit 1263∗ 1358∗ 1282 133.3 3.316 13.1

* Area obtained by using compile ultra only.
† Area obtained by using compile ultra and clock gating.

total power consumption at 2 MHz.

Besides having a very small area, our another observation is that most part of the area for all
the architectures are built of the sequential logics, especially for the fully serialized architecture.
Take Simeck32/64 for example. 86%, 85%, 82%, 76%, and 70% of the entire area are sequential
logics for the cases that par sz equals 1, 2, 4, 8, and 16 respectively. From the data provided, we
can obtain that the fully serialized architecture is built of about 90% sequential logics. Similar
conclusions can be obtained for Simeck48/96 and Simeck64/128.

We provide a range of options between the area, throughput, and power consumption in our
ASIC implementations. Taking Simeck32/64 in CMOS 130nm for illustration, we can achieve
a throughput of 5.6 Kbps at the area cost of 505 GEs (before the Place and Route) and 549 GEs
(after the Place and Route) with the power consumption of 0.417 µW at 100 KHz. However, a
two-fold throughput (11.1 Kbps) can be obtained with only 5 and 6 extra GEs (before and after
the Place and Route respectively), and 0.014 µW at 100 KHz extra power consumption. With
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Table 3.6: Our Implementation Results of SIMON32/64, 48/96, 64/128 in 65nm

SIMON

Partial
CMOS 65nm

Area (GEs) Max Throughput Total Power Total Power

Serial Before P&R After P&R
Frequency @100 KHz @100 KHz @2 MHz

(MHz) (Kbps) (µW) (µW)

SIMON32/64

1-bit 466∗ 501∗ 1428 5.6 1.311 5.6
2-bit 476∗ 512∗ 1562 11.1 1.331 5.7
4-bit 506∗ 544∗ 1408 22.2 1.381 5.9
8-bit 570∗ 613∗ 1075 44.4 1.585 6.8

16-bit 666∗ 716∗ 2222 88.9 1.751 6.8

SIMON48/96

1-bit 661† 711† 1204 5.0 1.812 7.9
2-bit 670† 720† 1136 10.0 1.889 9.5
3-bit 682† 733† 1086 15.0 1.86 8.1
4-bit 699† 752† 1041 20.0 1.915 8.3
6-bit 724† 779† 1369 30.0 1.962 8.5
8-bit 757† 814† 1282 40.0 2.122 9.0

12-bit 819∗ 881∗ 1176 60.0 2.305 9.7
24-bit 982∗ 1056∗ 2222 120.0 2.542 9.9

SIMON64/128

1-bit 845† 908† 1282 4.2 2.336 10.2
2-bit 858† 922† 1265 8.3 2.366 10.4
4-bit 887† 954† 1250 16.7 2.423 10.6
8-bit 944† 1015† 1265 33.3 2.577 11.2

16-bit 1076∗ 1156∗ 1176 66.7 3.068 12.8
32-bit 1305∗ 1403∗ 1694 133.3 3.398 13.4

* Area obtained by using compile ultra only.
† Area obtained by using compile ultra and clock gating.

more extra area and power consumption, we can get even higher throughput.

3.3 Results Comparison between Simeck and SIMON

We compare our area results before the Place and Route of Simeck and SIMON in CMOS 130nm
with the SIMON results of the NSA researchers [11]. This is because the NSA researchers only
provide the area results before the Place and Route in CMOS 130nm. The comparison is shown
in Figure 3.6. We can observe that our SIMON results are all smaller than that of NSA’s results,
and our Simeck results are even smaller than SIMON for all the cases shown in Figure 3.6.

From the theoretical point of view, Simeck is designed to have a smaller area due to the
following considerations: the simplified key schedule, the simplified LFSR to generate the key
constant, and the decreased shift numbers in the round function. It is worth noting that the
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Figure 3.6: Comparison of Areas (before the Place and Route) between the Implementation
Results of the NSA Researchers’ and Ours in CMOS 130nm

decreased shift numbers do not affect any area in the parallel architecture, and it only affect the
area in the partially serialized architecture.

The construction of the combinational circuit in the key schedule of SIMON32/64, 48/96,
64/128 and Simeck32/64, 48/96, 64/128 in the parallel architecture are shown as follows:

SIMON (2n+ 3) XOR + (n− 2) XNOR
Simeck (n+ 3) XOR + (n− 2) XNOR + n AND

In general, one XOR gate is larger than one AND gate. Therefore, the key schedule of SIMON

is larger than that of Simeck. The LFSR used to generate the key constants for SIMON32/64 is
defined by the primitive polynomial X5 + X4 + X2 + X + 1, and the LFSRs for SIMON48/96
and SIMON64/128 are defined by X5 + X3 + X2 + X + 1. They are all 2 XOR gates (4
GEs) bigger than the ones used in corresponding Simeck, as described in Section 3.1. The
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decreased shift numbers of the round function and key schedule reduce 1 MUX for the inputs to
the combinational circuits of the round function and the key schedule respectively (2 MUXes in
total, 2 · 2.25 GEs/MUX = 4.5 GEs), and also some logics to select the MUXes.

Table 3.7: Breakdown of the Implementation Results for Simeck before the Place and Route in
130nm

Simeck32/64 (130nm) SIMON32/64 (130nm)
Parallel Fully Serialized Parallel Fully Serialized

Components (GEs) (GEs) (GEs) (GEs)
Control 31 71 35 75

Datapath
Round combinational Circuit 112 7 112 7
Key combinational Circuit 80 5 96 8
Sequential + MUXes 474 434 474 443

Totals
Compile simple 697 517 717 533
Compile ultra 695 505 717 520
Compile ultra + clock gating 695 506 715 517

From the practical point of view, we break down the area results before the Place and Route
in CMOS 130nm for Simeck32/64, and SIMON32/64 in our implementations, as shown in
Table 3.7. For parallel architectures, the differences of the control circuits and the key combi-
national circuits between Simeck32/64 and SIMON32/64 are 4 GEs (key constant) and 16 GEs
respectively. The results are almost the same as the theoretical analysis. For the fully serialized
architecture, the control circuit is reduced by 4 GEs (key constant), the key combinational cir-
cuit (dashed box in Figure 4) is reduced by 3 GEs, and the 2 MUXes plus the MUXes selection
circuitry are reduced by 9 GEs for Simeck32/64 (i.e., a total saving of 16 GEs), compared to
that of SIMON32/64. Therefore, the practical results match the theoretical analysis. Simeck is
smaller than SIMON for both parallel architecture and partially serialized architecture.

The main area cost for SIMON comes from the registers storing the message block and the
key. In order to design a smaller cipher than SIMON, we can reduce the areas of only the round
function, key schedule, key constant, and multiplexers. For fully serialized architecture of SI-
MON32/64 (see Table 3.7), the combined area of these blocks is 34.5 GEs (7 + 8 + 6 + 6 MUX
· 2.25/MUX), which accounts for only about 6.4% (34.5/533) of the total area. Simeck32/64
reduces this by 16 GEs, a saving of more than 46%. This reduction leads to 2.3% smaller total
area in comparison to our implementations of SIMON32/64 in CMOS 130nm, and 3.4% small-
er in comparison to the original SIMON32/64 results (see Tables 3.3 and 3.4). Similarly, the
fully serialized architectures of Simeck48/96, 64/128 are 2.5%, 2.1%, respectively, smaller
than our implementations of SIMON48/96, 64/128 and they are 3.3% and 3.5%, respectively,
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smaller than the original implementation results of SIMON48/96, 64/128 in CMOS 130nm (see
Tables 3.3 and 3.4). For the parallel architectures of SIMON, these blocks consume a larger
fraction (about 29%) of the total area (see Table 3.7). Simeck32/64, 48/96, 64/128 achieve the
saving of 3.7%, 3.3%, and 3.7% respectively, compared to the original results of SIMON32/64,
48/96, 64/128 (see Tables 3.3 and 3.4). The choice of the values of the shift numbers plays a
significant role in the area reduction of the partially serialized architecture. Because the parallel
architecture does not contain the MUXes for the inputs to the combinational circuit (dashed box),
the total area reduction is only slightly greater than that of the fully serialized architecture.

From Tables 3.3 and 3.4, we can also observe that the power consumption of Simeck is
smaller than SIMON for all the cases in CMOS 130nm using the same optimizations. This is
easy to understand because the area of Simeck is smaller than that of SIMON. This conclusion
also holds for CMOS 65nm in Tables 3.5 and 3.6.

Overall, Simeck is smaller than SIMON in terms of area and power consumption in both
CMOS 130nm and CMOS 65nm techniques.

3.4 Comparisons with Other Lightweight Block Ciphers

In Section 3.2.3, we offer a wide range of options between area, throughput, and power con-
sumption for the implementations of Simeck. All the Simeck’s family members can meet our
security, hardware, and applications design goals. We compare our results to the previous con-
structions with comparable block sizes and key sizes as given in Table 3.8. Table 3.8 gives our
smallest area results for all the instances of Simeck from before and after the Place and Route
(P&R) phase in CMOS 130nm and CMOS 65nm ASICs. In addition, the corresponding through-
put and power consumption at 100 KHz after the Place and Route are also provided. In particular,
Table 3.8 presents our hardware implementation results of SIMON which cost less area than the o-
riginal results in [11]. In addition to the analysis of the comparison between Simeck and SIMON

in CMOS 130nm in Section 3.3, the smallest Simeck32/64, Simeck48/96, and simeck64/128
in CMOS 65nm are 2.6%, 2.4%, and 2.0% smaller respectively than our implementations of the
corresponding SIMON as shown in Table 3.8. Moreover, with only a little extra area (GEs) and
power consumption, we can increase Simeck’s throughput a lot.

Furthermore, the area of Simeck is smaller than other lightweight ciphers (EPCBC, LED,
PRESENT) with the same block size and key size as shown in Table 3.8. The area of Simeck48/96
is 731 GEs (before Place and Route Phase) when the throughput is 15.0 Kbps, and that of
Simeck64/128 is 958 GEs when the throughput is 16.7 Kbps (see Table 3.3). Therefore, even
when compared with the similar throughput, the area of Simeck is smaller than that of EPCPC
and PRESENT.
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Table 3.8: Comparisons of Hardware Implementations of Lightweight Block Ciphers

Size Algorithm
Area Throughput Power

SourceTech Before P&R After P&R @100KHz @100KHz
(nm) (GEs) (GEs) (Kbps) (µW )

32/64

SIMON

130

523 - 5.6 - [11]
SPECK 580 - 4.2 - [11]
SIMON 517 562 5.6 0.421 here
Simeck 505 549 5.6 0.417 here
SIMON

65
466 501 5.6 1.311 here

Simeck 454 488 5.6 1.292 here

48/96

SIMON

130

739 - 5.0 - [11]
SPECK 794 - 4.0 - [11]
SIMON 733 796 5.0 0.579 here
Simeck 715 778 5.0 0.576 here
SIMON

65
661 711 5.0 1.812 here

Simeck 645 693 5.0 1.805 here
EPCBC 180 1008 - 12.1 - [117]

64/128

SIMON

130

958 - 4.2 - [11]
SPECK 966 - 3.4 - [11]
SIMON 944 1026 4.2 0.762 here
Simeck 924 1005 4.2 0.754 here
SIMON

65
845 908 4.2 2.336 here

Simeck 828 891 4.2 2.304 here
LED

180
1265 - 3.4 - [49]

PRESENT 1339 - 12.1 - [117]
SKINNY 1172 - 2.03 - [14]

3.5 Summary

In this chapter, we have presented Simeck, a new family of lightweight block ciphers. Simeck
is very suitable for resource-constrained devices, such as passive RFID tags. We have provided
an extensive exploration for different hardware architectures in order to make a balance between
area, throughput, and power consumption for SIMON and Simeck in both CMOS 130nm and
CMOS 65nm technologies. We have shown that it is possible to design a smaller cipher than
SIMON in terms of area and power consumption. Moreover, we have improved the hardware
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implementations of SIMON given in the original paper. In conclusion, all of the instances in
the Simeck family can meet the area, power consumption, and throughput requirements in the
passive RFID tags and they are promising candidates for resource-constrained devices.
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Chapter 4

Design Space Exploration of the
Lightweight Stream Cipher WG-8

WG-8 [35] is a lightweight instance of the WG stream cipher family [85], which inherits the
good randomness and cryptographic properties of the WG stream cipher family.

The first hardware architecture for implementing WG-29 was described in [85], and the hard-
ware design of MOWG, a multi-bit output variant of the original WG cipher, was proposed in
[67] using signal reuse as well as pipelining with reuse techniques. The hardware implementa-
tion of the ultra-lightweight instance WG-5 has been reported in the context of passive RFID
applications [7]. Recently, a new efficient hardware design for WG-29 was proposed in [30],
using the nice property of the trace of product of two finite field elements with type-II optimal
normal basis (ONB) representations. A compact hardware implementation of large size stream
cipher WG-16 using tower field constructions with excellent performance was also proposed
[37]. In addition, the S-box in AES based on the tower field constructions [101] achieved quite
good performance. In this chapter, we investigate different tower field constructions and explore
the design space for WG-8 on FPGA and ASIC platforms in terms of area, speed, and power
consumption.

The main focus of this chapter is to explore different constructions in F28 for WG-8 stream
cipher and analyze the effect on hardware architectures and the area, power, and performance of
hardware implementations on low-cost FPGA and ASICs. Four different hardware architectures
have been proposed in this work. Multiplication is the most expensive operation and its area is
affected by the choice of basis. The first architecture directly employs an 8×8 constant array over
F28 . With the goal of replace multiplication by small constant arrays, the second one is based on
the tower construction F(24)2 together with small 4× 4 constant arrays for arithmetic in F24 , due
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to the existence of primitive element. The third architecture is slightly different from the second
one, the multiplication is small due to the usage of a type-I ONB for efficient computations in
F24 . Finally, the fourth architecture takes advantage of the tower construction F((22)2)2 coupled
with a nice property for computing the trace of the product of two finite field elements.

We propose a novel hybrid design with the parallel width from one to eleven for each pro-
posed architecture. With additional hardware resources, the parallel implementations can achieve
a high throughput without incurring significantly critical path delay.

The experimental results show that the direct constant array based hardware architecture
is best in terms of clock speed, area, and power consumption, when compared to the tower
field arithmetic based approaches. The main reason is due to the small field size as well as the
relatively complicated architecture of WG-8 permutation/transformation module. Although the
tower field based approaches for WG-8 are not efficient, the proposed architecture and extensive
experimental results still provide valuable guidance for efficient hardware implementations of
medium or large instances of the WG stream cipher family.

This chapter is organized as follows. In Section 4.1, we give the description and hardware
architecture of WG-8. Four different design strategies for the WG-8 transformation module and
the hybrid design architectures for WG-8 are presented in Section 4.2. In Section 4.3, we give
the design methods to calculate the multiplication by ω module in WG-8 design. The hardware
implementations of WG-8, including the Finite State Machine (FSM) and the FPGA and ASIC
results are presented in Section 4.4. Before concluding this chapter, we give the results analysis
and comparison with other lightweight stream ciphers in Section 4.5.

4.1 Description of WG-8

The detailed description of WG-8 is given in this section.

4.1.1 Parameters for WG-8

We define the terms and notations that will be used to describe the lightweight stream cipher
WG-8 and its hardware implementations.

– p(x) = x8 + x4 + x3 + x2 + 1, a primitive polynomial of degree 8 over F2.

– F28 , the extension field of F2 defined by the primitive polynomial p(x) with 28 elements.
Each element in F28 is represented as an 8-bit binary vector. Let ω be a primitive element
of F28 such that p(ω) = 0.

52



– Tr(x) = x+ x2 + x2
2

+ x2
3

+ x2
4

+ x2
5

+ x2
6

+ x2
7 , the trace function from F28 → F2.

– l(x) = x20 + x9 + x8 + x7 + x4 + x3 + x2 + x + ω, the feedback polynomial of LFSR
(which is also a primitive polynomial over F28).

– q(x) = x+ x2
3+1 + x2

6+23+1 + x2
6−23+1 + x2

6+23−1, a permutation polynomial over F28 .

– WGP-8(xd) = q(xd + 1) + 1, the WG-8 permutation with decimation d from F28 → F28 ,
where d is coprime to 28 − 1.

– WGT-8(xd) = Tr(WGP-8(xd)) = Tr(q(xd + 1)), the WG-8 transformation with decima-
tion d from F28 → F2, where d is coprime to 28 − 1.

– Polynomial basis (PB) of F28: A polynomial basis of F28 over F2 is a basis of the form
{1, ω, ω2, · · · , ω7}.

– Normal basis (NB) of F28: A normal basis of F28 over F2 is a basis of the form {θ, θ2, · · · , θ27},
i.e., a basis consisting of all the algebraic conjugates of a fixed element θ. Some basis facts
when performing computations in F28 with normal basis are as follows:

– The exponentiation of a field element v to the power 2t (t ≥ 1) can be done by
cyclically shifting v to the right by t positions.

– If θ is a generator of the normal basis, then
∑7

i=0 θ
2i = 1. Therefore, the addition of

a field element v with 1 can be done by a bitwise complement operation.

– The trace of all basis element is one, i.e., Tr(θ2i) = 1 for i = 0, 1, · · · , 7. Hence, the
trace of a field element v =

∑7
i=0 viθ

2i can be calculated as Tr(v) =
∑7

i=0 vi, i.e.,
the modulo-2 sum of its coordinates with respect to the normal basis.

– ⊕m, the bitwise addition operator for two operands of m bits (i.e., XOR).

– �m, the bitwise and operator for two operands of m bits (i.e., AND).

– ⊗m, the multiplication operator for two operands over F2m or its isomorphic fields.

– 8× 8 constant array, a constant array that contains 256 elements with 8-bit input and 8-bit
output.

– 8× 1 constant array , a constant array that contains 256 elements with 8-bit input and 1-bit
output.

