
In-Memory Storage for Labeled
Tree-Structured Data

by

Gelin Zhou

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Gelin Zhou 2017

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner
Johannes Fischer
Professor

Supervisor
J. Ian Munro
Professor

Co-Supervisor
Meng He
Assistant Professor

Internal Examiner
Gordon V. Cormack
Professor

Internal Examiner
Therese Biedl
Professor

Internal-external Examiner
Gordon B. Agnew
Associate Professor

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

In this thesis, we design in-memory data structures for labeled and weights trees, so
that various types of path queries or operations can be supported with efficient query
time. We assume the word RAM model with word size w, which permits random accesses
to w-bit memory cells. Our data structures are space-efficient and many of them are even
succinct. These succinct data structures occupy space close to the information theoretic
lower bounds of the input trees within lower order terms.

First, we study the problems of supporting various path queries over weighted trees.
A path counting query asks for the number of nodes on a query path whose weights lie
within a query range, while a path reporting query requires to report these nodes. A
path median query asks for the median weight on a path between two given nodes, and
a path selection query returns the k-th smallest weight. We design succinct data struc-
tures to support path counting queries in O(lg σ/ lg lg n + 1) time, path reporting queries
in O((occ + 1)(lg σ/ lg lg n + 1)) time, and path median and path selection queries in
O(lg σ/ lg lg σ) time, where n is the size of the input tree, the weights of nodes are drawn
from [1..σ] and occ is the size of the output. Our results not only greatly improve the best
known data structures [31, 75, 65], but also match the lower bounds for path counting,
median and selection queries [86, 87, 71] when σ = Ω(n/polylog(n)).

Second, we study the problem of representing labeled ordinal trees succinctly. Our
new representations support a much broader collection of operations than previous work.
In our approach, labels of nodes are stored in a preorder label sequence, which can be
compressed using any succinct representation of strings that supports access, rank and
select operations. Thus, we present a framework for succinct representations of labeled
ordinal trees that is able to handle large alphabets. This answers an open problem pre-
sented by Geary et al. [54], which asks for representations of labeled ordinal trees that
remain space-efficient for large alphabets. We further extend our work and present the
first succinct representations for dynamic labeled ordinal trees that support several label-
based operations including finding the level ancestor with a given label.

Third, we study the problems of supporting path minimum and semigroup path sum
queries. In the path minimum problem, we preprocess a tree on n weighted nodes, such
that given an arbitrary path, the node with the smallest weight along this path can be
located. We design novel succinct indices for this problem under the indexing model, for
which weights of nodes are read-only and can be accessed with ranks of nodes in the pre-
order traversal sequence of the input tree. One of our index structures supports queries
in O(α(m,n)) time, and occupies O(m) bits of space in addition to the space required
for the input tree, where m is an integer greater than or equal to n and α(m,n) is the
inverse-Ackermann function. Following the same approach, we also develop succinct data

iv

structures for semigroup path sum queries, for which a query asks for the sum of weights
along a given query path. Then, using the succinct indices for path minimum queries, we
achieve three different time-space tradeoffs for path reporting queries.

Finally, we study the problems of supporting various path queries in dynamic set-
tings. We propose the first non-trivial linear-space solution that supports path reporting
in O((lg n/ lg lg n)2 + occ lg n/ lg lg n)) query time, where n is the size of the input tree and
occ is the output size, and the insertion and deletion of a node of an arbitrary degree in
O(lg2+ε n) amortized time, for any constant ε ∈ (0, 1). Obvious solutions based on directly
dynamizing solutions to the static version of this problem all require Ω((lg n/ lg lg n)2)
time for each node reported. We also design data structures that support path count-
ing and path reporting queries in O((lg n/ lg lg n)2) time, and insertions and deletions in
O((lg n/ lg lg n)2) amortized time. This matches the best known results for dynamic two-
dimensional range counting [62] and range selection [63], which can be viewed as special
cases of path counting and path selection.

v

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Professor J.
Ian Munro, for his continuous guidance and support throughout my graduate programs.
It has been an honor and great experience to work with and learn from Professor Munro
during my masters and doctoral studies. I decided to take an industry job and move to
San Francisco 3.5 years ago. Professor Munro fully supported my choice and suggested
me to continue with my PhD program as a part-time student. This thesis would not be
completed without his support and encouragement.

My sincere thanks also go to my co-supervisor, Professor Meng He, for the much effort
he has spent on proofreading my thesis and the papers we collaborated. He has provided
a lot of helpful and insightful feedback to greatly improve the quality of my thesis. I can
hardly thank him enough for doing that.

Besides my supervisor and co-supervisor, I would like to thank the rest of my thesis
committee, Professor Gordon V. Cormack, Professor Therese Biedl, Professor Gordon B.
Agnew, and Professor Johannes Fischer for spending time to review my thesis and attend
my defense. The comments they provided have further improved the presentation of my
thesis. I also want to thank Professor Joseph Cheriyan for serving as the defense chair.
Big thanks to our department’s administrative coordinators, Wendy Rush and Margaret
Towell, for the much help they have provided me.

During my graduate studies, Professor Timothy M. Chan taught me a lot about geo-
metric data structures, and the discussions and the collaborations with him were always
interesting and informative. Before I moving to San Francisco, I was fortunate to work
with Professor Venkatesh Raman and Professor Moshe Lewenstein. I learned a lot from
the discussions with them.

When I was preparing for the thesis defense, I was told that Professor Alejandro López-
Ortiz is fighting with a fatal disease. He is a reader of my Master’s thesis and a committee
member of my PhD Comprehensive-II exam. He is such a nice person and probably a
friend of every graduate student of the Algorithms and Complexity Group. I would like to
thank him for all his help and I wish him well.

I thank my office mates for the fruitful discussions and for all the fun we have had dur-
ing the years I have spent at Waterloo: Francisco Claude, Reza Dorrigiv, Robert Fraser,
Shahin Kamali, Daniela Maftulea, Patrick K. Nicholson, Alejandro Salinger, and Diego
Seco. I also would like to thank Eric Y. Chen, Arash Farzan, Alexander Golynski, and
Derek Phillips for sharing their industrial experience with me. Special thanks to Marilyn
Miller, Professor Munro’s wife, for her kindness, her help, and the delicious desserts she
made. I still remember the advice for buying suits she gave to me before my Master’s
convocation.

vi

Last but not least, I would like to thank my wife, Corona Luo, for her love and her
support.

vii

Dedication

This is dedicated to all the bit manipulations that make this world a better place.

viii

Table of Contents

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Organization of the Thesis . 2

2 Preliminaries 5

2.1 Models of Computation . 5

2.2 Notation . 6

2.3 Bit Vectors . 7

2.4 Sequences . 8

2.4.1 Wavelet Trees and the Ball-Inheritance Problem 9

2.5 Ordinal Trees . 11

2.5.1 Balanced Parentheses . 13

2.5.2 Tree Covering . 13

2.5.3 Tree Extraction . 16

2.5.4 Restricted Topological Partitions 18

3 Static Succinct Data Structures for Path Queries 21

3.1 Introduction . 21

ix

3.1.1 Previous Work . 22

3.1.2 Our Contributions . 25

3.1.3 The Organization of This Chapter 26

3.2 Applying Tree Extraction to Path Queries 26

3.3 Data Structures under the Pointer Machine Model 28

3.4 Word RAM Data Structures with Reduced Space Cost 33

3.5 Succinct Data Structures with Improved Query Time 35

3.5.1 Succinct Ordinal Trees over an Alphabet of Size O(lgε n) 35

3.5.2 Path Counting and Reporting . 40

3.5.3 Path Median and Path Selection . 45

3.6 Discussion . 49

4 Static and Dynamic Succinct Labeled Ordinal Trees 50

4.1 Introduction . 50

4.2 Static Trees over Large Alphabets : Theorem 4.1.2 55

4.2.1 Operations label, pre rankα, pre selectα and nbdescα 56

4.2.2 Conversion between Nodes in T and Tα 57

4.2.3 Operations parentα, level ancα, LCAα and depthα 59

4.2.4 Operations child rankα, child selectα and degα 60

4.2.5 Operation heightα . 61

4.2.6 Operations post rankα and post selectα 61

4.2.7 Operations dfuds rankα and dfuds selectα 61

4.2.8 The α-operations Related to Leaves 64

4.2.9 Completing the Proof of Theorem 4.1.2 65

4.3 Static Trees over Small Alphabets : Theorem 4.1.1 66

4.4 Dynamic Trees Supporting Level-Ancestor Operations : Theorem 4.1.3 . . 68

4.5 Discussion . 71

x

5 Static Succinct Indices for Path Minimum, with Applications 72

5.1 Introduction . 72

5.1.1 Path Minimum . 73

5.1.2 Semigroup Path Sum . 75

5.1.3 Path Reporting . 76

5.1.4 An Overview of the Chapter . 76

5.2 Path Minimum Queries . 78

5.2.1 A Lower Bound under the Encoding Model 78

5.2.2 Upper Bounds under the Indexing Model 78

5.3 Semigroup Path Sum Queries . 88

5.4 Encoding Topology Trees: Proof of Lemma 5.2.3 90

5.5 Path Reporting Queries . 99

5.6 Further Refinements for Range and Path Reporting 105

5.7 Discussion . 109

6 Dynamic Data Structures for Path Queries 110

6.1 Introduction . 110

6.2 Dynamic Path Reporting . 112

6.2.1 Representing Dynamic Forests with Small Labels to Support Path
Summary Queries . 114

6.2.2 Navigation between Levels of W . 122

6.2.3 Supporting Path Reporting . 128

6.3 Dynamic Path Counting and Path Selection 135

6.3.1 Supporting Range Sum and Path Counting 137

6.3.2 Space-Efficient Ranking Trees . 139

6.3.3 Supporting Two-Range Selection and Path Selection 141

6.3.4 Handling Updates . 143

6.4 Discussion . 145

xi

7 Conclusion 146

References 149

xii

List of Tables

3.1 Our results on the path counting, path reporting, path median and path
selection problems, along with previous results. Here H(WT) is the entropy
of the multiset of the weights of the nodes in T . Note that H(WT) is at
most lg σ, which is O(w). 25

4.1 Operations considered in this chapter, which are divided into three groups.
Here we give only the definitions of the labeled versions of operations. Geary
et al. [54]’s data structures only support the α-operations marked by †. Our
static data structures support the α-operations in Groups 1 and 2, while our
dynamic data structures support the α-operations in Groups 1 and 3. . . 51

4.2 Our static representations of labeled ordinal trees. Here f(n, σ) is any func-
tion that satisfies f(n, σ) = ω(1) and f(n, σ) = o(lg lg σ

lgw
), and “others in

Groups 1 and 2” represents the first two groups of α-operations in Table 4.1
other than label and pre selectα. All the results are obtained under
the standard word RAM model with word size w = Ω(lg n). Note that
H0(PLST) and Hk(PLST) are bounded above by lg σ. 53

5.1 Our data structures for path reporting queries, along with previous results
on path reporting and two-dimensional orthogonal range reporting (which
are marked by †). All of these results assume the standard word RAM model
with word size w = Ω(lg n). Here H(WT) is the entropy of the multiset of
the weights of the nodes in T . Note that H(WT) is at most lg σ, which is
O(w). 77

xiii

List of Figures

2.1 S = cabd eab deac and Σ = {a, b, c, d, e, }. We set f = 3 and list S̃v
sequences on internal nodes. 9

2.2 An ordinal forest F that contains 3 ordinal trees T1, T2 and T3. The dummy
root is represented by a dashed circle and the edges to its children are repre-
sented by dashed lines. The number on each non-dummy node is its position
in the preorder sequence of F . The connected subgraph C, which is enclosed
by a dotted splinegon, contains two preorder segments [8..10] and [15..15].
The nodes of T2 in DFUDS order are 4, 5, 8, 6, 7, 9, 13, 15, 10, 12, 11, 14. . . 12

2.3 (a) An ordinal tree T on nodes that are identified by the letters. (b) The
ordinal tree T ′ obtained by deleting a non-root node d from T . (c) The
ordinal forest F ′′ obtained by deleting the root node a from T 16

2.4 An example of TX , i.e., the X-extraction of T , for which X is set of all dark
nodes. 17

2.5 A binary tree B, its restricted multilevel partition with s = 3, and the
corresponding directed topology tree D. Here the base clusters are enclosed
by dashed splinegons. 18

3.1 An example with n = 10 nodes and σ = 4. The integer on each node of F1,1

and F3,4 is the weight of its corresponding node in T . We still write down
these weights to help readers locate the original nodes. 26

3.2 An example with n = 10 nodes and σ = 4. The integer on each non-dummy
node is the weight of its corresponding node in T . We preserve these weights
to help readers locate the corresponding nodes. 29

xiv

4.1 An example with 11 nodes and an alphabet Σ of size 3, where we use Σ =
{a, b, c} for clarity. The character on each node in T is its label. The integer
on each node in Tα, for each α ∈ Σ, indicates whether this node corresponds
to an α-node in T . 55

5.1 An illustration of the binary tree transformation. (a) An input tree T on
12 nodes. (b) The transformed binary tree B, where dummy nodes are
represented by dashed circles. 79

5.2 The restricted multilevel partitions and the directed topology tree D for the
binary tree B shown in Figure 5.1(b). The base clusters, which each contain
a single node of B, are not explicitly specified in the figure to avoid cluttering. 80

5.3 An illustration for the proof of Lemma 5.2.6. Here the large splinegon repre-
sents a level-j cluster and the small ones represent level-i clusters contained
in the level-j cluster. Bold lines represent spines of level-i clusters and dotted
lines represent paths. 83

5.4 An illustration for the proof of Lemma 5.2.7. (a) The large splinegon repre-
sents a level-j cluster and the small ones represent level-i clusters contained
in the level-j cluster. Bold lines represent spines of level-i clusters. The
number alongside a node is its weights, and the one alongside a spine is the
minimum weight on the spine. (b) The 01-labeled tree Ti,j that corresponds
to the cluster head v. 84

5.5 An illustration of partitioning u ∼ t. The outermost splinegon represents
the level-is+1 cluster that contains both u and t. The paths u ∼ x and z ∼ t,
which are represented by dashed lines, are partitioned by querying PM′

i,is .
The path x ∼ z, which is represented by a dotted line, is partitioned by
querying PMis,is+1 . 86

5.6 An example of encoding micro-clusters. (a) A micro-cluster C in which
dummy nodes are represented by dashed circles. (b) The corresponding CX
obtained by preserving non-dummy nodes and dummy boundary nodes. (c)
The balanced parentheses for CX . 91

5.7 An illustration for the proofs of Lemmas 5.4.2 and 5.4.3. Here mini-clusters
and micro-clusters are enclosed by dashed and dotted splinegons, respec-
tively. The bit vectors B1, B2, V1, and V2 are constructed for the directed
topology tree shown in Figure 5.2. 92

xv

5.8 An illustration of the support for level cluster. (a) A directed topology
tree D in which the topmost three levels belong to Dabove. (b) The corre-
sponding bit vector B3 for D and Dabove. 95

5.9 An illustration for the proof of Lemma 5.4.5. (a) A binary tree B in which
micro-clusters are represented by splinegons, and their roots are represented
by solid circles. (b) The tree T̃ obtained by extracting roots of micro-clusters
in B. 96

5.10 An illustration of the support for BN rank. Here a mini-cluster C with
two mini-segments is enclosed by a solid splinegon, and the nodes of these
two mini-segments are enclosed by dashed splinegons. We draw only level-
i boundary nodes inside C and the edges and paths that connect them,
which are represented by solid and dotted lines, respectively. Then we have
Gi[j1] = k1, Gi[j1+1] = k1+5, Gi[j2] = k1+k2+5, andGi[j2+1] = k1+k2+10,
where k1 is the number of level-i boundary nodes that precede the head of
C in preorder, and k2 is the number of level-i boundary nodes that are
descendants of the tail of C. 98

5.11 (a) An input tree T with n = 11 and σ = 6, for which the conceptual range
tree has branching factor f = 3. (b) The corresponding tree T1, where the
dummy root r1 is represented by a dashed circle. (c) The corresponding tree
T2, where the dummy root r2 is represented by a dashed circle, and F1,2,
F3,4, and F5,6 are marked by dotted splinegons. 100

5.12 An illustration for the proof of Lemma 5.5.3. Normal and dotted circles
represent nodes whose weights are in and not in [a..b], respectively. Node u,
which could have a weight in [a..b] or not, is represented by a dash dotted
circle. (a) The case in which the weight of u′ is in [a..b]. (b) The case in
which the weight of u′ is not in [a..b]. 102

5.13 The root-to-leaf in Tk that goes through both x and z, where nodes with
label β are represented as double circles. The nodes in Tk that correspond
to x′ and z′ can be determined using lowest ancβ operations. 103

5.14 An illustration for Theorem 5.6.1. (a) An input point set on a 16× 4 grid,
which is represented by the dashed rectangle. The dotted rectangles each
represent a subgrid and the bold rectangle represents a range query Q. (b)
The compressed grid that corresponds to the input point set, where the bold
rectangle represents the subquery Q3. (c) The 01-matrix Z that corresponds
to the compressed grid. 105

xvi

5.15 (a) An input tree T with σ = 4 and 6 cover elements. The dashed lines
represent Pathi’s, and the numbers alongside each Pathi represent the set
of weights on this path. (b) The 01-labeled tree T 2,3. 108

6.1 (a) A weight-balanced B-tree with branching factor d = 2 for [1, 9), where
the node v corresponds to [5, 9); (b) an input tree T with n = 16 nodes; (c)
the labeled tree T (v) extracted from T with respect to the node v; and (d)
the transformed binary tree B(v) for T (v), where two dummy nodes y1 and
y2 are inserted for siblings x1, x2, and x3. 113

6.2 A figure for the proof of Lemma 6.2.11. 127

6.3 Forest Ft (containing a single tree) before node insert. Dashed red lines
represent edges to be removed by performing cut. 130

6.4 Forest Ft after node insert. Dashed blue lines represent edges inserted by
performing link. 131

6.5 (a) An input tree T on 9 weighted nodes. (b) The sequence P of balanced
parentheses and the sequence a of weights that correspond to T . The score
sequence e can be derived from P easily. 135

xvii

Chapter 1

Introduction

In many modern computer applications, the majority of data is stored in internal mem-
ory to speed up the access and to guarantee low response time. The research on how to
organize data in internal memory, i.e., in-memory data structures dates back to the early
years of computer science. Researchers have focused on minimizing the amount of space
occupied by the data structures as well as reducing query, update and construction times
for the data structures. As data grows rapidly in volume, there has been a trend of de-
signing space-efficient and succinct data structures, where the term succinct data structure
was proposed by Jacobson [69] and refers to the data structures that use space close to the
information-theoretic lower bounds.

As fundamental structures in computer science, trees are widely used in modeling and
representing various types of data in numerous computer applications. In many cases, ob-
jects are represented by nodes and their properties are characterized by weights or labels
assigned to nodes. In modern computers, many file systems can be visualized as ordinal
trees (a rooted tree of arbitrary degree in which children are ordered) in which each node
represents a file or a directory, and is annotated with metadata (e.g., size, creation time)
that describes the file or directory being represented. In compilers, source code is trans-
formed into a parsing tree, which represents the syntactic structure of the source code
according to the programming language. Later, the parsing tree will be traversed to facili-
tate code analysis and optimization, and additional properties (e.g., cacheability, whether
it depends on blocking I/Os) will be stored on each node to characterize the snippet it rep-
resents. As pointed out by Leighton [76], routing in a general network graph can be done
using only the edges of a spanning tree of the graph. A distance labeling scheme assigns
labels to the nodes, so that, given the labels of any two nodes in the network graph, the
distance between these two nodes in the spanning tree of the graph can be determined.

1

Researchers have studied the problems of supporting path queries, that is, the schemes
to preprocess a weighted tree such that various functions over the weights of nodes on a
given query path can be computed efficiently. These queries include path minimum [2,
31, 73, 72, 21, 38], path counting [31, 65, 85], path reporting [65, 85], path median and
selection [75, 65, 85], path least-frequent element, path α-minority and path top-k color
queries [41].

Another topic of research is to represent ordinal trees with satellite data in the form of a
label from a large alphabet. Much of this is motivated by the needs of large text-dominated
databases that store and manipulate XML documents, which can be essentially modeled
as ordinal trees in which each node is assigned a tag drawn from a tag set.

In this thesis, we design in-memory data structures for labeled and weighted trees,
so that various types of path queries or operations can be supported with efficient query
time. Our data structures are space-efficient and many of them are even succinct, which
are suitable for handling large tree-structured data sets in internal storage. We further
consider how to support insertions or deletions of nodes.

The investigation of data structure problems is done from a purely theoretical perspec-
tive in this thesis. Our objective is to optimize the asymptotic time and space costs, and
some of our improvements achieve lower costs only when the input size is considerably
large. Engineering our data structures is an interesting topic but beyond the scope of this
thesis.

1.1 Organization of the Thesis

The rest of the thesis is organized as follows.
Chapter 2 summarizes the background knowledge of the research area. We first describe

the models of computation and the notation used throughout the thesis. Then we review
the succinct data structures for bit vectors and sequences of symbols, especially the wavelet
trees and the solutions to the ball-inheritance problem. These data structures will be key
building blocks for many results in this thesis. We also introduce many concepts of ordinal
trees and the related data structure techniques, which will be applied extensively in later
chapters.

Chapter 3 studies the problem of supporting various path queries over weighted trees.
A path counting query asks for the number of the nodes on a query path whose weights
are in a query range, while a path reporting query requires to report these nodes. A path
median query asks for the median weight on a path between two given nodes, and a path
selection query returns the k-th smallest weight. Let T denote an input tree on n nodes

2

whose weights are drawn from [1..σ]. We design succinct data structures to encode T using
nH(WT) + 2n + o(n lg σ) bits of space, such that we can support path counting queries
in O(lg σ/ lg lg n + 1) time, path reporting queries in O((occ + 1)(lg σ/ lg lg n + 1)) time,
and path median and path selection queries in O(lg σ/ lg lg σ) time, where H(WT) is the
entropy of the multiset of the weights of the nodes in T and occ is the size of the output.
Our results not only greatly improve the best known data structures [31, 75, 65], but also
match the lower bounds for path counting, median and selection queries [86, 87, 71] when
σ = Ω(n/polylog(n)). This chapter is based on part of the joint work with Meng He and
J. Ian Munro [66].

Chapter 4 considers succinct representations of labeled ordinal trees that support a rich
set of operations. Our new representations support a much broader collection of operations
than previous work. In our approach, labels of nodes are stored in a preorder label sequence,
which can be compressed using any succinct representation of strings that supports access,
rank and select operations. Thus, we present a framework for succinct representations of
labeled ordinal trees that is able to handle large alphabets. This answers an open problem
presented by Geary et al. [54], which asks for representations of labeled ordinal trees that
remain space-efficient for large alphabets. We further extend our work and present the first
succinct representations for dynamic labeled ordinal trees that support several label-based
operations including finding the level ancestor with a given label. This chapter is based on
part of the joint work with Meng He and J. Ian Munro [68].

In Chapter 5, we deal with path minimum and semigroup path sum queries, and revisit
path reporting queries. In the path minimum problem, we preprocess a tree on n weighted
nodes, such that given an arbitrary path, the node with the smallest weight along this
path can be located. We design novel succinct indices for this problem under the indexing
model, for which weights of nodes are read-only and can be accessed with ranks of nodes
in the preorder traversal sequence of the input tree. We present

• an index within O(m) bits of additional space that supports queries in O(α(m,n))
time and O(α(m,n)) accesses to the weights of nodes, for any integer m ≥ n; and

• an index within 2n+ o(n) bits of additional space that supports queries in O(α(n))
time and O(α(n)) accesses to the weights of nodes.

Here α(m,n) is the inverse-Ackermann function, and α(n) = α(n, n). These indices give
us the first succinct data structures for the path minimum problem. Following the same
approach, we also develop succinct data structures for semigroup path sum queries, for
which a query asks for the sum of weights along a given query path. One of our data
structures requires n lg σ + 2n + o(n lg σ) bits of space and O(α(n)) query time, where σ

3

is the size of the semigroup.
In the same chapter, using the succinct indices for path minimum queries, we achieve

three different time-space tradeoffs for path reporting by designing

• an O(n)-word data structure with O(lgε n+ occ · lgε n) query time;

• an O(n lg lg n)-word data structure with O(lg lg n+ occ · lg lg n) query time; and

• an O(n lgε n)-word data structure with O(lg lg n+ occ) query time.

Here occ is the number of nodes reported and ε is an arbitrary constant between 0 and 1.
These tradeoffs match the state of the art of two-dimensional orthogonal range reporting
queries [27], which can be treated as a special case of path reporting queries. When the
number of distinct weights is much smaller than n, we further improve both the query time
and the space cost of these three results. This chapter is based on part of the joint work
with Timothy M. Chan, Meng He and J. Ian Munro [26].

Chapter 6 considers the problem of supporting various path queries in dynamic set-
tings. We propose the first non-trivial linear-space solution that supports path reporting
in O((lg n/ lg lg n)2 + occ lg n/ lg lg n)) query time, where n is the size of the input tree and
occ is the output size, and the insertion and deletion of a node of an arbitrary degree in
O(lg2+ε n) amortized time, for any constant ε ∈ (0, 1). Obvious solutions based on directly
dynamizing solutions to the static version of this problem all require Ω((lg n/ lg lg n)2)
time for each node reported, and thus our data structure supports queries much faster.
We also design data structures that support path counting and path reporting queries in
O((lg n/ lg lg n)2) time, and insertions and deletions in O((lg n/ lg lg n)2) amortized time.
This matches the best known results for dynamic two-dimensional range counting [62] and
range selection [63], which can be viewed as special cases of path counting and path selec-
tion. This chapter is based on part of the joint work with Meng He and J. Ian Munro [67].

Chapter 7 provides a summary, conclusions, and some suggestions for future work.

4

Chapter 2

Preliminaries

2.1 Models of Computation

With the development of modern computing devices, researchers have proposed several
models of computation to abstract a computer from its architectural details, so that data
structure problems can be attacked more readily. There exist several theoretical models
to characterize how a computer operates, each with some advantages and limitations. In
the following, we are going to briefly summarize three models that will be adopted in this
thesis.

Pointer Machine Model [95]. In a pointer machine1, a data structure is repre-
sented as a directed graph in which each node stores a constant number of data values and
contains a constant number of pointers to other nodes. An algorithm under this model is
permitted to access a node by following a pointer to the node, to compare two values or two
pointers, and to create new nodes, data values and pointers. In previous formulations [23],
algorithms can perform arithmetic operations on data values but not on pointers. The
time cost of an algorithm under this model is measured by the number of accesses to nodes
and the number of operations performed, while the space cost is measured by the number
of nodes in the directed graph.

Word RAM Model [51]. As one of its major drawbacks, a pointer machine cannot
support random access memory (RAM), which is implemented in modern computer hard-
ware. Under the word RAM model with word size w, data is stored in an infinite array of
memory cells with addresses 0, 1, 2, . . ., where each cell consists of w bits and is referred
to as a word. A set of unit cost operations are permitted to be performed, which include

1A pointer machine has occasionally been called a pointer algorithm in previous work [13].

5

read and write operations to memory cells in addition to arithmetic and bitwise operations
on w-bit integers. The time cost of an algorithm is the number of these operations used,
while the space cost is the maximum index of a word that is accessed by the algorithm.
We also use the number of bits to measure the space cost. When we say a data structure
occupies s bits of space, the implicitly meaning is that the space cost is ds/we words.

There are several variants of word RAM models with different operation sets, which
prohibit unit cost multiplications and integer divisions [59], or even allow non-standard
word operations [29]. However, we note that the operation set we permit is supported
efficiently in most modern computer architectures and widely adopted in literature. Thus
we will refer to our variant of word RAM as the standard word RAM model.

Cell Probe Model [98]. This model is similar to the word RAM model, except that
there is no charge for operations on words. The running time under this model is measured
by the number of accesses to memory cells only. As this model is stronger than the other
two models, lower bounds obtained under the cell probe model also apply to the pointer
machine model and the word RAM model. Unfortunately, it is difficult to prove meaningful
cell probe lower bounds, even for simple data structure problems.

2.2 Notation

We use log2 x to denote the base-2 logarithm of x and lg x to denote dlog2 xe. We also use
lgy x to denote (lg x)y, or the y-th power of the logarithm of x. The iterated logarithm of
x, or the log star x, is written as lg∗ x and defined to be the number of times log2 must be
applied before the result becomes less than or equal to 1.

For integers a ≤ b, we use [a..b] to denote the set {a, a+ 1, . . . , b}.
The Shannon entropy of a data stream is given by the formula H = −∑i pi log2 pi,

where pi is the probability of symbol i showing up in the stream and 0 log2 0 is assumed
to be 0. For a fixed sequence S[1..n] over the alphabet Σ = [1..σ], we substitute ni/n for
pi and obtain the empirical entropy, where ni is the number of occurrences of symbol i in
S. The concept of empirical entropies has been borrowed to analyze the Burrows-Wheeler
transform [77]. The zeroth order empirical entropy of the sequence S is defined as

H0(S) = −
σ∑

i=1

ni
n

log2

(ni
n

)
.

Note that H0(S) is less than or equal to log2 σ. Intuitively, the value of nH0(S) represents
the output size of an ideal compressor, which uses − log2

(
ni
n

)
bits to encode symbol i.

The compression ratio can be further improved if the codeword for each symbol is

6

selected based on the k symbols preceding it. For any k-symbol word W ∈ Σk, we denote
by SW the subsequence of S that contains the symbols following W in S. Note that the
length of SW is equal to the number of occurrences of W in S, or one less if W is a suffix
of S. The k-th order empirical entropy of S is defined as

Hk(S) =
1

n

∑

W∈Σk

|SW |H0(SW).

The value of nHk(S) serves as a lower bound to the compression one can achieve using
codes that depend on the k most recently seen symbols. It is not surprising that the value
of Hk(S) decreases with k.

2.3 Bit Vectors

A bit vector that supports rank and select operations is a key structure for many succinct
data structures and the research work in this thesis. The positions in a bit vector of length
n are numbered from 1 to n. Given a bit vector B[1..n] and α ∈ {0, 1}, we consider the
following operations:

• access(B, i): returns the i-th bit, B[i], in B;

• rankα(B, i): returns the number of α-bits in B[1..i];

• selectα(B, i): returns the position of the i-th α-bit in B.

We omit the parameter B when it is clear from the context. The following lemma sum-
marizes the support for succinct bit vectors, where part (a) is from Clark and Munro [36],
while part (b) is from Raman et al. [92].

Lemma 2.3.1. A bit vector B[1..n] with m 1-bits can be represented in either (a) n+ o(n)
bits, or (b) lg

(
n
m

)
+O(n lg lg n/ lg n) bits, to support access, rankα and selectα in O(1)

time.

Researchers have further considered dynamic bit vectors, for which insertα(B, i) in-
serts an α-bit between B[i − 1] and B[i], while delete(B, i) deletes B[i]. The support
for these updates, which has been obtained by He and Munro [61] and Navarro and
Sadakane [82], is addressed in the following lemma.

Lemma 2.3.2 ([61, 82]). A dynamic bit vector B[1..n] can be encoded in n+O(n lg lg n/ lg n)
bits to support access, rankα, selectα, insertα and delete in O(lg n/ lg lg n) time.

7

2.4 Sequences

Bit vectors can be generalized to sequences of symbols that are drawn from an alphabet Σ =
[1..σ]. Given a sequence S[1..n] and symbol α ∈ Σ, we consider the following operations:

• access(S, i): returns the i-th symbol, S[i], in S;

• rankα(S, i): counts the occurrences of symbol α’s in S[1..i], i.e., the cardinality of
{j|S[j] = α and 1 ≤ j ≤ i};

• selectα(S, i): returns the position of the i-th α in S, i.e., the smallest j so that
rankα(S, j) = i;

• substr(S, i, j): returns the substring S[i..j];

and, in particular, for dynamic sequences:

• insertα(S, i): inserts symbol α between S[i− 1] and S[i];

• delete(S, i): deletes the symbol at the i-th position of S.

As in Section 2.3, the parameter S will be omitted when it is clear from the context.
For static sequences, Belazzougui and Navarro [12] presented the following data struc-

tures to support access, rankα and selectα operations:

Lemma 2.4.1. Let S be a sequence of length n over an alphabet Σ = [1..σ]. Under the
standard word RAM with word size w = Ω(lg n),

(a) for σ = wO(1), S can be encoded using nH0(S) + o(n) bits of space to support access,
rankα and selectα in O(1) time;

(b) for σ ≤ n, S can be encoded using nH0(S) + o(nH0(S)) + o(n) bits of space to support
access in O(1) time, rankα in O(lg lg σ

lgw
) time, and selectα in O(f(n, σ)) time, given

any function f(n, σ) that satisfies f(n, σ) = ω(1) and f(n, σ) = o(lg lg σ
lgw

);

(c) for σ ≤ n and lg σ = ω(lgw), and for any k = o(logσ n), S can be encoded using
nHk(S) + o(n lg σ) bits to support access in O(1) time, rankα in O(lg lg σ

lgw
) time, and

selectα in O(f(n, σ)) time, given any function f(n, σ) that satisfies f(n, σ) = ω(1)
and f(n, σ) = o(lg lg σ

lgw
).

8

Specifically, the support for retrieving a substring has been addressed by Ferragina and
Venturini [46].

Lemma 2.4.2. A sequence S[1..n] over an alphabet Σ = [1..σ] can be compressed into

nHk(S) + O(n(k lg σ+lg lgn)
logσ n

) bits of space to support substr(i, j) in O((j − i + 1)/ logσ n)
time.

Very recently, the problem of supporting dynamic sequence has been extensively studied
in the seminal works of Navarro and Nekrich [81] and Munro and Nekrich [79], which make
novel use of dynamic fractional cascading [34].

Lemma 2.4.3. A sequence S[1..n] over an alphabet Σ = [1..σ] can be compressed into
nHk(S)+o(n lg σ) bits of space, for any k = o(logσ n), to support access, rankα, selectα,
insertα and delete in O(lg n/ lg lg n) time, and support substr(i, j) in O(lg n/ lg lg n+
(j − i+ 1)/ logσ n) time.

2.4.1 Wavelet Trees and the Ball-Inheritance Problem

As a refinement of the data structure of Chazelle for range searching problems [32], the
wavelet tree was invented in 2003 by Grossi, Gupta and Vitter [57] to represent a static
sequence of symbols succinctly and support access, rankα and selectα operations. This
data structure provides an intuitive way of decomposing an alphabet. We will borrow
the idea to handle path queries in Chapters 3 and 5, and we will use Ferragina, Manzini,
Mäkinen and Navarro’s generalized version of wavelet trees [45].

cabd eab deac
2112331132312

ababa cddc e e
12121 1221 2121

aaa bb cc dd ee

ab cd e

a b c d e

Figure 2.1: S = cabd eab deac and Σ = {a, b, c, d, e, }. We set f = 3 and list S̃v sequences
on internal nodes.

A generalized wavelet tree for a sequence S[1..n] over an alphabet Σ is constructed
by recursively splitting the alphabet into f = dlgε ne subsets of almost equal sizes. Each

9

node v in that tree is associated with a subset of labels Σv, and a subsequence Sv of S
that consists of the positions whose labels are in Σv. In particular, the only root node
is associated with Σ, and the leaf nodes are each associated with a single label. At each
non-leaf node v, a sequence S̃v of symbols drawn from [1..f] is created according to Sv.

Formally, suppose that the children of v are v1, v2, . . . , vf , for 1 ≤ i ≤ |Sv|, S̃v[i] = α if and
only if Sv[i] ∈ Σvα . See Figure 2.1 for an example.

