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Abstract 

The objective of this research is to model and analyze large strain problems (rolling, hot compression) in 

FCC polycrystals. In the first part of this research, a rate-dependent crystal plasticity based Element Free 

Galerkin (CPEFG) model was incorporated in commercial software LS-DYNA to simulate cold rolling of  

AA 5754. Unlike classical Finite Element Methods, EFG methods are meshless and hence can 

accommodate large strains. It is well known that rolling produces inhomogeneous microstructure in the 

through thickness of the sheet. Therefore CPEFG model used in this work accounted for the complete 

through thickness microstructure in the sheet. Through thickness deformed microstructure and strain 

distribution obtained from CPEFG simulations were validated with published results.  

CPEFG simulations provide elemental texture data which can provide insight into the microstructural 

changes during processing. Therefore, an in-house 3D framework (gCode) was developed. In-house gCode 

is based on a path finding algorithm and calculates the element neighbors to analyze subgrain formation 

and other grain metrics. Initial and final grain size in CPEFG rolling simulations was found using the gCode 

and validated against published experimental data. Results show a marked reduction in subgrain 

formation down the sheet thickness due to the reduction in shear. Further analysis showed that there 

was a 8 µm change in grain size between the initial and deformed sheet. However, there was a 7 µm 

change in grain size between the top and center of the deformed sheet. Thus highlighting the importance 

of capturing the complete microstructure of the sheet. In-house gCode was also used to study the 

relationship of grain size and texture across the sheet thickness. It is observed that small grains near the 

center of the sheet prefer Brass, S and Copper while large grains near the center of the sheet prefer Cube, 

S and Copper.  

Plane strain compression is often used to model cold rolling. Therefore, plane strain compression 

simulations were also performed and predictions from both simulations were compared. Volume fraction 

evolution of several texture components from the center section of the sheet show similar values between 

the two processes However, normal strains, shear strains and microstructure evolution near the top 

section show considerable difference between the two processes. Hence, highlighting the importance of 

using proper microstructure and boundary conditions for rolling simulations.  

 



iv 
 

The second part of this work focuses on through process modelling of hot compression of cast AA 6063. 

A Taylor based rate-dependent polycrystal crystal plasticity framework was used to predict the texture 

and stress-strain evolution at various temperatures (from 4000C to 6000C) and strain-rates (from 0.01 𝑠𝑠−1 

to 10 𝑠𝑠−1). Crystal plasticity framework was modified to incorporate the effects of temperature and strain-

rate. Proposed framework was calibrated, verified and validated with experimental AA 6063 hot 

compression Gleeble data. Simulated stress-strain results for all temperatures and strain-rates showed 

good agreement with experimental results. It is known that AA 6xxx alloys undergo static recrystallization 

at high temperatures. Therefore, a probabilistic integration point based static recrystallization (SRX) code 

was developed to study the texture and grain size evolution at various temperatures and strain-rates. SRX 

model used texture and resolved shear stress as inputs to calculate potential nuclei and their growth.  

After SRX simulations, experimental and simulated texture and grain size results were compared and 

showed good agreement with minor deviations at different temperatures and strain-rates and also 

predicted the correct trends.  
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Chapter 1 
Introduction 

Aluminum alloys are increasingly being used in automotive applications due to their light weight, 

strength, formability and resistance to corrosion [1, 2]. Use of aluminum results in lighter cars with 

higher fuel efficiency while still meeting all the safety standards. As fuel costs rise, aluminum alloys 

provide the same or better cost-to-benefit ratio than steels and therefore are an ideal candidate for 

automotive industry. Automotive industry has been using aluminum alloys namely; AA 5754, AA 5182, 

AA 5083 from the early 1980’s for various automotive parts. The average net increase in rolled, 

extruded and die cast parts in automotive industry was around 20 Kg between 2012 and 2015 with 

the most increase in sheet and extrusions [3]. However, in recent years, many automotive 

manufacturers have substantially increased the aluminum content in their vehicles. For example, Fiat 

500 has around 252 lbs. of aluminum while SUV’s like Chevy Suburban use 410 lbs. of aluminum [3]. 

Automotive manufactures use aluminum for manufacturing of car bodies, enclosures, transmission 

and subframe components [4]. Recently, Ford has designed the 2015 Ford F-150 Truck with an all 

aluminum body resulting in over 700 lbs. of weight reduction in saved body weight over previous 

models. This weight reduction has also led to an improved fuel consumption [3]. Similarly, 2007 

Cadillac CTS uses aluminum alloys in chassis applications as a hollow casting/extruded welded cradle 

[4]. Audi R8, Honda NSX and many other vehicle manufacturers have also used various aluminum 

alloys for chassis applications [5]. Not only chassis or body, some automotive manufacturers have also 

used aluminum in transmission components. For example, Ford Motor Company’s Lincoln Mark VIII 

uses aluminum alloys in transmission components and recently even transmission blocks are being 

manufactured with aluminum alloys [5]. From the examples presented above, it is clear that there is 

a massive use of aluminum alloys in automotive applications and is expected to more than double in 

the next 10 years [3].  

Use of aluminum sheet and extrusions shows the highest growth for automotive applications [3]. 

Aluminum sheets are produced from aluminum billets and are used in body panels such as doors, 

hoods, etc. Similarly, aluminum extrusions are used in body closures and body structures such as 

chassis, cradle, etc. In addition, use of aluminum sheets in automotive bodies is expected to drive the 

increase in aluminum content in automotive vehicles by 2025 [3]. As use of aluminum sheets and 
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extrusions increases, designers need to consider various parameters during sheet forming and 

extrusion processes to optimize and increase the efficiency of these processes.  

To date, experimentation is the most common design approach for material and process 

characterization [4]. However, as experimental methods consume time and resources, there is an ever 

increasing need of numerical models to characterize material behavior to save experimental costs [6]. 

Numerical models generally require high computation and storage and there is a direct relationship 

between the model complexity and computation resources. With the advent of ever faster and 

efficient computers, numerical models are more accurate and can simulate more detailed/complex 

models. For example, earlier crystal plasticity models could only model single crystal under basic 

loading conditions to save computational resources [7]. However, recent models are able to simulate 

complex loading conditions with a polycrystal model that accounts for the complete material through 

thickness [8]. 

Finite element phenomenological models are commonly used to simulate deformation problems. 

Phenomenological models simulate the material behavior by fitting the simulated material response 

to experimental results under different loading conditions. However, phenomenological models are 

unable to capture the microstructure evolution in the material. Therefore phenomenological models 

cannot capture texture effects such as earing [6]. In addition, it is well known that mechanical 

properties such as ductility, strength and surface finish are directly affected by the sheet 

microstructure [9] and cannot be captured using phenomenological models. Crystal plasticity models 

offer a viable solution as they capture the material physics on each crystal/grain and are able to 

predict the material stress-strain and texture evolution during deformation. Crystal plasticity theory 

is the study of plastic behavior in materials due to crystallographic slip that accounts for the 

anisotropic material behavior in the material [10]. 

Crystal plasticity models require the starting texture of the material and therefore it is important to 

use the correct starting textures in crystal plasticity models. Experimental methods used to capture 

the texture and grain size information often do not match the model size in the simulation. Therefore, 

it is necessary to have a tool that creates synthetic textures that statistically match the bulk 

experimental texture. In addition, it should be possible to tailor these synthetic textures to any model 

size [11]. These synthetic textures, also known as synthetic microstructures, can then be used as 

inputs to crystal plasticity models.  
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Typical material testing processes such as tensile, compressive, etc. involve small strains. These have 

been simulated and validated for various materials using conventional phenomenological [12, 13] and 

crystal plasticity models [14, 15]. However, sheet forming (usually performed by rolling) and 

extrusions involve huge strains in the material and fall in the category known as large strain problems. 

As rolling and extrusion are large strain problems, conventional finite element methods are unable to 

simulate them. This is due to the mesh distortion and local inaccuracies in finite element methods at 

high strains. In order for automotive designers to simulate large strain problems, it is important to 

have a framework that is able to simulate large strain problems. In addition, large strain problems also 

involve huge microstructural changes. Therefore it is important to simulate the texture evolution 

(crystal plasticity) during these processes.  

Currently, literature presents several methods to simulate crystal plasticity based large strain 

problems such as rolling. Taylor type models are the most commonly used models in literature as they 

provide fast and efficient solutions to crystal plasticity problems [16, 17]. However, Taylor type models 

assume constant strain in each grain which can result in erroneous stress states in the material. 

Taylor type and other crystal plasticity models have been used to simulate rolling by assuming a plane 

strain compression condition (e.g. [18, 19]). Yet, they are unable to capture the through thickness of 

the sheet. Experimental results show that it is important to capture the through thickness of the sheet 

as the material undergoes inhomogeneous deformation due to different strain paths experienced at 

different material thickness in the rolled sheet [20, 21]. For example, Figure 1 shows that the volume 

fraction of Rolling Texture and Shear Texture increases down the sheet thickness. In addition 

experimental results from literature also show a change in the grain size across the thickness of the 

sheet [21]. Therefore it is important to capture the through thickness of the sheet with the correct 

loading conditions when simulating cold rolling. 
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Figure 1: Volume fraction of different texture components at various sheet thickness depths [21] 

It is important to consider the complete through thickness of the sheet with the correct loading 

conditions to capture the material stress-strain and texture evolution during cold rolling. FEM are the 

most common tool used to simulate large strain problems. However, as conventional FE cannot 

capture the texture evolution, crystal plasticity theory has been implemented to classical Finite 

Element Methods (CPFEM) to capture the texture evolution. In addition, literature presents various 

applications of CPFEM models (e.g. [10]). However, finite element formulations are prone to errors at 

higher strains due to high element distortion. Re-meshing is the most common technique used to 

overcome this problem. Re-meshing has been used successfully to model large strain problems such 

as extrusion. However, CPFEM models cannot work with re-meshing as each new element needs to 

be assigned a new orientation. Element Free Galerkin (EFG) methods provide a viable solution to this 

problem [22]. EFG problems have also been used to model crack and fracture problems [23]. EFG 

methods are meshless methods. They have also been shown to be more accurate than finite element 

methods as they do not accumulate numerical errors caused by distorted elements in FE models 

(Figure 2). Therefore an EFG based crystal plasticity framework needs to be developed to accurately 

model large strain problems such as rolling.  
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Figure 2: Experimental (Exact), simulated Finite Element Methods (FEM) and Element Free Galerkin (EFG) results  for 

hole in an infinite plate [23] 

Like rolling, hot compression is also a large strain problem and induces huge strains in the material. 

Hot compression is used as a stepping stone to understand the extrusion processes as they are both 

performed at high temperatures. In addition, like extrusion, hot compression can also be performed 

at different strain-rates. As hot extrusion can be carried out at various temperatures and strain-rates, 

it is important to include those effects in the crystal plasticity model. Currently, literature lacks 

modelling approaches to characterize and model the flow behavior and texture evolution of 

aluminum alloys (such as AA 6xxx) under different temperatures and strain-rates. Therefore there is 

a need to develop a strain-rate and temperature dependent crystal plasticity model to simulate large 

strain processes such as hot compression. 

Experimental results show that aluminum alloys (e.g. AA 6xxx) undergo static recrystallization  

(Figure 3) at high temperatures [24, 25]. Static recrystallization involves identifying potential nuclei 

and their growth. Material that undergoes SRX results in a different material texture and grain size 

than the one without SRX. Therefore, material with and without SRX result in different mechanical 

properties. Therefore, it is very important to consider the effects of SRX after hot deformation to 

predict the correct texture and grain size. Hence, a through process model (crystal plasticity and SRX) 

is needed to model the material behavior, texture and grain size during hot compression.  
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(a) 

 
(b) 

Figure 3: (a) Optical micrograph and (b) TEM images for AA 6063 under high temperatures [25] 
 

The main objective of this research is to model and analyze the stress-strain and microstructure 

changes during large strain problems namely; cold rolling and hot compression. A rate-dependent 

crystal plasticity based Element Free Galerkin (CPEFG) constitutive model was developed to model 

cold rolling in AA 5754. CP model was implemented in commercial software LS-DYNA as a user defined 

EFG material model (UMAT) to simulate the 3D microscopic response of AA 5754 under cold rolling. 

Simulated model captured the complete through thickness of the sheet. Results from CPEFG 

simulations were compared to experimental data and showed good agreement. A more detailed 

description of the CPEFG model, validation and implementation to cold rolling is given in Section 6.1. 

Crystal plasticity simulations predict the overall texture and grain size in the material. However, this 

information can be used to calculate other grain metrics such as grain size, subgrain formation, texture 

preference, etc. Accurate grain size predictions during and after rolling are important as they relate 

to the material properties such as yield strength through the Hall-Petch effect [26]. It is well known 

that under certain deformations such as shear [27], FCC materials prefer certain texture components 

and predicting the development of these texture components is essential to any model. To study the 

evolution of texture components and other grain metrics, new tools need to be developed. Therefore, 

in this research, grain size and preferred textures for small and large grains near the top and center 

of the sheet were studied using an in-house grain analysis framework (gCode). In-house gCode is 

based on a neighbor misorientation path finding algorithm [28] to study the subgrain formation. More 

details about the gCode are discussed in Section 6.1.5. 
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In the second part of this work, hot compression was modelled using an in-house crystal plasticity 

Taylor model. A modified hardening CP model was used to model hot compression in AA 6063 under 

different temperatures and strain-rates. As hot compression involves SRX, a probabilistic integration 

point based SRX model was developed to model SRX at various temperatures and strain-rates. 

Simulated stress-strain, texture and grain size results were compared to experimental results. The 

Electron Back Scatter Diffraction (EBSD) on the initial AA 6063 was performed by Waqas Muhammad 

(a fellow student) while the hot compression Gleeble experiments were performed by Daniel Ohoh 

(PhD student with Prof. Marry Wells at University of Waterloo). More details about the modified 

hardening crystal plasticity model and SRX are discussed in Section 6.3. 

In summary, the main objective of this work is to model and analyze the microstructure changes 

during large strain processes in FCC polycrystals. To accomplish this objective, this thesis is arranged 

as follows: Chapter 2 discusses the crystal plasticity theory, numerical models and microstructures 

used in numerical models. Chapter 3 discusses recrystallization and various approaches to simulate 

recrystallization. Chapter 4 discuss the overall scope and objectives of this work. Chapter 5 discusses 

the crystal plasticity and static recrystallization frameworks used in this work. Chapter 6 discusses the 

main results and presents the simulated cold rolling results from CPEFG simulations. Next, gCode is 

used to analyze various through thickness grain metrics under cold rolling. Chapter 6 also discusses 

the stress-strain, texture and grain size evolution during hot compression and validates the simulated 

results with experimental data. Lastly, Chapter 7 looks at limitations of current work and future work 

to improve the various modelling approaches presented in this work.   
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Chapter 2 
Numerical Modelling 

Computer simulations provide a huge advantage over conventional experimental approaches to 

model material behavior such as cost, time, etc. Therefore there is a huge push to accurately model 

the material behavior under different loading conditions using different types of numerical 

techniques. Conventional phenomenological models [29, 30, 12, 31–33] provide material stress-strain 

response and are adequate for most applications but do not account for material texture evolution. 

Crystal plasticity approaches solve this problem by accounting for material texture and are discussed 

below. 

There are a number of ways to model large strain crystal plasticity problems. Taylor and Sachs 

approaches have been used with great success in literature [16, 17, 14] and can account for material 

texture evolution on an average sense. Other approaches such as Crystal Plasticity Finite Element 

Methods (CPFEM) are also used to model large strain problems. CPFEM methods can account for the 

complete material microstructure. In addition, CPFEM approaches provide full-field solutions and are 

discussed in more detail in Section 2.2. However, finite element methods do not allow for severe 

deformations due to mesh restrictions. In addition, high mesh distortion during deformation affects 

the final results in FEA simulations. FEA has been modified to Extended Finite Element Method (XFEM) 

which allows the study of failure and fracture in materials. New approaches such as meshless methods 

(EFG) provide the flexibility of severe deformations without mesh dependence. All the methods 

mentioned above solve a finite element ordinary differential equation with minor changes to its 

implementation in the final framework. These methods are briefly summarized below. 

2.1 Crystal Plasticity Theory 

2.1.1 Introduction 
Metals are crystalline solids consisting of atoms arranged in different patterns. These patterns are 

repeated in all directions. This atomic arrangement can be described using unit cells as shown in  

Figure 4 [34]. Figure 4 shows the unit cells for typical metallic unit cells namely; face-centered cubic 

(FCC), body-centered cubic (BCC) and hexagonal close-packed (HCP). Some of the metals that have 

FCC crystal lattice structure are aluminum, 𝛾𝛾-iron, copper, brass, nickel etc. 𝛽𝛽-iron, potassium and 

molybdenum belong to BCC while magnesium, titanium and zirconium belong to HCP lattice. In the 

present research proposal, focus is on FCC metals only. 
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Figure 4: Unit cells of BCC (Body-centered cubic), FCC (Face-centered cubic) and HCP (Hexagonal closed packed) [34] 

Real crystals contain imperfections in their lattice. These lattice imperfections could be as a point, line 

or interfacial defects. Point defects include interstitial atoms, vacancies and impurity atoms. Most 

important line imperfections are known as dislocations. Dislocations can be described as areas where 

atoms are out of place in the crystal lattice. This results in namely two type of dislocations; edge and 

screw. Edge dislocation centers on a line that is defined along an extra half-plane of atoms. Some 

atoms above this line are squeezed together and some are pulled apart. Screw dislocation is thought 

to be formed due to shear stress where one part of the crystal lattice moves relative to the other by 

one atomic distance. Interfacial defects include boundaries which separate crystallographic regions 

with different crystallographic orientations and include grain boundaries, twins, stacking faults and 

phase boundaries [35]. 

Plastic deformation occurs mostly due to movement of dislocations (line-defects). Concept of 

dislocations was proposed by Taylor [36] as the shearing of rows of atoms in a crystal propagating 

throughout the crystal with change in temperature and strain. Any applied stress can be transformed 

into shear stress on the glide plane of any dislocation. This is known as the resolved shear stress and 

is the cause of dislocation movement. FCC metals at room temperature have several plastic 

deformation mechanisms namely; slip, twinning and grain boundary sliding. However, slip is the 

principal mechanism of deformation. Therefore, only this mechanism is considered in this research 

proposal. 

Dislocations have preferred planes and directions within those planes where motion occurs. The 

planes are called slip planes and directions are called slip directions. The combination of these is called 

a slip system. Slip systems depend on the crystallographic structure of the metal. Due to different slip 

systems, crystallographic slip is anisotropic. A FCC unit cell is shown in Figure 5a. A [1 1 1] type plane 
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is shown in the unit cell. Slip occurs along the <1 1 0> directions within the [1 1 1] slip plane. The 

number of independent slip systems represents the different combinations where slip can occur. For 

FCC, there are four unique [1 1 1] planes and three <1 1 0> directions per plane resulting in 12 unique 

slip systems. 

 
(a) 

 
(b) 

Figure 5: (a) A [1 1 1] <1 1 0> Slip System in FCC unit cell (b) [1 1 1] Plane from (a) and three slip directions within the  
[1 1 1] plane (shown by arrows) [35] 

 
Stress applied to a material can be resolved into shear stresses on slip planes and directions. On 

application of a stress, there is a most favorable slip system for a crystal. When the resolved shear 

stress reaches a critical value, this slip system undergoes slip. This shear stress is called the critical 

shear stress. This is known as the Schmid’s Law [37]. Schmid Law is used to serve as a yield criterion 

for a single crystal. Schmid’s Law states that extensive slip occurs when the resolved shear stress 

reaches a critical value. Therefore, a single crystal yields or deforms plastically, when the resolved 

shear stress reaches the critical resolved shear stress; i.e. when, 

 𝜏𝜏𝛼𝛼 = 𝑚𝑚𝛼𝛼,𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑦𝑦,𝛼𝛼(𝑖𝑖, 𝑗𝑗 = 1,2,3) (1) 

where 𝜏𝜏𝛼𝛼is the resolved shear stress for a slip system (𝛼𝛼). 𝜎𝜎𝑖𝑖𝑖𝑖 is the stress acting on the crystal, 𝜏𝜏𝑦𝑦 is 

the yield strength of 𝛼𝛼 slip system and 𝑚𝑚𝛼𝛼,𝑖𝑖𝑖𝑖  is defined as, 

 𝑚𝑚𝛼𝛼,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝛼𝛼,𝑖𝑖𝑏𝑏𝛼𝛼,𝑗𝑗 (2) 

where 𝑠𝑠𝛼𝛼,𝑖𝑖  and 𝑏𝑏𝛼𝛼,𝑗𝑗 are the components of the slip vectors 𝑠𝑠𝛼𝛼and slip normal 𝑏𝑏𝛼𝛼 for slip system 𝛼𝛼 

respectively. It should be noted that throughout this report, the usual convention of tensor 

summation is implied on  𝑖𝑖, 𝑗𝑗 whereas 𝛼𝛼 refers to the slip system. 
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2.1.2 Single Crystal Deformation Models 
Properties of polycrystals can be derived from single crystal properties. This section discusses the rate-

dependent and independent crystal plasticity formulations. Both formulations account for plastic 

deformation using crystallographic slip but have certain advantages. 

