
Automated Analysis of Unified Modeling Language
(UML) Specifications

By

Meyer C. Tanuan

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2001
© Meyer C. Tanuan 2001

ii

Author’s Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

The Unified Modeling Language (UML) is a standard language adopted by the Object

Management Group (OMG) for writing object-oriented (OO) descriptions of software systems.

UML allows the analyst to add class-level and system-level constraints. However, UML does not

describe how to check the correctness of these constraints.

Recent studies have shown that Symbolic Model Checking can effectively verify large software

specifications. In this thesis, we investigate how to use model checking to verify constraints of

UML specifications. We describe the process of specifying, translating and verifying UML

specifications for an elevator example. We use the Cadence Symbolic Model Verifier (SMV) to

verify the system properties. We demonstrate how to write a UML specification that can be easily

translated to SMV. We propose a set of rules and guidelines to translate UML specifications to

SMV, and then use these to translate a non-trivial UML elevator specification to SMV. We look

at errors detected throughout the specification, translation and verification process, to see how

well they reveal errors, ambiguities and omissions in the user requirements.

iv

Acknowledgements

I would like to thank my supervisor, Dr. Joanne M. Atlee, for her valuable comments and

insightful suggestions. I am very grateful for her encouragement and guidance throughout this

work. To Professor Dan Berry, I thank him for pointing out that some of the errors revealed

during model checking were requirements-level errors. I also thank my thesis reader, Dr. Nancy

Day, who provided a thorough review of my thesis. I highly appreciate her detailed and helpful

comments. Finally, I thank Doug Guderian for acting as our domain expert for the elevator case

study.

v

To my wife,

Marrieta,

and sons,

Mayer and

Marko

vi

Contents

1 Introduction .. 1

1.1 Model Checking .. 2

1.2 Computer-Aided Verification of UML Models... 3

1.3 UML to SMV Model Checking Process.. 6

1.4 Main Contribution ... 9

2 Modeling Reactive Systems Using UML .. 11

2.1 Requirements Analysis .. 12

2.1.1 Three-floor Elevator System Problem Statement... 12

2.1.2 System Properties... 14

2.2 Defining Object Structure using UML .. 15

2.2.1 UML Class Diagram.. 15

2.2.2 UML Object Model.. 21

2.2.3 UML Constraints.. 23

2.3 Defining Object Behavior using UML .. 25

2.3.1 UML State Machine Semantics ... 25

2.3.2 Example Scenarios of Elevator State Machine .. 30

2.3.3 Inherited State Diagrams.. 33

2.3.4 UML Operations .. 35

3 Translating UML to SMV ... 39

3.1 Translation Overview .. 40

3.2 Translating the Elevator Example ... 43

3.2.1 Translating the Button Class .. 43

3.2.2 Translating the RequestBn Subclass .. 48

3.2.3 Translating the External_Event Class .. 52

3.2.4 Translating Timer Class ... 55

3.2.5 Translating Door Class... 58

3.2.6 Translating the Elevator Class ... 60

3.2.7 Putting it all together: Main SMV Module .. 65

3.3 Translation Summary .. 66

vii

4 Verifying System Properties Using SMV... 68

4.1 CTL Overview... 68

4.2 Verifying the Elevator System Properties ... 70

4.2.1 Safety Property for Elevator .. 70

4.2.2 Liveness Properties for Elevator and Hall Buttons .. 70

4.2.3 Additional System Properties... 72

4.3 Model Checking Partial Specifications ... 74

5 Effectiveness of Model Checking .. 77

5.1 Time Spent per Activity .. 78

5.2 Requirements-level Errors... 81

5.3 UML Model Style Defects .. 84

5.4 Object-oriented Modeling Errors... 86

5.5 SMV Errors.. 88

5.6 Summary.. 90

6 Conclusions and Future Work.. 92

Appendix A: UML Notation Summary... 94

A1. UML Class Diagram Notation.. 94

A2. UML State Diagram Notation .. 97

Appendix B: Elevator UML Specification.. 99

Appendix C: Elevator SMV Program... 107

Appendix D. Additional Elevator Features .. 121

References.. 122

viii

List of Figures

Figure 1: Finite state model checking.. 2

Figure 2: UML to SMV model checking process.. 7

Figure 3: Two-passenger scenario sequence diagram ... 13

Figure 4: Three-floor elevator main class diagram in UML.. 16

Figure 5: Three-floor elevator object model in UML.. 22

Figure 6: System properties shown as UML constraints ... 23

Figure 7: Elevator state diagram.. 26

Figure 8: Door state diagram ... 28

Figure 9: Button state diagram and RequestBn state diagram... 30

Figure 10: SMV module program structure... 41

Figure 11: Button SMV module .. 44

Figure 12 : RequestBn SMV module... 49

Figure 13 : External_Event SMV module ... 52

Figure 14: Timer state diagram.. 55

Figure 15: SET Event SMV module.. 56

Figure 16: Partial listing of Timer SMV module... 57

Figure 17: Partial listing of Door SMV module .. 58

Figure 18: Partial listing of Elevator SMV module ... 62

Figure 19: Partial listing of main SMV module... 65

Figure 20: Main SMV module for Timer class unit verification ... 75

ix

List of Tables

Table 1: getNextDest operation modeled as a decision table .. 36

Table 2: Macros for going to floor 1 with direction up ... 37

Table 3: SMV program structure / rules mapping ... 66

Table 4: Naming convention for SMV modules, variables and macros .. 67

Table 5: Requirements-level and OO modeling defects summary .. 80

1

1 Introduction

Object oriented (OO) modeling started in the late 1980s, modeling the concepts of object oriented

programming at a higher level of abstraction. Several OO methodologists, spearheaded by G.

Booch, J. Rumbaugh, and I. Jacobson, joined efforts to combine the best practices of various OO

modeling approaches into a single method called the Unified Modeling Language (UML)

[UML99]. On November 17, 1997, the Object Management Group (OMG) adopted the UML as a

standard for specifying, visualizing, constructing and documenting artifacts of software systems.

Since then, UML has gained popularity for providing software practitioners with a set of standard

symbols and semantics to effectively communicate and produce predictable, repeatable results.

The popularity of UML is evidenced in the number of books, conferences, seminars, reports,

papers and software tools available in the commercial market today.

UML has become the most popular method for OO modeling. Most UML specifications are

descriptive and easy to understand. However, UML does not provide a standard approach to

verify correctness properties of the model. In this thesis, we translate UML object-oriented

software models to Symbolic Model Verifier (SMV) [McMi93] models in order to verify the

correctness of the UML model.

UML has a very rich set of diagrams, notations and well-formedness rules. However, it does not

provide guidelines for writing clear and unambiguous object-oriented specifications that are

amenable to model checking. In this thesis, we demonstrate that the use of Class Diagram, Object

Model and State Diagrams are sufficient to translate into SMV for model checking. We introduce

a set of guidelines in constructing well-formed unambiguous UML specifications that makes

translation to SMV easy. We use UML constraints to describe the system properties informally.

We provide a set of rules to translate the UML specifications including the UML constraints to

SMV. We apply these guidelines to build a UML model for a three-floor elevator and apply these

rules to translate the UML model to SMV. To complete the case study, we use SMV to perform

model checking automatically.

Our aim is to make systematic model checking available for software developers who use UML

to specify reactive systems. The guidelines and examples of translation from UML to SMV

described in this thesis are aimed at helping software practitioners translate UML models to SMV

easily. This approach has the potential to add model checking capability to commercial UML

2

tools such as Rational Rose (by Rational) and Rhapsody (by i-Logix). We view model checking

as complementary to current simulation and testing capabilities of commercial UML tools.

1.1 Model Checking

Software verification techniques can be classified as verification-based or refutation-based.

Theorem provers use the verification approach to find a proof for a given property, while model

checkers use a refutation approach to refute the correctness property by finding a counter-

example. With the aid of deductive verification using axioms and proof rules, theorem proving

has the advantage of effectively verifying infinite state models. However, it requires a lot of

expertise in Formal Methods. If and when a failed proof occurs, the theorem prover does not

present a counter-example.

Figure 1: Finite state model checking

Figure 1 shows the process of finite-state model checking where a finite model is checked against

a correctness property [CES86]. Both the finite model and the correctness property are expressed

in the language of the analysis tool called a model checker. The model checker performs an

exhaustive check and responds with confirmed or “not confirmed” with a counter-example. If a

counter-example is found, either the finite model was incomplete or wrong, or the expected

property was incorrectly specified or the property does not hold in the model specified. In this

thesis, we selected model checking for automated analysis because it is more cost-effective to

check the software system. Unlike theorem proving, model checking requires less expertise in the

use of formal methods. As such, refutation-based tools such as model checkers are more

promising for software practitioners.

Recent papers on automated software analysis [GlWe98] [JaRi00] describe how using an

essential model (i.e., an abstract model of an important requirement or behavior) helps to make

Analysis Tool (Model Checker)

Finite Model
Correctness

Property

Confirmed
Not Confirmed

(Counter
Example)

3

model checking more practical. Model checking key properties of an essential model is known to

incur much lower cost than verifying a complete model [Berr99]. In this thesis, we apply model

checking on the essential model of the elevator case study.

1.2 Computer-Aided Verification of UML Models

Computer-aided verification of UML Models is currently an active area of research. Some

researchers suggested verifying UML specifications using a theorem prover. Kamuller and Helke

[KaHe00] translate UML object and state diagrams into Isabelle/HOL, and use the Isabelle

interactive theorem prover to detect inconsistencies and check well-formedness. Guaspari and

Naydich [GuNa98] describe how to model a UML specification consisting of state diagrams for a

restricted class diagram (e.g., no inheritance) in PVS [ORS92], also an interactive theorem

prover. Muthiayen [Muth00] proposes real-time extensions to UML and demonstrates how

models written in this RTUML notation can be formalized as PVS axioms and theories and how

safety and liveness properties can be verified using the PVS theorem prover. Using PVS, one can

formally prove that the model is consistent with a property. However, the use of PVS for software

verification requires more expertise in Formal Methods because writing theorems and proofs

requires mathematical background and reasoning.

There are papers that described how to convert a UML model into a Promela specification

[LiPa99][Bose99][McCh01]. Promela is the input language of the SPIN model checker [Holz97].

The SPIN software verification system, developed by AT&T, is based on an interleaving model

of concurrency where only one component of the system’s state is allowed to change at a time.

The interleaving semantics supports a reduction algorithm based upon exploiting symmetries in

the order of execution known as partial order reduction [Pele94]. This makes SPIN suitable for

concurrent processes with uncoupled events such as network protocols. For most reactive systems

where events are tightly coupled in distinct processes, SPIN’s partial order reduction technique

cannot be put to good use.

In contrast, tools that use synchronous models such as COSPAN [Kurs96] (by AT&T) and

Symbolic Model Verifier (SMV) allow any number of components to execute at the same time.

The SMV tool uses Binary Decision Diagrams (BDDs) to symbolically represent state

information rather than explicitly representing each state. Since SMV represents the sets of states

and transition relations as boolean formulas, model checking is based on formula manipulation

and simplification. In this thesis, we decided to use SMV because it is well suited for reactive

4

systems and process control systems where components are tightly connected via synchronization

messages and internal events.

Studies have shown that symbolic model checking can be successfully applied to large software

systems [SrAt96][CAB+98]. Our work builds on previous work that uses SMV to perform

automated verification. However, we differ by translating from UML models (instead of

CoRE/SCR, RMSL, and Statechart models) to SMV models.

McUmber and Cheng [McCh01] investigated formalization of UML diagrams using formal target

languages. Specifically, they demonstrated a framework for translating a subset of UML state

diagrams and UML class diagram into Promela/SPIN based on a homomorphic mapping between

UML and Promela metamodels. Our work is consistent with their homomorphic mapping

approach because we preserve UML’s class structure when translating from UML to SMV. Our

work differs in that we are translating UML models into SMV and not UML models to Promela.

We provide specific rules on how to map UML classes and attributes to SMV’s modules and

variables.

Our work also differs from the previous translations from UML to PVS and to Promela because

the other translations concentrate on the UML state machine only. They use the state diagram for

defining internal behavior of objects and translate the state diagram to a formal language, but not

in the context of the class diagram. They provide no guidance in how to instantiate the state

models associated with the various classes from their class diagram. In contrast, we examine and

translate the major model elements of a UML class diagram. We discuss how to model and

translate different types of associations including aggregation, composition and generalization

(superclass / subclass) relationships. We also investigate how to translate operations and

attributes defined in a class. For UML state diagrams, we show how to specify state models that

adhere to the object-oriented principles and propose translation rules for events with arguments.

Only a subset of UML’s notation (i.e., the most common and important modeling elements) is

considered in our case study.

In this thesis, we describe how to verify properties of UML specifications using SMV. We expect

our guidelines for specifying a well-formed UML specification to be applicable to other non-

SMV model checkers. Thus we have separated the UML modeling step from the translation and

verification steps, to make it possible to use a different model checker to verify the same UML

5

specification. Using this approach, software practitioners can concentrate on UML modeling and

use the SMV tool as a separate component to perform model checking.

6

1.3 UML to SMV Model Checking Process

In practice, the translation from UML to SMV is iterative. We specify the user requirements

using UML and translate to SMV. Then, we perform model checking using SMV. UML models

are updated and retranslated based on the result of the SMV model checking. The iteration is

complete when all properties to be checked are satisfied (i.e., no counter-examples or no errors

are detected). The complete UML to SMV model checking process is illustrated in Figure 2,

where we use basic flowchart notation to describe the process. The UML to SMV model checking

process consists of five major steps:

Step 1. Attempt to specify the user requirements

This is the requirements elicitation step, in which the stakeholders of the software system

discover, reveal, articulate and understand their requirements. For simplicity, we assume that the

outcome of this step is the problem statement and system properties that must hold1. The

following steps help in specifying and refining the problem statement.

Step 2. Model the requirements in UML

Using all the relevant information provided by the requirements elicitation step, we build a UML

class diagram, UML object model and for each class, a UML state diagram. The UML class

diagram defines the system’s object structure including inter-object associations such as

composition, aggregation and generalization. We use the UML object model to represent the

maximal instantiation of the class diagram. The object model is annotated with UML constraints

that specify desired system properties such as “elevator never moves with its doors open”. A

UML state diagram defines the behavior of all objects of a specific class. We build the state

diagrams that conform to well-formed rules to ensure consistent and intuitive translation to SMV

for model checking. Guidelines and detailed examples are discussed in Chapter 2.

Step 3. Translate the UML model to SMV

In this step, we translate the classes and their state machines into SMV modules. Then, we

translate the objects defined in the object model as instantiations of SMV modules. Details of

1 In practice, the outcome of this step would include objectives, anticipated benefits, strategic and future
considerations, constraints and assumptions, security, audit and control aspects of the software system.

7

translation rules are discussed in Chapter 3. We also translate the UML constraints defined in the

UML object model into Computational Tree Logic (CTL) formulas, which is the property

language for SMV.

Figure 2: UML to SMV model checking process

Step 4. Verify the system properties using SMV

Verifying the CTL expressions using SMV is an automated step. SMV checks for syntax errors

and cyclic dependencies. The SMV software tool builds a representation of the system state space

and checks the CTL expressions with respect to the SMV model. There are two possible

outcomes:

1. The system property is true.

Problem Statement
and Properties

UML Class Diagram

UML State Diagram

SMV Model
and Claims

SMV Counter-
Example

Start

Stop

Specify
Requirements

Model
Requirements

UML Object Model
with Constraints

Translate to SMV

Verify System
Properties

(automated)

Claims
Satisfied?

Analyze Counter-
Example

No

SMV Model
Error?

Yes

Yes

UML Model
Error?

No

Yes

No

Legend:

Terminator

Process Step

Document

Decision

Control Flow

Optional Flow

8

2. The system property is false. In this case, SMV typically shows a counter-example to

substantiate its claim.

For very large SMV models, the SMV tool will run for hours and may run out of memory and

abort execution. The Cadence SMV used in this thesis controls the size of the BDDs created and

manipulated during state exploration. However, it is still possible that the Cadence SMV tool will

exhaust all memory available and abort execution.

In addition to checking the systems properties defined in the user requirements, the developer can

check additional CTL expressions, such as test conditions, liveness or progress properties,

guarantee conditions and valid value range conditions. Details of these additional system

properties will be discussed in Chapter 4.

Step 5. Analyze the counter-example

If the outcome of the model checking is true, we have increased confidence that the UML model

accurately represents the system requirements defined by the system properties. If the outcome of

the model checking is false, a counter-example shows a sequence of states that leads to state

where the property is violated. If the counter-example reveals an error, then fixing the error may

mean changing the requirements or changing the UML model. It may also mean that there is an

error in the translation process (i.e., UML model to SMV model or system property to CTL

formula). Alternatively, we may intentionally construct claims that we expect to be false, in

which case a counter-example is a desirable outcome because the counter-example provides a

detailed trace of a specific execution path. This trace can be useful for understanding the

execution steps of SMV. The types of errors we encountered in the elevator case study and the

corrective actions taken are discussed in Chapter 5.

Step 6. Iterate Steps 1 through 5 until no more problems are found

Using model checking as an automated analysis tool allows us to verify a partial UML model

very early in the UML modeling phase. Constraints are specified on an object or a group of

objects (on the links) on the UML object model. To verify if a UML constraint is true, one can

identify and translate only the objects associated with the constraint and proceed to model check a

small portion of the software system.

9

Thus, new objects and state diagrams can be added in an incremental fashion. This can increase

the probability of getting an answer from the SMV tool especially if the final UML model is

large. Once a specific object or group of objects has been verified to be correct, we have more

confidence and can add more objects for translation and verification. Verifying partial

specifications will be discussed in Chapter 4.

1.4 Main Contribution

The main contributions of this thesis are as follows:

1. We propose UML extensions and notation conventions that ease the translation from UML

model to SMV input. The main extensions to the UML class diagram notation include:

adding a special External_Event class to centralize all the events generated by the

environment; adding input events and input objects stereotypes to the class name section of a

class; adding a fourth section of a class to define output events; and adding array indices to

role names to distinguish multiple instances of the same class. In this thesis, we treat UML

operations as mathematical functions. We do not support dynamic use of constructor and

destructor operations. We associate a UML state diagram with a single class. We propose

changes to the UML state transition by adding an optional source object to distinguish the

source of the event trigger; adding an array index to the source or destination object of the

events; and introducing an optional quantification formula over multiple source objects to

specify multiple transitions in a more compact manner.

2. We develop the SMV program structure (i.e., a template) and rules for translating UML class

diagrams and UML state diagrams to SMV. These rules address UML’s composition and

generalization constructs and semantics found in UML class diagrams. They also address

UML’s timer, concurrent states and multiple-event processing semantics found in UML state

diagrams.

3. We demonstrate how our bottom-up approach in translating and verifying the UML model

allowed us to perform unit verification early in the specification process. This approach helps

us detect and correct errors for each object before analyzing the entire specification.

4. We demonstrate how model checking a UML specification can help to iterate and refine a

requirements document. We observe how model checking detected errors that were not

detected when writing the user requirement or specifying the UML models.

10

The primary goal of the proposed translation rules and guidelines is to make both UML and SMV

specifications easy for software practitioners to understand. We evaluate our approach in model

checking UML models by the ease of translation and the effectiveness of detecting errors in the

original UML specification. We also discuss how the proper use of object-oriented specifications

can improve the readability of the UML and SMV models. Although it is possible to automate the

proposed UML-to-SMV translation rules, this is not part of the thesis.

11

2 Modeling Reactive Systems Using UML

Throughout this chapter, we provide guidelines for writing UML specifications that are amenable

to model checking. We provide modeling guidelines for a subset of UML class diagram notation

and UML state diagram notation. These guidelines improve readability of the specifications. They

also eliminate ambiguity by using clear and precise UML notation. The guidelines were

developed based on the elevator example and eliminate many of the common pitfalls in object-

oriented specifications.

This chapter provides a case study on how to use the Unified Modeling Language (UML) to

model reactive systems2. UML provides a set of notations and diagrams to model object-oriented

structure and complex behavior of reactive systems. First, we describe the three-floor elevator

system and the system properties to be checked. In Section 2.2, we use UML’s class diagram to

show the object-oriented structure of the software system. In Section 2.3, we use UML’s state

diagram to describe how each of system’s objects reacts to external events. We use the

methodology described by Douglass [Doug98] to construct our UML specifications. In Appendix

A, we provide a summary of the UML notation used in our case study.

2 A reactive system is a long running system that interacts continuously with its environment. It is designed
not to terminate.

12

2.1 Requirements Analysis

In this section, we present the problem statement and system properties for a three-floor elevator

that we use as a case study. The problem statement is an informal description of the system to-be-

developed and its basic requirements.

2.1.1 Three-floor Elevator System Problem Statement

A software system controls an elevator for a building with three floors. The first and third floors

each have one elevator request button, located outside the elevator, used to request that the

elevator to come to that floor. The second floor has two elevator request buttons, one for

requesting service to a higher floor and one for requesting service to a lower floor. This means

that when both the up and down second floor hall buttons are pressed and the elevator arrives to

pick up a passenger in one direction, the backlight of the hall button for the other direction will

remain lit. Elevator request buttons are also known as hall buttons. Pressing a hall button will

keep the elevator door open, if the elevator is on the same floor as the pressed button and the door

is currently open.

Inside the elevator, there are three floor request buttons used to request to go to a specific floor.

The elevator also has an open door button and a close door button. The open door button

opens the doors when the elevator is not moving. Each time the open door button is pressed, the

time period that the door will remain open shall be reset to five seconds. The close door button

closes the doors immediately even if the timeout period of five seconds is not yet reached. To

ensure fairness to all service requests, a maximum of three (3) consecutive open door requests is

allowed. Collectively, the floor request buttons, open door button and close door button are

called elevator buttons.

The elevator has a sliding door called the inner door of the elevator. Each floor has a sliding

door called the outer door of the elevator. When the elevator arrives at the floor, the inner door

and the outer door of the elevator simultaneously open using a mechanical device. The doors

close within five seconds after the doors open.

Each time an elevator request button or floor request button is pressed, the request is placed in

a pending queue. Once pressed, a request button is lit to indicate that a request is in the pending

queue. Pressing a request button that is already in the pending queue has no additional effect. The

13

elevator has a floor sensor that determines when the elevator is at a floor. When the elevator

arrives to handle an elevator- or floor-request, the light on the request button is no longer lit.

The elevator system shall respond to an elevator request whenever it is idle or already going in

the requested direction. This means that if a passenger from the first floor requests to go to the

third floor, a passenger with an elevator up request from the second floor will be picked up

along the way. An elevator down request on the second floor will not be picked up until the

elevator changes direction from up to down.

Two-Passenger Scenario

In order to understand the requirement that the elevator responds to new requests for travel in the

same direction as its current destination, we present a two-passenger scenario using a UML

sequence diagram.

Figure 3: Two-passenger scenario sequence diagram

Figure 3 shows how the requests are sent to the elevator system asynchronously. Each request is

stored in the pending queue. This allows the elevator to find the next destination (floor) each time

the door closes or when new requests are received by the elevator while it is moving.

Passenger 1 Passenger 2

Elevator
System

Request floor 3

Start: Elevator is on
floor 1 with no pending
requests. Passenger 1
enters the elevator and
requests to be taken to
floor 3.

Request UP elevator

Elevator closes door,
starts going up to floor 3.

Queue Request; Find Next Destination

Passenger 2 is at floor 2
and pushes the Up button.
Elevator finds a new
destination floor 2; arrives
at floor 2.

Door opens

Door times out and closes

Door times out and closes

Passenger 2 enters the
elevator. Elevator closes
door, starts going up to
floor 3.

Find Next Destination

Queue Request

Elevator arrives at floor
3. Passenger 1 and 2
disembark.

Door opens

Find Next Destination

Door opens

14

2.1.2 System Properties

The elevator should have the following system properties:

• Requests to use the elevator are eventually serviced; requests to be delivered to a particular

floor are eventually serviced.

• The elevator never moves with its doors open.

• The elevator doors are not held open indefinitely.

15

2.2 Defining Object Structure using UML

In this section, we describe the object structure of our elevator case study. We will introduce the

guidelines in writing UML class diagrams, object models and UML constraints as we construct

the UML model for the elevator example. We used Visio’s UML template for creating and

maintaining our UML diagrams. To implement some of our proposed changes, we added

extensions to the original UML template.

2.2.1 UML Class Diagram

The main class diagram shows an object-oriented decomposition of the problem description.

When we specify the UML class diagram, we only show objects that form part of the software

system. To avoid clutter, classes that represent environmental devices are kept to a minimum. Our

primary goal is to produce successful software requirement specifications. As such, we build

object models that have sufficient details to verify all the system properties defined by the domain

expert, and no more.

Identifying Classes

A class captures the common structure and common behavior of a set of objects. An object is an

instance of a class. It can contain both data and functionality. Data are represented as attributes in

a class. Functionality is represented as operations that describe computational behavior.

When modeling and analyzing reactive systems, we are interested in the control flow of the

software system. Therefore, we are most interested in identifying the active objects of the system.

Active objects can autonomously perform actions, coordinate the activities of component objects,

and generate events to other objects. In our elevator example, the active objects are the building,

elevator, the door and the buttons.

Environmental devices such as sensors and actuators that are not controlled by the software

system are shown in our main class diagram with the <<environment>> stereotype3. We

introduce the environment stereotype to define a new form of class that defines classes that are

3 A stereotype is an extension mechanism to UML, allowing analysts to add new semantics to the UML
notation.

16

external to the software system. In our elevator case study, the External_Event and Engine

classes are environment classes.

Figure 4: Three-floor elevator main class diagram in UML

Figure 4 shows how the active classes, Building, Elevator, Door and Button, are structured as a

general solution to the elevator problem. We add an active class Timer that generates the timeout

event needed by the Door class. The RequestBn class is a specialization of the Button class.

Class attributes refer to the data encapsulated within an object. Attribute definitions must include

the data type because SMV will need to know the set of possible values for each attribute. Default

values are optional because they can be defined in the state diagram. If both a default value for an

attribute is specified and an initial value set in the state diagram, then they must agree.

Alternatively, default values may be left unspecified (non-deterministic). For example, the

Elevator class has a floor attribute whose value ranges from 1 to 3. The floor attribute records

which floor the elevator is at. Initially, the elevator is on the first floor. Elevator’s attributes also

keep track of the elevator’s current destination (destFl) and previous destination (prevDest). The

FloorReqBn
[1..3] 3

ElevReqBn
[up][1..2]

2

ElevReqBn
[dn][2..3]

2

1

1

1

<<environment>>
Engine

<<input>> UP
<<input>> DOWN
<<input>> STOP

RequestBn
<<input>> LIGHT
<<input>> UNLIGHT

pending: boolean = 0

Button
<<input>> BN_PRESSED

REQ

Timer
<<input>> SET
<<input>> UNSET

TM

counter: integer = 0

1

Door
<<input>> OPEN
<<input>> KEEP_OPEN
<<input>> CLOSE

retry: 0..3 = 0

SET(n)
UNSET
CLOSED

Building

KEEP_OPEN_REQ
LIGHT

Elevator
<<input>> KEEP_OPEN_REQ
<<input>> BP_OpenBn
<<input>> BP_CloseBn
<<input>> BP_FloorReqBn[1..3]
<<input>> AT_FLOOR
<<object>> ElevReqBnUp[1..2]
<<object>> ElevReqBnDn[2..3]
floor: 1..3 = 1
dir: {up, dn} = up
destFl: 0..3 = 0
destDir: {up, dn} = up
prevDest: 0..3 = 0
prevDir: {up, dn} = up
reopen: 0..2 = 2
getNextDest()
getNextDir()
overrideUp()
overrideDown()

OPEN
KEEP_OPEN
CLOSE
LIGHT
UNLIGHT
UP
DOWN
STOP

<<environment>>
External_Event

BP_OpenBn:BN_PRESSED
BP_CloseBn:BN_PRESSED
BP_FloorReqBn[1..3]:BN_PRESSED
BP_ElevReqBnUp[1..2]:BN_PRESSED
BP_ElevReqBnDn[2..3]:BN_PRESSED
AT_FLOOR

1

1
OpenBn

CloseBn

DoorTimer

1

17

Elevator class has attributes dir, destDir and prevDir to keep track of the current direction, the

destination’s direction and the previous destination’s direction respectively. The reopen attribute

of Elevator class counts the consecutive requests to reopen the door while the elevator is on the

same floor with doors closed. The Door class has a retry attribute that counts the number of

consecutive requests to keep the door open. The Timer class has a counter attribute, which

simulates the count down of the timer.