The levels of the generalized wavelet tree are numbered 1, 2, . . . , h from top to bottom;
clearly h = Θ(lg n/ lg lg n). For ` = 1, 2, . . . , h−1, the sequences constructed for the nodes
at level ` are concatenated from left to right. The concatenated sequence, S`, is stored
using Lemma 2.4.4 with Σ = [1..f], so that rankα and selectα operations on S` can be
supported in O(1) time.

Lemma 2.4.4. [45, Theorem 3.1] Let S` be a sequence of length n over an alphabet Σ =
[1..σ], where 1 ≤ σ ≤ √n. Under the standard word RAM with word size w = Ω(lg n),
S` can be represented in nH0(S`) + O(σ(n lg lg n)/ logσ n) bits, where H0(S`) is the zeroth
order empirical entropy of S`, to support access, rankα and selectα in O(1) time, and
support substr in O((j − i+ 1)/ logσ n) time.

Note that the last operation is not explicitly mentioned in the original theorem. How-
ever, in the proof of the original theorem, S` is divided into blocks of size b1

2
logσ nc, and

the entry of table E that corresponds to some block G can be found in constant time. We
can explicitly store in each entry the content of the block that corresponds to this entry.
Thus the content of any block can be retrieved in constant time. It is easy to verify that
the extra space cost is o(n) bits.

When σ is sufficiently small, say σ = O(lgε n) for some constant 0 < ε < 1, the second
term in the space cost is bounded above byO(σ(n lg lg n)/ logσ n) = O(n(lg lg n)2/ lg1−ε n) =
o(n) bits.

The rankα operations can be further extended to countβ operations, where countβ(S, i)
is defined to be the number of symbols in S[1..i] that are no greater than β. Bose, He,
Maheshwari and Morin presented the following lemma:

Lemma 2.4.5 ([18, Lemma 3]). Let S` be a sequence of length n over an alphabet Σ =
[1..σ], where σ = O(lgε n) for some constant 0 < ε < 1. Provided that any dlgλ ne consec-
utive integers in S` can be retrieved in O(1) time for some constant λ ∈ (ε, 1), S` can be
indexed using o(n) bits of additional space and o(n) construction time to support countβ
in O(1) time.

Proof. Here we only analyze the construction time, which was not explicitly mentioned in
the work of Bose et al. [18]. In their approach, the sequence S` is divided into blocks of

10

size dlg2 ne, and each block is divided into subblocks of size dlgλ ne. They maintain the
following auxiliary data structures:

• A two-dimensional array A[1..n/dlg2 ne, 1..σ] in which A[i, j] is the number of integers
in S`[1..idlg2 ne] that are no greater than j;

• A two-dimensional array B[1..n/dlgλ ne, 1..σ] in which B[i, j] is the number of integers
in S`[i

′..idlgλ ne] that are no greater than j, where i′ is the starting position of the
block that contains S`[idlgλ ne];

• A lookup table C that stores for every possible subblock, every integer i in [1..dlgλ ne],
and every integer j in [1..dlgε ne], the number of integers at the first i positions of
the subblock that are no greater than j.

The table C can be constructed in O(nδ lgλ+ε n) = o(n) time for some δ ∈ (λ, 1), as there
are only O(nδ) different subblocks. Under our assumption that σ = O(lgε n) for some
constant 0 < ε < 1, the array B can be computed in O(n/dlgλ ne × σ) = o(n) time
using lookup table C and recurrence. In a similar way, the array A can be computed in
O(n/dlg2 ne × σ) = o(n) time.

Each position in Sv corresponds to a position in S. Chan, Larsen, and Pǎtraşcu [27]
studied the following ball-inheritance problem: given an arbitrary position in some Sv, find
the corresponding position i in S and the symbol S[i]. The support for the ball-inheritance
problem is addressed in Lemma 2.4.6. Note that the original solution of Chan, Larsen, and
Pǎtraşcu was developed for binary wavelet trees. However, their approach and conclusion
can be directly extended to generalized wavelet trees.

Lemma 2.4.6. Let S[1..n] be a sequence of symbols that are drawn from [1..σ]. Given a
generalized wavelet tree of S, one can build auxiliary data structures for the ball-inheritance
problem with O(n lg n · s(σ)) bits of space and O(t(σ)) query time, where (a) s(σ) = O(1)
and t(σ) = O(lgε σ); (b) s(σ) = O(lg lg σ) and t(σ) = O(lg lg σ); or (c) s(σ) = O(lgε σ)
and t(σ) = O(1).

2.5 Ordinal Trees

An ordinal tree is a rooted tree in which siblings are ordered from left to right. The
preorder traversal sequence of an ordinal tree T , which will be referred to as the preorder

11

sequence of T in the rest of this thesis, is a sequence that contains each node of T exactly
once. The sequence starts with the root r of T , and followed by the left-to-right ordered
concatenation of the preorder sequences of the subtrees rooted at the children of r.

An ordinal forest F is a left-to-right ordered list of ordinal trees. The depth, children,
parent, and ancestors of a node v in F are the same as those of v in the ordinal tree
containing v. The preorder sequence of F is the left-to-right ordered concatenation of the
preorder sequences of the ordinal trees in F .

An ordinal forest F can be viewed as an ordinal tree rooted at a non-removable dummy
node of which the children are the roots of ordinal trees in F . To be consistent, the dummy
node is not taken into account for the preorder sequence, or the depth of any node in F .
We will make use of both views of ordinal forests interchangeably.

Any connected subgraph of an ordinal tree T is also an ordinal tree, which will be
referred to as a cover element in the context of tree covering (Section 2.5.2), or as a cluster
in the context of topological partitions (Section 2.5.4). Following the notation of He et
al. [64], the preorder segments of a connected subgraph are defined to be the maximal
contiguous subsequences of nodes in the preorder sequence of T that are in the same
subgraph.

Another useful order in traversing the nodes of an ordinal tree is the depth-first unary
degree sequence (DFUDS) order as defined by Benoit et al. [15]. Given an ordinal tree T ,
we view its actual root r as the only child of an added dummy root r′. Starting with the
dummy root r′, we first visit all its children from left to right, and then recurse on the
subtrees rooted at these children in the same order. We illustrate the concepts of ordinal
trees, preorder sequences, preorder segments and DFUDS order in Figure 2.2.

F

T1 T2 T3

C1

2 3

4

5 8

9

10 12

6 13

14

15 17

16

19

187

11

Figure 2.2: An ordinal forest F that contains 3 ordinal trees T1, T2 and T3. The dummy root
is represented by a dashed circle and the edges to its children are represented by dashed lines.
The number on each non-dummy node is its position in the preorder sequence of F . The con-
nected subgraph C, which is enclosed by a dotted splinegon, contains two preorder segments
[8..10] and [15..15]. The nodes of T2 in DFUDS order are 4, 5, 8, 6, 7, 9, 13, 15, 10, 12, 11, 14.

12

As storage cost is a key factor in many computer applications, researchers have con-
sidered succinct representations of ordinal trees. An ordinal tree on n nodes needs to be
encoded within space close to the information theoretic minimum, which is 2n − O(lg n)
bits as there are

(
2n
n

)
/(n + 1) different ordinal trees. In addition, the encoding should

support various operations and updates efficiently. In Sections 2.5.1 and 2.5.2, we will
review balanced parentheses and tree covering in the context of representing ordinal trees
succinctly.

Section 2.5.3 describes tree extraction, which is inspired by tree edit distance. In Sec-
tion 2.5.4, we will discuss restricted topological partitions and the underlying directed topol-
ogy tree.

2.5.1 Balanced Parentheses

In the work of Munro and Raman on succinct ordinal trees [80], the input ordinal tree
on n nodes is represented as a sequence, P [1..2n], of balanced parentheses, so that each
node in the input tree corresponds to a matching pair of parentheses. See Figures 5.6
and 6.5 for examples. The sequence P can be stored as a bit vector, as the opening
and closing parentheses are encoded as 1-bits and 0-bits, respectively. Munro and Raman
defined two operations, findopen(P, x) and findclose(P, x), that return the positions of
the corresponding opening and closing parentheses for a given node x, respectively. The
operation rankα(P, i), which returns the number of α-bits in P [1..i], can also be defined.

Navarro and Sadakane [82] further considered insertions and deletions of nodes, which
were reduced to insertions and deletions of matching parenthesis pairs. Their data structure
stored the underlying balanced parenthesis sequence of a dynamic ordinal tree on n nodes,
using 2n + o(n) bits of space, such that the following operations can be performed in
O(lg n/ lg lg n) worst-case time: (1) given the preorder rank of x, retrieving findopen(P, x)
and findclose(P, x); (2) for any 1 ≤ i ≤ 2n and α ∈ {0, 1}, computing rankα(P, i);
and (3) supporting insertions/deletions of nodes, which are denoted by node insert and
node delete.

2.5.2 Tree Covering

In this section, we briefly summarize the tree-covering based representation of ordinal
trees [54, 64, 42, 43]. Later, in Section 3.4, we make use of the representation directly to
reduce the space cost of our data structures. In Section 3.5.1, we extend the representation
to support more powerful operations such as node countβ and node summarize. We review

13

only the notation and techniques related to our requirements.
The tree-covering based representation was proposed by Geary, Raman and Raman [54]

to represent an ordinal tree succinctly to support navigational operations. Let T be an
ordinal tree on n nodes. A tree cover of T with a given parameter M is essentially a set
of O(n/M) cover elements, each being a connected subtree of size O(M). These subtrees,
being either disjoint or joined at the common root, cover all the nodes in T .

Geary et al. [54] proposed an algorithm to cover T with mini-trees or tier-1 subtrees
for M = max{d(lg n)4e, 2}. Again, they apply the algorithm to cover each mini-tree with
micro-trees or tier-2 subtrees for M ′ = max{dlg n/24e, 2}. For k = 1, 2, the nodes that are
roots of the tier-k subtrees are called tier-k roots. Note that a tier-k root can be the root
node of multiple tier-k subtrees, and a tier-1 root must also be a tier-2 root.

To use tree-covering based representations to support more operations, He et al. [64,
Definition 4.22] proposed the notion of tier-k preorder segments, i.e., maximal substrings
of nodes in the preorder traversal sequence that are in the same mini-tree (tier-1 segments)
or micro-tree (tier-2 segments). Farzan and Munro [42] further modified the tree-covering
algorithm. Their algorithm produces a tree cover such that nodes in a cover element are
distributed into a constant number of preorder segments, as proved by Farzan et al. [43].
These results are summarized in the following lemma:

Lemma 2.5.1 ([42, Theorem 1] and [43, Lemma 2]). Let T be an ordinal tree on n nodes.
For a fixed parameter M , the tree decomposition algorithm in [42] covers the nodes in T by
Θ(n/M) cover elements of size at most 2M , all of which are pairwise disjoint other than
their root nodes. In addition, nodes in one cover element are distributed into a constant
number of preorder segments.

The techniques in [54, 64, 42, 43] encode an unlabeled ordinal tree on n node in 2n+o(n)
bits to support in constant time a set of operations related to nodes, tier-k subtrees and
tier-k roots. In these representations, nodes are identified by their preorder ranks. Given
an arbitrary node x, we can compute its depth, and find its i-th (lowest) ancestor. Given
two nodes x and y, we can compute their lowest common ancestor (LCA) [1, 14].

For k = 1 or 2, the tier-k subtrees are ordered by the preorder ranks of their root nodes
(breaking ties with the preorder ranks of arbitrary non-root nodes) and specified by their
ranks. The following operations can be performed in constant time: For each tier-k subtree,
we can find its root node, compute the tier-k preorder segments whose nodes belong to
this subtree, and select the i-th node in preorder that belongs to this subtree. For each
micro-tree, we can compute the encoding of its structure. For each node that is not a tier-k
root, we can find the tier-k subtree to which it belongs, and its relative preorder rank in
this tier-k subtree.

14

Similarly, for k = 1 or 2, the tier-k roots are ordered in preorder and specified by their
ranks. Let r1

i /r
2
i denote the i-th tier-1/tier-2 root. Given an arbitrary node x, we can

compute its rank if x is a tier-k root, or determine that x is not a tier-k root. Conversely,
given the rank of a tier-k root, we can compute its preorder rank. We summarize these
operations in the following lemma:

Lemma 2.5.2. Let T be an unlabeled ordinal tree on n nodes. T can be represented in
2n + o(n) bits and O(n) construction time such that the operations described in the three
previous paragraphs can be supported in O(1) time.

Geary et al. [54] further considered labeled ordinal trees. Their results are addressed in
Lemma 2.5.3. We list only a small subset of the operations supported by Geary et al.’s [54]
succinct representation of labeled ordinal trees. For simplicity, a node is said to be an
α-node if its label is α, and an α-node is an α-ancestor of its descendants. In addition, we
assume that nodes x and y are contained in T , α ∈ Σ, a node precedes itself in preorder,
and a node is its own 0-th ancestor.

Lemma 2.5.3. Let T be an ordinal tree on n nodes, each having a label from an alphabet
Σ of size σ. Then T can be represented using O(n) construction time and n(lg σ + 2) +
O(σn lg lg lg n/ lg lg n) bits of space, so that the following operations can be supported in
O(1) time.

• pre rank(T, x): returns the number of nodes that precede x in preorder;

• pre rankα(T, x): returns the number of α-nodes that precede x in preorder;

• pre select(T, i): returns the i-th node in preorder;

• pre selectα(T, i): returns the i-th α-node in preorder;

• depth(T, x): returns the number of ancestors of x;

• depthα(T, x): returns the number of α-ancestors of x;

• parent(T, x): returns the parent of x;

• level anc(T, x, i): returns the i-th lowest ancestor of x;

• level ancα(T, x, i): returns the i-th lowest α-ancestor of x;

• lowest ancα(T, x): returns the lowest α-ancestor of x if such an α-ancestor exists,
otherwise returns NULL;

15

• LCA(T, x, y): returns the lowest common ancestor of x and y.

It should be drawn to the reader’s attention that, due to the assumption that nodes
are denoted by their preorder ranks, pre rank(T, x) and pre select(T, i) are essentially
identity functions. We preserve these operations for the following reason: Later on, we will
consider the preorder ranks of nodes in trees extracted from the given tree (like Ta,b’s in
Section 3.4 and T`’s in Section 3.5), and we may use these operations to explicitly specify
which tree we refer to when we mention the preorder rank of a certain node.

2.5.3 Tree Extraction

The technique of tree extraction is introduced in the work of He et al. [65] and the author’s
Master’s thesis [100], and will be further used in this thesis. We revisit the deletion
operation of tree edit distance [16]. Unlike the original definition, here we can delete any
node from an ordinal forest, even if it is the root of an ordinal tree. Suppose we want to
delete a node u from an ordinal forest F and u is contained in some ordinal tree T of F .
Here are two cases for the deletion of u, which are illustrated in Figure 2.3.

d

e

a

b g

f

(a) (b)

T T ′

(c)

F ′′

c e

a

b g

fc

d

e

b g

fc

Figure 2.3: (a) An ordinal tree T on nodes that are identified by the letters. (b) The ordinal
tree T ′ obtained by deleting a non-root node d from T . (c) The ordinal forest F ′′ obtained
by deleting the root node a from T .

• Case 1: When u is not the root node of T and has a parent node v, we insert u’s
children in place of u into the list of children of v, preserving the original left-to-right
order.

16

• Case 2: When u is the root node of T , we insert the subtrees rooted at u’s children
in place of T into the list of ordinal trees of F , preserving the original left-to-right
order.

The deletion operation preserves the ancestor-descendant relationship, and the relative
positions in preorder among the remaining nodes.

Let F be an ordinal forest and let V (F) be the set of nodes in F . For any set X ⊆ V (F),
we denote by FX (or TX if FX contains only a single tree) the ordinal forest obtained by
deleting from F all the nodes of V (F) −X, where the nodes are deleted from bottom to
top. (In fact, the order of deletion does not matter.) FX or TX is called the X-extraction
of F . See Figure 2.4 for an illustration.

T TX

Figure 2.4: An example of TX , i.e., the X-extraction of T , for which X is set of all dark
nodes.

After the extraction, each node in X still occurs in the resulting forest FX , though
it may be moved to a different position. The occurrences of this node in F and FX are
viewed as distinct nodes, which are said to correspond to each other. Thus we obtain a
natural one-to-one correspondence between the nodes in X and the nodes in FX . To clarify
notation, we denote by uX a node in FX if and only if the node in F that corresponds to
uX is denoted by u.

Lemma 2.5.4 captures some essential properties of tree extraction.

Lemma 2.5.4 ([65, 100]). For any two sets of nodes X,X ′ ⊆ V (T) that contain the root
of T , the nodes in X∩X ′ have the same relative positions in the preorder and the postorder
traversal sequences of TX and TX′.

Proof. Let T be an arbitrary ordinal tree, and let T ′ be the ordinal tree after deleting a non-
root node x from T . By the definition of the deletion operation of tree edit distance, the
preorder/postorder traversal sequence of T ′ is the same as the preorder/postorder traversal
sequence of T with x being removed from the sequence.

17

Let Y = X ∩ X ′. Since TX is obtained by deleting nodes from T , by applying the
above proposition multiple times, we can show that the nodes in Y have the same relative
positions in the preorder/postorder traversal sequences of T and TX . A similar claim holds
for T and TX′ . Thus the lemma holds.

2.5.4 Restricted Topological Partitions

Topological partitions and restricted topological partitions have found applications in com-
puting the k smallest spanning trees of a graph [48, 49], and in dynamic maintenance of
minimum spanning trees and connectivity information [48], 2-edge-connectivity informa-
tion [49], and a set of rooted trees that support link-cut operations [50]. In this thesis, we
follow the definitions and notation of restricted topological partitions and directed topology
trees [50, 49].

a b c d e f g h i j k l m n o

D

B

a

b

c

d

e

f

g

h

i

j

k

l n

m o

Figure 2.5: A binary tree B, its restricted multilevel partition with s = 3, and the corre-
sponding directed topology tree D. Here the base clusters are enclosed by dashed splinegons.

18

Let B be a rooted binary tree. A cluster with respect to B is a subset of nodes whose
induced subgraph forms a connected component. The external degree of a cluster is the
number of edges that have exactly one endpoint in the cluster. These endpoints are referred
to as the boundary nodes of the cluster. Note that the root of B does not have to be a
boundary node. For two disjoint clusters C1 and C2, C1 is said to be a child cluster of C2

if C1 contains a node whose parent is contained in C2. A restricted partition of order s of
B is defined to be a partition that satisfies the following conditions:

• each cluster has external degree at most 3 and at most 2 child clusters;

• each cluster has at most s nodes;

• each cluster that has 2 child clusters contains only one node;

• no two adjacent clusters can be combined without breaking the above conditions.

Frederickson gave a linear-time algorithm that can create a restricted partition of order s
for a given binary tree on n nodes, and proved that the number of clusters is Θ(dn/se).

Frederickson further defined a restricted multilevel partition of a binary tree B consisting
of a set of h partitions of the nodes. A restricted multilevel partition of order s can be
computed recursively as follows: The clusters at level 0, which are called base clusters, are
obtained by computing a restricted partition of order s of B. Then, to compute the level-`
clusters for any level ` > 0, view each cluster at level ` − 1 as a node, make two of these
nodes adjacent if their corresponding clusters are adjacent, and then compute a restricted
partition of order 2 of the resulting tree. This recursion stops when the partition contains
only one cluster containing all the nodes, which is the level-h cluster.

By the properties of restricted partitions, a level-` cluster with 2 child clusters contains
exactly one level-(`−1) cluster, which also has two child clusters at level `−1. By induction,
this level-` cluster contains only a single node of the binary tree B. Therefore, any cluster
in the restricted multilevel partition either has at most one child cluster or contains only
one node of B. We follow the notation of He et al. [64] and define the preorder segments
of a cluster to be the maximal contiguous subsequences of nodes in the preorder sequence
of B that are contained in the same cluster. Thus Frederickson’s approach guarantees that
each cluster contains at most 2 boundary nodes and at most 2 preorder segments.

A directed topology tree D is further defined for a restricted multilevel partition of a
binary tree B, as illustrated in Figure 2.5. D contains h+ 1 levels. A node of D at level `
represents a level-` cluster of the hierarchy, and, if ` > 0, its children represent the clusters
at the lower level that partition this level-` cluster. Additional links are maintained between

19

each pair of adjacent nodes at the same level of D. Frederickson proved the following lemma
about the number of levels.

Lemma 2.5.5 (Theorem 2.3 in [49]). For ` > 0, the number of clusters at level ` is at
most 5/6 the number of clusters at level `− 1. The value of h is bounded above by O(lg n).

Frederickson [49, 50] further used topology trees to maintain a dynamic forest of binary
trees, to support two operations: link which combines two trees in the forest into one by
adding an edge between the root of one binary tree and an arbitrary given node of the
other that has less than two children, and cut which breaks one tree into two by removing
an arbitrary given edge. The following lemma summaries a special case of their results to
be used in our solutions, in which we say that a cluster is modified during updates if it
is deleted or created during this update, its nodes or edges have been changed or an edge
with one endpoint in the cluster has been inserted or deleted:

Lemma 2.5.6 ([49, 50]). The topology trees of the binary trees in a given forest F on n
nodes can be maintained in O(s+lg n) time for each link and cut, where s is the maximum
size of base clusters. Furthermore, each link or cut modifies O(1) clusters at any level of
the topology trees maintained for the two binary trees updated by this operation, and once
a cluster is modified, the clusters represented by the ancestors of its corresponding node
in the topology tree are all modified. These topology trees have Θ(f + n/s) nodes in total,
where f is the current number of trees in F , and occupy O(S+ (f +n/s) lg n) bits in total,
where S is the total space required to store the tree structures of base clusters.

20

Chapter 3

Static Succinct Data Structures for
Path Queries

3.1 Introduction

In this chapter, we design data structures to maintain a weighted tree on n nodes such
that we can support several path queries. We consider path counting, path reporting,
path median and path selection queries, where the first two varieties of queries are also
called path searching queries. The formal definitions of these queries are listed below. For
simplicity, let Pu,v denote the set of nodes on the path from u to v, where u and v are
nodes in the given tree. Likewise, let Rp,q denote the set of nodes in the given tree whose
weights are in the range [p, q].

• Path Counting Query: Given two nodes u and v, and a range [p, q], return the
cardinality of Pu,v ∩Rp,q;

• Path Reporting Query: Given two nodes u and v, and a range [p, q], return the nodes
in Pu,v ∩Rp,q;

• Path Selection Query: Given two nodes u and v, and an integer 1 ≤ k ≤ |Pu,v|,
return the k-th smallest weight in the multiset of the weights of the nodes in Pu,v. If
k is fixed to be d|Pu,v|/2e, then path selection queries become path median queries.

When the given tree is a path, the above queries become two-dimensional orthogonal
range counting and range reporting queries, range median, and range selection queries,

21

respectively. Thus the path queries we consider generalize these fundamental queries to
weighted trees.

We represent the input tree as an ordinal (ordered) tree. This does not significantly
impact the space cost, which is dominated by storing the weights of nodes. In addition,
we assume that the weights are drawn from [1..σ], or rank space. Thus a query range is
an integral one, denoted by [p..q] in the rest of this chapter. We later analyze time and
space costs in terms of n and σ. Unless otherwise specified, our discussions are based on
the standard word RAM model with word size w = Ω(lg n); we also consider the pointer
machine model and the cell probe model.

3.1.1 Previous Work

Path counting. The problem of supporting path counting queries was proposed and stud-
ied by Chazelle [31]. In his formulation, weights are assigned to edges instead of nodes,
and a query asks for the number of edges on a given path whose weights are in a given
range. Chazelle designed a linear space data structure to support queries in O(lg n) time,
which is based on tree partition. He proved that any tree T containing at least two edges
can be partitioned into two subtrees that contain at least one-third of the edges of T .
Based on this lemma, an emulation dag of the input tree can be constructed, in which each
edge corresponds to a canonical path in the tree. Chazelle further showed that any path
in the input tree can be partitioned into O(lg n) canonical paths. He finally obtained the
data structure by a generalized range tree, along with a compaction technique in [32]. The
bottleneck of the time cost is due to the number of canonical paths in the partitions of
query paths, so this approach requires O(lg n) time for an arbitrary set of weights.

With the technique of tree extraction, He et al. [65] slightly improved Chazelle’s results.
Their linear space data structure requires O(lg σ) query time when the weights are drawn
from a set of σ distinct values.

Path reporting. The path reporting problem was proposed by He et al. [65], who
obtained two solutions under the word RAM model: One requires O(n) words of space
and O(lg σ + occ lg σ) query time, the other requires O(n lg lg σ) words of space but only
O(lg σ + occ lg lg σ) query time, where occ is the size of output and σ is the number of
distinct weights.

Path median and selection. The path median problem was proposed by Krizanc et
al. [75], who presented two solutions for this problem under the pointer machine model.
The first one supports queries in O(lg n) time, and occupies O(n lg2 n) space. The second
one requires O(b lg3 n/ lg b) query time and O(n logb n) space, for any 2 ≤ b ≤ n. If b is set
to be nε/ lg2 n for some small constant ε > 0, then the space cost becomes linear, but the

22

query time is O(nε). These are the best known results for the path median problem.
The approach of Krizanc et al. [75] is also based on tree partition. Their data structures

maintain a set of subpaths in which the weights of the nodes are sorted, such that any
query path can be divided into the disjoint union of two or more subpaths in the set. Thus
the answer to the query can be obtained by performing a binary search on these subpaths.
The time and space cost is determined by the number of subpaths required to partition a
query path.

He et al. [65] significantly improved Krizanc et al.’s results. Under the standard word
RAM model, their linear space data structure requires O(lg σ) query time only, where σ is
the size of the set of weights.

Two-dimensional orthogonal range searching. As a fundamental problem in com-
putational geometry, the two-dimensional orthogonal range searching problem arises from
databases and geographic information system (GIS) applications. In this problem, we
maintain a set, N , of points on an n× n grid, such that the information about the points
in R, a given rectangle whose edges are parallel to the axes, can be retrieved efficiently. A
range counting query returns the cardinality of N ∩R, and a range reporting query returns
the points in N ∩R.

The time-space tradeoff of the two-dimensional orthogonal range counting problem has
been well studied. Pǎtraşcu [86, 87] proved that any data structure occupying O(n ·wO(1))
bits of space requires Ω(lg n/ lgw) query time under the cell probe model. In fact, the
optimal query time can be achieved with linear space [70, 18, 28]. Chan and Pǎtraşcu [28]
also studied the construction time. Their data structure supports queries in O(lg n/ lg lg n)
time with linear space, and requires only O(n

√
lg n) time in preprocessing, while the earlier

data structures with logarithmic query time require Ω(n lg n) construction time.
The two-dimensional orthogonal range reporting problem has also been studied heav-

ily. Let occ denote the size of the output. Under the pointer machine model, Chazelle [30]
provided a data structure that answers queries in O(lg n+occ) time using O(n lg n/ lg lg n)
space. This is optimal due to a lower bound later proved by Chazelle [33], which indi-
cates that any data structure for this problem using O(lgO(1) n+ occ) query time requires
Ω(n lg n/ lg lg n) space.

Under the word RAM model, the best time-space tradeoff for this basic problem is still
open. By a reduction from the colored predecessor search problem [88], one can show that
any data structure using O(n lgO(1) n) bits of space requires Ω(lg lg n+occ) query time. The
best known data structures that achieve the optimal query time are due to Alstrup et al. [3]
and Chan et al. [27], both of which require O(n lgε n) words of space for any constant ε > 0.
There still exist data structures that use less space but more query time. In the recent work
of Chan et al. [27], one of their solutions achieves O(lg lg n + occ lg lg n) query time with
O(n lg lg n) words of space, and another solution supports queries in O(lgε n + occ lgε n)

23

time using linear space.
Range median and selection. The range median and selection problem was also

proposed by Krizanc et al. [75]. In this problem, an unsorted array of n elements is given,
and a query asks for the median or the k-th smallest element in a range. To obtain con-
stant query time, the known solutions require near-quadratic space [75, 89, 90]. For linear
space data structures, Gfeller and Sanders [55] presented a solution to answer a query in
O(lg n) time. Gagie et al. [53] considered this problem in terms of σ, the number of dis-
tinct weights, and designed a data structure based on wavelet trees [32, 57] that supports
range selection queries in O(lg σ) time. The best upper bound was achieved by Brodal
et al. [24, 23], which requires O(lg n/ lg lg n) query time. Jørgensen and Larsen [71] later
showed that Brodal et al.’s result is optimal by proving a lower bound of Ω(lg n/ lgw) on
query time under the cell probe model, provided that data structures for the static range
selection problem use O(n · wO(1)) bits of space.

Succinct data structures for range queries. For two-dimensional orthogonal range
searching queries, the best known result is due to Bose et al. [18]. They presented a data
structure that encodes a set of n points on an n × n grid using n lg n + o(n lg n) bits
to support range counting queries in O(lg n/ lg lg n) time, and range reporting queries in
O((occ + 1) · lg n/ lg lg n) time, where occ is the size of the output. For range median
and range selection queries, Brodal et al. [24, 23] claimed that their data structure achiev-
ing O(lg n/ lg lg n) query time uses O(n) words of space. A careful analysis reveals that
their results are even better than claimed: the space cost of their data structure is only
n lg n+ o(n lg n) bits in rank space, i.e., their structure is succinct.

Succinct representations of static trees. The problem of encoding a static tree
succinctly has been studied extensively. For unlabeled trees, a series of succinct repre-
sentations have been designed [54, 64, 42, 43, 82]. For labeled trees, Geary et al. [54]
presented a data structure to encode a tree on n nodes, each having a label drawn from
an alphabet of size σ, supporting a set of operations in constant time. The overall space
cost is n(lg σ+ 2) +O(σn lg lg lg n/ lg lg n) bits, which is much more than the information-
theoretic lower bound of n lg σ+2n−O(lg n) bits when σ = ω(lg lg n). Ferragina et al. [44]
and Barbay et al. [9, 10] designed data structures for labeled trees using space close to
the information-theoretic minimum, but supporting a more restricted set of operations.
The data structure of Ferragina et al. [44] also supports SubPathSearch, which returns the
number of nodes whose upward paths start with a given query string. The most functional
succinct representation for labeled ordinal trees is due to He et al. [68], which supports
a rich set of operations and preserves succinctness over large alphabets. We will describe
this data structure in detail in Chapter 4.

24

3.1.2 Our Contributions

The primary contributions of this chapter are the succinct data structures for path queries,
which are described in Section 3.5 and heavily based on the technique of tree extraction. It
should be drawn to the reader’s attention that the technique of tree extraction along with
the data structures described in Sections 3.2 to 3.4 are from the joint work with Meng He
and J. Ian Munro [65] and the author’s Master’s thesis [100]. They are repeated to help
the reader understand Section 3.5.

The technique of tree extraction is inspired by the deletion operation of tree edit dis-
tance [16], though its usage here is completely different from computing the edit distance
between two labeled ordinal trees. The basic idea of tree extraction is to extract a sub-
set of nodes from an ordinal tree or an ordinal forest, retaining some relative properties
among the nodes in this subset. This technique allows us to perform divide-and-conquer
approaches, in a space-efficient way, on the set of the weights rather than the structure of
the input tree. Our methods in this chapter are completely different from approaches used
in [31, 75] that partition tree structures directly. Following the technique of tree extraction,
we obtain the following results:

Table 3.1: Our results on the path counting, path reporting, path median and path selection
problems, along with previous results. Here H(WT) is the entropy of the multiset of the
weights of the nodes in T . Note that H(WT) is at most lg σ, which is O(w).

Path Query Type Source Model Space Query Time

Counting

Theorem 3.3.3 [65] Pointer Machine O(n lg σ) O(lg σ)
[31] RAM O(n) words O(lg n)

Theorem 3.4.1 [65] RAM O(n) words O(lg σ)
Theorem 3.5.8 RAM nH(WT) + 2n+ o(n lg σ) bits O(lg σ/ lg lg n+ 1)

Reporting

Theorem 3.3.3 [65] Pointer Machine O(n lg σ) O(lg σ + occ)
Theorem 3.4.1 [65] RAM O(n) words O(lg σ + occ lg σ)

[65] RAM O(n lg lg n) words O(lg σ + occ lg lg σ)
Theorem 3.5.8 RAM nH(WT) + 2n+ o(n lg σ) bits O((occ+ 1)(lg σ/ lg lg n+ 1))

Median / Selection

[75] Pointer Machine O(n lg2 n) O(lg n)
[75] Pointer Machine O(n lgb n) O(b lg3 n/ lg b), for 2 ≤ b ≤ n
[75] Pointer Machine O(n) O(nε)

Theorem 3.3.3 [65] Pointer Machine O(n lg σ) O(lg σ)
Theorem 3.4.1 [65] RAM O(n) words O(lg σ)

Theorem 3.5.9 RAM nH(WT) + 2n+ o(n lg σ) bits O(lg σ/ lg lg σ)

We design succinct data structures for path queries over an ordinal tree T on n nodes,
each having a weight drawn from [1..σ]. Let WT denote the multiset that consists of the
weights of the nodes in T . Our data structures occupy nH(WT) + 2n + o(n lg σ) bits of
space, which is close to the information-theoretic lower bound ignoring lower-order terms,

25

achieving faster query time compared to the best known O(n lg n)-bit data structures [65],
which are not succinct. We summarize our results in Table 3.1, along with previous results.

3.1.3 The Organization of This Chapter

The rest of this chapter is organized as follows. In Section 3.2, we prove some properties
that are needed when answering path queries using the technique of tree extraction. Then,
we describe our data structures in Section 3.3 to Section 3.5. Finally, Section 3.6 concludes
this chapter with a summary and some open problems.

3.2 Applying Tree Extraction to Path Queries

Now we apply the technique of tree extraction, which has been described in Section 2.5.3,
to path queries. Let T be the given input tree on n nodes, each having a weight drawn
from [1..σ]. For any integral range [a..b] ⊆ [1..σ], we define Ra,b to be the set of nodes in T
that have a weight in [a..b]. We denote by Fa,b the Ra,b-extraction of T , which is a forest
containing exactly |Ra,b| nodes. Note that the nodes in Fa,b are not weighted, though they
correspond to weighted nodes in T . Thus, F1,σ has the same structure as T , but the nodes
in F1,σ are not weighted. An example of constructing F1,1 and F3,4 for an weighted ordinal
tree with n = 10 and σ = 4 is illustrated in Figure 3.1.

We define more depth and ancestor operators in terms of weights. For any ordinal

11
3

1 4

1

2 4
3

2
2

4
T

F3,4

F1,1

3
4

4

3

4

Figure 3.1: An example with n = 10 nodes and σ = 4. The integer on each node of F1,1 and
F3,4 is the weight of its corresponding node in T . We still write down these weights to help
readers locate the original nodes.

forest FX that is extracted from T , and any node uX in FX , we define depa,b(FX , uX),

26

or the [a..b]-depth of uX in FX , to be the number of ancestors of uX that correspond to
a node in Ra,b. Likewise, we define anca,b(FX , uX) to be the lowest ancestor of uX that
corresponds to a node in Ra,b. If no such ancestor exists, then anca,b(FX , uX) is defined
to be dummy. We further apply these definitions to T . That is, depa,b(T, u) is equivalent
to depa,b(F1,σ, uR1,σ), and anca,b(T, u) is equivalent to the node in T that corresponds to
anca,b(F1,σ, uR1,σ), where uR1,σ is the node in F1,σ that corresponds to u.

For any nodes u and v in T , let Pu,v denote the set of nodes on the path from u to v.
If u and v are the same node, then Pu,v contains this node only. For any node u in T and
its ancestor t, we define Au,t to be the set of nodes on the path from u to t, excluding the
top node t. Thus, Au,u is a valid but empty set. It is clear that, for any nodes u and v in
T , Pu,v is the disjoint union of Au,t, Av,t and {t}, where t is the lowest common ancestor
of u and v.

