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Abstract 

Sea ice mapping is crucial to Canadian coast, including marine transportation, 

environmental protection, resource management, disaster and emergency management, especially 

under current background of climate change. Canadian RADARSAT-2, like other synthetic 

aperture radar (SAR) sensors, is an essential source for current sea ice mapping in Canada, 

However, its limited revisiting makes daily ice chart generation challenging. The RADARSAT 

Constellation project is expected to be launched in 2018, the gap of data availability is expected to 

be filled with imagery from multiple sources. Sentinel-1, launched by European Space Agency 

(ESA) in late 2014, is an alternative source for sea ice mapping with comparable capability of 

RADARSAT-2 in wide swath mode. The main objective of this study is to examine the 

performance of Sentinel-1 imagery in sea ice mapping with a semi-automated image segmentation 

workflow.  

The methodology consists of two main steps. First, the most significant features in sea ice 

interpretation were determined using a random forest feature selection method. Second, an 

unsupervised graph-cut image segmentation is performed.  

The workflow was tested on 15 dual-polarized Sentinel-1A Extra Wide (EW) scenes in 

Labrador coast from December, 2015 to June, 2016, and the results were evaluated on the accuracy 

of water segmentation. The study found that: 1) GLCM features are effective in distinguishing 

different ice classes and 6 most important features were selected; 2) the proposed semi-automated 

workflow is able to segment Sentinel-1 imagery into 3 to 8 classes for water identification; and 3) 

generally Sentinel-1 imagery has similar responses from first-year ice compared with previous 

sensors, but with a different noise pattern in cross-polarized bands; and the overall accuracy of 

water identification reached close to 95%. 
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Chapter 1 Introduction 

This chapter introduces the purpose of this study. Section 1.1 introduces the current condition 

of climate change and the need of sea ice map products. Section 1.2 summarizes two main 

challenges, which became the motivation of this study. Section 1.3 presents three main objectives 

of the study. Section 1.4 describes the structure of the thesis. 

 

1.1 Study Context 

Canada is a country largely affected by ice, with more than 4 million km2 of Canadian waters 

covered by ice in winter (Canadian Ice Service [CIS], 2016), close to half of Canada’s land area. 

In the form of sea ice, lake ice, river ice, icebergs and other forms, ice plays an important role in 

Canadian life in different ways, including marine transportation, fishing, offshore resource 

management, recreation, local weather, and long-term climate (CIS, 2016). The latter issue has 

drawn Canada’s concern in the Arctic where the current global warming trend is having a direct 

impact on sea ice.  

Arctic sea ice extent has been decreasing rapidly through recent decades (Kinnard et al., 

2011; Walsh et al., 2016), with a recorded loss of over 1 million km2 compared to the historical 

average from late 20th to early 21st century (National Snow and Ice Data Centre [NSIDC], 2016). 

As Figure 1.1 shows, the Arctic sea ice is currently experiencing significant loss in 2016 within 

the time scope of this thesis, even compared with the extent in 2012. In addition to loss of coverage, 

some evidence of ice thickness reduction has also been observed (Serreze et al., 2007; Kwok and 

Rothrock, 2009). If the decreasing trend continues under this circumstance, it is possible that 

perennial ice in the Arctic might vanish in a few decades within several climate models from 
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Intergovernmental Panel on Climate Change 4th Assessment Report (IPCC AR4) (Wang and 

Overland, 2012; Notz and Stroeve, 2016).  

 

Figure 1.1 Arctic sea ice extent by mid 2016 (NSIDC, 2016) 

The continuous loss of sea ice is considered to have profound impacts on Arctic climate, 

hydrological cycle, and ecology locally, regionally and globally. The loss of sea ice and snow 

cover in the Arctic has been found to be not only an indicator, but also directly contributing to 

Arctic Amplification, a phenomenon that near-surface temperature in the Arctic rises much 

stronger than global average, since the loss of sea ice in summer allows greater warming in upper 

ocean, while in winter it results in more heat release from the ocean to the atmosphere (Screen and 

Simmonds, 2010). The decrease of sea ice is also correspondent with Arctic precipitation increase, 

and they both promotes ocean water freshening, which results in ocean surface salinity anomalies 

and changes in thermalhaline circulation (Morison et al., 2012). In addition, stronger water vapour 

and more cloud coverage in Arctic regions would reinforce polar warming, as water vapour is a 

strong kind of greenhouse gas (Bintanja and Selten, 2014). There are also biological and ecological 
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consequences as sea ice melt and temperature increase in the Arctic region. Primary producers 

relying on sea ice such as certain types of algae and phytoplankton account for more than half of 

the total annual production in the Arctic ocean, but the change of their habitats would result in 

significant impact in the entire food web. The decrease of sea ice also affects movement, 

population mixing and pathogen transmission of marine and coastal species such as polar bear, 

seal and walrus (Post et al., 2013).  

In addition to the natural environment, human activities are greatly affected by Arctic sea 

ice dynamics as well. Marine activities in ice-infested regions such as the Canadian northern and 

eastern coast, are highly dependent on navigable routes for safety reasons. According to statistics 

provided by the Canadian Coast Guard (CCG), about 350 ships navigated through the Canadian 

Arctic in 2013, and the number has been increasing over the past two decades, tripling the number 

in 1990 (Office of the Auditor General of Canada, 2014). Major forces driving the increase in 

number of voyages include northern community growth, resource development expansion and 

tourism (Office of the Auditor General of Canada, 2014). Moreover, the shrinking of Arctic sea 

ice may provide longer ice-free periods and more navigable routes, resulting in potential marine 

traffic increase in the future. Therefore, monitoring sea ice dynamics not only helps Arctic climate 

studies, but also provides valuable resources for safe and efficient ship navigation on the Canadian 

coasts. 

 

1.2 Motivations 

Given the significant impact of sea ice on climate and human activities, it is crucial to 

monitor sea ice extents and conditions in a timely and accurate manner. Because of the large extent 

and rapid-changing nature of sea ice, earth observations satellites are invaluable sources for sea 



 

 4 

ice mapping. Optical sensors are effective in ice mapping due to the high albedo of ice, but they 

can provide high-quality imagery only in the day-time with little cloud coverage. In contrast, 

spaceborne synthetic aperture radar (SAR) systems are suitable for sea ice mapping since they are 

active sensors that can acquire data regardless of solar illumination and atmospheric conditions at 

certain frequencies. Consequently, they are capable of acquiring routine images even with bad 

weather or at night, enabling reliable and long-term monitoring of sea ice. In addition, polar regions 

usually have long cloudy periods which may create temporal gaps for optical sensors (Karvonen, 

2014). It has been observed that precipitation in Arctic regions has significantly increased during 

the past decades and it may continue to increase due to climate change and sea ice loss (Bintanja 

and Selten, 2014), which may result in more frequent cloud coverage in Arctic regions in the near 

future. Therefore, satellite SAR imagery is expected to become the most indispensable source for 

sea ice mapping in Canada. 

CIS, the official provider of sea ice information in Canada, has been using SAR imagery in 

daily operations for almost 30 years, and the advantages of SAR data became a major driving force 

in the development of the Canadian RADARSAT-1 program (Arkett et al., 2015). It provided SAR 

imagery for sea ice mapping in CIS from 1996 to 2013, and RADARSAT-2 has become the major 

source of imagery since it was launched in 2007 with the major advancement of dual-polarization 

in ScanSAR mode. There are two major challenges for CIS in current sea ice monitoring using 

SAR imagery.  

First, CIS has been heavily relying on RADARSAT-2 since RADARSAT-1 stopped service 

in 2013, and RADARSAT-2 has already passed its designed life of service, thus data availability 

may become a challenge for CIS to generate high quality sea ice products from SAR imagery. 

Other sources thus need to compensate for this data shortage or potential loss of RADARSAT-2. 
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Sentinel-1 is a new SAR satellite mission developed by the ESA that provides C-band SAR 

imagery, consisting of two satellites: Sentinel-1A, launched in April 2014, and Sentinel-1B, 

launched in April 2016. Sentinel-1 acquires dual-polarized SAR imagery at a wide swath of around 

400 km, which is ideal for sea ice mapping. Sentinel-1A has been providing operational data since 

October 2014, so it would be an important supplementary data source for CIS in addition to 

RADARSAT-2 currently before the expected launch of RADARSAT Constellation Mission 

(RCM) in 2018. Most importantly, imagery acquired by Sentinel-1 is open to public without cost. 

However, Sentinel-1 adopts a new image acquisition technique: Terrain Observation Progressive 

Scan (TOPS), which is different from ScanSAR as used by RADARSAT-2. Therefore, the 

challenge is whether Sentinel-1 is able to provide satisfying performance in generating ice products. 

Second, CIS received about 64,000 RADARSAT-1 images from 2006 to 2013 and 

approximately 43,000 RADARSAT-2 images from 2007 to 2014 (Arkett et al., 2015). However, 

interpretation of images and sea ice product generation still relies heavily on manual processing of 

experts, and the process is demanding due to the heavy workload. Therefore, an automatic SAR 

image segmentation and classification system has been in the subject of research at CIS for many 

years. One of the well-recognized algorithms by CIS is the Map-Guided Ice Classification 

(MAGIC) software developed by the University of Waterloo (Clausi et al., 2010), and this 

algorithm is still under development. This algorithm segments SAR images into homogeneous 

regions and assign labels to these regions with a defined number of classes, but determination of 

the number of classes still requires interpretation by sea ice experts. Therefore, algorithms that can 

process SAR imagery automatically or with less human supervision are still in demand. 
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1.3 Objectives of the Study 

The main goal of this study is to explore the effectiveness of sea ice monitoring using Sentinel-

1 imagery with a proposed semi-automated image segmentation workflow. Since multi-year ice 

does not present in the chosen study area of this thesis, the Labrador coast, only first-year ice is 

investigated in this thesis. To address the aforementioned two challenges in processing SAR 

imagery of sea ice, the following objectives have been set: 

i) To determine most important features in discriminating different sea ice types in dual-

polarized Sentinel-1 imagery through feature selection, 

ii) To examine the effectiveness of incorporating label cost in energy optimization during 

image segmentation of sea ice to reduce human intervention, and 

iii) To evaluate the ability of dual-polarized Sentinel-1 imagery in sea ice monitoring 

 

1.4 Structure of  the Thesis 

The rest of the thesis is organized as follows.  

Chapter 2 provides a brief background of SAR imaging, followed by an introduction of the 

new SAR satellite, Sentinel-1 used in this thesis. It also reviews previous ice classification systems 

using SAR imagery and describes some background of the proposed method. 

Chapter 3 introduces current concerns of the study area, the Labrador coast. A general 

description of sea ice in Sentinel-1 imagery is shown. Then detailed steps of the proposed method 

are presented. 

Chapter 4 provides the results and evaluation of the proposed method, followed by 

discussions of the results relating to the objectives. 
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Chapter 5 summarizes the key findings of the study and provides recommendations for future 

development of the proposed method. 
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Chapter 2 Background and Related Studies 

This chapter presents background knowledge of this thesis. Section 2.1 provides basic 

knowledge of SAR imaging. Section 2.2 lists current operating and expecting SAR satellites. 

Section 2.3 introduces the properties of Sentinel-1 SAR imagery. Section 2.5 summarizes state of 

the art sea ice classification systems using SAR images. Section 2.6 shows indications of literature 

on the proposed method. Section 2.7 presents a summary of this chapter. 

 

2.1 SAR Basics 

SAR is an active radar system, and its properties can be summarized as follow. First, SAR 

is able to acquire images in high-resolution (e.g. up to 1 m in Spotlight mode of RADARSAT-2) 

or in large coverage (up to 500 km in ScanSAR Wide mode of RADARSAT-2), so that it can be 

utilized in different areas of interest in earth observation. In addition, because of the relative longer 

wavelength compared to which optical sensors operate at, radar waves can penetrate cloud and 

haze, making SAR imagery independent from weather conditions. Furthermore, SAR is an active 

system thus it is capable of acquiring images day and night regardless of sun illumination. Finally, 

SAR measures backscattered pulses from radar waves, so that properties of targets such as physical 

structure and electromagnetic properties can be exploited from polarimetric signatures. 

A radar system measures radar reflectivity of targets as a function of their position by 

recording both backscatter signal strength and time delay (Moreira, 2013). The antenna transmits 

microwave pulses into a beam to a target and some energy is reflected towards the sensor. The 

backscatter is usually measured as !" (normalized radar cross-section [NRCS] or backscatter 

coefficient), which is a log function of the energy ratio. The energy ratio is the ratio between the 

received energy and the energy should have received from an isotropic target. In addition, the time 
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delay between signal transmission and reception is used to infer the distance between sensor and 

the target so that the location of the target can be measured. SAR sensors are usually mounted on 

moving platforms such as aircrafts and satellites, and 2D imagery can be produced by processing 

backscatters continuously.  

 

Figure 2.1 SAR imaging geometry, adapted from Eineder and Bamler (2014) 

Figure 2.1 shows a typical SAR imaging geometry. Azimuth is parallel to the moving 

direction of the sensor. Slant range is the distance from the sensor to the target on the ground, 

while ground range is the distance from nadir to the target. The transmitted pulse forms a footprint 

on the ground, and the sensor receives responses from all targets within the footprint. The radar 

sensor distinguishes targets by time differences of echoes in slant range direction, and time 

differences larger than pulse width can be detected. Accordingly, ground range resolution is a 

function of slant range resolution dependent on incidence angle. Therefore, SAR sensors have 

these characteristics: 1) the sensor has to be side-looking in order to increase ground range 

resolution, 2) slant range resolution and ground range resolution are not dependent on the height 
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of the sensor, 3) ground range resolution varies across the footprint because of difference in 

incidence angle (Richards, 2009). In terms of azimuth resolution, a long antenna is synthesized by 

making use of the motion of moving platform, and azimuth resolution is only related to the length 

of antenna on board regardless of slant range (Richards, 2009).  