UML operations are the services provided by the class. For example, the Elevator class has a

getNextDest operation that describes the complex rules used to decide the elevator’s destination.

To avoid clutter, we do not describe the operations of environment classes. Details of UML

operations will be discussed in the next section.

Modeling Internal and External Events

Events are the messaging mechanisms that allow a system object to interact with the

environment. They also enable the objects within a system to communicate and synchronize.

UML does not say anything about how events are modeled in the main class diagram. Since

events are critical to reactive systems, we treat events as first class modeling elements in the main

class diagram. Modeling events explicitly helps to make the main class diagram more readable

and eases its translation to SMV.

The UML notation does not provide a notation to explicitly model the events in the main class

diagram. To resolve this problem, we propose several extensions to the UML class diagram

notation. We introduce as part of the class name the set of input events, which instances of that

class can receive and react to. By explicitly defining the input events in the class diagram, we are

defining the input interface of the class4. The input interface is useful for inspecting the class’s

state diagram because the state diagram should not generate these input events. An input event

serves as an event trigger to enable a transition. Input events are prefixed with <<input>>

stereotype. We only declare input events that do not come from an object’s class or its component

classes because the class has visibility to the events generated by its component classes. For

example, Door class can access events generated by its own component class Timer, so we do

not declare the TM (timeout) input event in the Door class. In addition to input events, a class

4 These input events must be consistent with the input events used in the class’s UML state diagram.

18

that needs to access attribute values from other objects that are external to the class are defined as

input objects. Input objects are prefixed with <<object>> stereotype.

We also introduce in a fourth section of a class declaration the set of output events, which

instances of that class can generate. By explicitly defining the output events in the class diagram,

we are defining the output interface of the class. The output interface is useful for inspecting the

class’s state diagram because the state diagram should generate these output events. This new

event section is placed below the name, attribute and operation sections. Although it is possible to

use the state diagram to identify the events that the environment and system generate, it is

convenient to see them in the main class diagram. Adding a separate event section allows us to

check the consistency of event names and prevent conflict. Adding the <<input>> stereotype to

the class name and adding a separate event section helps the reader to understand how events are

passed among objects without having to simultaneously examine several state models. This

improves the readability of the main class diagram.

Input events are classified into internal or external events. Internal events are events generated by

the classes that belong to the software system. Internal events must correspond to the events

raised in the class’s state diagram. External events are events that are generated by the system’s

environment. Classifying an event as internal or external is important during the translation to

SMV because the translation will rely on this information to decide how and where to define the

variables. We introduce the concept of a special External_Event class, which lists all of the

external events. These events are distinct from events generated by system classes because we

may make assumptions during model checking about when and in what order these events can

occur. This allows us to model check the behavior of the system when it is running under certain

environmental conditions. In contrast, it would be invalid for us to constrain when system events

occur, beyond those constraints defined by the specification. Other than the special

External_Event class, environment classes such as Engine class, are not translated to SMV for

model checking.

We can define the events that come from the environment in either a centralized or decentralized

manner. We proposed to centralize all environment events in a special External_Event class

because it makes the design focused on the software system where the software system does not

need to know where and how the external events are generated. It makes changes to environment

events easier to track because there is only one environment class as opposed to many

environment classes. This, in turn, eases the translation to SMV.

19

The UML state diagram notation does not distinguish between events that are shared or not

shared. In our elevator case study, each of the push-button devices that are external to the elevator

software system generates a BN_PRESSED event when the button is pressed. Each

BN_PRESSED event leads to possibly generating an REQ event of a specific button. As such, we

cannot model the push button events from the nine push button devices using the same external

event name. We distinguish each of the nine BN_PRESSED external events by declaring nine

output events in the event section of the External_Event class. These nine output events of

External_Event class correspond to the multiple instances of Button and RequestBn classes.

We distinguish each of these BN_PRESSED events by explicitly referencing the role names of

associations from the Elevator class to the RequestBn and Button classes found in the UML

class diagram.

When defining output events, we need to distinguish events that are shared by all of the object

instances of the same class. In our elevator case study, the elevator object consumes REQ events,

generated by both the OpenBn and CloseBn objects. OpenBn and CloseBn objects instantiates the

same Button state diagram where an REQ event is generated whenever a button is pressed. Since

the OpenBn and CloseBn state machine do not share the same REQ event, we define the REQ

event in the event section of the Button class as not shared (i.e., not underlined). Consistent with

UML’s notation for class-scoped attributes, we would define a class-scoped event where the

objects of the same class share the same event name and event value by underlining the event

name.

Modeling Generalization Relationships

The RequestBn class is modeled as a specialization or subclass of a more generic Button class: a

relationship denoted by a link with triangle arrowhead. This means that the RequestBn class

inherits all the data and behavior of the Button class. All Button objects react to a

BN_PRESSED event from the environment by generating a corresponding REQ event for the

system to process. A RequestBn object has the added feature of lighting up when it has issued a

REQ event that the system has decided to process, but which the system has not yet serviced. We

extend the RequestBn class by adding a pending attribute to keep track of pending requests.

Identifying Class Associations

An association represents a semantic connection between two classes. Associations allow objects

to communicate through messages and events. The Elevator class has an association to Engine

20

class. This association is required in order for the elevator to send requests to the engine to move

the elevator up and down. Next, we discuss two types of associations, namely, composition and

aggregation.

We use composition relationship when one object physically or conceptually contains another

object. The larger class is called the whole and the smaller class is the part or component class.

We refer to the part class of a composition relationship as the component object. In a composition

relationship, the part class cannot be shared by other whole classes. For example, we model the

Timer object as a component object of the Door object: relationship denoted by a line with a solid

diamond arrowhead. This means that the Door object solely owns the attribute values and state

values of the Timer object. This is important because other objects cannot share the five-second

countdown of Timer object.

An aggregation relationship is a weaker form of composition. In an aggregation relationship, the

part class can be shared by other whole classes. We refer to the part class as the aggregated

object. We can convert aggregation relationships by creating a whole class and making

aggregated objects as component objects of the newly created whole class. For example, we

added the Building class and converted the aggregated hall buttons (not shown) of the Elevator

class into component objects of the Building class. The result is shown in Figure 4.

We add adornments to the associations to provide more details to our specification. At each end

of the association, we define the multiplicity or the number of objects that the class refers to. For

example, one of the associations from Elevator to RequestBn class shows that there are three

FloorReqBn objects associated to one Elevator object. A role name represents the purpose or

capacity an object plays in an association. In our elevator example, we add role names on each of

the component class-end of the composite associations (i.e., the end without the solid diamond

arrowhead).

We borrow from Statecharts [Hare87] and RSML [LHHR94] the concept of parameterization and

apply it to generate distinguishable object instances. Multiple instances of the same class are

declared in the class diagram to be an array of instances. To achieve this, we annotate

associations with role names plus array indices. For example, the Elevator main UML class

diagram (Figure 4) declares the three FloorReqBn objects inside of the elevator, distinguished by

index values 1..3 representing the three different floors. The class diagram also declares four

ElevReqBn objects outside of the elevator, distinguished by one index value representing the

21

desired direction of travel and a second index value representing the floor. Array indices are used

to distinguish between individual objects, for the purpose of identifying objects, events, and the

source of an event or specifying the destination of an event. To ensure that the system can handle

simultaneous events, transitions that are triggered by indexed events are quantified, to process all

applicable events. We describe how to use array indices when constructing UML state diagrams

in the next section.

Naming Conventions

We use naming conventions when defining our class diagrams in order to improve readability and

for ease of translation to SMV.

• We specify class names in mixed cases starting with upper case (e.g., Elevator).

• We specify role names in mixed cases starting with upper case (e.g., FloorReqBn).

• We write attribute names in mixed cases starting with lower case (e.g., prevDest).

• We write operation names in mixed cases starting with a lower case. (e.g., getNextDest).

• We write event names all in upper case (e.g., REQ, BN_PRESSED); this will easily

distinguish event names from operation names.

Limitations

The SMV model checker requires the state space to be finite. Therefore, we have to explicitly

define the number of objects for each class. We assume that there is only one object if the

cardinality is not defined. For class attributes with infinite data types (e.g., unbounded integer),

we would also need to abstract the set of attribute values. We also expect our object model to be

static over the course of execution. We do not support the dynamic use of constructor and

destructor operations in our elevator case study.

2.2.2 UML Object Model

Object models are derived from the class diagram. They show instances of classes called objects.

It shows instances of associations called links. An object model emphasizes the specification’s

object structure where all of the relevant run-time objects are shown. At run-time, each object’s

state machine runs concurrently with other object’s state machine, similar to concurrent regions

of a state machine running concurrently.

22

We construct the object model as a requirement before translation to SMV. In this step, we

identify the system boundary in order to translate only those classes that are part of the software

system. Only the concrete classes (i.e., classes that are instantiated) and the system-controlled

classes (i.e., classes without the <<environment >> stereotype) are included in the object model.

In UML, we represent an object with a rectangular box where the distinct object name followed

by a colon and the object’s class name are underlined. Figure 5 illustrates the run-time

configuration of the elevator example that will be used for translation to SMV.

Figure 5: Three-floor elevator object model in UML

We use the following naming conventions to ease translation into SMV. Object names are

specified in mixed cases starting with either lower case or upper case. For classes that represent a

single object, the object name is the same as the class name starting with lower case. For classes

that represent many objects5, the object name is the role name. For example, ElevReqBnUp1,

ElevReqBnUp2, ElevReqBnDn2, and ElevReqBnDn3 are RequestBn objects representing the

5 Based on the multiplicity of the associations in the class diagram

elevator
:Elevator

door :Door

DoorTimer
:Timer

FloorReqBn1
:RequestBn

FloorReqBn2
:RequestBn

FloorReqBn3
:RequestBn

OpenBn
:Button

CloseBn
:Button

ElevReqBnDn2
:RequestBn

ElevReqBnDn3
:RequestBn

ElevReqBnUp1
:RequestBn

ElevReqBnUp2
:RequestBn

main :Building

23

four hall buttons on the three floors. The object that contains all the other class instances is named

main.

2.2.3 UML Constraints

In UML, a constraint is an expression of some semantic condition that must hold whenever the

system is in a steady state. It can be added to classes, class attributes, roles and associations.

Figure 6: System properties shown as UML constraints

Before the state diagrams and the class attributes are finalized, it is difficult to specify the system

properties in terms of object states and object values. Therefore, we write the UML constraints

elevator
:Elevator

FloorReqBn1
:RequestBn

FloorReqBn2
:RequestBn

FloorReqBn3
:RequestBn

elevator
:Elevator

door :Door

main
:Building

ElevReqBnUp1
:RequestBn

ElevReqBnUp2
:RequestBn

ElevReqBn2
:RequestBn

ElevReqBn3
:RequestBn

{elevator never moves with its doors open}

{requests to be delivered to a particular floor are eventually serviced}

{requests to use the elevator are eventually serviced}

{doors are not held open indefinitely}

24

using the vocabulary found in the problem statement (i.e., without using object states and object

values). To avoid clutter, UML constraints are shown separately from the object model, though

they are written with respect to the objects and links found in the object model.

Figure 6 shows UML constraints attached to objects and links. The constraint “{doors are not

held open indefinitely}” is attached to the door object because only the Door object can achieve

this property. The liveness properties “requests are eventually serviced” are related to the links

between the request buttons and the elevator that services the requests. The safety constraint

“{elevator never moves with its doors open}” is attached to the link between the elevator and the

door because it affects both object’s behavior. During the translation from UML to SMV, we will

rewrite each of these UML constraints in a formal, model-checker-specific language. Details on

this translation will be discussed in Chapter 4.

Other UML constraints such as the fairness constraint for environmental variables are defined in

the external_Event object (not shown). Environmental constraints are translated as part of the

SMV model. Details of translating environmental events are discussed in Chapter 3.

25

2.3 Defining Object Behavior using UML

In this section, we describe the object behavior of our elevator case study. As we model the

elevator example, we will introduce the guidelines in writing UML state diagrams and UML

operations.

2.3.1 UML State Machine Semantics

A UML state diagram defines the behavior of UML objects in terms of a state machine. UML

semantics allows multiple interpretations of UML state machines. In this thesis, we associate a

UML state diagram with a single class. For a class that has many objects, each object is

associated with one state machine, which is an instantiation of the state diagram associated with

the object’s class.

The elevator state machine responds to user requests, input as buttons being pressed. It controls

many other classes such as the Engine (when and in which direction to move) and the Door

(when to open or close). The Elevator state diagram shown in Figure 7 is the result of

decomposing the state diagram into two orthogonal regions. The first region, New_Requests,

decides whether pressing a floor-request button initiates a pending request (it doesn’t if the

elevator is already at the requested floor and the doors are open). The second region, Operation,

services the pending requests and has two substates (i.e., Stop and Moving) to represent whether

the elevator is either stopped or moving. When in the state Stop, the elevator controls the opening

or closing of the elevator door. When in the state Moving, the elevator controls whether the

engine is moving up or moving down. Within each region, there is a start-state icon (drawn as a

small filled circle) with a transition6 pointing to the initial state. The initial state configuration for

the Elevator state diagram is state Waiting of the New_Requests region and state Closed_Doors

within the Stop superstate of the Operation region. The start-state transition of Operation region

sets the default values of the elevator attributes floor, destFl, and prevDest to 1, 0, and 0

respectively.

UML state diagrams can be hierarchical. A superstate is a state that contains one or more

substates. A state without a substate is an atomic state. A superstate is either an and-state,

meaning all its substates are active, or an or-state, meaning exactly one of its substate is active

6 We do not assign names to start-state transitions because they are not needed for translation to SMV.

26

and there are transitions among its substates. The root-state is the top-level state that represents

the entire state machine. A state is active if the state machine is in that state.

Elevator

Moving

Operation

New_Requests

Waiting

t1: forall f: FloorReqBn[f].REQ
{!(floor=f & IN(Open_Doors))}
^FloorReqBn[f].LIGHT

Stop

Closed_Doors Open_Doors

t3: {destFl=floor} / dir:=destDir, reopen:=2
^Door.OPEN, ^FloorReqBn[floor].UNLIGHT,
^ElevReqBn[destDir][floor]^UNLIGHT

t2:{ destFl=0 &
!(OpenBn.REQ & reopen>0) }

t3a: OpenBn.REQ {destFl=0 & reopen>0}
/ reopen-- ^Door.OPEN

t11:on OpenBn.REQ |
KEEP_OPEN_REQ ^Door.KEEP_OPEN
t12:on CloseBn.REQ ^Door.CLOSE

t4: CLOSED {!reopen<2} / prevDest
:= DestFl, prevDir := dir, destFl := 0

t5: {destFl>0 &
!(destFl=floor)}
/ reopen:=2

Move_Up Move_Down

t6: {destFl>floor} / dir := up
^Engine.UP

t8: {destFl<floor} / dir := dn,
^Engine.DOWN

t7: AT_FLOOR / floor++ t9: AT_FLOOR / floor--

entry: overrideUp()

t10: {destFl=floor} / dir:=destDir ^Door.OPEN,
^Engine.STOP, ^FloorReqBn[floor].UNLIGHT,
^ElevReqBn[destDir][floor].UNLIGHT

/ floor := 1, destFl := 0, prevDest := 0; reopen := 2

entry: getNextDest(), getNextDir()

entry: overrideDown()

t4a: CLOSED {reopen<2}

t13: forall f: FloorReqBn[f].REQ
{floor=f & IN(Open_Doors)}
^Elevator.KEEP_OPEN_REQ

Init

Figure 7: Elevator state diagram

A UML state machine receives input events from the system’s environment (called external

events), from other objects within the software system (called inter-object events), and from its

27

own object (called intra-object events). Inter-object events and intra-object events are collectively

called internal events and are defined in event sections of the system-controlled classes. In our

Elevator state diagram illustrated in Figure 7, AT_FLOOR is an external event that comes from

the environment (i.e., External_Event class). KEEP_OPEN_REQ is an inter-object event that

comes from the Building object that resides within the software system. An event is set when the

event is raised or generated by the state machine.

The state machine reacts to an input event by (possibly) performing an action and by moving to

the same state or to another state. This is called a state transition. Our syntax for transition events

is derived from the syntax used in Statecharts [Hare87], OMT [RBP+91] and UML [UML99]:

label: src[index].event {condition} /action ^ dest[index].event

A state transition is depicted as an arrow originating from a source state to a destination state. It is

caused by an event and/or a condition. An event-triggered transition is a transition that is

triggered by the occurrence of an event. A condition-triggered transition is a transition that is

triggered when its guard condition is satisfied. A conditional event-triggered transition is a

transition that is triggered by an event if its guard condition is satisfied. Finally, an automatic

transition is a transition that has no event-trigger or guard condition. For example, transition t4a

of the Elevator state diagram is a conditional event-triggered transition because it is triggered by

CLOSED event and has “reopen < 2” as a guard condition.

We introduce the concept of a transition label that serves as a macro for the transition's triggering

event. Transition labels provide a compact means for prioritizing one transition over another by

specifying that a lower priority transition can only occur if the higher priority transition is not

enabled (represented as the negation of the latter transition's label). In our Door state diagram

(Figure 8), we use transition priorities to specify that transition t4 (KEEP_OPEN event) has

priority over transition t2 (a timeout event) and t3 (CLOSE event) if all these three events happen

at the same time7.

We also introduce designating the source (src) of an input event, because the event's source may

affect the state machine's reaction to the event. For example, when the elevator receives a

FloorReqBn request, it needs to know which floor the button is associated with, in order to decide

7 Note that while transitions t2, t3, t4 without their priorities may look deterministic since they are triggered
by different events, they need not be because multiple events may occur simultaneously. To ensure that the
transitions are deterministic, one has to specify transition priorities in the transition events.

28

whether the request should be serviced. Since this information is encoded in the name of the

button sending the event, the source of the event is needed to make this decision8. We may also

designate the destination (dest) of an output event.

Figure 8: Door state diagram

Sometimes we may refer to a set of objects with object names that differ only in their indexed

value. A benefit of introducing indexed objects is that simple tests and/or actions that need to be

performed on a set of indexed objects can be expressed as a formula quantified over the objects’

indices. They are represented as src[index] and dest[index] in our transition syntax presented.

Note that we use square braces, which are the traditional condition delimiter, to designate an

index value that distinguishes an object instance from other instances of the same class. As such,

we cannot use square brackets to delimit conditions. Instead, we use curly braces to delimit

conditions. For example, the transition t1 uses a quantified formula where state Waiting can

receive and simultaneously make decisions about any number of FloorReqBn requests. Without

using the quantified formula, we would have to declare three transitions (one for each floor).

In UML, event-processing proceeds as a series of execution steps, initiated by an external event.

A transition executes in one execution step. A transition executes if at the beginning of a step the

system’s source state is active, its (optional) triggering event is set, and its (optional) condition

evaluates to true. The effect of the transition execution is visible at the beginning of the next step,

at which point all of the transition's variable assignments have completed, its generated events are

set, and its destination state is active. If a transition generates events, these events may trigger

8 Note that storing the floor as an attribute of the RequestBn class and sending it as a parameter of the REQ
event is not an ideal modeling decision, since the floor never changes as the program executes, so it is not
really a variable of the class.

Door

t1:OPEN / retry := 3 ^Timer.SET(5)/ retry := 0

Close

Open

t4: KEEP_OPEN
{retry >0 & !(t2|t3)}
/ retry-- ^Timer.SET(5)

t2: TM {!OPEN} / retry:=0
^CLOSED

t3: CLOSE {!OPEN} / retry:=0
^CLOSED, ^Timer.UNSET

29

other transitions in the next execution step. An event that is set at the beginning of a step expires

at the end of that step (whether or not any transition reacts to it). It is only set in the next step if

some executing transition generates its reoccurrence. For example, transition t10 executes if the

elevator is in state Moving and the guard condition {destFl = floor} is satisfied. When enabled,

transition t10 sends an OPEN event to Door, sends a STOP event to Engine and sends an

UNLIGHT event to the appropriate RequestBn objects.

UML semantics allows actions to be associated with states. Entry actions are executed when the

state is entered or reentered. Entry actions are prefixed with “entry:” and we do not add a

transition label to entry actions because they do not react to events. In our Elevator state diagram

(Figure 7), we associated entry actions to state Closed_Doors. Upon entry to state Closed_Doors,

the state machine executes getNextDest and getNextDir operations even if the state is entered via

a self-transition (e.g., transition t2). “On event” actions are executed within an active state and

the state machine stays in the same state after executing an “on event” action. This means that the

entry actions are not performed when “on event” actions are executed. The syntax of “on event”

actions is similar to the transition syntax discussed earlier. For example, Figure 7 shows transition

t11 and t12 as “on event” actions of state Open_Doors and reacts to an event trigger without re-

entering the state Open_Doors.

The UML state machine semantics makes no assumptions about the time intervals between event

reception, event dispatching and processing. Analysts will sometimes make assumptions about

when input events can occur. One such assumption is the synchrony hypothesis [BeGo92], in

which the system is assumed to be fast enough to respond to one input event from the

environment before receiving a subsequent event. Another assumption is the single-event

hypothesis, in which the system is assumed to be able to distinguish the arrival order of near-

simultaneous events and is thus defined to handle one input event at a time. These assumptions

reduce the number of cases in which transitions can execute simultaneously. Such assumptions do

not appear explicitly in a UML specification. But for model checking, whether or not such

assumptions apply must be known, as they affect constraints on when environmental input events

can occur. In our elevator example, we assume that these events occur simultaneously. At the

beginning of any execution step, there may be many set external and/or internal events. Multiple

transitions may execute simultaneously if they are activated by the same event, if they are

activated by different but simultaneous events, or if they are enabled by true conditions.

30

2.3.2 Example Scenarios of Elevator State Machine

In this section, we demonstrate the execution semantics of our UML state machine.

Two-passenger Scenario

To help understand the elevator state diagram shown in Figure 7, we will trace the steps that

make up a sequence of transitions in the two-passenger scenario presented in the problem

statement (see Figure 3 of Section 2.1.1). This example exhibits many of the subtleties of UML’s

concurrent state, nested state and state transitions. We describe this scenario in terms of execution

steps as described in our UML state machine definition discussed in the previous section.

Figure 9: Button state diagram and RequestBn state diagram

Start of Scenario: Passenger 1 is inside the elevator, which is on the first floor with its doors

open. This is represented as state Waiting in the New_Requests region and state Open_Doors in

the Operation region. This scenario assumes that the elevator is waiting on the first floor in

response to a previous floor 1 request. Thus, prevDest has value 1. There are no pending

requests. In Figure 9 (on the right), the scenario starts in state Unlit of the Light region of all

RequestBn objects (i.e., the three elevator buttons and the four hall buttons). Thus, attribute

destFl has value 0. When the door opened, the DoorTimer object started a timer. The timer has

counted down to three right before step 1 starts.

Step 1. Environmental Event: Passenger 1 presses the Floor 3 elevator button (i.e., presses a

physical push button device for FloorReqBn3 object).

Step 2. External_Event object generates output event BP_FloorReqBn3.

Step 3. In this execution step, both REQ and TM events are broadcast.

Button

t1: BN_PRESSED ^REQ

Idle

RequestBn

t1: BN_PRESSED ^REQ

Idle

UnLit Lit

t2: LIGHT / pending := 1

t3: UNLIGHT / pending := 0

Button

Light

/ pending := 0

31

a. The state machine for the floor request button FloorReqBn3 (an instance of the

RequestBn state diagram shown in Figure 9) responds to the BP_FloorReqBn3 event (of

type BN_PRESSED) with a self-transition t1, thereby broadcasting event REQ.

b. Since the door’s timer counted down to zero, an internal timeout (TM) event is broadcast

by the DoorTimer object.

Step 4. In this execution step, both REQ and TM events are processed.

a. Transition t1 of the Elevator state machine (Figure 7) reacts to the FloorReqBn3.REQ

event by sending a LIGHT event to the FloorReqBn3 object.

b. The door object reacts to the TM event by moving from state Open to state Close

(transition t2 of Door state diagram shown in Figure 8). The door object broadcasts a

CLOSED event.

Step 5. In this execution step, both LIGHT and CLOSED event are processed.

a. FloorReqBn3 responds to the LIGHT event by moving (via transition t2) from state

UnLit to state Lit. During this transition, the pending attribute of FloorReqBn3 is set to 1

(true).

b. In Figure 7, the elevator’s transition t4 responds to the CLOSED event by moving from

state Open_Doors to state Closed_Doors.

Step 6. On entry to state Closed_Doors, the elevator calls the getNextDest operation. GetNextDest

is a system-controlled operation that computes the next destination. It finds that FloorReqBn3 has

a pending request (i.e., pending attribute has value of 1). The destFl attribute is updated to 3.

Step 7. After the getNextDest operation is performed in Step 6, the elevator’s transition t5

executes because the guard condition {destFl > 0 and !(destFl = floor)} becomes true. This

transition causes a state transition from Stop superstate to Moving superstate of the Operation

region.

Step 8. Of the two transitions leaving state Init in Moving superstate, the guard condition {destFl

> floor} of transition t6 is satisfied, so the elevator now transitions to state Move_Up and sends

32

an UP event to the Engine object. The elevator will stay in state Move_Up until an AT_FLOOR

event9 occurs.

Steps 1 to 8 show that a transition executes in one step and external events are processed in the

next step. A step can process an external event, an internal event (i.e., inter-object event or intra-

object event), or a combination of multiple external events and internal events. We assume equal

priority of external and internal events. Thus, the analyst has to assign the transition priorities

explicitly. Moreover, Steps 3 to 5 show that multiple events can be processed in the same step.

Modeling a Single Event Generated by Multiple Objects

Multiple objects may generate the same event. We call such an event a multiple-source event.

UML does not provide guidance in declaring the source of the event that triggers a transition.

Whenever it matters, we add the object name of the source as the prefix of the event separated by

a dot (“.”). For example, REQ event from the OpenBn object will be declared as “OpenBn.REQ”.

There are two possible ways to refer to a multiple-source event as a trigger in a state transition:

• Unspecified Source: When the source object of the event is unspecified, we translate this

event to mean, “If the state machine receives the event from any one of the objects”.

• Fully Specified Source: When the source of the object is crucial in determining whether the

state transition should be enabled, we explicitly write the condition showing the source of the

event. For example, transition t1 of Elevator state diagram (Figure 7) has different enabling

conditions, depending on the source of the REQ event:

t1: forall f: FloorReqBn[f].REQ {!(floor=f & IN(Open_Doors)}
^FloorReqBn[f].LIGHT

The floor is crucial to setting the light of a specific floor request button because we want to set

the light only on the floor request button that has been pressed.

9 Generating the AT_FLOOR external event is dependent on the environment. In our model, we do not
constrain the external events. UML state diagram makes no assumption about the time that it takes for the
engine to reach the destination floor.