– 4 × 4 constant array, a constant array that contains 16 elements with 4-bit input and 4-bit
output.
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4.1.2 Overview of WG-8

WG-8 is a lightweight stream cipher with 80-bit key and 80-bit initial vector (IV), which can be
regarded as a nonlinear filter generator over finite field F28 . The stream cipher WG-8 consists of
a 20-stage LFSR with the feedback polynomial l(x) followed by a WG-8 transformation module
with decimation 19, i.e., d = 19, which is different from [35], and operates in two phases, namely
an initialization phase and a running phase.

Initialization Phase

The key/IV initialization phase of the stream cipher WG-8 is shown in Figure 4.1. Let the 80-bit
secret key be K = (K0, . . . , K79)2, the 80-bit IV be IV = (IV0, . . . , IV79)2, and the internal
states of LFSR be S0, . . . , S19 ∈ F28 , where Si = (Si,0, . . . , Si,7)2 for i = 0, . . . , 19. The key and
IV initialization process is conducted as follows: S2i = (K8i, . . . , K8i+3, IV8i, . . . , IV8i+3)2 and
S2i+1 = (K8i+4, . . . , K8i+7, IV8i+4, . . . , IV8i+7)2 for i = 0, . . . , 9.

S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16S17S18S19

⊕

8

8

88

WGP-8(x19) WGP-8(x19): WG-8 Permutation Module

⊕
⊕
8
⊕
8

88 ⊕
8
⊕
8
⊕
8

88 ⊗⊕
8

8

8

8 ω8

Figure 4.1: The Initialization Phase of the Stream Cipher WG-8

Once the LFSR is loaded with the key and IV, the apparatus runs for 40 clock cycles. During
each clock cycle, the 8-bit internal state S19 passes through the nonlinear WG-8 permutation
with decimation 19 (i.e., the WGP-8(x19) module) and the output is used as the feedback to
update the internal state of the LFSR. The LFSR update follows the recursive relation:

Sk+20 = (ω ⊗8 Sk)⊕8 Sk+1 ⊕8 Sk+2 ⊕8 Sk+3 ⊕8 Sk+4 ⊕8

Sk+7 ⊕8 Sk+8 ⊕8 Sk+9 ⊕8 WGP-8(S19
k+19),

where 0 ≤ k < 40. After the key/IV initialization phase, the stream cipher WG-8 goes into the
running phase and 1-bit keystream is generated after each clock cycle.

Running Phase

The running phase of the stream cipher WG-8 is illustrated in Figure 4.2. During the running
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Figure 4.2: The Running Phase of the Stream Cipher WG-8

phase, the 8-bit internal state S19 passes through the nonlinear WG-8 transformation with dec-
imation 19 (i.e., the WGT-8(x19) module) and the output is the keystream. Note that the only
feedback in the running phase is within the LFSR and the recursive relation for updating the
LFSR is given below:

Sk+20 = (ω ⊗8 Sk)⊕8 Sk+1 ⊕8 Sk+2 ⊕8 Sk+3 ⊕8 Sk+4 ⊕8 Sk+7 ⊕8 Sk+8 ⊕8 Sk+9,

where k ≥ 40. The WG-8 transformation module WGT-8(x19) comprises of two sub-modules:
a WG-8 permutation module WGP-8(x19) followed by a trace computation module Tr(·). While
the WGP-8(x19) module permutes elements over F28 , and the Tr(·) module transforms an 8-bit
input to one keystream bit.

4.1.3 Hardware Architecture

The stream cipher WG-8 is a lightweight keystream generator that consists of four main compo-
nents: the 20-stage LFSR over finite field F28 , the WG-8 transformation module WGT-8(x19),
the multiplication by ω module, and the finite state machine. A high-level hardware architecture
that contains both initialization and running phases is shown in Figure 4.3. Note that the WG-8
transformation module WGT-8(x19) has been further split into the WG-8 permutation module
WGP-8(x19) and the trace computation module Tr(·) in order to accommodate the initialization
phase.

Under the control of the finite state machine, the 80-bit key and the 80-bit IV will be first
loaded into LFSR within 20 clock cycles through the pin DIN. After loading the required key
and IV, the initialization phase will be performed in the next 40 clock cycles without any output.
The running phase will start from the 61 clock cycle and one bit keystream will be output in
every clock cycle.
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Figure 4.3: The High-Level Hardware Architecture of the Stream Cipher WG-8

The above procedure characterizes a simple design for implementing the WG-8 stream ci-
pher since only one bit is output per clock cycle during the running phase. To further increase the
throughput, we also consider a parallel approach that enables the WG-8 core to output several
bits per clock cycle during the running phase. Due to the tap position distribution of the LFSR’s
feedback polynomial in WG-8, the maximum parallel width is eleven in this case. Although
a parallel approach can be applied to the running phase, the initialization phase has to be im-
plemented in a serial fashion, which makes our hardware architecture a hybrid design. In the
following sections, we will elaborate the hardware design for the main components of WG-8.

4.2 Design Strategies for the WG-8 Transformation Module

In this section, we discuss the different design strategies for the WG-8 transformation module.
The hardware implementation of the WGT-8(x19) module involves the arithmetic (i.e., addition,
multiplication, inversion, and exponentiation) over finite field F28 . The most complicated com-
ponent is the WGP-8(x19) module that can be implemented using either an 8× 8 constant array
or the tower field (TF) arithmetic. The Tr(·) module can also be realized either by an 8 × 1
constant array or several XOR gates in a straightforward manner.

Since a number of exponentiations of the form 2t (t ≥ 1) need to be performed for comput-
ing WGP-8(x19), and we employ normal basis to implement fast exponentiation in F28 by using
cyclic shift operations. Therefore, the conversion matrices between the TF and NB representa-
tions will also be deduced.
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In the following subsections, we use four different methods for implementing the WGT-8
module, which are the constant array based method and three tower field methods.

4.2.1 Using Constant Array

Depending on the bases used, one can precompute the WGP-8 module with decimation 19

WGP-8(x19) = q(x19 + 1) + 1

as well as the trace function

Tr(x) = x+ x2 + x2
2

+ x2
3

+ x2
4

+ x2
5

+ x2
6

+ x2
7

for all elements x ∈ F28 . Hence, an 8 × 8 constant array (CA) can be generated to store the
results for the WGP-8 module, and an 8× 1 constant array (CA) can be used to keep the results
for the trace function. Moreover, an 8×1 constant array (CA) can also be generated for the entire
WGT-8 module by using the relation WGT-8(x19) = Tr(WGP-8(x19)). Thus, the area of the
WGT-8 module and the area of the trace function are the same, and they are much smaller than
that of the WGP-8 module. We will use these constant arrays to implement WGT-8 and WGP-8
in our hardware implementations of WG-8.

4.2.2 Using Tower Field 1

In this subsection, we first construct a finite field F24 and then construct F(24)2 for the WGT-8
module. We define this tower construction as Tower Field 1 (TF 1).

Tower Construction F(24)2 and Its Arithmetic

To obtain the tower construction F(24)2 , we first construct F24 by using an irreducible polynomial
e1(X) of degree 4 over F2, and then construct F(24)2 by using a certain irreducible polynomial
f1(X) of degree 2 over F24 . Note that the efficiency of the arithmetic over F(24)2 is closely related
to the selection of the irreducible polynomials as well as the bases of the towerings. In this case,
we adopt mixed bases for two towerings. More specifically, we use e1(X) = X4 + X3 + 1
with its polynomial basis {1, α, α2, α3} for F24 and f1(X) = X2 +X + α with its normal basis
{β, β16} for F(24)2 , where α ∈ F24 and β ∈ F(24)2 are zeros of the polynomials e1(X) and f1(X),
respectively. Moreover, the irreducible polynomial e1(X) here is also a primitive polynomial and
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α is also a primitive element. According to the property of primitive polynomials, the elements
of a finite field generated by them can be represented using both the exponentiation and binary
forms. Therefore, we can use two small constant arrays to conduct arithmetic operations in F24

(see below for details). We summarize the bases and the defining polynomials for the tower fields
in Table 4.1. Furthermore, we choose θ = ω91 to construct the normal basis {θ, θ2, · · · , θ26 , θ27}
in F28 defined by the polynomial p(x). The values of α, β, θ are chosen in order to minimize
the Hamming weight of conversion matrices. As a result, the number of XOR gates used for
implementing the conversion matrices will be quite small.

Table 4.1: Tower Construction F(24)2

Finite Field Basis Defining Polynomial
F28
∼= F(24)2 NB, {β, β16}, β = ω7 f1(X) = X2 +X + α

F24
∼= F(2)4 PB, {1, α, α2, α3}, α = ω119 e1(X) = X4 +X3 + 1

Conversion matrices between TF and NB representations. For every element v in the tower field
F(24)2 , the TF representation can be described as follows:

v = v0β + v1β
16, v0, v1 ∈ F24 ,

= (v000 + v001α + v010α
2 + v011α

3)β + (v100 + v101α + v110α
2 + v111α

3)β16,

where v000, v001, v010, v011, v100, v101, v110, v111 ∈ F2. Using the relations α = ω119, β = ω7, we
can obtain

v = v000ω
7 + v001ω

126 + v010ω
245 + v011ω

109 +

v100ω
112 + v101ω

231 + v110ω
95 + v111ω

214. (4.1)

Writing each ωi, i ∈ {7, 126, 245, 109, 112, 231, 95, 214} in terms of the normal basis gives a
matrix MT→N that converts a finite field element from TF representation to NB representation.
Hence, we can also get the inverse matrix MN→T , which converts a finite field element back. In
addition, the hamming weight for the matrix MT→N and matrix MN→T are 30 and 22, respec-
tively. The MT→N and MN→T are given below:
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MT→N =




1 1 0 0 0 1 1 0
0 1 1 0 1 0 1 0
1 1 0 1 0 0 1 0
0 1 1 0 1 0 0 0
0 1 1 0 1 1 0 0
1 0 1 0 0 1 1 0
0 0 1 0 1 1 0 1
1 0 0 0 0 1 1 0




, MN→T =




0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1
1 0 1 1 1 0 0 0
1 0 0 1 0 1 0 0
0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 0
1 0 0 0 1 0 1 1




.

Arithmetic operations in F24 . The arithmetic in F24 is conducted with the aid of a 4× 4 exponen-
tiation table Texp (see Table 4.2) and a 4 × 4 logarithm table Tlog (see Table 4.3) below. While
the table Texp stores exponentiation αi, i = 0, 1, . . . , 14, and the table Tlog keeps the exponent i
for each αi, i = 0, 1, . . . , 14.

Table 4.2: Exponentiation Table Texp in Hexadecimal Notation

i 0 1 2 3 4 5 6 7 8 9 A B C D E
αi 8 4 2 1 9 D F E 7 A 5 B C 6 3

Table 4.3: Logarithm Table Tlog in Hexadecimal Notation

αi 1 2 3 4 5 6 7 8 9 A B C D E F
i 3 2 E 1 A D 8 F 4 9 B C 5 7 6

Let A = a0 + a1α+ a2α
2 + a3α

3 and B = b0 + b1α+ b2α
2 + b3α

3 be two non-zero elements
in F24 , where ai, bi ∈ F2, i = 0, 1, 2, 3. We can perform the arithmetic in F24 as follows:

AB = Texp[(Tlog[(a0, a1, a2, a3)] + Tlog[(b0, b1, b2, b3)]) mod 15],

A2 = Texp[(Tlog[(a0, a1, a2, a3)]� 1) mod 15],

αA = Texp[(Tlog[(a0, a1, a2, a3)] + 1) mod 15].

Arithmetic operations in F(24)2 . LetA = a0β+a1β
16 andB = b0β+b1β

16, where a0, a1, b0, b1 ∈
F24 . A multiplication AB in F(24)2 is computed as follows:

AB = (a0β + a1β
16)(b0β + b1β

16),

= (cα + a0b0)β + (cα + a1b1)β
16.

59



where c = (a0 + a1)(b0 + b1). For a non-zero element A ∈ F(24)2 , the squaring of A is calculated
as follows :

A2 = (a0β + a1β
16)2 = a20β

2 + a21β
32,

= [(a0 + a1)
2α + a20]β + [(a0 + a1)

2α + a21]β
16.

Implementation of WGT-8(x19) Module

For an element x ∈ F28 , WGP-8(x19) can be computed as follows:

WGP-8(x19) = q(x19 + 1) + 1,

= y + y2
3+1 + y2

6

(y2
3+1 + y2

3−1) + y2
3(23−1)+1 + 1,

where y = x19 + 1 = x2
4 · x2 · x + 1, and y ∈ F28 . The WGT-8 module is combined by

WGP-8 module and Tr(·) module, as described in section 4.1.3. Therefore, the WGT-8(x19) can
be computed as follows:

WGT-8(x19) = Tr(WGP-8(x19)),

= Tr
(
y + y2

3+1 + y2
6

(y2
3+1 + y2

3−1) + y2
3(23−1)+1

)
.

Note that for this tower construction F(24)2 , 1 can be denoted by the vector (1, 0, 0, 0, 1, 0, 0, 0).
Therefore, the addition with 1 under the TF representation is equivalent to XORing with a con-
stant 0x88, which only needs two NOT gates. Moreover, from Equation 4.1 we also obtain

Tr(v) = Tr(v000ω7 + v001ω
126 + v010ω

245 + v011ω
109+

v100ω
112 + v101ω

231 + v110ω
95 + v111ω

214),

= v001 ⊕1 v010 ⊕1 v011 ⊕1 v101 ⊕1 v110 ⊕1 v111.

Based on the above observations, the hardware architecture of the WGT-8(x19) module is illus-
trated in Figure 4.4, where we list the output of each component and its basis representation.
There are two outputs for the WGT-8(x19) module, and the 8-bit WGP-8(x19) output is used as
the feedback for the initialization phase and the 1-bit WGT-8(x19) output is used for the running
phase. Furthermore, as shown in Figure 4.5, the exponentiation module (·)23−1 can be efficiently
implemented by performing two squarings and two multiplications over the tower field F(24)2 .

4.2.3 Using Tower Field 2

The tower construction 2 (TF 2) is similar as the TF 1. In this case, the finite field F24 is firstly
constructed and then F(24)2 .
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Tower Construction F(24)2 and Its Arithmetic

We use the same approach as that in TF 1 to build the tower construction F(24)2 , but with different
irreducible polynomials. More specifically, we use e2(X) = X4 + X3 + X2 + X + 1 with its
type-I optimal normal basis {α, α2, α22 , α23} for F24 and f2(X) = X2 +X + α with its normal
basis {β, β16} for F(24)2 , where α ∈ F24 and β ∈ F(24)2 are zeros of the polynomials e2(X) and
f2(X), respectively. However, f2(X) is the same as f1(X), and we take a polynomial e2(X) with
type-I optimal normal basis to conduct the arithmetic operations in F24 . Where, e2(X) is only
an irreducible polynomial but not a primitive polynomial. Therefore, the elements generated by
e2(X) can only be represented by binary form, hence we cannot take advantage of the small
constant arrays as in TF 1. However, upon our observations, the arithmetic operations in F24

using the type-I optimal normal basis is very efficient, where the coefficient of the multiplication
is symmetric and simple (see below for details). Due to the nice property of the arithmetic
calculations of e2(X), the area and power consumption will decrease significantly, compared to
TF 1. Moreover, the normal basis {θ, θ2, · · · , θ26 , θ27} in this method is given by θ = ω21. As
we did before, the values of α, β, and θ are chosen in order to minimize the hamming weight of

61



conversion matrices. As we can see later, the number of XOR gates used for implementing the
conversion matrices is smaller than TF 1, and hence the total area will be decreased (see below
for details).

Table 4.4: Tower Construction F(24)2 with Normal Bases

Finite Field Basis Defining Polynomial
F28
∼= F(24)2 NB, {β, β16}, β = ω123 f2(X) = X2 +X + α

F24
∼= F(2)4 NB, {α, α2, α22 , α23}, α = ω51 e2(X) = X4 +X3 +X2 +X + 1

Conversion matrices between TF and NB representations. For every element v in this tower field
F(24)2 , the TF representation is as follows:

v = v0β + v1β
16, v0, v1 ∈ F24 ,

= (v000α + v001α
2 + v010α

22 + v011α
23)β + (v100α + v101α

2 + v110α
22 + v111α

23)β16,

where v000, v001, v010, v011, v100, v101, v110, v111 ∈ F2. Using the relations α = ω51 and β =
ω123, we can get the conversion matrices MT→N , and MN→T with hamming weight 24 and 24,
respectively. The MT→N and MN→T are given below:

MT→N =




0 1 0 1 0 1 0 0
1 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0
0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 1
0 0 0 0 1 0 0 0
1 0 1 0 1 1 1 0
0 1 1 0 0 1 0 0




, MN→T =




0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 1
0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0
0 1 0 1 0 1 1 1
0 0 1 1 0 0 1 0
0 0 1 0 1 0 1 0




.

Arithmetic operations in F24 . Thanks to the type-I optimal normal basis, the arithmetic in F24 has
been directly implemented using logics in this case. Let A = a0α + a1α

2 + a2α
22 + a3α

23 and
B = b0α+b1α

2+b2α
22 +b3α

23 be two non-zero elements in F24 , where ai, bi ∈ F2, i = 0, 1, 2, 3.
A multiplication AB in F24 is computed as follows:

AB = (a0α + a1α
2 + a2α

22 + a3α
23) · (b0α + b1α

2 + b2α
22 + b3α

23),

= c0α + c1α
2 + c2α

22 + c3α
23 ,
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where

c0 = a0b2 + a1(b2 + b3) + a2(b0 + b1) + a3(b1 + b3),

c1 = a1b3 + a2(b3 + b0) + a3(b1 + b2) + a0(b2 + b0),

c2 = a2b0 + a3(b0 + b1) + a0(b2 + b3) + a1(b3 + b1),

c3 = a3b1 + a0(b1 + b2) + a1(b3 + b0) + a2(b0 + b2).