Some SAR systems have the capability of transmitting and receiving electromagnetic 

waves at controlled polarizations, and majority are designed in linear polarization systems, with 

four typical modes including HH, HV, VV and VH. The letter H stands for horizontal and V stands 

for vertical polarization, while the first letter indicates the polarization transmits and the second 

letter indicates the polarization receives by the sensor. By interpretation of polarization signals of 

targets, physical structure and electromagnetic characteristics could be inferred. In this thesis, HH 

and HV provided by Sentinel-1 are used. 

Although SAR has several advantages over optical sensors, there are still some challenges 

in processing SAR images. First of all, since SAR systems uses microwave bandwidths, 

information captured by SAR systems is mostly different from that by optical systems, making 

acquired imagery unintuitive to interpret. Second, speckle noise is inevitable because of the 

imaging process of SAR systems, making imagery even more difficult to interpret. Third, radar 

backscatters are dependent on incidence angle, so that backscatter variations across the scene are 

usually observed. Moreover, the variations are not only different at different incidence angles 

(Lang et al., 2016), but also on different surfaces and in different polarization, making it even 

harder to process large scenes as a whole. These challenges make processing, especially automatic 

processing of SAR imagery difficult. 
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2.2 Current and Future SAR Satellites  

Satellite SAR sensors have been widely used in ocean and coastal monitoring since the 

launch of Seasat in 1978, and CIS has been relying heavily on RADARSAT and RADARSAT-2 

for operational sea ice monitoring. CIS provides ice information to support marine navigation and 

coastal operations, and the information can be summarized into two types: strategic and tactical, 

based on different scales in space and time (Ramsay et al., 1993). Strategic refers to level of detail 

and requirements for producing daily ice charts, while tactical refers to a higher level of detail for 

daily operation and ship navigation. From a strategic perspective, the most important information 

is ice edge location, ice concentration and stage of development, while ice topography, presence 

of leads and state of decay are more of a concern from a tactical perspective (Ramsay et al., 1993).  

In this thesis, sea ice mapping at a small scale is the main objective so that imagery should 

cover a relatively large area. Some satellite SAR sensors have the ability of acquiring imagery at 

very wide swath in specific modes. Table 2.1 shows a summary of recent and future satellite SAR 

sensors that are suitable for sea ice monitoring, and the listed specifications correspond to their 

imaging modes with largest swath width. Canada is one of the leading countries with possession 

of advanced satellite SAR sensors, especially C-band SAR, and CIS currently relies on imagery 

of RADARSAT-2 for sea ice mapping. Sentinel-1 is a C-band satellite SAR mission that has 

similar specifications in terms of wide swath mapping comparing with RADARSAT-2, so that 

Sentinel-1 has the potential of providing similar or better performance in sea ice studies. In this 

thesis, dual-polarized Sentinel-1 EW mode Ground Range Detected Medium (GRDM) products 

are investigated. 
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Table 2.1 Recent and future SAR satellites for sea ice monitoring 

 

2.3 Sentinel-1 

The Sentinel satellite constellation is an operational earth observation program developed 

by ESA, which is intended to provide systematic and continuous data in a large variety of domains 

Satellite Country Year Band Polarization Mode Resol
ution 
(m) 

Swath 
width 
(km) 

Revisit 
time 
(days) 

ERS-2 Europe 1995-
2010 

C VV NA 30 100 35 

ENVISAT 
ASAR 

Europe 2002-
2012 

C VV/HH Wide 
Swath 

150 400 30 

Sentinel-1 Europe 2014(20
16)- 

C HH+HV/VV
+VH 

Extra-Wide 50 400 12(6) 

RADARSAT-1 Canada 1995-
2013 

C HH ScanSAR 
Wide 

100 500 24 

RADARSAT-2 Canada 2007- C HH+HV/VV
+VH 

ScanSAR 
Wide 

100 500 24 

RADARSAT 
Constellation 

Canada 2018- C HH+HV/VV
+VH/HH+V
V/Compact 

Low 
resolution 

100 500 4 

RISAT-1 India 2016- C HH+HV/VV
+VH/HH+V
V/Compact 

Coarse 
resolution 
ScanSAR 

50 223 25 

Gaofen-3 China 2016- C ? ScanSAR ? 650 ? 
ALOS PALSAR Japan 2006-

2011 
L HH/VV ScanSAR 100 350 46 

ALOS-2 
PALSAR-2 

Japan 2014- L HH+HV/VV
+VH/HH+V
V/Compact 

ScanSAR 100 350 14 

COSMO-
Skymed 

Italy 2007(20
10)- 

X HH/VV/HV/
VH 

ScanSAR 
Hugeregion 

100 200 16 

TerraSAR-
X(TanDEM-X)-
PAZ 
Constellation 

Germany/
Spain 

2007(20
10)/201
6- 

X HH/VV/HV/
VH 

Wide 
ScanSAR 

40 270 11(4/7) 

KOMPSAT-5 Korea 2013- X HH/VV/HV/
VH 

Wide 
Swath 

20 100 28 

NA: Not applicable; ?: Some technical details of Gaofen-3 is unknown through public sources 
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in earth system, such as land, marine and climate change, meeting the operational and policy needs 

of the Global Monitoring for Environmental Security (GMES) program (Berger et al., 2012). The 

Sentinel-l satellite constellation is expected to make substantial contributions in detecting, 

monitoring and assessing environmental changes (Malenovský et al., 2012). Sentinel-1 provides 

C-band SAR imagery, which is considered to be particularly effective in cryosphere mapping and 

monitoring.  

Sentinel-1 consists of two satellites equipped with SAR sensors: Sentinel-1A, launched in 

April 2014 and started providing imagery since October 2014, and Sentinel-1B, launched in April 

2016 and just started providing imagery recently. The repeat cycle of a single satellite is 12 days, 

and it will be reduced to 6 days with both satellites in operation. Four operational imaging modes 

are provided: Interferometric Wide (IW), Extra Wide (EW), Strip Map (SM) and Wave (WV) (see 

Figure 2.2a), and EW mode is considered to be preferable in sea ice studies as it has the largest 

coverage (Malenovský et al., 2012; Torres et al., 2012). Among these imaging modes, IW and EW 

are collected as TOPS modes (De Zan and Guarnieri, 2006) (see Figure 2.2b) to generate wide 

swath images of 250km (IW) and 400km (EW) with expected better performance compared to 

conventional ScanSAR mode (Geudtner et al., 2014) (as illustrated in Figure 2.2c). By steering 

antenna beam in azimuth direction from aft to fore in addition to range direction, TOPS mode is 

designed to reduce scalloping effect, as well as keeping ambiguities and signal-to-noise ratio (SNR) 

constant at azimuth direction (De Zan and Guarnieri, 2006; Geudtner et al., 2014). Sentinel-1 is 

not only considered to have excellent performance, but also accessible at very low cost as images 

are open to public by the ESA. The advantages of Sentinel-1 and its similarity to RADARSAT-2 

in terms of large swath mapping makes it valuable to CIS as an alternative. 
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(a) 

 
(b) 

 
(c) 

Figure 2.2 (a) Sentinel-1 operational modes (Torres et al., 2012) (b) Sketch of typical ScanSAR 

scanning mode (De Zan and Guarnieri, 2006) (c) Sketch of TOPSAR scanning mode (De Zan 

and Guarnieri, 2006) 

However, few studies have been published on performance of Sentinel-1 imagery, especially 

on sea ice mapping, and this becomes one of the motivations of this study. Although Sentinel-1 

has similar imaging specifications in EW mode comparing to ScanSAR wide in RADARSAT-2, 

performance may be different because of the new TOPS image acquisition mode. In addition, 

because of the new imaging mode, imagery of Sentinel-1 may have different characteristics so that 

previous methods on RADARSAT-2 imagery may not be applicable or not as effective. Therefore, 

the performance of Sentinel-1 in sea ice mapping is investigated in this thesis. 

 

2.4 C-band SAR Imaging of First-Year Sea Ice 

The understanding of physical characteristics of sea ice is essential in interpretation of radar 

backscatters. Sea ice majorly consists of ice, brine inclusions, air bubbles, with little solid salt, 
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which forms an inhomogeneous medium. In most natural conditions, polycrystal structure of sea 

ice is formed at low temperature, and ice platelets, which are small parallel ice plates, trap seawater 

in pockets (Nghiem et al., 1995a). As Figure 2.3 shows, the brine inclusions in ice platelets tend 

to form ellipsoidal shapes and align generally vertically with the c axes parallel to horizontal plane 

(Weeks and Ackley, 1982). However, the ice platelets are formed with C axes randomly oriented, 

as depicted in Figure 2.3, except with the influence of underlying sea currents (Nghiem et al., 

1995a).  

 

Figure 2.3 Brine pocket in ice platelets and the random orientation in horizontal section of ice 

(Nghiem et al., 1995a) 

During the growth of sea ice, water contents freeze into the ice platelets, resulting in salinity 

increase of brine inclusions. The high salinity of brine inclusions results in high permittivity, so 

that the random orientation of brine pockets makes sea ice anisotropic at vertical directions 

(Nghiem et al., 1993a). Therefore, the structure of sea ice allows microwave propagation at 

ordinary and extraordinary directions at different speed and attenuation rates (Nghiem et al., 

1995a), especially in first-year ice. Figure 2.4 illustrates the theoretical layered media and 

scattering mechanism in sea ice. In this thesis, only first-year ice is involved so that the hummock 

surface does not present. Scattering comes from various sources such as brine inclusion and air 
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bubbles with different shapes, sizes and permittivity (Nghiem et al., 1995c). However, surface 

scattering dominates at first-year ice at small incidence angles because of high permittivity contrast 

at the rough snow-ice interface (Nghiem et al., 1993b; Nghiem et al., 1995a). In addition to first-

year ice, ice leads, or very thin ice also present in the images. Ice lead is at an early stage of ice 

formation, high salinity results in high permittivity contrast at ice surface, leading to larger wave 

attenuation (Nghiem and Bertoia, 2001). In addition, the presence of brine skim or slush on the top 

of ice leads may increase microwave attenuation which results in weak volume scattering (Nghiem 

et al., 1994). Therefore, surface scattering also dominates in ice leads. 

 

Figure 2.4 Microwave scattering mechanism in sea ice (Nghiem et al., 1995a) 

Polarimetric responses of first-year ice and ice leads are found to be similar in previous 

studies. Figure 2.5 illustrates an average backscatter coefficient of polarimetric response of sea ice 

during ice formation from a C-band radar scatterometer during fall freeze up in 2003, 2006 and 

2007 in Cape Bathurst, in south-eastern Beaufort Sea (Isleifson et al., 2010). In Figure 2.5, FF 



 

 17 

stands for frost flowers present on thin ice. Generally, !## and !$$ were around -10 dB, and !#$ 

was around 15 dB lower than the co-polarized band. In addition, variations of response at different 

incidence angles were observed. Similar results could also be found in other field campaigns 

(Nghiem and Bertoia, 2001; Nghiem et al., 1995b). However, with the influence of wind, the 

response of water has a large variation, which may lead to confusion when comparing with ice. 

With different possible types and structure of first year ice, large variations of polarimetric 

responses may prevent direct identification of ice types. 

 

Figure 2.5 Sea ice backscatter coefficients at incidence angle of 30° (Isleifson et al., 2010) 

 

2.5 Previous Sea Ice Classification Systems 

Some major publications (limited to the author’s knowledge) on sea ice mapping using SAR 

images in the past five years are summarized and listed in Table 2.2. 
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Table 2.2 Recent publications on sea ice mapping using SAR imagery 

Publication Data Polarization Classes Target Method 

Ochilov and 

Clausi, 2012 

RADARSAT-1 HH Depend on egg 

code, up to 5 

Segmentation IRGS 

Yu,et al., 2012 RADARSAT-2 HH, HV 4 Segmentation MIRGS 

Dabboor and 

Shokr, 2013 

RADARSAT-2 Quad 4 Classification LR 

Kwon et al., 2013 RADARSAT-2 HH 4 Segmentation ETVOS 

Zakhvatkina et 

al., 2013 

ENVISAT HH 5 Classification NN 

Karvonen, 2014 RADARSAT-2 HH, HV N/A Concentration MLP-NN 

Leigh et al., 2014 RADARSAT-2 HH, HV 4 for local, 6 

for global, 2 

final types 

Classification IRGS 

Xu et al., 2014 RADARSAT-2 HH 3 Segmentation K-means 

Li et al., 2015 RADARSAT-2 HH, HV 2 Classification ST-IRGS 

Ressel et al., 

2015 

TerraSAR-X VV 4 Classification NN 

Wang et al., 2016 RADARSAT-2 HH, HV N/A Concentration CNN 

N/A: Not applicable; IRGS: Iterative region-growing with semantics; MIRGS: Multivariate IRGS; LR: 

Likelihood ratio; ETVOS: Enhanced total variation optimization segmentation; NN: Neural network; MLP-

NN: Multilayer-perceptron NN; ST-IRGS: Self-training IRGS; CNN: Convolutional NN. 

