
Debugging Relational Declarative
Models with Discriminating Examples

by

Vajihollah Montaghami

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2017

c© Vajihollah Montaghami 2017

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner Marsha Chechik
Professor

Supervisor(s) Derek Rayside
Assistant Professor

Internal Member Krzysztof Czarnecki
Professor

Internal Member Vijay Ganesh
Assistant Professor

Internal-external Member Richard Trefler
Associate Professor

iii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

v

Abstract

Models, especially those with mathematical or logical foundations, have proven valuable to
engineering practice in a wide range of disciplines, including software engineering. Models,
sometimes also referred to as logical specifications in this context, enable software engineers
to focus on essential abstractions, while eliding less important details of their software
design. Like any human-created artifact, a model might have imperfections at certain
stages of the design process: it might have internal inconsistencies, or it might not properly
express the engineer’s design intentions.

Validating that the model is a true expression of the engineer’s intent is an important
and difficult problem. One of the key challenges is that there is typically no other written
artifact to compare the model to: the engineer’s intention is a mental object. One success-
ful approach to this challenge has been automated example-generation tools, such as the
Alloy Analyzer. These tools produce examples (satisfying valuations of the model) for the
engineer to accept or reject. These examples, along with the engineer’s judgment of them,
serve as crucial written artifacts of the engineer’s true intentions.

Examples, like test-cases for programs, are more valuable if they reveal a discrepancy
between the expressed model and the engineer’s design intentions. We propose the idea of
discriminating examples for this purpose. A discriminating example is synthesized from a
combination of the engineer’s expressed model and a machine-generated hypothesis of the
engineer’s true intentions. A discriminating example either satisfies the model but not the
hypothesis, or satisfies the hypothesis but not the model. It shows the difference between
the model and the hypothesized alternative.

The key to producing high quality discriminating examples is to generate high quality
hypotheses. This dissertation explores three general forms of such hypotheses: mistakes
that happen near borders; the expressed model is stronger than the engineer intends; or the
expressed model is weaker than the engineer intends. We additionally propose a number
of heuristics to guide the hypothesis-generation process.

We demonstrate the usefulness of discriminating examples and our hypothesis-generation
techniques through a case study of an Alloy model of Dijkstra’s Dining Philosophers prob-
lem. This model was written by Alloy experts and shipped with the Alloy Analyzer for
several years. Previous researchers discovered the existence of a bug, but there has been
no prior published account explaining how to fix it, nor has any prior tool been shown
effective for assisting an engineer with this task.

Generating high-quality discriminating examples and their underlying hypotheses is
computationally demanding. This dissertation shows how to make it feasible.

vii

Acknowledgements

I would like to express my tremendous gratitude to my advisor, Professor Derek Rayside,
for all his support, patience, and understanding. It has been an honor to be his first
PhD student. I appreciate his immense knowledge in theoretical and practical aspects of
this research and his assistance in writing reports including this dissertation. Without his
guidance and direction, I cannot imagine a path to the completion of this dissertation.

I am grateful to the other members of my committee, Prof. Marsha Chechik, Prof.
Krzysztof Czarnecki, Prof. Vijay Ganesh, Prof. Reid Holmes, and Prof. Richard Trefler.
Their insightful questions and suggestions significantly helped me shape this research. I
would also thank Prof. Paul Ward and Prof. Patrick Lam for their constructive comments
on the initial draft of this dissertation.

I have been very fortunate to meet and work with brilliant people who helped me
develop my skills further. In particular, I am grateful to Prof. Vijay Ganesh for all advice
on precise and structural thinking, to Douglas Harder for the enjoyable opportunities in
teaching, and to Mary Janet McPherson for the comprehensive training on concise writing.
Special thanks to the incredible staff of the Electrical and Computer Engineering for their
tremendous support and assistantship.

I would like to thank all Waterloo Formal Methods (WatForm) Lab members. Special
thank to my friends Amirhossein, Pourya, Salman, Shahin, and Steven who were always
so helpful in numerous ways. Amirhossein always found the time to discuss my ideas and
provide invaluable feedback. I am also grateful to undergrad students, Fikayo, Bhargava,
and Akshay to assist me in developing the framework and running case-studies. I thank
Edward Zulkoski for his suggestions on the conference papers and presenting our paper in
Toulouse.

My deep appreciation goes to my parents, Maryam and Zabihollah, and sister, Valeh,
for their unparalleled encouragement to follow my dream. My sincere gratitude to Anahita
for her love and understanding throughout this hard time. I am very thrilled to have such
a supportive family that I can rely on at every step of my life.

ix

Dedication

To my family with love.

xi

Table of Contents

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 First-Order Relational Logic Models in Alloy 2

1.2 A Taxonomy of Bugs in Relational First-order Models 4

1.3 Existing Debugging Tools and Techniques 6

1.4 Discriminating Examples and Other Kinds 8

1.5 Thesis and Contributions . 9

1.5.1 Tools Developed . 11

1.5.2 Dissertation Organization . 12

1.5.3 Research Questions . 13

13

2 Levure: A Syntactic Extension of Alloy with Examples 15

2.1 Using Partial Instances for Alloy models 16

2.2 Language Extension . 19

2.2.1 Semantics . 20

2.3 Experiment . 21

xiii

2.3.1 Micro Benchmark . 22

2.3.2 Staged Evaluation . 25

2.4 Alternatives Considered . 27

2.4.1 Static Analysis . 27

2.4.2 Syntactic Alternatives for the inst Block 28

2.5 Related Work . 28

2.6 Summary . 29

3 Bentonite: An Extension of Alloy for ∃∀ Queries 31

3.1 Illustrative Example . 33

3.2 Language Extension . 34

3.2.1 Syntax and Semantics . 34

3.2.2 Soundness and Completeness . 37

3.3 Techniques . 37

3.3.1 Non-staged solving . 37

3.3.2 Staged-solving using Kodkod . 38

3.3.3 Staged-solving using a SAT-solver 39

3.4 Experiment . 39

3.5 Related Work . 48

3.6 Summary . 48

4 Bordeaux: An Extension of Alloy for Producing Near-border Examples 51

4.1 Illustrative Example . 52

4.2 Proximate Pair-Finder Formula . 54

4.3 Encoding the PPFF for Alloy∗ . 57

4.4 Implementation: Extending Alloy . 63

4.4.1 Special Cases of Potential User Interest 64

4.4.2 Interacting with Margaux . 64

xiv

4.5 Experiments . 65

4.6 Optimization . 69

4.6.1 Selecting Tighter Scopes . 69

4.6.2 Parallelization . 70

4.7 Related Work . 73

4.8 Summary . 75

5 Margaux: A Pattern-based Approach for Debugging Underconstraint
and Overconstraint 77

5.1 Foundations . 78

5.1.1 Discriminating Example . 79

5.1.2 Borders and Discriminating examples 79

5.1.3 Mutation and Discriminating examples 80

5.1.4 Debug Patterns . 82

5.1.5 Library of Debug Patterns . 85

5.1.6 Synonyms and Antonyms Variants 87

5.2 A Design for Margaux . 89

5.2.1 Debugging Procedure . 91

5.2.2 Search Procedure . 92

Weakener Mutation Operator . 94

Strengthener Mutation Operator 96

Regulating nondeterministic choices 97

Soundness and Completeness . 99

5.2.3 Localization . 100

5.2.4 Fix suggestion . 101

5.3 Related Work . 102

5.4 Summary . 105

xv

6 Dining Philosophers Case Study 107

6.1 Singly Linked List . 108

6.2 Case-study: Dining Philosophers . 113

6.3 Margaux’s Heuristics are Better than Random 119

6.4 Debugging the Dining Philosophers with Other Tools 121

Margaux VS. Alloy Analyzer . 121

Margaux VS. Aluminum . 122

6.5 Summary . 124

7 Conclusion 127

7.1 Future work . 129

References 133

Appendices 145

A List of Temporal Patterns’ Structures for a Ternary Relation 147

Glossary 177

xvi

List of Tables

2.1 Performance improvements from staged evaluation of Cai & Sullivan case
study . 27

3.1 Staging results with significantly reduced number of variables and clauses
in cnf file generated to check ∃∀ query . 42

4.1 Comparing use of join vs. product vs. combination of join and product
operators to implement instance operator. 60

4.2 Time and sat formula size for finding one example and a near-miss example 66

4.3 Comparing sizes of first example and first near-miss example generated by
Bordeaux, Alloy Analyzer [42], and Aluminum [78]. 67

4.4 Demonstrating affect of scope selection on cost of analysis performed by Alloy∗ 70

4.5 Parallelizing PPFF . 71

5.1 Representing Binary Implication Lattice 84

5.2 Examples satisfying predicates in Figure 5.3 86

5.3 Expressing heuristics that Margaux uses for deciding on non-deterministic
decision points . 99

6.1 Effect of using heuristics in Margaux . 120

A.1 Ternary Implication Lattice . 169

xvii

List of Figures

1.1 Overconstraint and underconstraint bugs 4

1.2 Interacting components for producing discriminating examples 11

2.1 Alloy model of linked list with instances expressed in proposed syntax . . . 16

2.2 Skeletal Alloy model of a binary tree . 17

2.3 Two partial instances of a binary tree: (a) a legal singleton tree, and (b) a
tree with illegal self-loops . 18

2.4 Grammar and preliminary type definitions 20

2.5 Universe construction . 21

2.6 Bounds construction (building on formalization of [101]) 22

2.7 Example models for micro-benchmark experiment 23

2.8 Results of micro-benchmarks . 24

2.9 Partial instance encoding of Irwin et alia’s description [41] of the design
space for a matrix manipulation program 25

2.10 Iwrin matrix design space partial instance (Figure 2.9) extended with bind-
ing atoms generated by a previous simulation 26

2.11 Syntactic alternatives for the body of the inst block 28

3.1 Address book example (adapted from [42]) 33

3.2 General form of an Alloy signature . 35

3.3 General form of a synthesized uniqueness predicate 35

xix

3.4 Semantically integrating generator axiom into model 36

3.5 Staging to improve scalability and reduce runtime of ∃∀ queries 41

3.7 Time VS. Number of nodes for Singly-linked List (sll) and Binary Search
Tree models (bst). 45

3.8 Number of instances VS. Number of nodes for sll and bst. 46

3.9 Number of SAT variable VS. Number of nodes for sll and bst. 47

4.1 Model of requirements for undergraduate Computer Engineering degree . . 53

4.2 Examples revealing an overconstraint issue in the model of Figure 4.1 . . . 53

4.3 Proximate Pair-Finder Formula (PPFF) Variants 58

4.4 Generating predicate instance to distinguish self-consistent valuations from
others . 60

4.5 Sample of instance predicate for the model in Figure 4.1 61

4.6 Typical form of predicate delta_ . 61

4.7 Sample of delta_ predicate for encoding distance w.r.t. relation reqs in
Figure 4.1 . 62

4.8 Sample of synthesized PPFF for Figure 4.1 62

4.9 Encoding PPFF in Alloy. 63

4.10 Comparing Bordeaux, Alloy Analyzer, and Aluminum. 68

5.1 Accepting or rejecting discriminating example to reveal underconstraint or
overconstraint issues in model . 81

5.2 Debug patterns VS. Design patters . 82

5.3 Parametric Temporal Patterns’ structure for a ternary relation 85

5.4 Examples of formula generation for patterns 87

5.5 User interaction with Margaux. 89

5.6 Major components of Margaux and other extensions. 90

5.7 Find discriminating examples for each mutation with Bordeaux 94

5.8 Systematically navigating implication graph to generate different discrimi-
nating examples consistent with a given model. 98

xx

6.1 A bogus Alloy code trying to express modeling of a Singly Sorted Linked
List in Alloy. 109

6.2 A bogus Alloy model expressing modeling a solution to the classical Dinning
Philosophers problem proposed by Edsger W. Dijkstra. 114

6.3 A fix for mitigating the overconstraint bug in the model from Figure 6.2 . 115

6.4 Repairing the underconstraint bug in the model from Figure 6.3 117

6.5 Repairing the underconstraint bug in the model from Figure 6.4 118

6.6 Repairing the underconstraint bug in the model from Figure 6.5 119

xxi

Chapter 1

Introduction

The need to debug arises because the expressed meaning model from the intended meaning,
but the user does not know where or why [54, 57]. Debugging can be a cumbersome and
time-consuming task that persists throughout the software lifecycle [53, 109, 116]. While
these truths have been mostly studied in the context of imperative programs, they are also
believed to be true of declarative models [48, 55, 94].

Zeller [117], in his seminal book on debugging imperative programs, evokes an inspiring
image: Some people are true debugging gurus. They look at the code and point their finger
at the screen and tell you: “Did you try X?” You try X and voila!, the failure is gone.
What has the debugging guru done? They have identified, localized, and corrected the bug
[54, 57], and they have done this by first forming a hypothesis [117].

We have developed tools and techniques to provide some automated support for this
vision in the context of relational logic models. The tools first help the user identify (and
understand) the bug by forming a hypothesis about what might be wrong with the model
and computing a discriminating example for the user to accept or reject. If the user judges
that a bug has been identified, then further automated analysis helps localize which part
of the model needs to change, and might provide a high-level conceptual description of the
correction (but the user still needs to make the correction by hand).

This work builds on three premises that have been well-established in related areas
of software engineering and computer science: examples help people understand abstrac-
tions [4, 42, 64]; near-miss examples help understand the borders of abstractions [34, 110];
and debugging is a hypothesis-driven activity [54, 57, 117].

1

1.1 First-Order Relational Logic Models in Alloy

Modeling software systems using languages with mathematically defined syntax and se-
mantics assists the engineer to understand the design and find formidable issues in ad-
vance [18]. There are research efforts to develop tools for analyzing and debugging formal
models such as specifications in temporal logic [8, 37, 55]. Alloy as a declarative language
has been broadly used for modeling software systems in many applications [104]. In AT&T
Laboratories, Zave selected Alloy, over other tools [114], to analyze distributed feature
interactions [112, 113]. Newcombe et al. [80] demonstrated using Alloy and TLA [58] to
analyze Amazon Web Services.

The word model is used with a variety of meanings in engineering, computer science,
and logic. The two most common meanings in software engineering are contradictory: for
much of the software engineering community, model means an abstraction (e.g., a formula).
For logicians, and the software engineers that use their terminology (e.g., Nelson et al. [77]),
it means an example. Bak et al. [4] recently proposed that software engineers should use
model to mean an abstraction with accompanying examples. We use model to refer to the
abstraction that the engineer has written: the specification; the formula. This is consistent
with the usage in Jackson [42], and in much of the software engineering literature.

The Alloy language [42] is a first-order logic with relations and transitive closure. It
has an associated tool [43], Alloy Analyzer for bounded analysis. Sacrificing the complete
analysis, Alloy Analyzer is a tool for realizing light-weight formal methods [44]. The tool
is used both to simulate and to check the consistency of logical formulas (models) written
in the Alloy language. Alloy has been successfully used for a variety of software engi-
neering tasks, such as specifying rich linked data structures and finding bugs in published
protocols [42, 104].

The main idea of the Alloy Analyzer is to finitize the model to be solved: that is, to
specify a finite universe over which the formula is to be evaluated. The first-order formula
can then be translated to a propositional formula [102] and solved with an off-the-shelf
SAT-solver, such as MiniSAT [28]. For example, the first-order formula ∀x|p(x) and the
finite universe x = x1+x2+x3 would result in the propositional formula p(x1)∧p(x2)∧p(x3).

In Alloy language, a relation is a set of tuples of atoms. A relation has a finite arity. A
set of relations is declared to be a signature, which is conceptually similar to a class in an
object-oriented programming language. Likewise, a signature can extend other signatures
or be abstract (no instances). An Alloy expression is a set of relations combined with
some operators. Each Alloy expression shows a set of instances within the finite scope.
The supported set operators are ‘+’ for union, ‘-’ for difference, and ‘&’ for intersection.

2

The relational operators are either unary, for instance ‘∧’ for transitive closure and ‘∼’
for transpose, or binary, such as ‘.’ for join and ‘→’ for product. An Alloy formula is a
quantified formula over the relational expressions. A quantifier can be either ‘all’, ‘some’,
‘no’, and ‘one’. The body of a quantified formula can be made from logical operators like
‘&&’ for conjunction, ‘‖’ for disjunction, and ‘ !’ for negation. The relational comparison
operators are also ‘in’ for subset and ‘=’ for equality. An Alloy model is comprised of
Alloy formulas and relations. An instance of an Alloy model is a valuation of the relations
satisfying the formulas. Values that any signature can take are called atoms. A universe
is a finite set of atoms and is restricted by a specific scope. The scope for each signature
is given after the executing commands. An instance is a valuation of a formula within the
given scope.

Alloy users can analyze a model by simulating it in a finite scope. They can validate
their desired assertions over the simulated model by running a search for an instance that
refutes the assertion. If the analyzer finds such an instance, the assertion is definitely
rejected, and the instance witnesses as a counter-example. No found instance may seem
to be a good clue for showing the assertion correctness. However, another reason might be
the insufficient scope or lack of the consistency between what the user actually wants to
do and what the model really means.
Definition 1 (Model). We define an Alloy model as triple 〈R,C,B〉 comprising an ordered
set of relations R, a set of constraints (formulas) on those relations C, and finite bounds B for
those relations.

Similar to logical modeling, logic programming is a set of logical statements to express
desired results. To execute a logic program, Prolog, as the best known logical programming
language, restricts the expressiveness of first-order logic. The execution of a logical program
is based on theorem proving by first order resolution, whereas analysis of Alloy models is
a search of a valid interpretation of a SAT formula. A Prolog program is a set of Horn
clauses, but any first-order statements can be expressed in Alloy language. That is, the
expressiveness of Alloy language subsumes Prolog. Near [73] proposed a technique for
translating Alloy and Imperative Alloy [74] formulas, without universal quantification and
negation, to Prolog statements. This allows users to produce a Prolog program, from
some Alloy statements, that processes ten times larger inputs in a shorter time than Alloy
Analyzer [72].

3

Figure 1.1 Overconstraint and underconstraint bugs. The darker area with solid border
represent the expressed model, and the brighter area with dotted border show what the
user actually intend.

Expressed Model Intended Model

(a) Underconstraint (b) Partial Overconstraint (c) Total Overconstraint

1.2 A Taxonomy of Bugs in Relational First-order Mod-
els

Relational first-order models, like any other programming artifacts, might not be perfect
expressions of design intent.
Definition 2 (Expressed model). The model that is expressed by the user, ME.
Definition 3 (Intended model). The model that is intended by the user,MI . This is purely
conceptual: it is in the user’s mind; it is not written.

In general, bugs are inconsistencies between an intended model and an expressed model.
Definition 4 (Bug). Divergence between the user’s expressed and intended models: ME < MI .

We consider that there are four types of bugs that might occur in this context: undercon-
straint, partial overconstraint, total overconstraint, and insufficient scope. This dissertation
describes techniques to assist with debugging the first three categories. It also describes
some techniques for computing sufficient scopes in some circumstances, which can help the
user avoid insufficient scope problems, but does not provide explicit debugging support for
debugging insufficient scope problems.
Definition 5 (Underconstraint). What the user intends is more restricted than what she
has expressed: MI ⇒ME ∧ME ;MI .

An underconstrained (model) formula allows unintended examples. For instance, a
model of a linked list might permit cyclic lists when the engineer intended all lists to be
acyclic. Figure 1.1a depicts a Venn diagram where the outer circle represents all of the

4

examples permitted by the model, and the inner circle represents the examples intended
by the engineer.
Definition 6 (Partial overconstraint). What the user expressed is more restricted than
her intention: ME ⇒MI ∧MI ;ME.

A partially overconstrained model permits some of the engineer’s intended examples,
but not others. For instance, a model of a linked list might forbid lists of length one, but
permit lists of other lengths.
Definition 7 (Total overconstraint). What the user expressed is unsatisfiable despite her
intention: ME |= unsat ∧MI |= sat.

A totally overconstrained model permits no examples — against the engineer’s intention.
For instance, the engineer might check the safety property that a model of a linked list
does not permit cyclic lists; the safety check passes because the model does not permit any
lists of any kind, let alone cyclic ones.

Insufficient Scope. This problem is an artifact of analysis technology. Some first-order
logic analyzers, such as the Alloy Analyzer, work by putting finite scopes on the quantifiers
and translating to propositional logic (SAT). Assume a model of a linked list with distin-
guished head and tail nodes that do not hold data elements. An analysis that requires
a list holding two data elements might fail if the number of nodes were capped at three
(since two of these nodes would be the head and the tail, there would only be one node left
to hold a data element). Insufficient scope can appear to the user like an overconstraint
problem, since some intended examples are excluded, but the cause is different: in a true
overconstraint situation, the first-order formula itself excludes the intended examples; in
an insufficient scope situation, it is the finitization to propositional logic that causes the
intended examples to be excluded. Scope size correlates with time taken to perform the
analysis, so the user generally wants to use the smallest scope possible. Larger scopes
might render the analysis infeasible.

A note on terminology. The term ‘bug ’ is widely used in software engineering practice,
and also in the research literature, with a variety of meanings: a bug could be an incorrect
program code, program state, or even program behaviour [117]. Most frequently these
discussions are in the context of executable programs, but the term debugging is also used
in the context of Linear Temporal Logic (LTL) specifications [55].

The research literature, especially in the area of dependable computing, has standard-
ized meanings for fault, failure, and error [3]. What we mean by ‘bug’ here is a kind of

5

fault. In the eight-dimensional classification of faults described by Avizienis et al. [3], our
bugs are human-made, internal, non-malicious, software, development faults; they might
be due to either accident or incompetence, and they might or might not be deliberate (i.e.,
the result of an explicit engineering trade-off). The persistence classification is not partic-
ularly relevant in the context of specifications. The term ‘bug’ has been widely used, with
a variety of meanings, and our use of the term is consistent with much prior precedent.

1.3 Existing Debugging Tools and Techniques

Debugging can consume much of the effort invested in software development and main-
tenance [53, 109, 116]. Ensuring that high-level models are accurate reflections of the
designer’s intent is especially important, since models often form the intellectual founda-
tion for the rest of the software development process [48].

Debugging, considered as a hypothesis-driven activity [54, 57, 117], is divided into three
sub-activities: identification, localization, and fixing. The first activity includes detecting
and understanding bugs [57]; however, Ko et al. [54] focused on improving bug understand-
ing. Also, studies suggest that understanding is a key factor, and that some debugging
tools (for imperative programs) provide inadequate support for this task [82].

One of the great features of the original Alloy Analyzer (and all subsequent versions)
is its example (and counter-example) finder [42]. This tool finds arbitrary examples (or
counter-examples). These arbitrary examples can be useful for understanding undercon-
straint bugs in the model, by illustrating that what the designer does not intend is ac-
tually permissible. Whether the particular example generated affirms or clashes with the
designer’s intent is a matter of luck and chance.

Seater [94] proposed non-example generation technique to disclose the role, restraining
or relaxing, of a particular formula in a model. The technique aims at understanding a
model and assists users to hypothetically argue why a constraint was not written differ-
ently, which does not become apparent by only running the model and arbitrary browsing
the instances. As the technique uses non-examples to assist users to understand the effect
of models’ parts, discriminating examples focus on particular hypotheses for debugging a
model. Using this technique, users can test their hypotheses about different syntactical
mutations of the model, whereas the discriminating examples encode hypotheses based on
prior experiences on slight semantics mutations of the model. Despite lack of implementa-
tion, the core idea of using non-examples for testing different hypotheses inspired our idea
about discriminating examples.

6

Modeling by example technique [64] is that the system induces logical constraints
through a dialogue of examples with the user. She begins by providing some prototyp-
ical instances to the system, and then the system responds with other instances that the
user classifies as either valid or invalid. As the dialogue continues, the system refines a
general formula that includes the positive examples and excludes the negative ones. Using
examples for dialogue-based interactions has influenced our debugger, despite the fact that
the discussed modeling be example has not been implemented.

Nelson et al. [78] proposed a technique to produce minimal examples. The motivation is
that a minimal example reveals the essential nature of the model. Minimal examples might
reveal if the lower bound of the model is underconstrained, but are less likely to reveal if
the upper bound of the model is underconstrained. Nelson et al. [78] also proposed a
facility for the user to build up more complicated examples from a minimal example called
scenario exploration. This process might help the user discover underconstraint bugs on
the upper bound of the model if the user specifically tries to construct an example that
they believe should be illegal. This process only produces legal examples, and so is unlikely
to help the user find partial overconstraint bugs.

This dissertation provides improved tool support for understanding underconstraint
bugs by generating examples that might be amongst those permitted by the model but
not intended by the user. This dissertation also provides improved tool support for under-
standing partial overconstraint bugs by generating examples that might be amongst those
intended by the user but forbidden by the model.

With Alloy Analyzer, users can explore all examples of a given model whilst their order
is arbitrary. A vast number of examples of a model makes arbitrary exploration infeasible.
Aluminum provides focused examples by prioritizing absolute minimal examples as the first
ones to be explored. This dissertation provides another approach for prioritizing examples
that assist users to test different hypotheses for debugging.

Shlyakhter et al. [96] enhanced the Alloy Analyzer to use the unsatisfiable core feature
of some SAT solvers for localizing (total) overconstraint bugs. The unsatisfiable core of
a formula is a subset of the formula that by is internally inconsistent: the overconstraint
is within this subset. Torlak et al. [103] subsequently enhanced this tool with improved
minimization techniques that provide better localization. Total overconstraint bugs have
a good localization tool in this, but limited understanding tools. This dissertation pro-
vides improved understanding and localization tools to deal with total overconstraint bugs
by generating non-examples that might be amongst those prohibited by the model but
intended by the user.

Partial overconstraint bugs currently have neither localization nor understanding tool

7

support. A partially overconstrained model permits some intended examples but forbids
others. This dissertation provides techniques to generate non-examples that might be
amongst those that are prohibited by the model but intended by the user.

Alloy language provides explicit syntax for specifying finite scopes for analyzing the
model; the Alloy Analyzer however provides no automatic support for determining sufficient
scope to exclude spurious examples. Nelson et al. [77] proposed a technique to determine
scopes for Bernays-Schonfinkel-Ramsey fragment of first-order logic. Although, solving
the issues with insufficient scopes is not the main goal of our research, we have developed
techniques that help users to select proper scopes for particular queries in the form of ∃∀.

Existing tool support for fix suggestion in relational logic models is quite limited. This
dissertation provides some tool support: in some circumstances one of the proposed tech-
niques can offer the user some high-level advice of what needs to change. For example, it
might say something like ‘relax the total order on relation R to be a partial order.’

Debugging involves three sub-tasks: localization, understanding, and fixing [54]. This
dissertation provides tools and techniques that advance the state of the art for all three,
with a particular emphasis on understanding. The techniques described herein generate
examples that are useful for understanding the three main classes of bugs in logic models:
underconstraint, total overconstraint, and partial overconstraint.

1.4 Discriminating Examples and Other Kinds

Declarative descriptions are easy to develop and read while being used for specifying a gen-
eral concept [64]. A model is imprecise unless all the corner cases are concretely covered.
Specifying and understanding the exceptional cases become easier once specific examples
are used. Examples are precise and straightforward to understand. They also can be
provided graphically as opposed to in textual representation of a declarative formula. Ex-
amples, as the core of our approach, play an important role in assisting the user to under-
standing a bug and identify the root of the problem. Concrete examples, unlike declarative
models are much less abstract and more understandable [4]. In the other words, using ex-
amples, the user can concretely convey what she expects or does not. Hence, we consider
the given examples as an always correct or incorrect piece of information. Note that various
types of examples of a given model are different valuations of the same relations in the
model.

Example In relational first-order models, an example is one interpretation that satisfies
the model’s constraints [Definition 10]. The examples can be specified by users or produced

8

mechanically.

Counter-examples Examples that refute a claim are counter-examples [42]. In the con-
text of relational first-order models, counter-examples reveal underconstraint bugs.

Non-example An interpretation of the model that does not satisfy the model’s constraints
is a non-example [Definition 11].

Arbitrary example An example that is mechanically determined without considering
any constraints other than the original model is an arbitrary example [42].

Minimal example An example that becomes non-example if any of its tuples is re-
moved [78].

Near-hit and near-miss examples We define distance between two (non-)examples,
as the number of changes that makes two (non-)examples identical [Definition 14 and
Definition 15]. Near-hit and near-miss examples are a pair of example and non-examples
with a minimal distance, respectively. Borders conceptually separate examples and non-
examples of a given model. Intuitively, a border is between an example and a non-example
with a minimum distance. Therefore, a pair of near-hit and near-miss examples can identify
the concept of border. From this perspective, near-hit and near-miss examples can also be
called near-border examples.

Discriminating example We define them as examples or non-examples that explore par-
ticular hypotheses about how the model should be modified to express the user’s intent
more clearly [Definition 17]. Different types of examples can encode such hypotheses. Using
near-hit and near-miss examples as discriminating examples can evaluate the hypothesis
that bugs happen around the borders. Discriminating examples as non-examples or exam-
ples produced from a weaker or stronger mutation of a model can be used to assess the
hypothesis that the model has an overconstraint or underconstraint bug, respectively.

1.5 Thesis and Contributions

Examples being concrete and thus more understandable than higher level abstractions [4],
are widely used for exploring different aspects of models [104]. Showing the possibility of
using non-examples in finding overconstraints is the key to this project. Non-examples have
been used in similar domains to assist learning procedures [110]. Our debugger asks the
user a series of focused questions in the form of examples and non-examples that explore

9

particular hypotheses about how the model should be modified to more clearly express the
user’s intent. This dissertation is about exploring new approaches to demonstrate:

Discriminating examples are feasible and useful for first-order relational logic languages.

A variety of techniques are employed to make the computation of discriminating ex-
amples feasible, including: partial instances, staged evaluation, counter-example guided
inductive synthesis, pre-computed analyses of modeling patterns, search heuristics, and
parallelization. The utility of discriminating examples for debugging models is demon-
strated with illustrative case studies. In comparison to the existing tools, we show the
usefulness of discriminating examples in debugging the Dijkstra’s dining philosophers prob-
lem. All in all, this dissertation describes our proposed techniques and tools that make the
following contributions:

Contribution 1 (Discriminating Examples): exploring the idea of using (non-)examples
that are focused on confirming or rejecting a particular hypothesis about the model;

Contribution 2 (Formal Definition of Near-miss and Near-hit examples): higher-
order quantifiers are used to define Near-miss and Near-hit examples in a way that can
be feasibly computed with modern solving techniques, including techniques described
in this dissertation;

Contribution 3 (Relational Pattern-based Mutation): an approach for producing
discriminating examples by weakening or strengthening the model;

Contribution 4 (Temporal Patterns for Ternary Relations): a library of debug
patterns encoding temporal structural changes of binary relations;

Contribution 5 (Expressing Examples): introducing inst, a new syntax and semantics
for integrating partial instances at the level of Alloy language and analyzer;

Contribution 6 (Expressing Generator Axioms): introducing uniq, a new syntax
for synthesizing generator axioms and mechanizing scope selection to run ∃∀ queries;

Contribution 7 (Optimization): demonstrating the computational feasibility of the
proposed approaches through case studies, using appropriate techniques.

10

Figure 1.2 Interacting components for producing discriminating examples

Higher-order
quantifer evaluator

Margaux

Bordeaux

Frontier/Perimeter
Finder By Example

Frontier/Perimeter Finder
 By Constraints

Bentonite

Higher-order query
 runner

uniq

Yeast

inst

(Non)example Finder

Levure Bentonite
Margaux

(Non)example
Finder

Near-hit/Near-miss
finder by Examples

User

 Discriminating
 example finder

Partial
Instances

inst Bordeauxuniq

Near-hit/Near-miss
finder by Constraints

1.5.1 Tools Developed

We have developed four major components1 (Figure 1.2), in order to realize and evalu-
ate the concept of discriminating examples. Bordeaux is a component for producing
examples and non-examples close to borders. By integrating this component with Alloy
Analyzer, users can browse non-examples as well as examples. We have developed Mar-
gaux to assist users in debugging relational models through discriminating examples. Such
discriminating examples check whether bugs happen near the borders or particular seman-
tics are misused. Margaux interacts with Bordeaux to check the first hypothesis, i.e.,
mistakes happen near the borders. For the second hypothesis, the debugger analyzes the
model and finds relevant debug patterns for generating mutations that produce particular
discriminating examples. Pattern-based inference and mutation are our contributions for
producing discriminating examples. The inference uses the concept of debug patterns to
approximate the model and its constituent constraints. Such patterns are conceptually
similar to software engineering patterns encoding best practices. We have demonstrated
the possibility of this approach in revealing and fixing very subtle bugs [68].

Developing Bordeaux needed a tool to solve ∃∀ queries. Bentonite [67] is our con-
tribution for running such ∃∀ queries. In addition, Bentonite has been used for analyzing
models that need the exact scope for composite structures to prevent spurious examples or
counter-examples [24]. To achieve better performance, Bentonite exhaustively uses Le-
vure [66] which is our contribution that encodes and simulates the concept of the partial
instances in Alloy language and analyzer. Levure has also been used in other research
projects to gain better performance [49, 81].

The foremost future work of this dissertation is to empirically measure the usability of
the proposed techniques in collaboration with a real programmer. In addition to improving

1To assess the idea, we have developed 2,615, 3,114, 5,497, and 25,580 lines of Java code (measured
by CLOC [21]) for Levure, Bentonite, Bordeaux, and Margaux, respectively.

11

the performance of the techniques and tools, employing more libraries of debug patterns
will enrich the inference technique. A new library of debug patterns can be categorized by
experts, in the form of best practices or by a machinery technique based on frequencies.

1.5.2 Dissertation Organization

Levure, Bentonite, Bordeaux, and Margaux are the different tools collaborating
with each other to facilitate the debugging of formal models. Through the chapters of this
dissertation, we explore the ideas behind each tool, propose techniques to realize each, and
assess their efficiency.

Chapter 2 explains Levure for encoding partial instances in Alloy and translating them
into the underlying solver’s language. The chapter also shows how partial instance
blocks can be used for testing Alloy models.

Chapter 3 describes the computational cost of Bentonite in running ∃∀ queries. In
addition to our technique to find scopes and stage the simulation, the chapter includes
comparisons between Bentonite and its successors.

Chapter 4 demonstrates the concept of non-examples for debugging models. Moreover,
this chapter shows our definition for relative distances and its applications in pro-
ducing near-hit and near-miss examples with Bordeaux.

Chapter 5 describes how to compute discriminating examples by performing inference
with a library of debug patterns, followed by mutation. Additionally, the heuristics
and optimizations that make this computation feasible are described and measured.
These ideas are embodied in the Margaux tool.

Chapter 6 demonstrates that discriminating examples are more useful for debugging than
existing tools and techniques are in a few case studies, including the Dijkstra’s dining
philosophers problem.

Chapter 7 concludes that discriminating examples are feasible and useful for first-order
relational logic languages. Directions for future work are also discussed.

12

1.5.3 Research Questions

This dissertation provides empirical answers to the following research questions.

2.1 What performance improvement is achieved using inst? (×4 ↑) 21

3.1 How efficient is the staging techniques versus non-staging for running ∃∀
formulas?(× 38 ↑) . 39

3.2 How does the performance of staging technique compare with CEGIS (Alloy∗)
for optimization (expect sat) and property checking (expect unsat) appli-
cation of ∃∀ formulas? (× 2.59 ↑ unsat, × 232 ↓ sat) 40

4.1 What is the extra cost for producing relative minimal non-examples? (× 6.3 ↑
sat formula) . 65

4.2 How many near-miss examples can Bordeaux find in one minute? (17.2) 65

4.3 How far are arbitrary non-examples from the near-miss? (18.3) 65

4.4 How far are absolute minimum non-examples from the near-miss?(5.15) . . 65

6.1 How many examples should the user inspect before she can assume that she
has found an insightful discriminating example with Margaux?(2) 119

6.2 How well do heuristics find discriminating examples? (× 2.5 #Examples ↓,
× 1.8 Time ↑) . 119

6.3 What is the dominant component of the cost of producing discriminating
examples by Margaux? (Simulacrum Inference, 93%) 119

6.4 How many examples should the user inspect before she can assume that she
has found an insightful discriminating example with Alloy Analyzer?(>25) 121

6.5 How many examples should the user inspect before she can assume that she
has found an insightful discriminating example with Aluminum?(≈180M) . 121

13

Chapter 2

Levure: A Syntactic Extension of Alloy
with Examples

One of the great features of the Alloy Analyzer tool is computing and visualizing examples
(or counter-examples) to help illustrate the meaning of the model to the user. However,
the Alloy language has no explicit syntactic support for the user to write these examples
down in a way that can be used in the future debugging, testing, and development of
the model. Perhaps surprisingly, whereas the Alloy language has no way for the user to
write examples, the backend Kodkod API [102] not only has support for encoding examples
(partial instances), it also has features to perform computation with them more efficiently.
The Alloy Analyzer makes some of this improved computational efficiency available to
the user implicitly via static analyses of the model. Our syntactic extension, listed as
Contribution 6, makes this backend functionality explicitly available to the user, as a
bonus on top of the debugging and development benefits of explicitly encoding examples
with the model [4].

Figure 2.1 introduces our syntax extension by describing three instances of a linked list:
simple, single, and cyclic. In the simple instance, the line Node = head + middle + tail says
that there are exactly three node atoms and their names are head, middle, and tail. The
next two lines give the exact bounds for the next and val relations in terms of these atoms
and the integers. The single and cyclic instances are defined in a similar manner. Each inst
block is a corner-case of the linked-list model. While developing the model, one can reuse
them to ensure that the model aligns with one’s intentions.

The inst block gives the Alloy user direct access to Kodkod’s partial instance feature.
Previously, any modeller wishing to specify an instance had to do it implicitly either by a

15

constraint or by a constant function. Consider the phrase val = n→0 which gives an exact
bound for the val relation in the single instance of Figure 2.1. In Alloy 4, the modeller
could have achieved a similar semantics result with the constraint fact {val = n→0} or
by commenting out the val relation declaration and introducing a constant function of the
same name: fun val[] : Node→Int {n→0}. As described below, our new syntax extension
affords the modeller greater clarity and modularity, and corresponds to more consistently
efficient translation.

Figure 2.1 Alloy model of a linked list with instances expressed in proposed syntax

1 sig Node { next : lone Node, val : one Int }
2 inst simple { Node = head + middle + tail, −− introduce three atoms
3 next = head→middle + middle→tail, −− exact bound for next relation
4 val = head→0 + middle→1 + tail→2 } −− exact bound for val relation
5 inst single { Node = n, no next, val = n→0 }
6 inst cyclic { Node = a + b, next = a→b + b→a, val = a→0 + b→1}

Section 2.1 describes four ways in which partial instances benefit the Alloy user: test-
driven development, regression testing, example-driven modeling, and combined model-
ing and meta-modeling. Section 2.2 describes Levure, our proposed extension to Alloy.
Section 2.3 presents experiments that demonstrate the increased computational efficiency
achieved by directly exposing Kodkod’s partial instance feature, compared to that achieved
by adopting traditional Alloy syntax. Section 2.4 considers two other possible ways to make
Kodkod’s partial instance feature available to Alloy users, and argues that our main pro-
posal is preferable. Section 2.6 summarizes the chapter.

2.1 Using Partial Instances for Alloy models

By explicitly expressing examples using partial instance without sacrificing performance,
one can apply common program testing practices in Alloy models. In this section, we ex-
plore two major testing practices that utilize adding partial instance to the Alloy language
and its Analyzer. We also demonstrate the utility of adding partial instances to the Alloy
surface syntax in example-driven modeling and combined modeling and meta-modeling.
As we show in the next sections, these practices are still applicable, but the performance
significantly degrades without partial instances.

Test-Driven Development Partial instances enable modellers to apply test-driven de-
velopment [7] methodology to their Alloy models. Consider the following example scenario.

16

Figure 2.2 A skeletal Alloy model of a binary tree

1 sig Node { left, right : lone Node, val : one Int}
2 pred wellFormedTree[] { } −− to be filled in by students
3 run wellFormedTree for 3

When we teach Alloy to senior undergraduates, the first in-class exercise is to write in-
variants for a binary tree. The lecturer, who has a computer running Alloy, displays the
skeletal Alloy model listed in Figure 2.2.

The lecturer runs the simulation, the class looks at the result and tells the lecturer in
plain language what is wrong with the displayed instance, and then the lecturer translates
that plain language into formal constraints within the wellFormedTree predicate.

During this initial exercise, it is common for students to identify an instance of the
model where some node y is both the left and right child of some node x. When this
occurs, the students usually give a constraint such as ‘the left and right children cannot be
equal,’ which the lecturer translates as all n : Node | n.left != n.right. The students tend to
be satisfied with this translation, but the astute reader will notice that this formalization
prevents leaf nodes, forcing the tree to be cyclic (i.e., a leaf node has no left child and no
right child, and clearly the empty set is equal to the empty set). The students typically do
not realize this overconstraint for fifteen or twenty minutes.

Had the students been following test-driven development with partial instances, they
may have realized the folly of the proposed formalization sooner. Suppose that the students
had first written the two simple partial instances in Figure 2.3. Figure 2.3a lists a tree of
a single node that the students expect to be legal. Figure 2.3b lists a tree with self-loops
that the students expect to be illegal. When the wellFormedTree predicate is empty at
the beginning of the lecture, the illegal self-loops test fails. When the bogus constraint
n.left != n.right is added, then the singleton tree test fails. Having concrete tests (partial
instances) to detect errors in the program (model) is the essence of test-driven development.

A difference between test-driven development for imperative code versus that for declar-
ative logic models is the role of positive and negative examples. With imperative code,
the programmer writes positive test cases for empty procedures (or code stubs) that ini-
tially fail. With declarative logic models, a positive example (such as a singleton tree)
will succeed with an empty wellFormedTree predicate. Only once the predicate becomes
overconstrained will the positive example fail. In contrast, negative examples will fail
with the empty predicate, and will only pass with a properly constrained predicate. Con-
sider, for example, the negative example of a node that is its own child in Figure 2.3b. If
wellFormedTree is underconstrained (e.g., empty) then this test will fail. Thus, the pro-

17

Figure 2.3 Two partial instances of a binary tree: (a) a legal singleton tree, and (b) a
tree with illegal self-loops
(a)
1 inst SingletonTree { Node = n, no left, no right, val = n→0 }
2 run wellFormedTree for SingletonTree expect 1

(b)
1 inst IllegalSelfLoops { Node = n, left = n→n, right = n→n }
2 run wellFormedTree for IllegalSelfLoops expect 0

grammer builds up a procedure for constructing positive examples, and the modeller builds
up a predicate to rule out negative examples.

Regression Testing of Alloy Models Like programs, models evolve: requirements
change, extra properties need to be checked, refactoring is needed for readability, and so
on. As with programs, some form of regression testing can provide assurance that the
model (or program) still corresponds to programmer intent.

For an Alloy model with associated safety properties, partial instances can be used
in regression testing to detect over-constrained models. When a model becomes over-
constrained, the safety properties will still hold; however, the modeller might be unaware
of over-constraints. Regression testing of Alloy instances can be effective in detecting these
occurrences. The users following a TDD approach can have their initial tests do double
duty as regression tests.