2.1.2.1 Rate Independent Models 
Schmidt law yields simple flow rules for shear rates (𝛾̇𝛾𝛼𝛼) for a slip system according to the rate 

independent crystal plasticity theory. Rules state that; 

a. 𝛾̇𝛾𝛼𝛼 = 0 when current value of yield stress (𝜏𝜏𝑦𝑦,𝛼𝛼) is greater than the resolved shear stress (𝜏𝜏𝑦𝑦). 

b. 𝛾̇𝛾𝛼𝛼 = 0 when  𝜏𝜏𝑦𝑦,𝛼𝛼 = 𝜏𝜏𝑦𝑦 and rate of resolved shear stress is less than slip system hardening 

matrix (ℎ𝛼𝛼𝛼𝛼) times the increment of rate of shear (𝛾̇𝛾𝛽𝛽) and 

c. 𝛾̇𝛾𝛼𝛼 = 0 when 𝜏𝜏𝑦𝑦,𝛼𝛼 = 𝜏𝜏𝑦𝑦 and rate of resolved shear stress is equal to the slip system hardening 

matrix (ℎ𝛼𝛼𝛼𝛼) times the increment of rate of shear (𝛾̇𝛾𝛽𝛽) 

These rules characterize inactive, active and potentially active systems. Crystal plasticity theory by 

Taylor [38] states that only five independent slip systems out of 12 slip systems (for FCC) are required 

to completely prescribe any arbitrary strain. To select these active slip systems, it was suggested to 

use the combination of slip systems that yield the minimum shear rates. This was suggested based on 

single crystal experimental results [38]. This theory was also explained by the principle of maximum 

work [39]. It was shown by Chin and Mammel [40] that the theory of maximum work and minimum 

shear works out to be the same [41]. 

2.1.2.2 Rate Dependent Models 
Yield surface of a rate-independent formulation is a polyhedron which has sharp corners. Sharp 

corners results in lack of uniqueness in the choice of actively yielding slip systems due to lack of 

uniqueness of the strain-rate vector perpendicular to the edges of the polyhedron. Another problem 

is that if the stress is on the corner of this yield surface, six or eight slip systems could be activated 

simultaneously corresponding to non-unique slips. 

In order to resolve the ambiguities mentioned above, rate sensitivity was introduced into Taylor type 

models [42]. This method did not have explicit yielding of slip systems but assumed that all slip 

systems slip at a rate based on the current value of resolved shear stress. Due to the unique relation 
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between slip rates and stress states, the slip rate on each slip system could be determined uniquely. 

This solved the problem of non-uniqueness in stress states of rate independent solutions. 

2.1.3 Polycrystal Models/Mean Field Homogenized Approach 
In order for crystal plasticity models to predict real material response, they have to capture 

polycrystalline response. However, a polycrystal model must be able to offer more than a 

phenomenological model. It should be able to capture and explain phenomenon that 

phenomenological models are unable to e.g. texture, microstructure evolution, grain morphology. 

Accurate prediction of texture evolution is very important as many forming operations (e.g. stamping) 

are texture dependent. In general single crystal models which already have the required parameters 

such as slip, twinning, etc. included in them can be adapted to polycrystal models. Polycrystal models 

discussed below are mean field models and provide average response of the crystal. They are known 

as mean field or homogenized models as they capture the polycrystalline response in the average 

sense. 

2.1.3.1 Sachs Model 
Early polycrystalline models made some continuity assumptions across grains. Sach’s model [43] 

assumes that all grains in a model are subjected to the same stress state. Sach’s model also assumes 

that only one slip system is active at any moment in time in each grain. This model was later modified 

so that each grain was assumed to be subjected to the same strain [44]. The assumption that each 

grain experiences the same stress ignores the strain continuity across grain boundaries [39]. In 

addition, some numerical inconsistencies were also observed by Asaro and Needleman [42].  

2.1.3.2 Taylor Model 

Taylor’s model assumes the same strain per grain but requires 5 slips systems to be active at once (for 

FCC). Selection of five slip systems to minimize slip results in checking all possible combinations (384 

for FCC structure). Strain is found by applying a volume average across all grains and hence is known 

as a full constraint model. The Taylor model also accommodates for the strain continuity across grain 

boundaries.  

Taylor model was based on experimental observations of a cross-section of a drawn wire. Taylor 

observed that all grains were elongated in the direction of extension. This lead to the conclusion that 

each grain experienced the same strain. In addition, each grain deforms in exactly the same way inside 

a polycrystal and satisfies: 
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 𝜎𝜎𝑔𝑔
𝜏𝜏

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑀𝑀 
(3) 

where 𝜎𝜎𝑔𝑔 is the axial stress in a grain, 𝜏𝜏 is the shear strength, 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑 are the increments in shear-

strain and aggregate strain and 𝑀𝑀 is the orientation factor that depends on the lattice orientation.  

However this implies abrupt changes in stress between neighboring grains based on their 

orientations. This can cause numerical instabilities as reported by Bishop and Hill [45, 46]. 

The simplicity of the Taylor approach has been applied in combination with other numerical methods 

such as Finite Element Methods. Experimental works have proven that the equal strain assumption 

used in the Taylor model is not true. However, the Taylor model has been used in simulating various 

problems with accurate results particularly in the prediction of forming limit diagrams [16, 17, 14].  

A modification of the Taylor model, known as the relaxed constraints model has also been 

implemented [47]. By relaxing the compatibility constraints, this type of model has been used to 

predict texture evolution in FCC metals. Relaxed constrains model has also shown improvements over 

the Taylor model under simple shear [48]. 

2.1.3.3 Viscoplastic Self Consistent Model (VPSC) 
A self-consistent polycrystal model was proposed by Kroner [49] and Hill [50]. This was a self-

consistent model, based on Eshelby’s formulation [51], that treated the deformation of each grain as 

the solution for an elastic elliptical inclusion within a homogenous matrix average across all the grains.  

Lebensohn et al. [52] extended this model to predict the stress-strain as well as texture evolution. 

This model was later revised to include plasticity by introducing the viscoplastic self-consistent (VPSC) 

scheme[53]. Self-consistent models find the local strains by averaging the response between different 

grains. VPSC model uses the Eshelby’s inclusion model [51] and links the average strain-rate (𝜀𝜀̅(𝑟𝑟)) to 

the average eigen strain-rate (𝜀𝜀̅∗(𝑟𝑟)) using the Eshelby tensor (𝑆𝑆). The model assumes each grain as an 

elliptical inclusion in a viscoplastic medium where the material response for the grain and medium is 

given by: 

 
𝜀𝜀(𝑟𝑟) = 𝛾𝛾0�𝑚𝑚𝑘𝑘(𝑟𝑟)

𝑘𝑘

�
𝑚𝑚𝑘𝑘(𝑟𝑟):𝜎𝜎(𝑟𝑟)

𝜏𝜏0
𝑘𝑘(𝑟𝑟) �

𝑛𝑛

 
(4) 

where 𝜀𝜀(𝑟𝑟) is the strain on each grain (𝑟𝑟), 𝜏𝜏0
𝑘𝑘(𝑟𝑟) is the resolved shear stress on each slip system (𝑘𝑘), 𝛾𝛾0 

is the normalization factor and 𝑛𝑛 is the rate-sensitivity exponent.  
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The VPSC model has been used extensively for FCC, BCC and HCP materials (such as [54, 55]). VPSC 

model has been shown to accurately predict the stress-strain response and texture evolution under 

complex strain paths, such as rolling [56].  

2.2 Full-Field Models 
Mean field models mentioned in the previous section provide the average behavior of the material 

but are unable to capture important material phenomenon such as intra-granular stresses, grain 

breakage, grain-to-grain interaction, etc. Full field models provide the ability to study these 

phenomenon in detail as they do not use any averaging scheme to find local strains and are discussed 

below.  

2.2.1 Finite Element Analysis (FEA) 
Finite Element Analysis has been used extensively to model deformation problems. Phenomenological 

models try to model the physics of deformation by incorporating various mathematical expressions 

to experimental results. Phenomenological models have been shown to predict material response 

under all types of loading conditions, strain-rates and temperatures (such as [12, 31, 57–59]). Unlike 

earlier models [60], recent phenomenological models can account for the material asymmetry and 

anisotropy [12, 31]. However, FE based models can also be implemented with crystal plasticity 

framework to account for the texture evolution. FE models provide the advantage of full-field 

approach which can accurately account for the texture evolution and intra-granular material behavior 

[8, 61–64]. As mentioned earlier, FE models can also be combined with other models e.g. Taylor model 

to provide full and relaxed constraints model. Basic FE models try to find the solution to the 

momentum equation 

 𝜎𝜎𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑓𝑓𝑖𝑖 = 𝜌𝜌𝑥̈𝑥𝑖𝑖 (5) 

Satisfying the traction and displacement boundary conditions 

 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 = 𝑡𝑡𝑖𝑖(𝑡𝑡) (6) 

 𝑥𝑥𝑖𝑖(𝑋𝑋𝑎𝑎 , 𝑡𝑡) = 𝐷𝐷𝑖𝑖(𝑡𝑡)  

 �𝜎𝜎𝑖𝑖𝑖𝑖+ − 𝜎𝜎𝑖𝑖𝑖𝑖−�𝑛𝑛𝑖𝑖 = 0  
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where 𝜎𝜎 is the Cauchy stress, 𝜌𝜌 is the density of the material, 𝑓𝑓 is the body force, 𝑡𝑡 is the traction, 𝑥̈𝑥 

is the acceleration of the body and 𝜎𝜎𝑖𝑖𝑖𝑖+ and 𝜎𝜎𝑖𝑖𝑖𝑖−are the stresses on boundary. This leads to the weak 

form of the equilibrium equation: 

 
𝛿𝛿𝛿𝛿 = � 𝜌𝜌𝑥̈𝑥𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑

𝑣𝑣
+ � 𝜎𝜎𝑖𝑖𝑖𝑖𝛿𝛿𝜀𝜀𝑖𝑖𝑑𝑑𝑑𝑑 −

𝑣𝑣
� 𝑓𝑓𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑 −
𝑣𝑣

� 𝑡𝑡𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑
𝑏𝑏

= 0 

(7) 

This equation complies with the principle of virtual work that states that a body in equilibrium and 

subjected to displacements will have the virtual work of external forces on the body equal to the 

virtual strain energy of the internal stresses [65].  

Next, introduce the mesh in finite elements and re-write Equation 7 in terms of shape functions (𝑁𝑁𝑖𝑖) 

 
� �� 𝜌𝜌𝑢̈𝑢𝑖𝑖𝑁𝑁𝑖𝑖𝑚𝑚𝑑𝑑𝑑𝑑

𝑣𝑣𝑚𝑚
+ � 𝐵𝐵𝑖𝑖𝑖𝑖𝑚𝑚

𝑡𝑡𝐷𝐷𝑖𝑖𝑖𝑖𝑚𝑚𝐵𝐵𝑖𝑖𝑖𝑖𝑚𝑚𝑁𝑁𝑖𝑖𝑚𝑚𝑢𝑢𝑖𝑖𝑚𝑚𝑑𝑑𝑑𝑑 −
𝑣𝑣𝑚𝑚

� 𝑓𝑓𝑖𝑖𝑚𝑚𝑁𝑁𝑖𝑖𝑚𝑚𝑑𝑑𝑑𝑑 −
𝑣𝑣𝑚𝑚

� 𝑡𝑡𝑖𝑖𝑚𝑚𝑁𝑁𝑖𝑖𝑚𝑚𝑑𝑑𝑑𝑑
𝑏𝑏

�
𝑛𝑛

𝑚𝑚=1

= 0 

(8) 

where strain (𝜀𝜀) and stress (𝜎𝜎) is written in terms of nodal displacements and displacements are 

approximated by nodal displacements (𝑢𝑢) using: 

 𝜀𝜀 = 𝐵𝐵𝐵𝐵, 𝑥𝑥 = 𝑁𝑁𝑁𝑁, 𝜎𝜎 = 𝐷𝐷𝐷𝐷 (9) 

We can re-write this equation in matrix form,  

 
� �� 𝜌𝜌𝑁𝑁𝑡𝑡𝑁𝑁𝑢̈𝑢𝑑𝑑𝑑𝑑

𝑣𝑣𝑚𝑚
+ � 𝐵𝐵𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 −

𝑣𝑣𝑚𝑚
� 𝑁𝑁𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓 −
𝑣𝑣𝑚𝑚

� 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑏𝑏

�
𝑛𝑛

𝑚𝑚=1

= 0 
(10) 

These expressions can be expressed as 

 [𝑀𝑀][𝑢̈𝑢] + [𝐾𝐾][𝑢𝑢] = [𝐹𝐹] (11) 

and integrated to find the nodal displacements (u). 
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2.2.2 Extended Finite Element Method (XFEM) 
Extended Finite Element Method (XFEM) was developed to predict crack initiation and propagation 

[66, 67]. The key idea is that the displacement equation incorporates the crack discontinuity as an 

additional term in the finite element formulation [68]. Displacement is given as [69]:  

 𝑢𝑢ℎ(𝑋𝑋, 𝑡𝑡) = �𝑁𝑁𝐼𝐼(𝑋𝑋){𝑢𝑢𝐼𝐼(𝑡𝑡) +  𝐻𝐻�𝑓𝑓(𝑋𝑋)�𝐻𝐻�𝑔𝑔(𝑋𝑋, 𝑡𝑡)�𝑞𝑞𝐼𝐼} (12) 

where NI(x) is a shape function, and 𝑢𝑢𝐼𝐼  and 𝑞𝑞𝐼𝐼 are the regular and enriched nodal values respectively. 

𝐻𝐻�𝑓𝑓(𝑋𝑋)� is the Heaviside function which is active only when 𝑓𝑓(𝑋𝑋) is greater than zero. Functions f(x) 

and g(x) define the continuous crack geometry in the material shown in Figure 6. 

 
Figure 6: Discontinuity representation in XFEM [69] 

The main disadvantage of XFEM is the additional CPU time. In addition, XFEM simulations cannot 

predict crack speeds and multiple cracks unless the model is tuned with the experimental results [69]. 

XFEM simulations also require the user to input the discontinuity on the basis of some failure criterion 

to predict cracks.  

As discussed, XFEM was developed for crack problems and does not provide the flexibility of 

incorporating severe deformations in its formulation. Severe deformation can be incorporated with 

XFEM by using adaptive meshing techniques. However, these techniques require huge computational 

times. 
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2.2.3 Element Free Galerkin (EFG) 
EFG is a relatively new mesh-less numerical method [70]. Unlike classical FE simulations, EFG methods 

use only nodes and do not require elements. This makes it easier to mesh complex parts and 

geometries. Even though re-meshing allows FE models to simulate complex strain paths [71], nodal 

mesh in EFG simulation allows for simulating high deformation problems without re-meshing.  

EFG is based on the partition of unity method [72] and elements in EFG are called cells. In FE methods, 

cells are known as elements and are predefined by the user. However, in EFG, cells are calculated 

based on the problem definition and can be calculated based on a fixed or variable radius from the 

current point. This could result in different cells with different number of points. In addition, cells in 

EFG could also be squares, circles (2D) or cubes, spheres (3D). These cells can be static or evolve during 

simulations. A sample of circular cells in a given domain is shown in Figure 7. 

 
Figure 7: EFG cells in a sample [73] 

EFG employs moving least square (MLS) approximants to approximate the displacement functions. 

These approximations consist of a weight function, a polynomial basis and position based coefficients. 

A linear approximation of displacement (𝑢𝑢) can be written as: 

 𝑢𝑢ℎ(𝑥𝑥) = 𝑎𝑎0(𝑥𝑥) + 𝑎𝑎1(𝑥𝑥)𝑥𝑥 (13) 

where the unknown parameters (𝑎𝑎𝑖𝑖) change with 𝑥𝑥.  
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The MLS approximation in the whole domain is given by [23]: 

 
𝑢𝑢ℎ(𝑥𝑥) = �𝑝𝑝𝑖𝑖

𝑚𝑚

𝑖𝑖=1

(𝑥𝑥)𝑎𝑎𝑖𝑖(𝑥𝑥) = 𝑝𝑝𝑇𝑇(𝑥𝑥)𝑎𝑎(𝑥𝑥) 
(14) 

where 𝑝𝑝𝑖𝑖  are the components of the monomial basis function and 𝑎𝑎𝑖𝑖  are their coefficients. The 

coefficients are found by minimizing a weighted discrete 𝐿𝐿2 norm and depends on the weight function 

and the neighborhood of 𝑥𝑥. A linear basis in 3D is given as: 

 𝑝𝑝𝑇𝑇(𝑥𝑥) = [1, 𝑥𝑥,𝑦𝑦, 𝑧𝑧] (15) 

This stationarity of the 𝐿𝐿2 norm with respect to 𝑎𝑎(𝑥𝑥)  to the following linear relation: 

 𝐴𝐴(𝑥𝑥)𝑎𝑎(𝑥𝑥) = 𝐵𝐵(𝑥𝑥)𝑢𝑢 (16) 

where 𝐴𝐴(𝑥𝑥) and 𝐵𝐵(𝑥𝑥) are defined in terms of the weight functions (𝑤𝑤) and monomial basis (𝑝𝑝). Weight 

function (𝑤𝑤) should be constructed to be positive and guarantee a unique solution to 𝑎𝑎(𝑥𝑥). Generally 

EFG weight functions are more complicated than finite element weight functions and are available as 

exponential, cubic and quartic-spline functions. A simple weight function (based on distance) can be 

written as: 

 𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑖𝑖) = ||𝑥𝑥 − 𝑥𝑥𝑖𝑖|| (17) 

Substituting 14 into 16 results in 

 
𝑢𝑢ℎ𝑖𝑖(𝑥𝑥) = �𝑁𝑁𝑖𝑖(𝑥𝑥)

𝑚𝑚

𝑖𝑖=1

𝑢𝑢𝑖𝑖 
(18) 

where 𝑁𝑁𝑖𝑖(𝑥𝑥) = 𝑝𝑝𝑇𝑇𝐴𝐴−1𝐵𝐵𝑖𝑖 is the shape function to approximate the nodal displacement (𝑢𝑢𝑖𝑖). 

The rest of the EFG problem simplifies to a set of integrals, similar to any other finite element problem. 

Unlike finite element problems, that loop on each element, EFG problems loop on each quadrature 

point (𝑚𝑚). The main disadvantage of the EFG method is that they require very large CPU time and EFG 

simulations can take 2-3 times longer than “classical” FE models for the same problem. This is due to 

the relatively complicated weight functions and shape function approximations used in EFG. 
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2.2.4 Fast Fourier Transform Method (FFT) 
As discussed above, Finite Element Methods have been used extensively to account for different types 

of material problems. However, due to the large number of degrees of freedom required by FE 

methods, there is an inherent size limitation based on the computational resources. FFT methods 

provide an effective alternate solution as they can account for fine-scale microstructural information 

that is hard to achieve with FE methods. However, FFT methods assume periodicity and require 

periodic conditions across the length of the sample. Hence FFT methods are not as versatile as FE 

methods. 

Moulinec and Suquet [74] initially proposed a FFT based method for composites which was later used 

by Lebensohn [75] to model viscoplastic polycrystals and then elasto-viscoplastic polycrystals [76]. 

The basic FFT framework works on a 3D point grid with a fixed amount of Fourier points in each 

direction and a periodic boundary across the RVE where the total strain and stress are given by: 

 𝜖𝜖(𝑥𝑥) = 𝑒̃𝑒(𝑥𝑥) + 𝐸𝐸 
𝜎𝜎(𝑥𝑥) = 𝐶𝐶0: 𝜖𝜖(𝑥𝑥) 

(19) 

where e�(𝑥𝑥) is the strain fluctuation in the crystal, ϵ(x) is the local strain field, E is the average strain 

in the material, 𝜎𝜎(𝑥𝑥) is the stress field and 𝐶𝐶0 is the initial local elastic stiffness matrix. 