Consider how to compute the intersection of Ra,b and Pu,v. Provided that t is the lowest
common ancestor of u and v, we have

Ra,b ∩ Pu,v = Ra,b ∩ (Au,t ∪ Av,t ∪ {t})
= (Ra,b ∩ Au,t) ∪ (Ra,b ∩ Av,t) ∪ (Ra,b ∩ {t}); (3.1)

and its cardinality is

|Ra,b ∩ Pu,v| = |(Ra,b ∩ Au,t) ∪ (Ra,b ∩ Av,t) ∪ (Ra,b ∩ {t})|
= |Ra,b ∩ Au,t|+ |Ra,b ∩ Av,t|+ |Ra,b ∩ {t}|
= depa,b(T, u)− depa,b(T, t) + depa,b(T, v)− depa,b(T, t) + 1Ra,b(t)

= depa,b(T, u) + depa,b(T, v)− 2 · depa,b(T, t) + 1Ra,b(t), (3.2)

where 1Ra,b(t) is equal to 1 if the weight of t is between a and b, or equal to 0 if not. In
order to compute the cardinality efficiently, we need a fast way to compute depa,b(T, u)’s.
A naive solution is to store the value of dep1,b(T, u) for any 1 ≤ b ≤ σ and any node u in T .
This method requires O(σ) space for each node in T so that the overall space cost would
be O(nσ). To save space, we prove the follow lemmas with respect to ranges of weights.

Lemma 3.2.1. For any node u ∈ V (T), and any two nested ranges [a..b] ⊆ [a′..b′] ⊆ [1..σ],
the following statements hold:

(a) depa,b(T, u) = depa,b(Fa′,b′ , vRa′,b′),

(b) anca,b(T, u) corresponds to node anca,b(Fa′,b′ , vRa′,b′) in Fa′,b′,

where vRa′,b′ is the node in Fa′,b′ that corresponds to v = anca′,b′(T, u).

27

Proof. Let X and Y denote Ra,b and Ra′,b′ , respectively; then Fa′,b′ = FY and vRa′,b′ = vY .
We also let XY denote the set of nodes in FY that correspond to the nodes in X. Thus
depa,b(Fa′,b′ , vRa′,b′) = depXY (FY , vY) and anca,b(Fa′,b′ , vRa′,b′) = ancXY (FY , vY).

For part (a), we first prove that depa,b(F, u) = depa,b(F, v). Since X ⊆ Y and v is the
lowest ancestor of u that belongs to Y , any ancestor of u that belongs to X must also be
an ancestor of v. Thus we have depa,b(F, u) ≤ depa,b(F, v). Remember that v is an ancestor
of u; we therefore have depa,b(F, u) = depa,b(F, v).

In addition, observe that deleting a node not in X does not change the [a..b]-depth
of any other node. By induction on the number of the deletion operations, we can show
that, for any node v ∈ Y , depa,b(F, v) is equal to depXY (FY , vY). Combining these two
equations, we conclude that depa,b(F, u) = depXY (FY , vY).

For part (b), we define that t = anca,b(F, u) and zY = ancXY (FY , vY). Our claim clearly
holds if t = dummy. Otherwise, t must be an ancestor of v in T , and tY must be an ancestor
of vY in FY . Since t ∈ X and tY ∈ XY , zY = ancXY (FY , vY) is not a dummy node. In
addition, tY must be an ancestor of zY in FY , and t must be an ancestor of z in T . On the
other hand, the depth of z in T cannot be larger than the depth of t, since t is the lowest
ancestor of u that belongs to X. We thus conclude that t is equal to z and corresponds to
zY in FY .

Lemma 3.2.2. For any node u in T , and any range [a..b] ⊆ [1..σ], the following equation
holds:

depa,b(T, u) = dep(Fa,b, xRa,b),

where xRa,b is the node in Fa,b that corresponds to x = anca,b(T, u).

Proof. By part (a) of Lemma 3.2.1, setting [a..b] = [a′..b′].

Lemma 3.2.3. For any range [a..b] ⊆ [1..σ], the preorder traversal sequence of Fa,b corre-
sponds to the sequence of nodes obtained by removing the nodes that are not in Ra,b from
the preorder traversal sequence of T .

Proof. By Lemma 2.5.4, setting X = Ra,b and X ′ = V (T).

3.3 Data Structures under the Pointer Machine Model

In this section, we present our data structure under the pointer machine model. Our basic
idea is to build a conceptual range tree on [1..σ]: Starting with [1..σ], we keep splitting

28

each range into two child ranges that differ by at most 1 in length. Formally, provided
that a < b, the range [a..b] will be split evenly into child ranges [a1..b1] and [a2..b2], where
a1 = a, b1 = b(a+ b)/2c, a2 = b1 + 1 and b2 = b. This procedure stops when [1..σ] has been
split into σ leaf ranges of length 1, each of which corresponds to a single value in [1..σ].

2
2211

3
1 4

1

2 4
3

2
2

4
T1,4

T1,2 T3,4

T1,1 T2,2 T3,3 T4,4

1

12

2
2

3

3

4
4

4

3
4

4

3

4

Figure 3.2: An example with n = 10 nodes and σ = 4. The integer on each non-dummy node
is the weight of its corresponding node in T . We preserve these weights to help readers locate
the corresponding nodes.

For each range [a..b] in the range tree, we construct and store Fa,b explicitly. For the
sake of convenience, we explicitly add a dummy root to each Fa,b, and denote by Ta,b the
new ordinal tree rooted at the dummy node. The dummy root is omitted for the preorder
traversal sequence of Ta,b and the depths of the nodes in Ta,b, so Fa,b and Ta,b can be used
interchangeably for the depth and ancestor operators, and Lemmas 3.2.1 to 3.2.3 listed in
Section 3.2 still hold for Ta,b’s. Figure 3.2 gives an example of constructing all the Ta,b’s

29

for the ordinal tree T in Figure 3.1.
On each node x in Ta,b we store the depth of x, and a pointer to the node in T that

corresponds to x. For each non-leaf range [a..b], let [a1..b1] and [a2..b2] be the child ranges
of [a..b]. For each node x in Ta,b, we pre-compute and store the value of dep(Ta,b, x), and
a pointer to the node in Tai,bi that corresponds to ancai,bi(Ta,b, x) for i = 1, 2, which is
denoted by pointera,b(x, i).

We now show how to support path queries using the above data structure.

Algorithm 1 The algorithm for path counting and reporting queries.

1: procedure Search([a..b], x, y, z, [p..q])
2: . x, y and z correspond to anca,b(T, u), anca,b(T, v) and anca,b(T, t), respectively.
3: if [a..b] ⊆ [p..q] then
4: if the given query is a path reporting query then
5: report all nodes on the path from x to y except z;
6: report node t if its weight is in [a..b];
7: end if
8: return dep(Ta,b, x) + dep(Ta,b, y)− 2 · dep(Ta,b, z) + 1Ra,b

(t);
9: . |Pu,v ∩Ra,b|, by Lemma 3.2.2 and Equation 3.2.

10: end if
11: Let [a1..b1] and [a2..b2] be the child ranges of [a..b];
12: δi ← pointera,b(δ, i) for δ = {x, y, z} and i = 1, 2; . By part (b) of Lemma 3.2.1.
13: count← 0;
14: for i← 1, 2 do
15: if [ai..bi] ∩ [p..q] 6= φ then
16: count← count+ Search([ai..bi], xi, yi, zi, [p..q]);
17: end if
18: end for
19: return count;
20: end procedure

Lemma 3.3.1. The data structure described in this section supports path counting queries
in O(lg σ) time, and path reporting queries in O(lg σ + occ) time, where occ is the output
size of the query.

Proof. Let u and v be the endpoints of the query path, and let [p..q] be the query range.
We first consider how to compute the cardinality of Pu,v ∩ Rp,q for path counting queries.
By properties of range trees, each query range [p..q] ⊆ [1..σ] can be represented as the
union of m disjoint ranges in the range tree, say [a1..b1], . . . , [am..bm], where m = O(lg σ).
Because Pu,v ∩ Rp,q =

⋃
1≤i≤m(Pu,v ∩ Rai,bi), we need only to compute the cardinality of

Pu,v ∩Rai,bi efficiently, for 1 ≤ i ≤ m.

30

The algorithm is shown in Algorithm 1, where t is the lowest common ancestor of
u and v. Provided that [a..b] is a range in the conceptual range tree, x, y and z are
nodes in Ta,b that correspond to anca,b(T, u), anca,b(T, v) and anca,b(T, t), the procedure
Search([a..b], x, y, z, [p..q]) returns the cardinality of Pu,v ∩ Ra,b ∩ Rp,q, and reports the
nodes in the intersection if the given query is a path reporting query. Please note that the
node in T that corresponds to z is not necessarily on the path from u to v. To compute
Pu,v ∩Rp,q, we need only to call Search([1..σ], u, v, t, [p..q]).

Our algorithm accesses the range tree from top to bottom, ending at the ranges com-
pletely included in [p..q]. Line 8 computes |Pu,v ∩Ra,b| in O(1) time when [a..b] ⊆ [p..q]. In
line 12, the algorithm iteratively computes the lowest ancestors of x, y, z for child ranges.
Finally, in line 16, the algorithm recurses on child ranges that intersect with [p..q].

For path reporting queries, as shown in lines 4 to 7, our algorithm traverses from x to
y, reporting all the nodes on this path except z. Note that for each node being reported,
we report the node in T that corresponds to it by following the pointer saved in this node.
Finally, we report node t if its weight is in this range. These nodes correspond to the ones
in Pu,v ∩Ra,b.

Now we analyze the time cost of Algorithm 1. First of all, the LCA query performed
at the very beginning can be supported in constant time and linear space (see [14] for a
simple implementation). We thus need only to consider our range tree. For path counting
queries, Algorithm 1 accesses O(lg σ) ranges, and it spends constant time on each range.
For path reporting queries, Algorithm 1 uses O(1) additional time to report each occur-
rence. Hence, the query time of path counting is O(lg σ), and the query time of path
reporting is O(lg σ + occ), where occ is the output size.

Lemma 3.3.2. The data structure described in this section supports path median and
selection queries in O(lg σ) time.

Proof. It suffices to consider path selection queries only. Let u and v be the nodes given
in the query, and let k be the rank of the weight to select. Our algorithm for path median
and selection queries is shown in Algorithm 2, where t is the lowest common ancestor
of u and v. Provided that [a..b] is a range in the conceptual range tree, x, y and z are
nodes in Ta,b that correspond to anca,b(T, u), anca,b(T, v) and anca,b(T, t), the procedure
Select([a..b], x, y, z, s) returns the s-th smallest weight among the weights of the nodes
in Ra,b ∩ Pu,v. To compute the given query, we only need to call Select([1..σ], u, v, t, k).

Now let us analyze the procedure Select. If a = b, the weight to return must be a.
Otherwise, let [a1..b1] and [a2..b2] be the child ranges of [a..b], where b1 < a2. The algorithm
computes count = |Pu,v ∩ Ra1,b1| in line 9, and compares it with s. If s is not larger than
count, then the algorithm recurses on [a1..b1] in line 12; otherwise the algorithm deducts

31

Algorithm 2 The algorithm for path median and selection queries.

1: procedure Select([a..b], x, y, z, s)
2: . x, y and z correspond to anca,b(T, u), anca,b(T, v) and anca,b(T, t), respectively.
3: if a = b then
4: return a;
5: end if
6: Let [a1..b1] and [a2..b2] be the child ranges of [a..b], where b1 < a2;
7: δi ← pointera,b(δ, i) for δ = {x, y, z} and i = 1, 2;
8: . By part (b) of Lemma 3.2.1.
9: count← dep(Ta1,b1 , x1) + dep(Ta1,b1 , y1)− 2 · dep(Ta1,b1 , z1) + 1Ra1,b1

(t);
10: . |Pu,v ∩Ra1,b1 |, by Lemma 3.2.2 and Equation 3.2.
11: if s ≤ count then
12: return Select([a1..b1], x1, y1, z1, s);
13: else
14: return Select([a2..b2], x2, y2, z2, s− count);
15: end if
16: end procedure

count from s and recurses on [a2..b2] in line 14. Hence Algorithm 2 traverses the range
tree from top to bottom, visiting at most O(lg σ) ranges, and finally ending at some range
of length 1. It also spends only constant time on each visited range. This algorithm thus
uses O(lg σ) time to answer a path median or selection query.

With Lemmas 3.3.1 and 3.3.2, we can present our result on supporting path queries
under the pointer machine model.

Theorem 3.3.3. Under the pointer machine model, a tree on n weighted nodes can be
represented in O(n lg σ) space to support path counting, median and selection queries in
O(lg σ) time, and path reporting queries in O(lg σ+occ) time, where the weights are drawn
from [1..σ], and occ is the output size of the path reporting query.

Proof. The claim of query time follows from Lemma 3.3.1 and Lemma 3.3.2. It suffices
to analyze the space cost of our data structure. For a range [a..b] in the range tree, our
data structure uses O(|Ra,b|) space to store Ta,b, the depths of nodes, and the pointers to
T and child ranges. Thus the adjunct data structures constructed for each level of the
range tree occupy O(n) space in total, and the overall space cost of our data structure is
O(n lg σ).

32

3.4 Word RAM Data Structures with Reduced Space

Cost

In this section we show how to reduce the space cost of the data structure presented in
Section 3.3. We adopt the standard word RAM model of computation with word size
w = Ω(lg n). For path counting, median and selection queries, we achieve O(lg σ) query
time with O(n) words of space. For path reporting queries, we require O(lg σ + occ lg σ)
query time with O(n) words of space. Note that the data structures for path counting,
reporting, median, and selection queries are worse than the succinct data structures pre-
sented in Section 3.5. We keep these results in this chapter because they may help readers
understand our succinct data structures.

Our starting point for space optimization is the succinct representation of labeled or-
dinal trees. It is noteworthy that weights and labels both mean integers in this thesis.
However, for the sake of clarity and consistency, we resist to use these two terms inter-
changeably. Integers assigned to nodes of the given input tree are referred to as weights.
To support these path queries over the input tree, we construct ordinal trees whose nodes
are assigned integers that are computed from weights in certain ways (like Ta,b’s in this
section and T`’s in Section 3.5). These integers are referred to as labels.

As shown in Lemma 2.5.3, there exists a data structure that encodes a tree on n labeled
nodes in O(n) bits of space when the number of distinct labels is constant, and supports
a set of basic operations in constant time. To make use of this representation, nodes are
denoted by the preorder ranks throughout Section 3.4. We now present our linear space
data structure.

Theorem 3.4.1. Under the word RAM model with word size w = Ω(lg n), a tree on n
weighted nodes can be represented in O(n) words of space to support path counting, median
and selection queries in O(lg σ) time, and path reporting queries in O(lg σ+ occ lg σ) time,
where the weights are drawn from [1..σ], and occ is the output size of the path reporting
query.

Proof. For our new data structure, we still build a conceptual range tree as in Section 3.3.
Unlike the previous data structure, we store only the succinct representation of Ta,b for
each range [a..b] in the range tree. We assign a label to each node in Ta,b if range [a..b] is
not a leaf range. Let [a1..b1] and [a2..b2] be child ranges of [a..b], where b1 < a2. We assign
label 0 to the dummy root in Ta,b, though this dummy root is not taken into account for
the preorder traversal sequence of Ta,b. For each non-dummy node x in Ta,b, we assign it
label i if x corresponds to a node in Rai,bi for i = 1 or 2. By Lemma 2.5.3, the succinct

33

representation for range [a..b] occupies O(|Ra,b|) bits. Thus, the space cost of our new data
structure is O(n lg σ/w) = O(n) words.

Now consider how to answer path queries. Note that the nodes in the succinct repre-
sentation can be identified by their ranks in preorder. Let [a..b] be a non-leaf range, and
let [a1..b1] and [a2..b2] be the child ranges of [a..b], where b1 < a2. Suppose that node x is
in Ta,b, node xi is in Tai,bi for i = 1 or 2, and x and xi correspond to the same node in T .
We show that, once the preorder rank of x in Ta,b is known, the preorder rank of xi in Tai,bi
can be computed in constant time, and vice versa. By the construction of our linear space
data structure, Tai,bi contains the nodes that correspond to the nodes in Ta,b that have a
label i. By Corollary 3.2.3, these nodes have the same relative positions in the preorder
traversal sequences of Tai,bi and Ta,b. We thus have that

pre ranki(Ta,b, x) = pre rank(Tai,bi , xi),

xi = pre select(Tai,bi , pre ranki(Ta,b, x)), (3.3)

x = pre selecti(Ta,b, pre rank(Tai,bi , xi)). (3.4)

By applying these formulas, it takes constant time to convert the preorder ranks of two
corresponding nodes between two adjacent levels in the range tree.

Since depth is supported over the succinct representation of Ta,b for each range [a..b],
we need only to consider how to compute pointera,b(x, i) for child ranges (Line 12 in
Algorithm 1 and line 7 in Algorithm 2). For δ = {x, y, z} and i = 1, 2, we can compute
the node in Ta,b that corresponds to pointera,b(δ, i) by lowest anci(Ta,b, δ), and convert it
to the actual pointera,b(δ, i) using Equation 3.3. If δ has no ancestor with label i in Ta,b,
then pointera,b(δ, i) would be the dummy root of Tai,bi .

It is more complicated to deal with path reporting queries. Unlike the data structure
described in Section 3.3, given a node x in some Ta,b that needs to be reported, we cannot
directly locate its corresponding node in T by following an appropriate pointer, as we
cannot afford to store these pointers. Instead, we find the node in the tree constructed for
the parent range of [a..b] that corresponds to x using Equation 3.4, and repeat this process
until we reach the root range in the range tree. This procedure takes O(lg σ) time for each
node to be reported.

To analyze the query time, we observe that, for path counting, median and selection
queries, our linear space data structure still uses constant time on each visited range.
Hence, these queries can be answered in O(lg σ) time. For path reporting queries, this data
structure requires O(lg σ) additional time for each node to report. Thus, path reporting
queries can be answered in O(lg σ + occ lg σ) time, where occ is the output size.

34

3.5 Succinct Data Structures with Improved Query

Time

In this section, we present the main results in this chapter. The basic idea is to increase
the branching factor of the conceptual range tree, pack all Fa,b’s at the same level into
a single labeled ordinal tree, and store it using a succinct representation. However, the
representation in Lemma 2.5.3 is succinct only if σ = o(lg lg n). We have to develop
another succinct representation of labeled ordinal trees in Section 3.5.1. Then, using this
representation and other auxiliary data structures, we design the succinct data structures
for path queries in Sections 3.5.2 and 3.5.3. As in the previous section, we assume that
nodes are denoted by their preorder ranks in Section 3.5.

3.5.1 Succinct Ordinal Trees over an Alphabet of Size O(lgε n)

We describe a succinct data structure to encode an ordinal tree T on n labeled nodes, in
which the labels are drawn from [1..σ], where σ = O(lgε n) for some constant 0 < ε < 1.
This succinct representation occupies n(H0(PLST) + 2) + o(n) bits of space to support a
set of operations in constant time, where PLST is the preorder label sequence of T . Let
WT denote the multiset that consists of the weights of the nodes in T . As the entropy of
WT only depends on the frequencies of the labels, we have H0(PLST) = H(WT). Thus,
the space cost can also be represented as n(H(WT) + 2) + o(n) bits. However, we use
H0(PLST) in this section to facilitate space analysis. The starting points of our succinct
representation are Geary et al.’s [54] succinct ordinal tree, and Bose et al.’s [18] data
structure for orthogonal range search on a narrow grid.

In the rest of this section, we consider the operations listed below. For the sake of
convenience, we call a node x an α-node or an α-ancestor of its descendants if the label of
x is α. Also, we assume that nodes x and y are contained in T , α and β are in [1..σ], a
node precedes itself in preorder, and a node is its own 0-th ancestor.

• pre rank(T, x): Return the number of nodes that precede x in preorder;

• pre rankα(T, x): Return the number of α-nodes that precede x in preorder;

• pre select(T, i): Return the i-th node in preorder;

• pre selectα(T, i): Return the i-th α-node in preorder;

35

• pre countβ(T, i): Return the number of nodes whose preorder ranks are at most i
and labels are at most β;

• depth(T, x): Return the number of ancestors of x;

• depthα(T, x): Return the number of α-ancestors of x;

• LCA(T, x, y): Return the lowest common ancestor of x and y;

• lowest ancα(T, x): Return the lowest α-ancestor of x if such an α-ancestor exists,
otherwise return NULL;

• node countβ(T, x): Return the number of nodes on the path from x to the root of T
whose labels are at most β;

• node summarize(T, x, y): Given that node y is an ancestor of x, this operation returns
σ bits, where the α-th bit is 1 if and only if there exists an α-node on the path from
x to y (excluding y), for 1 ≤ α ≤ σ.

We first compute the mini-micro tree cover of T using Lemma 2.5.1 for M = dlg2 ne and
M ′ = dlgλ ne for some max{ε, 1

2
} < λ < 1. It is easy to verify that, with our choice of M

and M ′, the operations in Lemma 2.5.2, which are related to tree nodes, tier-k subtrees
and tier-k roots, can still be supported in O(1) time, using 2n + o(n) bits of space and
O(n) construction time. Let n1 and n2 be the numbers of tier-1 roots and tier-2 roots. By
Lemma 2.5.1, they are bounded by O(n/M) and O(n/M ′), respectively. To store the labels,
we encode PLST [1..n] using Lemma 2.4.4, occupying nH0(PLST) + o(n) bits of space. We
defer the analysis of the construction time of PLST to the proof of Theorem 3.5.8. These
are our main data structures that encode the structure of the tree and the labels of nodes.

To support operations, we design auxiliary data structures that require o(n) bits of
additional space and O(n) construction time.

Lemma 3.5.1. Operations pre rank, pre select, depth, LCA, pre rankα, pre selectα
and pre countβ can be supported using O(1) query time, o(n) bits of additional space and
o(n) construction time.

Proof. The first four operations are supported by Lemma 2.5.2 without extra cost. Also,
pre rankα and pre selectα are naturally supported by Lemma 2.4.4 without extra cost.
In addition, the conclusion of Lemma 2.4.4 satisfies the condition of Lemma 2.4.5. Thus
pre countβ can also be supported in O(1) time, using o(n) bits of additional space and
o(n) construction time.

36

Before describing the support for operations depthα, lowest ancα, node countβ and
node summarize, we first define four auxiliary operations related to tier-1 and tier-2 roots.
In the definitions below, x is a tier-1 root, and y is a tier-2 root.

• mini depth(T, x): Return the number of tier-1 roots on the path from x to the root
of T ;

• mini anc(T, x, i): Return the (i+ 1)-st tier-1 root on the path from x to the root of
T , provided that 0 ≤ i < mini depth(T, x);

• micro depth(T, y): Return the number of tier-2 roots on the path from y to the root
of T ;

• micro anc(T, y, i): Return the (i + 1)-st tier-2 root on the path from y to the root
of T , provided that 0 ≤ i < micro depth(T, y).

Lemma 3.5.2. mini depth, mini anc, micro depth, and micro anc can be supported
using O(1) query time, o(n) bits of additional space and O(n) construction time.

Proof. We only show how to support the first two operations. The other operations can
be supported in the same way. We compute tree T ′ by deleting all the nodes other than
the tier-1 roots from T , which uses O(n) time. Clearly T ′ has n1 nodes. To perform
conversions between the nodes in T ′ and the tier-1 roots in T , we construct and store a
bit vector B1[1..n] in which B1[i] = 1 if and only if the i-th node in preorder of T is a
tier-1 root. By Lemma 2.3.1, B1 can be encoded using o(n) bits and O(n) construction
time to support rank and select in O(1) time. Note that the i-th node in T ′ corresponds
to the tier-1 root of preorder rank j in T if and only if B1[j] is the i-th 1-bit in B1. Thus
the conversion can be done in constant time using rank and select on B1. Applying the
techniques in Lemma 2.5.2, we encode T ′ in 2n1 + o(n1) = o(n) bits and O(n1) = o(n)
construction time to support mini depth and mini anc directly. The overall space cost is
o(n) additional bits, and the overall construction time is O(n).

Lemma 3.5.3. depthα, lowest ancα and node countβ can be supported using O(1) query
time, o(n) bits of additional space and o(n) construction time.

Proof. We first show how to compute the encoding of a micro tree, which consists of two
parts, i.e., the encoding of the structure and the encoding of the labels. The first part can
be directly retrieved using Lemma 2.5.2. The computation for the second part requires
several lemmas. By Lemmas 2.5.1 and 2.5.2, nodes in this micro tree are distributed into

37

O(1) tier-2 preorder segments, and the starting and ending positions of all these segments
can be found in constant time. Remember that this micro tree has at most 2M ′ = o(logσ n)
nodes; by Lemma 2.4.4, we can obtain the labels of nodes for each of these segments in
O(1) time. Concatenating all these labels in preorder, we obtain the encoding of the labels
for the entire micro tree. This can be done using a constant number of bitwise operations,
since all these labels can be stored in 2M ′ × dlg σe = o(lg n) bits.

Once node countβ operations are supported, depthα operations can be computed by
the equation depthα(T, x) = node countα(T, x) − node countα−1(T, x). Thus we only
show how to support node countβ. lowest ancα can be supported in a similar way.

To support node countβ operations, we store the following auxiliary data structures:

• A two-dimensional array A[1..n1, 1..σ], in which A[i, β] stores the number of nodes
on the path from r1

i to the root of T whose labels are at most β.

• A two-dimensional array B[1..n2, 1..σ], in which B[i, β] stores the number of nodes
on the path from r2

i to and excluding the root of the mini-tree containing r2
i whose

labels are at most β.

• A table C that stores for every possible labeled tree p on at most 2M ′ nodes whose
labels are drawn from [1..σ], every integer i in [1..2M ′] and every integer β in [1..σ],
the number of nodes on the path from the i-th node in preorder of p to and excluding
the root of p whose labels are at most β.

Now we analyze the space cost of these auxiliary data structures. A occupies n1 × σ ×
O(lg n) = O(n/ lg1−ε n) = o(n) bits, since n1 = O(n/ lg2 n), and each entry can be stored
in O(lg n) bits. B occupies n2 × σ × O(lg lg n) = O(n lg lg n/ lgλ−ε n) = o(n) bits, since
n2 = O(n/ lgλ n), and each entry can be stored in O(lg lg n) bits. Now let us consider the
table C. By Lemma 2.5.1, a micro-tree has no more than 2M ′ nodes. Thus C has at most
24M ′ × σ2M ′ × 2M ′× σ = 22dlgλ ne(lg σ+2)× 2dlgλ ne× σ = O(n1−δ) entries for some constant
δ > 0, each occupying O(lg lg n) bits. Therefore, A, B and C occupy o(n) additional bits
in total.

The analysis of the construction time is similar to the proof of Lemma 2.4.5. First we
precompute the lookup table C by enumeration. Then we fill the array B row by row.
For i = 1, 2, . . . , n2, we set B[i, β] = 0 if r2

i is also a tier-1 root. Otherwise, we compute
r2
a = micro anc(T, r2

i , 1), and set B[i, β] to be B[a, β] plus the number of nodes on the
path from r2

i to and excluding r2
a whose labels are at most β, where the latter value can

be determined using the lookup table C in O(1) time per entry. Thus the array B can
be computed in O(n2σ) = o(n) construction time. The computation of A is similar. The

38

overall construction time is thus o(n).
Let r1

c and r2
d be the root nodes of the mini-tree and the micro-tree containing x,

respectively. By Lemma 2.5.2, they can be found in constant time. To answer operation
node countβ(T, x), we split the path from x to the root of T into three parts: the path
from x to and excluding r2

d, the path from r2
d to and excluding r1

c , and the path from r1
c

to the root of T . The numbers on the second and the third parts can be accumulated by
accessing B[d, β] and A[c, β], respectively. For the first part, we consider only the case in
which x is not a tier-2 root. By Lemma 2.5.2, we are able to compute in constant time
the relative preorder rank of x with respect to the micro-tree containing x. Thus we can
obtain the count on the first part by a table lookup on C.

Lemma 3.5.4. node summarize can be supported using O(1) query time, o(n) bits of
additional space and o(n) construction time.

Proof. To support node summarize, we construct the following auxiliary data structures:

• A two-dimensional array D[1..n1, 0..dlg ne], in which D[i, j] stores a bit vector of
length σ whose α-th bit is 1 if and only if there exists an α-node on the path from
r1
i to mini anc(T, r1

i , 2
j).

• A two-dimensional array E[1..n2, 0..3dlg lg ne], in which E[i, j] stores a bit vector of
length σ whose α-th bit is 1 if and only if there exists an α-node on the path from
r2
i to micro anc(T, r2

i , 2
j).

• A table F that stores for every possible labeled tree p on at most 2M ′ nodes whose
labels are drawn from [1..σ] and for every integer i, j in [1..2M ′], a bit vector of length
σ whose α-th bit is 1 if and only if there exists an α-node on the path from the i-th
node of p in preorder to the j-th node in preorder of p.

• All these paths do not include the top nodes.

Now we analyze the space cost. D occupies n1×(dlg ne+1)×σ = O(n/ lg1−ε n) = o(n) bits.
E occupies n2 × (3dlg lg ne+ 1)× σ = O(n lg lg n/ lgλ−ε n) = o(n) bits. As in the analysis
of C, F has O(n1−δ) entries for some constant δ > 0, each occupying σ bits. Therefore, D,
E and F occupy o(n) bits in total. The analysis of the construction time is similar to the
proofs of Lemmas 2.4.5 and 3.5.3.

Let r1
a and r2

b be the roots of the mini-tree and the micro-tree containing x, respectively.
Also, let r1

c and r2
d be the roots of the mini-tree and the micro-tree containing y, respectively.

39

Suppose that a 6= c (the case in which a = c can be handled similarly). We define the
following two nodes:

r1
e = mini anc(T, r1

a, mini depth(T, r1
a)− mini depth(T, r1

c)− 1),

r2
f = micro anc(T, r1

e , micro depth(T, r1
e)− micro depth(T, r2

d)− 1).

To answer node summarize(T, x, y), we split the path from x to y into x ∼ r2
b ∼ r1

a ∼ r1
e ∼

r2
f ∼ y. We compute for each part a bit vector of length σ whose α-th bit is 1 if and only

if there exists an α-node on this part. The answer to the node summarize operation is the
result of a bitwise OR operation on these bit vectors.

The first part and the last part are paths in the same micro-tree. Thus their bit vectors
can be computed by table lookups on F . We only show how to compute the bit vector of the
third part, i.e., the path r1

a ∼ r1
e ; the bit vectors of the second and the fourth part can be

computed in a similar way. Setting i = mini depth(T, r1
a)− mini depth(T, r1

e), j = blg ic,
tier-1 root r1

g = mini anc(T, r1
a, i − 2j), the path from r1

a to r1
e can be represented as the

union of the path from r1
a to mini anc(T, r1

a, 2
j) and path from r1

g to mini anc(T, r1
g , 2

j).
Therefore the vector of this part is equal to the bitwise OR of D[a, j] and D[g, j].

To analyze the space cost of our data structure, we observe that the main cost is due
to the sequence PLST and Lemma 2.5.2, which occupy n(H0(PLST) + 2) + o(n) bits in
total. The other auxiliary data structures occupy o(n) bits of space only. We thus have
the following lemma.

Lemma 3.5.5. Let T be an ordinal tree on n nodes, each having a label drawn from
[1..σ], where σ = O(lgε n) for some constant 0 < ε < 1. Then T can be represented in
n(H0(PLST)+2)+o(n) bits of space to support the operations listed at the beginning of this
section, and the operations described in Lemma 2.5.2 in constant time. This data structure
can be constructed in O(n) time plus the preprocessing cost of PLST .

3.5.2 Path Counting and Reporting

We now describe the data structures for general path searching queries. The basic idea is
to build a conceptual range tree on [1..σ] with the branching factor f = dlgε ne for some
constant 0 < ε < 1. In this range tree, a range [a..b] corresponds to the nodes in T whose
weights are in [a..b]. These nodes and weights from a to b are said to be contained in the
range [a..b]. A range [a..b] is said to be empty if a > b. It is possible that a non-empty
range does not correspond to any node in T . In addition, the length of a range [a..b] is
defined to be b− a+ 1. Empty ranges have non-positive lengths.

40

We describe this range tree level by level. In the beginning, we have the top level only,
which contains the root range [1..σ]. Starting from the top level, we keep splitting each
range in the current lowest level into f child ranges, some of which might be empty. A
range [a..b], where a ≤ b, will be split into f child ranges [a1..b1], [a2..b2], . . . , [af ..bf] such
that, for a ≤ j ≤ b, the nodes that have a weight j are contained in the child range of
subscript df(j−a+1)

b−a+1
e. After some calculations, we have that

ai = min
{
a ≤ j ≤ b |

⌈f(j − a+ 1)

b− a+ 1

⌉
= i
}

=
⌊(i− 1)(b− a+ 1)

f

⌋
+ a; (3.5)

bi = max
{
a ≤ j ≤ b |

⌈f(j − a+ 1)

b− a+ 1

⌉
= i
}

=
⌊i(b− a+ 1)

f

⌋
+ a− 1. (3.6)

This procedure stops when all the ranges in the current lowest level have length 1, which
form the bottom level of the conceptual range tree.

We list all the levels from top to bottom. The top level is level 1, and the bottom one
is level h, where h = dlogf σe + 1 is the height of the conceptual range tree. It is clear
that each value in [1..σ] occurs in exactly one range at each level, and each leaf range
corresponds to a single value in [1..σ].

For each level in the range tree other than the bottom one, we create and explicitly
store an auxiliary tree. Let T` denote the auxiliary tree created for level `. To create T`, we
list all the non-empty ranges at level ` in increasing order. Let [a1..b1], [a2..b2], · · · , [am..bm]
be those ranges. We have that a1 = 1, bm = σ, and bi = ai+1 − 1 for i = 1, 2, . . . ,m − 1.
Initially, T` contains only a dummy root r`. For i = 1, 2, · · · ,m, we compute forest Fai,bi as
described in Section 3.2, and then insert the trees in Fai,bi into T` in the original left-to-right
order. That is, for i = 1, 2, · · · ,m, from left to right, we append the root node of each tree
in Fai,bi to the list of children of r`. Thus, for ` = 1, 2, · · · , h− 1, there exists a one-to-one
correspondence between the nodes in T and the non-root nodes in T`. Note that all the
Fai,bi ’s at level ` share the same dummy root. This is slightly different from the description
in Section 3.2, where each Fai,bi is viewed as an ordinal tree with a non-removable dummy
root. Nevertheless, as in Section 3.2, the shared dummy root is not taken into account for
the preorder traversal sequence of T`, or the depths of the nodes in T`.

We assign labels to the nodes in T`. The root of T` is assigned 1. For each node x in
T , we denote by x` the node at level ` that corresponds to x. By the construction of the
conceptual range tree, the range containing x at level ` + 1 has to be a child range of the
range containing x at level `. We assign a label α to x` if the range at level ` + 1 is the
α-th child range of the range at level `. As the result, we obtain an ordinal tree T` on n+1
nodes, each having a label drawn from [1..f]. Since f = dlgε ne satisfies the condition of
Lemma 3.5.5, we explicitly store T` using this lemma.

41

Equations 3.7 and 3.8 capture the relationship between x` and x`+1, for each node x in
T and ` ∈ [1..h − 1]. Presuming that node x is contained in a range [a..b] at level `, and
contained in a range [aγ..bγ] at level `+ 1, which is the γ-th child range of [a..b], we have

rank = pre rankγ(T`, |R1,a−1|)
x`+1 = pre select(T`+1, |R1,aγ−1|+ pre rankγ(T`, x`)− rank) (3.7)

x` = pre selectγ(T`, pre rank(T`+1, x`+1)− |R1,aγ−1|+ rank) (3.8)

With these data structures, we can support path counting and reporting queries.

Algorithm 3 The algorithm for path counting and reporting queries on Au,t.