Example-Driven Modeling The idea of Example-Driven Modeling (EDM) [4] is to
utilize explicit examples as first-class citizens for comprehending, verifying, and validating
software modeling. With an extensive use of examples, EDM makes modeling accessible
for stakeholders who have limited training in software modeling, yet know the problem
domain very well. EDM aims to improve the quality of software modeling be synthesizing
abstraction from examples and deriving examples from abstract models. As discussed by
Bak et al. [4], explicit syntactic support for examples is an important part of an EDM
system. With our proposed syntax, EDM can benefit from partial examples modeling that
only aims for important properties in a given model.

Combined Modeling and Meta-Modeling Alloy is sometimes used to define new
modeling languages. We will refer to such activity as ‘meta-modeling.’ Let L name the

18

Alloy model that describes the new language, and letM name an Alloy model that describes
a model written in the new language. At present, there is often no mechanical connection
between L and M . Our facility for adding partial instances to Alloy makes it easier to
have L and M tightly integrated. We examine the work of Cai and Sullivan [12, 13, 14, 99]
as a case study to illustrate these points and demonstrate the performance improvement
achieved by inst block.

2.2 Language Extension

We propose to add an inst block to the Alloy language, i.e., Contribution 5, allowing
the user to specify a partial instance, as illustrated above in Figures 2.1, 2.2, and 2.3.
The partial instances in those examples only use exact bounds; Kodkod and our syntax
support lower and upper bounds as well, using the in and includes keywords, respectively.
The lower bound is a set of tuples that a relation must have, and the upper bound is the
one that relation might have [101].

These inst blocks are given names and used in Alloy commands. Whereas once a user
might write run p for 3, they will now write run p for i, indicating that predicate p is to
be simulated in the context of partial instance i.

An inst block, like a sig block, may have an appended fact. For inst blocks, the
appended fact is only expected to be true when that inst block is part of the command
being executed. The purpose of this appended fact is to give the specifier an opportunity
to write constraints that mention the atom names introduced in the inst block — these
names are not available elsewhere in the model.

Figure 2.4a lists the grammar for our proposed extension to the Alloy language to
support partial instances. An iBk has a name, a list of iSts and optionally an appended
fact. Each iSt alternative that contains a var bounds either a signature or a field (whichever
is named by the var). The one iSt alternative that does not name a var provides the default
number of atoms for each signature. A relation (signature or field) name can only appear
on the left-hand side of at most one iSt in each iBk.

An iSt that names a signature on its left-hand side introduces atom names on its
right-hand side. These atom names can then be used to describe the bounds on fields.
An iXpr is an expression that describes a set of tuples using the normal Alloy union (+)
and cross-product (→) operators along with the names of the atoms. If the user wishes
to specify both an upper and lower bound for relation r, she can write an iSt such as

19

Figure 2.4 Grammar and preliminary type definitions

(a) Grammar

〈iBlk〉 := ‘inst’ id (‘extends’ id)? ‘{’ 〈iSt〉[,〈iSt〉]* ‘}’ (‘{’ 〈frml〉 ‘}’)?

〈iSt〉 := 〈n〉
| ‘exactly’ 〈n〉 〈var〉
| 〈var〉 ‘=’ 〈iXpr〉
| 〈var〉 ‘in’ 〈iXpr〉
| 〈var〉 ‘include’ 〈iXpr〉
| 〈var〉 ‘include’ 〈iXpr〉 ‘moreover’ 〈iXpr〉
| ‘no’ 〈var〉

〈iXpr〉 := 〈iXpr〉 ‘->’ 〈iXpr〉
| 〈iXpr〉 ‘+’ 〈iXpr〉
| ‘(’ 〈iXpr〉 ‘)’
| 〈atm〉

(b) Preliminary type definitions

〈prb〉 := 〈univ〉 〈iSt〉* 〈frml〉*

〈univ〉 := {〈atm〉[,〈atm〉]*}

〈tpl〉 := 〈atm[,atm]* 〉

〈cnst〉 := {tpl[,tpl]*} | {} [×{}]*

〈var〉 := id

〈atm〉 := id

〈sig〉 := 〈var〉

〈sigs〉 := 〈sig〉*

〈n〉 := int

r include x + y moreover p + q, specifying a lower bound of x + y and an upper bound
of x + y + p + q.

One partial instance block may extend another. The semantics of partial instance
extension are simply concatenation and conjunction. Let p name the base partial instance
block; let q name the extending partial instance block; and let r name the result of applying
the extension to q. The text of r is the concatenation of the text of p with the text of
q. The appended fact of r is the conjunction of p’s appended fact with q’s appended fact.
The result, r, must follow the same well-formedness guidelines as p and q: no relation
can be named on the left-hand side of more than one statement. This restriction keeps
both regular semantics and extension semantics simple, as it prevents statements from
interfering with each other (notwithstanding quantitative statements that interact with
named statements in a well-defined manner as formalized below).

2.2.1 Semantics

We define the semantics of the partial instance block as an extension of the Kodkod se-
mantics [101]. The Kodkod semantics take a universe and relation bounds as inputs. The
purpose of the partial instance block is for the user to specify the universe and relation
bounds.

Figure 2.5 describes how the universe is constructed from a partial instance block by
the U function, which in turn makes use of the N, X, and G functions. Preliminary type
definitions are given above in Figure 2.4b. First the N function constructs a universe in

20

Figure 2.5 Universe construction
evr : sig → univ
U : iBlk → sigs→ evr
G : iSt∗ → sigs→ evr → univ G′ : iSt→ sigs→ evr
X : iSt∗ → sigs→ evr → evr X′ : iSt→ sigs→ evr → evr
N : iSt∗ → sigs→ evr N ′ : iSt→ sigs→ evr
K : sig → int→ univ
Q : iXpr → univ

U [[iBlk, sigs]] := G[[iSt1 . . . iStn, sigs,X[[iSt∗, sigs,N [[iSt∗, sigs, ∅]]]]]]
G[[iSt∗, sig, evr]] := G[[iSt1 . . . iStn, sigs, evr]]
G[[iSt1 . . . iStn, sigs, evr]] := G[[iSt2 . . . iStn, sigs, evr + + G′[[iSt1, sigs]]]]
G[[[], sigs, evr]] := evr
G′[[v [=|in|include] p, sigs]] := {(a, b)|a ∈ sigs ∧ a = v ∧ b ∈ Q[[p]]}
G′[[v include p moreover q, sigs]] := {(a, b)|a ∈ sigs ∧ a = v ∧ b ∈ Q[[p]] ∪Q[[q]]}
X[[iSt∗, sigs, evr]] := X[[iSt1 . . . iStn, sigs, evr]]
X[[iSt1 . . . iStn, sigs, evr]] := X[[iSt2 . . . iStn, sigs, evr + + X′[[iSt1, sigs]]]]
X[[[], sigs, evr]] := evr
X′[[exactly n v, sigs]] := {(a, b)|a ∈ sigs ∧ a = v ∧ b ∈ K[[v, n]]}
N [[iSt∗, sigs, evr]] := N [[iSt1 . . . iStn, sigs, evr]]
N [[iSt1 . . . iStn, sigs, evr]] := N [[iSt2 . . . iStn, sigs, evr + + N ′[[iSt1, sigs]]]]
N [[[], sigs, evr]] := evr
N ′[[n, sigs]] := {(a, b)|a ∈ sigs ∧ b ∈ K[[a, n]]}
K[[v, n]] := {〈ToString(v) +′ $′ + ToString(n− 1)〉} ∪K[[v, n− 1]]
K[[v, 0]] := 〈〉
Q[[p]] := {〈ToString(p)〉}
Q[[p+ q]] := Q[[p]] ∪Q[[q]]
Q[[p→ q]] := 〈〉

which each sig has the default number of atoms. The X function takes this default universe
and returns a universe that complies with the exactly statements in the partial instance
block. Finally, the G function adds atoms named in upper and lower bound statements.
All of these functions take as input a set of the sigs declared in the model. This set of sig
names is used to distinguish statements that might introduce atoms (which name a sig
on the left-hand side) from statements that bound relations (which name a field on the
left-hand side).

Once the universe is constructed (Figure 2.5), then the bounds can be constructed
(Figure 2.6). Figure 2.6 starts by redefining the top-level function P from the Kodkod
semantics [101] to indicate that the universe and the relation bounds are generated from
the partial instance block.

2.3 Experiment

Having a prototype of Levure, we perform an experiment to answer:
RQ 2.1. What performance improvement is achieved using inst?

21

Figure 2.6 Bounds construction (building on formalization of [101])
P : problem→ binding → boolean — top-level function, re-defined from [101]
F : formula→ binding → boolean — formulas, definition given in [101]
S : iSt∗ → sigs→ evr → binding → boolean — list of inst statements
S′ : iSt→ sigs→ evr → binding → boolean — individual inst statement
C : iXpr → univ → cnst — expressions
W : var → sigs→ evr → univ —
P [[sigs.U [[iBk, sigs]] iSt1 . . . iStn frml∗]]b := S[[iSt1 . . . iStn, sigs, U [[iBk, sigs]]]]b ∧ F [[frml∗]]b
S[[iSt1 . . . iStn, sigs, evr]]b := S[[iSt2 . . . iStn, evr, sigs]]b ∧ S′[[iSt1, evr, sigs]]b
S[[[], evr, sigs]]b := true
S′[[exactly n v, evr, sigs]]b := W [[v, sigs, evr]] ⊆ b(v) ⊆W [[v, sigs, evr]]
S′[[v=p, evr, sigs]]b := C[[p, sigs.evr]] ⊆ b(v) ⊆ C[[p, sigs.evr]]
S′[[v in p, evr, sigs]]b := C[[∅, sigs.evr]] ⊆ b(v) ⊆ C[[p, sigs.evr]]
S′[[v include p, evr, sigs]]b := C[[p, sigs.evr]] ⊆ b(v) ⊆W [[v, sigs, evr]]
S′[[v include p moreover q, evr, sigs]]b := C[[p, sigs.evr]] ⊆ b(v) ⊆ C[[p+ q, sigs.evr]]
S′[[no v]]b := b(v) = ∅
C[[p+ q, univ]] := C[[p, univ]] ∪ C[[q, univ]]
C[[p→ q, univ]] := {〈p1, . . . , pn, q1, . . . , qm〉|〈p1, . . . , pn〉 ∈ C[[p, univ]] ∧ 〈q1, . . . , qm〉 ∈ C[[q, univ]]}
C[[p, univ]] := {p′|p′ ∈ univ ∧ ToString(p′) = p}
W [[v, sigs, evr]] := {〈p1, . . . , pn〉|(v ∈ sigs =⇒ p1 ∈ v.evr) ∧ (v /∈ sigs =⇒ pi ∈ vi.evr)}

To answer this question, we compared using the inst block to two alternative modeling
styles in two different versions of Alloy 4.2. The two different styles were constraining
relations with facts and using constant functions instead of relations. Constant functions
are just expressions that are inlined at their point of use. They add clauses but not variables
to the generated sat formula. Alloy 4.x includes some inference capability to translate
constraints on relations as bounds. In response to a draft of this extension, the Alloy
development team improved this inference capability. We refer to this enhanced version as
A4.2′, and to the version of Alloy 4.2 from January 2012 as A4.2. We refer to our version
of Alloy with the inst block as Levure. We devised a micro-benchmark, explained below,
to evaluate the computational efficiency of the proposed inst block compared to A4.2′ and
A4.2. All tests have been done on Intel i7-2600K CPU at 3.40GHz with 16GB memory.
The performance results are essentially the same with both MiniSAT and Sat4J, although
we report only the Sat4J results here.

2.3.1 Micro Benchmark

We devised a micro-benchmark to illustrate the upper bound on the potential performance
improvements of exposing Kodkod’s partial instance features through our new syntax. Our
micro-benchmark has a single signature S and a single binary relation r that maps S to
S. For our inst block, we want to introduce some named atoms of sig S, and then define
relation r to be a fully connected graph (i.e., map every S atom to every other S atom).

22

Figure 2.7 Example models for micro-benchmark experiment

(a) By Fact (b) By Constant-Function (c) By Inst-Block
one sig S0,S1 extends S{}
fact {r=S0→S1 + S1→S0}
pred f[]{all s:S | S in s.^r}
run f

one sig S0,S1 extends S{}
fun r[]:S→S{S0→S1 + S1→S0}
pred f[]{all s:S | S in s.^r}
run f

inst b { S=S0 + S1,
r=S0→S1 + S1→S0}

pred f[]{all s:S | S in s.^r}
run f for b

Figure 2.7 lists forms of modeling examples in the three different syntax: (a) constrain-
ing relation r with a fact; (b) replacing relation r with a constant function named r; and
(c) using our new inst block syntax. The example listings in Figure 2.7 show these models
where signature S has two atoms (S0 and S1). For the plots in Figure 2.8, we generated
these models with signature S having up to seventy-five atoms. The cardinality of relation
r is proportional to the square of the cardinality of signature S (as one would expect from
a fully connected graph).

Figure 2.8 shows graphs characterizing how the translations of the three syntactic ap-
proaches shown in Figure 2.7 scale on different measures: (a) total number of variables
in the resulting Boolean (sat) formula; (b) number of primary variables in the resulting
Boolean (sat) formula; (c) time taken by Kodkod to translate the Alloy model to sat; and
(d) time taken by the SAT-solver to find a solution. We make a number of observations
from the data in Figure 2.8:

1. The inference capability of A4.2 is incomplete: it is unable to deduce that the constraints
on r can be translated as bounds rather than as variables and clauses. Therefore, the
number of variables and the translation and solving times grow exponentially.

2. All other strategies show very little growth as the number of atoms increases.

3. The improved inference in A4.2′ is effective (A4.2′ Fact column).

4. The number of SAT variables produced by the constant function encoding, the improved
inference, and the partial instance strategies is the same (low).

5. The partial instance encoding has the fastest translation and solving times (by a narrow
margin).

The main conclusion of Figure 2.8 is that if the user chooses to use constant functions
instead of relations or writes facts in a manner that Alloy can infer bounds from, then

23

Figure 2.8 Statements using inst block (e.g., Figure 2.7c) take less analysis time compared
to two other forms (e.g., Figure 2.7a and Figure 2.7b) that are executable with Alloy
Analyzer 4.2 and its enhanced version, Alloy Analyzer 4.2′.

0

500000

1000000

1500000

2000000

2500000

3000000

 10 20 30 40 50 60 70

T
o
ta

l
V

a
ri
a
b
le

s
 N

u
m

b
e
rs

Variables numbers

fact-A4.2

fun-A4.2

fact-A4.2’

fun-A4.2’

Levure

0

1000

2000

3000

4000

5000

6000

 10 20 30 40 50 60 70
P

ri
m

a
ry

 V
a
ri
a
b
le

s
 N

u
m

b
e
rs

Variables numbers

fact-A4.2
fun-A4.2

fact-A4.2’
fun-A4.2’

Levure

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70

T
ra

n
s
la

ti
o
n
 T

im
e
 (

m
s
)

Variables numbers

fact-A4.2
fun-A4.2

fact-A4.2’
fun-A4.2’

Levure

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10 20 30 40 50 60 70

S
o
lv

in
g
 T

im
e
 (

m
s
)

Variables numbers

fact-A4.2
fun-A4.2

fact-A4.2’
fun-A4.2’

Levure

there is little performance gain from the inst block. Regarding RQ 2.1, the inst block
does provide the best performance, and does so without the users having to worry about
whether their writing style is comprehensible to Alloy’s bounds inference facility.

The micro-benchmark evaluates the models containing one sig and relation. Without
inst block, the time grows exponentially as the number of the signature’s atoms increases.
As this growth happens regardless of the number of relations, the performance of the
analysis is highly influenced by the number of tuples.

24

Figure 2.9 Partial instance encoding of Irwin et alia’s description [41] of the design space
for a matrix manipulation program

1 inst IrwinMatrixDesignSpace {
2 AugmentedConstraintNetwork = ACN,
3 Variable = Density + Struct + Alg,
4 Value = dense+sparse + links+array + traverse+lookup + other,
5 domain = Density→(dense+sparse) + Struct→(links+array+other) +
6 Alg→(lookup+traverse+other),
7 dominates = ACN →((Struct→Density)+(Alg→Density)),
8 solutions = ACN →Solution,
9 }{−−Appended facts have access to atom names introduced in inst block
10 all s : Solution | {
11 let x = {p : Variable, q : Value | some b : s.bindings | p=b.var and q=b.val} |{
12 (Struct→links) in x ⇒ (Density→sparse) in x
13 (Struct→array) in x ⇒ (Density→dense) in x
14 (Alg→lookup) in x ⇒ (Struct→array) in x
15 (Alg→traverse) in x ⇒ (Struct→links) in x
16 }}
17 }
18 run createMatrixACN for IrwinMatrixDesignSpace

2.3.2 Staged Evaluation

In a series of papers over the last ten years Cai & Sullivan et alia have been exploring formal
techniques for assessing modularity in software design [12, 13, 14, 99]. This is a serious,
high-quality research effort that (we claim) illustrates some of the shortcomings of the
current Alloy surface syntax that our proposal for integrating partial instances addresses.

Cai & Sullivan have written their meta-model (L) in Z [12]. This meta-model is then
implicitly encoded in the Java source of their tool Simon. Given a model of a software
design in their language, Simon produces a specialized Alloy model (M) that is used to
check modularity properties of the proposed software design. There is no mechanically
analyzed connection between L and M .

We have translated the Cai & Sullivan meta-model from Z to Alloy and used our partial
instance feature to write some of Cai & Sullivan’s specific models as partial instances of
this meta-model. Figure 2.9 lists our encoding of Cai & Sullivan’s study of Irwin et alia’s
example of designing a program to store and manipulate a matrix [41]. There are three
variables (decisions) in this design space (line 3): the density of the matrix, the underlying
data structure used to encode the matrix, and the algorithm used to manipulate that
structure. More specifically, the matrix may be dense or sparse, the structure may be a
linked list or an array (or other), and the algorithm may be either ‘lookup’ or ‘traversal’
(or other) (lines 4–6). In the vocabulary of Cai & Sullivan, the density decision dominates
the data structure and algorithm decisions (line 7). The intuition here is that one selects

25

Figure 2.10 Iwrin matrix design space partial instance (Figure 2.9) extended with binding
atoms generated by a previous simulation

1 inst IrwinMatrixDesignSpace_WithBindings extends IrwinMatrixDesignSpace {
2 Binding = B0+B1+B2+B3+B4+B5+B6+B7,
3 var = (B0+B1)→Struct + (B2+B3+B4)→Density + (B5+B6+B7)→Alg,
4 val = B0→dense + B1→sparse + B2→links + B3→array + B4→other +
5 B5→traverse + B6→lookup + B7→other }
6 run createMatrixACN for IrwinMatrixDesignSpace_WithBindings

the data structure and algorithm depending on whether the density is expected to be dense
or sparse. Additionally, the partial instance block is followed by a list of facts (lines 9–17)
that constrain valid solutions of the design space to those where the algorithm and data
structure are natural matches for the matrix density and each other. A fact appended to
a partial instance block can make use of the atom names introduced in that block.

The proposed partial instance feature offers Alloy users the opportunity to stage eval-
uation of their models, which might potentially save time when certain parts of the model
are not changing and other parts are. Consider, for example, the model in Figure 2.9 that
describes the design space of a program to manipulate matrices. The partial instance of
Figure 2.9 is written in terms of Cai & Sullivan’s meta-model, which has (design) variables,
values, bindings of variables to values, and ‘states’. (The ‘states’ are of a design automaton,
which is a concept they use to analyze design spaces that we do not explain here.)

Suppose that the user wishes to experiment with the constraints written in the appended
fact of Figure 2.9. These constraints do not affect the space of valid binding atoms.
Therefore, the user could stage the evaluation of the model by saving the legal bindings
in a partial instance, such as in Figure 2.10. Subsequent simulations would not have to
resolve this part of the model.

Table 2.1 characterizes the potential performance improvements from staged evaluation
using the Irwin matrix design space example of Cai & Sullivan. The translation time for
the model from Figure 2.10 is over ten times faster than the translation time for the model
from Figure 2.9, and the solving time is three times faster, for an overall improvement of
seven times. Obviously the speedup to be gained from staged evaluation depends on the
particulars of the model in question; other models will likely produce different results than
this one.

Table 2.1 also shows performance results for A4.2 and A4.2′ simulating a model equiva-
lent to Figure 2.9 (i.e., not staged). In this particular case there is no significant difference
between A4.2 and A4.2′. We suspect that this is the case because the domain relation is
constrained piecewise across a number of appended facts. All of these piecewise constraints

26

Table 2.1 Performance improvements from staged evaluation of Cai & Sullivan case study

Total Vars Pri. Vars Clauses Translation Solving
time (ms) time (ms)

Levure (Fig. 2.9) 59,694 773 162,642 12,742 6,744
Levure (Fig. 2.10 — staged) 20,060 503 37,148 986 2,174
A4.2 59,953 768 162,417 11,976 27,415
A4.2′ 59,953 768 162,417 11,188 27,730

add up to an exact bound on domain, but a fairly sophisticated whole-model analysis would
be needed to deduce that. Answering RQ 2.1, Levure results in four times faster solv-
ing time than A4.2′ for the model in Figure 2.9, at the expense of a 10% slowdown in
translation time.

2.4 Alternatives Considered

In this section we consider some alternative approaches for examples in Alloy and argue
for the approach proposed in this chapter.

2.4.1 Static Analysis

Alloy 4.x already includes the capability to infer when constraints might be encoded as
Kodkod bounds rather than as SAT clauses. Although it is not yet perfect, this capability
will continue to improve. Given this capability, no extra syntax is needed to realize the
main performance benefits of Kodkod’s partial instance feature.

We argue that there are software engineering benefits to our new syntax beyond the
performance gains that it affords. The proposed syntax makes it easy for the specifier to
run different commands with different instances, or to run commands with no inst block
(the norm in Alloy now). Writing an inst block implicitly via constraints in the traditional
Alloy syntax makes it difficult to switch from running a command with an inst block to
running a command without a inst block. For example, to run the fragment in Figure 2.7a
without a inst block, we would want to remove the keyword abstract from the signature S
and remove the sub-signatures S1, S2, S3. With the inst block syntax, one does not have
to edit the text of the model to run it in these different ways. A number of our use cases
described above depend on this affordance of the new syntax.

27

Figure 2.11 Syntactic alternatives for the body of the inst block
(a) object-oriented style
sig S{r: S}
inst i{S=S1+S2+S3,

S1.r=S2, S2.r=S3}

(b) set-oriented style
sig S{r: S}
inst i{S={S1,S2,S3},

r={S1→S2,S2→S3}}

(c) relational style
sig S{r: S}
inst i{S=S1+S2+S3,

r=S1→S2+S2→S3}

2.4.2 Syntactic Alternatives for the inst Block

There are a variety of different ways in which one could specify the body of a inst block.
We consider the proposal described above to be a ‘relational’ style because each statement
specifies a different relation.

Alternatively, one could imagine an ‘object-oriented’ syntax in which relations are de-
fined piecewise with respect to individual atoms. Figure 2.11a lists a small example of this
syntax. The same example is listed in the relational style in Figure 2.11c. The object-
oriented style syntax is intuitively appealing for some examples; however, its piecewise
nature makes the bound being defined unclear: does Figure 2.11a define a lower bound or
an exact bound for relation r?

Another alternative syntax is ‘set-oriented’ style, shown in Figure 2.11b. This style is
concise and consistent with common mathematical notation, but it does not conform to
the existing Alloy expression grammar.

Our proposed relational style syntax (Figure 2.11c) conforms to the existing Alloy
expression grammar and has a clear and uniform way to specify lower, exact, and upper
bounds.

2.5 Related Work

Torlak and Jackson [102] proposed expressing partial instances using scope definitions for
finite bound analysis. When the idea was published in 2012, there was no direct support for
expressing and using partial instances at the level of Alloy language and its analyzer [66].
Sullivan et al. [98] proposed a framework for unit testing Alloy models. This idea is
similar to what we explained in Section 2.1 for realizing Test-Driven Development with
partial instance. As an application of explicit encoding partial instances The tool has
also been used for developing other ideas: for test-case generation [49] and multi-objective
optimization [81]. In the former case, the generated test-cases can be saved as partial
instances for the internal solver. For the latter case, the optimizer employs a multi-step

28

solving process and, the output of each step could be transferred to the next step in a partial
instance block. Cunha et al. [20], Macedo and Cunha [61] employed partial instances to
accelerate their technique for bidirectional model transformation.

2.6 Summary

Exposing Kodkod’s partial instance feature in the form of explicit examples increases the
computational efficiency of Alloy Analyzer for producing discriminating examples and gen-
eral Alloy users. In this chapter, we have showed evidence of Contribution 5. Our pro-
posed syntax can efficiently realize the idea of bug finding with explicit testing, as explained
in Section 2.1. Our extension also makes staged model solving feasible by decreasing the
size of universe of discourse for particular formulas, such ∃∀ discussed in Chapter 3.

In addition, the extension facilitates test-driven development of Alloy models; regression
testing of Alloy models; to support ideas such as example-driven modeling and combined
modeling and meta-modeling. While Alloy currently has an inference mechanism that
makes use of Kodkod’s partial instance functionality behind the scenes, these engineering
benefits are substantially facilitated by explicit syntactic support for examples.

There is more than one possible way to expose Kodkod’s partial instance feature to
the Alloy user. We have explored a number of alternatives, and recommend a new named
block with statements written in a relational style. This recommendation is backwards
compatible with existing Alloy models and the existing Alloy expression grammar; it affords
the user a uniform way to express exact, upper, and lower bounds; it combines with Alloy
commands in a modular fashion; and it can be easily and efficiently translated to Kodkod.

29

Chapter 3

Bentonite: An Extension of Alloy for
∃∀ Queries

The kinds of properties that the Alloy Analyzer is usually asked to run or check are
generally of the form ‘find an example’ or ‘find a counter-example’. Less commonly, in
historical practice, are analyses of the form ‘there exists x for all y (∃∀)’, where both x
and y are two composite structures., i.e., signatures embodying a set of fields in Alloy
terminology. These kinds of analyses are cumbersome for the user to specify in the Alloy
language, and the analyzer does not always scale to the required computation.

Finding discriminating examples that are near borders needs the queries in the form of
∃∀. As explained in Chapter 4, a query for finding the relative minimal distance between
an example and a non-example can be specified such that there exists a distance that is
shorter than all other distances. Having a solver to run such queries is a must to produce
discriminating examples near borders. In general, we have identified two major applications
for ∃∀ statements: performing model checking analysis and finding optimum instances.

Researchers attempt to use Alloy for analyzing model checking of queries (e.g., [19, 24,
30, 106]). In this case, a user typically wants to check whether every state in a transition
system must have a successor: ‘all x : State | some y : State | next[x,y]’. To refute this proposition,
Alloy Analyzer tries to find an instance consistent with the negation of the proposition,
which is in the form of ∃∀, i.e.,‘some x : State | all y : State | not next[x,y]’. Without taking care of
generator axioms, such as using uniq block, Alloy Analyzer will then construct a truncated
universe in which some State does not have a successor, and the proposition will be reported
as false, i.e., spurious counter-example. To assess Bentonite in analyzing these kinds of
applications, we evaluate it on forml [24, 25], which need the analyzer to exhaustively

31

explore the declared world states so as to check the assertion in the form of ∃∀.

Researchers have used Alloy Analyzer and its underlying solver Kodkod [102], to find
optimum instances with respect to some objectives [20, 81, 85, 87]. In essence, a statement
in the form of ∃∀ can specify a query for some optimum instances compared to all other
instances. After we published the ideas behind Bentonite to facilitate model checking
with Alloy, researchers at MIT developed Alloy∗ to analyze statement needing quantifi-
cation over relations [65]. They showed how the tool can be also used for analyzing ∃∀
statements without worrying about insufficient scopes.

In this chapter, we describe how staging the analysis improves the scalability and speed
of the analyzer for these ∃∀ analyses. We have also developed a small syntactic extension to
the Alloy language, listed as Contribution 6, that makes it easier for the user to specify
these kinds of analyses. In brief, the user adds the new uniq (‘unique’) keyword to the
signatures (sets) that she would like to use to generate all possible objects of (the domain
of the ∀ in the ∃∀ query). From this keyword, a generator axiom [42], is automatically
synthesized, which forces all of the desired atoms to exist in the universe of discourse.
Previously the user would have had to write this generator axiom by hand [42] and specify
the size of the universe of discourse, both of which are inconvenient almost to the point of
being unusable.

The Alloy Analyzer without staging will attempt to solve the generator axiom and the
∃∀ query simultaneously. This approach often does not scale to problems of interest, or
is unacceptably slow. Our staged Alloy Analyzer, called Bentonite, first generates all
of the atoms that satisfy the generator axiom, then records these as a partial instance, as
explained in Chapter 2, which is combined with the ∃∀ query in the second stage.

As we show in this chapter, Alloy∗ works efficiently when the existential quantifier
of a ∃∀ statement is expected to be skolemized, whereas Bentonite works more quick
once such a statement is unsatisfiable, e.g., the analyzer fails to refute the proposition.
Through the rest of this chapter, we will explain our proposal for Bentonite. However,
we have used Alloy∗ to prototype Bordeaux, expressed in Chapter 4. Our preliminary
experimental studies have shown that it works more efficiently for Bordeaux.

The remainder of this chapter is as follows: Section 3.1 provides an example to clarify
the idea for extending Alloy. Section 3.2 illustrates how we syntactically and semanti-
cally augmented Alloy to solve the problem. Section 3.3 demonstrates our techniques
for supporting the extension, and Section 3.4 shows experiment results for performance
evaluation.

32

3.1 Illustrative Example

For illustration, Figure 3.1 lists a simple example of an address book (adapted from [42]).
This address book, encoded as Book signature, comprises a set of names and a set of
mappings (addr) of those names to aliases or locations.

Figure 3.1 Address book example (adapted from [42])

1 abstract sig Target {}
2 sig Loc extends Target {}
3 abstract sig Name extends Target {}
4 sig Alias, Group extends Name {}
5

6 uniq sig Book {
7 names: set Name,
8 addr: names→some Target}{
9 no n: Name | n in n.^addr
10 all a: Alias | lone a.addr}
11

12 pred add [b, b’: Book, n: Name, t: Target] {
13 t in Loc or some (n.^(b.addr) & Name & t)
14 b’.addr = b.addr + n→t
15 b != b’}
16 pred del [b, b’: Book, n: Name, t: Target] {
17 b != b’
18 no b.addr.n or some n.(b.addr) − t
19 b’.addr = b.addr − n→t}
20 assert InsertORRemove{
21 all b:Book|some n:Name,t:Target,b’:Book| add [b,b’,n,t] or del[b,b’,n,t])}
22

23 check InsertORRemove for 0 but exactly 2 Loc, exactly 2 Alias, exactly 0 Group

The predicates add and del specify what it means to add and remove pairs from this
mapping, i.e., a relation to other entities. The assertion InsertOrRemove says that, for any
address book, if we add or remove some pair from its mapping ,we will get another legal
address book. Alloy Analyzer checks the assertion using refutation, which means it tries
to find an instance satisfying the negation of property. If such an example is found, the
property does not hold; otherwise, the model is consistent with the property within the
given scope; that is, the result of add or remove operations leads to another atom of the
book.

Checking this property requires a generator axiom; otherwise, a generator axiom the
analyzer could produce a spurious counter-example by simply failing to generate some
particular address book. The listing in Figure 3.1 implicitly includes such a generator
axiom by use of our uniq keyword (line 5).

33

A generator axiom must embody some concept of object identity. The generator axioms
implied by our uniq keyword treat two objects as different if they have different field values.
This is different from the default concept of atom identity in Alloy (which does not consider
field values), but is a meaning that users sometimes write in their models.

Before going through the rest of the chapter, some terms are defined: a) Unique objects
are the objects of a signature that differ in at least one of their fields; b) Possible objects
are all unique objects that a signature can have regardless of any constraints defined in
the model; c) Legal objects are the possible objects of a signature that are also consistent
with the related constraints in the model; and d) illegal objects are the possible objects of
a signature that are inconsistent with the related constraints in the model.

3.2 Language Extension

Since Alloy runs and checks a predicate in a finite universe of discourse, the quantified
variables have to be bound. Quantifying over composite structures, i.e., a ‘signature’
embodying a set of fields in Alloy terminology, has to be bound as well. The bound of a
composite structure depends on the bound of other related structures. The bound is infinite
if the uniqueness of a composite signature’s objects is not considered, or the signature
directly or indirectly has a relation to itself [42]. However, depending on the fields of a
signature, unique objects can be intractably large. Despite this fact, a restricted subset
of possible objects of a signature is interesting. This subset can either be determined
by a set of constraints or given as an inst block [§2]. Still, determining the scope of a
composite structure with respect to the constraints is a hard problem [51]. This issue
becomes critical for simulating ∃∀ statements when the universal quantifier enumerates
over objects of composite structures. Below, we express the syntax and semantics used in
developing Bentonite.

3.2.1 Syntax and Semantics

We propose adding a new keyword to Alloy: uniq. This keyword indicates that all ‘unique’
atoms should be generated for a signature, i.e., Contribution 6. What does ‘uniq’ mean?
By definition each atom is unique. Our intended meaning extends the metaphor between
Alloy and object-oriented programming languages. By ‘uniq’ we mean not only that each
atom is unique (which is obviously already the case), but that no other atom of the same
type has the same ‘field’ values. The metaphor we are extending is that the declarations

34

of relations in Alloy are syntactically arranged to look like field declarations in an object-
oriented programming language. This is the same approach to generator axioms taken in
Jackson’s book [42].

Regardless of the arity or multiplicity of the relations, the form of the constraint that
requires all atoms to be unique remains the same: simply that no two distinct atoms have
the same field values. Figure 3.2 lists the general form of an Alloy signature. There are
n relation declarations, r1 through rn. Each relation declaration names some number of
other types (usually signatures) T i, each with an associated multiplicity declaration mi.
The number of types named may be different for each relation r. Finally, there is an
appended fact, constraints on which atoms are legal, that we here name Φ[this] because it
is implicitly quantified over each atom of signature S.

Figure 3.2 General form of an Alloy signature

1 uniq sig S {
2 r1 : T1

1 m1
1 → . . .→ mi

1 Ti
1,

3
...

4 rn : T1
n m1

n → . . .→ mj
n Tj

n}
5 {Φ[this]} −− constraints that define legal atoms

The general form of our synthesized uniqueness predicates is listed in Figure 3.3. The
idea is simply that any two distinct atoms of a uniq signature have some difference in at
least one of their field values. This constraint generate neither the atoms nor the tuples.
With respect to Φ[this], Alloy Analyzer generates a proper number of legal objects. A

Figure 3.3 General form of a synthesized uniqueness predicate

1 fact Unique {
2 all disjoint s,s’:S | s.r1!=s’.r1 or . . . or s.rn!=s’.rn
3 }

proposal of the implementation is explained in Section 3.3. Apart from the implementation
technique, we have semantically expressed the generator axiom as a fact, called generator
fact (or legal predicate), that could be integrated into the model to ensure that all the
possible objects of the signature are properly generated.

The legal predicate, Φ[this], can be semantically integrated into the model by splitting
the uniq labeled signature into the legal and illegal signatures. To do so, we change the
signature to an abstract signature and extend it into legal and illegal concrete signatures
(e.g., Legal_S and Illegal_S extend the abstract signature S in Figure 3.4). Since an

35

abstract signature does not have any instances, all its instances are partitioned into its
sub-signatures. In this case, the integrated legal facts state that any instances in the
super-signature also belongs to the legal sub-signature, if it is consistent with the legal
predicate. This form of integration only introduces a super-signature of the generated
signature, which is hidden from the user.

Figure 3.4 Semantically integrating the generator axiom into the model

1 uniq abstract sig S{
2 p:X}{
3 Φ[this]}
4 sig Legal_S, Illegal_S extends S{}
5 fact Gen {
6 all s:S | (s in Legal_S) ⇔ Φ[s]
7 all x:X |some s:S |s.p = x }
8 −−
9 sig Legal_S, Illegal_S extends S{}
10 fact Gen {
11 all s:S | (s in Legal_S) ⇔ Φ[s]
12 all t11:T

1
1,. . .,t

i
1:T

i
1,. . .,t

1
n:T1

n,. . .,t
j
n:Tn

n | some s:S |
13 s.r1 = t11 → . . . ti1 and . . . and s.rn = t1n → . . . tin}

If the scope computation is a key concern in supporting generator axioms, the signature
symmetry in the relation declaration seems to be a critical issue. A signature probably
directly or indirectly has a relation to itself, such as in the case that T1

1 is replaced by
either S or an extension of S in Figure 3.2. These kind of relations make a circular depen-
dency between the given bounds, including the signature, and the relation’s unique tuples.
Therefore, the number of distinct tuples cannot be determined, and this kind of relations
has to be excluded from the uniqueness predicates as well as from the Cartesian product
of exact bound calculation. In response to this issue, we raise an argument to see whether
or not a relation containing the signature or an extension of it on the range plays a role
in the number of unique and legal signature instances. As a case, if the relation specifies
an order between the signature instances, then the recursion definition issue matters; oth-
erwise, it can be ignored. For example, in a simple declaration of Natural numbers, e.g.,
‘sig Natural{next:Natural}’, the next relation is a total order between two Naturals. In contrast,
in a simple model of a state machine, e.g., ‘sig State{trans:State}’, logically, there is no total
order between two States by trans. In essence, the number of signature objects does not
depend on the signatures that are not in an ordered relation with.

36

3.2.2 Soundness and Completeness

Bentonite is sound in finding an instance that satisfies a predicate in the form of ∃∀.
Consider ∀a : A| ∃b : B| φ(a, b) as the predicate such that A and B are two composite
signatures labeled with uniq. The universe of discourse includes all legal objects of A and
B with respect to corresponding constraints.

The instance returned by Bentonite is sound. An instance means that there is an
object of B that satisfies φ with all objects of A. Using uniq, Bentonite restricts the
scopes of the objects A and B to the legal objects. As Alloy Analyzer soundly quantifies
over the finite universe encompassing all legal objects, the returned instance is sound.
The search by Bentonite is complete. If it does not find any instance, there is no such
instance in the finite universe. Because Alloy exhaustively searches in the finite universe
and that universe contains all legal objects, the search by Bentonite is complete.

3.3 Techniques

In Alloy, to run or check any predicate quantifying over composite structures, a generator-
axiom and an adequate upper-bound have to be specified. Choosing adequate upper-
bound for composite structures is a critical step. The scope has to be large enough that it
encompasses all the legal objects distinguished by generator axioms. Randomly picking a
large bound makes the checking problem infeasible. Moreover, since the number of possible
objects of a composite structure depends on its fields, any changes in the arity, multiplicity
and scope of other signatures of the fields will lead to another upper bound.

With respect to the semantics of uniq keyword, we have proposed two techniques to
ensure that an upper-bound is properly set and generator axioms are satisfied. The user
confidently checks the predicates quantifying over uniq labeled signatures. Therefore,
the techniques are based on supporting partial instances at the level of the underlying
solver [102] and Alloy [§2]. Using partial instances, the techniques separate the one-step
solving into two major stages. In the first stage, the universe is properly created, and in
the next, the appropriate properties are checked over the created universe of discourse.

3.3.1 Non-staged solving

To ensure that all legal unique objects of a signature exist in the universe, Alloy users
currently first have to make sure that all the generated objects are unique. The unique

37

predicate is written by hand, and totally depends on the structure of the signature. En-
suring the dependency between the signature structure and the body of a unique predicate
is error prone, and unwieldy to maintain.

In order to ensure that Alloy exhaustively searches for an instance, such as while check-
ing for a safety property, the scope of the signatures has to be exactly determined in the
universe. Finding the exact scope is hard in theory (see [51]) and practice. Alloy users
generally use a trial-and-error approach for finding the maximum unique objects of a signa-
ture. A user first guesses the number of the exact scope of a signature, and runs the Alloy
code to see whether any object is found. If an object is found, the number is increased;
otherwise it is decreased. The process is continued until the proper exact scope is found,
then the model is checked for a given property. However, the universe construction and
property checking are performed in one call to the SAT-solver.

3.3.2 Staged-solving using Kodkod

This technique finds a proper upper-bound by systematically checking different scopes.
It looks for a concise scope through a step-by-step searching. The result of each step is
reused in the next step so as to reduce the time and space complexity. The basic idea is
to begin from a small exact scope, increase it with step by step, until it passes a scope
making unsat result; then, it terminates or roll-backs until it finds the proper answer
if the increase step, the number of atoms should be added or removed from the current
scope, was more than one. The technique takes advantage of the the proposed feature in
Alloy [§2] for specifying partial instances (which has been supported in Kodkod for some
time). As shown in Section 3.2, this iteration will be eventually terminate and the precise
upper-bound will be reached.

The model that is going to be checked for a property is partitioned into two slices. One
slice includes a signature labeled with uniq and all constraints on it, and the other includes
the rest of model. The first slice, along with a universe of all the signature atoms that are
referred in the uniq labeled signature and fields is passed to the solver to see whether or
not there is one object satisfying the constraints in the slice. If so, it means there exists
an object of the uniq labeled signature with in the given initial universe.

In order to determine whether one more unique and legal object of the signature can
simultaneously exist, a uniqueness predicate, as explained in Section 3.2.1, is constructed
and conjoined with the previous slice. The result will be passed to the solver along with
an incremented universe that includes the atoms from the previous universe and the found
object(s) in the last step. The already found object(s) is wrapped as lower-bound tuples

38

of the signature’s fields, so the solver does not need to search for the part of the solution
that has already been found. The iteration is continued until the constraints become
unsatisfiable within the incremented universe. If the increament was one, the last satisfiable
universe is considered as a universe for checking the intended property over the whole model
or fed into the universe construction of the next unique labeled signature.

3.3.3 Staged-solving using a SAT-solver

Currently, modern SAT-solvers, like MiniSat [28], provide the capabilities to get the next
instance for a given sat formula, or for incremental solving. To do so, the SAT-solver
complements the current found instance and adds it to the current solving formula. Since
the SAT-solver is not asked to solve a new formula, it reuses whatever it learned while
finding the previous instances. It then finds the next instances, often more quick than the
first one. The SAT-solvers shipped with the Alloy package support incremental solving.
Users can run models, see a satisfying instance, and go for the next one if exists.

We utilized this sat-Solvers’ feature to find all legal objects of a signature. Apart from
implementation details, after slicing the model in the way described previously, this tech-
nique also considers the slice containing the signature labeled uniq. Then, the technique
passes this slice, plus a universe of all atoms of the referred signatures in the constraints
and the signature’s fields, into the underlying solver.

The technique repeatedly calls for the next object until the solver returns nothing. Any
instance returned by the solver is a unique legal object that has to be added to the final
universe. Since Kodkod applies symmetry breaking predicates to a given constraint, the
solver may not return all legal instances of the slice. We therefore turned off the symmetry-
breaking feature to get all objects. Finally, using all the returned objects, this technique
makes the universe and wraps it as a partial-instance block. In the second major stage,
the property is checked with a complete scope that is specified as a partial-instance block.

3.4 Experiment

In this section, we present the empirical evidence to find answers to the following questions:
RQ 3.1. How efficient is the staging technique versus non-staging for running ∃∀ formu-
las?

39

RQ 3.2. How does the performance of staging technique compare with CEGIS (Alloy∗)
for optimization (expect sat) and property checking (expect unsat) application of ∃∀ for-
mulas?