 

Table 2.2 shows that traditional pixel-based image classification methods that are still very 

popular in sea ice image interpretation (Zakhvatkina et al., 2013; Ressel et al., 2015; Karvonen, 

2014). Zakhvatkina et al. (2013) used a neural network to classify 20 ENVISAT Advanced 

Synthetic Radar (ASAR) HH imagery in the Arctic ocean from 2005 to 2008 into five categories, 

and the overall accuracy in this study reached over 80%. Neural networks were also applied in 

classifying single-polarized TerraSAR-X sea ice imagery by Ressel et al. (2015). Four scenes of 

TerraSAR-X ScanSAR with VV polarization taken in April 2013 were used, and the results 
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reached over 70% and they considered it acceptable. In the study by Karvonen (2014), information 

provided by HV band in RADARSAT-2 was used as complementary input for the previous ice 

concentration model developed solely on HH band (Karvonen, 2012). A three-layer multi-layer 

perceptron (MLP) neural network was trained to estimate sea ice concentration and the error rate 

of estimation reduced by approximately 20% with the inclusion of HV bands. Besides neural 

networks, simpler models were still able to provide satisfactory results with proper features 

generated from SAR images, for example, a KPCA model (Xu et al., 2014) is able to directly finds 

the most discriminative features. 

In addition to traditional pixel-based classification methods, region-based methods 

involving spatial features have gained popularity in recent years. The MAGIC software (Clausi et 

al., 2010), which is currently being considered to be adopted by CIS in operational sea ice 

monitoring (Arkett et al., 2015), is definitely one of the most advanced and popular methods in sea 

ice image interpretation, in which iterative region-growing using semantics (IRGS) method (Yu 

and Clausi, 2008) is one of the key components in MAGIC. The IRGS model incorporates edge 

penalties in a Markov random field (MRF) model, and region growing is adopted in searching for 

optimal solution (Yu and Clausi, 2008). IRGS firstly over-segments the whole image, and then 

initial labels are assigned to these segments, and finally adjacent regions having the same labels 

are merged iteratively until minimum energy is met. The original univariate IRGS used in single 

polarized SAR images and satisfying results have been achieved (Ochilov and Clausi, 2012), 

thereafter, IRGS was extended to a multivariate framework (Qin and Clausi, 2010) to utilize 

multiple polarizations in RADARSAT-2 imagery (Yu et al., 2012). In the study by Leigh et al. 

(2014), this method was applied in full RADARSAT-2 dual-polarized scenes. A support vector 

machine (SVM) classifier was trained on 28 features from both HH and HV were used to 
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distinguish ice and water. After combining ice-water labelling with IRGS, the method tested on 20 

images reached over 90% in overall accuracy. Finally, in the most recent study, IRGS was 

integrated into a self-training framework to reduce manual labeling (Li et al., 2015). In addition to 

MRF-based methods, expectation maximization (EM) methods can also be applied in other 

frameworks. For example, an enhanced total variation optimization segmentation (ETVOS) 

approach has been successfully tested in image segmentation and classification on RADARSAT-

2 HH imagery (Kwon et al., 2013).  

Moreover, there are more studies that are worth noting in recent years in addition to the two 

previously illustrated categories. Dabboor and Shokr (2013) explored polarimetric features from 

quad-polarized RADARSAT-2 imagery and likelihood ratio was utilized in classifying sea ice. 

Though more polarizations provide significant advantages in interpreting SAR images, the size of 

each scene of quad-polarized sensors are too small to put into operational use (RADARSAT-2 

quad-polarized mode has a swath width of 25km), and the features generated from polarimetric 

decomposition functions are not applicable in single and dual-polarized images. Deep learning has 

gained popularity in computer vision and image processing in recent years. Wang et al. (2016) 

conducted a case study retrieving sea ice concentration using a convolutional neural network 

(CNN), and the result was comparable to human interpretation. Deep learning methods, which 

learns image patterns in hierarchy, are revolutionary compared to all the methods mentioned 

previously, but exhaustive training samples are needed and accurate labelling might not be 

available. 
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2.6 Indications of Previous Studies 

According to literature, region-based classification methods are considered to be more 

effective and practical for large-sized SAR images of sea ice. For a typical region-based 

classification, the following steps can be summarized: 1) SAR image preprocessing, 2) feature 

extraction, 3) image segmentation, 4) classification. In this thesis, a semi-automated image 

segmentation workflow is proposed, so that only the first three steps are involved. Some technical 

details of the listed steps in the aforementioned studies are summarized in Table 2.3. 

 

Table 2.3 Summary of technical details of recent publications 

Publication Method Image 

size 

Denoise Incidence angle Texture Window 

size 

Feature 

selection 

Ochilov and 

Clausi, 2012 

IRGS Sampl

e test 

N/M N/M N/A N/A N/A 

Yu, et al., 

2012 

MIRGS Sampl

e test 

N/M N/M N/A N/A Multiple 

methods 

Dabboor and 

Shokr, 2013 

LR Sampl

e test 

Lee's filter N/A N/A 5´5 Literature 

Kwon et al., 

2013 

ETVOS Sampl

e test 

N/M N/A N/A N/A N/A 

Zakhvatkina 

et al., 2013 

NN N/M 4´4 pixel 

averaging 

Linear function 

averaged to 25° 

GLCM 32´32 Correlation 

analysis 

Karvonen, 

2014 

MLP-

NN 
1000´

1000 

(est.) 

N/M Linear function 

averaged to 30° 

in HH  

N/A N/A N/A 

Leigh et al., 

2014 

IRGS 2500´

2500 

N/M N/M GLCM Multiple Forward 

search 

Xu et al., 

2014 

K-

means 
684´5

44 

N/M N/A KPCA 3´3 KPCA 
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Li et al., 

2015 

ST-

IRGS 
2000´

2000 

N/M N/M GLCM Multiple PCA 

Ressel et al., 

2015 

NN 2200´

3000 

N/M Classification on 

separate beams 

GLCM 11´11 Experience 

Wang et al., 

2016 

CNN 1250´

1250 

N/M N/M N/A 41´41 N/A 

N/A: Not applicable; N/M: Not mentioned; GLCM: Grey level co-occurrence matrix; PCA: Principal 
Component Analysis; KPCA: Kernel PCA; est.: estimated 
 

2.6.1 SAR Image Preprocessing 

One of the main challenges in interpreting SAR images is inevitable speckle noise. The 

pixel-based methods usually apply speckle filters to suppress noise during preprocessing. In 

previous studies, Lee’s filter (Dabboor and Shokr, 2013) and enhanced Lee’s filter (Kasapoglu, 

2014) were applied. Different from pixel-based methods, region-based methods are designed to 

undermine the influence of speckle noise (Kwon et al., 2013), so that image denoising may not be 

necessary. Pixel averaging is considered to reduce noise along with reducing image size 

(Zakhvatkina et al., 2013; Kasapoglu, 2014), since it could be equivalent to a mean filter to some 

extent. The methods that were able to process full-scene images (Karvonen, 2014; Leigh et al., 

2014; Li et al., 2015; Ressel et al., 2015; Wang et al., 2016) all did not include a denoising step, 

but none of the studies processed the images at full resolution, which means pixel averaging or 

multi-looking processes had been done initially. The operational sea ice monitoring by CIS does 

not require processing at full resolution (Scheuchl et al., 2004), therefore reducing image size is 

reasonable and efficient, and speckle noise can be suppressed. From Table 2.3, state of the art 

methods are able to handle image size up to more than 2000´2000 pixels (Leigh et al., 2014; Li et 

al., 2015), while experimental methods used smaller image sizes at around 1000´1000 pixels (Xu 
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et al., 2014; Wang et al., 2016). Therefore, in this thesis proposing an experimental workflow, 

image size of approximately 1000´1000 pixels could be considered reasonable. 

ScanSAR is adopted in most of the satellite SAR sensors when acquiring wide-swath 

images, and backscatter variabilities are commonly observed in large scenes, which forms another 

challenge. For example, in RADARSAT-2 dual-polarized imagery, backscatter intensity decreases 

as incidence angle increases in HH bands, while HV bands have “banding” effect resulting in 

differences between swaths. During the preprocessing stage, some of the classification systems 

took actions to reduce the effect of incidence angle. Some studies performed linear incidence angle 

correction on the co-polarized band to reduce variations in !" (Zakhvatkina et al., 2013; Karvonen, 

2014). Linear relationships can be found between !"and incidence angle, and state of the art 

methods could be performed in co-polarized bands (Lang et al., 2016). However, the differences 

vary on different surface, and ground truth is not always available especially before image 

classification. In addition to co-polarized bands, banding effects in cross-polarized bands also need 

to be mitigated. Images can be treated by separate beams in order to reduce such effect (Ressel et 

al, 2015), and a similar technique was applied by Kasapoglu (2014) when retrieving SAR 

backscatter features. To overcome statistical non-stationarities of each class within a large scene, 

region-based methods seems to have a better performance. A “glocal” method was put forward to 

reduce the effect of this problem by segmenting autopolygons at local regions at first, then global 

IRGS put these segments into more classes (Leigh et al., 2014). However, this method only used 

HV bands in segmentation, which may ignore some ice signals only found in HH. In more 

advanced methods such as deep learning, images can be directly processed as whole scenes (Wang 

et al., 2016). In this thesis, backscatter non-stationarities also exist in Sentinel-1 imagery but with 

different characteristics because TOPS mode is different from ScanSAR mode in image 
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acquisition. Therefore, previous methods based on ScanSAR imagery may not be applicable, 

which makes this study more challenging. In this thesis, the images were not preprocessed 

specially for dealing with these backscatter non-stationarities to test out the effectiveness of the 

proposed workflow. 

 

2.6.2 Feature Extraction 

Spatial features are considered to be effective in majority of the studies, and among these 

grey-level co-occurrence matrix (GLCM) features are most popular. However, it is hard to 

determine which features and what patch/window sizes (if applicable) are most effective in 

interpreting SAR sea ice images. In the study by Zakhvatkina et al. (2013), visual interpretation 

was used in determining the window size of 32 and step size of 4. Afterwards, four correlation 

matrices for four identified classes were compared, and the result indicated that all calculated eight 

GLCM features were significant in distinguishing these four classes. While in the study of Ressel 

et al. (2015), correlation was considered to be not as effective as other features, and the window 

size of 11 was chosen based on experience. In the study by Kasapoglu (2014), 9´9 was chosen as 

a proper window size in GLCM calculation only based on experience, and a separability 

measurement based on scatter matrices was conducted to select best features. GLCM was also 

used in the study by Leigh et al. (2014), candidate features were calculated for window sizes from 

5´5 to 101´101 with different step sizes, followed by a forward search feature selection using 

SVM and 28 features were finally selected. These 28 features can be further reduced to improve 

computational efficiency using principal component analysis (PCA) (Li et al., 2015). PCA can 

also be applied in the process of generating features, and KPCA has proved it effective (Xu et al., 
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2014). However, since the initial features still need to be calculated, PCA is not able to reduce 

computation in feature calculation, and the effectiveness of features is unknown after PCA. 

In this thesis, GLCM is selected to extract spatial features according to the choices of 

previous studies. Multiple window sizes and step sizes needs to be calculated, and a feature 

selection is conducted to determine the most effective features. The GLCM features will not only 

be calculated on HH and HV, but also cross polarization ratio !%%/!%' , which is demonstrated 

to be effective (Karvonen, 2014). A random forest feature selection method (Genuer et al., 2010) 

using forward search is applied in producing the most effective feature set in sea ice identification. 

 

2.6.3 Image Segmentation 

Previous studies have shown advantages of image segments over pixels. Two image 

segmentation techniques are illustrated in the previous section: EVTOS , an extension of a Rudin–

Osher–Fatemi total variation (ROFTV) optimization (Kwon et al., 2013), and IRGS, a MRF model 

using region growing (Yu and Clausi, 2008). These two methods have demonstrated the 

effectiveness of image segmentation in sea ice interpretation. While EVTOS is a presentation of 

experiment, IRGS has been put into operation and it is able to process full scene images. To the 

author’s knowledge, IRGS can be considered as the most advanced and practical segmentation 

method in sea ice studies. However, one shortcoming of recent sea ice segmentation techniques is 

that the number of classes is predetermined before segmentation, and the determination of number 

of can be tricky. In the latest version of IRGS (Leigh et al., 2014), the images were segmented into 

autopolygons and 4 classes were determined in each polygon, and in the next step 6 classes were 

generated using IRGS. In this case, a total of 6 classes were needed in distinguishing two classes: 
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ice and water. However, the optimal number of classes in different circumstances might not be the 

same, which is a great challenge when automated processing is needed.  

In this thesis, an unsupervised image segmentation method that is able to reduce number of 

classes is adopted. Similar to IRGS, optimization can also be achieved by graph cut (Boykov et 

al., 2001), and this method has been extended by adding label cost to reduce number of labels 

automatically (Delong et al., 2012). With the intension of automatically determining optimal 

number of labels, this method is selected in this thesis. This method has been widely applied in 

computer vision, and it has been tested in the field of remote sensing, such as agricultural studies 

using RGB (Dey et al., 2012; Xu et al., 2013), hyperspectral and SAR imagery (Siva and Wong, 

2014), as well as urban studies using Light Detection and Ranging (LiDAR) point cloud (Yan et 

al., 2014). However, this method has limited applications in SAR imagery, and almost no studies 

in sea ice could be found. Therefore, the author believes that this label optimization method could 

be able to provide satisfactory result in sea ice segmentation, and the proposed workflow in this 

thesis could be one more step approaching automated sea ice classification.  