The local fluctuation of the displacement field is calculated using the Green function as: 

 
𝑒̃𝑒𝑘𝑘(𝑥𝑥) = � 𝐺𝐺𝑘𝑘𝑘𝑘(𝑥𝑥 − 𝑥𝑥′)𝜏𝜏𝑖𝑖𝑖𝑖,𝑗𝑗(𝑥𝑥′)𝑑𝑑𝑑𝑑′

𝑅𝑅3
 

(20) 

where 𝐺𝐺(𝑥𝑥 − 𝑥𝑥′) is the Green function and 𝜏𝜏 is the shear stress. Using Equation 19 and converting 

this expression into Fourier space results in: 

 𝑒̃𝑒𝑖𝑖𝑖𝑖(𝑥𝑥) = 𝛤𝛤�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝜏̂𝜏𝑘𝑘𝑘𝑘 (21) 

where Γ� can be calculated as: 

 𝛤𝛤�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −
1
2

(𝜉𝜉𝑖𝑖𝜉𝜉𝑗𝑗𝐴𝐴′𝑖𝑖𝑖𝑖
−1 + 𝜉𝜉𝑖𝑖𝜉𝜉𝑗𝑗𝐴𝐴𝑖𝑖𝑖𝑖′−1) 

(22) 

where 𝜉𝜉 is a Fourier point and 𝐴𝐴 is the product of initial local elastic stiffness matrix (𝐶𝐶0) for each 𝜉𝜉. 
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2.3 Orientation Space 
Orientations are used to completely describe a relation between two coordinate frames. Similarly, 

material texture is defined as a set of orientations corresponding to all the crystals in the material. 

Orientations are represented usually in Euler space as Bunge angles (𝜑𝜑1,∅,𝜑𝜑2) to describe the crystal 

orientation with respect to the global space [77]. This space is finite and is used to describe any texture 

component by a single point where texture is defined as a non-uniform distribution of crystallographic 

orientations in a polycrystalline aggregate [78]. Bunge angles describe this point as an anticlockwise 

rotation about z-x-z axis. As shown in Figure 8, this can be described as a rotation about  

[0 0 1] (ND - Red), [1 0 0] (Green) and [0 0 1] (Blue) crystal direction.  

 

Figure 8: Rotation in Euler space on crystal axis [79] 

Orientations in 3D space can also be represented using quaternion’s (𝑞𝑞0,𝑞𝑞1,𝑞𝑞2,𝑞𝑞3) such that 

∑𝑞𝑞𝑖𝑖 = 1. Quaternion space is defined by a scalar (𝑞𝑞0) and a vector. Quaternions are used due to the 

ease of normal mathematical operations when using multiple quaternion’s [80]. For example, addition 

of two quaternions (𝑎𝑎, 𝑏𝑏) is given as: 

 𝑎𝑎 + 𝑏𝑏 = (𝑎𝑎0 + 𝑏𝑏0), (𝑎𝑎1 + 𝑏𝑏1), (𝑎𝑎2 + 𝑏𝑏2), (𝑎𝑎3 + 𝑏𝑏3) (23) 

Crystal plasticity framework implemented in this work use Euler space while all the calculations to 

calculate misorientation are performed in quaternion space. Therefore it was necessary to define 

functions that could be used to switch between these spaces while maintaining the FCC symmetry 

conditions. 
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A rotation angle/axis pair  (𝑤𝑤,𝑛𝑛) can also be used to describe a quaternion [81] and the relationship 

between a quaternion and Euler angles can be written as: 

 ±𝑞𝑞 = ± �𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑤𝑤
2
� , 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑤𝑤
2
� 𝑛𝑛1 , 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑤𝑤
2
� 𝑛𝑛2 , 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑤𝑤
2
�𝑛𝑛3�       

   = ± �𝑐𝑐𝑐𝑐𝑐𝑐 �
𝛽𝛽
2
� 𝑐𝑐𝑐𝑐𝑐𝑐 �

𝛼𝛼 + 𝛾𝛾
2

� ,−𝑠𝑠𝑠𝑠𝑠𝑠 �
𝛽𝛽
2
� 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝛼𝛼 − 𝛾𝛾
2

� , 

 
 

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝛽𝛽
2
� 𝑐𝑐𝑐𝑐𝑐𝑐 �

𝛼𝛼 − 𝛾𝛾
2

� , 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝛽𝛽
2
� 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝛼𝛼 + 𝛾𝛾
2

�� 

(24) 

where (𝛼𝛼,𝛽𝛽, 𝛾𝛾) are the Roe/Matthies angles and are related to the Euler angles by: 

 𝛼𝛼 = 𝜑𝜑1 − 𝜋𝜋
2�  

𝛽𝛽 = ∅ 

𝛾𝛾 = 𝜑𝜑2 − 3𝜋𝜋
2�  

(25) 

Conversion from Euler to quaternion (𝑞𝑞) or vice-versa requires the selection of the quaternion that 

results in the minimum misorientation angle out of the 24 possibilities. Possible symmetry operations 

(𝑆𝑆𝑖𝑖) that can be performed on a quaternion for an FCC crystal are given as: 

q(1; 0,0,0) q(0.5; 0.5,-0.5,0.5) q(1/√2; 1/ √2 ,0,0) q(0; 1/√2, 1/√2,0) 

q(0; 1,0,0) q(0.5; -0.5,0.5,-0.5)  q(1/√2; 0, 1/√2,0) q(0; -1/√2, 1/√2,0) 

q(0; 0,0,0) q(0.5; -0.5,0.5,0.5) q(1/√2; 0,0, 1/√2) q(0; 0, 1/√2, 1/√2) 

q(0; 0,0,1) q(0.5; 0.5,-0.5,-0.5) q(1/√2; - 1/√2,0,0) q(0; 0,- 1/√2, 1/√2) 

q(0.5; 0.5,0.5,0.5) q(0.5; -0.5,-0.5,0.5)  q(1/√2; 0,- 1/ √2,0) q(0; 1/√2,0, 1/√2) 

q(0.5; -0.5,-0.5,-0.5) q(0.5; 0.5,0.5,-0.5) q(1/√2; 0,0,- 1/ √2) q(0; -1/√2,0,1/ √2) 

The 24 possible quaternions (𝑄𝑄) are found using: 

 𝑄𝑄 = 𝑞𝑞𝑆𝑆𝑖𝑖 (26) 

Final quaternion is the one with the minimum misorientation angle chosen from the results obtained 

using Equation 26. The procedure for finding misorientation between two quaternions is presented 

in the next section. 
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2.3.1 Misorientation 
Misorientation provides an insight into the difference between the orientations of two neighboring 

grains. Misorientation angles are used in recrystallization models to calculate potential nuclei. 

Misorientation angles are also used to find the volume fraction of different texture components in a 

sample. Given two grains (A and B), misorientation between these grains is the crystal rotation 

required to bring the crystal lattice of grain A in coincidence with the crystal lattice of grain B [78]. 

There are multiple ways to represent the misorientation between grains. In this work, we use the 

angle/axis method where the misorientation is described by an angle and a rotation axis. This method 

results an angle of rotation between two grains which makes it easy to compare misorientation 

between multiple grains in the sample. 

Misorientation (𝑀𝑀) is found between two elements or two grains with orientations 𝑞𝑞1 and 

𝑞𝑞2(Equation 27).  Crystal symmetry solutions are important here as discussed in the previous section 

and are found using Equation 28. 

 𝛥𝛥𝛥𝛥 = 𝛥𝛥𝛥𝛥(𝑞𝑞1, 𝑞𝑞2) = (𝑞𝑞1)−1𝑞𝑞2 (27) 

 𝑀𝑀 = 𝛥𝛥𝛥𝛥𝑆𝑆𝑖𝑖 (28) 

2.3.2 Metrics for Texture Evolution  
A grain is made up of a cluster of elements that share the same orientation in the initial texture. 

Difference between two grains is based on the misorientation between element neighbors. Results 

presented in this thesis also look into volume fractions of different texture components during the 

deformation process. Volume fraction for a texture component was found by comparing the 

orientation of each element to the component orientation within a 10 deg minimum Gaussian 

misorientation spread. The process of finding volume fractions of texture components comes from 

the orientation distribution function (ODF). The basic expressions used to calculate volume fraction 

are: 

 𝑉𝑉𝑓𝑓 = �𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑 
(29) 

 𝑓𝑓(𝑔𝑔) =
∆𝑉𝑉𝑓𝑓
∆𝛺𝛺

 
(30) 

where 𝑉𝑉𝑓𝑓 stands for physical volume fraction of grain, 𝑓𝑓(𝑔𝑔) is the orientation distribution function 

and ∆Ω is the increment in volume [82]. 



23 
 

Misorientation distribution function (MDF) is also a continuous function like the ODF and looks at the 

grain boundary misorientation. However, MDF is based on the area fraction instead of volume fraction 

as grain boundaries represent 2D areas and is defined as: 

 ∆𝐴𝐴
𝐴𝐴

=
∫ ∫𝑓𝑓(∆𝑔𝑔)𝑑𝑑∆𝑔𝑔∆𝛺𝛺

∫ ∫𝑓𝑓(∆𝑔𝑔)𝑑𝑑∆𝑔𝑔∆𝛺𝛺0

 
(31) 

where 𝑉𝑉𝑓𝑓 stands for physical volume fraction of grain, 𝑓𝑓(∆𝑔𝑔) is the misorientation distribution 

function and ∆Ωo is the total volume of misorientation space considered [78]. 

2.4 Microstructures in Numerical Modeling 
Metals used in industry are polycrystalline with different orientations. Metals do not have random 

orientations; instead they have preferred orientations or textures. Textures are developed at all 

stages of any forming process and affect the mechanical, thermal and electrical properties of a 

material. For example rolling of aluminum results in 𝛾𝛾-fiber which is a combination of Cube, Copper, 

Brass and S components. Formation of  𝛾𝛾-fiber is very important in enhancing the formability of 

aluminum [83]. Some common texture components and their corresponding Euler angles 

(𝜑𝜑1,∅,𝜑𝜑2) and Miller indices are given in Table 1. Miller indices represent the crystal direction parallel 

to the sample Z-axis as {h k l} and the corresponding crystal direction as <u v w>. The corresponding 

pole figures are shown in Figure 9. 

Table 1: Typical texture components in FCC metals [84] 

Component Bunge Euler Angles (deg) {h k l} <u v w> 

Cube (0, 0, 0) {0 0 1}<1 1 0> 

Copper (0, 35, 45) {1 1 2}<1 1 1> 

S (64.93, 74.5, 33.69) {2 3 1}<1 2 4> 

Goss (0, 45, 0) {0 1 1}<1 0 0> 

Brass (35, 45, 0) {0 1 1}<2 1 1> 
 

 
(a) (b) (c)           (d)           (e) 
Figure 9: 150 Gaussian spread <1 1 1> pole figures for (a) Copper (b) Brass (c) S (d) Cube (e) Goss [85] 
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Prediction of these texture evolutions is important as many forming operations are carried out on 

rolled sheets. Hence, formability of metals depends highly on their textures. In addition, undesirable 

forming effects such as earing [6], Lüders bands [86], roping [87], etc., are easily solved by 

understanding the microstructure changes during forming. 

Material crystal plasticity simulations is simulated as a representative volume element (RVE). RVE’s 

assume a repetitive symmetry in the actual material texture [88]. Some examples of simulations 

involving RVE’s include phase changes [89] and multi-scale analysis [90]. RVE’s can also predict 

forming effects such as, earing during stamping and through thickness texture differences during 

rolling [64].  

Accuracy of crystal plasticity simulations depends on the quality of microstructural information (RVE) 

used in the model. Microstructural information includes the orientation for each element, grain 

morphology, etc. Grains are formed by elements with the same orientation. 2D RVE’s have been used 

extensively to simulate many problems in literature (e.g. [91]). However, due to the availability of 

faster computers, numerical models use 3D microstructures as they carry more microstructural 

information and accuracy. This entails developing techniques to develop 3D microstructures and 

meshes for finite element simulations. A few approaches are discussed in the following sections. 

2.4.1 Material Data 
Microstructure data characterization for materials in either 2D or 3D is a difficult task. It becomes 

even more difficult for generation of 3D microstructures as the standard grain orientation technique, 

EBSD (Electron Backscatter Diffraction), produces 2D data [92]. A 2D scan done by an EBSD is for a 

single plane of a material. Material is serially sectioned and polished and scanned again and again to 

get multiple 2D surfaces to create a reasonable estimate of the real microstructure. Several numerical 

techniques are also used to develop 3D microstructures without the use of serial sectioning to avoid 

high equipment costs, alignment of scans and time consuming material removal. A number of 

methods currently exist to produce 3D microstructures by using 2D EBSD data without doing serial 

sectioning and will be discussed in the following sections.  
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2.4.1.1 Structured Microstructures  
Series of uniform volume filling shapes (bricks, octahedrons, pyramids, etc.) are considered as grains 

and are used to create 3D microstructures (Figure 10). Each shape/grain is assigned an orientation 

based on the measurements from the 2D EBSD scans. The downside of this approach is that each grain 

is based on the same shape and size which is not in-lieu with experimental results. Another downside 

of this method is that all inter-grain boundary angles are exactly the same throughout the material. 

 

Figure 10: Random microstructure example [93] 

2.4.1.2 Columnar Microstructures  
The simplest method of creating 3D microstructures is to extrude the 2D grain structure from an EBSD 

scan to form columnar microstructures [94]. This creates 3D columnar grains as shown in Figure 11. 

One of the problems with producing columnar grains is that grains in most real materials do not 

resemble this format. The problem is that all scans perpendicular to the extrusion produce the same 

2D picture. This means that a single 2D cross-section of the material is not sufficient to represent the 

grain morphology inside the material. Another problem is that all grain boundaries are exactly aligned 

with the extrusion direction. 
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Figure 11: Columnar microstructure example [93] 

2.4.1.3 Statistically Equivalent Microstructures  
Microstructure generators, such as M-Builder, create statistically equivalent microstructures [11, 95]. 

M-Builder takes in two orthogonal 2D scans of the material and analyses them to identify grain size, 

aspect ratio, orientation distribution, misorientation distribution and grain size. A volume of space in 

the material is filled with ellipsoids of different sizes (around the average grain size) with measured 

material aspect ratios (Figure 12). Points are then randomly introduced and Voronoi tessellation is 

performed to make non-interference, volume-filled structure. All the created Voronoi cells that reside 

within the same ellipsoid are merged to make a single grain. Grain orientations are assigned next 

based on the orientation and misorientation distribution in the real material. An iterative approach is 

used to compare and reduce the discrepancies between the experimental and calculated orientation 

space, misorientation distribution and average grain size. 

 

Figure 12: Statistically equivalent microstructure (M-Builder) example [93] 
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2.4.1.4 Point Data 
Point data technique uses a set of points with Euler angles that represent the overall texture of the 

material [17]. The overall texture of the material matches the ODF and pole figure data of the bulk 

material. This technique is used in Taylor type homogenized full constraint models and has been used 

to predict material stress-strain response and texture evolution [16] as well as Forming Limit Diagrams 

(FLD) [17] for FCC and BCC materials. The main disadvantage of this technique is that it does not 

account for grain size and morphology. 

2.4.2 Mesh from Microstructure for Finite Element Analysis (FEA) 
Accuracy of FEA results depends heavily on the generated mesh. There are multiple ways of 

building/generating a mesh to represent the grain morphology of the material [93]. One of the ways 

is to represent multiple grains by a single element and a polycrystal model can be used to approximate 

the behavior of the material. Similarly, every grain can be represented by an element that behaves 

like a single crystal [96]. Lastly, every grain could be represented by multiple elements such as each 

element in the grain is assigned the same orientation and acts as part of the grain [15]. The final 

methodology is used in this work due to its ability to model complete grains. This also allows the study 

of sub-grain formation, inter and intra-granular parameters. 

CPEFG model is created from 3D grain data obtained from statistically equivalent microstructures as 

discussed in Section 2.4.1. This 3D microstructure data is typically in voxelized (3D pixels) form. In this 

research, brick elements are created around the voxelized data. Next, each element is assigned the 

orientation of the voxel it represents. This method is relatively fast and efficient and gives complete 

control over element size. The elements produced by this method are perfect cube elements with no 

distortion in element shapes [88]. 

2.5 Summary 
In this Chapter, various single crystal plasticity approaches namely; rate-dependent and rate-

independent formulations have been presented. Rate independent models derive from the Schmidt 

law which is based on inactive, active and potentially active slip systems. In addition, yield surface 

from a rate-independent formulation results in sharp corners which results in uneven stress states. 

To solve these inherent problems with rate-independent models, Taylor type rate –dependent models 

were introduced [42]. Rate-dependent models assume slip on all slip systems. Thus Taylor type 

models do not result in uneven stress states. 
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As crystal plasticity models have to capture polycrystalline response, crystal plasticity models use 

polycrystal models to simulate material behavior. Sach [43] and Taylors [42] crystal plasticity models 

have been used extensively in literature to predict material response and texture evolution on various 

materials due to the ease of implementation. However, both Sach and Taylor models make unrealistic 

assumptions to simulate material behavior. In comparison, VPSC models provide a more flexible 

solution where each grain is assumed as an elliptical inclusion in a viscoplastic medium. However, 

VPSC models find the local strains by averaging the response between two grains. Hence VPSC models 

are unable to capture full-field response. 

Full-field models are able to overcome all the limitations over other models. Full-field models capture 

the local strains at each point. However, there are various approaches to model full-field crystal 

plasticity simulations. Finite element models have been used extensively to model all kinds of material 

response under all types of loading conditions with crystal plasticity models. In addition, XFEM models 

provide enrichment to CPFEM models to capture the material behavior under fracture. However, both 

these techniques are mesh dependent. Therefore both these techniques cause numerical instabilities 

under large strains. Therefore meshless methods like EFG methods were introduced but have not 

been used with crystal plasticity formulation. EFG methods are independent of mesh and do not cause 

numerical instabilities at large strains. Recently, FFT methods have also been introduced to model 

crystal plasticity problems. However, FFT methods assume periodicity and cannot model complex 

deformation paths. 

Unlike phenomenological models, crystal plasticity models require material texture data as inputs and 

provide the deformed material texture as one of the outputs. In this research, Bunge Euler angles are 

used to define texture at each material point and are converted to quaternions before calculating the 

volume fractions and misorientation for each element.  

There are several ways to incorporate texture data into crystal plasticity simulations. Experimental 

EBSD data can be used directly as inputs to crystal plasticity simulation. However, as EBSD provides 

data in 2D, 3D crystal plasticity models require the need for synthetic microstructures [88]. In this 

research, 3D model is created from grain data obtained from synthetic microstructures where each 

grain is represented by multiple elements. More details about the crystal plasticity framework and 

CPEFG are provided in Sections 5.1 and 6.1 respectively.  
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Chapter 3 
Recrystallization 

Reconstruction of grain structure at higher temperatures is known as recrystallization [97]. This 

change in grain structure is caused by high-angle grain boundary motion which results in orientation 

change in the grains [98]. This results in a decrease of the free energy in the polycrystalline material 

as more grains are recrystallized during or after deformation. Recrystallization during deformation is 

known as dynamic recrystallization (DRX) and after deformation is known as static recrystallization 

(SRX) [99, 100]. Recrystallization is a very important phenomena as it effects the final texture and 

grain size of the material which subsequently effect the material properties. A sample of Al-0.1% Mn 

during annealing process (SRX) is shown in Figure 13. Figure 13 shows that as time progresses, grain 

size increases (from left to right). 

 
Figure 13: Microstructure change during annealing (Al-0.1% Mn) after 95% cold rolling [97] 

Experimental results from literature break down DRX and SRX into continuous and discontinuous 

recrystallization. Continuous recrystallization happens evenly across the material while discontinuous 

recrystallization (abnormal grain growth) happens in only a few orientations at the expense of other 

nuclei [98]. 

Recrystallization during heat treatment of a deformed material starts with generation of small grains 

that grow at the expense of the deformed microstructure until the matrix is entirely consumed. At 

this point, the old microstructure has been completely replaced by a new microstructure [97]. This 

process is characterized by nucleation and grain growth. The work presented in this thesis focuses on 

SRX and will be discussed in more detail. 
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3.1 Static Recrystallization (SRX) 
Static recrystallization deals mostly with the change in microstructure after deformation and is found 

to occur in FCC [101], BCC [102] and HCP [103] metals. As deformation proceeds, the free energy in a 

polycrystalline material increases due to the presence of dislocations and remains in the material even 

after deformation. These material defects (dislocations, etc.) can change material properties due to 

their effect on grain morphology, texture, stress-strain behavior, etc. and may be removed by 

thermomechanical processing of the material at high temperatures (SRX, annealing).  