To find the answer of RQ 3.1, we examine the performance of staging and non-staging
techniques on a collection of common data structure models, the phone book example of
Figure 3.1, and a model automatically generated from the forml [24, 25] analysis tool.
In the staged approaches the generator axioms are solved first, and then a statement in
the form of ∀∃ is checked. Bentonite refutes the property by trying to find a counter-
example for its negation of the property in the form of ∃∀. In the non-staged approach
the generator axioms and the property are solved simultaneously. But first, a sufficient
upper-bound has to be properly chosen. Since finding a proper upper-bound is done by
trial-and-error, it is hard to measure the effort and time needed.

The data structure models we examine are sorted linked-list, binary search tree, and
red-black tree. Each model has a predicate to insert, remove, and lookup an integer value
in the specified data-structure. Then we check that every possible object (∀) of the data
structure can be transformed into other objects of the data structure (∃) by inserting or
removing an item. This is similar to the property specified for the phone book example in
Figure 3.1. In order to avoid the recursive spirit of data structure models, we transform
the recursive fields to a new signature and label this signature as being uniquely generated
before checking the property. For example, in modeling sorted linked-list, instead of one
signature for specifying a node like ‘sig Node{value: Int, next: Node}’, we made two signatures,
one for the node and another for the links between two nodes. Using this transformation,
the number of generated lists will be based only on a fixed number of nodes that were
generated before.

forml is a language designed to describe product line features with an associated
analysis to detect their interaction [24, 25]. The forml analysis works by translating
forml into Alloy and then running the Alloy Analyzer. The Alloy models generated by
forml include generator axioms and ∀∃ queries. The forml research team had found that
manually staging their analysis into universe construction and property checking phases
(enabled by inst block [§2]), produced dramatic performance improvements, a finding that
in part motivated this current work. Here we show that our automatic staging generalizes
their manual approach and produces similar improvements for a variety of models.

Figure 3.5 shows that staging using SAT-solver reduces the overall amount of time taken
to check the property, and also improves scalability (the number of problems that can be
checked within a given time bound). The first bar in each cluster of Figure 3.5 shows
the times taken with/without staging, the second and third bars show the times taken

40

Figure 3.5 Staging improves scalability and reduces runtime of ∃∀ queries. Analysis times
(bars) are broken down into three components: object generation; ∃∀ query translation,
which is performed by Kodkod and includes the generated objects as a partial instance; and
sat solving the ∃∀ query. The x-axis is organized by benchmark and technique. Technique
1 is not-staged; 2 incremental growth; 3 is enumeration. Lower bars are better. Bars that
hit the top are time-outs. Enumeration is the only technique that solves every problem.
These are the same benchmarks as in Table 3.1.

LL
S2

BST2
LL

S3
PB15

RBT2
LL

S4
BST3

LL
S5

RBT3
BST4

LL
S6

RBT4

PB30
0

BST5

FORM
L

PB92
0

RBT5
LL

S7
BST6

RBT6
RBT7

BST7

0

100

200

300

1 2 3 1 2 3
Techniques

T
im

e(
S

ec
)

Generating Translating Solving

with staging using Kodkod and SAT-solver, respectively. The times taken with staging
are broken into three components: generation stage, ∃∀ query translation from relational
to propositional logic (Kodkod), and the time to solve the propositional formula (SAT-
solver). The times taken without staging are broken into two components: relational to
propositional logic translation and propositional solving.

Figure 3.5 is sorted from the smallest problem at the left to the biggest problem at the
right. For sufficiently small problems all three approaches work quickly (everything from
bst3 to the left). The non-staged approach almost always completes quickly or times out:
there are only two problems (ll5 and rbt3) that take a medium amount of time. The
staged approach using Kodkod always out-performs the non-staged approach, but times

41

Table 3.1 Staging results with significantly reduced number of variables and clauses in
cnf file generated to check ∃∀ query. Numbers in the column size represent the number
of nodes in the studied data-structure models. This concept of size is not applicable to
Phone Book and forml models.

Staged Not-Staged

Specification Size Gen. Enumeration Incremental
inst. Vars Clauses Vars Clauses Vars Clauses

2 4 19 31 18 28 1,892 3,964
3 9 59 103 58 99 7,089 16,401
4 25 166 323 166 323 33,327 78,833
5 92 489 1,159 489 1,159 309,974 715,938
6 458 1,849 5,868 TO TO TO TO

Sorted Linked List

7 2,987 9,957 41,351 TO TO TO TO
2 5 25 42 24 36 4,858 9,559
3 15 138 313 138 313 28,514 61,258
4 51 386 938 386 938 214,564 486,202
5 188 1,192 3,246 TO TO 2,179,446 4,955,942
6 731 3,345 9,766 TO TO TO TO

Binary Search Tree

7 2,950 10,883 34,932 TO TO TO TO
2 5 24 42 24 42 19,094 46,068
3 12 80 154 80 154 143,220 389,576
4 29 295 685 295 685 900,413 2,584,570
5 74 1,669 4,477 TO TO TO TO
6 201 5,653 16,794 TO TO TO TO

Red-black Tree

7 573 10,353 30,965 TO TO TO TO
NA 15 614 912 614 912 6,597 10,693
NA 300 15,341 110,191 TO TO TO TOPhone Book
NA 920 55,341 919,316 TO TO TO TO

forml NA 170 903 1,582 TO TO TO TO

out for the bigger models (Phonebook300 to the right). By contrast, the staged approach
using SAT-solver is able to complete quickly or in a reasonable amount of time for every
problem we studied. The symmetry breaking was turned off for generating instances, and
turned on for checking the assertion.

Table 3.1 shows the number of variables and clauses in the cnf file generated for
checking the ∃∀ query. In the non-staged approach, this cnf file also contains variables
and clauses for generating the universe. The highlighted rows in Table 3.1 indicate the
largest problem size that the non-staged approach was able to complete in a reasonable
time bound (5 minutes). The highlighted rows for the data structure problems show an
improvement for staging using SAT-solver of three orders of magnitude. The highlighted
rows for the phone book problem show only an order of magnitude improvement for staging,
in part because the non-staged approach is only able to solve or translate this problem at
a small size within the given time limit. The non-staged approach is not able to solve the

42

Figure 3.6 Alloy statements for expressing a property that checks whether the insert and
remove operators over appropriate data structures are valid.

Style 1 Style 2

1 assert{ all s: SLL| some s’: SLL| some i: Int|
2 insert[s,i,s’] or remove[s,i,s’] }

1 pred { some s:SLL | no s’: S | some i: Int|
2 insert[s,i,s’] or remove[s,i,s’] }

forml problem at all in the given time limit.

Since both staging approaches lead to the same upper-bound, the solver generates
the same number of sat variables in clauses. Compared to the non-staged approach,
if the staging using SAT-solver approach completes, it generates magnitude smaller sat
formulae. bst5 problem looks like an exception here. Although, the non-staged approach
generated the sat formula, the solver could not finish it in the remaining time. In general,
in either staging approaches, the translating and solving steps are negligible compared to
the generating phase.

Answering RQ 3.1 in brief, creating separate stages for the generator axioms and the
∃∀ query reduces the time added to check the query and increases the number of problems
that can be solved within a reasonable time bound.

Unlike our staging solution for generating the entire universe before checking the as-
sertion, Milicevic et al. [65] developed an extended Alloy Analyzer, called Alloy∗, using
CEGIS (counterexample guided inductive synthesis) technique to verify whether a found
counter-example is spurious before reporting it to the user. The authors mentioned that
generating the whole universe can be prohibitively expensive. Although this claim looks
to be a reasonable intuition for some cases, such as the examples mentioned in [65], for
some cases, their approach can be less scalable than generating the whole universe. Alloy∗
works well when one looks for a particular instance in a small universe, but it could behave
randomly when the universe is large. iOn the other hand, Bentonite outperforms Alloy∗
once the model is unsat.

To compare these two tools, we evaluate them on Singly-linked List (sll) and Binary
Search Tree (bst) models. Each model has two predicates, one for adding and one for
removing integers to and from the data structure. The predicate may be valid or invalid,
i.e., bogus. We check the models to see whether a state of a data structure is reachable
such that neither operation is applicable. To do so, we model such a statement in two
styles as represented in Figure 3.6.

43

Depending on the validity of insert or remove, the plots in Figures 3.7d, 3.8d, and
3.9d show how the solvers check assertions and predicates over sll and bst with different
numbers of nodes.

The plots in Figure 3.7 show the time needed to complete the predicate-style and asser-
tion-style expressions with Alloy∗ and Bentonite. Alloy∗ is also evaluated in two logically
equivalences of the assertion-style. The first assertion-form follows ‘all a:A | valid[a] implies (. . .)’
and the second is in the form of ‘all a:A | not valid[a] or (. . .)’. The data structures are checked
for two to eight nodes. The X-axes of the plots in all figures are the size of each data
structure, i.e., the number of nodes. The Y-axes in Figure 3.7 are the total time taken to
complete the process. The total time includes the generation time, translation time, and
solving time in Bentonite and translation time, process time, and solving time in Alloy∗.

In Figures 3.7a and 3.7b, Alloy∗ always takes a longer to confirm the correctness of
operation. It cannot finish the process within ten hours for sll and bst of size eight. The
predicate-style is always completed sooner using Bentonite. Surprisingly, as the plots in
Figure 3.9 show, the numbers of sat clauses and variables are equal in both styles. But
using Alloy∗, the predicate-style can be done in a shorter time in bst or longer time in sll.
It is not clear to us why the second assertion-form takes less time than the first assertion-
form in Figure 3.7a. The only different between the two forms is a simple replacement of
the implication operator with an or operator. As Figures 3.7c and 3.7d show, Alloy∗ finds
a counter-example quicker than either assertion style with Bentonite.

Figures 3.8a and 3.8b show how many instances, or candidates, are generated to be
checked in both new solvers. As expected, Alloy∗ generated fewer candidates to be checked
for bst. Notably, Figure 3.8a shows that Alloy∗ generated more candidates than Ben-
tonite did to confirm the correctness of sll. Also from Figure 3.8c, Alloy∗ acted randomly
to generate candidates, whereas the remove operator is an invalid operation in sll. On
the other hand, compared to Bentonite, Alloy∗ produces more sat clauses to check both
data-structures (Figures 3.9a and 3.9a), because Bentonite mainly uses a SAT-solver for
generating the universe, so the final assertion check is done by Kodkod. However, it is
not clear why Alloy∗ generates far fewer SAT variables for bst as opposed to sll from
Figure 3.9d.

Both solvers enable Alloy users to specify logical expressions needing a higher-order
quantifier. Answering RQ 3.2, the preliminary experiments show that Bentonite is more
scalable when the entire universe has to be exhaustively checked, whereas Alloy∗ can find
an actual counter-example faster, if one exists.

44

Figure 3.7 Time VS. Number of nodes for Singly-linked List (sll) and Binary Search Tree
models (bst). The charts show the total time (translation+execution) that Alloy∗ and
Bentonite spend for checking the correctness of the statements expressed in Figure 3.6
over sll (left charts) and bst (right charts). The x -axis range from 2 nodes to 8 nodes
that the data-structures already have before any node insertion or removal. In the top
charts, insert and remove operators are valid so that the models are expected to be unsat.
In the bottom charts, the remove operators are invalid (bogus), but the insert operators
are valid so that the analyzers have to return a counter-example, i.e., the models are sat.

(a) Assertion: Valid Remove Valid Insert (b) Assertion: Valid Remove Valid Insert

(c) Assertion: Invalid Remove Valid Insert (d) Assertion: Invalid Remove Invalid Insert

45

Figure 3.8 Number of instances VS. Number of nodes for sll (Left charts) and bst
(Right charts). The number of instances in Bentonite is the exact number of sll of bst
atoms that should exist in the universe to avoid any spurious counter-example. For Alloy∗,
the number of instances is the number intermediate instances generated by CEGIS.

(a) Assertion: Valid Remove Valid Insert (b) Assertion: Valid Remove Valid Insert

(c) Assertion: Invalid Remove Valid Insert (d) Assertion: Invalid Remove Valid Insert

46

Figure 3.9 Number of SAT variable VS. Number of nodes for sll (Left charts) and bst
(Right charts).

(a) Assertion: Valid Remove Valid Insert (b) Assertion: Valid Remove Valid Insert

(c) Assertion: Invalid Remove Valid Insert (d) Assertion: Invalid Remove Valid Insert

47

3.5 Related Work

Finding all distinct consistent instances of a propositional logic formula is called #sat,
or the model counting problem. Formally, the model counting problem is #P-complete;
it is complete for problems as hard as polynomial-time hierarchy (PH) problems [100],
and dramatically harder than an NP-complete sat problem. Researchers tackle #sat
with both exact and approximate techniques. Biere [10, §20] reports that exact techniques
scale to hundreds of variables and approximate techniques (with guarantees on the quality
of the approximation) scale to a few thousand variables. When Alloy users need to write
generator axioms, they usually also need to specify the correct scope, which can be difficult.
Both of our staging approaches compute this scope for the user ‘dynamically’, by solving a
sliced version of the specification. In Margrave [76], a security policy checker, Nelson et al.
[77], claimed that a signature’s scope can be approximated statically if predicates in the
specification belong to a particular subclass of first-order logic.

The idea of generating all legal instances is also of interest in the context of test-case
generation (e.g., [1, 31, 50]). Khurshid and Marinov [50] used sat-solver based enumeration
with Alloy for this purpose. Symmetry breaking can significantly reduce the number of
instances generated when using sat-solver based solution enumeration [51, 102]. We require
symmetry breaking to be turned off for now, as our experiments have shown that symmetry
breaking can still lead to spurious counter-examples for ∀∃ queries. Ganov et al. [33]
used model partitioning and incremental solving techniques for developing domain specific
solvers based on Alloy. Their approach uses annotations for partitioning the model and
distributing the parts among different solvers.

3.6 Summary

Staging using SAT-solver based solution enumeration and partial instances enables the
Alloy Analyzer to scale to larger ∃∀ queries than were previously feasible. This type of
queries can be used for finding an optimized solution, expecting sat, or model checking,
expecting unsat. In Chapter 4, we use queries in this form for finding discriminating
examples near borders.

Alloy models with ∃∀ queries usually require generator axioms [42]. A common pattern
for generator axioms is to treat atoms as ‘objects’ that are distinguished by their ‘field’
values. We propose a new keyword for Alloy, uniq, from which such generator axioms (and
their associated equality predicates) can be automatically synthesized,i.e., Contribution

48

6. This keyword makes it clearer and easier for the user to specify their intent and facilitates
the staging techniques.

Our staging approach is to first solve the generator axioms, and then feed the resulting
atoms into the property checking stage as a partial instance. Our experiments of checking
such queries for model checking show that this staging strategy reduces the number of
variables and clauses in the cnf file generated for the property checking stage by orders
of magnitude, and thereby scales the analysis to a larger number of potential problems.
Also, our empirical study shows that the staging strategy has better performance than
CEGIS technique for the models that are expected to be unsat but is outperformed by
that technique for satisfiable models. Alloy∗, a tool using CEGIS, was developed after
Bentonite, so we have used it for our further studies.

49

Chapter 4

Bordeaux: An Extension of Alloy for
Producing Near-border Examples

Examples can help people understand abstractions [4, 34, 110, 115] such as models. One of
the great features of the Alloy Analyzer is that it can mechanically generate examples of the
user’s model (formula). These examples are consistent with the model. If the user deems
the generated example undesirable, then it is a concrete representation of an undercon-
straint problem in the model: the model needs to be tightened to exclude the undesirable
example. The Alloy Analyzer generates examples arbitrarily, without specifically targeting
towards either desirable or undesirable examples.

A facility for generating near-miss examples (i.e., non-examples) might help the user
diagnose partial overconstraint bugs. What the user might like to see is an example that
is formally excluded by the model but which she actually intends the model to include
(i.e., is desirable). Cognitive psychologists have found that near-miss examples revealing
contrast are effective for human learning [34].

A simple, if inconvenient, technique for generating non-examples is to manually negate
the model and use Alloy’s existing example generation facility. But the chances of this
technique generating examples that are desirable is slim, since there are typically so many
more non-examples than examples. The chances of a near-miss example being desirable
are higher, because a near-miss example is similar to examples that are desirable.

We have developed a technique and prototype tool, named Bordeaux, for doing rel-
ative minimization of examples. Given mutually inconsistent constraints, A and C, it will
search for examples a and c, respectively, that are at a minimum distance to each other
(measured by the number of tuples added or removed).

51

To find a near-miss example for A, simply set C to be the negation of A and commence
the relative minimization procedure. We say that a is a near-hit example and that c is
a near-miss example (both of A with respect to C). The space between the near-hit and
the near-miss is the border : there are, by definition, no examples of either A or C on
the border. Examples consistent with either A or C must be within A or C and hence
are not on the border. Therefore, the distance of an example to the border cannot be
assessed directly: only the distance between the near-hit and the near-miss examples can
be measured.

To further guide the search towards desirable near-miss examples, the Bordeaux tool
has an affordance for the user to specify which relations are permitted to differ. Bordeaux
uses Alloy∗ [65], which is an extension of Alloy Analyzer, to solve formulas with higher-
order quantifiers.

The experiments in Section 4.5 compare Bordeaux with Aluminum [78] and the Alloy
Analyzer version 4.2. Bordeaux does a better job of producing pairs of near-hit and near-
miss examples that are close to each other, with some computational cost. In some cases
the absolute minimization technique of Aluminum produces results similar to the relative
minimization technique of Bordeaux, but in other cases the results differ significantly.

Based on observations of the experiments, we design and implement two optimizations
for Bordeaux in Section 4.6: scope tightening and parallelization. The key observation
is that, in practice, the near-hit and near-miss are usually very close to each other. The
optimizations reduce the computational cost of Bordeaux by over an order of magnitude.

In the next section, we review related works and discuss how Bordeaux differs from
similar tools. Section 4.1 sketches an illustrative example. In Section 4.2, we define the
concepts and formulas for finding near-hit and near-miss examples, and discuss some other
special cases of these formulas that might be interesting for users, listed as Contribution
2. Section 4.5 demonstrates the experimental evaluation of Bordeaux and its comparison
with the state-of-the-art Alloy analysis tools. Two approaches to optimize the prototype
are described in Section 4.6. Section 4.8 concludes.

4.1 Illustrative Example

Consider a model that describes an undergraduate degree in computer engineering, as in
Figure 4.1. In this illustrative model, a student must take two courses to graduate, and
she must have taken all necessary prerequisites for each course.

52

Figure 4.1 Model of requirements for undergraduate Computer Engineering degree

1 abstract sig Course{reqs: set Course}
2 one sig ECE155, ECE240, ECE250, ECE351 extends Course{}
3 one sig Program{courses: set Course}
4 pred prerequisites{ reqs = ECE240→ECE155 + ECE250→ECE155 + ECE351→ECE250 }
5 fun graduationPlan[]: Program{ {p: Program| eq[#p.courses, 2] and
6 all c: p.courses| some c.reqs implies c.reqs in p.courses} }
7 pred showSuccesfulPlan[]{ prerequisites and some graduationPlan }
8 run showSuccesfulPlan

One can ask Alloy Analyzer to generate an example consistent with the model, the
analyzer generates an example similar to Figure 4.2a. Everything looks OK: this example
corresponds with the user’s intentions. But this model harbours a partial overconstraint
bug: there are examples that the user intends, but which are not consistent with the model.

Bordeaux generates two near-miss examples (Figs. 4.2b & 4.2c). These are non-
examples at a minimum distance from the example in Figure 4.2a, adding one tuple to

Figure 4.2 Examples revealing an overconstraint issue in the model of Figure 4.1

(a) Alloy example (b) Bordeaux near-miss 1

(c) Bordeaux near-miss 2 (d) Alloy non-example

53

relations courses and reqs, respectively. The first near-miss example reveals the partial over-
constraint: a student is prevented from graduating if they take an extra course. The
user rectifies this by changing the equality predicate (eq[]) on Line 6 of Figure 4.1 to a
less-than-or-equal-to (leq[]). The second near-miss example is not interesting to the user
because it just involves a perturbation of the pre-requisites. Subsequent searches can be
set to exclude the reqs relation.

Alloy can be used to generate an arbitrary non-example (e.g., Fig. 4.2d) if the user
manually negates the model. This unfocused non-example is unlikely to be meaningful for
the user, as it might be too divergent from her intention.

4.2 Proximate Pair-Finder Formula

The formal definitions in this section constitute Contribution 2 of this dissertation. As
described above, one of the main challenges in formalizing near-miss and near-hit examples
is formalizing the concept of border. This concept has not been formalized in any prior
work that we are aware of in this area (e.g., not in any of Seater [94], Mendel [64], or Nelson
et al. [78]). As far as we see it, there is no way to explicitly formalize the border, since
there are no examples on the border: the border is the space in between the near-misses
and near-hits. Consequently, we do not explicitly define border, and we define near-miss
and near-hit relatively to each other.

Our definitions begin with some basics, progress to the concept of distance, and then to
near-miss and near-hit. Finally, we introduce the Proximate Pair-Finder Formula, which
is a generalization of the idea of finding a near-miss/near-hit pair, and is the definition
that our implementation embodies.
Definition 8 (Valuation). A valuation V of model M [Definition 1] is a sequence of sets
of tuples, where each entry in the sequence corresponds to a relation in M , and is within M ’s
bounds B. Let V name the set of all possible valuations of M .

The size (#) of a valuation is the number of tuples: #V ,
∑|R|

i=1 |Vi|
Definition 9 (Instance). An instance I of model M is a type-correct valuation of M ,
according to Alloy’s type system [27]. Briefly, every atom contained in the instance will be
in exactly one unary relation, and the columns of each non-unary relation will be restricted in
terms of the unary relations.

Suppose that I and J are two instances of model M .

The difference of I and J (I−J) is a valuation of modelM that, for each relation, contains
the tuples from I that are not in J : (I − J)i , Ii − Ji.

54

We say that J is a subset (⊂) of I if there is at least one relation for which J ’s tuples are
a strict subset of I’s tuples, and no relation for which I’s tuples are not included in J ’s tuples;
formally: J ⊂ I , ∧|R|i=1(Ji ⊆ Ii) ∧ ∃i|Ji ⊂ Ii

Let I name the set of all instances of model M .
Definition 10 (Example). Instance I is an example of modelM if I satisfiesM ’s constraints
C: i.e., C[I] is true.
Definition 11 (Non-example). Instance J is a non-example of model M if J does not
satisfy M ’s constraints C: i.e., ¬C[J] is true.
Definition 12 (Distance). The distance m between two instances I and J is the number
of tuples that must be added to one of the instances to make it equal to the other instance.
This definition only applies when one of the instances is a subset of the other, or in the special
case where they are already equals the distance is zero. This definition is symmetrical in
that D[m, I, J] = D[m, J, I]. This definition is not transitive: due to the complex nature of
instances, there is no linear ordering on them.

D[m, I, J] , (I ⊂ J ∧m = #(J − I)) ∨ (J ⊂ I ∧m = #(I − J)) ∨ (I = J ∧m = 0)

In other words, this definition of distance is a restricted version of the well-known Lev-
enshtein Edit Distance [71]. The Levenshtein distance allows three operations: addition,
removal, and substitution. Our definition excludes substitution because it does not make
sense in this context. Levenshtein distance is defined on strings, which are ordered. Our
distance is defined over sets, which are not ordered. Levenshtein substitution is defined
with respect to the ordering of the string: the character at position x has been changed.
Since sets are not ordered, this concept of substitution does not make sense in this context.
Our definition has an additional restriction. The usual definition of Levenshtein edit dis-
tance allows combinations of additions and removals. Our definition of distance requires
that all of the operations be either additions or removals: i.e., that one of the sets must
be a subset of the other one.

For example, consider the strings aa and aab: the distance between them is 1; the
addition of the b. Consider the strings aa and abb: the distance between them is not
measurable with our definition, because neither is a subset of the other; the Levenshtein
distance would be 2 (switching second a to b and adding a b at the end).
Definition 13 (Minimum distance). Whereas we define distance between two individual
examples, we define minimum distance between two (disjoint) sets of examples. The minimum

55

distance between the two sets is the least distance between some example from the first set,
and some examples from the second set. This definition is symmetrical in the same way that the
definition of distance is: D⊥[m,E1, E2] = D⊥[m,E2, E1]. Also like the definition of distance,
the definition of minimum distance is not transitive.

D⊥[m, E1, E2] , E1 ∩ E2 = ∅ ∧ |E1| > 0 ∧ |E2| > 0 ∧ m > 0 ∧
∃e1 : E1, e2 : E2 | D[m, e1, e2] ∧

(∀e′1 : E1, e
′
2 : E2 | (∃n : Int | D[n, e′1, e

′
2] =⇒ m ≤ n))

Consider an example with sets of strings. Suppose E1 = {aa, bb} and E2 = {aab, b, aabb}.
The minimum distance between these sets is one, which is the distance from aa to aab,
and also the distance from bb to b.
Definition 14 (Near-hit example). We say that an example is a near-hit example if it is at
the minimum possible distance to some near-miss example. Formally, predicate ‘Nh[e1, E, I]’
is satisfied if e1 is a near-hit example, E contains all examples of model M , and I includes all
instances of model M .

Nh[e1, E, I] , |E| > 0 ∧ e1 ∈ E ∧ E ⊂ I ∧
∃ e2 : I −E, m : Int | D[m, e1, e2] ∧ D⊥[m, E, I −E]

Consider the sets of strings example above, supposing that E here is equal to E1 above,
and that that I here equals E1 + E2 from above. We would say that aa and bb are both
near-hit examples of E.
Definition 15 (Near-miss example). Similarly, a near-miss example is one that is at the
minimum distance to a near-hit. Again, E is all examples, and I is all instances (of model M).

Nm[e1, E, I] , |E| > 0 ∧ e1 ∈ I − E ∧ E ⊂ I ∧
∃ e2 : E, m : Int | D[m, e1, e2] ∧ D⊥[m, E, I − E]

Consider the sets of strings example above, supposing that E here is equal to E1 above,

56

and that that I here equals E1 + E2 from above. We would say that aab and b are both
near-miss examples of E.
Definition 16 (Proximate Pair-Finder Formula). Since near-miss and near-hit need
to be defined essentially with respect to each other, we introduce a definition of them together.
Here e1 and e2 are individual examples drawn from (disjoint) sets E1 and E2, respectively. The
examples e1 and e2 are a near-hit/near-miss pair when E1 is all examples of model M and E2

is all non-examples of model M . However, this definition is more general, since E2 might be
some other set of examples (that is disjoint from E1). We discuss some other cases that might
be interesting to users below.

PPFF [e1, e2, E1, E2] , e1 ∈ E1 ∧ e2 ∈ E2 ∧ E1 ∩ E2 = ∅
∃m : Int | D[m, e1, e2] ∧ D⊥[m, E1, E2]

From the sets of strings example above, we would say that the pair 〈aa, aab〉 satisfies the
PPFF. Similarly, the pair 〈bb, b〉 also satisfies the PPFF.

This PPFF definition forms the basis of our implementation. We next show, in several
steps, how this definition is the guiding principle for our Alloy code generator.

4.3 Encoding the PPFF for Alloy∗

The core of Bordeaux generates variants of the PPFF [Definition 16], which it gives to
Alloy∗ to solve. The input to the PPFF generation is two mutually inconsistent sets of
constraints, C1 and C2, over the same set of relations, R. For generating these variants,
Bordeaux encodes modifications of Definition 16 in Alloy. Figure 4.3 shows the variants
of PPFF definition that embody the minimum distance predicate, mutually inconsistent
constraints, and distance predicate.

57

Figure 4.3 Proximate Pair-Finder Formula (PPFF) Variants

PPFF [e1, e2, E1, E2] , e1 ∈ E1 ∧ e2 ∈ E2 ∧ E1 ∩ E2 = ∅ ∧
∃m : Int |D[m, e1, e2] ∧ (∀e′1 : E1, e

′
2 : E2 | ∃n : Int |D[n, e′1, e

′
2] =⇒ m ≤ n)

(a) A variant of PPFF [Definition 16] after embedding minimum distance predicate [Definition 13]

PPFF [E1, E2] , E1 ∩ E2 6= ∅ ∧ ∃e1 : E1, e2 : E2, m : Int | D[m, , e1, e2] ∧
∀e′1 : I, e′2 : I | ∃n : Int | D[n, e1, e2] ∧ C1[e′1] ∧ C2[e′2]) ⇒ m ≤ n)

(b) A variant of PPFF after changing parameters e1, e2 to existentially quantified variables.

PPFF [] , ∃e1, e2 : I, m : Int | C1[e1] ∧ C2[e2] ∧ D[m, , e1, e2] ∧
∀e′1 : I, e′2 : I | ∃n : Int | D[n, e1, e2] ∧ C1[e′1] ∧ C2[e′2]) ⇒ m ≤ n)

(c) A variant of PPFF after changing parameters E1, E2, which are sets of examples, to ex-
ternally defined predicates C1, C2. The predicates C1, C2 return true for all examples in E1, E2,
respectively, and false for all others.

PPFF [] , ∃e1, e2 : I | C1[e1] ∧ C2[e2] ∧
∃v : V | (v = e2 − e1 ∧ e1 ⊂ e2) ∧

∀e′1 : I, e′2 : I, w : V |
(C1[e′1] ∧ C2[e′2] ∧ w = e′2 − e′1 ∧ e′1 ⊂ e′2) ⇒ #v ≤ #w

(d) A variant of PPFF after embedding the distance predicate [Definition 12]

Figure 4.3d demonstrates a definition of the PPFF that we have implemented in the
core of Bordeaux. A solution to the PPFF [Figure 4.3d] is a pair of instances, one
of which (e1) satisfies C1, and the other of which (e2) satisfies C2. The key property of
these two examples is that they are a minimum distance to each other. In the special case
where C2 is the negation of C1, which the narrative of this section focuses on, then e1 is
a near-hit example of C1 and e2 is a near-miss example of C1. For the sake of simplicity,
this variant only considers distance from an instance to another instance by adding tuples.
Hereafter, any reference to the PPFF without explicit qualification should be understood

58

as the formula in Figure 4.3d.

The PPFF is expressed with a top-level existential quantifier. Once the quantifier is
skolemized by the Alloy Analyzer, the quantified variables contain a pair of instances e1

and e2. This PPFF contains two higher-order quantifiers: they are higher-order because
they quantify over valuations of relations. The formula effectively says that there is no
other pair of examples that are closer to each other than are e1 and e2. Valuation v in
the PPFF is the difference e2 − e1. Valuation w in the PPFF is the difference e′2 − e′1.
The relative minimization condition is that the size of w is not smaller than the size of v:
#v ≤ #w.

In the degenerate case where C1 and C2 are not mutually inconsistent, then the PPFF
will always return e1 = e2, because any arbitrary example is at distance zero to itself. The
PPFF is not designed to be meaningful when the constraints are not mutually inconsistent.
The examples e1 and e2 are not necessarily absolutely minimal with respect to C1 and C2,
respectively. That is, there might be smaller examples that satisfy C1 and C2. These two
examples are relatively minimal with respect to each other: that is, the distance between
them is small.

Alloy∗ supports higher-order quantifiers: i.e., quantifiers over relations, which is re-
quired to solve PPFF. The user’s model must be written in regular Alloy, with no higher-
order quantifiers. Bordeaux transforms the user’s Alloy model into an Alloy∗ model and
adds a variant of the PPFF synthesized for the user’s desired search. Bordeaux then
transforms the Alloy∗ solution back into the terms of the user’s original model.

While the Alloy∗ language is syntactically a superset of the regular Alloy language, so
the user’s model is a legal Alloy∗ model, simply taking the user’s model as-is will not work
for the PPFF. The transformation to prepare for solving the PPFF must bundle up all
of the constraints of the original model (fact blocks, multiplicity constraints, etc.) into a
single predicate. The rest of this section describes statements that Bordeaux generates
for specifying Instance, Distance, and finally the PPFF in Alloy. We show Alloy templates
for these statements and illustrate them with formulas that Bordeaux synthesizes for the
example in Figure 4.1.

Instance. To encode the set of instances in the formula, i.e., I, we define a predicate that
distinguishes instances of a model from other valuations. The input parameters of instance,
as we call it, are all relations of the model. For a model havingm unary relations and n non-
unary relations, Figure 4.4 demonstrates three alternatives of what the predicate instance
can look like. All alternatives check whether atoms in tuples of non-unary parameters
already exist in the atoms of the corresponding unary parameters.

59

Figure 4.4 Bordeaux generates the predicate instance to distinguish self-consistent val-
uations from the others. Three different approaches to check the inclusion of tuples of
non-unary parameters are in tuples of the constituent unary relations.

1 pred instance[s1: S1, . . ., sm: Sm,
2 r1: Si→. . .→Sj ,. . .,
3 rn: Sk→. . .→Sl]{
4 // Join r1 to univ |r1|−1 times,
5 // where |r1| is the arity of r1.
6 ((((r1.univ).univ).. . .).univ) in si
7 . . .
8 (univ.(. . ..(univ.(univ.r1)))) in sj
9 . . .
10 ((((rn.univ).univ).. . .).univ) in sk
11 . . .
12 (univ.(. . ..(univ.(univ.rn)))) in sl
13 }

(a) Using join operators to check
self-consistency of tuples passed in
parameters

1 pred instance[s1: S1, . . ., sm: Sm,
2 r1: Si→. . .→Sj ,. . .,
3 rn: Sk→. . .→Sl]{
4 r1 in si → . . .→sj
5 . . .
6 rn in sk → . . .→sl
7 }

(b) Using product operators for
checking self-consistency of tuples
in parameters

1 pred instance[s1: S1, . . ., sm: Sm,
2 r1: Si→. . .→Sj ,. . .,
3 rn: Sk→. . .→Sl]{
4 ((((r1.univ).univ).. . .).univ) in si
5 all x: si| x.r1 in si+1 → . . .→sj
6 . . .
7 ((((rn.univ).univ).. . .).univ) in sk
8 all x: sk| x.rn in sk+1 → . . .→sl
9 }

(c) Checking self-consistency of
tuples in parameters using join
and product operators

To compare these alternatives, we synthesized all three and simulated them with a
n-ary relation. We set n from two to ten and recorded the size of SAT-formula and the
simulation time of each alternative. Measured in Table 4.1, the alternative that uses join

Table 4.1 Comparing use of (J)oin vs. (P)roduct vs. (C)ombination of join and product
operators to implement instance operator explained in Figure 4.4. We simulated each
alternative for relations with different arities, two to ten, in Alloy Analyzer and recorded
the size of SAT formula and simulation time.

Arity J P C J P C J P C J P C J P C

2 162 149 162 238 219 238 11 5 4 1 1 0 12 6 4

3 418 362 393 647 582 625 10 5 4 1 1 1 11 6 5

4 1,191 1,014 1,099 1,892 1,703 1,800 8 7 10 1 0 1 9 7 11

5 3,475 2,922 3,169 5,565 5,000 5,259 24 12 14 1 1 1 25 13 15

6 10,295 8,610 9,343 16,528 14,831 15,576 61 37 36 4 3 4 65 40 40

7 30,723 25,638 27,829 49,361 44,264 46,467 146 111 121 18 13 9 164 124 130

8 91,975 76,686 83,251 147,804 132,503 139,080 462 307 273 41 30 23 503 337 296

9 275,699 229,794 249,481 443,077 397,160 416,859 1,432 1,094 1,163 96 97 78 1,528 1,191 1,241

10 826,839 689,082 748,135 1,328,840 1,191,071 1,250,136 9,125 6,905 7,112 333 294 237 9,458 7,199 7,349

SAT-Variables SAT-Clauses Trasnlation Time Execution Time Total Time

60

Figure 4.5 Sample of instance predicate for the model in Figure 4.1

1 pred instance [_reqs: Course→Course, _ece155: set ECE155, _ece240: set ECE240,
2 _ece250: set ECE250, _ece351: set ECE351, _program: set Program,
3 _courses: Program→Course] {
4 (all v1: one (_ece155 + _ece240 + _ece250 + _ece351) |
5 (v1._reqs in (_ece155 + _ece240 + _ece250 + _ece351))
6 (_reqs.univ) in (_ece155 + _ece240 + _ece250 + _ece351)
7 (all v1: one _program |
8 (v1._courses in (_ece155 + _ece240 + _ece250 + _ece351))
9 (_courses.univ in _program)
10 }

operators, Figure 4.4a, always needs more resources and takes longer. The other two
alternatives perform very similarly. As Alloy Analyzer uses the combination alternative,
Figures 4.4a and 4.4b, for translating theses kind of constraints from an Alloy model to a
Kodkod model, we have chosen it in our implementation.

For illusteration, Bordeaux generates the predicate in Figure 4.5 for the model in
Figure 4.1. The parameters of the predicate are the model’s relations. Since abstract
unary relations, such as Course, do not have concrete valuations, Bordeaux does not
consider them for checking self-consistency.

Distance. As the valuations are encoded by the quantifier variables, we defined a pred-
icate for each relation to find a set of tuples that should be added to the first relation
valuation in order to get the second one. To do so, the predicates, prefixed by delta_, are
synthesized for each relation. Figure 4.6 demonstrates the base definition of the predicate.

The delta predicate is synthesized for all relations that the user expects to see changes
in their tuples. The parameters of the predicate respectively contain tuples for one relation
of a near-hit example, near-miss example, and difference between them. Figure 4.7 shows
the synthesized predicate for reqs relation in the course model. A summation of the size of
the third parameter of the delta_ predicates is the distance between two instance.

PPFF. Figure 4.9 demonstrates a form of PPFF in Alloy. A run of a variant of this
query with Alloy∗ skolemizes near-hit and near-miss examples. The quantifier spanned

Figure 4.6 Typical form of predicate delta_. Bordeaux generates a predicate delta_
for each relation ri.
1 pred delta_ri[r,r′,r′′: Sj→. . .→Sk]{ r != r′ implies r′′=r′−r and r′=r+r′′ else no r′′ }

61

Figure 4.7 Sample of delta_ predicate for encoding distance w.r.t. relation reqs in Fig-
ure 4.1
1 pred delta_reqs[_reqs: Course→Course, _reqs’: Course→Course, _reqs’’: Course→Course] {
2 _reqs != _reqs’ implies (_reqs’’ = _reqs’ − _reqs and _reqs’ = _reqs’’ + _reqs) else no _reqs’’
3 }

over Lines 9-16 in Figure 4.9 ensures that the quantified variables are skolemized to two
instances with a minimum distance by adding tuples. C1 and C2 encompass two inconsis-
tent constraints. All the referenced relations in the body of these constraints are replaced
with the formal parameters. In the context of programming languages, this step is similar
to refactoring a piece of code to replace global variables with local ones.

The distance that is encoded in quantified variables at Lines 6 in Figure 4.9 has to be
minimum. The synthesized delta_ predicates ensure that these variables hold the tuples of
difference between corresponding variables for near-hit and near-miss examples. The size of
distance is the summation of the cardinality of quantified variables representing distances,

Figure 4.8 Sample of synthesized PPFF for Figure 4.1

1 pred PPFF_for_Courses_model[] {
2 some _reqs, _reqs’, _reqs’’: set Course→Course, _ece155, _ece155’, _ece155’’: set ECE155,
3 _ece240, _ece240’, _ece240’’: set ECE240, _ece250, _ece250’, _ece250’’: set ECE250, _ece351,
4 _ece351’, _ece351’’: set ECE351, _program, _program’, _program’’: set Program,
5 _courses, _courses’, _courses’’: set Program→Course | {
6 {instance[_reqs, _ece155, _ece240, _ece250, _ece351, _program, _courses]
7 instance[_reqs’, _ece155’, _ece240’, _ece250’, _ece351’, _program’, _courses’]
8 delta_reqs[_reqs, _reqs’, _reqs’’] and deltaECE155[_ece155, _ece155’, _ece155’’]
9 deltaECE240[_ece240, _ece240’, _ece240’’] and deltaECE250[_ece250, _ece250’, _ece250’’]
10 deltaECE351[_ece351, _ece351’, _ece351’’] and deltaProgram[_program, _program’, _program’’]
11 delta_courses[_courses, _courses’, _courses’’]}
12 and
13 all _reqso, _reqso’, _reqso’’: set Course→Course, _ece155o, _ece155o’, _ece155o’’: set ECE155,
14 _ece240o, _ece240o’, _ece240o’’: set ECE240, _ece250o, _ece250o’, _ece250o’’: set ECE250,
15 _ece351o, _ece351o’, _ece351o’’: set ECE351, _programo, _programo’, _programo’’: set Program,
16 _courseso, _courseso’, _courseso’’: set Program→Course | {
17 {instance[_reqso, _ece155o, _ece240o, _ece250o, _ece351o, _programo, _courseso]
18 instance[_reqso’, _ece155o’, _ece240o’, _ece250o’, _ece351o’, _programo’, _courseso’]
19 delta_reqs[_reqso, _reqso’, _reqso’’] and deltaECE155[_ece155o, _ece155o’, _ece155o’’]
20 deltaECE240[_ece240o, _ece240o’, _ece240o’’] and deltaECE250[_ece250o, _ece250o’, _ece250o’’]
21 deltaECE351[_ece351o, _ece351o’, _ece351o’’] and deltaProgram[_programo, _programo’, _programo’’]
22 delta_courses[_courseso, _courseso’, _courseso’’]}
23 implies
24 leq[sigma[#_reqs’’, #_ece155’’, #_ece240’’, #_ece250’’, #_ece351’’, #_program’’, #_courses’’],
25 sigma[#_reqso’’, #_ece155o’’, #_ece240o’’, #_ece250o’’, #_ece351o’’, #_programo’’, #_courseso’’]]
26 }
27 }

62

Figure 4.9 Encoding PPFF in Alloy. Given an Alloy model, including relations and two
inconsistent constraints, the predicate finds two near border examples consistent with each
constraint. Skolemization of the other existential quantifier represents both examples.

1 pred PPFF{
2 some s1: S1, . . ., sm: Sm, r1: Si→. . .→Sj , rn: Sk→. . .→Sl,
3 s′1: S1, . . ., s

′
m: Sm, r′1: Si→. . .→Sj , r′n: Sk→. . .→Sl|

4 instance[s1, . . ., sm, r1, . . ., rn] and instance[s′1, . . ., s
′
m, r′1, . . ., r

′
n] and

5 C1[s1, . . ., sm, r1, . . ., rn] and C2[s′1, . . ., s
′
m, r′1, . . ., r

′
n] and

6 some s′′1 : S1, . . ., s
′′
m: Sm, r′′1 : Si→. . .→Sj , r′′n: Sk→. . .→Sl|

7 delta_S1[s1, s′1, s
′′
1] and . . . and delta_Sm[sm, s′m, s′′m] and

8 delta_r1[r1, r′1, r
′′
1] and . . . and delta_rn[rn, r′n, r′′n] and

9 all so1: S1, . . ., som: Sm, ro1: Si→. . .→Sj , ron: Sk→. . .→Sl,
10 so′1: S1, . . ., so

′
m: Sm, ro′1: Si→. . .→Sj , ro′n: Sk→. . .→Sl,

11 so′′1 : S1, . . ., so
′′
m: Sm, ro′′1 : Si→. . .→Sj , ro′′n: Sk→. . .→Sl|

12 (instance[so1, . . ., som, r1, . . ., ron] and instance[so′1, . . ., so
′
m, ro′1, . . ., ro

′
n] and

13 C1[so1, . . ., som, ro1, . . ., ron] and C2[so′1, . . ., so
′
m, ro′1, . . ., ro

′
n] and

14 delta_S1[so1, so′1, so
′′
1] and . . . and delta_Sm[som, so′m, so′′m] and

15 delta_r1[ro1, ro′1, ro
′′
1] and . . . and delta_rn[ron, ro′n, ro′′n]) implies

16 leq[sigma[s′′1 , . . ., s
′′
m, r′′1 , . . ., r

′′
n], sigma[so′′1 , . . ., so

′′
m, ro′′1 , . . ., ro

′′
n]]

17 }

Line 16 in Figure 4.9. sigma is an additional synthesized Alloy function returning the
summation of sizes.