The squaring of A and multiplication of A with α, where A ∈ F24 , are calculated as follows:

A2 = (a0α + a1α
2 + a2α

22 + a3α
23)2,

= a3α + a0α
2 + a1α

22 + a2α
23 .

αA = α(a0α + a1α
2 + a2α

22 + a3α
23),

= a2α + (a0 + a2)α
2 + (a2 + a3)α

22 + (a1 + a2)α
23 .

Hence, the squaring of A can be obtained by cyclically shifting one bit to the right, and αA can
be implemented by using 3 XOR gates.

Arithmetic operations in F(24)2 . LetA = a0β+a1β
16 andB = b0β+b1β

16, where a0, a1, b0, b1 ∈
F24 . The multiplication AB and the squaring of A in F(24)2 can be computed in the same way as
TF 1.

Implementation of WGT-8(x19) Module

The hardware architecture of WGT-8(x19) in TF 2 is almost the same as that in TF 1 (see Fig-
ure 4.4) and the only difference lies in the computation of trace and addition with 1. Under the
tower construction in TF 2, the trace of an element is computed by XORing all component co-
ordinates and 1 can be represented by (1, 1, 1, 1, 1, 1, 1, 1). As a result, 7 XOR gates and 8 NOT
gates are required to implement the trace computation module and addition with 1.

4.2.4 Using Tower Field 3

The tower construction 3 (TF 3) is built by using three level construction, which are F22 , F(22)2 ,
and F((22)2)2 .

63



Tower Construction F((22)2)2 and Its Arithmetic

To obtain the tower construction F((22)2)2 , we first construct F22 by using the irreducible polyno-
mial e3(X) over F2, and then construct F(22)2 by using a certain irreducible polynomial f3(X) of
degree 2 over F22 , and finally construct F((22)2)2 by using a certain irreducible polynomial g3(X)
of degree 2 over F(22)2 . Where, α ∈ F22 , β ∈ F(22)2 and γ ∈ F((22)2)2 are zeros of polynomials
e3(X), f3(X) and g3(X) respectively. The specific polynomials and their normal bases are de-
scribed in Table 4.5. Moreover, the normal basis {θ, θ2, · · · , θ26 , θ27} in this method is given by
θ = ω39 in F28 . As we did before, the values of α, β, γ, θ are chosen in order to get the low ham-
ming weight conversion matrices (see below for details). Hence, the number of XOR gates used
for implementing the conversion matrices will be quite small. The reason why we use this con-
struction is that we want to have the nice property of trace function for two elements in F((22)2)2

(see below for details). Through the property of the trace function, a different architecture for
implementing WGT-8(x19) module will be used.

Table 4.5: Tower Construction F((22)2)2 with Normal Bases

Finite Field Basis Defining Polynomial
F28
∼= F((22)2)2 NB, {γ, γ16}, γ = ω56 g3(X) = X2 +X + λ, λ = α2β

F24
∼= F(22)2 NB, {β, β4}, β = ω17 f3(X) = X2 +X + α

F22
∼= F(2)2 NB, {α, α2}, α = ω85 e3(X) = X2 +X + 1

Conversion matrices between TF and NB representations. For every element v in this tower field
F((22)2)2 , the TF representation is as follows:

v = v0γ + v1γ
16, v0, v1 ∈ F(22)2 ,

= [(v000α + v001α
2)β + (v010α + v011α

2)β4]γ +

[(v100α + v101α
2)β + (v110α + v111α

2)β4]γ16,

where v000, v001, v010, v011, v100, v101, v110, v111 ∈ F2. Using the relations α = ω85, β = ω17, and
γ = ω56, we can get the conversion matrices MT→N , and MN→T with hamming weight 20 and
28, respectively. The MT→N and MN→T are given below:
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MT→N =




1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 0
0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1
0 1 0 0 0 1 1 0
1 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0




, MN→T =




0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 1
0 0 1 1 0 1 1 1
1 1 1 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 0
0 1 1 1 0 0 1 1
0 0 1 1 1 1 1 0




.

Arithmetic operations in F22 . Let A = a0α + a1α
2 and B = b0α + b1α

2 , where ai, bi ∈ F2, i =
0, 1. A multiplication AB in F24 is computed as follows:

AB = (a0α + a1α
2)(b0α + b1α

2),

= [(a0 + a1)(b0 + b1) + a0b0]α + [(a0 + a1)(b0 + b1) + a1b1]α
2.

The squaring of A and multiplication of A by α, where A ∈ F22 , are carried out as follows:

A2 = (a0α + a1α
2)2 = a1α + a0α

2,

αA = a0α
2 + a1(α + α2) = a1α + (a0 + a1)α

2.

Arithmetic operations in F(22)2 . Let A = a0β + a1β
4 and B = b0β + b1β

4, where a0, a1, b0, b1 ∈
F22 . The arithmetic operations of A, B in F(22)2 , including multiplication, squaring, and multi-
plication by λ, are computed as follows:

AB = (a0β + a1β
4)(b0β + b1β

4),

= [(a0 + a1)(b0 + b1)α + a0b0]β + [(a0 + a1)(b0 + b1)α + a1b1]β
4,

A2 = (a0β + a1β
4)2,

= [(a20 + a21)α + a20]β + [(a20 + a21)α + a21]β
4,

λA = α2βA = (a0α + a1)β + (a0 + a1)β
4.

Arithmetic operations in F((22)2)2 . LetA = a0γ+a1γ
16 andB = b0γ+b1γ

16, where a0, a1, b0, b1 ∈
F(22)2 . The arithmetic operations of A, B in F((22)2)2 , including multiplication, and squaring, are
computed as follows:

AB = (a0γ + a1γ
16)(b0γ + b1γ

16),

= [(a0 + a1)(b0 + b1)λ+ a0b0]γ + [(a0 + a1)(b0 + b1)λ+ a1b1]γ
16,

A2 = (a0γ + a1γ
16)2,

= [(a20 + a21)λ+ a20]γ + [(a20 + a21)λ+ a21]γ
16.
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Properties of the Trace Function Under this Tower Construction

As described in [30], the trace of the product of any two elements can be efficiently computed as
the inner product of their binary vectors, when the elements in F2m are represented in a type-II
ONB. Although there is no Gaussian normal basis over F28 , the above nice property of trace
function still holds if we use the isomorphic tower field construction F((22)2)2 in TF 3. Fan et al.
[37] proved the following theorem and two corollaries, which characterize the aforementioned
property.

Theorem 3 Given the tower construction in TF 3, the trace of the field multiplication of any two
elements U and V in F((22)2)2 can be computed as the inner product of U and V, i.e.,

Tr(UV ) =
7∑

i=0

(ui �1 vi).

Corollary 1 Given the tower construction in TF 3, for any elements X, U and V in F((22)2)2 , we
have Tr(X2ω) = Tr(X) =

∑7
i=0 xi and Tr(UV ) = Tr(U2ω �8 V

2ω), where ω is an integer.

Corollary 2 Given the tower construction in TF 3, for any elements U, V and W in F((22)2)2 , we
have

Tr(U �8 W )⊕1 Tr(V �8 W ) = Tr((U ⊕8 V )�8 W ).

Hardware Architecture of WGT-8(x19) Module for the Running Phase by Using the Trace
Property

Using the above theorem and two corollaries, the WG-8 transformation WGT-8(x19) can be
computed as follows:

WGT-8(x19) = Tr(WGP-8(x19)), x ∈ F28

= Tr
(
y ⊕8 y

23+1 ⊕8 y
26(y2

3+1 ⊕8 y
23−1)⊕8 y

23(23−1)+1
)
,

= Tr(y ⊕8 y
23+1)⊕1 Tr(y2

6

(y2
3+1 ⊕8 y

23−1))⊕1 Tr(y2
3(23−1)y),

= Tr(y ⊕8 y
23+1)⊕1 Tr(y2

6 �8 (y2
3+1 ⊕8 y

23−1))⊕1 Tr(y2(2
3−1)y2

6

),

= Tr(y ⊕8 y
23+1)⊕1 Tr(y2

6 �8 (y2
3+1 ⊕8 y

23−1 ⊕8 y
2(23−1))),

where y = x19 ⊕8 1 = x2
4 · x2 · x ⊕8 1. The WGT-8(x19) module can be implemented using

five multipliers in total for the running phase, where two of them are used to generate y, one for
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computing y23+1, and another two for generating y23−1. Due to the property of trace function,
the two multiplications y26(y23+1 ⊕8 y

23−1) and y23(23−1)y inside the trace function has been re-
placed by the bitwise AND and XOR operations, which enables us to reduce the area and delay
significantly. Using the property of the trace function, we can directly get the trace result of the
field multiplication of two arbitrary elements A and B, but the corresponding multiplication re-
sult AB is lost. Therefore, some strategy will be taken to recover the value of AB for generating
WGP-8 for feedback in the initialization phase.

Hardware Architecture of the WGP-8(x19) Module for the Initialization Phase

In the initialization phase, the WG-8 permutation is computed below:

WGP-8(x19) = q(x19 + 1) + 1, x ∈ F28

= (1⊕8 y ⊕8 y
23+1)⊕8 (y2

6

(y2
3+1 ⊕8 y

23−1))⊕8 (y2
3(23−1)y),

= (x19 ⊕8 y
23+1)⊕8 (y2

6

(y2
3+1 ⊕8 y

23−1))⊕8 (y2
3(23−1)y).

The two multiplication values y26(y23+1⊕8 y
23−1) and y23(23−1)y are missing due to the property

of the trace function. However, y23+1 and y23−1 can be obtained from the WGT-8(x19) module.
Noting that there are five multipliers in the WGT-8(x19), we can reuse two of them to calculate
the two missing intermediate multiplication values over two consecutive clock cycles. This is
done by keep the throughput of the running phase to be 1 bit per clock cycle while decreasing
the throughput of the initialization phase (i.e., <1 bit/clock). In other words, it is to increase the
length of the initialization phase and reuse the existing multipliers in the running phase.

Figure 4.6 describes an integrated architecture for computing WGT-8(x19) and WGP-8(x19).
To compute the WGP-8(x19) within two clock cycles, six extra multiplexers (i.e., MUX1, MUX2,
MUX3, MUX4, MUX5, MUX6) and three additional 8-bit registers (i.e., Reg1, Reg2, Reg3) are
added, as shown in Figure 4.6. The outputs of the six multiplexers and the updated states of the
three registers are summarized in Table 4.6, under the control of sel and clk signals. It takes
2 times more clock cycles than before, 80 clock cycles, to finish the initialization phase, while
other phases takes the same clock cycles as before. During the initialization phase, when sel
equals 0, the output of the WGP-8(x19) is an intermediate value; therefore it will not be sent to
the input of the LFSR. When sel becomes 1, the initialization feedback will be sent to update the
LFSR when the rising clock comes, along with the linear feedback within the LFSR. Moreover,
the sel signal will stay 0 in the running phase, and it will output WGT-8(x19) directly.
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Figure 4.6: The Integrated Hardware Architecture for Computing WGP-8(x19) and WGT-8(x19)

Table 4.6: Multiplexers and Registers During the Two-clock Computation of WGP-8(x19)

Component
Control Signal sel

0 1

Multiplexer

MUX1 y2
3

y2
3+1 ⊕8 y

23−1

MUX2 y y2
6

MUX3 y4 y

MUX4 y3 y2
3(23−1)

MUX5 x19 x19 ⊕8 y
23+1

MUX6 y2
3+1 y2

6
(y2

3+1 ⊕8 y
23−1)⊕8 y

23(23−1)y

Register
Reg1 y2

3+1 ⊕8 y
23−1 Not Relevant

Reg2 y2
3(23−1) Not Relevant

Reg3 x19 ⊕8 y
23+1 WGP-8(x19)
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4.2.5 Hybrid Design Architectures for WG-8

In this subsection, we propose a hybrid architecture for implementing WG-8 based on the above
four methods. The purpose of this hybrid architecture is to realize the parallel implementations
of WG-8 for parallel width from one to eleven. The maximum number eleven depends on the
tap positions of the LFSR’s feedback function in WG-8. According to the description in Sec-
tion 4.1.2, we know the maximum tap position of the feedback function of WG-8 is nine and the
significant state of the LFSR is S19, so the maximum parallel width is eleven. The idea for the
parallelism is that we can precompute

the feedback values from the 20-stage LFSR through the feedback function for different
parallel widths. Hereafter, we only illustrate the strategies for the parallel width equals one and
eleven, and the case for the other parallel width numbers is similar. For parallel width equals
eleven, we can precompute the eleven feedback values from the LFSR and then load them to the
LFSR in the running phase at one clock cycle. In this way, the eleven bits per clock cycle can be
generated through eleven copies of WGT-8 module.

In order to achieve parallelism for the initialization phase, we need to precompute eleven
feedback values from the WGP-8 module and the LFSR’s feedback functions. However, the
parallelism is impractical since the input to the WGP-8 is dependent upon the previous feedback
value, making the eleven feedback values cannot be obtained in one clock cycle. Therefore, we
use a serial design for the initialization phase, where only one feedback value is generated for
the LFSR. In our architecture, we define the combined serial design for the initialization phase
and the parallel design for the running phase as the hybrid design architecture.

For the parallel width from one to eleven in our hybrid design, we can use one to eleven
copies of WGT-8 module in the running phase and one WGP-8 module for the initialization
phase or one to eleven copies of WGP-8 and trace modules for the running phase and reuse one
of the WGP-8 modules for the initialization phase.

The area of the WGP-8 module is bigger than that of the WGT-8 module in the constant
array based method (see Section 4.2.1). Therefore, for parallel width from two to eleven, the
total area of the WGP-8 and trace modules is definitely bigger than that of the WGT-8 modules
plus one WGP-8 module. Even though the total area of one WGP-8 module plus one WGT-8
module is equal to that of one WGP-8 module plus one trace module for parallel width one, the
critical path is longer for the latter design than that of the former design. Thus, in order to balance
the area and clock speed, we choose the hybrid design with one to eleven WGT-8 modules and
one WGP-8 module (for parallel width from one to eleven respectively) for our constant array
based method. The details of this hybrid design architecture for parallel width eleven is shown
in Figure 4.7.
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Figure 4.7: The Hybrid Design for the Constant Array based Method

For the three different tower field methods, the area of the WGT-8 module is bigger than that
of the WGP-8 module (see Section 4.2.2, 4.2.3, and 4.2.4). Therefore, the hybrid design with
one to eleven WGP-8 and trace modules (for parallel width from one to eleven respectively) is
chosen in this case.

4.3 Design Strategies for the Multiplication by ω Module

The multiplication by ω module can be implemented using either finite field arithmetic or an
8× 8 constant array. The finite field arithmetic based method is used for our implementations.

4.3.1 Using Finite Field Arithmetic

With the PB representation, the multiplication of an element X ∈ F28 by ω can be computed as
follows:

X · ω = x0ω + x1ω
2 + · · ·+ x6ω

7 + x7ω
8

= x7 + x0ω + (x1 ⊕1 x7)ω
2 + (x2 ⊕1 x7)ω

3 +

(x3 ⊕1 x7)ω
4 + x4ω

5 + x5ω
6 + x6ω

7.

Therefore, the result of X ·ω is represented as the 8-bits vector (x7, x0, x1⊕1 x7, x2⊕1 x7, x3⊕1

x7, x4, x5, x6) with respect to the PB, which corresponds to a cyclic right shift operation plus
three XOR operations in hardware implementation.

With the NB representation, the multiplication of an element X ∈ F28 by ω can be calculated
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as follows:

X · ω = (x′0θ + x′1θ
2 + · · ·+ x′6θ

26 + x′7θ
27) · ω

= M · (x′0, x′1, · · · , x′6, x′7)T ,

where the matrix M can be calculated using the specific normal basis, i.e., θ. The matrices M
are given below for TF 1, TF 2, and TF 3.

MTF1 =




0 1 0 0 0 0 1 0
1 0 0 0 1 1 0 0
1 0 0 0 0 1 0 1
1 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
1 1 1 1 0 0 1 1
0 1 1 1 0 1 1 1
1 1 1 1 0 1 1 1




, MTF2 =




0 0 1 1 0 1 1 1
1 0 0 0 0 1 1 1
1 0 1 0 0 1 0 1
1 0 0 0 1 0 0 0
1 1 1 0 0 1 0 1
0 1 0 1 0 0 1 0
1 1 1 1 1 1 0 1
0 0 0 0 0 0 1 1




,

MTF3 =




0 1 1 0 0 1 1 1
1 0 0 1 1 0 0 0
0 1 0 1 1 0 0 0
0 1 0 1 0 0 1 1
1 0 0 0 0 1 1 1
0 0 1 0 1 0 0 1
1 1 1 1 1 0 1 1
0 0 0 1 1 1 0 0




.

4.3.2 Using Constant Array

Based on the finite field arithmetic or multiplication matrices, one can easily precompute the
corresponding 8× 8 constant arrays with respect to the chosen bases.

4.4 Hardware Implementations

In this section, we present the hardware implementations of WG-8 in FPGAs and ASICs.
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4.4.1 Finite State Machine

According to the hardware architecture in Figure 4.3, the finite state machine (FSM) controls the
input to the LFSR. The FSM begins at the IDLE state and the counter returns to 0 when the reset
signal rst equals 1. Once the reset signal rst is pulled down to 0, the FSM enters the LOAD state.
During the LOAD state, the FSM starts loading Key and IV, and the counter is increased by one
at each clock cycle. For the hybrid design with parallel width one, when the counter reaches
a value of 19, the FSM goes into the next state INIT PHASE. During the INIT PHASE state,
the counter continues increasing by one at every clock cycle until it hits a value of 59 for the
constant array based method, and TF 1 and 2. However, for the TF 3, the counter needs to reach
99. The reason is that the initialization phase in the TF 3 takes twice number of clock cycles than
that of other methods. More specifically, the FSM will generate the third output signal sel in the
TF 3, which controls the multiplexers in Figure 4.6. The FSM then transfers to the next state
RUN PHASE and begins to output keystream bits. The sel signal in the TF 3 should be set to 0
in the RUN PHASE.