The response of polycrystalline metallic structures to external loading/forming is mainly controlled by 

the dislocation content and the microstructure. As dislocation density increases, the strength 

increases and ductility decreases in the material [104]. Furthermore, annealing of the deformed 

microstructure causes annihilation of these dislocations by SRX, which involves formation of new 

grains and hence controls the grain size and texture of the resulting material. Thus the material 

microstructure is linked with the dislocation substructure (crystallographic orientation of nuclei) 

[105]. 

Carpenter and Elam [106] and Alterthum [107] showed that the stored energy of the dislocations (𝜌𝜌), 

due to deformation, provides the driving force for recrystallization and is affected by the strain 

(deformation) and temperature. The energetics of recrystallization imply that if a grain boundary 

element of area 𝑑𝑑𝑑𝑑 is displaced by 𝑑𝑑𝑑𝑑, the Gibbs free energy 𝑑𝑑𝑑𝑑 will be changed by: 

 𝑑𝑑𝑑𝑑 = −𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = −𝜌𝜌𝜌𝜌𝜌𝜌 (32) 

Therefore, during recrystallization as energy in the system is reduced, dislocations are swept as grain 

boundaries move, resulting in lower dislocation density in the material and a change in the material 

texture. This also results in the change in grain size and texture of the resulting material. 

3.2 Modelling Static Recrystallization 
Recrystallization has been modelled using analytical and numerical methods [108]. Analytical 

methods such as JMAK usually simulate recrystallized volume fraction in the material [109]. 

Sandström et al. [110] have presented a subgrain growth model during annealing and applied it to 

pure and two-phase materials. Additionally, analytical models that account for the stress-strain 

behavior and grain size have been used successfully to account for dynamic recovery and predict the 

stress-strain response [111].  
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Analytical methods provide fast solutions but are limited in their applications, since they cannot 

predict the local texture evolution and material response because they look at the overall material 

response. Numerical methods provide a flexible robust solution and have been used to model a 

variety of annealing and recrystallization problems. These range from, Anderson et al. [112], who have 

simulated grain growth in 2D, whereas Srolovitz et al. [113] and Popova et al. [114] have shown to 

predict nucleation and growth during SRX and DRX respectively. Most common numerical models 

namely; Monte Carlo method, phase-field models, vertex models and cellular automata models are 

briefly discussed below. 

3.2.1 Johnson Mehl Avrami Kolmogorov (JMAK) Approach 
Analytical approaches used to simulate recrystallization focus on volume fraction of recrystallized 

grains (𝑋𝑋𝑣𝑣). These approaches are easy to implement and provide fast and accurate solutions to many 

problems. However, these approaches make a lot of assumptions such as constant grain growth, etc.  

The JMAK approach proposed by Johnson and Mehl [115], Avrami [116, 117] and Kolmogorov [118] 

in separate works, and modified by Sebald and Gottstein [119] is commonly used to simulate 

recrystallization problems. JMAK model works by assuming random nuclei with each nuclei growing 

as spherical grains with constant growth rate for all grains written as: 

 𝑋𝑋𝑣𝑣 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝐵𝐵𝑡𝑡𝑛𝑛) (33) 

where 𝑋𝑋𝑣𝑣 is the volume fraction of recrystallized grains and 𝐵𝐵and 𝑛𝑛 are temperature dependent and 

independent constants. JMAK models give the growth rate of recrystallized region as a function of 

time. The exponent 𝑛𝑛 can also be associated with dimensionality of the problem. For a truly random 

site saturated (no nucleation during grain growth) nucleation, the exponent will be close 3. Thus 

indicating that the new grains grow as spheres. A departure from this would indicate non-random 

nuclei placement or early impingement of the new grains. 

3.2.2 Monte Carlo Models 

Models that involve random number sequences to find approximate solutions are known as the 

Markov chain Monte Carlo (MCMC) models [120] and have been used to simulate all kind of problems 

including recrystallization (e.g. Potts Model [121]). In Markov chain models, step at time (𝑡𝑡 + 1) is only 

determined by the previous step at time (𝑡𝑡) and the previous history does not have any bearing on 

the following step. 
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The Potts model  [121] is derived from the Monte Carlo model and is an extension of the Ising model 

[122]. Monte Carlo models divide the domain into subdomains (sites) with unique indices and state 

variables [84]. This helps in clearly identifying grain boundaries between two subdomains (Figure 14). 

The energy (𝐸𝐸) of the system is defined as: 

 
𝐸𝐸 = ���

1
2
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(34) 

where 𝐸𝐸𝑠𝑠 is the stored energy, 𝛾𝛾(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗) is the boundary energy which is a function of the current site 

(𝑠𝑠𝑖𝑖) and neighboring sites (𝑠𝑠𝑗𝑗) and N and 𝑛𝑛 are the total number of sites and neighbors for each site. 

The kinetics of growth in the Monte Carlo method are controlled via a probabilistic approach that 

describes how a site is recrystallized by its neighbor. Using the Metropolis method [123], the transition 

probability 𝑃𝑃 at a certain temperature 𝑇𝑇 is based on the change in energy between the current site 

and its neighbor 𝑗𝑗 and is given by:  
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(35) 

where 𝑘𝑘 is the boltzman constant.  

Another way to calculate the transition probability is the symmetric method and is given as [124]: 

 𝑃𝑃(∆𝐸𝐸) =
1
2
𝑡𝑡𝑡𝑡𝑡𝑡ℎ �−

∆𝐸𝐸
2𝑘𝑘𝑘𝑘

�  
(36) 
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Figure 14: Schematic representation of domain and subdomains  used in Monte Carlo method [125] 

The algorithm proceeds by allowing every site in the domain a chance to flip or change the spin. 

However, based on Equation 35, only those moves that reduce the system energy are accepted. 

3.2.3 Phase Field Models 
Phase field models use continuous parameters to describe each simulation cell at each time step 

[126]. The basic algorithm is formulated to reduce the total free energy within each cell. Total free 

energy (𝐹𝐹(𝑡𝑡)) proposed by Chen [127] is given as: 

 
𝐹𝐹(𝑡𝑡) = �[𝑓𝑓0(𝜂𝜂1(𝑟𝑟, 𝑡𝑡), 𝜂𝜂2(𝑟𝑟, 𝑡𝑡), … . , 𝜂𝜂𝑄𝑄(𝑟𝑟, 𝑡𝑡)) + �

𝐾𝐾𝑞𝑞
2

(𝛻𝛻𝜂𝜂𝑞𝑞(𝑟𝑟, 𝑡𝑡))2
𝑄𝑄

𝑞𝑞=1

]𝑑𝑑𝑑𝑑  
(37) 

where 𝜂𝜂𝑞𝑞(𝑟𝑟, 𝑡𝑡) are the set of order parameters at position 𝑟𝑟 and time 𝑡𝑡and 𝑓𝑓0 is the local free energy 

density. 

Phase-field models represent grain boundaries as different phase with different gradients across the 

structural order parameters (Figure 15). These models can be computationally expensive as many 

iterations could be required to reach the minimal energy for the system. 
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Figure 15: Grain growth simulation in phase-field models. Grain boundaries show high gradient [128] 

Phase field models have been used to simulate 2D grain growth [127, 129] and can easily incorporate 

the effects of mobility, grain boundary energy and boundary plane orientation. Dynamic 

recrystallization with phase-field models has also been performed [130] to predict the stress-strain 

response and texture evolution during DRX. 

3.2.4 Vertex Models 
In vertex models, grain boundaries are based on local grain boundary curvature and are treated as 

continuous interfaces so that: 

 𝑣𝑣 = 𝜇𝜇(𝜃𝜃,𝑇𝑇), 𝛾𝛾(𝜃𝜃,𝑇𝑇)𝜅𝜅  (38) 

where 𝑣𝑣 is the migration velocity, 𝜇𝜇 is the grain boundary mobility, 𝛾𝛾 is the surface tension of the grain 

boundary, 𝜅𝜅 is the local grain boundary curvature, and 𝜃𝜃 and 𝑇𝑇 are the misorientation and 

temperatures respectively.  

In vertex models, the grain boundaries are discretized and ‘tracked’ by a variable number of points 

and move perpendicular to the boundary plane to simulate grain growth. The corresponding nodes 

are repositioned accordingly based on normal or special (triple points) grain boundary features  

(Figure 16). Vertex models typically assume local equilibrium at grain boundary junctions to find angle 

between two nodes.  
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Figure 16: Grain growth simulation in vertex models [128] 

Vertex models in 2D have been used to simulate grain growth [131] and recrystallization in cold rolled 

copper [132]. However, application to 3D becomes technically and computationally expensive as grain 

boundaries are represented as surfaces. This increases the topological changes due to grain growth, 

hence complicating the problem [133]. Weygand et al. [134] have simulated 3D grain growth using 

vertex models. 

3.2.5 Cellular Automata Models 
Due to its flexibility, cellular automata models (CA) are used extensively in literature to simulate 

recrystallization problems [135]. CA method discretizes the time and physical space where discrete 

point is known as a cell. Each cell is assigned its own state variables which can be constant or evolve 

with time. In recrystallization problems, dislocation density and cell orientations are chosen as state 

variables [114]. Based on the local driving forces, CA models can be easily adapted to 2D [114] and 3D 

[136] problems with different types of neighborhood [114, 135] and can easily incorporate the effect 

of grain boundaries (Figure 17) as region between 2 neighboring cells or a grain boundary region. As 

CA models are discretized into cells, their implementation to Finite Element Analysis is relatively easy 

as each element can be treated as a cell and have been used to model SRX [137] and DRX problems 

[114]. Monte Carlo (MC) models can also be discretized into cells but as MC models offer random 

texture update, it is very important and challenging to correctly define the nucleation sites. However, 

Raabe [138] have successfully used MC models for simulating SRX problems in aluminum. 
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Figure 17: Grain boundaries in cellular automata models [139] 

Unlike Monte Carlo models, CA models can easily update all the cells simultaneously [114]. Each 

neighboring cell is recrystallized based on a switching rule and takes on the state variables of its 

neighbors when recrystallized. Raabe and Becker [138] have stated the switching rule as: 

 𝑥̇𝑥 = 𝑛𝑛𝑣𝑣𝐷𝐷𝜆𝜆𝑔𝑔𝑔𝑔𝑐𝑐 �𝑒𝑒𝑒𝑒𝑒𝑒 �−
∆𝐺𝐺 + ∆𝐺𝐺𝑡𝑡/2

𝑘𝑘𝐵𝐵𝑇𝑇
� − 𝑒𝑒𝑒𝑒𝑒𝑒 �

∆𝐺𝐺 − ∆𝐺𝐺𝑡𝑡/2
𝑘𝑘𝐵𝐵𝑇𝑇

�� 
(39) 

where 𝑥̇𝑥 is the grain boundary velocity, 𝑣𝑣𝐷𝐷is the Debye frequency which is a constant for a given 

crystal, 𝜆𝜆𝑔𝑔𝑔𝑔is the jump width through the grain boundary, 𝑐𝑐 is the intrinsic concentration of grain 

boundary vacancies, 𝑛𝑛 is the normal of the grain boundary, ∆𝐺𝐺 is the Gibbs enthalpy of motion, ∆𝐺𝐺𝑡𝑡 

is the Gibbs enthalpy of transformation, 𝑘𝑘𝐵𝐵is the Boltzman constant and 𝑇𝑇is the temperature [138]. 

As is presented in this work, this state switch can also be done using a probabilistic step. Probabilistic 

step allows for a simpler approach with the same level of accuracy as a boundary dynamics model 

[140]. State switch in probabilistic CA is based on probability of a random number [114, 138] and is 

explained in next chapter. 

3.3 Summary 
Various approaches to model static recrystallization are presented in this section. SRX approaches can 

be broken down into analytical and numerical models. Analytical models like the JMAK approach 

provide fast solutions but are limited as they cannot predict the complete texture evolution. On the 

other hand, numerical models are relatively slow but robust and flexible. 
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Monte Carlo Potts models are one of the most widely used numerical models to simulate SRX. Monte 

Carlo models divide the model domain into subdomains with unique indices to identify grain 

boundaries. Monte Carlo model kinetics calculate the system energy and try to minimize it by using 

various approaches such as probabilistic step approach.  

Phase field and Vertex models use mesh gradients and curvature to represent grain boundaries. Phase 

field models can be computationally expensive as it can take multiple iterations to reach the minimal 

energy. Similarly, Vertex models can be computationally challenging in 3D, as Vertex models simulate 

grain boundaries as surfaces which evolve as grains grow in the system. 

Lastly, Cellular Automata (CA) models offer a flexible solution to model SRX and have been used to 

model all kinds of SRX problems. CA models discretize the time and physical space and assign a state 

to each cell. This state governs the function of each cell (nucleus, recrystallized, etc.) and its neighbors 

to achieve the final microstructure. Even though CA models work on stored energy, they can easily be 

adapted to work on boundary curvature problems by using an advanced probabilistic step [141]. More 

details about the SRX model used in this work are presented in Section 5.2. 
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Chapter 4 
Scope and Objectives 

Literature review performed in Chapter 2 discusses the various crystal plasticity techniques used in 

literature. In addition, various numerical models used to simulate crystal plasticity problems have also 

been discussed along with texture and microstructure implementation in these numerical models. 

Chapter 3 discusses the various numerical techniques used to model static recrystallization along with 

some experimental insight. Background information about various numerical models discussed in the 

previous sections provides the layout for the current work.  

The main objective of this research is to provide a framework to model large strain processes namely; 

cold rolling and hot compression. The research framework shown in Figure 18 shows that in this thesis, 

cold rolling and hot compression are modelled using a crystal plasticity model that takes in inputs as 

texture, loading and boundary conditions. The model then calculates the final microstructure and 

stress-strain data.  

Cold rolling (Section 5.1) simulations are performed using an Element Free Galerkin Crystal Plasticity 

model in commercial software LS-DYNA on AA 5754. Crystal plasticity framework is implemented in 

LS-DYNA EFG formulation. Cold rolling simulations account for the complete through thickness of the 

sheet and are validated with experimental results from Jin and Lloyd  [142]. To analyze various grain 

metrics, an in-house grain analysis code (gCode) is developed. In house gCode is used to analyze 

various through thickness subgrain metrics during cold rolling (Figure 18). As rolling is often simulated 

with plane strain compression, plane strain compression simulations are also performed and 

compared with rolling simulations to access the validity of this assumption.  

Hot compression (Section 5.2) simulations are performed on AA 6063 using an in-house Taylor based 

crystal plasticity model at various temperatures and strain-rates. Crystal plasticity hardening model is 

modified to include the effects of temperature and strain-rate. As AA 6xxx undergo static 

recrystallization at high temperatures, an in-house integration point based static recrystallization 

code is developed (Figure 18). Stress-strain response from the crystal plasticity model and texture and 

grain size results from static recrystallization model are validated with experimental results.  
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Figure 18: Research framework 

Detailed objectives of this research are summarized below: 

• Develop numerical models based on Crystal Plasticity Theory to simulate large strain 

phenomena as well as the effects of temperature and strain-rates on large deformations in 

polycrystalline metals 

• Develop a numerical framework based on crystal plasticity theory for through process 

modelling  

• Investigate evolution of microstructure (morphology, texture, etc.) during cold rolling 

• Investigate evolution of microstructure (static recrystallization, etc.) during hot compression 
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Chapter 5 
Modelling Frameworks 

5.1 Crystal Plasticity Formulation 
Total deformation of a single crystal is the result of two mechanisms; crystallographic slip due to 

dislocation motion and elastic lattice distortion [143]. Within an FCC crystal, plastic deformation 

occurs by crystallographic slip on twelve [1 1 1] <1 1 0> slip systems (𝛼𝛼). Slip planes have normals (𝑚𝑚) 

[1 1 1] and slip directions with shear directions (𝑠𝑠) <1 1 0>. Plastic deformation is defined to occur as 

a set of simple shears (plastic) along various slip systems. This leaves the lattice and slip system vectors 

(𝑠𝑠(𝛼𝛼),𝑚𝑚(𝛼𝛼)) undistorted and unrotated. The material and lattice are also considered to deform 

elastically and rotate rigidly from the plastically deformed state to current configuration (Figure 19). 

This formulation is used to decompose the deformation gradient (𝐹𝐹) into the elastic and plastic parts 

to achieve the final deformation. 

 

Figure 19: Decomposition of deformation gradient matrix F 

Due to the decomposition of deformation tensor (𝐹𝐹), the deformation tensor is written as: 

 𝐹𝐹 = 𝐹𝐹𝑒𝑒𝐹𝐹𝑝𝑝 (40) 
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where 𝐹𝐹𝑝𝑝 is the plastic part of the deformation gradient and consists solely of crystallographic slip 

along any specific slip system and 𝐹𝐹𝑒𝑒is the elastic part of the deformation gradient and includes rigid 

body rotation. From (40), the spatial gradient of velocity (𝐿𝐿) can be written as: 

 𝐿𝐿 = 𝐹̇𝐹𝐹𝐹−1 = 𝐿𝐿𝑒𝑒 + 𝐿𝐿𝑝𝑝 (41) 

where 𝐿𝐿𝑒𝑒 and 𝐿𝐿𝑝𝑝 are the elastic and plastic parts of the spatial gradient of velocity and defined as: 

 𝐿𝐿𝑒𝑒 = 𝐹̇𝐹𝑒𝑒𝐹𝐹𝑒𝑒−1, 𝐿𝐿𝑝𝑝 =  𝐹𝐹𝑒𝑒 (𝐹̇𝐹𝑝𝑝𝐹𝐹𝑝𝑝−1)𝐹𝐹𝑒𝑒−1 (42) 

The vectors 𝑠𝑠(𝛼𝛼)and 𝑏𝑏(𝛼𝛼) are regarded as lattice vectors and therefore they rotate and stretch by: 

 𝑠𝑠(𝛼𝛼)
𝑒𝑒 = 𝐹𝐹𝑒𝑒𝑠𝑠(𝛼𝛼),𝑏𝑏(𝛼𝛼)

𝑒𝑒 = 𝑏𝑏(𝛼𝛼)𝐹𝐹𝑒𝑒−1 (43) 

Taking the symmetric and antisymmetric parts of (40) and (41) results in the elastic and plastic strain-

rates 𝐷𝐷𝑒𝑒and𝐷𝐷𝑝𝑝, and plastic spin (N𝑝𝑝) and elastic spin (N𝑒𝑒) associated with rigid lattice rotation. 

 𝐷𝐷 = 𝐷𝐷𝑒𝑒 + 𝐷𝐷𝑝𝑝,𝑁𝑁 = 𝑁𝑁𝑒𝑒 + 𝑁𝑁𝑝𝑝 (44) 

where, 
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and  
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By introducing the following the symmetric and skew symmetric tensors for each slip system (𝛼𝛼)  
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The plastic strain-rate (𝐷𝐷𝑝𝑝) and plastic spin (N𝑝𝑝) for the crystal can be defined as: 

 𝐷𝐷𝑝𝑝 = �𝑃𝑃(𝛼𝛼)
𝛼𝛼

𝛾̇𝛾(𝛼𝛼),𝑁𝑁𝑝𝑝 = �𝑊𝑊(𝛼𝛼)
𝛼𝛼

𝛾̇𝛾(𝛼𝛼) (49) 

where 𝛾̇𝛾 is the shear rate on any slip system 𝛼𝛼.  
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The elastic constitutive equation for a crystal is specified by: 

 𝜏̂𝜏𝑒𝑒 = 𝜏̇𝜏 − 𝑁𝑁𝑒𝑒𝜏𝜏 + 𝜏𝜏𝑁𝑁𝑒𝑒 = 𝐸𝐸𝐷𝐷𝑒𝑒 (50) 

where 𝜏̂𝜏𝑒𝑒 is the Jaumann rate of Kirchhoff stress tensor (𝜏𝜏) based on the lattice rotations and 𝐸𝐸 is the 

tensor of elastic moduli. These elastic moduli are based on the anisotropic elastic constants of a 

material crystal and exhibit the appropriate crystal symmetry. Elastic moduli for this work are for FCC 

polycrystals reported in literature. Use of 𝐸𝐸 is a simplification of the work presented by Asaro and 

Needleman [42] by using an explicit small time-step finite element implementation. An implicit 

method with rate-tangent would use a different form of these moduli. 

In order to represent (50) in terms of the Jaumann rate 𝜎𝜎� of Cauchy stress 𝜎𝜎 = det(𝐹𝐹−1)𝜏𝜏, based on 

continuum slip (𝑊𝑊), we introduce a second order tensor 𝑅𝑅(𝛼𝛼)for each slip system𝛼𝛼.  

