Applications of Bilinear Maps in Cryptography

Martin Gagné

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2002

(©Martin Gagné 2002

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

It was recently discovered by Joux [30] and Sakai, Ohgishi and Kasahara [47] that
bilinear maps could be used to construct cryptographic schemes. Since then, bi-
linear maps have been used in applications as varied as identity-based encryption,
short signatures and one-round tripartite key agreement.

This thesis explains the notion of bilinear maps and surveys the applications of
bilinear maps in the three main fields of cryptography: encryption, signature and
key agreement. We also show how these maps can be constructed using the Weil

and Tate pairings in elliptic curves.

111

Acknowledgements

First, I would like to thank my supervisor, Alfred Menezes, for the suggestion of this
topic and for his great patience in assisting me in the writing of this thesis. I would
also like to thanks Fiona McAlister for helping me to solve all sorts of administrative
problems I encountered when writing this thesis and during my Master’s degree.

Great thanks also to all my friends inside and outside of the C&O department
for their support while I was writing this thesis.

I would also like to thank the Department of Combinatorics and Optimization
and the Natural Science and Engineering Research Council of Canada for their
financial support during my studies.

Last but certainly not least, I would like to thank my family for their love and

support.

v

Contents

1 Introduction 1
2 Bilinear Maps and the Bilinear Diffie-Hellman Assumption 3
2.1 Intractability Assumptions 5
2.1.1 The Computational Diffie-Hellman Problem 5

2.1.2 The Bilinear Diffie-Hellman Problem 6

2.1.3 Relation between the CDH and BDH 7

3 Encryption Schemes 9
3.1 Identity Based Encryption 9
3.1.1 The Basic Scheme. L. 15

3.1.2 The Full Scheme, 24

3.2 Authenticated Identity-Based Encryption 34
3.2.1 Definitions 34

3.2.2 The Scheme oo 39

3.3 Hierarchical Identity-Based Encryption 42
3.3.1 Definitions 43

3.3.2 A 2-HIDE Domain-Collusion Resistant Scheme with Escrow

at BEach Level oo oo

3.3.3 A Full HIDE Scheme

3.4 Escrow Encryption Schemes
3.4.1 Encryption Scheme with Global Escrow

3.4.2 Encryption Scheme with Simple Escrow

Signature Schemes

4.1 Short Signatures L Lo
4.1.1 Definitions
4.1.2 Signature Scheme from Identity-Based Encryption
4.1.3 The Gap Diffie-Hellman Signature Scheme

4.2 Identity-Based Signature Schemes o0
4.2.1 Definitions
4.2.2 The Schemeo L

Key Agreement Schemes

5.1 Joux’s One Round Tripartite Key Agreement Protocol
5.1.1 Man-in-the-Middle Attack on Joux’s Protocol

5.2 Authenticated Tripartite Key Agreement Protocol
5.2.1 Security Goals and Desired Attributes

5.2.2 The Protocol

Implementation of Bilinear Maps : the Weil and Tate Pairings

6.1 Introduction to Elliptic Curves

Vi

57
37
38
60
63
68
69
71

74
75
75
76
7
79

6.1.1 The Group Law and Group Structure 83

6.1.2 Function Field of an Elliptic Curve 87

6.1.3 Divisors 88

6.2 Bilinear Pairing on Elliptic curves oL L. 90
6.2.1 The Weil Pairing 90

6.2.2 The Tate Pairing 91

6.2.3 Computing the Weil and Tate Pairings 92

6.2.4 Why Choose Supersingular Curves 7 95

6.2.5 Modifying the Weil and Tate Pairings to Obtain Bilinear Maps 97

6.2.6 Other Abelian Varieties Curves 101

6.2.7 Non-Supersingular Elliptic Curves with Low Security Multiplier103

6.2.8 Fast Implementation of the Tate Pairing 104

7 Conclusion 113
Bibliography 115
A Schemes for Unmodified Weil or Tate Pairing 122
A.1 The Boneh-Franklin Scheme 123
A2 The Gap Diffie-Hellman Signature Scheme 125

Vil

Chapter 1

Introduction

Bilinear maps were first introduced in cryptography in 1993 in the form of the Weil
pairing by Menezes, Okamoto and Vanstone [40] in an attack against the discrete
logarithm problem in supersingular elliptic curves. This attack was extended a year
later by Frey and Riick using the Tate pairing. At that time, the existence of such
a bilinear map had negative connotations.

In 2000, Sakai, Ohgishi and Kasahara [47] and Joux [30] independently found
that bilinear maps could be used in constructive ways to build new cryptographic
schemes. These two papers were followed by many others that used bilinear maps
to construct identity-based encryption schemes [5, 26, 29, 34], schemes for short
signatures [5, 6], identity-based signature schemes [10, 28, 44, 47], tripartite key
agreement schemes [1, 30, 47] and many other applications.

The goal of this thesis is to survey the main applications of bilinear maps and
show how these bilinear maps can be implemented.

In Chapter 2, we define the concept of bilinear maps, introduce the bilinear

CHAPTER 1. INTRODUCTION 2

Diffie-Hellman problem, and relate this problem to others already used in cryptog-
raphy.

In Chapter 3, 4 and 5, we survey the applications of bilinear maps in the 3 main
areas of cryptography, namely encryption, signature and key agreement.

Finally, in Chapter 6, we present a way to implement bilinear maps using the

Weil and Tate pairing on supersingular elliptic curves.

Chapter 2

Bilinear Maps and the Bilinear

Diffie-Hellman Assumption

Most of the concepts in this section come from a paper by Boneh and Franklin [5].
Let G; and Gy be two cyclic groups of equal order n. A function € : G; x Gy —

Gy 1s called a bilinear map if it satisfies the following properties:
Bilinear: é(aP,bQ) = é(P,Q)® for all P,Q € G, and all a,b € Z™.

Non-Degeneracy: For a given point @ € Gy, é(Q, R) = 1g, for all R € Gy if and
only if @) = 1g,. From that, we can find that if P is a generator of Gy, then

é(P, P) is a generator for Gs.
Also, for practical reasons, we require the following:

Computable: There is an efficient algorithm to compute é(P, Q) for any P,Q € G;.

'The only known bilinear maps meeting all the requirements for use in cryptography are the
Weil and Tate pairings on abelian varieties. For consistency of notation with Chapter 6 on the
implementation of such maps, we denote (5; additively and o multiplicatively.

CHAPTER 2. BILINEAR MAPS AND THE BILINEAR DIFFIE-HELLMAN
ASSUMPTION 4

We note that any such bilinear map é : G; x G; — Gy is necessarily symmetric, i.e.
é(Q, R) = é(R, Q) since, taking r,s € Z such that Q@ = rP and R = sP for some

generator P of Gy,

é(Q,R)=¢é(rP,sP)=¢é(P,P)” =é(sP,rP) =¢é(R,Q).

The existence of such a bilinear map between groups G; and G, has two direct

consequences on the hardness of some problems in the group G;.

The MOV and FR reductions: Menezes, Okamoto and Vanstone [40] and Frey
and Riick [19] show a reduction from the discrete log problem in group G; to
the discrete log problem in group G,. The reduction goes as follows. Given
an instance P, () of the discrete log problem in Gy, where P is a point of order
n, we wish to find x € Z, 1 < x < n — 1, such that () = xP. Let R be an
element of G; such that ¢ = é(R, P) has order n, and let h = é(R, Q). Then,
by bilinearity of €, we have that h = ¢g*. Thus, computing the discrete log
of I to the base ¢ in Gy gives the answer to the initial problem. Hence, the

discrete log problem in Gy is no harder than the discrete log problem in Gs.

The Decision Diffie-Hellman problem is easy: The Decision Diffie-Hellman
Problem (DDH) in G; can be stated as follows: given (P, aP,bP, cP) where
P € Gy and a,b,c € Z, determine if ¢ = abmod n. Joux and Nguyen [31]

observe that

c=abmodn <= é(P,cP)=é(aP,bP).

CHAPTER 2. BILINEAR MAPS AND THE BILINEAR DIFFIE-HELLMAN
ASSUMPTION 5

Therefore, the DDH problem is easy to solve in Gy. (Note that the Computa-

tional Diffie-Hellman problem (CDH) can still be hard in G, even if the DDH

problem is easy.)

Notation: From here on, we use G* to denote the set G* = G \ {O} where O is
the identity element in G, and Z,, to denote the group {0,1,...,n—1} under

addition modulo n. We denote by F, the finite field with ¢ elements.

2.1 Intractability Assumptions

We recall here the Computational Diffie-Hellman (CDH) assumption and introduce
a variant, the Bilinear Diffie-Hellman (BDH) assumption which will be needed to

prove the security of some of the schemes.

2.1.1 The Computational Diffie-Hellman Problem

The Computational Diffie-Hellman Problem in a cyclic group G of order n is:
Given a generator g of G and two elements ¢°,¢°> € G for a and b random in Z,,,

compute g*°.

We say that a randomized algorithm ZG is a CDH parameter generator if:
1. ZG takes as input a security parameter 0 < XA € Z (in unary).
2. ZG runs in polynomial time in .

3. ZG outputs the description of a group G of prime order p.

CHAPTER 2. BILINEAR MAPS AND THE BILINEAR DIFFIE-HELLMAN
ASSUMPTION 6

We denote by ZG(1%) the set of all possible outcomes of ZG on input 1.

For any probabilistic algorithm A, we define the CDH advantage of A against

the CDH parameter generator G by

G + IG(1*),|G| = p; g «+ G;

AdvCDHpg A(N) = Pr|h = g
v 16,.4(}) r{ 9 a,b < Ly h — A(g, ¢°)

Where < means ‘is a random element of’.

The CDH assumption for Z§G is that :
For every probabilistic polynomial-time algorithm A, the function AdvC DHzg a())

is negligible in \. 2

2.1.2 The Bilinear Diffie-Hellman Problem

The Bilinear Diffie-Hellman Problem in (G, Gy, é), where G; and G, are cyclic
groups of equal order n and é : Gy x G; — Gy is a bilinear map satisfying the
properties described previously, is:

Given a generator P of Gy and three elements aP,bP,cP € Gy for a, b and ¢

random in Z,, compute &(P, P)™°.

We say that a randomized algorithm ZG is a BDH parameter generator if:

1. ZG takes as input a security parameter 0 < XA € Z (in unary).

2Recall that a function f()) is said to be negligible in A if f(X) < 1/p(A) for all polynomials
p € Z[x].

CHAPTER 2. BILINEAR MAPS AND THE BILINEAR DIFFIE-HELLMAN
ASSUMPTION 7

2. ZG runs in polynomial time in .

3. ZG outputs the description of a two groups Gy and G, of prime order p and

the description of a bilinear map é : G; x G; — Gy.

We denote by ZG(1*) the set of all possible outcomes if ZG on input 1.

For any probabilistic algorithm A, we define the BDH advantage of A against the
BDH parameter generator ZG by

(G1,G2, €) « IG(1), |Gy | = |Ge| = p;

AdvBDHzg 4(\) = Pr|h = &(P, P)™* -
vBDHzg.4(}) r{ PP b Gerabce Zyh — A(P.aP,bP.cP)

The BDH assumption for ZG is that :
For every probabilistic polynomial-time algorithm A, the function AdvBDHzg a())

s negligible in .

2.1.3 Relation between the CDH and BDH

It is easy to show that the BDH problem in (G, Gy, é) * is no harder than the CDH
problem in either G; or G,. If we have an algorithm to solve the CDH problem in
Gy with respect to P, then given aP,bP, cP € Gy, we compute abP using the CDH
algorithm. Then é(abP, cP) = é(P, P)** is the solution to the BDH problem. On

the other hand, if we have an algorithm to solve the CDH problem in G, with respect

to g = é(P, P), then, given aP,bP,cP € G;, we compute g** = é(aP,bP) and

3From now on, G; and G, are cyclic groups of prime order.

CHAPTER 2. BILINEAR MAPS AND THE BILINEAR DIFFIE-HELLMAN
ASSUMPTION 8
g° = é(cP, P), and then we use the CDH algorithm to compute g = é(P, P)eb,
the solution to the BDH problem. The problem of finding if the BDH problem is
polynomially equivalent to the CDH problem in either G; or G, is still open.

It is interesting to note that the isomorphisms from G; to Gy induced by the

bilinear map are one-way functions assuming that the DDH problem is hard in G;.

For a point @ € Gj, define the isomorphism fo : G — Gy by fo(R) = é(R,Q)
1. We show that an efficient algorithm to invert any fg would imply an efficient
algorithm to solve the DDH problem in G, (and for the only known implementation

of a bilinear map, the DDH is intractable in Gy).

Proposition 2.1.1 Suppose there is a t-time algorithm A which inverts fg for
some Q € Gy with probability . Then there is an efficient algorithm B that solves
the DDH problem in Gy with respect to g = é(P, P) in time 4t+71 and with probability
gt, where P is any generator of Gy and T is the time required to compute the function

é.

Proof Given ¢%,¢* ¢¢ € G,, compute U = fél(g“), V= fél(gb), W = fél(gc)
and Y = fél(g) Say (Q = xP. Note that U = fél(g“) implies that é(U, Q) = ¢°,
so é(U,zP) = é(U,P)* = é(zU,P) = g* so U = ax™'P. ® Similarly, V = bz™'P,
W = cx™'P and Y = z7'P. Therefore, é(U,V) = ¢~ and e(WY) = @
Thus, ¢¢ = ¢* if and only if &(U, V) = &W,Y). Tt is easy to see that we need 4

applications of algorithm A and this new algorithm is always successful if A gives

the correct answer each time. |

4t is a homomorphism because ¢ is bilinear and is is onto because ¢ is non-degenerate and
@ € (1 is a generator of G since (G; has prime order.

By £~1, we mean 2~ ! mod p.

Chapter 3

Encryption Schemes

In this chapter, we present how bilinear maps can be used to construct encryption
schemes.

The most significant result in this field is probably the identity-based encryption
scheme by Boneh and Franklin [5]. We present this scheme with complete proof of
security. We also present results by Lynn [34], Horwitz and Lynn [29] and Gentry
and Silverberg [26] who show how the scheme can be modified to include message
authentication, or to allow a hierarchy of private key generators.

We also present schemes by Boneh and Franklin [5] and Verheul [51] that use

bilinear maps to build encryption schemes with key escrow.

3.1 Identity Based Encryption

In traditional public key encryption, public keys are usually generated at random.

Then, if Alice wants to send an encrypted message to Bob, she must first obtain

CHAPTER 3. ENCRYPTION SCHEMES 10

Bob’s key from a public directory together with a certificate proving the authenticity
of the key. The motivation for identity-based encryption is to eliminate the need
for directory and certificates by using the identity of the receiver as the public key
(for example, if Alice wants to send an e-mail to Bob at bob@yahoo.com, then she
simply encrypts the message using the string “bob@yahoo.com” as the public key).

The idea of identity-based cryptography was first formulated by Shamir [48]
in 1984. However, practical schemes for identity-based encryption were not found
until recently by Boneh and Franklin [5] and Cocks [13] in 2001. Cocks’s scheme
is based on the “Quadratic Residuosity Problem” and even though it is reasonably
fast, it has a significant message expansion factor. We present here the scheme
by Boneh and Franklin, which is based on the BDH problem. This section closely

follows [5].
Definitions

Identity-Based Encryption Scheme

An identity-based encryption scheme consists of four randomized algorithms: Setup,

Extract, Encrypt and Decrypt.

Setup: takes as input a security parameter and outputs params and master-key. The
system parameters params must include a description of the message space M
and the ciphertext space C. The system parameters will be publicly known,

while the master-key is known only to the private key generator (PKG).

Extract: takes as input the system parameters params, the master-key and an arbi-

trary string ID € {0,1}* and outputs the private key d)p corresponding to the

CHAPTER 3. ENCRYPTION SCHEMES 11

public key ID.

Encrypt: takes as input the system parameters params, a public key ID and a plain-

text M and outputs the corresponding ciphertext.

Decrypt: takes as input the system parameters, params, a private key dp, and a

ciphertext C' and outputs the corresponding plaintext.

These algorithms are required to satisfy the standard consistency constraints,
namely if params is produced by the Setup algorithm, ID is a public key and d is

the corresponding private key generated by the algorithm Extract, then

VM € M, Decrypt(params, d, Encrypt(params, ID, M)) = M.

Security

The standard notion of security for public key encryption schemes is that of chosen
ciphertext security (IND-CCA) defined by Rackoff and Simon in [45]. This definition
captures the notion that an adversary should not be able to obtain any information
about a ciphertext even if he is given the decryption of any other ciphertext of
his choice. However, in our setting, the adversary may also be able to obtain the
private key corresponding to some |Ds of his choice, other than the one on which he
is being tested. The system should remain secure against such an attack. Therefore,
the definition of security must be strengthened a little to allow the adversary to
obtain the private key corresponding to any |IDs except the one on which he is being

tested.

CHAPTER 3. ENCRYPTION SCHEMES 12

The notion of semantic security against adaptive chosen ciphertext attack for
an identity-based encryption scheme (IND-ID-CCA) is defined through the following

game:

Setup: The challenger takes a security parameter A and runs the Setup algorithm.
He returns to the adversary the public system parameters params and keeps

the master-key to itself.
Phase 1: The adversary issues queries ¢, ..., ¢, where each query is one of:

— Extraction query (ID;). The challenger responds by running algorithm
Extract to generate the private key d; corresponding to the public key

ID; and sends it to the adversary.

— Decryption query (ID;,C;). The challenger responds by running algo-
rithm Extract to generate the private key d; corresponding to the public
key ID;, uses this private key to decrypt the ciphertext C; and returns

the resulting plaintext to the adversary.

Challenge: The adversary outputs two equal length plaintexts My, M; € M and a
public key ID on which he wishes to be tested. The only constraint is that 1D
must not have appeared in any extraction query in Phase 1. The challenger
picks a random bit ¢ € {0,1} and sends C = Encrypt(params,ID, M,) as the

challenge to the adversary.
Phase 2: The adversary issues queries ¢,,11,- - -, ¢, where each query is one of:

— Extraction query (ID;) where ID; # ID. The challenger responds as in
Phase 1.

CHAPTER 3. ENCRYPTION SCHEMES 13

— Decryption query (ID;,C;) # (ID,C). The challenger responds as in
Phase 1.

Guess: The adversary outputs a guess ¢’ € {0,1}. The adversary wins the game

ifd =ec.

Such an adversary is called an IND-ID-CCA attacker. The advantage of an IND-

ID-CCA attacker A against the scheme is defined to be:

1
Advg(N) = |Pr[e = (] — 5

where the probability is over the random choices made by the challenger and the
adversary. We say that an identity-based encryption scheme is semantically se-
cure against adaptive chosen ciphertext attack (IND-ID-CCA) if no polynomially
bounded adversary (in A) has non-negligible advantage (in A) in the game described

above.

To prove that the identity-based encryption scheme is IND-ID-CCA, we need
a weaker notion of security called one-way encryption [21]. Omne-way-encryption
(OWE) is defined for public-key encryption schemes as follows: the adversary is
given a random public key K, and a ciphertext C which is the encryption of
a random plaintext M using K. The goal of the adversary is to recover the
plaintext M. We say that a public-key encryption scheme is a one-way encryption
scheme if no polynomially bounded adversary has a non-negligible probability of
recovering the plaintext.

Again, this definition needs to be strengthened to model the idea that the ad-

CHAPTER 3. ENCRYPTION SCHEMES 14

versary may obtain some private keys. The notion of one-way identity-based en-

cryption (ID-OWE) is defined through the following game:

Setup: The challenger takes a security parameter A and runs the Setup algorithm.
He returns to the adversary the public system parameters params and keeps

the master-key to itself.

Phase 1: The adversary issues private key extraction queries IDq,...,ID,,. The
challenger responds by running algorithm Extract to generate the private key

d; corresponding to the public key ID; and sends it to the adversary.

Challenge: The adversary outputs a public key ID different from ID4,...,ID,, on
which he wishes to be challenged. The challenger picks a random plaintext
M € M, encrypts it using ID as a public key and sends the resulting ciphertext

to the adversary.

Phase 2: The adversary issues more private key extraction queries ID,,,11,...,1D,

different from ID. The challenger responds as in Phase 1.
Guess: The adversary outputs a guess M’ € M. The adversary wins if M’ = M.

Such an adversary is called an ID-OWE attacker. The advantage of an ID-OWE
attacker against the scheme is defined to be Pr[M’ = M], where the probability
is over the random choices made by the challenger and the adversary. We say
that an identity-based encryption scheme is a one-way identity-based encryption
scheme (ID-OWE) if no polynomially bounded adversary (in A) has non-negligible

advantage (in) in the game described above.

CHAPTER 3. ENCRYPTION SCHEMES 15

3.1.1 The Basic Scheme

We first present a basic identity-based encryption scheme called Basicldent and

prove it is ID-OWE in the random oracle model .