1: procedure Search([a..b], `, c, d, x, z, [p..q])
2: Let [a1..b1], [a2..b2], · · · , [af ..bf] be the child ranges of [a..b];
3: count← 0, [a∗..b∗] = [a..b] ∩ [p..q];
4: α = min{1 ≤ i ≤ f | a∗ ≤ ai ≤ bi}, β = max{1 ≤ i ≤ f | ai ≤ bi ≤ b∗};
5: if α ≤ β then
6: count← count+ node countα,β(T`, x)− node countα,β(T`, z);
7: if the given query is a path reporting query then
8: summary ← node summarize(T`, x, z);
9: for each i ∈ [α..β] that the i-th bit of summary is 1 do

10: report all i-nodes on the path from x to z (excluding z);
11: end for
12: end if
13: end if
14: for γ ∈ {α− 1, β + 1} do
15: if 1 ≤ γ ≤ f and [aγ ..bγ] ∩ [a∗..b∗] 6= φ then
16: cγ ← c+ pre countγ−1(T`, d)− pre countγ−1(T`, c);
17: dγ ← c+ pre countγ(T`, d)− pre countγ(T`, c);
18: δγ ← node in T`+1 that corresponds to lowest ancγ(T`, δ), for δ ∈ {x, z};
19: count← count+ Search([aγ ..bγ], `+ 1, cγ , dγ , xγ , zγ , [p..q]);
20: end if
21: end for
22: return count;
23: end procedure

Lemma 3.5.6. Path counting queries can be supported in O(lg σ/ lg lg n+ 1) time.

Proof. Let Pu,v ∩Rp,q be the query. Pu,v can be partitioned into Au,t, Av,t (see Section 3.2
for the definitions of Au,t and Av,t) and {t}, where t is the lowest common ancestor of u
and v. It is trivial to compute {t}∩Rp,q. We only consider how to compute the cardinality

42

of Au,t ∩Rp,q. The computation of Av,t ∩Rp,q is similar.
Our recursive algorithm for path counting and reporting queries is shown in Algo-

rithm 3. Provided that the range [a..b] is at the `-th level of the conceptual range tree,
c = |R1,a−1|, d = |R1,b|, and x, z are the nodes in T` that correspond to anca,b(T, u)
and anca,b(T, t), the procedure Search([a..b], `, c, d, x, z, [p..q]) returns the cardinality of
Au,t ∩ Ra,b ∩ Rp,q, and reports the nodes in the intersection if the given query is a path
reporting query. To compute Au,t ∩ Rp,q and its cardinality, we only need to call the pro-
cedure Search([1..σ], 1, 0, n, u, t, [p..q]).

Now let us analyze the procedure Search. In line 4, we find the first non-empty
child range of [a..b] whose left endpoint is at least a∗, and the last non-empty child range
whose right endpoint is at most b∗. Let α and β be the subscripts of these two child
ranges, respectively. To compute α (the computation of β is similar), let α′ = df(a∗−a+1)

b−a+1
e

be the subscript of the child range that contains a∗. α is set to be α′ if a∗ ≤ aα′ , oth-
erwise α is set to be α′ + 1. If α ≤ β, we accumulate |Au,t ∩ Raα,bβ | in line 6, where
node countα,β(T, x) is defined to be node countβ(T, x) − node countα−1(T, x). We still
need to compute Au,t ∩ (Ra∗,b∗ − Raα,bβ) = Au,t ∩ Ra∗,b∗ ∩ (Raα−1,bα−1 ∪ Raβ+1,bβ+1

). In the
loop starting at line 14, for γ ∈ {α− 1, β + 1}, we check whether [aγ..bγ] ∩ [a∗..b∗] 6= φ. If
the intersection is not empty, then we compute Au,t ∩ Ra∗,b∗ ∩ Raγ ,bγ and accumulate its
cardinality by a recursive call in line 19. In lines 16 to 18, we adjust the parameters to
satisfy the precondition of the procedure Search. We increase c and d as shown in lines 16
and 17, because for i = 1 to f , the nodes in T whose weights are in [ai..bi] correspond
to the nodes in T` whose labels are i and preorder ranks are in [c + 1..d]. In line 18, for
δ = {x, z}, we set δγ to be the node in T`+1 that corresponds to lowest ancγ(T`, δ). To
compute it, we call lowest ancγ(T`, δ), and convert the node returned to its corresponding
node in T`+1 using Equation 3.7. If lowest ancγ(T`, δ) returns NULL, then δγ is set to be
the dummy root of T`+1.

We now analyze the running time of our algorithm. By the construction of the con-
ceptual range tree, any query range [p..q] will be partitioned into O(h) ranges in the
range tree. It takes O(1) time to access a range in the range tree, since, by Lemma 2.5.2
and Lemma 3.5.5, all the operations on T` take O(1) time. Hence, it takes O(h) =
O(lg σ/ lg lg n+ 1) time to compute |Au,t ∩Rp,q|. The computation of |Av,t ∩Rp,q| requires
the same amount of time, and the original path counting query can thus be supported in
O(lg σ/ lg lg n+ 1) time.

Lemma 3.5.7. Path reporting queries can be supported in O((occ + 1)(lg σ/ lg lg n + 1))
time, where occ is the output size.

Proof. For path reporting query Pu,v ∩Rp,q, as in Lemma 3.5.6, we still let t be the lowest

43

common ancestor of u and v, partition Pu,v into Au,t, Av,t and {t}, and only consider how
to compute Au,t ∩Rp,q.

We extend the algorithm for path counting queries from Lemma 3.5.6. In lines 7 to 12
of Algorithm 3, we report all nodes on the path Au,t that have a weight in [aα..bβ]. In
line 8, we compute summary, a bit vector of length f , whose i-th bit is one if and only if
Au,t ∩ Rai,bi 6= φ. Since f = o(lg n), using word operations, we can enumerate each 1-bit
whose index is between α and β in constant time per 1-bit. For each 1-bit, assuming its
index is i, we find all the nodes in Au,t ∩ Rai,bi using lowest anci and parent operations
alternately. Here the parent operation, which returns the parent of a given node, is
supported in Lemma 3.5.5 (see the part for operations that are irrelevant to labels, i.e.,
Lemma 2.5.2). At this moment, we only know the preorder ranks of the nodes to report
in T`. We have to convert each of them to the preorder rank in T1 by using Equation 3.8
`− 1 times per node.

The analysis of query time is similar to Lemma 3.5.6. First it requires O(h) time for the
algorithm to traverse the conceptual range tree from top to bottom. Then the algorithm
uses O(h) time to report each node in Au,t ∩ Rp,q. Each 1-bit we enumerate in line 9
corresponds to one or more nodes to report, so the cost of enumeration is subsumed by
other parts of the algorithm. Therefore, it requires O(h + |Au,t ∩ Rp,q| · h) = O((|Au,t ∩
Rp,q| + 1)(lg σ/ lg lg n + 1)) time to compute Au,t ∩ Rp,q. In a similar way, it requires
O((|Av,t ∩ Rp,q| + 1)(lg σ/ lg lg n + 1)) time to compute Av,t ∩ Rp,q. The overall query
time for the original path reporting query is thus O((occ + 1)(lg σ/ lg lg n + 1)), where
occ = |Pu,v ∩Rp,q|.

Theorem 3.5.8. Let T be an ordinal tree on n nodes, each having a weight drawn from
[1..σ]. Under the word RAM model with word size w = Ω(lg n), T can be encoded in (a)
n(H(WT)+2)+o(n) bits when σ = O(lgε n) for some constant 0 < ε < 1, or (b) nH(WT)+
O(n lg σ/ lg lg n) bits otherwise, supporting path counting queries in O(lg σ/ lg lg n + 1)
time, and path reporting queries in O((occ+ 1)(lg σ/ lg lg n+ 1)) time, where H(WT) is the
entropy of the multiset of the weights of the nodes in T , and occ is the output size of the
path reporting query. It requires O(n(lg σ/ lg lg n+ 1)) preprocessing time to encode T .

Proof. It is sufficient to analyze the space and processing costs, as the query costs have
been justified in Lemmas 3.5.6 and 3.5.7. First of all, by the definition of entropy, we have
H0(PLST) = H(WT). When σ = O(lgε n) for some constant 0 < ε < 1, we reset the
branching factor f to be σ such that our conceptual range tree has only two levels. It is
sufficient to support path searching queries by storing T1 using Lemma 3.5.5. The space
cost is n(H(WT) + 2) + o(n) bits in this case. Otherwise, our conceptual range tree has
h = dlogf σe+ 1 levels. For ` = 1, 2, . . . , h− 1, we explicitly store a labeled ordinal tree T`

44

using Lemma 3.5.5. Note that the labels are stored in the preorder label sequences using
Lemma 2.4.4. As in the analysis of generalized wavelet trees [45], we claim that all these
preorder label sequences occupy nH0(PLST) + (h− 1) · o(n) = nH(WT) + o(n lg σ/ lg lg n)
bits in total. The other parts occupy (h− 1) ·O(n) = O(n lg σ/ lg lg n) bits. Therefore, the
overall space cost is nH(WT) +O(n lg σ/ lg lg n) bits.

Now we analyze the preprocessing cost. First it requires O(n) time to apply tree
extraction explicitly and compute the structure of each T`, and thus requires O(nh) time
over all the levels of the conceptual range tree. By Lemma 3.5.5, the cost of encoding
each T` is O(n) time, if we ignore the cost of constructing preorder label sequences. As
mentioned in the analysis of the space cost, the preorder label sequences of T`’s over all
the levels essentially form a generalized wavelet tree of the preorder label sequence of T ,
which can be constructed in O(n lg σ/

√
lg n) time [8]. Therefore, the overall preprocessing

cost is O(nh) = O(n(lg σ/ lg lg n+ 1)) time.

3.5.3 Path Median and Path Selection

To support path median and path selection queries, we apply the techniques we have
developed in this section to generalize the linear space data structure of Brodal et al. [23]
for range selection queries. We still build a conceptual range tree, as shown in Section 3.5.2.
The only difference is that the branching factor f is set to be dlgε σe instead of dlgε ne,
where 0 < ε < 1 is a fixed constant. We choose such a value for f so that f lg f , which will
be an additive term in the overall time cost, would not dominate the query time. It turns
out that the height h is dlogf σe + 1 = O(lg σ/ lg lg σ). For ` = 1, 2, · · · , h − 1, we create
and store T` explicitly using Lemma 3.5.5.

Let s be a non-negative integer in dlg ne bits. When s can be expressed in fewer than
dlg ne bits, we prepend 0-bits to express s in exactly dlg ne bits. We divide these dlg ne bits
into sections of size g = bw/fc − 1 = Ω(lg n/ lgε σ), where w = Ω(lg n) is the word size.
The first section contains the first g bits of s, which are the g most significant bits. The
second section contains the last five bits of the first section and then the following g − 5
bits, and so on. Here we duplicate these 5 bits to cover the approximation error, which
is bounded in Inequality 3.13. Thus, s is divided into ∆ = O(lg n/g) = O(lgε σ) sections.
Let sectp(s) denote the p-th section of s.

To support path median and path selection queries, we add auxiliary data structures to
each T`. We store for each T` a two-dimensional arrayX[1..n1, 1..∆], where n1 is the number
of tier-1 roots in T`. For each tier-1 root r1

i in T`, p = 1, 2, · · · ,∆, and β = 1, 2, · · · , f , we
prepend an extra bit to each sectp(A[r1

i , β]), concatenate them into a single word (see the
proof of Lemma 3.5.3 for the definition of A[r1

i , β]), and store the word at X[i, p]. Thus

45

the space cost of X is n1 ×∆ × O(lg n) = O(n lgε σ/ lg n) = o(n) bits. Clearly X can be
constructed in O(n1f) = o(n) time.

Theorem 3.5.9. Let T be an ordinal tree on n nodes, each having a weight drawn from
[1..σ]. Under the word RAM model with word size w = Ω(lg n), T can be represented in
(a) n(H(WT) + 2) + o(n) bits when σ = O(1), or (b) nH(WT) + O(n lg σ/ lg lg σ) bits
otherwise, supporting path median and path selection queries in O(lg σ/ lg lg σ) time. It
requires O(n(lg σ/ lg lg n+ 1)) preprocessing time to encode T .

Proof. We need only show how to answer a query. Let u and v be the endpoints of the query
path, and let k be the rank of the weight to select. We still partition Pu,v into Au,t, Av,t and
{t}, where t is the lowest common ancestor of u and v. Our recursive algorithm is shown
in Algorithm 4. Provided that the range [a..b] is at the `-th level of the conceptual range
tree, c = |R1,a−1|, d = |R1,b|, and x, y, z are the nodes in T` that correspond to anca,b(T, u),
anca,b(T, v) and anca,b(T, t), the procedure Select([a..b], `, c, d, x, y, z, s) returns the s-th
smallest weight among the weights of nodes in Pu,v ∩ Ra,b. To compute the given query,
we only need call Select([1..σ], 1, 0, n, u, v, t, k).

Algorithm 4 The algorithm for path median and selection queries on Pu,v.

1: procedure Select([a..b], `, c, d, x, y, z, s)
2: if a = b then
3: return a;
4: end if
5: Let [a1..b1], [a2..b2], · · · , [af ..bf] be the child ranges of [a..b];
6: r1

δ1
← the root of the mini-tree in T` that contains δ, for δ ∈ {x, y, z};

7: q ← min{1 ≤ p ≤ ∆ | sectp(|Pu,v ∩Ra,b|) > 14};
8: if such a section exists and q < ∆ then
9: compute index as described in the proof of Theorem 3.5.9;

10: α1 ← min{1 ≤ β ≤ f | index(β) ≥ sectq(s)− 3};
11: α2 ← min{1 ≤ β ≤ f | index(β) > sectq(s) + 4};
12: verify if γ = α1 or γ = α2 − 1; otherwise compute γ by binary search;
13: . γ is defined as Inequality 3.9.
14: else
15: recover the exact content of index as described;
16: γ ← min{1 ≤ β ≤ f | index(β) ≥ sect∆(s)};
17: end if
18: cγ ← c+ pre countγ−1(T`, d)− pre countγ−1(T`, c);
19: dγ ← c+ pre countγ(T`, d)− pre countγ(T`, c);
20: δγ ← the node in T`+1 that corresponds to lowest ancγ(T`, δ), for δ ∈ {x, y, z};
21: return Select([aγ ..bγ], `+ 1, cγ , dγ , xγ , yγ , zγ , s− node countγ−1(T`, u, v, t));
22: end procedure

46

Now let us analyze the procedure Select. Let the child ranges of [a..b] be [a1..b1],
[a2..b2], . . ., [af ..bf]. Our objective is to determine the only child range of [a..b] that
contains the s-th smallest weight. Formally, we are looking for 1 ≤ γ ≤ f such that

node countγ−1(T`, u, v, t) < s ≤ node countγ(T`, u, v, t), (3.9)

where node countγ(T`, u, v, t) denotes the number of nodes in Pu,v whose weights are in
[a..bγ], which can be computed by the following equation in constant time:

node countγ(T`, x) + node countγ(T`, y)− 2 · node countγ(T`, z) + |{t} ∩Ra,bγ |. (3.10)

We can always compute γ by a binary search in O(lg f) time. Thus the overall query time
would be h ·O(lg f) = O(lg σ), which we cannot afford.

To speed up the selection, we guide the search using X. Without loss of general-
ity, the following discussion is based on a fixed T`. We define a function nc(x, β) =
node countβ(T`, x), where x is a node in T` and β is in [1..f]. Note that if x is a
tier-1 root, say r1

i , then nc(x, β) = A[i, β]. In line 6, we compute the roots of the
mini-trees in T` that contain x, y and z, which are denoted by r1

x1
, r1

y1
and r1

z1
, re-

spectively. In line 7, we compute q, the subscript of the first section of |Pu,v ∩ Ra,b|
whose bits represent a number larger than 14. By Equation 3.10, we have |Pu,v ∩ Ra,b| =
depth(T`, x) + depth(T`, y) − 2 · depth(T`, z) + |{t} ∩ Ra,b|. Using word parallelism, the
most significant 1-bit of |Pu,v ∩Ra,b| and the value of q can be retrieved in constant time.

We will compute, for β = 1, 2, · · · , f , an approximate value of the q-th section of
|Pu,v ∩ Ra,bβ |. We will pack these approximate values into a single indexing word, and we
expect to determine the value of γ using this word, which is sufficient in most cases. The
value of |Pu,v∩Ra,bβ | differs from |Au,t∩Ra,bβ |+ |Av,t∩Ra,bβ | by at most 1. We make use of
X[x1] and X[z1] to approximate the q-th section of |Au,t ∩Ra,bβ | = nc(x, β)− nc(z, β), for
β = 1, 2, · · · , f . Approximate values of the q-th section of |Av,t ∩ Ra,bβ | can be computed
in a similar way. Putting them together, we obtain approximate values of the q-th section
of |Pu,v ∩Ra,bβ |.

We first assume that q < ∆. By Lemma 2.5.1, a mini-tree contains at most 2M nodes.
We thus have that, for β = 1, 2, · · · , f , nc(x, β) − nc(z, β) − 2M ≤ A[x1, β] − A[z1, β] ≤
nc(x, β)− nc(z, β) + 2M . Since g = ω(lgM), the difference between the actual value and
the approximation only affects the first ∆ − 1 sections by at most 1. More precisely, for
β = 1, 2, · · · , f and p = 1, 2, · · · ,∆− 1,

sectp(nc(x, β)− nc(z, β))− 1 ≤ sectp(A[x1, β]− A[z1, β])

≤ sectp(nc(x, β)− nc(z, β)) + 1. (3.11)

47

We can even compute all the approximate values of sectq(A[x1, β] − A[z1, β]) for β =
1, 2, · · · , f in constant time. We take the subtraction of X[x1, q] and X[z1, q]. Note that the
q-th section of A[x1, β] is not necessarily larger than or equal to the q-th section of A[z1, β].
To avoid cascading carries, we set the prepended extra bit of each section in X[x1, q] to be
1, and set the prepended extra bit of each section in X[z1, q] to be 0. After the subtraction,
we mask out these extra bits. In this way, we obtain an indexing word indexu,t,q for Au,t
and the q-th sections. This indexing word is the concatenation of approximate values of
sectq(A[x1, β] − A[z1, β]) for β = 1, 2, · · · , f . Let indexu,t,q(β) be the value of its β-th
section, which is an approximate value for the first β child ranges. It is easy to see that
indexu,t,q(β) is equal to sectq(A[x1, β] − A[z1, β]), or one larger. By Inequality 3.11, we
have that, for β = 1, 2, · · · , f ,

sectq(nc(x, β)− nc(z, β))− 1 ≤ indexu,t,q(β) ≤ sectq(nc(x, β)− nc(z, β)) + 2. (3.12)

We can approximate |Av,t ∩ Ra,bβ | in the same way, obtaining another indexing word
indexv,t,q for Av,t and the q-th sections. Adding indexu,t,q to indexv,t,q, we obtain index,
the indexing word for the whole path. No carry happens between sections in the addition,
since the first bit of sectq(|Pu,v ∩ Ra,b|) is 0. We also define index(β) be the value of its
β-th section. By Inequality 3.12, and concerning that the node t is not taken into account
for the approximation, we further have that, for β = 1, 2, · · · , f ,

sectq(|Pu,v ∩Ra,bβ |)− 3 ≤ index(β) ≤ sectq(|Pu,v ∩Ra,bβ |) + 4. (3.13)

In lines 10 and 11, using word parallelism, we compute α1 and α2 such that γ must be in
[α1, α2). In line 12, we verify if γ = α1 or γ = α2 − 1 by Inequality 3.9 and Equation 3.10.
If not, we compute γ by a binary search in O(lg f) time. Due to lines 10 and 11, the
difference between the sections stored in index(α1) and index(α2 − 1) is at most 7. Then
by the approximation shown in Inequality 3.13, the q-th section of |Pu,v ∩Raγ ,bγ | is at most
14. Thus, at the (`+ 1)-st level, the value of q will be increased by at least one. Since the
value of q is at most ∆, binary searches will be performed at most ∆− 1 times at all the
levels. This explains our choice of the value 14 in line 7.

Now consider the case in which q = ∆ (we set q to be ∆ if |Pu,v ∩Ra,b| ≤ 14). We can
recover the exact content of index. We do not need to consider carries since this is the
last section. The computation is similar to the proof of Lemma 3.5.3. Then we compute γ
using word parallelism, as shown in line 16.

After obtaining γ, we adjust the parameters in lines 18 to 20, and recurse on the child
range [aγ..bγ]. We finally analyze the time cost. The algorithm traverses from the top level
to the bottom level, and the operations except binary searches require constant time at
each level. In addition, binary searches are performed at most ∆ − 1 times, each using

48

O(lg f) time. Thus, the overall time cost is O(h)+∆ ·O(lg f) = O((lg σ/ lg lg σ)+f lg f) =
O(lg σ/ lg lg σ).

The analysis of the space and preprocessing costs of our data structures is similar to
the analysis in the proof of Theorem 3.5.8.

3.6 Discussion

We have obtained new and improved upper bounds for path queries. Let occ denote
the size of the output of path reporting queries. Under the pointer machine model, our
data structures require O(n lg σ) space, supporting path median, selection and counting
queries in O(lg σ) time, and path reporting queries in O(lg σ + occ) time. Under the word
RAM model, we design succinct data structures that support path counting queries in
O(lg σ/ lg lg n+ 1) time, path reporting queries in O((occ+ 1)(lg σ/ lg lg n+ 1)) time, and
path median and path selection queries in O(lg σ/ lg lg σ) time.

When the preliminary version of this chapter was published [66], Patil et al. [85] concur-
rently designed another succinct data structure based on heavy path decomposition [94, 60]
for path queries. This succinct data structure represents a weighted ordinal tree using
n lg σ+6n+o(n lg σ) bits of space, supports path counting, path median and path selection
queries in O(lg σ lg n) time, and supports path reporting queries in O(lg σ lg n + occ lg σ)
time. Thus this result is subsumed by ours.

For path reporting queries, our subsequent work in Section 5.5 has further improved
the query time while using O(n lg σ) or near O(n lg σ) bits of space.

We finish this chapter with two open problems. Our succinct data structures use more
query time to support path median and path selection queries than path counting queries
when σ is much smaller than n. Our first open problem is whether there exist succinct
data structures for path median and path selection queries with O(lg σ/ lg lg n+ 1) query
time using n lg σ + o(n lg σ) bits of space.

Our second open problem is about the preprocessing costs of our succinct data struc-
tures. In Section 3.5, we have analyzed the preprocessing time. It remains open to de-
termine the space cost in the preprocessing phase, and to further explore the time-space
tradeoffs in the construction of our data structures [47].

49

Chapter 4

Static and Dynamic Succinct Labeled
Ordinal Trees

4.1 Introduction

We address the issue of succinct representations of ordinal trees1 with satellite data in the
form of a label from a large alphabet. Much of this is motivated by the needs of large text-
dominated databases that store and manipulate XML documents, which can be essentially
modeled as ordinal trees in which each node is assigned a tag drawn from a tag set.

Our representations support a much broader collection of operations than previous
work [54, 44, 9], particularly those operations that aim at XML-style document retrieval,
such as queries written in the XML path language (XPath). Our data structures are
succinct, occupying space close to the information-theoretic lower bound, which is essential
to systems and applications that deal with very large data sets.

Our approach is based on “tree extraction”, that is, constructing subtrees consisting of
nodes with appropriate labels (and their parents). The basic idea of tree extraction was
described in Section 2.5.3. In the previous work that uses tree extraction [65, 100] and in
Chapter 3, this technique was used to answer queries that are generalizations of geometric
queries such as range counting from planar point sets to trees. Here we follow a different
approach for a different class of operations that originate in the study of text databases.
In our data structures, an input tree is split according to labels on nodes, such that we
can maintain structural information and labels jointly in a space-efficient way. Previous
solutions to the same problem are all based on different approaches [54, 44, 9].

1An ordinal tree is a rooted one in which the children of a node are ordered.

50

In this chapter, we consider the operations listed in Table 4.1, in which preoder and
DFUDS order are defined in Section 2.5. The unlabeled versions of these operations have
been studied extensively in the data structures community [54, 43, 64, 82, 42]. Here we
list only the labeled versions of these operations. The unlabeled versions simply include all
nodes. In other words, the support for unlabeled versions can be reduced to the support
for labeled versions at no extra space cost by setting the alphabet size to 1. We refer to the
labeled versions of operations as α-operations. We call a node whose label is α an α-node
(we define similarly α-children, α-ancestor, etc). In addition, we define the α-rank of node
x in a list to be the number of α-nodes up to and including x in the list. Throughout this
chapter, n denotes the size of the input tree and σ denotes the size of the alphabet.

Table 4.1: Operations considered in this chapter, which are divided into three groups. Here
we give only the definitions of the labeled versions of operations. Geary et al. [54]’s data
structures only support the α-operations marked by †. Our static data structures support the
α-operations in Groups 1 and 2, while our dynamic data structures support the α-operations
in Groups 1 and 3.

Operation Description
Our Our

Static Dynamic
label(x)† label of x

! !

parentα(x)† closest α-ancestor of x
depthα(x)† α-depth of x, i.e., number of α-nodes from x to the root
level ancα(x, i)† α-ancestor y of x satisfying depthα(x)− depthα(y) = i
nbdescα(x)† number of α-nodes in the subtree rooted at x
pre rankα(x)†/pre selectα(i)† α-rank of x in preorder/i-th α-node in preorder
post rankα(x)†/post selectα(i)† α-rank of x in postorder/i-th α-node in postorder
LCAα(x, y) lowest common α-ancestor of nodes x and y
leaf lmostα(x)/leaf rmostα(x) leftmost/rightmost α-leaf in the subtree rooted at x
leaf rankα(x) number of α-leaves to the left of x in preorder
leaf selectα(i) i-th α-leaf in preorder
nbleafα(x) number of α-leaves in the subtree rooted at node x
degα(x)† number of α-children of x

! #

child rankα(x)† α-rank of x in the list of children of parent(x)
child selectα(x, i)† i-th α-child of x
dfuds rankα(x)/dfuds selectα(i) α-rank of x in DFUDS order/i-th α-node in DFUDS order

heightα(x)
α-height of x, i.e., maximum number of α-nodes from x
to its leaf descendant

node insertα(x) insert an α-node x as an internal node or a leaf
!

node delete(x) delete non-root node x

Groups 1 and 2 in Table 4.1 are queries, while Group 3 consists of updates. The third
and the fourth columns indicate that our static data structures support all these queries
(in time log-logarithmic in σ), while our dynamic data structures support the updates and
most of these queries (in time sub-logarithmic in each of n and σ). Our structures are suc-
cinct, and most of them are able to handle large alphabets to support these α-operations.

51

The details will follow in Theorems 4.1.1 to 4.1.3 and the discussions of these theorems.
A straightforward approach to representing a labeled ordinal tree is to maintain the

structural information and labels separately. The structure is represented using one of the
succinct data structures for unlabeled ordinal trees [54, 43, 64, 82, 42], while the labels
are stored in a sequence in preorder or DFUDS order. As shown in Barbay et al. [9],
their first approach uses preorder label sequences, and supports only label, pre rankα,
pre selectα and nbdescα efficiently.2 Their second approach, which uses DFUDS order
label sequences, only supports label, dfuds rankα, dfuds selectα, degα, child rankα,
and child selectα. Compared to these trivial ideas, our approach assembles structural
information and labels by a novel use of tree extraction. Thus our framework provides
much richer functionality than these basic methods.

Other existing succinct representations of labeled ordinal trees [44, 54] require a small
alphabet or support only a restricted subset of queries, and they do not support updates
efficiently. Geary et al. [54] presented data structures to support in constant time the α-
operations marked by † in Table 4.1 and their unlabeled versions. The overall space cost of
their data structures is n(lg σ + 2) +O(nσ lg lg lg n/ lg lg n) bits, which is much more than
the information-theoretic lower bound of n(lg σ + 2) − O(lg n) bits when σ = Ω(lg lg n).
Ferragina et al. [44] designed data structures for labeled trees that use space close to
the information-theoretic lower bound, but supporting an even more restricted set of α-
operations. Their xbw-based representation supports only label, child selectα and
degα.3

The approaches of Barbay et al. [9] can be dynamized using succinct representations
of dynamic unlabeled ordinal trees [82] and dynamic label sequences [61, 82, 81]. After
dynamization, their first approach can support node insertα and node deleteα efficiently
(see Section 4.4 for the protocol of insertion and deletion). Their second approach can only
support insertions and deletions efficiently for low-degree nodes: To insert a node x so that
it will become the parent of d(x) existing nodes, or to delete a node x with d(x) children,
Θ(d(x)) operations have to be performed on each of the data structures that represent the
corresponding unlabeled tree and label sequence. To the best of our knowledge, besides
the dynamic variants of Barbay et al.’s [9] approches, there is no succinct data structure
for dynamic labeled ordinal trees with both rich functionality and efficient query/update
time.

Our results for static and dynamic labeled ordinal trees are summarized in Theo-

2It also supports two other operations: the ancestor of x closest to root with a given label and the first
descendant of x with a given label in preorder. Both operations can be easily supported using pre rankα,
pre selectα, depthα and level ancα, and thus we do not list them in Table 4.1.

3Another query supported by their structure is SubPathSearch, which can count or list nodes whose
upward paths start with a given query string.

52

Table 4.2: Our static representations of labeled ordinal trees. Here f(n, σ) is any function that
satisfies f(n, σ) = ω(1) and f(n, σ) = o(lg lg σ

lgw), and “others in Groups 1 and 2” represents
the first two groups of α-operations in Table 4.1 other than label and pre selectα. All the
results are obtained under the standard word RAM model with word size w = Ω(lg n). Note
that H0(PLST) and Hk(PLST) are bounded above by lg σ.

Theorem 4.1.2(a) Theorem 4.1.2(b) Theorem 4.1.2(c)

Constraints σ = wO(1) σ ≤ n
σ ≤ n, lg σ = ω(lgw),
and k = o(logσ n)

Space (in bits) n(H0(PLST) + 9) + o(n) n(H0(PLST) + 9) + 3σ + o(n(H0(PLST) + 1)) nHk(PLST) + o(n lg σ)

Time
label(x)

O(1)
O(1) O(1)

pre selectα(i) O(f(n, σ)) O(f(n, σ))

others in Groups 1/2 O(lg lg σ
lgw

) O(lg lg σ
lgw

)

rems 4.1.1 to 4.1.3. As a preliminary result, we improve the succinct representation of
labeled ordinal trees of Geary et al. [54]. As shown in Theorem 4.1.1, the improved repre-
sentation supports more operations while occupying less space, where PLST is the preorder
label sequence of T , and Hk is the k-th order empirical entropy [77], which is bounded above
by lg σ. However, this data structure is succinct only if the size of alphabet is very small,
i.e., σ = o(lg lg n).

Operations deepestα and min depthα are auxiliary α-operations used in Sections 4.2.5
and 4.2.7: deepestα(i, j) returns a node (there could be a tie) with preorder rank in [i..j]
that has the maximum α-depth, and min depthα(i, j) returns an α-node with preorder
rank in [i..j] that has the minimum depth (i.e., is closest to the root).

Theorem 4.1.1. Let T be a static ordinal tree on n nodes, each having a label drawn
from an alphabet of size σ = o(lg lg n). Under the word RAM with word size w = Ω(lg n),
for any k = o(logσ n), there exists a data structure that encodes T using n(Hk(PLST) +
2) + O(nk lg σ

logσ n
) + O(nσ lg lg lgn

lg lgn
) bits of space, supporting the α-operations in Groups 1 and 2

of Table 4.1 and their unlabeled versions, plus two additional α-operations deepestα and
min depthα, in constant time.

We summarize the main result of this chapter in Theorem 4.1.2 and Table 4.2. To
achieve this result, we present a framework for succinct representations of labeled ordinal
trees. As Lemma 4.2.1 will show, bit vectors, preorder label sequences, and unlabeled and
0/1-labeled ordinal trees (i.e., ordinal trees over the alphabet {0, 1}) are extracted from the
original labeled tree in an original way. The method ensures that an α-operation is reduced
to a constant number of operations on these simpler data structures that were supported
by various approaches in previous work. This time- and space-efficient reduction allows
us to handle large alphabets, and to compress labels of nodes into entropy bounds. Thus
our framework answers an open problem proposed by Geary et al. [54], which asks for
representations of labeled ordinal trees that remain space-efficient for large alphabets.

53

Theorem 4.1.2. Let T be a static ordinal tree on n nodes, each having a label drawn from
an alphabet Σ = [1..σ]. Under the word RAM with word size w = Ω(lg n),

(a) for σ = wO(1), T can be represented using n(H0(PLST) + 9) + o(n) bits of space to
support the α-operations in Groups 1 and 2 of Table 4.1 using constant time;

(b) for σ ≤ n, T can be represented using n(H0(PLST) + 9) + 3σ + o(n(H0(PLST) + 1))
bits of space to support the α-operations in Groups 1 and 2 of Table 4.1 using O(lg lg σ

lgw
)

time;

(c) for σ ≤ n and lg σ = ω(lgw), and for any integer k = o(logσ n), T can be represented
using nHk(PLST) + o(n lg σ) bits to support the α-operations in Groups 1 and 2 of
Table 4.1 using O(lg lg σ

lgw
) time.

In addition, these data structures support the unlabeled versions of these α-operations in
O(1) time.

As shown in Theorem 4.1.3, we further extend our work to the dynamic case. We
present the first succinct representations of dynamic labeled ordinal trees that support
several α-operations related to ancestors, descendants, and leaves.

Theorem 4.1.3. Let T be a dynamic ordinal tree on n nodes, each having a label drawn
from an alphabet Σ = [1..σ]. Under the word RAM with word size w = Ω(lg n), and for any
k = o(logσ n), T can be represented using n(Hk(PLST) + 5) + o(n lg σ) bits of space, such
that level ancα can be supported in O(lg n) worst-case time, and the other α-operations
listed in Groups 1 and 3 of Table 4.1 can be supported in O(lgn

lg lgn
) worst-case time. In

addition, this data structure supports level anc using O(lg n) worst-case time, and the
unlabeled versions of the other α-operations listed in Groups 1 and 3 of Table 4.1 using
O(lgn

lg lgn
) worst-case time.

In this chapter, an alphabet Σ is said to be small if its size is o(lg lg n); otherwise it is
a large alphabet. The data structure in Theorem 4.1.1 is succinct only if the alphabet is
small, while the data structures in Theorems 4.1.2 and 4.1.3 are succinct if the alphabet
is of size ω(1). In other words, the latter ones are featured for supporting large alphabets.

The rest of this chapter is organized as follows. In Section 4.2, we describe the con-
struction of our data structures for static trees over large alphabets, i.e., the proof of
Theorem 4.1.2, assuming that Theorem 4.1.1 holds. This section contains the most inter-
esting ideas of this chapter for most readers. The rather technical proof of Theorem 4.1.1

54

is deferred to Section 4.3, where we extend and improve Geary et al.’s [54] representation
of labeled ordinal trees for small alphabets. Section 4.4 describes our data structures for
dynamic trees, i.e., the proof of Theorem 4.1.3. Finally, the conclusions and open problems
are in Section 4.5.

4.2 Static Trees over Large Alphabets : Theorem 4.1.2

We start with the following observation to develop the proof of Theorem 4.1.2: For each
possible subscript α ∈ Σ, we could support the α-operations in Groups 1 and 2 of Table 4.1
by relabeling T into a 0/1-labeled tree and indexing the relabeled tree, where a node is
relabeled 1 if and only if it is an α-node in T . However, we would have to store σ trees
that have nσ nodes in total if we simply apply this idea for each α ∈ Σ, which we could
not afford.