 𝑅𝑅(𝛼𝛼) = 𝐸𝐸𝑃𝑃(𝛼𝛼) + 𝑊𝑊(𝛼𝛼)𝜎𝜎 − 𝜎𝜎𝑊𝑊(𝛼𝛼) (51) 

Using (44) - (49) and (51), the elastic constitutive equation can be written as: 

 𝜎𝜎� = 𝐸𝐸𝐸𝐸 − 𝜎̇𝜎0 − 𝜎𝜎 𝑡𝑡𝑡𝑡𝑡𝑡 (52) 

where 𝜎𝜎� is the Jaumann rate of Cauchy stress, E is the elastic stress tensor, D is the strain-rate tensor 

and 𝜎̇𝜎0 is the viscoplastic type stress state based on slip rates defined by: 

 𝜎̇𝜎0 = �𝑅𝑅(𝛼𝛼)𝛾̇𝛾(𝛼𝛼)
𝛼𝛼

 (53) 

Slip rates (𝛾̇𝛾) are governed by the power law expression given below and are substituted in (53). 

 
𝛾̇𝛾(𝛼𝛼) = 𝛾̇𝛾0𝑠𝑠𝑠𝑠𝑠𝑠 𝜏𝜏(𝛼𝛼) �

𝜏𝜏(𝛼𝛼)

𝑔𝑔(𝛼𝛼)
�
1/𝑚𝑚

 
(54) 

where 𝛾̇𝛾0 is the reference shear rate taken to be the same from all slip systems, 𝜏𝜏(𝛼𝛼)is the resolved 

shear stress on each slip system, 𝑔𝑔(𝛼𝛼)is the hardness of each slip system and incorporates single crystal 

hardening and 𝑚𝑚 is the strain-rate sensitivity index which is also taken to be the same for each slip 

system. 𝜏𝜏(𝛼𝛼) is defined as :  

 𝜏𝜏(𝛼𝛼) = 𝑃𝑃(𝛼𝛼):𝜎𝜎 (55) 
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The rate of slip system hardness is defined by: 

 𝑔̇𝑔(𝛼𝛼) = �ℎ(𝛼𝛼𝛼𝛼)
𝛽𝛽

�𝛾̇𝛾(𝛽𝛽)� 
(56) 

where 𝑔𝑔(𝛼𝛼)(0) is the initial hardness of any slip system and is taken to be a constant (𝜏𝜏0) and ℎ𝛼𝛼𝛼𝛼 are 

the hardening moduli such as: 

 h(αβ) =  q(αβ)h(β) (no sum on 𝛽𝛽) (57) 

where ℎ𝛽𝛽 is the hardening rate of a single crystal and 𝑞𝑞(𝛼𝛼𝛼𝛼) is the matrix that defines the latent 

hardening behavior of the crystal. For FCC crystals, 𝑞𝑞(𝛼𝛼𝛼𝛼) is defined by [42] as: 

 

𝑞𝑞(𝛼𝛼𝛼𝛼) =  �

𝐴𝐴 𝑞𝑞𝑞𝑞 𝑞𝑞𝑞𝑞 𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞 𝑞𝑞𝑞𝑞 𝑞𝑞𝑞𝑞 𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞

𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞

𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞

𝑞𝑞𝑞𝑞
𝐴𝐴

� 

(58) 

where 𝑞𝑞 is the ratio of the latent hardening rate to self-hardening rate and  𝐴𝐴 is a 3 x 3 unity matrix. 

This is because slip systems [1 -12] are coplanar. Thus the ratio of the latent hardening rates to the 

self-hardening rates are taken as unity. 

Asaro and Needleman [42] and some others take each 𝑔𝑔(𝛼𝛼)as a function of accumulated slips 𝛾𝛾(𝛼𝛼); 

 𝑔𝑔(𝛼𝛼) =  𝑔𝑔(𝛼𝛼)(𝛾𝛾𝛼𝛼) (59) 

Where 

 
𝛾𝛾(𝛼𝛼) =  � ��𝛾̇𝛾(𝛼𝛼)�𝑑𝑑𝑑𝑑

𝛼𝛼

𝑡𝑡

0
 

(60) 

Pierce et al. [144] take the single slip hardening to be a function of 𝛾𝛾(𝛼𝛼)expressed as: 

 
ℎ(𝛽𝛽) = ℎ0 �

ℎ0𝛾𝛾(𝛼𝛼)

𝜏𝜏(𝛼𝛼)𝑛𝑛
+ 1�

𝑛𝑛−1

 
(61) 

where ℎ0 is the initial hardening rate, 𝛾𝛾𝛼𝛼  is the accumulated slip on a slip system and 𝑛𝑛 is the hardening 

exponent.  

In an explicit small time-step formulation, once N𝑒𝑒 is known, the orientation of the crystal is updated 

using the orientation matrix. The orientation matrix (𝑄𝑄) rotates the crystal axis into the global system.  
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Orientation in an explicit formulation is then updated using the method of Raphanel et al. [145] given 

as: 

 𝑄𝑄𝑛𝑛+1 = 𝑒𝑒𝑁𝑁𝑒𝑒𝐷𝐷𝐷𝐷𝑄𝑄𝑛𝑛 (62) 

where 𝑒𝑒𝑁𝑁𝑒𝑒𝐷𝐷𝐷𝐷 is obtained using the Euler-Rodrigues formula; 

 
𝑒𝑒𝑁𝑁𝑒𝑒𝐷𝐷𝐷𝐷 = 𝐼𝐼 +

sin𝑛𝑛𝑒𝑒∆𝑡𝑡
𝑛𝑛𝑒𝑒

𝑁𝑁𝑒𝑒 +
1 − cos𝑛𝑛𝑒𝑒∆𝑡𝑡

(𝑛𝑛𝑒𝑒)2
𝑁𝑁𝑒𝑒𝑁𝑁𝑒𝑒  

(63) 

where 𝑛𝑛𝑒𝑒 = �(𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖)/2. 

Euler angles (∅1,∅,∅2) in Bunge’s notation are calculated from the updated orientation matrix. Euler 

angles are stored and are used to track the evolution of texture in the material [78]. 

Finite element models mostly use an explicit time scheme which use small time steps to insure 

stability. However, semi-implicit Taylor type models use the rate tangent method developed by Pierce 

et al [144] where the slip increment (∆𝛾𝛾(𝛼𝛼)) used in the slip-rate law (Equation 54) is written as: 

 ∆𝛾𝛾(𝛼𝛼) = 𝛾𝛾(𝛼𝛼)(𝑡𝑡 + ∆𝑡𝑡) − 𝛾𝛾(𝛼𝛼)(𝑡𝑡) (64) 

A linear interpolation results in: 

  ∆𝛾𝛾(𝛼𝛼) = [(1 − 𝜃𝜃)𝛾̇𝛾(𝛼𝛼)(𝑡𝑡) + 𝜃𝜃𝛾̇𝛾(𝛼𝛼) (𝑡𝑡 + ∆𝑡𝑡)]∆𝑡𝑡 (65) 

where ∆𝑡𝑡 is the time increment and 𝜃𝜃 is a fitting parameter between 0 and 1.  

In a typical Taylor type formulation, once N𝑒𝑒 is known, orientation update is calculated using a  

T-Matrix. Where a Z-X-Z T-Matrix is defined from Euler angles as: 

 
𝑇𝑇𝑇𝑇𝑍𝑍𝑍𝑍𝑍𝑍 = �

𝑐𝑐1𝑐𝑐3 − 𝑐𝑐2𝑠𝑠1𝑠𝑠3 −𝑐𝑐1𝑠𝑠3 − 𝑐𝑐2𝑐𝑐3𝑠𝑠1 𝑠𝑠1𝑠𝑠2
𝑐𝑐3𝑠𝑠1 + 𝑐𝑐1𝑐𝑐2𝑠𝑠3 𝑐𝑐1𝑐𝑐2𝑐𝑐3 − 𝑠𝑠1𝑠𝑠3 −𝑐𝑐1𝑠𝑠2

𝑠𝑠2𝑠𝑠3 𝑐𝑐3𝑠𝑠2 𝑐𝑐2
� 

(66) 

where 𝑇𝑇𝑇𝑇 is the T-matrix and 𝑐𝑐1,2,3and 𝑠𝑠1,2,3represent the cosine and sine of ∅1,∅,∅2 respectively 

and is updated using: 

 𝑇𝑇𝑇𝑇′ = 𝑇𝑇𝑇𝑇𝑁𝑁𝑒𝑒 (67) 

 where 𝑇𝑇𝑇𝑇′ is the updated T-matrix.  
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5.2 Probabilistic Integration Point Static Recrystallization (SRX) Model 
Based on the material at hand, deformations at elevated temperatures can cause static and dynamic 

recrystallization. A probabilistic integration point based model is presented for simulating static 

recrystallization in FCC metals. This approach is closer to statistical JMAK models [109] and uses the 

outputs from crystal plasticity simulations. The proposed approach can be divided into two parts;  

(a) nucleation and (b) growth of nuclei. Proposed model uses the texture and resolved shear stress 

data from crystal plasticity simulations to predict nucleation and growth which is used to predict the 

final textures and grain size. 

Nucleation and grain growth are directly affected by neighbors. Raabe et al. [135] have used a cellular 

automata concept where a cell is composed of one or several elements. The cell defines sites for 

possible nucleation and grain growth. Popova et al. [114] have used an extension of Raabe et al. [135] 

for 2D simulations where each element is considered a cell to simulate DRX in Mg alloys. They have 

considered Von Neumann and Moore neighboring schemes which result in 4 and 8 neighbors to each 

element respectively. This work, unlike the works mentioned previously, uses the Avrami type 

approach [109] where all points are neighbors with all the other points in the simulation.  

5.2.1 Nucleation 
Cahn et al. [146] introduced the concept of nuclei during recrystallization based on dislocation density. 

In their work [146], nuclei were identified as areas of high dislocation density and areas with high 

dislocation mismatch with surroundings (Figure 20).  

 
Figure 20: Schematic representation of the nucleus [147] 
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Experimental observations also show nuclei/subgrains growing and sweeping the dislocations to form 

clean grains as shown in Figure 20 [104]. Literature presents several critical conditions to predict 

nuclei; based on the critical value of dislocation content [148] or a critical subgrain size [149] which 

can also be attributed to high angle grain boundaries. These are in-line with experimental 

observations that show formation and growth of subgrains in materials [104]. Nucleation criterion 

presented in literature  [150] based on dislocation “jump” between neighbors 𝑖𝑖 and 𝑗𝑗 is calculated as: 

 𝑑𝑑||𝛼𝛼𝑁𝑁|| = ||𝛼𝛼𝑖𝑖𝑁𝑁||− ||𝛼𝛼𝑗𝑗𝑁𝑁|| (68) 

where 𝛼𝛼𝑁𝑁is the Nye tensor [151] and is defined as: 

 𝛼𝛼𝑁𝑁 =
1
𝑏𝑏
∇ × 𝐹𝐹𝑃𝑃 

(69) 

where 𝐹𝐹𝑃𝑃is the plastic part of the deformation gradient and 𝑏𝑏 is the magnitude of burgers vector.  

Instead of using the Nye tensor, Arsenlis and Parks [152] accounted for the dislocation density by 

distributing it into screw and edge dislocations on each slip system (𝛼𝛼) as: 

 𝜌𝜌𝐺𝐺𝐺𝐺(𝑒𝑒)
𝛼𝛼 𝑏𝑏 = −∇γ𝛼𝛼 . m𝛼𝛼 =  γ,𝑘𝑘

𝛼𝛼 s𝑘𝑘𝛼𝛼 

𝜌𝜌𝐺𝐺𝐺𝐺(𝑠𝑠)
𝛼𝛼 𝑏𝑏 = ∇γ𝛼𝛼. n𝛼𝛼 =  γ,𝑘𝑘

𝛼𝛼 n𝑘𝑘𝛼𝛼 

(70) 

where 𝑒𝑒 and 𝑠𝑠 are for edge and screw dislocations respectively. This approach gives a simpler method 

to calculate the contribution of each slip plane and also the total dislocation density as: 

 
𝜌𝜌𝐺𝐺𝐺𝐺𝛼𝛼 = ��𝜌𝜌𝐺𝐺𝐺𝐺(𝑒𝑒)

𝛼𝛼 �2 + �𝜌𝜌𝐺𝐺𝐺𝐺(𝑠𝑠)
𝛼𝛼 �2 

(71) 

Yet another way to calculate the dislocation density based on obstacle spacing is presented by 

Humphreys and Hatherly [104] and Murr and Kuhlmann-Wilsdorf [153] as: 

 𝜏𝜏 = 𝑎𝑎𝑎𝑎𝑎𝑎�𝜌𝜌 (72) 

where 𝜏𝜏 is the resolved shear stress, 𝜇𝜇 is the shear modulus and 𝑎𝑎 is the obstacle strength. This 

methodology is used in this work to find the dislocation density as the resolved shear stress is available 

from simulation data. 
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In this work, the initiation of SRX (nuclei formation) is assumed to occur at high angle grain boundaries 

greater than a critical misorientation angle (𝜃𝜃𝑐𝑐𝑐𝑐). These possible nucleation sites are given a 

probabilistic chance of being a nucleus if they have reached a critical dislocation density (𝜌𝜌𝑐𝑐𝑐𝑐) and are 

above a threshold dislocation density with their neighbors.  

The critical dislocation density (𝜌𝜌𝑐𝑐𝑐𝑐) was first given by Roberts and Ahlblom [149] for subgrain 

building. It was then used as a nucleation criteria in many studies (e.g. [114, 130]) and is given as: 

 
𝜌𝜌𝑐𝑐𝑐𝑐 = �

20𝑆𝑆𝜀𝜀̇
3𝑏𝑏𝑏𝑏𝑏𝑏𝜆𝜆2

�
1/3

 
(73) 

where 𝑆𝑆 is the Read and Shockley [154] grain boundary energy per unit area, 𝜀𝜀̇ is the strain-rate, 𝐿𝐿 is 

the dislocation mean free path and is given by: 

 𝐿𝐿 = 𝐾𝐾/𝑐𝑐2 �𝜌𝜌 (74) 

 𝑀𝑀 is the grain boundary mobility and is given by: 

 𝑀𝑀 = 𝑀𝑀𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐻𝐻𝑚𝑚 

𝑘𝑘𝑘𝑘
� 

(75) 

and 𝜆𝜆 is the dislocation line energy and is given by: 

 𝜆𝜆 = 𝑐𝑐𝑐𝑐𝑏𝑏2 (76) 

where 𝐾𝐾, 𝑐𝑐2 and 𝑐𝑐 are fitting parameters, 𝐻𝐻𝑚𝑚 is the activation enthalpy, 𝑘𝑘 is the Boltzman constant, 𝑇𝑇 

is the temperature and a Heaviside step function at 150 is used to represent the pre-factor 𝑀𝑀𝑜𝑜  that 

follows experimental observations [104]. A generalized mobility curve was introduced by Humphreys 

and Hatherly [104] and is shown in Figure 21.  
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Figure 21: Schematic diagram of possible distribution of mobility function [104] 

The dislocation “jump” concept introduced by Brahme et al. [150] for neighboring elements 𝑖𝑖 and 𝑗𝑗 is 

also used in this work. The dislocation jump between neighboring elements is calculated as: 

 𝑑𝑑𝜌𝜌𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑖𝑖 − 𝜌𝜌𝑗𝑗 (77) 

where 𝜌𝜌𝑖𝑖 and 𝜌𝜌𝑗𝑗are the dislocation densities of neighboring points 𝑖𝑖 and 𝑗𝑗 respectively. Nucleation 

requires this dislocation jump to be greater than a critical dislocation density mismatch 𝑑𝑑𝜌𝜌𝑐𝑐𝑐𝑐which is 

defined as: 

 𝑑𝑑𝜌𝜌𝑐𝑐𝑐𝑐 = 𝐶𝐶0𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 (78) 

where 𝐶𝐶0is a fitting parameter that ranges from 0.1 to 0.9. This critical mismatch controls the number 

of nuclei formed in the deformed sample and is kept constant for all simulations. 

After the potential nuclei are identified using the conditions mentioned above, a probabilistic 

switching step is performed to identify viable nuclei with the highest probability of growing. The 

switching parameter (𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ) used to identify the viable nuclei is based on grain boundary velocity 

(𝑣𝑣 ) and is defined as: 

 
𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ =

𝑣𝑣𝑖𝑖
𝑗𝑗

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

(79) 
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where 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎis the switching parameter, 𝑣𝑣𝑖𝑖
𝑗𝑗is the grain boundary velocity of point 𝑖𝑖 with respect to 

neighbor 𝑗𝑗 and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚is the maximum grain boundary velocity in the simulation.  

Switching parameter is compared to a random number 𝜉𝜉 between 0 and 1 and switching is performed 

if: 

 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ ≥ 𝜁𝜁 (80) 

The switched nuclei are identified as viable nuclei and are used for grain growth as discussed in the 

next section. 

5.2.2 Grain Growth 

The next step (after identifying the viable nuclei) is grain growth. A nucleus eats any neighboring point 

that results in maximum reduction in energy. Assuming 100% recrystallization, each nucleus 

corresponds to a new grain after recrystallization. The driving force for recrystallization is the grain 

boundary velocity (𝑣𝑣) which is based on the stored dislocations and is defined as: 

 𝑣𝑣 = 𝑀𝑀𝑀𝑀 (81) 

where 𝑣𝑣 is the grain boundary velocity, 𝑀𝑀is the temperature dependent mobility as described in the 

previous section and 𝑃𝑃is the stored energy.  

Based on the work by Gottstein and Shvindlerman [147], the stored energy is calculated as: 

 𝑃𝑃 =
1
2
𝜌𝜌𝜌𝜌𝑏𝑏2 

(82) 

where 𝜇𝜇 is the shear modulus.  

To identify the viable growth path for the nuclei, a probabilistic step is taken to define growth. Growth 

happens as nuclei consume their neighbors based on a switching parameter. The switching parameter 

(𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ) is calculated for all potential points of growth as: 

 
𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 𝑁𝑁𝑓𝑓

𝑣𝑣𝑖𝑖
𝑗𝑗

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
 

(83) 
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where 𝑁𝑁𝑓𝑓  is the neighbor factor used in recrystallization models based on the type of neighbor (von 

Newmann or Moore) [114]. 𝑁𝑁𝑓𝑓  is taken as 1 for von Newmann whereas  𝑁𝑁𝑓𝑓  is taken as 1 for nearest 

neighbors and 0.48 for second nearest neighbors in More neighborhood models [114]. 

Switching parameter is compared to a random number 𝜉𝜉 between 0 and 1 and switching is performed 

if: 

 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ ≥ 𝜁𝜁 (84) 

This probabilistic step ensures that only one neighbor will be recrystallized in one recrystallization 

step.  

5.3 Summary 
Various numerical approaches namely; Crystal Plasticity and Probabilistic Integration Point based 

Static Recrystallization are explained in this Chapter. Rate-dependent crystal plasticity formulation 

used in this thesis accounts for crystallographic slip in FCC metals. Plastic deformation on these slip 

systems is defined as a set of simple shears and is used to calculate the stress-strain as well as the 

crystallographic rotation of each grain. More details about the crystal plasticity framework and its 

application is presented in Section 6.1. 

As many AA 6xxx alloys undergo SRX at high temperatures, crystal plasticity simulations by themselves 

are unable to capture the final texture. Therefore a SRX model was developed to model the final 

texture and grain size. SRX model used in this work is divided into two parts; (a) nucleation (b) growth 

of nuclei. The model uses texture and resolved shear stress as inputs from crystal plasticity to identify 

the possible nuclei based on a few criteria. Next, the model uses the stored energy in the model for 

growth of these nuclei to find the final texture and grain size. More details about the SRX model and 

its implementation are presented in Section 6.3. 
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Chapter 6 
Application to Large Strain Deformation Processes 

6.1 Rolling 
Rolling is defined as a processes of plastically deforming any material between two rolls (Figure 22). 

It is used extensively in manufacturing processes to produce sheets of metals [155]. These sheets are 

further processed and made into different parts by forming operations such as stamping. The metal 

is subjected to high compressive and shear stresses due to friction from the rolls. Rolling is further 

classified into cold and hot rolling based on the operating temperature [156]. 