33

Modeling Events with Parameters

In UML, events may pass data as parameters. In the Door state diagram (Figure 8), transition t1

and t4 generate event SET with a parameter 5. Parameters may refer to local attributes or the

current state of an object. Parameters of the latter type avoid declaring attributes that store active

states. This departs from the UML standard that does not say anything about passing an active

state as an event parameter.

2.3.3 Inherited State Diagrams

UML does not explicitly require that the state diagram of a subclass adhere to a specific

inheritance relationship with its parent class. But the Liskov Substitutability Principle (LSP)

[Lisk88] states that a subclass may extend the state-model behavior of its parent class, but must

still be substitutable for its parent class. Following the LSP, we aim to reuse the state diagram of

base classes when constructing state diagram of subclasses. In this thesis, we restrict the

inheritance relationship between a subclass and its parent class using the strict inheritance model

[McGr93]. Following the strict inheritance model allows reuse of the base class’s state diagram

when constructing the subclass’s state diagram. The strict inheritance model follows two

requirements: (1) a method invariant, where (a) pre-conditions of a subclass’s method may only

be weakened relative to the base class’s method, and (b) post-conditions of a subclass’s method

may only be strengthened relative to the base class’s method; and (2) a class invariant, where the

base class’s specification is a subset of the subclass’s specification. This approach allows

complex state diagrams to be built with less effort. It also eases translation to SMV by including

the SMV specification of the base class as a subset of the SMV specification of the new subclass.

Using the strict inheritance model allows a subclass to be extended in the following ways10:

• New attributes can be added and new values can be added to existing attributes. Existing

actions found in transitions or state activity section can be modified to set newly added

attributes provided the base class’s observable behavior does not change with respect to the

inherited input events. For example, we add a new pending attribute to the RequestBn

subclass.

10 The implications of following the strict inheritance model (e.g., a child class cannot delete a state of its
parent class) can be found in [McGr93]. For simplicity, we do not include multiple inheritance in our UML
models.

34

• A new concurrent region can be added to an existing state diagram. The region introduces

new sub-states and transitions between these sub-states. The transitions can be triggered by

new or existing input events, can modify new or existing attributes, and can generate new or

existing output events. For example, we add a new Light region to the RequestBn state

diagram.

• New states and transitions can be added to an existing state machine if the new transitions

from existing states to new states are triggered by only new events [Muth00]. Adding new

states while retaining all the existing states means that the post-conditions of the base class’s

methods are not violated. Adding new transitions to and from the new states must be

triggered by new events because the existing behavior of the base class relative to an existing

event must be preserved.

• An atomic state can be refined to be a superstate containing two or more substates. The

refined state can take advantage of additional information represented by the new substates.

This means that we have a more detailed specification and we can construct new system

properties (for verification or model checking) that refers to the new substates. For example,

we could create a new subclass (not shown) that inherits RequestBn’s state diagram where the

state Lit is refined to contain substates Low_Level and High_Level to indicate the light level

when the button light is on.

• Input events can be generalized and output events can be specialized. Existing transitions can

be triggered by more general input events and can generate more specific output events. By

generalizing input events, a subclass can be substituted for its parent and be sure to accept all

of the input its parent would have accepted (it can accept more, but if it is being treated as its

parent, it won't be sent more). By specializing output events, the subclass continues to

generate output events that its environment will accept (since the environment would accept

anything that the parent outputs, and the subclass's output is just a specialization of this).

• Existing transitions can be modified provided the existing observable behavior is

strengthened. This is achieved by decomposing the existing transition into multiple

transitions by modifying the guard conditions.

To ensure substitutability, inherited transitions must have priority over subclass transitions so that

the class behaves like the parent class if both inherited and new transitions are simultaneously

enabled (e.g., by simultaneous input events).

35

Figure 9 shows the difference between the state diagram of RequestBn class (on the right) and

that of its Button superclass (on the left). All Button objects react to a BN_PRESSED event from

the environment by generating a corresponding REQ event for the system to process. RequestBn

inherits this behavior shown as Button region. A RequestBn object has the added feature of

lighting up when it has issued an REQ event that the system has decided to process. To achieve

this, we add a concurrent region (i.e., Light region) that reacts to a LIGHT event generated by

Building and Elevator objects. We added substates UnLit and Lit, transitions t2 and t3, and

actions to set the pending attribute when the button is lit. All the changes and additions to

RequestBn state diagram adhere to the strict inheritance model, which means we can substitute

RequestBn’s state diagram for Button’s state diagram, and the original behavior of Button class

is preserved. If and when the inherited state diagram does not adhere to the strict inheritance

model, the translation to SMV is not straightforward.

2.3.4 UML Operations

UML Operations11 are the services provided by the class. To avoid synchronization issues while

the UML operation is not completed, we assume that an operation executes in one step. Thus, we

model our UML operations as functions. In this thesis, we are interested in using operations to

define complex rules that change values within an object. Complex rules are those that cannot be

expressed by the use of simple assignment instructions. UML operations may be specified using

signatures, pre-conditions, post-conditions and invariants. In the elevator example, the

getNextDest operation uses the values of the current floor (floor attribute), current direction (dir

attribute), previous destination (prevDest attribute), previous direction (prevDir attribute) and

pending requests (pending attribute) to calculate the next destination (destFl attribute). Because

the getNextDest operation has many cases, we use decision tables to graphically separate the

different cases and show relationship between input values and post-condition results. For simple

functions, we use assignment statements instead of decision tables. We use the SMV logical

operators syntax for writing expressions.

Table 1 shows the decision table for finding the next destination. The decision table is divided

into two parts by a double solid line. The upper part describes the cases in terms of states and

11 Operation is a conceptual construct, while method is an implementation construct. In this thesis, we
consistently use operation as an action (service) that can be performed by the object.

36

condition values, while the last row shows the corresponding assignment to the class attribute

listed in the leftmost cell (i.e., destFl).

The first column in the upper part shows the states of the state machine using the IN operator.

The IN operator evaluates to true if the state specified in the argument list is active. The rest of

the columns in the upper part show the conditions that must be satisfied in order to set the class

attribute to the value shown in the bottom cell of each column respectively. Each cell on the

upper part may contain predicates (e.g. value comparison on attributes), functions (e.g., use of IN

operator) or macros (e.g., up_f1_t1_1 of Table 2). We use “!” to stand for the logical operator

NOT, “&” for logical AND, “|” for logical OR. These logical operators are used in the SMV

language and makes translation to SMV straightforward.

States Condition 0 Condition 1 Condition 2 Condition 3

IN(Elevator.UP) !(f1_pending |
f2_pending_up |
f2_pending_dn |
f3_pending)

up_f1_t1_1 |
up_f1_t1_n |
up_f2_t1 |
up_f3_t1

up_f1_t2_sd |
up_f1_t2_od |
up_f2_t2_1 |
up_f2_t2_n |
up_f2_t2_od |
up_f3_t2_sd |
up_f3_t2_od

up_f1_t3 |
up_f2_t3 |
up_f3_t3_1
up_f3_t3_n

IN(Elevator.
DOWN)

!(f1_pending |
f2_pending_up |
f2_pending_dn |
f3_pending)

dn_f1_t1_1 |
dn_f1_t1_n |
dn_f2_t1 |
dn_f3_t1

dn_f3_t2_sd |
dn_f3_t2_od |
dn_f2_t2_1 |
dn_f2_t2_n |
dn_f2_t2_od |
dn_f1_t2_sd |
dn_f1_t2_od

dn_f1_t3 |
dn_f2_t3 |
dn_f3_t3_1
dn_f3_t3_n

destFl 0 1 2 3

Table 1: getNextDest operation modeled as a decision table

We use functions and macros to reduce the size of the decision tables. The getNextDest operation

decision table (Table 1) uses the macros defined in Table 2 in AND-table format. The leftmost

column shows a list of predicates or macros. Each column, except the leftmost one, defines a

macro (named in the column header) in terms of the conjunction of predicates or macro values.

True values are marked as T (true), negations are marked as F (false), and a dot “.” means that the

predicate or macro has no effect. To avoid circular definition of macros, we mark a cell with an

“X” to indicate that the macro is not allowed to be a part of the condition.

37

Table 2 shows the macros used in the first row and “Condition 1” column of getNextDest

operation’s decision table (Table 1). These macros represent all the possible outcome of choosing

the next destination when the elevator is going up (row 1) and the destination results to 1 (third

column). We first define four “pending request” macros used in defining macros for Table 2:

f1_pending = ElevReqBnUp1.pending | FloorReqBn1.pending
f2_pending_up = ElevReqBnUp2.pending | FloorReqBn2.pending
f2_pending_dn = ElevReqBnDn2.pending | FloorReqBn2.pending
f3_pending = ElevReqBnDn3.pending | FloorReqBn3.pending

up_f1_t1_1 up_f1_t1_n up_f2_t1 up_f3_t1

currFloor = 1 T T . .
currFloor = 2 . . T .
currFloor = 3 . . . T
prevDest = 1 F T . .
f1_pending T T T T
f2_pending_up . F . .
f2_pending_dn . F . .
f3_pending . F . .
up_f2_t2_1 . . F .
up_f2_t2_n . . F .
up_f2_t3 . . F .
up_f2_t2_od . . F .
up_f3_t3_1 . . . F
up_f3_t3_n . . . F
up_f3_t2_od . . . F

Table 2: Macros for going to floor 1 with direction up

Similar tables defining macros used for the rest of the macros defined in the first row (going up)

of Table 1 are shown in Appendix B. The macro names represent the elevator’s current direction,

what floor the elevator is at, and what the next destination will be. For example, up_f1_t1_1

macro means that dir is up (up), floor is 1 (f1) and the next destination is going to floor 1 (t1). We

distinguish between the first time and the second time the elevator needs to go to the same floor

by appending the _1 and _n to up_f1_t1 macro. We do this to ensure progress by giving priority

to the second and later request from the same floor and direction, if no other requests are pending.

Thus, up_f1_t1_1 represents the elevator on the first floor going to the first floor for the first time.

Up_f1_t1_n represents the same floor for the second time and up.

To ensure progress, getNextDest operation was designed to find the nearest pending request in

the current and opposite directions. Table 2 implicitly shows a round-robin approach for handling

priority of requests depending on the current direction, current floor, previous direction and

previous destination. We add _sd and _od to macro names to represent “same direction” and

38

“opposite direction” respectively. For example, Table 2 shows macro up_f2_t2_od that refers to

servicing a request on the second floor in the opposite direction (i.e., service buttons where

direction is down).

To avoid any conflict in the results when evaluating the decision table, the combinations of state

column and condition columns must be mutually exclusive. Unlike pseudo-coding where the

result is dependent on the order or sequence the conditions are specified, the decision table

conditions must be constructed in such as way that the result is the same for any order or any

sequence of evaluation. Using decision tables and AND-tables to present the complex logic helps

to detect overlap of conditions and omitted conditions.

Summary

In this chapter, we have discussed the UML class diagram and the UML state diagram notations

and concepts and the extensions of UML notations that are used in modeling reactive systems

with complex behavior. We have discussed the state machine semantics and complex UML

operations that will be used for model checking. We have shown the use of object-oriented

techniques to partition the elevator system into real-world objects with clearly defined

responsibilities. This object-oriented decomposition makes the UML specification easier to

understand and easier to translate to SMV.

39

3 Translating UML to SMV

In order to verify the UML models specified in the previous chapter, we translate the UML main

class diagram, its instantiated object model and the corresponding UML state diagrams to SMV.

This chapter proceeds as follows. First, we give a brief introduction to SMV. Then, we

incrementally show how pieces of the elevator UML specification are translated using our

proposed rules and guidelines for translation. The entire translation of the elevator example is

provided in Appendix C. We finish the chapter with a summary of the proposed rules and

guidelines for translating UML to SMV.

40

3.1 Translation Overview

There are a number of principles we tried to adhere to when translating UML specifications into

SMV.

• Where possible, we preserve the object-oriented properties of the specification, including

class structure and hierarchical state structures. We confine the SMV representation of the

class attributes, operations and state diagrams to their respective sub-sections in the SMV

program structure. This makes it easier to read and modify the SMV logic model.

• The translated SMV model should be readable and the translation from UML to SMV should

be traceable. This helps to maintain a large SMV model where multiple objects interact. In

the absence of automated translation programs or when using semi-automatic translation

programs, traceability helps pinpoint the cause of errors and counter-examples.

• The SMV variable names should have a one-to-one correspondence to specification names

(e.g., SMV variable ev_REQ corresponds to REQ event in Button class). This feature aids in

tracing counter-examples in a SMV specification.

• The rules and guidelines for translation should be straightforward, to aid manual translation

and possibly help to automate the translation.

In this section, we summarize those features of an SMV specification that are relevant to our

translation from UML to SMV. We will explain additional features in the subsequent sections as

we translate our UML specification of the elevator. A complete definition of the SMV syntax and

semantics can be found in [McMi93].

First, we present our template for translated SMV specifications (see Figure 10). The SMV

program may consist of several modules, including a mandatory main module that has no

parameters. A module is defined as a set of variables and assignments that specify how variables

are updated. Each module, with the exception of the main module, can be instantiated many

times. To preserve the object-oriented properties of the UML specification, we translate each

UML class as a module in SMV. The main module represents the entire system. It is also where

system properties are defined, in the module’s SPEC section. SMV modules provide modularity

and reusability of SMV programs. Modules interact with one another through the main module’s

variables and through the modules’ input parameters. Variables passed as input parameters into

modules are passed by reference.

41

Each module, including the main module, consists of the following sections: VAR, DEFINE and

ASSIGN. Variables are declared in the VAR section of the SMV program. They can be of type

boolean, enumeration type, integer range, user-defined module (i.e., instantiated module), or array

of scalar types. These variables must have a finite range of values, so that they can be encoded

internally as a collection of boolean variables. Numeric values one (1) and zero (0) represent

boolean values true and false, respectively.

-- **
-- * MODULE1 *
-- **
MODULE Module1(parm_1, .., parm_n)

-- ****************** VARIABLES SECTION *************************
VAR

-- ***************** SYMBOL DEFINITION SECTION ******************
DEFINE

-- ****************** ASSIGNMENT SECTION ************************
ASSIGN

-- ******************* End of Module1 **************************

Figure 10: SMV module program structure

Each SMV module can directly reference variables that are declared in other modules. Because

our SMV programs represent translated UML models, we allow a module to reference only those

variables that are declared as part of a composite module. A composite module can reference its

components’ variables, but the reverse is prohibited. For instance, the Elevator class (i.e., a

composite object) includes a Door class. Thus, the elevator object can reference the door object

and its variables, but the door object cannot directly reference the elevator object’s variables. This

preserves the object-oriented principle of encapsulation and information hiding. It also promotes

a layered architecture and supports reusability of modules.

The DEFINE section specifies macro definitions. A macro is a name of a more complex

expression, which can be used in place of the expression in SPEC and ASSIGN sections. Macros

can help to localize changes to complex conditions and can be reused in various parts of the

program.

The ASSIGN section specifies initial and succeeding values of the module’s variables. Variables

are initialized in init statements and are updated in next statements. Next statements can be

non-deterministic, in which case, the variable’s value is selected at random. Non-determinism is

useful to describe models where design decisions are deferred. Similarly, if a variable is not

42

updated by any next statements, then SMV can non-deterministically choose any legal value of

that variable. This is typically used to model environment variables whose values are not

controlled by the system.

In this thesis, we assume that the UML state diagrams do not have conflicting transitions (i.e.,

simultaneously enabled transitions from the same source-state). Otherwise, the translated state

machine will behave differently because SMV assumes a default ordering when evaluating

conditional statements that may be overlapping, while the UML model does not say anything on

how to resolve the conflicting transitions.

For each of these SMV sections, we propose a list of subsections and corresponding naming

conventions. These are added to our proposed template for readability, traceability and

consistency of SMV models. In the next section, we will map all the UML classes and state

diagrams into the SMV template’s sections and subsections.

43

3.2 Translating the Elevator Example

In this section, we incrementally present how to translate a UML model into SMV, starting with

the lowest-level classes12 (e.g., Button and Timer). Then, we continue with the composite classes

(e.g., Door and Elevator), ending with the top-level composite class (i.e., Building) which

represents the entire system. By taking a bottom-up approach, a module is translated before it is

used to declare instantiations of the module.

We translate each class into a distinct SMV module as follows. The class name is used to derive

the SMV module name. Class attributes and states are declared as variables in the VAR section.

Active states, the state transitions’ enabling conditions, the class’s output events and complex

class operation conditions are defined as macros in the DEFINE section. Finally, changes in class

attribute values and state changes are described in the ASSIGN section. Because our aim is to

describe the concepts, steps and conventions used to translate UML classes and state diagrams

into SMV, we limit our discussion to those classes in the elevator example that exhibit our

proposals. The complete SMV program for the elevator example is given in Appendix C.

3.2.1 Translating the Button Class

In this section, we demonstrate how we translate the Button class, which is a superclass of

RequestBn (see Figure 4 of Section 2.2.1)13. The SMV translation of the Button state diagram

(Figure 9, Section 2.3.2) is shown in Figure 11. We show the line numbers and the translation

rule names beside each SMV program statement in order to aid our discussion. The line numbers

and rule names are not part of the resultant SMV program.

Line 4 of Figure 11 declares the Button SMV module using the MODULE keyword followed by

the Button class name. The general translation rule is

12 Lowest-level classes do not have component classes.
13 In the elevator example, we do not have an example of an abstract class. However, we recommend
translating abstract classes before concrete classes are translated. Even though abstract classes cannot be
directly instantiated, we translate them into SMV because a translated abstract class will be reused (with or
without modification) when translating a concrete subclass. This helps to ensure that we use a consistent
naming convention for all objects that inherit the abstract class’s properties.

44

Rule M1: Declaring Module Names

Description: Modules are named after class names in the UML main class diagram. Blank
characters found in the class names are replaced by underscores (i.e., “_”).

MODULE class_name()

Line Rule Program
1 -- ***
2 -- * MODULE Button *
3 -- ***
4 M1,M2 MODULE Button(inp_BN_PRESSED)
5
6 -- ****************** VARIABLES SECTION ************************
7 VAR
8 -- *** STATE VARIABLES SUBSECTION ***
9 S1a st_Button: { Idle };

10
11 -- ***************** SYMBOL DEFINITION SECTION *****************
12 DEFINE
13 -- *** ACTIVE STATE MACROS SUBSECTION ***
14 S2a in_Button := 1;
15 S2b in_Idle := in_Button & st_Button = Idle;
16
17 -- *** TRANSITION MACROS SUBSECTION ***
18 T1 t1 := in_Idle & inp_BN_PRESSED;
19
20 -- *** GENERATED EVENTS MACROS SUBSECTION ***
21 E1a ev_REQ := t1;
22
23 -- ****************** ASSIGNMENT SECTION ***********************
24 ASSIGN
25 -- *** STATE VARIABLES SUBSECTION ***
26 S3 init(st_Button) := Idle;
27 S4 next(st_Button) := case
28 t1 : Idle;
29 1: st_Button;
30 esac;
31 -- ********************** end of Button ************************

Figure 11: Button SMV module

In the UML main class diagram, the Button class has an input event BN_PRESSED. We translate input
events as module input parameters. By convention, we prefix with “inp_” each of the class’s input events
and add it as a formal parameter to the module name (Line 4). The general translation rule is

Rule M2: Declaring Module Input Parameters Using Event Names

-- For each input event input_event_1 .. input_event_n declared in the class
name section of the class:

MODULE class_name(inp_input_event_1 , .. , inp_input_event_n)

45

To see how our UML event processing definition can be translated to SMV, we need to describe

the UML to SMV mapping. The SMV model checker uses a round-based execution model. This

execution model starts with an initialization round followed by a sequence of update rounds. In

each update round, the system executes all the enabled assignment statements in parallel. One

SMV round is mapped to one UML step.

The rest of the SMV translation refers to the Button’s state diagram. In Figure 9, the Button state

diagram has an explicit root-state, which is an or-state with a single substate called Idle. Or-states

are translated as an enumeration of its substates. Atomic states are not translated into SMV

variables; they only appear as values of their superstate variable. If the root-state is not explicitly

shown in the UML state diagram, we name root-states after their class names (expressed in initial

uppercase). Thus, Line 9 of the SMV translation declares the root-state variable st_Button as an

enumeration of the Button’s substates. The general translation rule is

Rule S1: Declaring the States of Module’s State Machine

S1a: Or-states

Description: We declare an or-state as an enumeration of its substates. For implied root-states,
we use the class name as the state name. An explicit “Undefined” value could be added to the
enumeration of substates.

-- For all substates s1, .. ,sn of the or_state:

VAR
-- *** STATE VARIABLE SUBSECTION ***
st_or_state : { s1, .. , sn, [Undefined] };

For each state, we add a macro to describe the conditions that make that state active14 (Lines 14

and 15). The substate of an or-state is active if its parent is active and its parent’s value is equal to

the substate. The root-state of an object is always active. By convention, each macro is named

after its corresponding state name prefixed by “in_”. The general translation rules are

14 This translation rule is inspired by Chan’s translation from RMSL to SMV [CAB+98]. There are other
approaches to represent the hierarchy of states (e.g., using a Boolean variable to represent an atomic state
and then derive the and- and or-states from these atomic states [Day93]).

46

Rule S2: Defining Active State Macros

S2a: Root-states
-- For each Class_Name defined in the VAR section:
DEFINE
-- *** ACTIVE STATE MACROS SUBSECTION ***
in_Class_Name := 1;

S2b: States that Belong to Or-states
-- For each substate that belongs to or_state:
DEFINE
-- *** ACTIVE STATE MACROS SUBSECTION ***
in_substate := in_or_state & st_or_state = substate;

To ease translation of each state transition and its effects, we define a transition macro that

specifies the enabling conditions of the transition15. Each state transition macro is named after the

UML transition name16. Since we are only concerned with deterministic state machines, we

simply use a macro to specify whether the transition is enabled. For example, Line 18 defines the

transition macro t1 as the conjunction of the source-state (i.e., in_Idle) and the event trigger

inp_BN_PRESSED. Named transitions are defined in the “transition macros” subsection of the

DEFINE section. The general translation rule is (note that square bracket delimit optional

components of macro):

Rule T1: Defining Enabled Transitions

-- For each named transition named_trans with source-state source, trigger
event trig, guard condition cond:

DEFINE
-- *** TRANSITION MACROS SUBSECTION ***
named_trans := in_source [& trig] [& cond];

Note: trig may be an external event, inter-object event or intra-object event. cond may be any
expression, using attributes and states as predicates, that evaluates to true or false.

Each generated event macro is defined in terms of the set of transitions that generate a specific

class’s output event. In the Button state diagram (Figure 9), an event REQ is generated when

transition t1 is executed. It is convenient to represent an event as a boolean because an event is

either generated, indicated by boolean value true (1) or not generated, indicated by a boolean

value false (0). A generated event macro evaluates to true whenever a transition that generates the

15 In this context, transitions exclude the initial-state transition where the source-state is the initial pseudo-
state. By convention, we do not assign names to any initial-state transition.
16 Recall that we attach label names to transitions in our UML state diagrams.

47

event executes. Otherwise, the generated event macro evaluates to false. We prefix with “ev_”

each of the output events defined in the event section of a class in the UML class diagram and

add it in the “generated event macros” subsection of the DEFINE section17. Line 21 shows that if

the transition macro t1 is executed, ev_REQ is generated (i.e., evaluates to 1). The general

translation rule is

Rule E1: Specifying Output Events Without Parameters

Description: An output event that has no parameters evaluates to true (one) whenever a transition
that generates it executes.

-- For each named transitions tran_1, .. , tran_n that generates the event
output_event:

DEFINE
-- *** GENERATED EVENT MACROS SUBSECTION ***
ev_output_event := tran_1 | .. | tran_n;

Turning now to the ASSIGN section, we formulate the transition relations that specify how

variables are updated during execution. In deterministic state machines, the initial state of an or-

state must be specified. This is shown in the UML state diagram as a start-state with a transition

to the initial state. Line 26 uses the SMV init statement to initialize Button’s root-state to Idle.

Rule S3: Initializing State of an Or-state

-- For each or_state with an init_state:
ASSIGN
-- *** STATE VARIABLES SUBSECTION ***
init(st_or_state) := init_state; -- if the initial value is defined
init(st_or_state) := Undefined; -- if the initial value is not defined

A transition in a UML state machine causes the current active state to change to the transition’s

destination state. To model state transitions, we use the next statement to update the variable

value, and use the case statement to specify a conditional update. In SMV, a case statement has

a form similar to the case statement of programming languages such as C where each branch

consists of an enabling condition and a set of statements that are executed if the enabling

condition evaluates to true18. If the last branch of a case statement has an unconditionally true

17 Instead of specifying output events as macros, it is possible to translate output events as boolean
variables. However, this approach would unnecessarily increase the state space of the SMV program.
18 In a case statement, SMV executes the statements of the first branch whose condition that evaluates to
true. If the condition of more than one branch evaluate to true, only the statements of the first satisfied

48

enabling condition (i.e., numeric value 1), then the branch acts as an “else” clause and specifies

default assignment. We use transition macros to specify the enabling conditions. Our translation

guidelines suggest that all case statements have default clauses. Lines 27 to 30 assign the next

state of the Button root-state (i.e., st_Button) using a case statement. If transition t1 is enabled,

the Idle state becomes active (i.e., self-transition). Otherwise, Button’s root-state stays in its

current state. The general translation rule is

Rule S4: Updating Values of Or-States

-- For each or-state with substates substate_1, .. , substate_n and for each
substate_i with incoming transitions tran_i1, .. , tran_ik :

ASSIGN
-- *** STATE VARIABLES SUBSECTION ***
next(st_or_state) := case

tran_11 | .. | tran_1k : substate_1;
..
tran_i1 | .. | tran_ik : substate_i;
..
tran_n1 | .. | tran_nk : substate_n;
1: st_or_state;

esac;

Note: If a transition causes the or-state to be left in an undefined state, we set the
st_or_state to “Undefined”.

This completes our translation of the Button SMV module.

3.2.2 Translating the RequestBn Subclass

We now discuss how we translate the RequestBn state diagram, illustrated in Figure 9 (on the

right), into SMV. RequestBn is a subclass of Button, which means that it inherits Button’s

behavior and most of its SMV translation. Because SMV does not have a built-in inheritance

mechanism, we have to manually implement inheritance by copying all of the inherited variables

and behavior into the subclass module. The SMV statements copied from Button SMV module

are marked as Rule G1, which is generalized as follows:

Rule G1: Translating a Subclass

Description: When translating a subclass, we copy the contents of the superclass’s module.

condition are executed. If all the conditions are false, then no statements are executed. Details of SMV
syntax can be found in [McMi99].