Instead of storing all the n nodes for each α ∈ Σ, we store only the nodes that are par-
ticularly relevant to α, i.e., the α-nodes and their parents, while maintaining the ancestor-
descendant relationship between these nodes. We apply tree extraction to summarize such
information, where the tree constructed for label α is denoted by Tα.

c

a

a b

ab

b

c aa c

T

0

0 1

1

1

Tb0r′b

1

1 0

1

0

11

Ta0r′a

1

0 0

1 1

Tc0r′c

Figure 4.1: An example with 11 nodes and an alphabet Σ of size 3, where we use Σ = {a, b, c}
for clarity. The character on each node in T is its label. The integer on each node in Tα, for
each α ∈ Σ, indicates whether this node corresponds to an α-node in T .

For α ∈ Σ, we create a new root rα, and make the original root of T be the only child
of rα. The structure of Tα is obtained by computing the Xα-extraction of the augmented

55

tree rooted at rα, where Xα is the union of rα, the α-nodes in T , and the parents of the
α-nodes. The natural one-to-one mapping between the nodes in Xα and Tα determines the
labels of the nodes in Tα. The root of Tα is always labeled 0. A non-root node in Tα is
labeled 1 if its corresponding node in T is an α-node, and 0 otherwise. Thus, the number
of 1-nodes in Tα is equal to the number of α-nodes in T . Let nα denote both values. The
construction above is illustrated by the example in Figure 4.1.

To clarify notation, the nodes in T are denoted by lowercase letters, while the nodes
in Tα are denoted by lowercase letters plus prime symbols. To illustrate the one-to-one
mapping, we denote by x′ a node in Tα if and only if its corresponding node in T is denoted
by x. The root of Tα, which corresponds to rα, is denoted by r′α. We show how to convert
the corresponding nodes in T and Tα using the preorder label sequence of T in Section 4.2.2.

Since the structure of Tα is different from that of T , we need also store the structure of
T and the labels of the nodes in T so that we can perform conversions between the nodes
in T and Tα. In addition, to support the α-operations related to leaves, we store for each
α ∈ Σ a bit vector Lα[1..nα] in which the i-th bit is one if and only if the i-th 1-node in
preorder of Tα corresponds to a leaf in T .

Following this approach, our succinct representation consists of four components: (a)
the structure of T ; (b) PLST , the preorder label sequence of T ; (c) a 0/1-labeled tree Tα
for each α ∈ Σ; and (d) a bit vector Lα for each α ∈ Σ. The unlabeled versions of the α-
operations in Groups 1 and 2 of Table 4.1 are directly supported by the data structure that
maintains the structure of T . For α-operations, our basic idea is to reduce an α-operation
to a constant number of operations on T , PLST , Tα’s, and Lα’s, for which we summarize
the previous work in Sections 2.3, 2.4 and 4.2.9.

In the following sections, we describe our algorithms in terms of T , PLST , Tα’s and
Lα’s. All of these algorithms require O(1) time and perform O(1) operations on these
components. For each operation, we specify the related component as the first parameter.
If such a component is not specified in context, then this operation is performed on T . To
handle operations with subscript α ∈ Σ, our algorithms only access the structure of T ,
PLST , Tα and Lα. A node in Tα is thus denoted by x′ instead of xα for simplicity.

4.2.1 Operations label, pre rankα, pre selectα and nbdescα

By the definitions, we know:

label(x) = access(PLST , pre rank(x))

pre rankα(x) = rankα(PLST , pre rank(x))

pre selectα(i) = pre select(selectα(PLST , i))

56

We make use of pre rankα and pre selectα to find the α-predecessor and the α-successor
of node x, which are defined to be the last α-node preceding x and the first α-node suc-
ceeding x in preorder (both can be x itself).

We support nbdescα(x) in the same way as Barbay et al. [9]. The descendants of x
form a consecutive substring in PLST , which starts at index pre rank(x) and ends at index
pre rank(x) + nbdesc(x)− 1. We can compute the number of α-nodes lying in this range
using rankα on PLST . Provided that x has an α-descendant, we can further compute
the first and the last α-descendant of node x in preorder, which are the α-successor of x
and the α-predecessor of the node that has preorder rank pre rank(x) + nbdesc(x) − 1,
respectively. Let these α-nodes be u and v. For simplicity, we call [u, v] the α-boundary of
the subtree rooted at x.

4.2.2 Conversion between Nodes in T and Tα

The conversion between nodes in T and the corresponding nodes in Tα plays an important
role in supporting α-operations. Given an α-operation on node x in T , our algorithms in
this section usually do what follows: They first compute the node y′ in Tα that corresponds
to x (or the parent of x, the first α-descendant of x, etc), and they retrieve appropriate
information with respect to y′ by querying the data structures that maintain Tα. Here
Tα’s will be maintained by the data structures presented in Theorem 4.1.1, since they are
0/1-labeled. If the information retrieved is a node z′ in Tα, our algorithms will further
compute the node z in T that corresponds to z′.

We first discuss the backward direction of conversion, i.e., computing the node x in T
that corresponds to a given node x′ in Tα. If x′ is a 1-node, then x must be an α-node.
By Lemma 2.5.4, we have that x = pre selectα(pre rank1(Tα, x

′)). Otherwise, by the
definition of Tα, x must have at least one α-child. In addition, every α-child of x in T
must appear as a 1-child of x′ in Tα. Using this fact, x can be computed from x′ as follows:
We first find the first 1-child of x′ in Tα, say y′ = child select1(Tα, x

′, 1), and compute
the node y in T that corresponds to y′ using the case in which the given node is a 1-node.
Then x must be the parent of y in T .

The other direction of conversion is more complex. Algorithm 5 shows how to compute
the node x′ in Tα that corresponds to a given node x in T . This algorithm returns NULL if
no such x′ exists. If x is an α-node, then x′ must exist in Tα. As shown in line 3, applying
Lemma 2.5.4 again, we have that x′ = pre select1(Tα, pre rankα(x)).

The case in which x is not an α-node requires more attention, since the node x′ may
or may not exist in Tα. We first verify whether x has at least one α-descendant in line 4
using nbdescα. The node x′ does not exist in Tα if x has no α-descendant. Otherwise, we

57

compute the α-boundary, [u, v], of the subtree rooted at x in line 7. We then have two
cases, depending on whether x is the lowest common ancestor of u and v. If x 6= LCA(u, v),
then y, which is set to be LCA(u, v), must be a descendant of x. All α-descendants of
x must also be descendants of y, and, if x has an α-child, then this α-child must be y.
Thus, we need only check if y is an α-child of x, as shown in lines 10 to 14. Now suppose
x = LCA(u, v). Since the construction of Tα preserves the ancestor-descendant relationship,
we claim that x′ must be the lowest common ancestor of u′ and v′ if x′ exists in Tα. Thus,
we need only compute z′ = LCA(Tα, u

′, v′) in line 16, and verify whether z′ corresponds to
x using the backward direction in lines 17 to 21.

Algorithm 5 Given node x in T , computing the node x′ in Tα that corresponds to x

1: procedure Convert(T, x, α)
2: if x is an α-node then
3: return pre select1(Tα, pre rankα(x));
4: else if x has no α-descendant then
5: return NULL;
6: end if
7: [u, v]← the α-boundary of the subtree rooted at x;
8: if x 6= LCA(u, v) then
9: y ← LCA(u, v);

10: if y is an α-child of x then . check if label(y) = α and parent(y) = x
11: return parent(Tα, y

′);
12: else
13: return NULL;
14: end if
15: else
16: z′ ← LCA(Tα, u

′, v′);
17: if z′ corresponds to x then . z = x
18: return z′;
19: else
20: return NULL;
21: end if
22: end if
23: end procedure

We have described how to perform the conversion. In the following sections, we assume
that x and x′ are both known if one of them is known. The conversion will be done
implicitly.

58

4.2.3 Operations parentα, level ancα, LCAα and depthα

We first show how to compute parentα(x) in Algorithm 6. The case in which x is an
α-node is solved in lines 3 to 4. We simply compute y′ = parent1(Tα, x

′) and return y.
Suppose x is not an α-node. We compute u, the α-predecessor of x in preorder, in line 6.
We claim that x has no α-parent if x has no α-predecessor in preorder, since the ancestors
of x precede x in preorder. If such u exists, we take a look at v = LCA(u, x) in line 10. We
further claim that there is no α-node on the path between v and x (excluding v), because
u would not be the α-predecessor if such an α-node existed. In addition, we know that v
has at least one α-descendant because of the existence of u. We return v if v is an α-node.
Otherwise, we compute the first α-descendant, z, of v. It is clear that there is no α-node
on the path between z and v (excluding z). Thus, the α-parent of z, being computed in
line 15, must be the α-parent of both v and x.

Algorithm 6 parentα(x)

1: procedure Parent(T, x, α)
2: if x is an α-node then
3: y′ ← parent1(Tα, x

′);
4: return y;
5: end if
6: u← the α-predecessor of x in preorder of T ;
7: if x has no α-predecessor then
8: return NULL;
9: end if

10: v ← LCA(u, x);
11: if v is an α-node then
12: return v;
13: end if
14: z ← the first α-descendant of v in preorder;
15: y′ ← parent1(Tα, z

′);
16: return y;
17: end procedure

Then we make use of parentα(x) to support level ancα(x, i): We first compute y =
parentα(x), where y must be an α-node or NULL. We return y if y = NULL or i = 1.
Otherwise, we compute z′ = level anc1(Tα, y

′, i− 1) and return z.
LCAα and depthα can also be easily supported using parentα. LCAα(x, y) is equal to

LCA(x, y) if the lowest common ancestor of x and y is an α-node; otherwise it is equal to
parentα(LCA(x, y)). To compute depthα(x), let y = x if x is an α-node, or y = parentα(x)
if x is not. It is then clear that depthα(x) = depthα(y) = depth1(Tα, y

′), since each α-
ancestor of y in T corresponds to a 1-ancestor of y′ in Tα.

59

4.2.4 Operations child rankα, child selectα and degα

We can support child selectα(x, i) and degα(x) using the techniques shown in Sec-
tion 4.2.2. We first try to find x′, the node in Tα that corresponds to x. If such x′

does not exist, then x must have no α-child. Thus, we return NULL for child selectα(x, i)
and return 0 for degα(x). Otherwise, we compute y′ = child select1(Tα, x

′, i) and return
y for child selectα(x, i), as well as return deg1(Tα, x

′) for degα(x).
The algorithm to support child rankα(x) is shown as Algorithm 7. The case in which

Algorithm 7 child rankα(x)

1: procedure Child Rank(T, x, α)
2: if x is an α-node then
3: return child rank1(Tα, x

′);
4: end if
5: u← parent(x);
6: if u has no α-child then . check if degα(u) = 0
7: return 0;
8: end if
9: v ← the α-predecessor of x in preorder;

10: if x has no α-predecessor or pre rank(v) ≤ pre rank(u) then
11: return 0;
12: end if
13: compute u′ and v′, the nodes in Tα that correspond to u and v;
14: y′ ← the child of u′ that is an ancestor of v′;
15: . y′ = level anc(Ta, v

′, depth(Ta, v
′)− depth(Ta, u

′)− 1)
16: return child rank1(Tα, y

′);
17: end procedure

x is an α-node is easy to handle, as shown in line 3. We consider now the case in which
the label of x is not α. In lines 5 to 8, we compute the node, u, that is the parent of x,
and verify if u has an α-child using degα. We return 0 if u has no α-child. Otherwise,
we compute the α-predecessor, v, of x in preorder. If such v does not exist, or v is not a
proper descendant of u, then x has no α-sibling preceding it and we can return 0, since a
sibling preceding x occurs before x in preorder. Suppose v exists as a proper descendant
of u. We can find u′ and v′, the nodes in Tα that correspond to u and v, since u has an
α-child and v is an α-node. In addition, we find the child, y′, of u′ that is an ancestor
of v′. Observe that each α-child of u in T that precedes x corresponds to a 1-child of u′

in Tα that precedes y′. Otherwise, v would not be the α-predecessor. Finally, we return
child rank1(Tα, y

′) as the answer.

60

4.2.5 Operation heightα

To compute heightα(x), we need find node y among the descendants of x such that
depthα(y) is maximized. If x has no α-descendant, then heightα(x) = 0. Suppose x has
at least one α-descendant. We compute [u, v], the α-boundary of the subtree rooted at x.
All α-descendants of x occur between u and v in preorder of T . The α-depth of a node
that does not have label α is equal to the α-depth of its closest α-ancestor. Therefore,
there exists an α-descendant of x whose α-depth is the largest among all descendants of
x. Hence, we consider only the α-descendants of x in the search for y. Remember that
depthα(z) = depth1(Tα, z

′) for any α-node z in T . Thus the α-descendant that has the
largest α-depth can be computed in Tα instead of in T . Let i = pre rank1(Tα, u

′) and
j = pre rank1(Tα, v

′). We have that y′ = deepest1(Tα, i, j). Finally, we return depthα(y)
as the answer if x is the root, or depthα(y)− depthα(parent(x)) otherwise.

4.2.6 Operations post rankα and post selectα

Operation post rankα relies on several operations supported in Section 4.2.1 and Sec-
tion 4.2.3. We address their relationship in the following equation: post rankα(x) =
pre rankα(x)− depthα(x) + nbdescα(x). This equation holds for any node in T .

By Lemma 2.5.4, we have post rankα(x) = post rank1(Tα, x
′) for any α-node x in T .

Hence, to compute post selectα(i), we simply compute x′ = post select1(Tα, i), and
return x.

4.2.7 Operations dfuds rankα and dfuds selectα

The following formula shows how to compute dfuds rankα(x) for a non-root node x in T ,
which is based on a similar formula in [11] that deals with the unlabeled version:

dfuds rankα(x) = child rankα(x) + pre rankα(parent(x))

+
∑

y∈Anc(x)\r

(
degα(parent(y))− child rankα(y)

)
, (4.1)

where Anc(x) is the set of ancestors of x (excluding x itself), and r is the root of T . This
formula reduces the computation of dfuds rankα(x) to the computation of

∑

y∈Anc(x)\r

(degα(parent(y))− child rankα(y)), (4.2)

61

which is denoted by Sα(x). Thus, Equation 4.1 can be simplified as

dfuds rankα(x) = child rankα(x) + pre rankα(parent(x)) + Sα(x). (4.3)

For each α ∈ Σ, we have similar formulas on Tα. For any non-root node x′ in Tα, we
define S1(Tα, x

′) =
∑

y′∈Anc(Tα,x′)\r′α
(deg1(Tα, parent(Tα, y

′))− child rank1(Tα, y
′)), where

Anc(Tα, x
′) is the set of ancestors of x′ in Tα (excluding x′ itself), and r′α is the root of Tα.

We then have

dfuds rank1(Tα, x
′) = child rank1(Tα, x

′) + pre rank1(Tα, parent(Tα, x
′))

+
∑

y′∈Anc(Tα,x′)\r′α

(deg1(Tα, parent(Tα, y
′))− child rank1(Tα, y

′))

= child rank1(Tα, x
′) + pre rank1(Tα, parent(Tα, x

′)) + S1(Tα, x
′). (4.4)

Hence, for any non-root node x′ in Tα, we can easily compute S1(Tα, x
′) by subtracting the

values of child rank1(Tα, x
′) and pre rank1(Tα, parent(Tα, x

′)) from dfuds rank1(Tα, x
′).

We now prove that, for any non-root node x′ in Tα, S1(Tα, x
′) = Sα(x). For x in T and

y ∈ Anc(x), let f(x, y) denote the child of y that is an ancestor of x. Expanding Sα(x), we
have that

Sα(x) =
∑

y∈Anc(x)\r

(
degα(parent(y))− child rankα(y)

)

=
∑

y∈Anc(x)\parent(x)

(
degα(y)− child rankα(f(x, y))

)
(4.5)

Similarly, for x′ in Tα and y′ ∈ Anc(Tα, x
′), we denote by g(x′, y′) the child of y′ that is an

ancestor of x′. Thus we have the following equation for S1(Tα, x
′).

S1(Tα, x
′) =

∑

y′∈Anc(Tα,x′)\r′α

(
deg1(Tα, parent(Tα, y

′))− child rank1(Tα, y
′)
)

=
∑

y′∈Anc(Tα,x′)\parent(Tα,x′)

(
deg1(Tα, y

′)− child rank1(Tα, g(x′, y′))
)

(4.6)

On the right-hand side of Equation 4.5, a term contributes to the summation only if
degα(y) > 0. In this case, y must have a corresponding node y′ in Tα. Thus it suffices to
show that the following identity holds: degα(y) − child rankα(f(x, y)) = deg1(Tα, y

′) −
child rank1(Tα, g(x′, y′)). It is clear that degα(y) = deg1(Tα, y

′). Let u = f(x, y), and
v′ = g(x′, y′). By the construction of Tα, we have that u is an ancestor of v. Thus,

62

any 1-child of y′ occurs before v′ if and only if the α-child of y that corresponds to this
1-child occurs before u. Also, if u is an α-node, then v = u. Hence, we conclude that
child rankα(f(x, y)) = child rank1(Tα, g(x′, y′)). This completes the proof.

We thus have dfuds rankα(x) = dfuds rank1(Tα, x
′) for any α-node x in T . This claim

directly gives us a simple algorithm to compute dfuds selectα(i). We need only compute
y′ = dfuds select1(Tα, i), and return y.

Now consider how to support dfuds rankα(x). As described above, this task is easy if
x has a corresponding node x′ in Tα. Thus we focus on the case in which such x′ does not
exist, i.e., x is neither an α-node nor the parent of an α-node. The algorithm to compute
Sα(x) for such x is shown as Algorithm 8. The basic idea is to find node y, the lowest
ancestor of x that has a corresponding node in Tα. All but a constant number of nodes
between y and x contribute nothing to Sα(x). Thus, Sα(x) can be computed from Sα(y)
using a constant number of degα and child rankα operations, as shown in lines 17 to 21.

At the beginning of the algorithm, we ensure that there exists at least one α-node

Algorithm 8 Computing Sα(x) when x′ does not occur in Tα

1: procedure Compute S(T, x, α)
2: if no α-node exists in T then
3: return 0;
4: end if
5: u← the α-predecessor of x in preorder;
6: if no such u exists then
7: u← the root of T ;
8: end if
9: v ← the first α-node that occurs after the last descendant of x;

10: if no such v exists then
11: v ← the root of T ;
12: end if
13: a← LCA(u, x), b← LCA(v, x);
14: c← the deeper one of a and b;
15: d← the α-descendant of c that minimizes depth(Tα, d

′);
16: y′ ← the lowest ancestor of d′ satisfying that depth(y) ≤ depth(c);
17: ans← S1(Tα, y

′) + degα(parent(y))− child rankα(y);
18: if parent(x) 6= y then
19: z ← the child of y in T that is an ancestor of x;
20: ans← ans+ degα(y)− child rankα(z);
21: end if
22: return ans;
23: end procedure

in T . In lines 5 and 9, we find the α-predecessor of x, and the first α-node in preorder

63

that occurs after all descendants of x, call them u and v, respectively. We set u or v to be
the root of T if such an α-node does not exist. Then, in line 13, we compute the lowest
common ancestor, a, of u and x, and the lowest common ancestor, b, of v and x. Like
the analysis in Section 4.2.3, we claim that there is no node between a and x that is an
α-node, or has an α-child preceding x in preorder. Also, there is no node between b and x
that has an α-child succeeding x in preorder. Thus, provided that c is the deeper one of a
and b, nodes between c and x (excluding c) do not belong to Xα.

Node c, which might not have a corresponding node in Tα, is very close to our objective,
i.e., node y. We observe that c has at least one α-descendant. In line 15, we find node
d, the α-descendant of c that minimizes depth(Tα, d

′), using min depth1 on Tα. Note
that the α-descendants of c are the i-th to the j-th α-nodes in preorder of T , where
i = j − nbdescα(c) + 1 and j = pre rankα(pre rank(c) + nbdesc(c)− 1). These α-nodes
correspond to the i-th to the j-th 1-nodes in Tα, so we have d′ = min depth1(Tα, i, j).

Then, y′ can be found by checking at most three nodes in Tα, which are d′, d′1 =
parent(Tα, d

′) and d′2 = parent(Tα, d
′
1). Suppose none of these nodes corresponds to c or

an ancestor of c in T . In this case, d′1 and d′2 must be 0-nodes, and d′2 must have an α-child,
which is an α-descendant of c and corresponds to a 1-node in Tα that is less deep than d′.
That contradicts our assumption on d′. Hence we conclude that y′ must be among d′, d′1
and d′2. This completes our algorithm.

4.2.8 The α-operations Related to Leaves

For each Tα, we maintain a bit vector Lα[1..nα] in which the i-th bit is one if and only
if the i-th 1-node in preorder of Tα corresponds to a leaf in T , where nα is the number
of α-nodes in T . The α-operations related to leaves can be supported using rank/select
operations on Lα. To compute leaf selectα(i), we find the i-th 1-bit in Lα, and return
the α-node in T that corresponds to this 1-bit. To compute leaf rankα(x), we need only
compute the number of 1-bits in Lα[1..i], where i = pre rankα(x).

Now consider nbleafα(x), leaf lmostα(x) and leaf rmostα(x). The case in which
x has no α-descendant is trivial: nbleafα(x) returns 0, while the other two operations
return NULL. Otherwise, we compute the α-boundary, [u, v], of the subtree rooted at x.
We further compute i = pre rank1(Tα, u

′) and j = pre rank1(Tα, v
′). For nbleafα(x), we

need only count the number of 1-bits in Lα[i..j]. For leaf lmostα(x)/leaf rmostα(x), we
compute the first/the last 1-bit Lα[i..j] using rank1 and select1 on Lα, and return the
α-node in T that corresponds to this bit.

64

4.2.9 Completing the Proof of Theorem 4.1.2

In the current state, we have σ 0/1-labeled trees and σ bit vectors. To reduce redundancy,
we merge Tα’s into a single tree T , and merge Lα’s into a single bit vector L. We list
the characters in Σ as 1, 2, · · · , σ. Initially, T contains a root node R only, on which the
label is 0. Then, for α = 1 to σ, we append r′α, the root of Tα, to the list of children of
R. Let nα be the number of α-nodes in T . For α ∈ Σ, Tα has at most 2nα + 1 nodes,
since each α-node adds a 1-node and at most one 0-node into Tα. In addition, the Tα that
corresponds to the label of the root of T has at most 2nα nodes, since the root does not add
a 0-node to Tα. Hence, T has at most 2n+ σ nodes in total. By the construction of T , we
have r′α = child select(R, α) for α ∈ Σ, the preorder/postorder traversal sequence of Tα
occurs as a substring in the preorder/postorder traversal sequence of T , and the DFUDS
traversal sequence of Tα with r′α removed occurs as a substring in the DFUDS traversal
sequence of T .

In addition, we append Lα to L, which is initially empty, for α = 1 to σ. The length of
L is clearly n. It is not hard to verify that the reductions described in early sections can
still be performed on the merged tree T and the merged bit vector L. For example, we
have dfuds rankα(x) = dfuds rank1(T , x′)− pre rank1(T , r′α), for α-node x in T , and x′

in Tα that corresponds to x.
The following Assembling Lemma generalizes the discussion.

Lemma 4.2.1 (Assembling Lemma). Let T be an ordinal tree on n nodes, each having a
label drawn from an alphabet Σ = [1..σ]. Suppose that there exist

• a data structure D1 that represents a unlabeled ordinal tree on n nodes using S1(n)
bits and supports the unlabeled versions of the α-operations in Groups 1 and 2 of
Table 4.1;

• a data structure D2 that represents a string S using S2(S) bits and supports rankα
and selectα for α ∈ Σ;

• a data structure D3 that represents a 0/1-labeled ordinal tree on n nodes using S3(n)
bits and supports the α-operations in Groups 1 and 2 of Table 4.1 and their unlabeled
versions, plus two additional α-operations deepestα and min depthα;

• and a data structure D4 that represents a bit vector of length n using S4(n) bits and
supports rankα and selectα for α ∈ {0, 1}.

Then there exists a data structure that encodes T using S1(n) + S2(PLST) + S3(2n+ σ) +
S4(n) bits of space, supporting the α-operations in Groups 1 and 2 of Table 4.1 and their

65

unlabeled versions using a constant number of operations mentioned above on D1, D2, D3

and D4.

Proof. We maintain the structure of T , PLST , T , and L using D1, D2, D3, and D4,
respectively. The reductions for the α-operations are shown in Sections 4.2.1 to 4.2.8,
while their unlabeled versions are supported by D1 directly. The overall space cost is
S1(n) + S2(PLST) + S3(2n+ σ) + S4(n) bits.

It is notable that D3 need not support the α-operations related to leaves. With Lem-
mas 2.4.1, 2.3.1 and 4.2.2 the proof of Theorem 4.1.2 follows.

Lemma 4.2.2 ([43, 64, 82, 42]). Let T be an ordinal tree on n nodes. T can be represented
using 2n + o(n) bits such that the unlabeled versions of the α-operations in Groups 1 and
2 of Table 4.1 can be supported in constant time.

Proof of Theorem 4.1.2. We obtain the conclusion by applying Lemma 4.2.2, one variant
of Lemma 2.4.1 (a,b,c), Theorem 4.1.1, and Lemma 2.3.1 for D1, D2, D3, and D4, respec-
tively. Here we only analyze variant (b) of Theorem 4.1.2; the other two variants can be
analyzed similarly.

For variant (b), D1, D2, and D4 occupy 2n+ o(n) bits, nH0(PLST) + o(nH0(PLST)) +
o(n) bits, and n + o(n) bits of space, respectively. T consists of 2n + σ nodes, and hence
D3 uses 6n+ 3σ+ o(n) bits of space. Summing up these costs, the overall space cost is up
to n(H0(PLST) + 9) + 3σ + o(n(H0(PLST) + 1)) bits.

Most α-operations listed in Groups 1 and 2 of Table 4.1 require O(lg lg σ
lgw

) query time,
because they rely on both rankα and selectα operations of PLST . There are two excep-
tions: label(x) and pre selectα(i). They correspond to access and selectα on PLST ,
and only use O(1) and f(n, σ) query time, respectively, where f(n, σ) is any function that
satisfies f(n, σ) = ω(1) and f(n, σ) = o(lg lg σ

lgw
).

4.3 Static Trees over Small Alphabets : Theorem 4.1.1

Now we pay off our technical debt and prove Theorem 4.1.1. The basic idea is to ex-
tend and improve Geary et al.’s [54] representation of labeled ordinal trees. As shown
in Lemma 4.3.1, this representation is succinct only if the size of alphabet is small, i.e.,
σ = o(lg lg n).

66

Lemma 4.3.1 ([54]). Let T be an ordinal tree on n nodes, each having a label drawn from
an alphabet Σ of size σ = o(lg lg n). Then T can be encoded using n(lg σ+2)+O(nσ lg lg lgn

lg lgn
)

bits of space such that the α-operations marked by † in Table 4.1 and their unlabeled versions
can be supported in constant time.

Geary et al.’s approach is based on a two-level tree-covering decomposition. They
proposed an algorithm to decompose T into O(n

M
) mini-trees, each having at most 3M − 4

nodes, for M = max{dlg4 ne, 2}. They further applied this algorithm to each mini-tree,
decomposing each mini-tree into O(M

M ′
) micro-trees of sizes at most 3M ′ − 4, for M ′ =

max{d lgn
24 lg σ

e, 2}. Thus, any micro-tree can be encoded in 3
4

lg n bits, and any query in a

single micro tree can be answered in constant time by table lookup using o(n1−ε) additional
bits for some constant ε > 0. The encodings of micro-trees are stored implicitly, occupying
n(lg σ + 2) +O(n

M ′
) bits of space in total.

Geary et al. supported operations pre/post rank, pre/post select, depth, parent,
level anc, deg, child rank, child select and nbdesc using auxiliary data structures.
These auxiliary structures occupy O(n lg lg lgn

lg lgn
) bits of space in total. To support the labeled

versions of these operations, they duplicated the auxiliary data structures for each label
α ∈ Σ. Thus the overall space cost is n(lg σ + 2) + O(nσ lg lg lgn

lg lgn
) bits. Note that the term

O(nσ lg lg lgn
lg lgn

) becomes o(n lg σ) when σ = o(lg lg n).

He et al. [64] considered more operations such as height, LCA, leaf lmost, leaf rmost,
leaf rank, leaf select, nbleaf, dfuds rank and dfuds select. Based on the same
tree-covering decomposition, He et al. showed that one could support these operations

using constant time and O(n(lg lgn)2

lgn
) bits of additional space. It is not hard to verify that

the labeled versions of these newer operations can also be supported by duplicating the
auxiliary data structures.

We need support two more α-operations, deepestα and min depthα. In fact, the first
one, deepestα(i, j), has been supported by the auxiliary data structures for heightα,
which can find the node with preorder rank in [i..j] that has the maximum α-depth, for
arbitrary 1 ≤ i ≤ j ≤ n. The second one, min depthα(i, j), can also be supported with a
slight modification to the auxiliary data structures for heightα. We duplicate the array
E used in He et al.’s work [64] for each α ∈ Σ. We store in Eα[i] the τ3-name of the
α-node, eα,i, with minimum depth among the nodes between zi and zi+1 (including zi but
excluding zi+1) in preorder, where we have O(n

M ′
) zi’s that are specified by tree covering.

The changes to array M and table A1 are similar.
Finally, we improve the space cost of this extended representation. We obtain mini-

trees and micro-trees using Farzan et al.’s [42] tree decomposition algorithm instead. This
algorithm further ensures that nodes in a single micro-tree occupy O(1) substrings in the

67

preorder traversal sequence of T . Therefore, to store the encoding of a micro-tree, we can
store the labels on the nodes in the preorder label sequence of T , which is compressed using
nHk(PLST) +O(n(k lg σ+lg lgn)

logσ n
) bits of space with Lemma 2.4.2.

The encoding of a micro-tree can still be retrieved in constant time, since its size is at
most 3M ′ − 4, which is O(logσ n). This completes the proof of Theorem 4.1.1.

4.4 Dynamic Trees Supporting Level-Ancestor Oper-

ations : Theorem 4.1.3

In this section, we prove Theorem 4.1.3 by extending the main technique for static trees
to the dynamic case. Our succinct representation for dynamic trees also consists of four
components: (a) the structure of T ; (b) PLST , the preorder label sequence of T ; (c) an
unlabeled tree Tα for each α ∈ Σ; and (d) a bit vector Lα for each α ∈ Σ. The previous
work for these components will be summarized in Lemmas 2.4.3 and 4.4.2.

The construction of Tα and Lα is different in this scenario in order to facilitate update
operations. For each α ∈ Σ, we still add a new root rα to T , and make Tα be the
Xα-extraction of the augmented tree rooted at rα. Unlike the construction described in
Section 4.2, here Xα contains rα and the α-nodes in T only, and we do not assign labels
to the nodes in Tα. Thus Tα is a unlabeled ordinal tree on nα + 1 nodes, where nα is the
number of α-nodes in T . Lα[1..nα] is a bit vector in which the i-th bit is 1 if and only if
the i-th non-root node in preorder of Tα corresponds to a leaf in T . Finally, we still merge
Tα’s into a single tree T , and merge Lα’s into a single bit vector L. Clearly T contains
n+ σ + 1 nodes, and L is of length n. Keep in mind that any node x in T corresponds to
exactly one node in T , and exactly one element in PLST and L.

The unlabeled versions of the α-operations in Group 1 of Table 4.1 can be directly
supported by the data structures that maintain the structure of T . Like Section 4.2, any
given α-operation will still be reduced to a constant number of operations on T , PLST ,
Tα’s, and Lα’s that were supported in previous work. For each operation, we specify the
component on which it performs as the first parameter unless this component is T . We
also denote by x′ the only node in T that corresponds to x.

Operations label, pre rankα, pre selectα and nbdescα can still be supported as
described in Section 4.2.1. Provided that x is an α-node, the conversion between x and x′

can be simplified as follows:

x′ = pre select(Tα, pre rankα(x) + 1)

x = pre selectα(pre rank(Tα, x
′)− 1)

68

Following the conversion, the other α-operations in Group 1 of Table 4.1 can be supported
by the algorithms described in Sections 4.2.3, 4.2.6, and 4.2.8, with small changes.

As an example, we describe how to compute parentα(x) in detail, which is similar
to Algorithm 6. The case in which x is an α-node can be simply solved by computing
y′ = parent(Tα, x

′) and returning y. Suppose x is not an α-node. We still compute u as
the α-predecessor of x in preorder. Following the same arguments as Section 4.2.3, we have
that x has no α-parent if u does not exist. If such u does exist, we further claim that there
is no α-node on the path from x to and excluding v, where v = LCA(u, x). In addition,
we know that v has at least one α-descendant because of the existence of u. We return v
if v is an α-node. Otherwise, we compute the first α-descendant, z, of v. Clearly there is
no α-node on the path from v to and excluding z. Thus, the α-parent of z must be the
α-parent of both v and x.

The remaining part is to support updates, for which we assume the same updating
protocol as Navarro and Sadakane [82]. This protocal allows us to insert a new leaf, a
new root, or a new internal node that will become the parent of consecutive children of
an existing node. The location of the new node is specified by an existing node y and its
descendants u and v. This means that, after the insertion, x will be a child of y and an
ancestor of the nodes whose preorder rank is between pre rank(u) to pre rank(v). Note
that y = NULL if x will be the root, and u = v = NULL if x will be a leaf. Similarly,
it is allowed to delete a leaf node, an internal node, or the root node when it has only
zero or one child. Once an internal node is deleted, its children will become children of
its parent. It should be noted that these updates preserve the ancestor-descendant and
preorder/postorder relationships among the remaining nodes in T and Tα.

To insert a node x with label α, we first consider how to insert its correponding node,
x′, into Tα. Let y and z be the nodes that will be the parent and the α-parent of x after
the insertion, respectively. Note that y is given to locate x, and z is equal to either y
or parentα(y). Also, we compute a and b, the α-successor of u and the α-predecessor of
v, respectively. Thus, x′ is inserted into Tα as a child of z′ and an ancestor of the nodes
from a′ to b′. This is performed over tree T , and the support for required operartions
will be given in Lemma 4.4.2. Then, we insert x into the data structures that maintain
the structure of T , which will be provided in Lemma 4.4.2. After that, we add the cor-
responding element into PLST by performing insertα(PLST , pre rank(x)). Finally, we
perform insert1(Lα, pre rankα(T, x)) if x is a leaf node, or insert0(Lα, pre rankα(T, x))
otherwise.

To delete a node x, we first retrieve its label α = label(x). Thus x corresponds
to the pre rank(x)-th element in PLST , the pre rankα(x)-th element in Lα, and the
(pre rankα(x) + 1)-st node in preorder of Tα. We simply delete these elements or nodes,
and finally remove x from the structure of T .

69

Generalizing the discussion above, we obtain the dynamic version of the Assembling
Lemma.

Lemma 4.4.1 (Dynamic Assembling Lemma). Let T be a dynamic ordinal tree on n nodes,
each having a label drawn from an alphabet Σ = [1..σ]. Suppose that there exist

• a data structure D1 that represents an unlabeled ordinal tree on n nodes using S1(n)
bits and supports the unlabeled versions of the α-operations in Groups 1 and 3 of
Table 4.1;

• a data structure D2 that represents a string S using S2(S) bits and supports access,
rankα, selectα, insertα and delete for α ∈ Σ;

• and a data structure D3 that represents a bit vector of length n using S3(n) bits and
supports access, rankα, selectα, insertα and delete for α ∈ {0, 1}.

Then there exists a data structure that encodes T using S1(n) + S2(PLST) + S1(n + σ +
1) + S3(n) bits of space, supporting the α-operations in Groups 1 and 3 of Table 4.1 and
their unlabeled versions using a constant number of operations mentioned above on D1, D2,
and D3.

Proof. We maintain the structure of T , PLST , T , and L using D1, D2, D1, and D3,
respectively. The reductions for the α-operations are shown in Sections 4.2.1 to 4.2.3, 4.2.6,
and 4.2.8. The unlabeled versions of these α-operations are supported by D1 directly. The
overall space cost is S1(n) + S2(PLST) + S1(n+ σ) + S3(n) bits.

The proof of Theorem 4.1.3 follows with Lemmas 2.4.3 and 4.4.2.