Hot rolling is done to breakdown the ingots into billets and further into sheets, bars, etc. Hot rolling 

in aluminum alloys is done around 500oC which is above the recrystallization temperature [24] and 

hence makes it easier to deform the material. However hot rolling does not produce good surface 

finish due to surface oxidation in some metals. Cold rolling is done below recrystallization 

temperature of the metal and is used to further roll hot rolled sheets. This improves the surface finish 

and increases the strength of the sheet metal [35]. Many combinations of rolling variables are used 

to fabricate sheets that can have deep drawability and stretchability by varying the grain size, texture, 

etc. [157].  

 
Figure 22: Simple rolling setup 

Fundamental concept in a rolling process assumes constant velocity of rolls. This is also called 

symmetric rolling. On the other hand asymmetric rolling assumes different roll velocities or roll 

diameters. It is also assumed that the material extends only in the rolling direction with no increase 

in width of the sheet and that the cross-sectional area is not distorted. This leads to: 

 ℎ0𝑣𝑣0 = ℎ𝑓𝑓𝑣𝑣𝑓𝑓 (85) 

where ℎ and 𝑣𝑣 are the sheet thickness and sheet velocity at before and after rolling respectively. 



52 
 

6.1.1 Simulating and Analyzing Cold Rolling 
Roller velocities and friction lead to variable velocity profile across the sheet thickness. Therefore it is 

important to consider the through thickness variation in strain and texture distribution in the rolled 

sheet [21, 158–160]. Jung et al. [161] attributed this variation to the different shear and compressions 

experienced by different material layers during deformation. Finite element based phenomenological 

models have tried to account for the through thickness effects in the sheet [160, 162]. Roumina et al. 

[160] have showed the through thickness shear strain distribution during symmetric and asymmetric 

rolling. Phenomenological models can capture the stress-strain behavior but are unable to capture 

the microstructural effects (grain size, shape, breakage, texture evolution, etc.) in the sheet. 

Microstructure effects are important to capture as they contribute to the material behavior during 

subsequent forming.  

As phenomenological models are unable to capture microstructural evolution, crystal plasticity 

models, such as the Taylor model, self-consistent (VPSC) and CPFEM, are typically used to account for 

microstructure evolution. Hirsch et al. [19] and others [7, 163, 164] have correctly predicted rolling 

textures for AA 1100 and AA 1050 using Taylor type models. Bozzolo et al. [165] have predicted rolled 

textures for pure titanium using VPSC. Mathur and Dawson [7] have used a finite element approach 

to simulate rolling under the Taylor assumption [38] and can capture the textures accurately. 

However, they are unable to account for microstructure information (e.g. grain breakage). All these 

approaches can accurately capture the texture and stress-strain distribution but are unable to capture 

the microstructure evolution such as grain size, grain breakage/refinement, grain shape, etc. without 

applying additional constraints.  

Full field crystal plasticity finite element models offer a viable solution and can capture the complete 

microstructural information. Rossiter et al [62] and Delannay et al. [166] have accurately predicted 

the microstructure evolution for AA 5754 and ULC steel respectively. However, finite element models 

have their limitations at large strains due to element distortion [23, 70]. Element Free Galerkin (EFG) 

methods provide effective solution with higher accuracy. In addition, EFG methods do not have 

element connectivity like conventional finite elements and can easily accommodate large strains 

(Section 2.2.3). 

A rate-dependent full-field Crystal Plasticity Element Free Galerkin model (CPEFG - Section 4.1) [62, 

167] was used to simulate cold rolling in LS-DYNA for AA 5754. CPEFG model was validated with 

literature data  [168, 142] and captured the complete through thickness information (stress-strain, 
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grain size, shape distribution and texture). Simulated results highlight the importance of capturing the 

complete through thickness model to simulate cold rolling.  

6.1.2 EFG Implementation 
CPFEM has been used extensively to model various deformations. However, CPFEM models cannot 

handle large strains due to element distortion. Re-meshing techniques can be used with CPFEM to 

increase the model accuracy, however, re-meshing is a computationally expensive process and cannot 

be used in the crystal plasticity framework as each new element has to be assigned a grain number 

and texture. As discussed in Section 2.2.3, EFG methods allow for higher strains with high accuracy 

without any re-meshing. Even though LS-DYNA offers EFG solvers, crystal plasticity framework has not 

been implemented with EFG in LS-DYNA. Therefore crystal plasticity framework presented in  

Section 5.1 was implemented in LS-DYNA with Element Free Galerkin model (CPEFG).  

CPEFG model was validated with CPFEM simulations before performing large scale simulations.  

Figure 23a shows a single element in FE whereas Figure 23b shows the mesh for a single element in 

EFG. Mesh in EFG is only represented by nodes. Therefore eight nodes are used to represent a cube 

element to compare the results between FEA and EFG simulations. Please note that further 

representation of EFG or FEA results in this work will be shown as a classical FE mesh (Figure 23). 

 

 
 

 

Figure 23: (a) Single FE Element (b) Single EFG element showing 8 nodes 

Single element results under tensile loads with crystal orientation (90, 45, 45) and (0, 0, 0) under 

CPEFG and CPFEM are shown in Figure 24a. Results in Figure 24a show that CPEFG predictions match 

the CPFEM predictions for both orientations. In addition, Figure 24a shows different stress-strain 

predictions under different orientations thus validating the anisotropy of the model. 

It is important to validate the model on not only single element but multiple elements with other 

modes of deformation. Therefore multi-element CPFEM and CPEFG models were simulated under 
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shear as shown in Figure 24b, c. Shear stress results under CPFEM and CPEFG show no major 

difference thus validating the CPEFG model under different loading conditions.   

 
(a) 

  

 

(b) (c)  
Figure 24: (a) Comparison between EFG and FEA for single element under tensile loads (b) Crystal plasticity EFG 

simulation under shear (c) Crystal plasticity FE simulation under shear  

6.1.3 Problem Formulation and Model Validation 

6.1.3.1 Problem Formulation 

A sample microstructure was created to accurately represent cast aluminum alloy 5754 for rolling.  

AA 5754 has a composition of Al-3Mg-0.3Mn-0.2Fe (by weight percent). 2D Electron Backscatter 

Diffraction (EBSD) data was used to create a statistically equivalent 3D voxelized microstructure and 

is explained in Section 2.4.2. 

AA 5754 sheet being modeled was 2.5 mm in thickness. The model was created to represent half 

symmetry (Figure 27a) to save computational time (Figure 27a). It should be noted that the bottom 

of the model refers to the center of the rolled sheet. The resulting specimen was 175 x 175 x 1250 µm 

(Figure 27a) and had ~800 grains with an average grain size of 22 µm. CPEFG model was assumed to 

be from the middle of the sheet as shown in Figure 25. 
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Representative volume elements (RVE) are used extensively in crystal plasticity simulations [61, 169] 

and simulate the global material response [170, 171] by simulating the material response on a small 

volume. RVE’s assume that the simulated material volume represents a repeating cell in the material. 

The generated microstructure uses (RVE) in the Z (RD) and X (TD) direction (RD-TD Plane in Figure 28) 

and represents the true thickness of the material in Y-direction (ND).  

 

Figure 25: Location of the CPEFG model (RVE) in the real sample. RD along sheet length 

Figure 26 show the initial <0 0 1> and <1 1 1> pole figures of the generated microstructure. The 

microstructure used in this work had similar texture to works of Jin and Lloyd [168, 142]. Table 2 

shows the volume fraction of several texture components in the sheet. The generated microstructure 

has high volume fraction of Cube (10%) followed by S (3.9%), Brass (3.7%) and Copper (2.9%). 

 
 

Figure 26: Initial <0 0 1> and <1 1 1> sheet texture used in the CPEFG model  

Table 2: Texture components by volume fraction in the initial sample 

Component Volume Fraction (%) 

Cube 10.1 

Goss 0.8 

Brass 3.7 

Copper 2.9 

S 3.9 
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(a) (b) 
Figure 27: Simulated CPEFG models (a) Initial model and (b) Deformed model [63] 

 
Simulations were performed to match the experimental results by Jin and Lloyd [142]. Simulated 

boundary conditions were based on symmetric rolling with two rollers of 161.5 mm diameter each at 

a constant rate of 25 rev/min for both rollers [142]. The sheet was rolled by 60% to 1 mm. The 

deformed model is shown in Figure 27b.  

In cold rolling simulations, surface B and shaded surfaces (Figure 28) were constrained in the Y and X 

Direction respectively as there is very little thinning in TD during rolling. Vertical (Y-direction) and 

horizontal (Z-direction) velocities were applied on surface A (Figure 28) to simulate rolling. In cold 

rolling simulations, the horizontal velocities were varied (Equation 86) based on the number of passes, 

where 𝑉𝑉𝑠𝑠 is the applied horizontal velocity, 𝑛𝑛 is the number of passes and 𝑉𝑉𝐸𝐸 is the horizontal velocity.  

 𝑉𝑉𝑠𝑠 = 𝑛𝑛𝑉𝑉𝐸𝐸 (86) 

  
Figure 28: Boundary conditions used for simulating cold rolling 
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6.1.3.2 Model Validation 
Top, Middle and Center sections (1875 elements - Figure 27a) in the simulated model were compared 

with experimental data [168, 142]. Model predictions were compared with pole figure and volume 

fraction data of various texture components [142]. Figure 29 shows the <0 0 1> and <1 1 1> pole 

figures for the top, middle and center sections after 60% deformation. The predicted texture trends 

in Figure 29a-c are similar to the ones reported by Jin and Lloyd [142] for all sections. Predicted 

textures show high S component in the top section and high Brass component in the middle and 

center sections. Aforementioned volume trends are also in-line with experimental results presented 

by Jin and Lloyd [142] which show high S and Brass in the top section and middle sections respectively.  

 

 

(a) 
 

 

 

(b) 

 
 

 

(c) 
Figure 29: Predicted <0 0 1> and <1 1 1> pole figures for the (a) Top, (b) Middle and 

(c) Center sections at 60% thickness reduction  
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Volume fractions were calculated (Section 2.3.2) at the top, middle and center sections at 0 and 60% 

thickness reduction and are shown in Table 3. Volume fraction trends show that Cube remained 

relatively constant in the center section. However, the top section saw huge reduction in Cube. On 

the other hand, Brass and Copper saw considerable changes in the middle and center sections as seen 

in the experimental results [142]. 

Table 3: Texture components by volume fraction in the deformed sample at 0 and 60% thickness reduction in the Top, 
Middle (Mid) and Center (Cen) sections 

Component Top - 0% Mid - 0% Cen - 0% Top - 60% Mid - 60% Cen - 60% 

Cube 5.5 2.9 0.9 1.4 7.0 0.7 

Goss 4.2 4.3 0.9 1.3 3.4 1.2 

Brass 4.8 0.8 1.5 0.6 5.5 4.9 

Copper 0.2 7.2 0.1 5.4 12.6 2.8 

S 10.7 5.2 11.5 10.1 6.1 5.3 

6.1.4 Simulation Results 

6.1.4.1 Normal and Shear Strain Distribution 

As discussed previously, the model was broken down into Top, Mid and Cen sections to help analyze 

the through thickness evolution. Normal and shear strain results shown in this section were averaged 

for all elements at each section and at each reduction in thickness.  

Figure 30a & b show the normal and shear strains at different thickness reductions. It is observed that 

the top section undergoes the most normal and shear strain until 50% reduction due to its proximity 

to the applied velocities. However, at 60% thickness reduction, the middle section shows higher shear 

and normal strain than the top and center sections.  

Simulated shear strain results were validated from experimental results by Roumina et al. [160]. Shear 

strains of 0.05%, 6% and 12% are observed at the top, middle and center sections in the simulations 

which are similar to the shear strain results presented by Roumina et al. [160].  
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(a) (b) 
Figure 30: (a) Normal and (b) Shear strains in the rolling sample at different sections 

 

Figure 31 shows the effective strain on different sections of the sample at 60% compression during 

rolling. Figure 31 shows that even though the top surface has the closest proximity to the applied 

velocities, the maximum strain is not experienced at that surface. Maximum strain is experienced near 

the top section while the least strain is experienced by the center section (0.5%). Deformed surfaces 

show that the center section undergoes the least curvature which is one of the reasons of negligible 

shear strain observed in this section.  

 

Figure 31: Effective strain on rolled  sample at different sections 
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6.1.4.2 Through Thickness Texture Gradients  
Pole figures (<0 0 1> and <1 1 1>) for the Top, Middle and Center sections are shown in Figure 29a-c 

and show the through thickness texture gradients at 60% thickness reduction. As top section 

undergoes the highest deformation, pole figures (<0 0 1> and <1 1 1>) for the top section at 0%, 30% 

and 60% thickness reduction are presented in Figure 32a-c. Pole figures show that the textures are 

similar between 30% and 60% thickness reduction with minor changes in strength in certain locations.   

Initial pole figures (Figure 32a) show a higher percentage of Cube, Goss and Brass than pole figures at 

30% (Figure 32b) and 60% (Figure 32c). However, pole figures at 30% and 60% thickness reduction 

show an increase in Copper. A better way to study the microstructure evolution was to look at the 

volume fraction evolution and is presented in Section 6.2.3. 

 

 

(a) 

 

 

(b) 

 

 

(c) 
Figure 32: Top section pole figures at 0%, 30% and 60% thickness reduction 
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6.1.5 Grain Analysis 
Experimental and simulated through thickness data shown in Section 5.1.4 highlights the need to 

study the through thickness microstructural behavior to understand various factors such as, grain 

distribution and their evolution. This information is important for engineers and researchers to study 

the effect of grain breakage as grain morphology affects the texture, strength and surface finish of 

the rolled sheet [9]. Many mechanical properties are also directly related to grain size. It is commonly 

known that a decrease in grain size improves the strength (Hall-Petch effect) [26] and toughness  of 

the material [172, 173]. 

Large strain and severe plastic deformation (SPD) processes such as rolling [20, 168], ECAP [174, 175], 

etc. are used extensively for grain refinement. Several researchers have tried to predict the evolution 

of grain size and texture during these processes [82, 172, 174, 176]. However, their methodologies 

are based mainly on 2D [177] analysis and lack the ability to track evolution of microstructural 

changes. Third party software’s are also available but are mostly used for micro-scale analysis and do 

not provide detailed grain analysis tools. 

A new 3D path finding in-house grain analysis code (gCode) was developed to analyze the grain 

evolution in the rolled sheet and applied to crystal plasticity cold rolling simulations shown in Section 

5.1.4. This is one of the first approaches to track the evolution of 3D microstructural changes in rolled 

sheets It is important to be able to track the grain size and morphology evolution during evolution as 

they directly affect the mechanical properties of the rolled sheet. The gCode uses the point texture 

data from crystal plasticity Element Free Galerkin simulations to analyze the formation of new grains, 

grain size and rate of subgrain formation.  In addition, the gCode can be used to calculate the 

distribution of grain sizes, grain volume and grain misorientation in the sheet. It is noted that gCode 

can be used for any other application besides rolling.  

6.1.5.1 gCode Algorithm 
In-house gCode uses a misorientation based path finding algorithm [28] between neighboring 

elements to define new grains formed during deformation. As mentioned previously, synthetic 

microstructures generate a 3D representation of 2D experimental EBSD data. However, each element 

corresponding to the same grain is assigned the same orientation and hence each neighbor with exact 

same orientation is part of the same grain. However, as deformation is applied to the synthetic 

microstructure, each element experiences a different strain-path and hence undergoes different 

texture rotation. Therefore, after deformation, each element in a grain does not have the same 
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orientation and hence the misorientation between each element and its neighbors is used as a criteria 

to define the elements present in a grain.  

Element Free Galerkin model superimposed on a finite element mesh as well as the initial and final 

texture are used as inputs to the gCode. Superposition on a finite element mesh was done to obtain 

spatial coordinates for each Element Free Galerkin point. Initial and final orientations were in Bunge 

Euler angles (𝜑𝜑1,∅,𝜑𝜑2). In-house gCode uses quaternions (𝑞𝑞0,𝑞𝑞1,𝑞𝑞2,𝑞𝑞3) to define the crystal 

orientation of each grain as defined in Section 2.3.  

In-house gCode starts by finding the element neighbors and their misorientation. In 3D, one element 

has 6 (Figure 33a) or 26 neighbors. A simple illustration of the element neighbor criterion (in 2D) is 

shown in Figure 33b. Each element centroid (blue) that falls inside the circle of radius (𝑟𝑟) is assigned 

as a neighbor to the element red. This is repeated until all elements have been assigned neighbors. 

  

(a) (b) 
Figure 33: (a) Neighbors of a single 3D element (b) Neighbor finding criterion 

 
Element neighbor data is then used as an input to a recursive algorithm to find the grains based on 

misorientation angle. Figure 34a shows a simple example to explain the algorithm. Algorithm looks at 

the first element (red – Euler angle 1) and compares its misorientation with all the neighboring 

elements (green – Euler angles 1 and 2). If the misorientation angle is less than the threshold (5°, 15°) 

then the elements belong to the same grain [81]. If not, they are assigned a new grain till all the 

elements are assigned a grain number.  

In the example shown in Figure 34a, all misorientations are assumed to be more than the threshold 

misorientation and the resulting grain assignments are shown in Figure 34b. The first grain has all the 

elements with angle 1 (Grain 1), the second grain has two elements with angle 2 (Grain 2), the third 
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grain has one element with angle 3 (Grain 3) and the fourth grain has 1 element with angle 2  

(Grain 4) because it does not share any neighbors with the same angle.  

  
(a) (b) 

Figure 34: Grain algorithm (a) Initial (b) Final. Numbers inside the circles represent the Euler angles 

6.1.5.2 Validation and Evolution of New Grains in Sheet Thickness 
Cold rolling results (Section 5.1.4) have successfully shown the through thickness texture variation in 

AA 5754 as reported by Jin and Lloyd [168]. However, it is important to validate the gCode before 

using it to study other grain metrics. Therefore, gCode was used to find the initial and final grain size 

from cold rolling simulations. Next, the simulated results were compared to experimental data [168]. 

Initial grain size in the simulated (Section 5.1.1) and experimental  [168] microstructure was 22 µm. 

The final grain size was not reported by Jin and Lloyd [168] but was calculated using the optical 

microscopy images [168] and was found to be 15.8 µm. Similarly, final grain size from cold simulations 

was found to be 14.4 µm at 60% thickness reduction (using a 15° misorientation). This successful 

validation of the gCode allows the analysis of other grain metrics as discussed below. 

Pictorial representation of the number of grains in the initial and deformed sample are shown in 

Figure 35. Grains in the deformed sample are shown with a 15° misorientation angle [81], and are 

mapped on the undeformed model for ease of comparison. Figure 35b shows that more grains are 

formed near the top surface (as shown by the marked regions) than the center of the sheet. 
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(a) 

 
(b) 

Figure 35: Grains at (a) 0% thickness reduction and (b) 60% thickness reduction with random colors 
 

Definition of a new grains (subgrains) formed due to grain breakage is based on a 10°-15° 

misorientation angle [81, 178]. However, as deformation proceeds, some grains with lower 

misorientation (~5°) are also formed. These are known as intra-granular grains and provide the driving 

force for grain breakage. In addition, these grains also provide the possible nuclei sites during 

subsequent annealing processes. Figure 36 shows the number of grains and corresponding grain size 

evolution. Results show similar trends for number of grains and grain size. It is observed that the 

subgrain formation is directly proportional to the thickness reduction while the grain size is inversely 

proportional. In Figure 36, the starting undeformed microstructure, had around 800 grains with an 

average grain size of 22 µm. Using a 5° and 15° misorientation, the final microstructure resulted in 

8326 grains (radius - 10.0 µm) and 3227 grains (14.4 µm) respectively. It is noted that results presented 

in Figure 36 show an increasing rate for subgrain formation and require more investigation. 
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Figure 36: Number of grains and grain size in the rolled sample using different misorientation angles  

Formation of subgrains gives insight into the microscopic deformation during the rolling process. It is 

important to study if the formation of subgrains is a continuous or abnormal process. Like abnormal 

grain growth [97], an abnormal subgrain formation would infer an energy threshold required to start 

the process. On the other hand, a continuous process would infer a continuous flow of energy to 

continue subgrain formation throughout the deformation. 

Figure 37 shows the rate of change of grains with respect to thickness reduction�𝑑𝑑𝑁𝑁𝑔𝑔
𝑑𝑑𝑑𝑑
�. Results show 

a relatively constant rate of grain breakage for 15° misorientation which suggests a continuous 

formation of subgrains. However, the rate of intra-granular subgrain formation increases (5° 

misorientation) with deformation. This implies a higher rate of intra-granular subgrain formation and 

is important since these subgrains result in new grains and can be a source of nuclei during subsequent 

annealing.  
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Figure 37: Rate of change of grains with respect to thickness reduction at different misorientations 

As through thickness texture varies in the sheet, it is important to study the distribution of grains in 

the rolled sheet. To do this, grain distribution across the thickness of the sheet was calculated. Grain 

centroids were found by averaging the elemental centroids corresponding to that grain and the 

corresponding distribution was plotted across the sheet thickness. The results were normalized to 

compare the distribution of grains in the initial and final sample. Figure 38 shows the distribution of 

grain centroids in the initial (793 grains) and final (3225 grains) sample.  