49

Line Rule Program
1 -- **
2 -- * MODULE RequestBn *
3 -- **
4 M1,M2 MODULE RequestBn(inp_BN_PRESSED, inp_LIGHT, inp_UNLIGHT)
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** STATE VARIABLES SUBSECTION ***
9 G1 st_Button: { Idle };

10 S1a st_Light: { UnLit, Lit };
11
12 -- *** CLASS ATTRIBUTES SUBSECTION ***
13 C1 pending : boolean;
14
15 -- ***************** SYMBOL DEFINITION SECTION ******************
16 DEFINE
17 -- *** ACTIVE STATE MACROS SUBSECTION ***
18 G1 in_Button := 1;
19 S2c in_Light := 1;
20
21 G1 in_Idle := in_Button & st_Button = Idle;
22 S2b in_UnLit := in_Light & st_Light = UnLit;
23 S2b in_Lit := in_Light & st_Light = Lit;
24
25 -- *** TRANSITION MACROS SUBSECTION ***
26 G1 t1 := in_Idle & inp_BN_PRESSED;
27 T1 t2 := in_UnLit & inp_LIGHT;
28 T1 t3 := in_Lit & inp_UNLIGHT;
29
30 -- *** GENERATED EVENTS MACROS SUBSECTION ***
31 G1 ev_REQ := t1;
32
33 -- ****************** ASSIGNMENT SECTION ************************
34 ASSIGN
35 -- *** STATE VARIABLES SUBSECTION ***
36 G1 init(st_Button) := Idle;
37 G1 next(st_Button) := case
38 t1 : Idle;
39 1: st_Button;
40 esac;
41
42 S3 init(st_Light) := UnLit;
43 S4 next(st_Light) := case
44 t2 : Lit;
45 t3 : UnLit;
46 1: st_Light;
47 esac;
48
49 -- *** CLASS ATTRIBUTES SUBSECTION ***
50 C2 init(pending) := 0;
51 C3 next(pending) := case
52 t2 : 1;
53 t3 : 0;
54 1: pending;
55 esac;
56 -- ********************** end of RequestBn **********************

Figure 12 : RequestBn SMV module

50

Using Rule M1, we define a new module name RequestBn (Line 4 of Figure 12). Subclass-

specific variables and behavior are added as new SMV statements. This does not violate the

Liskov Substitution Principle (LSP) because it extends the behavior of the superclass. The

module declaration (Line 4) is extended to include the two new input events LIGHT and

UNLIGHT. We also added new state macros and new transition macros using previously

described translation rules.

Note that in Line 18 the definition of st_Button did not change. This follows the LSP [Lisk88], in

that we extend the parent (base) class instead of deleting or replacing the properties of the parent

(base) class. Whenever an and-state is active, all of its substates are active, so it is not necessary

to declare an SMV variable to keep track of RequestBn’s substates. The general rule is

Rule S1: Declaring the States of Module’s State Machine

S1b: And-states

Description: We do not declare the substates of an and-state.

The concurrent region of an and-state is active if and only if the parent-state is active. Thus, in

Line 19, the active state macro for Light region defines the region as active whenever the parent-

state of Light region is active. Since the RequestBn root-state is always active, we assign in_Light

macro a value of 1. The general rule is

Rule S2: Defining Active State Macros

S2c: States That Belong to And-states

-- For each and-state and_state, where parent_state is the parent state of
and_state:

DEFINE
-- *** ACTIVE STATE MACROS SUBSECTION ***
in_and_state := 1; -- if parent state is a root-state
in_and_state := in_parent_state; -- if parent state is not a root-state

Using Rules S3 and S4, we assign the initial and next state of Light region (Lines 42-47).

RequestBn class’s pending attribute is modeled as an SMV variable in the “class attributes”

subsection of the VAR section, as shown in Line 13. By convention, we do not add any prefix to

51

each of the class attributes. The variable’s type is the same as defined in the RequestBn class,

which means that attributes are restricted to SMV data types19.

Rule C1: Declaring Class Attributes

-- For each class attribute attrib in the class being translated:
VAR
-- *** CLASS ATTRIBUTES SUBSECTION ***
attrib : boolean; -- if data type is boolean
attrib : i_1..i_n; -- if data type is integer range from i_1..i_n
attrib : {e1, .., en}; -- if data type is enumerated with values e1, .., en
attrib : array 1..n of scalar; -- if data type is an array of scalars

We initialize a class attribute to its default value set in the UML class diagram or to the value

assigned in the initial state transition in the UML state diagram. If the default is not defined, we

omit an initial assignment and let SMV explore all possible initial values. We initialize variables

using the init statement of SMV in the “class attributes” subsection of the ASSIGN section.

Line 50 initializes attribute pending to zero, as defined in the RequestBn subclass (Figure 4 of

Section 2.2.1). The general translation rule is

Rule C2: Initializing Class Attributes

-- For each class attribute attrib declared in the VAR section of the SMV
module:

ASSIGN
-- *** CLASS ATTRIBUTES SUBSECTION ***
init(attrib) := default_attrib_value; -- from class diagram
init(attrib) := initial_state_value; -- from initial state

Class attributes in UML model can be assigned new values: a) in actions performed by a

transition within the object, b) in operations performed within the object, c) or in actions or

operations performed by the parent object. If an attribute’s value changes as a result of a

transition action, we use the transition’s macro as the enabling condition for the assignment. For

example, Lines 51-55 update the pending attribute of the RequestBn subclass. An attribute keeps

its current value if a transition does not affect its value (Line 56). The general translation rule is

19 We restrict our UML classes to define finite (scalar) values in the class attributes. Complex attributes
must be modeled as an association (link) to another class.

52

Rule C3: Updating Values of Class Attributes

Rule C3a: Actions performed when a transition is enabled within the object.

-- For each transition tran_1, .. , tran_n that changes the value of attribute
attrib to expression_1, .. , expression_n as described in transition actions:

ASSIGN
-- *** CLASS ATTRIBUTES SUBSECTION ***
next(attrib) := case

tran_1 : expression_1;
..
tran_n : expression_n;
1: attrib;

esac;

Note: tran_1 .. tran_n could be an incoming transition that may trigger actions defined in the
initial pseudo-state transition. This covers the case where actions on initial transitions are
initialized whenever an incoming transition becomes true.

This completes our translation of the RequestBn SMV module.

3.2.3 Translating the External_Event Class

We translate the External_Event class (Figure 4 of Section 2.2.1) into a separate SMV module

(Figure 13) that declares and constrains the environmental events.

Line Rule Program
1 -- **
2 -- * MODULE External_Event *
3 -- **
4 M1 MODULE External_Event()
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** ENVIRONMENT VARIABLES SUBSECTION ***
9 X1 env_AT_FLOOR : boolean;

10 X1 env_BP_OpenBn : boolean;
11 X1 env_BP_CloseBn: boolean;
12 X1 env_BP_FloorReqBn : array 1..3 of boolean;
13 X1 env_BP_ElevReqBnUp : array 1..2 of boolean;
14 X1 env_BP_ElevReqBnDn : array 2..3 of boolean;
15
16 -- ********************* FAIRNESS SECTION ***********************
17 FAIRNESS
18 X2 env_AT_FLOOR
19
20 -- ******************** end of External_Event *******************

Figure 13 : External_Event SMV module

We define a distinct SMV variable for each distinct environmental event, so that SMV can

distinguish among the events and so that multiple environmental events can occur

simultaneously. For example, each of the declarations in Lines 10-14 defines a unique

53

BN_PRESSED event. We declare each simple environmental event (i.e., one without parameters)

as boolean. A boolean value of 1 represents the event being generated. For multiple

environmental events that share the same name and differ only in the index value (e.g.,

BP_FloorReqBn[1..3]), we declare them as an array of boolean variables. By convention, we

prefix with “env_” each of External_Event class’s output events. The general translation rule is

Rule X1: Declaring External Events

Description: An external event of name external_event that has no parameters is declared
as a boolean variable named env_external_event in the “environment variables”
subsection of the VAR section.

VAR
-- *** ENVIRONMENT VARIABLE SUBSECTION ***
env_external_event : boolean; -- for external_event
env_external_event : array j..k of boolean; -- for external_event[j..k]

In this module, we specify any constraints or assumptions about the values of environmental

variables and events. By default, SMV searches all possible ways, in which the environmental

events can occur, including extreme cases where they occur continuously or they do not occur at

all. In order to force a given environmental event to occur regularly, we use a fairness constraint.

A fairness constraint restricts the attention of the SMV model checker to only those execution

paths along which an environmental event will regularly occur. We add each of the

environmental events that need to regularly occur to the FAIRNESS section of the SMV module.

One of the system properties states that the elevator will eventually service a pending request.

This property initially failed because the environment is not forced to regularly generate the

AT_FLOOR event, which meant there is an execution path in which the elevator is stuck in state

Moving, indefinitely waiting to reach the next floor. To correct this, we forced the AT_FLOOR

event to regularly occur by adding env_AT_FLOOR (Line 18) to the FAIRNESS section of the

External_Event SMV module. The general translation rule for adding a fairness constraint is

Rule X2: Adding Fairness Constraints

Description: Events that are assumed to occur regularly must be added to the FAIRNESS
section.

-- For external events external_event_1 ,.., external_event_k that need to
occur regularly:

FAIRNESS
env_external_event_1
..
FAIRNESS
env_external_event_k

54

In order to constrain SMV from changing a set of variables at the same time, we use the TRANS

declaration to specify a constraint on the system’s transition relations. We now describe two ways

of using TRANS conditions.

In some reactive systems, the environment may be constrained by physical devices outside the

control of the software system. For example, a physical device generates the AT_FLOOR event

when a floor is reached. To ensure that there is sufficient time between AT_FLOOR events to

update the system’s variables, we add a constraint on variable values that prevents the event from

re-occurring if the system is executing elevator module’s transition t10 in response to the event’s

previous occurrence. We add the TRANS condition in the SMV module where the variables of

the TRANS proposition can be accessed. Since the Building class can access variables from both

External_Event and Elevator objects, we add the TRANS condition in the Building class’s SMV

module main (Line 52 of Figure 18).

TRANS
!(external_Event.env_AT_FLOOR & elevator.t10)

If we wanted to assume that a passenger could not push all the elevator buttons at the same time,

it would be expressed as the following constraint in the External_Event SMV module.

TRANS
!(env_BP_FloorReqBn[1] & env_BP_FloorReqBn[2] & env_BP_FloorReqBn[3] &

env_BP_ElevReqBnUp[1] & env_BP_ElevReqBnUp[2] & env_BP_ElevReqBnDn[2] &
env_BP_ElevReqBnDn[3])

The general translation rule is

Rule X3: Adding TRANS Conditions

-- For conditions condition_1 ,.., condition_k that constrains the environment
variables:

TRANS
condition_1
..
TRANS
condition_k

Using the TRANS condition is a convenient way of constraining the environment without

specifying the exact behavior of the environment. Most of the time, we do not expect the

environmental events to be modeled as part of a UML state diagram. However, if the behavior of

the environment is constrained, the “environment variables” subsection in the ASSIGN section

can be used to simulate the generation of the environmental events.

55

3.2.4 Translating Timer Class

In reactive systems, timing requirements are essential to the proper behavior of the system. In

UML, it is convenient to use a timeout event, denoted by tm(interval), without explicitly

specifying timer objects. Since SMV does not have primitives to support a timeout event, we

specified a Timer class with SET, UNSET and TM events in our UML model.

The Timer class (Figure 4) has a counter attribute that represents the timeout interval. The Timer

state diagram (Figure 14) starts in state Idle and waits until it is activated by a SET event in

transition t1. While in state Count_Down, the counter attribute is decremented in each execution

step until it reaches 0 (transition t2), at which point the timer transitions to state Idle and the

timeout event TM is broadcast (transition t3). If the timer receives a UNSET event while it is

counting down, the counter is set to 0 and the timer transitions to state Idle (transition t4). This

timer can also be reset while it is counting down (transition t5).

Timer

Count_Down

t1:SET(n) / counter := n/ counter := 0

Idle

t2:on {counter>0} / counter - -

t3: {counter=0} ^TM

t4:UNSET / counter := 0

t5:SET(n)
/ counter := n

Figure 14: Timer state diagram

Events that have parameters need to be modeled as SMV modules. One can think of such events

as classes that have attributes. The SET event with parameter n is modeled as a structured data

type where the parameter n is declared as one of the individual data attributes. Using Rules M1

and C1, the SET event with parameter n is translated into an SMV module (without any input

parameters and no assignments) as shown in Figure 15.

56

Line Rule Program
1 -- **
2 -- * MODULE SET *
3 -- **
4 M1,E2 MODULE SET()
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** CLASS ATTRIBUTES SUBSECTION ***
9 E2 raised : boolean;

10 E2 n : {5};
11
12 -- ************************ End of SET **************************

Figure 15: SET Event SMV module

By convention, we add a special raised attribute (Line 9 of Figure 15) which indicates if the event

occurred (i.e., evaluates to true). Line 10 declares the value of parameter n to be 5 all the time. If

the SET event is used with different valued parameters, we can declare n to accept a bigger range

of appropriate values. The general translation rule is

Rule E2: Declaring Output Events with Parameters

-- For each output event output_event, with parameters parm_1,.., parm_k:

MODULE output_event()

VAR
-- *** CLASS ATTRIBUTES SUBSECTION ***
raised : boolean;
parm_1 : data_type;
..
parm_k : data_type;

In the previous subsections, we have translated the Button class, RequestBn subclass and

External_Event class by showing the complete SMV module for each of the classes. Starting

from this subsection, all further SMV translations are not completely shown. We show a partial

listing and highlight the lines of specification pertaining to the new translation rules being

defined.

Using Rules M1 and M2, we define a new SMV module named Timer with input events

inp_SET and inp_UNSET (Line 4 of Figure 16).

57

Line Rule Program
1 -- **
2 -- * MODULE Timer *
3 -- **
4 M1,M2 MODULE Timer(inp_SET, inp_UNSET)
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR

..
11 -- *** CLASS ATTRIBUTES SUBSECTION ***
12 C1 counter: 0..5;
13
14 -- ***************** SYMBOL DEFINITION SECTION ******************
15 DEFINE
..
21 -- *** TRANSITION MACROS SUBSECTION ***
22 T2 t1 := in_Idle & inp_SET.raised;
23 T1 t2 := in_Count_Down & counter > 0;
24 T1 t3 := in_Count_Down & counter = 0;
25 T1 t4 := in_Count_Down & inp_UNSET;
26 T2 t5 := in_Count_Down & inp_SET.raised;
..
31 -- ****************** ASSIGNMENT SECTION ************************
32 ASSIGN
..
41 -- *** CLASS ATTRIBUTES SUBSECTION ***
42 C2 init(counter) := 0;
43 C3 next(counter) := case
44 t1 | t5 : inp_SET.n;
45 t2 : counter - 1;
46 t4 : 0;
47 1: counter;
48 esac;
49 -- ****************** End of Timer **************************

Figure 16: Partial listing of Timer SMV module

When translating a class attribute, whose data type has no finite boundary value, we choose the

smallest integer-range that the system requires20. We found that in any of the state diagrams that

generate the SET event, the largest value of parameter n used was 5. Thus, we declare counter

attribute with integer range from 0..5 (see Line 12 of Figure 16).

The Timer state diagram (Figure 14) shows that transition t1 and t5 are triggered by a SET event

with a parameter n. The parameter n is needed to set the number of time units required for

counting down. To access a structured data type, we specify the variable name followed by a dot,

followed by the attribute. Lines 22 and 26 of Timer SMV module (Figure 16) show how the

20 Instead of defining the smallest integer range, it is possible to define an arbitrarily larger integer range.
However, this approach would unnecessarily increase the state space of the SMV program.

58

special raised attribute can be accessed when we define transition macros t1 and t5. The general

translation rule is

Rule T2: Defining Transitions with Event Triggers that Carries Parameters

-- For each named transition named_trans with source-state source, triggered by
an event with parameters trig:

DEFINE
-- *** TRANSITION MACROS SUBSECTION ***
named_trans := in_source [& trig.raised];

To complete the translation of transition t1 and t5, Line 44 of Figure 16 shows how we assign the

value of SET event’s parameter n (i.e., inp_SET.n) to the counter attribute of the Timer SMV

module.

3.2.5 Translating Door Class

Line Rule Program
1 -- **
2 -- * MODULE Door *
3 -- **
4 M1 MODULE Door(inp_OPEN, inp_KEEP_OPEN, inp_CLOSE)
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** STATE VARIABLES SUBSECTION ***
9 S1a st_Door: {Close, Open};

10
11 -- *** CLASS ATTRIBUTES SUBSECTION ***
12 C1 retry : 0..3;
13
14 -- *** GENERATED EVENTS SUBSECTION ***
15 E3 ev_SET : SET;
16
17 -- *** COMPONENT OBJECTS SUBSECTION ***
18 L1 DoorTimer: Timer(ev_SET, ev_UNSET);
19
20 -- ***************** SYMBOL DEFINITION SECTION ******************
21 DEFINE
..
27 -- *** TRANSITION MACROS SUBSECTION ***
28 T1 t1 := in_Close & inp_OPEN > 0;
29 T1 t2 := in_Open & DoorTimer.ev_TM = 1 & !(inp_OPEN > 0);
30 T1 t3 := in_Open & inp_CLOSE & !(inp_OPEN > 0);
31 T1 t4 := in_Open & inp_KEEP_OPEN & retry > 0 & !(t2 | t3);
..
37 -- ****************** ASSIGNMENT SECTION ***********************
38 ASSIGN
..
47 -- *** GENERATED EVENTS SUBSECTION ***
48 E4 ev_SET.raised := t1 | t4;
49 E4 ev_SET.n := 5;
..
60 -- ****************** End of Door **********************

Figure 17: Partial listing of Door SMV module

59

The partial listing of the SMV translation for the Door state diagram (Figure 8 of Section 2.3.1) is

shown in Figure 17. Note that not all input events used in the Door state diagram illustrated in

Figure 8, are translated as input parameters for the Door SMV module. Events generated by a

module’s component objects (e.g., DoorTimer’s ev_TM event in Line 29 of Figure 17) are not

translated as input parameters for the module because a composite object can directly access the

variables of its component modules.

An event with parameters is prefixed with “ev_” and declared in the “generated events”

subsection of the VAR section. In Line 15 of Figure 17, we instantiated the variable ev_SET with

the user-defined SET event SMV module. The general translation rule is

Rule E3: Instantiating Events with Parameters

Description: An event that has parameters is declared as a user-defined SMV module.

-- For each event output_event with a an SMV module output_event_module:

VAR
-- *** GENERATED EVENT SUBSECTION ***
ev_output_event : output_event_module;

Line 48 shows that if either transition macro t1 or t4 is executed, ev_SET.raised is generated (i.e.,

evaluates to 1). The parameter n of SET event is fixed to five time units (Line 49 of Figure 17),

since that is the only parameter value of SET used in the UML model. The general translation

rule is

Rule E4: Assigning Values to Events with Parameters

-- For each named transitions tran_1, .. , tran_n that generates the event
output_event, with parameters parm_1,.., parm_k and corresponding expressions
expression_1,.., expression_k:

ASSIGN
-- *** GENERATED EVENT SUBSECTION ***
ev_output_event.raised := tran_1 | .. | tran_n;
ev_output_event.parm_1 := expression_1;
..
ev_output_event.parm_k := expression_k;

We now describe how we translate UML composition relationships into SMV. In UML, a

component object belongs to one and only one composite object. Line 18 of Figure 17 declares

60

the DoorTimer (component object) as an instantiation of the Timer SMV module21. The

DoorTimer’s parameters, which serve as the Timer’s input events, are ev_SET and ev_UNSET

events that are generated by the Door SMV module. We declare the component objects in the

“component objects” subsection of the VAR section. By convention, we use the object name from

the UML object model as the component variable name. The general translation rule is

Rule L1: Instantiating a Single Component Class

-- For each component object name component_part that is an instance of user-
defined module Component_Module with actual input parameters var_1, .., var_n:

VAR
-- *** COMPONENT OBJECTS SUBSECTION ***
component_part : Component_Module(var_1, .., var_n);

3.2.6 Translating the Elevator Class

In this section, we first discuss variations of declaring module parameters. Then, we discuss

translation rules for some variations of declaring component objects. A partial listing of the SMV

translation of the Elevator state diagram (Figure 7 of Section 2.3.1) is shown in Figure 18.

Our translation rules for UML semantics do not allow objects to directly access attribute values

from non-component objects. In our elevator case study, Elevator class’s getNextDest operation

needs to access the pending attributes of ElevReqBn objects, which are not accessible via a

component object. The UML main class diagram (Figure 4 of Section 2.2.1) shows that the hall

buttons (i.e., ElevReqBn objects) are components of the Building class. In order for the Elevator

class to access the pending attribute of each of the hall buttons, hall button objects are passed

from the Building SMV module to the Elevator SMV module as input objects. Line 4 of Figure

18 shows how the four hall buttons (ElevReqBnUp1, ElevReqBnUp2, ElevReqBnDn2,

ElevReqBnDn3) are declared as input parameters of the Elevator SMV module. By convention,

we prefix with “inp_” the object name and add it as a formal parameter to the module name. The

general translation rule is

21 Recall that the Timer SMV module can only be set with a maximum of five time units. If the maximum
value of parameter n is changed from five to a larger number, the Timer SMV module’s counter attribute
declaration will need a larger integer range.

61

Rule M3: Declaring Module Input Parameters For External Attributes

-- For non-component objects object_name_1 .. object_name_n whose attributes
are referenced in an external class class_name:

MODULE class_name(inp_object_name_1, .. , inp_object_name_n)

Line Rule Program
1 -- **
2 -- * MODULE Elevator *
3 -- **
4 M1,M2

,M3
MODULE Elevator(inp_KEEP_OPEN_REQ, inp_BP_OpenBn, inp_BP_CloseBn,
inp_BP_FloorReqBn1, inp_BP_FloorReqBn2, inp_BP_FloorReqBn3,
inp_AT_FLOOR, inp_ElevReqBnUp1, inp_ElevReqBnUp2, inp_ElevReqBnDn2,
inp_ElevReqBnDn3)

5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** STATE VARIABLES SUBSECTION ***

..
12 S1a st_Moving : { Init, Move_Up, Move_Down, Undefined };
..
23 -- *** COMPONENT OBJECTS SUBSECTION ***
..
26 L2 FloorReqBn1 : RequestBn(inp_BP_FloorReqBn1,

ev_LIGHT_FloorReqBn[1], ev_UNLIGHT_FloorReqBn[1]);
27 L2 FloorReqBn2 : RequestBn(inp_BP_FloorReqBn2,

ev_LIGHT_FloorReqBn[2], ev_UNLIGHT_FloorReqBn[2]);
28 L2 FloorReqBn3 : RequestBn(inp_BP_FloorReqBn3,

ev_LIGHT_FloorReqBn[3], ev_UNLIGHT_FloorReqBn[3]);
29 door: Door(ev_OPEN, ev_KEEP_OPEN, ev_CLOSE);
30
31 -- ***************** SYMBOL DEFINITION SECTION ******************
32 DEFINE
33 -- *** ACTIVE STATE MACROS SUBSECTION ***
..
49 -- *** TRANSITION MACROS SUBSECTION ***
50 O1 t1_FloorReqBn1 := FloorReqBn1.ev_REQ & !(in_Open_Doors & floor=1);
51 O1 t1_FloorReqBn2 := FloorReqBn2.ev_REQ & !(in_Open_Doors & floor=2);
52 O1 t1_FloorReqBn3 := FloorReqBn3.ev_REQ & !(in_Open_Doors & floor=3);
53 O1 t1 := in_Waiting & (t1_FloorReqBn1 | t1_FloorReqBn2 |

t1_FloorReqBn3);
..
97 -- *** OPERATION MACROS SUBSECTION ***
98
99 -- *** getNextDest and getNextDir operations ***

100 O2 m_f1_pending := (inp_ElevReqBnUp1.pending | FloorReqBn1.pending);
101 O2 m_f2_pending_up := (inp_ElevReqBnUp2.pending |

FloorReqBn2.pending);
102 O2 m_f2_pending_dn := (inp_ElevReqBnDn2.pending |

FloorReqBn2.pending);
103 O2 m_f3_pending := (inp_ElevReqBnDn3.pending | FloorReqBn3.pending);
..

159 -- ****************** ASSIGNMENT SECTION ************************
160 ASSIGN
161
162 -- *** STATE VARIABLES SUBSECTION ***
..

184 S3 init(st_Moving) := Undefined;
185 S4 next(st_Moving) := case

62

186 t5 : Init;
187 t6 | t7 : Move_Up;
188 t8 | t9 : Move_Down;
189 t10 : Undefined;
190 1 : st_Moving;
191 esac;
192
193 -- *** CLASS ATTRIBUTES SUBSECTION ***
..

210 C2 init(destFl) := 0;
211 C3b next(destFl) := case
212 t4 : 0;
..

221 -- **************** going up ***************
222 (t2) & (m_up_f1_t1_1 | m_up_f1_t1_n | m_up_f2_t1 | m_up_f3_t1):

1;
223 (t2) & (m_up_f1_t2_sd | m_up_f1_t2_od | m_up_f2_t2_1 |

m_up_f2_t2_n | m_up_f2_t2_od | m_up_f3_t2_od | m_up_f3_t2_sd): 2;
224 (t2) & (m_up_f1_t3 | m_up_f2_t3 | m_up_f3_t3_1 | m_up_f3_t3_n):

3;
..

279 -- ****************** End of Elevator **********************

Figure 18: Partial listing of Elevator SMV module

The Elevator object contains multiple instances of component RequestBn objects. When

instantiating multiple component classes such as FloorReqBn[1..3], we declare each object

separately because the actual parameters of each object are distinct (Lines 26 to 28 of Figure 18).

If the component objects have the same input parameters, we can specify the component

variables as an array of instances of a user-defined SMV module (no example shown). The

general translation rule is

Rule L2: Instantiating Multiple Component Classes

-- For k instantiations of user-defined module Component_Module object with
link_role_name and actual input parameters var_1, .., var_n:

VAR
-- *** COMPONENT OBJECTS SUBSECTION ***
-- if at least one actual input parameter is not shared by all objects:
link_role_name_1: Component_Module(var_1, .., var_n);
..
link_role_name_k: Component_Module(var_1, .., var_n);

-- if every actual input parameters is shared by all objects:
link_role_name: array 1..k of Component_Module(var_1, .., var_n);

UML transitions with the same source and destination states and whose event names differ only

in their source object can sometimes be expressed as a single transition with a compact transition

label. Such a transition label consists of a quantified formula over multiple source objects. We

translate a quantified formula into a series of SMV macros, with each macro referring to a single

instantiation of the formula. For example, Elevator state diagram’s transition t1 has a quantified

63

event that we expand into three logical transitions, one for each possible event source (Lines 50-

52). Line 53 defines a macro that combines the three sub-macros. The general translation rule is

Rule O1: Adding Transition Macros to Expand Quantified Formulas

-- For each transition tran with quantified transition label of the form
“Forall x: source[x].trigger_event {condition(x)}” where x ranges from n to m:

DEFINE
-- *** TRANSITION MACROS SUBSECTION ***
tran_source_n := source_n.trigger_event & cond_n;
..
tran_source_m := source_m.trigger_event & cond_m;

We now turn to translating UML operations, which is straightforward if the UML operations are

defined as assignment statements as discussed in Section 2.3.4. Such UML operations are

modeled as SMV macros, and we prefix each macro with “m_” and add it to the “operation

macros subsection” of the DEFINE section. For example, Lines 100-103 were translated directly

from the getNextDest operation macros described in Section 2.3.4. We note that these conditions

are mutually exclusive. Therefore, the order of the conditions in the DestFl case statement (Lines

210-224) does not affect the desired behavior. The general translation rule is

Rule O2: Adding SMV Macros to Simplify Complex Macros

-- For each UML macro name macro_name with its corresponding macro condition
cond defined in the UML operation

DEFINE
-- *** OPERATION MACROS SUBSECTION ***
m_macro_name := cond;

In Section 2.3.4, our UML operations are modeled such that it only takes one execution step to

assign the next value of a class attribute. As such, each UML operation is completed after one

execution step. Any new events can immediately run after the UML operation is completed. A

complex UML operation where multiple conditions could change the class attribute’s value, is

shown as a decision table. To convert such complex UML operations into SMV, we specify the

next value of the class attribute using next and case statements. Different cases define

different branches in the case statement. For example, Line 222 shows that the next value of

destFl attribute will be assigned with a numeric value 1. The assignment happens if transition t2

is enabled and at least one of the macros m_up_f1_t1_1, m_up_f1_t1_n, m_up_f2_t1,

m_up_f3_t1 is true. The general translation rule is:

64

Rule C3: Updating Values of Class Attributes

Rule C3b: UML operation performed after a transition is executed.