Setup: Given a BDH parameter generator ZG and a security parameter A,

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map
¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator P € G7.
Step 2: Pick a random s € Z; and compute Py, = sP.
Step 3: Pick cryptographic hash functions H; : {0,1}* — G} and H; : Gy —

{0,1}" for some positive integer n.

The plaintext space is M = {0,1}" and the ciphertext space is C =
G; x {0,1}". The public system parameters are params = (Gp,Gg,¢é,

Py, P, Pouy, Hy, Hy). The master-key is s € Z;,

Extract: Given a string ID € {0,1}*, the master-key s and system parameters

<le(G'27é7pvn7P7 PpubaH17H2>7

Step 1: Compute Qp = H1(ID) € G;.

Step 2: Compute dip = sQp and return dp.

Encrypt: Given a plaintext M € M, a public key ID and system parameters

<le(G'27é7pvn7P7 PpubaH17H2>7

'Recall that a random oracle is an idealized random function which, given any input in its
domain, returns a random and independent element of its range (but always returns the same
element for a given input).

CHAPTER 3. ENCRYPTION SCHEMES 16

Step 1: Compute Qp = Hy(ID) € Gj.
Step 2: Compute g = é(Qp, Pou) € Gj.
Step 3: Pick a random r € Z;.

Step 4: Compute the ciphertext C = (rP, M @& Hs(¢")) and return C.

Decrypt: Given a ciphertext (U, V'), a private key dip € G} and system parameters
<Gl 9 GZ? évpv n, P7 Ppu67 Hh H2>7

Step 1: Compute ¢’ = é(dip, U).

Step 2: Compute M =V & Hy(g'). Return M.

We have that

é(dle U) = é(SQ”),TP) = é(Q|D7 P)Ts = é(Qle PpUb)T = gr'

Therefore, the message returned by the decryption algorithm is

M @ Hy(g") ® Hy(é(dip,U)) = M @ Hy(g") @ Ha(g") =M

which proves that the scheme is consistent.

Security

We now show that Basicldent is a one-way identity-based encryption scheme (ID-

OWE) assuming that the BDH assumption holds for ZG.

CHAPTER 3. ENCRYPTION SCHEMES 17

Theorem 3.1.1 Let the hash functions Hy, Hy be random oracles. Suppose there
is an |D-OWE attacker A that has advantage ¢ against the scheme Basicldent which
makes at most qg > 0 private key extraction queries and qm, > 0 hash queries to Hy.
Then there s an algorithm B that solves the BDH problem in IG with advantage

at least

£ 1
AdvBDHyzo g(\) > _
76.:5(0) 2 e(l+4qg) - qm, qm, - 2"

where e &~ 2.71 s the base of the natural logarithm. The running time of B is

O(time(A)).

Note that the values ¢, ¢z, qu, are actually functions of A (because their value
certainly change depending on the size of the groups G; and Gy), but we drop the
parameter A to simplify the notation. Note also that the second term in the bound
on AdvBD Hzg g(A) is negligible in A only if 1/2" is negligible in A.

The following public key encryption scheme, that we call BasicPub, is used to

prove the theorem. It is described by the three following algorithms:

Setup: Given a BDH parameter generator ZG and a security parameter A,

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map
¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator P € G7.
Step 2: Pick a random Qip € Gy (so Qp is in the group generated by P).
Step 3: Pick a random s € 7, and compute P, = sP and dip = sQp.

Step 4: Pick a cryptographic hash function H, : Gy — {0,1}" for some posi-

tive integer n.

CHAPTER 3. ENCRYPTION SCHEMES 18

The public key is (Gy, Gy, é, p,n, P, Py, Qip, H2), the private key is djp. The

plaintext space is M = {0,1}" and the ciphertext space is C = Gy x {0,1}".

Encrypt: Given a plaintext M € M and a public key (Gy,Gs,é,p,n, P, Poup,

Q|D7 H2>7

Step 1: Compute g = é(Qp, Pou) € Gj.
Step 2: Pick a random r € Z;.

Step 3: Compute the ciphertext C = (rP, M @& Hs(¢")) and return C.

Decrypt: Given a ciphertext C = (U,V) € C, a public key (Gy,Gy,é,p,n,

P, P, Qip, H2) and the private key dip,

Step 1: Compute ¢’ = é(dip, U).

Step 2: Compute M =V & Hy(g'). Return M.

This completes the description of BasicPub. We now prove Theorem 3.1.1 in two
steps. First, we show that an ID-OWE attack on Basicldent can be converted into
a OWE attack on BasicPub, which shows that the private key extraction queries do
not help the adversary. Then, we show that an OWE attack on BasicPub can be

converted into an algorithm to solve the BDH problem.

Lemma 3.1.2 Let H, : {0,1}* — G; be a random oracle. Let A be an ID-OWE
adversary that has advantage ¢ against Basicldent which makes at most qg > 0 pri-
vate key extraction queries. Then there is an OWE adversary B that has advantage

at least e(l-ls—in) against BasicPub. The running time of B is O(time(A)).

CHAPTER 3. ENCRYPTION SCHEMES 19

Proof The challenger generates a public key K, = (G1,Gy,é,p,n, P, Py,
Qip, H2) and a private key dip = sQp using the algorithm Setup of BasicPub.
He also picks a random plaintext M and encrypts it using the algorithm Encrypt
and the public key K. He gives K, and the resulting ciphertext C = (U, V) to

B.

B computes its guess for M by interacting with A as follows

Setup: B gives algorithm A the Basicldent parameters (G, Gz, é,p,n, P, Py,
H,, H,), where Gy,Gy,é,n,p, P, Py, Hy come from K, and H; is a ran-

dom oracle controlled by B.

Hi-queries: Algorithm B maintains a list of tuples (ID;, @;,b;, ¢;) containing in-
formation about the previous queries to oracle H;. We call this list H!!, Tt

is initially empty. B responds to A’s queries to oracle Hy as follows:

1. If the query ID; already appears in H'*! in a tuple (ID;, Q;, b;, ¢;), return
Qi.
2. Otherwise, B generates a random coin € {0,1} so that Pr[coin = 0] =§

where § = 1 — —L— (the reason for this choice will be given later).
qg+1

3. B picks a random b € Z7. If coin = 0, compute Q; = bP € G;. If

cotn = 1, compute Q; = bQp € Gy.

4. B adds the tuple (ID;, Q;,b, coin) to H'*" and returns Q; to A.

Note that in both cases, the distribution of (); is uniform in G; and indepen-

dent of A’s view.

CHAPTER 3. ENCRYPTION SCHEMES 20

Private key extraction queries Algorithm B responds to a private key extrac-

tion ID; issued by A as follows:

1. If A had previously issued the query ID; to oracle Hy, find the tuple
(ID;,Q;,b;, coin;) in HI'*' otherwise, create such a tuple using the pro-
cedure described above and add it to H!*!. If coin; = 1, then B reports

failure and terminates. The attack on BasicPub has failed.

2. Otherwise, coin; = 0, so Q; = b;P. Return d; = b;Pyp € G to A.
Observe that d; is the private key corresponding to I1D; since d; = b; Py =
b,’SP = SQ,’.

Challenge Given the public key ID on which A wishes to be challenged, B responds

as follows:

1. If A had previously issued the query ID to oracle Hy, find the tuple
(ID,Q,b,coin) in H"!, otherwise, create such a tuple using the proce-
dure described above and add it to H!**!. If coin = 0, then B reports

failure and terminates. The attack on BasicPub has failed.

2. If coin = 1, then @ = bQp. Let C = (U, V) be the challenge ciphertext
given to algorithm B, where U = rP € G, for some r € Z,,. Return C' =
(b='U,V) to A, where b™! is the inverse of bmod p. C’ is a Basicldent

encryption of M under the public key ID since V is the exclusive-or of

M with the hash of é(Qip, Ppu)" and

e(b7U, dip) = é(b™'rP, sbQip) = é(P, Qip)"*?"

CHAPTER 3. ENCRYPTION SCHEMES 21

= é(Qp,sP)" = &(Qp; Pus)"

Thus, the Basicldent decryption of C’ using d|p is the same as the Ba-

sicPub decryption of C using djp.

Guess Eventually, algorithm A outputs its guess M’. B returns M’ as its guess

for the decryption of C.

Claim: If algorithm B does not abort during the simulation, then algorithm A’s
view is identical to its view in the real attack. Further, if B does not abort, then
Pr[M = M'] > e, where the probability is over the random bits used by A, B and

the challenger.

Proof of Claim: If B does not abort, then all responses given by the H; oracle
are uniformly and independently distributed in G7, all responses to the private key
extraction queries are valid and the challenge ciphertext C’ is the encryption of a
random plaintext M € M. Thus, A view is identical to its view in the real attack.
Furthermore, the challenge ciphertext C’ given to A is the Basicldent encryption of
M under the public key ID chosen by A. Hence, by definition of A, it will make

the correct guess with probability at least ¢. |

It remains to calculate the probability that B does not abort during the simu-
lation. If A4 makes ¢p private key extraction queries, then the probability that B
does not abort treating one of those queries is 7. The probability that B does not
abort during the challenge step is (1 —). Therefore, the probability that B does

not abort during the simulation is §%2(1 — §). The value § = 1 — —— was chosen
apt+1

CHAPTER 3. ENCRYPTION SCHEMES 22

in order to maximize this function. We can find that this probability that B does

: 12
not abort is at least -7—s *. |

The analysis used in the proof of Lemma 3.1.2 uses a similar technique to Coron’s

analysis of the Full Domain Hash signature scheme [14].

Lemma 3.1.3 Let Hy : G, — {0,1}" be a random oracle. Let A be an OWE
adversary that has advantage £ against BasicPub. Suppose that A makes at most
qm, > 0 queries to Hy. Then there is an algorithm B that solves the BDH problem

in G with advantage at least (¢ — 5)/qu, and running time O(time(A)).

Proof Algorithm B is given as input the BDH parameters (Gy, Gy, é) produced by
ZG and a random instance (P,aP,bP, c¢P) = (P, Py, P, P3) of the BDH problem,
i.e. P israndom in G} and (a,b,c) are random in Z7 where p is the order of Gy, Gs.

Let D = é(P, P)®. B calculates D by interacting with A as follows.

Setup: B sets P, = P, and Qip = P, and sends the BasicPub public key
Ky = (G1,Gy, é,p,n, P, Py, Qip, Ha) to algorithm A. H; is a random oracle

controlled by B.

Challenge: B picks a random string R € {0,1}", defines the challenge cipher-
text to be C = (Ps,R) and sends C to A. The private key associ-
ated to Ky 18 dip = aQip = abP. Therefore, the decryption of C is
M = R & Hy(é(Ps,dip)) = R @ Hy(D). Note that both dp and M are

unknown to B.

—_

2To see this, note that (1 — %H)n > % and lim,_ (1 — %H)n =

CHAPTER 3. ENCRYPTION SCHEMES 23

H;-queries: Algorithm B maintains a list of tuples (X, H,) containing information
about the previous queries to oracle Hy. We call this list HY*'. It is initially

empty. B responds to A’s queries to oracle H, as follows:

1. If the query X; already appears in HY*! in a tuple (X;, H;), return H;.

2. Otherwise, B picks a random string H; € {0,1}", adds the tuple (X;, H;)

to HYst and returns H;.

Guess: Eventually, A outputs a guess M’ as the decryption of C. This guess is
ignored and B picks a random tuple (X;, H,) from HY* and outputs X; as

its guess to the solution of the given instance of the BDH problem.

Again, it is easy to see that A’s view is identical to its view in the real attack.
The setup is as in the real attack since @ and b are random in Z7, so is the challenge
since ¢ is random in Z7 and the resulting encrypted message is a random plaintext
since it is the exclusive-or of two random strings in {0,1}". Thus, Pr[M’' = M] > «.
It remains to calculate the probability that B outputs the correct result.

Let H be the event that at the end of the simulation D appears in a tuple on
Hlst, Let § = Pr[H]. Note that if D does not appear in H%*!, then the decryption of
C is independent of A’s view (since Hz(D) is a random string in {0, 1}" independent
of A’s view). Thus, Pr[M’' = M | =H] < 1/2". Therefore, we have

e< Pr[M'=M]=Pr[M' =M |H] Pr[H]|+ Pr[M' = M | =H] - Pr[—H]

1
< Pr[H]+ Pr[M'= M | ~H]- Pr[-H] < 6+ 2—n(1 —9)

CHAPTER 3. ENCRYPTION SCHEMES 24

Therefore, we get Pr[H] = § > §(1 — 1/2") > ¢ — 1/2". Since we pick a random
element from H*!, it follows that the probability that B produces the right answer

is at least Pr[H]/qm, > (¢ — 1/2")/qn,. |

Note that, in the proof of the preceding lemma, if A answers correctly, then
R @® M’ = Hy(D). So B could scan through HY*!, pick a random tuple (X, H;)
such that H; = Hy(D) and output X, instead of picking a random tuple in all of
HL*'. Suppose further that n (the bitsize of the image of H;) is large enough so that
27/2 represents an infeasible amount of computation. Then, if we knew that when
A makes less than 2"/? calls to H,, the probability that more than & of these calls
result in the same hash value is a negligible function f(n), then we would obtain

that B produces the right answer with probability at least (¢ — 1/2" — f(n))/k.

Proof of Theorem 3.1.1. The result follows directly from Lemmas 3.1.2 and
3.1.3. Composing the reductions we get that if there exists an ID-OWE adversary
A that has advantage ¢ against the scheme Basicldent, then there is an algorithm

B that solves the BDH problem for 7G with advantage at least

€ 1

e(l+4qg) qm qm, - 2"

as required. |

3.1.2 The Full Scheme

We use a transformation due to Fujisaki and Okamoto [21] to convert the scheme

Basicldent into an IND-ID-CCA scheme. Let £ be a probabilistic encryption scheme

CHAPTER 3. ENCRYPTION SCHEMES 25

and let Ex(M;r) denote the encryption of M using the random bits r under the

public key pk. Fujisaki-Okamoto define the hybrid scheme £ as:
Ept (M) = (E(o: H(o, M), H'(0) & M)

where o is generated at random and H, H' are cryptographic hash functions.
Fujisaki-Okamoto show that if £ is a one-way encryption scheme, then £ is a
chosen ciphertext secure system (IND-CCA) in the random oracle model (assuming
& satisfies some natural constraints.)

We apply this transformation to Basicldent and show that the resulting scheme,

which we call Fullldent, is IND-ID-CCA. Here is the scheme Fullldent:

Setup: Asin the Basicldent scheme. In addition, pick cryptographic hash functions
Hjz :{0,1}" x {0,1}* — Z3 and Hy : {0,1}" — {0,1}". The plaintext space
is M ={0,1}" and the ciphertext space is C = G} x {0,1}" x {0,1}".

Extract: As in the Basicldent scheme.

Encrypt: Given a plaintext M € M, a public key ID and system parameters
(G1,Gy, é,p,n, P, Py, Hi, Hy, Hs, Hy),
Step 1: Compute Qp = H1(ID) € G;.
Step 2: Pick a random o € {0,1}" and compute r = Hs(o, M).
Step 3: Compute g = é(Qp, Pouw) € Gj.

Step 4: Compute the ciphertext C = (rP,o & Hz(g"), M & Hy(0o)) and return
C.

CHAPTER 3. ENCRYPTION SCHEMES 26

Decrypt: Given a ciphertext (U, V, W), a private key dip € G7 and system param-

eters (Gy, Gy, é,p,n, P, Py, Hi, Hy, Hs, Hy),
Step 1: If U & G reject the ciphertext.
Step 2: Compute ¢’ = é(dip, U).
Step 3: Compute o =V & Hy(g').
Step 4: Compute M =W & Hy(o).
Step 5: Compute r = Hs(o, M). If U # rP reject the ciphertext.
Step 6: Return M.

Consistency can be shown in a similar way as with Basicldent.

It is interesting to note that, for added security, it is possible to distribute

the private key of the PKG among different sites using techniques of threshold

cryptography [25]. See [5] for more details.

Security

To prove the security of Fullldent, we need the following theorem due to Fujisaki
and Okamoto (Theorem 14 in [21]). We state their theorem as it applies to the
scheme BasicPub. Let BasicPub™ be the scheme obtained by applying the Fujisaki-

Okamoto transformation to BasicPub.

Theorem 3.1.4 Let the hash function Hs, Hy be random oracles and let A be a
t-time adversary on BasicPub™ that achieves advantage =. Suppose that A makes

at most qp decryption queries and at most Qp,, Qm, queries to the hash functions

CHAPTER 3. ENCRYPTION SCHEMES 27

H; and Hy respectively. Then there is an adversary B on BasicPub with:

tlme(B) — FOtime(t7 4Hy, QH3) =t+ O((qu + QH4) : n)

Adv(B) = FOudv(c, qu,, qus, qp) = m[@ +1)(1 =2/p)*» —1]

where p is the order of the group in which BasicPub™ is implemented.

The following theorem shows that Fullldent is IND-ID-CCA assuming that the
BDH assumption holds for ZgG.

Theorem 3.1.5 Let the hash functions H,, Hy, Hs, H; be random oracles. Let A
be a t-time IND-ID-CCA adversary on Fullldent that achieves advantage ¢ and which
makes at most qg > 0 private key extraction queries, at most qp > 0 decryption

queries and at most qm,, qm,, qm, queries to the hash functions Hy, Hs, Hy respec-

tively. Then there is a BDH algorithm B in IG with:

timeg()\) < O(Fotime(tv 4H,, qH3))

€ 1
AdvBDHzg 5(\) > | FOua Qe Gl D | — — .
v 1g.5(A) = (d <€(1+qE+qD) qr,» qD> 2n> /qH

We first need the following lemma, which shows that an IND-ID-CCA attacker

on Fullldent can be transformed into an IND-CCA attacker on BasicPub™ (so again,

this shows that the private key extraction queries do not help the adversary).

Lemma 3.1.6 Let A be an IND-ID-CCA adversary that has advantage ¢ against the

scheme Fullldent which makes at most qz > 0 private key extraction queries and at

CHAPTER 3. ENCRYPTION SCHEMES 28

most qp > 0 decryption queries. Then there ws an IND-CCA adversary B that has

advantage at least e(l-l—quqD) against BasicPub™ . Its running time is O(time(A)).

Proof The challenger obtains a public key K, = (G1,G2,é p,n, P, Py, Qip,
H,,Hs, Hy) and a private key dip = sQp by running the Setup algorithm of
BasicPub”’ and gives K to B.

B mounts an attack against BasicPub™ on the key K, by interacting with A

as follows:

Setup: B gives to A the Fullldent parameters (G, Gy, p, n, P, Pouw, H1, Hy, Hs, Hy)
where Gy, Gy, p,n, P, Py, Hy, Hs, Hy come from K, and H; is a random

oracle controlled by B

Hi-queries Algorithm B maintains a list of tuples (ID;, @;,b;,¢;) containing in-
formation about the previous queries to oracle H;. We call this list HU's!, Tt

is initially empty. B responds to A’s queries to oracle Hy as follows:

1. If the query ID; already appears in H'*! in a tuple (ID;, Q;, b;, ¢;), return
Qi.
2. Otherwise, B generates a random coin € {0,1} so that Pr[coin = 0] =§

where § =1 — the reason for this choice will be given later).

1 (
1+qg+ap
3. B picks a random b € Z;. 1If coin = 0, compute Q; = bP € G;. If

cotn = 1, compute Q; = bQp € Gy.

4. B adds the tuple (ID;, Q;,b, coin) to H'*" and returns Q;.

Note that in both cases, the distribution of @); is uniform in Gi and indepen-

dent of A’s view.

CHAPTER 3. ENCRYPTION SCHEMES 29

Phase 1: Private key queries. Algorithm B responds to a private key extrac-

tion ID; issued by A as follows:

1. If A had previously issued the query ID; to oracle Hy, find the tuple
(ID;,Q;,b;, coin;) in HI'*' otherwise, create such a tuple using the pro-
cedure described above and add it to H!*!. If coin; = 1, then B reports

failure and terminates. The attack on BasicPub™ has failed.

2. Otherwise, coin; = 0, so Q; = b;P. Return d; = b;Pyp € G to A.
Observe that d; is the private key corresponding to I1D; since d; = b; Py =
b,’SP = SQ,’.

Phase 1: Decryption queries. Let (ID;, C;) be a decryption query issued by A.

Say C; = (U,, V;, W;). Algorithm B responds to this query as follows:

1. If A had previously issued the query ID; to oracle Hy, find the tuple
(ID;,Q;,b;, coin;) in HI'*' otherwise, create such a tuple using the pro-

cedure described above and add it to H!*!,

2. If coin; = 0, then B runs the algorithm for private key extraction to
obtain the private key corresponding to ID;. Then, it uses the private

key to decrypt the ciphertext C; and returns the corresponding plaintext
to A.