In addition, for the hybrid design with the parallel width eleven, the state transition values
are different compared to the parallel width one. In this case, the FSM first goes from LOAD
state to INIT PHASE state when the counter reaches 1, followed by the RUN PHASE state
when the counter equals 41 for the constant array based method, TF 1 and 2, but 81 for the TF
3. Moreover, the FSM will remain in RUN PHASE state unless a reset signal rst is pulled up.
During the RUN PHASE state, eleven bits keystream per clock cycle will be generated .

4.4.2 FPGA Implementations and Results

Our FPGA area and speed results are for the low-cost Spartan-3 XC3S1000 (Package FG320
with speed grade -5) FPGA device from Xilinx using Synopsys Synplify Premier with Design
Planner E-201103-SP2 for synthesis, ISE for physical implementation, and Xpower Analyzer
for power analysis. All results, including flip-flops, area (slices), speed (maximum frequency),
and dynamic power consumption are obtained after Place and Route phase and the dynamic
power consumption are recorded at a frequency of 33.3 MHz for all the designs except WG-8
(TF 1), the dynamic power consumption of which is evaluated at a frequency of 16.7 MHz.

Table 4.7 summarize the flip-flop numbers, area, speed, power consumption, optimality re-
sults for FPGA implementations. For each method, we calculate three common metrics for
optimality that made trade-offs between maximum throughput (maximum frequency * through-
put), area, and power: MT/A is maximum throughput over area, MT/P is throughput divided by
power, and T/(A*P) is maximum throughput divided by product of area and power.
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Table 4.7: The Area, Speed, and Power Consumption Results of FPGA Implementations

Spartan-3(xc3s1000)

Implementations

Key IV Throu- #FFs Area Maximum Dynamic Maximum Optimality
Size Size ghput Frequency Power Throughput MT/A MT/P MT/(A*P)
(bits) (bits) (bits/ (Slices) (MHz) (W) (Mbps) (Mbps/ (Mbps/ (Mbps/

cycle) #Slices) W) Slices*W)
WG-8 (CA)

80 80

1 85 137 190 0.005 190 1.39 38000 277.4
WG-8 (CA) 11 207 398 192 0.016 2112 5.31 132000 331.7

WG-8 (TF 1) 1 83 678 19 0.671 19 0.03 28.3 0.042
WG-8 (TF 1) 11 279 5106 19 4.282 209 0.04 48.8 0.010
WG-8 (TF 2) 1 83 343 42 0.339 42 0.12 123.9 0.36
WG-8 (TF 2) 11 306 2369 42 1.686 462 0.20 274 0.12
WG-8 (TF 3) 1 114 436 49 0.267 49 0.11 183.5 0.42
WG-8 (TF 3) 11 470 2795 44 2.399 484 0.17 201.7 0.07

Grain [57] 80 64 1 − 44 196 − 196 4.45 − −
Trivium [57] 80 80 1 − 50 240 − 240 4.80 − −

For the hybrid design with parallel width one, we take advantages of the SRL16 shift register
cells that exist in the Spartan-3 devices. The SRL16 is a very efficient way to create shift
registers without using flip-flop resources. After writing the 20-stage LFSR VHDL code properly
based on the user guide [1] from Xilinx, the synthesis tool can successfully design the 20-stage
LFSR using SRL16 shift register cells. In Spartan-3 FPGA, one look-up table (LUT) in a
SLICEM slice can be configured as a 16-bit shift register. Shift-in operations of SRL16 cell are
synchronous with the clock, and output address is dynamically selectable, ranging from 1 to 16.
By using the SRL16 cells to implement the 20-stage LFSR, we are able to reduce the flip-flop
numbers and area significantly. However, for the hybrid design with parallel width larger than
one, the 20-stage LFSR cannot be implemented by SRL16 cells, due to the parallel inputs of
the 20-stage LFSR. Moreover, we use the “-Power” option in the Mapping and Place and Route
phases to further reduce the power consumption.

A very obvious observation is that there are a 20-stage LFSR and the width of each state is 8
bits. Therefore, we need 160 registers in total for the 20-stage LFSR in the normal implementa-
tion. But there are only 85 registers for the parallel width one in Spartan-3 FPGA. The reason is
that the synthesis tool has used 16 SRLE16 modules for the implementation with parallel width
one, decreasing the register numbers significantly. More specifically, we can see that there are
two seqshift modules (seqshift, seqshift0) with data width equals eight, which is exactly 16
SRLE16 modules, from the RTL schematic. For seqshift, the input to this module is r19 and
the address number of this module is 1001. After the set of these two parameters, we can see
the output of seqshift is r9. This is exactly why the register numbers will decrease dramatically.
The same strategy applies to the seqshift0 module. For the parallel width larger than one, the
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synthesis tool cannot map SRL16 modules to the design. We can clearly see that the 20-stage
LFSR are implemented using 160 registers in this case. Therefore, the total register numbers will
be larger than 160.

4.4.3 ASIC Implementations and Results

Our previous published ASIC results in CMOS 65nm are given in [115]. During the past years
of research on other primitives, our new technique can further reduce the area and power con-
sumption. Therefore, we refresh our results of WG-8 in CMOS 65nm and provide new results
in CMOS 130nm ASIC.

We use the same implementation strategy as Simeck and SIMON in Chapter 3. The corre-
sponding area and total power consumption results are obtained using compile ultra and clock
gating technique. The area is dependent upon the clock period, and we need to run the con-
straints, in which contain the expected clock period, for the synthesis and Place and Route phase
many times in order to get the smallest area with smallest actual clock period for our WG-8
circuit. By repeating this strategy, we can get all the results for our four approaches of WG-8.
The total power is given, instead of only dynamic power. It is because that the static and dy-
namic powers are both dependent upon our design in ASIC. The power consumption analysis is
conducted under the operating frequency at 100 KHz and 2 MHz for all the designs after Place
and Route phase using random data for the key and initialization vector, where 100 KHz is for
the benchmarking purpose and 2 MHz is for the practical deployment in RFID systems. The
Modelsim simulation runs for 2000 clock cycles, including initialization and running phases.

Tables 4.8 and 4.9 summarize area, speed, power consumption, and optimality results for
ASIC implementations. For each method, we calculate three common metrics for optimality
that made trade-offs between maximum throughput (maximum frequency*throughput), area, and
power: MT/A is maximum throughput over area (after P&R), MT/P is maximum throughput
divided by power (total power consumption at 2 MHz), and MT/(A*P) is maximum throughput
divided by product of area (after P&R) and power (total power consumption at 2 MHz).

4.5 Results Analysis and Comparison

For both the FPGA and ASIC results in Tables 4.7, 4.8, and 4.9, we provide all the results for
throughputs of 1 bit per clock cycle (bpc) and 11 bpc by using our hybrid design architecture.
From the results, we can achieve the design with throughput of 11 bpc from the design with
throughput of 1 bpc by using some extra area. However, the extra area is relatively smaller than
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Table 4.8: Area, Speed, and Power Consumption Results for ASIC Implementations in 65nm

CMOS 65nm

Implementations

Key IV Throu- Area Max Total Total Optimality
Size Size ghput Before After Freq Power Power MT/A MT/P MT/(A*P)
(bits) (bits) (bits/ P&R P&R (MHz) (µ W) (mW) (Mbps/ (Mbps/ (Mbps/

cycle) (GEs) @100KHz @2MHz #GE) mW) GE*mW)
WG-8 (CA)

80 80

1 1493 1606 504 4.049 0.016 0.314 31500 19.614
WG-8 (CA) 11 3699 3978 427 10.066 0.039 1.177 120428 30.250

WG-8 (TF 1) 1 3634 3908 105 17.177 0.179 0.027 587 0.150
WG-8 (TF 1) 11 32422 34863 94 161.610 1.788 0.033 583 0.022
WG-8 (TF 2) 1 2314 2488 163 8.350 0.064 0.065 2547 1.024
WG-8 (TF 2) 11 15488 16654 153 56.670 0.443 0.099 3795 0.231
WG-8 (TF 3) 1 2317 2492 189 8.752 0.060 0.075 3150 1.260
WG-8 (TF 3) 11 18370 19753 170 76.388 0.604 0.099 3102 0.154
Grain [115]

80 64
1 − 1126 1020 − − − − −

Grain [115] 11 − 1126 1098 − − − − −
Trivium [115]

80 80
1 − 1986 962 − − − − −

Trivium [115] 11 − 2028 990 − − − − −

ten copies of the area of design with throughput of 1 bpc. Meanwhile, the increase of throughput
for the design does not affect the corresponding maximum frequency too much for all the cases.
Therefore, the hybrid design architecture is very useful for WG-8 in order to provide various
throughput.

In addition, we notice that the WG-8 (CA) method is the best hardware solution for the WG-
8 stream cipher, compared to the tower field based approaches, i.e., the areas are smaller and the
three metrics in optimality are all higher for both throughput of 1 and 11 bpcs. The reason is
that building WG-8 permutation/transformation module with an 8 × 8 constant array occupies
smaller area than using logic equations and multipliers. However, when the size of finite field
increases, the medium and large instances of WG stream cipher family will benefit from the
tower construction, thereby achieving a better performance, as illustrated in [37].

4.5.1 Different Tower Field Methods Analysis

For these three tower field methods, the best choice of them is relevant to the throughput and
different metrics, as summarized in Table 4.10. The reason for this results is due to different
tower field architectures and the number of multipliers. Since the multiplier occupies a large part
of the area and consumes considerable power, we can perform analysis according to the number
of multiplier and its area. There are seven multipliers in TF 1 and TF 2 with almost the same
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Table 4.9: Area, Speed, and Power Consumption Results for ASIC Implementations in 130nm

CMOS 130nm

Implementations

Key IV Throu- Area Max Total Total Optimality
Size Size ghput Before After Freq Power Power MT/A MT/P MT/(A*P)
(bits) (bits) (bits/ P&R P&R (MHz) (µ W) (mW) (Mbps/ (Mbps/ (Mbps/

cycle) (GEs) @100KHz @2MHz #GE) mW) GE*mW)
WG-8 (CA)

80 80

1 1466 1593 97 0.960 0.019 0.060 5105.26 3.205
WG-8 (CA) 11 3536 3843 70 2.336 0.046 0.198 16738.70 4.356

WG-8 (TF 1) 1 3300 3586 20 12.370 0.247 0.006 80.97 0.023
WG-8 (TF 1) 11 25961 28219 21 83.880 1.674 0.0077 137.94 0.004
WG-8 (TF 2) 1 2371 2577 39 4.770 0.095 0.0151 410.50 0.159
WG-8 (TF 2) 11 15020 16326 37 31.249 0.622 0.022 654.39 0.044
WG-8 (TF 3) 1 2401 2610 38 4.432 0.088 0.0145 431.81 0.165
WG-8 (TF 3) 11 18717 20345 37 44.713 0.891 0.0198 456.72 0.022

Grain [7] 80 64 1 − 1259 − 0.780 − − − −
Trivium [7] 80 80 1 − 2088 − 1.440 − − − −

Table 4.10: The Best Choice of the Tower Field Methods for Different Metrics

Throughputs FPGA 65nm ASIC 130nm ASIC
(bpc) MT/A MT/P MT/(A*P) MT/A MT/P MT/(A*P) MT/A MT/P MT/(A*P)

1 TF 2 TF 3 TF 3 TF 3 TF 3 TF 3 TF 2 TF 3 TF 3
11 TF 2 TF 2 TF 2 TF 2/3 TF 2 TF 2/3 TF 2 TF 2 TF 2

architecture. Unlike TF 1 and 2, TF 3 is intended to reduce the number of multipliers, with
only five multipliers needed. However, six extra multiplexers are required due to the architecture
of TF 3. Therefore, for analysis of TF 3, we should combine the effects of multipliers and
multiplexers. As we have described before, the multiplication in TF 1 are based on the small
4 × 4 constant arrays due to the existence of primitive element, and the multiplication in TF
2 and TF 3 are performed using the efficient logic equations directly. We give the area of one
multiplier in F28 for TF 1, 2, and TF 3 in FPGA (Spatan-3) for analysis, which is 53, 29, and 26
slices, respectively, as shown in Table 4.11. From this observation, the TF 1 is worse than TF 2
in terms of area and power consumption, due to similar architecture. However, for the TF 3, we
should also consider the effects of multiplexers, making it hard to compare with TF 2. Therefore,
the best tower field method is different with respect to the data rates, implementation approaches,
i.e., FPGA or ASIC, and metrics in optimality. Nevertheless, the TF 2 is the best choice in most
cases, and it has the smallest area among the three tower field methods. Moreover, to our best
knowledge, the area of one multiplier is quadratic with respect to the size of finite field, and the
area of one multiplexer and other miscellaneous are linear with respect to the size of the finite
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Table 4.11: The Number of Multipliers and Multiplexers, and the Area of Them in FPGA

Implementations
Multipliers Multiplier Multiplier Multiplexers
(Number) (Single area) (Total areas) (Number)

(slices) (slices)
TF 1 7 53 371 0
TF 2 7 29 203 0
TF 3 5 26 130 6

field. Thus, for arithmetic in small finite field F28 , e.g., TF 3, the decreased area by the number
of multipliers will be balanced to the increased area of multiplexers. However, the decreased
area will be larger for large size finite field, thereby achieving a better performance.

4.5.2 Comparisons with Other Lightweight Stream Ciphers

Table 4.7 also compares the performance of our WG-8 implementations against two lightweight
stream ciphers Grain [55] and Trivium [24] in the hardware profile of the eSTREAM project
on the same Xilinx Spartan-3 FPGA platform [57]. For the FPGA results, Grain and Trivium
are better than WG-8 (CA) method in metric of MT/A, and their areas are smaller than that of
WG-8 (CA). However, when we compare the WG-8 (CA) method with Grain and Trivium in
ASIC, we have the following conclusions. For throughput of 1 bpc, the area of WG-8 (CA) is
smaller than that of Trivium [115], but larger than that of Grain [115] in CMOS 65nm. The area
of WG-8 (CA) is larger than that of Grain and Trivium for throughput of 11 bpc. In addition,
the maximum frequency is smaller than that of Grain and Trivium. For CMOS 130nm, the same
conclusion holds for throughput of 1 bpc, and the total power consumption at 100 KHz are larger
than that of Grain, but smaller than that of Trivium [7]. Moreover, the WG-8 stream cipher has
desired randomness properties like period, balance, ideal two-level autocorrelation, ideal tuple
distribution, and exact linear complexity [35]. While Grain can only provide a lower bound for
the period of a keystream [55], and Trivium does not have any determined randomness properties
by design [24]. Therefore, WG-8 is a promising candidate for providing strong encryption and
authentication solutions for RFID systems.

4.6 Summary

In this chapter, we have presented the design space exploration of the lightweight stream cipher
WG-8 for FPGA and ASIC implementations. Four implementation approaches have been pro-
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posed, where one takes advantage of the constant arrays and the other three benefit from the
tower constructions of finite field F28 and efficient basis conversion matrices. A wide range of
design options and strategies have been thoroughly explored to make trade-offs in terms of area,
speed, and power consumption. More specifically, we have proposed a hybrid architecture with
parallel width from one to eleven. Since the S-box in AES and large size stream cipher WG-
16 demonstrated the advantages of tower field constructions, the tower field approaches have
been extensively investigated in WG-8. From the results, we can obtain that the tower field
constructions affected both the area of one multiplier and the number of the multipliers in their
architectures. Moreover, among the three tower field constructions, TF 2 with the type-I opti-
mal normal basis is the best choice in most cases for WG-8. For future work, we will propose
more efficient tower field constructions and explore the design space using tower field for larg-
er size WG stream ciphers, i.e., WG-10, WG-11, WG-14, etc. In summary, WG-8 is a good
lightweight candidate for securing RFID systems.
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Chapter 5

Warbler Pseudorandom Number
Generator

Pseudorandom number generators (PRNGs) are a critical component of EPC C1 G2 standard,
and are widely used to provide security in both the first and second versions of the standard
[2, 3]. For example, a 16-bit random number (RN16) is used in many commands, for anti-
collision mechanism, to provide verification of the reader identity, and to mask the data 1. More
specifically in the inventory process, the reader first obtains the RN16 from the tag through
sending a Query command to the tag. Afterwards, the reader sends an ACK command with the
received RN16 to the tag. Then, the tag checks the correctness of the RN16 and it will send back
its EPC number if the RN16 is correct. In addition, using the RN16 to do data masking is adopted
in the access, kill, and write commands in the EPC standard [2, 3]. Random numbers can also
be used in security extensions of this standard, such as the challenge-response based lightweight
mutual authentication protocols [32] between the readers and tags, where both the readers and
tags use random numbers as challenges.

The randomness properties of the RN16, drawn from the PRNG, shall at least satisfy the
EPC C1 G2 standard’s statistical tests [2, 3]: 1) The probability for any RN16 shall be bounded
by 0.8/216 < P (RN16) < 1.25/216. 2) The probability that any two or more tags generate
the same sequence of RN16s shall be less than 0.1%. 3) The probability of predicting an RN16
which is 10 ms later, shall not be greater than 0.025%.

Motivated by the above applications, several lightweight PRNGs have been devised in recent
years, such as Warbler [72], Melia-Segui et al. [78], J3Gen [79], LAMED [91], and AKARI1B
[76]. The key components of them are, nonlinear feedback shift registers (NLFSRs), linear

1mask is to provide cover-code to XOR with the data.
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feedback shift register (LFSR) with random source, and ARX structure (i.e., addition modular
operation, bit rotations, and XOR operation).

The Warbler PRNG is proposed by Mandal and Gong in 2012 [72]. The output sequence of
Warbler has guaranteed randomness properties such as long period and high linear span. Fan et
al. has a preliminary implementation of Warbler [73]. Our contribution is to provide the first
detailed and smallest hardware implementations of Warbler.