 

2.7 Chapter Summary 

This chapter first summarizes some basic knowledge of SAR imagery, and the new sensor 

Sentinel-1 is introduced. Then this chapter provides a review of state of the art methods for sea ice 

studies using SAR images, and the indications of previous studies enlightens the author to produce 

a semi-automated workflow for sea ice segmentation. 
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Chapter 3 Sea Ice Mapping with Sentinel-1 Imagery 

This chapter presents the methodology of the thesis. Section 3.1 introduces the study site and 

ice conditions in this area. Section 3.2 illustrates data preparation prior to image segmentation. 

Section 3.3 elaborates the methodology of the proposed image segmentation workflow. Section 

3.4 describes the accuracy assessment process. Section 3.5 summarizes this chapter. 

 

3.1 Study Site 

The study site of this thesis is Labrador coast, the mainland part of the Canadian province 

Newfoundland and Labrador, which roughly locates between 51.9° and 60.6° N, 55.4° and 64.6° 

W. Labrador Sea and Baffin Bay covers approximately 20% of ice coverage in the northern 

hemisphere, and it has been found to be one of the regions where sea ice coverage decreases most 

during the past 30 years (Cavalieri and Parkinson, 2012). Sea ice variability in Labrador Sea has 

direct impacts on deep convection and atmospheric circulation patterns, which may have profound 

influence on the climate (Fenty and Heimbach, 2013). Labrador Sea is also an important pass way 

in marine transportation for Canada since it is one starting point of the Northwest Passage (Ellis 

and Brigham, 2009). In addition, with the increase of interest in mining and offshore resources in 

Labrador coastal regions, shipping traffic and offshore operations are expected to increase in the 

future (Taylor et al., 2015). Therefore, it is of great significance to monitor sea ice conditions in 

Labrador coast timely and accurately. 

The ice regime in Labrador coast is heavily affected by winds and currents, especially by the 

famous Labrador Current. According to CCG (2012), normally only first-year ice is present during 

winter time, while on few occasions will old ice occur. Ice usually freeze up before mid-December, 

and it usually clears out before August. The ice types are mainly new ice and first-year ice, but the 
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spread of ice from shore varies year to year depending on the low-pressure system present in winter. 

In this thesis, sea ice in Labrador coast during the winter from late-2015 to mid-2016 was 

investigated. 

 

3.2 Data Preparation 

3.2.1 Data 

Table 3.1 List of Sentinel-1 scenes 

DatasetID Date Acquisition time Direction 

1 2015-12-28 10:27 Descending 

2 2016-01-04 10:20 Descending 

3 2016-01-11 10:12 Descending 

4 2016-01-18 10:03 Descending 

5 2016-01-21 10:28 Descending 

6 2016-02-04 10:12 Descending 

7 2016-02-14 10:27 Descending 

8 2016-03-16 10:20 Descending 

9 2016-03-23 10:11 Descending 

10 2016-04-02 21:41 Ascending 

11 2016-04-09 21:33 Ascending 

12 2016-04-26 21:40 Ascending 

13 2016-05-20 21:40 Ascending 

14 2016-05-27 21:34 Ascending 

15 2016-06-13 21:42 Ascending 

Scenes used in feature selection are shaded in grey 

 

A total of 15 scenes from Sentinel-1A in EW mode were used in sea ice segmentation. The 

EW mode has the largest scene size in all beam modes of Sentinel-1, with a swath width of 
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approximately 400 km. The Level-1 Ground Range Detected Medium (GRDM) product was used, 

which means the products have been focused, multi-looked and projected into the World Geodetic 

System 1984 (WGS84). The pixel spacing is approximately 40 m by 40 m, and the scene size is 

approximately 10000´10000 pixels. All the scenes are in dual polarization mode containing HH 

and HV. Table 3.1 lists the details of the scenes used, and the shaded rows represent those used in 

feature selection. 

  

Figure 3.1 Image footprints of Sentinel-1 scenes 

Figure 3.1 illustrates the image footprints of all 15 scenes. The images cover coastal regions 

of Labrador including Canadian territorial sea and exclusive economic zones, where most coastal 

human activities happen. The highlighted footprint is the scene from January 18, 2016, which is 

the scene used for illustration purpose in this thesis in later sections. 
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In addition to Sentinel-1 imagery, ice charts provided by CIS were used to provide ground 

truth in image classification. The sea ice identification process will be elaborated in Section 3.2.5. 

 

3.2.2 Image Preprocessing 

Some preliminary processing has been done during the production of the Sentinel-1 GRDM 

product, some further processes are needed in this proposed workflow. The preprocessing was 

done using Sentinel Application Platform (SNAP) software produced by the ESA. Figure 3.2 

shows the modules used in the preprocessing step. 

 

Figure 3.2 Workflow of preprocessing 

The first step is to retrieve orbit files from the server. Although the orbit parameters are 

already in the GRDM products, more precise orbit parameters can be retrieved from ESA 

approximately two weeks after the generation of Sentinel-1 products. Thereafter, border noise 

removal was performed since some artifacts may present during the generation of Sentinel-1 

GRDM products. And thermal noise was removed according to a look-up-table within the GRDM 

product. The next step is to perform radiometric calibration, which transforms magnitude into 

sigma nought (!")  values, which is a measurement of radar backscatter on the ground. The 

magnitude values were transformed in dB scale. 

According to literature (Wang et al., 2016; Karvonen, 2014), 1000´1000 would be 

representative in processing full-scene images for prototype algorithms. The multi-looking process 

at this stage worked as pixel averaging, and the original image size of 10000´10000 pixels was 
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averaged by 8 times, resulting in an image size of approximately 1250´1250 pixels. Finally, as the 

target of interest is sea ice, land regions were masked out using Shuttle Radar Topography Mission 

(SRTM) Digital Elevation Model (DEM) 3-arc-second (approximately 90 m) product. In addition, 

the cross-polarization ratio (!%%/!%')  is considered effective in sea ice studies using SAR 

imagery in literature (Karvonen, 2014), so that the ratio was calculated. 

Figure 3.3 illustrates the scene captured on January 18, 2016. This scene represents ice 

conditions in Labrador coast during freeze-up time, and only part of the image is covered by ice. 

It can be easily identified that the middle part in the scene is covered by ice, and the top left half 

of the scene is covered by water or very thin ice. Since C-band microwaves has a wavelength of 

approximately 5cm, very thin ice on top of water may not be distinctive from water in Sentinel-1 

imagery. In this thesis, very thin ice is grouped into the class of “water”, and “water” used in the 

following sections may contain part of very thin ice which might not be identifiable. Generally, 

HV has better contrast between different classes, while HH may capture some characteristics at 

the surface. For example, in the middle-left part in the image, some structures of ice surface could 

be found in HH, while in HV those does not present. Thus, both HH and HV contributes to the 

interpretation of SAR images, and by using only one of them may result in misinterpretation. 
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Figure 3.3 Sentinel-1 scene captured on January 18, 2016 

3.2.3 Noise in Sentinel-1 Imagery 

The noise equivalent sigma zero (NESZ) of Sentinel-1 imagery is around -22dB (ESA, 

2016), and values close or below this level could be too noisy to be useful, especially in cross-

polarized bands (Dierking, 2010). However, in sea ice studies, water and several thin ice types 

may be close to the NESZ or even lower, which introduces a challenge for Sentiel-1 image 

interpretation. Water is the most easily identified class in HV, which has very low backscatters, 

but has strong banding effects especially in the first sub-swath in. Banding effects also presents in 

RADARSAT-2 and other SAR images, but backscatters are mostly even within each sub-swath. 

However, repeating horizontal lines (along look direction) and beam seams in HV (ASF, 2016), 

especially in the first sub-swath, presents in Sentinel-1 imagery. Currently no consensus has been 

made on the reason of and solution to this kind of noise, and literature could be hardly found. In 

these noise-contaminated regions, variations in backscatters from water or other classes having 

low backscatters, would result in misinterpretation only from !%' values. Moreover, in HH, water 
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is largely affected by incidence angle effects, where intensity decrease at a linear pattern from left 

to right in Sentinel-1 imagery.  

Preliminary tests showed that noise in the first sub-swath in cross polarized bands prevents 

successful identification of ice types and water when full-scene images were processed. Adding 

that literature could be hardly found on suppression of such noise, it is not feasible to remove the 

effects of this noise limited to the author’s knowledge. Therefore, the first sub-swath was removed 

as a compromise to reduce the influence of the noise pattern in Sentinel-1 imagery. Such noise 

also presents in the remaining part of the images, but the variations were observed to be smaller 

and even across the other swaths. As a result, the image size was further reduced to approximately 

915´1250 pixels. 

 

3.2.4 Training Sample Selection 

To determine the most distinctive features in identifying different ice types and water, 

training samples are needed. In this thesis, four scenes were chosen to select training samples for 

feature selection, and the acquisition dates are January 4, January 18, March 16 and April 2, 2016. 

In order to select effective training samples, scenes containing most number of ice classes are 

preferred. Before January, ice just started to form so that few ice classes present, and after April 

ice started to melt and fewer classes can be identified. The selection of ice classes was based on 

ice charts provided by CIS, as well as visual interpretation. The ice chart on January 18, 2016 in 

Labrador coast, as well as how to interpret the egg codes, was shown in Appendix A. 

Figure 3.4 shows an RGB composite of the scene on January 18, 2016 and the selected 

training samples. The scene was not projected so that left and right are reversed compared to the 

image footprint. From the ice chart, it could be seen that most ice in this scene is covered by grey 
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ice and grey white ice, while Lake Mellville and top right corner of the image is covered by thin 

first year ice. In addition, new ice also present at the ice-water boundary. Training samples were 

selected in small rectangles covering the inferred classes, while complicated regions such as the 

mid-left part were avoided to assure “purity” of the samples. In addition, the training samples were 

spread out to cover different incidence angles to capture incidence angle effects. The training 

samples were selected in ENVI. In this scene, 3163 pixels were selected as training samples. 

Approximately 3000 pixels were also selected in the other three scenes. 
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Figure 3.4 Sentinel-1 scene in RGB composite on January 18, 2016 and training samples 

(R: !%%, G: !%', B:	!%%/!%') 
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3.2.5 Feature Extraction 

Spatial features have demonstrated its effectiveness in interpreting remote sensed images, 

and as previously summarized, GLCM features (Haralick et al., 1973) are the most popular in sea 

ice images. GLCM probabilities represent all pair-wise combinations of grey levels in the window 

of interest, and the textures are determined by three parameters: window size, inter-pixel distance 

and orientation. For window size, several sizes have been chosen for previous studies, but the 

strategy of feature selection is more reasonable rather than visual interpretation or based on 

experience. Therefore, a similar scheme to the study by Leigh et al. (2014) was chosen in this 

study. Since the scene size is around half of that in the study by Leigh et al. (2014), so that 3´3 is 

added and 101´101 could be dropped. By visual interpretation, 101´101 degrades details of the 

images too much so that that size was discarded. For inter-pixel distance, or step size, Soh and 

Tsatsoulis (1999) found that multiple step sizes may be beneficial, and Barber and LeDrew (1991) 

suggested that 1, 5 and 9 could perform better. In terms of orientation, the look direction is 

considered to be slightly better in SAR images (Barber and LeDrew, 1991). Adding that a linear 

decreasing trend was observed between !%% and incidence angle in water, the look direction was 

selected in this thesis. In addition to these three parameters, 64 is chosen as quantization of grey 

scale in all the studies listed in Chapter 2. According to Clausi (2002), quantization larger than 24 

should be enough and larger than 64 is not necessary, so that 64 was selected in this study. Eight 

texture measurements: mean, variance, homogeneity, contrast, dissimilarity, entropy, second 

moment and correlation were calculated on !%%, !%', and	!%%/!%', resulting in a total of 168 

candidate GLCM features. The texture features were produced in R using package “glcm” (Zvoleff, 

2016). And the texture features as well as the original bands were normalized to 0-255. 
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Table 3.2 GLCM feature set 

Window size (pixels) Inter-pixel distance (pixels) 

3´3 1 

5´5 1 

11´11 1 

25´25 1 

25´25 5 

51´51 5 

51´51 9 

 

3.2.6 Feature Selection 

A random forest feature selection method utilizing forward searching (Genuer et al., 2010) 

was adopted to select the most representative feature. The main idea of random forest (Breiman, 

2001) is to combine a number of decision trees, and these trees are built from bootstrap samples 

in the training set using a random subset of variables. Random forest might be more suitable for 

feature selection from the author’s perspective as it contains an importance comparison during the 

process. In addition, random forest could have better performance and more computationally 

efficient compared to SVM (Xu et al., 2014). The feature selection process was done in R using 

package “VSURF” (Genuer et al., 2016). The feature selection process contains three main steps: 

1) thresholding, 2) interpretation and 3) prediction. Detailed description and theoretical basis could 

be found in the study by Genuer et al. (2010). 