3. If coin;, = 1, then @; = b;Qip. Recall that U; € G;. Set C] =
(b;U;, Vi, W;). Then the Fullldent decryption of C; using d; = s@Q,; (the

unknown Fullldent private decryption key corresponding to ID;) is the

CHAPTER 3. ENCRYPTION SCHEMES 30

same as the BasicPub™ decryption of C! using dip since

e(b;Us, dip) = é(Us, sQip)" = &(Us, sb:;Qip) = é(Us, 5Q;) = é(Us, d;).

So B can issue the decryption query (C;) to the challenger and give the

challenger’s response to A.

Challenge Given the public key ID and the two messages My, M7 on which the

challenger wishes to be challenged,

1. B gives My, M, to the challenger as the messages on which it wishes
to be tested. The challenger responds with a ciphertext C = (U, V, W)

such that C is the BasicPub™ encryption of M, for a random ¢ € {0,1}.

2. If A had previously issued the query ID to oracle Hy, find the tuple
(ID,Q,b,coin) in H'!, otherwise, create such a tuple using the proce-
dure described above and add it to H!*!. If coin = 0 then B reports
failure and terminates. The attack on BasicPub™ has failed.

3. If coin = 1, then Q = bQpp. Return C’' = (b7'U,V,W) to A, where
b~! is the inverse of bmod p. As in the proof of lemma 3.1.2, we can
find that C’ is the Fullldent encryption of M. under the public key ID,

as required.
Phase 2: Private key queries. As in Phase 1.

Phase 2: Decryption queries. Asin Phase 1. Note that B is not allowed to issue

to the challenger the decryption query (U, V, W), but this is not a problem

CHAPTER 3. ENCRYPTION SCHEMES 31

since this happens if and only if A issues the decryption query (b~'U, V., W) =

C’, which, by definition, it is not allowed to do.

Guess: Eventually, algorithm A produces a guess ¢ for ¢. B outputs ¢’ as its guess

for c.

Claim: If algorithm B does not abort during the simulation, then algorithm A’s
view is identical to its view in the real attack. Further, if B does not abort, then
| Prfc = ¢] — 1 |> ¢, where the probability is over the random bits used by A, B

and the challenger.

Proof of Claim: If B does not abort, the responses to the Hi-queries are uniformly
distributed in Gj as in the real attack, the responses to the decryption and private
key extraction queries are valid and the challenge ciphertext C’ given to A is the
Fullldent encryption of M, for a random ¢ € {0,1}. Thus, by definition of algorithm
A, we have | Pr[c = ¢]—% |> . The result then follows from the fact that B outputs

the correct answer if and only if A’s answer is correct. |

It remains to bound the probability that B aborts during the simulation. If B
aborts, it can be only for one of the following (these are the only events that can

cause B to abort)
1. A issues a bad private key extraction query in Phase 1 or 2.
2. A chooses a bad ID to be challenged on.

We define two corresponding events:

& is the event that A issues a private key extraction query that causes B to abort.

CHAPTER 3. ENCRYPTION SCHEMES 32

&, is the event that A asks to be challenged on an ID that causes B to abort.
Claim: Pr[-& A =& > §Etap(1 — §).

Proof of Claim: We prove the claim by induction on the number of private key
extraction and decryption queries issued by the adversary. let £%+ be the event
that & V & happens after A issues at most ¢ queries and let £ be the event that
£V E, happens for the first time when A issues the i** query. We prove by induction
that Pr[-&%] > §(1 — 4).

If + = 0, then the only reason for which B could abort is if & occurs. Thus

Pr[-&%% > 1 — §. Now, suppose that the claim holds for i — 1. Then

Pr[ﬁgo"'i] — Pr[ﬁgo"'i | ﬁgo...i—l]Pr[_‘gO...i—l]
— Pr[—mi'" | ﬁgo...i—l]Pr[_‘gO...i—l]

Z Pr[ﬁgi | ﬁgo...i—l](si—l(l _ 5)

Hence, it suffices to show that Pr[-&' | =&£%71] = ¢; > §, i.e. we bound the
probability that the it query does not cause B to abort knowing that the first 7 — 1
did not. The 7' query is either a private key extraction for (ID;) or a decryption
query for (ID;, C;) where C; = (U, V;, W;).

Let H,(ID;) = Q; and let (ID;, Q;, b;, coin;) be the corresponding tuple in H!*!.
Note that if coin; = 0, & cannot happen since B is able to calculate the private

key corresponding to ID;. There are two cases to consider.

Case 1: ID; is not equal to the public key ID on which A is being challenged. Then

q; > Prlcoin;, = 0] = 4.

CHAPTER 3. ENCRYPTION SCHEMES 33

Case 2: ID; = ID. Then the :*" query is not a private key extraction query since such
an extraction query is not allowed, by definition. So it must be a decryption

query (ID, C;). Therefore, ¢; = 1 since B never aborts in a decryption query.

Hence, in both cases, ¢ > &, so Pr[-&£%+] > §'(1 — §). The claim follows from the

fact that

Pr[—& A =& = Pr[ﬁgo"'i] for some i, 0 <1 < (¢p + qr)
> 5’(1 —§) for some ¢, 0 < < (¢p + ¢r)

Z 5(1E+(ID(1 _ 5) I

As in the proof of Lemma 3.1.2, § was chosen to maximize §9#19(1 — §) and

the probability that B does not abort is at least e(l-l—qquD)' Hence, B advantage is
at 1€ELSt m. I

Proof of Theorem 3.1.5 The result follows directly from Lemma 3.1.6, Theorem
3.1.4 and Lemma 3.1.3. Composing the reductions we get that if there exists an ID-
OWE adversary A that has advantage ¢ against the scheme Basicldent, then there

is an algorithm B that solves the BDH problem for ZG with advantage at least

€ 1
Foav ’ 49 39 T Aan 2°
(d (6(1—|-qE—I-qD) 4qH,, 4H. C]D) 2n> /C]H

and which runs in time O(FOime(t, qu,, qm,)), as required. |

CHAPTER 3. ENCRYPTION SCHEMES 34

3.2 Authenticated Identity-Based Encryption

The scheme by Boneh and Franklin can be modified to include message authenti-
cation without any expansion in the length of the ciphertext. In this section, we
present the scheme by Lynn [34] for authenticated identity-based encryption. It is
based on an idea presented by Sakai, Ohgishi and Kasahara in [47].

The level of security achieved is the same as that in a private conversation,
i.e. secure authenticated communication without the ability to prove to a third
party that any information was ever exchanged. Such a scheme would be ideal for
applications such as email exchange.

It is interesting to note that authenticated encryption is obtained from the
Boneh-Franklin scheme with no additional computational cost. Also, since the
authentication code is the ciphertext itself, proving integrity is equivalent to proving
ciphertext unforgeability.

We mention that in [36], Malone-Lee claims to give an identity-based signcryp-
tion scheme, i.e. a scheme in which the ciphertexts are authenticated and non-
repudiable. However, he does not give any formal proof of security. That scheme

is not presented here.

3.2.1 Definitions

Authenticated Identity-Based Scheme

An authenticated identity-based encryption scheme consists of four randomized al-

gorithms: Setup, Extract, Aut-Encrypt and Aut-Decrypt.

CHAPTER 3. ENCRYPTION SCHEMES 35

Setup: takes as input a security parameter and outputs params and master-key. The
system parameters params must include a description of the message space M
and the ciphertext space C. The system parameters will be publicly known,

while the master-key is known only to the PKG.

Extract: takes as input the system parameters params, the master-key and an arbi-
trary string ID € {0,1}* and returns the private decryption key d correspond-

ing to the public key ID.

Aut-Encrypt: takes as input the system parameters params, a private key d (the
sender’s), a public key ID (the receiver’s) and a message M and outputs a

ciphertext.

Aut-Decrypt: takes as input the system parameters, params, a private key d (the
receiver’s), a public key ID (the sender’s) and a ciphertext C' and outputs the

corresponding plaintext.

These algorithms are required to satisfy the standard consistency constraints,
namely if params is produced by the Setup algorithm, ID 4,|D g are two public keys
and d4,dp are the corresponding private keys generated by the algorithm Extract,

then

VM € M, Aut-Decrypt(params, dg, D 4, Aut-Encrypt(params, d4,1Dg, M)) = M.

CHAPTER 3. ENCRYPTION SCHEMES 36

Security

We must again modify slightly the definition of semantic security against chosen
ciphertext attack to allow the adversary to make encryption queries since he can
no longer encrypt a plaintext by himself unless he is given access to a private key.

We define the notion of semantic security against adaptive chosen ciphertext
attack for an authenticated identity-based scheme (IND-AID-CCA) through the fol-

lowing game:

Setup: The challenger takes a security parameter A and runs the Setup algorithm.
He returns to the adversary the public system parameters params and keeps

the master-key to himself.
Phase 1: The adversary issues queries ¢, ..., ¢, where each query is one of:

— Extraction query (ID;). The challenger responds by running algorithm
Extract to generate the private key d; corresponding to the public key

ID; and sends it to the adversary.

— Encryption query (ID4,,IDp,, M;). The challenger responds by running
algorithm Extract to generate the private keys d4, corresponding to the
public keys ID 4,, uses this private key to encrypt the plaintext M; and

returns the resulting ciphertext to the adversary.

— Decryption query (ID4,,1Dp;, C;). The challenger responds by running
algorithm Extract to generate the private keys dp, corresponding to the
public keys IDp,, uses this private key to decrypt the ciphertext C; and

returns the resulting plaintext to the adversary.

CHAPTER 3. ENCRYPTION SCHEMES 37

Challenge: The adversary outputs two equal length plaintexts My, M; € M
and two public keys ID4,IDg on which he wishes to be tested. The only
constraint is ID4,|Dp must not have appeared in any extraction query in

Phase 1. The challenger picks a random bit ¢ € {0,1} and sends C =

Encrypt(params, ID 4, D g, M.) as the challenge to the adversary.
Phase 2: The adversary issues queries ¢,,11,- - -, ¢, where each query is one of:

— Extraction query (ID;) where ID; & {ID4,IDg}. The challenger responds

as in Phase 1.

— Encryption query (ID4,,|Dg,, M;). The challenger responds as in Phase
1.

— Decryption query (IDy4,,IDp,,C;) # (ID4,IDp,C). The challenger re-

sponds as in Phase 1.

Guess: The adversary outputs a guess ¢’ € {0,1}. The adversary wins the game

if ¢ =ec.

Such an adversary is called an IND-AID-CCA attacker. The advantage of an
IND-AID-CCA attacker against the scheme is defined to be:

Adva(N) = |Prle =] — %

where the probability is over the random choices made by the challenger and the
adversary. We say that an identity-based encryption scheme is semantically se-

cure against adaptive chosen ciphertext attack (IND-AID-CCA) if no polynomially

CHAPTER 3. ENCRYPTION SCHEMES 38

bounded adversary (in A) has non-negligible advantage (in A) in the game described

above.

Integrity

As mentioned before, in this scheme, the ciphertext is the authentication code of the
message. Therefore, to ensure integrity, it must be infeasible to forge ciphertexts.
We define the notion of security against ciphertext forgery (AID-CUF) through

the following game:

Setup: The challenger takes a security parameter A and runs the Setup algorithm.
He returns the adversary the public system parameters params and keeps the

master-key to itself.
Query Phase: The adversary issues queries ¢, ..., ¢, where each query is one of:

— Extraction query (ID;). The challenger responds by running algorithm
Extract to generate the private key d; corresponding to the public key

ID; and sends it to the adversary.

— Encryption query (ID4,,IDp,, M;). The challenger responds by running
algorithm Extract to generate the private keys d4, corresponding to the
public keys ID 4,, uses this private key to encrypt the plaintext M; and

returns the resulting ciphertext to the adversary.

— Decryption query (ID4,,1Dp;, C;). The challenger responds by running

algorithm Extract to generate the private keys dp, corresponding to the

CHAPTER 3. ENCRYPTION SCHEMES 39

public keys IDp,, uses this private key to decrypt the ciphertext C; and

returns the resulting plaintext to the adversary.

Guess: The adversary outputs two public keys, ID4,IDp and a string of bits C’,
his attempt to forge a valid ciphertext from sender ID4 to receiver IDg such
that ID4 and IDg did not appear in any extraction query and C’ is different
from all the output of the encryption queries issued with ID4 and IDg. The

adversary wins if C’ is a valid ciphertext.

We call such an adversary an AID-CUF attacker. We define the advantage of an
AID-CUF attacker to be Pr[C’ is a valid ciphertext]. We say that an authenticated
identity-based scheme is secure against ciphertext forgery (AID-CUF) if no polyno-
mially bounded adversary (in A) has non-negligible advantage (in A) in the game

above.

3.2.2 The Scheme

In this section, we give the description of an authenticated identity-based encryption
scheme and state the theorems about its security. We direct the reader to the paper
[34] for complete proofs of security.

Here is the description of the scheme, which we call Autldent.
Setup: Given a security parameter A

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map
¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator P € G7.

CHAPTER 3. ENCRYPTION SCHEMES 40

Step 2: Pick a random s € Z.

Step 3: Pick cryptographic hash functions Hy : Z, x Gy — {0,1}", H, :
{0,1} = Gy, H3 : {0,1}* x {0,1}* — Z, and H,:{0,1}" — {0,1}" for

some positive integer n.

The message space is M = {0,1}" and the ciphertext space is C =
Z, x {0,1}* x {0,1}"*. The public system parameters are params =
(G1,Gq, é,p,n, P, Hy, Hy, H3, Hy). The master-key is s € Z.

Extract: Given a string ID € {0,1}*, the master-key s and system parameters
(G1,Gy, é,p,n, P, H, Hy, Hs, Hy),
Step 1: Compute Qp = Hy(ID) € Gj.
Step 2: Compute dip = sQp. Return djp.
Encrypt: Given a plaintext M € M, a private key dip ,, a public key IDp and system
parameters (Gy, Gy, é,p,n, P, Hy, Hy, Hs, Hy),
Step 1: Pick a random o € {0,1}".
Step 2: Compute r = Hs(o, M).
Step 4: Compute g = é(dip ., H2(IDp)) € Gi.
Step 5: Compute the ciphertext C = (r,o @& Hi(r,g), M & H4(0)) and return

C.

Decrypt: Given a ciphertext (U, V, W), a public key ID 4, a private key dip,, system
parameters (Gy, Gy, é,p,n, P, Hy, Hy, Hs, Hy),

CHAPTER 3. ENCRYPTION SCHEMES 41

Step 2: Compute g = é(H(ID4), dip,)-

Step 3: Compute o =V & Hi (U, g).

Step 4: Compute M =W & Hy(o).

Step 5: Compute r = Hs(o, M). If U # r reject the ciphertext.

Step 6: Return M.

Consistency follows from

é(H2(|DA),d|DB) = é(H2(|DA),SH2(|DB))

= é(SH2(|DA),H2(|DB)) = é(dmA,Hz('DB)).

In step 5 of the encryption algorithm, M @& H4(o) can be replaced by the en-
cryption of M using any semantically secure symmetric encryption scheme with
key Hy(o). Step 4 of the decryption algorithm would then have to be modified

accordingly.

Theorem 3.2.1 Let the hash functions Hy, Hy, Hs, Hy be random oracles. Suppose
A is an AID-CUF attacker that can forge an Autldent ciphertext with advantage &
and makes at most ¢ Hay-queries and at most qp decryption queries. Then there
exists an algorithm B that solves the BDH problem in (Gy, Gy, €) which runs in time

O(time(A)) and has advantage at least 5/qD (3)2.

Theorem 3.2.2 Let the hash function Hy, Hy, Hs, Hy be random oracles. Suppose
A is an IND-AID-CCA attacker with advantage € against the scheme Autldent and

whose number of Hi-queries is bounded by ¢ and whose number of Hy-queries

CHAPTER 3. ENCRYPTION SCHEMES 42

s bounded by qy. Furthermore, suppose that the scheme is AID-CUF. Then there
exists an algorithm B that solves the BDH problem in (Gy, Gy, €) which runs in time

O(time(A)) and has advantage at least 5/(_71 (q;)z.

Note that the scheme has the property that, for any 2 public keys ID 4, 1Dg and

any plaintext M € M,
Encrypt(params, d4,|Dg, M) = Encrypt(params, dg, D4, M)

where d4,dp are the private key corresponding to ID4 and IDp respectively. This
is why it is impossible for the receiver to prove to a third party that the exchange

of information ever took place.

3.3 Hierarchical Identity-Based Encryption

A disadvantage of the Boneh-Franklin identity-based encryption scheme is that, in
a large network, the private key generator would have a quite burdensome job. One
solution to this problem is to allow a hierarchy of PKGs in which PKGs have to
compute private keys only to the entities immediately below them in the hierarchy.

In this section, we describe two hierarchical identity-based encryption schemes.
The first one, by Horwitz and Lynn [29], is 2-level hierarchical identity-based en-
cryption scheme that in addition allows key escrow at each level (the PKG can
decrypt messages produced by all the users below them in the hierarchy). The
second scheme, by Gentry and Silverberg [26], allows for an arbitrary number of

levels (however, the size of the ciphertext grows with the number of levels) and

CHAPTER 3. ENCRYPTION SCHEMES 43

encrypted messages can be decrypted only by the PKG immediately above the user

who produced it.

3.3.1 Definitions

Hierarchical Identity-Based Encryption Scheme

A primitive ID (PID) is an arbitrary string, i.e. an element of {0, 1}*.

An address is an [-tuple of PID’s. An address (ID4,...,ID;) is said to be a prefiz
of address (ID"y,...,ID";) if t < j and ID’, = ID, for all 1 < a <.

An [-level hierarchical identity-based scheme (I-HIDE) consists of [+ 3 random-
ized algorithms: Root Setup, Lower-level Setup, Extract; for 1 < i <[, Encrypt and

Decrypt.

Root Setup: takes as input a security parameter and outputs params and root secret.
The system parameters params must include a description of the message
space M and the ciphertext space C. The system parameters will be publicly

known, while the root secret is known only to the root PKG.

Lower-level Setup: takes as input the system parameters params and outputs a lower-
level secret. This algorithm is necessary only if the scheme requires the lower-

level entities to have such a lower-level secret.

Extract; (for 1 < <) : takes as input the system parameters params, an i-tuple of
PID’s (IDy,...,ID;) and a level-(¢ — 1) private key mkyp, . ip,_,y and outputs

a level-1 private key mk<|D17.,,7|D)

i

CHAPTER 3. ENCRYPTION SCHEMES 44

Encrypt: takes as input the system parameters params, an address and a plaintext

M € M and outputs the corresponding ciphertext.

Decrypt: takes as input the system parameters params, a secret key mkgp, ...ip,y and

a ciphertext C' € C and outputs the corresponding plaintext.

Security

The notion of semantic security against adaptive chosen ciphertext attack for a
hierarchical identity-based encryption scheme (IND-HID-CCA) is defined through

the following game:

Setup: The challenger takes a security parameter A and runs the Setup algorithm.
He returns to the adversary the public system parameters params and keeps

the root secret to itself.
Phase 1: The adversary issues queries ¢, ..., ¢, where each query is one of:

— Extraction query (PID-tuple;). The challenger responds by running al-
gorithm Extract to generate the private key mkpip_tuple corresponding to

PID-tuple, and returns it to the adversary.

— Decryption query (PID-tuple;, C;). The challenger responds by running
algorithm Extract to generate the private key mkpip_tuple corresponding
to PID-tuple,, uses this private key to decrypt the ciphertext C; and

returns the resulting plaintext to the adversary.

Challenge: The adversary outputs two equal length plaintexts My, M; € M and

a PID-tuple on which he wishes to be tested. The only constraints are that

CHAPTER 3. ENCRYPTION SCHEMES 45

neither this PID-tuple nor any of its ancestors appeared in any extraction
query in Phase 1. The challenger picks a random bit ¢ € {0,1} and sends

C = Encrypt(params,PID-tuple, M,) as the challenge to the adversary.
Phase 2: The adversary issues queries ¢,,11,- - -, ¢, where each query is one of:

— Extraction query (PID-tuple;) where PID-tuple, # PID-tuple or any of

its ancestors. The challenger responds as in Phase 1.

— Decryption query (PID-tuple,, C;) # (PID-tuple, C'). The challenger re-

sponds as in Phase 1.

Guess: The adversary outputs a guess ¢’ € {0,1}. The adversary wins the game

ifd =ec.

Such an adversary is called an IND-HID-CCA attacker. The advantage of an

IND-HID-CCA attacker against the scheme is defined to be:

1
Adva(N) = |Prle =] — 5

where the probability is over the random choices made by the challenger and the
adversary. We say that an identity-based encryption scheme is semantically se-
cure against adaptive chosen ciphertext attack (IND-HID-CCA) if no polynomially
bounded adversary (in A) has non-negligible advantage (in A) in the game described
above.

The notion of one-way hierarchical identity-based encryption is defined through

the following game:

CHAPTER 3. ENCRYPTION SCHEMES 46

Setup: The challenger takes a security parameter A and runs the Setup algorithm.
He returns to the adversary the public system parameters params and keeps

the root secret to itself.