Lemma 4.4.2 ([82]). Let T be an ordinal tree on n nodes. Then T can be represented
using 2n + o(n) bits of space such that level anc can be supported in O(lg n) worst-case
time, and the unlabeled versions of the other α-operations in Groups 1 and 3 of Table 4.1
can be supported in O(lgn

lg lgn
) worst-case time.

Proof of Theorem 4.1.3. Applying Lemma 4.4.2 for D1, and Lemma 2.4.3 for D2 and D3,
respectively, we obtain the conclusion.

70

4.5 Discussion

We have presented a simple and novel framework for succinct representations of labeled
ordinal trees, with which we have obtained new static and dynamic data structures. Our
static data structures provide richer functionality than previous ones [54, 44, 9]. More im-
portantly, our static data structures presented in Theorem 4.1.2 support the α-operations
in Groups 1 and 2 of Table 4.1 in time log-logarithmic in σ over large alphabets. This
answers an open problem proposed by Geary et al. [54], which asks for representations of
labeled ordinal trees that remain space-efficient for large alphabets .

Our dynamic structures support the α-operations in Groups 1 and 3 of Table 4.1 in
time sub-logarithmic in each of n and σ, most of which are in worst-case. Though not as
functional as the static ones, our dynamic data structures for labeled ordinal trees are the
first ones with efficient query and update time.

As shown in Lemmas 4.2.1 and 4.4.1, our data structures in Theorems 4.2 and 4.1.3 are
ready-to-assemble. One can simply replace the auxiliary data structures for bit vectors,
preorder label sequences, unlabeled and 0/1-labeled ordinal trees with improved results.
Thus any improvement on these simpler data structures immediately improves our repre-
sentations of labeled ordinal trees.

In addition, the bit vector L can be dropped to save n + o(n) bits of space if the α-
operations related to leaves are not required.

We end this chapter with two open problems. The first one is to reduce the coefficient
of linear terms in the space cost, which is important when the empirical entropy of the
preorder label sequence is small. The second question is to support more α-operations in
dynamic representations, especially for degα, child rankα, and child selectα.

Very recently, Tsur [96] provided an almost complete answer to the first open ques-
tion. He showed that, (a) for σ = wO(1), one can encode a labeled ordinal tree T using
nH0(PLST) + 2n + o(n) bits of space, supporting the α-operations marked by † in Ta-
ble 4.1 using f(n, σ) time; and (b) for σ ≤ n, one can encode a labeled ordinal tree T
using nH0(PLST) + 2n+ o(nH0(PLST)) bits of space, supporting label using O(1) time,
pre rankα using f(n, σ) time, and the rest of the α-operations marked by † in Table 4.1
using O(lg lg σ

lgw
) time. Here T is of size n, labels are drawn from Σ = [1..σ], and f(n, σ) is

a function satisfying f(n, σ) = ω(1) and f(n, σ) = o(lg lg σ
lgw

). Tsur’s data structures cannot

support heightα, dfuds rankα or dfuds selectα, and need n + o(n) bits of additional
space to support the α-operations related to leaves. His approach is based on ours but
with intensive changes.

71

Chapter 5

Static Succinct Indices for Path
Minimum, with Applications

5.1 Introduction

In this chapter, we first consider the path minimum (path maximum) problem and then
the more general semigroup path sum problem.

• Path minimum (maximum): Given nodes u and v, return the minimum (maximum)
node along the path from u to v, i.e., the node along the path whose weight is the
minimum (maximum) one;

• Semigroup path sum: Given nodes u and v, return the sum of weights along the path
from u to v, where the weights of nodes are drawn from a semigroup.

We design novel succinct data structures for these two types of path queries. Then we
revisit the problem of supporting path reporting queries.

• Path reporting: Given nodes u and v along with a two-sided query range, report the
nodes along the path from u to v whose weights are in the query range.

The indexing structures for path minimum queries will play a central role in our approach
to path reporting queries.

When the input tree is a single path, path minimum and semigroup path sum queries

72

become range minimum [47, 38] and semigroup range sum [99] queries, respectively. In
addition, as mentioned in Chapter 3, path reporting queries become two-dimensional or-
thogonal range reporting queries [27]. The path queries we consider generalize these fun-
damental range queries to weighted trees.

In this chapter, we represent the input tree as an ordinal one, and use ε to denote a
constant in (0, 1). Unless otherwise specified, the underlying model of computation is the
standard word RAM model with word size w = Ω(lg n).

To present our results, we assume the following definition for the Ackermann function.
For integers ` ≥ 0 and i > 1, we have

A`(i) =

{
i+ 1 if ` = 0,

A
(i+1)
`−1 (i+ 13) if ` > 0,

where A
(0)
`−1(i) = i and A

(i)
`−1(j) = A`−1(A

(i−1)
`−1 (j)) for i ≥ 1. This is growing faster than the

one defined by Cormen et al. [37]. Let α(m,n) be the smallest L such that AL(bm/nc) > n,
and α(n) be α(n, n). Here α(m,n) and α(n) are both referred to as the inverse-Ackermann
functions, and are of the same order as the ones defined by Cormen et al. [37].

5.1.1 Path Minimum

The minimum spanning tree verification problem asks whether a given spanning tree is
minimum with respect to a graph with weighted edges. This problem can be regarded as
a special offline case of the path minimum problem, for which all the queries are processed
in a single batch. Under the word RAM model [73], this problem can be solved using
O(n + m) comparisons and linear overhead, where n and m are the numbers of nodes
and edges, respectively. See [25, 35, 40, 74] for other results under different models. The
online path minimum problem requires slightly more comparisons. As shown by Pettie [91],
Ω(q ·α(q, n) + n) comparisons are necessary to serve q queries over a tree of size n.

Data structures for the path minimum problem have been heavily studied. An early
result presented by Alon and Schieber [2] requires O(n) words of space and O(α(n)) query
time. Since then, several solutions using O(n) words, i.e., O(n lg n) bits, with constant
query time have been designed under the word RAM model [5, 21, 31, 38, 72]. Chazelle [31]
and Demaine et al. [38] generalized Cartesian trees [97] to weighted trees and used them
to support path minimum queries. Alstrup and Holm [5] and Brodal et al. [21] made use
of macro-micro decomposition in designing their data structures. The solution of Kaplan
and Shafrir [72] is based on Gabow’s recursive decomposition of trees [52].

In this chapter we present lower and upper bounds for path minimum queries. In

73

Lemma 5.2.1 we show that Ω(n lg n) bits of space are necessary to encode the answers to
path minimum queries over a tree of size n. This distinguishes path minimum queries from
range minimum queries in terms of space cost, for which 2n bits are sufficient to encode
all answers over an array of size n [47].

We adopt the indexing model (also called the systematic model) [10, 22, 19] in designing
new data structures for path minimum queries. Applying this model to weighted trees,
we assume that weights of nodes are represented in an arbitrary given form; the only
requirement is that the representation supports access to the weight of a node given its
preorder rank, i.e., the rank of the node in the preorder traversal sequence of the weighted
tree. Auxiliary data structures called indices are then constructed, and query algorithms
use indices and the access operator provided for the raw data. This model is theoretically
important and its variants are frequently used to prove lower bounds [39, 78, 56]. In
addition, the indexing model is also of practical importance as it addresses cases in which
the (large) raw data are stored in slower external memory or even remotely, while the
(smaller) indices could be stored in memory or locally. The space of an index is called
additional space. Note that the lower bound in the previous paragraph is proved under the
encoding model, and thus does not apply to the indexing model.

The following theorem presents our indices for path minimum.

Theorem 5.1.1. An ordinal tree on n weighted nodes can be indexed (a) using O(m) bits
of space and O(m) construction time to support path minimum queries in O(α(m,n)) time
and O(α(m,n)) accesses to the weights of nodes, for any integer m ≥ n; or (b) using
2n + o(n) bits of space and O(n) construction time to support path minimum queries in
O(α(n)) time and O(α(n)) accesses to the weights of nodes.

To better understand variant (a) of this result, we discuss the time and space costs
for the following possible values of m. When m = n, then we have an index of O(n)
bits that supports path minimum queries in O(α(n)) time. When m = Θ(n(lg∗)∗n),
for example, then it is well-known that α(m,n) = O(1), and thus we have an index
of O(n(lg∗)∗n) bits that supports path minimum queries in O(1) time1. Combining the
above index with a trivial encoding of node weights, we obtain data structures for path
minimum queries with O(1) query time and almost linear bits of additional space. Previous
solutions [5, 21, 31, 38, 72] to the same problem with constant query time occupy Ω(n lg n)
bits of space in addition to the space required for the input tree.

Taking the construction time into account, variant (a) with m = max{q, n} gives us
a data structure that answers q path minimum queries in O(q · α(q, n) + max{q, n}) =

1The function (lg∗)∗ is the number of times lg∗ must be iteratively applied before the result becomes
less than or equal to 1. See Nivasch’s discussions [84] for more details.

74

O(q ·α(q, n) + n) time, which matches the lower bound of Pettie [91].
Finally, variant (b) gives us the first succinct data structure for path minimum queries,

which occupies an amount of space that is close to the information-theoretic lower bound
of storing a weighted tree. Let σ denote the number of distinct weights. With a little
extra work, we can even represent a weighted tree using n lg σ + 2n + o(n) bits only, i.e.,
within o(n) additive term of the information-theoretic lower bound, to support queries in
O(α(n)) time.

5.1.2 Semigroup Path Sum

Generalizing the semigroup range sum queries on linear lists [99], the problem of sup-
porting semigroup path sum queries has been considered by Alon and Schieber [2] and
Chazelle [31]. Alon and Schieber designed a data structure with O(n) words of space and
construction time that supports semigroup path sum queries in O(α(n)) time. Unlike Alon
and Schieber’s and our formulation, Chazelle considered trees on weighted edges instead of
weighted nodes. However, it is not hard to see that these two formulations are equivalent.
Chazelle further showed that, for any m ≥ n, one could obtain a word RAM data structure
with O(α(m,n)) query time in addition to O(m) construction time and words of space.
The solution of Chazelle is optimal, as established in the lower bound of Yao [99].

Our data structures for semigroup path sum queries are summarized in the following
theorem.

Theorem 5.1.2. Let T be an ordinal tree on n nodes, each having a weight drawn from a
semigroup of size σ. Then T can be stored (a) using m lg σ + 2n + o(n) bits of space and
O(m) construction time to support semigroup path sum queries in O(α(m,n)) time, for
some constant c > 1 and any integer m ≥ cn; or (b) using n lg σ + 2n + o(n lg σ) bits of
space and O(n) construction time to support semigroup path sum queries in O(α(n)) time.

Variant (a) matches the data structures of Chazelle [31], and our approach can be
further used to achieve variant (b), which is the first succinct data structure with near-
constant query time for the semigroup path sum problem. Since path minimum queries are
special cases of semigroup path sum queries, the data structures described in Theorem 5.1.2
can be directly used for path minimum queries at no extra cost. However, these structures
cannot achieve both linear space and constant query time.

75

5.1.3 Path Reporting

Path reporting queries have been studied in Chapter 3. As stated in Theorem 3.5.8, we
have designed a succinct data structure based on tree extraction. This structure, requiring
O((lg σ/ lg lg n+1) · (1+occ)) query time and nH(WT)+2n+o(n lg σ) bits of space, where
H(WT) is the entropy of the multiset of the weights of the nodes in the input tree T , is
the best previously known linear space solution. Concurrently, Patil et al. [85] designed a
succinct structure based on heavy path decomposition [94, 60]. Their structure requires
n lg σ + 6n+ o(n lg σ) bits and O(lg σ lg n+ occ · lg σ) query time.

In this chapter, we design three new data structures for path reporting queries. These
results are included in this chapter, because they are heavily relying on the succinct indices
for path minimum queries which we will describe in Section 5.2.2.

Theorem 5.1.3. An ordinal tree on n nodes whose weights are drawn from a set of
σ distinct weights can be represented using O(n lg σ · s(σ)) bits of space, so that path
reporting queries can be supported using O(min{lg lg σ + t(σ), lg σ/ lg lg n + 1} + occ ·
min{t(σ), lg σ/ lg lg n + 1}) query time, where occ is the size of output, ε is an arbitrary
positive constant, and s(σ) and t(σ) are: (a) s(σ) = O(1) and t(σ) = O(lgε σ); (b)
s(σ) = O(lg lg σ) and t(σ) = O(lg lg σ); or (c) s(σ) = O(lgε σ) and t(σ) = O(1).

These results completely subsume almost all previous results; the only exceptions are
the succinct data structures for this problem designed in previous work, whose query times
are worse than our linear-space solution. Furthermore, our data structures match the state
of the art of 2D range reporting queries [27] when σ = n, and have better performance
when σ is much less than n. We compare our results with previous work on path reporting
and two-dimensional orthogonal range reporting in Table 5.1.

5.1.4 An Overview of the Chapter

The rest of this chapter is organized as follows. In Sections 5.2 and 5.3, we design novel
succinct data structures for the path minimum problem and the semigroup path sum prob-
lem. Unlike previous succinct tree structures [54, 85, 64, 42] and the structure described
in Lemma 3.5.5, our approach is based on Frederickson’s restricted multilevel partitions
described in Section 2.5.4, which transform the input tree into a binary tree and further
recursively decompose it into a hierarchy of clusters with constant external degrees and
logarithmically many levels. The hierarchy is referred to as a directed topology tree. Our
main strategy of constructing query-answering structures is to recursively divide the set

76

Table 5.1: Our data structures for path reporting queries, along with previous results on
path reporting and two-dimensional orthogonal range reporting (which are marked by †). All
of these results assume the standard word RAM model with word size w = Ω(lg n). Here
H(WT) is the entropy of the multiset of the weights of the nodes in T . Note that H(WT) is
at most lg σ, which is O(w).

Source Space Query Time

Theorem 3.4.1 O(n) words O(lg σ · (1 + occ))
Theorem 3.5.8 nH(WT) + 2n+ o(n lg σ) bits O((lg σ/ lg lg n+ 1) · (1 + occ))

[85] n lg σ + 6n+ o(n lg σ) bits O(lg σ lg n+ occ lg σ)
[18]† n lg σ + o(n lg σ) bits O((lg σ/ lg lg n+ 1) · (1 + occ))
[27]† O(n) words O(lg lg n+ lgε σ + occ lgε σ)
[27]† O(n lg lg σ) words O(lg lg n+ occ lg lg σ)
[27]† O(n lgε σ) words O(lg lg n+ occ)

Theorem 5.1.3 O(n lg σ) bits O(min{lgε σ, lg σ/ lg lg n+ 1} · (1 + occ))
Theorem 5.1.3 O(n lg σ lg lg σ) bits O(min{lg lg σ, lg σ/ lg lg n+ 1} · (1 + occ))

Theorem 5.1.3 O(n lg1+ε σ) bits O(min{lg lg σ, lg σ/ lg lg n+ 1}+ occ)

of levels of hierarchy into multiple subsets of levels; with a carefully-defined variant of the
query problem which takes levels in the hierarchy as parameters, the query over the entire
structure can be answered by conquering the subproblems local to the subsets of levels.
Solutions to special cases of the query problem are also designed, so that we can present
the time and space costs of our solution using recursive formulas. Then, by carefully con-
structing number series and using them in the division of levels into subsets, we can prove
that our structures achieve the tradeoff presented in Theorems 5.1.1 to 5.1.2 using the
inverse-Ackermann function. This approach is novel and exciting in the design of succinct
data structures, and it does not directly use standard techniques for word RAM at all.

The above strategy would not achieve the desired space bound without a succinct data
structure that supports navigation in the input tree, the binary tree that it is transformed
into and the clusters in the directed topology tree. In Section 5.4, we design such a struc-
ture occupying only 2n+ o(n) bits, which is of independent interest.

In Sections 5.5 and 5.6, to design solutions to path reporting, we follow the general
framework described in Chapter 3 to extract subtrees based on the partitions of the entire
weight range, and make use of a conceptual structure that borrows ideas from the classical
range tree. One strategy of achieving improved results is to further reduce path reporting
into queries in which the weight ranges are one-sided, which allows us to apply our succinct
index for path minimum queries to achieve improved tradeoffs where query time and space
cost match the previous best bounds for two-dimensional orthogonal range reporting as

77

listed in Table 5.1. We further apply a tree covering strategy to reduce the space cost for
the case in which the number of distinct weights is much smaller than n, and hence prove
Theorem 5.1.3.

Finally, we end this chapter with some open problems in Section 5.7.

5.2 Path Minimum Queries

5.2.1 A Lower Bound under the Encoding Model

We first give a simple lower bound for path minimum queries under the encoding model,
i.e., the least number of bits required to encode the answers to all possible queries.

Lemma 5.2.1. In the worst case, Ω(n lg n) bits are required to encode the answers to all
possible path minimum queries over a tree on n weighted nodes.

Proof. Consider a tree T with nL = Θ(n) leaves. We assign the smallest nL distinct weights
to these leaves, and assign larger weights to the other nodes. It follows that the smallest
weight on any path from a leaf to another must appear at one of its endpoints. The order
of the weights assigned to leaf nodes, which requires lg(nL!) = Ω(n lg n) bits to encode, can
be fully recovered using path minimum queries. Therefore, Ω(n lg n) bits are necessary to
encode the answers to path minimum queries over T .

While the lower bound of Pettie [91] focuses on the overall processing time, Lemma 5.2.1
provides a separation between path minimum and range minimum in terms of space:
Ω(n lg n) bits are required to encode path minimum queries over a tree on n weighted
nodes, while range minimum over an array of length n can always be encoded in 2n
bits [47].

5.2.2 Upper Bounds under the Indexing Model

Now we consider the support for path minimum queries. We represent the input tree as
an ordinal one, for which the nodes are identified by their preorder ranks. This strategy
has no significant impact to the space cost. We will assume the indexing model described
in Section 5.1 and develop several novel succinct indices for path minimum queries. In
these data structures, the weights of nodes are assumed to be stored separately from the
index for queries, and can be accessed with the preorder ranks of nodes. The time cost to

78

answer a given query is measured by the number of accesses to the index and that to node
weights.

T B

(a) (b)

Figure 5.1: An illustration of the binary tree transformation. (a) An input tree T on 12
nodes. (b) The transformed binary tree B, where dummy nodes are represented by dashed
circles.

Let T be an input tree on n nodes. Here T is represented as an ordinal one, and its
nodes are identified by preorder ranks. As illustrated in Figure 5.1, we transform T into a
binary tree, B, of size at most 2n as follows (essentially as in the usual way but with added
dummy nodes): For each node u with d > 2 children, where v1, v2, . . . , vd are children of u,
we add d− 2 dummy nodes x1, x2, . . . , xd−2. The left and right children of u are set to be
v1 and x1, respectively. For 1 ≤ k < d − 2, the left and right children of xk are set to be
vk+1 and xk+1, respectively. Finally, the left and right children of xd−2 are set to be vd−1

and vd, respectively. In this way we have replaced u and its children with a right-leaning
binary tree, where the leaf nodes are children of u. This transformation does not change
the preorder relationship among the nodes in T . In addition, the set of non-dummy nodes
along the path between any two non-dummy nodes remain the same after transformation.

As described in Section 2.5.4, we decompose B and obtain the directed topology tree
D using a restricted multilevel partition of order s = 1. We summarize the properties for
this special case in Lemma 5.2.2.

Lemma 5.2.2 ([50]). A binary tree B on n nodes can be partitioned into a hierarchy of
clusters with h+ 1 levels for some h = O(lg n), such that,

• the clusters at level 0 each contain a single node, and the only cluster at level h
contains all the nodes of B;

79

• for each level ` > 0, each cluster at level ` is the disjoint union of at most 2 clusters
at level `− 1;

• for each level ` = 0, 1, 2, . . . , h, there are at most (5/6)in clusters of sizes at most 2`,
which form a partition of the nodes in the binary tree;

• each cluster is of external degree at most 3 and contains at most two boundary nodes;
and

• any cluster that has more than one child cluster contains only a single node.

The leaf nodes of D, which are at level 0, each corresponds to an individual node of
the binary tree B. We illustrate these concepts in Figure 5.2.

a b c d e f g h i j k l m n o

D

B

a

b

c

d

e

f

g

h

i

j

k

l n

m o

Figure 5.2: The restricted multilevel partitions and the directed topology tree D for the
binary tree B shown in Figure 5.1(b). The base clusters, which each contain a single node of
B, are not explicitly specified in the figure to avoid cluttering.

80

As T and B are rooted trees, each cluster contains a node that is the ancestor of all the
other nodes in the same cluster. This node is referred to as the head of the cluster. Note
that the head of a cluster is also a boundary node except for the cluster that includes the
root of B. For a cluster that has two boundary nodes, the non-head one is referred to as
the tail of the cluster. If the head and the tail of a cluster are not adjacent, then the path
between but excluding them is said to be the spine of the cluster, i.e., the spine is obtained
by removing the head and the tail from the path that connects them.

In the directed topology tree D, sibling clusters are ordered by the preorder ranks of
their heads. Each cluster C is identified by its topological rank, i.e., the preorder rank of the
node in D that represents C. For simplicity, a cluster at level i is called a level-i cluster, and
its boundary nodes are said to be level-i boundary nodes. To facilitate the use of directed
topology trees, we define the following operations relevant to nodes, clusters, boundary
nodes and spines. The support for these operations is summarized in the following lemma.

Lemma 5.2.3. Let T be an ordinal tree on n nodes. Then T , the transformed binary tree
B, and their directed topology tree D can be encoded using O(n) construction time and
2n + o(n) bits of space, such that the following operations can be supported in O(1) query
time. Here x and y are nodes in B, and C is a cluster in D.

• conversions between nodes in T and B;

• level cluster(D, i, x): return the level-i cluster that contains node x;

• LLC(D, x, y): return the cluster at the lowest level that contains nodes x and y;

• cluster head(D, C): return the head of cluster C;

• cluster tail(D, C): return the tail of cluster C or NULL if it does not exist;

• cluster spine(D, C): return the endpoints of the spine of cluster C or NULL if the
spine does not exist;

• cluster nn(D, C, x): return the boundary node of C that is the closest to node x,
given that x is outside of C;

• parent(B, x): return the parent node of x in B;

• LCA(B, x, y): return the lowest common ancestor of x and y;

• BN rank(B, i, x): count the level-i boundary nodes that precede x in preorder of B;

• BN select(B, i, j): return the j-th level-i boundary node in preorder of B.

Next we describe our data structures for path minimum queries. To highlight our key
strategy, we defer the proof of Lemma 5.2.3 to Section 5.4. As the conversion between

81

nodes in T and B can be performed in O(1) time, we assume that the endpoints of query
paths and the minimum nodes are both specified by nodes in B. We first consider how to
find the minimum node for specific subsets of paths in B. Let h be the highest level of
D. The following subproblems are defined in terms of clusters and boundary nodes, for
0 ≤ i < j ≤ h.

• PMi,j: find minimum nodes along query paths between two level-i boundary nodes
that are contained in the same level-j cluster;

• PM′
i,j: find minimum nodes along query paths from a level-i boundary node to a

level-j one (which is also a level-i boundary node), where both boundary nodes are
contained in the same level-j cluster.

Thus the original problem is PM0,h. If PMi,j is solved, then PM′
i,j and PMi′,j for i′ > i

are also naturally solved.
We will select a set of canonical paths in B, for which the minimum nodes on all these

canonical paths have been precomputed and stored. By the indexing model we adopt,
singleton paths are naturally canonical. In our query algorithm, each query path will
always be partitioned into a set of canonical subpaths, so that each node on the query path
is contained in exactly one of these canonical subpaths, and the endpoints of the query
path are contained in singleton canonical paths. Let u ∼ v denote the path from u to v.
If node t is on u ∼ v, then the partition of u ∼ v could be obtained by taking the union of
the partitions of u ∼ t and v ∼ t, which both contain t in a singleton canonical path.

Let hτ > 0 be a parameter whose value will be determined later. For each cluster whose
level is higher than or equal to hτ , we explicitly store the minimum node on its spine, i.e.,
the spine is made canonical. The following lemma addresses the cost incurred.

Lemma 5.2.4. It requires O(hτ (5/6)hτn) bits of additional space and O(n) construction
time to make these spines canonical.

Proof. It requires i bits to store the minimum node on the spine of a level-i cluster, as the
cluster contains at most 2i nodes. As B has at most 2n nodes, there are at most (5/6)i · 2n
level-i clusters. Thus the overall space cost is

∑h
i=hτ

(i(5/6)i · 2n) = O(hτ (5/6)hτn) bits.
The minimum nodes on the spines of level-hτ clusters can be simply found in O(n)

overall time using brute-force search. For hτ < i ≤ h, the spine of a level-i cluster C can be
partitioned into singleton paths and spines of level-(i−1) clusters that are contained in C.
This requires only O(1) time per cluster, as C is the disjoint union of at most 2 level-(i−1)
clusters. Thus the overall construction time is O(n)+

∑h
i=hτ+1((5/6)i·2n·O(1)) = O(n).

82

In particular, when hτ = ω(1), the space cost in Lemma 5.2.4 is o(n) bits.
We will solve PM0,hτ using brute-force search, and support PMhτ ,h using a novel

recursive approach as described below. The base cases of recursion are summarized in
Lemmas 5.2.5 to 5.2.7.

Lemma 5.2.5. PM0,hτ can be solved using O(2hτ) query time and no extra space.

Proof. By Lemma 5.2.2, each level-hτ cluster contains at most 2hτ nodes. Thus any path
of PM0,hτ can be traversed within O(2hτ) time using parent and LCA operations. The
minimum node on the path can be found during this traversal.

t

u

v

Figure 5.3: An illustration for the proof of Lemma 5.2.6. Here the large splinegon represents
a level-j cluster and the small ones represent level-i clusters contained in the level-j cluster.
Bold lines represent spines of level-i clusters and dotted lines represent paths.

Lemma 5.2.6. For every pair of i and j satisfying hτ ≤ i < j ≤ h and j − i = O(1),
PMi,j can be solved using O(1) query time and no extra space.

Proof. Let u and v be the endpoints of some given query path of PMi,j. That is, u and v
are two level-i boundary nodes that are contained in the same level-j cluster. To partition
the path u ∼ v, we first compute t = LCA(B, u, v). Node t must also be a level-i boundary
node; otherwise the cluster that contains t would have at least two child clusters. As shown
in Figure 5.3, we then partition the path u ∼ t into a constant number of singleton paths
and spines of level-i clusters, which are all canonical. Initially, we set x = u and let C be
the level-i cluster that contains x. The following procedure is repeated until x becomes the

83

parent of t. We make use of cluster spine(D, C) to check whether x is on the spine of C.
If x is on the spine, then y is set to be the other endpoint of the spine; otherwise y = x. In
both cases, we select the path x ∼ y, which must be canonical, and reset x = parent(B, y)
and C = level cluster(D, i, x).

By Lemma 5.2.2, each level-j cluster is a disjoint union of a constant number of level-i
clusters, as 2j−i = 2O(1) is a constant. Therefore, the path u ∼ t can be partitioned into
O(1) canonical subpaths using the procedure described above. The path v ∼ t can be
partitioned similarly. Taking the union of these two sets of selected canonical paths except
for a singleton path that contains t, we determine O(1) canonical paths that the path u ∼ v
is partitioned into, and thus the minimum node on u ∼ v. Clearly the algorithm uses only
O(1) time.

· · ·

· · ·

4

6

6

3

5

2
3

3
1

2

6

5

3

1v v′

1 1

1

0

0

0

0

1

1

· · ·

· · ·
(a) (b)

T Ti,j

Figure 5.4: An illustration for the proof of Lemma 5.2.7. (a) The large splinegon represents
a level-j cluster and the small ones represent level-i clusters contained in the level-j cluster.
Bold lines represent spines of level-i clusters. The number alongside a node is its weights,
and the one alongside a spine is the minimum weight on the spine. (b) The 01-labeled tree
Ti,j that corresponds to the cluster head v.

Lemma 5.2.7. For a fixed pair of i and j satisfying hτ ≤ i < j ≤ h, PM′
i,j can be solved

using O(1) query time, with an auxiliary data structure requiring O((5/6)in) bits of extra
space and construction time.

Proof. In this proof, we will implicitly make each query path of PM′
i,j canonical and store

the minimum nodes on these paths in a highly efficient way.
We construct an auxiliary ordinal tree, Ti,j, using the technique of tree extraction.

84

The structure of Ti,j is obtained by extracting all level-i boundary nodes from B. By
Lemma 5.2.2, Ti,j consists of O((5/6)in) nodes. For convenience, we refer to a node in Ti,j
as u′ iff it corresponds to a level-i boundary node u in B. The conversion between u and
u′ can be performed in O(1) time using BN rank and BN select.

Next we assign labels from alphabet {0, 1} to the nodes of Ti,j. We only consider
the case in which the level-j boundary node is the head of its cluster; the other case
can be handled similarly. Let u be any level-i boundary node and let v be the head of
C0 = level cluster(B, j, u), i.e., the level-j cluster that contains u. As in the proof of
Lemma 5.2.6, the path from u to v in B can be partitioned into a sequence of singleton
paths and spines of level-i clusters. Let x′ be the next node on the path from u′ to v′. We
assign 1 to u′ in Ti,j if u = v, or the minimum node on u ∼ v is smaller than that on x ∼ v;
otherwise we assign 0 to u′. See Figure 5.4 for an example. We represent this labeled tree
within O((5/6)in) bits of space and O((5/6)in) construction time using Lemma 2.5.3.

To find the minimum node between u and v, we need only to find the closest 1-node to
u′ along the path from u′ to v′ in Ti,j. This node can be found in O(1) time by performing
level ancα and depthα operations on Ti,j. Let x′ be the node found. Then the minimum
node on u ∼ v must be x or appear on the spine of the level-i cluster that contains x, and
thus can be retrieved in O(1) time.

Now we turn to consider general PMi,j, for which we will develop a recursive strategy
with multiple iterations. At each iteration, we pick a sequence i = i0 < i1 < i2 < · · · <
ik = j, for which PMi0,i1 ,PMi1,i2 , . . . ,PMik−1,ik are assumed to be solved at the previous
iteration. By Lemma 5.2.7, we solve PM′

i,i1
,PM′

i,i2
, . . . ,PM′

i,ik
using O(k(5/6)in) bits of

additional space and construction time.
Let u and v be the endpoints of a query path of PMi,j. That is, u and v are

level-i boundary nodes that are contained in the same level-j cluster. As in the proof of
Lemma 5.2.6, we still compute t = LCA(B, u, v) and partition the paths u ∼ t and v ∼ t.
For u ∼ t, we compute C0 = LLC(B, u, t), which is the lowest level cluster that contains
both u and t. Let i′ be the level of C0. The case in which i′ = i can be simply handled by
calling PMi0,i1 . Otherwise, we determine s such that is < i′ ≤ is+1. Here s can be obtained
in O(1) time by precomputation for each possible value of i′, which requires O(lg n) time
and O(lg2 n) bits of space. Let C1 = level cluster(D, u, is), which is the level-is cluster
that contains u. Let x = cluster nn(D, C1, t), which is a boundary node of C1 that is
between u and t. Similarly, let C2 be the level-is cluster that contains t and let z be a
boundary node of C2 that is between u and t. By Lemma 5.2.3, x and z can be found in
constant time. By Lemma 5.2.7, the paths u ∼ x and z ∼ t can be partitioned into O(1)
canonical paths by querying PM′

i,is . Finally, the path x ∼ z can be partitioned recursively
by querying PMis,is+1 . See Figure 5.5 for an illustration of partitioning u ∼ t. On the

85

C0

C1

C2

u

x

z

t

PM′
i,is

PMis,is+1

Figure 5.5: An illustration of partitioning u ∼ t. The outermost splinegon represents the level-
is+1 cluster that contains both u and t. The paths u ∼ x and z ∼ t, which are represented
by dashed lines, are partitioned by querying PM′i,is . The path x ∼ z, which is represented
by a dotted line, is partitioned by querying PMis,is+1

.

other hand, the path v ∼ t can be partitioned in a similar fashion. Thus the partition of
the path u ∼ v is obtained.

Summarizing the discussion above, we have the following recurrences. Here S`(i, j)
is the space cost and the construction time, and Q`(i, j) is the query time spent at the
first ` iterations for solving PMi,j. It should be drawn to the reader’s attention that the
coefficient of Q`(is, is+1) is 1 in Equation 5.2, since a top-to-bottom query path requires at
most one recursive call to subproblems of the form PMis,is+1 .

S`+1(i, j) =
k−1∑

s=0

S`(is, is+1) +O(k(5/6)in) (5.1)

Q`+1(i, j) =
k−1
max
s=0

Q`(is, is+1) +O(1). (5.2)

The desired recursive strategy follows from these recurrences.

Lemma 5.2.8. Given a fixed value L, there exists a recursive strategy and some constant
c such that, for 0 ≤ ` ≤ L, S`(i, A`(i)) ≤ c(6/7)in and Q`(i, A`(i)) ≤ c`.

Proof. At the 0-th iteration, we set A0(i) = i + 1. This can be used as the base case. By
Lemma 5.2.6, PMi,i+1 can be supported using O(1) query time at no extra space cost.
Thus the statement holds for ` = 0.

86

At the (`+1)-st iteration, we pick the sequence i, i+13, A`(i+13), A
(2)
` (i+13), . . . , A

(i)
` (i+

13), A
(i+1)
` (i + 13). The last term is A`+1(i). By Equation 5.1, for some sufficiently large

constant c1:

S`+1(i, A`+1(i)) ≤
∑

0≤j≤i

S`(A
(j)
` (i+ 13), A

(j+1)
` (i+ 13)) +O(i(5/6)in)

≤ O(i(5/6)in) +
∑

0≤j≤i

c1(6/7)A
(j)
` (i+13) · n

≤ O(i(5/6)in) +
∑

0≤j≤i

c1(6/7)i+13+j · n

≤ O(i(5/6)in) + 7c1(6/7)i+13 · n ≤ c1(6/7)i · n.
This inequality follows because 7(6/7)13 ≈ 0.9436 < 1. Similarly, Equation 5.2 implies
that, for some sufficiently large constant c2,

Q`+1(i, A`+1(i)) ≤ O(1) + max
0≤j≤i

Q`(A
(j)
` (i+ 13), A

(j+1)
` (i+ 13)) ≤ O(1) + c2` ≤ c2(`+ 1).

The induction thus carries through, and the proof is completed by setting c to be the larger
one of c1 and c2.

We finally have Lemmas 5.2.9 and 5.2.10, which cover Theorem 5.1.1.

Lemma 5.2.9. For m ≥ n, PM0,h can be solved using O(α(m,n)) query time in addition
to O(m) bits of extra space and construction time.

Proof. Given a parameter m ≥ n, we set L = α(m,n) and hτ = 0, and recurse one more it-
eration. At the final (L+1)-st iteration, we pick the sequence 0, 1, 2, . . . , bm/nc, AL(bm/nc).
The last term AL(bm/nc) > n ≥ h. This gives us

SL+1(0, h) ≤ SL+1(0, AL(bm/nc))
≤ SL(bm/nc, AL(bm/nc)) +O(bm/ncn) (Equation 5.1 and Lemma 5.2.6)

≤ O(m) (Lemma 5.2.8)

and

QL+1(0, h) ≤ QL+1(0, AL(bm/nc))
≤ QL(bm/nc, AL(bm/nc)) +O(1) (Equation 5.2 and Lemma 5.2.6)

≤ O(L) (Lemma 5.2.8)

= O(α(m,n)).

87

Adding Lemmas 5.2.3 and 5.2.4, the overall space cost is O(m) additional bits, the overall
construction time is O(m), and the query time is QL+1(0, h) = O(α(m,n)).

Lemma 5.2.10. For r(n) = (6/7)lgα(n) · n ∈ o(n), PM0,h can be solved using O(α(n))
query time, 2n+O(r(n)) bits of extra space, and O(n) construction time.