In this chapter, we present the low-area implementation and optimizations of Warbler in
CMOS 65nm and CMOS 130nm ASICs, and provide area, maximum clock frequency, and total
power consumption results. This chapter is organized as follows. In Section 5.1, we describe
the specification of Warbler. Then, we give our ASIC architecture of Warbler, including the
top-level architecture, finite state machine (FSM), and datapathes for both throughputs of 1/5
and 1 bpc in Section 5.2. Later on, we present our ASIC results and thorough analysis in both
CMOS 65nm and CMOS 130nm in Section 5.3. Section 5.4 provides some related work and
compares Warbler with other lightweight primitives. Finally, Section 5.5 concludes this chapter.

5.1 Description of Warbler

This section gives a detailed description of the Warbler.

Warbler is mainly built upon three NLFSRs and four WG-5 transformation modules, as
shown in Figure 5.1. All the computation in Warbler use the polynomial basis {1, α, α2, α3, α4}
in F25 , which is defined by a primitive polynomial of degree 5 over F2:

p(x) = x5 + x4 + x3 + x+ 1,

and α is a primitive root such that p(α) = 0. NLFSR1 and NLFSR2 are both 1 bit wide for each
state, and their lengths are 18 and 17 respectively, where the lengths are chosen to be relatively
prime. The output of NLFSR1 and NLFSR2 are firstly XORed together, and then is sent to
a 5-bit shift register (SR), which is one feedback input to NLFSR3. NLFSR3 is 5 bits wide
for each state and it has 6 stages. Warbler mainly includes two phases: initialization phase and
running phase, and the feedbacks to the NLFSR1 and NLFSR2 are different during these two
phases as shown in Figure 5.1. For the initialization phase, the goal is to scramble the internal
states as quickly as possible, and so an additional bit of feedback from NLFSR3 is included. For
the running phase, NLFSR1 and NLFSR2 generate span-n sequences and NLFSR3 outputs a
sequence with 1/5 bpc throughput, where the span n sequence is a binary sequence with period
2n − 1 and each non-zero n-tuple occurs exactly once in one period [72].
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Figure 5.1: Key/IV Initialization and Running Phases of Warbler

The WG-5 transformation of an element x ∈ F25 is constructed from a WG-5 permutation
followed by a trace function, where the WG-5 permutation is defined as

WGP-5(x) = x+ (x+ 1)5 + (x+ 1)13 + (x+ 1)19 + (x+ 1)21,

and the trace function is defined as

Tr(x) = x+ x2 + x2
2

+ x2
3

+ x2
4

.

The input to the three WGT1-5 modules use a decimation of degree 3 (i.e., WGT-5(x3)), and that
for the WGT2-5 module use a decimation of degree 1 (i.e., WGT-5(x)). After simplifications,
the final equations for the WGT-5 modules are:

WGT1-5 : WGT-5(x3) = Tr(x13),
WGT2-5 : WGT-5(x) = Tr(x7).

The rationale of the two WGT1-5 modules (with decimation 3) used for the feedback of NLF-
SR1 and NLSFR2 is to guarantee their maximum sequence period. The WGT1-5 module used
for the filtering purpose of NLFSR3 is to provide larger nonlinearity, algebraic immunity, and
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algebraic degree. In addition, the WGT2-5 module used for the feedback of NLFSR3 is to
provide higher nonlinearity for its internal states.

As shown in Figure 5.1, the NLFSR1 generates a sequence a = {ai}i≥0, where ai ∈ F2; the
NLFSR2 generates a sequence b = {bi}i≥0, where bi ∈ F2; the NLFSR3 generates a sequence
c = {ci}i≥0, where ci ∈ F25 . A new sequence s = {si | si = ai ⊕ bi, i ≥ 0} is generated
based on the sequences a and b, and will be sent to a 5-bit shift register (SR) immediately. The
element of this 5-bit shift register is used as one feedback for NLFSR3, and it is represented as
tk ∈ F25 , k ≥ 0. The feedback primitive polynomial for NLFSR3 is

g(x) = x6 + x+ γ

over F25 and γ = α15. Therefore, the recursive relation for NLFSR3 is defined as

ck+6 = γck + ck+1 + wk + tk,

where the least significant bit of wk is generated by the WGT2-5 module from the most signifi-
cant element of NLFSR3, and the other bits of wk are set to all zeros.

Warbler has a 65-bit Key (K0, K1, K2, · · · , K64) and a 65-bit IV (IV0, IV1, IV2, · · · , IV64).
The Key and IV are mixed by XORing each bit together (mi = Ki⊕IVi, 0 ≤ i ≤ 64) to generate
the 65-bit internal states of NLFSR1, NLFSR2, and NLFSR3. A similar Key and IV mixing
scheme can be found in AES [6] and CBC mode of block ciphers [23]. Then the 65-bit internal
states mi are loaded into registers in the NLFSRs as follows.

a17, · · · , a0 = m17, · · · ,m0,

b16, · · · , b0 = m34, · · · ,m18,

c0 = m39, · · · ,m35,

c1 = m44, · · · ,m40,

c2 = m49, · · · ,m45,

c3 = m54, · · · ,m50,

c4 = m59, · · · ,m55,

c5 = m64, · · · ,m60.

A 45-bit Key and a 20-bit IV case for generating the 65-bit internal states of Warbler are de-
scribed in [72, 114]. However, the 65-bit Key scenario here provides higher security level than
the 45-bit Key case due to the increased key size.

After loading the internal states, a 36 clock cycle initialization phase is performed to mix
the internal states and then follows the running phase where the output sequence is generated.
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NLFSR1:





x = (ak+4, ak+7, ak+8, ak+10, ak+15),
o0 = 0,

ak+18 = ak ⊕WGT-5(x3)⊕ ok, 0 ≤ k ≤ 35.

NLFSR2:





y = (bk+4, bk+7, bk+8, bk+9, bk+12),
o0 = 0,

bk+17 = bk ⊕WGT-5(y3)⊕ ok, 0 ≤ k ≤ 35.

5-bit SR:





sj = 0, j = 0, 1, 2, 3,
sk+4 = ak ⊕ bk,
tk = (sk, sk+1, sk+2, sk+3, sk+4), 0 ≤ k ≤ 34.

NLFSR3:





wk = (0, 0, 0, 0,WGT-5(ck+5)),
ck+6 = γck + ck+1 + wk + tk,
ok+1 = WGT-5(c3k+5), 0 ≤ k ≤ 34.

Equation 1. Initialization Method

In the initialization phase, the output signal {oi}i≥0 from the WGT1-5 module in NLFSR3 is
used as a feedback to the inputs of NLFSR1 and NLFSR2 in every clock cycle. The Warbler
initialization method is described in Equation 1. The first output sequence bit o0 from NLFSR3
is manually set to 0, which is used for the feedback from NLFSR3 to NLFSR1 and NLFSR2 in
the first initialization clock cycle. The reason for this setting is that there is a 5-bit shift register
between NLFSR1 and NLFSR2 together and NLFSR3. The result of a0 ⊕ b0 needs to take
one clock cycle in order to shift into this 5-bit shift register. Therefore, NLFSR3 needs to wait
for one clock cycle until the first element t0 in the 5-bit shift register is ready for the feedback
computation of NLFSR3. As a result, in the initialization phase, the NLFSR1 and NLFSR2 run
for 36 clock cycles, and the NLFSR3 runs only for 35 clock cycles.

After the NLFSRs finish the initialization phase, they simultaneously go to the running
phase. The random sequences {oi}i≥36 are generated from the output of the WGT1-5 mod-
ule in NLFSR3 in this phase, and it is worth noting that there is no feedback from WGT1-5
module in NLFSR3 to the inputs of NLFSR1 and NLFSR2 as shown in Figure 5.1. The se-
quences of a and b generated in this phase are span 18 and span 17 sequences respectively. The
running method is shown in Equation 2. It takes five clock cycles to obtain tk from the 5-bit shift
register, which results in a 1/5 bpc throughput of the Warbler output sequence.
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NLFSR1:
{

x = (ak+4, ak+7, ak+8, ak+10, ak+15),
ak+18 = ak ⊕WGT-5(x3), k ≥ 36.

NLFSR2:
{

y = (bk+4, bk+7, bk+8, bk+9, bk+12),
bk+17 = bk ⊕WGT-5(y3), k ≥ 36.

5-bit SR:





sk+4 = ak ⊕ bk,
tk = (s5(k−27)−1, s5(k−27), s5(k−27)+1,

= s5(k−27)+2, s5(k−27)+3), k ≥ 35.

NLFSR3:





wk = (0, 0, 0, 0,WGT-5(ck+5)),
ck+6 = γck + ck+1 + wk + tk,
ok+1 = WGT-5(c3k+5), k ≥ 35.

Equation 2. Running Method

5.2 ASIC Architecture

In this section, we first provide the top-level architecture of Warbler and then present the archi-
tectures of FSM and datapath.

5.2.1 Entire Architecture

We provide a top-level architecture for Warbler in Figure 5.2, which includes FSM and datapath.
FSM is used to provide the control signals for the datapath. The datapath is used to load the initial
data for the registers (Section 5.1) using the input ports (i d1, i d2, i d3), to process the internal
sates in the registers, and then to output the sequence (o data) and the valid signal (o valid).

Compared to the entire architecture of Warbler in [114], we add i valid signal to control
when to input the valid data and when to generate the output sequence, and it is important for the
real applications. As a result, ce1, ce2, ce3, ce5 chip-enable signals are created to control the
internal shift registers. By doing this extension, we can improve usability of Warbler.

5.2.2 FSM

Our architecture has three states: loading, initialization, and running. The loading state takes 18
clock cycles, the initialization state lasts for 36 clock cycles, and the running state lasts forever
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Figure 5.2: The Top-level Architecture of Warbler

unless Warbler is reset. Specifically, our FSM goes into loading state immediately when reset
equals 1. Warbler reads the initial data from i d1 into the datapath once reset goes to 0 again,
and it reads data from i d2 and data from i d3 in the 2th and 13th clock cycles of the loading
state respectively. Once the loading state is finished, the initialization and running states will
run. The state transition signal Load stays at 1 when the FSM is in the loading state; otherwise,
it equals 0. The similar case is for the Init and Run signals.

The chip-enable signals (ce1, ce2, ce3, ce5) for throughput of 1/5 bpc are generated ac-
cording to the states and i valid values. The ce1, ce2, ce5 signals are set to i valid in the
loading state, and 1 in the initialization states, and i valid in the running state. Due to the 5-bit
shift register, the ce3 is set to 1 in the loading state when i valid is asserted, 1 in the initializa-
tion state except the first clock cycle, and (0, 0, 0, 0, 1) in every five clock cycles in the running
state when i valid is asserted.

Recently, LFSR based counters have been used to replace binary counter in the FSM in
hardware [64], because the combinational logic of the LFSR counter is smaller than the full-
adder of the binary counter. We evaluate both options in Warbler. To design our LFSR counter,
we use a primitive polynomial (X6 + X + 1) with an initial value (1, 1, 1, 1, 1, 1). We use one-
hot encoding for the three states: loading (100), initialization (010), and running (001). For the
binary counter-based design, the counter starts from 0 in each state. Similarly, the counter starts
from 63 in each state for the LFSR counter-based design. The states transition conditions for
these two designs are summarized in Table 2.
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Table 5.1: States Transition Conditions for FSM

States Binary counter- LFSR counter-
based based

Loading (100) → initialization (010) 17 17
Initialization (010) → running (001) 35 39

5.2.3 Datapath

The datapath for Warbler for throughput of 1/5 bpc in our ASIC architecture is shown in Fig-
ure 5.3. This figure follows directly from Figure 5.1. It includes five parts: NLFSR1, NLFSR2,
NLFSR3, Shift5, and o valid. NLFSR1 contains a 18-stage register, a WGT1-5 module, and
other feedback logic. Similarly, NLFSR2 contains a 17-stage register, a WGT1-5 module, and
other feedback logic. NLFSR3 contains a 6-stage register, a Gamma Mult module, a WGT1-5
module, a WGT2-5 module, and other feedback logic. Shift5 is used for the 5-bit shift register
and is comprised of a 5-stage register and other combinational logic. Moreover, o valid provides
a valid signal for the Warbler output sequence.

According to Section 5.1, the feedback values vary for different states. Therefore, Init, Load,
and ce3 are used to select the correct feedback values for the NLFSRs in each state. Further-
more, the ce3 is used to control the throughput of the output sequence (o data) and the output
valid signal (o valid).

The Gamma Mult module is used for the calculation of γck in F25 . Under the polynomial
basis representation, the element X ∈ F25 (X = x0 + x1α+ x2α

2 + x3α
3 + x4α

4) multiplied by
γ = α15 can be computed as follows:

X · α15 = (x0 + x1α + x2α
2 + x3α

3 + x4α
4) · α15,

= x0α
15 + x1α

16 + x2α
17 + x3α

18 + x4α
19,

= (x2 + x4) + (x2 + x3 + x4)α +

(x0 + x3 + x4)α
2 + (x0 + x1 + x2)α

3 +

(x1 + x3 + x4)α
4.

Therefore, the result of X · γ is represented as a 5-bit vector (x2 ⊕ x4, x2 ⊕ x3 ⊕ x4, x0 ⊕ x3 ⊕
x4, x0 ⊕ x1 ⊕ x2, x1 ⊕ x3 ⊕ x4). Thus, we can implement our Gamama Mult module by using
the finite field logic directly.

Similarly, we can compute WGT-5(x3) and WGT-5(x) in polynomial basis for every x ∈ F25

by using the finite field logic directly or pre-storing them to two constant arrays (WGT1-5 and
WGT2-5 respectively), as in Chapter 4. However, the hardware implementations of WGT1-5
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Figure 5.3: Datapath of Warbler for Throughput of 1/5 bpc

module (with decimation 3) and WGT2-5 module (with decimation 1) are more efficient if the
constant array based method is used rather than the finite field logic methods, shown in Chapter 4.
Therefore, we use the constant array based methods for implementing the WGT1-5 and WGT2-
5 modules.

5.2.4 Throughput Improvement

It is important to have a design with a throughput of 1 bpc for the passive RFID systems, as
illustrated in [100]. Therefore, we consider the following two options (1 and 2) in Table 5.2, in
order to improve the throughput of Warbler from 1/5 bpc to 1 bpc. In the original architecture as
described in Sections 5.2.2 and 5.2.3, the throughput of NLFSR1/2 in initialization and running
states are both 1 bpc, and that of NLFSR3 in these two states are 1 and 1/5 bpcs respectively.
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Table 5.2: Throughput Improvement of Warbler

Warbler States Throughput (bpc)
NLFSR1/2 NLFSR3

Original
Initialization 1 1
Running 1 1/5

Option 1
Initialization 1 1
Running 5 1

Option 2
Initialization 5 5
Running 5 1

We increase the throughput of the running state by five times, but keep the throughput of the
initialization state unchanged for option 1. In this case, we need four extra WGT1-5 modules
and four extra XORs in the recursive relations for both NLFSR1 and NLFSR2, and four extra
XORs to generate the 5-bit values for the feedback function of NLFSR3 from the first five
registers of NLFSR1 and NLFSR2. Because we use parallel NLFSR1 and NLFSR2 in the
running state but serial NLFSR1 and NLSFR2 in the loading and initialization states, we need
33 extra multiplexers (MUXes) to select different inputs to each register in the NLFSR1 and
NLFSR2 for the loading and initialization states, and running state. Therefore, the total extra
area needed for improving the throughput from 1/5 bpc to 1 bpc is 8 WGT1-5s + 8 XORs + 33
MUXes + 4 XORs.

The hardware architecture for option 1 is shown in Figure 5.4. From it, we can clearly
see the 33 multiplexers, four more WGT1-5 modules, and four more XORs in the architecture
of NLFSR1 and NLFSR2, and four more XORs for the feedback computation of NLFSR3.
In addition, by adding these four XORs, we need to add an extra multiplexer to select the 5-
bit feedback values from the Shift5 module in the initialization state and from the five XORs
(shown in Figure 5.4) in the running state for NLFSR3. As a result, the ce3 signal in the FSM
should be adjusted to always equal i valid in the running state. For the ce1 and ce2 signals,
they should stop at the last clock cycle of the initialization state. The reason for this change is
that the feedback value for NLFSR3 is directly taken from the first five registers of NLFSR1
and NLFSR2 in the running state of the architecture with throughput of 1 bpc. However, there
is one clock cycle delay for loading the data from NLFSR1 and NLFSR2 to shift5 module in
the running state of the architecture with throughput of 1/5 bpc.

For option 2, we increase the throughput for both the initialization and running states by five
times. Hence, we need to use four extra copies of all the modules in the feedback functions of
NLFSR1, NLFSR2, and NLFSR3. Besides, we need four extra XORs to output the 5-bit values
for the feedback function of NLFSR3 from NLFSR1 and NLFSR2. However, in order to reuse
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this five XORs’ output for the initialization phase, we have to change the behavior of Warbler
by reducing the 5-bit shift register but using this five XORs instead. In this case, even though the
required clock cycles for the initialization state are decreased, but the total extra area needed to
increase the throughput is 8 WGT1-5s + 8*2 XORs + 4 XORs + 4 Gamma Mults + 4 * 3 XORs
+ 4 WGT2-5s + 4 WGT1-5s - 5 Registers, which is considerably larger than that of option 1.
Therefore, option 1 is selected for the architecture with throughput of 1 bpc, shown in Figure 5.4,
considering both the functionality and extra area consumption.

5.3 Results Evaluation

We use the same design flow and metrics as Simeck and SIMON in Chapter 3. We first present the
hardware architecture and then provide the ASIC implementation results in CMOS 130nm and
CMOS 65nm. Then, we give a comprehensive analysis of the area that use different technologies
and various compilation techniques.

5.3.1 ASIC Results

We use the three different compilation techniques in Design Compiler to perform hardware opti-
mizations: simple compile, compile ultra, and compile ultra with clock gating.