Phase 1: The adversary issues private key extraction queries
PID-tuple,, ..., PID-tuple,,. The challenger responds by running algo-
rithm Extract to generate the private key mkpip.tuple corresponding to the

public key PID-tuple, and sends it to the adversary.

Challenge: The adversary outputs a PID-tuple on which he wishes to be chal-
lenged. The only constraints are that neither this PID-tuple nor any of its
ancestors appeared in any extraction query in Phase 1. The challenger picks
a random plaintext M € M, encrypts it using PID-tuple as a public key and

sends the resulting ciphertext to the adversary.

Phase 2: The adversary issues more private key extraction queries
PID-tuple,,,,...,PID-tuple, different from the challenge PID-tuple.

The challenger responds as in Phase 1.
Guess: The adversary outputs a guess M’ € M. The adversary wins if M’ = M.

Such an adversary is called an HID-OWE attacker. The advantage of an HID-
OWE attacker against the scheme is defined to be Pr[M’ = M|, where the prob-
ability is over the random choices made by the challenger and the adversary. We
say that a hierarchical identity-based encryption scheme is a one-way hierarchical
identity-based encryption scheme (HID-OWE) if no polynomially bounded adver-

sary (in A) has non-negligible advantage (in A) in the game described above.

CHAPTER 3. ENCRYPTION SCHEMES 47

3.3.2 A 2-HIDE Domain-Collusion Resistant Scheme with

Escrow at Each Level

The following scheme, given by Horwitz and Lynn [29], is a 2-HIDE scheme such
that the root secret can be used as an escrow key to decrypt messages produced
by any user. The PKGs on the intermediate level can also decrypt the messages
produced by the users below them (we call these intermediate PKGs, together with
all the users below them domains). We also note that only the addresses at the
lowest level can be used as public keys for encryption. The scheme is secure only
as long as there is limited collusion between the users under a given intermediate
PGK. We call the scheme Esc-2-HIDE

Let m be the maximal amount of collusion we are willing to tolerate among

users of the same domain.

Root Setup: Given a BDH parameter generator G and a security parameter A,

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map
¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator P € G7.

Step 2: Pick a random s € 7, and set P, = sP.

Step 3: Pick cryptographic hash functions H; : {0,1} — G™*' H, :
{0,1}* = Zy and Hj : G, — {0,1}" for some positive integer n.

The message space is M = {0,1}" and the ciphertext space is

C = G; x {0,1}*. The public system parameters are params =
(G1,Gy, é, P, Py, Hi, Hy, H3). The root secret is mk. = s.

CHAPTER 3. ENCRYPTION SCHEMES 48

Extract;: Given a prefix address (ID4), the root secret s and the system parameters
<Gl) (G'Zv év P, Ppubv Hlv H27 H3>7
Step 1: Compute (P, ..., P,) = H,(ID;) € G;™*!
Step 2: For 0 < 4 < m, compute sP; and return mkyp,y = (sFPo,...,5Py)

(the level-1 private key).

Extracty: Given an address (IDy,ID;), the level-1 address mkgp,y = (F;...., Py,)
and system parameters (Gy, Gy, é, P, P,u,, H1, Hy, Hs),
Step 1: Compute d = Hy(ID4]]ID2).
Step 2: Compute dyp, 10,y = v d' P! € Gy and return mkp, i0,) = dip, iD,)

(the level-2 private key).

Encrypt: Given a plaintext M € M, an address (IDq,1D3) and system parameters
(G1,Gy, é, P, Py, Hi, Hy, Hs),
Step 1: Compute (P,..., Py,) = Hi(ID1) and d = Hy(ID{||ID3).
Step 2: Compute P/ =" d'P,.
Step 3: Compute g = é(P’, Pousp).
Step 4: Pick a random r € Z.
Step 5: Compute the ciphertext C = (rP, M & Hs(¢")) and return C.

Decrypt: Given a ciphertext C = (U, V), a level-2 private key dp, ip,) and system
parameters (Gy, Gy, é, P, Py, Hi, Hy, Hs),

Step 1: Compute ¢’ = é(d(IDl,IDQ)v U).

CHAPTER 3. ENCRYPTION SCHEMES 49

Step 2: Compute M =V & Hs(g') and return M.

Consistency follows from

é(dup, ipyy. U) = € (zm: disPi,rP) =¢é (zm: d'P;, P) = ¢ (zm: d’P,»,sP)
=0 =0 =0
=¢ (zm: d'P;, Ppub> :

=0

It is also easy to see that the root PKG can decrypt all the messages using the

following algorithm:

Escrow Decrypt: Given a ciphertext C = (U, V), a level-1 private key s, an address
(ID1,1D2) and system parameters (Gy, Gy, €, P, Py, H1, H2, H3),

Step 1: Compute (P,..., Py,) = Hi(ID1) and d = Hy(ID{||ID3).

Step 2: Compute dyp, 1p,) = D1y d'sP;. This is the secret key corresponding
to the address (IDy,D3).

Step 3: Compute ¢’ = é(dqp, ip,), U).
Step 4: Compute M =V & Hs(g') and return M.

Theorem 3.3.1 Let the hash function H,, Hy, Hy be random oracles. Let A is an
HID-OWE attacker that makes at most n Extract, queries in each domain. Sup-
pose that A has advantage £ against the scheme Esc-2-HIDE. Then there ewists
an algorithm B that can solve the BDH problem in (Gy, Gy, é) with advantage at
least 5/ (2((]1(1 + 2qx,)qH, (qZ2)e), where qx; s a bound on the number of Extract;

queries, qm, s a bound on the number of H; queries and e is the base of the natural

logarithm.

CHAPTER 3. ENCRYPTION SCHEMES 30

We can then apply the transformation by Fujisaki and Okamoto [21] to obtain
an IND-HID-CCA scheme.

We add that in [29], Horwitz and Lynn present a 2-HIDE scheme with key
escrow at each level that would be resistant to any amount of collusion at the lower

level if we knew how to construct a function with certain algebraic properties.

3.3.3 A Full HIDE Scheme

This scheme, called BasicHIDE is due to Gentry and Silverberg [26]. It supports an
arbitrary number of levels but the length of the ciphertext, as well as computational
complexity of the Encrypt and Decrypt algorithms grows linearly with the number
of levels. We also note that any address (at any level) can be used as a public key

for encryption.
Root Setup: Given a BDH parameter generator G and a security parameter A,

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map
¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator Py € G7.
Step 2: Pick a random s, € Z; and set). = s.P..
Step 3: Pick cryptographic hash functions H; : {0,1}* — Gj, Hy : G —

{0,1}" for some positive integer n.

The message space is M = {0,1}" and the ciphertext space is ¢ = G%' x
{0,1}" where [is the level of the receiver. The public system parameters are

params = (G, Gy, ¢, P., Q., Hy, Hy). The root secret is s..

CHAPTER 3. ENCRYPTION SCHEMES 51

Lower-level Setup: Given the system parameters (G, Gy, é, P.,Q., Hi, Hy) , each

entity Ep,,..p;) other than the root picks a random sgp, .p,) € Z; and
computes Qp,,..Ip;) = 5(p....I0;)F which it keeps secret
Extract;: Given the PID tuple (IDy,...,ID;) of one of its children, its private key

mkp,,..i0i_) = (S(Dy,...10i_1)> @ Qupyys - - - s QuiDy .. D)), its secret value

S(IDy,..iD;_y) € Z7% 7 and system parameters (Gy, Gy, é, P, P, Hy, Hy), PKG

ID;_,) computes the private key as follows:

.....

Step 1: Compute Pyp, ..o,y = Hi(ID1,...,1D;) € Gy.
Step 2: Compute S (IDy,..,ID;) = S(IDl ID;_;) T 53Dy ,..., |D,»_1)P(|D1 ID;)

Step 3: Returns <5 ID1,..., 7Qm Q IDy)5 "7Q(|D1 IDi_1)>-

The private key corresponding to (IDy,....ID;) is (Sup,...ip;)s Qe

Qupy)»---» Qqp,,...ip;y) (the user (IDy,...,ID;) already knows Qqp, ...ip;))-

Encrypt: Given a plaintext M € M, a PID-tuple (IDq,...,ID;) and system param-
eters <G’1 5 G’z, é, _P7 Ppu67 Hl, H2>,

Step 1: Compute Pyp, ..o,y = Hi(IDy,...,ID;) € Gy for 1 <@ <1
Step 2: Compute g = é(Q., Pup,))-
Step 3: Pick a random r € Z;,.

Step 4: Compute the ciphertext C = <TPE,TP<|D17|D2>,...,TP<|D1 D), M @

H,(¢")) and return C.

3For definiteness, if i = 1, then the private key is mk. = (S¢, Q) where S, is the identity
element in Gy and the secret value is s..

CHAPTER 3. ENCRYPTION SCHEMES 32

Decrypt: Given a ciphertext C = (U, Us,...,U;, V), a private key <S<|D1 D) Qe
Q(ID1)7 RS Q(IDl IDl)> and SyStem parameters <Gl 3 GZa év P7 Ppu67 Hh H27 >7

compute

Vi H, (l é(AUOaS(IDl D))) _u
ILizs (Quos....i0;_1)> Us)

and return M.

Consistency follows from

é(Uo, S<|D1
Hﬁzz é(Q(lD1 ID;—1)s Ui) Hﬁzz é(S(lD1 |Di_1)Pm TP(IDl |D,»))
o Lizs €(Pe, P, ..ipyy) "¢ i)
Hi’zz é(PE, P(IDl |Di>)rs(lD1 ID;_1)

..... IDl)) é(rP., sePupyy + Zi’:z 5Dy ,....1D;_1) D,

= ¢(P., Pup,))

= é(rcPe, Pup,y)"

ey é(QE7 P<|D1>)T.

Theorem 3.3.2 Let the hash functions Hy, Hy be random oracles. Suppose there
is an HID-OWE attacker A that has advantage ¢ in targeting a note in level t in the
scheme BasicHIDE for some t and that makes at most qg, > 0 Hy queries and at

most qg > 0 extraction queries. Then there is an algorithm B that solves the BDH

i
e(gp+t)

problem in (Gy, Gy, €) with advantage at least (()" — 5%)/qm, and running

time O(time(A)).

Again, by applying the Fujisaki-Okamoto transformation [21], we get an IND-
HID-CCA scheme.
It is interesting to note that if there is only one level, then this scheme is identical

to the Boneh-Franklin scheme presented in section 3.1.

CHAPTER 3. ENCRYPTION SCHEMES 53
3.4 Escrow Encryption Schemes

Using a bilinear map, it is also possible to design El Gamal-like encryption schemes
which offer key escrow. We present two such schemes. The first one, by Boneh and

Franklin [5] offers global escrow, the second, by Verheul [51] has simple escrow.

3.4.1 Encryption Scheme with Global Escrow

Setup: Given a BDH parameter generator ZG and a security parameter A

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map

¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator P € G7.
Step 2: Pick a random s € Z; and compute () = sP.

Step 3: Pick a cryptographic hash function H : G, — {0,1}" for some posi-

tive integer n.

The message space is M = {0,1}" and the ciphertext space is C = G; X
{0,1}". The system parameters are params = (Gy, Gy, é,p,n, P,Q, H). The

M %
escrow key is s € Z,

KeyGen: Given the system parameters (G;, Gy, é,p,n, P,Q, H), a user generates
his public/private key pair by picking a random x € Z7 and computing P, =

xP. His public key is P, and his private key is x.

Encrypt: Given a message M € M, a public key P, and system parameters
<le(G'27é7pvn7P7Q7H>7

CHAPTER 3. ENCRYPTION SCHEMES 54

Step 1: Pick a random r € Z.
Step 2: Compute g = é(Py, Q).
Step 3: Compute the ciphertext C = (rP, M & H(g")) and return C.
Decrypt: Given a ciphertext C = (U, V), a private key = and system parameters
(G1,Gy,é,p,n,P,Q, H,
Step 1: If U & Gy, reject the ciphertext.
Step 2: Compute ¢’ = é(U, 2Q).
Step 3: Compute M =V @ H(¢') and return M.
Escrow-decrypt: Given a ciphertext C = (U, V), a public key P, the escrow
key s and system parameters (G, Gq, é,p,n, P,Q, H),
Step 1: If U & Gy, reject the ciphertext.
Step 2: Compute ¢ = é(U, $Ppu).

Step 3: Compute M =V @ H(¢') and return M.

Consistency for these algorithms is easy to check. It follows from the fact that

E(Ppup, Q) = é(xP,Q) = é(P,sP)* =é(rP,azsP) = é(U,2Q)

= é(rP,sxP) = é(U, sP,u).

A standard argument shows that this scheme is semantically secure in the random

oracle model if the BDH assumption holds for ZG.

CHAPTER 3. ENCRYPTION SCHEMES 35

3.4.2 Encryption Scheme with Simple Escrow

Setup: Given a BDH parameter generator ZG and a security parameter A

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map
¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator P € G7.
Step 2: Pick a cryptographic hash function H : G, — {0,1}" for some posi-

tive integer n.

The message space is M = {0,1}" and the ciphertext space is C = Gy X

{0,1}". The system parameters are params = (G, Gy, é,p,n, P, H).

Keygen: Given the system parameters (G, Gy, é,p,n, P, H), a user generates his
public/private key pair by picking a random x € Z7 and computing Pe,. = xP
and y = é(P, P.s.). His public key is y, his private key is @ and the escrow

key is P.,..

Encrypt: Given a plaintext M € M, a public key y and system parameters
<le(G'27é7pvn7P7 H>7

Step 1: Pick a random r € Z;,.

Step 2: Compute the ciphertext C = (rP,M & H(y")) and return C.

Decrypt: Given a ciphertext C = (U, V'), the private key « and system parameters
<le(G'27é7pvn7P7 H>7

Step 1: If U & Gy, reject the ciphertext.

CHAPTER 3. ENCRYPTION SCHEMES 56
Step 2: Compute ¢’ = é(U, P)".
Step 3: Compute M =V & H(g) and return M.

Escrow-decrypt: Given a ciphertext C = (U, V), the escrow key P.,. and system

parameters (Gy, Gy, é,p,n, P, H),

Step 1: If U & Gy, reject the ciphertext.
Step 2: Compute ¢’ = é(U, P.s.).

Step 3: Compute M =V @ H(¢') and return M.

Consistency is again easy to check. It follows from the fact that

y =g =¢é(P,P)"" =é(rP,P)* = €U, P)*

é(rP,aP) = é(U, P.s)

Note that here, since the user has access to both the escrow key and the secret
key, he can use either decryption algorithms. This scheme is useful if the user wants
to use the same secret key for encryption and signature, since the knowledge of the
escrow key enables to decrypt messages, but not to sign. Also, we note that in this

scheme, the user has explicit control as to whom he gives his escrow key.

Chapter 4

Signature Schemes

Bilinear maps have been used to build signature schemes that produce short sig-
natures, and to build identity-based signature schemes. We present two signature
schemes that provide short signatures and give complete proofs of their security. We
also present one of the many identity-based signature schemes that were proposed
and state the theorem about the security of the scheme.

We mention that in [52], Verheul shows how bilinear maps can be used to
construct self-blindable credential certificates, and in [35], Lysyanskaya presents a
unique signature scheme using bilinear maps. These schemes are not presented

here.

4.1 Short Signatures

Short digital signatures are always desirable. They are necessary in situations in

which humans are asked to manually key in the signature or when working in low-

37

CHAPTER 4. SIGNATURE SCHEMES 38

bandwidth communication environments. They are also useful in general to reduce
the communication complexity of any transmission.

We present two signature schemes that provide signatures whose length is ap-
proximately 160 bits but that still provide a level of security comparable to 320-bit
DSA or ECDSA signatures, or 1000-bit RSA signatures. The first scheme is ob-
tained by modifying the identity-based encryption scheme presented in Section 3.1.
The second scheme was designed by Boneh, Lynn and Shacham [6] using an idea
of Okamoto and Pointcheval [43]. This second scheme has the advantage of being

simpler to implement and it has a tighter security reduction.

4.1.1 Definitions

Signature Scheme

A signature scheme consists of four randomized algorithms: Setup, KeyGen, Sign

and Verify.

Setup: takes as input a security parameter and outputs params, the public system

parameters of the signature scheme.

KeyGen: takes as input the system parameters params, and returns a public key

and a private key.

Sign: takes as input the system parameters params, a private key and a message M

and outputs a signature on M.

Verify: takes as input the system parameters, params, a public key, and a message-

signature pair and outputs valid or invalid.

CHAPTER 4. SIGNATURE SCHEMES 39

These algorithms are required to satisfy the standard consistency constraints,
namely if params is produced by the Setup algorithm, K, and x are respectively

a public and private key produced by the KeyGen algorithm, then

VM € M, Verify(params, K, (M, Sign(params, x, M))) = valid.

Security

Security against adaptive chosen message attack is the standard notion of security
for signature schemes. It is defined through the following game between a challenger

and an adversary:

Setup: The challenger chooses a security parameter A and runs the Setup algo-
rithm. He gives the public system parameters to the adversary and keeps the

private key to himself.

Query Phase: The adversary issues signing queries My,..., M, where M,; €
{0,1}*. These queries can be made adaptively. The challenger responds
by running the Sign algorithm with his private key and returns the resulting

signature to the adversary.

Guess: The adversary outputs a message-signature pair (M, o) where M is differ-
ent from all queries issued in the preceding phase. The adversary wins if o is

a valid signature of M.

The advantage of an adversary A against a signature scheme is defined to be the

probability that A4 produces a valid message-signature pair in the game described

CHAPTER 4. SIGNATURE SCHEMES 60

above. A signature scheme is said to be secure against adaptive chosen message
attack if no polynomially bounded adversary (in A) has non-negligible advantage

(in A) in this game .

4.1.2 Signature Scheme from Identity-Based Encryption

Moni Naor observed that an IBE scheme could be transformed into a public key
signature scheme as follows. The public key for the signature scheme are the system
parameters of the IBE scheme. The private key for the signature scheme is the
master key of the IBE scheme. The signature on a message M is the IBE decryption
key for ID = M. To verify a signature, choose a random plaintext M’ in the
plaintext space of the IBE scheme, encrypt it using ID = M as the public key,
decrypt the resulting ciphertext using the given signature on M as the decryption
key and check that the resulting plaintext is the original plaintext M’. If the IBE
scheme is IND-ID-CCA, then the signature scheme is secure against adaptive chosen
message attack. We show that in fact, it is sufficient to have an ID-OWE IBE scheme
to obtain a signature scheme secure against adaptive chosen message attack by
proving that the signature scheme obtained by applying the transformation above
to the scheme Basicldent yields a signature scheme secure against adaptive chosen
ciphertext attack. The security proof would be similar for any other ID-OWE IBE
scheme.

We call this signature scheme BasicSig.
Setup: Given a BDH parameter generator ZG and a security parameter A,

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map

CHAPTER 4. SIGNATURE SCHEMES 61

¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator P € G7.

Step 2: Pick cryptographic hash functions H; : {0,1}* — G} and Hy : Gy —

{0,1}" for some positive integer n.
The system parameters are params = (.G, Gy, é,p,n, P, Hy, Hy).
KeyGen: Given system parameters (G, Gy, é,p,n, P, Hy, Hy),

Step 1: Pick a random z € Z.

Step 2: Compute K, = xP.
The public key is K., the private key is x € Z,.

Sign: Given a message M € {0,1}*, a private key = and system parameters

(G1,Gy, é,p,n, P, Hy, Hy),
Step 1: Compute Q = H;(M) € G;.
Step 2: Compute o = Q).
The signature on M is o.

Verify: Given a message-signature pair (M, o), a public key K, and system pa-
rameters (G, Gy, é,p,n, P, Hy, Hy),
Step 1: Compute Q = H;(M) € G;.
Step 2: Pick a random r € Z,.

Step 3: Compute g = é(Q, Kpu) € Gj.

CHAPTER 4. SIGNATURE SCHEMES 62

Step 4: Pick a random M’ € {0,1}".

Step 5: Compute U = rP and V = M' & Hi(g").
Step 6: Compute ¢’ = é(o, U).

Step 7: Compute M" =V & Hy(g').

Step 8: If M"” = M’ output valid; else output invalid.

Observe that the signature on any message M € {0,1}* is a unique element
of G;. We will see in Chapter 6 that the elements of G; can have a 160 bit

representation if Gy is chosen carefully.

Theorem 4.1.1 Let the hash functions Hy, Hy be random oracles. Suppose there
is an algorithm A that can forge a BasicSig signature with probability . Then
there exists an ID-OWE attacker which has advantage at least & against the scheme

Basicldent.

Proof First, the challenger runs the Basicldent Setup algorithm to get system pa-
rameters params = (G, Gy, é,p,n, P, Pw, Hy, Hy) and a master key s. The chal-
lenger then gives params to B and keeps s to himself.