In the first step, all the n variables were ranked by variable importance in the descending 

order, and the least important variables were removed with m variables left. In this case, variable 

importance is embedded in the random forest classification process, and it’s determined by out-of-

bag (OOB) error. During the process of random forest classification, each tree t is created from a 
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subset of training data, while the data not selected are called OOB samples, and the 

misclassification rate on the OOB samples using tree t is called OOB error (*++,,-. ). The 

features are denoted as X and the ith (/ ∈ [1: 171]) feature is denoted as 67 . To evaluate the 

contribution of 67, the values of 67 in sample ,,-. are permuted with random values, and the 

classification error rate using tree t in this new sample ,,-8.
7  is denoted as *++,,-8.

7 . The 

difference between the two error rates evaluates how important 67 is in tree t. The importance of 

variable 67 is defined as:  

9: 67 =
1

<=+**
*++,,-8.

7
− *++,,-.

.

3.1  

where ntree is the total number of trees built in this random forest, and the variable importance is 

the average error rate difference. The larger the mean error rate is, the variable is more important. 

All the n variables were ranked by average importance through 50 runs and the least important 

variables were removed based on a threshold given based on a Classification And Regression Tree 

(CART) model (Breiman et al., 1984) on standard deviation of variable importance. Variables with 

average importance values lower than the threshold were removed, resulting in m important 

variables. 

In the second step, the smallest k variables (k=1 to m) that produced adequately low error 

rate was selected. It is believed that using all m variables leads to the lowest *++,,-, and the 

threshold was set as the lowest mean *++,,- plus its standard deviation over 25 runs. Random 

forests were built started from k=1 with the most important variable to k=m, and when the mean 

*++,,- reaches the threshold, the smallest set was determined. 

In the third step, based on the importance ranking of the k selected variables, an ascending 

sequence of variables were used to form random forests where only if mean*++,,-  was 
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significantly reduced. The threshold is determined by the mean *++,,- difference with variables 

left out at the previous step, as denoted by: 

Aℎ+*CℎDEF =
1

G − H
*++,,- I + 1 − *++,,- I

KLM

NOP

3.2  

In this equation, *++,,-(I) represents the mean *++,,- using j most important variables. The 

step started from l=1, which is the most important variable, and only if *++,,- E + 1 −

*++,,-(E)  was larger than the threshold, the l+1th variable was kept. Thus, less important 

variables and variables with high correlation could be eliminated. After the three steps, a minimal 

set of l variables were determined. 

During all the three steps, three thresholds can be multiplied by a coefficient considering 

different circumstances. In this thesis, 168 GLCM features, as well as original bands (!%%, !%', 

and	!%%/!%'), with a total of over 12000 samples, were put into feature selection. Since high 

correlations may exist between GLCM features with different window sizes, adding that only a 

small set is needed in the image segmentation step, an aggressive parameter selection could 

improve computational efficiency. The first parameter setting that affects computational speed is 

ntree, the number of trees in random forest. According to the author’s previous study (Tan et al., 

2015) 20 would be sufficient for SAR image classification. Therefore, 50 was finally chosen to 

assure consistency of the selection result. Another parameter setting that influences efficiency is 

that the three thresholds in each step can be multiplied by coefficients. With a larger coefficient, 

fewer variables would be left in each step. The three coefficients were set according to several 

testing results, and the selection will be discussed in Chapter 4. Finally, 6 variables, shown in 

Table 3.3 , were finally selected, and these features were calculated for all 15 scenes to perform 

image segmentation. 
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Table 3.3 Six most important features 

Most important variables Rank 

!%% Variance 11´11 step 1 1 

!%' Contrast 25´25 step 5 2 

!%' Mean 11´11 step 1 3 

!%' Correlation 25´25 step 1 4 

!%% Variance 25´25 step 5 5 

!%' Dissimilarity 25´25 step 5 6 

 

3.3 Proposed Image Segmentation Workflow 

In this thesis, a semi-automated workflow is proposed to segment full scene Sentinel-1 

imagery into desired number of classes. There are three main steps: 1) image preprocessing; 2) 

feature extraction, and these features were determined by previous feature selection; 3) image 

segmentation with desired parameter settings. The first two steps were introduced in the previous 

section as data preparation. The images were calibrated into !" values, and land regions and the 

first sub-swath were removed. Afterwards, GLCM features were extracted on the preprocessed 

images, and image segmentation would be performed on these features. 

In sea ice studies, because of the large in-class variation of the ice classes, it is difficult to 

determine the appropriate number of classes in image segmentation to achieve the best result in 

either supervised or unsupervised methods. For example, water suffers incidence angle effects, 

adding that the response of water may be different at different wind speeds, so that the variation 

of backscatter values may be larger than the difference of that between two ice types, such as grey 

ice and grey white ice. From the perspective of image classification, it might be more appropriate 

to assign several class labels to one single class with large variations, especially when an 



 

 41 

unsupervised method is taken. IRGS (Leigh et al., 2014), the state of the art algorithm, assigns 6 

labels to automatically segment one scene into two classes, ice and water. In this thesis, the author 

intended to propose a workflow that can segment SAR images into more classes, so that selecting 

an optimal number of classes is crucial. In addition, during winter time there might be five or more 

ice classes present, while only one or two types of ice appears during freeze-up and melting periods, 

thus whether one single selection of number of classes can be applicable in different scenes 

becomes a challenge. In this thesis, an optimization algorithm utilizing label cost, which is capable 

of determining optimal number of labels dynamically, was chosen to segment the images. The 

detailed description of this method can be found in the study by Delong et al. (2012). 

Image segmentation can be transformed into a multi-label optimization problem, and three 

costs are taken into consideration: 1) data cost, 2) smooth cost and 3) label cost. The total energy 

E of a set of label l can be denoted as: 

S E = TU ∙ WX EX
X∈Y

data	cost

+ T` ∙ 9Xa ∙ EX, Ea
a∈cd

smooth	cost

+ Tg ∙ ℎg
g⊆i

∙ j E

label	cost

3.3  

where TU,	T` and Tg stands for the weights of data cost, smooth cost and label cost respectively. 

These three weights are relative weights, so that TU  was set to 1 in this thesis. A larger T` 

promotes smoothness but boundaries between classes may become unclear, and a larger Tg 

encourages fewer classes but some classes covering small areas may be lost. The final selection of 

the weights will be discussed in Chapter 4. T` is referred as scale, while Tg is referred as label cost 

directly in the next chapter. 

Data cost measures how well the assigned label EX of a pixel p, which minimizes in-class 

variation of the variables. In this thesis, the cost was defined as the Euclidian distance to cluster 

centre: 
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WX EX = nX − og
p

3.4  

where nX represents all the values of the 6 variables at pixel p, og represents the mean values of 

each variable of all pixels with label l. 

Smooth cost measures label consistency between neighboring pixels, which reduces typical 

“salt and pepper” problem in image classification. In this thesis, the 8 adjacent pixels around pixel 

p were defined as neighbors. A “smoother” segmentation result encourages neighboring pixels to 

have the same label. If pixel q is within the neighborhood rX of pixel p, the function 9Xa penalizes 

the segmentation if EX ≠ Ea. In this thesis, any class could border any other class and no specific 

priori was defined, so 9Xa was defined as: 

9Xa =
1						EX ≠ Ea	

0						EX = Ea
3.5  

Label cost penalizes excessive number of labels to promote data compactness. The indication 

function j E  was defined as 

j E =
1						∃w: EX ∈ E

0															*EC*
3.6  

The order of label l was not pre-set, and each label does not have a specific class name, so that all 

the labels were given the same penalty if exists by setting the coefficient ℎg as 1. During the process 

of image segmentation, one or more labels might be merged with other labels if a subset l was 

found in the initial label set L that lead to smaller total energy.  

The energy minimization problem with data cost, smooth cost and label cost can be solved 

using graph cut, a method of partitioning vertices of a graph to achieve energy minimization 

(Boykov et al., 2001). In this thesis, an extended version of the y-expansion method (Delong et 

al., 2012) was used to achieve energy optimization. The y-expansion method is able to switch 
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labels of a large number of pixels simultaneously via graph cut, which results in faster 

approximation to energy minimization compared to traditional pixel-by-pixel swap. The y -

expansion can only be used when the smooth cost function 9Xa is metric, which means that 9Xa 

follows all three conditions: 1) 9XX=0, 2)	9Xa=9aX ≥ 0 and 3)	9Xa ≤ 9X|+9|a. The workflow of y-

expansion used in this thesis is as following: 1) start with initial labeling L, 2) y-expansion on each 

label in L and find the minimum S E , 3) if S E < S ~ , L=l, save labeling result and iterate 2) 

and 3). During this process, some labels may be merged into the y label, and the number of labels 

could be reduced.  

The initial labeling was produced by K-means unsupervised labeling, and the optimization 

process kept iterating until less than 1% of the pixels changed averaged by the three last iterations, 

or the number of iterations reached 100. Thus, final segmentation map was produced. The 

segmentation was done using software “GCoptimization” (Veksler and Delong, 2010) in 

MATLAB.  

 

3.4 Accuracy Assessment 

In order to evaluate the effectiveness of the proposed workflow for sea ice segmentation, an 

accuracy assessment was performed. Since lack of ground truth for detailed ice classes, it is not 

feasible to evaluate the segmentation accuracy for different sea ice types. The accuracy assessment 

can only be performed to evaluate the correctness of distinguishing ice and water using this 

proposed segmentation workflow.  

There are three classes: water, ice and land present in the 15 scenes, and land can be 

determined by DEM or other maps, thus ground truth for either ice or water is needed. However, 

after removal of the first sub-swath, only 13 scenes contain water. The ground truth of water was 
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generated by manual digitization by the author based on the interpretation of SAR images with 

reference to ice charts provided by CIS. A ground truth image two classes: water and others, was 

produced for 13 scenes.  

The results of image segmentation may contain different number of classes ranging from 3 

to 8, and this proposed method does not include a classification step due to sea ice complexity. 

Therefore, the possible water segments were manually picked and merged, and the others were 

also merged accordingly. An error matrix (Congalton, 1991) was produced for each of the 

segmentation scenarios, and overall accuracy, user’s accuracy and producer’s accuracy of class 

water were calculated. 

Table 3.4 Error matrix for accuracy assessment 

 
Segmentation Results 

Water Other 

Ground Truth 
Water A D 

Other C B 

 

The overall accuracy is the ratio between number of pixels correctly labeled and total number 

of pixels, which evaluates overall performance, and it’s denoted as: (� + -)/(� + - + Ä + W). 

The user’s accuracy of water is the ratio between the number of pixels correctly labeled as water 

and the number of pixels labeled as water in the results, which evaluates the reliability of the results 

from a user’s perspective, and it’s denoted as: �/(� + Ä). The producer’s accuracy of water is the 

ratio between the number of pixels correctly labeled as water and the number of pixels of water in 

ground truth, which measures how well water is correctly labeled from a map producer’s 

perspective, and it’s denoted as: �/(� + W). These three measurements helped to decide which 

parameter set produced the best results. 
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3.5 Chapter Summary 

This chapter firstly provided some background of the study area, Labrador coast, as well as 

current concerns and opportunities in this region regarding sea ice monitoring. Then, the chapter 

introduced the 15 scenes of Sentinel-1 GRDM products in this study. Afterwards, backscatter 

characteristics of different types of sea ice in Sentinel-1 imagery were described according to the 

selected training samples. Finally, the proposed semi-automatic image segmentation workflow 

was introduced in detailed steps. The results were provided in the next chapter. 
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Chapter 4 Results and Discussion 

In this chapter, the results of each step in the workflow will be displayed. Some uncertainties 

and limitations of each step will be discussed. Section 4.1 discusses the noise in Sentinel-1 imagery 

and results of training samples are shown. Section 4.2 shows the results of feature selection. 

Section 4.3 presents the results of image segmentation, and specific scenes were discussed. Section 

4.4 summarizes this chapter. 

 

4.1 Training Sample Selection in Noisy Sentinel-1 Imagery 

4.1.1 Noise in Sentinel-1 Imagery 

As introduced in Section 3.2.3, backscatters close or below the noise floor show some 

variations in Sentinel-1 imagery of sea ice and water, and the noise from the sensor may result in 

misinterpretation of these imagery. The backscatter variance on the surface with lowest values 

would show some patterns of the noise. 

!%% of water 

 

!%' of water 

 
Figure 4.1 Backscatter variation of water in scene captured on January 18, 2016  

 



 

 47 

Figure 4.1 illustrates the backscatter variation on water at different incidence angles in the 

scene on January 18, where pixels of water were manually selected. !%% of water has very large 

variation from around 0 to -30 dB, which may largely affect classification purely from !%% values. 

However, an obvious linear trend could be found as incidence angle increase, !%%  of water 

decrease, which corresponds well with previous literature on ScanSAR imagery.  

In terms of !%', water shows a “W” shape pattern as incidence angle increase which may 

be caused by TOPS mode in Sentinel-1, and in the first sub-swath water shows larger variation 

compared to the rest, but generally !%' is not obviously affected by incidence angle. A comparison 

of noise floor in HV of RADARSAT-2 and Sentinel-1 could be found in Appendix B. With this 

special pattern in HV in Sentinel-1 imagery, previous methods used in ScanSAR images, for 

instance, IRGS (Yu et al., 2012) which perform initial segmentation on HV bands, may not be 

applicable. Besides water, no obvious backscatter intensity differences were found in different 

incidence angles in most sea ice types. In addition, from the !%'  values shown in Figure 4.1, 

majority of the values were below the noise floor in HV. Though the values would be unreliable, 

some patterns of ice and water could be found. The special noise pattern in HV in Sentinel-1 

imagery is significantly stronger in water compared with ice, such pattern could be considered as 

a special feature identifying certain classes. 