Figure 4.8 shows a sample of synthesized Alloy model for the course example. Depend-
ing on the body of C1 and C2, a run on this formula with Alloy∗ would return a pair of
instances and their distance.

4.4 Implementation: Extending Alloy

Based on PPFF, we have developed a prototype tool, Bordeaux that assists Alloy users to
browse examples and non-examples of an Alloy model. While the user can already browse
examples of an Alloy model, she can now also browse the model’s near-miss examples. She
can continue to browse other non-examples or ask for a near-hit example. In addition to
the interaction with the user through the user interface, Bordeaux provides APIs to be
called from another program, such as Margaux.

In the following, we explain how a user can interact with Bordeaux and what func-
tionalities the prototype provides for the user and other programs in the form of APIs.

63

4.4.1 Special Cases of Potential User Interest

The user might be interested in some of the following special cases, which can all be easily
accommodated by generating the PPFF with specific settings for C1 and C2 (some of these
are not yet implemented in the current prototype [69]):

1. Find a near-miss example and a near-hit example: Set C2 to be the negation of
C1 (as discussed above).

2. Find a near-miss example close to an example: Set C1 to be a predicate that
defines the example, and set C2 to be the negation of the model’s constraints.

3. Find a near-hit example close to a non-example: Set C1 to be a predicate that
defines the non-example, and set C2 to be the model’s constraints.

4. Restrict the difference between the examples to certain relations: The dif-
ference operation can easily be generated over a user-specified subset of the relations,
rather than all of them.

5. Smaller near-miss examples: In PPFF, e2 is bigger than e1. If C2 is the negation of
the model’s constraints, this will result in a near-miss example that is larger than the
near-hit. To get a smaller near-miss example, simply set C1 to be the negation of the
model’s constraints, and C2 to be the model’s constraints.

6. Find a near-miss example for an inconsistent model: If the original model is
inconsistent, then it has no examples. A workaround for this situation is to set C1 to
be an empty example (no tuples), and set C2 to be the negation of the model.

4.4.2 Interacting with Margaux

Bordeaux also assists Margaux, explained in Chapter 5, to produce focused near-hit
and near-miss examples. Margaux needs to find a near-hit or near-miss example for
two mutually inconsistent constraints. To do so, Margaux can interact with Bordeaux
through an interface with two APIs:

1. ‘String Find_Near-hit (String C1, String C2, String M)’:Given two constraints,
Bordeaux returns an example consistent with C2 and inconsistent with C2. From the
implementation perspective, the constraints are enclosed in two Alloy pred blocks. Bor-
deaux tailors PPFF to refer to such constraints as C1 and C2. The parameters for

64

selecting relations and adding/removing tuples are passed implicitly. The return is an
example encoded in the form of existential quantifier.

2. ‘String Find_Near-miss (String C1, String C2, String M)’: Bordeaux returns
a near-miss example consistent with the second constraints.

4.5 Experiments

To study the idea of browsing near-hit and near-miss examples, we have developed Bor-
deaux, a prototype that extends Alloy Analyzer. This study includes the experiments
carried out to compare Bordeaux with other tools. From this study, we also show paths
that optimize the performance of Bordeaux in finding near-miss examples. In this sec-
tion, we explore the experiments revealing the position of Bordeaux among other similar
tools. The next section discusses our ideas to optimize the prototype.

Given an example, Bordeaux can find a near-miss example. Users can browse more
near-miss examples or ask for a near-hit example. To support this way of browsing, Bor-
deaux performs a relative minimization; namely, minimizing a distance between an ex-
ample and a non-example. Although users cannot browse near-hit and near-miss examples
with Alloy Analyzer, they can manually modify models to produce examples and non-
examples. Using Aluminum, the users can find minimal examples, and if they manually
negate the model, they can browse minimal non-examples, too. Aluminum’s concept of a
minimal example, which we call absolute minimal, is an example with the smallest number
of tuples.

The experiment includes five models that are shown in Table 4.2. We have used an Intel
i7-2600K CPU at 3.40GHz with 16GB memory. All experiments are done with MiniSat.
In what follows, we explain the experiments and discuss their contribution to answer the
following research questions:
RQ 4.1. What is the extra cost for producing relative minimal non-examples?
RQ 4.2. How many near-miss examples can Bordeaux find in one minute?
RQ 4.3. How far are arbitrary non-examples from the near-miss?
RQ 4.4. How far are absolute minimum non-examples from the near-miss?

To study the extra cost for finding near-miss examples with Bordeaux, we used Al-
loy Analyzer to find arbitrary examples and non-examples and compared their costs to
using Bordeaux to find near-hit/near-miss example pairs (Table 4.2). To find the non-
examples, we manually negated the studied models, i.e., if C is a model’s constraint, then

65

Table 4.2 Comparing Bordeaux (B) and Alloy Analyzer (A) to find non-examples
SAT Variables # SAT Clauses Translation Time(ms) Execution Time(ms)

Number of
Relations

Size of
Example B A B/A B A B/A B A B/A B A B/A

Singly-linked List 2 1 846 492 1.72 2,518 757 3.33 15 26 0.58 29 20 1.45
Doubly-linked List 3 7 20,531 1,909 10.75 56,358 4,580 12.31 39,700 141 281.56 121,664 111 1,096.07

Binary Tree 3 1 1,088 710 1.53 3,295 1,440 2.29 12 438 0.03 44 166 0.27
Graduation Plan 5 8 5,934 734 8.08 17,846 1,276 13.99 381 336 1.13 439 74 5.93

File System 10 8 8,154 2,605 3.13 27,672 4,690 5.90 3,883 571 6.80 13,366 308 43.40

¬C gives the negation of the model. In these experiments, for Bordeaux, we set C1 to
be equal to the arbitrary example returned by Alloy.

In Table 4.2, it can be seen that Bordeaux does not incur much additional cost for
small models, but once the model gets larger the costs get significant (RQ 4.1). The small
Binary Tree model is an exception where Bordeaux appears to run faster than the stock
Alloy Analyzer. Occasional anomalies such as this are common with technology based on
SAT solvers.

For answering RQ 4.2, we have done another experiment to count the number of dis-
tinct near-miss examples that Bordeaux generates in one minute. The results show how
the prototype’s performance degrades for the Alloy models with more relations or larger
formula size. Given examples, Bordeaux produces 27, 4, 31, 15, and 9 distinct near-miss
examples respectively for Singly-linked List, Doubly-linked List, Binary Tree, Graduation
Plan, and File System models in one minute. The performance descends because Bor-
deaux reformulates and resolves the model per each distinct example and non-example.
Bordeaux returns more near-miss examples for Singly-linked List and Binary Tree mod-
els, as the given examples of both models are fairly simpler than the others. Therefore,
the near-miss examples will have relatively fewer tuples. That is, smaller near-miss ex-
amples lead to smaller and relatively simpler formulas for excluding redundant near-miss
examples.

To answer RQ 4.3 and RQ 4.4, we have performed another experiment to demonstrate
how near-miss examples that Bordeaux systematically produces differ from non-examples
that other tools produce from manually modified models. To do so, using various sizes
of examples of different models, we evaluated their distances to non-examples that each
instance-finder produces. We have selected Alloy Analyzer and Aluminum for comparing
with Bordeaux. Although Alloy Analyzer and Aluminum do not provide capabilities
for browsing non-examples, we have manually transformed the models and synthesized
required statements.

66

Table 4.3 Comparing the size of the first example and the first non-example generated by
Bordeaux (B), Alloy Analyzer (Ay), and Aluminum (Am). The size of an example is its
number tuples. Distance between the example and non-example is the number of tuples
that are added to or removed from the example to make it identical to the non-example.
Column ‘Mean’ shows the average of distances for the studied models per different sizes of
examples.

Size of Example Size of Non-example Added Removed Distance Mean
B Ay Am B Ay Am B Ay Am B Ay Am B Ay Am B Ay Am

Singly-linked List 1 1 1 2 8 2 1 7 1 0 0 0 1 7 1

1 13.4 2.2

Doubly-linked List 7 0 0 8 26 2 1 26 2 0 0 0 1 26 2

Binary Tree 1 1 1 2 8 4 1 7 3 0 0 0 1 7 3

Graduation Plan 8 8 8 9 12 4 1 3 0 0 0 4 1 3 4

File System 8 2 1 9 26 2 1 24 1 0 0 0 1 24 1

Singly-linked List 3 3 3 4 19 2 1 17 0 0 1 1 1 18 1

1 15.8 2.4

Doubly-linked List 4 4 4 5 17 2 1 20 1 0 3 3 1 23 4

Binary Tree 5 5 5 6 5 4 1 3 2 0 3 3 1 6 5

Graduation Plan 5 5 5 6 9 4 1 7 0 0 2 3 1 9 1

File System 2 3 1 3 22 2 1 21 1 0 2 0 1 23 1

Singly-linked List 5 5 5 6 19 2 1 17 0 0 3 3 1 20 3

1 20.8 6.4

Doubly-linked List 7 7 7 8 21 2 1 19 1 0 5 6 1 24 7

Binary Tree 9 9 9 10 5 4 1 3 2 0 7 7 1 10 9

Graduation Plan 8 8 8 9 13 4 1 9 0 0 4 5 1 13 4

File System 9 9 9 10 34 2 1 31 1 0 6 8 1 37 9

Singly-linked List 9 9 9 10 19 2 1 17 0 0 7 7 1 24 7

1 23.2 9.6

Doubly-linked List 10 10 10 11 21 2 1 19 1 0 8 9 1 27 10

Binary Tree 13 13 13 14 5 4 1 3 2 0 11 11 1 14 13

Graduation Plan 10 10 10 11 15 4 1 11 0 0 6 6 1 17 6

File System 12 12 12 13 34 2 1 28 1 0 6 11 1 34 12

For comparing relative minimal, absolute minimal, and arbitrary non-examples, we
have used the aforementioned tools to find non-examples given arbitrary, small, medium,
and large size examples. In the case of arbitrary examples, each tool finds a pair of example
and non-example without any extra constraints on the size of examples. With restricted-
size examples, all the tools have to first generate the same size examples, then generate
non-examples for them. Depending on the models, the size of the examples varies from
two to five tuples in small size examples and nine to thirteen tuples for the large size
examples. In Table 4.3, we have recorded the size of examples and non-examples that each
tool produces, as well as the number of tuples that should be added or removed from an
example to make an example identical with its paired non-example.

As Table 4.3 shows, Aluminum generates absolute minimal examples and non-examples
once the example size is arbitrary. It also always produces minimal non-examples regardless

67

Figure 4.10 Comparing Bordeaux, Alloy Analyzer, and Aluminum with respect to the
number of tuples that differ between an example and a non-example.

B
or

de
au

x

A
llo

y
A

na
ly

ze
r

A
lu

m
in

um

B
or

de
au

x

A
llo

y
A

na
ly

ze
r

A
lu

m
in

um

B
or

de
au

x

A
llo

y
A

na
ly

ze
r

A
lu

m
in

um

B
or

de
au

x

A
llo

y
A

na
ly

ze
r

A
lu

m
in

um

1
6

11
16

21
26

31
36

Arbitrary Small Medium Large

Solvers

D
is

ta
nc

e
Example size

of the size of given examples. Alloy Analyzer generates arbitrary examples close to absolute
minimal size, but the sizes of non-examples do not follow any particular pattern. Although
Bordeaux produces examples in arbitrary sizes, it produces non-examples with one more
tuple in all the models.

Depicted in Figure 4.10, Bordeaux produces a non-example in a minimum distance
from a given example. Answering RQ 4.3, Alloy Analyzer behaves arbitrarily to produce
non-examples close to the examples. The distances from examples to non-examples increase
for larger examples. Answering RQ 4.4, for arbitrary and small examples, Aluminum
produces non-examples that are fairly close to the examples. Given medium and large
examples, Aluminum finds non-examples with larger distances from the given examples.
Although the distances between examples and non-examples, generated by Aluminum, do

68

not fluctuate like the distances between examples and non-examples produced by Alloy
Analyzer, they show relative minimum distance similar to those found by Bordeaux.

Moreover, finding a non-example by negating the model provides no direction for adding
or removing tuples. Although we expected to see a near-miss example with extra tuples,
as generated by Bordeaux, Aluminum produced a non-example with fewer tuples for
the Singly Linked-list model. Unlike Bordeaux, Alloy Analyzer and Aluminum do not
directly produce non-examples of a model. Simulating a model’s negation does not nec-
essarily cause that Alloy Analyzer and Aluminum produce non-examples in a minimum
distance from given examples of the studied models.

4.6 Optimization

By reviewing the experiment resultsin Table 4.3, we have observed a trend in distances
between examples and non-examples returned by Bordeaux. In the studied models, with
the addition of a single tuple, all examples and non-examples become identical. In the
other words, the examples are already near-hit examples, and they can be pushed to be
non-examples with the minimum number of changes, i.e., a single tuple. This observation
assists us to select tighter scopes and parallelize searches for examples and non-examples.
Without choosing tight scopes, the analysis becomes infeasible. Using parallelization, the
time to find near-miss examples improves to 2.2 seconds on average from several minutes
without parallelization.

4.6.1 Selecting Tighter Scopes

If most examples are near-hit examples, as the case studies show, Bordeaux can approx-
imate the scope of each unary relation to be one more than the number of its tuples in the
example when Alloy∗ is used for the underlying solver. As depicted in Table 4.4, we have
rerun our experimental models by selecting scopes of one (+1), two (+2), and three (+3)
more than the number of tuples of the example for each unary relation in the models. Note
that these scopes limit the number of tuples only for unary relations. Non-unary relations
still can have any tuples in difference between an example and a non-example.

When the scopes of unary relations increase by one, Bordeaux can find a near-miss
example for a studied model within 7.5 minutes on average. Provided the scopes increase
by two, the time to find a near-miss example is inflated by the ratio of 8.43 on average. If
the scopes increase by three, the time to find a near-miss example is fifteen times longer

69

Table 4.4 Showing how selecting different scopes affects the cost of analysis performed by
Alloy∗. The notations ‘+1 ’, ‘+2 ’, and ‘+3 ’ show the records when the scopes of all unary
relations in the studied models are set to one, two, and three more tuples than the number
of tuples in the same relations of examples. The columns with ‘+1’ in their headers contain
the actual records. The other columns contain the increase ratios.

SAT Variables SAT Clauses Translation Time(ms) Execution Time(ms) Total Time(ms)
+1 +2/+1 +3/+2 +1 +2/+1 +3/+2 +1 +2/+1 +3/+2 +1 +2/+1 +3/+2 +1 +2/+1 +3/+2

Singly-linked List 846 1.8842 1.5558 2,518 1.9682 1.5672 15 1.0667 1.2500 29 0.828 1.458 44 0.9091 1.3750

Doubly-linked List 20,531 2.4871 T/O 56,358 2.7368 T/O 39,700 11.8532 T/O 121,664 1.172 T/O 161,364 3.7998 T/O

Binary Tree 1,088 1.9743 1.6294 3,295 2.0859 1.6770 12 1.1667 1.2857 4 3.500 1.429 16 1.7500 1.3571

Graduation Plan 5,934 1.9821 1.4840 17,846 2.0284 1.5026 381 7.4436 1.7585 439 3.146 1.547 820 5.1427 1.6891

File System 8,154 2.1634 T/O 27,672 2.2664 T/O 3,883 12.4074 T/O 13,366 15.239 T/O 17,249 14.6013 T/O

Singly-linked List 1,862 1.5397 1.6993 5,858 1.5683 1.7648 12 1.4167 1.4118 19 0.947 2.222 31 1.1290 1.8286

Doubly-linked List 3,204 1.8121 2.0541 10,922 1.9736 2.2635 31 1.7742 2.8364 174 0.632 2.036 205 0.8049 2.3030

Binary Tree 5,371 2.0646 2.2615 17,404 2.1485 2.3097 105 5.5429 7.3849 141 13.652 3.484 246 10.1911 4.3893

Graduation Plan 4,342 1.7725 1.5654 13,244 1.7882 1.5503 292 7.7671 1.7637 503 5.865 2.271 795 6.5635 2.0502

File System 2,890 1.8218 1.5470 8,910 1.9274 1.5852 60 1.0500 1.2540 138 3.732 1.450 198 2.9192 1.4291

Singly-linked List 3,537 1.8476 1.3770 10,887 1.9555 1.4716 66 4.3030 0.7007 49 3.490 2.146 115 3.9565 1.2440

Doubly-linked List 6,175 1.9869 2.1946 20,109 2.1358 2.3287 178 5.8427 7.6663 388 1.284 57.504 566 2.7173 23.8036

Binary Tree 13,153 2.4004 T/O 44,972 2.4702 T/O 20,804 14.7966 T/O 9,873 11.299 T/O 30,677 13.6711 T/O

Graduation Plan 4,862 1.8375 1.5640 14,838 1.8684 1.5456 291 8.0584 1.7693 155 23.587 0.963 446 13.4552 1.2781

File System 6,946 2.2469 T/O 21,008 2.2076 T/O 12,256 15.8204 T/O 13,174 59.415 T/O 25,430 38.4043 T/O

Singly-linked List 45,668 T/O T/O 91,495 T/O T/O 1,040,121 T/O T/O 260 T/O T/O 1,040,381 T/O T/O

Doubly-linked List 20,549 2.4846 T/O 56,436 2.7332 T/O 35,275 14.9564 T/O 163 1.227 T/O 35,438 14.8932 T/O

Binary Tree 24,149 T/O T/O 79,127 T/O T/O 1,860,944 T/O T/O 924,176 T/O T/O 2,785,120 T/O T/O

Graduation Plan 16,528 T/O T/O 34,806 T/O T/O 7,814 T/O T/O 35 T/O T/O 7,849 T/O T/O

File System 14,215 T/O T/O 41,246 T/O T/O 2,839,697 T/O T/O 2,018,781 T/O T/O 4,858,478 T/O T/O

than the scopes with one more unary tuple. Moreover, except for one model, Bordeaux
did not terminate within 90 minutes if the example size is large, and the scopes increase by
two. Such a lack of results within the time-limit is more frequent once the scope increases by
three. Selecting the tightest scope increase can make the problem tractable for Bordeaux.
If Bordeaux cannot find a near-miss example with the least scope increase, it can increase
the scopes and search in a larger universe of discourse.

4.6.2 Parallelization

Increasing the number of atoms exponentially elevates the size of the SAT-formula, the
translation time to generate it, and its solving time. In some cases, such as the Binary Tree
model with a large size example, if the scope is not properly selected, Alloy∗ cannot find a

70

Table 4.5 Parallelizing PPFF can improve the efficiency of Bordeaux. Columns show
the ratio of metrics measured from solving without breaking PPFF, recorded in columns
labeled by ‘+1’ in Table 4.4, to different approaches solving PPFF for each relation. The
columns Min-R and Max-R show the improvement ratio for using parallelization. For
Min-R, the first process finds a near-miss example, and for Max-R, all processes finish
their searches. Columns Seq-R shows the differences while all processes run sequentially.

SAT Variables SAT Clauses Translation Time Execution Time Total Time
Min-R Max-R Seq-R Min-R Max-R Seq-R Min-R Max-R Seq-R Min-R Max-R Seq-R Min-R Max-R Seq-R

Singly-linked List 4.43 1.25 0.55 5.07 0.74 0.60 1.67 1.50 0.52 5.80 4.83 1.81 3.14 2.75 0.98

Doubly-linked List 3.24 1.89 0.45 3.81 0.48 0.51 72.58 45.74 10.79 10,138.67 322.72 170.40 288.67 129.61 36.72

Binary Tree 5.04 1.27 0.84 5.84 0.74 0.92 1.33 1.20 0.43 1.00 1.00 0.33 1.23 1.14 0.40

Graduation Plan 2.05 1.49 0.28 2.11 0.65 0.28 2.01 1.37 0.26 54.88 36.58 13.30 4.14 2.83 0.55

File System 2.98 2.22 0.27 3.28 0.41 0.30 23.25 14.93 1.96 1,336.60 636.48 230.45 97.45 61.38 8.44

Singly-linked List 2.25 1.32 0.51 2.44 0.71 0.55 1.33 1.20 0.43 4.75 3.17 1.27 2.38 1.94 0.72

Doubly-linked List 1.45 1.45 0.34 1.57 0.64 0.37 1.15 1.07 0.24 2.68 2.38 1.23 2.23 2.01 0.76

Binary Tree 1.49 1.38 0.47 1.57 0.70 0.49 2.76 2.39 0.88 20.14 4.15 2.82 5.47 3.15 1.45

Graduation Plan 2.36 1.67 0.31 2.48 0.57 0.33 2.25 1.36 0.29 83.83 71.86 22.86 5.85 3.58 0.77

File System 5.49 2.30 0.34 6.27 0.40 0.38 1.25 1.11 0.12 1.05 1.02 0.15 1.10 1.05 0.14

Singly-linked List 1.95 1.18 0.46 2.07 0.80 0.48 4.40 1.53 0.70 9.80 6.13 2.45 5.75 2.25 1.01

Doubly-linked List 2.19 1.49 0.34 2.42 0.62 0.37 3.71 2.66 0.60 5.54 4.04 0.92 4.80 3.47 0.79

Binary Tree 3.07 2.07 0.88 3.34 0.46 0.94 73.25 44.45 19.87 580.76 46.79 38.72 101.92 45.18 23.56

Graduation Plan 2.27 1.60 0.30 2.35 0.61 0.31 2.22 1.21 0.29 19.38 3.30 2.25 3.21 1.55 0.41

File System 2.80 1.93 0.23 2.73 0.53 0.23 3.44 2.11 0.27 823.38 268.86 75.71 7.11 4.35 0.55

Singly-linked List 2.52 1.31 0.52 3.19 0.62 0.64 98.98 19.26 13.85 8.67 4.56 1.90 98.73 19.24 13.83

Doubly-linked List 3.23 1.88 0.45 3.78 0.48 0.51 69.71 37.89 9.72 7.76 0.40 0.20 67.24 26.45 7.96

Binary Tree 2.81 1.75 0.78 3.16 0.55 0.84 312.76 182.68 83.34 3,513.98 337.54 168.55 448.27 215.48 100.14

Graduation Plan 2.55 1.91 0.35 2.31 0.51 0.32 2.26 1.42 0.31 1.84 1.59 0.51 2.26 1.42 0.31

File System 3.94 2.79 0.32 4.03 0.34 0.34 155.98 54.37 9.71 112,154.50 151.16 149.89 266.60 74.08 15.88

near-miss example within several hours. Another factor that influences on the magnitude
of the SAT-formula is the number of integer atoms that Bordeaux incorporates into the
formula to prevent the integer overflow that might occur for distance calculations.

Observing that most examples are near-hit examples and can become near-miss exam-
ples by adding or removing a single tuple, we make new formulas so that each one applies
PPFF on individual relations. Solving each formula, Bordeaux may find a near-miss
example for a given example regarding a particular relation of the model.

Finding near-miss examples for each relation has the benefit of avoiding additional
integers in the universe of discourse. Depending on how many relations a model has,
Bordeaux can solve a PPFF per each relation that leads to a relatively smaller universe
of discourse. As Bordeaux can independently find near-miss examples per each relation,
one approach is to parallelize the search so that each process searches for a near-miss

71

example per each relation.

The parallelization applies to all relations in the model. The parallelization has no
particular restriction on the scopes of the model’s relations. However, selecting proper
scopes increases the performance. If a process tries to find a minimum distance with
respect to a unary relation, increasing the scope of the relation by one causes a found
instance to be in the distance of one, provided adding tuples is requested. Since Alloy only
allows restricting scope for unary relations, no increase is the tightest scopes for a process
that tries to find a minimum distance with respect to a non-unary relation; more than one
tuple of a non-unary relation can also change.

In this approach, if a process finds a near-miss example first that is at a distance of
one from the given example, then all other processes can stop their searches. Otherwise,
all processes should continue. In the end, either a) the last process returns a near-miss
example with the distance of one from the given example, b) all processes return nothing,
c) some processes return near-miss examples with a distance of two, or d) some processes
return near-miss examples with a distance of three or more.

If PPFF can find a near-miss example in distance one from the given example, then
one of the processes must be able to find it too. Clearly, the near-border examples finder
formula found the example because only one relation gets or loses a tuple, so running the
formula over that relation will get the same result. If such a near-miss example exists, one
process has to return it. In case (a), the last finished process returns such a near-miss
example.

If no process returns a near-miss example, i.e., case (b), either such an instance does
not exist at any distance from the given example or adding or removing more than one
tuple from two or more relations turns the given example into a non-example. In the first
situation, PPFF also returns no near-miss example; however, PPFF returns a near-miss
example once tuples of more than a single relation need to be changed.

In case (c), some processes return near-miss examples with distance two from the given
example. Then two is the true minimum distance. If there were a closer near-miss, it
would be at distance one, and one of the other processes would have found it. Since that
didn’t happen, two is the minimum distance.

If a process returns a near-miss example with a distance of three from a given exam-
ple and all other processes return no shorter distances, the PPFF might find a near-miss
example in a closer distance which is exactly two. The distance might be two if simultane-
ously altering tuples of two relations makes a near-miss example; therefore, the individual
processes cannot find such a near-miss example. If there was a near-miss example with

72

distance one, processes should have returned it. In this case, distance three might be a
local minimum. The same argument is valid for a distance of four or more in case (d).

As the case studies show, distances between an example and its paired near-miss ex-
ample is highly likely to be one; therefore, parallelizing Bordeaux would often give the
near-miss examples. As discussed, the process could also provide a good approximation of
the minimum distance. In our practiced cases, all near-miss examples are found in distance
one from given examples.

As Table 4.5 shows, parallelization improves the search for near-miss examples. In
all studied models, regardless of the sizes of the given examples, parallelization decreases
the size of the SAT-formula, the translation time to generate it, and the solving time.
We have measured this improvement by recording the time and resources taken to find
the first near-miss example, as well as the time and resources taken to finish all parallel
processes. Compared to using non-broken PPFF with the least scope increase, the time
to concurrently find the first near-miss example decreases by the ratio of 70.9 on average.
Waiting for the termination of all processes’ results changes the ratio to 30.2.

If there are not enough resources available for parallelization, sequentially running the
decomposed processes still has value. The studied models show that the sum of the process
times is often less than the general time when the size of an example is large. Since most
of the Alloy statements synthesized for each process are the same, the translation time
might be saved by reusing some parts that have already been translated for the formula of
another relation. Full assessment of this idea is left for future work.

4.7 Related Work

Both Nelson et al. [78] and Cunha et al. [20] have proposed techniques to guide Alloy Ana-
lyzer’s example generation facility towards more interesting examples. The Alloy Analyzer
4.2 generates arbitrary examples, which might or might not be interesting, and might or
might not help the user discover underconstraint bugs.

The Nelson et al. [78] extension of Alloy, called Aluminum, generatesminimal examples.
We say that this approach produces absolute minimum examples, because it finds the
smallest examples that satisfy a given model. By contrast, our technique looks for relatively
minimum pairs of examples: one example (near-hit) and the other non-example (near-miss)
that are at a minimum distance from each other; they might not be absolutely minimal from
Aluminum’s perspective. Aluminum also has a facility for growing the minimal example,
called scenario exploration.

73

Cunha et al. [20] used PMax-SAT [15] to enhance Kodkod [102] to find examples that
are close to a target example. They discussed applications in data structure repair and
model transformation. Perhaps this technique could be modified to replace our usage of
Alloy∗ in Bordeaux.

When the model is completely overconstrained (i.e., inconsistent), then no examples
are possible. Shlyakhter et al. [96] enhanced Alloy to highlight the unsatisfiable core of
such models; Torlak et al. [103] further enhanced this functionality. This tells the user a
subset of the model (i.e., formula) that needs to be changed, but does not give an example
(because none satisfy the model).

Browsing desirable non-examples might help the user understand what is wrong with
the model [4]. In an empirical user study, Zayan et al. [115] evaluated the effects of
using examples and non-examples in model comprehension and domain knowledge transfer.
The study demonstrated evidence of the usefulness of non-examples in understanding the
models, but did not state any preferences for particular examples. Browsing (desirable)
non-examples might also help the user understand partially overconstrained models (in
which some, but not all, desirable instances are possible).

Batot [6] designed a tool for automating MDE tasks, such as model transformation
or well-formedness rule extraction. The tool generates examples from partial or complete
metamodels to be evaluated or corrected by an expert. The minimality and coverage of
examples are two major criteria for generating useful examples. The coverage is defined
based on the MDE automation task, some frequent OCL templates, and model slicing.
Mottu et al. [70] proposed a mutation analysis technique to improve model transformation
testing. Their technique mutates the model w.r.t. four abstract model transformation op-
erators and generates mutants for evaluating test-suites. Macedo and Cunha [60] proposed
a tool for analyzing bidirectional model transformations based on least changes using Al-
loy. The tool tries different number of changes to find the least number. Selecting proper
scopes for Alloy Analyzer is a major obstacles to scaling the tool.

In his seminal work Winston [110], introduced using near-miss examples in learning
classification procedures as well as explaining failures in learning unusual cases. Gick and
Paterson [34] studied the value of near-miss examples for human learning. They found that
contrasting near-miss examples were the most effective examples for learning. Popelínsky
[83] used near-miss examples for synthesizing normal logic programs from a small set
of examples. Seater [94] employed the concepts of near-miss and near-hit examples to
explain the role, i.e., restricting or relaxing, of a constraint in a given model. Modeling
By Example [64] is an unimplemented technique used to synthesize an Alloy model using
near-miss and near-hit examples. The technique synthesizes an initial model from a set

74

of examples; it learns the borders by generating near-miss and near-hit examples to be
reviewed by the user. The near-hit and near-miss examples are from a slightly modified
model. The concepts of near-hit and near-miss examples are conceptually similar to near-
hit and near-miss examples, respectively. Apart from the contextual difference, our idea to
generate near-hit and near-miss examples is based on slight changes in the instance versus
the model.

ParAlloy [91] and Ranger [92] realize parallel analysis of models written in Alloy. Both
tools partition a given Alloy model and make multiple calls to the underlying SAT-solver.
The idea of parallelization in Bordeaux relies on selecting proper scopes as opposed to
partitioning the model.

4.8 Summary

Bordeaux is a tool for finding near-hit and near-miss example pairs that are close to each
other, as stated in Contribution 2. The near-hit example is an example of the model the
user wrote. The near-miss example is almost consistent with the user’s model except for one
or two crucial details. Others have found near-miss examples to be useful [4, 34, 110, 115].
In particular, Gick and Paterson [34] found that pairing a near-miss example with a similar
near-hit example increased human comprehension of the model. We posit that such pairs
might be particularly helpful for discovering and diagnosing partial over-constraints in the
model. Tool support for this task is currently limited.

The Bordeaux prototype has been built to work with ordinary Alloy models. It
works by transforming the user’s Alloy model and synthesizing a query with higher-order
quantifiers that can be solved by Alloy∗ [65]. Through experiments we have observed that
near-hit and near-miss examples often differ in no more than one tuple. We have based
two optimizations on this observation: scope tightening and parallelization. Together,
they significantly reduce the cost of searching. The formalization of the idea, the PPFF
(Figure 4.3d), is more general than the specific use-case that our narrative has centred on.
The formalization works from a pair of inconsistent constraints. The use-case narrative in
this chapter has focused on the specific circumstance when one constraint is the negation
of the other, and sometimes even more narrowly on when the first constraint is a specific
example. In Chapter 5, we develop a technique to produce particular near-hit and near-miss
examples.

75

Chapter 5

Margaux: A Pattern-based Approach
for Debugging Underconstraint and
Overconstraint

The need to debug arises because the expressed meaning of a model differs from the intended
meaning of the model, but the user does not know where or why [54]. In this chapter,
we explain Contribution 1, an approach to produce discriminating examples , focused
examples and non-examples encoding hypotheses on whether the expressed model might
differ from the user’s intention. One hypothesis is to check whether bugs happen close
to borders; therefore, near-hit and near-miss examples are the candidates to be encoded
as discriminating examples. Another hypothesis to check using discriminating examples
is whether or not the model has particular semantics. Based on the semantics encoded
in the form of examples, the user decides whether a constraint should be strengthened
or weakened (or stay as is). We propose pattern-based debugging as a semi-automatic
technique to assist with localization and understanding of these differences. Using the
discriminating examples, our technique can focus on particular constraints for evaluating
whether certain one causes a total or partial overconstraint bug.

Pattern-based debugging comprises pattern-based simulacrum inference and semantics
mutation to produce discriminating examples. In this context, a pattern is a general idea
such as acyclicity. When a pattern is instantiated with respect to a particular relation,
we call it a property, e.g., r is acyclic. Pattern-based simulacrum inference is the process
of discovering which properties the model implies, is consistent with, and is inconsistent
with. Such properties comprise synonyms and antonyms of a model or its constituent
constraints. These properties form the simulacrum of the model or its constraints.

77

Simulacrum mutation is the process of changing this inferred simulacrum by either
strengthening or weakening individual properties, listed as Contribution 3. Such muta-
tion is done by two operators: Weakener Mutation Operator and Strengthener Mutation
Operator. The former mutation operator relaxes the model and may lead to revealing
a overconstraint bug, whereas the latter mutation operator might reveal underconstraint
bugs in the model. We have computed both an implication graph and a conjunction graph
that are used to guide this reasoning process. The implication graph records which patterns
strengthen or weaken to other patterns. The conjunction graph records which patterns are
mutually satisfiable, and which patterns are in conflict (mutually unsatisfiable). The de-
bugger uses the mutations to produce discriminating-examples for the user to accept or
reject. Through this dialogue, the mutation will move closer to the user’s intentions.

To orchestrate the debugging procedure, we have developed a procedure to analyze
the simulacrum of a given model, mutate its simulacrum, and produce discriminating
examples. The base-line procedure makes some non-deterministic decisions for selecting
the parts of the model that should be mutated and the mutation operators that should be
applied. The non-deterministic choices can lead to many discriminating examples for the
user to review before the one revealing the bug. We have developed a set of heuristics for
regulating the decisions so as to produce fewer discriminating examples. As we evaluated
the procedure with different Alloy models, the heuristics dramatically decreased the number
of discriminating examples. Some heuristics add extra analysis cost so that the procedure
takes longer to produce fewer discriminating examples.

For assessing the idea of debugging with discriminating examples, we have developed
Margaux. Given an Alloy model, Margaux generates discriminating examples by mu-
tating the simulacrum of the model using predefined patterns. By reviewing focused
discriminating-examples, the user explores different corners of the model and finds out
whether the model suffers from under or over-constraint issues. Using Margaux in Chap-
ter 6, we demonstrate how the pattern-based debugging can guide the user to find a bug,
understand it, and fix corresponding statements. Section 5.1 contains the fundamental
definitions for pattern-based debugging approach. In Section 5.2.1, we explain the details
of the debugging procedure and mutation operators. Section 5.3 includes the related works
and section 5.4 summerizes the chapter.

5.1 Foundations

In this section, we review and define the fundamental concepts and definitions used in
debugging and discriminating example search procedures. First, we briefly review Alloy as

78

the language of models that Margaux takes to debug. Then, we define the concepts for
analyzing and mutating the model in order to generate examples and non-example near
borders.

5.1.1 Discriminating Example

Given an Alloy model, Margaux assists its user to ensure that the model is consistent with
her intention. The actual expressed model asME [Definition 2] and the conceptual intended
model asMI [Definition 3]. Margaux assists its users in debugging expressed Alloy models
by producing its particular examples [Definition 10] and non-examples [Definition 11].
The user then only should review these instances [Definition 9] and provide her feedbacks
by accepting or rejecting them. The debugger might reveal inconsistencies between the
intended model and expressed model based on acceptance/rejection responses. We define
these type of examples and non-examples as:
Definition 17 (Discriminating Example). is an instance that either (a) satisfies ME

but not MI or (b) satisfies MI but not ME.

With this definition, Margaux can distinguish the type of a bug that an expressed
model faces with. Provided the user rejects an instance from case-a, then the expressed
model has an underconstraint bug. There is an overconstraint bug in the expressed model
if the user accepts an instance from case-b. The challenge for producing discriminating
examples from its definition is that intended models are unspecified. Margaux resolves
this challenge by proposing some hypotheses on how the intended model (as a whole or
part of) might resemble. Therefore, the debugger tests each hypothesis by producing a
discriminating example from a discrimination formula:
Definition 18 (Discrimination Formula). Given a constraint hypothesis H of the user’s
intended model, an instance satisfying ¬H ∧ME realizes a case-a discriminating example, and
an instance satisfying H ∧ ¬ME realizes a case-b discriminating example.

In the following sections, we discuss using near border examples and simulacrum mu-
tation to generate H in the discrimination formula and thereby produce discriminating
examples.

5.1.2 Borders and Discriminating examples

A general hypothesis is that mistakes happen near borders. Margaux uses discriminating
examples to test such hypothesis. As discussed in Chapter 4, a border is a concept sepa-

79

rating examples from non-examples in this context. Near-hit examples are instances that
become non-example by adding or removing a minimum number of tuples; likewise, near-
miss examples are instances that become example after losing or gaining a least number of
tuples.

Margaux considers near-hit and near-miss examples of an expressed model (ME)
to be discriminating examples. If the user rejects a near-hit example of ME, the model
faces an underconstraint issue. ME has an overconstraint bug provided the user accepts
a near-miss example. Margaux constructs discrimination formula to produce this type
of discrimination example. For the expressed model, we call Nh

ME
as a constraint that all

near-hit examples ofME satisfy. Likewise, Nm
ME

is a constraint that all near-miss examples
of ME satisfy.

Considering these two constraints for specifying near-hit and near-miss examples of
ME, H in the discrimination formula for producing a discriminating example revealing an
underconstraint is (¬Nh

ME
). Also, H for producing a discriminating example exposing an

overconstraint is (Nm
ME

). As we have implemented Bordeaux [§4] for finding near-hit and
near-miss examples, Margaux does not directly constructs a discrimination formula and
just calls Bordeaux for finding these examples.

5.1.3 Mutation and Discriminating examples

Using discriminating examples, Margaux assesses different hypotheses of how the ex-
pressed model should be modified to become identical with the user’s intent. One of these
hypotheses is that the user may intend a model to be stronger or weaker than the expressed
model. The debugger assesses such a hypothesis by mutating the model and producing
discriminating examples consistent or inconsistent with them. Depicted in Figure 5.1,
accepting or rejecting such a discriminating example reveals whether the model has an
underconstraint or overconstraint bug.

One can imagine such discriminating examples as test-cases that check whether the
model complies with her intentions. Such a test-suite for evaluating the given model
provides the user with a rough guide to whether a model may satisfy her intentions in
critical aspects. Methods like Mutation Testing [22] help the user to evaluate a test-suite’s
capability to reveal unpredicted bugs. Mutation Testing relies on two hypotheses [11]: one
that programmers are competent, i.e., they develop code very similar to their intention;
and the other related to coupling effect i.e., detecting minor issues could implicitly reveal
a more complex issue. According to these hypotheses, Margaux uses the concept of
mutation to generate discriminating examples.

80

Figure 5.1 The dark centre circle represents instances satisfying property p, whereas the
lighter outer circle represents instances satisfying property q. The containment relationship
indicates that p implies q. Discriminating examples are inside the dotted line, but outside
the dark centre circle: i.e., they satisfy q ∧¬p. If the user accepts such an example then p
must be weakened towards the dotted line, whereas rejecting such an example means that
q must be strengthened towards the dotted line.

q

q ∧ ¬p

p

strengthening q

weakening p

To generate different discriminating examples, Margaux constructs various discrimi-
nation formulas from weaker or stronger mutants of the expressed model. The two mutation
operators are strengthener and weakener.
Definition 19 (Strengthener Mutation Operator). The strengthener mutation operator
produces a mutant (MS) of the expressed model such that some examples ofME do not satisfy
MS. The operator then creates a discriminating formula in the form of ¬MS ∧ME (case-b in
Definition 18).

If the user rejects a discriminating example that satisfies this discrimination formula,
then the expressed model faces an underconstraint.
Definition 20 (Weakener Mutation Operator). The weakener mutation operator creates
a mutant (MW) from the expressed model such that some non-examples of ME satisfy MW .
The operator constructs a discriminating formula in the form of ‘MW ∧ ¬ME’ and produces a
discriminating example (case-a in Definition 18).

Provided the user accepts this discriminating example, then the expressed model has an
overconstraint bug.

Margaux shows to users only discriminating examples that are generated from sur-
viving mutations. It kills mutations generating already-reviewed discriminating examples.
If the weakener mutation operator creates a mutation consisting of a previously rejected
discriminating example, the mutation is also killed.

81

Figure 5.2 Debug patterns VS. Design patterns. Design patterns [32] (or specification
patterns [36]) assist users in converting their ideas to software artifacts. Debug patterns
help machines to extract intentions behind software artifacts.

Debugging Relational Declarative Models with Discriminating Examples / 3824

In
te

nt
io

n

Design Patterns

M
od

el

Debug Patterns

In
te

nt
io

n

Synthesis Analysis

Computing
Machine

In the following parts, we explain the foundations for strengthening and weakening the
simulacrum of a given expressed model.

5.1.4 Debug Patterns

In this work, the term pattern defines general concepts such as monotonicity:
Definition 21 (Debug Pattern). A debug pattern is a predicate over a relation, optionally
informed by ordering information about the relation’s atoms.

The idea of using patterns in debugging a formal model does not completely follow the
classical approach to design or specification patterns [32, 36]. Unlike with design patterns,
the debugger uses patterns in reverse. Instead of assisting practitioners to convert their
intentions into formal artifacts, a debugger helps them to find whether a formal artifact
complies with their intentions. However, debug patterns are directly used by the debugger,
and a practitioner does not necessarily directly deal with them. Therefore, these patterns

82

need not always be understandable to humans, but should be be accurate and compact.
A library of debug patterns suitable for the debugger is machine readable and facilitates
reasoning procedures. Also, libraries of design patterns aim to be useful, but not necessarily
comprehensive. Over time, practitioners and researchers might discover new debug or
design patterns that are also useful.
Definition 22 (Synonym). If a given constraint c restricts all valuations of a relation r
according to a pattern p (c⇒ p[r]), we say p is a synonym of c with respect to r.