Algorithm B mounts its attack against Basicldent by interacting with A as

follows.

Setup: B gives (Gy,Gy,é,p,n, P,Hy, Hy) to A as the system parameters and

Ky = Py as the public key of the signature scheme.

Query Phase: Let M; be a signing query issued by algorithm A. B responds to

this query by relaying the key extraction query (M;) to the challenger. The

CHAPTER 4. SIGNATURE SCHEMES 63

challenger responds by returning the private key dj; corresponding to the

public key M;. B returns dy; to A.

Guess: Eventually, algorithm A produces a message-signature pair (M, o) where
M is not equal to any signing query previously issued. Algorithm B gives
M to the challenger as the public key on which it wishes to be challenged.
The challenger returns a ciphertext C = (U, V) which is the encryption of a
random plaintext under the public key M. B runs the Basicldent decryption
algorithm on C using o as the private key and returns the plaintext obtained

as its guess for the decryption of C.

It is easy to see that A’s view is identical to that in the real attack since all
the responses to signing queries are valid signatures. Therefore, A produces a valid
message-signature pair with probability . Given the private key corresponding
to the public key M, B will obviously be able to decrypt the ciphertext correctly.

Hence, B has advantage at least ¢ against the scheme Basicldent. |

We note that the HIBE scheme presented in Section 3.3 can also be transformed

into a signature scheme using the same idea.

4.1.3 The Gap Diffie-Hellman Signature Scheme

This signature scheme was described implicitly by Okamoto and Pointcheval in [43].
However, the proof of security and implementation details come from a paper by
Boneh, Lynn and Shacham [6].

This scheme can be implemented in any Gap Diffie-Hellman group (GDH

CHAPTER 4. SIGNATURE SCHEMES 64

group), i.e. in any group in which the Decision Diffie-Hellman problem is easy
to solve, but the Computational Diffie-Hellman problem is intractable.

In [4], Boldyreva shows that this scheme can be modified to construct threshold
signature, multisignature and blind signature schemes. Lynn and Shacham also
mentioned in the Rump session of Crypto 2002 that it can also be modified to

construct aggregate signature and ring signature schemes.

Setup: Given a BDH parameter generator ZG and a security parameter A,

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map
¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator P € Gf.
Step 2: Pick a cryptographic hash function H : {0,1}* — G.
The system parameters are params = (G, Gy, é,p, P, H).

*

KeyGen: Given the system parameters (Gy, Gy, ¢, p, P, H), pick a random z € Z

and compute K, = xP. The public key is K, and the private key is x.

Sign: Given a message M € {0,1}*, a private key = and system parameters

<le(G'27é7pvP7H>7

Step 1: Compute R = H(M).

Step 2: Compute o = zR.
The signature on M is o.

Verify: Given a message-signature pair (M, o), a public key K, and system pa-

rameters (G, Gy, é,p, P, H),

CHAPTER 4. SIGNATURE SCHEMES 65

Step 1: Compute R = H(M).
Step 2: Compute ¢g; = é(P, o) and g2 = é(Kpuwp, R).

Step 3: If g1 = g2, return valid; else return invalid.

Consistency is easy to check: if the scheme is executed correctly, then

&(P,o) = &(P,xH(M)) = é(«P, H(M)) = &(Kpup, H(M))

In a general GDH group, the verifier would check that (P, Kpu, H(M),0) is a
Diffie-Hellman tuple.

The signature on a message M € {0,1}* is a unique element of G;. We will
see in Chapter 6 that the elements of G; can have a 160-bit representation if Gy is

chosen carefully.

Proof of Security

Theorem 4.1.2 Let the hash function H be a random oracle. Suppose there is an
algorithm A that makes at most qs queries to the signing oracle and has advantage

¢ against the scheme above. Then there exists an algorithm B that solves the CDH

e=1/(p=1)

sty ond

problem in the groups Gy generated by IG with advantage at least

runs in time O(time(A)).

Proof B is given as input the BDH parameters (G, Gy, é, p) with |G| = p and an
instance of the CDH problem in Gy, (P,aP,bP) = (P, P, P;), where P is a random
generator of G; and «a,b are random elements of Z,,.

B computes abP by interacting with A as follows:

CHAPTER 4. SIGNATURE SCHEMES 66

Setup: B gives algorithm A the system parameters (Gy, Gy, €, p, H) and public key

Ky = Pi, where H is a random oracle controlled by B.

H-queries: Algorithm B maintains a list of tuples (M;, R;,r;,¢;) containing in-
formation about the previous queries to oracle H. We call this list H'!. Tt

is initially empty. B responds to A’s H-query M; as follows:

1. If the query M; already appears in H"*" in a tuple (M;, R;,;, ¢;), return
R;.

2. Otherwise, B generates a random coin € {0,1} so that Pr[coin = 0] =§

where § = 1 — —— (the reason for this choice will be given later).
qs+1

3. B picks a random r € Zj. If coin = 0, compute R, = rP € G;. If

coin = 1, compute R; =, P+ P, € Gy.

4. B adds the tuple (M;, R;,r, coin) to H'"*' and returns R;.

Note that in both cases, the distribution of R; is uniform in G} and indepen-

dent of A’s view.

Signing queries: Algorithm B responds to a signing query M, issued by A as

follows:

1. If A had previously issued the query M; to oracle H, find the tuple
(M;, R;,b;, coin;) in H"s! otherwise, create such a tuple using the pro-
cedure described above and add it to H"!. If coin; = 1, then B reports
failure and terminates. The attempt to solve the CDH problem has
failed.

CHAPTER 4. SIGNATURE SCHEMES 67

2. Otherwise, coin; = 0, so R, = r,P. Return o; = r;,P, € G} to A.
Observe that o, is a valid signature on M, since (P, Py, H(M,),0;) =
(P,aP,r;P,r;aP) is a valid Diffie-Hellman tuple.

Guess: Eventually, A produces a valid message-signature pair (M’ o’). If M’ does
not appear in any element of H"*! or if M’ appears in a tuple (M’, R',r', ')
of H"! with ¢ = 0, then B reports failure and terminates. The attempt
to solve the CDH problem has failed. Otherwise, if M’ appears in a tuple

(M',R',r",c) of H"! with ¢/ = 1, then B outputs o/ — r'P;.

If algorithm A successfully forges a signature on a message M’ which appears
in a tuple (M', R, ', ¢/} of H"! with ¢/ =1, then (P, P,, H(M'),0") = (P, aP,(r' +
b)P, ¢’y is a valid Diffie-Hellman tuple, so o — 'Py = a(r' + b)P — r'aP = abP.

Also, it is easy to see that if B does not abort when simulating A, then
algorithm A’s view is identical to its view in the real attack since the dis-
tribution of the output of H is uniform in G* and the signatures returned
by the signing oracle are valid. So, if B does not abort when simulating A,
Pr[A outputs a valid message-signature pair] = e.

But even if A outputs a valid message-signature pair, B will succeed only if M’
is in H'** and if the corresponding tuple has ¢ = 1. The probability A outputs a
valid message-signature pair with M’ in H"*' is at least £ — 1/(p — 1) because if M’
is not in H"*! then the signature on M is independent from A’s view (since H(M')
is a random element of G}). Given that M’ is in H"*! the probability that ¢ = 1
is (1 — 4). Therefore, the probability that B succeeds given that it does not abort

when simulating A is (¢ —1/(p — 1))(1 — §).

CHAPTER 4. SIGNATURE SCHEMES 68

It remains to calculate the probability that B does not abort during the simu-
lation. For each signing query, the probability that B does not abort is 4. Since
A makes at most ¢s such queries, the probability that B does not abort when
simulating A is at least §95.

Therefore, the probability that B succeeds is §25(1—4)(¢ —1/(p—1)). The value

§(A) = 1 — —L— was chosen in order to maximize §75(1 — §). Similarly as in lemma
gs+1

3.1.2, (1 - ﬁ)qs > 1. Hence, the probability that B succeeds in solving the CDH

problem is at least %. |

4.2 Identity-Based Signature Schemes

Bilinear maps can also be used to build identity-based signatures. The concept of
identity-based signatures was also presented by Shamir in [48]. However, contrary
to identity-based encryption, satisfactory identity-based signature schemes have
been found not long after ([18, 17]).

We present in this section an identity-based signature scheme by Cha and Cheon
[10]. We note that other identity-based signature schemes using bilinear maps were
also presented by Paterson [44] and Hess [28]. However, no proof of security is
provided for the scheme in [44]. In [28], two identity-based signature schemes are
presented, a proof of security is provided for the first one in the case of fixed ID,

only a heuristic proof is provided for the second one, which was later broken by

Cheon [12].

CHAPTER 4. SIGNATURE SCHEMES 69

4.2.1 Definitions

Signature Scheme

An identity-based signature scheme (IBS scheme) consists of four randomized algo-

rithms: Setup, Extract, Sign and Verify.

Setup: takes as input a security parameter and outputs params and master-key. The

system parameters will be publicly known, while the master-key is known only

to the PKG.

Extract: takes as input the system parameters params, a public key ID and the

master key, and returns the private key djp corresponding to ID.

Sign: takes as input the system parameters params, a private key djp and a message

M and outputs a signature on M.

Verify: takes as input the system parameters, params, a public key ID, and a

message-signature pair and outputs valid or invalid.

These algorithms are required to satisfy the standard consistency constraints,
namely if params is produced by the Setup algorithm, ID and dp are respectively
a public key and the corresponding private key produced by the Extract algorithm,
then

VM € M, Verify(params, D, (M, Sign(params, dip, M))) = valid.

CHAPTER 4. SIGNATURE SCHEMES 70

Security

Again, we have to strengthen a bit the security definition to allow the adversary to
obtain the private key corresponding to public keys of his choice. The security of
an identity-based signature scheme is defined through the following game between

a challenger and an adversary:

Setup: The challenger chooses a security parameter A and runs the Setup algo-
rithm. He gives the public system parameters to the adversary and keeps the

private key to himself.
Query Phase: The adversary issues queries ¢, ..., ¢, where each query is one of:

- Extraction query (ID;). The challenger responds by running algorithm
Extract to generate the private key dip, corresponding to the public key

ID; and sends it to the adversary.

- Signing query (ID;, M;). The challenger responds by running algorithm
Extract to generate the private key dip, corresponding to the public key
ID;, uses this private key to sign the message M; and returns the resulting

signature to the adversary.

Guess: The adversary outputs (ID, M, o) where ID is a public key, M is a message
and o is a signature, such that the adversary did not issue an extraction query
on ID and did not issue a signing query on (ID, M). The adversary wins if o

is a valid signature on M for user ID.

The advantage of an adversary A against a signature scheme is defined to be the

probability that A produces a valid message-signature pair for some ID in the game

CHAPTER 4. SIGNATURE SCHEMES 71

described above. An identity-based signature scheme is said to be secure against
adaptive chosen message attack if no polynomially bounded adversary (in A) has

non-negligible advantage (in A) in the game described above.

4.2.2 The Scheme

Setup: Given a BDH parameter generator ZG and a security parameter A,

Step 1: Run ZG with input 1* to get two groups G;, G, and a bilinear map
¢: Gy x Gy = Gy. Let p be the order of G; and G;. Pick an arbitrary

generator P € GF.
Step 2: Pick a random s € Zj and compute Py, = sP.

Step 3: Pick cryptographic hash functions H; : {0,1}* X G; — Z, and H; :
{0, 1}* — Gl.

The public system parameters are params = (Gy, Gy, €, p, P, P, Hy, Hs).

Extract: Given a string ID € {0,1}*, the master key s and system parameters

<le(Gr?7é7pv P7 PpubaH17H2>7

Step 1: Compute Qp = Hy(ID).

Step 2: Compute dip = sQp and return dp.

Sign: Given a message M € {0,1}*, a private key djp and system parameters

<le(Gr?7é7pv P7 PpubaH17H2>7

Step 1: Compute Qp = Hy(ID).

CHAPTER 4. SIGNATURE SCHEMES 72

Step 2: Pick a random r € Z; and compute U = rQp.
Step 3: Compute h = Hy(M,U).

Step 4: Compute V = (r + h mod p)dp.
The signature on message M is (U, V).

Verify: Given a message M € {0,1}*, asignature (U, V'), a public key ID and system
parameters (Gy, Gy, €, p, P, Ppuw, H1, H2),
Step 1: Compute h = Hy(M,U).
Step 2: Compute Qp = Hy(ID).
Step 3: Compute @ = U + hQp.
Step 4: Compute g = é(P, V) and ¢’ = é(Ppuw, Q).
Step 5: If ¢ = ¢/, output valid; else output invalid.

Consistency is easily proved as follows. If (U, V') is a valid signature on M, then

U=rQpand V = (r+h)dpp, where Qip = Hy(ID), h = H,(M,U) and r € Z. So,

é(P, V) == é(P,S(T + h)Q”)) == é(SP, (T + h)Q”)) == é(Ppub, U + hQ”)).

In a general GDH group, the verifier would check that (P, Py, @, V) is a Diffie-

Hellman tuple.

Theorem 4.2.1 Let the hash functions Hy, Hy be random oracles. Suppose there
is an algorithm A which queries oracles Hy, Hy and the signing oracle at most qp, ,

qm, and gs times respectively and that can forge an IDsig signature in time t and

CHAPTER 4. SIGNATURE SCHEMES 73

with probability ¢ > 10(gs+1)(qs+qm,)qn,/(p—1) Then there is an algorithm B that

solves the CDH problem in Gy with advantage &' > 1/9 and in time t' < %.
r

Chapter 5

Key Agreement Schemes

In this section, we present Joux’s famous one round tripartite key agreement proto-
col [30]. We note that this protocol, being non authenticated, suffers from the same
shortcomings as the original Diffie-Hellman protocol. Therefore, we also present an
authenticated tripartite key agreement protocol [1] which seems to prevent most of
the security problems of Joux’s protocol.

We also note that Smart presents in [50] a two party identity-based authenti-
cated key agreement protocol. The advantage of an identity-based key agreement
protocol is that it eliminates the need for a trusted fourth party when running the
protocol (a fourth party is usually necessary to obtain authenticated protocols).

That protocol is not presented here.

74

CHAPTER 5. KEY AGREEMENT SCHEMES 75
5.1 Joux’s One Round Tripartite Key Agreement
Protocol

In [30], Joux proposed a very simple protocol with which three parties, A, B and
C', can establish a secret session key. The protocol goes as follows:

Let (Gy, Gy, é,p, P) be BDH parameters.

o A picks a random a € Z,,, computes ¢ P and sends aP to B and C.
e B picks a random b € Z,, computes bP and sends bP to A and C.
e (picks a random ¢ € Z,, computes ¢P and sends cP to A and B.

The order in which these steps are executed is not important. After these three
steps are executed, A computes K, = é(bP,cP)*, B computes Kg = é(aP,cP)®
and C computes K¢ = é(aP,bP)°. It is easy to see that, by bilinearity of €, all

abe Tt is easy to see that a passive adversary

these are equal to K pc = é(P, P)
would have to solve an instance of the BDH problem to compute the shared secret

obtained by running the protocol.

5.1.1 Man-in-the-Middle Attack on Joux’s Protocol

Suppose that D is able to intercept A’s communications with B and C, imperson-
ating A to B and C and impersonating B and C to A. Then D can execute the

following man-in-the-middle attack on Joux’s protocol:

1. D picks random &y, d2, 83 € Zy,.

CHAPTER 5. KEY AGREEMENT SCHEMES 76

2. D intercepts aP from A and forwards ;P to B and C.
3. D intercepts bP from B and forwards 6, P to A.
4. D intercepts ¢P from C and forwards d3P to A.

At the end of this attack, D has agreed a key é(P, P)** with B and C, and
has agreed a key é(P, P)*2% with A. In subsequent communications, D can keep
impersonating A to B, C, and B, C to A using these keys.

This attack can easily be extended when the adversary has total control of
the network, so that D can share a separate session key with each user and can

impersonate any user to any other user.

5.2 Authenticated Tripartite Key Agreement
Protocol

The one round tripartite key agreement protocol can be modified to include au-
thentication so that, among other things, the man-in-the-middle attack described
above no longer works.

In [1], Al-Riyami and Paterson present four authenticated three party key agree-
ment protocols. These protocols are modeled on the MTI protocols [37] and on the
MQV protocol [32]. In this section, we describe the protocol modeled on the MQV

protocol and give some heuristic evidence of its security.

CHAPTER 5. KEY AGREEMENT SCHEMES 7

5.2.1 Security Goals and Desired Attributes

The definition of secure authenticated two party key agreement protocol that is
now generally accepted is that given by Canetti and Krawczyk in [8]. However,
describing this notion of security and extending it to three party would be quite
lengthy and the protocol we describe most likely would not satisfy it. Therefore, we
only give informal definitions of the security goals and desirable security attributes
for an authenticated key agreement protocol.

Let A, B and C be honest entities. We say that a key agreement protocol
provides implicit key authentication (of B, C to A) if entity A is assured that no
entities other than B and C' can compute the shared secret after the execution of
the protocol. Note that this does not mean that A is assured that B and C actually
computed this shared secret. A key agreement protocol that provides implicit key
authentication to all parties is called an authenticated key agreement (AK) protocol.

We say that a key agreement protocol provides key confirmation (of B, C to A)
if, after the execution of the protocol, entity A is assured that entities B and C' have
correctly computed the shared secret. If both implicit key authentication and key
confirmation (of B, C to A) are provided, then we say that the key agreement pro-
tocol provides explicit key authentication (of B, C to A). A key agreement protocol
that provides explicit key authentication to all parties is called an authenticated key
agreement with key confirmation (AKC) protocol.

In addition to implicit key authentication and key confirmation, a number of

desirable security attributes of AK and AKC protocols have been found:

known-key security: Each time the protocol is run, the resulting shared secret

CHAPTER 5. KEY AGREEMENT SCHEMES 78

should be different. The knowledge of the shared secret produced by previous
runs of the protocol should not enable an adversary to prevent the protocol

from achieving its goals.

forward secrecy: If the long-term private key of one or more entities are compro-
mised, the secrecy of the shared secret produced by honest entities in previous

runs of the protocol should not be affected.

no key compromise impersonation: Clearly, the knowledge of the long-term
private key of one of the entities enables an adversary to impersonate this
entity. However, it should not be possible for this adversary to impersonate
any other entity to A (actually, it should not be possible for this adversary

to impersonate any other entity at all).

no unknown key-share: It should not be possible for an adversary to convince
two of the three parties, say A and B that they share their secret key with an
entity D when they actually share it with entity C, while entity C (correctly)

believes the key is shared with A and B. !

key control: It should not be possible for any entity to force the shared secret to

a preselected value.

Further discussion on these attributes can be found in Chapter 12 of [41].

'In this situation, whenever entities A or B would receive a message from ', they would believe
the message came from D.

CHAPTER 5. KEY AGREEMENT SCHEMES 79

5.2.2 The Protocol

We now describe one of the protocols given by Al-Riyami and Paterson (TAK-4
in [1]) and give some evidence indicating it should satisfy the security properties
given above.

The protocol requires a certification authority (CA) to provide certificates which

binds users’ identities to long-term keys. The certificate for user A has the form:

Certa = (Za, pa, P, signea(Za||pal|P))

where || denotes string concatenation, Z, is the identity string of A and signca(S)
denotes the CA’s signature on string S. pus = 2P is A’s long-term public key
and x € Z, i1s A’s long-term secret key. Element P is included to specify which
element is used to construct g4 and the short-term public values. Similarly, Certp
and Certe are the certificates for B and C, with up = yP and p¢ = zP as their
long-term public keys.

Let (Gy, Gy, €) be BDH parameters and let H : Gy xGy — Z, be a cryptographic

hash function.
e A picks a random «a € Z,, computes aP and sends (aP,Certy) to B and C.
e B picks a random b € Z,, computes bP and sends (bP,Certg) to A and C.
e C picks a random ¢ € Z,,, computes c¢P and sends (¢P,Certc) to A and B.

The order in which these steps are executed is not important. After these three

steps are executed,

CHAPTER 5. KEY AGREEMENT SCHEMES 80
o A computes Ky = é(bP 4+ H(bP,yP)yP,cP + H(cP, zP)zP)t+H{aPaP)z,
e B computes Kz = é(aP + H(aP,2P)xP,cP + H(cP,2P)zP)*+1 PPy,
o C computes Ko = é(aP + H(aP,zP)xP,bP + H(bP,yP)yP)ct(cP=P)z,

It is easy to find that, by bilinearity of é, these are all equal to

I(ABC — é(P7 P)(a-I-H(aP,xP)x)(b-l—H(bP,yP)y)(c—I—H(cP,zP)z) ‘

Typically, one would then use a key derivation function H' : G, — {0,1}" for
some n (usually a hash function) and each user would then use H'(K 4p¢) as their

session key.