-- For each transition tran_1, .. , tran_n and a set of conditions condition_1,
.. , condition_n that changes the value of attribute attrib to expression_1, ..
, expression_n as described in transition actions:

ASSIGN
-- *** CLASS ATTRIBUTES SUBSECTION ***
next(attrib) := case

tran_1 & condition_1 : expression_1;
..
tran_n & condition_n : expression_n;
1: attrib;

esac;

When translating the Elevator state diagram into SMV, we found that some state variables (i.e.,

state Stop and state Moving) do not have a defined value in some configurations. For example, if

the system is not in the state Moving, st_Moving is undefined. Using Rule S1a, we add an

explicit “Undefined” value in st_Moving’s enumerated values (Line 12 of Figure 18). Using Rule

S3, we set the initial value of st_Moving to Undefined (Line 184 of Figure 18) because state

Moving is initially undefined since the elevator starts in state Stop. Lines 184 – 191 show under

what circumstances the state Moving is entered and how state Moving becomes “undefined”

when transition t10 is executed. The complete Elevator SMV module is shown in Appendix C.

65

3.2.7 Putting it all together: Main SMV Module

After all the UML state diagrams are translated, we declare our main SMV module, which

represents the entire system. In our elevator example, the Building class is translated into the

main SMV module (Figure 19). This module instantiates all the other top-level objects (i.e.,

External_Event, Elevator and ElevReqBn objects) found in the main class diagram (Lines 9, 15-

20). By instantiating the hall buttons in the main SMV module, we allow more than one elevator

to share the hall buttons (e.g., ElevReqBnUp1). The main SMV module also specifies all of the

CTL formulas in the SPEC section to be checked against the SMV model. The rest of the

translated main SMV module is presented in Appendix C.

Line Rule Program
1 -- **
2 -- * MAIN MODULE *
3 -- **
4 M1 MODULE main
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** ENVIRONMENT VARIABLE SUBSECTION ***
9 L1 external_Event : External_Event;

10
11 -- *** STATE VARIABLES SUBSECTION ***
12 st_Building : { Idle };
13
14 -- *** COMPONENT OBJECTS SUBSECTION ***
15 L1 elevator : Elevator(ev_KEEP_OPEN_REQ,

external_Event.env_BP_OpenBn, external_Event.env_BP_CloseBn,
external_Event.env_BP_FloorReqBn[1],
external_Event.env_BP_FloorReqBn[2],
external_Event.env_BP_FloorReqBn[3], external_Event.env_AT_FLOOR,
ElevReqBnUp1, ElevReqBnUp2, ElevReqBnDn2, ElevReqBnDn3);

16
17 L2 ElevReqBnUp1 : RequestBn(external_Event.env_BP_ElevReqBnUp[1],

ev_LIGHT_ElevReqBnUp[1], elevator.ev_UNLIGHT_ElevReqBnUp[1]);
18 L2 ElevReqBnUp2 : RequestBn(external_Event.env_BP_ElevReqBnUp[2],

ev_LIGHT_ElevReqBnUp[2], elevator.ev_UNLIGHT_ElevReqBnUp[2]);
19 L2 ElevReqBnDn2 : RequestBn(external_Event.env_BP_ElevReqBnDn[2],

ev_LIGHT_ElevReqBnDn[2], elevator.ev_UNLIGHT_ElevReqBnDn[2]);
20 L2 ElevReqBnDn3 : RequestBn(external_Event.env_BP_ElevReqBnDn[3],

ev_LIGHT_ElevReqBnDn[3], elevator.ev_UNLIGHT_ElevReqBnDn[3]);
21
22 -- ***************** SYMBOL DEFINITION SECTION ******************
23 DEFINE
..
63 -- ********* SYSTEM PROPERTIES (CTL FORMULAS) *******************
..

179 -- ****************** End of Main Module ************************

Figure 19: Partial listing of main SMV module

66

3.3 Translation Summary

By incrementally translating using a bottom-up approach we construct an object-oriented SMV

program structure with subsections that aid in the readability of SMV program. Using the bottom-

up approach, we can perform unit verification after each class is translated. We summarize in

Table 3 the guidelines and rules presented in this chapter and their mappings to SMV subsections.

SMV Section / Subsection Rules
MODULE Section Rule M1: Declaring Module Names

Rule M2: Declaring Module Input Parameters Using
Input Events
Rule M3: Declaring Module Input Parameters for
External Attributes
Rule E2: Declaring Output Events with Parameters

VAR Section G1: Translating a Subclass

ENVIRONMENT VARIABLES Rule X1: Declaring External Events
STATE VARIABLES Rule S1: Declaring States of Module’s State Machine

Rule S5: Translating Initial States with More than One
Outgoing Transitions

CLASS ATTRIBUTES Rule C1: Declaring Class Attributes
GENERATED EVENTS Rule E3: Instantiating Events with Parameters
COMPONENT OBJECTS Rule L1: Instantiating a Single Component Class

Rule L2: Instantiating Multiple Component Classes
DEFINE Section G1: Translating a Subclass

ACTIVE STATE MACROS Rule S2: Defining Active State Macros
TRANSITION MACROS Rule T1: Defining Enabled Transitions

Rule T2: Defining Transitions with Event Triggers that
Carries Parameters
Rule O1: Adding Transition Macros to Expand
Quantified Formulas

GENERATED EVENTS MACROS Rule E1: Specifying Output Events without parameters
OPERATIONS MACROS Rule O2: Adding SMV Macros to Simplify Complex

Macros
ASSIGN Section G1: Translating a Subclass

ENVIRONMENT VARIABLES
STATE VARIABLES Rule S3: Initializing State of an Or-State

Rule S4: Updating Values of Or-States
CLASS ATTRIBUTES Rule C2: Initializing Class Attributes

Rule C3: Updating Values of Class Attributes
GENERATED EVENTS Rule E4: Assigning Values to Events with Parameters

FAIRNESS Section Rule X2: Adding Fairness Constraints
TRANS Section Rule X3: Adding TRANS Declarations

Table 3: SMV program structure / rules mapping

67

Table 4 shows the naming conventions used to declare module names, variables and macros in

SMV. The prefix aids in the readability of the resultant SMV program. The naming conventions

help the analyst analyze counter-examples for large systems.

Prefix Example
Module
Module name no prefix RequestBn: module name for

RequestBn subclass
Module parameters inp_EVENT_NAME inp_BN_PRESSED: input parameter

of RequestBn module
VAR Section
External events env_EVENT_NAME env_BP_OpenBn: output event in

External_Event
States with or-states as
children

st_STATE_NAME st_Operation: substate of Elevator
state diagram

Events generated by the
module

ev_EVENT_NAME ev_REQ: event generated by Button
module

Completion events for
sequential processing

comp_OPN_NAME or
comp_TRANSITION

comp_getNextDest: completion event
for getNextDest operation

Class attributes no prefix prevDest: attribute of Elevator
module

Component object variables no prefix openBn: instance of Button module
DEFINE Section
Active state macros in_STATE_NAME in_Moving: macro where state

Moving of Elevator module is active.
Labeled transitions no prefix t4: the transition from state

Open_Door to state Close_Door of
Elevator module.

Operations Macros m_MACRO_NAME m_f1_pending: macro where a
request from the first floor is pending

Table 4: Naming convention for SMV modules, variables and macros

68

4 Verifying System Properties Using SMV

In this chapter, we describe some of the system properties that were verified by SMV. We first

give an overview of how to write CTL formulas. Then, we translate and verify the elevator’s

system properties that we defined in the requirement analysis phase. Finally, we discuss how we

verify partial specifications within the context of “object-oriented” SMV modules, verifying

properties of one or more modules at a time. In our elevator case study, we used a Pentium-II

350Mhz PC with 128 MB of memory. We used McMillan’s Cadence Symbolic Model Verifier

[McMi99] version November 10, 2000 running on Windows 98 to model check the elevator SMV

program presented in Appendix C.

4.1 CTL Overview

In this section, we describe a temporal logic called Computational Tree Logic (CTL) to specify

system properties of a state transition system. CTL is a logic for reasoning about state transition

systems as they are used in the description of reactive systems. Temporal logic formulas defined

over a Kripke model (i.e., sequential system with a set of states connected by transitions)

constitute CTL. CTL allows us to verify computation sequences that describe the ordering of

events along multiple paths of the state transitions system. In temporal-logic model checking,

time is not explicitly mentioned. Rather, we are interested only in the temporal ordering of

events: e.g., whether a state or condition eventually occurs, never occurs, or always occurs.

Using SMV, we verify system properties expressed as CTL formulas. CTL is a branching-time

temporal logic where statements about all or some paths starting in a state can be verified. Given

a finite state machine, an execution path is a set of consecutive states that starts from an initial

state. Because the future path of a system’s execution is unknown, CTL precedes each of the

temporal operators with a qualifier over the possible paths. The temporal operators X, U, R, F,

and G are preceded by path quantifiers A (e.g., a property f is true in all paths) or E (e.g., a

property f is true in some paths).

The syntax and semantics for CTL formulas defined in [CGP99] are summarized as follows:

• Every propositional variable is a CTL formula.

• If f and g are CTL formulas, then so are: !f, f&g, f|g, f->g, AXf, EXf, A[fUg],

E[fUg], A[fRg], E[fRg], AFf, EFf, AGf, and EGf.

69

The first order logical operators NOT (!), AND (&), OR (|), and IMPLIES (->) have their usual

meanings. X is the nextstate operator, and formula AXf (EXf) is true in every (some) successor

state of si in the reachability graph, where si is the current state of the CTL formula being

evaluated. U is the until operator, and formula A[fUg] (E[fUg]) is true in state si iff along every

(some) path emanating from si there exists a future state sj at which g holds and f is true until

state sj is reached. R is the release operator, and formula A[fRg] (E[fRg]) is true in state si iff

along every (some) path emanating from si either g never holds or there exists a future state sj at

which g holds and f is true up to and including state sj. F is the future operator, and formula AFf

(EFf) is true in state si iff along every (some) path emanating from si there exists a future state in

which f holds. Finally, G is the global operator, and formula AGf (EGf) is true in state si if f

holds in every state along every (some) path emanating from si. We used the CTL operators AG,

EG, AF, EF, AX, and EX to describe the system properties of our elevator example.

70

4.2 Verifying the Elevator System Properties

As mentioned in Chapter 3, system properties are specified at the end of the main SMV module

with the keyword SPEC. The CTL formulas discussed in this section are all defined in the

complete elevator SMV program shown in Appendix C.

4.2.1 Safety Property for Elevator

A safety property expresses the condition that something bad should not happen. Typically, a

safety property represents the desired system invariant to be checked. For example, we translate

the safety constraint “elevator never moves with its doors open”, shown as a UML constraint

between door object and elevator object in Figure 6 of Section 2.2.3, into the following CTL

formula:

SPEC AG (!(elevator.in_Open_Doors & elevator.in_Moving))

Verifying the CTL formulas using SMV is an automated step. SMV exhaustively searches the

entire state space and determines whether there is any state in which the proposition

“elevator.in_Open_Doors & elevator.in_Moving” is true. SMV responds with either true or false.

The SMV model-checker determined that the above safety property was true. Response true

means the SMV model entails the CTL formula and value false means the SMV model does not

entail the CTL formula.

4.2.2 Liveness Properties for Elevator and Hall Buttons

A liveness property expresses the condition that something good should happen. We verify a

liveness property to check if the system guarantees progress and reaches a desired state. In our

elevator example, we want to check that “requests to be delivered to a particular floor are

eventually serviced” which represents the three UML constraints attached to the link between

floor request buttons and the elevator object as shown in Figure 6 of Section 2.2.3. We also want

to verify that “requests to use the elevator are eventually serviced” which represents the four

UML constraints attached to the link between the elevator request buttons and the elevator object.

Using the response pattern, we formulate the seven liveness properties for elevator and hall

buttons shown in Figure 6 of Section 2.2.3 as follows:

71

-- *** tests showing behavior of buttons and opening of door ***
SPEC AG (external_Event.env_BP_FloorReqBn[1] & !(elevator.in_Open_Doors &
elevator.floor=1)
-> AF (elevator.floor = 1 & elevator.in_Open_Doors))

SPEC AG (external_Event.env_BP_FloorReqBn[2] & !(elevator.in_Open_Doors &
elevator.floor=2)
-> AF (elevator.floor = 2 & elevator.in_Open_Doors))

SPEC AG (external_Event.env_BP_FloorReqBn[3] & !(elevator.in_Open_Doors &
elevator.floor=3)
-> AF (elevator.floor = 3 & elevator.in_Open_Doors))

SPEC AG (external_Event.env_BP_ElevReqBnUp[1] & !(elevator.in_Open_Doors &
elevator.floor=1)
-> AF (elevator.floor = 1 & elevator.in_Open_Doors))

SPEC AG (external_Event.env_BP_ElevReqBnUp[2] & !(elevator.in_Open_Doors &
elevator.floor=2 & elevator.dir=up)
-> AF (elevator.floor = 2 & elevator.in_Open_Doors))

SPEC AG (external_Event.env_BP_ElevReqBnDn[2] & !(elevator.in_Open_Doors &
elevator.floor=2 & elevator.dir=dn)
-> AF (elevator.floor = 2 & elevator.in_Open_Doors))

SPEC AG (external_Event.env_BP_ElevReqBnDn[3] & !(elevator.in_Open_Doors &
elevator.floor=3)
-> AF (elevator.floor = 3 & elevator.in_Open_Doors))

Response pattern is a property specification pattern introduced by [DAC98]. This pattern

translates the “a state S must always eventually be followed by a state R within a set of execution

paths” as AG(S -> AF(R)) in CTL.

Specifically, the first specification says that if a passenger inside the elevator requested to be

delivered to the first floor and the elevator is not on the first floor with its doors open at the time

he/she made the request, then the elevator will guarantee that this request will eventually be

serviced.

Initially, the SMV model-checker determined that the liveness properties were false. While

analyzing the counter-examples, we found that the elevator may not reach the destination floor

because it could be indefinitely waiting for the environment to generate an AT_FLOOR event. To

ensure that the environment regularly generates an AT_FLOOR event, we added AT_FLOOR

event in the FAIRNESS section of External_Event’s SMV module. Next, we found that to ensure

progress, we had to give priority to repeated requests for the current floor only if there are no

pending requests for the other floors. We also found that we need to treat up- or down-button or

floor-request button for the current floor as an open-door request, rather than a request to service

the current floor. These changes are described in more detail in the next Chapter. Once these three

changes were made, all the liveness properties evaluated to true.

72

Since we use implication to formulate our liveness properties, we have to check that the

hypothesis is true. Otherwise, coincidental correctness22 may occur because if and when the

hypothesis is false, the implication holds regardless of whether the consequence is true. Since

model checking is exhaustive, the implication is presumably tested in circumstances where the

hypothesis is false and when the hypothesis is true. For each liveness property, we introduce the

EF test on the hypothesis to ensure that the hypothesis is not always false.

-- *** tests the hypothesis to avoid coincidental correctness ***
SPEC EF(external_Event.env_BP_FloorReqBn[1] & !(elevator.in_Open_Doors &
elevator.floor=1))
SPEC EF (external_Event.env_BP_FloorReqBn[2] & !(elevator.in_Open_Doors &
elevator.floor=2))
SPEC EF (external_Event.env_BP_FloorReqBn[3] & !(elevator.in_Open_Doors &
elevator.floor=3))
SPEC EF (external_Event.env_BP_ElevReqBnUp[1] & !(elevator.in_Open_Doors &
elevator.floor=1))
SPEC EF (external_Event.env_BP_ElevReqBnUp[2] & !(elevator.in_Open_Doors &
elevator.floor=2 & elevator.dir=up))
SPEC EF (external_Event.env_BP_ElevReqBnDn[2] & !(elevator.in_Open_Doors &
elevator.floor=2 & elevator.dir=dn))
SPEC EF (external_Event.env_BP_ElevReqBnDn[3] & !(elevator.in_Open_Doors &
elevator.floor=3))

The SMV model-checker determined that these properties were all true. This means that the

liveness properties formulated were all valid tests.

4.2.3 Additional System Properties

In addition to the system properties identified during requirements analysis phase, we also

checked several other system properties to gain confidence in the correctness of our elevator

model.

Some sanity checks are application-independent. For example, we may want to verify that it is

always possible to reach a state from any other state such as “the elevator will always eventually

stop.”

SPEC AG(EF(elevator.in_Stop))

A more complicated sanity check tests whether the up and down hall buttons on the second floor

represent independent requests to be serviced. Keeping the up hall-button independent from the

down hall button on the second floor is important because we expect the potential passenger to

22 Using the terminology of [Beiz95], we will call this test coincidental correctness.

73

enter the elevator only if the elevator is traveling in his / her desired direction. For each request

button, the button is lit if there is a pending request.

When the elevator arrives at the second floor to pick up potential passengers who want to go to

the third floor, only the pending up hall-button backlight is turned off. Using the response chain

specification pattern [DAC98], we formulate this system property as follows:

SPEC AG ((ElevReqBnUp2.in_Lit & ElevReqBnDn2.in_Lit & elevator.floor = 1 &
elevator.in_Closed_Doors)
-> AF((ElevReqBnUp2.in_UnLit & ElevReqBnDn2.in_Lit) &

AF(ElevReqBnDn2.in_UnLit)))

This formula states that when both the second floor’s up and down hall-buttons have pending

requests and the elevator is still on the first floor with its doors closed, eventually the second floor

up hall-button is reset but the second floor down hall-button is not. The potential passenger who

is waiting outside the elevator on the second floor and who wants to go down to the first floor

will not get in the elevator going up and will not have to press the down hall-button again to

recall the elevator. To avoid coincidental correctness for this liveness property, we checked the

following CTL formula:

SPEC EF(ElevReqBnUp2.in_Lit & ElevReqBnDn2.in_Lit & elevator.floor = 1 &
elevator.in_Closed_Doors)

74

4.3 Model Checking Partial Specifications

In this section, we show how to verify the properties of a partial OO specification consisting of a

subset of the specification’s modules. In software testing, we find that there is a clear distinction

between unit testing (testing a specific component) and systems testing (testing the collaboration

between components). In the same manner, we can perform unit verification where only some of

the objects defined in the Elevator object model (Figure 5 of Section 2.2.2) are verified.

Performing unit verification has the advantage of detecting errors early in the specification

process, before the entire software system has been specified. Detecting and correcting errors for

each object before analyzing the entire specification simplifies verification of the latter because

each object is known to behave as expected. In the system verification step, we can focus our

attention on the collaboration of objects.

Our technique takes advantage of the class structure of UML specifications and uses one or more

known classes for unit verification. The class structure makes it easy to perform unit verification

because each class is already an abstraction without the unnecessary details. We can perform unit

verification on classes that are known and we do not have to wait for classes that are unknown or

incomplete.

Ideally, one performs unit verification without changing the individual component’s

specification, with the exception of the main module where we make some assumptions about the

environment of the individual component. We demonstrate how to verify an individual

component by verifying the Timer class (which corresponds to the Timer SMV module) from our

elevator case study.

In this example, we want to verify the liveness properties of the count down mechanism

and the timeout mechanism of the Timer class. Since the Timer class does not have any

component objects, only the Timer SMV module will be needed for unit verification. Instead of

declaring the Timer SMV module as a component of Door SMV module, we declare Timer SMV

module as a component of the main SMV module. Moreover, we do not include the

External_Event component in the main SMV module because the Timer module does not

directly respond to any environmental events. The main SMV module for Timer module’s unit

verification is illustrated in Figure 20.

MODULE main

75

-- ****************** VARIABLES SECTION *************************
VAR
-- *** GENERATED EVENTS SUBSECTION ***
ev_SET.raised : boolean;
ev_UNSET : boolean;

-- *** COMPONENT OBJECTS SUBSECTION ***
DoorTimer: Timer(ev_SET, ev_UNSET);

-- ***************** SYMBOL DEFINITION SECTION ******************
DEFINE
-- *** GENERATED EVENTS MACROS SUBSECTION ***
ev_SET.n := 5;

-- **************** PROPERTY / CTL FORMULA **********************
SPEC AG ((DoorTimer.counter=5 & !ev_SET.raised)

-> AX (DoorTimer.counter = 4))

SPEC AG ((DoorTimer.counter=0 & !ev_SET.raised & !ev_UNSET &
DoorTimer.in_Count)

-> AX (DoorTimer.in_Idle))

Figure 20: Main SMV module for Timer class unit verification

In Figure 20, we declare DoorTimer as a variable in the main SMV module. We reuse the Timer

SMV module (Figure 16 of Section 3.2.4) without any modification. The DoorTimer object

requires input parameters (i.e., SET and UNSET events) from its environment. Since modules in

the partial specification do not generate the SET and UNSET events, we model the input

parameters of DoorTimer as output events of the main SMV module. We declare these generated

events in the “generated events subsection”. Because the SET input event has an actual parameter

(i.e., numeric 5), we set the parameter n of SET event to 5 in the “generated events macro

section”. Details of translation rules can be found in Chapter 3.

We specified two properties in the SPEC section. The first property helps to verify that the count

down mechanism is working correctly. Literally, it says “If the counter is currently at 5, then it is

immediately followed by counter equal to 4 in the next state if no SET event is raised.” The

second property helps to verify that the timeout mechanism of the DoorTimer is working

correctly. This property states that if the counter is zero, no SET event was raised, and no UNSET

event was generated, then the timer moves to state Idle. The SMV model-checker determined all

the properties were true.

To re-verify the properties in the full specification, the property expressions may need to be

modified to reflect the propositions’ new context. For example, when we declare DoorTimer to be

a component object of the door module, DoorTimer.counter becomes

elevator.door.DoorTimer.counter as shown in the updated CTL formulas:

76

SPEC AG ((elevator.door.DoorTimer.counter=5 & !elevator.door.ev_SET.raised)
-> AX (elevator.door.DoorTimer.counter = 4))

SPEC AG ((elevator.door.DoorTimer.counter=0 & !elevator.door.ev_SET.raised
& !elevator.door.ev_UNSET & elevator.door.DoorTimer.in_Count)
-> AX (elevator.door.DoorTimer.in_Idle))

77

5 Effectiveness of Model Checking

In this chapter, we discuss the effectiveness of model checking UML specifications. The original

intent of this thesis was to demonstrate the feasibility of model checking UML specifications

using SMV. When we started fixing the specifications to meet the desired properties, we realized

that many of the fixes affected not only the SMV model and the UML specifications, but also the

original requirements. The outcome of fixing the specifications is a more accurate, consistent, and

complete UML model and a more consistent and complete requirements specification.

Measuring the effectiveness of model checking a UML specification was not part of the original

intent of this thesis. However, since we kept records of the UML and SMV specifications as we

iterated through the analysis of revised specifications, we decided that we had enough

information to informally point out the errors detected, lessons learned and observations made

from model checking UML specifications. We found five major types of errors during model

checking:

1. Requirements-level errors: errors that reveal missing, incomplete, or ambiguous functionality

in the problem statement.

2. Object-oriented modeling errors: errors that reveal synchronization and coordination

problems among the objects in the object-oriented specification.

3. Translation errors: errors in the SMV representation of the object-oriented specification.

4. Environmental constraints: errors that reveal missing or inaccurate constraints on

environmental events and variables.

5. Temporal logic formula errors: errors in the logical expressions of the intended desired

properties.

In the following, we estimate the number of errors detected for each type of error, but we do not

make any formal measurements as to the severity of errors.

This chapter proceeds as follows. First, we review the various steps of our iterative analysis

process and the time spent performing each step. Then, we analyze how model checking helped

to reveal requirements-level errors, object-oriented modeling errors, and other SMV errors.

Finally, we summarize the effectiveness of using model checking to detect requirements-level

errors and object-oriented modeling errors.

78

5.1 Time Spent per Activity

In the elevator case study, we were given an existing specification of the problem statement that

had been used in University of Waterloo’s CS 746B assignments. We created the initial UML

model followed by an iterative process of verifying and revising the UML and SMV models. We

now describe the work completed for each activity and discuss the time spent on each activity.

Inspecting and Revising the Problem Statement

The objective of this activity was to find requirements-level errors in the original problem

statement. The analyst and the domain expert reviewed the problem statement. This activity

includes the time spent on revising the problem statement. A total of 10 hours was spent on this

activity.

Since time logging was not part of the original intention of this thesis, we did not officially record

the actual time spent on each activity. For each activity, we based our time estimates on the

number of times we iterated for that activity multiplied by the estimated number of hours per

iteration.

Building the Initial UML Model

The objective of this activity was to specify a UML model using UML class diagram, object

model, and UML state diagrams. This activity includes the time spent to understand and clarify

the details of the elevator system. A total of 90 hours was spent on this activity.

Translating UML to SMV

The objective of this activity was to find a homomorphic mapping from UML to SMV.

Homomorphic mapping seeks to preserve structural relationships between the UML and SMV

models. Each time the UML model is modified, we manually changed the SMV model to reflect

the new changes to the UML model. We spent approximately 40 hours to translate UML models

to SMV models. When we started the elevator case study, there were no proposed rules and

guidelines for translating from UML to SMV as described in Chapter 3. It took more than 20

hours to translate our initial UML specifications and review the initial SMV model. In the

succeeding translations, we referred to our rules and guidelines for translating the UML class

diagram, object model and UML state diagrams into SMV’s input language. The succeeding re-

translations (about 10 iterations) due to changes in the UML specifications required less than 20

79

hours because translation guidelines were available and changes were confined to a specific SMV

section or subsection.

Model Checking

The objective of this activity was to find defects in the problem statement, UML models, and

SMV model. This activity includes the time spent checking and correcting SMV syntax errors

such as SMV cyclic assignment errors, and analyzing SMV counter-examples. Since we were

interested in the effectiveness of model checking, we did not include in our time estimates the

time it took to learn the SMV input language and model checker. It includes the time to construct

the CTL formulas as described in Chapter 4. It does not include the time it took to execute the

SMV model checker. In our earlier SMV specifications, it took more than two hours to verify one

of the liveness properties.

A total of 100 hours was spent on this activity. Most of the time spent can be attributed to reading

and analyzing the counter-examples. When reading counter-examples for large specifications, we

found it time consuming to navigate and inspect the values of each SMV variable. Cadence

SMV’s viewer arranges the SMV variables in alphabetic order, rather than grouping variables by

module.

Revising the UML Model and the Problem Statement

The objective of this activity was to modify the UML model and the problem statement (if

applicable) in order to satisfy one or more system properties that failed in model checking. This

activity includes the effort required to improve the UML modeling guidelines and naming

conventions. A total of 160 hours was spent on this activity. The time required for verifying and

revising the UML model includes the actual time spent on fixing both requirements-level errors

and the actual time spent on fixing UML-related errors.

Table 5 shows how each of the above activities contributed to the total of 400 hours of effort.

Table 5 also shows the different types of errors detected per activity.

80

Activity Number of
Hours

Number of
Requirements-

level Defects
Found

Number of Style
Defects (found

in revised
models only)

Number of
UML Defects

(found in
revised models

only)

A. Create Initial Model

Inspecting and Revising the
Problem Statement

10
2

UML Modeling 90 2

B. Verify and Revise
Model

Translating UML to SMV 40 0 5 4

Model Checking 100 6 0 2

Revising UML Model and
Problem Statement

160 1 5 1

Total 400 11 10 7

Table 5: Requirements-level and OO modeling defects summary

We divided the activities into two sections. Phase A, Create Initial Model, consists of manually

inspecting the problem statement and creating the initial UML model. Without model checking,

the task of writing the SRS would be considered done once the UML models have been created.

In addition to activities for creating the initial UML model, we added activities that are grouped

together in Phase B, Verify and Revise Model. During model checking, the time spent on

correcting the errors revealed by model checking the desired system properties includes all the

time needed:

• to change the problem statement,

• to modify the UML models,

• to translate the new UML model modifications to SMV, and

• to rerun the model checker.