However, despite some patterns could be found in HV, the noise pattern in the first sub-

swath brings too many uncertainties as the backscatter values greatly constrains the identification 

of different ice types and water. In addition, no consensus has been made on the cause of the noise 

and how to remove or reduce it, so that removing the first sub-swath would be a reasonable choice.  
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4.1.2 Results of Training Sample Selection 

The training samples were selected from four scenes: January 4, January 18, March 16 and 

April 2, 2016, with reference to sea ice charts provided by the CIS. A total of 11353 pixels were 

selected, and Table 4.1 shows a summary of training samples in the four scenes and mean values 

of !". 

 

Table 4.1 Mean values of training samples 

 January 4 January 18 March 16 April 2 

ÅÇÇ ÅÇÉ ÅÇÇ ÅÇÉ ÅÇÇ ÅÇÉ ÅÇÇ ÅÇÉ 

New ice -21.1 -33.8 -32.4 -33.9 -23.8 -34.4 NA NA 

Grey ice -14.2 -27.7 -12.8 -23.5 -16.5 -29.4 -14.7 -29.1 

Grey white ice -9.9 -22.3 -15.6 -28.3 -11.1 -26.7 -13.6 -25.7 

Thin first year ice -10.3 -22.1 -19.9 -33.0 -21.8 -33.8 -10.1 -26.4 

Medium first year ice NA NA NA NA -10.2 -22.4 -11.6 -23.0 

Water -7.28 -25.7 -18.4 -34.4 -14.0 -33.8 -16.9 -29.1 

The unit of ÅÑ is dB; NA: not applicable 

 

As shown in Table 4.1 mean !%% and !%' values were very different in ice across different 

scenes and few patterns could be found. The ice types in different scenes are visually different as 

well only from !%% and !%'. Taking grey ice and grey white ice as an example, grey white ice is 

thicker than grey ice, which may result in higher response in both !%% and !%' from literature, but 

in the scene on January 18, 2016, grey ice has both higher !%% and !%' values. In addition, in 

water class, mean !%% values are highest among all the classes, except for the scene on April 2, 

2016, where water locates at larger incidence. This may be a result of the incidence angle effect 

on water in !%%.  



 

 49 

Two scatterplots are shown in Figure 4.2 to show the separability of training samples in 

this scene. From the scatterplot on the left, it can be found that water has a large variation in !%% 

and values decrease as incidence angle increase, but other classes are relatively stable. No 

significant variation in !%' was found in all classes so that the scatterplot is not shown. From the 

scatterplot on the right, it can be concluded that water has the largest variation in both !%% and 

!%', so that it could be mixed with ice classes just from a numerical perspective. New ice also 

showed some variation in !%% as some samples were selected in the first sub-swath. Grey ice and 

grey white ice have very similar !%% values, but some separability could be found in !%'. New 

ice, thin first year ice and water are close in !%% values, while they could be easily separated in 

!%'. However, there are still some confusions majorly from the large variation of backscatter from 

water.  

!%% of training samples 

 

!%% and !%'of training samples 

 

Figure 4.2 Scatterplots of training samples in the scene on January 18, 2016 

Considering the noise floor of Sentinel-1 EW mode is -22dB, most of the !%' values in the 

images involved in this thesis were below -22dB, making the backscatter from HV unreliable. 
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However, the differences in !%' values of different ice types can still be found both visually and 

from the selected samples shown in Table 4.1 and Figure 4.2. Therefore, HV is expected to have 

contributions to image segmentation, and feature selection would justify whether HV is effective 

in identifying ice and water. 

 

4.1.3 Uncertainties and Limitations in Training Sample Selection 

All training samples were selected manually based on the author’s interpretation of the 

Sentinel-1 imagery with reference to sea ice charts. However, there are some uncertainties that 

may lead to errors or deficiency in the training samples. 

First, misinterpretation of ice charts may be one of the uncertainties. In ice charts, each 

polygon marked by egg codes usually contains 2 to 3 classes or even more, which increases the 

difficulty determining one certain ice type. Figure 4.3 illustrates one scenario of uncertainties in 

image interpretation, where the image on the left shows part of the ice chart in this region with 

slight modification and the image on the right is the part of RGB composite of original image in 

approximately the same region. In Figure 4.3, the triangle shaped area in the middle with the egg 

code “R” is hard to label from the author’s perspective. The egg code “R” suggested the 

concentration is 3/10, and three ice types: grey ice, grey white ice and new ice, are present, but 

visually this area has a completely different pattern and color compared to adjacent areas consisting 

of grey ice and grey white ice. In this case, no training sample were chosen in this area to avoid 

confusion. In addition, confusion also existed when selecting samples of grey ice and grey white 

ice. In the region marked with egg code “K”, the majority should be grey ice, but this region is 

obviously brighter than surrounding regions that might be grey-white ice, which is not the case in 
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other scenes. Despite these confusions, samples were selected following egg codes rather than 

author’s experience, but the correctness was not guaranteed. 

   

Figure 4.3 Sample of uncertainty in interpreting ice charts in scene on January 18, 2016 

 

Second, the strategy of sample selection may result in uncertainties. In order to efficiently 

select training samples, the strategy was to select “pure” pixels to capture the most significant 

features. As a result, some areas with ambiguities such as ice-water boundaries, where several ice 

types with different flow sizes occur, or where egg codes are difficult to understand, were avoided, 

and some patterns in these regions may be lost due to complexity and uncertainty. 

Finally, the scheme of labels may have an impact on the next steps. During training sample 

selection, labels were determined by referring to egg codes, and the six classes were: water, new 

ice, grey ice, grey white ice, thin first year ice and medium first year ice. Among these classes, 

water itself may have a large variance in !" values. Calm water and wavy water may have very 

different patterns, while more uncertainties would be added by the incidence angle effect and beam 

seams. Besides water, thin first year ice may have different responses near the coastline and far 
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from the coast, since coastal regions may be shallow. Therefore, in an unsupervised classification 

or segmentation framework, the ideal class scheme may not statistically fit in different images, 

and sometimes two or more subclasses would be more precise instead of one. However, the 

training samples were only used in feature selection, and the final segmentation result did not 

follow the labels in training samples. But a more reasonable class scheme might provide more 

effective feature selection results. 

 

4.2 Feature Selection 

4.2.1 Parameters of Feature Selection 

During the three steps in the feature selection algorithm, three corresponding coefficients 

could be altered to achieve a smaller subset or to improve computational efficiency. Generally, by 

choosing larger coefficients promotes fewer features and faster selection speed. To determine 

suitable settings for the three coefficients, an initial run of feature selection using three coefficients 

as 1 was used as benchmark. 

Table 4.2 Twelve most important variables with no parameter settings 

Most important variables Rank Mean ÖÜÜááà 

!%% Variance 11´11 step 1 1 0.4284 

!%' Contrast 25´25 step 5 2 0.1097 

!%' Mean 11´11 step 1 3 0.0125 

!%% Variance 25´25 step 5 4 0.0035 

!%' Correlation 25´25 step 1 5 0.0016 

!%' Mean 5´5 step 1 6 0.0016 

!%' Dissimilarity 25´25 step 5 7 0.0005 

!%%/!%' Mean 11´11 step 1 8 0.0002 
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!%' Entropy 25´25 step 5 9 0.0001 

!%' Entropy 51´51 step 9 10 <0.0001 

!%' Entropy 51´51 step 5 11 <0.0001 

!%% Mean 25´25 step 1 12 <0.0001 

 

Table 4.2 shows the twelve most important features with no parameter settings, and “Mean 

*++,,-” lists the mean *++,,-s achieved with this feature together with all the features ranked 

higher. In this run, 131 features were chosen in the thresholding step, 71 features were selected in 

the interpretation step, and finally 12 features were selected after the prediction step. From Table 

4.2, it could be observed that some of the features are the same GLCM features with different 

window size and step size settings, for example, “!%% Variance 11´11 step 1” and “!%% Variance 

25´25 step 5”, “!%' Mean 11´11 step 1”, “!%' Mean 5´5 step 1” and “!%% Mean 25´25 step 1”. 

As these features would have high correlations, the list of 12 selected features may have some 

redundancy and a smaller set of features could be found with appropriate adjustments of the three 

coefficients. By conducting tests on how each of the three coefficients affects the number of 

features selected in each step, suitable coefficients could be selected. 

 
(a) (b) 

Figure 4.4 Selection of coefficient in feature selection 
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The first coefficient was used for setting the threshold for feature elimination, and it was 

multiplied by a minimum variable importance generated by CART function. Fewer features 

selected in the first step, the faster the interpretation step would be. Figure 4.4(a) shows how 

coefficient from 1 to 50 would influence the number of selected features in the thresholding step. 

In this figure, the red horizontal line indicates half of the number of features, 86. The thresholding 

step aims at removing irrelevant features according to variable importance, thus removing half of 

the features could be reasonable. Eventually 25 was adopted in the thresholding step, and 86 

features were selected. 

The second coefficient in the interpretation step determines the smallest number of features 

that could produce comparable results comparing to which utilizes all features. Figure 4.4(b) 

illustrates how this coefficient affects the number of feature selected during this step, where two 

jumps could be found at 11 and 12 variables. The two jumps indicate that the variables rank at 12th 

and 11th could be able to reduce *++,,- significantly. Although another jump would occur when 

a relatively large coefficient (around 40) was adopted, it would result in only 5 variables selected 

in this step, which might be too aggressive using this setting. By referring to Table 4.2, the 

reduction of mean *++,,- from the first 12 to 11 features were minimal, and very low error rates 

could be achieved with 11 features. Thus 20 was selected as the coefficient in the interpretation 

step, and 11 variables were selected in this step. 

In terms of the third coefficient in the prediction step, it determines the final number of 

most effective features. During the test of this coefficient, 6 features were selected using 

coefficients from 1 to 30, and a coefficient larger than 30 led to 5 selected features or less. Since a 

coefficient of 30 would be considerably large, and using 6 features would result in significantly 

lower mean *++,,- compared to 5, no setting of the third coefficient were selected. 
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4.2.2 Results of Feature Selection 

With the three coefficients set as 25, 20,1 respectively, 86 features were selected at the 

thresholding step, 11 features were selected at interpretation step, and 6 features were finally 

selected at the prediction step. The final 6 most important features and their mean *++,,- 

achieved with all previous ones are shown in Table 4.3. Among these features, though “!%% 

Variance 11´11 step 1” and “!%% Variance 25´25 step” has a high correlation of more than 0.97, 

the addition of “!%%  Variance 25´25 step” significantly reduces the error rate, so that it is 

considered effective.  

Table 4.3 Six most important features in the second round 

Most important variables Rank Mean ÖÜÜááà 

!%% Variance 11´11 step 1 1 0.4285 

!%' Contrast 25´25 step 5 2 0.1099 

!%' Mean 11´11 step 1 3 0.0127 

!%' Correlation 25´25 step 1 4 0.0023 

!%% Variance 25´25 step 5 5 0.0015 

!%' Dissimilarity 25´25 step 5 6 0.0009 

 

Figure 4.5 shows the images of the six selected features in the scene on January 18, 2016. 

Among the six features, four of them were derived from !%' and the rest two were from !%%. The 

result indicated that HV could make great contribution in separating different ice types and water 

regardless of its values are below the noise floor. From the appearance of the images of features, 

features derived from !%% are still affected by incidence angle on water, while those derived from 

!%' have less influence of the banding effect and horizontal lines except “!%' Mean 11´11 step 
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1”.  Therefore, the selected GLCM features from !%' would mitigate the influence of noise in HV 

in Sentinel-1 imagery. 

 

!%% Variance 11´11 step 1 

 

!%' Contrast 25´25 step 5 

 

!%' Mean 11´11 step 1 

 

!%' Correlation 25´25 step 1 

 

!%% Variance 25´25 step 5 

 

!%' Dissimilarity 25´25 step 5 

Figure 4.5 Six selected features of the scene on January 18, 2016 

 

4.2.3 Uncertainties and Limitations in Feature Selection 

First, the quality of training samples directly affects the results of feature selection. Since 

the author selected training samples mostly from “pure” pixels and complicated regions were 

0 100 km 0 100 km 0 100 km

0 100 km 0 100 km 0 100 km
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avoided, uniform characteristics could be expected within each class as well as surrounding pixels. 

However, some patterns may not be captured due to the strategy, so that these features may not be 

effective in those complicated regions. 

Second, the selected six features from the four scenes may not be the most significant 

features in each of them. Feature selections were performed in each scene where training samples 

came from, and Table 4.4 shows the results, in which the window size and step size were 

abbreviated by: the first number refers to window size and the second number behind underscores 

represents step size. From the table, the final selected six variables were hardly found, but the same 

features with different settings could be observed. Therefore, the selected six features may not lead 

to best performance in distinguishing different ice types and water in a certain scene, but an overall 

effective differentiation could be achieved. 