The metric in our ASIC optimization is the low-area implementation, while still maintain
a very high maximum frequency. In general, when the clock period constraint in the Design
Compiler is very small, we can get a circuit with higher maximum frequency but also bigger
area. However, in order to get a low-area implementation, we make a trade-off between the area
and the maximum frequency by setting the clock period constraint loosely. Based on this, the
ASIC implementation results of Warbler by using our architecture with throughput of 1/5 and
1 bpcs in CMOS 65nm and CMOS 130nm are shown in Table 5.3. Notably, the area, maximum
frequency, and power consumption results are provided by using compile ultra and clock gating
techniques.

From Table 5.3, we can see that, for the throughput of 1/5 bpc case, the area of the LFSR
counter-based design is smaller than that of binary counter-based design (i.e., 6 GEs smaller in
both CMOS 65nm and CMOS 130nm after the place and route phase). Similarly, the total power
consumption of the LFSR counter-based design is smaller than that of the binary counter-based
design in both CMOS 65nm and CMOS 130nm. As a result, only the LFSR counter-based design
for throughput of 1 bpc is provided. The smallest area of Warbler for throughput of 1/5 and 1
bpcs are 513 GEs and 750 GEs respectively in CMOS 65nm and that are 551 GEs and 750 GEs
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Figure 5.4: Datapath of Warbler for Throughput of 1 bpc
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Table 5.3: Our Implementation Results of Warbler in CMOS 65nm and CMOS 130nm

Warbler Tech
Area (GEs) Max Throu- Total Power Total Power Optimality

Before After Freq ghput @100KHz @2MHz (TP/(#GEs
(nm) P&R P&R (MHz) (bpc) (µW ) (µW ) *power)*103)

Binary counter-based
65

483 519 1808 1/5 1.800 5.340 0.071
LFSR counter-based 477 513 1872 1/5 1.760 5.200 0.075
LFSR counter-based 698 750 1328 1 2.212 8.045 0.165
Binary counter-based

130
512 557 235 1/5 0.299 5.900 0.059

LFSR counter-based 507 551 233 1/5 0.279 5.500 0.066
LFSR counter-based 690 750 207 1 0.497 9.837 0.135

Table 5.4: The Sequential Logic Ratios of Warbler

Warbler Throughput CMOS 65nm CMOS 130nm
Compile Compile Compile ultra Compile Compile Compile ultra

(bpc) simple ultra + clock gating simple ultra + clock gating
Binary counter-based 1/5 65.5% 67.0% 65.6% 72.8% 72.5% 72.1%
LFSR counter-based 1/5 65.6% 67.2% 66.6% 73.6% 75.0% 72.8%
LFSR counter-based 1 47.9% 43.4% 46.2% 55.7% 53.4% 55.1%

respectively in CMOS 130nm. For the total power consumption at 100 KHz, the static power
consumption dominates the total power consumption because the operating frequency is so low.
However, it is opposite in the 2 MHz case, where the dynamic power consumption increases a lot.
The static power consumption is larger in CMOS 65nm than that in CMOS 130nm. Therefore,
the total power consumption at 100 KHz in CMOS 65nm is larger than that in CMOS 130nm,
and it is the opposite case for 2 MHz case, as shown in Table 5.3.

We improve the throughput from 1/5 bpc to 1 bpc through increasing the area by 237 GEs
(a 46% increased amount from 513 GEs to 750 GEs) in CMOS 65nm, by 199 GEs (a 36%
increased amount from 551 GEs to 750 GEs) in CMOS 130nm. The maximum frequency for
the throughput of 1 bpc architecture is slower than that of throughput of 1/5 bpc architecture in
both CMOS 65nm and CMOS 130nm. This is because the critical path for the throughput of 1
bpc is from register a8 to register a17 as shown in Figure 5.4, and that for throughput of 1/5 bpc
is between the two registers of the counter in the FSM. The maximum tap position of WGT1-5
module for NLFSR1 is 15, but the maximum state index of NLFSR1 is 17. As a result, we
need to have a chain of 2 WGT1-5 modules in order to provide five feedback values for the
NLFSR1 in each clock cycle during the parallelism of NLFSR1, which incurs the increase of
the maximum clock period. From Figure 5.4, we can clearly see that there are 2 linked WGT1-5
modules along the path from a8 to a17.
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The optimality is defined as throughput/(area (after place and route)* total power at 2 MHz).
For the throughput of 1/5 bpc, the optimality of LFSR counter-based design is slightly larger
than that of binary counter-based design. However, the optimality for the design with throughput
of 1 bpc is much larger than that of the design with throughput of 1/5 bpc.

Our another observation is that the sequential logic dominates the area in the throughput of
1/5 bpc case. The proportion of sequential logic (Table 5.4) in the area before the place and
route phase in this case, depends on the adopted technologies and compilation techniques, are
all above 65%. However, due to the increased combinational area to improve the throughput, the
sequential logic proportion has been reduced to around 50% for 1 bpc.

5.3.2 Results Analysis

In order to thoroughly analyze the constitution of the area of Warbler in CMOS 65nm and CMOS
130nm, we break down the area from before the place and route phase into separate submodules,
as shown in Table 5.5.

The areas of the datapath for the binary counter-based and the LFSR counter-based designs
are the same under the same technology, and only the areas of the FSM are different. The LFSR
counters are 9.4% and 10.0% smaller than the binary counters in CMOS 65nm and CMOS 130nm
respectively for throughput of 1/5 bpc. However, the total areas of the FSM are essentially the
same for CMOS 65nm and reduced by 5.7% for CMOS 130nm, due to the area of state transitions
and chip-enable logic are larger in the LFSR counter-based FSM than that in the binary counter-
based FSM. By using compile ultra technique, we can reduce the area by optimizing the hardware
design as a whole. We can see that compile ultra decreases the area by from 2.2% to 8.1% for
all our designs as shown in Table 5.6, compared to using the compile simple technique directly.
Furthermore, we can change all the registers with chip-enable signals to registers without chip-
enable signals and a latch by using the clock gating technique. As a result, with the combination
of compile ultra, the areas are decreased a lot by from 12.5% to 20.9% for all our designs, as
shown in Table 5.6.

The areas of combinational logic depend on the areas of basic gates in the different technolo-
gies. For example, the areas of the WGT1-5 module are different in CMOS 65nm and CMOS
130nm, which are 15.50 GEs and 14.50 GEs respectively. The same situation exists for other
submodules. Moreover, the WGT1-5 and WGT2-5 modules are different in the same technol-
ogy (i.e., 15.50 GEs and 9.25 GEs respectively in CMOS 65nm, and 14.50 GEs and 9.50 GEs
respectively in CMOS 130nm). We give the specific contents of these two constant arrays in
Table 5.7. As we can see, the position distributions of 1 and 0 are different for the WGT1-5 and
WGT2-5 modules, and they are computed based on WG-5 transforms with decimation 3 and 1
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Table 5.5: Breakdown of the Implementation Results of Warbler before the Place and Route
Phase

CMOS 65nm CMOS 130nm
Throughput (bpc) Throughput (bpc)

1/5 1 1/5 1
Binary LFSR LFSR Binary LFSR LFSR

counter- counter- counter- counter- counter- counter-
based based based based based based

Components (GEs) (GEs) (GEs) (GEs) (GEs) (GEs)

FSM
State transitions + chip enable logic 38.50 43.75 41.50 38.75 39.00 39.75
Counter 55.75 50.50 41.50 57.50 51.75 47.25

Datapath

NLFSR1
18-stage register 90.00 90.00 108.00 108.00
WGT1-5 15.50 77.50 14.50 72.50
Other feedback logic 10.00 53.25 9.50 47.50

NLFSR2
17-stage register 85.00 85.00 102.00 102.00
WGT1-5 15.50 77.50 14.50 72.50
Other feedback logic 10.00 52.25 9.50 45.75

NLFSR3

6-stage register 150.00 150.00 180.00 180.00
Gamma Mult 13.75 13.75 14.00 14.00
WGT1-5 15.50 15.50 14.50 14.50
WGT2-5 9.25 9.25 9.50 9.50
Other feedback logic 32.50 32.50 30.75 30.75

Shift5 5-stage register 18.75 18.75 32.50 32.50
Other combinational logic 15.00 32.50 2.75 19.75

O valid 6.50 7.50 8.50 7.25

Compile simple 581 581 798 647 641 845
Totals Compile ultra 569 556 768 618 613 780

Compile ultra + clock gating 483 477 698 512 507 690

Table 5.6: The Area Reduction Percentages by using Compile Ultra and Compile Ultra plus
Clock Gating

Techniques
CMOS 65nm CMOS 130nm

Throughput (bpc) Throughput (bpc)
1/5 1 1/5 1

Binary LFSR LFSR Binary LFSR LFSR
counter-based counter-based counter-based counter-based counter-based counter-based

Compile ultra 2.2% 4.3% 3.8% 4.5% 4.4% 8.1%
Compile ultra + clock gating 17.0% 17.9% 12.5% 20.8% 20.9% 18.3%

respectively. The synthesis tool is able to optimize WGT2-5 to the simpler logic in hardware
than WGT1-5; therefore, the area of WGT1-5 is bigger than WGT2-5’s as shown in Table 5.5.
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Table 5.7: The WGT1-5 and WGT2-5 Constant Arrays

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
WGT1-5 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1
WGT2-5 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1

The distinct areas of different WG-5 transformation tables give us a worthwhile idea to select a
decimation value in order to make the WG-5 transformation table as small as possible for a new
primitive design.

Furthermore, the area of the FSM and the area of the counter in the throughput of 1 bpc case
are smaller than that in the throughput of 1/5 bpc case because the ce3 signal is set to 1 in each
clock cycle instead of 1 in every five clock cycles. For example in CMOS 130nm, the area of
LFSR counter in throughput of 1 bpc is 47.25 GEs, whereas that in throughput of 1/5 bpc is 51.75
GEs. Similarly in CMOS 130nm, the area of FSM in throughput of 1 bpc is 87.00 GEs, which
is smaller than 90.75 GEs, the area of FSM in throughput of 1/5 bpc. For the areas of NLFSR1
and NLFSR2 in the throughput of 1 bpc case, we can clearly see that the WGT1-5 module is five
times larger than that in the throughput of 1/5 bpc case. The total areas of their feedback logic
are increased by 85.50 GEs and 84.25 GEs respectively for CMOS 65nm and CMOS 130nm,
which are slightly smaller than the estimated area of the increased gates (8 XORs + 33 MUXes)
in Figure 5.4 for NLFSR1 and NLFSR2. The area of NLFSR3 is identical for both cases. The
area of shift5 module is increased by 17.50 GEs and 17.00 GEs respectively in CMOS 65nm and
CMOS 130nm because the increased four XORs and one 5-bit width multiplexer. Overall, we
can improve the throughput of Warbler without costing the area too much.

Compared with our results in [114], the area is increased by 15 GEs and 17 GEs in CMOS
65nm and CMOS 130 nm respectively for our new architecture with throughput of 1/5 bpc,
which are around 3% of the entire area. However, with this small fraction increase of the area,
we can improve the feasibility and usability of Warbler.

5.4 Comparisons with Other Lightweight Primitives

During the past years, a few lightweight PRNGs have been proposed in the literature, such as
Melia-Segui et al. [78], J3Gen [79], LAMED [91], and AKARI1B [76]. Melia-Segui et al.’s
PRNG [78] and J3Gen [79] combine a linear shift register (LFSR) with a random source from
a truly random number generator (TRNG). The TRNG transforms thermal noises from two reg-
isters to random bits, which are updated once for each pseudorandom sequence. They are used
to select one of primitive polynomials for the LFSR, which introduces nonlinearity of the LFSR
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Table 5.8: Comparisons with Hardware Implementations of Lightweight Primitives

Algorithms
Key IV/ Internal Area (GEs) Max TP Total Tech

SourceBlock State Before After Freq @100KHz Power
Size Size* Size P&R P&R (MHz) (Kbps) @100KHz (nm)

PRNG

Warbler 65 65 65 507 551 233 20.00 0.279 µW 130 here
Warbler 65 65 65 477 513 1872 20.00 1.760 µW 65 here
Warbler 65 65 65 690 750 207 100.00 0.497 µW 130 here
Warbler 65 65 65 698 750 1328 100.00 2.212 µW 65 here
Warbler 45 20 65 − 937 − 20.00 − 65 [73]
Melia-Segui et al. 16 0 16 7614 − − − − − [78]
J3Gen 64 0 64 14194 − − − − − [79]
LAMED 32 32 64 15854 − − − − − [91]
AKARI1B − − 64 1749 − − 14.20 0.182 µW5 90 [76]

Grain 80 64 160 − 1259 − 100.00 0.780 µW 130 [7]
Stream Trivium 80 80 288 − 2088 − 100.00 1.440 µW 130 [7]
Cipher Grain 80 64 160 − 1126 1020 100.00 − 65 [115]

Trivium 80 80 288 − 1986 962 100.00 − 65 [115]

Simeck� 64 32 96 505 549 292 5.60 0.417 µW 130 [116]
Block SIMON� 64 32 96 517 562 331 5.60 0.421 µW 130 [116]

SPECK� 64 32 96 580 − − 4.20 − 130 [11]
Cipher Simeck� 64 32 96 454 488 1754 5.60 1.292 µW 65 [116]

SIMON� 64 32 96 466 501 1428 5.60 1.311 µW 65 [116]

Hash PHOTON-80/20/16 ◦ ◦ 100 865 − − 2.82 − 180 [48]
Function SPONGENT-88 ◦ ◦ 88 738 − − 0.81 1.570 µW 130 [16]
* IV is for PRNGs and stream ciphers, and Block is for block ciphers.
◦ The corresponding value is not related; − The corresponding value is not provided by the authors.
4 The estimated area; 5 The estimated power consumption in UMC Faraday 90nm library.
� The smallest one in the Simeck, SIMON, SPECK families.

and improves the corresponding security. The Melia-Segui et al.’s PRNG contains eight primi-
tive polynomials candidate and a LFSR with length 16, while J3Gen contains a variety of sizes
for the number of primitive polynomials and length of LFSR. In addition, their pseudorandom
sequences satisfy the EPC C1 G2 standard’s randomness test. LAMED [91] is designed to be
able to generate both 32-bit and 16-bit random numbers, which is compatible with the EPC C1
G2 standard, where the 16-bit output is the XOR of two halves of the 32-bit output. The internal
states are updated with the ARX (i.e., addition modular 232, bit rotations, and XOR operation)
structure. The random numbers of LAMED can pass the NIST randomness tests. The estimated
areas of Melia-Segui et al.’s PRNG [78] and J3Gen [79] with an internal state size 64 are 761
GEs and 1419 GEs respectively. The estimated area of LAMED [91] is 1585 GEs. AKARI1B
[76] is designed based on the T-function and a non-linear filter function, and its output sequence
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can pass the NIST randomness tests. The area before the place and route phase for AKARI1B
[76] with an internal state size 64 is 1749 GEs, synthesized using the UMC Faraday 90nm tech-
nology, and the corresponding throughput and estimated power consumption are 14.2 Kbps and
0.182 µW at 100 KHz respectively. We compare our Warbler results with that of those PRNGs
in Table 5.8. From the table, we can see that the areas from both before and after the place and
route phase of Warbler are smaller than the estimated areas of LAMED, Melia-Segui et al.’s
PRNG, and J3Gen, and also smaller than the area of AKARI1B in both CMOS 65nm and C-
MOS 130nm. More importantly, the area of Warbler at throughput of 20.00 Kbps is around 45%
smaller than the result in CMOS 65nm in [73] .

We also compare Warbler with other lightweight primitives (the smallest area of them) in
Table 5.8, including stream ciphers, block ciphers, and hash functions. The areas and the total
power consumption at 100 KHz of Warbler are both smaller than that of Grain and Trivium in
CMOS 65nm and CMOS 130nm, while the maximum frequency of Warbler is larger than that
of Grain and Trivium in CMOS 130nm.

The area of Warbler at throughput of 20.00 Kbps is slightly larger than the smallest area of
Simeck and smaller than that of SIMON and SPECK in CMOS 130nm. However, it is slightly
larger than that of Simeck and SIMON in CMOS 65nm. The maximum frequency of Warbler is
larger than that of Simeck and SIMON at throughput of 20.00 Kbps in CMOS 65nm, and smaller
than them at throughput of 100.00 Kbps. Meanwhile, the maximum frequency of Warbler at
CMOS 130nm is smaller than that of Simeck and SIMON. The total power consumption at 100
KHz for Warbler in CMOS 130nm is smaller than that of Simeck and SIMON at throughput of
20.00 Kbps, but larger than them at throughput of 100.00 Kbps. However, it is larger than that of
Simeck and SIMON in CMOS 65nm.

Similarly, the area of Warbler is smaller than that of PHOTON-80/20/16 and SPONGENT-
88, and its power consumption at 100 KHz is smaller than that of SPONGENT-88 in CMOS
130nm.

Overall, Warbler has a small area and power consumption with a flexibility in throughput,
and hence it is very suitable for passive RFID applications.