Table 5 shows that we spent 25% of our time (i.e., 100 out of 400 hours) in the “Create Initial

Model” phase. It is not surprising that we spent 75% of our time (i.e., 300 out of 400 hours) in

correcting and re-verifying the UML specifications because it took about 10 iterations to

successfully verify all the system properties.

81

5.2 Requirements-level Errors

The ultimate goal of model checking UML specifications is to detect errors early in the software

development cycle. Based on approximately 400 hours of effort, we found a total of 11

requirements-level errors. Out of the 11 requirements-level errors, four were detected in the

“Create Initial Model” phase. The additional seven requirements-level errors were revealed

during the “Verify and Revise Model” phase. Without model checking, these 7 of the 11

requirements-level errors would have been discovered later in the software development cycle or

not at all. Column 3 of Table 5 shows the breakdown of the number of requirements-level defects

found, organized by activity.

Inspecting the Problem Statement

The problem statement was initially presented to a small group of faculty members and

students23. In this presentation, we found one requirements-level error in which the problem

statement failed to mention that the second floor hall buttons must have directions (i.e., one hall

button to move up and another hall button to move down). After the problem statement was

modified, our domain expert reviewed the problem statement24 and found one additional

requirements-level error. The problem statement failed to mention that the inner and outer doors

become mechanically linked when the elevator is at rest at a floor. When the inner door opens,

the outer door will automatically open. Only the inner door, which is in the elevator car, can be

directly controlled by the software system.

Our domain expert also found additional features that are common to industrial elevators (e.g.,

warning light to indicate when maximum load has been reached, door sensors that reopens door if

obstruction is detected when the door is closing). These additional features were not added to the

elevator case study. As a reference for future extensions of the elevator case study, Appendix D

lists the additional features identified by our domain expert.

23 University of Waterloo, Department of Computer Science, Software Engineering Talk given on
December 17, 1999, attended by Prof. Dan Berry and a few graduate students.
24 Our domain expert, Doug Guderian (Delta Elevator Co. Ltd.), reviewed a draft copy of the problem
statement dated February 13, 2000.

82

Building the Initial UML Model

In this activity, we found two requirements-level errors as we reviewed the initial UML model

with the domain expert. The requirements-level errors found were:

• The External_Event class showed only one BN_PRESSED event. This meant that only one

BN_PRESSED event could be raised at a time. We later decided that it should be possible to

press several buttons simultaneously. The original problem statement was silent about this

requirement.

• Other than the floor sensor, which determines which floor the elevator is in, there must be a

slowdown point for each floor. Slowdown point refers to a specified point where the elevator

slows down in preparation to stop. The slowdown point of each floor determines if a request

made while the elevator is moving can still be serviced. The elevator can’t stop to service a

request from a specific floor if the elevator has passed the slowdown point of that floor.

Translating UML to SMV

No requirements-level errors were found when translating from UML to SMV.

Model Checking

We found additional requirements-level errors in model checking system properties that were

unsatisfied in our initial SMV model. These errors and their corresponding corrective actions

were:

(1) Starvation occurs if the user repeatedly presses the open-door button when the elevator doors

are open. Corrective action: allow only the first three requests to keep the opened doors open,

after which the elevator will close its doors within five time units, regardless of subsequent

requests to keep the doors open, and will give priority to other pending requests.

(2) Starvation occurs when open-door request is repeatedly made when elevator doors are closed.

Corrective action: allow only the first two requests to reopen the closed elevator doors, after

which the elevator will give priority to other pending requests.

(3) Starvation occurs if we treat as a new request-for-service a button press that corresponds to

the elevator’s current floor when the elevator doors are open. Corrective action: pressing an

up- or down-button or floor-request button when the elevator is at the button's floor and the

83

elevator doors are open is treated as an open-door request (of which only a limited number

are recognized and serviced), rather than a request to service that floor.

(4) Starvation can occur when the elevator scheduler always gives priority to the requests for the

current floor over requests for other floors. Corrective action: give priority to pending

requests for the other floors over repeated requests for the current floor.

(5) A passenger needs to know the direction of the elevator (up or down) before the elevator

doors open, so that he/she can decide whether to enter the elevator or wait until the elevator

returns to pick up passengers traveling in the other direction. Corrective action: set the

elevator’s next direction upon arrival and before the elevator opens its door.

(6) Requirements did not state when the elevator needs to recalculate both the next destination

and next destination’s direction. If the elevator is traveling up to the second floor to pick up a

passenger waiting to travel down, and if a second passenger presses the second-floor up-hall

button before the elevator reaches the second floor, the second passenger expects his request

to have priority over the pending down-hall button request. Corrective action: recalculate the

next destination and the next destination’s direction right before the elevator reaches its

destination floor.

We found that the corrective actions we made in order to satisfy the system properties would be

observable in the final system, are changes to the requirements (i.e., problem statement) and not

just the specification (i.e., UML model and SMV model).

Revising the UML Model and the Problem Statement

We found one requirements-level error as a result of revising the UML model. Although the

primary goal of this activity was to help satisfy the system properties (i.e., for model checking), it

also provided an opportunity for the analyst to review the UML model. While revising the UML

model, we found that the problem statement did not explicitly mention whether the elevator doors

should reopen if the open door button is pressed when the elevator doors are closed and the

elevator is not moving.

84

5.3 UML Model Style Defects

In this section, we discuss the style defects, which consist of missing, ambiguous or mismatched

names and trivial defects such as spelling errors and choice of words. These changes might affect

the clarity or maintenance of the system but they do not affect correctness of the specifications.

Instead of showing the number of times we encountered each type of style defects, we only show

the types of style defects found because style defects tend to be global changes (e.g., changing a

naming convention for translating environment variables). In the “Verify and Revise Model”

phase, we found a total of 10 style defects. Column 4 of Table 5 shows the breakdown of the

number of style defects types found in the UML specifications of our elevator case study,

organized by activity.

Translating UML to SMV

The types of style defects found when translating from UML to SMV were:

(1) Some of the events used in the state diagram were not defined or were misspelled in the class

diagram.

(2) Some transition label names and region names of UML state diagrams were missing.

(3) Some events were qualified with incorrect object names or were not qualified with an object

name at all.

(4) Some of the class attribute’s default values did not match the corresponding state diagram’s

initial state transition actions.

(5) Naming of attributes, states, events, operations did not match their corresponding names as

used in the real world.

Revising the UML Model and the Problem Statement

The types of style defects found when revising the UML model were:

(1) Some class names, association names, and event names did not conform to the naming

conventions.

(2) Some of the low-level objects had direct knowledge of their ancestor objects. Worse, one

object manipulated one attributes of its parent. Such low-level objects cannot be reused in

85

another application domain. To allow the low-level objects to indirectly change their ancestor

objects attribute values, we enforced event-passing interfaces among classes.

(3) Some transition labels had redundant guard conditions. Redundant guard conditions do not

add any new information to the event trigger or to an existing condition of a transition.

(4) Some classes, such as the Floor class, are not used at all.

(5) Some state diagrams were complex. We simplified the UML state diagram by replacing some

parts of the state diagram with a UML operation.

86

5.4 Object-oriented Modeling Errors

In this section, we discuss object-oriented (OO) modeling defects, such as synchronization and

coordination problems among the objects. OO modeling defects also includes correctness defects

such as missing events and missing default values in the UML state diagram and missing

attributes in the UML class diagram. These defects must be corrected to verify the system

properties. In the “Verify and Revise Model” phase, we found a total of seven UML defects. The

last column of Table 5 shows the breakdown of the number of UML (i.e., object-oriented) defects

found in the revised UML models, organized by activity.

Translating UML to SMV

The correctness defects found in the UML model were:

(1) Some of the class attributes did not have default values. Corrective action: assign default

values to class attributes that need a default value.

(2) The original Elevator state diagram modeled the elevator’s direction (up or down) as a

concurrent region. The initial state was in state UP and it changed direction when the next

destination was determined and the elevator was about to move. After model checking, we

found that the direction may also change right before the elevator doors open. Corrective

action: model direction of elevator as an attribute (instead of as a state).

(3) The original Elevator state diagram processed a new button-pressed request only when the

elevator is not moving. This does not guarantee that all valid requests become pending

requests and are eventually serviced. Corrective action: add a new concurrent region that

processes button-pressed requests in parallel with the elevator’s other activities.

(4) The original class diagram showed hall buttons as components of the Elevator class. This did

not allow the hall buttons to be shared by other elevators, should we ever want to extend the

problem to deal with more than one elevator. Corrective action: add a new Building class to

contain the hall buttons and the Elevator class; hall buttons can now be shared among

multiple elevators.

87

Model Checking

We found two correctness defects in the UML model as follows:

(1) The original Elevator state diagram generated an “open door” event using a self-transition to

the state Open_Doors. If and when the “close door” event happens while the “open door”

request occurs, the original Elevator state diagram re-enters the state Open_Doors and at the

same time moves to the state Closed_Doors. Corrective action: generate the “open door”

event using an “on event” transition in order to allow a response to “open door” request

without re-entering the state Open_Doors.

(2) The original RequestBn state diagram used the button-pressed event (BN_PRESSED) to set

the pending attribute to true and to turn the button’s light on. However, there are cases where

a BN_PRESSED event does not necessarily result in the light being turned on. Corrective

action: add a separate LIGHT event generated by both Building class and Elevator class.

RequestBn class can now react to LIGHT event separately from BN_PRESSED event.

Revising the UML Model and the Problem Statement

We found one correctness defect in this activity. The original UML model did not have a close

door button. Corrective action: add a new CloseBn instantiation of the Button class.

88

5.5 SMV Errors

This section briefly presents the SMV errors detected during the “Verify and Revise Model”

phase. These SMV errors were corrected in order to verify the system properties. We do not

distinguish the severity of these SMV errors.

Translation Errors

We found these SMV model defects when systematically translating the UML model to SMV.

These errors were revealed after we found that the SMV model did not match the expected

behavior of the UML model. Automating the translation rules will eliminate these translation

errors. The translation errors found were:

• The default value of the case statement is wrong. For events, the default is 0 (false); for

attributes, the default is the current value.

• The number of SMV module’s input parameters did not match the class’s input events and

class’s input attributes.

Environmental Constraints

We added constraints on when environmental events could occur in order to successfully verify

the system properties. Without these constraints, the liveness properties were not satisfied

because the environment may not regularly generate the events needed to make progress.

Moreover, these constraints better model the system’s environment. The following environmental

constraints were added:

• FAIRNESS constraint for AT_FLOOR event in order to force AT_FLOOR event to regularly

occur.

• TRANS condition such that the AT_FLOOR event does not occur while the elevator’s

transition t10 is executing.

Details of specifying environmental constraints can be found in Section 3.2.3 (Translating the

External_Event Class).

89

Temporal Logic Formula Errors

In model checking, it is important to specify a system property accurately because an incorrect

formula leads to an incorrect analysis of the desired system behavior. We experienced the

following errors when constructing and verifying CTL formulas:

• We found coincidental correctness errors25 when using the implication operator. We use the

CTL operator EF over the hypothesis to ensure that the hypothesis can be true. Details of

coincidental correctness errors are discussed in Section 4.2.2 (Liveness Properties for

Elevator and Hall Buttons).

• We found logical errors for some CTL formulas where we should have used the logical

operator “&” (AND) instead of the implication operator “->” (IMPLY).

• We found that some CTL formulas do not match the intended system property. This happens

if and when the SMV model is misunderstood. In some cases where the implication operator

was used, we modified the CTL formula by adding a clause in the hypothesis to restrict the

circumstance of when property is supposed to hold.

25 Recall that if the hypothesis is false, the implication holds regardless of whether the consequence is true.

90

5.6 Summary

This chapter briefly describes how the iterative analysis process (i.e., “Verify and Revise Model”

phase) revealed errors that would have otherwise been left in the problem statement and UML

models. The entire elevator case study took approximately 400 hours. Initially, approximately

100 hours was spent on inspecting the problem statement and writing the original UML

specification. Then, we spent approximately 300 hours iterating the translation to SMV, model

checking, and correcting the UML model. In these iterations, we found requirements-level errors,

UML-model errors, and SMV errors.

Although only a few classes were defined in the elevator case study, it took about ten iterations

before we satisfied all the system properties. These errors were difficult to correct because the

state diagram of the Elevator class had to manage the complex coordination and synchronization

of events. Separating the “separate concerns” of the Elevator’s state diagram was not a trivial

exercise. Within the Elevator class’s state diagram, we handled multiple concurrent regions,

multi-level hierarchical states, multiple events and complex UML operations. In order to find a

fix for a single execution path error that is caused by the Elevator SMV module, we had to find a

general solution that must handle the complexity of Elevator’s state machine.

By investing an additional 300 hours, we found seven additional requirements-level errors in the

SMV and UML models. This is consistent with other research studies that also found defects with

requirements specification using model checking [SrAt96][CAB+98]. We detected 10 types of

style defects and seven correctness defects in the UML specification. The current UML modeling

tools such as Rational Rose can detect some of the style defects. However, these UML modeling

tools cannot detect correctness defects at all. Our findings suggest that UML modeling is not

immune from defects. Model checking revealed many UML errors that would have been left

undetected.

This chapter has shown that model checking is an effective tool to detect correctness errors in

UML models as well as requirements specifications. It would be interesting to compare the

number of hours that it would have taken to detect and correct these defects had the original UML

model been used for programming and testing. Using simulation and testing, it is difficult, or

even impossible, to detect all the liveness property errors because simulation and testing requires

a lot more time to program and execute all the possible test cases as compared to model checking.

For safety properties, it is often impossible to detect errors using simulation and testing because

91

this would require that test coverage is exhaustive which will require a lot of time to complete.

Performing exhaustive testing is not cost-effective for large software systems. We argue that

model checking at the requirements specification level is cost effective because studies have

shown that correcting errors in the requirements analysis phase cost much less than correcting

errors at the implementation phase [Boeh81].

92

6 Conclusions and Future Work

Using a non-trivial three-floor elevator as case study, we have shown how to translate a UML

model to SMV while preserving the object-oriented properties of the UML model. Specifically,

we provided guidelines on how to translate classes, associations, events (with parameters), and

state machines into input to the SMV model checker. With some modifications, these same

guidelines can be used to translate UML to other model checkers (e.g., SPIN, COSPAN, etc.).

Unlike other case studies where they focus on state machines, we have translated UML models

with emphasis on class structuring (associations, generalization, composition, aggregation), event

parameters, and class dependencies. Our translation from UML to SMV led to the development of

an object-oriented SMV program template that supports class structuring and improves

readability of SMV programs.

We have shown that non-trivial properties can be checked using SMV. We have shown a way to

translate UML constraints to CTL formulas required for SMV. Errors that would have gone

unnoticed during the UML modeling phase were detected using the SMV model checker. This

supports the idea that model checking can detect critical errors that are not detected in UML

modeling and inspection activities.

Our proposed approach to iterate the analysis of UML and SMV models makes model checking

effective in verifying system properties because:

(1) The analysts will continue to use the popular UML notation for specifying class diagrams,

state diagrams and object models. No new training for a different notation is required.

(2) The translation from UML to SMV can be done in a systematic fashion. Using our translation

rules defined in Chapter 3, it is possible to automate the translation of a subset of the UML

notation.

(3) SMV model checker generates a counter-example if and when the system property is not

satisfied. The counter-example serves as a debugging tool to pinpoint the error in the system.

In order to improve the readability of the UML and SMV models, we proposed extensions to

UML such as how to model events in class diagrams. We also extend UML with the notion of the

multiple-source events when modeling state diagrams. Although our UML modeling guidelines

and translation rules were effective for our elevator case study, more case studies are needed to

validate the translation rules and guidelines proposed in this thesis.

93

This thesis serves as a starting point for software practitioners who would like to model check

UML models. We now summarize some of the future work and extensions.

(1) We need to study more complex case studies to evaluate our ideas. Extending the elevator

UML and SMV model will also determine the scalability of model checking large-scale

specifications. A list of additional elevator features is shown in Appendix D.

(2) State explosion, an identified problem in model checking needs to be explored further by

adding more floors to the case study (i.e., more than 3 floors) and extend the elevator case

study to more than one elevator.

(3) UML is a rich language and only a subset of the UML notation was used in this thesis. We

need to investigate the use of advanced state diagram notation such as history psuedo-states.

We also need to further investigate some UML semantics issues. For example, integrating

multiple-step UML operations into the UML models will lead us to synchronization issues

with respect to handling events while the UML operation is not completed.

(4) Although we have demonstrated the usefulness of the translation rules and procedures for

translating reactive systems, more work needs to be done to apply these rules and guidelines

to other domains. Instead of manually translating the UML to SMV, it would be useful to

automate (at least partially) the translation to avoid manual translation errors. The ultimate

goal would be to add model checking as part of modeling tool support that can be used with

commercial tools such as Rational’s Rose and I-logix’s Rhapsody UML modeling tools.

(5) In this thesis, there were no formal measurements for the effort used to detect the

requirements-level and modeling errors. It would be interesting to study how traditional

software implementation and testing could reveal these requirements-level and modeling

errors. This will help develop a cost-benefit analysis of model checking vs. software testing.

94

Appendix A: UML Notation Summary

A1. UML Class Diagram Notation

The UML Class Diagram describes the object-oriented structure of the system. A summary of the

key notation used in our case study is shown in Figure A-1.

SuperClass

SubClass1 SubClass2

Class A Class B

Aggregated Class Composed Class

role

1

Association

Aggregation Composition

Class

Generalization

object name
:Class Name

Object

<<stereotype>>
Class Name

<<input>> event
<<object>> object name

attribute: type = initial value

operation (arg list): return type

event (arg list)

Note

{ constraint }

Figure A-1: UML class diagram notation

We summarize the definition of these key concepts and notation as follows:

A class captures the common structure and common behavior of a set of objects. A class is an

abstraction of real-world items such as persons, places, things, user-interfaces, events or concepts

that are relevant to the system. As shown in Figure A-1, we extended the UML class as a four-

part box. The class name in the first (top) part is also extended to include the input events and

object references. A list of attributes with optional types and values is defined in the second part.

A list of operations with optional argument lists and return types is defined in the third part.

Finally, we define output events in the fourth (bottom) part.

An object is an instance of a class. It can contain both data and functionality. Data are

represented as attributes in a class. Functionality is represented as operations to describe

computational behavior. An object with significant temporal behavior can be described in a state

diagram. Object names are drawn with the class name after the “:” and underlined.

95

A generalization relationship is drawn from a class to another class. It shows that the subclass

shares the structure and behavior defined in one (or more) superclass. The generalization

relationship is drawn as a directed solid line with a closed arrowhead pointing to the superclass.

An association represents a semantic connection between two classes. They are bi-directional.

They are the most general of all relationships. An association is drawn as a solid line connecting

two classes. To describe the association relationship with more precision, we add adornments

such as:

• A role name represents the purpose or capacity an object plays in an association. Role names are not
bi-directional.

• An aggregation relationship is used when one object physically or conceptually contains

another object. The larger class is called the whole and the smaller class is the part or

component class. A part class can be shared by other whole classes. In this thesis, we refer to

the part class as the aggregated object. They are drawn as an association (solid line) with an

unfilled diamond at the whole end of the relationship.

• A composition relationship is a stronger form of aggregation. We refer to the part class of a

composition relationship as the component object. In a composition relationship, the part

class cannot be shared by other whole classes. They are drawn as an association (solid line)

with a filled diamond at the whole end of the relationship.

• At each end of the association, we can define the multiplicity or the number of objects that

the class refers to. In our example, we assume the multiplicity is one if it is not specified. It is

drawn as a number on one of the endpoints of the association.

A note is a place to hold any amount of text. It is used to present additional information such as

assumptions and design decisions that can not be explicitly described using the UML notation. It

is drawn using a special note-shaped icon. Notes may be placed anywhere in a diagram. It can be

connected or unconnected to a model element.

A constraint is an expression of some semantic condition that must be preserved while the

system is in a steady state. It can be added to classes, class attributes, roles and associations. It is

shown as text surrounded by curly braces {}.

96

A stereotype is an extension mechanism to UML, allowing analysts to add new semantics to the

UML notation. We introduced the <<event>> stereotype to define a new form of class that

defines events instead of operations.

Other adornments such as qualified association, navigability and dependency are not used in our

case study. A detailed set of UML notation can be found in the OMG UML Specification

[UML99].

97

A2. UML State Diagram Notation

The UML state diagram describes the object-oriented behavior of the system. In this thesis, we

use state diagrams to describe the behavior of a single class. Collaboration of classes is modeled

as multiple state diagrams communicating via events. The graphical representation of the UML

state diagram notation is shown in Figure A-2 and Figure A-3.

Superstate Name

label: source[index].event {condition} /
action ^ dest[index].event

State1 Name

State2 Name
entry: action
exit:action
do: activity
on event: action

Figure A-2: UML State Diagram Notation

Superstate Name

State 2.2

State 1.1

State 2.1

Region 1

Region 2

Figure A-3: UML Concurrent States Notation

We summarize the definition of these key concepts and notation as follows:

A state diagram describes the history of the object’s property values of a given class. Rectangles

with rounded corners are states. Lines between states are transitions. A state diagram must have a

start state, one or more states, zero or more end states, and the state transitions between them. A

98

state diagram can have nested states where a superstate can have one or more substates as shown

in Figure A-2.

A superstate can have multiple orthogonal regions where each region runs in parallel to other

regions. Concurrent states within a state diagram describe states of components that are

orthogonal to each other. In Figure A-3, we show orthogonal regions within a superstate as states

that are separated by a dotted line. Each region is labeled with a region name.

A state can be active or inactive during execution. A state becomes active as a result of some

transition. An action is an instruction such as assigning a value to an attribute or sending an

event. When a state is entered (i.e., on entry), its entry action is executed. Then, the activity (i.e.,

on an activity) is performed. While the state is active, the on event action26 is executed when the

event is received. When a state is exited as a result of a transition, the on exit action is performed.

For our elevator example, we only used the “on entry” and “on event” actions to show what

action are to be carried out when the state is active.

A state transition, attached from one state to another state or to itself, is a change of state caused by an
event. Transitions may have events with parameters, guard conditions and actions. The syntax for a fully
specified state transition is:

label: src[index].event {condition} / action ^ dest[index].event

We have extended UML’s state transition notation as follows:

• We add a label name to transition labels to ease translation from UML into SMV.

• We can designate events by their source or destination object.

• We can add the index value to the event’s source or destination object.

• We use curly brackets to delimit conditions because square brackets are used to designate

index values of source and destination objects.

26 On event action is also known as internal transition, which does not exit and re-enter the state it is
defined.

99

In UML, only classes define state diagrams and only objects execute state machines27 [Doug98].

Additional information on UML state notation can be found in the OMG UML Specification

[UML99].

Appendix B: Elevator UML Specification

Figure B-1: Three-floor Elevator Main Class Diagram

27 We use a state model to define a state machine, which defines the behavior of a single class. State
machine is an instance of a state model and must belong to an object.

FloorReqBn
[1..3] 3

ElevReqBn
[up][1..2]

2

ElevReqBn
[dn][2..3]

2

1

1

1

<<environment>>
Engine

<<input>> UP
<<input>> DOWN
<<input>> STOP

RequestBn
<<input>> LIGHT
<<input>> UNLIGHT

pending: boolean = 0

Button
<<input>> BN_PRESSED

REQ

Timer
<<input>> SET
<<input>> UNSET

TM

counter: integer = 0

1

Door
<<input>> OPEN
<<input>> KEEP_OPEN
<<input>> CLOSE

retry: 0..3 = 0

SET(n)
UNSET
CLOSED

Building

KEEP_OPEN_REQ
LIGHT

Elevator
<<input>> KEEP_OPEN_REQ
<<input>> BP_OpenBn
<<input>> BP_CloseBn
<<input>> BP_FloorReqBn[1..3]
<<input>> AT_FLOOR
<<object>> ElevReqBnUp[1..2]
<<object>> ElevReqBnDn[2..3]
floor: 1..3 = 1
dir: {up, dn} = up
destFl: 0..3 = 0
destDir: {up, dn} = up
prevDest: 0..3 = 0
prevDir: {up, dn} = up
reopen: 0..2 = 2
getNextDest()
getNextDir()
overrideUp()
overrideDown()

OPEN
KEEP_OPEN
CLOSE
LIGHT
UNLIGHT
UP
DOWN
STOP

<<environment>>
External_Event

BP_OpenBn:BN_PRESSED
BP_CloseBn:BN_PRESSED
BP_FloorReqBn[1..3]:BN_PRESSED
BP_ElevReqBnUp[1..2]:BN_PRESSED
BP_ElevReqBnDn[2..3]:BN_PRESSED
AT_FLOOR

1

1
OpenBn

CloseBn

DoorTimer

1

100

Figure B-2: Three-floor Elevator Object Model

elevator
:Elevator

door :Door

DoorTimer
:Timer

FloorReqBn1
:RequestBn

FloorReqBn2
:RequestBn

FloorReqBn3
:RequestBn

OpenBn
:Button

CloseBn
:Button

ElevReqBnDn2
:RequestBn

ElevReqBnDn3
:RequestBn

ElevReqBnUp1
:RequestBn

ElevReqBnUp2
:RequestBn

main :Building

101

elevator
:Elevator

FloorReqBn1
:RequestBn

FloorReqBn2
:RequestBn

FloorReqBn3
:RequestBn

elevator
:Elevator

door :Door

main
:Building

ElevReqBnUp1
:RequestBn

ElevReqBnUp2
:RequestBn

ElevReqBn2
:RequestBn

ElevReqBn3
:RequestBn

{elevator never moves with its doors open}

{requests to be delivered to a particular floor are eventually serviced}

{requests to use the elevator are eventually serviced}

{doors are not held open indefinitely}

Figure B-3: System Properties shown as UML Constraints

102

Figure B-4: Button State Diagram

Figure B-5: RequestBn State Diagram for elevator and hall buttons

Figure B-6. Building State Diagram

Building

t1: forall d,f: ElevReqBn[d][f].REQ
{ !(Elevator.dir=d & Elevator.floor=f & IN(Elevator.Open_Doors)) }
^ElevReqBn[d][f].LIGHT

Idle t2: forall d,f: ElevReqBn[d][f].REQ
{ Elevator.dir=d & Elevator.floor=f & IN(Elevator.Open_Doors) }
^Elevator.KEEP_OPEN_REQ

Button

t1: BN_PRESSED ^REQ

Idle

RequestBn

t1: BN_PRESSED ^REQ

Idle

UnLit Lit

t2: LIGHT / pending := 1

t3: UNLIGHT / pending := 0

Button

Light

/ pending := 0

103

Timer

Count_Down

t1:SET(n) / counter := n/ counter := 0

Idle

t2:on {counter>0} / counter - -

t3: {counter=0} ^TM

t4:UNSET / counter := 0

t5:SET(n)
/ counter := n

Figure B-7: Timer State Diagram

Figure B-8: Door State Diagram

Door

t1:OPEN / retry := 3 ^Timer.SET(5)/ retry := 0

Close

Open

t4: KEEP_OPEN
{retry >0 & !(t2|t3)}
/ retry-- ^Timer.SET(5)

t2: TM {!OPEN} / retry:=0
^CLOSED

t3: CLOSE {!OPEN} / retry:=0
^CLOSED, ^Timer.UNSET

104

Elevator

Moving

Operation

New_Requests

Waiting

t1: forall f: FloorReqBn[f].REQ
{!(floor=f & IN(Open_Doors))}
^FloorReqBn[f].LIGHT

Stop

Closed_Doors Open_Doors

t3: {destFl=floor} / dir:=destDir, reopen:=2
^Door.OPEN, ^FloorReqBn[floor].UNLIGHT,
^ElevReqBn[destDir][floor]^UNLIGHT

t2:{ destFl=0 &
!(OpenBn.REQ & reopen>0) }

t3a: OpenBn.REQ {destFl=0 & reopen>0}
/ reopen-- ^Door.OPEN

t11:on OpenBn.REQ |
KEEP_OPEN_REQ ^Door.KEEP_OPEN
t12:on CloseBn.REQ ^Door.CLOSE

t4: CLOSED {!reopen<2} / prevDest
:= DestFl, prevDir := dir, destFl := 0

t5: {destFl>0 &
!(destFl=floor)}
/ reopen:=2

Move_Up Move_Down

t6: {destFl>floor} / dir := up
^Engine.UP

t8: {destFl<floor} / dir := dn,
^Engine.DOWN

t7: AT_FLOOR / floor++ t9: AT_FLOOR / floor--

entry: overrideUp()

t10: {destFl=floor} / dir:=destDir ^Door.OPEN,
^Engine.STOP, ^FloorReqBn[floor].UNLIGHT,
^ElevReqBn[destDir][floor].UNLIGHT

/ floor := 1, destFl := 0, prevDest := 0; reopen := 2

entry: getNextDest(), getNextDir()

entry: overrideDown()

t4a: CLOSED {reopen<2}

t13: forall f: FloorReqBn[f].REQ
{floor=f & IN(Open_Doors)}
^Elevator.KEEP_OPEN_REQ

Init

Figure B-9: Elevator State Diagram with Two Concurrent Regions

105

The getNextDest operation macros (going up only) in decision table format:

States Condition 0 Condition 1 Condition 2 Condition 3

IN(Elevator.UP) !(f1_pending |
f2_pending_up |
f2_pending_dn |
f3_pending)

up_f1_t1_1 |
up_f1_t1_n |
up_f2_t1 |
up_f3_t1

up_f1_t2_sd |
up_f1_t2_od |
up_f2_t2_1 |
up_f2_t2_n |
up_f2_t2_od |
up_f3_t2_sd |
up_f3_t2_od

up_f1_t3 |
up_f2_t3 |
up_f3_t3_1
up_f3_t3_n

IN(Elevator.
DOWN)

!(f1_pending |
f2_pending_up |
f2_pending_dn |
f3_pending)

dn_f1_t1_1 |
dn_f1_t1_n |
dn_f2_t1 |
dn_f3_t1

dn_f3_t2_sd |
dn_f3_t2_od |
dn_f2_t2_1 |
dn_f2_t2_n |
dn_f2_t2_od |
dn_f1_t2_sd |
dn_f1_t2_od

dn_f1_t3 |
dn_f2_t3 |
dn_f3_t3_1
dn_f3_t3_n

destFl 0 1 2 3

Table B-1: getNext operation modeled as a decision table

f1_pending = ElevReqBnUp1.pending | FloorReqBn1.pending
f2_pending_up = ElevReqBnUp2.pending | FloorReqBn2.pending
f2_pending_dn = ElevReqBnDn2.pending | FloorReqBn2.pending
f3_pending = ElevReqBnDn3.pending | FloorReqBn3.pending

up_f1_t1_1 up_f1_t1_n up_f2_t1 up_f3_t1

currFloor = 1 T T . .
currFloor = 2 . . T .
currFloor = 3 . . . T
prevDest = 1 F T . .
f1_pending T T T T
f2_pending_up . F . .
f2_pending_dn . F . .
f3_pending . F . .
up_f2_t2_1 . . F .
up_f2_t2_n . . F .
up_f2_t3 . . F .
up_f2_t2_od . . F .
up_f3_t3_1 . . . F
up_f3_t3_n . . . F
up_f3_t2_od . . . F

Table B-2: Macros for going to floor 1 with direction up

106

up_f1_
t2_sd

up_f1_
t2_od

up_f2_
t2_1

up_f2_
t2_n

up_f2_
t2_od

up_f3_
t2_sd

up_f3_
t2_od

currFloor = 1 T T
currFloor = 2 . . T T T . .
currFloor = 3 T T
prevDest = 2 &
prevDir = up

. . F T . . .

f1_pending . . . F . . .
f2_pending_up T . T T . . .
f2_pending_dn T
f3_pending . . . F . . .
ElevReqBnUp2
.pending

. T .