Initial sample (Figure 38) shows a relatively constant distribution of grains across the sheet thickness. 

A near horizontal trend line drawn across the results shows very little variability across the sheet. This 

was expected as the generated microstructure did not have a gradient in the grain size. However, at 

60% thickness reduction, more grains are observed at each corresponding sheet thickness. A trend 

line drawn across the results shows that the number of grains decreases down the sheet thickness 

(from top to center of the sheet). Conversely, the grain size increases down the sheet from 11 µm to 

18 µm. This difference between the top and center of the sheet is due to the strain distribution across 

the sheet thickness. It is important to note that the average change in grain size from the initial to 

60% thickness reduction was 8 µm. However, the change in the grain size from the top to the center 

of the sheet was found to be 7 µm. This highlights the importance of modelling through thickness 

differences across the sheet. 
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Sheet thickness was broken down into top, top-middle and center sections and the number of grains 

as a percentage of the total grains were calculated, for each section, in the initial and final sample. 

For example change in top section = (# of grains in section)t/(# of grain in entire sample)t. Analysis 

shows that the number of grains in the center of the sheet decrease from 35% to 25% and the number 

of grains in the top section increase from 28% to 40%. However, results for the top-middle section 

show no change.  

 
Figure 38: Grain distribution across the sheet thickness in the pre-rolled (red) and rolled (blue) sample. Trend lines are 

added for ease of comparison 

6.1.5.3 Microstructure Analysis of Different Grain Sizes at In the Sheet 
Analysis presented in the previous section shows that all grains seem to breakup into sub grains. 

However, it is important to find if there are any preferred orientations for subgrain formation under 

rolling. This would reveal if certain orientations result in stable grains i.e. they don’t breakup into 

smaller grains or vice versa.  

Deformed model was broken down into small and large grains where small and large grains account 

for all the grains that fall into the bottom and top 25% of the maximum grain size. Figure 39a shows 

that small grains have no preferred orientation, and consist of a mixture of Cube, rotated Cube, 

Copper and S. However, large grains (Figure 39b) show preferred orientations of S1 (56.79, 29.21, 

63.43), S3 (58.98, 36.70, 63.43) and Copper (90, 27.37, 45).  



68 
 

 
(a) 

 

 
 

 
(b) 

Figure 39: ODF plots for (a) small and (b) large grains at 60% thickness reduction 
 

Next, the initial (undeformed) ODF for small and large grains is studied (Figure 40). It should be noted 

that only the ODF for the top and bottom 25% of the grains was used in this analysis. As the initial 

model is statistically equivalent, small and large grains have similar initial textures. Comparing with 

the initial texture, percentage of Cube is lower in the deformed sample (Figure 39) as it has rotated 

to other components. This is reflected in the decrease in intensity from ~14 in Figure 40 (Marked by 

C) to ~2 and ~4 for small and large grains respectively in Figure 39. It is possible that large grains have 

rotated from the initial texture to S and Copper as their intensities increase in the deformed sample 

in Figure 39. It is important to note that large grains could signify stable textures as they do not rotate 

to form subgrains.  
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Figure 40: Combined undeformed ODF plot for small and large grains 
 

Previous analysis has looked into small and large grains in the rolled sample as a whole. However, it 

is known that rolled sheet exhibit different textures across the sheet thickness [21, 164] due to the 

different strain paths experience across the sheet thickness. Therefore it is important to look at the 

small and large grains at various locations in the sheet to analyze the effect of strain distribution across 

the sheet. 

Figure 41 shows the undeformed ODF for the top and center sections of the sheet. The top and center 

section refers to all the elements in the top and bottom 1/3rd of the simulated sheet. Comparing the 

undeformed ODFs for large and small grains (Figure 40) to Figure 41, it can be seen that the small and 

large grains prefer certain orientations. Whereas, the top and center section ODFs (Figure 41) don’t 

seem to prefer any specific texture component. This is due to the presence of other texture 

components in the top and center ODF’s that represent grains of all sizes. The best way to establish 

this is to explicitly draw deformed ODF’s for large and small grains in the top and center sections. 
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 (a) 

 

 
 

 
(b) 

Figure 41:ODF plots for (a) top section (b) center section at 0% thickness reduction 
 

Figure 42 shows the ODFs for small and large grains in the top and center section at 60% thickness 

reduction. It is observed (Figure 42a, b) that the grains in the top section do not show any clear 

preference. However, small and large grains show clear preference in the center of the sheet. Small 

grains in the center section show higher intensities of Brass, S and Copper (Figure 42c). While large 

grains (Figure 42d) show higher intensities for Cube, S and Copper.  

In general, large grains in the top section show wider spread of texture components and hence don’t 

show preference to any specific texture component. It has been established (Section 5.1.4.1) that the 

center section experiences mainly plane strain compression whereas the top section experiences a 

combination of shear and compression. This difference in strain paths is thought to be the main reason 

for these differences.  

Stable/preferred orientations are assumed to not be affected by deformation [27]. However, as 

mentioned before, large grains represent stable orientations but don’t show any preferred texture in 

the top section. On the other hand, small grains represented unstable orientations but show 

preference to specific texture components in the center section.  
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 Small Grains Large Grains  

 

 

 

 

Top 

 
 (a) 

 
 (b) 

 

  

 

 

 

 

Center 

 
 (c) 

 
 (d) 

Figure 42:ODF plots at 60% thickness reduction for (a) small grains in the top section (b) small grains in the center 
section (c) large grains in the top section (d) large grains in the center section  

6.1.5.4 Volume Fraction of Several Texture Components 

Evolution of volume fraction for several texture components is shown in Figure 43. At 0%, Cube starts 

at 10% but reduces to 5% at 60% thickness reduction. On the other hand, Copper increases from 3% 

to 10%. Brass, S and Goss (5%, 5% and 1%) remain relatively consistent throughout the rolling process.  

The change in Cube and Copper is due to rotation of these texture components into other components 

as seen in the ODF plots for small and large grains (Figure 39). In addition, Copper was found to be a 

stable orientation for large grains which suggests that while large grains retain their texture, small 

grains rotate into Copper thus increasing its volume fraction throughout the process. Brass, S and 

Goss are observed to be relatively consistent throughout the deformation in the whole sample. 

However, previous results show Brass and S to be the preferred orientations for large grains which 

suggests that smaller grains rotate away from S to other orientations which results in the consistent 

trend for these components. 
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Figure 43: Volume fraction data in the rolling sample at different thickness reductions 

6.1.5.5 Evolution of Grain Volume and Misorientation  
Figure 44 shows the normalized grain volume evolution at initial, 20%, 40% and 60% thickness 

reduction. As deformation increases, more grains break into subgrains thus increasing the amount of 

small grains seen in Figure 44 between 0 and 0.25 grain volume. The trend switches after 0.25 grain 

volume as these grains breakup to form smaller grains and hence decrease with deformation.  

 
Figure 44: Normalized grain volume evolution in the rolling sample 
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Figure 45 shows the element neighbor misorientation distribution evolution. Misorientations less 

than 15° are ignored as they are considered part of the same grain. Trends from 15° to 25°, show an 

increase in elements with increase in deformation which suggests an increase in subgrain formation. 

Similar trends are observed between 52° and 59° which could be due to larger grains breaking down 

further to form smaller grains.  

 
Figure 45: Misorientation distribution of element neighbors in the rolled sample at 0%, 20%, 40% and 60% thickness 

reductions 

6.1.6 Summary and Conclusions 
In this section, a rate-dependent crystal plasticity EFG model was used to simulate cold rolling across 

the through thickness of the sheet using a complete microstructure. Simulation results at different 

through thickness sections were verified using experimental results found in literature. It is found 

that, as expected, the normal and shear strains and texture vary in the material across the thickness 

of the sheet with the top surface seeing the most deformation.  

A new grain analysis (gCode) framework was developed and applied on cold rolling of AA 5754 sheet. 

In-house gCode analyzes the formation of subgrains and other grain metrics. Final grain size from the 

new framework was validated against experimental work by Jin and Lloyd [168] and then used to 

study several grain metrics.  

Analysis shows that the amount of subgrains are proportional to the thickness reduction and inversely 

proportional to grain size. Study of rate of subgrain formation shows that subgrains are formed at a 

constant rate and are directly proportional to the applied deformation. This is also evident from the 

normalized grain volume distribution and evolution of misorientation with nearest neighbors. Intra-
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granular misorientations also increase with deformation. These could contribute to the formation of 

new grains during subsequent annealing. Grain sizes were calculated across the sheet thickness to 

analyze the effect of strain distribution across the sheet thickness. It was concluded that the formation 

of subgrains decreases towards the center of the sheet. Comparing the grain sizes, it was concluded 

that the grain size changes by around 7 µm from the top to the center of the deformed sheet and by 

around 8 µm, between the average initial and final grain size. The similarity in the predicted grain sizes 

before and after rolling and between the top and center rolled sections highlights the importance of 

capturing the microstructure differences across the through thickness of the sheet.  

Grain breakup for the small and large grains were also studied. It is concluded that orientations that 

correspond to small grains are unstable while, orientations that correspond to large grains are stable. 

Results indicate that large grains have a preferred orientation close to S and Copper. This preferred 

orientation is also dependent on the strain path experienced by the grain. Results for small and large 

grains for the top and center sections show that small grains in the center sections prefer Brass, S and 

Copper. Whereas, large grains in the center of the sheet experience mostly compressive stress and 

the corresponding grains preferred Cube, S and Copper. 

6.2 Comparing the Through-thickness Response under Rolling and Plane Strain 
Compression 
Most approaches in literature assume a plane strain compression condition to simulate rolling [163, 

179, 180, 18, 181]. However, this assumption only holds true under symmetric rolling as layers close 

to the center line of the sheet experience plane strain compression [180, 182]. Knezevic et al. [18] 

have simulated cold rolling under this assumption but as a consequence, have neglected the different 

strain paths experienced across the sheet thickness while Engler et al. [183] have modelled different 

layers of sheet thickness as separate simulations but are unable to capture the microstructure 

changes. Therefore it is important to capture the microstructural changes in the sheet thickness with 

the correct boundary conditions to simulate rolling. 

To identify the differences between plane strain compression and rolling, simulations for plane strain 

compression were performed and compared with cold rolling simulations (Section 5.1.1) using the 

same initial microstructure and thickness reduction. Several key factors namely; equivalent strains, 

textures, volume fraction evolution and 𝛽𝛽 and 𝛾𝛾 fibers were compared and are discussed below. 
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6.2.1 Normal and Shear Strains 
Figure 46a & b show the normal and shear strain in the top section during rolling and plane strain 

compression respectively. Normal strains on the top section during rolling and plane strain 

compression (Figure 46a) follow the same trends. However, the maximum strain at 60% thickness 

reduction for rolling is about 50% that of plane strain compression.  Figure 46b shows that the 

maximum shear strain experienced during plane strain compression is negligible (9%) compared to 

rolling (38%). The differences in normal and shear strains during plane strain compression and rolling 

are due to the shear effect under rolling. 

 
(a) 

 
(b) 

Figure 46: (a) Normal strain and (b) Shear strain on top section  
(R stands for rolling and P stands for plane strain compression)  

6.2.2 Texture 
It is well known that texture plays an important part in the final material properties [97]. Therefore 

rolling and plane strain compression textures were compared at 60% thickness reduction. Pole figures 

for <1 1 1> were plotted for the top sections during rolling (Figure 47a, d & g) and plane strain 

compression (Figure 47b, e& h). To highlight the difference between the pole figures, difference pole 

figures were also calculated (Figure 47c, f & i). Each point on the difference pole figure (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) was 

calculated using Equation 87, where 𝑊𝑊𝑅𝑅 and 𝑊𝑊𝐶𝐶  are the weights of specific points in the pole figures 

for rolling and plane strain compression respectively. 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑊𝑊𝑅𝑅 −𝑊𝑊𝐶𝐶) (87) 

Pole figure intensities in Figure 47 are kept same for each thickness reduction for ease of comparison. 

Initial difference pole figure serves as a sanity check and shows 0 intensity (Figure 47c) which confirms 

that the starting textures for both cases were exactly the same. Difference pole figures at 30% and 

60% thickness reduction (Figure 47f & i) show high Brass (5% and 7%) and Copper (8% and 11%) but 
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low Cube (4% and 2%). While percentage of Brass and Copper increases with deformation, percentage 

of Cube goes down. These trends are summarized in Table 4. 

 
 (a) 

 
 (b) 

 
 (c) 

 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

 
(h) 

 
(i) 

 

Figure 47: Rolling <1 1 1> pole figures, plane strain compression <1 1 1> pole figures and difference pole figures at the 
top section at (a-c) 0%, (d-f) 30% and (g-i) 60% thickness reduction respectively 
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Table 4: Top section volume fraction difference at 30% and 60% thickness reduction for rolling and plane strain 
compression 

Component Volume Fraction 
Difference (%) at 30% 

Volume Fraction 
Difference (%) at 60% 

Cube 3.8 2.3 

Goss 0.9 1.1 

Brass 4.5 7.3 

Copper 7.7 10.6 

S 0.6 0.7 

   
Pole figures and difference pole figures highlight the differences between rolling and plane strain 

compression. These differences are due to the effect of shear found during rolling [160, 161]. 

However, to understand these differences further, volume fraction of various texture components 

need to be analyzed and are presented in the next section.  

6.2.3 Volume Fraction Evolution 
Volume fractions for different texture components were studied to understand the changes during 

deformation. To this effect, volume fractions for the top section during rolling and plane strain 

compression were compared. Figure 48a & b show the volume fractions for different components for 

the top surface under rolling and plane strain compression. Percentage of S remains relatively 

unchanged during both deformations with a slight dip during plane strain compression at 10% 

thickness reduction. Copper increases to 6% and 16% between 0% and 60% thickness reduction in 

rolling and plane strain compression simulations respectively. The remaining components (Cube, and 

Goss) decrease during rolling and plane strain compression while Brass decreases during rolling but 

increases during plane strain compression. 

 
(a) 

 
(b) 

Figure 48: Volume fractions of various texture components under Rolling  
(R stands for rolling, P stands for plane strain compression  and T stands for Top section) 
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To identify the differences between the top and center section, volume fraction trends for several 

texture components on the top and center section were calculated (Figure 49). Cube, Copper and 

Brass show higher volume fraction on the top section in plane strain compression than rolling while S 

and Goss start low but at 60% thickness reduction result in similar trends to Cube, Copper and Brass. 

Cube, Copper, S and Goss show higher volume fractions on the top section than the center section 

under both deformation modes. However, Brass shows lower volume fraction under rolling than 

center section. 

 
(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 49: Volume fraction comparisons of (a) Cube, (b) Copper, (c) S, (d) Brass and (e) Goss at top and center section  
(R stands for rolling, P stands for plane strain compression, T and C represent the top and center sections of the sample) 
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Results in Figure 49 show that the volume fractions for rolling and plane strain compression at the 

center section are similar for all texture components. These results are in-line with the assumption 

that plane strain compression is similar to symmetric rolling near the sheet center [18, 184] and clearly 

show that the differences between rolling and plane strain compression are due to the shear effect 

found in rolled specimens.  

6.2.4 Rolling Fibers 
ODF sections of rolled FCC sheets provide a continuous tube of orientations that run from {1 1 0} <1 

1 2> through {1 2 3} <6 3 4> to {1 1 2} <1 1 1>. This is further broken down into subsections and are 

known as the, 𝛼𝛼 and 𝛽𝛽 fibers [19, 185, 186] as shown in Figure 50. 𝛽𝛽-fiber is found between Copper 

and Brass through S. 𝛾𝛾-fiber also shows up in FCC metals with high stacking fault energy and runs in 

elements parallel to the {1 1 1} planes from {1 1 1} <1 1 2> to {1 1 1} <1 10> [19, 185, 186]. 

 
Figure 50: Plots of α and β fibers in Euler space [19] 

Formation of 𝛾𝛾-fiber is considered very important in enhancing the formability of aluminum sheets 

[142]. 𝛾𝛾-fiber is caused by the shear strain due to the friction between the rollers and the sheets [187, 

188]. Figure 51a & b shows the ODF intensity distribution of 𝛾𝛾-fiber and 𝛽𝛽-fiber on the top section at 

30% and 60% thickness reduction under rolling and plane strain compression. Distribution shows that 

rolling produces higher intensities of 𝛾𝛾-fiber across the range of 𝜑𝜑1 and the fiber strengthens as 

thickness reduction increases. Conversely, 𝛽𝛽-fiber (Figure 51b) shows higher intensities in plane strain 

compression simulations. As expected, rolling simulations indicate higher formability as average 

intensities at 60% thickness reduction for rolling (0.73) are higher (0.45) than plane strain 

compression.  
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(a) 

 
(b) 

Figure 51: ODF intensity comparisons of (a) γ-fiber and (b) at β-fiber top section between rolling and plane strain 
compression (R stands for rolling and P stands for plane strain compression) 

6.2.5 Summary and Conclusions 

The rolling process is often approximated by plane strain compression. To highlight the differences, 

between rolling and plane strain compression, results from rolling simulations presented in Section 

5.1 were compared with plane strain compression simulations. Normal strains, shear strains, texture, 

volume fraction and 𝛽𝛽 and 𝛾𝛾 fibers show clear differences between the two processes. Therefore, it 

is concluded that there are major differences between the two processes. However, volume fraction 

data from the top and center section show that the two processes result in similar texture evolution 

near the sheet center. As expected, rolling results in stronger 𝛾𝛾-fiber which is necessary to increase 

formability. 

The work presented in this section shows that rolling and plane strain compression lead to different 

microstructures and will not have similar behavior under subsequent forming operations. Therefore, 

it is necessary to model the complete microstructure and boundary conditions for successful rolling 

simulations.  
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6.3 Hot Compression  
Similar to other large strain processes, hot compression also involves inducing huge plastic strains in 

the material resulting in huge changes in texture and stress-strain response of the material. Tensile 

and shear results presented in literature show little effect on the material stress-strain response at 

lower temperatures for AA 5xxx alloys [189, 190]. However at higher temperatures, AA 5xxx alloys 

have been shown to be temperature and strain-rate sensitive [191]. Hashemi et al. [192] have also 

shown the temperature and strain-rate dependence of AA 6xxx alloys from 323 K to 573 K and from 

0.001 𝑠𝑠−1 to 1 𝑠𝑠−1 under uniaxial tension. Unlike some AA 5xxx alloys, AA 6xxx are positive strain-rate 

sensitive i.e. they get softer at higher temperatures and lower strain-rates [193]. Therefore, for 

modelling high temperature applications (e.g. extrusion, ECAE, etc.) it is important to correctly predict 

the stress-strain and texture response. 

Phenomenological models have been shown to predict material response under various temperatures 

and strain-rates [194] however they are unable to capture the texture evolution. Crystal plasticity 

works by Staroselsky et al. [195] and Cyr et al. [196] have studied the effects of temperature under 

low strain-rates (creep) and shear for Ni super alloys and AA 5754 respectively.  Dislocation based 

crystal plasticity simulations [197] have also shown to predict the temperature effects in materials. 

Effects of strain-rate and temperature have been studied in literature. Hansen et al. [198] have 

implemented a temperature dependent high strain-rate single crystal model for Copper. 

In this work, a Taylor-type polycrystal in-house model (Section 4.1) was used to simulate hot 

compression for AA 6063 at various strain-rates (0.01 𝑠𝑠−1, 0.1 𝑠𝑠−1, 1 𝑠𝑠−1 and 10 𝑠𝑠−1) and 

temperatures (4000C, 4500C, 5000C, 5500C and 6000C). As extrusion processes are carried out in this 

temperature range, hot compression experiments were also carried out at these temperatures. Hot 

compression simulations were used to predict the texture and stress-strain response of the material 

during deformation. Experimental observations in literature suggest that AA 6063 undergoes static 

recrystallization after hot deformation [24]. Therefore, a probabilistic integration point based static 

recrystallization model (Section 4.2) was used to predict the final texture and grain size observed 

under experimental conditions.  
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6.3.1 Modified Hardening Model 
Single crystal slip hardening model (Equation 61) presented in Section 4.1 cannot account for different 

temperatures and strain-rates. Therefore the current hardening model was modified [199, 200] with: 

 ℎ𝛽𝛽 = ℎ𝑠𝑠 + (ℎ0 − ℎ𝑠𝑠)𝑠𝑠𝑒𝑒𝑒𝑒ℎ2 ��
ℎ0 − ℎ𝑠𝑠
𝜏𝜏𝑠𝑠 − 𝜏𝜏0

� 𝛾𝛾𝛼𝛼� 
(88) 

where ℎ0 and ℎ𝑠𝑠 are the initial and asymptotic hardening rates and 𝜏𝜏𝑠𝑠 is the saturation shear stress. 