Security

First, since the protocol is very closely related to the MQV protocol, we would
expect it to offer the same security and have the same shortcomings as the original
MQV protocol.

Note that without the knowledge of both the long-term and short-term secret
key of a user, it does not seem possible for a fourth party to compute the value of
the shared secret. This gives us implicit key authentication.

The protocol also seems to offer perfect forward security, since the shared secret
includes the component é(P, P)®™. So even if the adversary can obtain all three
long-term secret keys, we expect he would still have to solve an instance of the BDH

problem to obtain the shared secrets obtained in previous runs of the protocol.

CHAPTER 5. KEY AGREEMENT SCHEMES 81

Key compromise impersonation attacks also seem unlikely since the knowledge
of the long-term key is required to impersonate a user.

The unknown key share attack against the MOV scheme does not seem to work
for this protocol because of the use of the hash function to compute the shared
secret.

We refer the reader to [1] for arguments that most known attacks on key agree-
ment schemes do not seem to apply to this scheme, which provides some additional
evidence about the security of the protocol.

Explicit key authentication can easily be added to this protocol by using stan-
dard key derivation and MAC techniques. The resulting protocol would then require
6 broadcasts over 2 rounds (each party simultaneously broadcasts its MAC after
computing the shared secret) or 5 broadcasts over 3 rounds (C waits until he re-
ceives short-term and long-term public keys from A and B, computes the shared
secret and then sends his short-term and long-term public key, together with his

MAC in one broadcast, then A and B compute the shared secret and simultaneously

broadcast their MAC).

Chapter 6

Implementation of Bilinear Maps :

the Weil and Tate Pairings

In this chapter, we show how bilinear maps can be efficiently implemented using
the Weil or the Tate pairings in supersingular elliptic curves.

We first present a quick introduction to elliptic curves, then define the Weil and
Tate pairings and show how they can be modified to become bilinear maps. Most
of the results presented in the introduction to elliptic curves come from [39] and
[16]. Elementary proofs of most of these results can be found in [16] or [11]. A

reader with a good background in algebraic geometry may prefer to consult [49].

6.1 Introduction to Elliptic Curves

Definition Let F be a field with algebraic closure F.

82

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 83

o An elliptic curve over F is given by a Weierstrass equation

E/IF' : y2 + a1y + asy = :1;3—|—a2:1;2 + a4z + ag

where ay,ag,as, aq,as € F such that there are no singular points (a point
(20,v0) € F is said to be singular if, for F(z,y) = y? + a1zy + asy — 2® —
ar?® — agx — ag, F(xo,y0) = 0, %(mo,yo) = 0 and %(mo,yo) = 0). The set

of points of an elliptic curve is the set of solutions to its defining equation

together with the point at infinity Op.

e For an extension K of F, a finite point (a,b) on the curve E is called a K-
rational point if (a,b) € K®. The point at infinity is K-rational for any field
K. The set of all K-rational points is denoted by E(K).

e We denote E(F) by E. !

e The points P € E\ {Og} are called finite points.

From now on, since we are only interested in elliptic curves defined over finite fields,

we will have F =, (¢ = p™ for some prime p)

6.1.1 The Group Law and Group Structure

Let E be an elliptic curve defined over some finite field F, (¢ = p™). We can define
a group law on E as follows. Let P and @ be points on E. Let [; be the line
through P and @ (if P = @, then [; is taken to be the tangent line to E at P; if

1So we use the symbol E to denote the elliptic curve, its defining equation and E(?)

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 84
one of P or) is O, then [y is the vertical line through the other point; if P = @)
= O, [y is the ‘line at infinity’). Then [; intersects E at one other point, say R
(points tangent to the line are counted twice and the line at infinity has a triple
intersection at the point at infinity). Let [be the line through R and Og. Then
[, intersects E at a third point, which we define to be P + Q).

It can be shown that (E,+) is an abelian group, i.e. the operation above
is associative, commutative, has a neutral element (Og) and every point has an
inverse. Algebraic formulas can easily be derived to compute this group law [16].
Further, for any extension Fx of F,, if P and () are F x-rational points, then so is
P + Q. Therefore, (E(F,x),+) is an abelian group for any extension F of F,.

The following two theorems give us the possible orders of the groups of points

of an elliptic curve defined over a finite field.
Theorem 6.1.1 (Hasse’s Theorem) If E is an elliptic curve defined over F,, then
#E(F,) =q+1—t, where|t] <2,/q.
Theorem 6.1.2 Let ¢ = p™. Then there exists an elliptic curve EJF, where
#E(F,) = g+ 1—t if and only if one of the following holds:
1. ?* <4q and p1t

2. m 1s odd and
(a)t =0
or (b) t* =2q and p = 2

or (c) t* =3q and p =3

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 85

3. m is even and

(a) t* = 4q
or (b) t* = q and p Z1 (mod 3)
or (¢)t=0and p#1 (mod 4).

The order of an elliptic curve defined over a finite field can be computed in

polynomial time.

Definition We say that an elliptic curve E defined over F, is supersingular if p | ¢

where ¢ = p” and t = g+ 1 — #E(F,). If p1t, then we say E is non-supersingular.
From the previous theorem, we get the following.

Corollary 6.1.3 Let E be an elliptic curve defined over F, with #E(F,) = ¢+1—t.

Then E is supersingular if and only if t* = 0, q,2q, 3q or 4q.

If we know the order of an elliptic curve E over F,, then it is possible to compute

its order over any finite extension IFx of F, using the following theorem.

Theorem 6.1.4 Let E be an elliptic curve defined over F, witht = q+1—#E(F,).
Let « and 3 be the complex roots of the polynomial T? —tT + q € Z[T]. Then

H#E[Fy)=¢"+1—a*— gk

The next theorem gives the group type of the group of points of an elliptic curve

E(F,).

Theorem 6.1.5 Let E be an elliptic curve defined over F,. Then E(F,) = Z,, &

Zy,, where ny | ny and ny | ¢ — 1.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 86

Given the order of the group of points of an elliptic curve E(IF,), it is possible
to compute its group type in polynomial time. It is especially easy if the elliptic

curve is supersingular, in which case we can use the following result.

Theorem 6.1.6 Let E be a supersingular elliptic curve defined over F, and let
t=q+1—#E(F,).

1. Ift* = q,2q or 3q, then E(F,) is cyclic.

2. Ift* = 4q, then E(F)) 2 Z 1 DL -1 ift = 2\/q and E(Fy) 2 Z jz11DZ 14
ift=-2/4.

3. Ift=0and ¢ Z3 (mod 4), then E(F,) is cyclic. Ift =0 and ¢ =3 (mod 4),
then either E(Fy) is cyclic or E(F,) = Zg41)/2 © Z

Definition Let E be an elliptic curve defined over F,.

o The order of a point P € E is the least positive non-zero integer n such that

nP = Op. If Pis a Fy-rational point, then the order of P is a divisor of

o A point P € FE is called an n-torsion point if nP = Op.

e We denote the subgroup of n-torsion points of E (or E(F)) by E[n] (or

E(Fy)[n]).

Theorem 6.1.7 Let E be an elliptic curve defined over ¥, and let n be a positive
integer such that gcd(q,n) = 1. Then En| = Z, & Zp,.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 87

6.1.2 Function Field of an Elliptic Curve

Definition Let E be an elliptic curve defined over F, and let y? + ayzy + azy =
23 + azx? + aqx + ag be its defining equation. Let F(x,y) = y* + ayzy + azy — 2° —

azr? — ayx — ag € Fy [z, y].

e The coordinate ring F,[E] of E over F, is the integral domain F,[E] =
F,[z,y]/(F). Similarly, we define F,[E] = F,[x,y]/(F), the coordinate ring of

E over F,. 2 The elements of F,[E] are called regular functions.

e The function field F,(E) of E over F, is the field of fractions of F,[E]. Sim-
ilarly, the function field F,(E) of E over F, is the field of fractions of F,[E].

The elements of F,(E) are called rational functions.

Note that for each [€ F,[E], we can repeatedly replace occurrences of y* by
y? — F(z,y) to obtain a representation I(z,y) = v(x) 4+ yw(z) where v(z), w(w) €
F,[=].

Definition Let [€ F,[E] be a regular function, I(z,y) = v(x) + yw(x). We define
the degree of | by deg(l) = max(2deg,(v),3 4+ 2deg, (w)).

Let f € F,(FE) be a rational function and P = (x¢,) € E be a finite point.
Then f is said to be defined or reqular at P if there exists a representation f = g/h,
g, h € F,[E] such that h(xg, yo) # 0 (h(x0,y0) is evaluated like a polynomial). From

now on, if P = (g, yo), we denote h(xo,yo) simply by h(P). If f is regular at P,

2Using the fact that neither partial derivative of F' vanishes at any point of E, we can prove
that F is an irreducible polynomial in Fy [z, y], which is why F,[E] and IF,[E] are integral domains.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 88
we put f(P) = g(P)/h(P). If f(P)=0, then f is said to have a zero at P. If f is
not defined at P, then f is said to have a pole at P, and we write f(P) = co. We
define the value of f at the point Of as follows. Let f = g/h with ¢,h € F,[E].
If deg(g) < deg(h), then f(Og) = 0. If deg(g) > deg(h), then f(Op) = co. If
deg(g) = deg(h), then f(Og) = a/b, where a is the highest degree term in ¢ and b
is the highest degree term in h.

For each point P € E, there exists a rational function u € F (E), u(P) = 0,
such that for any f € F,(E), we can write f = u?s where s € F (E), d € Z,
s(P) # 0,00. Such a u is called a uniformizing parameter for P.

Let f € F,(E) and P € E. Write f = u®s where u is a uniformizing parameter
at P and s(P) # 0,00. The order of f at P is defined to be d and we write
ordp(f) = d. The point P is a zero of f if and only if ordp(f) > 0 and we define
the multiplicity of that zero to be ordp(f). The point P is a pole of f if and
only if ordp(f) < 0 and we define the multiplicity of that pole to be —ordp(f).

ordp(f) = 0 if and only if f is defined at P.

Theorem 6.1.8 Let f € F (E). Then f has finitely many zeros and poles on E.

Furthermore,

Z ordp(f) =0.

PeFE
6.1.3 Divisors

Definition Let E be an elliptic curve defined over F,.

e The group of divisors Div(E) is the free abelian group generated by the points

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 89

of E.

Div(E) = { Z my(P) : mp = 0 for all but finitely many P € E}.3

Pek

o The degree of a divisor D = ,cpmp(P) is defined to be deg(D) =
2 pep P

o The support of a divisor D =), mp(P) is defined to be Supp(D) = {P €

e The subgroup of Div(E) of divisors of degree zero is denoted by Div’(E).

o Letrc FZ be a rational function. We define div(r) = 3y ordp(r)(P). This
is a divisor since every rational function has finitely many zeros and poles. A

divisor D is called principal if D = div(r) for some r € FZ

e The subgroup of Div(E) of principal divisors is denoted by Prin(E). *

e Two divisors Dy and D, are called equivalent if Dy — Dy € Prin(E). We

write Dy ~ D,.

From theorem 6.1.8, we get that Prin(E) C Div’(E). The following result is

very useful to identify principal divisors.

3These sums should be seen as purely formal sums and are not to be confused with the addition
on the elliptic curve.

4Prin(FE) is a subgroup of Div(E) since, for all r1,ry € K(E), div(ry) + div(ry) = div(rir),
—div(ry) = div(1/r1) and 0 = div(1).

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 90

Theorem 6.1.9 Let D =, . mp(P) be a divisor. Then D is principal if and

only if > pepmp =0 and Y p.pmpP = Op.

From this result, it is easy to show that for every divisor D € Div’(E), there
is a unique point @ € E such that D ~ (@) — (Op) (if D = .y mp(P), then
Q = > pepmpP). Using this, we see that the group of points of E is isomorphic
to Div?(E)/Prin(E).

Let D = > pcpmp(P) be a divisor and let f € F,(E)* be a rational function

such that Supp(D) N Supp(div(f)) = 0. Then we define the value of f at D to be

foy="1] rey.

PeSupp(D)
6.2 Bilinear Pairing on Elliptic curves

6.2.1 The Weil Pairing

Let E be an elliptic curve defined over F,. Let m be a positive integer coprime
to ¢ and let u,, C F, be the group of m*™ roots of unity (u,, C F,x provided that
m | (¢" = 1)).

Let P,Q € E[m]. Let D;,D, € Div’(E) be such that D, ~ (P) — (Og),
Dy ~ (@) — (Og) and Supp(D;) N Supp(D3) = 0. Then, by Theorem 6.1.9, mD,
and m D, are principal divisors. Let fp,, fp, € Fq(E) be such that div(fp,) = mD,
and div(fp,) = mDs.

The Weil pairing is the function e, : E[m| X E[m] — p, defined by e,,(P, Q) =

fp,(D2)/ fp,(D1).

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 91

The Weil pairing satisfies the following properties:

1. Well-Defined: The value of e,(P,Q) is independent of the choice of

D17D27fD17fD2‘
2.Identity: For all P € E[m], en,(P, P) = 1.

3.Non-Degeneracy: For P € E[m], e,(P,Q) = 1 for all @ € E[m] if and only if
P = 0Og.

4.Bilinearity: For all P,Q,R € E[m], en(P + Q,R) = en(P, R)en(Q, R) and

ew(P.Q + B) = en(P,Q)en(P,R).
5.Alternation: For all P,@Q € E[m], e,(P,Q) = e,(Q, P)™".

6. If E[m] C E(Fyn), then e,,(P,Q) € Fyn for all P,Q € E[m] (i.e. fiy CFpn).

6.2.2 The Tate Pairing

Let E be an elliptic curve defined over F,. Let m be a positive integer coprime to
q and let k be a positive integer such that m | (¢* — 1).

Let P € E[m]and Q € E. Let Dy, D, € Div’(E) be such that D; ~ (P)—(Og),
Dy ~ (@) — (Og) and Supp(D;) N Supp(Dy) = (. Then, by Theorem 6.1.9, mD; is
a principal divisor. Let fp, € F,(E) be such that div(fp,) = mDj.

The Tate pairing is the function (-,-) : E(Fux)[m] x E(Fx)/mEFx) —
F. /(IE‘;k)™ defined by (P, Q) = fp, (D). The quotient group E/mE can be thought
of as the set of equivalence classes of E under the equivalence relation P = () if

and only if there exists R € E such that P = () + mR. A similar interpretation

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 92

can be used for F, /(F;,)™. We note that if m?[|[#E(F), then E(F,.)/mE(F;)
is isomorphic to E[m].

The Tate pairing satisfies the following properties:

L. Well-Defined: (Og,Q) € (F;k)m for all @ € E(Fp) and, for P € E(Fx)[m],
(P,Q) € (F;k)™ for all @ € mE. Further, the value of (P, Q) is independent
of the choice of Dy, Dy, fp, .

2.Non-Degeneracy: For P € E[m], (P,Q) =1 for all Q € E if and only if P = Op.
3.Bilinearity: For all P,Q, R € E[m], (P+Q,R) = (P,R)(Q, R) and (P,Q + R) =
(P,Q)(P, R).
Note that (P,Q)™ = (mP,Q) = (O, Q) € (Fq*k)m, therefore, (P, Q) is an m'"
root of unity, up to multiplication by an m!® power.

It is interesting to note that when m?||#E(F,), the Weil pairing is related to

the Tate pairing by the equation

em(P,Q) = (P,Q)/{(Q, P) for P,Q € E[m]if P and @ are independent.

6.2.3 Computing the Weil and Tate Pairings

Let E be an elliptic curve defined over F,.
The following result will be used repeatedly to compute the Weil and Tate
pairings. We define gy : E — F, to be the line through the points U and V of

E5. If U =V then gy is the tangent to E at U, and if either one of U or V is the

°If the line through U and V has equation az + by + ¢ = 0, then gy,v = az + by + c.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 93
point at infinity Op, gu v 1s the vertical line through the other point. We write gy

as a shorthand for gy _v.

Theorem 6.2.1 Let P be a point on E and let fp, € F, be such that div(fp.) =

c{P) — {cP) — (¢ — 1){Og) © for a positive integer c. Then, for all a,b € Z,
div(fpass) = div(fpa) + div(fpp) + div(gappp) — div(g(ate)p)

and therefore, fpayp(Q) = fra(Q) - frs(Q) - daPpr(Q)/g(att)p(Q) provided that
Q¢ Supp(dw(fP,a)) U Supp(div(fP,b)) and gaP,bP(Q)vg(a-l—b)P(Q) € FZ-

Note that div(fpo) = div(fp1) =0, so fro(Q) = fri1(Q) = 1. Also, from the
theorem above, fp.11(Q) = fra(Q) - garP(Q)/gar1)P(Q) (because fpi(Q) = 1)

and fp2a(Q) = fPa(Q)? " garar(Q)/92ar(Q).
Using these formulas, together with the standard double-and-add strategy, we

get the following algorithm, due to Miller [42], to compute fp.(Q) for any positive
integer c.
Let (b; - - - bibg)y be the binary representation of .
Set f=1and V = P.
For i =t —1 down to 0,
Set f = f* gvv(Q)/gov(Q) and V =2V
Ifb; =1, then set f = f-gvp(Q)/gvip(Q) and V =V + P
Return f.

5From Theorem 6.1.9, this is a principal divisor.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 94

Computing the Weil Pairing

Let E be an elliptic curve defined over F,, let m be a positive integer with
ged(m,q) = 1 and let P,Q € E[m]. We show how to compute e,(P,Q) for
P,Q +# Op (if P or Qis Op, e(P,Q) = 1).

Pick points T,U € E \ {Og} at random such that P + T # U, U + Q and
T #UU+Q. Let D, = (P+T)—(T) and Dy = (Q + U) — (U). Then
Dy ~ (P) —{Og) and Dy ~ (Q) — (Og). We want to find fp,, fp, € F, such that
div(fp,) = mDy and div(fp,) = mD; and compute fp, (D2)/fp, (D). Note that
m(P +T) —m(T) = div(fpyrm) — div(frm). Thus,

_ Jrarm(D2) fom(Dy)
frm(D2) forvm(D1)

em(P, Q) = fp,(D2)/ fp,(D1)

Use Miller’s algorithm to compute fpir.m(Q + U), frm(Q + U), frirm(U),
frm(U), forum(P + 1), forvm(T), fom(P + T) and fum(T). Then,

frirm(Q@+U), frm(U)fosvm(T) fom(P+T) _ frarm(D2)fom(D1)
from(Q +U) frirm(U)forvm(P + T) fum(T) frm(D2)fo+um(Di)

= em(P, Q).

Note that fpirm(Q+U) and fpir,,(U) can be computed in the same invocation
of Miller’s algorithm, similarly for fr,(Q 4+ U) and fr.,.(U), fotvm(P + T) and
forvm(T), fum(P+T) and fu,,(T). So we need 4 invocations of Miller’s algorithm

to compute e, (P, Q).

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 95

Computing the Tate Pairing

The computation of the Tate pairing is much simpler. Let E be an elliptic curve
defined over [, and let m be a positive integer coprime to ¢. Let k be a positive
integer such that m | (¢* — 1) and let P € E(F,)[m] and Q € E(F,). We show
how to compute (P, Q) for P,Q # Og (if P or Q is O, (P,Q) = 1).

Pick a point U € E(Fu) \ {Og} such that P # U,Q + U and U # —Q. Let
D, = (P) — (Og) and Dy = (Q +U) — (U) ~ (Q) — (Og). Note that since
mP = Og, fpm = m(P) — (mP) — (m — 1){Og) = m(P) — m{(Og) = mD;. So
(P,Q) = fpm(D2) = %. This can be computed with only one invocation of
Miller’s algorithm.

Since the Tate pairing is defined only up to a multiple of an m!* power and

since most applications in cryptography require a unique value, it is necessary to

exponentiate the value of the Tate pairing to the power (¢* —1)/m to eliminate all

mt* powers. We write tm(P, Q) = (P, Q>(‘1k—1)/M_

6.2.4 Why Choose Supersingular Curves ?

In cryptography, we generally choose elliptic curves whose group of points is cyclic
or close to cyclic, and such that #E(F,) is divisible by a large prime, and then use
the subgroup of E(F,) of prime order to implement cryptographic schemes.

Let E be such an elliptic curve defined over F, and let G C E(F,) be a cyclic
subgroup of prime order m. The computation of the Weil pairing e, and the Tate

pairing t,, take place in an extension Fx of F, with k such that m | (¢* — 1).

Definition The smallest k such that m | (¢ — 1) is called the security multiplier

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 96

or embedding degree of the subgroup of order m.