ElevReqBnDn2
.pending

. T . F T . .

up_f1_t1_1 F F
up_f1_t1_n F F
up_f1_t2_sd X F
up_f1_t3 . F
up_f2_t2_1 . . X . F . .
up_f2_t2_n . . . X F . .
up_f2_t3 F . .
up_f3_t3_1 F F
up_f3_t3_n F F
up_f3_t2_od F X
up_f3_t1 F .

Table B-3: Macros for going to floor 2 with direction up

up_f1_t3 up_f2_t3 up_f3_t3_1 up_f3_t3_n

currFloor = 1 T . . .
currFloor = 2 . T . .
currFloor = 3 . . T T
prevDest = 3 . . F T
f1_pending . . . F
f2_pending_up . . . F
f2_pending_dn . . . F
f3_pending T T T T
up_f1_t1_1 F . . .
up_f1_t1_n F . . .
up_f1_t2_sd F . . .
up_f2_t2_1 . F . .
up_f2_t2_n . F . .

Table B-4: Macros for going to floor 3 with direction up

107

Appendix C: Elevator SMV Program

Line Program
-- SMV Program: elevator.smv
-- By: Meyer Tanuan
-- Date: 21-Jul-01
-- Test Platform: Cadence SMV / Windows 98 / 128 MB

-- This program matches the complete UML model for 3-level elevator
-- BDD Nodes Allocated: 845,803
-- Reachable states: Number of state holding booleans = 37
-- Number of states reached: 125,760

1 -- **
2 -- * MAIN MODULE *
3 -- **
4 MODULE main
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** ENVIRONMENT VARIABLE SUBSECTION ***
9 external_Event : External_Event;

10
11 -- *** STATE VARIABLES SUBSECTION ***
12 st_Building : { Idle };
13
14 -- *** COMPONENT OBJECTS SUBSECTION ***
15 elevator : Elevator(ev_KEEP_OPEN_REQ, external_Event.env_BP_OpenBn,

external_Event.env_BP_CloseBn, external_Event.env_BP_FloorReqBn[1],
external_Event.env_BP_FloorReqBn[2],
external_Event.env_BP_FloorReqBn[3], external_Event.env_AT_FLOOR,
ElevReqBnUp1, ElevReqBnUp2, ElevReqBnDn2, ElevReqBnDn3);

16
17 ElevReqBnUp1 : RequestBn(external_Event.env_BP_ElevReqBnUp[1],

ev_LIGHT_ElevReqBnUp[1], elevator.ev_UNLIGHT_ElevReqBnUp[1]);
18 ElevReqBnUp2 : RequestBn(external_Event.env_BP_ElevReqBnUp[2],

ev_LIGHT_ElevReqBnUp[2], elevator.ev_UNLIGHT_ElevReqBnUp[2]);
19 ElevReqBnDn2 : RequestBn(external_Event.env_BP_ElevReqBnDn[2],

ev_LIGHT_ElevReqBnDn[2], elevator.ev_UNLIGHT_ElevReqBnDn[2]);
20 ElevReqBnDn3 : RequestBn(external_Event.env_BP_ElevReqBnDn[3],

ev_LIGHT_ElevReqBnDn[3], elevator.ev_UNLIGHT_ElevReqBnDn[3]);
21
22 -- ***************** SYMBOL DEFINITION SECTION ******************
23 DEFINE
24 -- *** TRANSITION MACROS SUBSECTION ***
25 m_ElevReqBnUp1 := (elevator.in_Open_Doors & elevator.floor=1 &

elevator.dir=up);
26 m_ElevReqBnUp2 := (elevator.in_Open_Doors & elevator.floor=2 &

elevator.dir=up);
27 m_ElevReqBnDn2 := (elevator.in_Open_Doors & elevator.floor=2 &

elevator.dir=dn);
28 m_ElevReqBnDn3 := (elevator.in_Open_Doors & elevator.floor=3 &

elevator.dir=dn);
29
30 t1_ElevReqBnUp1 := ElevReqBnUp1.ev_REQ & !m_ElevReqBnUp1;
31 t1_ElevReqBnUp2 := ElevReqBnUp2.ev_REQ & !m_ElevReqBnUp2;
32 t1_ElevReqBnDn2 := ElevReqBnDn2.ev_REQ & !m_ElevReqBnDn2;
33 t1_ElevReqBnDn3 := ElevReqBnDn3.ev_REQ & !m_ElevReqBnDn3;
34 t1 := in_Idle & (t1_ElevReqBnUp1 | t1_ElevReqBnUp2 | t1_ElevReqBnDn2 |

t1_ElevReqBnDn3);

108

35
36 t2_ElevReqBnUp1 := ElevReqBnUp1.ev_REQ & m_ElevReqBnUp1;
37 t2_ElevReqBnUp2 := ElevReqBnUp2.ev_REQ & m_ElevReqBnUp2;
38 t2_ElevReqBnDn2 := ElevReqBnDn2.ev_REQ & m_ElevReqBnDn2;
39 t2_ElevReqBnDn3 := ElevReqBnDn3.ev_REQ & m_ElevReqBnDn3;
40 t2 := in_Idle & (t2_ElevReqBnUp1 | t2_ElevReqBnUp2 | t2_ElevReqBnDn2 |

t2_ElevReqBnDn3);
41
42 -- *** GENERATED EVENTS MACROS SUBSECTION ***
43 ev_LIGHT_ElevReqBnUp[1] := t1_ElevReqBnUp1;
44 ev_LIGHT_ElevReqBnUp[2] := t1_ElevReqBnUp2;
45 ev_LIGHT_ElevReqBnDn[2] := t1_ElevReqBnDn2;
46 ev_LIGHT_ElevReqBnDn[3] := t1_ElevReqBnDn3;
47 ev_KEEP_OPEN_REQ := t2_ElevReqBnUp1 | t2_ElevReqBnUp2 | t2_ElevReqBnDn2

| t2_ElevReqBnDn3;
48
49 -- ****************** TRANS CONDITION ************************
50 TRANS
51 !(external_Event.env_AT_FLOOR & elevator.t10)
52
53 -- ****************** ASSIGNMENT SECTION ************************
54 ASSIGN
55
56 -- *** STATE VARIABLES SUBSECTION ***
57 init(st_Building) := Idle;
58 next(st_Building) := case
59 t1 | t2 : Idle;
60 1 : st_Building;
61 esac;
62
63 -- ********* SYSTEM PROPERTIES (CTL FORMULAS) *******************
64
65 -- Test 1: Safety property for elevator (Section 4.2.1)
66 -- It is never the case that the door is open while the elevator is

Moving
67 SPEC AG (!(elevator.in_Open_Doors & elevator.in_Moving))
68
69 -- Test 2: Liveness properties for elevator and hall buttons (Section

4.2.2)
70 -- *** tests the hypothesis to avoid coincidental correctness ***
71 SPEC EF(external_Event.env_BP_FloorReqBn[1] & !(elevator.in_Open_Doors &

elevator.floor=1))
72 SPEC EF (external_Event.env_BP_FloorReqBn[2] & !(elevator.in_Open_Doors

& elevator.floor=2))
73 SPEC EF (external_Event.env_BP_FloorReqBn[3] & !(elevator.in_Open_Doors

& elevator.floor=3))
74 SPEC EF (external_Event.env_BP_ElevReqBnUp[1] & !(elevator.in_Open_Doors

& elevator.floor=1))
75 SPEC EF (external_Event.env_BP_ElevReqBnUp[2] & !(elevator.in_Open_Doors

& elevator.floor=2 & elevator.dir=up))
76 SPEC EF (external_Event.env_BP_ElevReqBnDn[2] & !(elevator.in_Open_Doors

& elevator.floor=2 & elevator.dir=dn))
77 SPEC EF (external_Event.env_BP_ElevReqBnDn[3] & !(elevator.in_Open_Doors

& elevator.floor=3))
78
79 -- *** tests showing behavior of buttons and opening of door ***
80 SPEC AG (external_Event.env_BP_FloorReqBn[1] & !(elevator.in_Open_Doors

& elevator.floor=1)
81 -> AF (elevator.floor = 1 & elevator.in_Open_Doors))
82 SPEC AG (external_Event.env_BP_FloorReqBn[2] & !(elevator.in_Open_Doors

& elevator.floor=2)
83 -> AF (elevator.floor = 2 & elevator.in_Open_Doors))
84 SPEC AG (external_Event.env_BP_FloorReqBn[3] & !(elevator.in_Open_Doors

109

& elevator.floor=3)
85 -> AF (elevator.floor = 3 & elevator.in_Open_Doors))
86 SPEC AG (external_Event.env_BP_ElevReqBnUp[1] &

!(elevator.in_Open_Doors & elevator.floor=1)
87 -> AF (elevator.floor = 1 & elevator.in_Open_Doors))
88 SPEC AG (external_Event.env_BP_ElevReqBnUp[2] &

!(elevator.in_Open_Doors & elevator.floor=2 & elevator.dir=up)
89 -> AF (elevator.floor = 2 & elevator.in_Open_Doors))
90 SPEC AG (external_Event.env_BP_ElevReqBnDn[2] &

!(elevator.in_Open_Doors & elevator.floor=2 & elevator.dir=dn)
91 -> AF (elevator.floor = 2 & elevator.in_Open_Doors))
92 SPEC AG (external_Event.env_BP_ElevReqBnDn[3] &

!(elevator.in_Open_Doors & elevator.floor=3)
93 -> AF (elevator.floor = 3 & elevator.in_Open_Doors))
94
95 -- *** additional tests showing behavior of button lights ***
96 SPEC AG (external_Event.env_BP_FloorReqBn[1] & !(elevator.in_Open_Doors

& elevator.floor=1)
97 -> AF (elevator.FloorReqBn1.in_Lit &

AF(elevator.FloorReqBn1.in_UnLit)))
98 SPEC AG (external_Event.env_BP_FloorReqBn[2] & !(elevator.in_Open_Doors

& elevator.floor=2)
99 -> AF (elevator.FloorReqBn2.in_Lit &

AF(elevator.FloorReqBn2.in_UnLit)))
100 SPEC AG (external_Event.env_BP_FloorReqBn[3] & !(elevator.in_Open_Doors

& elevator.floor=3)
101 -> AF (elevator.FloorReqBn3.in_Lit &

AF(elevator.FloorReqBn3.in_UnLit)))
102 SPEC AG (external_Event.env_BP_ElevReqBnUp[1] &

!(elevator.in_Open_Doors & elevator.floor=1)
103 -> AF (ElevReqBnUp1.in_Lit & AF(ElevReqBnUp1.in_UnLit)))
104 SPEC AG (external_Event.env_BP_ElevReqBnUp[2] &

!(elevator.in_Open_Doors & elevator.floor=2 & elevator.dir=up)
105 -> AF (ElevReqBnUp2.in_Lit & AF(ElevReqBnUp2.in_UnLit)))
106 SPEC AG (external_Event.env_BP_ElevReqBnDn[2] &

!(elevator.in_Open_Doors & elevator.floor=2 & elevator.dir=dn)
107 -> AF (ElevReqBnDn2.in_Lit & AF(ElevReqBnDn2.in_UnLit)))
108 SPEC AG (external_Event.env_BP_ElevReqBnDn[3] &

!(elevator.in_Open_Doors & elevator.floor=3)
109 -> AF (ElevReqBnDn3.in_Lit & AF(ElevReqBnDn3.in_UnLit)))
110
111 -- Test 3: Check additional safety property (Section 4.2.3)
112 -- *** From any state, it is possible to go to Stop ***
113 SPEC AG(EF(elevator.in_Stop))
114
115 -- Test 4: Additional liveness property (Section 4.2.3)
116 -- *** response chain example (up2 & dn2) using button lights ***
117 SPEC EF(ElevReqBnUp2.in_Lit & ElevReqBnDn2.in_Lit & elevator.floor = 1 &

elevator.in_Closed_Doors)
118 SPEC AG ((ElevReqBnUp2.in_Lit & ElevReqBnDn2.in_Lit & elevator.floor =

1 & elevator.in_Closed_Doors)
119 -> AF((ElevReqBnUp2.in_UnLit & ElevReqBnDn2.in_Lit) &

AF(ElevReqBnDn2.in_UnLit)))
120
121 -- *** weaker property using button pressed events as trigger ***
122 SPEC EF(external_Event.env_BP_ElevReqBnUp[2] &

external_Event.env_BP_ElevReqBnDn[2] & elevator.floor = 1 &
elevator.in_Closed_Doors)

123 SPEC AG ((external_Event.env_BP_ElevReqBnUp[2] &
external_Event.env_BP_ElevReqBnDn[2] & elevator.floor = 1 &
elevator.in_Closed_Doors)

124 -> AF((ElevReqBnUp2.in_UnLit & ElevReqBnDn2.in_Lit) &
AF(ElevReqBnDn2.in_UnLit)))

110

125
126 -- *** additional response chain example (up2 & dn3) using button lights

127 SPEC EF(ElevReqBnUp2.in_Lit & ElevReqBnDn3.in_Lit & elevator.floor = 1 &

elevator.in_Closed_Doors)
128 SPEC AG ((ElevReqBnUp2.in_Lit & ElevReqBnDn3.in_Lit & elevator.floor =

1 & elevator.in_Closed_Doors)
129 -> AF((ElevReqBnUp2.in_UnLit & ElevReqBnDn3.in_Lit) &

AF(ElevReqBnDn3.in_UnLit)))
130
131 -- *** weaker property using button pressed events as trigger ***
132 SPEC EF(external_Event.env_BP_ElevReqBnUp[2] &

external_Event.env_BP_ElevReqBnDn[3] & elevator.floor = 1 &
elevator.in_Closed_Doors)

133 SPEC AG ((external_Event.env_BP_ElevReqBnUp[2] &
external_Event.env_BP_ElevReqBnDn[3] & elevator.floor = 1 &
elevator.in_Closed_Doors)

134 -> AF((ElevReqBnUp2.in_UnLit & ElevReqBnDn3.in_Lit) &
AF(ElevReqBnDn3.in_UnLit)))

135
136 -- Test 5: Check safety property of system's state variables
137 -- *** prevDest attribute never goes back to zero, once it has been set

(i.e., > 0)
138 SPEC EF(elevator.prevDest>0)
139 SPEC AG((elevator.prevDest>0) -> AG(!(elevator.prevDest=0)))
140
141 -- Test 6: Check additional liveness property
142 -- *** If Request Button is pressed when it is not pending, it

eventually generates NEW_REQ
143 SPEC EF(external_Event.env_BP_FloorReqBn[1] & !(elevator.in_Open_Doors &

elevator.floor=1) & elevator.FloorReqBn1.pending = 0)
144 SPEC AG (external_Event.env_BP_FloorReqBn[1] & !(elevator.in_Open_Doors

& elevator.floor=1)
145 & (elevator.FloorReqBn1.pending = 0)
146 -> AF (elevator.FloorReqBn1.ev_REQ))
147
148 -- Test 7: Check additional liveness property for elevator door
149 -- *** Doors cannot be open indefinitely ***
150 SPEC EF(elevator.door.in_Open)
151 SPEC AG (elevator.door.in_Open -> AF(!elevator.door.in_Open))
152
153 -- Test 8: Quick Test for 2-passenger scenario
154 -- Pick up passenger on f2 or deliver to f2 while going up to f3
155 SPEC EF ((external_Event.env_BP_ElevReqBnUp[2] |

external_Event.env_BP_FloorReqBn[2]) & elevator.destFl = 3 &
elevator.floor = 1 & elevator.in_Init)

156 SPEC AG (((external_Event.env_BP_ElevReqBnUp[2] |
external_Event.env_BP_FloorReqBn[2]) & elevator.destFl = 3 &
elevator.floor = 1 & elevator.in_Init)

157 -> AF((elevator.floor = 2 & elevator.door.in_Open) &
AF(elevator.floor = 3 & elevator.door.in_Open)))

158
159 -- Test 9: New tests to verify elevator's reopen attribute
160 -- Doors will re-open if open requested and doors are closed within 2

retries (i.e., reopen has not reached 0)
161 SPEC EF (external_Event.env_BP_OpenBn & elevator.in_Closed_Doors &

elevator.reopen>01)
162
163 SPEC AG (external_Event.env_BP_OpenBn & elevator.in_Closed_Doors &

elevator.reopen>0
164 -> AF(!elevator.door.in_Open))
165
166 -- Test 10: Check partial specifications (Section 4.3)

111

167 -- *** Test countdown feature: If counter = 5 and timer is not reset,
then it is immediately followed by counter = 4 ***

168 SPEC EF(elevator.door.DoorTimer.counter=5 &
!elevator.door.ev_SET.raised)

169 SPEC AG ((elevator.door.DoorTimer.counter=5 &
!elevator.door.ev_SET.raised)

170 -> AX (elevator.door.DoorTimer.counter = 4))
171
172 -- Test 11: Check partial specifications (Section 4.3)
173 -- *** Test timeout feature: If countdown reached 0 (and no reset or

unset), then it is immediately followed by transition to Idle state
(i.e., timeout raised) ***

174 SPEC EF(elevator.door.DoorTimer.counter=0 & !elevator.door.ev_SET.raised
& !elevator.door.ev_UNSET & elevator.door.DoorTimer.in_Count_Down)

175 SPEC AG ((elevator.door.DoorTimer.counter=0 &
!elevator.door.ev_SET.raised

176 & !elevator.door.ev_UNSET & elevator.door.DoorTimer.in_Count_Down
)

177 -> AX (elevator.door.DoorTimer.in_Idle))
178
179 -- ****************** End of Main Module ************************

1 -- **
2 -- * MODULE Elevator *
3 -- **
4 MODULE Elevator(inp_KEEP_OPEN_REQ, inp_BP_OpenBn, inp_BP_CloseBn,

inp_BP_FloorReqBn1, inp_BP_FloorReqBn2, inp_BP_FloorReqBn3,
inp_AT_FLOOR, inp_ElevReqBnUp1, inp_ElevReqBnUp2, inp_ElevReqBnDn2,
inp_ElevReqBnDn3)

5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** STATE VARIABLES SUBSECTION ***
9 st_New_Requests : { Waiting };
10 st_Operation : { Stop, Moving };
11 st_Stop : { Closed_Doors, Open_Doors, Undefined };
12 st_Moving : { Init, Move_Up, Move_Down, Undefined };
13
14 -- *** CLASS ATTRIBUTES SUBSECTION ***
15 floor : 1..3;
16 dir : {up, dn};
17 destFl : 0..3;
18 destDir : {up, dn};
19 prevDest : 0..3;
20 prevDir : {up, dn};
21 reopen : 0..2;
22
23 -- *** COMPONENT OBJECTS SUBSECTION ***
24 OpenBn: Button(inp_BP_OpenBn);
25 CloseBn: Button(inp_BP_CloseBn);
26 FloorReqBn1 : RequestBn(inp_BP_FloorReqBn1, ev_LIGHT_FloorReqBn[1],

ev_UNLIGHT_FloorReqBn[1]);
27 FloorReqBn2 : RequestBn(inp_BP_FloorReqBn2, ev_LIGHT_FloorReqBn[2],

ev_UNLIGHT_FloorReqBn[2]);
28 FloorReqBn3 : RequestBn(inp_BP_FloorReqBn3, ev_LIGHT_FloorReqBn[3],

ev_UNLIGHT_FloorReqBn[3]);
29 door: Door(ev_OPEN, ev_KEEP_OPEN, ev_CLOSE);
30
31 -- ***************** SYMBOL DEFINITION SECTION ******************
32 DEFINE
33 -- *** ACTIVE STATE MACROS SUBSECTION ***
34 in_Elevator := 1;

112

35
36 in_New_Requests := in_Elevator;
37 in_Waiting := in_New_Requests & st_New_Requests = Waiting;
38
39 in_Operation := in_Elevator;
40 in_Stop := in_Operation & st_Operation = Stop;
41 in_Closed_Doors := in_Stop & st_Stop = Closed_Doors;
42 in_Open_Doors := in_Stop & st_Stop = Open_Doors;
43
44 in_Moving := in_Operation & st_Operation = Moving;
45 in_Init := in_Moving & st_Moving = Init;
46 in_Move_Up := in_Moving & st_Moving = Move_Up;
47 in_Move_Down := in_Moving & st_Moving = Move_Down;
48
49 -- *** TRANSITION MACROS SUBSECTION ***
50 t1_FloorReqBn1 := FloorReqBn1.ev_REQ & !(in_Open_Doors & floor=1);
51 t1_FloorReqBn2 := FloorReqBn2.ev_REQ & !(in_Open_Doors & floor=2);
52 t1_FloorReqBn3 := FloorReqBn3.ev_REQ & !(in_Open_Doors & floor=3);
53 t1 := in_Waiting & (t1_FloorReqBn1 | t1_FloorReqBn2 | t1_FloorReqBn3);
54 t2 := in_Closed_Doors & (destFl=0) & !(OpenBn.ev_REQ & reopen>0);
55 t3 := in_Closed_Doors & destFl=floor;
56 t3a := in_Closed_Doors & destFl = 0 & OpenBn.ev_REQ & reopen>0;
57 t4 := in_Open_Doors & door.ev_CLOSED & !reopen<2;
58 t4a := in_Open_Doors & door.ev_CLOSED & reopen<2;
59 t5 := in_Closed_Doors & destFl > 0 & !(destFl = floor);
60 t6 := in_Init & (destFl > floor);
61 t7 := in_Move_Up & (inp_AT_FLOOR);
62 t8 := in_Init & (destFl < floor);
63 t9 := in_Move_Down & (inp_AT_FLOOR);
64 t10 := in_Moving & (destFl = floor);
65 t11 := in_Open_Doors & (inp_KEEP_OPEN_REQ | OpenBn.ev_REQ);
66 t12 := in_Open_Doors & CloseBn.ev_REQ & !t11;
67
68 t3_t10_FloorReqBn1 := (t3 | t10) & destFl=1;
69 t3_t10_FloorReqBn2 := (t3 | t10) & destFl=2;
70 t3_t10_FloorReqBn3 := (t3 | t10) & destFl=3;
71 t3_t10_ElevReqBnUp1 := (t3 | t10) & destFl=1 & destDir=up;
72 t3_t10_ElevReqBnUp2 := (t3 | t10) & destFl=2 & destDir=up;
73 t3_t10_ElevReqBnDn2 := (t3 | t10) & destFl=2 & destDir=dn;
74 t3_t10_ElevReqBnDn3 := (t3 | t10) & destFl=3 & destDir=dn;
75
76 t13_FloorReqBn1 := FloorReqBn1.ev_REQ & (in_Open_Doors & floor=1);
77 t13_FloorReqBn2 := FloorReqBn2.ev_REQ & (in_Open_Doors & floor=2);
78 t13_FloorReqBn3 := FloorReqBn3.ev_REQ & (in_Open_Doors & floor=3);
79 t13 := in_Waiting & (t13_FloorReqBn1 | t13_FloorReqBn2 |

t13_FloorReqBn3);
80
81 -- *** GENERATED EVENTS MACROS SUBSECTION ***
82 ev_OPEN := t3 | t3a | t10;
83 ev_KEEP_OPEN := t11;
84 ev_CLOSE := t12;
85 ev_LIGHT_FloorReqBn[1] := t1_FloorReqBn1;
86 ev_LIGHT_FloorReqBn[2] := t1_FloorReqBn2;
87 ev_LIGHT_FloorReqBn[3] := t1_FloorReqBn3;
88 ev_UNLIGHT_FloorReqBn[1] := t3_t10_FloorReqBn1;
89 ev_UNLIGHT_FloorReqBn[2] := t3_t10_FloorReqBn2;
90 ev_UNLIGHT_FloorReqBn[3] := t3_t10_FloorReqBn3;
91 ev_UNLIGHT_ElevReqBnUp[1] := t3_t10_ElevReqBnUp1;
92 ev_UNLIGHT_ElevReqBnUp[2] := t3_t10_ElevReqBnUp2;
93 ev_UNLIGHT_ElevReqBnDn[2] := t3_t10_ElevReqBnDn2;
94 ev_UNLIGHT_ElevReqBnDn[3] := t3_t10_ElevReqBnDn3;
95 ev_KEEP_OPEN_REQ := (t13_FloorReqBn1 | t13_FloorReqBn2 |

t13_FloorReqBn3);