5.5 Summary

In this chapter, we have presented hardware implementations and optimizations of Warbler in
CMOS 65nm and CMOS 130nm ASICs. We have proposed an architecture for hardware imple-
mentations of Warbler and with thorough analysis. We can achieve the areas of 551 GEs and 513
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GEs after the place and route phase in CMOS 130nm and CMOS 65nm respectively for through-
put of 1/5 bpc. More importantly, we have improved the throughput from 1/5 bpc to 1 bpc by
increasing 199 GEs and 237 GEs area respectively in CMOS 130nm and CMOS 65nm. By doing
so, the corresponding total power consumption has increased by 0.218 µW and 0.452 µW at 100
KHz respectively, and 4.337 µW and 2.845 µW at 2 MHz respectively. We have determined
that the LFSR counter-based design is better than the binary counter-based design in terms of
smaller area and lower total power consumption. Moreover, the sequential logic ratios for all our
designs are bigger than 65% for throughput of 1/5 bpc and are around 50% for throughput of 1
bpc. Our analysis has verified that the areas of NLFSRs and combinational logic are dependent
upon the type of registers and the adopted technologies. The area of the WG-5 transformation
table depends upon the selected decimation value, giving us some suggestions for future cipher-
s and pseudorandom number generator designs using WG-5 transformations. When compared
with other lightweight primitives, the areas of our Warbler implementations are smaller than the
estimated areas of LAMED, Melia-Segui et al.’s PRNG, and J3Gen, and also smaller than the
areas of AKARI1B, Grain, Trivium, PHOTON-80/20/16, and SPONGENT-88 in both CMOS
65nm and CMOS 130nm. Additionally, the area of Warbler is comparable with that of SIMON

and Simeck at throughput of 1/5 bpc. In conclusion, Warbler can fit into passive RFID systems.
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Chapter 6

WGLCE: A Cryptographic Engine for
Passive RFID Systems

In this chapter, we design a cryptographic engine, which can generate pseudorandom numbers
and provide data confidentiality for passive RFID systems. Based on the EPC Class 1 Genera-
tion 2 standard [3], the 16-bit random number (RN16) is used in many commands. An encryp-
tion/decryption algorithm is needed to meet the security requirements for data confidentiality.
During the interrogation process between RFID readers and tags, the RN16s and the encrypted
data are sent at different time slots from the tag to the reader. The pseudorandom number gen-
erator and the encryption engine never works at the same time. Therefore, we can integrate the
pseudorandom number generator and cipher together to build a cryptographic engine.

This chapter is organized as follows. We give an overview of the cryptographic engine in
Section 6.1. Then, the hardware implementations of WG-5 is investigated in Section 6.2. In
Section 6.3, we explore the architectures of our cryptographic engine in detail. We compares our
cryptographic engine with others in Section 6.4. Finally, the conclusion is given in Section 6.5.

6.1 WGLCE: Overview

Instead of using a separate cipher and pseudorandom number generator, we design a cryptograph-
ic engine which can perform data encryption/decryption and generate pseudorandom numbers.
By doing so, the total area of the security solutions can be reduced and the reusability can be
improved. Because the cryptographic engine is a single module, and it can be easily integrated
into a complete RFID digital baseband.
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Some of the previous works adopt a design of separate encryption engine and pseudorandom
number generator. For example, Ertl et al. [33] proposed an enhanced security solution for the
UHF RFID tag. In their paper, they used AES to achieve encryption/decryption functionality,
and the lightweight stream cipher Grain to generate pseudorandom numbers. Todd et al. [107]
designed a passive RFID system with data confidentiality and pseudorandom numbers as well.
In this design, the block cipher Present-80 is used to provide data confidentiality and the pseudo-
random number generator LAMED [91] is used to generate pseudorandom numbers. However,
the areas of AES plus Grain, and Present-80 plus LAMED are both larger than 2000 GEs.

Different from the previous work, we explore our cryptographic engine by using the Warbler
pseudorandom number generator [114] and lightweight stream ciphers (WG-5 [7], WG-7 [67],
WG-8 [115]) that are all based on the WG transformation. Therefore, our cryptographic engine
is named WGLCE, which represents the lightweight cryptographic engine based on WG trans-
formations. More specifically, WGLCE is a combination of lightweight pseudorandom number
generator and lightweight stream cipher. WG-5, WG-7, and WG-8 are all lightweight stream
ciphers, but with different security level, hardware cost, and power consumption. In order to
achieve a smaller design of WGLCE, we will use WG-5 as an example in this chapter because
its area is smaller than both that of WG-7 and WG-8.

According to the security analysis of WG-5, the most effective attack is the discrete fourier
transform attack which is related to the linear complexity [7]. The linear complexity of Warbler
is at least 218 [72], and the linear complexity of WG-5 with decimation one is 217 [7]. The
exchanged information between the reader and the tag is EPC number, RN16, encrypted data,
etc. These are very short messages which are below 100 bits. Hence, it is very difficult for an
attacker to get 217 consecutive data during the life time of the RFID tag. Therefore, Warbler and
WG-5 are both secure enough for the passive RFID tags [72, 7]. As a result, we can use WG-5
as a stream cipher and Warbler as a pseudorandom number generator. Motivated by that the
stream cipher Grain was used as the pseudorandom number generator in the passive RFID tags
in [33], we have the following design options for our WGLCE in Table 6.1.

Table 6.1: Different Design Options for WGLCE

Option PRNG Encryption/Decryption Discussions√
1 Warbler WG-5 good
2 WG-5 WG-5 larger
3 Warbler Warbler lower security level
4 WG-5 extra memory and add delay
5 Warbler extra memory and add delay

The area of Warbler is smaller than that of WG-5. Therefore, the option 2 is not a good
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idea because the area of two WG-5 is larger than that of Warbler plus WG-5. The key length
of Warbler is shorter than that of WG-5, which results in a lower security level. Hence, the
two combined Warbler designs in option 3 is not as good as option 1 considering the balance
between the hardware cost and security. Options 4 and 5 use one hardware module of WG-5
or Warbler, to provide two functionalities. In this case, we have to use the memory to store
the internal states of the LFSR when WGLCE is switching between cipher and pseudorandom
numbers. Option 5 is not as good as option 4 due to the same reason as option 3. The area of
option 4 is less than that of option 1. Nevertheless, option 4 needs extra clock cycles to load and
store the LFSR’s internal states to the memory, which decreases the performance and increases
the energy consumption. Moreover, the operations to load and store the internal states to the
memory may be vulnerable to potential side channel attacks. As a result, we choose option 1 for
our WGLCE design, where Warbler is used to generate pseudorandom numbers and WG-5 is
deployed to provide data confidentiality.

6.2 A New Efficient Hardware Implementations of Ultra-lightweight
Stream Cipher WG-5

This section is mainly used to provide background information for the WGLCE. We will present
the architecture of WGLCE in next section.

In 2013, Aagaard and Gong [7] proposed an ultra-lightweight stream cipher WG-5 with two
versions. One version uses decimation one for the WG transformation function i.e., WGT-5(x),
and another one uses decimation eleven for the WG transformation function i.e., WGT-5(x11).
These two versions have different security levels and are both sufficiently secure for passive
RFID tags. The area of the version with decimation one is smaller than that of the version with
decimation eleven. In this section, we present an efficient hardware implementation of WG-5
with decimation one.

6.2.1 Description of WG-5

In this subsection, we first give the parameters for describing the WG-5 and then give a brief
description of it.
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Parameters for WG-5

– The primitive polynomial p(x) for generating F25 , the primitive element α, and the trace
function are the same as that of Warbler in chapter 5.

– The WG-5 permutation and WG-5 transformation with decimation 1 are the same as that
of Warbler in chapter 5.

– g(x) = x32 + x7 + x6 + x5 + x4 + x + ω, a feedback primitive polynomial of degree 32
over F25 for LFSR32, where ω = α15.

Behaviour of WG-5

WG-5 is an ultra-lightweight variant of the WG stream cipher family with 80-bit key and 80-bit
initial vector (IV). The stream cipher WG-5 consists of a 32-stage LFSR (LFSR32) with the
feedback polynomial g(x) followed by a WG-5 transformation module.

S7LFSR32 S0S1S2S3S4S5S6S31

⊕
5

5

5

⊗⊕⊕⊕⊕ 5 ω

Tr(·)

1

WGP-5(x)

5

WGT-5(x)

keystream

WGT-5(x): WG-5 Transformation Module

WGP-5(x): WG-5 Permutation Module

Tr(·): Trace Computation Module

⊕

Figure 6.1: The Initialization and Running Phases of WG-5

The initialization and running phases of the WG-5 are shown in Figure 6.1. Before the
initialization and running phases starts, we first load the key and IV to the internal states. Let the
80-bit secret key beK = (K0, . . . , K79), the 80-bit IV be IV = (IV0, . . . , IV79), and the internal
states of LFSR32 be S0, . . . , S31 ∈ F25 , where Si = (Si,0, . . . , Si,4) for i = 0, . . . , 31. The initial
values of the internal states are computed as follows:

Si = (K5i, · · · , K5i+4), i = 0, 1, · · · , 15,

= (IV5(i−16), · · · , IV5(i−16)+4), i = 16, 17, · · · , 31.
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1) Initialization Phase

Once the LFSR32 is loaded with initial states, the apparatus runs for 64 clock cycles. During
each clock cycle, the 5-bit internal state S31 passes through the nonlinear WG-5 permutation
module (i.e., the WGP-5(x)) and the output is used as the feedback to update the internal states
of the LFSR32. The LFSR32 update follows the recursive relation:

Sk+32 = (ω ⊗5 Sk)⊕5 Sk+1 ⊕5 Sk+4 ⊕5 Sk+5 ⊕5 Sk+6 ⊕5 Sk+7 ⊕5 WGP-5(Sk+31),

where 0 ≤ k < 64.

2) Running Phase

After the initialization phase, WG-5 goes into the running phase and 1-bit keystream is gener-
ated in each clock cycle. During the running phase, the 5-bit internal state S31 passes through the
nonlinear WG-5 transformation module (i.e., WGT-5(x)) and the output is the 1-bit keystream.
The recursive relation for updating the LFSR32 is given below:

Sk+32 = (ω ⊗5 Sk)⊕5 Sk+1 ⊕5 Sk+4 ⊕5 Sk+5 ⊕5 Sk+6 ⊕5 Sk+7,

where k ≥ 64.

6.2.2 Hardware Architecture of WG-5

The top level hardware architecture of WG-5 is shown in Figure 6.2, which includes the FSM
and the Datapath. The input d is used to provide the initial values for the internal states. i valid
and o valid indicate when the inputs and outputs are valid respectively. o WG-5 represents the
output keystream of WG-5. We use the architecture presented in Chapter 4, and the optimization
techniques in chapter 3, chapter 4, and chapter 5. Compared with the implementations in [7], the
new one is much smaller.

FSM Datapath

clk

reset

i valid

d

o WG-5

o valid

Init
Load

LFSR ce
Run

Figure 6.2: The Top Level Hardware Architecture of WG-5
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FSM

Our FSM has three states, including loading, initialization, and running. When reset equals
one, the WG-5 goes into the loading state, in which the initial values of the internal states
are loaded into the LFSR32 by using 32 clock cycles. The initialization state begins when the
loading state finished, and it will run for 64 clock cycles and then the running state starts, where
the keystream is generated in each clock cycle.

Similar to Warbler in Chapter 5, we use one-hot encoding for the three states and using
both binary counter and LFSR counter in the FSM. The LFSR counter is designed based on the
primitive polynomial (X7 + X + 1) with an initial value (1,1,1,1,1,1,1). The state transition
conditions are given in Table 6.2.

Table 6.2: States Transition Conditions for FSM in WG-5

States Binary counter- LFSR counter-
based based

Loading (100) → initialization (010) 31 79
Initialization (010) → running (001) 63 112

LFSR ce equals one when WG-5 is in the loading and initialization states, and equals one
when WG-5 is in the running state and i valid equals one as well.

Datapath

S7LFSR32 S0S1S2S3S4S5S6S31d

Load

1

0

⊕⊕
Mult
5× 5

⊕

⊕⊕⊕

1

0

Init

Table1WGP-5(x) WGT-5(x)

Table2
o WG-5

5

5

5

5 1

LFSR ce

LFSR ce

Run
o valid

Figure 6.3: The Datapath of WG-5
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The datapath of WG-5 is shown in Figure 6.3. The results analysis from WG-8 in Chapter 4
shows that the constant array based method is the best solution for the small size WG permutation
and transformation modules. Hence, the constant array based method is used to implement WG-
5, and all the computations in WG-5 are calculated based on polynomial basis. More specifically,
we use one 5 × 5 constant array to store the results of WGP-5(x) for every x ∈ F25 , and one
5× 1 constant array to store the results of WGT-5(x) for every x ∈ F25 . In addition, we use one
more 5×5 constant array to store the results of the WG multiplication α15Sk for every Sk ∈ F25 .

LFSR ce is used to control LFSR32 and is also employed with run state to control o valid.
Init and Load signals control the various input values for the LFSR32 in different states.

6.2.3 ASIC Results

We use the same design flow and metrics, and compilation techniques as Simeck and SIMON in
Chapter 3 for our low area implementations of WG-5. Our ASIC results of WG-5 with compile
ultra compilation and clock gating technique in CMOS 65nm and CMOS 130nm are shown in
Table 6.3. Two design strategies are used to implement WG-5, which are binary counter based
and LFSR counter based FSM designs respectively. The areas of the before and after place
and route phase are given and the corresponding maximum operating frequency and total power
consumption at 2 MHz after place and route phase are provided as well. We choose 2 MHz for
the power consumption because the passive RFID tag is operated at around 2 MHz in practice.

Table 6.3: ASIC Implementation Results of WG-5 in CMOS 65nm and 130nm

WG-5 Tech
Area (GEs) Max Throughput Total Power Optimality Source

Before After Freq @100KHz @2MHz (MHz/#GEs)
P&R P&R (MHz) (Kbps) (µW )

Binary 65nm 832 894 1234 100 9.875 1.38 here
LFSR 65nm 828 890 1250 100 9.911 1.40 here
Binary 130nm 917 997 235 100 13.61 0.23 here
LFSR 130nm 913 992 241 100 13.25 0.24 here
Binary 130nm − 1259 − 100 − − [7]

As shown in Table 6.3 in both CMOS 65nm and 130nm, the area of the LFSR counter based
design is smaller than that of the binary counter based design. Accordingly, the optimality (with
respect to max frequency/area) is slightly larger in the LFSR counter based design, compared to
the binary counter design. In addition, the total power consumption at 2 MHz is almost identical
for both designs. In summary, the smallest area for WG-5 in CMOS 65nm is 890 GEs after
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Place and Route phase with the power consumption of 9.911µW at 2 MHz. Similarly, in CMOS
130nm, the smallest area for WG-5 is 992 GEs with the power consumption of 13.25µW at 2
MHz.

Compared with the previous implementation, the area in CMOS 130nm are 21.2% smaller
than that of result in [7].

6.3 Design and Implementations of WGLCE

As discussed in Section 6.1, WGLCE is a cryptographic engine, which integrates the Warbler
pseudorandom number generator and the WG-5 cipher. In this section, we will discuss the
hardware architecture and implementation results of WGLCE.

In order to make our WGLCE to generate pseudorandom numbers or to perform encryption,
we need one selection signal mode to choose from these two functionalities. When mode is
asserted, WGLCE works as the pseudorandom number generator. Otherwise, WGLCE works as
the encryption engine.

6.3.1 Hardware Architectures

In this subsection, we propose the architecture for WGLCE based on the design rational that the
pseudorandom number generator and encryption engine do not need to work simultaneously. It
merges Warbler and WG-5 together by taking advantage of reusing the finite state machine for
both of them, due to the fact that Warbler and WG-5 have the same architecture of the FSM
but with different state transition conditions. We design a combined FSM to control the datapath
of both WG-5 and Warbler for WGLCE, which reuses the state registers and the counter for
both Warbler and WG-5. Inside the combined FSM, the different state transition conditions are
selected by the mode signal.

During the discussion of design options, we also explored the option with reusing the registers
in WG-5 and Warbler, and the option with reusing the WGT-5 module. However, reusing the
registers needs the extra memory and reusing WGT-5 increases the total area due to the required
extra multiplexer.

The hardware architecture with FSM reuse for WGLCE is shown in Figure 6.4. The mode
signal is used to select one from Warbler and WG-5, i valid and o valid indicate when the input
data and output sequence or keystream are valid respectively. Only when i valid equals one, the
input data can be sent into WGLCE. The input d is used to provide initial values for the internal
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Figure 6.4: Hardware Architecture with FSM Reuse for WGLCE

states of Warbler and WG-5, with a data width eight. This is because the typical operands in the
instruction set is multiples of eight. More specifically, d [6] is connected to Warbler d1, d [5] is
connected to Warbler d2, and d [4:0] is connected to Warbler d3 and WG-5 d. o data is used
to output the sequence of WG-5 or keystream of Warbler.

Table 6.4: States Transition Conditions for FSM in WGLCE

States
Binary counter- LFSR counter-

based based
Warbler WG-5 Warbler WG-5

Loading (100) → initialization (010) 17 31 12 79
Initialization (010) → running (001) 35 63 68 112

According to the description of Warbler and WG-5, their state transition conditions are listed
in Table 6.4. If a LFSR counter is employed, the degree of the primitive polynomial should be
at least 7, because the maximum binary counter number is 63. Therefore, the same primitive
polynomial (X7+X+1) as WG-5 is used for WGLCE. The LFSR counter-based state transition
conditions are also listed in Table 6.4.

The hardware architecture without FSM reuse for WGLCE which directly connect Warbler
and WG-5, shown in Figure 6.5, is also provided for comparison.
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Figure 6.5: Hardware Architecture without FSM Reuse for WGLCE

6.3.2 Implementation Results and Analysis

We use the same low area implementation strategy as WG-5, and the ASIC results of WGLCE
with compile ultra compilation and clock gating techinique in CMOS 65nm and 130nm are
shown in Tables 6.5 and 6.6 respectively. According to the results, the architecture with FSM
reuse for WGLCE is smaller than the architecture without FSM reuse in terms of area and power
consumption. In addition, the area of LFSR counter-based design is smaller than that of the
binary counter-based design in both CMOS 65nm and 130nm. The maximum frequency and
optimality of the LFSR counter-based design are both higher than that of the binary counter-
based design in CMOS 130nm, while they are slightly different in CMOS 65nm. The power
consumption at 2 MHz is similar for the LFSR counter-based design and the binary counter-
based design. Moreover, the power consumption of WGLCE is lower than that of the total of
Warbler plus WG-5, because WGLCE only enables one functionality at each time.