For example, if a constraint c implies the acyclic pattern, from structural binary patterns,
over a relation r, then we say that acyclicity of r is a synonym of c.
Definition 23 (Antonym). If a given constraint c prevents valuations of a relation r accord-
ing to pattern q (¬c∨¬q[r]), we say q is an antonym of c with respect to r.
Definition 24 (Partial-synonym). If a given constraint c partially restricts valuations of
a relation r according to a patterns p (c∧p[r]|=sat), we say p is a partial-synonym of c.
Definition 25 (Simulacrum). A simulacrum of a constraint c, with respect to relation r,
is a triple Src = 〈s, a, p〉, where s is the set of synonyms of c, a is the set of antonyms for c,
and p is the set of partial-synonyms for c (all with respect to r). Likewise, a simulacrum of a
model M (with respect to relation r) is a triple 〈s, a, p〉 that is equal to the simulacrum of M ’s
constraint C (with respect to relation r).

Consider that M ’s constraint C is a conjunction of constraints ci: C = ∧ici. The
simulacrum of M can be partially computed compositionally from the simulacra of the
constituent constraints ci. Specifically, M ’s synonyms are the union of the constituent
synonyms: sM = ∪isi. The proof of this compositionality is simple: recall that each
constituent set of synonyms contains formulas of the form ci ⇒ pj[r], for however many
properties are implied by ci (with respect to relation r); since C is the conjunction of all
of the constituent constraints ci (C = ∧ici), then all ci must be true for C to be true; so
whatever is implied by ci is also implied by C. Likewise, M ’s antonyms are the union of
the constituent antonyms: aM = ∪iai. M ’s set of partial synonyms cannot be computed
compositionally.
Definition 26 (Pattern-based Simulacrum Inference). Given a constraint c, a relation
r, and a set of patterns, the pattern-based simulacrum inference is to find simulacrum of c with
respect to r.

The pattern-based simulacrum inference is guided by both an implication graph and
a conjunction graph of patterns. The implication graph, an acyclic and directed graph,
records which patterns imply others, whereas the conjunction graph is undirected and
records which patterns are mutually satisfiable. These graphs are computed once for the

83

library of patterns and then stored for use in analyzing individual models. If pattern p⇒ q,
and the constraint c ⇒ p[r] (that is, the constraint implies pattern p applied to relation
r), then there is no need to check c ⇒ q[r]. Similarly, if pattern p and pattern x are not
mutually satisfiable (i.e., if there is no edge between them in the conjunction graph), and
the constraint c⇒ p[r] then there is no need to check c⇒ x[r]. Likewise, if c is inconsistent
with p, it becomes inconsistent with y, once y ⇒ p. The constraint c is consistent with
p, so it is definitely consistent with properties implying p, such as q. All in all, having an
implication and conjunction graphs, Margaux avoids the need to check all properties.

Table 5.1 The Binary Implication Lattice comprises 23 patterns, each represented as a
node. An edge of the lattice encodes an implication relation between two patterns. The
strongest patterns, i.e., sources in the lattice, are distinguished in bold with an overline.
Patterns in underlined italic are the weakest patterns or sinks of the lattice.

From To

bijection bijective, function

empty acyclic, functional, injective,symmetric, transitive

equivalence preorder, symmetric

rootedAll stronglyConnected

rootedOne weaklyConnected

totalOrder complete, partialOrder

bijective injective, surjective

function functional, total

acyclic antisymmetric, irreflexive

preorder reflexive, transitive

stronglyConnected weaklyConnected

complete weaklyConnected

partialOrder antisymmetric, preorder

reflexive surjective, total

84

Figure 5.3 Parametric Temporal Patterns’ structure for a ternary relation of the form
r:Left→Middle→Right

Inclusion ×Ordering × Column × Staticness × Emptiness
Expand
Expandd
Contract
Contractt
Mutate

×

HeadOf
HeaddOf
TailOf
TaillOf

∅

× Middle
Right

×
_MiddleStatic
_RightStatic

∅

×
 _FirstLeftEmpty

_LastLeftEmpty
∅



5.1.5 Library of Debug Patterns

A library of debug patterns comprises of a set of patterns and two graphs encoding im-
plication and consistency relations between those patterns. The library of debug patterns
is used for inferring the simulacrum of a constraint, and killing mutations. These graphs
are computed once for the library of debug patterns and then stored for use in analyzing
individual models.

Currently, Margaux includes two libraries of debug patterns: one for structural and
the other for temporal patterns. The structural patterns encode properties for expressing
how entities are structurally connected to one another. The structural patterns are for
binary relations and are based on properties defined by Mendel [64]. The binary relational
patterns and the implication relation between them are depicted in Table 5.1.

We present a library of ternary patterns, listed as Contribution 4. A previous study
of Alloy models showed that ternary relations are often used in temporal models [86]: a
third column is added, at either end, to index a binary relation through time.

The library of debug patterns is generated from a five-dimensional cross-product (Fig-
ure 5.3). There are 450 patterns produced by this cross-product. An analysis with Alloy
reveals that only 180 of these are satisfiable. These can be grouped into 160 equivalence
classes (two patterns are in the same equivalence class if they are equivalent). The im-
plication graph for this library has 12 source nodes, 6 sink nodes, and a maximum path
length from source to sink of 6. Some nodes are reachable only from a subset of the source
nodes.

For the ternary relation r, with column Left, Middle, and Right: sig Left{r: Middle→Right}.
Table 5.2 shows example values for this relation that conform with four different patterns.

Consider the pattern ContracttTailOfRight_MiddleStatic. We see that L0 → M0 →

85

{R0, R1, R3}; in the next time step we see that the tail of the right column (atom R0)
has been removed (contracted), while the middle column remains the same: L1 → M0 →
{R1, R3}. The double ‘t’ on ‘Contractt’ indicates that the contraction must happen at
each time step.

By contrast, the pattern ExpandHeadOfRight_MiddleStatic does not have a double ‘d’
at the end of ‘Expand’, so the expansion does not need to happen at every time step:
things might stay the same, as they do from L0 to L1. When atoms are added to the right
column, they must be greater than the existing atoms in that column. For example, state
L2 adds R1, and L3 adds R2. The MiddleStatic part of the pattern indicates that once an
association is made between a middle atom and a right atom, that association persists.
For example, the association M0 → R0 exists in the first state (L0) and in all subsequent
states. Similarly, in state L2 the association M1 → R1 is made, and then persists for all
future states.

Pattern ContracttMiddle_LastLeftEmpty strictly shrinks the number of atoms in the
middle column as the states progress, ending in the empty set. For example, at state L0

we see {M0,M1,M2}. Then at state L1 this has been reduced to {M0,M2}. There is no
ordering constraint in the pattern, which is why M1 could be removed. The LastLeftEmpty
constraint in the pattern enforces that in the last state, L3, there are no associated middle
or right atoms.

The example for the MutateHeadOfMiddle pattern shows that the head of the middle
column changes from M1 to M2 as the state progresses from L0 to L1. The transition
from L1 to L2 reveals some subtleties of this pattern. First, the head of the middle is not
required to change at each time step, because ‘head’ does not have a double ‘d’, and from
L1 to L2, the middle column does not change. Second, the contents of the right column
do change from L1 to L2, which at first might seem confusing. This change is permitted
because the pattern does not include RightStatic.

Table 5.2 Examples satisfying four samples from temporal patterns expressed in Fig-
ure 5.3. Each example is represnted as a set of tuples of a relation of the form
r:Left→Middle→Right

ExpandHeadOfRight_MiddleStatic ContracttTaillOfRight_MiddleStatic ContracttMiddle_LastLeftEmpty MutateHeadOfMiddle
Left Middle Right Left Middle Right Left Middle Right Left Middle Right

L0 M0 R0
L0 M0

R0
L0

M0 R0 L0 M0 R0
L1 M0 R0 R1 M1 R1 M1 R1

L2 M0 R0 R3 M2 R0 L1 M0 R0
M1 R1 L1 M0

R0 L1 M0 R0 M2 R0

L3
M0 R0 R3 M2 R0 L2 M0 R1

M1
R1 L2 M0 R3 L2 M2 R0 M2 R0
R2 – – – ∅ ∅ – – –

86

Meta-programming techniques are used to generate the formulas for patterns in this
library, as in Figure 5.4 for ExpandHeadOfRight_MiddleStatic. The highlighting shows
which parts of the formulas are generated from which concepts in the pattern. Full details
of the library of ternary patterns is in Appendix A.

Figure 5.4 Examples of how formulas for patterns are generated. The different colours of
highlighting show which parts of the formula in the property correspond to which concepts
in the pattern.

1 open utils/ordering[Left] lo
2 open utils/ordering[Middle] mo
3 open utils/ordering[Right] ro
4

5 pred ExpandHeadOfRight_MiddleStatic{
6 all l: Left − lo/last | let l’= lo/next[l] | all m: Middle |
7 let i= m.(l.r) | let j= m.(l’.r) | let delta = j - i |
8 (i in j) and (some delta implies ro/lte[ro/min[i], ro/min[delta]])
9 }

5.1.6 Synonyms and Antonyms Variants

The variations of synonyms and antonyms as well as their formal definitions are presented
next, as a precursor to explaining mutation operators.

Given a library of patterns and a model, synonyms of a constraint with respect to a
relation defined in the model are properties implied from the constraint. The synonyms and
antonyms of a constraint can be strengthened or weakened. With an implication graph, a
property that implies a synonym of the constraint is called a stronger synonym. Weaker
synonyms are the properties implied from the synonym. Weaker and stronger antonyms of
a constraint are defined in the same way, unless a weaker antonym might not be necessary
to an antonym any more.

The strongest synonyms of a constraint are those directly implied from the constraint.
In Algorithm 1, given two constraints, c and c′, and a relation, r, consistent strongest
synonyms are the strongest synonyms of c consistent with c′.

The Weakest partial synonyms of a constraint are those properties consistent only with
the constraint, but not implied from it. The Weakest antonyms of a constraint with respect
to a relation are patterns inconsistent with the constraint, yet any properties weaker than
that antonym do constitute an antonym. The Consistent weakest antonyms of constraints
c and c′ are the weakest antonyms of c that are consistent with c′.

87

Algorithm 1: Variations of Synonyms and Antonyms referred to in mutation op-
erators. Each variation is a set returned according to function definition. As the
functions have common inputs, they are declared upfront. All functions have access
to implicit parameters. The constraints c and c′ may be formulas consisting of the
constraints belonging to C.

Implicit: Model N = 〈C,R,B〉
Input: Library of debug patterns π = 〈Ω,U ,G〉. For each graph, V and E refer to Nodes and

edges.
Input: A constraint c
Input: A constraint c′
Input: A relation r ∈ R
Input: A property p ∈ Ω
Output: A set of synonyms and antonyms depending on which function is called.
/* Strongest Synonyms of c Consistent with c′ */

1 Function SS_C(π, c, c′, r)return
2 {ω ∈ π.Ω|((c⇒ ω[r])∧Satisfiable(c′ ∧ ω[r])) ∧ ∀ω′ ∈ π.Ω− ω|(ω′ → ω ∈ π.U .E)⇒ ¬((c⇒

ω′[r])∧ Satisfiable(c′ ∧ ω′[r]))}
3 end
/* Weakest partial Synonyms of c */

4 Function WpS(π, c, r)return
5 {ω ∈ π.Ω| Satisfiable(c ∧ ω[r])

∧¬(c⇒ ω[r]) ∧ ∀ω′ ∈ π.Ω− ω|(ω → ω′ ∈ π.U .E)⇒ (c⇒ ω′[r])}
6 end
/* Weakest Antonyms of c Consistent with c′ */

7 Function WA_C(π, c, c′, r)return
8 {ω ∈ π.Ω|¬Satisfiable(c ∧ ω[rj]) ∧ Satisfiable(c′ ∧ ω[rj])

∧∀ω′ ∈ π.Ω− ω|(ω → ω′ ∈ π.U .E)⇒ Satisfiable(c ∧ ω′[r]) }
9 end
/* partial Synonyms of c Stronger than p */

10 Function pS_S(π, c, p, r)return
11 {ω ∈ π.Ω|(ω → p ∈ π.U .E)∧ Satisfiable(c ∧ ω[r])

∧∀ω′ ∈ π.Ω− ω|(ω′ → p ∈ π.U .E)⇒ (ω → ω′ 6∈ π.U .E)}
12 end

As needed, mutation operators may ask for only weaker or stronger synonyms or
antonyms. Stronger consistent partial synonyms of a synonym are the immediate pre-
decessors of the synonym in the implication graph.

So far, we have defined four specific variations of synonyms and antonyms. These
definitions are directly used in mutation operators. With other mutation operators, one
might define different variations of synonyms and antonyms.

88

Figure 5.5 User interaction with Margaux. The libraries of debug patterns and reviewed
examples are shared between Margaux’s components.

Alloy Model

Discriminating
Example

input Statements

Fix

Repair

MARGAUX

 Library of
debug

patterns

Reviewed
examples

Bug?
User

[Overconstraint] Localize

[NoBugDetected]Produce

Feedback(Accept/Reject)

[Underconstraint] Suggest

5.2 A Design for Margaux

Margaux assists the user to debug Alloy models by producing discriminating examples.
By judging such examples, the user can understand different aspects of the model that
might be improperly specified. As Margaux emphasizes on helping its users in un-
derstanding the model, its main mission is to produce discriminating examples revealing
potential divergence from intended idea.

To begin debugging, Margaux guesses some hypotheses for testing whether the en-
gineer’s intention might differ from the expressed model. As depicted in Figure 5.5, the
debugger tests each hypothesis by producing discriminating examples and inquiring them
from the engineer. By producing non-examples, the debugger tests the hypothesis that
a model should be weaker than its current state. If the user accepts this discriminating
example, the debugger alerts for an overconstraint bug and localizes the statements that
cause such a discriminating example to be excluded. The debugger produces examples of a
model to test another type of hypotheses that the model might have underconstraint issue.
If the user rejects any of these examples, the debugger reports the bug and tries to suggest
fixes for mitigating it.

Margaux uses a library of patterns for finding and representing simulacrum of the
model. When the debugger analyzed the simulacrum of the model, it weakens or strength-
ens the simulacrum for mutating the model. Each result of these mutations carries a
hypothesis that the model should be weakened or strengthened in order to become consis-

89

Figure 5.6 Major components of Margaux and other extensions. The libraries of debug
patterns and reviewed examples are shared between Margaux’s components.

MARGAUX

DEBUG
Alg. 2

DESP
Alg. 3

Fault LocalizerFix suggestor

BORDEAUX

Alloy Analyzer

UnSAT-Core
finder

Find Bug

Reviewed
examples

E+/E-

Alloy*

Find Near-border
examples

Libraries of
debug patterns

Find UnSATs

Check termination

Weakener
Mutation Operator

Alg. 4

Strengthener
Mutation Operator

Alg. 5

Find Non-example

Find Example

Find Near-miss

Find Near-hit

tent with the user’s intention. The debugger tests these hypotheses by producing examples
and non-examples from the mutations.

At each discriminating example generation iteration, Margaux checks all previously
reviewed discriminating examples to see if the changes align with her previous answers.
The major components of Margaux are depicted in Figure 5.6. In this section, we explain
Margaux’s components and their interactions with other tools.

90

Algorithm 2: DEBUG
Input: Libraries of debug patterns, Π. Each library in the form of 〈Ω,U ,G〉, where Ω is a set of of

patterns. U , G are implication and consistency graphs, respectively.
Input: Model M = 〈F,R,B〉, where F is in the form of Y ⇒ P for checking mode and Y for

simulating mode, Y and P are two Alloy formulas. R = {r1, . . . , rm} is a set of relations
and B = {b1, . . . , bm} represents their bounds.

Output: A list of tuples that each includes accepted and rejected discriminating examples, the
models before and after repair, and a bug detection result
(NoBugDetected, Underconstraint,Overconstraint).

1 E+, E− ← ∅ . All discriminating examples the user rejected/accepted.
2 MR ←M
3 Σ← 〈E+, E−,MR, ∅, ∅〉 . Initializing the return list of tuples.
4 repeat
5 M ←MR

6 N ← 〈 convert_Y(M.F), convert_P(M.F),M.R,M.B〉 . convert_Y() extracts a set of
constraints from Y part in F .

7 ρ← DESP(Π, N,E+, E−) . Call to discriminating example generation Algorithm 3
8 if ρ[3] 6= NoBugDetected then . Third entry of the returned tuple should be the bug name.
9 MR ← repair(M) . The user repairs M such that MR.R = M.R and MR.B = M.B

10 end
11 Σ← Σ + 〈ρ[1], ρ[2],M,MR, ρ[3]〉 . Append the result to the list.
12 until !((E+ ∪ E−) 6= ∅ ⇒ ∀e : E+|e |= MR ∧ ∀e : E−|e 6|= MR)

∧
. Condition-1

13 〈E+, E−〉 kills all mutations of M generated by Algorithm 3
∧

. Condition-2
14 (Provided M is a property checking form, i.e. Y ⇒ P , then ¬Satisfiable(M)) . Condition-3
15 return Σ

5.2.1 Debugging Procedure

DEBUG, depicted in Algorithm 2, is the main procedure of Margaux. Given an Alloy
model, DEBUG decomposes it into two sets containing constraints and relations. The model
decomposition for extracting the constraints set differs slightly for simulating and checking
modes. A typical Alloy model executed in the checking mode follows the form of Y ⇒ P ;
in the simulating, it is Y . Regardless of the execution mode, DEBUG converts Y into a set of
constraints. The conjunction of constraints in the set is equivalent to Y . The constraints in
the set should have no conjunctions, unless enclosed by quantifiers. However, if Y contains
a predicate or function call, the debugger does not inline and decompose its body at this
step. The extracted set and the library of patterns are implicitly shared between DEBUG
and succeeding procedures called from DEBUG.

DEBUG iteratively calls the DESP algorithm, discussed in Section 5.2.2, to generate dis-
criminating examples and check them with the user’s intentions. Once DESP finds a bug,

91

it terminates and returns the bug type as well as any discriminated examples evaluated by
the user. During the next interactions, this information is used to prevent redundant dis-
criminating example generation, kill further mutations, and check termination conditions.

The simulacrum of a constraint includes three finite sets of properties, and the debugger
avoids making redundant mutations; therefore, DEBUG has to terminate after generating
limited number the discriminating examples at each iteration. In the end, DEBUG should
ensure that the model is equivalent with the user ’s intention in accordance with the library
of patterns, i.e., ME ⇔ MI . Once a repaired model passes the following termination
conditions, DEBUG returns a list of tuples recording revealed bugs, reviewed discriminating
examples, and the repairs done by the user while interacting with the debugger.

Condition-1 The last fixed model, i.e., MR, should accordingly accept and reject all pre-
viously reviewed discriminating examples.

Condition-2 No more mutation is possible. Every mutation is killed by a previously re-
viewed discriminating example.

Condition-3 If the model is in checking mode and follows the form of Y ⇒ P , the check
must not return any counter-example.

Since all mutations are done by mutation operators called from DESP, DEBUG implicitly
confirms that all mutations are killed once it gets NoDetectedBug from DESP.

5.2.2 Search Procedure

Discriminating examples search procedure (DESP) is the heart of Margaux. Given li-
braries of patterns and a model as a set of constraints and a set of relations, DESP iterates
over the relations, finds an applicable library of patterns with respect to the relation, and
interchangeably calls two mutation operators. The operators mutate the model, generate
discriminating examples, and interpret the review responses in order to discover any de-
viation from intentions. After each call to the operators, DESP receives a ternary tuple,
consisting of accepted and rejected discriminating examples, as well as a name for any bug
discovered. If the mutation operator does not find a bug, reviewed discriminating examples
are kept aside for further functions, such as killing new mutations or checking termination
conditions. DESP returns NoBugDetected, if neither mutation operator finds a bug.

DESP checks two special cases at the beginning and end. Over Lines 1-4, it checks
whether the model is consistent with previous examples reviewed by the user. Inconsistency

92

Algorithm 3: DESP(Discriminating Examples Search Procedure)
Input: List of libraries of debug patterns Π, each library is a tuple 〈Ω,U ,G〉.
Input: Model N = 〈C,P,R,B〉, where Constraints C = {c1, . . . , cn}, Property P , Relations

R = {r1, . . . , rm}, and Bounds B = {b1, . . . , bm}.
Output: A tuple including accepted discriminating examples, rejected discriminating examples,

and a potentially discovered bug.
1 if ∃e− ∈ E−|e− |=

∧
C then

2 return 〈E+, E− ∪ e−, Underconstraint〉
3 end
4 if ∃e+ ∈ E+|e+ 6|=

∧
C then

5 return 〈E+ ∪ e+, E−, Overconstraint〉
6 end
7 for rj ∈ R do
8 for π ∈ Get_Applicables(Π, rj) do . Get_Applicables finds which libraries are applicable

to this relation.
9 α, β ← 〈E+, E−, Initialized〉 . Initialization

10 repeat
11 strengthening ← Magic() . Magic() randomly returns True/False in this context.
12 if strengthening then
13 α← Strengthener_Mutation_Operator(π, rj , C,E+, E−)
14 if α[3] = Underconstraint then
15 return 〈α[1], α[2], Underconstraint〉
16 end
17 E+ ← E+ ∪ α[1]

18 else
19 β ← Weakener_Mutation_Operator(π, rj , C,E+, E−)
20 if β[3] = Overconstraint then
21 return 〈β[1], β[2], Overconstraint〉
22 end
23 E− ← E− ∪ β[2]

24 end
25 until ¬(α[3] = NoBugDetected ∧ β[3] = NoBugDetected)

26 end
27 end
28 if P 6= ∅∧Satisfiable(¬P ∧

∧
C) then

29 return 〈E+, E−∪Find_Near-hit ((
∧
C) ∧ ¬P, P) , Underconstraint〉

30 end
31 return 〈E+, E−, NoBugDetected〉

might occur if the repair of a bogus model is imperfect and violates previous repairs.
Finally, DESP checks a special case for the checking mode. If no previous mutations have
generated a discriminating example to reveal the invalidity of the check statement, then

93

Figure 5.7 Showing how Bordeaux should find examples for each mutation done by
Weakener_Mutation_Operator . The mentioned notations at each line are accordingly
reflected in the corresponding line. Briefly speaking, a given model consists of c1 and c2. p
and q, which are outlined by dashed and dotted circles, represent the strongest synonym
and weakest antonym of c1. Star signs, labeled by θ, represent the instances found by
Bordeaux. Except in the last diagram, c1 is picked for analysis.

?
θ

c1 c2

p

(a) A possible case at Line 3
in Algorithm 4

?
θ

c1 c2

q

(b) A possible case at Line 16
in Algorithm 4

?
θc1 c2

(c) A possible case at Line 26
in Algorithm 4

DESP retrieves an example consistent with the premise but inconsistent with the conclusion.
If such an example exists, DESP reports an underconstraint bug.

Weakener Mutation Operator

DESP uses the weakener mutation operator in order to test hypotheses whether a given
model has overconstraint bug. The operator changes the model to generate discriminating
examples inconsistent with the current model. If the user accepts such discriminating
examples, Margaux reveals an overconstraint bug as well as the constraints causing the
bug. Using the synonyms and antonyms, the debugger is able to report the meaning of
unintentionally excluded instances.

To generate such a discriminating example, DESP selects a relation and calls the weak-
ener mutation operator. Having the relation, the operator, depicted in Algorithm 4, picks
one constraint of the model and finds all of its strongest synonyms that are consistent with
the rest of the model’s constraints. The operator calls Bordeaux to find examples close
to borders distinguishing instances having the same synonym but consistent or inconsistent
with the constraint.

Figure 5.7a shows the border and a discriminating example expected by the opera-
tor. Once the user accepts or rejects the discriminating example, the operator returns,
regardless of her answer, so that DESP continues other mutations or terminates. If the op-
erator does not find a surviving mutation that generates a discriminating example, it tries

94

Algorithm 4: Given a set of constraints, Weakener_Mutation_Operator finds the simulacrum
of each one, mutates the simulacrum, generates discriminating examples, and likely
reveals an overconstraint bug if the useri does not want the example. Using the history
of reviewed discriminating examples, the operator kills mutations. Find_Near-miss is a
call to Bordeaux [§4].

Implicit: Model N = 〈C,R,B〉
Input: A library of debug patterns π = 〈Ω,U ,G〉
Input: A relation r, where r ∈ R
Input: A set of constraints C, where C ∈ N.C
Input: A set of accepted Discriminating Examples E+

Input: A set of rejected Discriminating Examples E−
Output: A tuple including accepted discriminating examples, rejected discriminating examples, and a potentially

discovered bug.
1 for ci ∈ C do
2 for p ∈ SS_C(π, ci,

∧
(C − ci), r) do

3 θ ←Find_Near-miss (
∧

(C),
∧

(C − ci) ∧ ¬ci ∧ p))

4 if θ ∈ E+ ∪ E− then
5 continue
6 else if θ ∈MI then/* Ask the user */
7
8 return 〈E+ ∪ θ, E−, Overconstraint〉
9 else

10 return 〈E+, E− ∪ θ,NoBugDetectedSoFar〉
11 end
12 end
13 if ¬Satisfiable(

∧
C)∧ Satisfiable(

∧
(C − ci)) then /* ci is inconsistent with the rest of

constraints */
14
15 for q ∈ WA_C(π, ci,

∧
(C − ci), r) do

16 θ ← Find_Near-miss (ci,
∧

(C − ci) ∧ q)
17 if θ ∈ E+ ∪ E− then
18 continue
19 else if θ ∈MI then
20 return 〈E+ ∪ θ, E−, Overconstraint〉
21 else
22 return 〈E+, E− ∪ θ,NoBugDetectedSoFar〉
23 end
24 end
25 end
26 θ ← Find_Near-miss (ci,

∧
(C − ci) ∧ ¬ci)

27 if θ ∈ E+ ∪ E− then
28 continue
29 else if θ ∈MI then
30 return 〈E+ ∪ θ, E−, Overconstraint〉
31 else
32 return 〈E+, E− ∪ θ,NoBugDetectedSoFar〉
33 end
34 end
35 return 〈E+, E−, NoBugDetected〉

95

antonyms. Depicted in Figure 5.7b, the operator considers antonyms of the constraints
that are consistent with other constraints. Provided the user accepts such a discriminating
example that is consistent with the antonym and other constraints means that the model
has an overconstraint bug and the constraint is the root of the problem. That is, a repair
has to turn the antonym into at least a partial synonym. Last but not least, one way to
make a mutation is to weaken the constraint by excluding it. The operator removes the
constraint and reviews with the user a discriminating example that conceptually looks like
the one depicted in Figure 5.7c.

Ultimately, the operator returns NoBugDetected once all discriminating examples are
killed by previous examples or rejected by the user. Before inquiring about a discriminating
example, the operator also checks whether the example has already been reviewed. In this
way, the operator kills mutations that would otherwise generate redundant examples.

Strengthener Mutation Operator

For finding underconstraint bugs, DESP uses the strengthener mutation operator, depicted
in Algorithm 5, to generate discriminating examples consistent with the given model.
However, the examples are intentionally consistent with a synonym of the model but in-
consistent with its stronger forms. If the user rejects such a discriminating example, the
model should be repaired in order to exclude instances with characteristics similar to those
of the synonym, not its stronger forms.

The operator navigates the implication graph in order to make a mutation consistent
with the model and one of its partial synonyms, but inconsistent with a property stronger
than the synonym.

As diagram Figure 5.8a shows, the operator starts from the weakest partial synonym
of the model. For the next mutation, the operator picks a partial synonym of the model
stronger than the previous one, as in the case depicted in Figure 5.8b. The operator
generates a sequence of discriminating examples by traversing through the implication
graph. It starts from sinks, or close to them, and walks towards the graph sources. At
each step, the operator checks whether a synonym is enough or should be strengthened
into a stronger synonym. We found Depth-First-Traversal quickly approaches stronger
patterns, thereby causing bug reveal with fewer interactions.

96

Algorithm 5: Once Strengthener_Mutation_Operator finds the simulacrum of a given con-
straint, it generates discriminating examples by systematically tightening the partial
synonyms. If the user does not want the example, the operator returns Undercon-
straint bug; otherwise, it returns NoBugFoundSoFar. The operator returns NoBug-
Found provided it cannot generate any discriminating example. Find_Near-hit is an
interface to Bordeaux [§4].

Implicit: Model N = 〈C,R,B〉
Input: A library of debug patterns π = 〈Ω,U ,G〉
Input: A relation r, where r ∈ R
Input: A set of constraints C, where C ∈ N.C
Input: A set of accepted Discriminating Examples E+

Input: A set of rejected Discriminating Examples E−
Output: A tuple including accepted discriminating examples, rejected discriminating examples, and a potentially

discovered bug.
1 if Satisfiable(

∧
C) then

/* Initializing a list. */
2 L ← (

∧
C)

/* A set to keep done properties. */
3 Ψ← ∅
4 while length(L) 6= 0 do /* More mutations are left with properties implying p */
5
6 p← tail(L)
7 if length(L) = 1 then

/* Choose a property from the set of weakest partial synonyms of the constraint. */
8 choose q ∈ WpS(π,

∧
C,r) −Ψ

9 else
10 choose q ∈ pS_S(π,

∧
C, p, r) −Ψ

11 end
12 if q = ∅ then /* No stronger property than p or all were visited */
13
14 Ψ← Ψ∪ remove_tail(L)
15 else
16 L ← L+ q
17 θ ← Find_Near-hit (

∧
C ∧ ¬q ∧ p,

∧
C ∧ q)

18 if θ ∈ E+ ∪ E− then
19 continue
20 else if θ ∈MI then
21 return 〈E+, E− ∪ θ, Underconstraint〉
22 else
23 return 〈E+ ∪ θ, E−, NoBugFoundSoFar〉
24 end
25 end
26 end
27 end
28 return 〈E+, E−, NoBugDetected〉

Regulating nondeterministic choices

DESP and the mutation operators make some non-deterministic decisions to generate dis-
criminating examples. We categorize the nondeterministic choices into the following groups.

97

Figure 5.8 Strengthener_Mutation_Operator systematically navigates the implication
graph to generate different discriminating examples consistent with a given model. The
Venn diagrams represent possible areas where the operator can find discriminating exam-
ples close to their borders at Line 8. The notations at each line are accordingly reflected in
the corresponding line. The left diagram shows a situation where the operator picks C to
be p at Line 10. The right diagram shows the next mutations, where p is not the weakest
partial synonym.

?θ

c1 c2

C

q

(a) A possible case at Line 8 in Algorithm 5

?θ

c1 c2

C

p
q

(b) A possible case at Line 10 in Algorithm 5

Some are applicable only for one selection, some for more:

Relation selection DESP has to sequentially choose relations to find simulacra.

Constraint selection Weakener_Mutation_Operator selects a constraint to weaken at
each call.

Strengthening or weakening Provided both mutation operators are applicable, DESP
has to choose one of them at each iteration.

Synonym/Antonym selection If multiple synonyms and antonyms exist, the mutation
operators must pick one so as to generate a discriminating example.

Although, the number of mutations is finite, choosing appropriate choices at each deci-
sion point affects how soon Margaux generates a discriminating example revealing a bug.
In particular cases, procedures can reason about the next steps and generate a discrim-
inating example revealing a user’s intention. We call these types of reasoning heuristics
and apply them whenever possible. Provided heuristics are not hit; the procedures non-
deterministically choose their paths to generate examples. After running experiments, we
found some heuristics that lead to a quicker bug reveal (summarized in Table 5.3). In
the following sections, we frequently refer to these heuristics and show how they affect the
search procedure.

98

Table 5.3 The way Margaux decides to deal with its non-deterministic choices affects
how many discriminating examples should be reviewed until one reveals a bug. For different
decision points, we have found heuristic techniques that could improve the debugger’s
effectiveness.

Heuristic Affected Decision Description
Heuristic-1 Strengthening or weakening If a given model is unsatisfiable, then select weakening
Heuristic-2 Relation selection Although a model is satisfiable, some of its relations

might not have any tuple. Pick them first.
Heuristic-3 Relation selection The relation that is referenced more in a model or a

constraint should be analyzed first.
Heuristic-4 Strengthening or weakening Constraints with many synonyms might cause an over-

constraint issue.
Heuristic-5 Synonym/Antonym selection If the user rejects an example from the weakener mu-

tation operator, the synonym or antonym used in the
mutation should be selected after other synonyms for
the next mutations.

Heuristic-6 Strengthening or weakening If a constraint is inconsistent with approximations of
another constraint, then the former constraint might be
overconstrained and need to be weakened. Hence, weak-
ening the former constraint has a higher priority than
the latter one.

Heuristic-7 Strengthening or weakening If a relation is always empty, then weaken constraints.
Heuristic-8 Synonym/Antonym selection For selecting a property from a set of properties imply-

ing a given temporal ternary property, properties with
emptiness constraints are selected first, then properties
staticness, strictness expansion/contraction, and finally
the direction of expansion.

Heuristic-9 Constraint selection If the model is unsatisfiable, work only on the constraint
existing in UnSAT-Core.

Heuristic-10 Constraint selection If a selected constraint does not lead to a bug reveal,
move on to another constraint.

Soundness and Completeness

The debugging iteration is sound but not complete in terms of the generated examples and
bugs that are found through interactions with users.

Soundness. DEBUG, depicted in Algorithm 2, is sound to generate examples and non-
examples. A instance produced as an example should be consistent with the model. The in-
stance should be inconsistent with the model if the algorithm finds it is a non-example. The
algorithm interchangeably calls the mutations operators to produce near-border examples
for the mutations. The debugger is sound, if Weakener_Mutation_Operator produces non-

99

examples and Strengthener_Mutation_Operator produces examples of a given model.
Weakener_Mutation_Operator calls Bordeaux to produce Find_Near-miss examples
with respect to the mutations. The returns of these calls are consistent with the second pa-
rameter passed to Find_Near-miss. As the second arguments of these calls are inconsistent
with the model, all the calls return non-examples. That is, as depicted in Figure 5.7, the
Find_Near-miss examples are always inconsistent with one of the conjoined constraints.
On the other hand, the call to Bordeaux in Strengthener_Mutation_Operator returns
a Find_Near-hit example that is consistent with the first parameter. As the first argu-
ment is conjoined to the model’s constraints, the result is an example consistent with the
model. Shown in Figure 5.8, such discriminating examples are always consistent with the
conjunction of all constraints in the model.

Completeness. DEBUG is not complete for finding all Find_Near-hit and Find_Near-miss
examples as well as revealing all bugs. Using Bordeaux, Margaux picks only near-
border examples, so that examples that are far from the conceptual border are not gener-
ated and checked by the user. Moreover, Margaux limits its generation of Find_Near-miss
examples to only those consistent or inconsistent with the given model’s mutations. There-
fore, if the mutations do not cover all possible Find_Near-miss examples, then Margaux
will not logically cover all Find_Near-miss examples unless a mutation or a combination
of mutations cover all Find_Near-miss examples. Since DEBUG does not generate all pos-
sible examples, it might skip examples showing underconstraint or overconstraint issues.
Margaux is also not complete to find all bugs.

Although DEBUG is not complete and does not generate all possible examples, it tries
to find the most likely examples for revealing bugs. To illustrate the compromise that
Margaux makes, consider Alloy Analyzer, which generates all examples. The examples
reveal only underconstraint issues, but the user has to continue exploring them until she
finds an appropriate one.

5.2.3 Localization

When the user finds that a discriminating example shows a divergence between her in-
tention and the expressed model, she repairs the model by adding constraints to it to fix
underconstraints or removing constraints from it to eliminate overconstraints. Margaux
uses the reviewed discriminating examples and the Minimum Unsatisfiable Core (MuC)
finder [101] to localize the constraints that need to be fixed for an overconstraint bug.
Given an unsatisfiable model, MuC returns a subset of constraints that removing any of
them makes the model satisfiable.

100

To find the part of the model causing an intended discriminating example to be excluded
from the model, the first step is to turn the example into some form of constraint. Mar-
gaux turns the example into the existential form. In the existential form, a statement with
an existential quantifier ensures that the atoms corresponding in the tuples of the example’s
relations exist in the universe of discourse, and that all interpretations of the relations will
be the same as the example. For instance, given an example of a typical model of a singly-
linked list as ‘Node=〈Node0,Node1〉,next=〈Node0→Node1〉’, the existential form becomes:
‘some disj Node0,Node1:Node| Node=Node0+Node1 and next=Node0→Node1’. That is,
any valuations of relations Node and next will be a list with two connected nodes.

Next, the debugger finds statements that prevent the discriminating example. As the
model excludes such an example, there must be some statements that are inconsistent
with the existential form of the reviewed discriminating example. If the model has partial
overconstraint, then the debugger conjoins the model with the existential form. Given
such a conjoined model, MuC finder returns statements inconsistent with the statement
expressing the example. On the other hand, if the model has a total overconstraint, the
debugger finds the statements in the MuC and iterates over them to check whether one is
inconsistent with the existential form of the example.

As Alloy Analyzer approximates a MuC within a given inconsistent model, the granu-
larity of the reported statements depend on the complexity of the model. For further local-
izations, Margaux might use two syntactical techniques: quantifier unrolling and function
and predicate inlining. The former technique transforms the corresponding universal quan-
tifiers to conjunction statements, and existential quantifiers to disjunction statements [101].
The latter technique replaces the corresponding calls of predicates and functions with their
body. As Alloy models are analyzed in a finite universe of discourse and recursions are
forbidden, then both techniques terminate in a finite number of steps.

As the user needs to add constraints to eliminate unintended discriminating examples,
Margaux does not provide a particular functionality to pinpoint what statements should
be fixed.

5.2.4 Fix suggestion

As discriminating examples assist the users to understand the model and find undercon-
straint or overconstraint bugs, Margaux can also suggest some fixes for particular kinds
of bugs. Provided the debugger finds synonyms and antonyms for a given model or its
constraints, then it might be able to suggest fixes. In a case of an overconstraint bug, if
the debugger has generated a discriminating example using the synonym of a constraint,

101

i.e., the case sketched in Figure 5.7a, then a fix would be replacing the constraint with
its synonym. For an underconstraint bug, provided the user rejects a discriminating ex-
ample, then one fix suggestion is to conjoin the partial synonym, what q in Algorithm 5
refers, to the model. For both bugs, the debugger can also suggest what property should
be strengthened or weakened from the model to fix the bug. For example, a constraint
that implies total order property should be relaxed to enforce partial order. The major
development of the fix suggestion is planned as future work.

5.3 Related Work

The concept of design patterns goes back to Christopher Alexander and his colleagues, who
worked on using patterns to structure buildings and cities [2]. Gamma et al. [32] applied
the same concept in object-oriented software design. Software design patterns capture
the elegant practices experts use in addressing particular problems and convey them in
a simple and understandable form that others can follow. The structural form of design
patterns facilitates mapping and understanding the best path from a user’s intention to a
reasonable solution.

In their seminal work, Dwyer et al. [26], proposed a pattern-based approach for encoding
property specifications for finite-state verification. The patterns are temporal properties
that are claimed to be useful for practitioners with a reasonable level of knowledge in for-
mal specification and analysis. Konrad and Cheng [56] and Gruhn and Laue [36] extended
Dwyer’s original specification patterns to the context of real-time property specifications.
Raimondi et al. [84], Kallel et al. [47], and Halle et al. [38] formulated particular specifi-
cation patterns for service-based applications. Bianculli et al. [9] did a survey to evaluate
how specifications patterns for service based architecture are practical in industry. Liu
et al. [59] re-used the idea of specification patterns to analyze functional requirements.

By mutating a program code, the mutation testing checks whether a given test-suite
is able to detect intentional changes in the code [11]. The feasibility of mutation testing
relies on two hypotheses: competent programmers and coupling effect [45]. Having similar
hypothetical basics, Margaux slightly alters a given model to discriminating examples.
Margaux not only relies on the syntactical changes to mutate a model, it infers simulacra
and systematically alters them to create mutations.

Alloy Analyzer finds arbitrary examples of a model. The sequence of the returned in-
stances could vary from time to time. Recently, researchers [20, 78, 93] proposed techniques
for mitigating the arbitrary nature of example generation. Nelson et al. [78] proposed an

102

extension of Alloy Analyzer, called Aluminum, that helps the user to track a scenario of ex-
amples rather than a random series of them. Given a model, their solver finds an example
with a least number of tuples consistent with the model. Having augmentation operations,
the user explores different examples, starting from the first example. Margaux differs
from such exploration tools since it systematically assists users to explore examples and
non-examples. Also, unlike Aluminum, the examples Margaux returns are not neces-
sary absolute minimum, although they become consistent or inconsistent with a minimum
number of changes.

Shapiro [95] proposed a useful debugging technique for Prolog that interactively com-
municates with the user to reveal three types of errors: termination with incorrect output,
termination with missing output, and nontermination. His inductive algorithm corrects
some revealed faults. According to the survey by Silva [97], many researchers have pro-
posed techniques for selecting the minimum number of meaningful debugging questions
mainly by focusing on strategies for traversing a Prolog program’s execution tree. Similar
to the algorithmic debugging technique and its extensions, Margaux assists Alloy users
to find incorrect or insufficient constraints. Both debuggers rely on interactions with an
oracle to reveal potential bugs. Since the execution of an Alloy model is abstracted from
independent solvers, Margaux does not use the execution tree concept in the way the
other does. Instead, its way of decomposing constraints and traversing them to find un-
derconstraint and overconstraint issues is conceptually related to top-down and bottom-up
execution tree traversals.

Shlyakhter et al. [96] proposed using unsatisfiable core constraints for debugging Al-
loy models. Once an Alloy model is translated into a Boolean formula, their technique,
implemented in Alloy Analyzer 3, first uses a SAT-solver to find an unsatisfiable subset
of the Boolean formula, then translates the subset back into the model’s statements. Not
only is finding a minimum unsatisfiable core of an inconsistent Boolean formula complex,
[23, 39, 63, 108], translating from an unsatisfiable core to Alloy constraints is challenging.

The technique by Torlak et al. [103] improved Alloy Analyzer 4 to approximate the
minimum unsatisfiable core in an inconsistent Alloy model. The technique minimizes the
unsatisfiable core at a higher level than with Boolean logic. It also recycles inferences that
the underling SAT-solver made in finding the core. These inferences are recognized from
Boolean proof provided by the solver. Even though having an unsatisfiable core helps users
to determine which constraints are in conflict, the code does not exactly clear up where
and why a problem originated. In practice, the root of the problem may be a statement
other than the constraints reported as an unsatisfiable core. Margaux frequently uses the
unsatisfiable core, if it exists, to narrow its search for discriminating examples in heuristics.

103

Reiter [90] proposed the theory of diagnosis from first principles. A diagnosis depends
on the conflict between observation of how a system actually behaves and description of
how a system’s components are expected to behave. A minimum diagnosis is a conjecture
for removing the least faulty components in order to make the whole system description
consistent. Reiter proposed an algorithm for determining minimal diagnosis. The algo-
rithm relies on the minimal conflict set in a given formula. Felfernig et al. [29] improved the
diagnosis algorithm by putting a total order on the given inconsistent constraints. Xiong
et al. [111] designed and implemented an algorithm that automatically generates a range
of fixes for an inconsistent configuration specified by quantifier-free constraints. The algo-
rithm uses Reiter’s theory of diagnosis for selecting the minimal set of variables to be fixed.
Nentwich et al. [79] proposed a repair framework for inconsistent constraints such as in
UML and EJB deployment description. The constraint language is First-Order Logic but
restricted to = and 6= comparison operators. Reder and Egyed [89] proposed formulating
a specification fixing transformation as a set of fix rules that show some change scenarios.
A fix will be interactively applied after any requested changes. They used heuristics to
manage many fixes in practice. Van Der Straeten et al. [107] used Kodkod [102] for au-
tomatically generating consistent models for an inconsistent specification that needs to be
resolved. Junker [46] designed an approach for revealing a minimal conflict set based on a
divide and conquer search strategy. The approach is used in a tool for fault explanation
and repair. Groce et al. [35] proposed a technique to make use of valid solutions close to
counter-examples for assisting users in understanding and isolating errors. In the tech-
niques that are based on, or similar to, Reiter’s theory of diagnosis, the debugger knows of
the problem and tries to explain its roots as well as suggesting repairs. Margaux takes
one step back and assists Alloy users in finding potential issues. To better understand
potential faults, examples are the core of debugging interactions in Margaux.