Note that the security multiplier of G is equal to the order of ¢ modulo m.
Therefore, in general, we expect & ~ m which means that computing the Weil or
Tate pairing is completely impractical since the representation of elements of F«
with such a large & have size exponential in log ¢. *

However, we can show that supersingular elliptic curves have surprisingly small
security multipliers. First, we separate supersingular elliptic curves into 6 classes,

depending on the value t = ¢ + 1 — #E(F,) and their group structure:
1. t =0 and E(F,) is cyclic.
2. t=0and E(F,) = Zg41)2 ® Z; (and ¢ =3 (mod 4)).
3. t* = q (and ¢ is a square).
4. t* = 2q (and F, has characteristic 2 and ¢ is not a square).
5. t* = 3¢ (and F, has characteristic 3 and ¢ is not a square).
6. t* = 4¢ (and ¢ is a square).

We know that E(F,) = Z,, & Z,, with ny | n;. Using Theorems 6.1.4 and 6.1.6,
we can find the smallest integer k such that E[n;] C E(F;). ® These integers are

listed in Table 6.1.

"By Theorem 6.1.1, #E(F,) ~ ¢ and by choice, m ~ #E(F,), so k ~ q.

8By property 6 of the Weil pairing, this implies that ny | (¢* — 1).

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND

TATE PAIRINGS 97
Class of t Group ny k
curve structure
1. 0 cyclic q+1 2
2. 0 Z(qH)/z@Zz (q—l— 1)/2 2
3. +./q cyclic g+1F \ﬂq) 3
4. +/2¢ cyclic g+1F ﬂQq) 4
5. +/3¢ cyclic g+1F \ﬂ3q) 6
6. +2./9 | Z g11 G Z g1 NCER! 1

Table 6.1: Maximum Security Multipliers for Supersingular Elliptic Curves.

We usually choose G to be a subgroup of prime order with |G| &~ ny, so it is
very likely that the security multiplier of G is equal to those values of k, and not
less.

As noted in Chapter 2, the existence of a bilinear map ¢ : G x G — IE‘;k implies
that the discrete logarithm problem in G is no harder than the discrete logarithm
problem in F;k . Therefore, we need to have ¢* a2 2'°% to make sure that the discrete
logarithm problem is intractable in IE‘;k. However, it is desirable to have ¢ as small
as possible to speed up the computations in G (and to get small signatures with
the scheme described in Chapter 4). So we do not want k to be too small either.
Therefore, the curves of type 5 seem to be the ‘best’ elliptic curves for practical

applications.

6.2.5 Modifying the Weil and Tate Pairings to Obtain Bi-

linear Maps

The Weil and Tate pairings as we presented them are not suitable bilinear maps:

property 2 of the Weil pairing implies that e,,(P, Q) = 1 whenever P and @ are in

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 98

the same cyclic subgroup of E[m]. As for the Tate pairing, the value of t,,(P, Q)
when P and () are dependent may or may not be 1, depending on the curve. We
show a way to modify the Weil and Tate pairings to get bilinear maps.

It can be shown that if P,Q) € E[m] are independent points of order m, then
em(P, Q) is a primitive m™ root of unity in F x. Since e,(P,Q) = (P,Q)/(Q, P)
(when m?||#E(Fx)), it follows that #,,(P, Q) must be a primitive m™ root of unity
as well. If we could find an efficiently computable group automorphism ¢ : E[m] —
E[m] such that for some P € E[m] of order m, P and ®(P) are independent, then,
if we let G be the group of points generated by P and p,, be the group of m!* roots
of unity in F;k, the functions é,, : G x G — p,, and tm G xG — [m defined by
Em(P,Q) = en(P,®(Q)) and t,,(P, Q) = t,(P, ®(Q)) respectively would be bilinear

maps.

Definition Let E; and E; be elliptic curves defined over F,.

o A morphism or rational map from F; to Ej is a map of the form ¢ : By — Ej,

® = [g,] where g,h € F,(E,) such that

1. for all P € Ey, if g and h are both defined at p, then ®(P) =
(9(P),h(P)) € Es.

2. if g or h is not defined at P, then we define ®(P) = Op,.
If g,h € Fx (Ey) for some k, then @ is said to be defined over F.
e An isogeny is a morphism ® : Ey — E, satisfying ®(Op,) = Og,.

o An endomorphism on E; is an isogeny ® : Fy — Fj.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 99
o An isogeny ® : Fy — F, is sald to be an isomorphism if there exists an
isogeny ¥ : Fy — Fy such that ¥ o ® and ® o ¥ are identity maps on F; and

E; respectively.

e An endomorphism on FE; is called an automorphism of E; if it is also an

isomorphism.

Theorem 6.2.2 Let Ey, E, be elliptic curves defined over F,. If ® : By — E; s
an isogeny, then for all P,Q) € E;, ®(P + Q) = ®(P) + ®(Q) (so ® is a group
homomorphism). Furthermore, if ® is an isomorphism, then it induces a group

tsomorphism between the group of points of E1 and E;.

For a supersingular curves E defined over F, with security multiplier greater
than 1, it is usually easy to find an automorphism ® such that, for most points P €
E(F,), ®(P) ¢ E(F,). Therefore, P and ®(P) are usually independent and have
the same order since ® is an isomorphism. Table 6.2 lists a few cryptographically
interesting supersingular elliptic curves with their curve types and Table 6.3 give a
suitable automorphism for each of those curves.

The curve Ey 1 over Fsor has a cyclic subgroup of prime order p, where p is a 151
bit prime, large enough to make the discrete logarithm problem intractable in the
subgroup, and the discrete logarithm problem is also intractable in the field Fse.07,
so this curve would be a perfect choice.

We now show that the modified Weil pairing is a bilinear map. Let E be one
of the elliptic curves defined over F, described in table 6.2. Let P € E(F,) be a

point of prime order p and let G be the cyclic group generated by P. Let u, C T,

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND

TATE PAIRINGS 100
‘ Curve equation ‘ Underlying field ‘ Order ‘ Type ‘
Ei:y?=2+1 F,, p prime p+1 1 or 2
p =2 (mod 3)
Ey:yP=a"+u F,, p prime p+1 1 or 2
p>3,p=3 (mod 4)
Esp:y?+y=2a+x+b, F,, [prime A42% 11| 4
be {0,1}
Eip:y*=a2®>—x+0, Fsi, [prime 3’:{:3%_14-1 5
be {-1,1}

Table 6.2: Cryptographically Interesting Elliptic Curves.

‘ Curve ‘ Automorphism ‘ Conditions ‘

E1 (I)(l’,y) = (ngy) 1 7£ § S IE‘Ip2

(*+¢+1=0

E, Q(x,y) = (—x,1y) i €Fp,i*=—1
Esp | ®(x,y) = (z + 5% y+ s +1) s,t € Fou
st4+s=0

P+t4+s5+s2=0
Eip Q(z,y) = (— + rp,1y) b, 1 € Fser
- —b=0,i*=-1

Table 6.3: Automorphisms of Elliptic Curves.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND

TATE PAIRINGS 101
be the group of p'" roots of unity (u, C Fx for some k < 6). Then, the function
€y, G X G — pp defined by €,(Q, R) = €,(Q, ®(R)) is a bilinear map since it is:

Bilinear: For all Q, R, S € G, €,(Q, R+ 5) = ¢,(Q,P(R+ 5)) = ,(Q,P(R) +
(5)) = €p(Q, 2(R))ep(Q, B(5)) = 6,(Q, R)6,(Q,5) and 6,(Q + R, S) =
(@ + R, 2(5)) = ,(Q, 2(5))ep(R, B(S)) = ,(Q, 5)ép(R, 5).

Non-Degenerate: If () is a generator for G, then €,(Q,Q) = €,(Q,2(Q)) # 1

since) and ®(Q) are independent.

Computable: Because ® and ¢, are efficiently computable.

6.2.6 Other Abelian Varieties Curves

Elliptic curves are abelian varieties of dimension 1. Since it is possible to implement
cryptographic schemes in the jacobian of higher dimension abelian varieties, and
since the Weil and Tate pairings can also be implemented in those curves (and have
similar properties), it is natural to ask if some of those curves might be better for
the implementation of bilinear maps. We know that the maximal security multiplier
for supersingular elliptic curves is 6. One might hope to do better by using other
supersingular abelian varieties.

First, note that since an abelian variety A of dimension ¢ defined over [, has a

, where

jacobian of size approximately ¢, the appropriate security parameter is g 9

k is the smallest positive integer such that the Tate pairing can map Jacg (A) into

Fx. We will call this k& the embedding degree of A(IF,).

9Since we want the security parameter to be the ratio between the length of the representation
of an element of Gy and the length of the representation of an element of G;.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 102
Galbraith [22] and Rubin and Silverberg [46] studied the problem of finding an
upper bound on the embedding degree of supersingular abelian varieties. Precise
upper bounds on the embedding degree of supersingular abelian varieties were found
in [46] and are given in Table 6.4 for all possible defining fields F, (¢ = p™, p
prime) and for dimensions 1 through 6 (it is not useful to find the bounds for
higher dimensions since experimental results (Gaudry [24]) suggest these curves
are unlikely to be used for cryptography). The symbol * indicates that there is no

simple supersingular abelian variety of dimension ¢ over F,

| g [1[2]3]4]5][6]

¢ a square 31619 (151121
g not a square, p > 11 |12 | 6 | * |12 | * |18
gnot a square, p=2 (|4 12| * [20] * | 36
gnot a square, p=3 ||6 | 4 |18 |30 | * |42
gnot a square, p=>5 (|2 | 6 | * [15] * |18
gnot asquare, p=7 ||2| 6 |14 |12 | * |42
g not a square, p=11 12| 6 | * |12 |22 |18

Table 6.4: Upper Bound of the Embedding Degree for Supersingular Curves.

Note that the maximal security parameter is 7.5 = 30/4 and is attained only
over fields of characteristic 3. Since this is not much better than what we can
attain with supersingular elliptic curves, one might argue that this small increase
in the security parameter is not worth the added complexity of dealing with curves
of higher dimension. However, this knowledge of higher dimension curves can be
used to obtain a shorter representation of points for some elliptic curves, which

effectively increases the security parameter to 7.5 (see [46] for full details).

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 103

6.2.7 Non-Supersingular Elliptic Curves with Low Security

Multiplier

We have seen that in general, for non-singular elliptic curves, the security multiplier
is too large to allow efficient computations. Recent publications ([3, 15]) explore
the possibility that elliptic curves with subgroups with low security multiplier may
be found efficiently. [15] gives an example of a non-supersingular elliptic curve that
has a cyclic subgroup with security multiplier 11, and [3] found one with security
multiplier 12. Both articles give methods to find such elliptic curves relatively
efficiently.

Omne might hope to be able to modify the Weil or Tate pairings similarly as in
Section 6.2.5 to obtain a bilinear map. Unfortunately, the following result denies

that possibility.

Theorem 6.2.3 Let E be a non-supersingular elliptic curve defined over F,. Let

® be an endomorphism on E. Then, ® is defined over IF,.

So the image under ® of a point defined over I, will be a point defined over
F,. As a consequence, if P € E(F,) is a point of order m for some positive integer
m and ® is an automorphism of E, then either ®(P) is in the group generated by
P, or E[m] C E(F,), in which case the security multiplier of the group of points
generated by P is 1. Additional evidence that there does not exist an efficiently
computable group homomorphism to implement the strategy of Section 6.2.5 can
be found in [51].

However, it is usually possible to modify the schemes that use a bilinear map so

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 104
that they can use the unmodified Weil or Tate pairings. We present some of those

modified schemes in appendix A.

6.2.8 Fast Implementation of the Tate Pairing

In this section, we present results from [2] and [23] which greatly speed up the
computation of the Tate pairing.

Let E be an elliptic curve defined over F,. Our first, and perhaps most im-
portant observation is that if P € E(F,) and @ € E(F,), then the comptation
of (P, Q) is much faster than the computation of (@), P). The reason is that when
computing (P, @), the calculations to get the coefficients of the lines gy, as well
as all the elliptic curve the point additions, occur in F,, while they would oc-
cur in F» when computing (@), P). (This is why, in Section 6.2.5, we defined
tm(P,Q) = (P, (@)@ ~1/™ and not (&(P), Q) ~1/m.)

Simplifying the Computation of the Tate Pairing

It is a well-known fact that, in finite fields, divisions are much more expensive
than multiplications. Therefore, it is desirable to reduce the number of divisions in
Miller’s algorithm to a minimum. We first observe that all the divisions in Miller’s
algorithm can be gathered into a single divisions at the end of the algorithm by
representing the value of f by a quotient f1/f;, gather all the numerators in f, the
denominators in f, and compute only one division at the end of the algorithm.
The following results can be used to reduce even further the number of divisions

(and the number of operations in general) in the computation of the Tate pairing.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND

TATE PAIRINGS 105
Let E be an elliptic curve defined over F, whose group of points contains a cyclic
subgroup of order n. Let m be a divisor of n. Let P € E(F,)[m] and Q € E[m]
be linearly independent points (so in particular, Q # Op). Let fp € F (E) be a
function with div(fp) = m(P) — m(Og). Let k be the embedding degree of the

cyclic subgroup of E of order m.
Theorem 6.2.4 If ¢—1 is a factor of (¢* —1)/m, then t,,(P,Q) = fp(Q)Y =/m,

Proof Suppose R ¢ {Op,—P} is some point in E(F,). Let f, be a rational
function with div(fp) = m(P + R) — m(R) Therefore, by definition, ¢,,(P,Q) =
fp(Q) — <(’)E>) D/m hecause (P + R) — (R) ~ (P) — (Op). Since P and R are
[F,-rational points, we may assume, without loss of generality, that f € F,(E) '°,
and because fp does not have a zero or a pole at O, we know that fp(Og) € F;.
By Fermat’s Little Theorem for finite fields (lemma 2.3 in [33]), fp(Og)?! = 1.
Since ¢ — 1 is a factor of (¢¥ — 1)/m, we have that fl’g((’)E)(qk_l)/m = 1 as well.

Therefore,

(P, Q) = fp({Q) = (Op)« =™ = fp(Q)U 0/ fp(Op) "/
= fp(@) 0,

Now, consider P, () to be fixed and R to be variable. Since the statement above
holds for all R ¢ {Opg,—P}, we have that fp(Q) is constant when viewed as
a function of R, and coincides with the value of fp(Q). Therefore, ¢,,(P,Q) =

0We can build such an f; € F,(F) using the idea in Theorem 6.2.1, and since the value of
tm is independent of the choice of f4, as long as fr = mD for D ~ (P) — (Og), we may as well
choose it in F,(E).

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 106

fP(Q)(qk—l)/m‘ |

Note that unless #E(F,) = ¢ — 1, ¢ — 1 is usually factor of (¢* — 1)/m in
cryptographic applications for the following reasons. First, m is generally a prime,
so either m divides ¢—1 or ged(m,g—1) = 1. Second, we know m divides #E(F,),
so if m also divides ¢ — 1, then m must divide |#E(F,) — (¢—1)|. But, by Theorem
6.1.1, [#E(F,) — (¢—1)| £2,/q+2. Soif we choose m > 2,/q+ 2 (or if #E(IF,) is
very close to ¢ — 1), which is generally the case (especially when using a curve with
embedding degree 4 or 6), we are assured that m does not divide ¢ — 1, so ¢ — 1

will be a factor of (¢* — 1)/m (assuming that m is prime).

Irrelevant Denominators

We note that, in Miller’s algorithm, the denominators are always of the form g (Q),
where g7 is the equation of the vertical line through the point U and U is an F,-
rational point. The following theorem shows that all these denominators can be
discarded without affecting the value of ¢,,,(P, Q) when using one of the curves listed

in Table 6.5 (the curve equations are listed in Table 6.2).

‘ Curve ‘ Field ‘ Automorphism ‘ Conditions
E, F,,p>3 Q(x,y) = (—x,1y) i €Fpe, i =—1
p =3 (mod 4)
Esy Fyi, [prime | ®(x,y) = (v + s*,y + sz + 1) s,t € Fou
st4s5=0
4+t+s54+s2=0
Eyp Fs, [prime O(x,y) = (—x + rp,1y) 5,1 € Faer
rp—r,—b=0,1=-1

Table 6.5: Parameters for Theorem 6.2.5.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 107
Theorem 6.2.5 With the settings listed in Table 6.5, the denominators in Miller’s

algorithm can be discarded altogether without changing the value of t,,(P, Q).

Proof We show that the denominators become unity after the final powering in

tm.

— Ey: The denominators in Miller’s algorithm have the form gy (®(Q)) = —x — ¢,
where @ € F, is the abscissa of () and ¢ € T, is the abscissa of U. Hence,
gu(®(Q))P = —aP —” = —x —c = gu(P(Q)), by the linearity of raising to the
power p. Thus, gu(P(Q))P~" = 1. Now, the exponent in the final powering is
z = (p* — 1)/m where m divides #E(F,) = p+ 1. So, p — 1 is a factor of z.
Therefore, gu(®(Q))* = 1.

— E3p: Let ¢ = 2. From the defining condition s* = s, it follows by induction that

s* = sfor allt > 0, in particular, s¢° = .

= 5. The denominators in Miller’s
algorithm have the form g (®(Q)) = x + s? + ¢, where x € F, is the abscissa
of) and ¢ € F, is the abscissa of U. Thus, 29 = 2 and ¢ = ¢. Therefore,
g (B(QNT =27 + (sT)2+ =z + 5>+ ¢ = gu(®(Q)), by the linearity of
raising to the power ¢. Hence, gU(@(Q))q2_1 = 1. Now, the exponent in the
final powering is = = (¢* —)fm = (¢ + 1+ v3D(q+ 1~ vID)(& — 1)/m
where m divides #FE(F,) = g+1++/2¢. So, ¢> —1 is a factor of z. Therefore,

gu(2(Q))” = 1.

— E4p: Let ¢ = 3'. From the defining condition r3 —r,—b = 0, it follows by induction
that 73" = 7 + b(t mod 3) for all ¢ > 0, in particular, 7“23 = rfm = ry. The

denominators in Miller’s algorithm have the form gy (®(Q)) = rp—x —c, where

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND

TATE PAIRINGS 108
x € [F, is the abscissa of () and ¢ € F, is the abscissa of U. Thus, 29 = 2 and
¢ = c. Therefore, gU(@(Q))q3 = 7“23 —2? — =y —x—c= gu(®(Q)), by
the linearity of raising to the power ¢. Hence, gU(@(Q))q3_1 = 1. Now, the
exponent in the final powering is z = (¢* — 1)/m = (¢+ 1+ v/3¢)(¢ + 1 —
V3¢)(¢> —1)(¢+ 1)/m where m divides #E(F,) = g+ 1++/3¢. So, ¢* — 1 is
a factor of z. Therefore, gy (®(Q))* = 1. |

This strategy does not seem to apply to E; because, with the automorphism

given in Table 6.3, the abscissa of ®(Q) is not in F,.

Advantages in Fields of Characteristic Three

In elliptic curves defined over fields of characteristic three, the operation of point
tripling can be done extremely efficiently. We show how thic fact can be used
to improve the efficiency of the point exponentiation operation and of Miller’s
algorithm.

Let E be an elliptic curve defined over a field of characteristic three with equa-
tion of the form y* = 23 + Az + B ''. Then, for a point P (zy,y;) on E, the point
3P = (x3,ys) has coordinates x3 = x1 + y7 + y¢ and y3 = —y]. So the computation
of 3P does not require any division. This is especially fast since the cubing opera-
tion can be done in linear time in fields of characteristic three. In particular, if we
use Eyp, then x5 = 2f — b and y3 = —yf.

This leads to a triple-and-add scalar multipliction algorithm that is much faster

than the standard double-and-add algorithm. Let the signed ternary representation

U Every elliptic curve defined over a field of characteristic greater or equal to 3 is isomorphic to
a curve with an equation of this form, see [16] for more details.

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 109
of k be k = (k¢...Ekiko)s where k; € {1,0,—1} and %k # 0. Then we compute kP
as follows.
Itk =1set V=P itk =—-1setV=—-P.
For 1=t —1 down to 0
Set V. =3V.
Ifk;=1thenset V=V4P.
Ifk =—1thenset V=V-P.
Return V.
We can also adapt Miller’s algorithm to work in base three. From Theorem
6.2.1, we find that div(fpse) = 3div(fra) + div(gapar) + div(g2arapr) — div(gaar) —
div(gsqp). Thus,

- fP,a(Q)3 : gaP,aP(Q) 'gzaP,aP(Q)
Tral Q)= T (@) er(@)

Note that it is not necessary to compute 2aP to obtain the coefficients of gzup.p
since they can be computed from aP and 3aP (because the line giap.p goes
through aP, 2aP and —3aP). We also need the fact that if P = (x0,y0), then
div(l/(x — xg)) = —=(P) — (= P) + 2(Og) = fp_1. Thus, after applying the other
optimizations described in this section, we can compute ¢,,(P, Q) as follows. Let the
signed ternary representation of m be m = (my...mimg)s where m; € {1,0, -1}
and m; = 1 (because m > 0) and let P = (xp,yp) and Q = (29, yq).

Set V=P and f = 1.

Set f'=1/(xqg — zp).