In order to analyze the advantages of the architecture with FSM reuse and the effects of
LFSR counter based designs, we provide the breakdown areas of WGLCE from before the place
and route phase in CMOS 130nm, as shown in Table 6.7. For the binary based designs, the
combined areas of Warbler FSM and WG-5 FSM in the architecture without FSM reuse are
200 GEs. By reusing the 6-bit register for binary counter and 3-bit register for the states in the
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Table 6.5: ASIC Implementation Results of WGLCE in CMOS 65nm

Architectures WGLCE
Area (GEs) Max Total Power Optimality

Before After Freq @2MHz (MHz/#GEs)
P&R P&R (MHz) (µW )

No FSM reuse
Binary 1332 1432 1193 9.784 0.83
LFSR 1322 1422 1203 9.604 0.84

FSM resuse
Binary 1264 1359 1175 9.309 0.86
LFSR 1260 1355 1040 9.293 0.77

Table 6.6: ASIC Implementation Results of WGLCE in CMOS 130nm

Architectures WGLCE
Area (GEs) Max Total Power Optimality

Before After Freq @2MHz (MHz/#GEs)
P&R P&R (MHz) (µW )

No FSM reuse
Binary 1439 1565 224 12.82 0.14
LFSR 1426 1550 262 12.86 0.16

FSM resuse
Binary 1371 1490 228 12.44 0.15
LFSR 1356 1474 237 12.47 0.16

Table 6.7: Breakdown of the Area Results for WGLCE before the Place and Route in 130nm

WGLCE Components Binary Counter-based LFSR Counter-based
Architectures (GEs) (GEs)

No FSM Reuse

Warbler FSM 104.75 97.75
WG-5 FSM 95.25 86.75
Warbler CORE 546.5 546.5
WG-5 CORE 1106 1106
Total Area∗ 1866 1850
Total Area‡ 1439 1426

FSM Reuse

WGLCE FSM 127.75 114.25
Warbler CORE 546.5 546.5
WG-5 CORE 1106 1106
Total Area∗ 1793 1779
Total Area‡ 1371 1356

* Compile Simple, ‡ Compile ultra + clock gating.
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architecture with FSM reuse, we can get the WGLCE FSM’s area equals 127.75 GEs, resulting
in a 36.1% reduction. As a result, a 4.7% reduction in the total area can be achieved by using the
FSM reuse architecture in the binary counter based designs. Similarly, we can achieve 38.1%
area less in WGLCE FSM than that of the combined areas of Warbler FSM and WG-5 FSM
in the LFSR counter based designs. In this case, there is a 4.9% reduction in the total area by
using the architecture with FSM reuse. Hence, the FSM reuse architecture with LFSR counter
based design is the best hardware implementation and is chosen as the architecture of WGLCE.
Moreover, this architecture can also be generalized for other stream ciphers.

6.3.3 Interface of WGLCE

In order to practically use WGLCE, we provide a way for efficiently loading initial values to
internal states. This is because the usual practice for considering the pattern of the initial values
is from the perspective of the primitive only, not taking into account the environment. By doing
this, the work of the external environment will be simplified. The old method for the initial value
pattern of the internal states of Warbler is shown in Table 6.8. However, it is hard in terms of
the size of the assembly code to load from the memory where keys and IVs are stored. In order
to make it easier, we change the initial value pattern for the internal states of Warbler to a new
method, as shown in Table 6.9. In the new method, we assign all the NLFSRs simultaneously
from the last state with the initial values from the end, instead of assigning them from the begin-
ning individually, in order to improve efficiency. The initial value pattern of the internal states
for WG-5 conforms with this rule, thus it is not needed to change.

Table 6.8: The Old Initial Value Pattern for the Internal States of Warbler

Clock cycles 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NLFSR1 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NLFSR2 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18

NLFSR3

60 55 50 45 40 35
61 56 51 46 41 36
62 57 52 47 42 37
63 58 53 48 43 38
64 59 54 49 44 39

We assume the Keys and IVs of WG-5 and Warbler are stored in the following addresses of
the memory, shown in Table 6.10. Take the WG-5 as an example. Since the size of the internal
states of WG-5 is 5-bit, therefore we need to get the correct 5-bit pattern for each state and send
it to WGLCE through the last 5 bits of i data. However, the Keys and IVs are stored in a 8-bit
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Table 6.9: The New Initial Value Pattern for the Internal States of Warbler

Clock cycles 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NLFSR1 58 51 44 37 30 23 21 19 17 15 13 11 9 7 5 3 1 0
NLFSR2 59 52 45 38 31 24 22 20 18 16 14 12 10 8 6 4 2

NLFSR3

60 53 46 39 32 25
61 54 47 40 33 26
62 55 48 41 34 27
63 56 49 42 35 28
64 57 50 43 36 29

Table 6.10: The Location of Keys and IVs

(a) The Location of Keys and IVs for WG-5

Keys IVs data (bit positions)

10 20 7 6 5 4 3 2 1 0
11 21 15 14 13 12 11 10 9 8
12 22 23 22 21 20 19 18 17 16
13 23 31 30 29 28 27 26 25 24
14 24 39 38 37 36 35 34 33 32
15 25 47 46 45 44 43 42 41 40
16 26 55 54 53 52 51 50 49 48
17 27 63 62 61 60 59 58 57 56
18 28 71 70 69 68 67 66 65 64
19 29 79 78 77 76 75 74 73 72

(b) The Location of Keys and IVs for Warbler

Keys IVs data (bit positions)

30 39 7 6 5 4 3 2 1 0
31 40 15 14 13 12 11 10 9 8
32 41 23 22 21 20 19 18 17 16
33 42 31 30 29 28 27 26 25 24
34 43 39 38 37 36 35 34 33 32
35 44 47 46 45 44 43 42 41 40
36 45 55 54 53 52 51 50 49 48
37 46 63 62 61 60 59 58 57 56
38 47 64

pattern in the memory. We propose an efficient algorithm for loading them by using the loop
statement in order to minimize the code size, and reduce the number of instructions to load data
from memory. We use the first 16 states of WG-5 to illustrate the algorithm in pseudo-assembly
code as it is loaded from the Keys, which is shown in Algorithm 1.

R1 to R10 are the registers from the processor and they are used to obtain the correct 5-bit
pattern values for internal states. We first use R2 and R3 to store the lowest and highest bit
positions of the 5-bit pattern, and then transform them to byte positions (R4, R6) in the 8-bit
pattern as well as the bit positions (R5, R7) in each byte. By using the byte positions, we can
load the data in the memory to the register. We then construct a new 8-bit data with the last
5 effective bits are the initial values under two different cases, depending on whether the byte
positions are equal.
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Algorithm 1: The Algorithm to Load the Initial Values for the First 16 States
1: Mov R1, 0 R1 stores the states index of WG-5 from 0 to 15
2: S: MUL R2, R1, 5 R2 stores the lowest bit position of 5-bit pattern
3: ADD R3, R2, 4 R3 stores the highest bit position of 5-bit pattern
4: DIV R4, R2, 8 R4 stores the lowest byte position of 8-bit pattern
5: MOD R5, R2, 8 R5 stores the lowest bit position of R4
6: DIV R6, R3, 8 R6 stores the highest byte position of 8-bit pattern
7: MOD R7, R3, 8 R7 stores the highest bit position of R6
8: Bneq R4, R6 B If R4 equals R6, go to branch A; otherwise go to branch B
9: A: ADD R4, R4, 10 Refresh R4 with the lowest byte address in memory
10: Load R8, R4 Read the 8-bit data with address R4 to R8
11: SRL R8, R8, R5 Shift R8 to right by R5 bit
12: AND R8, R8, b‘‘00011111" Get the effective 5-bit pattern
13: Send R8, i data Send R8 to the i data input
14: JMP C Go to branch C
15: B: ADD R4, R4, 10 Refresh R4 with the lowest byte address in memory
16: Load R8, R4 Read the 8-bit data with address R4 to R8
17: SRL R8, R8, R5 Shift R8 to right by R5 bit
18: Mov R9, b‘‘11111111" Generate a mask for the effective bits in R8 after shifting
19: SRL R9, R9, R5
20: AND R8, R8, R9
21: ADD R6, R6, 10 Refresh R6 with the highest byte address in memory
22: Load R10, R6 Read the 8-bit data with address R6 to R10
23: Sub R5, 8, R5
24: SLL R10, R10, R5 Shift R10 to left by new R5 bit
25: Mov R9, b‘‘11111111" Generate a mask for the effective bits in R10 after shifting
26: SLL R9, R9, R5
27: SLL R9, R9, 3
28: SRL R9, R9, 3
29: AND R10, R10, R9
30: OR R8, R8, R10 Construct a new R8 with the last 5 effective bits
31: Send R8, i data Send R8 to the i data input
32: C: ADD R1, 1 Increment R1
33: SUB R2, R1, 16
34: BLT R2, S Go back to branch S

Similar algorithm can be used for loading the initial values of Warbler by using the new
method pattern.
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6.4 Comparisons

The areas after the Place and Route phase of our WGLCE in CMOS 130nm and 65nm ASICs
are 1474 GEs and 1355 GEs respectively. They are both smaller than the well accepted area limit
(2000 GEs) in the passive RFID tags. We compare our WGLCE with the cryptographic engines
in the previous papers, such as AES plus Grain [33], and Present-80 plus LAMED [107], as
shown in Table 6.11. Although there is no actual hardware implementation of LAMED, the esti-
mate area of LAMED is larger than that of Warbler based on the analysis in [72]. The smallest
area of AES reported by Moradi et al. [82] is 2400 GEs in CMOS 180nm ASIC. Considering all
the above factors together, the area of WGLCE is smaller than that of the other two designs.

Table 6.11: Comparisons with the Existing Cryptographic Engines

Design Crypto Engines
Area Power Tech Common Hardware
(GEs) (@2MHz µW ) (nm) Reuse

Ertl et al. [33]
AES, 2770 − 130

No
Grain 2450 − 130

Todd et al. [107]
Present-80, 1900 − 65

No
LAMED − − −

This work WGLCE 1474 12.47 130
Yes

1355 9.29 65

6.5 Summary

In this chapter, we designed a lightweight cryptographic engine (WGLCE) for the passive R-
FID systems. WGLCE is a fusion of the Warbler pseudorandom number generator and the
lightweight stream cipher WG-5, which can be easily integrated into RFID systems. Firstly,
we investigated the rationales and design choices for WGLCE and then explored the hardware
implementation of WG-5. Later on, we discussed the design, hardware architectures, and imple-
mentations of our WGLCE. Finally, we compared our WGLCE results with other cryptographic
engines. Overall, our WGLCE can satisfy the area requirement for the security extension in the
passive RFID tags, and it is a promising candidate for this kind of applications.
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Chapter 7

Conclusions and Future Work

This chapter concludes the thesis and provides future work. Section 7.1 presents a summary of
contributions and concluding remarks, and the potential future work directions are discussed in
Section 7.2.

7.1 Conclusions

In this thesis, we concentrated on the efficient hardware implementations and optimizations of
lightweight cryptography, including the block cipher Simeck, stream cipher WG-8, pseudo-
random number generator Warbler, and cryptographic engine WGLCE, in order to meet the
constraints in resource constrained applications. We have shown that they can meet the area,
power consumption, and throughput requirements in passive RFID tags and they are promising
candidates for resource constrained applications.

Motivated by the designs of SIMON and SPECK, we first proposed Simeck, a new family
of lightweight block ciphers with Feistel structure. Simeck takes advantage of the good com-
ponents and design ideas of SIMON and SPECK, and it has three instances with different block
and key sizes: Simeck32/64, Simeck48/96, and Simeck64/128. Simeck is designed to have
a smaller area than that of SIMON with the following considerations: the reduced shift numbers
in the round function, the simplified key schedule, and the simplified LFSR to generate the key
constant. We provided an extensive exploration for different hardware architectures in order to
make a balance between area, throughput, and power consumption for SIMON and Simeck in
both CMOS 130nm and CMOS 65nm ASICs. We verified that Simeck is indeed smaller than
that of SIMON in terms of area and power consumption, and a thorough analysis for the area
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reductions for parallel and fully serialized architectures is given. Moreover, our SIMON’s area is
smaller than the results of SIMON given in the original paper. In addition, the security analysis
showed that even though the round function of Simeck is quite simple, this round function is
iterated a sufficient number of time to provide an adequate security against known attacks.

For WG-8, we explored four different constructions for the WG transformation module. The
first architecture directly employs an 8×8 constant array over F28 , the second one is based on the
tower construction F(24)2 together with small 4×4 constant arrays for arithmetic in F24 , due to the
existence of primitive element. The third architecture is slightly different from the second one,
due to the usage of a type-I ONB for efficient computations in F24 . Finally, the fourth architecture
takes advantage of the tower construction F((22)2)2 coupled with a nice property for computing
the trace of product of two finite field elements under this certain tower construction. We also
proposed a novel hybrid design with the parallel width from one to eleven for each proposed
architecture. We gave the results on low-cost FPGA and CMOS 65nm and CMOS 130nm A-
SICs in terms of area, clock speed, throughput and power consumption The experimental results
showed that the lightweight stream cipher WG-8 with the direct constant array based hardware
architecture is optimal in terms of throughput, area, and power consumption, when compared
to the tower field arithmetic based approaches. The main reason is due to the small field size
as well as the relatively complicated architecture of WG-8 permutation/transformation module.
Although the tower field based approaches for WG-8 are not efficient, the proposed architecture
and extensive experimental results still provide valuable guidance for efficient hardware imple-
mentation of medium or large instances of the WG stream cipher family. Moreover, with a
little additional hardware resources, the parallel implementations can achieve a high throughput
without decreasing the clock speed two much.

Later on, we presented first detailed and smallest hardware implementations and optimiza-
tions of Warbler PRNG in CMOS 65nm and CMOS 130nm ASICs. We proposed an architecture
for hardware implementations of Warbler with thorough analysis. We improved the throughput
from 1/5 bpc to 1 bpc by increasing 46% and 36% of the area respectively in CMOS 65nm and
CMOS 130nm. Moreover, the sequential logic ratios for all our designs are bigger than 65%
for throughput of 1/5 bpc and are around 50% for throughput of 1 bpc. We determined that the
LFSR counter-based design is better than the binary counter-based design in terms of area and
total power consumption. The area of the WG-5 transformation table depends upon the selected
decimation value, giving us some suggestions for future ciphers and pseudorandom number gen-
erator designs using WG-5 transformations. When compared with other lightweight primitives,
the areas of our Warbler implementations are smaller than that of other PRNGs and are in fact
smaller than most of lightweight primitives.

Finally, we proposed a lightweight cryptographic engine WGLCE, which can be easily in-
tegrated into passive RFID systems. WGLCE merges Warbler PRNG and WG-5 stream ci-
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pher, and it takes advantages of reusing the FSM. WGLCE has two functionalities: data en-
cryption/decryption and random numbers generation. We provided the design rationales, archi-
tectures, and implementation results in CMOS 65nm and CMOS 130nm ASICs. Moreover, an
interface with outside environment for WGLCE was provided as well. When compared with
other cryptographic engines, the area of WGLCE is smaller than that of them. Overall, the re-
sults showed that it can satisfy the requirement for the security extension in passive EPC RFID
systems.

7.2 Future Work

Some future interesting research directions can be conducted from extension of the current re-
sults, which are shown as follows:

• Exploring the hardware implementations and optimizations of other instances in SI-
MON and SPECK families. We provided a wide range of architectures and optimiza-
tions for the implementations of Simeck and SIMON with tradeoffs of area, power con-
sumption, and throughput in Chapter 3. However, we only finished three instances of
SIMON family in order to compare with Simeck family. Therefore, we can use the
proposed architectures and techniques to implement the other seven instances of SIMON

family (SIMON48/72, SIMON64/96, SIMON96/96, SIMON96/144, SIMON128/128, SI-
MON128/192, SIMON128/256) and the ten instances of SPECK family (SPECK32/64,
SPECK48/72, SPECK48/96, SPECK64/96, SPECK64/128, SPECK96/96, SPECK96/144,
SPECK128/128, SPECK128/192, SPECK128/256 ) which can not only improve the ex-
isting area results, but also provide detailed explorations. Moreover, we can try to add new
instances to Simeck family by investigating the simpler key schedule designs than that of
SIMON family with a thorough area and cryptographic analysis.

• Hardware evaluations of other WG ciphers and cryptographic engines. We eval-
uated the hardware implementations and optimizations of WG-8 using constant array
method and three tower field approaches in Chapter 4 and proposed a cryptographic engine
WGLCE in Chapter 6. Similar optimization techniques, such as different tower construc-
tions, parallelism, component reuse, different architectures, and so on, can be used for
other WG ciphers, such as WG-10, WG-11, WG-14, etc. These techniques can pro-
vide tradeoffs of area, power consumption and throughput for the primitives. In addition,
WGLCE can be generalized for other primitives which can provide a cryptographic engine
with different security levels.
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• Design and implement a secure mutual authentication protocol for the passive RFID
readers and tags. The mutual authentication protocol is very important for the passive
RFID systems. It provides the authentication of both the reader and the tag, leading to
resist to the reader or tag impersonation attacks. We will adopt the privacy preserving
authentication protocol, specified in EPC standard with our cryptographic engine to design
the protocol. Then, we can perform the security analysis. Finally, we can evaluate the
hardware optimizations of this mutual authentication protocol in order to make it feasible
for the current passive RFID systems.

• A pseudorandom number generator with 128-bit key. Our current Warbler PRNG has
pretty small area but with 65-bit key. In order to provide more flexibility in security for
more applications, it will be good for us to consider a new PRNG with 128-bit key and
with a similar architecture as Warbler.

• Side channel attack analysis. The side channel attack is based on exploiting the infor-
mation measured externally from the implementation of the primitive to reveal its secret
key. There are three common types of side channel attacks: timing attack, electromagnetic
analysis attack and power analysis attack. Therefore, evaluating the side channel analysis
of the primitives is one of our future work for secure use in practice.
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