Researchers have developed different debugging techniques for analyzing models ex-
pressed in temporal logic. Könighofer et al. [55] developed a debugger for LTL formal
specifications using a counterstrategy that is a finite state strategy whereby a specifica-
tion cannot be fulfilled if the environment adheres to it. The tool first provides input;
the user tries to provide output; then it uses counterstrategy to find inputs such that the
system does not fulfill the specification. The interaction is continued until the user fails
and understands the problem. The debugger suggests no fix, but helps clarify the prob-
lem. Beer et al. [8] and Chechik and Gurfinkel [17] proposed an interactive visualization
technique for understanding counterexamples. In [8], the technique uses the structural
causality between LTL properties to display information on a failed property and related
constraints. The debugging technique, explained in [17], incorporates the structure of a
specification and its expected CTL properties to annotate counter-examples with proofs

104

that explain the model checking result. When debugging database queries, users are inter-
ested in non-answer tuples that were expected to be returned by the database engine but
which were not. In this context, a provenance defines a piece of information stating why a
query execution does not return a tuple. Huang et al. [40] developed a method to generate
non-answer tuples and the provenances explaining their failure to appear as output.

Chan [16] proposed a technique to find a propositional formula for a temporal logic
query. Gurfinkel et al. [37], extended the technique to find propositional formulas for
multiple placeholders in a query. Using different temporal logical queries, the user can
explore different temporal aspects of a model, expressible in Kripke structures.

5.4 Summary

Using discriminating examples, Alloy users review focused instances; accepting or rejecting
them can lead to bug detection. This way, Margaux tests different hypotheses whether
the model differs from the user’s intention. Interacting with the user, the debugging pro-
cedure can find subtle partial over constraint bugs that other tools such as UnSAT-Core
are difficult to find.

To produce discriminating examples, Margaux infers simulacra of a given model’
constraints and generates near-border examples for the model’s mutant. We have used
the concept of patterns to abstract the simulacra of a given model. With the predefined
relations between patterns, Margaux mutates the model and produces examples and non-
examples of the model. By producing examples for strengthened or weakened properties,
Margaux can test whether the model suffers from a overconstraint or underconstraint bug.
We have designed the search procedure to automatically perform these steps and generate
discriminating examples. The search procedure is plugged with heuristics to produce fewer
discriminating examples for finding the bug.

105

Chapter 6

Dining Philosophers Case Study

In this chapter, we demonstrate core evidence for the feasibility of Margaux in producing
insightful examples and non-examples and utility of discriminating examples in revealing
bugs. The evidence stems from studying Margaux to debug two non-trivial bogus Alloy
models; therefore, we have developed a prototype of Margaux to infer its simulacrum and
constituent constraints. It implements Discriminating Example Search Procedure (DESP)
for producing discriminating examples. To show the feasibility, we show how effective
the prototype finds discriminating examples. For indicating the utility of Margaux, we
provide evidence on how Margaux differs from other state-of-the-art tools to produce
discriminating examples revealing bugs in an important historical case study.

The first studied model focuses on encoding and simulating a Singly-linked List in
Alloy. This model has been used for years to teach modeling with Alloy to engineering
students. Notwithstanding the simplicity of the concept, many students commonly make
similar mistakes without noticing the consequences. By studying a typical model that such
students usually specify, we will show how Margaux can reveal such a bug.

The other case is a model of Dijkstra’s dining philosopher’s problem that was shipped
with Alloy Analyzer for several years. This model had a partial over-constraint bug that
went undetected until 2012. The bug was originally discovered — and fixed — when a
translator from Alloy to the KeY theorem proving system was written [105]. However,
the depth of reasoning required to fix this bug was not adequately explored in previous
publications. In Section 6.2, we demonstrate that pattern-based debugging can guide the
user through this complex and multi-step reasoning.

In addition to demonstrating how Margaux can assist Alloy users to reveal bugs,
we use the studied models to evaluate whether using heuristics decreases the number of

107

discriminating examples. Also, we analyze the extra time needed for analyzing the sim-
ulacrum of the model’s constraints and selecting the best heuristics for non-deterministic
choices in Margaux’s procedures. The results, presented in Section 6.3, show us how the
extensions and implementations should be directed in the next steps.

In another study, Section 6.4, we investigate how Alloy Analyzer [43] and Aluminum [78],
two state-of-the-art tools for Alloy models, could produce insightful discriminating exam-
ples. Dijkstra’s dining philosophers model is our base case to study the efforts that users
should spend to reach the examples revealing bugs.

Sections 6.1 and 6.2 contain case studies on Singly Linked List and Dijkstra’s dining
philosophers models. Section 6.3 shows the effectiveness of Margaux’s heuristics. Section
6.4 includes comparisons between Margaux and two state-of-the-art Alloy analyzing tools.
Section 6.5 summarizes this chapter.

6.1 Singly Linked List

We present an example of how a bug could emerge in an Alloy model, yet not be easily
detected by convention analyzing tools. Then, we show how Margaux assists users to
effectively examine the model in order to detect unintended corner-sides. We frequently use
this example in teaching Alloy modeling to engineering students. We ask them to model
a Singly Linked List data structure and check some of its properties. In our experience,
the Alloy model, expressed in Figure 6.1, is typical of what students come up with when
first learning Alloy. Although the model looks to be short and straightforward, there is a
subtle bug in the entities’ declarations and corresponding constraints. The Alloy Analyzer
claims that the model satisfies the property at Line 5, and the user is happy with her first
exercise.

A typical model of Singly Linked Lists, such as the one depicted in Figure 6.1, consists
of a set of nodes and connections between them, represented by the signature Node and the
relation next. A list has a head, and the user encodes it as a special node, called Head, at
Line 2. Such modeling includes any form of linked lists, such as cyclic or acyclic. To exclude
unwanted forms of linked lists, i.e., any form other than Singly Linked Lists, the user adds
the noLoop constraint at Line 4. Clearly, from the constraint name, there is no loop in the
list, provided no path exists to connect an atom of Node to itself. The user expects such
a constraint to suffice in expressing a Singly Linked List, but she might be asked whether
a disconnected list exists or all nodes are reachable from one node. She writes another
constraint, at Line 5, and checks whether having noLoop implies the reachability.

108

Figure 6.1 A bogus Alloy code trying to express modeling of a Singly Sorted Linked List
in Alloy.

1 sig Node {next: Node}
2 one sig Head extends Node {}
3

4 pred noLoop {all n: Node| !n in n.^next))}
5 pred reachable {one n: Node| Node = n.∗next)}
6

7 check {noLoop implies reachable}

Alloy Analyzer checks the statement at Line 7, and no counter-example means the
hypothesis is valid in a finite universe. Astute users might be skeptical about the hypothesis
at the beginning and be surprised by the result. Indeed, their understanding is correct and
an acyclic Singly Linked List is not necessarily a connected list. The model faces an
overconstraint issue, and it partially expresses what the user intended to model. The
antecedent at Line 7 avoids any instance of a Singly Linked List that contains a tuple of
next. Since the antecedent models only a part of the user’s intentions, the property in
the conclusion is partially implied from the antecedent. The user might be able to avoid
such an illusive result by simulating antecedents first. For this particular example, the
antecedent models only a Singly Linked List with no atoms. Now, the question is how the
user should find such a subtle bug and identify the root of the problem.

Before stepping into DEBUG algorithm, we would like to clear up the syntactic desugaring
happening for structural declarations. Besides connecting entities, a relation definition
also contains declarative constraints that formulate multiplicities. Such constraints are
defined as declarative constraints [42] and are paired with the Alloy formula syntax, called
declarative formula. From the model in Figure 6.1, the declaration constraint next restricts
every atom of Node to be in a relation with exactly one atom of Node. The declarative
formula for next is defined below. We consider declarative formulas as inputs to DEBUG
algorithm and mention them as needed.

pred declarativeFormulaForNext {all n: Node| one n.next}

At the first step, DEBUG algorithm takes the model, as shown in Figure 6.1, and converts
it into the form 〈{noLoop, declarativeFormulaForNext}, {Node, next}, default〉. The first
part is a set of constraints; the next is a set containing relations, and the last carries the
information about the scopes of unary relations. In addition to the model, DEBUG passes
the libraries of debug patterns, reviewed examples–at this point empty– to Discriminating

109

Example Search Procedure, i.e., DESP, to generate discriminating examples and reveal
potential bugs.

At the beginning, DESP picks next as the only choice for relations. Considering Heuris-
tic 7, DESP decides to call Weakener_Mutation_Operator in order to find an overcon-
straint bug. Given the set of constraints, Weakener_Mutation_Operator randomly chooses
declarativeFormulaForNext for weakening. At Line 2, Weakener_Mutation_Operator finds
that the partialFunction pattern over the relation next is the strongest synonym implied
from declarativeFormulaForNext, which is consistent with other constraint, i.e., noLoop. It
weakens the constraint declarativeFormulaForNext by replacing it with partialFunction. At
Line 3, DESP asks Bordeaux to generate a discriminating example, and the example finder
returns the following discriminating example:

Node next
Head0 - -

The discriminating example is a Singly Linked List with one node. It looks like a legitimate
list, and the user marks it as intended, as it was kept away by declarativeFormulaForNext.
At Line 20, Weakener_Mutation_Operator returns an overconstraint bug as well as the
reviewed discriminating example. We expect that the user will notice the root of the
problem once she reviews the discriminating example and sees the constraint causing the
issue.

In a few words, declarativeFormulaForNext enforces every atom of Node to connect to
exactly one atom of Node. On the other hand, noLoop does not allow any cyclic path.
In a finite universe, an atom of Node cannot exist without pointing to another atom.
The discriminating example confirms this hypothesis, and the user repairs the issue by
weakening the declarative constraint of next as follows:

sig Node {next: lone Node}

Once the user finds the bug, she could repair it and stop Margaux. Or, she could
let DEBUG examine whether the repair aligns with her intentions. Termination conditions,
expressed in Section 5.2.1, are responsible for the examination. They confirm property
checking; if it exists, properly passes, and all reviewed examples are consistent with the
new changes. Once the user has repaired the declarative constraint, DEBUG finds that the
new model passes Condition-1, but fails on Condition-2. The latter condition suspects that
a surviving mutation might reveal another bug. The bug might occur become a constraint

110

is stronger than the intention or the repair lets unintended instances accidentally emerge.
Therefore, DEBUG calls DESP another time to see if any surviving mutation reveals another
bug.

At this call, DESP can select either mutation operator. If it decides to weaken the model,
Weakener_Mutation_Operator has to weaken one of the constraints. The only Synonym
for declarativeFormulaForNext is functional. Since it is a sink in the implication graph, it
cannot be weakened. Alternatively, noLoop’s synonyms is acyclic. Mutating the synonym
to its weaker forms, irreflexive and antisymmetric, leads to different discriminating examples
that are rejected by the user. For instance, a mutation with antisymmetric generates the
following example:

Node next
Head0 Head0 Head0

At this step, the call to Weakener_Mutation_Operator leads to, at most, one discrimi-
nating example being rejected by the user. This example is added to the other rejected
examples, and DESP continues for the next mutations. Unlike noLoop, DESP cannot weaken
declarativeFormulaForNext, because the constraint’s approximation is functional which has
no successor in the implication graph.

As the model is consistent, DESP can also strengthen the model. The operator ex-
plores various sides of the model consistent with different synonyms. The weakest partial
synonyms consistent with the model are {antisymmetric, irreflexive, functional, injective,
weaklyConnected, transitive}. However, only the last two survive, and the others are unsat-
isfiable or killed by previously reviewed discriminating examples. For either synonym, the
mutation reveals different bugs. As the operator returns after finding a bug, the next bug
should be revealed in the next call. The following example is the result of mutating the
model using weaklyConnected:

Node next
Head0 - -
Node0 - -

The user rejects the discriminating example because the list is not connected. She struggled
a little and finds the following constraint in order to ensure all nodes are connected.

pred connected {one n:Node| no n.next and all n’:Node−n| one n’.next}

111

Once the user repairs the disconnected list issue, DEBUG algorithm checks the termina-
tion conditions another time. Similar to the previous iteration, Condition-2 fails and DEBUG
calls DESP in order to review any surviving mutations. They might have survived from the
last iteration or been introduced by the last repair. At this iteration, DESP finds that the
new constraint’s (i.e., connected) synonym is the functional pattern over the relation next.
The weakened mutation over the new model part is rejected by the user .

In the call to Strengthener_Mutation_Operator, out of six synonyms, only injective
leads to a surviving mutation. The operator generates the following discriminating exam-
ple.

Node next
Head0 Head0 Node0

Node0 Node1 Node0

Node1 - -

The discriminating example does not parallel with the user’s intention. It shows a list with
two heads. The user adds another constraint to block such unintended examples. The
constraint forces all nodes except the head to have exactly one incoming link.

pred singleHead {no Head.˜next and all n’: Node−Head| one n’.˜next}
After the repair, DEBUG calls DESP in order to make sure there is no surviving muta-

tion. Through this call, all calls to Weakener_Mutation_Operator are killed, so that the
operator returns NoBugDetected. Still, Strengthener_Mutation_Operator has one more
surviving mutation. It finds that the model is a partial synonym of the complete pattern.
The operator mutates the model by strengthening the synonym to totalOrder. The dis-
criminating example is a valid list. None of the mutation operators mutate any more, and
return noBugDetected to DESP.

At the last iteration, DEBUG finds that all reviewed discriminating examples are consis-
tent with the last repair, so that Condition-1 is satisfied. There are no surviving mutations;
thus Condition-2 also becomes true. The check at Condition-3 fails to find any counter-
example. The user can be confident that she has browsed many meaningful discriminating
examples, so that the model is correct with respect to the structural binary patterns.

112

6.2 Case-study: Dining Philosophers

The Alloy Analyzer ships with a model of Dijkstra’s dining philosophers problem. The
purpose of the model is to show that Dijkstra’s criterion for ordering the mutexes prevents
deadlock. Previously, another research group [105] used a theorem prover to discover that
the original model (which shipped with Alloy for years) was over-constrained: deadlock was
prevented because no instances were possible. They provided a fix, but did not document
the complex and subtle reasoning required to create that fix. Their approach does not
produce examples, and we could not find evidence of how the approach assists users in
understanding, localizing, and fixing the bug [54].

Dijkstra’s well-known idea is that processes will not deadlock if they grab mutexes in
order. In Figure 6.2, the Alloy model is defined with the entities Process, Mutex, and State,
and the relations holds and waits.

The absence of a counter-example reported at Line 46 persuades its designer that the
model is correct and the solution should not lead to any deadlock. Through a number of
interactions, we will show how Margaux can assist the user to explore various corner-sides
and make sure that the model aligns with her intentions. We also briefly demonstrate how
she could eventually come up with a correct and logically equivalent (although syntactically
different) code to the solution previously presented in the literature [105].

The First Bug

As the given model (Figure 6.2) is in the checking mode, DEBUG, the main procedure of
Margaux, splits the antecedent into a set of constraints and a set of properties. That
is C = {GrabbedInOrder, GrabOrRelease, lowerBoundProcess} and R = {holds, waits}. The
relations are ternary with ordering, so that the library of temporal patterns (Section 5.1.5)
is the only applicable library of debug patterns in DEBUG and its succeeding calls to DESP.

At first, call DESP picks holds to analyze considering Heuristic 3. Although the model is
satisfiable, holds and waits are always realized to an empty set of tuples. Enforcing them
to have at least one tuple makes GrabbedInOrder and GrabOrRelease inconsistent. Consid-
ering Heuristic 1, DESP chooses to call Weakener_Mutation_Operator. Due to Heuristic 9,
only the two inconsistent constraints participate in the current call for mutations. The
operator finds no synonyms for the constraints, but does find that the weakest antonyms
of GrabbedInOrder consistent with the other constraint are ExpandRight_FirstLeftEmpty
and ExpanddRight. By applying Heuristic 8, the operation picks the former antonym and
generates the following discriminating example for review by the user:

113

Figure 6.2 A bogus Alloy model expresses modeling a solution to the classical Dinning
Philosophers problem proposed by Edsger W. Dijkstra. The Alloy model has been shipped
with the Alloy Analyzer module for years.

1 open util/ordering [State] as so
2 open util/ordering [Mutex] as mo
3

4 sig Process, Mutex {}
5 sig State {holds, waits: Process →Mutex }
6

7 pred Initial [s: State] { no s.holds + s.waits }
8 pred IsFree [s: State, m: Mutex] { no m.˜(s.holds) }
9 pred IsStalled [s: State, p: Process] { some p.(s.waits) }
10 pred GrabMutex [s: State, p: Process, m: Mutex, s’: State] {
11 not s.IsStalled[p]
12 m !in p.(s.holds)
13 s.IsFree[m] implies {
14 p.(s’.holds) = p.(s.holds) + m and no p.(s’.waits)
15 } else {
16 p.(s’.holds) = p.(s.holds) and p.(s’.waits) = m
17 }
18 all otherProc: Process − p | otherProc.(s’.holds) = otherProc.(s.holds) and otherProc.(s’.waits) = otherProc.(s.waits)
19 }
20 pred ReleaseMutex [s: State, p: Process, m: Mutex, s’: State] {
21 not s.IsStalled[p]
22 m in p.(s.holds)
23 p.(s’.holds) = p.(s.holds) − m
24 no p.(s’.waits)
25 no m.˜(s.waits) implies {
26 no m.˜(s’.holds) and no m.˜(s’.waits)
27 } else {
28 some lucky: m.˜(s.waits) | { m.˜(s’.waits) = m.˜(s.waits) − lucky and m.˜(s’.holds) = lucky }
29 }
30 all mu: Mutex − m | mu.˜(s’.waits) = mu.˜(s.waits) and mu.˜(s’.holds)= mu.˜(s.holds)
31 }
32 pred GrabOrRelease {
33 Initial[so/first]
34 all pre: State − so/last | let post = so/next [pre] | (post.holds = pre.holds && post.waits = pre.waits) ||
35 (some p: Process, m: Mutex | pre.GrabMutex [p, m, post]) ||
36 (some p: Process, m: Mutex | pre.ReleaseMutex [p, m, post])
37 }
38 pred GrabbedInOrder {
39 all pre: State − so/last | let post = so/next[pre] |
40 let had = Process.(pre.holds), have = Process.(post.holds) | let grabbed = have − had |
41 some grabbed implies grabbed in mo/nexts[had]
42 }
43 pred lowerBoundProcess { some Process }
44 pred Deadlock{ some Process and some s: State | all p: Process | some p.(s.waits) }
45

46 check{ (lowerBoundProcess and GrabOrRelease and GrabbedInOrder)
47 implies not Deadlock } for 5 State, 5 Process, 4 Mutex

114

holds waits
State0 - - State0 - -
State1 Process0 Mutex0 State1 - -

The user accepts the discriminating example, so that the operator returns anOverconstraint
issue along with the reviewed discriminating examples. Since the discriminating example
is in conflict with GrabbedInOrder, the user has to repair the code.

The debugger now applies the quantifier unrolling to GrabbedInOrder, which has a uni-
versal quantifier over a set of states. The UnSAT-Core of the unrolled GrabbedInOrder
with the discriminating example further localizes the problem: GrabbedInOrder is inconsis-
tent with the first state of the discriminating example. GrabbedInOrder comprises a single
implication. For that implication to be in conflict with the discriminating example it must
be the case that the antecedent is satisfied and the consequent is where the conflict is.
So the problem has been localized to grabbed in mo/nexts[had]. As had is empty, the user
realizes that the problem is that the nexts function will not return any successors for the
empty set (had). The user replaces this faulty expression with a conditional that returns
all mutexes when had is empty and mo/nexts[had] otherwise. A repair choice is represented
in Figure 6.3.

Figure 6.3 A fix for mitigating the overconstraint bug in the model from Figure 6.2

1 pred GrabbedInOrderFixed1 {
2 all pre: State − so/last |
3 let post = so/next[pre] |
4 let had = Process.(pre.holds), have = Process.(post.holds) |
5 let grabbed = have − had |
6 (some grabbed) ⇒
7 (grabbed in (no had implies Mutex else mo/nexts[had]))
8 }

Alternatively, if Weakener_Mutation_Operator picked GrabOrRelease first,MutateRight
and ContractRight are its weakest antonyms. The operator selects the former pattern; the
call to Bordeaux returns the follow discriminating example:

holds waits
State0 Process0 Mutex0 State0 Process0 Mutex0

State1 Process0 Mutex0 State1 - -

As the user does not want this discriminating example, the operator adds the example to
the rejected examples set and searches for another one. Using Heuristic 10, the operator

115

switches to GrabbedInOrder, and reveals the bug. All in all, after at most reviewing two
discriminating examples, the user finds the bug. On the other hand, if the heuristics are
not considered, on average, it takes three discriminating examples for the operator to find
a relevant discriminating example.

The Second Bug

DEBUG takes the repaired model, represented in Figure 6.3, and checks whether termina-
tion conditions are passed. Because some mutations have survived, DESP creates more
discriminating examples for exploring other parts of the model and finding other bugs.
Considering Heuristic 2, DESP selects the relation holds first. The model is satisfiable,
so DESP can call both operators. If it calls for Weakener_Mutation_Operator, the op-
erator finds non-examples of each constraint to be reviewed. The user rejects them, so
DESP may call Strengthener_Mutation_Operator in the middle or after all calls for
weakening. The user also accepts discriminating examples, once the partial synonyms
ExpandRight and ExpandHeadOfRight are consecutively strengthened. Considering Heuris-
tic 8, the next mutation strengthens the partial synonym ExpandHeadOfRight_MiddleStatic
to ExpandHeaddOfRight_MiddleStatic and generates the following discriminating example:

holds waits
State0 - - State0 - -
State1 Process0 Mutex0 State1 - -
State2 Process0 Mutex0 State2 - -
State2 Process0 Mutex2 - - -
State3 Process0 Mutex0 State3 - -
State3 Process0 Mutex1 - - -
State3 Process0 Mutex2 - - -

The user rejects the discriminating example, because in the fourth state, Process0 grabbed
a mutex with an order lower than the order of the mutex that it grabbed in the third state.
Since the order of grabbing is localized in grabbedInOrder, the code in Figure 6.3 is the first
place to be repaired.

The user again repairs his previous repair in order to ensure that the order of the grabbed
mutex is higher than the order of mutexes that it already has. The concept basically
is conveyed by the meaning of the stronger synonym. Figure 6.4 is the user ’s repair
mitigating the overconstraint bug. On the other hand, without using the heuristics, a bug
might be revealed only after 16 or more interactions with random choices.

116

Figure 6.4 Repairing the underconstraint bug in the model from Figure 6.3

1 pred GrabbedInOrderFixed2 {
2 all pre: State − so/last |
3 let post = so/next[pre] |
4 let had = Process.(pre.holds), have = Process.(post.holds) |
5 let grabbed = have − had |
6 (some grabbed) ⇒ (no (grabbed & mo/prevs[had]))
7 }

The Third Bug

Once the user has repaired the model, DEBUG finds that the termination conditions are not
satisfied yet, and more mutations to be checked. DESP calls Weakener_Mutation_Operator,
yet the surviving mutations do not generate discriminating examples acceptable to the user.
The first five calls to Strengthener_Mutation_Operator are killed by reviewed discrimi-
nating examples. In the next two calls, the operator generates discriminating examples by
strengthening the model’s partial synonyms, ExpandRight and ExpandRightHeadOfRight, to
their mutations ExpandRight_MiddleStatic and ExpandRightHeadOf_MiddleStatic, respec-
tively. The user accepts a discriminating example returned by Bordeaux for the former
mutation, but rejects the one, as in the following example, for the latter mutation:

holds waits
State0 - - State0 - -
State1 Process0 Mutex0 State1 - -
State2 Process0 Mutex0 State2 - -
State2 Process1 Mutex1 - - -
State3 Process0 Mutex0 State3 Process1 Mutex0

State3 Process1 Mutex1 - - -
State4 Process1 Mutex0 State2 - -
State4 Process1 Mutex1 - - -

The user rejects the discriminating example since a process grabbed a mutex with an order
lower than the order of a mutex that it already has.

This Bug occurred because the order of grabbed mutexes is not bound per each process.
By quantifying over atoms of Process and restricting their mutex grabbing, the user can
repair the model, making it similar to that in Figure 6.5. With heuristics, the user reviews
at least two discriminating examples to identify the bug. Alternatively, she has to review
4 examples at most. If Margaux does not employ heuristics, the desired discriminating

117

Figure 6.5 Repairing the underconstraint bug in the model from Figure 6.4

1 pred GrabbedInOrderFixed3 {
2 all p: Process |
3 all pre: State − so/last |
4 let post = so/next[pre] |
5 let had = p.(pre.holds), have = p.(post.holds) |
6 let grabbed = have − had |
7 (some grabbed) ⇒ (no (grabbed & mo/prevs[had]))
8 }

example is found after 4 mutations on average.

The Fourth Bug

After the user has repaired the model, DEBUG again checks the termination conditions for
the model in Figure 6.5. Four mutations still survive for the relation holds. Once the
user accepts or rejects them without any unexpected answer, DESP starts mutating over
waits. If it chooses to call Weakener_Mutation_Operator, the operator generates one
discriminating example; otherwise, it makes two examples by strengthening. Indeed, the
second call to Strengthener_Mutation_Operator generates the following discriminating
example by strengthening the partial synonym ExpandRight to ExpandHeadOfRight over
the relation waits.

holds waits
State0 - - State0 - -
State1 Process0 Mutex0 State1 - -
State2 Process0 Mutex0 State2 - -
State2 Process1 Mutex1 - - -
State3 Process0 Mutex0 State3 Process0 Mutex1

State3 Process1 Mutex1 - - -
State4 Process0 Mutex0 State4 Process0 Mutex1

State4 Process1 Mutex1 State4 Process1 Mutex0

The user rejects the discriminating example since not only does a process have to grab a
mutex in order, it also has to wait for a mutex of a higher order than its grabbed mutexes.

Depicted in Figure 6.6, she could repair the previous repair by constraining the tuples of
waits similar to holds. Using heuristics, the bug could be revealed after reviewing 7 discrim-
inating examples. Without using them, the number rises to 19 discriminating examples.

118

Figure 6.6 Repairing the underconstraint bug in the model from Figure 6.5

1 pred GrabbedInOrderFixed4 {
2 all p: Process |
3 all pre: State − so/last |
4 let post = so/next[pre] |
5 let had = p.(pre.holds), have = p.(post.(waits+holds)) |
6 let grabbed = have − had |
7 (some grabbed) ⇒ (no (grabbed & mo/prevs[had]))
8 }

Given the last repair, DEBUG finds that six mutations still survive. Once the user reviews
them, the termination Condition-2 is satisfied. As the given model is in checking mode,
the analyzer checks the property but finds no counter-example, which satisfies termination
Condition-3. The final model is equivalent to the fixed model shipped with Alloy Analyzer
4.2 but is syntactically different from it.

6.3 Margaux’s Heuristics are Better than Random

The case studies have shown how Margaux can generate discriminating examples in order
to assist the user in exploring whether the written model properly expresses her intent. In
the studies, some discriminating examples informed the user of bugs where the expressed
model deviated from the intended meaning. In the following sections we analyze the
effectiveness of Margaux’s heuristics and compare it with Alloy Analyzer and Aluminum,
two tools for analyzing Alloy models, in terms of generating discriminating examples.

In this section, we assess the effectiveness of Margaux’s heuristics. We want to know
whether the heuristics reduce the number of discriminating examples that the user must
inspect before she discovers the bug. We also want to know the cost of heuristics to reveal
the bugs as well as the additional cost of the simulacrum inferences that the heuristics
need.
RQ 6.1. How many examples should the user inspect before finding an an insightful
discriminating example with Margaux?
RQ 6.2. How well do heuristics find discriminating examples?
RQ 6.3. What is the dominant component of the cost for producing discriminating ex-
amples by Margaux?

To answer these questions, we have replaced the user with an oracle and run Mar-
gaux in two configurations to produce discriminating examples. In the first configuration,

119

Table 6.1 Effect of using heuristics in Margaux

Model Bug
Examples
to reveal bugs

Find the Bug(ms)

with simulacrum inference
Find the bug(ms)

without simulacrum inference
Heuristic Arbitrary Heuristic Arbitrary Heuristic Arbitrary

Dijkstra Overconstraint 1 3 741,362 166,749 4,385 9,878
DijkstraFixed1 Underconstraint 3 16 753,236 424,441 13,906 97,570
DijkstraFixed2 Underconstraint 2 4 773,989 415,350 12,235 116,155
DijkstraFixed3 Underconstraint 7 19 898,324 472,490 115,425 93,942
DijkstraFixed Termination 6 21 930,242 997,392 122,203 172,956

List Overconstraint 2 3 92,381 65,385 2,636 9,355
ListFixed1 Underconstraint 2 3 103,872 74,248 12,261 16,380
ListFixed2 Underconstraint 2 4 133,090 97,519 13,768 22,213
ListFixed Termination 1 1 157,849 111,499 11,697 21,630

Margaux employs heuristics to decide its procedures’ non-deterministic choices; yet, it
decides randomly in the second configuration. As we have already known the fixes for each
bug, we have exploited them to build oracles to emulate the user responses. This way,
we replace the user interactions for confirming or rejecting discriminating examples. We
have evaluated experiments, with and without heuristics, using an Intel i7-2600K CPU at
3.40GHz with 16GB memory. All experiments are done with MiniSat.

Answering RQ 6.1, Margaux asked 13 discriminating examples, and four of them
exposed overconstraint and underconstraint bugs, as depicted in Table 6.1. If Margaux
does not incorporate heuristics, but instead arbitrary, then the number of reviewed dis-
criminating examples rises to 63. On average, after reviewing two discriminating examples,
an exposing discriminating example is generated. Margaux without the heuristics needs
to produce 2.5 times on average more examples until the bug is revealed.

Regarding RQ 6.2, if Margaux uses heuristics for finding fewer discriminating ex-
amples, it takes 13.66 minutes on average to find the bug. Without heuristics, the time
decreases to 8.25 minutes on average. The gap between these two times is taken by the
heuristics for analyzing the model so that Margaux produces fewer discriminating ex-
amples. Margaux with the heuristics takes 1.8 times on average longer than without
heuristics to reveal bugs.

To clarify the time for inferring simulacra for heuristics, i.e., RQ 6.3, we have separated
the time of simulacrum inference from the time that Margaux spends on another tasks
such as mutations and near-border example generation. The last two columns in Table 6.1
show the time for finding bugs with and without using heuristics. On average, simulacrum
inference takes 93% of analyzing time once heuristics are used and 81% if Margaux uses
no heuristics. From another perspective, if the time for the simulacrum inference, for both

120

mutation and some heuristics, is excluded, Margaux without heuristics performs 55%
slower.

6.4 Debugging the Dining Philosophers with Other Tools

In this section, we describe how other tools could assist a user to debug the issues explained
in section 6.2. Alloy Analyzer [43] and Aluminum [78] are two major tools for simulating
Alloy models at the time that we have written this dissertation. Neither of these tools
explicitly support the techniques similar to Margaux, such as non-example generation,
localization, and fix suggestion.

Similar to the technique explained in section 4.5, we negate the model and run it
with Alloy Analyzer or Aluminum to get non-examples. Alloy Analyzer provides all non-
symmetrical examples for a model and all non-symmetrical non-examples for the negation
of the model. Aluminum provides scenario-exploration for a given model. The first scenario
to explore a model is its minimal example. To explore different scenarios, Aluminum
provides the augmentation operator. The operator adds a minimum number of tuples to
produce a new scenario from an existing one.

Through this study, we want to assess how quick other tools can produce insightful
discriminating examples. Due to many possibilities of examples and non-examples, we
have based the study on the models and discriminating examples described in the previous
section. That is, our studied models are the initial Dining Philosophers model and three
following fixes. For each model, we attempt to produce the same example or non-example
that Margaux produces. All in all we want to know that:
RQ 6.4. How many examples should the user inspect before she can assume that she has
found an insightful discriminating example with Alloy Analyzer?
RQ 6.5. How many examples should the user inspect before she can assume that she has
found an insightful discriminating example with Aluminum?

Margaux VS. Alloy Analyzer

Alloy Analyzer produces arbitrary sequences of examples. There might be possible that
Alloy Analyzer produces a discriminating example in its first try similar to what Mar-
gaux produces. To assess how quick Alloy Analyzer produces an insightful discriminating
example, we have reviewed the first 25 examples that Alloy Analyzer produces for each

121

model. By using Alloy Analyzer in this comparison, we want to find how likely one finds
an insightful discriminating example from arbitrary sequence of examples.

For the model in Figure 6.2, Alloy Analyzer returns five examples. By running the
negation of the model, Alloy Analyzer returns arbitrary non-examples, such as the one in
Figure 6.7. Having 40 tuples, such a non-example looks to be complex to be an insightful
discriminating examples. Within the next 25 non-examples, we could not find any instance
similar to the one that Margaux generates to reveal the bug.

Figure 6.7 An arbitrary non-example that Alloy Analyzer produces for the model in
Figure 6.2

By running the negation of the model, Alloy Analyzer produces arbitrary size non-
examples.

To assess the tool with respect to a different bug, we consider the model in section 6.2,
which is a fix for the previous bug. Using Alloy Analyzer, we could not find any example
within the first 25 examples that reveals the bug.

For the next two models, depicted in Figures 6.4 and 6.5, Alloy Analyzer does not
produce any interesting discriminating examples in its 25 tries.

Answering RQ 6.4, Alloy Analyzer produces arbitrary examples, as well as non-examples,
that do not lead to any bug reveal in the discussed cases. Even arbitrary exploration of the
first 25 (non-)examples shows that such (non-)examples are too complex to be insightful.

Margaux VS. Aluminum

Aluminum provides scenario-exploration by producing a minimum example of a given
model and yielding the augmentation operator. By using Aluminum, we want to see
whether absolute minimal (non-)examples are discriminating example. In the other words,
we want to know whether absolute minimal (non-)examples can be useful to reveal the
bugs. If a minimal example does not reveal bugs, we want to know how much a scenario

122

exploration should be proceeded to find the bugs. As the generated discriminating ex-
amples by Margaux are shown to be insightful in finding bugs, we direct the scenario
exploration to find similar examples. By also counting the number of different possible
augmentations at each step, we will have an understanding of the user’s efforts in directing
the tool.

For the model in Figure 6.2 Aluminum also finds the same examples as Alloy Analyzer
has found. The first non-example returned by Aluminum has tuples for Mutex and State
(Figure 6.8). The tool also provides 41 choices to augment the minimal non-example. Some
augmentations lead to unintended non-examples. For instance, the result of augmenting
the minimal example with an atom of Process and a tuple like 〈State0,Process,Mutex〉 is
unintended. A few number of augmentations lead to non-examples similar to the one
produced by Margaux.

Figure 6.8 A minimum example that Aluminum produces for the negation of the model
in Figure 6.2

Aluminum initially generates an unintended minimal non-example and provides 41
choices for augmenting it; however, only very few of these augmentation choices lead to
the bug reveal.

Figure 6.9 A minimal example that Aluminum produces for the model in Figure 6.3

For the model in Figure 6.3, Aluminum produces a minimal example with no valuation
of holds and waits (Figure 6.9). The minimal example is not insightful in terms of revealing
the bug. Aluminum suggests 57 different sets of tuples to augment the minimal example.
After five augmentations, the user can see the same example as Margaux produces for
this model. The next augmentations have to be selected among 40, 39, 22, and 19 aug-
mentations choices. This means that the user has to find the proper example from roughly
37 million (' 57× 40× 39× 22× 19) possible examples.

For the models in Figures 6.4 and 6.5, Aluminum starts from a minimum example
similar to Figure 6.9. To produce insightful discriminating examples similar to Margaux,

123

the user has to apply the augmentation operator three and six times, respectively. The
size of the search space to find the same discriminating example for the former model is
57 × 40 × 39 with respect to the number of augmentations at each step. The insightful
discriminating example for the latter model is in the search space of size 57 × 40 × 39 ×
33× 29× 8.

Regarding RQ 6.5, the minimal (non-)examples by Aluminum are too small to be
insightful. These minimum examples are not useful to reveal the bugs in all cases. Our
experiments, explained in section 4.5 , also showed that the same situation for non-
examples. Using the augmentation operator, we have produced (non-)examples similar to
the ones by Margaux. However, such (non-)examples have to be found within roughly
180 million possible (non-)examples on average. There are also 53 exploration choices on
average to augment the minimal example. At each scenario-exploration step, there are
roughly 37 choices for augmenting the current (non-)example.

All in all, Margaux can produce some insightful discriminating examples after less
than three tries on average. Moreover, users are not involved in selecting from many choices
to explore the model. Even if other insightful examples might exist within shorter sequences
of augmentations, a manual exhaustive exploration to find them is almost impossible. We
have demonstrated that Margaux helps in this important historical case study where the
existing tools do not, despite the fact that the tool might be tuned for the case-study to
find the discriminating examples in a fewer interactions with users.

6.5 Summary

In this chapter, we have presented two models that we have studied to evaluate Margaux,
introduced in Chapter 5. Using Singly Linked List and Dijkstra’s Dining Philosophers
models, we have explained how Margaux infers constituent constraints of a model’s
simulacra. The inferences are based on the patterns, implication lattice, and consistency
graph. With respect to the simulacrum, we have shown how Margaux mutates the model
and produces various discriminating examples.

With two studied cases, we have demonstrated the feasibility of Margaux for the
problems that users might face in debugging Alloy models. We have also shown how using
heuristics directs the debugger to produce particular discriminating examples that detect a
model’s divergence from its actual form. Generating fewer discriminating examples needs
more analysis, which certainly takes more time and resources. However, spending machine
time and resources to detect subtle bugs in models usually saves the time and resources
that would otherwise be needed later to deal with such bugs and their effects.

124

Doing these two case studies has helped us to develop our simulacrum inference frame-
work and formulate debugging patterns for ternary relations. They have also guided us to
take the next steps in improving the performance of the simulacrum inference stages. As
the cases has shown, simulacrum inference is the dominant effort; therefore, distributing
Margaux over a network of processing machines would be useful directions for future
implementations.

We have also demonstrated the effectiveness of Margaux in producing insightful dis-
criminating examples in comparison with existing state-of-the-art tools for analyzing Alloy
models. To do so, we have studied how Aluminum and Alloy Analyzer could produce dis-
criminating examples that reveal bugs in the Dijkstra’s Dining Philosophers Alloy model.
In this case study, Margaux can assist users in finding the bugs by producing three
(non-)examples on average. Alloy Analyzer does not produce such (non-)examples within
the first 25 (non-)example that it generated. In the scenario exploration by Aluminum,
absolute minimal examples were not useful to reveal bugs. For augmenting such (non-
)examples, users face 53 choices for augmenting the minimal (non-)example on average.

125

Chapter 7

Conclusion

In this dissertation, we have discussed different bugs that a relational first-order model
might have: partial overconstraint, total overconstraint, and underconstraint bugs. We
have proposed a system to generate discriminating examples, which helps engineers identify
and understand these bugs in their logical specifications. We have demonstrated that
this system is both feasible [§2, §3, §4, §5, §6] and useful [§6]. In particular, we have
demonstrated that it is more useful than the current state of the art on the Dijkstra’s
dining philosophers problem.

Our position on the utility of discriminating examples in debugging relational first-
order models is based on three well-established premises: concrete examples are more
understandable than abstract models [4, 42, 64]; near-border examples are practical for
learning [34, 110]; and debugging is a hypothesis-driven activity [57, 117]. The premises
are not radical and are well established in other applications. For instance, the hypotheses-
driven debugging approaches are well established in imperative debugging [54]. In Artificial
Intelligence, near-border examples are used for learning corner-cases [52, 83].

In our proposed system, the debugger constructs a discrimination formula to encode a
hypothesis about a potential bug. It then generates a discriminating example for the user
to judge. By either accepting or rejecting the discriminating example, the user affirms or
refutes the hypothesis. Our tools formulate hypotheses of two general kinds: that bugs
happen near borders [§4]; and that the user might have expressed a logical property that
is either slightly stronger or slightly weaker than what they intended [§5]. In support of
the latter, we have developed a library of debug patterns for the debugger to explore, and
heuristics to guide its search therein.

We have developed prototype extensions of Alloy Analyzer to assess the feasibility and

127

utility of discriminating examples in debugging relational first-order models. We have de-
veloped Bordeaux [§4] for finding near-border examples. Using the extension, the user
can review non-examples that can become examples with minimum changes. Another
extension, Margaux [§5], finds the simulacra of a given model and its constituent con-
straints, mutates them, and produces discriminating examples and non-examples to affirm
or refute the user’s intention.

To realize the ideas behind Bordeaux and Margaux, we have developed other ex-
tensions of Alloy Analyzer. Levure [§2] equips Alloy Analyzer to explicitly access the
performance benefits of Kodkod’s partial instance features. Using partial instance blocks,
one can efficiently express examples and test different aspects of the model. With Le-
vure, we have also developed Bentonite [§3], to solve optimization queries searching
for near-border examples. As measured with CLOC [21], we have developed 2,615, 3,114,
5,497, and 25,580 lines of Java code to implement Levure, Bentonite, Bordeaux, and
Margaux, respectively.

To demonstrate how using discriminating examples can assist in understanding and
localizing bugs, we have done two case-studies. One of these case-studies [68] is debugging
subtle bugs in a model of Dijkstra’s dining philosophers [43, 105]. Within these case-studies,
we have illustrated how Margaux reasons to produce discriminating examples in order to
reveal overconstraint and underconstraint bugs. In the case-studies, we have demonstrated
the utility of discriminating examples in identifying and understanding different types of
bugs and the feasibility of Margaux in generating insightful discriminating examples.

Since being published, both the Levure [66] and Bentonite [67] tools have attracted
attention and been used for solving problems with various applications. Levure stimu-
lates researchers to use partial instances for test-case generation [49] and multi-objective
optimization [81]. Analyzing model-checking properties in [24] is another application of
Bentonite. A year after we developed Bentonite in 2014, Milicevic et al. [65] pro-
posed a different approach for solving a similar type of problems. As we have shown in
this dissertation, their approach works more efficiently for our application, so that we have
based our following prototypes on the newer implementation. However, Bentonite works
better for other applications, e.g. [24].

In conclusion, discriminating examples are both feasible and useful for first-order rela-
tional logic languages: they can be computed by machines and used by people, and they
advance the state of the art in debugging logical models.