Proof. We choose L = α(n) and hτ = dlgLe. Note that hτ = ω(1) and AL(hτ) ≥ h.
Therefore we have SL(hτ , AL(hτ)) = O((6/7)hτn) = O(r(n)) = o(n), andQL(hτ , AL(hτ)) =
O(L) = O(α(n)). By Lemma 5.2.5, PM0,hτ and PM′

0,hτ can be solved using O(2hτ) =
O(α(n)) query time at no extra space cost. Adding Lemmas 5.2.3 and 5.2.4, the overall
space cost is 2n + O(r(n)) additional bits, the overall construction time is O(n), and the
query time is O(α(n)).

By constructing the preorder label sequence of T , we further have

Corollary 5.2.11. Let T be an ordinal tree on n nodes, each having a weight drawn from
[1..σ]. Then T can be represented (a) using n lg σ + O(m) bits of space to support path
minimum queries in O(α(m,n)) time, for any m ≥ n; or (b) using n(lg σ + 2) + o(n) bits
of space to support path minimum queries in O(α(n)) time.

By directly applying the result of Sadakane and Grossi [93], we can further achieve
compression and replace the n lg σ additive term in the space cost of both the results of
the above corollary by nHk+o(n) · lg σ while providing the same support for queries, where
k = o(logσ n) and Hk is the k-th order empirical entropy of the preorder label sequence.

5.3 Semigroup Path Sum Queries

In this section, we generalize the approach of supporting path minimum queries to semi-
group path sum queries. As in Section 5.2, we transform the given tree into a binary tree,
which is further decomposed using Lemma 5.2.2. We also define the notions of spines,
heads and tails in the same manner. Again, our strategy is to make some paths canonical,
for which the sum of weights along each canonical path will be precomputed and stored.
Naturally, all singleton paths are still canonical. Each query path will be partitioned into
disjoint canonical subpaths, and the sum of weights along the whole query path can be
obtained by summing up the precomputed sums over these canonical subpaths.

Let hτ > 0 be a parameter whose value will be determined later. The spines of clusters
whose levels are higher than or equal to hτ are made canonical. As in Section 5.2, we define
subproblems PS i,j and PS ′i,j as follows:

88

• PS i,j: sum up weights of nodes along query paths between two level-i boundary
nodes that are contained in the same level-j cluster;

• PS ′i,j: sum up weights of nodes along query paths from a level-i boundary node to a
level-j one, where both boundary nodes are contained in the same level-j cluster.

PS0,hτ will be solved using brute-force search, while PShτ ,h will be solved using the re-
cursive approach as described in Section 5.2. In the following, Lemmas 5.3.1 to 5.3.4 are
modified from Lemmas 5.2.4 to 5.2.7. For each lemma, we give its proof only if the proof
for the corresponding lemma in Section 5.2 cannot be applied directly.

Lemma 5.3.1. It requires O((5/6)hτn lg σ) bits of additional space and O(n) construction
time to make these spines canonical.

Proof. As the semigroup contains σ elements, it requires lg σ bits to store the sum of
weights on the spine of a cluster. Thus the overall space cost is

∑h
i=hτ

((5/6)i · 2n · lg σ) =
O((5/6)hτn lg σ) bits. In particular, when hτ = ω(1), the space cost is o(n lg σ) bits. The
construction is the same in Lemma 5.2.4.

Lemma 5.3.2. PS0,hτ can be solved using O(2hτ) query time and no extra space.

Lemma 5.3.3. For every pair of i and j satisfying that hτ ≤ i < j ≤ h and j − i = O(1),
PS i,j can be solved using O(1) query time and no extra space.

Lemma 5.3.4. For a fixed pair of i and j satisfying that hτ ≤ i < j ≤ h, PS ′i,j can be solved
using O(1) query time, O((5/6)in lg σ) bits of extra space, and O((5/6)in) construction
time.

Proof. We make each query path of PS ′i,j canonical and store the sum of weights along
each of these paths explicitly. It is easy to see that the space cost is O((5/6)in lg σ) extra
bits and the construction time is O((5/6)in lg σ).

Following the same recursive strategy in Section 5.2, we have the following recurrences.
Here S`(i, j) is the space cost, P`(i, j) the construction time, and Q`(i, j) is the query time
spent at the first ` iterations for solving PS i,j.

S`+1(i, j) =
k−1∑

s=0

S`(is, is+1) +O(k(5/6)in lg σ) (5.3)

P`+1(i, j) =
k−1∑

s=0

P`(is, is+1) +O(k(5/6)in) (5.4)

Q`+1(i, j) =
k−1
max
s=0

Q`(is, is+1) +O(1). (5.5)

89

We then have the following key lemma, which is similar to Lemma 5.2.8.

Lemma 5.3.5. Given a fixed value L, there exists a recursive strategy and some constant
c such that, for 0 ≤ ` ≤ L, S`(i, A`(i)) ≤ c(6/7)in lg σ, P`(i, A`(i)) ≤ c(6/7)in, and
Q`(i, A`(i)) ≤ c`.

Finally, we store weights of nodes in the preorder label sequence of T . This requires
n lg σ + o(n) bits of space, and the weight of each node can be accessed in O(1) time.
The rest of the proof for Theorem 5.1.2 follows from the same strategies of Lemmas 5.2.9
and 5.2.10.

5.4 Encoding Topology Trees: Proof of Lemma 5.2.3

Let T be an ordinal tree on n nodes. As described in Section 5.2, we transform T into a
binary tree B, and compute the directed topology tree of B as D. Let nD denote the number
of nodes in D. By Lemma 5.2.2, we have that nD = O(n), as there are at most (5/6)i · 2n
level-i clusters. Let i1 = d12 lg lg ne and i2 = blg lg nc − 1. Again by Lemma 5.2.2, there
are at most n1 = (5/6)i1 · n = O(n/(6/5)12 lg lgn) = O(n/ lg12 lg(6/5) n) ∈ O(n/ lg3 n) level-i1
clusters, each being of size at most m1 = 2i1 ≤ 212 lg lgn+1 = 2 lg12 n. Similarly, there are
at most n2 = (5/6)i2 · n = O(n/ lglg(6/5) n) ∈ O(n/(lg1/5 n)) level-i2 clusters, each being of
size at most m2 = 2i2 ≤ 2lg lgn−1 = (lg n)/2. Clusters at levels i1 and i2 are referred to as
mini-clusters and micro-clusters, respectively.

We will precompute several lookup tables that support certain queries for each possible
micro-cluster. Note that two clusters are different if the sets of non-dummy nodes are
different. There are O(n1−δ) distinct micro-clusters for some δ > 0, since m2 ≤ (1/2) lg n.
If each micro-cluster costs o(nδ) bits, then the space cost of the lookup table is only o(n)
additional bits. We first make use of a lookup table to store the encodings of micro-clusters.

Lemma 5.4.1. All micro-clusters can be encoded in 2n+o(n) bits of space such that given
the topological rank of a micro-cluster, its encoding can be retrieved in O(1) time.

Proof. Note that B has at most 2n nodes. Given a micro-cluster C, we do not store its
encoding directly because it could require about 4n bits of space for all micro-clusters.
Instead, we define X to be the union of non-dummy nodes and dummy boundary nodes
of C and store only CX , where CX is the X-extraction of C as defined in Section 2.5.3.
We also mark the (at most 2) dummy nodes in CX , which requires O(lgm2) = O(lg lg n)
bits per node. As illustrated in Figure 5.6, we encode CX as the balanced parentheses

90

((())(()()(())))

(a) (b) (c)

C CX

Figure 5.6: An example of encoding micro-clusters. (a) A micro-cluster C in which dummy
nodes are represented by dashed circles. (b) The corresponding CX obtained by preserving
non-dummy nodes and dummy boundary nodes. (c) The balanced parentheses for CX .

described in Section 2.5.1. The overall space cost of encoding C is 2nC + O(lg lg n) bits,
where nC is the number of non-dummy nodes in C. We concatenate the above encodings
of all micro-clusters ordered by topological rank and store them in a sequence, P , of
n′ = 2n+O(n lg lg n/(lg1/5 n)) bits.

We construct a sparse bit vector, P ′, of the same length, and set P ′[i] to 1 iff P [i] is
the first bit of the encoding of a micro-cluster. P ′ can be represented using Lemma 2.3.1
in lg

(
n′

n2

)
+ O(n lg lg n/ lg n) = O(n lg lg n/(lg1/5 n)) bits to support rankα and selectα

in constant time. We construct another bit vector B0[1..nD], in which B0[j] = 1 iff the
cluster with topological rank j is a micro-cluster, which is also encoded using Lemma 2.3.1
in O(n lg lg n/(lg1/5 n)) bits.

To retrieve the encoding of a cluster, C, whose topological rank is j, we first use B0

to check if C is a micro-cluster. If this is true, let r = rank1(B0, j). Then the encoding
of CX is P [select1(P ′, r)..select1(P ′, r + 1) − 1]. To recover C from CX , we need only
to reverse the binary tree transformation described at the beginning of Section 5.2.2. This
can be done in O(1) time using a lookup table F0 of o(n) bits.

Now we start to consider the support for operations. By Lemma 5.2.2, each node is
contained in exactly one cluster at each level. We borrow the terminology from Geary et
al.’s work [54] and define the τ -name of a node x to be (τ1(x), τ2(x), τ3(x)), where τ1(x),
τ2(x) and τ3(x) are the topological ranks of the level-i1, level-i2, and level-0 clusters that
contain x, respectively. Let i3 = 0. Note that, for k = 1, 2, τk+1(x) is represented as
the relative value with respect to the level-ik cluster that contains x, i.e., the difference
between the topological ranks of the level-ik+1 and level-ik clusters that contain x. Thus
τ2(x) and τ3(x) can be encoded in O(lg lg n) bits.

91

As in Lemma 5.2.2, preorder segments are defined to be maximal substrings of nodes
in the preorder sequence that are in the same cluster [64, Definition 4.22]. By the same
lemma, each cluster contains only one node or has only one child cluster, and thus the
nodes of each cluster belong to at most 2 preorder segments. These preorder segments and
the cluster are said to be associated with each other, and the preorder segments of a level-i
cluster are called level-i preorder segments. For simplicity, level-i1 and level-i2 preorder
segments are also called mini-segments and micro-segments, respectively.

In the following proofs, we will precompute several lookup tables that store certain
information for each possible micro-cluster C. When we say the hierarchy of C, we mean
the hierarchy obtained by partitioning C as described in Lemma 5.2.2.

a b c d e f g h i j k l m n o

D

B

a

b

c

d

e

f

g

h

i

j

k

l n

m o

B1[1..39]: 111000000000010001100000000010000000000

B2[1..39]: 000100010000001000010000010001000100000

mini-clusters

micro-clusters

fabdcejhgiklnmo

V1[1..12]: 110000100010000

V2[1..12]: 110100110010100

Figure 5.7: An illustration for the proofs of Lemmas 5.4.2 and 5.4.3. Here mini-clusters and
micro-clusters are enclosed by dashed and dotted splinegons, respectively. The bit vectors
B1, B2, V1, and V2 are constructed for the directed topology tree shown in Figure 5.2.

92

Lemma 5.4.2. It requires O(1) time and o(n) bits of additional space for the conversion
between the preorder rank of a node in T or B and its τ -name.

Proof. We only consider the conversion for nodes in B; the other case can be handled
similarly. For each level i ∈ [i2..h] and each level-i cluster C, we store the following infor-
mation in D(C): its topological rank, its root node, its boundary nodes, and the starting
and ending positions of its associated preorder segments in B. For levels i1 to h, it requires
O(lg n) bits of space per cluster to store the information directly (the nodes stored in D(C)
are encoded as their preorder ranks in B). For each cluster C at levels i2 to i1−1, we store
the relative ranks with respect to the mini-cluster C ′ that contains C. More precisely, we
encode the difference between the topological ranks of C and C ′, and each node stored in
D(C) is encoded as i if it is the i-th node in C ′ in preorder. This requires only O(lg lg n)
bits per cluster, as each mini-cluster is of size at most m1 ∈ O(lg12 n). Physically, for
all clusters above level i2, we use two arrays to store the above information and use two
bit vectors to locate the corresponding entry for any given cluster. For levels i1 to h, we
construct a bit vector B1[1..nD] in which B1[j] = 1 iff the cluster with topological rank
j is at or above level i1. We construct an array D1 whose length is equal to the number
of clusters at levels i1 to h; for each cluster C at levels i1 to h − 1, D(C) is stored in
the rank1(B1, j)-th entry of D1 if the topological rank of C is j. Similar auxiliary data
structures D2 and B2 are also constructed for clusters at levels i2 to i1−1. In the hierarchy
D, there are O(n1) clusters at levels i1 to h, and O(n2) clusters at levels i2 to i1− 1. Thus
the overall space cost, including the cost of encoding B1 and B2 using Lemma 2.3.1, is
O(n1)×O(lg n) +O(n2)×O(lg lg n) ∈ o(n) bits.

For k ∈ {1, 2}, all level-ik preorder segments form a partition of the preorder traversal
sequence of B, and we mark their starting positions in a bit vector Vk. More precisely, we
set Vk[j] = 1 if and only if the j-th node in preorder of B is the first node in some level-ik
preorder segment. By Lemma 2.3.1, these two bit vectors can be encoded in o(n) bits of
space to support rank and select in O(1) time. For mini-segment (or micro-segment) s,
we store in E(s) the topological rank of its associated mini-cluster (or micro-cluster). It
requires O(n1) × O(lg n) = O(n/ lg2 n) bits to store E(s) directly for all mini-segments.
For each micro-segment s, we store the relative topological rank of its associated micro-
cluster with respect to the mini-cluster that contains s. This requires only O(lg lg n) bits
per micro-segment, and O(n2)×O(lg lg n) = O(n lg lg n/(lg1/5 n)) bits in total.

Finally, we precompute a lookup table F1 that stores, for each possible micro-cluster
C, the mapping between nodes in C and level-0 clusters in the i2-level hierarchy of C.
These nodes and level-0 clusters are encoded as the relative preorder ranks and topolog-
ical ranks with respect to C. It is easy to see that F1 occupies o(n) bits of space, since
m2 ≤ (1/2) lg n.

93

Given a node x in B, we first locate s1, the mini-segment that contains x, using rank

operations on V1. By accessing E(s1), we can determine C1, which is the mini-cluster that
contains x and the associated mini-segment s1. Then we locate s2, the micro-segment that
contains x, using V2. By accessing E(s2) and D(C1), we can determine C2, the micro-cluster
that contains x. Finally, by accessing F1, we can find the level-0 cluster that represents x.
That is, we obtain the τ -name of x.

In the other direction, given the τ -name of some node x, we can immediately determine
C1, C2 and C3, which are the level-i1, level-i2 and level-0 clusters that contain x, respec-
tively. By accessing D(C1) and D(C2), we can find the associated preorder segments of
C2. By accessing F1, we can compute the relative preorder rank of x with respect to C2.
Then we can determine the preorder rank of x in B.

The conversion between nodes in T and B directly follows from Lemma 5.4.2. Thus, to
answer queries that ask for a node, it suffices to return either its τ -name, or its preorder
rank in B or T . In the remaining part of this section, when we talk about the preorder
rank of a node x, we refer to the preorder rank of x in B, unless otherwise specified.

Lemma 5.4.3. Operations cluster head and cluster tail can be supported in O(1)
query time and o(n) bits of additional space.

Proof. We precompute a lookup table F2 that stores, for each possible micro-cluster C
and each cluster C ′ in the i2-level hierarchy of C, the root and the boundary nodes of C ′.
These nodes are encoded as the relative preorder ranks with respect to C. It is clear that
F2 occupies o(n) bits of space.

Recall the bit vectors B1 and B2 constructed in the proof of Lemma 5.4.2, as well as
the information stored in D(C) for each cluster C whose level is higher than or equal to
i2 in the same proof. Given a cluster C with topological rank j, we first determine if the
level of C is at or above i1 by checking if B1[j] = 1. If the level of C is at or above i1,
then we can retrieve the answers to cluster head and cluster tail directly from D(C).
Otherwise, we find the mini-cluster C1 that contains C by select1(B1, rank1(B1, j)). Then
we determine if the level of C is in [i2..i1 − 1] by checking if B2[j] = 1. If this is true,
then we can obtain the answers using D(C1) and D(C): To locate the root, cr, of C (the
boundary nodes can be located using the same approach), the relative preorder of cr in
C1 can be used to locate the preorder segment in C1 containing cr. The preorder rank of
the first node in this segment, which is stored in D(C1), can be used to further compute
the preorder rank of cr in constant time. If the level of C is not within the above range,
we further find the micro-cluster C2 that contains C by select1(B2, rank1(B2, j)). By
accessing D(C1), D(C) and the entry in F2 that corresponds to the encoding of C2, we can
obtain the answers in O(1) time.

94

B3: 1110001000001100

(a) (b)

Dabove

D

Figure 5.8: An illustration of the support for level cluster. (a) A directed topology tree
D in which the topmost three levels belong to Dabove. (b) The corresponding bit vector B3

for D and Dabove.

Lemma 5.4.4. Operations level cluster and LLC can be supported in O(1) query time
and o(n) bits of additional space.

Proof. Let Dabove be the topmost h − i2 + 1 levels of D. It is clear that Dabove represents
the hierarchy for the clusters at levels i2 to h. We store Dabove using Lemma 2.5.2. This
requires O(n2) = O(n/(lg1/5 n)) bits of space, since there are at most O(n2) clusters at
these levels. As illustrated in Figure 5.8, we construct a bit vector B3 in which B3[j] is 1
iff the cluster with topological rank j is present in Dabove. By Lemma 2.3.1, B3 occupies
o(n) bits of space and can be used to perform conversions between the topological rank of
any given cluster present in Dabove and its preorder rank in Dabove in constant time.

Let n′C be the number of nodes in a micro-cluster C, including both dummy and non-
dummy ones. We precompute a lookup table F3 that stores, for each possible micro-cluster
C, each level i ∈ [0..i2], and each j ∈ [1..n′C], the relative topological rank of the level-i
cluster in the hierarchy of C that contains the j-th node of C. We also precompute another
lookup table F4 that stores, for each possible micro-cluster C, and each j1, j2 ∈ [1..n′C], the
lowest level cluster in the hierarchy of C that contains the j1-st and the j2-nd nodes of C.

We have two cases in computing level cluster(D, i, x). If i ≤ i2, then the answer can
be retrieved from F3 directly. Otherwise, we can determine the micro-cluster that contains
x using the τ -name of x, and find the level-i cluster that contains x using level anc

operations on Dabove.
The support for LLC(D, x, y) is similar. We first determine if x and y are in the same

micro-cluster using their τ -names. If they are in the same micro-cluster, then the answer
can be retrieved from F4 in O(1) time. Otherwise, we can find the micro-clusters that

95

contain x and y, respectively. Let these micro-clusters be C1 and C2. We can compute LLC

by finding the lowest common ancestor of C1 and C2 in Dabove.

B T̃

(a) (b)

Figure 5.9: An illustration for the proof of Lemma 5.4.5. (a) A binary tree B in which micro-
clusters are represented by splinegons, and their roots are represented by solid circles. (b)

The tree T̃ obtained by extracting roots of micro-clusters in B.

Lemma 5.4.5. Operation LCA can be supported in O(1) query time and o(n) bits of addi-
tional space.

Proof. As described in Section 2.5.3, we extract the roots of all micro-clusters from B. As
illustrated in Figure 5.9, the extracted tree, T̃ , is maintained using Lemma 2.5.2. For the
conversion between nodes in T̃ and roots of micro-clusters in B, we maintain a bit vector
V3 using Lemma 2.3.1, for which the j-th bit is 1 iff the j-th node of B is the root of some
micro-cluster. In addition, we precompute a lookup table F5 that stores, for each possible
micro-cluster C, and each j1, j2 ∈ [1..n′C], the lowest common ancestor of the j1-st and the
j2-nd nodes of C.

To compute LCA(B, x, y), we first verify if nodes x and y are in the same micro-cluster.
If they are both in the same cluster, then their lowest common ancestor can be found by
accessing F5. Otherwise, we determine the micro-clusters that contain x and y. Let u and
v be the roots of these micro-clusters, respectively. We perform an LCA operation on T̃ and
find the lowest micro-cluster root that is a common ancestor of u and v. This root must
be the lowest common ancestor of x and y.

Lemma 5.4.6. Operation cluster nn can be supported in O(1) query time and no extra
space.

Proof. Let C be a cluster and let x be some node that is outside of C. To compute
cluster nn(D, C, x), we first determine if x is in the subtree rooted at the root of C. Let

96

y = cluster head(D, C). If LCA(B, x, y) 6= y, then x is also outside of the subtree rooted
at y, and the closest boundary node to x must be y. Otherwise, the closest boundary node
is z = cluster tail(D, C), the tail of the cluster C.

Lemma 5.4.7. Operation parent can be supported in O(1) query time and o(n) bits of
additional space.

Proof. We precompute a lookup table F6 that stores, for each possible micro-cluster C
and each j ∈ [1..n′C], the parent of the j-th node of C. Given a node x, we first find the
micro-cluster C that contains x. If x is not the root of C, then we can retrieve the parent
node of x from F6 directly. Otherwise, we find the lowest micro-cluster C ′ above C by
finding the parent of the node in T̃ that represents C. Then the parent of x must be the
closest boundary node of x in C ′, which can be found by cluster nn.

Lemma 5.4.8. Operations BN rank and BN select can be supported in O(1) query time
and o(n) bits of additional space.

Proof. We first construct data structures to support BN rank(B, i, x) and BN select(B, i, j)
when i ∈ [i2..h]. For each i ∈ [i2..h], we construct a bit vector Ii, in which Ii[j] = 1 iff
the j-th node in preorder is a level-i boundary node. Each of these O(h) = O(lg n) bit
vectors is encoded using Lemma 2.3.1. It is clear that to support these two operations
in this special case, it is sufficient to perform a single rank or select operation on Ii,
and thus can be performed in constant time. We calculate the space cost in two steps.
We first sum up the space cost of all Ii’s for i ∈ [i1, h]. The number of 1-bits in each
of these bit vectors is O(n/ lg3 n), and thus the total cost of these O(lg n) bit vectors is
O(lg n)× O(n lg lg n/ lg3 n) = O(n lg lg n/ lg2 n). We then sum up the space occupancy of
all Ii’s for i ∈ [i2..i1−1]. As the number of 1 bits in each of these bit vectors is O(n/ lg1/5 n),
the total cost of these O(lg lg n) bit vectors is O(n(lg lg n)2/ lg1/5 n) bits, which subsumes
the space cost computed in the previous step.

Next we construct data structures to support BN rank(B, i, x) for i ∈ [0..i2 − 1]. Let
ns and n′s denote the number of mini-segments and micro-segments, respectively. We
construct the following two sets of arrays and one lookup table:

• An array Gi[1..ns] for each i ∈ [0..i2 − 1], in which Gi[j] stores the number of level-i
boundary nodes that precede the j-th mini-segment in preorder;

• An array G′i[1..n
′
s] for each i ∈ [0..i2 − 1], in which G′i[j] stores the number of level-i

boundary nodes that precede the j-th micro-segment in preorder and also reside in
the same mini-segment containing this micro-segment;

97

• A universal lookup table F7 that stores, for any possible micro-cluster C (here micro-
clusters with the same tree structure but different micro-segments are considered
different; recall that there are at most 2 micro-segments in each micro-cluster), any
node, x, in C identified by its τ3-name, and any number i ∈ [0..i2 − 1], the number
of level-i boundary nodes preceding x in preorder.

C

the j1-st
mini-segment

the j2-nd
mini-segment

· · ·

· · ·
Figure 5.10: An illustration of the support for BN rank. Here a mini-cluster C with two
mini-segments is enclosed by a solid splinegon, and the nodes of these two mini-segments are
enclosed by dashed splinegons. We draw only level-i boundary nodes inside C and the edges
and paths that connect them, which are represented by solid and dotted lines, respectively.
Then we have Gi[j1] = k1, Gi[j1+1] = k1+5, Gi[j2] = k1+k2+5, and Gi[j2+1] = k1+k2+10,
where k1 is the number of level-i boundary nodes that precede the head of C in preorder, and
k2 is the number of level-i boundary nodes that are descendants of the tail of C.

We illustrate the definition of Gi’s in Figure 5.10. To analyze storage cost, observe
that the space costs of all the G′i’s dominate the overall cost, which can be expressed as
O(lg lg n)×O(n lg lg n/ lg1/5 n) = O(n(lg lg n)2/ lg1/5 n) bits.

With these auxiliary structures and the bit vectors V1 and V2 constructed in the proof of
Lemma 5.4.2, we can support BN rank(B, i, x) for i ∈ [0..i2−1] as follows. We first retrieve
Gi[rank(V1, i)] which is the number of level-i boundary nodes preceding the mini-segment,
s, containing x, and G′i[rank(V2, i)] which is the number of level-i boundary nodes inside
s that precede the micro-segment, s′, containing x. It now suffices to compute the number
of level-i boundary nodes preceding x inside s′. This can be computed by first retrieving
the encoding of the micro-cluster containing x (its topological rank is τ1(x) + τ2(x)) and
then perform a table lookup in F7.

Finally, to support BN select(B, i, j) for i ∈ [0..i2− 1], we construct the following data
structures (ei denotes the number of level-i boundary nodes):

• A bit vector Ri[1..ei] for each i ∈ [0..i2 − 1], in which Ri[j] = 1 iff the j-th level-
i boundary node in preorder has the smallest preorder rank among all the level-i

98

boundary nodes contained in the same mini-segment (let ti denote the number of
1-bits in Ri);

• An array Si[1..ti], in which Si[j] stores the topological rank of the mini-cluster con-
taining the level-i boundary node corresponding to the j-th 1-bit in Ri;

• A bit vector R′i[1..ei] for each i ∈ [0..i2 − 1], in which R′i[j] = 1 iff the j-th level-
i boundary node in preorder has the smallest preorder rank among all the level-i
boundary nodes contained in the same micro-segment (let t′i denote the number of
1-bits in R′i);

• An array S ′i[1..t
′
i], in which S ′i[j] stores a pair: the first item is the relative topological

rank of the micro-cluster (relative to the mini-cluster that it resides in) containing
the level-i boundary node y corresponding to the j-th 1-bit in R′i, and an integer
in {1, 2} indicating which of the up to 2 micro-segments inside this micro-cluster
contains y;

• A universal lookup table F8 that stores, for any possible micro-cluster C, any number
i ∈ [0..i2 − 1], any number j ∈ [1..nC] and any number k ∈ {1, 2}, the τ3-name of
the j-th level-i boundary node in the k-th micro-segment of C, or −1 if such a node
does not exist.

As ti = O(n/ lg3 n) and t′i = O(n/ lg1/5 n) for i ∈ [0..i2 − 1], it is easy to show that
these structures occupy O(n(lg lg n)2/ lg1/5 n) bits. To support BN select(B, i, j) for i ∈
[0..i2 − 1], let z denote the answer to be computed. We first use Ri and Si to locate
the mini-cluster containing z, and then use R′i and S ′i to locate z’s micro-cluster C. In
this process, we also find out which micro-segment of C contains z, and how many level-i
boundary nodes precede z in preorder are in the same micro-segment. A table lookup using
F8 will complete this process.

5.5 Path Reporting Queries

In this section, we consider the problem of supporting path reporting queries. We repre-
sent the input tree T as an ordinal one, which only adds O(n) bits to the overall space
cost. The weights of nodes are assumed to be drawn from [1..σ]. We follow the general
strategy described in Section 3.5.2, which makes use of range trees and tree extraction.
To achieve new results, we also make novel use of several other data structure techniques,
including tree extraction described in Section 2.5.3, the ball-inheritance problem described
in Section 2.4.1, and finally the succinct indices developed in Section 5.2.

99

1

2 3 5

1 4 2 5 6 1 2

1

2

1 2 1 2

1

2

1

1 2

r2

T

T2

1

1

1 2 3

1 2 1 3 3 1 1

T11r1

F1,2

F3,4 F5,6

(a) (b)

(c)

Figure 5.11: (a) An input tree T with n = 11 and σ = 6, for which the conceptual range
tree has branching factor f = 3. (b) The corresponding tree T1, where the dummy root r1 is
represented by a dashed circle. (c) The corresponding tree T2, where the dummy root r2 is
represented by a dashed circle, and F1,2, F3,4, and F5,6 are marked by dotted splinegons.

For completeness, we review the data structures described in Section 3.5.2. We build
a conceptual range tree on [1..σ] with the branching factor f = dlgε ne. Starting from the
top level, which contains [1..σ] initially, we keep splitting each range at the current lowest
level into f child ranges of almost equal sizes as specified in Equations 3.5 and 3.6, until
we obtain σ leaf ranges that contains a single weight each. This conceptual range tree has
h = dlogf σe+ 1 levels, which are numbered from top to bottom. The top level is the first
level, and the bottom level is the h-th level.

For ` = 1, 2, . . . , h− 1, we create an auxiliary tree T` for the `-th level, which initially
contains a dummy root r` only. We list the ranges at the `-th level in increasing order of
left endpoints. Let [a1..b1], [a2..b2], . . . , [am..bm] be these ranges. For i = 1, 2, . . . ,m, we
construct Fai,bi as described in Section 3.2, and add the roots of ordinal trees in Fai,bi as
children of r`, preserving the original left-to-right order. Remember that the ranges at each
level form a disjoint union of [1..σ]. Thus there is a one-to-one correspondence between
the non-dummy nodes in T` and the nodes in T .

For each T`, we assign labels to its nodes. The dummy root is always assigned 1. For
each node x in T , we use x` to denote the node in T` that corresponds to x. We say that

100

a range [a..b] at the `-th level contains x` if the weight of x is between a and b. We assign
a label α to x` if the range at the (`+ 1)-st level that contains x`+1 is the α-th child of the
range at the `-th level that contains x`. See Figure 5.11 for an example. T` is maintained
using a succinct representation for labeled ordinal trees over a sublogarithmic alphabet,
i.e., Lemma 3.5.5.

When representing each T` using Lemma 3.5.5, the preorder label sequence of T` is
stored explicitly. Thus the preorder label sequences of all T`’s essentially form the gen-
eralized wavelet tree of the preorder label sequence of T . The pre rankα, pre selectα,
pre countβ and lowest ancα operations allow us to traverse up and down this generalized
wavelet tree using standard wavelet tree algorithms. More details are given in Section 3.5.2,
and the result is summarized in the following lemma:

Lemma 5.5.1. Given a node x in T`, where 1 < ` ≤ h − 1, its corresponding node in
T`−1 can be found in O(1) time. Similarly, given a node x in T`, where 1 ≤ ` < h− 1, its
corresponding node in T`+1 can be found in O(1) time.

We also store one variant of the auxiliary data structures described in Lemma 2.4.6,
which support the ball-inheritance problem using O(n lg n ·s(σ)) bits of space and O(t(σ))
query time. Here we have (a) s(σ) = O(1) and t(σ) = O(lgε σ); (b) s(σ) = O(lg lg σ)
and t(σ) = O(lg lg σ); or (c) s(σ) = O(lgε σ) and t(σ) = O(1). This implies the following
lemma:

Lemma 5.5.2. Given a node x in T`, where 1 ≤ ` ≤ h − 1, its corresponding node in T
can be found using O(n lg n · s(σ)) bits of additional space and O(t(σ)) time.

Now we describe the details of achieving improved query time. Let u and v denote
the endpoints of the query path, and let [p..q] denote the query range. We compute
t = LCA(u, v). Let Au,t denote the set of nodes on the path from u to and excluding t.
Thus the query path can be decomposed into Au,t, Av,t, and {t}. We only consider how to
report nodes in Au,t ∩Rp,q, where Rp,q, as defined in Section 2.5.3, is the set of nodes in T
whose weights are in [p..q].

We find the lowest range in the conceptual range tree that covers the query range [p..q].
This range, which is denoted by [a..b], can be computed from the lowest common ancestor
of the leaf ranges containing p and q. Let k denote the level that contains [a..b]. We then
locate the nodes x and z in Tk that correspond to anca,b(T, u) and anca,b(T, t), respectively.

Lemma 5.5.3. The nodes x and z can be found using O(n lg σ) bits of additional space
and O(min{lg lg n+ t(σ), lg σ/ lg lg n+ 1}) time.

101

u′

u
the predecessor of u

u′

u

v′

x

x

(a) (b)

the predecessor of u

Figure 5.12: An illustration for the proof of Lemma 5.5.3. Normal and dotted circles represent
nodes whose weights are in and not in [a..b], respectively. Node u, which could have a weight
in [a..b] or not, is represented by a dash dotted circle. (a) The case in which the weight of u′

is in [a..b]. (b) The case in which the weight of u′ is not in [a..b].

Proof. These two nodes can be found using either of the following two approaches. The first
approach applies Lemma 5.5.1 repeatedly, which requires O(k) = O(h) = O(lg σ/ lg lg n+1)
time.

The second approach is described as follows. For the non-dummy nodes in each Fa,b,
we list the preorder ranks of their corresponding nodes in T as a conceptual array Sa,b. We
maintain Sa,b using succinct indices for predecessor search [58], which require O(lg lg n) bits
per entry and support predecessor and successor queries in O(lg lg n) time plus accesses to
O(1) entries. These auxiliary indices occupy O(nh lg lg n) = O(n lg σ) bits of space over
all levels.

As described in Algorithm 6 of Chapter 4, x and z can be found using a constant
number of predecessor and successor queries. Here we only describe how to compute x; the
computation of z is similar. First we determine, in tree T , the lowest common ancestor,
u′, of u and the predecessor of u in Sa,b. If the weight of u′ is in [a..b], then, as illustrated
in Figure 5.12(a), x corresponds to u′ and can be determined by the index of u′ in Sa,b.
Otherwise, as illustrated in Figure 5.12(b), we find the successor of u′ in Sa,b and let the
node be v′. The parent of the node in Tk that corresponds to v′ will be x.

Summarizing the discussion, the second approach uses O(lg lg n) time plus O(1) calls
to the ball-inheritance problem. By Lemma 5.5.2, this requires O(lg lg n + t(σ)) time.
Combining these two approaches, the final time cost is O(min{lg lg n+ t(σ), lg σ/ lg lg n+
1}).

After determining x and z, we start to report nodes. The query range [p..q] must span

102

more than one child range of [a..b]; otherwise [a..b] would not be the lowest range that
covers [p..q]. Let the child ranges of [a..b] be [a1..b1], [a2..b2], . . . , [af ..bf], which are listed
in increasing order of left endpoints. As described in the proof for Lemma 3.5.6 (see the
sentences related to line 4 of Algorithm 3 for details), we can determine in constant time the
values of α and β, such that 1 ≤ α ≤ β ≤ f , [aα..bβ] covers [p..q], and β − α is minimized.
The query range can thus be decomposed into three subranges [p..bα], [aα+1..bβ−1] and
[aβ..q].

The support for the second subrange has been described in Theorem 3.5.8: We first
call node summarize(T, x, z) and let the result be π[1..f]. If π[γ] = 1 for γ ∈ [α+ 1..β−1],
then we find all nodes whose labels are γ on the path from x to but excluding z by calling
lowest ancγ repeatedly. Note that each node in the output can be reported by either
applying Lemma 5.5.2 repeatedly or Lemma 5.5.1 once, and each 1-bit in π[α+1..β−1] can
be located in constant time using table lookup. Thus it requires O(min{t(σ), lg σ/ lg lg n+
1}) time to report a node.

The remaining part is to support the third subrange in the following lemma; the support
for the first subrange is similar.

x

z

Tk

· · ·

x′

z′

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

Figure 5.13: The root-to-leaf in Tk that goes through both x and z, where nodes with label
β are represented as double circles. The nodes in Tk that correspond to x′ and z′ can be
determined using lowest ancβ operations.

Lemma 5.5.4. The nodes in Au,t ∩Raβ ,q can be reported using O(n lg σ) bits of additional
space and O((|Au,t ∩Raβ ,q|+ 1) ·min{t(σ), lg σ/ lg lg n+ 1}) time.