Fori=¢t—1down to 0

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 110

Set f=fgvv(Q) - 92vv(Q)/(92v(Q) - g3v(Q)) and V = 3V,

If m; =1, then set f = f-gvp(Q)/gvir(Q) and V =V + P.

If mj = —1, then set f = f- f'- gv_p(Q)/gv_p(Q) and V =V — P.

Return f@*=D/m,
Where k is the embedding degree of the cyclic group used. Again, all the denomi-
nators can be discarded if we use one of the curves listed in Table 6.5.
We mention that [23] also presents methods to improve the efficienty of arith-

metic in fields of characteristic three and in extension fields of characteristic two

and three. See [27] for a survey of point exponentiation methods in characteristic

two fields.

Choice of Groups

When working with an elliptic curve with very low embedding degree (say 2), it
is necessary to work in finite fields F, with ¢ ~ 25'2. But in these cases, it is not
necessary that the prime order [of the subgroup be the same size as ¢, [may be
chosen to have only 160 bits. This choice has a huge impact on the complexity of
Miller’s algorithm, since the number of iterations in Miller’s algorithm is a function
of log!.

It also makes sense to choose to work in a cyclic group of order [, where [has low
Hamming weight (or small number of nonzero ‘trits’ in signed ternary notation if we
work in a field of characteristic three) to reduce the number of addition operations
in Miller’s algorithm. It ofter happens in characteristic two or three that the elliptic
curve group order N has low Hamming weight, but the prime order [of the cyclic

subgroup used for implementing schemes does not have low Hamming weight. Let

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND
TATE PAIRINGS 111

P,) be independent points of order [and let fp be a rational function such that
div(fp) = I(P) — I{O). If N = hl, div(fp") = N(P) — N(O). Let f} = fp". Then

t(P,Q) = fr(Q) ! = fp(Q)Ma" =D/ = £ (Q)@ DN = ¢y(P,Q).

So one can use ty instead of ¢; without altering the final result.

Speeding Up the Final Powering

If we use one of the curves in Table 6.2, then it is possible to exploit the periodical
structure of the final exponent to reduce the complexity of the final powering. This

can be done as follows.

— Ey, Ey: Let F, be the defining field and assume that p = 2 (mod 3) and p = 3
(mod 4). The order of these curves is n = p + 1. Let r be the order of the
subgroup of interest, and note that r | p+ 1. Note also that we can represent
an element ¢ € F2 as t = u 4 v where u,v € F, and 7 satisfies 24+1=0
(1 € F, since p = 3 (mod 4)). The final exponent is z = (p* — 1)/r =
((p+1)/r)(p—1). To compute s = w?, compute ¢t = wP*V/" =y 4 iv and set
s=(u+1w)P/(u+1v) = (u—v)/(u+1v) using the linearity of raising to the
power p and the fact that » = —i for p = 3 (mod 4). By simplifying further,

we can obtain s = (u? — v?)/(u? + v?) — 2uvi/(u? + v?).

— BE5: Let ¢ = 2!. Without loss of generality, we want to compute t,, with m =
g+ 1+ +/2q (see comment above in the section ‘Choice of Groups’). Thus,

the final exponent has the form z = (¢ + 1 + 1/2¢)(¢* — 1). We can compute

CHAPTER 6. IMPLEMENTATION OF BILINEAR MAPS : THE WEIL AND

TATE PAIRINGS 112
s = w* by first computing t = w? - w - w*v?? and then s = 7" /t. Raising to
the powers ¢, /2¢, ¢* can be done in O(l) time since they are all powers of 2,
so the complete running time is dominated by the 3 multiplications and at

most 2 inversions, which take time O({?).

— E,: Let ¢ = 3'. Without loss of generality, we want to compute t,, with m =
g+ 1 £ 1/3q (see comment above in the section ‘Choice of Groups’). Thus,
the final exponent has the form z = (¢ + 1 £ /3¢)(¢*> — 1)(¢ +1). We can
compute s = w® by first computing v = w? - w - wEV3, ¢ = uq3/q and then
s = t4-t. Raising to the powers ¢,1/3¢,¢> can be done in O(l) time since
they are all powers of 3, so the complete running time is dominated by the 4

multiplications and at most 2 inversions, which take time O(I?).

Chapter 7

Conclusion

This thesis presented several ways in which bilinear maps can be used to construct
cryptographic schemes.

The most significant of these applications is certainly an efficient identity-based
encryption scheme. It is also interesting to note that this scheme can easily be
modified to have additional features, such as authenticated encryption, or support
a hierarchy of PKGs.

Bilinear maps can also be used to construct a signature scheme with very short
signatures, even it the message signed is also very short. We also presented an
identity-based signature scheme, but this result is not as significant as the others
since efficient identity-based signature schemes were already known ([18, 17]).

The one-round three party key agreement has special significance since it was
one of the first constructive application of bilinear maps in cryptography. We
showed how this original scheme can be modified into an authenticated key agree-

ment protocol. However, the security arguments were only heuristic. It would be

113

CHAPTER 7. CONCLUSION 114

interesting to see if the security definition given by Canetti and Krawczyk in [§]
can be extended to three party protocols and if the schemes they present can be
modified to a three party key agreement scheme using a bilinear map.

We also note that, with the improvement presented in Section 6.2.8, bilinear
maps can now be efficiently implemented using the Tate pairing in elliptic curves
so that the protocols above can be executed in times comparable to other encryption
and signature schemes.

An interesting line for further research would be to find a way to implement
multilinear maps, i.e. maps linear in more than two components. This topic has
already been explored by Boneh and Silverberg in [7]. They give several interesting
applications of such multilinear maps, but also give some evidence that the imple-
mentation of such maps may require genuinely new techniques. It would also be
interesting to see if bilinear maps can be implemented using a technique other than

pairings on abelian varieties.

Bibliography

1]

[5]

S. Al-Riyami and K. Paterson. Authenticated Three Party Agreement Pro-
tocols from Pairings, Cryptology ePrint Archive, Report 2002/035, 2002.
http://eprint.iacr.org/2002/035/

P. Barreto, H. Kim, B. Lynn and M. Scott. Efficitent Algorithms for Pairing-
Based Cryptosystems, Proceedings of Crypto 2002, LNCS 2442, pp. 354-368,
2002.

P. Barreto, B. Lynn and M. Scott. Constructing Elliptic Curves with Pre-
scribed Embedding Degrees, Cryptology ePrint Archive, Report 2002/088, 2002.

http://eprint.iacr.org/2002/088/

A. Boldyreva. Efficient Threshold Signature, Multisignature and Blind
Signature Schemes Based on the Gap-Diffie-Hellman-Group Signa-
ture Scheme, Cryptology ePrint Archive, Report 2002/118, 2002.

http://eprint.iacr.org/2002/118/

D. Boneh and M. Franklin. [Identity Based FEncryption Scheme from

115

BIBLIOGRAPHY 116

[10]

[11]

[12]

the Weil Pairing, Cryptology ePrint Archive, Report 2001/090, 2001.
http://eprint.iacr.org/2001/090/

D. Boneh, B. Lynn and H. Shacham. Short Signatures from the Weil Pairing,

Proceedings of Asiacrypt 2001, LNCS 2248, pp. 514-532, 2001.

D. Boneh and A. Silverberg. Applications of Multilinear Forms to
Cryptography, Cryptology ePrint Archive, Report 2002/080, 2002.
http://eprint.iacr.org/2002/080/

R. Canetti and H. Krawczyk. Anaylsis of Key-Exchange Protocols and their Use
for Building Secure Channels, Cryptology ePrint Archive, Report 2001/040,
2001. http://eprint.iacr.org/2001/040/

R. Canetti and H. Krawczyk. Unwersally Composable Notions of Key Fz-
change and Secure Channels, Cryptology ePrint Archive, Report 2002/059,

2002. http://eprint.iacr.org/2002/059/

J. Cha and J. Cheon. An Identity-Based Signature from Gap Diffie-
Hellman Groups, Cryptology ePrint Archive, Report 2002/018, 2002.
http://eprint.iacr.org/2002/018/

L. Charlap and D. Robbins. An Elementary Introduction to Elliptic Curves,

CRD Exposition Report 31, Institute for Defense Analyses, 1988.

J. Cheon. A Unwersal Forgery of Hess’s Second ID-based Signature against the
Known-message Attack, Cryptology ePrint Archive, Report 2002/028, 2002.
http://eprint.iacr.org/2002/028/

BIBLIOGRAPHY 117

[13]

[14]

[15]

[19]

[20]

C. Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues,

Cryptography and Coding, LNCS 2260, pp. 360-363, 2001.

J. Coron. On the Exact Security of Full Domain Hash, Proceedings of Crypto

2000, LNCS 1880, pp. 229-235, 2000.

R. Dupont, A. Enge and F. Morain. Building Curves with Arbitrary Small
MOV Degree over Finite Prime Fields, Cryptology ePrint Archive, Report
2002/094, 2002. http://eprint.iacr.org/2002/094/

A. Enge. Elliptic Curves and their Applications to Cryptography: An Introduc-

tion, Kluwer Academic Publishers, 1999.

U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity, Journal
of Cryptology, Vol. 1, pp. 77-94, 1998.

A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems, Proceedings of Crypto 86, LNCS 263, pp.

186-194, 1987.

G. Frey and H. Ruck. A Remark Concerning m-Divisibility and the Discrete
Logarithm in the Divisor Class Group of Curves, Mathematics of Computation,

Vol. 62, pp. 865-874, 1994.

G. Frey, M. Miiller and H. Riick. The Tate Pairing and the Discrete Logarithm
Applied to Elliptic Curve Cryptosystems, IEEE Transactions on Information
Theory, Vol. 45, pp. 1717-1718, 1999.

BIBLIOGRAPHY 118

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric

Encryption Schemes, Proceedings of Crypto ’99, pp. 537-554, 1999.

S. Galbraith. Supersingular Curves in Cryptography, Proceedings of Asi-
acrypt 2001, LNCS 2248, pp. 495-513, 2001. Full version available at

http://www.isg.rhul.ac.uk/ sdg/ss.ps.gz

S. Galbraith, K. Harrison and D. Soldera. Implementing the Tate Pairing,

Proceedings of ANTS-V, LNCS 2369, pp. 324-337, 2002.

P. Gaudry. An Algorithm for Solving the Discrete Log Problem on Hyperelliptic
Curves, Eurocrypt 2000, LNCS 1807, pp. 19-34, 2000.

P. Gemmell. An Introduction to Threshold Cryptography, Cryptobytes, a tech-
nical letter of RSA Laboratories, Vol. 2, No. 7, 1997.

C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography, Cryptology
ePrint Archive, Report 2002/056, 2002. http://eprint.iacr.org/2002/056/

D. Hankerson, J. Hernandez and A. Menezes. Software Implementation of
Elliptic Curve Cryptography over Binary Fields, Proceedings of CHES 2000,
LNCS 1965, pp. 1-24, 2000.

F. Hess. Ezponent Group Signature Schemes and Efficient Identity Based
Signature Schemes Based on Pairings, Cryptology ePrint Archive, Report
2002/012, 2002. http://eprint.iacr.org/2002/012/

J. Horwitz and Ben Lynn. Toward Hierarchical Identity-Based Encryption,
Proceedings of Eurocrypt 2002, LNCS 2332, pp. 466-481, 2002.

BIBLIOGRAPHY 119

[30]

[31]

32]

[34]

[35]

[37]

[38]

A. Joux. A One Round Protocol for Tripartite Diffie-Hellman, Proceedings of
ANTS-IV , LNCS 1838, pp. 385-394, Springer 2000.

A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-
Hellman in Cryptographic Groups, Cryptology ePrint Archive, Report
2001/003, 2001. http://eprint.iacr.org/2001/003/

L. Law, A. Menezes, M. Qu and S. Vanstone. An Efficitent Protocol for Authen-
ticated Key Agreement, Technical Report CORR 98-05, Department of C&O,

University of Waterloo, 1998.

R. Lidl and H. Niederreiter. Finite Fields, Encyclopedia of Mathematics and

its Applications 20, 2nd Edition, Cambridge Univeristy Press, 1997.

B. Lynn. Authenticated Identity-Based Encryption, Cryptology ePrint Archive,
Report 2002/072, 2001. http://eprint.iacr.org/2002/072/

A. Lysyanskaya. Unique Signatures and Verifiable Random Functions from the
DH-DDH Separation, Proceedings of Crypto 2002, LNCS 2442, pp. 597-612,
2002.

J. Malone-Lee. Identity-Based Signcryption, Cryptology ePrint Archive, Re-
port 2002/098, 2001. http://eprint.iacr.org/2002/098/

T. Matsumoto, Y. Takashima and H. Imai. On Seeking Smart Public-Key-

Distribution Systems, Trans. IECE of Japan, E68:99-106, 1986.

U. Maurer. Towards Proving the Equivalence of Breaking the Diffie-Hellman

BIBLIOGRAPHY 120

[39]

[40]

[44]

[45]

[46]

Protocol and Computing Discrete Logarithms, Proceedings of Crypto '94, pp.
271-281, 1994.

A. Menezes. Elliptic Curve Public Key Cryptography, Kluwer Academic Pub-
lishers, 1993.

A. Menezes, T. Okamoto and S. Vanstone. Reducing Elliptic Curve Logarithms
to Logarithms in a Finite Field, IEEE Transactions on Information Theory,

Vol. 39, pp. 1639-1646, 1993.

A. Menezes, P. van OQorschot and S. Vanstone. Handbook of Applied Cryptog-

raphy, CRC Press, 1997.

V. Miller. Short Programs for Functions on Curves, unpublished manuscript,

1986.

T. Okamoto and D Pointcheval. The Gap Problems: A New Class of Problems
for the Security of Cryptographic Primitives, Public Key Cryptography, PKC
2001, LNCS 1992, pp. 104-118, 2001.

K. Paterson. ID-Based Signatures from Pairings on Elliptic Curves, Cryptol-
ogy ePrint Archive, Report 2002/004, 2002. http://eprint.iacr.org/2002/004/

C. Rackoff and D. Simon. Noninteractive Zero-Knowledge Proof of Knowledge

and Chosen Ciphertext Attack, Proceedings of Crypto "91, pp. 433-444, 1991.

K. Rubin and A. Silverberg. The Best and Worst of Supersingular Abelian
Varieties in Cryptography, Proceedings of Crypto 2002, LNCS 2442, pp. 336-

353, 2002.

BIBLIOGRAPHY 121

[47] R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems Based on Pairing, In

SCIS 2000, Okinawa, Japan, January 2000.

[48] A. Shamir. Identity-Based Cryptosystems and Signature Schemes, Proceedings
of Crypto "84, pp. 47-53, 1984.

[49] J. Silverman. The Arithmetic of Elliptic Curves, Graduate Texts in Mathe-

matics, Springer-Verlag, 1986.

[50] N. Smart. An Identity Based Authenticated Key Agreement Protocol Based
on the Weil Pairing, Cryptology ePrint Archive, Report 2001/111, 2001.
http://eprint.iacr.org/2001/111/

[51] E. Verheul. Evidence that XTR is More Secure than Supersingular Elliptic

Curve Cryptosystems, Proceedings of Eurocrypt 2001, pages 195-210, 2001.

[52] E. Verheul. Self-Blindable Credential Certificates from the Weil Pairing, Pro-

ceedings of Asiacrypt 2001, pages 533-551, 2001.

Appendix A

Schemes for Unmodified Welil or

Tate Pairing

We show here how the Boneh-Franklin encryption scheme and the Gap signature
scheme can be modified to use the unmodified Weil or Tate pairing instead of a
bilinear function.

The following must be taken into account when modifying the schemes:

1. The Weil and Tate pairing are not symmetric.

2. f P e E(F,) and Q € E(F,), then computing t,,(P, Q) is likely to be much

faster than computing ¢, (Q, P).

3. The elements used in the ciphertext or signature should be in the smaller

field.

The security of the two schemes is based on the following problems: Let

122

APPENDIX A. SCHEMES FOR UNMODIFIED WEIL OR TATE PAIRING123

Gy, Gy, G be cyclic groups of prime order p. Let t : G; x G, — G5 be a bilinear
non-degenerate and efficiently computable function.

The co-Computational Diffie-Hellman Problem in (G, Gy) is:

Given a generator P of Gy, an elements aP € Gy for a random in Z, and an
element) € Gy, compute a@).

The co-Bilinear Diffie-Hellman Problem in (Gy,G,, Gs, 1) is :

Given a generator P of Gy, two elements aP,bP € Gy for a,b random in Z, and
an element Q € Gy, compute (P, Q).

We note that the Computational Diffie-Hellman problem and the Bilinear Diffie-
Hellman problem are special cases of those two problems with Gy = Gy. Therefore,
the co-Computational Diffie-Hellman problem and co-Bilinear Diffie-Hellman prob-
lem are at least as hard as the Computational Diffie-Hellman problem and the
Bilinear Diffie-Hellman problem respectively.

The function £ can be t, or €.

A.1 The Boneh-Franklin Scheme

Let E be an elliptic curve defined over F, containing a cyclic subgroup of prime
order p. Let k be the security multiplier of the group of points of order p in E(F,).
Let G; be the cyclic subgroup of points of order p in E(F,) and G, C Fy: be the

group of p* roots of unity.

Setup: Step 1: Pick a random point P € E(F,) of order p.

Step 2: Pick a random s € Z; and compute Py, = sP.

APPENDIX A. SCHEMES FOR UNMODIFIED WEIL OR TATE PAIRING124

Step 3: Pick cryptographic hash functions H; : {0,1}* — (@), Hy : Gy —
{0,1}", Hz : {0,1}" x {0,1}" — Z7 and Hy : {0,1}" — {0,1}" where

Q € E(F,) is a point of order p independent from P and n is a positive

integer.
The message space is M = {0,1}" and the ciphertext space is
C = (P)* x {0,1}*. The public system parameters are params =

(Gy,Gy,t,p,n, P, Pyy, Hy, Hy). The master-key is s € 7.

Extract: Given a string ID € {0,1}* and the master-key s and system parameters
(G1, Gy, t,p,n, P, Py, Hy, Hy, Hy, Hy),
Step 1: Compute Qp = H1(ID) € G;.
Step 2: Compute dip = sQp and return dp.
Encrypt: Given a plaintext M € M, a public key ID and system parameters
(G1, Gy, t,p,n, P, Py, Hy, Hy, Hy, Hy),
Step 1: Compute Qp = H1(ID) € G;.
Step 2: Pick a random o € {0,1}".
Step 3: Compute r = Hs(o, M).
Step 4: Compute g = t,(Py, Qi0) € G.
Step 5: Compute the ciphertext (rP,o & Hy(g"), M & Hy(o)).
Decrypt: Given a ciphertext (U, V, W) encrypted using the public key ID, system

parameters (Gy, Gy, %, p,n, P, Py, Hy, Hy, Hs, Hy) and the private key dip €

s
le

APPENDIX A. SCHEMES FOR UNMODIFIED WEIL OR TATE PAIRING125

Step 1: If U ¢ (P)* reject the ciphertext.

Step 2: Compute ¢ = t,(U, dip).

Step 3: Compute o =V & Hy(g').

Step 4: Compute M =W & Hy(o).

Step 5: Compute r = Hs(o, M). If U # rP reject the ciphertext.

Step 6: Return M.

Consistency can be proven similarly as before.
The proof of security also remains the same, except that the security is now

based on the co-Bilinear Diffie-Hellman Problem.

A.2 The Gap Diffie-Hellman Signature Scheme

Let E be an elliptic curve defined over F, containing a cyclic subgroup of prime
order p. Let k be the security multiplier of the group of points of order p in E(F,).
Let G; be the cyclic subgroup of points of order p in E(F,) and G, C Fy: be the
group of p! roots of unity.
Setup: Step 1: Pick an arbitrary point P € E(F,) of order p, P & E(F,).
Step 2: Pick a cryptographic hash function H : {0,1}* — (Q)* where Q €
E(F,) is a point of order p.

The system parameters are params = (G, Gy, t,p, P, H).

KeyGen: Given the system parameters (Gy, G, 7, p, P, H), pick a random z € zy

and compute K, = xP. The public key is K, and the private key is x.

APPENDIX A. SCHEMES FOR UNMODIFIED WEIL OR TATE PAIRING126

Sign: Given a message M € {0,1}*, a private key = and system parameters
<le(G'27tA7p7 P7 H>7
Step 1: Compute R = H(M).
Step 2: Compute o = zR.

The signature on M is o.

Verify: Given a message-signature pair (M, o), a public key K, and system pa-
rameters (Gy, Gy, 1, p, P, H),
Step 1: Compute R = H(M).
Step 2: Compute ¢, = (0, P).
Step 3: Compute ¢y = tH(R, Kpup).
Step 4: If g1 = g5, return valid, else return invalid.
Consistency is proven similarly as in the original scheme.

Again, the proof of security remains the same, except that it is now based on

the co-Computational Diffie-Hellman problem.