Table 4.4 Feature selection results of each scene 

Rank 0104 0118 0316 0402 

1 !%' Mean 5_1 !%' Var 25_1 !%' Mean 11_1 !%' Mean 11_1 

2 !%' Var 5_1 !%' SEM 25_5 !%' Var 11_1 !%' Mean 25_1 

3 !%' Mean 11_1 !%' Hom 25_5 !%' Mean 5_1 !%' Var 25_5 

4 !%' Var 11_1 !%' Mean 5_1 !%% Var 11_1 !%' Mean 5_1 

5 !%' Hom 51_5 !%' Mean 25_1 !%% Mean 11_1 !%' Var 11_1 

6 R SEM 51_5 !%' Var 5_1 R SEM 25_5 !%% Hom 25_1 

7 R SEM 51_9 !%' Mean 25_5  R Con 51_5 

8 R Hom 51_5 !%% Var 5_1  R Hom 51_9 

Var: Variance; Dis: Dissimilarity; Ent: Entropy; Con: Contrast; SEM: Second moment; Hom: 

Homogeneity; R: !%%/!%' Ratio 
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Third, the feature selection algorithm itself may not generate the optimal set of variables. In 

this forward searching algorithm, the searching order is based on the rank of importance produced 

by random forests. However, most significant individual variables may not eventually transform 

into an optimal variable set. Though the final 6 variables were able to produce a low error rate, 

they might not be the most effective set of 6, or a smaller set may exist with comparable 

performance. Since the data model used in image segmentation was different from random forest, 

a different variable set might lead to a different result. 

 

4.3 Image Segmentation 

4.3.1 Selection of Candidate Parameters 

There are three main parameters in the segmentation algorithm in this study: 1) initial 

number of classes K, 2) T` as the weight of smooth cost, represented by “scale”, and 3) Tg as the 

weight of label cost. In determination of candidate parameters for final segmentation, the four 

scenes where training samples were selected form were used as benchmark.  

K determines the maximum number of classes during the segmentation process, and tests 

starting with different Ks were conducted. Generally, the final number of classes is determined by 

the selection of label cost, and similar results were achieved with different Ks. Thus, K should be 

set according to a desired final number of classes. In this thesis, only the separation of ice and 

water would be assessed, so that the optimal final classes would be as water, ice and land. To 

successfully separate ice and water, 6 classes were used for initial segmentation in IRGS to fit 

different conditions (Leigh et al., 2014). Therefore, the final number of classes in this thesis would 

target at around 6 or a smaller number. Finally, 10 was chosen for K at initial K-means labelling 

to assure completeness of class scheme, and to validate the performance of label cost. 
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The second parameter, scale, determines the smoothness of the segments. With a larger 

scale, the results would become smooth but some details might not be preserved, while with a 

small scale, small fragments would remain which affects interpretation. Generally, scale affects 

the results more from a visual perspective, and a larger scale would promote the merge of classes 

during iteration. By visual comparison, scale was set to 20 to achieve a sensible smoothness of 

segments. 

The third parameter, label cost, is the most important parameter in this study, which 

determines how aggressively number of labels are reduced. Generally, a larger label cost promotes 

smaller number of labels, but may inappropriately merge different classes if the cost is too large. 

In addition, depending on the distribution of pixel values in different scenes, the same label cost 

setting may result in different number of labels during image segmentation. Figure 4.6 illustrates 

the results of label cost testing, and 15, 20 and 25 were chosen since changes in number of labels 

were observed when scale was 0. Since the target of number of labels may be close to 6 from 

literature, 6 was considered a benchmark for label cost selection. In the scene on January 4, 2016, 

class number reduced to 6 at label cost 15, and it reduced to 5 when label cost reached 20 but not 

further reduced at 25. The scene on January 18, 2016, showed the same pattern. In the scene on 

March 16, 2016, class number reduced when label cost changed from 20 to 25, and the scene on 

April 2, 2016 showed the same pattern. After all, the test results indicated that probably no single 

setting of label cost would fit all scenes, so that these three values should be compared to make a 

final decision. 
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Left: Label cost 15 Middle: Label cost 20 Right: Label cost 25 

	 	 	
Test of scene on January 4, 2016 

	 	 	
Test of scene on January 18, 2016 

	 	 	
Test of scene on March 16, 2016 
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Test of scene on April 2, 2016 

 
Figure 4.6 Results of label cost on test scenes 

 

Therefore, scale of 20, and label cost of three settings, 15, 20 and 25 were considered 

candidates of parameters, and a preliminary test on these combinations were also conducted on 

these four scenes. The results are shown in Figure 4.7. The results show that generally the change 

of number of labels follows the test of label cost in scenes on January 18 and March 16, 2016, but 

the larger scale promotes reduction of labels earlier in the other two. Thus the choice of candidate 

parameters is reasonable. The three label cost settings were carried on to all 15 scenes, and an 

accuracy assessment was conducted to evaluate the performance on water identification. However, 

the scenes on December 28, 2015 and February 14, 2016 does not contain water after the removal 

of the first sub-swath, they could not be evaluated on identification of water. As a result, only 13 

images were evaluated. 
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Left: Label cost 15 Middle: Label cost 20 Right: Label cost 25 

	 	 	
Test of scene on January 4, 2016 

	 	 	
Test of scene on January 18, 2016 

	 	 	
Test of scene on March 16, 2016 
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Test of scene on April 2, 2016 

 
Figure 4.7 Results of candidate parameters on test scenes 

4.3.2 Results of Image Segmentation 

The results of accuracy assessment using the three label cost settings are listed in Table 4.5. 

Generally, all three settings generated sensible results in distinguishing water from other classes, 

with the overall accuracy of 94.9%, 92.4% and 91.9%, respectively with label cost settings as 15, 

20 and 25, respectively. With the increase of label cost, number of total labels and number of water 

labels decrease, which may be the cause of overall accuracy decrease as some classes were 

unnecessarily merged during optimization. By comparing the producer’s accuracy and the user’s 

accuracy, it can be observed that producer’s accuracy is higher than user’s accuracy in all three 

cases, which means that certain types of sea ice may have very similar response to water. However, 

the producer’s accuracies could reach over 96% percent, indicating that most of the water in the 

images could be identified.  
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Table 4.5 Accuracy of image segmentation 

 Label cost 15 Label cost 20 Label cost 25 

Date UA PA OA NT NW UA PA OA NT NW UA PA OA NT NW 

0104 75.4% 83.6% 94.7% 6 1 47.5% 85.6% 86.8% 5 1 47.5% 85.6% 86.8% 5 1 

0111 90.1% 96.6% 96.0% 7 2 90.1% 96.6% 96.1% 7 2 91.8% 96.1% 96.5% 4 1 

0118 61.8% 99.8% 85.4% 5 2 61.6% 99.8% 85.3% 5 2 61.9% 99.8% 85.5% 5 2 

0121 85.3% 91.2% 97.9% 4 1 29.3% 99.9% 79.5% 3 1 29.3% 99.9% 79.5% 3 1 

0204 88.3% 99.4% 96.0% 6 2 87.9% 99.3% 95.9% 5 2 88.0% 99.3% 95.9% 5 2 

0316 14.2% 88.2% 86.9% 5 1 14.2% 88.8% 86.7% 5 1 12.4% 89.9% 84.5% 4 1 

0323 95.3% 95.9% 97.0% 8 3 96.2% 95.2% 97.0% 7 2 85.9% 98.1% 93.8% 4 2 

0402 97.6% 86.9% 95.8% 5 1 93.4% 91.1% 95.8% 4 1 93.4% 91.1% 95.8% 4 1 

0409 96.7% 98.7% 97.4% 4 1 96.7% 98.7% 97.4% 4 1 96.7% 98.7% 97.4% 4 1 

0426 88.7% 84.2% 95.2% 5 1 87.8% 84.2% 95.1% 4 1 78.3% 86.4% 93.3% 3 1 

0520 90.9% 99.6% 95.4% 4 1 86.5% 99.9% 93.1% 3 1 86.5% 99.9% 93.1% 3 1 

0527 97.1% 98.6% 97.0% 5 2 93.0% 99.0% 94.1% 4 2 93.0% 99.0% 94.1% 4 2 

0613 97.8% 99.5% 98.3% 3 1 97.8% 99.5% 98.3% 3 1 97.8% 99.5% 98.3% 3 1 

Overall 88.4% 96.6% 94.9%   82.4% 97.2% 92.4%   81.2% 97.5% 91.9%   

PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy; NT: number of total labels; NW: number of water labels 

Shaded areas shows the results using finally selected parameter setting 
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By comparing the three label cost settings, 15 generated the highest user’s accuracy and 

overall accuracy. The label cost of 20 led to slightly higher producer’s accuracy but lower user’s 

accuracy, while reduced number of labels could be observed. The label cost setting of 25 further 

reduced the number of labels, and the user’s accuracy and producer’s accuracy also decreased, but 

the producer’s accuracy slightly increased. The larger label cost settings may result in excessive 

merging of some classes so that producer’s accuracy increases at the cost of user’s accuracy. 

All the segmentation results are listed in Appendix C, together with RGB combination of 

the original Sentinel-1 imagery and ground truth. 

 

4.3.3 Discussion of Specific Scenes 

From Table 4.5, it can be observed that most of the scenes were well-segmented. Some 

scenes that are worth noting are discussed as follow. 

4.3.3.1 Ideal Segmentation: Result of Scene on June 13, 2016 

   
(a) Segmentation result (b) RGB image of data (c) Reference map of water 

Figure 4.8 Segmentation result of scene on June 13, 2016 
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Figure 4.8 shows the results of scene on June 13, 2016, which could be considered as an 

ideal segmentation result in terms of water identification as only three classes: sea ice, water and 

land could be identified, and the user’s accuracy, the producer’s accuracy and the overall accuracy 

reached 97.8%, 99.5% and 98.3% respectively.  

The algorithm was able to identify majority of water in this scene, except for some small 

areas that may be relatively thin ice, as shown in the two red squared boxes in Figure 4.8(b). These 

areas might be ambiguous to identify at the ice-water boundary, so that the misidentification would 

be acceptable.  

In the water class, some areas that may be covered by very thin ice spreading in the water 

area was successfully identified and merged with the water class. In addition, one vertical line 

which is the beam seam at the right part of the image was not affecting the segmentation result. 

The successful segmentation result indicated that the selected six features were able to capture 

significant patterns of water and ice, and some influences of noise could be mitigated. 

 

4.3.3.2 Lowest User’s Accuracy: Result of Scene on March 16, 2016 

The segmentation result of scene on March 16, 2016 is shown in Figure 4.9, and the result 

achieved the user’s accuracy of 14.2%, which is the lowest among all the results of 13 scenes. In 

addition, with the other two candidate label cost settings: 20 and 25, the user’s accuracy did not 

increase. But the producer’s accuracy reached 88.2%, which is below average but still could be 

considered good.  

By comparing Figure 4.9(a) and Figure 4.9(b), which are the segmentation result and the 

RGB image, it could be found that the ice type in the red box was considered the same type with 

water. According to the ice chart on that date, the marked ice type was majorly new ice, which is 
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the type that is difficult to separate from water. Though the water identification was not successful, 

the segmentation of water and new ice in this scene were relatively complete and accurate by visual 

comparison with the ice chart. Further tests on using different label cost settings did not provide 

satisfying results so that the mislabelling could be owed to the backscatter similarity between new 

ice and water. Therefore, the result shows that the discrimination between new ice and water needs 

to improve to achieve an accurate segmentation result. 

   
(a) Segmentation result (b) RGB image of data (c) Reference map of water 

Figure 4.9 Segmentation result of scene on March 16, 2016 

 

4.3.3.3 Most Number of Labels: Results of Scene on March 23, 2016 

Among the segmentation results achieved using label cost of 15, the results of scene on 

March 23, 2016 resulted in the most number of labels. As Figure 4.10(a) shows, a total of 8 labels 

were produced by this segmentation algorithm, and 3 of them were presenting water. Both numbers 

are the highest among all the segmentation results listed in Table 4.5. Though the large number of 

labels makes image interpretation unintuitive, user’s accuracy, producer’s accuracy and overall 
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accuracy reached 95.3%, 95.9% and 97.0% respectively, which could be considered a successful 

segmentation result.  

   
(a) Segmentation result (b) RGB image of data (c) Result with label cost 25 

Figure 4.10 Segmentation results of scene on March 23, 2016 

However, a better segmentation result could be achieved as the number of labels has the 

potential to be further reduced. By referring to the results shown in Table 4.5, the number of class 

reduces as label cost increases to 20 and 25. As shown in Figure 4.10(c), with the label cost setting 

at 25, 4 total number of labels were produced by the segmentation algorithm, among which 2 

classes represents water, but by further increasing label cost, unreasonable results were produced 

because of excessive merging. The label cost setting at 25 resulted in user’s accuracy, producer’s 

accuracy and overall accuracy of 85.9%, 98.1% and 93.8% respectively. The larger label cost 

resulted in 10% decrease in user’s accuracy since some ice areas were incorrectly merged with 

water at the right side of the image as shown in Figure 4.10(c), but the reduction in overall accuracy 

was not that obvious. Therefore, though lower user’s accuracy were generated with the large label 

cost setting, 25 may be considered a better choice in the scene on March 23, 2016 since it reduces 
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number of labels significantly, enabling more intuitive interpretation of water contents in the image 

in the scope of the study.  

In addition to this scene, the scenes on January 11, February 4, April 2, April 26, May 20 

and May 27, 2016 could also result in smaller number of labels with a larger label cost setting 

without sacrificing accuracy significantly. Therefore, the label cost setting of 15 does not 

necessarily provide best performance in all scenes, and better results could be provided in terms 

of ice-water identification, but 15 resulted in an overall best performance.  