128

7.1 Future work

The major techniques described in this dissertation offer multiple directions for the future
work:

Reduced computation time by leveraging previous results. We have shown the
potentials in enhancing example finders to create meaningful variants of the user’s model,
and to explain those variants to the engineer semantically, syntactically, and by exam-
ple [§5]. The proposed debugger can process a broader range of models by having richer
libraries of debug patterns. The debug patterns can reflect the experts’ experiences in
facing problems or encode frequent cases in different models. Also the debugger can ana-
lyze patterns over combinations of relations and take into account combinatorial cases of
patterns. Localizing underconstraint bugs and suggesting fixes for such bugs are another
avenue to extend the debugger. As the search algorithm relies on heuristics to direct its
decisions, providing knowledge from previous interactions with the user is a way to bring
forward bug detections.

Syntactical Mutation Operators. Margaux currently supports mutation operators
based on debug patterns. In another direction to extend, Margaux could support syn-
tactical mutation operators. Some candidates for syntactical mutation operators are:

Type Change
From/To To/From

Quantifier some one/lone/all
all one/lone/some
one lone

Local/Global pred p[a:S]{p’[a]} pred p[a:S]{all a’:S | a’in a implies p’[a’]}

Arithmetic
int + int plus[int,int]
int - int minus[int,int]
sum[A] sum a:A’ | a.r

Ordering next[] nexts[]
prev[] prevs[]

Due to the expressiveness of Alloy, many libraries of debug patterns are required to
support debugging for different applications and forms of models. Applying the concepts
of discriminating examples and library of debug patterns for a domain specific language
(based on Alloy) with less complexity would be more practical.

129

Providing Discriminating Examples for Domain Experts. In addition to Alloy
experts, Margaux might assist domain experts to understand and validate formal models
utilized in various software activities, such as requirements analysis. Despite their special-
ized business knowledge, a lack of modeling skill often prevents them from understanding
and working with formal models [4]. Margaux might assist domain experts in benefiting
from formal models by generating focused discriminating examples. A case for studying
this idea is an extension of the model explained in Section 4.1. The model is about us-
ing Bordeaux to produce non-examples for an academic graduation plan. An extension
of the model can be used in a system to assist academic program advisors for checking
whether a student’s completed courses comply with the program rules.

In this case, declarative models are appropriate for encoding graduation rules and
revealing inconsistencies between them. From our conversation with academic advisors,
as domain experts, there are valuable benefits in such a system although working and
understanding logical models is not straightforward to them. However, they can understand
examples for the model and validate whether they desire these examples. Using Margaux,
or its extension, academic advisors would review discriminating examples that might help
them to focus on particular aspects of the model and find potential partial overconstraint
and underconstraint issues.

Possible Usability Testing. To test the usability of Margaux, we can perform ex-
ploratory and evaluative studies [5]. By an exploratory, or formative, study, we can find
information to recognize and describe the problem from users’ perspective. Exploratory
studies are often performed by interviews and contextual inquiries. Evaluative studies ex-
amine the effectiveness of the idea and its realization with respect to usability objectives.
They also allow generalizing the results in a broader domain. To evaluate particular use
cases of a subject, the study has to be done in a controlled environment. By examining the
usability in two controlled environments, the study generates information for comparing
effects of a subject.

A controlled user study for evaluating the utility of discriminating examples in debug-
ging relational first-order models can direct us to know how well typical users understand
the cause of an issue with and without Margaux. Since the premises of our fundamen-
tal ideas have already been evaluated in similar applications, it would not be surprising
to expand their consequences into our context. On the other hand, from an uncontrolled
evaluative user study, we will learn how users debug their models in different applications.
By analyzing the user interactions in two different releases, we can also identify other
hypotheses that users might find interesting in practice.

130

From exploratory user studies, we want to know the other types of examples that the
users find insightful. We also want to explore the usefulness of Margaux’s heuristics in
ranking different discriminating examples. Similar to the user study by Ko and Myers [53],
we also want to know what other hypotheses Alloy users might find helpful for debugging
Alloy models. As we know well from carrying out a previous controlled evaluative study
in another application of Alloy models [88], finding a group of Alloy users is the most
challenging part of similar empirical studies. An account of an unsuccessful exploratory
user study before developing Aluminum also confirms this challenge [75].

As users with different levels of knowledge in Alloy have different hypotheses for debug-
ging a model or any similar artifact, such as academic graduation plan, distinct exploratory
and evaluative user studies should be designed. By performing different exploratory user
studies with domain experts having less knowledge in logical modeling, we can learn the
type of debugging hypotheses that they might ask while reviewing a relevant logic-based
artifact. This study also would help us to adjust library of debug patterns with respect
to the particular problem domain. For assessing the usefulness of the debugging technique
in assisting domain experts, a controlled evaluative user study needs two groups of users
with fairly equal knowledge in domain: study group + control group.

Near-border examples Our prototype demonstrates the computational feasibility of
finding relative minimum distances between examples and non-examples [§4]. The imple-
mentation is based on Alloy∗, as we have found it an effective way to realize the prototype
with respect to time and resources. Using another solver for improving the performance
is one way to extend the prototype. As the experiments have shown, translating step
by Kodkod is a bottleneck for some studied cases. In addition to using the mentioned
parallelization techniques, recycling the already translated parts of the model is one way
to increase the performance. As we have defined, the relative minimal distance is based
on the number tuples between two instances. Another direction of research is to assess
another interpretation of the concept of distance.

Staged solving technique As we needed to run queries in the form of ∃∀, we have
extended Alloy Analyzer to automatically perform additional scope computations. We
have used a stage evaluation technique to decrease the size of universe of discourse for
running such queries [§3]. Although we have shown a posterior tool can perform more
efficient in our applications, the experiments show values of our prototype in checking
the queries. A hybrid technique from our staging approach and counterexample guided
inductive synthesis technique is another future work. As our preliminary study showed,
dropping non-isomorphic can lead to unsound instances satisfying ∃∀ queries. Since the

131

number of non-isomorphic objects can, in some cases, be exponentially smaller than the
number of objects [102], there will be a dramatic performance improvement for some class
of ∃∀ queries to exclude isomorphic objects [62].

132

References

[1] P. Abad, N. Aguirre, V. Bengolea, D. Ciolek, M. F. Frias, J. P. Galeotti, T. Maibaum,
M. Moscato, N. Rosner, and I. Vissani. Improving Test Generation under Rich
Contracts by Tight Bounds and Incremental SAT Solving. In ICST ’13, 2013.

[2] C. Alexander. A pattern language: towns, buildings, construction. Oxford University
Press, 1977.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secur. Comput.,
1(1):11–33, Jan. 2004.

[4] K. Bak, D. Zayan, K. Czarnecki, M. Antkiewicz, Z. Diskin, A. Wasowski, and D. Ray-
side. Example-driven modeling: model = abstractions + examples. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13, pages 1273–
1276. IEEE Press, 2013.

[5] C. M. Barnum. Usability testing essentials: ready, set... test! Elsevier, 2010.

[6] E. Batot. Generating examples for knowledge abstraction in MDE: a multi-objective
framework. In M. Balaban and M. Gogolla, editors, Proceedings of the ACM Student
Research Competition at MODELS 2015 co-located with the ACM/IEEE 18th Inter-
national Conference MODELS 2015, Ottawa, Canada, September 29, 2015., volume
1503 of CEUR Workshop Proceedings, pages 1–6. CEUR-WS.org, 2015.

[7] K. Beck. Test-Driven Development. Addison-Wesley, 2003.

[8] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler. Explaining Counterex-
amples Using Causality. In Proc.21st CAV, volume 5643 of LNCS, pages 94–108.
Springer-Verlag, July 2009.

133

[9] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti. Specification patterns from
research to industry: a case study in service-based applications. In Proceedings of
the 34th International Conference on Software Engineering, pages 968–976. IEEE
Press, 2012.

[10] A. Biere. Handbook of Satisfiability, volume 185. Ios PressInc, 2009.

[11] T. Budd, R. DeMillo, R. Lipton, and F. Sayward. Theoretical and empirical studies
on using program mutation to test the functional correctness of programs. In 7th
POPL, Las Vegas, NV, Jan. 1980.

[12] Y. Cai. Modularity in Design: Formal Modeling and Automated Analysis. PhD thesis,
University of Virginia, Aug. 2006.

[13] Y. Cai and K. Sullivan. Modularity analysis of logical design models. In S. Easter-
brook and S. Uchitel, editors, Proc.21st ASE, Tokyo, Japan, Sept. 2006.

[14] Y. Cai, S. Huynh, and T. Xie. A framework and tool supports for testing modularity
of software design. In A. Egyed and B. Fischer, editors, Proc.22nd ASE, pages 441–
444, Atlanta, GA, Nov. 2007.

[15] B. Cha, K. Iwama, Y. Kambayashi, and S. Miyazaki. Local search algorithms for
partial maxsat. AAAI/IAAI, 263268, 1997.

[16] W. Chan. Temporal-logic queries. In International Conference on Computer Aided
Verification, pages 450–463. Springer, 2000.

[17] M. Chechik and A. Gurfinkel. A framework for counterexample generation and ex-
ploration. In Proc.8th FASE, pages 220–236. Springer-Verlag, Apr. 2005.

[18] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

[19] A. Cunha. Bounded model checking of temporal formulas with Alloy. In International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pages 303–308.
Springer, 2014.

[20] A. Cunha, N. Macedo, and T. Guimaraes. Target oriented relational model finding.
In Fundamental Approaches to Software Engineering, pages 17–31. Springer, 2014.

[21] A. Danial. Count lines of code, 2006. URL https://github.com/AlDanial/cloc.

134

https://github.com/AlDanial/cloc

[22] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. Computer, 11(4):34–41, 1978.

[23] C. Desrosiers, P. Galinier, A. Hertz, and S. Paroz. Using heuristics to find mini-
mal unsatisfiable subformulas in satisfiability problems. Journal of Combinatorial
Optimization, 18:124–150, 2009.

[24] D. Dietrich, P. Shaker, J. Atlee, D. Rayside, and J. Gorzny. Feature Interaction
Analysis of the Feature-Oriented Requirements-Modelling Language Using Alloy. In
MoDeVVa Workshop at MODELS Conference, 2012.

[25] D. Dietrich, P. Shaker, J. Gorzny, J. Atlee, and D. Rayside. Translating the Feature-
Oriented Requirements Modelling Language to Alloy. Technical Report CS-2012-12,
University of Waterloo, David R. Cheriton School of Computer Science, 2012.

[26] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering, ICSE ’99, pages 411–420, New York, NY, USA, may 1999.
ACM.

[27] J. Edwards, D. Jackson, and E. Torlak. A type system for object models. In R. N.
Taylor and M. B. Dwyer, editors, Proc.12th FSE, Newport Beach, CA, USA, Nov.
2004.

[28] N. Eén and N. Sörensson. An Extensible SAT-solver. In E. Giunchiglia and A. Tac-
chella, editors, Theory and Applications of Satisfiability Testing, volume 2919 of
LNCS, pages 502–518. Springer, 2004.

[29] A. Felfernig, M. Schubert, and C. Zehentner. An efficient diagnosis algorithm for
inconsistent constraint sets. Artif. Intell. Eng. Des. Anal. Manuf., 26(1):53–62, Feb.
2012.

[30] B. Fraikin, M. Frappier, and R. St-Denis. Modeling the supervisory control theory
with Alloy. In J. Derrick, J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel,
S. Reeves, and E. Riccobene, editors, International Conference on Abstract State
Machines, Alloy, B, VDM, and Z, volume 7316 of LNCS, pages 94–107. Springer,
Springer-Verlag, June 2012.

[31] J. P. Galeotti, N. Rosner, C. G. López Pombo, and M. F. Frias. Analysis of Invariants
for Efficient Bounded Verification. In P. Tonella and A. Orso, editors, Proc.19th
ISSTA, pages 25–36. ACM, 2010.

135

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Pearson Education, 1994.

[33] S. Ganov, S. Khurshid, and D. E. Perry. Annotations for Alloy: Automated Incre-
mental Analysis Using Domain Specific Solvers. In T. Aoki and K. Taguchi, editors,
Formal Methods and Software Engineering, volume 7635 of LNCS, pages 414–429.
Springer, 2012.

[34] M. L. Gick and K. Paterson. Do contrasting examples facilitate schema acquisition
and analogical transfer? Canadian Journal of Psychology/Revue canadienne de
psychologie, 46(4):539, 1992.

[35] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with distance
metrics. International Journal on Software Tools for Technology Transfer, 8(3):229–
247, 2006.

[36] V. Gruhn and R. Laue. Specification patterns for time-related properties. In Tempo-
ral Representation and Reasoning, International Syposium on, pages 189–191. IEEE
Computer Society, 2005.

[37] A. Gurfinkel, B. Devereux, and M. Chechik. Model exploration with temporal logic
query checking. ACM SIGSOFT Software Engineering Notes, 27(6):139–148, 2002.

[38] S. Halle, R. Villemaire, and O. Cherkaoui. Specifying and validating data-aware
temporal web service properties. TSE, 35(5):669–683, 2009.

[39] F. Hemery, C. Lecoutre, L. Sais, and F. Boussemart. Extracting mucs from constraint
networks. In Proceedings of the 2006 conference on ECAI 2006: 17th European
Conference on Artificial Intelligence August 29 – September 1, 2006, Riva del Garda,
Italy, pages 113–117, 2006.

[40] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-answers
to queries over extracted data. Proceedings of the VLDB Endowment, 1(1):736–747,
2008.

[41] J. Irwin, J.-M. Loingtier, J. R. Gilbert, G. Kiczales, J. Lamping, A. Mendhekar, and
T. Shpeisman. Aspect-oriented programming of sparse matrix code. In ISCOPE,
pages 249–256, 1997.

[42] D. Jackson. Software Abstractions: Logic, Language, and Anlysis. MIT Press, 2011.

136

[43] D. Jackson. Alloy, 2012. URL http://alloy.mit.edu/alloy/.

[44] D. Jackson and J. Wing. Lightweight formal methods. IEEE Computer, 29(4):21–22,
Apr. 1996.

[45] Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. Software Engineering, IEEE Transactions on, 37(5):649–678, 2011.

[46] U. Junker. Quickxplain: preferred explanations and relaxations for over-constrained
problems. In Proceedings of the 19th national conference on Artifical intelligence,
AAAI’04, pages 167–172. AAAI Press, 2004.

[47] S. Kallel, A. Charfi, T. Dinkelaker, M. Mezini, and M. Jmaiel. Specifying and mon-
itoring temporal properties in web services compositions. In Web Services, 2009.
ECOWS’09. Seventh IEEE European Conference on, pages 148–157. IEEE, 2009.

[48] S. Katz, O. Grumberg, and D. Geist. ‘Have I written enough Properties?’ — A
Method of Comparison between Specification and Implementation. In Proceedings of
the 10th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, CHARME ’99, pages 280–297. Springer-Verlag,
1999.

[49] H. Keramati and S.-H. Mirian-Hosseinabadi. Generating semantically valid test in-
puts using constrained input grammars. Information and Software Technology, 57:
204–216, 2015.

[50] S. Khurshid and D. Marinov. TestEra: Specification-based testing of Java programs
using SAT. Automated Software Engineering, 11(4):403–434, 2004.

[51] S. Khurshid, D. Marinov, I. Shlyakhter, and D. Jackson. A Case for Efficient Solution
Enumeration. In E. Giunchiglia and A. Tacchella, editors, Theory and Applications
of Satisfiability Testing, volume 2919 of LNCS, pages 272–286. Springer, 2004.

[52] K. Kira and L. A. Rendell. A practical approach to feature selection. In Proceedings
of the ninth international workshop on Machine learning, pages 249–256, 1992.

[53] A. J. Ko and B. A. Myers. A framework and methodology for studying the causes of
software errors in programming systems. Journal of Visual Languages & Computing,
16(1):41–84, 2005.

137

http://alloy.mit.edu/alloy/

[54] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaf-
fidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson, G. Rothermel, M. Shaw,
and S. Wiedenbeck. The state of the art in end-user software engineering. ACM
Computing Surveys, 43(3):21:1–21:44, Apr. 2011.

[55] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifications: a practi-
cal approach using model-based diagnosis and counterstrategies. International Jour-
nal on Software Tools for Technology Transfer, pages 1–21, 2011.

[56] S. Konrad and B. H. Cheng. Real-time specification patterns. In W. Griswold and
B. Nuseibeh, editors, Proc.27th ICSE, pages 372–381, NYC, 2005. ACM. ISBN 1-
59593-963-2. doi: http://doi.acm.org/10.1145/1062455.1062604.

[57] J. F. Krems. Expert strategies in debugging: experimental results and a compu-
tational model. In Cognition and computer programming, pages 241–254. Ablex
Publishing Corp., 1994.

[58] L. Lamport. The TLA Home Page, 2010. URL http://research.microsoft.com/
en-us/um/people/lamport/tla/tla.html.

[59] S. Liu, X. Wang, and W. Miao. Supporting requirements analysis using pattern-based
formal specification construction. In Formal Methods and Software Engineering,
pages 100–115. Springer, 2015.

[60] N. Macedo and A. Cunha. Implementing QVT-R bidirectional model transformations
using Alloy. In International Conference on Fundamental Approaches to Software
Engineering, pages 297–311. Springer, 2013.

[61] N. Macedo and A. Cunha. Least-change bidirectional model transformation with
qvt-r and atl. Software & Systems Modeling, pages 1–28, 2014.

[62] D. Marinov and S. Khurshid. TestEra: A Novel Framework for Automated Testing
of Java Programs. In Proc.16th ASE, pages 22–31, San Diego, CA, Nov. 2001.

[63] J. Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications. In
Multiple-Valued Logic (ISMVL), 2010 40th IEEE International Symposium on, pages
9 –14, may 2010.

[64] L. Mendel. Modeling by example. Master’s thesis, Massachusetts Institute of Tech-
nology, sep 2007.

138

http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

[65] A. Milicevic, J. P. Near, E. Kang, and D. Jackson. Alloy*: A General-purpose
Higher-order Relational Constraint Solver. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE ’15, pages 609–619. IEEE
Press, 2015.

[66] V. Montaghami and D. Rayside. Extending Alloy with Partial Instances. In Pro-
ceedings of the Third international conference on Abstract State Machines, Alloy, B,
VDM, and Z, ABZ’12, pages 122–135. Springer-Verlag, 2012.

[67] V. Montaghami and D. Rayside. Staged Evaluation of Partial Instances in a Re-
lational Model Finder. In Abstract State Machines, Alloy, B, TLA, VDM, and Z,
pages 318–323. Springer, 2014.

[68] V. Montaghami and D. Rayside. Pattern-based debugging of declarative models. In
Model Driven Engineering Languages and Systems (MODELS), 2015 ACM/IEEE
18th International Conference on, pages 322–327. IEEE, 2015.

[69] V. Montaghami, O. Odunayo, B. Guntoori, and D. Rayside. Bordeaux prototype.
https://github.com/drayside/bordeaux, 2016.

[70] J.-M. Mottu, B. Baudry, and Y. Le Traon. Mutation analysis testing for model
transformations. In European Conference on Model Driven Architecture-Foundations
and Applications, pages 376–390. Springer, 2006.

[71] G. Navarro. A guided tour to approximate string matching. ACM computing surveys
(CSUR), 33(1):31–88, 2001.

[72] J. P. Near. An Imperative Extension to Alloy and a Compiler for its Execution.
Master’s thesis, Massachusetts Institute of Technology, 2010.

[73] J. P. Near. From relational specifications to logic programs. In LIPIcs-Leibniz In-
ternational Proceedings in Informatics, volume 7. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2010.

[74] J. P. Near and D. Jackson. An imperative extension to Alloy. In International
Conference on Abstract State Machines, Alloy, B and Z, pages 118–131. Springer,
2010.

[75] T. Nelson. First-order Models For Configuration Analysis. PhD thesis, Brown Uni-
versity, 2013.

139

https://github.com/drayside/bordeaux

[76] T. Nelson, C. Barratt, D. Dougherty, K. Fisler, and S. Krishnamurthi. The Margrave
tool for firewall analysis. In Proceedings of the 24th International Conference on Large
Installation System Administration, pages 1–8. USENIX Association, 2010.

[77] T. Nelson, D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Toward a more complete
Alloy. In International Conference on Abstract State Machines, Alloy, B, VDM, and
Z, pages 136–149. Springer, 2012.

[78] T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Aluminum:
principled scenario exploration through minimality. In B. Cheng and K. Pohl, editors,
Proc.35th ICSE, pages 232–241, San Francisco, CA, 2013.

[79] C. Nentwich, W. Emmerich, and A. Finkelsteiin. Consistency management with
repair actions. In Proceedings of the 25th International Conference on Software En-
gineering, ICSE ’03, pages 455–464. IEEE Computer Society, 2003.

[80] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff.
How Amazon Web Services Uses Formal Methods. Communications of the ACM, 58
(4):66–73, Mar. 2015.

[81] R. Olaechea, S. Stewart, K. Czarnecki, and D. Rayside. Modelling and multi-
objective optimization of quality attributes in variability-rich software. In NF-
PinDSML Workshop at MODELS Conference, NFPinDSML ’12, pages 2:1–2:6.
ACM, 2012.

[82] C. Parnin and A. Orso. Are automated debugging techniques actually helping pro-
grammers? In Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ISSTA ’11, pages 199–209. ACM, 2011.

[83] L. Popelínsky. Efficient relational learning from sparse data. In Proceedings of the
10th International Conference on Artificial Intelligence: Methodology, Systems, and
Applications, AIMSA ’02, pages 11–20, London, UK, UK, 2002. Springer-Verlag.

[84] F. Raimondi, J. Skene, and W. Emmerich. Efficient online monitoring of web-service
slas. In M. J. Harrold and G. Murphy, editors, Proc.16th FSE, pages 170–180,
Atlanta, GA, Nov. 2008.

[85] D. Rayside and H.-C. Estler∗. A spreadsheet-like user interface for combinatorial
multi-objective optimization. In P. Martin and A. W. Kark, editors, Proc.CASCON,
Toronto, Nov. 2009.

140

[86] D. Rayside, F. Chang∗, G. Dennis∗, R. Seater∗, and D. Jackson. Automatic visu-
alization of relational logic models. In First Workshop on the Layout of (Software)
Engineering Diagrams (LED’07), Sept. 2007.

[87] D. Rayside, H.-C. Estler∗, and D. Jackson. A Guided Improvement Algorithm for
Exact, General Purpose, Many-Objective Combinatorial Optimization. Technical
Report MIT-CSAIL-TR-2009-033, MIT CSAIL, 2009. URL http://hdl.handle.
net/1721.1/46322.

[88] D. Rayside, V. Montaghami∗, F. Leung∗, A. Yuen∗, K. Xu∗, and D. Jackson. Synthe-
sizing iterators from abstraction functions. In W. Binder and K. Ostermann, editors,
Proc.11th GPCE, Dresden, Germany, Sept. 2012.

[89] A. Reder and A. Egyed. Computing repair trees for resolving inconsistencies in
design models. In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2012, pages 220–229. ACM, 2012.

[90] R. Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence, 32(1):
57–95, Apr. 1987.

[91] N. Rosner, J. P. Galeotti, C. G. L. Pombo, and M. F. Frias. ParAlloy: towards a
framework for efficient parallel analysis of alloy models. In International Conference
on Abstract State Machines, Alloy, B and Z, pages 396–397. Springer, 2010.

[92] N. Rosner, J. H. Siddiqui, N. Aguirre, S. Khurshid, and M. F. Frias. Ranger: Parallel
analysis of alloy models by range partitioning. In Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on, pages 147–157. IEEE,
2013.

[93] S. Saghafi and D. J. Dougherty. Razor: provenance and exploration in model-finding.
In 4th Workshop on Practical Aspects of Automated Reasoning (PAAR). Citeseer,
2014.

[94] R. M. Seater. Core extraction and non-example generation: debugging and un-
derstanding logical models. Master’s thesis, Massachusetts Institute of Technology,
2004.

[95] E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA,
1983. ISBN 0262192187.

141

http://hdl.handle.net/1721.1/46322
http://hdl.handle.net/1721.1/46322

[96] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri. Debugging
overconstrained declarative models using unsatisfiable cores. In Automated Software
Engineering, 2003. Proceedings. 18th IEEE International Conference on, pages 94–
105. IEEE, 2003.

[97] J. Silva. A comparative study of algorithmic debugging strategies. In Logic-Based
Program Synthesis and Transformation, pages 143–159. Springer, 2007.

[98] A. Sullivan, R. N. Zaeem, S. Khurshid, and D. Marinov. Towards a test automation
framework for alloy. In Proceedings of the 2014 International SPIN Symposium on
Model Checking of Software, pages 113–116. ACM, 2014.

[99] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The structure and value
of modularity in software design. In Proc.9th FSE, pages 99–108, Vienna, Austria,
Sept. 2001.

[100] S. Toda. On the computational power of PP and (+)P. In Foundations of Computer
Science, 1989., 30th Annual Symposium on, pages 514–519, Oct. 1989.

[101] E. Torlak. A constraint solver for software engineering: finding models and cores
of large relational specifications. PhD thesis, MIT, Cambridge, MA, USA, 2009.
AAI0821754.

[102] E. Torlak and D. Jackson. Kodkod: A relational model finder. In O. Grumberg and
M. Huth, editors, Proc.13th TACAS, volume 4424 of LNCS, pages 632–647, Braga,
Portugal, Mar. 2007. Springer-Verlag.

[103] E. Torlak, F. S.-H. Chang, and D. Jackson. Finding minimal unsatisfiable cores of
declarative specifications. In Proceedings of the 15th international symposium on
Formal Methods, FM ’08, pages 326–341. Springer-Verlag, 2008.

[104] E. Torlak, M. Taghdiri, G. Dennis, and J. P. Near. Applications and extensions of
Alloy: past, present and future. Mathematical Structures in Computer Science, 23
(04):915–933, 2013.

[105] M. Ulbrich, U. Geilmann, A. A. E. Ghazi, and M. Taghdiri. A Proof Assis-
tant for Alloy Specifications. In C. Flanagan and B. König, editors, Proc.18th
TACAS, volume 7214 of LNCS, pages 422–436. Springer-Verlag, 2012. doi: 10.1007/
978-3-642-28756-5_29.

142

[106] A. Vakili and N. A. Day. Temporal logic model checking in alloy. In J. Derrick,
J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel, S. Reeves, and E. Riccobene,
editors, International Conference on Abstract State Machines, Alloy, B, VDM, and
Z, volume 7316 of LNCS, pages 150–163. Springer, Springer-Verlag, June 2012.

[107] R. Van Der Straeten, J. P. Puissant, and T. Mens. Assessing the kodkod model finder
for resolving model inconsistencies. In Proceedings of the 7th European conference on
Modelling foundations and applications, ECMFA’11, pages 69–84. Springer-Verlag,
2011.

[108] H. Van Maaren and S. Wieringa. Finding guaranteed muses fast. In Proceedings of
the 11th international conference on Theory and applications of satisfiability testing,
SAT’08, pages 291–304, 2008.

[109] I. Vessey. Expertise in debugging computer programs: an analysis of the content of
verbal protocols. IEEE Trans. Syst. Man Cybern., 16(5):621–637, Sept. 1986.

[110] P. H. Winston. Artificial Intelligence. Addison-Wesley, Reading, Massachusetts,
third edition, 1992. pp. 150-356.

[111] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki. Generating range fixes for soft-
ware configuration. In Proceedings of the 2012 International Conference on Software
Engineering, ICSE 2012, pages 58–68. IEEE Press, 2012.

[112] P. Zave. Using lightweight modeling to understand chord. SIGCOMM Comput.
Commun. Rev., 42(2):49–57, Mar. 2012. ISSN 0146-4833. doi: 10.1145/2185376.
2185383. URL http://doi.acm.org/10.1145/2185376.2185383.

[113] P. Zave. How to make chord correct (using a stable base). CoRR, abs/1502.06461,
2015. URL http://arxiv.org/abs/1502.06461.

[114] P. Zave. A practical comparison of alloy and spin. Formal Aspects of Computing, 27
(2):239–253, 2015.

[115] D. Zayan, M. Antkiewicz, and K. Czarnecki. Effects of using examples on structural
model comprehension: a controlled experiment. In Proceedings of the 36th Interna-
tional Conference on Software Engineering, pages 955–966. ACM, 2014.

[116] A. Zeller. Isolating cause-effect chains from computer programs. In J. Daemen and
V. Rijmen, editors, Proc.10th FSE, pages 1–10, Charleston, SC, Nov. 2002. ISBN
1-58113-514-9.

143

http://doi.acm.org/10.1145/2185376.2185383
http://arxiv.org/abs/1502.06461

[117] A. Zeller. Why programs fail: a guide to systematic debugging. Morgan Kaufmann,
2009.

144

Appendices

145

Appendix A

List of Temporal Patterns’ Structures
for a Ternary Relation

The complete list of 160 temporal debug patterns’ structure for a ternary relation [§5.1.5].
The pattern name is constructued from combination of parameters expressed in Figure 5.3.
Debug patterns are design for Margaux to analyze a given model and generates discrim-
inating examples [§5.1].

1 pred ExpanddTaillOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
2 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
3 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
4 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
5 (c’!inc) and (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
6 }
7 pred ExpanddTaillOfRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
8 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
9 no left_first.r
10 all left’: left−last[left,left_next]| let left’’ = left’.left_next| let c = middle.(left’.r)|
11 let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and (c’!inc) and
12 (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
13 }
14 pred ExpanddTaillOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
15 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
16 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
17 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and (c’!inc) and
18 (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
19 }
20 pred ExpanddTaillOfMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
21 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
22 no left_first.r
23 all left’: left−last[left,left_next]| let left’’ = left’.left_next| let c = (left’.r).right|
24 let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and (c’!inc) and
25 (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
26 }
27 pred ExpanddTaillOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,left_first: univ,

147

28 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
29 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
30 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c|(c in c’) and
31 (c’!inc) and (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
32 }
33

34 pred ExpanddTaillOfRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
35 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
36 no left_first.r
37 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
38 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c| (c in c’) and
39 (c’!inc) and (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
40 }
41 pred ExpanddTaillOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
42 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
43 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
44 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c| (c in c’) and
45 (c’!inc) and (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
46 }
47

48 pred ExpanddTaillOfMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
49 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
50 no left_first.r
51 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
52 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c| (c in c’) and
53 (c’!inc) and (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
54 }
55 pred ExpandTaillOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
56 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
57 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
58 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
59 (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
60 }
61 pred ExpandTaillOfRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
62 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
63 no left_first.r
64 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
65 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
66 (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
67 }
68 pred ExpandTaillOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
69 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
70 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
71 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and
72 (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
73 }
74 pred ExpandTaillOfMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
75 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
76 no left_first.r
77 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
78 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and
79 (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
80 }
81 pred ExpandTaillOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
82 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
83 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
84 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c| (c in c’) and

148

85 (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
86 }
87

88

89

90

91 pred ExpandTaillOfRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
92 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
93 no left_first.r
94 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
95 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c| (c in c’) and
96 (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
97 }
98 pred ExpandTaillOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
99 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
100 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
101 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c|
102 (c in c’) and (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
103 }
104 pred ExpandTaillOfMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
105 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
106 no left_first.r
107 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
108 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c|
109 (c in c’) and (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
110 }
111 pred MutateTaillOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
112 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
113 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
114 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| eq[#c’ ,# c] and
115 (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
116 }
117 pred MutateTaillOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
118 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
119 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
120 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| eq[#c’ ,# c] and
121 (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
122 }
123 pred MutateTaillOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
124 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
125 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
126 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c|
127 eq[#c’ ,# c] and (some delta implies(some c implies lt[max[delta,right_next],min[c,right_next],right_next]))
128 }
129 pred MutateTaillOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
130 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
131 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
132 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c|
133 eq[#c’ ,# c] and (some delta implies(some c implies lt[max[delta,middle_next],min[c,middle_next],middle_next]))
134 }
135 pred ContracttTaillOfRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
136 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
137 no last[left,left_next].r
138 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
139 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and (c!inc’) and
140 (some delta implies(some c’ implies lt[max[delta,right_next],min[c’,right_next],right_next]))
141 }

149

142 pred ContracttTaillOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
143 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
144 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
145 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
146 (c!inc’) and (some delta implies(some c’ implies lt[max[delta,right_next],min[c’,right_next],right_next]))
147 }
148 pred ContracttTaillOfMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
149 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
150 no last[left,left_next].r
151 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
152 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and (c!inc’) and
153 (some delta implies(some c’ implies lt[max[delta,middle_next],min[c’,middle_next],middle_next]))
154 }
155 pred ContracttTaillOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
156 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
157 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
158 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and (c!inc’) and
159 (some delta implies(some c’ implies lt[max[delta,middle_next],min[c’,middle_next],middle_next]))
160 }
161 pred ContracttTaillOfRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
162 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
163 no last[left,left_next].r
164 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
165 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
166 let delta = c−c’| (c’ in c) and (c!inc’) and
167 (some delta implies(some c’ implies lt[max[delta,right_next],min[c’,right_next],right_next]))
168 }
169 pred ContracttTaillOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
170 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
171 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
172 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
173 let delta = c−c’| (c’ in c) and (c!inc’) and
174 (some delta implies(some c’ implies lt[max[delta,right_next],min[c’,right_next],right_next]))
175 }
176 pred ContracttTaillOfMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
177 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
178 no last[left,left_next].r
179 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
180 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
181 let delta = c−c’| (c’ in c) and (c!inc’) and
182 (some delta implies(some c’ implies lt[max[delta,middle_next],min[c’,middle_next],middle_next]))
183 }
184 pred ContracttTaillOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
185 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
186 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
187 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
188 let delta = c−c’| (c’ in c) and (c!inc’) and
189 (some delta implies(some c’ implies lt[max[delta,middle_next],min[c’,middle_next],middle_next]))
190 }
191 pred ContractTaillOfRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
192 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
193 no last[left,left_next].r
194 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
195 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
196 (some delta implies(some c’ implies lt[max[delta,right_next],min[c’,right_next],right_next]))
197 }
198 pred ContractTaillOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,

150

199 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
200 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
201 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
202 (some delta implies(some c’ implies lt[max[delta,right_next],min[c’,right_next],right_next]))
203 }
204

205 pred ContractTaillOfMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
206 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
207 no last[left,left_next].r
208 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
209 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
210 (some delta implies(some c’ implies lt[max[delta,middle_next],min[c’,middle_next],middle_next]))
211 }
212 pred ContractTaillOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
213 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
214 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
215 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
216 (some delta implies(some c’ implies lt[max[delta,middle_next],min[c’,middle_next],middle_next]))
217 }
218 pred ContractTaillOfRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
219 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
220 no last[left,left_next].r
221 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
222 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
223 let delta = c−c’| (c’ in c) and
224 (some delta implies(some c’ implies lt[max[delta,right_next],min[c’,right_next],right_next]))
225 }
226 pred ContractTaillOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
227 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
228 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
229 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c−c’|
230 (c’ in c) and (some delta implies(some c’ implies lt[max[delta,right_next],min[c’,right_next],right_next]))
231 }
232 pred ContractTaillOfMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
233 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
234 no last[left,left_next].r
235 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
236 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
237 let delta = c−c’| (c’ in c) and
238 (some delta implies(some c’ implies lt[max[delta,middle_next],min[c’,middle_next],middle_next]))
239 }
240 pred ContractTaillOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
241 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
242 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
243 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
244 let delta = c−c’| (c’ in c) and
245 (some delta implies(some c’ implies lt[max[delta,middle_next],min[c’,middle_next],middle_next]))
246 }
247 pred ExpanddTailOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
248 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
249 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
250 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and (c’!inc) and
251 (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
252 }
253 pred ExpanddTailOfRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
254 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
255 no left_first.r

151

256 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
257 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and (c’!inc) and
258 (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
259 }
260

261 pred ExpanddTailOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
262 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
263 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
264 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and (c’!inc) and
265 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
266 }
267 pred ExpanddTailOfMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
268 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
269 no left_first.r
270 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
271 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and (c’!inc) and
272 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
273 }
274 pred ExpanddTailOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
275 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
276 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
277 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
278 let delta = c’−c| (c in c’) and (c’!inc) and
279 (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
280 }
281 pred ExpanddTailOfRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
282 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
283 no left_first.r
284 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
285 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
286 let delta = c’−c| (c in c’) and (c’!inc) and
287 (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
288 }
289 pred ExpanddTailOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
290 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
291 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
292 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
293 let delta = c’−c| (c in c’) and (c’!inc) and
294 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
295 }
296 pred ExpanddTailOfMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
297 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
298 no left_first.r
299 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
300 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
301 let delta = c’−c| (c in c’) and (c’!inc) and
302 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
303 }
304 pred ExpandTailOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
305 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
306 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
307 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
308 (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
309 }
310 pred ExpandTailOfRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,left_first: univ,
311 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
312 no left_first.r

152

313 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
314 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c|
315 (c in c’) and (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
316 }
317

318

319 pred ExpandTailOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
320 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
321 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
322 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and
323 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
324 }
325 pred ExpandTailOfMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
326 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
327 no left_first.r
328 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
329 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and
330 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
331 }
332 pred ExpandTailOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
333 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
334 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
335 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
336 let delta = c’−c| (c in c’) and
337 (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
338 }
339 pred ExpandTailOfRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
340 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
341 no left_first.r
342 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
343 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
344 let delta = c’−c| (c in c’) and
345 (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
346 }
347 pred ExpandTailOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
348 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
349 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
350 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
351 let delta = c’−c| (c in c’) and
352 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
353 }
354 pred ExpandTailOfMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
355 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
356 no left_first.r
357 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
358 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
359 let delta = c’−c| (c in c’) and
360 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
361 }
362 pred MutateTailOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
363 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
364 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
365 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| eq[#c’ ,# c] and
366 (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
367 }
368 pred MutateTailOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
369 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{

153

370 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
371 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| eq[#c’ ,# c] and
372 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
373 }
374

375

376 pred MutateTailOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
377 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
378 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
379 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
380 let delta = c’−c| eq[#c’ ,# c] and
381 (some delta implies(some c implies lt[max[delta,right_next],max[c,right_next],right_next]))
382 }
383 pred MutateTailOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
384 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
385 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
386 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
387 let delta = c’−c| eq[#c’ ,# c] and
388 (some delta implies(some c implies lt[max[delta,middle_next],max[c,middle_next],middle_next]))
389 }
390 pred ContracttTailOfRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
391 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
392 no last[left,left_next].r
393 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
394 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and (c!inc’) and
395 (some delta implies(some c’ implies lt[max[delta,right_next],max[c’,right_next],right_next]))
396 }
397 pred ContracttTailOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
398 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
399 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
400 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and (c!inc’) and
401 (some delta implies(some c’ implies lt[max[delta,right_next],max[c’,right_next],right_next]))
402 }
403 pred ContracttTailOfMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
404 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
405 no last[left,left_next].r
406 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
407 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and (c!inc’) and
408 (some delta implies(some c’ implies lt[max[delta,middle_next],max[c’,middle_next],middle_next]))
409 }
410 pred ContracttTailOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
411 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
412 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
413 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and (c!inc’) and
414 (some delta implies(some c’ implies lt[max[delta,middle_next],max[c’,middle_next],middle_next]))
415 }
416 pred ContracttTailOfRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
417 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
418 no last[left,left_next].r
419 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
420 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
421 let delta = c−c’| (c’ in c) and (c!inc’) and
422 (some delta implies(some c’ implies lt[max[delta,right_next],max[c’,right_next],right_next]))
423 }
424 pred ContracttTailOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
425 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
426 all left’: left−last[left,left_next]| let left’’ = left’.left_next|

154

427 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
428 let delta = c−c’| (c’ in c) and (c!inc’) and
429 (some delta implies(some c’ implies lt[max[delta,right_next],max[c’,right_next],right_next]))
430 }
431

432

433 pred ContracttTailOfMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
434 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
435 no last[left,left_next].r
436 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
437 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
438 let delta = c−c’| (c’ in c) and (c!inc’) and
439 (some delta implies(some c’ implies lt[max[delta,middle_next],max[c’,middle_next],middle_next]))
440 }
441 pred ContracttTailOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
442 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
443 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
444 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
445 let delta = c−c’| (c’ in c) and (c!inc’) and
446 (some delta implies(some c’ implies lt[max[delta,middle_next],max[c’,middle_next],middle_next]))
447 }
448 pred ContractTailOfRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
449 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
450 no last[left,left_next].r
451 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
452 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
453 (some delta implies(some c’ implies lt[max[delta,right_next],max[c’,right_next],right_next]))
454 }
455 pred ContractTailOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
456 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
457 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
458 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
459 (some delta implies(some c’ implies lt[max[delta,right_next],max[c’,right_next],right_next]))
460 }
461 pred ContractTailOfMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
462 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
463 no last[left,left_next].r
464 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
465 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
466 (some delta implies(some c’ implies lt[max[delta,middle_next],max[c’,middle_next],middle_next]))
467 }
468 pred ContractTailOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
469 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
470 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
471 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
472 (some delta implies(some c’ implies lt[max[delta,middle_next],max[c’,middle_next],middle_next]))
473 }
474 pred ContractTailOfRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
475 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
476 no last[left,left_next].r
477 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
478 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
479 let delta = c−c’| (c’ in c) and
480 (some delta implies(some c’ implies lt[max[delta,right_next],max[c’,right_next],right_next]))
481 }
482 pred ContractTailOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
483 left_next: univ→univ, right_first: univ, right_next: univ→univ]{

155

484 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
485 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
486 let delta = c−c’| (c’ in c) and
487 (some delta implies(some c’ implies lt[max[delta,right_next],max[c’,right_next],right_next]))
488 }
489

490 pred ContractTailOfMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
491 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
492 no last[left,left_next].r
493 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
494 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
495 let delta = c−c’| (c’ in c) and
496 (some delta implies(some c’ implies lt[max[delta,middle_next],max[c’,middle_next],middle_next]))
497 }
498 pred ContractTailOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
499 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
500 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
501 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
502 let delta = c−c’| (c’ in c) and
503 (some delta implies(some c’ implies lt[max[delta,middle_next],max[c’,middle_next],middle_next]))
504 }
505 pred ExpanddHeaddOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
506 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
507 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
508 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
509 (c’!inc) and (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
510 }
511 pred ExpanddHeaddOfRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
512 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
513 no left_first.r
514 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
515 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
516 (c’!inc) and (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
517 }
518 pred ExpanddHeaddOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
519 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
520 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
521 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and (c’!inc) and
522 (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
523 }
524 pred ExpanddHeaddOfMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
525 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
526 no left_first.r
527 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
528 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and (c’!inc) and
529 (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
530 }
531 pred ExpanddHeaddOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
532 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
533 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
534 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
535 let delta = c’−c| (c in c’) and (c’!inc) and
536 (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
537 }
538 pred ExpanddHeaddOfRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
539 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
540 no left_first.r

156

541 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
542 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|
543 let delta = c’−c| (c in c’) and (c’!inc) and
544 (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
545 }
546

547 pred ExpanddHeaddOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
548 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
549 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
550 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
551 let delta = c’−c| (c in c’) and (c’!inc) and
552 (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
553 }
554 pred ExpanddHeaddOfMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
555 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
556 no left_first.r
557 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
558 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|
559 let delta = c’−c| (c in c’) and (c’!inc) and
560 (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
561 }
562 pred ExpandHeaddOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
563 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
564 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
565 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
566 (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
567 }
568 pred ExpandHeaddOfRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
569 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
570 no left_first.r
571 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
572 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
573 (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
574 }
575 pred ExpandHeaddOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
576 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
577 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
578 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and
579 (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
580 }
581 pred ExpandHeaddOfMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
582 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
583 no left_first.r
584 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
585 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’)
586 and (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
587 }
588 pred ExpandHeaddOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
589 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
590 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
591 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c| (c in c’) and
592 (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
593 }
594 pred ExpandHeaddOfRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
595 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
596 no left_first.r
597 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|