113

96
97 -- *** OPERATION MACROS SUBSECTION ***
98
99 -- *** getNextDest and getNextDir operations ***

100 m_f1_pending := (inp_ElevReqBnUp1.pending | FloorReqBn1.pending);
101 m_f2_pending_up := (inp_ElevReqBnUp2.pending | FloorReqBn2.pending);
102 m_f2_pending_dn := (inp_ElevReqBnDn2.pending | FloorReqBn2.pending);
103 m_f3_pending := (inp_ElevReqBnDn3.pending | FloorReqBn3.pending);
104
105 -- Going Up:
106
107 -- ***** First Floor: By Priority *****
108 m_up_f1_t1_1 := (dir=up) & (floor=1) & !(prevDest=1) & m_f1_pending;
109 m_up_f1_t1_n := (dir=up) & (floor=1) & (prevDest=1) & m_f1_pending &

!(m_f2_pending_up | m_f2_pending_dn | m_f3_pending);
110 m_up_f1_t2_sd := (dir=up) & (floor=1) & m_f2_pending_up &

!(m_up_f1_t1_1 | m_up_f1_t1_n);
111 m_up_f1_t3 := (dir=up) & (floor=1) & m_f3_pending & !(m_up_f1_t1_1 |

m_up_f1_t1_n | m_up_f1_t2_sd);
112 m_up_f1_t2_od := (dir=up) & (floor=1) & inp_ElevReqBnDn2.pending &

!(m_up_f1_t1_1 | m_up_f1_t1_n | m_up_f1_t2_sd | m_up_f1_t3);
113
114 -- ***** Second Floor: By Priority *****
115 m_up_f2_t2_1 := (dir=up) & (floor=2) & !(prevDest=2 & prevDir = up) &

m_f2_pending_up;
116 m_up_f2_t2_n := (dir=up) & (floor=2) & (prevDest=2 & prevDir = up) &

m_f2_pending_up & !(m_f1_pending | m_f3_pending |
inp_ElevReqBnDn2.pending);

117 m_up_f2_t3 := (dir=up) & (floor=2) & m_f3_pending & !(m_up_f2_t2_1 |
m_up_f2_t2_n);

118 m_up_f2_t2_od := (dir=up) & (floor=2) & inp_ElevReqBnDn2.pending &
!(m_up_f2_t2_1 | m_up_f2_t2_n | m_up_f2_t3);

119 m_up_f2_t1 := (dir=up) & (floor=2) & m_f1_pending & !(m_up_f2_t2_1 |
m_up_f2_t2_n | m_up_f2_t3 | m_up_f2_t2_od);

120
121 -- ***** Third Floor: By Priority *****
122 m_up_f3_t3_1 := (dir=up) & (floor=3) & !(prevDest=3) & m_f3_pending;
123 m_up_f3_t3_n := (dir=up) & (floor=3) & (prevDest=3) & m_f3_pending &

!(m_f1_pending | m_f2_pending_up | m_f2_pending_dn);
124 m_up_f3_t2_od := (dir=up) & (floor=3) & m_f2_pending_dn &

!(m_up_f3_t3_1 | m_up_f3_t3_n);
125 m_up_f3_t1 := (dir=up) & (floor=3) & m_f1_pending & !(m_up_f3_t3_1 |

m_up_f3_t3_n | m_up_f3_t2_od);
126 m_up_f3_t2_sd := (dir=up) & (floor=3) & inp_ElevReqBnUp2.pending &

!(m_up_f3_t3_1 | m_up_f3_t3_n | m_up_f3_t2_od | m_up_f3_t1);
127
128 -- Going Down:
129
130 -- ***** Third Floor: By Priority *****
131 m_dn_f3_t3_1 := (dir=dn) & (floor=3) & !(prevDest=3) & m_f3_pending;
132 m_dn_f3_t3_n := (dir=dn) & (floor=3) & (prevDest=3) & m_f3_pending &

!(m_f1_pending | m_f2_pending_up | m_f2_pending_dn);
133 m_dn_f3_t2_sd := (dir=dn) & (floor=3) & m_f2_pending_dn &

!(m_dn_f3_t3_1 | m_dn_f3_t3_n);
134 m_dn_f3_t1 := (dir=dn) & (floor=3) & m_f1_pending & !(m_dn_f3_t3_1 |

m_dn_f3_t3_n | m_dn_f3_t2_sd);
135 m_dn_f3_t2_od := (dir=dn) & (floor=3) & inp_ElevReqBnUp2.pending &

!(m_dn_f3_t3_1 | m_dn_f3_t3_n | m_dn_f3_t2_sd | m_dn_f3_t1);
136
137 -- ***** Second Floor: By Priority *****
138 m_dn_f2_t2_1 := (dir=dn) & (floor=2) & !(prevDest=2 & prevDir = dn) &

m_f2_pending_dn;
139 m_dn_f2_t2_n := (dir=dn) & (floor=2) & (prevDest=2 & prevDir = dn) &

114

m_f2_pending_dn & !(m_f3_pending | m_f1_pending |
inp_ElevReqBnUp2.pending);

140 m_dn_f2_t1 := (dir=dn) & (floor=2) & m_f1_pending & !(m_dn_f2_t2_1 |
m_dn_f2_t2_n);

141 m_dn_f2_t2_od := (dir=dn) & (floor=2) & inp_ElevReqBnUp2.pending &
!(m_dn_f2_t2_1 | m_dn_f2_t2_n | m_dn_f2_t1);

142 m_dn_f2_t3 := (dir=dn) & (floor=2) & m_f3_pending & !(m_dn_f2_t2_1 |
m_dn_f2_t2_n | m_dn_f2_t1 | m_dn_f2_t2_od);

143
144 -- ***** First Floor: By Priority *****
145 m_dn_f1_t1_1 := (dir=dn) & (floor=1) & !(prevDest=1) & m_f1_pending;
146 m_dn_f1_t1_n := (dir=dn) & (floor=1) & (prevDest=1) & m_f1_pending &

!(m_f2_pending_up | m_f2_pending_dn | m_f3_pending);
147 m_dn_f1_t2_od := (dir=dn) & (floor=1) & m_f2_pending_up &

!(m_dn_f1_t1_1 | m_dn_f1_t1_n);
148 m_dn_f1_t3 := (dir=dn) & (floor=1) & m_f3_pending & !(m_dn_f1_t1_1 |

m_dn_f1_t1_n | m_dn_f1_t2_od);
149 m_dn_f1_t2_sd := (dir=dn) & (floor=1) & inp_ElevReqBnDn2.pending &

!(m_dn_f1_t1_1 | m_dn_f1_t1_n | m_dn_f1_t2_od | m_dn_f1_t3);
150
151 -- *** overrideUp and overrideDown operations ***
152 m_overrideUp := in_Move_Up & next(floor)<=2 & !(prevDest=2) & destFl=3

& m_f2_pending_up;
153 m_overrideDown := in_Move_Down & next(floor)>=2 & !(prevDest=2) &

destFl=1 & m_f2_pending_dn;
154
155 -- *** override the direction on 2nd floor before open doors ***
156 m_overrideUp_dir := in_Move_Up & next(floor)<=2 & !(prevDest=2) &

destFl=2 & destDir=dn & inp_ElevReqBnUp2.pending;
157 m_overrideDown_dir := in_Move_Down & next(floor)>=2 & !(prevDest=2) &

destFl=2 & destDir=up & inp_ElevReqBnDn2.pending;
158
159 -- ****************** ASSIGNMENT SECTION ************************
160 ASSIGN
161
162 -- *** STATE VARIABLES SUBSECTION ***
163 init(st_New_Requests) := Waiting;
164 next(st_New_Requests) := case
165 t1 | t13 : Waiting;
166 1 : st_New_Requests;
167 esac;
168
169 init(st_Operation) := Stop;
170 next(st_Operation) := case
171 t5 : Moving;
172 t10 : Stop;
173 1 : st_Operation;
174 esac;
175
176 init(st_Stop) := Closed_Doors;
177 next(st_Stop) := case
178 t3 | t3a | t10 : Open_Doors;
179 t2 | t4 | t4a : Closed_Doors;
180 t5 : Undefined;
181 1 : st_Stop;
182 esac;
183
184 init(st_Moving) := Undefined;
185 next(st_Moving) := case
186 t5 : Init;
187 t6 | t7 : Move_Up;
188 t8 | t9 : Move_Down;
189 t10 : Undefined;

115

190 1 : st_Moving;
191 esac;
192
193 -- *** CLASS ATTRIBUTES SUBSECTION ***
194 init(floor) := 1;
195 next(floor) := case
196 t7 : floor + 1;
197 -- Note: space before the minus operator is required
198 t9 : floor - 1;
199 1 : floor;
200 esac;
201
202 init(dir) := up;
203 next(dir) := case
204 t6 : up;
205 t8 : dn;
206 t3 | t10 : destDir;
207 1: dir;
208 esac;
209
210 init(destFl) := 0;
211 next(destFl) := case
212 t4 : 0;
213
214 -- *** override on 2nd floor ***
215 (t6 | t7) & m_overrideUp : 2;
216 (t8 | t9) & m_overrideDown : 2;
217
218 -- ********* no pending requests ************
219 (t2) & !(m_f1_pending | m_f2_pending_up | m_f2_pending_dn |

m_f3_pending): 0;
220
221 -- **************** going up ***************
222 (t2) & (m_up_f1_t1_1 | m_up_f1_t1_n | m_up_f2_t1 | m_up_f3_t1): 1;
223 (t2) & (m_up_f1_t2_sd | m_up_f1_t2_od | m_up_f2_t2_1 | m_up_f2_t2_n |

m_up_f2_t2_od | m_up_f3_t2_od | m_up_f3_t2_sd): 2;
224 (t2) & (m_up_f1_t3 | m_up_f2_t3 | m_up_f3_t3_1 | m_up_f3_t3_n): 3;
225
226 -- **************** going dn ************
227 (t2) & (m_dn_f3_t3_1 | m_dn_f3_t3_n | m_dn_f2_t3 | m_dn_f1_t3): 3;
228 (t2) & (m_dn_f3_t2_sd | m_dn_f3_t2_od | m_dn_f2_t2_1 | m_dn_f2_t2_n |

m_dn_f2_t2_od | m_dn_f1_t2_od | m_dn_f1_t2_sd): 2;
229 (t2) & (m_dn_f3_t1 | m_dn_f2_t1 | m_dn_f1_t1_1 | m_dn_f1_t1_n): 1;
230
231 1: destFl;
232 esac;
233
234 init(destDir) := up;
235 next(destDir) := case
236 -- *** override on 2nd floor ***
237 (t6 | t7) & (m_overrideUp | m_overrideUp_dir) : up;
238 (t8 | t9) & (m_overrideDown | m_overrideDown_dir) : dn;
239
240 -- ********* no pending requests ************
241 (t2) & !(m_f1_pending | m_f2_pending_up | m_f2_pending_dn |

m_f3_pending): destDir;
242
243 -- **************** going up ***************
244 -- defaults to up for 1st floor
245 (t2) & (m_up_f1_t1_1 | m_up_f1_t1_n | m_up_f2_t1 | m_up_f3_t1): up;
246 (t2) & (m_up_f1_t2_sd | m_up_f2_t2_1 | m_up_f2_t2_n): up;

247 (t2) & (m_up_f1_t2_od | m_up_f2_t2_od | m_up_f3_t2_sd |

116

m_up_f3_t2_od): dn;
248 -- defaults to dn for 3rd floor
249 (t2) & (m_up_f1_t3 | m_up_f2_t3 | m_up_f3_t3_1 | m_up_f3_t3_n): dn;
250
251 -- **************** going dn ************
252 (t2) & (m_dn_f3_t3_1 | m_dn_f3_t3_n | m_dn_f2_t3 | m_dn_f1_t3): dn;
253 (t2) & (m_dn_f3_t2_sd | m_dn_f2_t2_1 | m_dn_f2_t2_n): dn;
254 (t2) & (m_dn_f3_t2_od | m_dn_f2_t2_od | m_dn_f1_t2_sd |

m_dn_f1_t2_od): up;
255 (t2) & (m_dn_f3_t1 | m_dn_f2_t1 | m_dn_f1_t1_1 | m_dn_f1_t1_n): up;
256
257 1: destDir;
258 esac;
259
260 init(prevDest) := 0;
261 next(prevDest) := case
262 t4: destFl;
263 1: prevDest;
264 esac;
265
266 init(prevDir) := up;
267 next(prevDir) := case
268 t4: dir;
269 1: prevDir;
270 esac;
271
272 init(reopen) := 2;
273 next(reopen) := case
274 t3a : reopen - 1;
275 t3 | t5 : 2;
276 1: reopen;
277 esac;
278
279 -- *********************** End of Elevator **********************

1 -- **
2 -- * MODULE Door *
3 -- **
4 MODULE Door(inp_OPEN, inp_KEEP_OPEN, inp_CLOSE)
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** STATE VARIABLES SUBSECTION ***
9 st_Door: {Close, Open};

10
11 -- *** CLASS ATTRIBUTES SUBSECTION ***
12 retry : 0..3;
13
14 -- *** GENERATED EVENTS SUBSECTION ***
15 ev_SET : SET;
16
17 -- *** COMPONENT OBJECTS SUBSECTION ***
18 DoorTimer: Timer(ev_SET, ev_UNSET);
19
20 -- ***************** SYMBOL DEFINITION SECTION ******************
21 DEFINE
22 -- *** ACTIVE STATE MACROS SUBSECTION ***
23 in_Door := 1;
24 in_Close := in_Door & st_Door = Close;
25 in_Open := in_Door & st_Door = Open;
26
27 -- *** TRANSITION MACROS SUBSECTION ***

117

28 t1 := in_Close & inp_OPEN > 0;
29 t2 := in_Open & DoorTimer.ev_TM = 1 & !(inp_OPEN > 0);
30 t3 := in_Open & inp_CLOSE & !(inp_OPEN > 0);
31 t4 := in_Open & inp_KEEP_OPEN & retry > 0 & !(t2 | t3);
32
33 -- *** GENERATED EVENTS MACROS SUBSECTION ***
34 ev_UNSET := t3;
35 ev_CLOSED := t2 | t3;
36
37 -- ****************** ASSIGNMENT SECTION ************************
38 ASSIGN
39 -- *** STATE VARIABLES SUBSECTION ***
40 init(st_Door) := Close;
41 next(st_Door) := case
42 t1 | t4 : Open;
43 t2 | t3 : Close;
44 1: st_Door;
45 esac;
46
47 -- *** GENERATED EVENTS SUBSECTION ***
48 ev_SET.raised := t1 | t4;
49 ev_SET.n := 5;
50
51 -- *** CLASS ATTRIBUTES SUBSECTION ***
52 init(retry) := 0;
53 next(retry) := case
54 t1 : 3;
55 t2 | t3 : 0;
56 t4 : retry - 1;
57 1 : retry;
58 esac;
59
60 -- ****************** End of Door **********************

1 -- **
2 -- * MODULE Timer *
3 -- **
4 MODULE Timer(inp_SET, inp_UNSET)
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** STATE VARIABLES SUBSECTION ***
9 st_Timer: {Idle, Count_Down};

10
11 -- *** CLASS ATTRIBUTES SUBSECTION ***
12 counter: 0..5;
13
14 -- ***************** SYMBOL DEFINITION SECTION ******************
15 DEFINE
16 -- *** ACTIVE STATE MACROS SUBSECTION ***
17 in_Timer := 1;
18 in_Idle := in_Timer & st_Timer = Idle;
19 in_Count_Down := in_Timer & st_Timer = Count_Down;
20
21 -- *** TRANSITION MACROS SUBSECTION ***
22 t1 := in_Idle & inp_SET.raised;
23 t2 := in_Count_Down & counter > 0;
24 t3 := in_Count_Down & counter = 0;
25 t4 := in_Count_Down & inp_UNSET;
26 t5 := in_Count_Down & inp_SET.raised;
27
28 -- *** GENERATED EVENTS MACROS SUBSECTION ***

118

29 ev_TM := t3;
30
31 -- ****************** ASSIGNMENT SECTION ************************
32 ASSIGN
33 -- *** STATE VARIABLES SUBSECTION ***
34 init(st_Timer) := Idle;
35 next(st_Timer) := case
36 t1 | t5 : Count_Down;
37 t3 | t4 : Idle;
38 1: st_Timer;
39 esac;
40
41 -- *** CLASS ATTRIBUTES SUBSECTION ***
42 init(counter) := 0;
43 next(counter) := case
44 t1 | t5 : inp_SET.n;
45 t2 : counter - 1;
46 t4 : 0;
47 1: counter;
48 esac;
49 -- ****************** End of Timer **************************

1 -- **
2 -- * MODULE RequestBn *
3 -- **
4 MODULE RequestBn(inp_BN_PRESSED, inp_LIGHT, inp_UNLIGHT)
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** STATE VARIABLES SUBSECTION ***
9 st_Button: { Idle };

10 st_Light: { UnLit, Lit };
11
12 -- *** CLASS ATTRIBUTES SUBSECTION ***
13 pending : boolean;
14
15 -- ***************** SYMBOL DEFINITION SECTION ******************
16 DEFINE
17 -- *** ACTIVE STATE MACROS SUBSECTION ***
18 in_Button := 1;
19 in_Light := 1;
20
21 in_Idle := in_Button & st_Button = Idle;
22 in_UnLit := in_Light & st_Light = UnLit;
23 in_Lit := in_Light & st_Light = Lit;
24
25 -- *** TRANSITION MACROS SUBSECTION ***
26 t1 := in_Idle & inp_BN_PRESSED;
27 t2 := in_UnLit & inp_LIGHT;
28 t3 := in_Lit & inp_UNLIGHT;
29
30 -- *** GENERATED EVENTS MACROS SUBSECTION ***
31 ev_REQ := t1;
32
33 -- ****************** ASSIGNMENT SECTION ************************
34 ASSIGN
35 -- *** STATE VARIABLES SUBSECTION ***
36 init(st_Button) := Idle;
37 next(st_Button) := case
38 t1 : Idle;
39 1: st_Button;
40 esac;

119

41
42 init(st_Light) := UnLit;
43 next(st_Light) := case
44 t2 : Lit;
45 t3 : UnLit;
46 1: st_Light;
47 esac;
48
49 -- *** CLASS ATTRIBUTES SUBSECTION ***
50 init(pending) := 0;
51 next(pending) := case
52 t2 : 1;
53 t3 : 0;
54 1: pending;
55 esac;
56 -- ********************** end of RequestBn **********************

1 -- **
2 -- * MODULE Button *
3 -- **
4 MODULE Button(inp_BN_PRESSED)
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** STATE VARIABLES SUBSECTION ***
9 st_Button: { Idle };

10
11 -- ***************** SYMBOL DEFINITION SECTION ******************
12 DEFINE
13 -- *** ACTIVE STATE MACROS SUBSECTION ***
14 in_Button := 1;
15 in_Idle := in_Button & st_Button = Idle;
16
17 -- *** TRANSITION MACROS SUBSECTION ***
18 t1 := in_Idle & inp_BN_PRESSED;
19
20 -- *** GENERATED EVENTS MACROS SUBSECTION ***
21 ev_REQ := t1;
22
23 -- ****************** ASSIGNMENT SECTION ************************
24 ASSIGN
25 -- *** STATE VARIABLES SUBSECTION ***
26 init(st_Button) := Idle;
27 next(st_Button) := case
28 t1 : Idle;
29 1: st_Button;
30 esac;
31 -- ********************** end of Button ************************

1 -- **
2 -- * MODULE External_Event *
3 -- **
4 MODULE External_Event()
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** ENVIRONMENT VARIABLE SUBSECTION ***
9 env_AT_FLOOR : boolean;

10 env_BP_OpenBn : boolean;
11 env_BP_CloseBn: boolean;
12 env_BP_FloorReqBn : array 1..3 of boolean;

120

13 env_BP_ElevReqBnUp : array 1..2 of boolean;
14 env_BP_ElevReqBnDn : array 2..3 of boolean;
15
16 -- ********************* FAIRNESS SECTION ***********************
17 FAIRNESS
18 env_AT_FLOOR
19
20 -- ******************** end of External_Event *******************

1 -- **
2 -- * MODULE SET *
3 -- **
4 MODULE SET()
5
6 -- ****************** VARIABLES SECTION *************************
7 VAR
8 -- *** CLASS ATTRIBUTES SUBSECTION ***
9 raised : boolean;

10 n : {5};
11
12 -- ************************ End of SET **************************

121

Appendix D. Additional Elevator Features

Additional Elevator Features:

• Independent service: dedicated service to have continuous service for a specific floor;

ignores hall calls; key switch in car (or computer input); door only closes with constant

pressure on car call and door close button; If held till door is closed, goes to the floor

pressed; If not, reopens door.

• Home landing: If no requests, generate one to home floor (without door opening)

• Car calls take priority over hall calls. This is because the elevator has limited space. This

policy brings the passengers to their destination before picking up new passengers.

• A new requirement is to add an indicator (light) in the elevator to warn the passengers if

the maximum load (weight) of the elevator is exceeded.

• Repressing the floor button (inside the elevator) that corresponds to the current floor

should reopen the door.

• The door closure timer has three different timers for car call (floor buttons), hall call (hall

buttons) and reopen (door-open button).

Additional Safety Features:

• The system property where the elevator never moves with its doors open can be satisfied

by electrical circuit design. This is called “safety circuit”.

• Relevelling: ensure the elevator is at the same floor level; done only with doors open, if

in door zone.

• Start protection: If elevator does not leave floor soon enough, abandon moving to the

destination.

• Running timer: If motor runs too long, abandon moving to destination.

• Door detector: If obstruction is detected while door is closing, re-open the door.

122

References

[Berr99] Berry, D. M., “Formal Methods: The Very Idea, Some Thoughts on Why
They Work When They Work”, Electronic Notes in Theoretical Computer
Science, 25, 1999

[BeGo92] Berry, G., Gonthier, G., “The ESTEREL Synchronous Programming
Language: Design, Semantics, Implementation,” Science of Computer
Programming, Vol. 19, No. 2, pp. 87-152, Nov. 1992

[Beiz95] Beizer, B., Black-Box Testing: Techniques for Functional Testing of Software
and Systems, John Wiley & Sons, 1995

[Boeh81] Boehm, B. W., Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, NJ, 1981

[Bose99] Bose, P., “Automated Translation of UML Models of Architectures for
Verification and Simulation,“ Proc. of the 14th IEEE International
Conference on Automated Software Engineering, ASE'99, IEEE, 1999.

[CAB+98] Chan, W., Anderson, R., Beame, P., Burns, S.;,Modugno, F., Notkin, D., and
Reese, J., “Model Checking Large Software Specifications.” IEEE
Transactions on Software Engineering, Vol. 24, No. 7, July 1998.

[CES86] Clarke, E., Emerson, E., Sisla, A., “Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic Specifications”, ACM
Transactions on Programming Languages and Systems, 8(2):244-263, April
1986

[CGP99] Clarke E. M., Jr., Grumberg O., Peled D., Model Checking, MIT Press, 1999
pp.30-33

[Day93] Day, N., A Model Checker for Statecharts, Technical Report 93-35,
Department of Computer Science, UBC, October 1993

[DAC98] Dwyer, M., Avrunin, G., Corbett, J., “Property Specification Patterns for
Finite-State Verification”, Proceedings of the Second Workshop on Formal
Methods in Software Practice, March 1998, pp. 7-15.

[Doug98] Douglass, B. P., Real-time UML: developing efficient objects for embedded
systems, Addison Wesley, 1998

[GlWe98] Gluch, D., Weinstock, C., Model-Based Verification: A Technology for
Dependable System Upgrade. CMU/SEI-98-TR-009, Software Engineering
Institute, Carnegie Mellon University, September 1998.

[GuNa98] Guaspari, D., Naydich, D., "Flight-Guidance Systems: UML Design, PVS
Analysis," Odyssey Research Associates technical report, TM-98-0035,
November 30, 1998

123

[Hare87] Harel, D., “Statecharts: A Visual Formalism for Complex Systems” Science of
Computer Programming, Vol. 8, pp. 231-274, 1987

[Holz97] Holzmann, G. J., “The Model Checker SPIN”, IEEE Transactions on
Software Engineering, Vol. 23, No. 5, pp. 279-295, May 1997

[JaRi00] Jackson, D., Rinard, M., “The Future of Software Analysis”, The Future of
Software Engineering (editor Anthony Finkelstein), ACM Press June 2000.

[KaHe00] Kammüller F., Helke, S., "Mechanical Analysis of UML State Machines and
Class Diagrams." Workshop on Precise Semantics for the UML, ECOOP
2000, Cannes, June 2000.

[Kurs96] Kurshan, R. P., “COSPAN”, Proc. 8th Int’l Conf. Computer Aided
Verification (CAV96), New Brunswick, NJ, 1996

[LHHR94] Leveson, N., Heimdahl, M., Hildreth, H., Reese, J., “Requirements
Specification for Process-Control Systems” IEEE Transactions on Software
Engineering, Vol. 20, No. 9, pp. 684-707, September 1994.

[LiPa99] Lilius, J., Paltor, I., vUML: A Tool for Verifying UML Models. TUCS
Technical Report No. 272, May 1999. ISBN 952-12-0445-1.

[Lisk88] Liskov, B., Data Abstraction and Hierarchy. SIGPLAN Notices. May 1988.

[McCh01] McUmber, W., Cheng, B., “A General Framework for Formalizing UML with
Formal Languages,” Proc. of IEEE International Conference on Software
Engineering (ICSE01), May 2001, Toronto, Canada

[McGr93] McGregor, J. D., Dyer, D. M., “A Note on Inheritance and State Machines,”
Software Engineering Notes, Vol. 18, No. 4, pp. 61-69. 1993

[McMi93] McMillan, K. L., Symbolic Model Checking. Kluwer, 1993

[McMi99] McMillan, K. L., The SMV Language. Cadence Berkeley Labs, March, 1999

[Muth00] Muthiayen, D. Real-Time Reactive System Development - A Formal Approach
Based on UML and PVS. Ph.D. thesis, Department of Computer Science,
Concordia University, Montreal, Canada. January, 2000

[ORS92] Owre, S., Rushby, J., Shankar, N. “PVS: A Prototype Verification System,”
In Lecture Notes in Artificial Intelligence: Proc. CADE 11, Vol. 607, pp. 748-
752, Saratoga, NY, 1992.

[Pele94] Peled, D., “Combining Partial Order Reductions with On-The-Fly Model-
Checking,” Proc. Sixth Int’l Conf. Computer Aided Verification (CAV94), pp.
377-390, Stanford, CA, 1994

[RBP+91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.,
Object-oriented Modeling and Design. Prentice-Hall International, 1991.

124

Object-oriented Modeling and Design. Prentice-Hall International, 1991.

[SrAt96] Sreemani, T., Atlee, J., “Feasibility of Model Checking Software
Requirements: A Case Study.” COMPASS ’96, Proc. 11th Annual Conf.
Computer Assurance, pp. 77-88, Gaitherburg, Md., IEEE, June 1996

[UML99] Booch, G., Jacobson, I., Rumbaugh, J., editor. OMG Unified Modeling
Language Specifications Version 1.3. Rational Corporation, Santa Clara, June
1999