 

4.3.3.4 Uncertainties of Some Ice Types: Results of Scene on January 18, 2016 

   
(a) Segmentation result (b) RGB image of data (c) Reference map of water 

Figure 4.11 Segmentation result of scene on January 18, 2016 

Figure 4.11 illustrates the segmentation result of the scene on January 18, 2016, the user’s 

accuracy, producer’s accuracy and overall accuracy were 61.8%, 99.8% and 85.4%, respectively. 

The relatively low accuracy was mainly caused by the mislabelling in the two areas in red boxes 

as shown in Figure 4.11(b). In the upper red box shows an area that might be new ice, as evidence 

could be seen in HH but not in HV (as shown previously in Figure 3.3). This region was labeled 
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as ice in manual labelling and training sample selection, but it is questionable as the backscatters 

were below the noise floor in both !"" and !"#. Another area shown in the lower red box shows 

the area close to the land, and the area would be ambiguous as low concentration of ice were found 

in the ice chart. The regions close to land may have more uncertainties as the radar backscatters 

may be influenced by water depth below ice or the regions could be ice frozen to the ground. The 

selected six features were not able to successfully capture effective patterns to distinguish water 

and ice, and the algorithm could be further improved in these ambiguous regions. 

 

4.3.4 Uncertainties and Limitations in Image Segmentation 

The results of the selected parameter setting could generate results of close to 95% in the 

overall accuracy. However, there are some identified uncertainties and limitations in the image 

segmentation process. 

First of all, according to the results listed in Table 4.5 and the discussions on specific 

images, it could be concluded that no parameter setting was perfect for all of the 15 images, or 

even most of them, not mentioning if the method is applied in operational image segmentation. In 

evaluation of successfulness of water identification, the appropriate number of labels might vary. 

Even though the label cost settings could decrease the number of labels in each image, different 

data distribution, different ice types and different incidence angles may result in different number 

of labels during the optimization process. For each specific image, the optimal parameter set may 

be found and better labelling result could be achieved, but one setting that fits all scenes was not 

guaranteed. After all, the “best” parameter set was limited on the performance of the 13 selected 

images in this study, but when the method is applied in other images, the best setting may be 

different. 
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Second, in this study, the selected features and the data model may not be optimal. As 

discussed in Section 4.2.2, the banding effect of Sentinel-1 imagery were mitigated by the selected 

features to some extent, but some parts of water may be similar to some ice classes in some cases. 

That might be the trade-off of solving one specific problem. In addition, the features were selected 

using random forests, which are based on decision trees with arbitrary thresholds, but the data 

model used in segmentation optimization was not. Consequently, high classification results in 

features selection may not necessarily lead to satisfying labelling results. Most importantly, only 

the GLCM features with limited variations were selected, other spatial features could be effective 

as well. In terms of selection of data model, Euclidian distance was chosen, but it may not work 

well with the selected features or the Sentinel-1 SAR imagery. 

Third, short of ground truth may result in biased training sample selection and accuracy 

assessment. As discussed in Section 4.2.3, training sample selection based on the author’s 

preferences may not have a complete representation of each class. In addition, the misinterpretation 

of ice chart could bring error and uncertainties in the selected samples. This kind of problem also 

exist when manually providing ground truth for water, especially at ice-water boundary. The 

boundaries of water and ice are very smooth in ice charts, while the true boundaries are not. Since 

very thin ice may not be captured by C-band SAR imagery, these “ice-water” boundaries in this 

thesis could actually be the threshold of whether ice could be identified by the sensor. Considering 

the development or melting of ice is a gradual process, the threshold might not be easy to find. 

 

4.4 Chapter Summary 

This chapter displayed the detailed results of each step of the proposed workflow, including 

training sample selection, features selection and image segmentation. The uncertainties and 
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limitations in each step were discussed. The segmentation results of 13 testing Sentinel-1 SAR 

images were evaluated using an error matrix. The overall accuracy reached close to 95%, and the 

final segmentation maps are displayed in Appendix C. 

 

  



 

 73 

Chapter 5 Conclusions and Recommendations 

5.1 Conclusions 

Sea ice monitoring is crucial to several invaluable purposes, including study of climate, 

marine navigation and coastal resource development, especially for coastal regions, such as 

Labrador coast. SAR imaging satellites has been approved as an important data source for sea ice 

monitoring in Canada. However, the limited revisiting time of a single SAR satellite such as 

RADARSAT-2 and large volume of manual work are two main challenges in providing high-

quality sea ice map products timely and effectively. To deal with the two challenges, new data 

sources and automated image processing algorithms are in demand. This thesis proposed a 

prototype semi-automated SAR image segmentation workflow, which has been tested on 15 scenes 

of Sentinel-1 SAR images in the study area of Labrador coast. 

There are three main objectives in this thesis, 1) to determine the most important features in 

identifying different types of sea ice, 2) to examine the effectiveness of the proposed workflow, 

and 3) to evaluate the capability of Sentinel-1 SAR imagery in sea ice mapping. In order to address 

these objectives, the methodology was designed by three main components: 1) The GLCM features 

were calculated in various window sizes and step sizes, and a variable selection algorithm based 

on random forests were used in determining the most important features; 2) A segmentation 

optimization algorithm based on graph cut was deployed with the integration of label cost, and the 

images could be segmented into different numbers of labels with different settings; and 3) An 

accuracy assessment was conducted to evaluate how well the segmentation results in identifying 

water contents in Sentinel-1 imagery. This thesis did an exploration on a prototype automated 

image segmentation method, and experimental results derived some insights on the three 

objectives. The results are concluded as follow. 



 

 74 

First, six GLCM features were selected as the most significant features in distinguishing 

water and different ice types. These six features are: !"" Variance 11´11 step 1, !"# Contrast 

25´25 step 5, !"# Mean 11´11 step 1, !"# Correlation 25´25 step 1, !"" Variance 25´25 step 5, 

and !"# Dissimilarity 25´25 step 5. Second, the proposed method was able to segment the 13 test 

images into 3-8 classes with the selected parameter set, which may potentially provide a solution 

to determining the optimal number of labels. However, it was also found that one setting of 

parameters was not able to provide optimal results in all images. Third, in Sentinel-1 SAR imagery, 

incidence angle effects in co-polarized bands of water and banding effects in cross-polarized bands 

may affect the interpretation of sea ice, but these effects were mitigated by the selected features 

and the segmentation algorithm. The overall accuracy of the tests reached 95% in distinguishing 

water in the images, and most errors comes from the similarity between water and thin ice types. 

After all, higher accuracies could be achieved when tuning parameters in individual images, but it 

may not be applicable if an automated method is needed. 

In conclusion, Sentinel-1 SAR imagery is able to monitor sea ice conditions successfully, 

and the proposed workflow has the potential of developing into an automated image segmentation 

solution. 

 

5.2 Recommendations for Future Work 

The uncertainties and limitations of the study have been discussed in Chapter 4, and more 

work and experiments could be done in the future to improve the performance of the proposed 

method. 

Firstly, ground truth with higher quality would be an urgent need for the improvement of the 

method. In this thesis, training samples and validation samples were manually selected by the 
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author while misinterpretation and uncertainties may result in deficiencies of the workflow. With 

more precise ice labelling, the selected features would be more representative and efficient. 

Additionally, with better ground truth, the effectiveness of ice type segmentation using this 

proposed method could be validated as well, but more labels are needed and the parameter settings 

would be different.  

Secondly, more texture features need to be tested and evaluated. In this thesis, only GLCM 

was calculated with limited settings, while a different setting for GLCM (Clausi, 2002) or more 

features such as Gabor filter, MRF features (Clausi, 2001) should be tested. 

Thirdly, different data models could be used in the segmentation optimization process. In 

this thesis, the basic Euclidian distance was adopted, while the problem of singularity prevented a 

comparison test using Gaussian model or other data cost models limited to the author’s knowledge 

and time. The solution to this problem should be found, better results could be achieved. 

Fourthly, a better use of Sentinel-1 imagery could be helpful. In this thesis, down sampled 

Sentinel-1 GRDM images were used in testing the methodology. However, tests could be done at 

a higher resolution. Since Sentinel-1 imagery can be accessed free of charge, more images and 

different products could be tested as well. In addition, only magnitude was used in this thesis, 

phase information could also be helpful, and new features could be explored. Temporal 

information could also be an asset, as the short revisiting time of Sentinel-1 could be taken 

advantage of.  

Fifthly, some ancillary data could be combined for better sea ice identification. Image 

fusion with images from other sensors has been demonstrated successful in sea ice image 

interpretation (Wang et al., 2016; Casey et al., 2016), and meteorological data might help 

determine development stage of ice and ice conditions. 
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Sixthly, the noise pattern of Sentinel-1 needs to be further studied, especially in cross 

polarization. In this thesis, the first sub-swath, where largest affected by noise, was removed to 

achieve better interpretation of the images. However, the first sub-swath still contains reasonable 

information about ice and water, which would be explored. Some effective features would exist to 

effectively identify ice types and water even if this sub-swath is kept, systematic noise reduction 

methods such as some frequency filters should be tested on whether this noise could be reduced. 

In addition, the results of this study indicated that though most backscatter values of HV are below 

the noise floor, HV contributed significantly in the segmentation. The effective values of 

backscatters in HV should be further explored to make better use of Sentinel-1 imagery.  As the 

noise floor of the RCM is also -22dB, the same problem would exist in the RCM imagery, thus the 

exploration of HV values below noise floor would provide valuable references when processing 

the RCM products. 

Finally, although the proposed method was able to generate good results and improvements 

could be made, the author still believes that deep learning methods are the future in sea ice analysis, 

and experiments (Wang et al., 2016) has demonstrated the power of deep learning. Traditional 

methods, such as the one presented in this thesis, might only able to study limited aspects of sea 

ice SAR imagery, and the hierarchical learning capabilities of deep learning methods may generate 

more promising results. Deep learning methods might be limited due to lack of training sets, but 

with the free of charge Sentinel-1 imagery, building a large enough image library of sea ice might 

be feasible. 
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 Appendix A 

Ice chart on January 18 
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Interpretation of egg codes (Environment and Climate Change Canada (EC), 2016) 

 

Three basic data about sea ice: concentration, stage of development and form of ice, and these data 

were recorded in an oval in an ice chart. The oval and the coding associated with it are called “egg 

code”. The first row defines the total concentration ($%) of ice in the polygon, recorded in tenths, 

and the second row records partial concentration of the thickest ($&), second thickest ($(), and 

third thickest ($)) ice in tenths. The third row defines the stages of development of corresponding 

ice types (*&, *(, *)), while the fourth row defines the forms of ice (+&, +(, +)). When more than 

three types of ice are present, additional ice information can be added on the right side. If there’s 

a trace (thicker than *& but has concentration less than 1/10) present, it is recorded as *,. The 

numeric codes for the stage of development and form of ice are shown in the two tables below. 
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Code for stage of development in this thesis (adapted from (GC, 2016)) 

Description Thickness Code 

New ice < 10 cm 1 

Grey Ice 10 - 15 cm 4 

Grey-white ice 15 - 30 cm 5 

Thin first-year ice 30 - 70 cm 7 

Medium first-year ice 70 - 120 cm 1· 

Ice of land origin -   

Undetermined or unknown - X· 

 

Code for form of ice in this thesis (adapted from (GC, 2016)) 

Description >Width Code 

Small floe 20 - 100 m 3 

Medium floe 100 - 500 m 4 

Big floe 500 - 2,000 m 5 

Vast floe 2 - 10 m 6 

Fast ice - 8 

Icebergs, growlers or floebergs - 9 

Undetermined, unknown or no form - X 

 

 

 

  



 

 87 

 Appendix B 

 

Noise floor of RADARSAT-2 (HV) Observed noise floor of Sentinel-1 
(HV) 

	

Noise floor comparison of RADARSAT-2 ScanSAR Wide and Sentinel-1 EW in HV (Karvonen 

et al., 2015) 
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 Appendix C  

Results of Image Segmentation 

Left: segmentation result Middle: RGB image of data Right: reference map of water 

   
Scene: January 4; UA:75.4%; PA: 83.6%; OA: 94.7% 

   
Scene: January 11; UA:90.1%; PA: 96.6%; OA: 96.0% 
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Scene: January 18; UA:61.8%; PA: 99.8%; OA: 85.4% 

   
Scene: January 21; UA:85.3%; PA: 91.2%; OA: 97.9% 

   
Scene: February 4; UA:88.3%; PA: 99.4%; OA: 96.0% 
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Scene: March 16; UA:14.2%; PA: 88.2%; OA: 86.9% 

   
Scene: March 23; UA:95.3%; PA: 95.9%; OA: 97.0% 

   
Scene: April 2; UA:97.6%; PA: 86.9%; OA: 95.8% 
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Scene: April 9; UA:96.7%; PA: 98.7%; OA: 97.4% 

   
Scene: April 26; UA:88.7%; PA: 84.2%; OA: 95.2% 

   
Scene: May 20; UA:90.9%; PA: 99.6%; OA: 95.4% 
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Scene: May 27; UA:97.1%; PA: 98.6%; OA: 97.0% 

   
Scene: June 13; UA:97.8%; PA: 99.5%; OA: 98.3% 

 
UA: user’s accuracy; PA: producer’s accuracy; OA: overall accuracy 

 

 