To incorporate the effects of strain-rate, polynomial functions (Equation 89, 90 and 91) were used for 

the evolution of all hardening parameters (ℎ0, ℎ𝑠𝑠 and 𝜏𝜏𝑠𝑠). A similar approach has been used by Kocks 

and Mecking as a Voce law based scaling function to predict material response [201].  

 ℎ𝑠𝑠 =  𝑎𝑎1[𝑙𝑙𝑙𝑙𝑙𝑙10(𝜀𝜀̇)]2+𝑏𝑏1𝑙𝑙𝑙𝑙𝑙𝑙10(𝜀𝜀̇)+𝑐𝑐1 (89) 

 ℎ0 = 𝑎𝑎2[𝑙𝑙𝑙𝑙𝑙𝑙10(𝜀𝜀̇)]2+𝑏𝑏2 𝑙𝑙𝑙𝑙𝑙𝑙10(𝜀𝜀̇)+𝑐𝑐2 (90) 

 𝜏𝜏𝑠𝑠 = 𝑎𝑎3[𝑙𝑙𝑙𝑙𝑙𝑙10(𝜀𝜀̇)]2+𝑏𝑏2 𝑙𝑙𝑙𝑙𝑙𝑙10(𝜀𝜀̇)+𝑐𝑐3 (91) 

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are fitting parameters and 𝜀𝜀̇ is the strain-rate.  

To incorporate the effects of temperature, hardening parameters were also evolved based on 

different temperatures. Equation 92 is used for the temperature and strain-rate evolution of 𝜏𝜏0 and 

is able to account for the stress-strain response under various temperatures and strain-rates.  

Works by Varshni and others [195, 202, 203] and Slagle and Lowrie [204, 205] scale the elastic 

constants based on different temperatures and use polynomial functions to represent the 

dependence of elastic constants on temperature. Therefore, elastic parameters have been scaled by 

𝜏𝜏0 as: 

 
𝜏𝜏0 = ��𝑑𝑑𝑖𝑖𝑖𝑖[𝑙𝑙𝑙𝑙𝑙𝑙10(𝜀𝜀̇)]𝑖𝑖

2

𝑗𝑗=0

3

𝑖𝑖=0

[𝑙𝑙𝑙𝑙𝑙𝑙10(𝜃𝜃)]𝑗𝑗 
(92) 

where 𝑑𝑑𝑖𝑖𝑖𝑖  are calibration coefficients. 

6.3.2 Problem Formulation 

A sample microstructure with 1000 crystals was created to accurately represent cast aluminum alloy 

6063 (chemical composition for AA 6063 is shown in Table 5). 2D Electron Backscatter Diffraction 

(EBSD) data was used to create the sample as is explained in Section 2.4.1.4.  
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Table 5: AA 6063 chemical composition (wt%) 

Mg Fe Si Cu Ti 

0.49 0.029 0.16 0.40 0.01 

     
Experimental pole figure from EBSD scans (Figure 52) is shown in Figure 53a while the pole figure from 

generated texture is shown in Figure 53b. Figure 53a & b are on the same scale and show that there 

is almost no difference in the generated and experimental pole figures. As ODF provide more 

information across different sections, ODF for the experimental and generated texture is shown in 

Figure 54a & b respectively. Texture shows Copper, Cube (450 ODF) and S (650 ODF).  

 

 
 
 
 
 
 
 

 

 
Figure 52: Experimental IPF map for AA 6063 

 

 
(a) (b) 

 

Figure 53: (a) Experimental and (b) Generated <111> pole figure for AA 6063 
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(a) 

 
(b) 

 

Figure 54: Initial (a) Experimental and (b) Simulated AA 6063 texture shown as ODF plot (ϕ2-sections) 

 
To simulate compression, the sample microstructure was applied negative (strain-rate) 𝜀𝜀̇ as shown in 

Figure 55. There were no other boundary conditions applied in the other directions. 

 

Figure 55: Geometry and loading conditions applied 
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6.3.3 Model Calibration 
Experimental AA 6063 compression data was used to calibrate the hardening parameters for the 

crystal plasticity model. Data for all strain-rates and temperatures (except for 500 0C) was used for 

calibration. Figure 56 shows the data points used to fit the hardening parameters ℎ0, ℎ𝑠𝑠 and 𝜏𝜏𝑠𝑠 at  

0.01 𝑠𝑠−1, 0.1 𝑠𝑠−1, 1 𝑠𝑠−1 and 10 𝑠𝑠−1 and the corresponding polynomial fits to those points. Polynomial 

fits were based on least squares method to find the least error. Initial elastic values were also 

calibrated in a similar manner. Resulting elastic values and hardening parameters are given in Table 6 

and  7. 

 
Figure 56: Calibrated AA 6063 data for h0, hs and τs 

The same procedure was repeated for 𝜏𝜏0 but as it is dependent on both strain-rate (𝜀𝜀̇) and 

temperature (𝜃𝜃), it would correspond to a surface rather than a line. The resulting best fit surface with 

an R-squared value of 0.9958 is shown in Figure 57 and the resulting parameters are given in Table 8. 

Black dots in Figure 57 correspond to experimental points.  
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Figure 57: Calibrated surface for τ0 

Table 6: Calibrated elastic values for AA 6063 

 𝑪𝑪𝟏𝟏𝟏𝟏 𝝉𝝉𝟎𝟎�  𝑪𝑪𝟏𝟏𝟏𝟏 𝝉𝝉𝟎𝟎�  𝑪𝑪𝟒𝟒𝟒𝟒 𝝉𝝉𝟎𝟎�  

Value 4893.6 2808.5 1276.6 

    
Table 7: Calibrated values for h0, hs and τs (AA 6063)  Table 8: Calibrated values for τ0  (AA 6063) 

  𝒂𝒂 𝒃𝒃 𝒄𝒄 

1 -0.040 0.080 0.120 

2 0.175 0.565 1.245 

3 -0.030 0.024 1.187 
 

 𝒅𝒅𝒊𝒊𝒊𝒊 0 1 2 

0 563.2 -379.8 64.380 

1 -1.662 1.013 0.042 

2 -3.838 1.713 0.000 

3 0.383 0.000 0.000 
 

6.3.4 Model Verification 

Calibrated model parameters were used to verify if the hardening parameters are able to predict the 

correct stress-strain curves at 0.01 𝑠𝑠−1, 0.1 𝑠𝑠−1, 1 𝑠𝑠−1 and 10 𝑠𝑠−1 strain-rates and temperatures of 

4000C, 4500C, 5500C and 6000C. Simulated stress-strain results were compared to experimental stress-

strain results and are shown in Figure 58-61. Simulated results show excellent agreement with 

experimental results at all temperatures and strain-rates. It should be noted that some of the 

experimental results are not shown till 60% compression due to material failure and softening seen 

in experimental results. 

0 
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Figure 58: Experimental and simulated AA 6063 uniaxial compression stress-strain curves at 0.01 s-1 

 
Figure 59: Experimental and simulated AA 6063 uniaxial compression stress-strain curves at 0.1 s-1 
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Figure 60: Experimental and simulated AA 6063 uniaxial compression stress-strain curves at 1 s-1 

 
Figure 61: Experimental and simulated AA 6063 uniaxial compression stress-strain curves at 10 s-1   
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6.3.5 Model Validation 
It is important to validate the model with non-calibrated data to assess the predicting capabilities. 

Therefore, the model was validated with uniaxial compression results from 5000C (Figure 62). 

Simulated results for all strain-rates show excellent predictions for most cases. The model over 

predicts results for 10 𝑠𝑠−1 after 20% strain by a maximum of 5 MPa due to extra hardening in the 

material during simulations. Even though the modified hardening model indirectly incorporates high 

temperature mechanisms such as climb, cross-slip, glide, etc. the over-prediction of the model at  

10 𝑠𝑠−1could be due to these high temperature mechanisms. However, most of these high 

temperature mechanisms are only active at low strain-rates. 

 
Figure 62: Experimental and simulated uniaxial compression stress-strain results for AA 6063 at 5000C 

Results in Section 5.3.3-5.3.5 show calibration, verification and validation of the stress-strain response 

of AA 6063 under uniaxial compression at various temperatures and strain-rates. However, crystal 

plasticity models are also expected to predict the texture evolution in the material during deformation 

which is discussed in the next section. 

6.3.6 Modelling Texture Evolution 
In-house Taylor based crystal plasticity model was also used to compare the texture evolution after 

deformation with experimental results. Deformed AA 6063 texture was measured using 2D XRD 

Brucker D8 Discover at various temperatures and strain-rates. Pandey et al. [191] have shown that 

texture data at different temperatures represented using pole figures does not show adequate 

differences in texture. Therefore, only ODF data was plotted and compared to simulated results. 
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6.3.6.1 AA 6063 Experimental Results 
ODF textures were measured at different temperatures and strain-rates after deformation with a 

Brucker D8 Discover 2D X-Ray Detector and are presented in Figure 63. Figure 63a & c show the 

texture evolution at constant strain-rate (with varying temperatures) while Figure 63b & c show 

texture evolution at constant temperature (with varying strain-rates).  ODF results for initial texture 

are given in Figure 54. Figure 63a-c show almost no Cube, Copper, S, Goss and Brass in the ODF’s. 

Initial texture also lacked Cube, Brass and Goss but had Copper and S component. Therefore, it is 

concluded that most of the well-known texture components were not present in the deformed model.  

Initial and final ODF, show peaks near (45, 0, 0) and (45, 90, 0) in all cases. However, the peak intensity 

increases with temperature and decreases with strain-rate. Initial 450 ODF section shows peaks near 

(0, 45, 45) and (0, 0, 45). These peaks form a fiber from (0, 0, 45) to (0, 90, 45) as shown in Figure 63. 

The intensity of this fiber does not change with temperature but increases with strain rate (Figure 63b 

&c). Initial and final ODF also show peak near (55, 55, 45) and (50, 65, 65). The intensity increases with 

decrease in temperature and increase in strain-rate.  
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(a) 5000C 1 𝑠𝑠−1 

 
(b) 4000C 0.01 𝑠𝑠−1 

 

 

(c) 4000C 1 𝑠𝑠−1 

  

Figure 63: Experimental deformed AA 6063 ODF plots (ϕ2-sections) at  
(a) 5000C 1 s-1 (b) 4000C 0.01 s-1 and (c) 4000C 1 s-1 

6.3.6.2 AA 6063 Experimental and Crystal Plasticity Comparison 

Experimental and crystal plasticity results are shown in Figure 64a & b for 4000C at 0.01 𝑠𝑠−1. Results 

show large discrepancies between experimental and simulated data in all ODF sections as effect of 

static recrystallization is not incorporated.  The results show the importance of recrystallization for 

prediction of accurate texture at high temperatures. 
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(a) 

 
(b) 

c  

Figure 64: (a) Experimental and (b) Simulated AA 6063 ODF plots (ϕ2-sections) at 4000C 0.01 s-1 

6.3.6.3 AA 6063 Static Recrystallization Calibration and Validation 
Section 5.3.6.2 shows the importance of considering the effects of recrystallization at high 

temperatures. Static recrystallization framework discussed in Section 4.2 was used to predict accurate 

textures subsequent to the crystal plasticity simulations. Texture and shear stress data from crystal 

plasticity simulations were the main inputs into the SRX model.  

SRX model parameters discussed in Section 6.3 were calibrated at 4000C 0.01 𝑠𝑠−1 to get the optimum 

texture after recrystallization as shown in Figure 65b. Simulated SRX results for the 00, 450 and 650 

ODF showed similar trends and intensities to experimental data (Figure 63b) for all ODF sections. 

However, simulations predicted higher intensities near (90, 45, 0) and lower intensities near  

(55, 55, 45) and (50, 65, 65). In addition, simulations did not capture the complete fiber seen in 450 

ODF.  

To validate the SRX model, simulated results at 5000C 1 𝑠𝑠−1 and 4000C 1 𝑠𝑠−1 were compared to 

experimental results shown in Figure 63. Simulated results at 5000C 1 𝑠𝑠−1 and 4000C 1 𝑠𝑠−1are shown 

in Figure 65a & c. Simulated results at 5000C 1 𝑠𝑠−1 captured most of the experimental ODF peaks with 

minor deviations in 450 ODF. Simulated results for 4000C 1 𝑠𝑠−1 also captured most of the experimental 

ODF peaks with minor deviations as seen in Figure 65c. 
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(a) 5000C 1 𝑠𝑠−1 

 

(b) 4000C 0.01 𝑠𝑠−1 

 

 

(c) 4000C 1 𝑠𝑠−1 

 

Figure 65: Simulated deformed AA 6063 ODF plots (ϕ2-sections) at  
(a) 5000C 1 s-1 (b) 4000C 0.01 s-1 and (c) 4000C 1 s-1 

 
Experimental results at different strain-rates and temperatures also allow the study of texture trends. 

At 1 𝑠𝑠−1, experimental results showed an  increase in peak intensity at (50, 65, 65) and (55, 55, 45) 

with increase in temperature. In addition, experimental (45, 0, 0) and (45, 90, 0) peaks showed 

negligible change with temperature. Both these trends were also successfully captured by SRX 

simulations. 

Simulated and experimental results at 4000C showed a decrease in intensity near the (45, 0, 0) and 

(45, 90, 0) with increase in strain-rate. Experimental results also showed an increase in intensity near 

the (50, 65, 65) and (55, 55, 45) which was also captured by simulated results. 
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6.3.7 AA 6063 Experimental and Simulated Grain Size 
Texture prediction is an effective tool as many mechanical properties are texture dependent. 

However, grain size also plays an important part in the final mechanical properties. Therefore it is 

important to be able to account for change in grain size after deformation. Many mechanical 

properties are directly related to grain size and it is commonly known that a decrease in grain size 

improves the strength (Hall-Petch effect) [26] and toughness  of the material [172, 173]. Analytical 

models for recrystallization lack the capability of predicting the overall microstructure and grain size 

evolution (e.g. [109]). Various non-analytical non-coupled recrystallization models presented in 

literature have successfully predicted change in texture and grain size (e.g. [114, 136]). In this work, a 

complete through process model is presented that can predict the stress-strain response, texture and 

grain size evolution during compression.  

Initial and final grain sizes were measured based on optical micrograph data. Figure 66 shows some 

of the optical micrograph data in the undeformed (Figure 66a) and deformed states at various 

temperatures and strain-rates.  
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(a) Initial - Undeformed 

 

(b) 4000C 0.01 𝑠𝑠−1 

 

(c) 6000C 0.01 𝑠𝑠−1 

 

(d) 4000C 0.1 𝑠𝑠−1 

Figure 66: (a) Initial micrograph (black line represents 50 μm) (b) Deformed micrograph at 4000C 0.01 s-1 (c) Deformed 
micrograph at 6000C 0.01 s-1 (d) Deformed micrograph at 4000C 0.1 s-1 

 
In this work, change in average grain size is found using Equation 93.  Equation 93 is based on the 

work by Raabe [109] and assumes 100% recrystallization. As the initial grain size is known, change in 

grain size (∆𝑛𝑛𝑡𝑡) at time (𝑡𝑡) is calculated as: 

 
∆𝑛𝑛𝑡𝑡 = (∆𝑉𝑉𝑡𝑡𝑅𝑅𝑅𝑅)1/3 =  �∆𝑁𝑁𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 �

𝐻𝐻𝑚𝑚 

𝑘𝑘𝑘𝑘
�∆𝑃𝑃𝑡𝑡∆𝑡𝑡�

1/3
 

(93) 

Where ∆nt is the change in grain size  based on the pre-deformed sample, ∆Vt
Rx is the volume fraction 

of recrystallized grains and 𝑁𝑁 is the number of nuclei. Simulated and experimental results for the final 

average grain size are shown in Figure 67. Results show good agreement with experimental 

observations for most cases with minor deviations for 6000C at 0.01 𝑠𝑠−1 and 4000C at 10 𝑠𝑠−1. 

Simulated results also predict the correct experimental trends and show an increase in grain size as 

strain-rate decreases and temperature increases. 
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Figure 67: Experimental and simulated AA 6063 grain size predictions 

6.3.8 Summary and Conclusions 
In this section, a modified rate-dependent Taylor based crystal plasticity framework is presented that 

accounts for both the temperature and strain-rate effects. Temperature and strain-rate effects are 

accounted by incorporating them in the hardening and the elastic constants of the material. Proposed 

hardening model is calibrated, verified and validated with experimental stress-strain data on AA 6063 

under hot compression. It is concluded that the proposed model can predict the stress-strain response 

of AA 6063 under compression from 4000C to 6000C at 0.01 𝑠𝑠−1 to 10 𝑠𝑠−1. 

To study the texture evolution, 2D XRD experiments were performed to capture the differences in 

texture at different temperatures and strain-rates. Results from optical microscopy were also used to 

measure grain size at different temperatures and strain-rates. It was concluded that the results from 

crystal plasticity simulations alone cannot capture the texture evolution during high temperature 

compression. Therefore, a new static recrystallization (SRX) model was developed to simulate the 

texture and grain size evolution during high temperature compression. Results from SRX model match 

the experimental texture trends under different temperatures and strain-rates. In addition, 

comparison of experimental and simulated grain size predictions show good agreement. It should be 

noted that the crystal plasticity model and the SRX model presented in this thesis serves as a stepping 

stone for optimizing the through process modelling of high temperature forming operations such as 

extrusion [85, 206].   
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Chapter 7 Future Work  

Cold rolling simulations along with the grain analysis code presented in this thesis serve as a stepping 

stone for future work in grain analysis and other large strain problems. Similarly, static 

recrystallization code discussed in this thesis can be used to simulate various problems like annealing, 

etc. Some extensions to the current grain analysis code for large strain deformations and simulating 

recrystallization are mentioned below.  

7.1 Crystal Plasticity Formulation 
As CPFEM simulations are time consuming, it is of utmost importance to be able to model larger 

models to account for complete microstructural information. CPFEM model presented in this work 

captures the complete through thickness but is unable to capture the material in RD and ND and hence 

assumes an RVE in those directions. Extension of crystal plasticity framework to  other 

computationally efficient methods like Fast Fourier Spectral methods [207], machine learning 

methods [208] would help in capturing the complete through thickness of the material in all directions 

without any assumptions.  

7.2 Grain Analysis Code (gCode) 
Asymmetric rolling is used extensively to increase formability of aluminum sheets [20]. Current 

methodology can be used to model asymmetric rolling and use the gCode to study the evolution of 𝛾𝛾-

fiber under various conditions to find the optimum roll speed for formability. In addition, current 

model lacks the ability to apply exact experimental velocities during simulation. Therefore, the current 

model can be extended to incorporate the input velocities to the CPEFG model from experimental DIC 

data. 

Currently gCode lacks the capability to track texture evolution of individual texture components. 

Shear bands formation leads to material failure and are of great importance [209–211]. It is well 

known that formation of shear bands is heavily dependent on the starting texture and its 

neighborhood. Extension of gCode in this area would help in the prediction of shear bands and 

favorable and non-favorable orientations in this regard under different loading conditions.  
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7.3 Static Recrystallization (SRX) Code 
SRX code presented in this thesis can be extended to CPFEM and CPEFG simulations with more 

microstructural information. Current code will need to be modified to a Cellular Automata 

probabilistic integration point based SRX model to model SRX using CPFEM/CPEFG. This would help in 

better predictions in texture and grain size. In addition, AA 6xxx and AA 7xxx alloys are precipitation 

hardened alloys (e.g. [212–214]) and it is well-known that particles can be a source of nuclei during 

recrystallization while certain precipitates can impede recrystallization [215]. Current SRX code does 

not account for the effect of precipitates. Therefore an extension of the SRX model to incorporate the 

effects of precipitates and particles would help in understanding their effect on the final material 

properties. 

Current literature and proposed model lacks the effect of heating and cooling rates on texture and 

grain size during SRX. As material formability is directly affected by the final texture and grain size, it 

is of utmost importance to industry to be able to simulate the effect various heating rates on material 

texture and formability.  This would also enable the study of various annealing processes on material 

texture and grain size. 
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