157

598 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c|
599 (c in c’) and (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
600 }
601

602

603

604 pred ExpandHeaddOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
605 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
606 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
607 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c|
608 (c in c’) and (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
609 }
610 pred ExpandHeaddOfMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
611 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
612 no left_first.r
613 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
614 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c|
615 (c in c’) and (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
616 }
617 pred MutateHeaddOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
618 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
619 all left’: left−last[left,left_next]| let left’’ = left’.left_next| let c = middle.(left’.r)|
620 let c’ = middle.(left’’.r)| let delta = c’−c| eq[#c’ ,# c] and
621 (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
622 }
623 pred MutateHeaddOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
624 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
625 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
626 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| eq[#c’ ,# c] and
627 (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
628 }
629 pred MutateHeaddOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
630 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
631 all left’: left−last[left,left_next]| let left’’ = left’.left_next|all middle’ : middle|
632 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c|
633 eq[#c’ ,# c] and (some delta implies lt[max[c,right_next],min[delta,right_next],right_next])
634 }
635 pred MutateHeaddOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
636 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
637 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
638 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c|
639 eq[#c’ ,# c] and (some delta implies lt[max[c,middle_next],min[delta,middle_next],middle_next])
640 }
641 pred ContracttHeaddOfRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
642 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
643 no last[left,left_next].r
644 all left’: left−last[left,left_next]| let left’’ = left’.left_next| let c = middle.(left’.r)|
645 let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and (c!inc’) and
646 (some delta implies lt[max[c’,right_next],min[delta,right_next],right_next])
647 }
648 pred ContracttHeaddOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
649 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
650 all left’: left−last[left,left_next]| let left’’ = left’.left_next| let c = middle.(left’.r)|
651 let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and (c!inc’) and
652 (some delta implies lt[max[c’,right_next],min[delta,right_next],right_next])
653 }
654 pred ContracttHeaddOfMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,

158

655 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
656 no last[left,left_next].r
657 all left’: left−last[left,left_next]| let left’’ = left’.left_next| let c = (left’.r).right|
658 let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and (c!inc’) and
659 (some delta implies lt[max[c’,middle_next],min[delta,middle_next],middle_next])
660 }
661 pred ContracttHeaddOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
662 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
663 all left’: left−last[left,left_next]| let left’’ = left’.left_next| let c = (left’.r).right|
664 let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and (c!inc’) and
665 (some delta implies lt[max[c’,middle_next],min[delta,middle_next],middle_next])
666 }
667 pred ContracttHeaddOfRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle,right: univ,
668 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
669 no last[left,left_next].r
670 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
671 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c−c’| (c’ in c) and
672 (c!inc’) and (some delta implies lt[max[c’,right_next],min[delta,right_next],right_next])
673 }
674 pred ContracttHeaddOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
675 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
676 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
677 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c−c’| (c’ in c) and
678 (c!inc’) and (some delta implies lt[max[c’,right_next],min[delta,right_next],right_next])
679 }
680 pred ContracttHeaddOfMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
681 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
682 no last[left,left_next].r
683 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
684 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c−c’| (c’ in c) and
685 (c!inc’) and (some delta implies lt[max[c’,middle_next],min[delta,middle_next],middle_next])
686 }
687 pred ContracttHeaddOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
688 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
689 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
690 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c−c’| (c’ in c) and
691 (c!inc’) and (some delta implies lt[max[c’,middle_next],min[delta,middle_next],middle_next])
692 }
693 pred ContractHeaddOfRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
694 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
695 no last[left,left_next].r
696 all left’: left−last[left,left_next]| let left’’ = left’.left_next| let c = middle.(left’.r)|
697 let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
698 (some delta implies lt[max[c’,right_next],min[delta,right_next],right_next])
699 }
700 pred ContractHeaddOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
701 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
702 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
703 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
704 (some delta implies lt[max[c’,right_next],min[delta,right_next],right_next])
705 }
706 pred ContractHeaddOfMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
707 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
708 no last[left,left_next].r
709 all left’: left−last[left,left_next]| let left’’ = left’.left_next| let c = (left’.r).right|
710 let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
711 (some delta implies lt[max[c’,middle_next],min[delta,middle_next],middle_next])

159

712 }
713 pred ContractHeaddOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
714 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
715 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
716 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
717 (some delta implies lt[max[c’,middle_next],min[delta,middle_next],middle_next])}
718 pred ContractHeaddOfRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
719 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
720 no last[left,left_next].r
721 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
722 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c−c’| (c’ in c)
723 and (some delta implies lt[max[c’,right_next],min[delta,right_next],right_next])
724 }
725 pred ContractHeaddOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
726 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
727 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
728 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c−c’| (c’ in c) and
729 (some delta implies lt[max[c’,right_next],min[delta,right_next],right_next])
730 }
731 pred ContractHeaddOfMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
732 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
733 no last[left,left_next].r
734 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
735 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c−c’| (c’ in c) and
736 (some delta implies lt[max[c’,middle_next],min[delta,middle_next],middle_next])
737 }
738 pred ContractHeaddOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
739 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
740 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
741 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c−c’| (c’ in c) and
742 (some delta implies lt[max[c’,middle_next],min[delta,middle_next],middle_next])
743 }
744 pred ExpanddHeadOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
745 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
746 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
747 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
748 (c’!inc) and (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
749 }
750 pred ExpanddHeadOfRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
751 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
752 no left_first.r
753 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
754 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
755 (c’!inc) and (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
756 }
757 pred ExpanddHeadOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
758 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
759 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
760 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and (c’!inc) and
761 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
762 }
763 pred ExpanddHeadOfMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
764 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
765 no left_first.r
766 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
767 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and (c’!inc)
768 and (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])

160

769 }
770 pred ExpanddHeadOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
771 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
772 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
773 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c| (c in c’) and
774 (c’!inc) and (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])}
775 pred ExpanddHeadOfRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
776 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
777 no left_first.r
778 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
779 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c| (c in c’) and (c’!inc)
780 and (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
781 }
782 pred ExpanddHeadOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
783 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
784 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
785 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c| (c in c’) and (c’!inc)
786 and (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
787 }
788 pred ExpanddHeadOfMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
789 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
790 no left_first.r
791 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
792 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c| (c in c’) and
793 (c’!inc) and (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
794 }
795 pred ExpandHeadOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
796 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
797 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
798 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’)
799 and (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
800 }
801 pred ExpandHeadOfRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
802 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
803 no left_first.r
804 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
805 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| (c in c’) and
806 (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
807 }
808 pred ExpandHeadOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
809 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
810 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
811 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and
812 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
813 }
814 pred ExpandHeadOfMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
815 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
816 no left_first.r
817 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
818 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| (c in c’) and
819 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
820 }
821 pred ExpandHeadOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
822 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
823 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
824 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c| (c in c’) and
825 (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])

161

826 }
827 pred ExpandHeadOfRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
828 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
829 no left_first.r
830 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
831 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c| (c in c’) and
832 (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
833 }
834 pred ExpandHeadOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
835 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
836 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
837 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c| (c in c’) and
838 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
839 }
840 pred ExpandHeadOfMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
841 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
842 no left_first.r
843 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
844 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c| (c in c’) and
845 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
846 }
847 pred MutateHeadOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
848 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
849 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
850 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c’−c| eq[#c’ ,# c] and
851 (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
852 }
853 pred MutateHeadOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
854 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
855 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
856 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c’−c| eq[#c’ ,# c] and
857 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
858 }
859 pred MutateHeadOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
860 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
861 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
862 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c’−c| eq[#c’ ,# c] and
863 (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
864 }
865 pred MutateHeadOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
866 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
867 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
868 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c’−c| eq[#c’ ,# c] and
869 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
870 }
871 pred ContracttHeadOfRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
872 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
873 no last[left,left_next].r
874 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
875 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
876 (c!inc’) and (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
877 }
878 pred ContracttHeadOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
879 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
880 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
881 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
882 (c!inc’) and (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])

162

883 }
884 pred ContracttHeadOfMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
885 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
886 no last[left,left_next].r
887 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
888 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
889 (c!inc’) and (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
890 }
891 pred ContracttHeadOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
892 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
893 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
894 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
895 (c!inc’) and (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
896 }
897 pred ContracttHeadOfRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
898 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
899 no last[left,left_next].r
900 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
901 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c−c’| (c’ in c) and
902 (c!inc’) and (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
903 }
904 pred ContracttHeadOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
905 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
906 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
907 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c−c’| (c’ in c) and
908 (c!inc’) and (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
909 }
910 pred ContracttHeadOfMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
911 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
912 no last[left,left_next].r
913 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
914 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c−c’| (c’ in c) and (c!inc’)
915 and (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
916 }
917 pred ContracttHeadOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
918 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
919 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
920 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c−c’| (c’ in c) and (c!inc’)
921 and (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
922 }
923 pred ContractHeadOfRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
924 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
925 no last[left,left_next].r
926 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
927 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
928 (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
929 }
930 pred ContractHeadOfRight[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
931 left_next: univ→univ, right_first: univ, right_next: univ→univ]{
932 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
933 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| let delta = c−c’| (c’ in c) and
934 (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
935 }
936 pred ContractHeadOfMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
937 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
938 no last[left,left_next].r
939 all left’: left−last[left,left_next]| let left’’ = left’.left_next|

163

940 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
941 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
942 }
943 pred ContractHeadOfMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
944 left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
945 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
946 let c = (left’.r).right| let c’ = (left’’.r).right| let delta = c−c’| (c’ in c) and
947 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
948 }
949 pred ContractHeadOfRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
950 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
951 no last[left,left_next].r
952 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
953 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c−c’| (c’ in c) and
954 (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
955 }
956 pred ContractHeadOfRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
957 left_first: univ, left_next: univ→univ, right_first: univ, right_next: univ→univ]{
958 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
959 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| let delta = c−c’| (c’ in c) and
960 (some delta implies lte[min[c,right_next],min[delta,right_next],right_next])
961 }
962 pred ContractHeadOfMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
963 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
964 no last[left,left_next].r
965 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
966 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c−c’| (c’ in c) and
967 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
968 }
969 pred ContractHeadOfMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
970 left_first: univ, left_next: univ→univ, middle_first: univ, middle_next: univ→univ]{
971 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
972 let c = (left’.r).right’| let c’ = (left’’.r).right’| let delta = c−c’| (c’ in c) and
973 (some delta implies lte[min[c,middle_next],min[delta,middle_next],middle_next])
974 }
975 pred ExpanddRight[r: univ→univ→univ, left, middle, right: univ,
976 left_first: univ, left_next: univ→univ]{
977 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
978 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| (c in c’) and (c’!inc)
979 }
980 pred ExpanddRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
981 left_first: univ, left_next: univ→univ]{
982 no left_first.r
983 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
984 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| (c in c’) and (c’!inc)
985 }
986 pred ExpanddMiddle[r: univ→univ→univ, left, middle, right: univ, left_first: univ,
987 left_next: univ→univ]{
988 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
989 let c = (left’.r).right| let c’ = (left’’.r).right| (c in c’) and (c’!inc)
990 }
991 pred ExpanddMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
992 left_first: univ, left_next: univ→univ]{
993 no left_first.r
994 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
995 let c = (left’.r).right| let c’ = (left’’.r).right| (c in c’) and (c’!inc)
996 }

164

997 pred ExpanddRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
998 left_first: univ, left_next: univ→univ]{
999 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
1000 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| (c in c’) and (c’!inc)
1001 }
1002 pred ExpanddRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
1003 left_first: univ, left_next: univ→univ]{
1004 no left_first.r
1005 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all middle’ : middle|
1006 let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| (c in c’) and (c’!inc)
1007 }
1008 pred ExpanddMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
1009 left_first: univ, left_next: univ→univ]{
1010 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
1011 let c = (left’.r).right’| let c’ = (left’’.r).right’| (c in c’) and (c’!inc)
1012 }
1013 pred ExpanddMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
1014 left_first: univ, left_next: univ→univ]{
1015 no left_first.r
1016 all left’: left−last[left,left_next]| let left’’ = left’.left_next| all right’ : right|
1017 let c = (left’.r).right’| let c’ = (left’’.r).right’| (c in c’) and (c’!inc)
1018 }
1019 pred ExapndRight[r: univ→univ→univ, left, middle, right: univ,
1020 left_first: univ, left_next: univ→univ]{
1021 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1022 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| (c in c’)
1023 }
1024 pred ExapndRight_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
1025 left_first: univ, left_next: univ→univ]{
1026 no left_first.r
1027 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1028 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| (c in c’)
1029 }
1030 pred ExapndMiddle[r: univ→univ→univ, left, middle, right: univ,
1031 left_first: univ, left_next: univ→univ]{
1032 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1033 let c = (left’.r).right| let c’ = (left’’.r).right| (c in c’)
1034 }
1035 pred ExapndMiddle_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
1036 left_first: univ, left_next: univ→univ]{
1037 no left_first.r
1038 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1039 let c = (left’.r).right| let c’ = (left’’.r).right| (c in c’)
1040 }
1041 pred ExapndRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
1042 left_first: univ, left_next: univ→univ]{
1043 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1044 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| (c in c’)
1045 }
1046 pred ExapndRight_MiddleStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
1047 left_first: univ, left_next: univ→univ]{
1048 no left_first.r
1049 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1050 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| (c in c’)
1051 }
1052 pred ExapndMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
1053 left_first: univ, left_next: univ→univ]{

165

1054 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1055 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’| (c in c’)
1056 }
1057 pred ExapndMiddle_RightStatic_FirstLeftEmpty[r: univ→univ→univ, left, middle,
1058 right: univ, left_first: univ, left_next: univ→univ]{
1059 no left_first.r
1060 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1061 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’| (c in c’)
1062 }
1063 pred MutateRight[r: univ→univ→univ, left, middle, right: univ,
1064 left_first: univ, left_next: univ→univ]{
1065 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1066 let c = middle.(left’.r)| let c’ = middle.(left’’.r)| eq[#c’ ,# c]
1067 }
1068 pred MutateMiddle[r: univ→univ→univ, left, middle, right: univ,
1069 left_first: univ, left_next: univ→univ]{
1070 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1071 let c = (left’.r).right| let c’ = (left’’.r).right| eq[#c’ ,# c]
1072 }
1073 pred MutateRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
1074 left_first: univ, left_next: univ→univ]{
1075 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1076 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)| eq[#c’ ,# c]
1077 }
1078 pred MutateMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
1079 left_first: univ, left_next: univ→univ]{
1080 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1081 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’| eq[#c’ ,# c]
1082 }
1083 pred ContracttRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
1084 left_first: univ, left_next: univ→univ]{
1085 no last[left,left_next].r
1086 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1087 let c = middle.(left’.r)| let c’ = middle.(left’’.r)|(c’ in c) and (c!inc’)
1088 }
1089 pred ContracttRight[r: univ→univ→univ, left, middle, right: univ,
1090 left_first: univ, left_next: univ→univ]{
1091 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1092 let c = middle.(left’.r)| let c’ = middle.(left’’.r)|(c’ in c) and (c!inc’)
1093 }
1094 pred ContracttMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
1095 left_first: univ, left_next: univ→univ]{
1096 no last[left,left_next].r
1097 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1098 let c = (left’.r).right| let c’ = (left’’.r).right|(c’ in c) and (c!inc’)
1099 }
1100 pred ContracttMiddle[r: univ→univ→univ, left, middle, right: univ,
1101 left_first: univ, left_next: univ→univ]{
1102 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1103 let c = (left’.r).right| let c’ = (left’’.r).right|(c’ in c) and (c!inc’)
1104 }
1105 pred ContracttRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle,
1106 right: univ, left_first: univ, left_next: univ→univ]{
1107 no last[left,left_next].r
1108 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1109 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|(c’ in c) and (c!inc’)
1110 }

166

1111 pred ContracttRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
1112 left_first: univ, left_next: univ→univ]{
1113 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1114 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|(c’ in c) and (c!inc’)
1115 }
1116 pred ContracttMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle,
1117 right: univ, left_first: univ, left_next: univ→univ]{
1118 no last[left,left_next].r
1119 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1120 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|(c’ in c) and (c!inc’)
1121 }
1122 pred ContracttMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
1123 left_first: univ, left_next: univ→univ]{
1124 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1125 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|(c’ in c) and (c!inc’)
1126 }
1127 pred ContractRight_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
1128 left_first: univ, left_next: univ→univ]{
1129 no last[left,left_next].r
1130 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1131 let c = middle.(left’.r)| let c’ = middle.(left’’.r)|(c’ in c)
1132 }
1133 pred ContractRight[r: univ→univ→univ, left, middle, right: univ,
1134 left_first: univ, left_next: univ→univ]{
1135 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1136 let c = middle.(left’.r)| let c’ = middle.(left’’.r)|(c’ in c)
1137 }
1138 pred ContractMiddle_LastLeftEmpty[r: univ→univ→univ, left, middle, right: univ,
1139 left_first: univ, left_next: univ→univ]{
1140 no last[left,left_next].r
1141 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1142 let c = (left’.r).right| let c’ = (left’’.r).right|(c’ in c)
1143 }
1144 pred ContractMiddle[r: univ→univ→univ, left, middle, right: univ,
1145 left_first: univ, left_next: univ→univ]{
1146 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1147 let c = (left’.r).right| let c’ = (left’’.r).right|(c’ in c)
1148 }
1149 pred ContractRight_MiddleStatic_LastLeftEmpty[r: univ→univ→univ, left, middle,
1150 right: univ, left_first: univ, left_next: univ→univ]{
1151 no last[left,left_next].r
1152 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1153 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|(c’ in c)
1154 }
1155 pred ContractRight_MiddleStatic[r: univ→univ→univ, left, middle, right: univ,
1156 left_first: univ, left_next: univ→univ]{
1157 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1158 all middle’ : middle| let c = middle’.(left’.r)| let c’ = middle’.(left’’.r)|(c’ in c)
1159 }
1160 pred ContractMiddle_RightStatic_LastLeftEmpty[r: univ→univ→univ, left, middle,
1161 right: univ, left_first: univ, left_next: univ→univ]{
1162 no last[left,left_next].r
1163 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1164 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|(c’ in c)
1165 }
1166 pred ContractMiddle_RightStatic[r: univ→univ→univ, left, middle, right: univ,
1167 left_first: univ, left_next: univ→univ]{

167

1168 all left’: left−last[left,left_next]| let left’’ = left’.left_next|
1169 all right’ : right| let c = (left’.r).right’| let c’ = (left’’.r).right’|(c’ in c)
1170 }

168

Table A.1 The Ternary Implication Lattice comprises 160 patterns, each represented as
a node. An edge of the lattice encodes an implication relation between two patterns.
The strongest patterns, i.e. sources in the lattice, are distinguished in bold with overline.
Patterns in italic with underline on them are the weakest patterns or sinks of the lattice.

From To

MutateHeaddOfRight_MiddleStatic MutateHeadOfRight_MiddleStatic

ExpanddHeaddOfMiddle_RightStatic_FirstLeftEmpty

ExpanddHeadOfMiddle_RightStatic_FirstLeftEmpty,

ExpanddHeaddOfMiddle_RightStatic,

ExpandHeaddOfMiddle_RightStatic_FirstLeftEmpty,

ExpanddHeaddOfMiddle_FirstLeftEmpty

ContracttHeaddOfMiddle_RightStatic_LastLeftEmpty

ContracttHeaddOfMiddle_LastLeftEmpty,

ContracttMiddle_RightStatic_LastLeftEmpty,

ContracttHeaddOfMiddle_RightStatic,

ContractHeaddOfMiddle_RightStatic_LastLeftEmpty

ContracttTaillOfMiddle_RightStatic_LastLeftEmpty

ContracttTaillOfMiddle_LastLeftEmpty,

ContracttTaillOfMiddle_RightStatic,

ContractTaillOfMiddle_RightStatic_LastLeftEmpty,

ContracttTailOfMiddle_RightStatic_LastLeftEmpty

MutateTaillOfRight_MiddleStatic MutateTailOfRight_MiddleStatic

ExpanddTaillOfRight_MiddleStatic_FirstLeftEmpty

ExpanddTaillOfRight_FirstLeftEmpty,

ExpanddTailOfRight_MiddleStatic_FirstLeftEmpty,

ExpanddTaillOfRight_MiddleStatic,

ExpandTaillOfRight_MiddleStatic_FirstLeftEmpty

MutateTaillOfMiddle_RightStatic MutateTailOfMiddle_RightStatic

ContracttTaillOfRight_MiddleStatic_LastLeftEmpty

ContracttTaillOfRight_MiddleStatic,

ContractTaillOfRight_MiddleStatic_LastLeftEmpty,

ContracttTaillOfRight_LastLeftEmpty,

ContracttTailOfRight_MiddleStatic_LastLeftEmpty

MutateHeaddOfMiddle_RightStatic MutateHeadOfMiddle_RightStatic

ContracttHeaddOfRight_MiddleStatic_LastLeftEmpty

ContracttHeaddOfRight_LastLeftEmpty,

ContracttRight_MiddleStatic_LastLeftEmpty,

ContractHeaddOfRight_MiddleStatic_LastLeftEmpty,

ContracttHeaddOfRight_MiddleStatic

169

Table A.2 Continue Table A.1

From To

ExpanddHeaddOfRight_MiddleStatic_FirstLeftEmpty

ExpanddHeaddOfRight_FirstLeftEmpty,

ExpandHeaddOfRight_MiddleStatic_FirstLeftEmpty,

ExpanddHeadOfRight_MiddleStatic_FirstLeftEmpty,

ExpanddHeaddOfRight_MiddleStatic

ExpanddTaillOfMiddle_RightStatic_FirstLeftEmpty

ExpandTaillOfMiddle_RightStatic_FirstLeftEmpty,

ExpanddTaillOfMiddle_RightStatic,

ExpanddTailOfMiddle_RightStatic_FirstLeftEmpty,

ExpanddTaillOfMiddle_FirstLeftEmpty

MutateHeadOfRight_MiddleStatic MutateRight_MiddleStatic

ExpanddHeadOfMiddle_RightStatic_FirstLeftEmpty

ExpanddMiddle_RightStatic_FirstLeftEmpty,

ExpandHeadOfMiddle_FirstLeftEmpty,

ExpanddHeadOfMiddle_RightStatic,

ExpandHeadOfMiddle_RightStatic_FirstLeftEmpty

ExpanddHeaddOfMiddle_RightStatic
ExpandHeaddOfMiddle_RightStatic,

ExpanddHeaddOfMiddle, ExpanddHeadOfMiddle_RightStatic

ExpandHeaddOfMiddle_RightStatic_FirstLeftEmpty
ExpandHeaddOfMiddle_RightStatic,

ExpandHeadOfMiddle_RightStatic_FirstLeftEmpty

ExpanddHeaddOfMiddle_FirstLeftEmpty
ExpanddHeadOfMiddle_FirstLeftEmpty,

ExpanddHeaddOfMiddle, ExpandHeaddOfMiddle_FirstLeftEmpty

ContracttHeaddOfMiddle_LastLeftEmpty
ContractHeaddOfMiddle_LastLeftEmpty,

ContracttHeaddOfMiddle, ContracttMiddle_LastLeftEmpty

ContracttMiddle_RightStatic_LastLeftEmpty

ContracttMiddle_RightStatic,

ContractMiddle_RightStatic_LastLeftEmpty,

ContractTaillOfRight_LastLeftEmpty,

ContractHeaddOfRight_LastLeftEmpty

ContracttHeaddOfMiddle_RightStatic
ContracttMiddle_RightStatic,

ContracttHeaddOfMiddle, ContractHeaddOfMiddle_RightStatic

ContractHeaddOfMiddle_RightStatic_LastLeftEmpty
ContractMiddle_RightStatic_LastLeftEmpty,

ContractHeaddOfMiddle_RightStatic

ContracttTaillOfMiddle_LastLeftEmpty

ContracttTailOfMiddle_LastLeftEmpty,

ContractTaillOfMiddle_LastLeftEmpty,

ContracttTaillOfMiddle

ContracttTaillOfMiddle_RightStatic
ContracttTaillOfMiddle, ContracttTailOfMiddle_RightStatic,

ContractTaillOfMiddle_RightStatic

170

Table A.3 Continue Table A.1

From To

ContractTaillOfMiddle_RightStatic_LastLeftEmpty
ContractTailOfMiddle_RightStatic_LastLeftEmpty,

ContractTaillOfMiddle_RightStatic

ContracttTailOfMiddle_RightStatic_LastLeftEmpty

ContracttMiddle_RightStatic_LastLeftEmpty,

ContractTailOfMiddle_RightStatic_LastLeftEmpty,

ContractTailOfMiddle_LastLeftEmpty,

ContracttTailOfMiddle_RightStatic

MutateTailOfRight_MiddleStatic MutateRight_MiddleStatic

ExpanddTaillOfRight_FirstLeftEmpty
ExpanddTaillOfRight, ExpanddTailOfRight_FirstLeftEmpty,

ExpandTaillOfRight_FirstLeftEmpty

ExpanddTailOfRight_MiddleStatic_FirstLeftEmpty

ExpandTailOfRight_MiddleStatic_FirstLeftEmpty,

ExpanddTailOfRight_MiddleStatic,

ExpandTailOfRight_FirstLeftEmpty,

ExpanddRight_MiddleStatic_FirstLeftEmpty

ExpanddTaillOfRight_MiddleStatic
ExpanddTaillOfRight, ExpandTaillOfRight_MiddleStatic,

ExpanddTailOfRight_MiddleStatic

ExpandTaillOfRight_MiddleStatic_FirstLeftEmpty
ExpandTailOfRight_MiddleStatic_FirstLeftEmpty,

ExpandTaillOfRight_MiddleStatic

MutateTailOfMiddle_RightStatic MutateMiddle_RightStatic

ContracttTaillOfRight_MiddleStatic
ContracttTaillOfRight, ContracttTailOfRight_MiddleStatic,

ContractTaillOfRight_MiddleStatic

ContractTaillOfRight_MiddleStatic_LastLeftEmpty
ContractTailOfRight_MiddleStatic_LastLeftEmpty,

ContractTaillOfRight_MiddleStatic

ContracttTaillOfRight_LastLeftEmpty
ContracttTailOfRight_LastLeftEmpty,

ContracttTaillOfRight, ContractTaillOfRight_LastLeftEmpty

ContracttTailOfRight_MiddleStatic_LastLeftEmpty

ContracttRight_MiddleStatic_LastLeftEmpty,

ContractTailOfRight_MiddleStatic_LastLeftEmpty,

ContractTailOfRight_LastLeftEmpty,

ContracttTailOfRight_MiddleStatic

MutateHeadOfMiddle_RightStatic MutateMiddle_RightStatic

ContracttHeaddOfRight_LastLeftEmpty
ContracttHeaddOfRight, ContractHeaddOfRight_LastLeftEmpty,

ContracttRight_LastLeftEmpty

ContracttRight_MiddleStatic_LastLeftEmpty

ContractHeaddOfMiddle_LastLeftEmpty,

ContracttRight_MiddleStatic,

ContractMiddle_RightStatic_LastLeftEmpty,

ContractTaillOfMiddle_LastLeftEmpty

171

Table A.4 Continue Table A.1

From To

ContractHeaddOfRight_MiddleStatic_LastLeftEmpty
ContractHeaddOfRight_MiddleStatic,

ContractMiddle_RightStatic_LastLeftEmpty

ContracttHeaddOfRight_MiddleStatic

ContractHeaddOfRight_MiddleStatic,

ContracttRight_MiddleStatic,

ContracttHeaddOfRight

ExpanddHeaddOfRight_FirstLeftEmpty
ExpandHeaddOfRight_FirstLeftEmpty,

ExpanddHeaddOfRight, ExpanddHeadOfRight_FirstLeftEmpty

ExpandHeaddOfRight_MiddleStatic_FirstLeftEmpty
ExpandHeadOfRight_MiddleStatic_FirstLeftEmpty,

ExpandHeaddOfRight_MiddleStatic

ExpanddHeadOfRight_MiddleStatic_FirstLeftEmpty

ExpandHeadOfRight_FirstLeftEmpty,

ExpandHeadOfRight_MiddleStatic_FirstLeftEmpty,

ExpanddRight_MiddleStatic_FirstLeftEmpty,

ExpanddHeadOfRight_MiddleStatic

ExpanddHeaddOfRight_MiddleStatic
ExpanddHeaddOfRight, ExpandHeaddOfRight_MiddleStatic,

ExpanddHeadOfRight_MiddleStatic

ExpandTaillOfMiddle_RightStatic_FirstLeftEmpty
ExpandTailOfMiddle_RightStatic_FirstLeftEmpty,

ExpandTaillOfMiddle_RightStatic

ExpanddTaillOfMiddle_RightStatic

ExpanddTailOfMiddle_RightStatic,

ExpandTaillOfMiddle_RightStatic,

ExpanddTaillOfMiddle

ExpanddTailOfMiddle_RightStatic_FirstLeftEmpty

ExpandTailOfMiddle_FirstLeftEmpty,

ExpandTailOfMiddle_RightStatic_FirstLeftEmpty,

ExpanddTailOfMiddle_RightStatic,

ExpanddMiddle_RightStatic_FirstLeftEmpty

ExpanddTaillOfMiddle_FirstLeftEmpty
ExpanddTailOfMiddle_FirstLeftEmpty,

ExpanddTaillOfMiddle, ExpandTaillOfMiddle_FirstLeftEmpty

MutateRight_MiddleStatic

MutateTaillOfMiddle, MutateHeaddOfMiddle,

ContractHeaddOfMiddle, ExpandTaillOfMiddle,

ExpandHeaddOfMiddle, ContractTaillOfMiddle

ExpanddMiddle_RightStatic_FirstLeftEmpty

ExpandHeaddOfRight_FirstLeftEmpty,

ExpandTaillOfRight_FirstLeftEmpty,

ExpanddMiddle_RightStatic,

ExapndMiddle_RightStatic_FirstLeftEmpty

172

Table A.5 Continue Table A.1

From To

ExpandHeadOfMiddle_FirstLeftEmpty ExpandHeadOfMiddle, ExapndMiddle_FirstLeftEmpty

ExpanddHeadOfMiddle_RightStatic
ExpandHeadOfMiddle_RightStatic,

ExpanddMiddle_RightStatic, ExpandHeadOfMiddle

ExpandHeadOfMiddle_RightStatic_FirstLeftEmpty
ExpandHeadOfMiddle_RightStatic,

ExapndMiddle_RightStatic_FirstLeftEmpty

ExpandHeaddOfMiddle_RightStatic ExpandHeadOfMiddle_RightStatic

ExpanddHeaddOfMiddle ExpandHeaddOfMiddle, ExpanddHeadOfMiddle

ExpanddHeadOfMiddle_FirstLeftEmpty

ExpanddMiddle_FirstLeftEmpty,

ExpandHeadOfMiddle_FirstLeftEmpty,

ExpanddHeadOfMiddle

ExpandHeaddOfMiddle_FirstLeftEmpty
ExpandHeadOfMiddle_FirstLeftEmpty,

ExpandHeaddOfMiddle

ContractHeaddOfMiddle_LastLeftEmpty
ContractMiddle_LastLeftEmpty,

ContractHeaddOfMiddle

ContracttHeaddOfMiddle ContractHeaddOfMiddle, ContracttMiddle

ContracttMiddle_LastLeftEmpty ContractMiddle_LastLeftEmpty, ContracttMiddle

ContracttMiddle_RightStatic ContractMiddle_RightStatic

ContractMiddle_RightStatic_LastLeftEmpty

ContractMiddle_LastLeftEmpty,

ContractMiddle_RightStatic,

ContractRight_LastLeftEmpty

ContractTaillOfRight_LastLeftEmpty
ContractTailOfRight_LastLeftEmpty,

ContractTaillOfRight

ContractHeaddOfRight_LastLeftEmpty ContractHeaddOfRight, ContractRight_LastLeftEmpty

ContractHeaddOfMiddle_RightStatic ContractMiddle_RightStatic

ContracttTailOfMiddle_LastLeftEmpty
ContracttTailOfMiddle, ContractTailOfMiddle_LastLeftEmpty,

ContracttMiddle_LastLeftEmpty

ContractTaillOfMiddle_LastLeftEmpty
ContractTailOfMiddle_LastLeftEmpty,

ContractTaillOfMiddle

ContracttTaillOfMiddle ContracttTailOfMiddle, ContractTaillOfMiddle

ContracttTailOfMiddle_RightStatic

ContracttMiddle_RightStatic,

ContractTailOfMiddle_RightStatic,

ContractTailOfMiddle

ContractTaillOfMiddle_RightStatic ContractTailOfMiddle_RightStatic

173

Table A.6 Continue Table A.1

From To

ContractTailOfMiddle_RightStatic_LastLeftEmpty
ContractTailOfMiddle_RightStatic,

ContractMiddle_RightStatic_LastLeftEmpty

ContractTailOfMiddle_LastLeftEmpty
ContractMiddle_LastLeftEmpty,

ContractTailOfMiddle

ExpanddTaillOfRight ExpandTaillOfRight, ExpanddTailOfRight

ExpanddTailOfRight_FirstLeftEmpty
ExpandTailOfRight_FirstLeftEmpty,

ExpanddTailOfRight, ExpanddRight_FirstLeftEmpty

ExpandTaillOfRight_FirstLeftEmpty ExpandTaillOfRight, ExpandTailOfRight_FirstLeftEmpty

ExpandTailOfRight_MiddleStatic_FirstLeftEmpty
ExpandTailOfRight_MiddleStatic,

ExapndMiddle_RightStatic_FirstLeftEmpty

ExpanddTailOfRight_MiddleStatic
ExpandTailOfRight_MiddleStatic,

ExpandTailOfRight, ExpanddRight_MiddleStatic

ExpandTailOfRight_FirstLeftEmpty ExapndRight_FirstLeftEmpty, ExpandTailOfRight

ExpanddRight_MiddleStatic_FirstLeftEmpty

ExpanddRight_MiddleStatic,

ExapndMiddle_RightStatic_FirstLeftEmpty,

ExpandHeaddOfMiddle_FirstLeftEmpty,

ExpandTaillOfMiddle_FirstLeftEmpty

ExpandTaillOfRight_MiddleStatic ExpandTailOfRight_MiddleStatic

MutateMiddle_RightStatic

ExpandTaillOfRight, ContractHeaddOfRight,

MutateHeaddOfRight, MutateTaillOfRight,

ContractTaillOfRight, ExpandHeaddOfRight

ContracttTaillOfRight ContracttTailOfRight, ContractTaillOfRight

ContracttTailOfRight_MiddleStatic

ContracttRight_MiddleStatic,

ContractTailOfRight_MiddleStatic,

ContractTailOfRight

ContractTaillOfRight_MiddleStatic ContractTailOfRight_MiddleStatic

ContractTailOfRight_MiddleStatic_LastLeftEmpty
ContractTailOfRight_MiddleStatic,

ContractMiddle_RightStatic_LastLeftEmpty

ContracttTailOfRight_LastLeftEmpty
ContractTailOfRight_LastLeftEmpty,

ContracttTailOfRight, ContracttRight_LastLeftEmpty

ContractTailOfRight_LastLeftEmpty
ContractRight_LastLeftEmpty,

ContractTailOfRight

ContracttHeaddOfRight ContracttRight, ContractHeaddOfRight

174

Table A.7 Continue Table A.1

From To

ContracttRight_LastLeftEmpty ContracttRight, ContractRight_LastLeftEmpty

ContracttRight_MiddleStatic ContractMiddle_RightStatic

ContractHeaddOfRight_MiddleStatic ContractMiddle_RightStatic

ExpandHeaddOfRight_FirstLeftEmpty
ExpandHeadOfRight_FirstLeftEmpty,

ExpandHeaddOfRight

ExpanddHeaddOfRight ExpandHeaddOfRight, ExpanddHeadOfRight

ExpanddHeadOfRight_FirstLeftEmpty

ExpandHeadOfRight_FirstLeftEmpty,

ExpanddRight_FirstLeftEmpty,

ExpanddHeadOfRight

ExpandHeadOfRight_MiddleStatic_FirstLeftEmpty
ExpandHeadOfRight_MiddleStatic,

ExapndMiddle_RightStatic_FirstLeftEmpty

ExpandHeaddOfRight_MiddleStatic ExpandHeadOfRight_MiddleStatic

ExpandHeadOfRight_FirstLeftEmpty ExapndRight_FirstLeftEmpty, ExpandHeadOfRight

ExpanddHeadOfRight_MiddleStatic
ExpandHeadOfRight_MiddleStatic,

ExpanddRight_MiddleStatic, ExpandHeadOfRight

ExpandTailOfMiddle_RightStatic_FirstLeftEmpty
ExpandTailOfMiddle_RightStatic,

ExapndMiddle_RightStatic_FirstLeftEmpty

ExpandTaillOfMiddle_RightStatic ExpandTailOfMiddle_RightStatic

ExpanddTailOfMiddle_RightStatic
ExpandTailOfMiddle_RightStatic,

ExpandTailOfMiddle, ExpanddMiddle_RightStatic

ExpanddTaillOfMiddle ExpanddTailOfMiddle, ExpandTaillOfMiddle

ExpandTailOfMiddle_FirstLeftEmpty ExpandTailOfMiddle, ExapndMiddle_FirstLeftEmpty

ExpanddTailOfMiddle_FirstLeftEmpty

ExpandTailOfMiddle_FirstLeftEmpty,

ExpanddMiddle_FirstLeftEmpty,

ExpanddTailOfMiddle

ExpandTaillOfMiddle_FirstLeftEmpty
ExpandTailOfMiddle_FirstLeftEmpty,

ExpandTaillOfMiddle

MutateTaillOfMiddle MutateTailOfMiddle

MutateHeaddOfMiddle MutateHeadOfMiddle

ContractHeaddOfMiddle ContractMiddle

ExpandTaillOfMiddle ExpandTailOfMiddle

ExpandHeaddOfMiddle ExpandHeadOfMiddle

ContractTaillOfMiddle ContractTailOfMiddle

175

Table A.8 Continue Table A.1

From To

ExpanddMiddle_RightStatic ExapndMiddle_RightStatic

ExapndMiddle_RightStatic_FirstLeftEmpty

ExapndRight_FirstLeftEmpty,

ExapndMiddle_RightStatic,

ExapndMiddle_FirstLeftEmpty

ExpandHeadOfMiddle ExapndMiddle

ExapndMiddle_FirstLeftEmpty ExapndMiddle

ExpandHeadOfMiddle_RightStatic ExapndMiddle_RightStatic

ExpanddHeadOfMiddle ExpanddMiddle, ExpandHeadOfMiddle

ExpanddMiddle_FirstLeftEmpty ExpanddMiddle, ExapndMiddle_FirstLeftEmpty

ContractMiddle_LastLeftEmpty ContractMiddle

ContracttMiddle ContractMiddle

ContractMiddle_RightStatic ContractRight, ContractMiddle

ContractRight_LastLeftEmpty ContractRight

ContractTaillOfRight ContractTailOfRight

ContractHeaddOfRight ContractRight

ContracttTailOfMiddle ContracttMiddle, ContractTailOfMiddle

ContractTailOfMiddle_RightStatic ContractMiddle_RightStatic

ContractTailOfMiddle ContractMiddle

ExpandTaillOfRight ExpandTailOfRight

ExpanddTailOfRight ExpandTailOfRight, ExpanddRight

ExpanddRight_FirstLeftEmpty ExapndRight_FirstLeftEmpty, ExpanddRight

ExpandTailOfRight_MiddleStatic ExapndMiddle_RightStatic

ExpandTailOfRight ExapndRight

ExpanddRight_MiddleStatic ExapndMiddle_RightStatic

ExapndRight_FirstLeftEmpty ExapndRight

MutateHeaddOfRight MutateHeadOfRight

MutateTaillOfRight MutateTailOfRight

ExpandHeaddOfRight ExpandHeadOfRight

ContracttTailOfRight ContracttRight, ContractTailOfRight

ContractTailOfRight_MiddleStatic ContractMiddle_RightStatic

ContractTailOfRight ContractRight

ContracttRight ContractRight

ExpanddHeadOfRight ExpanddRight, ExpandHeadOfRight

176

Glossary

1 Model . 3

2 Expressed model . 4

3 Intended model . 4

4 Bug . 4

5 Underconstraint . 4

6 Partial overconstraint . 5

7 Total overconstraint . 5

8 Valuation . 54

9 Instance . 54

10 Example . 55

11 Non-example . 55

12 Distance . 55

13 Minimum distance . 55

14 Near-hit example . 56

15 Near-miss example . 56

16 Proximate Pair-Finder Formula . 57

17 Discriminating Example . 79

18 Discrimination Formula . 79

19 Strengthener Mutation Operator . 81

177

20 Weakener Mutation Operator . 81

21 Debug Pattern . 82

22 Synonym . 83

23 Antonym . 83

24 Partial-synonym . 83

25 Simulacrum . 83

26 Pattern-based Simulacrum Inference . 83

178

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	First-Order Relational Logic Models in Alloy
	A Taxonomy of Bugs in Relational First-order Models
	Existing Debugging Tools and Techniques
	Discriminating Examples and Other Kinds
	Thesis and Contributions
	Tools Developed
	Dissertation Organization
	Research Questions

	Levure: A Syntactic Extension of Alloy with Examples
	Using Partial Instances for Alloy models
	Language Extension
	Semantics

	Experiment
	Micro Benchmark
	Staged Evaluation

	Alternatives Considered
	Static Analysis
	Syntactic Alternatives for the [basicstyle=]@inst@ Block

	Related Work
	Summary

	Bentonite: An Extension of Alloy for Queries
	Illustrative Example
	Language Extension
	Syntax and Semantics
	Soundness and Completeness

	Techniques
	Non-staged solving
	Staged-solving using Kodkod
	Staged-solving using a SAT-solver

	Experiment
	Related Work
	Summary

	Bordeaux: An Extension of Alloy for Producing Near-border Examples
	Illustrative Example
	Proximate Pair-Finder Formula
	Encoding the PPFF for Alloy*
	Implementation: Extending Alloy
	Special Cases of Potential User Interest
	Interacting with Margaux

	Experiments
	Optimization
	Selecting Tighter Scopes
	Parallelization

	Related Work
	Summary

	Margaux: A Pattern-based Approach for Debugging Underconstraint and Overconstraint
	Foundations
	Discriminating Example
	Borders and Discriminating examples
	Mutation and Discriminating examples
	Debug Patterns
	Library of Debug Patterns
	Synonyms and Antonyms Variants

	A Design for Margaux
	Debugging Procedure
	Search Procedure
	Weakener Mutation Operator
	Strengthener Mutation Operator
	Regulating nondeterministic choices
	Soundness and Completeness

	Localization
	Fix suggestion

	Related Work
	Summary

	Dining Philosophers Case Study
	Singly Linked List
	Case-study: Dining Philosophers
	Margaux's Heuristics are Better than Random
	Debugging the Dining Philosophers with Other Tools
	Margaux VS. Alloy Analyzer
	Margaux VS. Aluminum

	Summary

	Conclusion
	Future work

	References
	Appendices
	List of Temporal Patterns' Structures for a Ternary Relation