Proof. We index all T`’s using the first variant of Theorem 5.1.1 with m = O(n lg lg n), for
which the weight of a node in T` is defined to be the weight of its corresponding node in T .

103

Each T` can be indexed using O(n lg lg n) bits of additional space. Hence, these auxiliary
data structures occupy (h − 1) × O(n lg lg n) = O(lg σ/ lg lg n) × O(n lg lg n) = O(n lg σ)
bits of additional space in total. Path minimum queries over any T` can be answered with
accesses to the weights of O(1) nodes. This requires O(t(σ)) time if we use Lemma 5.5.2,
or O(lg σ/ lg lg n + 1) time if we traverse the conceptual range tree level by level using
Lemma 5.5.1.

Range [aβ..bβ] is at the (k + 1)-st level. Let x′ and z′ be the nodes in Tk+1 that
correspond to ancaβ ,bβ(T, u) and ancaβ ,bβ(T, t), respectively, as illustrated in Figure 5.13.
The nodes x′ and z′ can be computed from x and z in constant time using lowest ancβ
operations and Lemma 5.5.1. The nodes in Tk+1 that correspond to the nodes in Au,t∩Raβ ,q

must locate on the path from x′ to and excluding z′. We make use of path minimum
queries to find the node, y′, with the minimum weight on this path. This procedure is
terminated if the weight of y′ is larger than q; otherwise, the node in T that corresponds
to y′ is reported, and we recurse on two subpaths obtained by splitting the original path
at y′. As we perform a path minimum query for each node reported, the query time is
O((|Au,t ∩Raβ ,q|+ 1) ·min{t(σ), lg σ/ lg lg n+ 1}).

Now we summarize this section in the following theorem.

Theorem 5.5.5. An ordinal tree on n nodes whose weights are drawn from a set of
σ distinct weights can be represented using O(n lg n · s(σ)) bits of space, so that path
reporting queries can be supported using O(min{lg lg n + t(σ), lg σ/ lg lg n + 1} + occ ·
min{t(σ), lg σ/ lg lg n + 1}) query time, where occ is the size of output, ε is an arbitrary
positive constant, and s(σ) and t(σ) are: (a) s(σ) = O(1) and t(σ) = O(lgε σ); (b)
s(σ) = O(lg lg σ) and t(σ) = O(lg lg σ); or (c) s(σ) = O(lgε σ) and t(σ) = O(1).

Proof. By Lemmas 5.5.3 and 5.5.4, it requires O(min{lg lg n + t(σ), lg σ/ lg lg n + 1} +
(|Au,t ∩ Rp,q| + 1) · min{t(σ), lg σ/ lg lg n + 1}) time to report the nodes in Au,t ∩ Rp,q.
The time cost for Av,t ∩ Rp,q is similar. {t} ∩ Rp,q can be computed in constant time.
Summing up these terms, the query time is O(min{lg lg n + t(σ), lg σ/ lg lg n + 1} + occ ·
min{t(σ), lg σ/ lg lg n + 1}), where occ is the size of output. Due to Lemma 5.5.2, the
overall space cost is O(n lg n · s(σ)) bits.

The data structures developed in Theorem 5.5.5 match the state of the art of two-
dimensional orthogonal range reporting queries [27] when σ = n. In Section 5.6, we
further refine these data structures for the case in which σ < n.

104

5.6 Further Refinements for Range and Path Report-

ing

Now we further improve the data structures described in Theorem 5.5.5. The refined data
structures incur lower cost in terms of both space and time. The space cost is O(n lg σ·s(σ))
bits instead of O(n lg n·s(σ)) bits, while the query time is O(min{lg lg σ+t(σ), lg σ/ lg lg n+
1} + occ · min{t(σ), lg σ/ lg lg n + 1}) instead of O(min{lg lg n + t(σ), lg σ/ lg lg n + 1} +
occ ·min{t(σ), lg σ/ lg lg n+ 1}), where s(σ) and t(σ) are defined as in Theorem 5.5.5.

To illustrate our idea, we first develop refined data structures for the two-dimensional
orthogonal range reporting problem [27]. In this problem, a set of n points on an n × n
grid is given, and a query asks for the points in an axis-aligned rectangle. Here we consider
a more general version of this problem, for which points are drawn from an n × σ grid,
where σ ≤ n.

Z =

1 0 0 1
0 0 0 0
0 1 0 0
0 1 0 0

(a) (b) (c)

Figure 5.14: An illustration for Theorem 5.6.1. (a) An input point set on a 16×4 grid, which
is represented by the dashed rectangle. The dotted rectangles each represent a subgrid and
the bold rectangle represents a range query Q. (b) The compressed grid that corresponds to
the input point set, where the bold rectangle represents the subquery Q3. (c) The 01-matrix
Z that corresponds to the compressed grid.

Theorem 5.6.1. A set of n points on an n × σ grid, where σ ≤ n, can be represented
using O(n lg σ · s(σ)) bits of space, such that range reporting queries can be supported in
O(min{lg lg σ+t(σ), lg σ/ lg lg n+1}+occ·min{t(σ), lg σ/ lg lg n+1}) time, where occ is the
size of output, ε is an arbitrary positive constant, and s(σ) and t(σ) are: (a) s(σ) = O(1)
and t(σ) = O(lgε σ); (b) s(σ) = O(lg lg σ) and t(σ) = O(lg lg σ); or (c) s(σ) = O(lgε σ)
and t(σ) = O(1).

Proof. As described in the proof of [18, Lemma 7], we can assume that all the given points
have distinct x-coordinates. As illustrated in Figure 5.14(a), we partition the n × σ grid
into dn/σe subgrids, for which the i-th subgrid spans over [(i − 1)σ + 1..iσ] × [1..σ] for
1 ≤ i < dn/σe, and the last one spans over [(dn/σ−1eσ+1)..n]× [1..σ]. Thus each subgrid
except the last contains σ input points, and the last one contains at most σ points.

105

Let Q = [x1..x2] × [y1..y2] be the given query. Thus Q spans over the α-th to the
β-th subgrids, where α = dx1/σe and β = dx2/σe. We only consider the cases in which
α < β; the other cases can be handled similarly. Q can be split into three subqueries:
Q1, the intersection with the α-th subgrid; Q2, the intersection with the β-th subgrid; and
finally Q3, the intersection with (α+ 1)-st to the (β− 1)-st subgrids. These subqueries are
supported as follows.

For each subgrid, we build the data structures of Bose et al. [18] and one variant of Chan
et al.’s [27] structures, which have been summarized in Table 5.1. These data structures use
O(σ lg σ+σ lg σ ·s(σ)) = O(σ lg σ ·s(σ)) bits of space for each subgrid, so the overall space
cost is dn/σe×O(σ lg σ · s(σ)) = O(n lg σ · s(σ)) bits. In addition, range reporting queries
within a subgrid, e.g., Q1 or Q2, can be supported using O(min{lg lg σ+t(σ), lg σ/ lg lg n+
1}+ occ′ ·min{t(σ), lg σ/ lg lg n+ 1}) time, where occ′ is the size of answer.

To support Q3, we transform the input point set from the original grid into a compressed
grid of size dn/σe×σ, where a hyperpoint corresponds to one or more points in the original
point set. More precisely, an input point (x, y), which is contained in the dx/σe-th subgrid,
is transformed into a hyperpoint (dx/σe, y). See Figure 5.14(b) for an illustration. For each
hyperpoint in the compressed grid, we explicitly store the input points that correspond to
this hyperpoint as a linked list. Since a subgrid consists of at most σ points, each link to a
point requires only O(lg σ) bits and the overall space cost of these linked lists is O(n lg σ)
bits.

To answer Q3, we need to find all the hyperpoints contained in Q′3 = [α + 1..β −
1] × [y1..y2]. As illustrated in Figure 5.14(c), we construct a 01-matrix Z[1..dn/σe, 1..σ]
in which Z[i, j] = 0 iff there exists a hyperpoint (i, j). We then encode Z using Brodal
et al.’s [20] data structure for two-dimensional range minimum queries, which occupies
only O(dn/σe × σ) = O(n) bits of space and can return the smallest entry in any given
submatrix of Z using O(1) query time. To determine all the hyperpoints contained in Q′3,
we find all 0-entries in Z[α + 1..β − 1, y1..y2] by repeatedly performing range minimum
queries. Initially, we query on Z[α + 1..β − 1, y1..y2] for any 0-entry. If there exists some
entry Z[i, j] = 0, then we know that hyperpoint (i, j) is contained in Q′3. Furthermore, we
divide the remaining entries of Z[α+ 1..β − 1, y1..y2] into up to 4 disjoint submatrices and
query on them recursively. If no such Z[i, j] exists, then the algorithm terminates and we
conclude that there is no more hyperpoint in Q′3. Observe that we recurse on at most 4
disjoint submatrices only when a hyperpoint is found. Thus, the hyperpoints contained in
Q′3 can be found using O(1) time per hyperpoint. By traversing the linked lists associated
to these hyperpoints, the points contained in Q3 can be returned in O(1) time per point.

Summarizing the discussion, the overall space cost is O(n lg σ · s(σ)) bits, and queries
can be answered in O(min{lg lg σ+t(σ), lg σ/ lg lg n+1}+occ ·min{t(σ), lg σ/ lg lg n+1})
time, where occ is the size of output.

106

We finally generalize the approach of Theorem 5.6.1 into weighted trees and complete
the proof for Theorem 5.1.3. The cases in which n = O(σ2) have already been handled by
Theorem 5.5.5 (lg lg n = O(lg lg σ) in this case). Here we only consider the cases in which
n = ω(σ2).

As in Section 5.2, we make use of Lemma 2.5.1 on T with M = dσ2e. Thus we obtain
O(n/M) cover elements, each being a subtree of size at most 2M . The root node of a cover
element is called a cover root. It should be noted again that a cover root could be the root
of multiple cover elements. For simplicity, we denote by si the i-th cover root in preorder
of T . We define the following auxiliary operations with respect to cover roots. Here x is
assumed to be a cover root.

• cover rank(T, x): the number of cover roots preceding x in preorder of T ;

• cover select(T, i): si, i.e., the i-th cover root in preorder of T ;

• cover depth(T, x): the number of cover roots between x and root of T ;

• cover anc(T, x, i): the i-th lowest cover root along the path from x to the root of T .

Lemma 5.6.2. The auxiliary operations cover rank, cover select, cover depth and
cover anc can be supported using O(1) time and O(n(lgM)/M) bits of additional space.

Proof. We store a bit vector B[1..n] to mark cover roots, for which B[j] = 1 if the j-th
node in preorder of T is a cover root. By Lemma 2.3.1, B can be stored in O(n(lgM)/M)
bits of additional space. We can make use of rankα and selectα operations to compute
the rank of a cover root and select the i-th cover root in preorder, respectively.

In addition, we extract all cover roots from T using tree extraction. This gives us a
single ordinal tree T ′, since the root of T must be a cover root. T ′ is represented using
Lemma 2.5.2, for which we do not store any weight in T ′. The overall space cost of storing
T ′ is O(n/M) additional bits, since T ′ consists of O(n/M) nodes. Since tree extraction
preserves ancestor-descendant relationship, cover depth and cover anc can be reduced to
depth and level anc operations in T ′, respectively. Therefore, they can be supported in
constant time.

To support path reporting queries, we build the data structures of Theorem 5.5.5
for each cover element, such that queries inside a cover element can be supported us-
ing O(min{lg lg σ + t(σ), lg σ/ lg lg n + 1} + occ′ · min{t(σ), lg σ/ lg lg n + 1}) time and
O(M lg σ ·s(σ)) bits of space, where occ′ is the size of output. The space cost over all cover
elements is O(n/M)×O(M(lg σ) · s(σ)) = O(n(lg σ) · s(σ)) bits.

For each cover root si, we denote by Pathi the path from si to but excluding the root

107

of the lowest cover element that is an ancestor of si, i.e., Pathi contains exactly the nodes
in Asi,sj for sj = cover anc(T, si, 1). In particular, Path1 is empty since s1 is the root
node of T . Note that the length of Pathi is bounded above by O(σ2). We store this path
in O(M lg σ) bits of space using the data structures of Alstrup et al. [4], such that given a
query range of weights, the nodes along this path whose weights are within this range can
be reported in O(occ′+ 1) time, where occ′ is the number of nodes in the query range. The
space cost over all cover elements is O(n/M)×O(M lg σ) = O(n lg σ) bits.

The last auxiliary data structures are σ(σ−1)/2 ordinal trees, T p,q for 1 ≤ p ≤ q ≤ σ,

s3

s4

{1, 2, 4}

{1, 4}{1}

{2, 3, 4}
Path4

0

1

0 0

1

T 2,3T

(a) (b)

s1

s2

s5

Figure 5.15: (a) An input tree T with σ = 4 and 6 cover elements. The dashed lines represent
Pathi’s, and the numbers alongside each Pathi represent the set of weights on this path. (b)
The 01-labeled tree T 2,3.

all of which are of the same structure as T ′ (defined in the proof of Lemma 5.6.2) but on
01-labeled nodes. For each T p,q, we assign 1 to a node if the node corresponds to some
cover root si and Pathi has a node whose weight is in [p..q]; otherwise we assign 0 to
this node. See Figure 5.15 for an example. We maintain these 01-labeled trees using the
data structures described in Lemma 2.5.3, such that the lowest ancestor whose label is
1 of a given node (i.e., lowest anc1) can be found in constant time. Each T p,q requires
O(n/M) bits of space, and thus the overall space cost for storing all these labeled trees is
O(σ2)×O(n/M) = O(n) bits.

Finally we consider how to answer a given query. Let u and v denote the endpoints
of the query path, and let [p..q] denote the query range. As in Theorem 5.5.5, we only
consider the support for Au,t∩Rp,q, where t is the lowest common ancestor of u and v, and
Au,t is the set of nodes on the path from u to and excluding t.

Let sa and sb be the lowest and the highest cover root on the path from u to and
excluding t, respectively. The following lemma shows how to compute them.

108

Lemma 5.6.3. The nodes sa and sb can be computed in O(1) time.

Proof. The node sa, which is the lowest cover root on the path from u to t, must be the
root of the cover element that contains u if it exists. Following the approach described in
Algorithm 6 of Chapter 4, we can locate sa in constant time. To compute the highest cover
root sb on the path, we first locate sc, the root of the cover element that contains t. The
highest cover root can be expressed as sb = cover anc(T, sa, i) for i = cover depth(T, sa)−
cover depth(T, sc)− 1.

To answer the query, we only consider the case in which sa 6= sb; the other cases can be
handled similarly. Thus Au,t can be decomposed into Au,sa , Asa,sb , and Asb,t. Here Au,sa is
contained in the cover element rooted at sa, and Asb,t except node sb is contained in the
cover element rooted at sb. The nodes along these two subpaths whose weights are in [p..q]
can be reported using the data structures described in Theorem 5.5.5, which have already
been stored for each cover element. The query time is O(min{lg lg σ + t(σ), lg σ/ lg lg n+
1}+ (Au,sa ∪ Asb,t) ∩Rp,q ·min{t(σ), lg σ/ lg lg n+ 1}).

The subpath from sa to but excluding sb can be handled by T p,q. Using lowest anc1

operations, we can find all cover roots si between sa and sb such that Pathi has a node
whose weight is between p and q, using constant time per si. Then, for each of these
cover roots si, we report all the nodes whose weights are between p and q on Pathi, using
constant time per node. This is supported by the data structures of Alstrup et al. [4],
which have been stored for each Pathi.

In sum, the overall space cost isO(n lg σ·s(σ)) bits, and the query time isO(min{lg lg σ+
t(σ), lg σ/ lg lg n+ 1}+ occ ·min{t(σ), lg σ/ lg lg n+ 1}), where occ is the size of output.

5.7 Discussion

We end this chapter with an open problem about the adaptive encoding complexity of
path minimum queries. As shown in Lemma 5.2.1, Ω(n lg n) bits are necessary to encode
the answers to all possible path minimum queries in the worst cases. However, the family
of trees we constructed for this lower bound have Θ(n) leaves. As another extreme case,
this problem becomes the well-known RMQ problem when the input tree is a single path
(or has only two leaves), and thus can be encoded in 2n bits. It would be interesting to
examine the cases in which the number of leaves, nL, satisfies that nL = o(n) and nL > 2.

109

Chapter 6

Dynamic Data Structures for Path
Queries

6.1 Introduction

Most previous work on path queries, including our work described in Chapters 3 and 5,
focuses on static weighted trees, i.e., the structure and the weights of nodes remain un-
changed over time. This assumption is not always realistic and it is highly inefficient to
rebuild the whole data structure when handling updates. In this chapter, we consider the
problem of maintaining dynamic weighted trees and design linear space data structures
that support a variety of path queries in efficient query/update time. We consider path
counting, path reporting, path selection and path median queries, as defined in Chapter 3.
As mentioned in the same chapter, these path queries generalize two-dimensional range
counting, two-dimensional range reporting, range selection and range median queries, re-
spectively.

Without loss of generality, we represent the input tree as an ordinal one. Our data
structures allow us to change the weight of an existing node, insert a new node, or delete
an existing node. These updates are referred to as modify weight, node insert, and
node delete, respectively. For node insert and node delete, we adopt the same pow-
erful updating protocol used by Navarro and Sadakane [82], which enables us to insert or
delete a leaf, a root, or an internal node. A newly inserted internal node will become the
parent of a set of consecutive children of an existing node, and a deleted root must have
only zero or one child before deletion. The deletion of a non-root node is described in
Section 2.5.3.

110

In static ordinal trees, it is natural to identify nodes with their preorder ranks. How-
ever, the preorder rank of a node can change over time in dynamic trees. Thus, to specify
query paths in our dynamic data structures, nodes are identified by immutable identifiers
of sizes O(lg n) bits such as pointers to these nodes. The identifier of a node is given when
a node is created.

Throughout this chapter, we use ε to denote an arbitrary constant between 0 and 1.
Unless otherwise specified, the underlying model of computation in this chapter is the
unit-cost word RAM model with word size w = Ω(lg n).

Previous Work. We refer to Sections 3.1.1 and 5.1.1 for a survey on static path
counting, path reporting, path selection, path median and path minimum queries. Here
we will focus on dynamic data structures.

The dynamic version of the path minimum problem has been studied extensively. Bro-
dal et al. [21] designed a linear space data structure that supports queries and changes
to the weight of a node in O(lg n/ lg lg n) time, and handles insertions or deletions of a
node with zero or one child in O(lg n/ lg lg n) amortized time. The query time is optimal
under the cell probe model provided that the update time is O(lgO(1) n) [6]. For the more
restricted case in which only insertions and deletions of leaves are allowed, queries can be
answered in O(1) time and updates can be supported in O(1) amortized time [5, 72, 21].

In the dynamic orthogonal range query problems, a dynamic point set in the plane with
real coordinates is maintained such that, given a rectangular query range, certain infor-
mation over the points contained in the query range can be retrieved efficiently. He and
Munro [62] presented a linear-space data structure that supports range counting queries in
O((lg n/ lg lg n)2) time, as well as insertions and deletions in O((lg n/ lg lg n)2) amortized
time. More recently, He et al. [63] designed a dynamic data structure for range selection
queries with the same space cost and query/update time. For range reporting queries,
Blelloch [17] developed a linear-space data structure with O(lg n + occ lg n/ lg lg n) query
time and O(lg n) amortized update time, where occ is the size of output. Nekrich [83]
designed another O(n)-word data structure that require only O(lg n+occ lgε n) query time
but O(lg7/2 n) update time, where ε > 0 is an arbitrary constant.

Our contributions. We develop efficient dynamic data structures for path counting
and path reporting queries, all of which occupy O(n) words. Our data structure supports
path counting queries and path selection queries in O((lg n/ lg lg n)2) time, and handles
changes of weights, insertions and deletions in O((lg n/ lg lg n)2) amortized time. This
structure matches the best known results for dynamic range counting [62] and dynamic
range selection [63].

For path reporting queries, our data structure requires O(lg2+ε n) time for updates, but
answers queries in O((lg n/ lg lg n)2 + occ · lg n/ lg lg n)) time, where occ is the output size.
By slightly sacrificing the update time, our structure significantly improves the query time

111

over the straightforward approaches that dynamize known static data structures [65, 85]
or the data structures presented in Theorems 3.5.8 and 5.5.5: One could dynamize the
static structure of He et al. [65] by replacing static labeled ordinal trees with dynamic
unlabeled trees and dynamic bit vectors, and managing weight ranges using a red-black
tree [37]. This leads to an O(n)-word data structure with O((1 + occ) · lg2 n/ lg lg n) query
time and O(lg2 n/ lg lg n) update time. Alternatively, one could obtain another O(n)-word
structure with O(lg2+ε n + occ · (lg n/ lg lg n)2) query time and O((lg n/ lg lg n)2) update
time, by dynamizing the improved data structure presented in Theorem 3.5.8 in a similar
fashion. It is unclear how to dynamize the structures designed by Patil et al. [85] and the
structures presented in Theorem 5.5.5 within linear space.

All of our dynamic structures presented in this chapter are able to handle insertions
and deletions of nodes with multiple children, which are not supported in previous dynamic
data structures for path queries [5, 72, 21]. To develop our data structures, we employ
a variety of techniques including directed topology trees, tree extraction, and balanced
parentheses. In particular, for dynamic path reporting, one key strategy is to carefully
design transformations on trees that preserve certain properties, such that the idea of dy-
namic fractional cascading can be adapted to work on multiple datasets in which each set
represents tree-structured data. This new approach may be of general interest.

The rest of this chapter is organized as follows. In Section 6.2 we present the main
result of this chapter, i.e., our dynamic data structures for path reporting queries. Later,
in Section 6.3 we describe how to support path counting queries and path selection queries.
Finally in Section 6.4, we end this chapter with open problems.

6.2 Dynamic Path Reporting

To represent a dynamic weighted tree T on n nodes to support path reporting, assume
without loss of generality that node weights are distinct. We construct a weight-balanced
B-tree [7], W , with leaf parameter 1 and branching factor d = ddlg neεe for any positive
constant ε less than 1/5. When the value of d changes due to updates, as to be shown later,
we reconstruct the entire data structure and amortize the cost of rebuilding to updates. By
the properties of weight-balanced B-trees, each internal node of W has at least d/4 and at
most 4d children, and the only exception is the root which is allowed to have fewer children.
Each leaf of W represents a weight range [a, b), where a and b are weights assigned to nodes
of T , and there is no node of T whose weight is strictly between a and b. An internal node
of W represents a (contiguous) range which is the union of the ranges represented by its
children. The levels of W are numbered 0, 1, 2, . . . , t, starting from the leaf level, where

112

t = O(lg n/ lg lg n) denotes the number of the root level. The tree structure of W together
with the weight range represented by each node is maintained explicitly.

For each internal node v of W , we conceptually construct a tree T (v) as follows: Let
[a, b) denote the weight range represented by v. We construct a tree T[a,b) consisting of
nodes of T whose weights are in [a, b) using the tree extraction approach described in
Section 2.5.3. For each node x in T[a,b), we then assign an integer label i ∈ [1..4d] if the
weight of x is within the weight range of the i-th child of v. The resulting labeled tree is
T (v).

6

6 7 5

1 8 3 2 7 1 8

T

[1, 9)

[1, 5) [5, 9)

[1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) [8, 9)

2 5 3 4 2

T (v)

v

B(v)

0x1 x1
x2

x3

x2 x3

(a)

(b) (c) (d)

y1
2

2 3 1

4 3 4

1

2

2
3

14

3 41

0
y2

Figure 6.1: (a) A weight-balanced B-tree with branching factor d = 2 for [1, 9), where the
node v corresponds to [5, 9); (b) an input tree T with n = 16 nodes; (c) the labeled tree T (v)
extracted from T with respect to the node v; and (d) the transformed binary tree B(v) for
T (v), where two dummy nodes y1 and y2 are inserted for siblings x1, x2, and x3.

We do not store each T (v) explicitly. Instead, following the approach described in
Section 5.2.2, we transform the tree structure of each T (v) into a binary tree B(v): For each
node x of T (v) with k > 2 children denoted by x1, x2, . . . , xk, we add k − 1 dummy nodes
y1, y2, . . . , yk−1. Then, x1 and y1 become the left and the right children of x, respectively.
For i = 1, 2, . . . , k − 2, the left and the right children of yi are set to be xi+1 and yi+1,
respectively. Finally, xk becomes the left and only child of yk−1. This way x and its

113

children are transformed into a right-leaning binary tree whose leaves are the children of
x in T (v). In B(v), the node corresponding to the dummy root of T (v) is also considered
a dummy node, and a node is called an original node if it is not a dummy node. We
observe that this transformation preserves the preorder and postorder relationships among
the original nodes in T (v). Furthermore, the set of original nodes along the path between
any two original nodes remains unchanged after transformation. Each original node in
B(v) is associated with its label in T (v), which is an integer in [1..4d], while each dummy
node is assigned with label 0. See Figure 6.1 for illustrations.

Let F` denote the forest containing all the binary trees created for the nodes at the `-th
level of W for ` > 0, i.e., F` = {B(v) : v is a node at the `-th level of W} for ` ∈ [1..t].
Thus Ft contains only one binary tree which corresponds to the root of W , and this tree
contains all the nodes of the given tree T as original nodes. This allows us to maintain a
bidirectional pointer between each node in T and its corresponding original node in Ft.

W and T are stored using standard, pointer-based representations of trees. In the rest
of this section, we first present, in Section 6.2.1, a data structure that can be used to
maintain a dynamic forest in which each node is assigned a label from an alphabet of sub-
logarithmic size, to support a set of operations including path summary queries which is to
be defined later. This structure is of independent interest and will be used to encode each
F`. We next show, in Section 6.2.2, how to maintain pointers between forests constructed
for different levels of W , which will be used to locate appropriate nodes of these forests
when answering path reporting queries. Finally we describe how to answer path reporting
queries and perform updates in weighted trees in Section 6.2.3.

6.2.1 Representing Dynamic Forests with Small Labels to Sup-
port Path Summary Queries

We now describe a data structure which will be used to encode F` in subsequent subsections.
As this structure may be of independent interest, we formally describe the problem its
addresses as follows. Let F be a dynamic forest of binary trees on n nodes in total, in
which each node is associated with a label from the alphabet [0..σ], where σ = O(lgε n) for
an arbitrary constant ε ∈ (0, 1/5). Our objective is to maintain F to support link, cut
(see Lemma 2.5.6 for the definitions) and the following operations:

• parentα(x): return the α-parent of node x, i.e., the lowest ancestor of x that has
label α, which can be x itself.

• LCA(x, y): return the lowest common ancestor of two given nodes x and y residing in
the same binary tree.

114

• pre succα(x): return the α-successor of x in preorder, i.e., the first α-node in preorder
that succeeds x (this could be x itself).

• post predα(x): return the α-predecessor of x in postorder, i.e., the last α-node in
postorder that precedes x (this could be x itself).

• summary(x, y): given two nodes x and y residing in the same binary tree, return a
bit vector of σ+ 1 bits in which the α-th bit is 1 iff there exists an α-node along the
path from x to y. This query is called path summary.

• modify(x, α): change the label of x to α.

First we set s = d dlgne
lgdlgnee in Lemma 2.5.6, and use the lemma to maintain the directed

topology trees of the binary trees in F . We call each base cluster a micro-tree.

Next we mark a subset of levels of the directed topology trees. For ` = 0, 1, 2, . . ., the
`-th marked level of a directed topology tree is level `b4ε lg lg nc of this directed topology
tree. Since in a directed topology tree, the restricted partition at each level except level
0 is of order 2, each internal node of the directed topology tree has at most two children.
Therefore, for ` ≥ 1, each cluster at the `-th marked level contains at most 2b4ε lg lgnc ≤
24ε lg lgn = lg4ε n clusters at the (`−1)-st marked level. We then define the macro-tree for a
node at the `-th marked level of a directed topology tree, for ` ≥ 1, to be the tree obtained
by taking its descendant nodes at the (`− 1)-st marked level and preserving the adjacency
relationships among the corresponding clusters, i.e., we add an edge between two of these
descendant nodes if and only if their corresponding clusters are adjacent.

A macro-tree constructed for some node at the `-th marked level of the directed topology
tree is said to be a tier-` macro-tree. A tier-` macro-tree is a binary tree with at most
lg4ε n nodes, which each correspond to a cluster at the (`− 1)-st marked level. Note that
lg4ε n = O(lgε

′
n) for any ε′ ∈ (4ε, 1). A node in a tier-` macro-tree is called a boundary node

if its corresponding cluster contains the endpoint of an edge that has only one endpoint
in this tier-` macro-tree. By the properties of restricted multilevel partitions, each macro-
tree has at most two boundary nodes, and at most one of them connects to a child cluster,
which is referred to as the lower boundary of the macro-tree. The root of a macro-tree is its
upper boundary, if this node is not the root of the entire tree. We define lower and upper
boundaries for any cluster in a similar way. For simplicity, we use µ[i] to denote the i-th
node in preorder of some micro-tree or macro-tree µ. We also denote by C(µ) and C(µ[i])
the clusters that are represented by a macro-tree µ and the i-th node µ[i] in preorder of µ,
respectively.

We construct auxiliary data structures for each micro-tree and macro-tree. Our main

115

idea is to create structures that can fit in o(lg n) bits (in addition to maintaining pointers
such as those that can be used to map macro-tree nodes to macro-trees at the lower
marked level), so that we can construct o(n)-bit lookup tables to perform operations in
each micro-tree or macro-tree. Operations over F are then supported by operating on a
constant number of micro-trees and a constant number of macro-trees at each marked level.

The rest of this section will prove the following lemma.

Lemma 6.2.1. Let F be a dynamic forest of binary trees on n nodes in total, in which
each node is associated with a label from the alphabet [0..σ], where σ = O(lgε n) for some
constant ε ∈ (0, 1/5). F can be represented in O(n lg lg n+ f lg n) bits to support parentα,
LCA, summary, pre succα, post predα and modify in O(lg n/ lg lg n) time, and link and
cut in O(lg1+4ε n) time, where f is the current number of trees in F .

To prove Lemma 6.2.1, we first describe the auxiliary structures constructed for micro-
trees and macro-trees. For each micro-tree µ, we store:

• A representation of the labeled tree µ in the form of a triple {|µ|, Tµ, Lµ}, where |µ|
is the number of nodes in µ, Tµ is a binary sequence that encodes the structure of µ,
and Lµ encodes the labels assigned to the nodes of µ in preorder.

• An integer bµ that stores the preorder rank in Tµ of the lower boundary of µ.

• A pair (uµ, pµ), in which uµ is a pointer that points to the tier-1 macro-tree containing
µ, and pµ is the preorder rank of the node in the tier-1 macro-tree.

For each tier-` macro-tree µ, we also construct {|µ|, Tµ}, bµ and, pair (uµ, pµ), with the
necessary change that uµ points to the tier-(` + 1) macro-tree containing µ. In addition,
we construct the following:

• An array Sµ[1..|µ|], in which Sµ[i] = j if C(µ[i]) has j preorder segments. Note that
j ∈ [1..2].

• A two-dimensional array Iµ[1..|µ|], where Iµ[i] stores a bit vector of length σ + 1
in which the α-th bit is 1 iff C(µ[i]) contains an α-node on the path from its lower
boundary to its root (if C(µ[i]) has no lower boundary, then 0-bits are stored in Iµ[i]).

• A two-dimensional array Jµ[1..|µ|][1..2], where Jµ[i][j] stores a bit vector of length
σ + 1 in which the α-th bit is 1 iff the j-th preorder segment of C(µ[i]) contains an
α-node (if this cluster has fewer than j preorder segments, then 0-bits are stored in
Jµ[i][j]).

116

• An array Dµ[1..|µ|], in which Dµ[j] stores a pointer to the tier-(`−1) macro-tree (or,
if ` = 1, the micro-tree) that corresponds to µ[j].

We then prove the following set of lemmas that will show the correctness of Lemma 6.2.1:

Lemma 6.2.2. The data structures constructed in this section use O(n lg lg n+f lg n) bits
in total, where f is the current number of trees in F .

Proof. For each micro-tree µ, its size |µ| and its lower boundary bµ can be encoded in
O(lg s) = O(lg lg n) bits. The pair (uµ, pµ) can be encoded in O(lg n) bits. Tµ can be
represented as balanced parentheses [80] using O(|µ|) bits. Lµ, which stores labels of
nodes, occupies |µ| × dlg(σ + 1)e = O(|µ| lg lg n) bits of space. Thus the space cost of
storing the micro-tree µ is O(lg n+ |µ| lg lg n) bits.

The analysis for macro-trees is almost the same — except for the arrays Sµ, Iµ, Jµ and
Dµ. Sµ can be stored in O(|µ|) bits, while Iµ and Jµ can be encoded in |µ| × (σ+ 1)× 3 =
|µ| × O(lgε n)× 3 = O(|µ| lgε n) bits. In addition, Dµ occupies |µ| × O(lg n) = O(|µ| lg n)
bits of space. Thus the space cost of storing the macro-tree µ is O(|µ| lg n) bits.

By Lemma 2.5.6, F is partitioned into O(f + n/s) = O(f + n lg lg n/ lg n) disjoint
micro-trees. The overall number of nodes of all macro-trees is also O(f + n lg lg n/ lg n),
as each micro-tree corresponds to a node of a tier-1 macro-tree. Therefore, the space cost
for all these micro-trees and macro-trees is O(f lg n + n lg lg n) bits, as the cost for all
micro-trees is O(f + n lg lg n/ lg n) × O(lg n) + n × O(lg lg n) = O(f lg n + n lg lg n) bits,
and the cost for all macro-trees is O(f + n lg lg n/ lg n) × O(lg n) = O(f lg n + n lg lg n)
bits. Adding the cost for the directed topology trees, the data structures constructed in
this section occupy O(f lg n+ n lg lg n) bits of space in total.

In the following lemmas, we describe how to support the operations defined at the
beginning of this subsection. In these algorithms, nodes are identified by a pointer to the
micro-tree containing it and its preorder rank inside the micro-tree.

Lemma 6.2.3. With an o(n)-bit universal lookup table, the data structures constructed in
this section can support parentα in O(lg n/ lg lg n) time.

Proof. We first extend the definitions of α-ancestors to nodes of macro-trees. Let z be a
node in a macro-tree and let z′ be its ancestor. Node z′ is said to be an α-ancestor of
z if C(z′) contains an α-ancestor of the root of C(z). We create a lookup table G1 that
stores, for any possible combination of {|µ|, Tµ} and Iµ, and any i ∈ [1..|µ|] and α ∈ [0..σ],
the lowest α-ancestor of µ[i] (or a NULL value if such an ancestor does not exist). As a

117

macro-tree contains at most lg4ε n nodes, |µ| can be encoded in O(lg lg n) bits, Tµ can be
encoded in O(|µ|) = O(lg4ε n) bits, and Iµ can be encoded in O(|µ| lgε n) = O(lg5ε n) bits.
Thus any combination of {|µ|, Tµ} and Iµ can be encoded in O(lg5ε n) = o(lg n) bits. The
lookup table G1 contains O(nδ) entries for some 0 < δ < 1, and thus requires only o(n)
bits of additional space.

Let x be a node in F and let µ denote the micro-tree that contains x. We now compute
parentα(x). The case in which x has an α-ancestor in µ is simple to handle: we only need
to traverse the path from x to the root of µ, which uses O(s) = O(lg n/ lg lg n) time.

Otherwise, by following the pointer (uµ, pµ), we can find the tier-1 macro-tree, µ1, that
contains x, and the node, x1, in µ1 that corresponds to µ. By accessing the lookup table
G1, we can determine in O(1) time whether x1 has an α-ancestor in µ1, i.e., whether x has
an α-ancestor in C(µ1). Repeating this procedure, we can determine the macro-tree at the
lowest level that contains both x and an α-ancestor of x. Let µk denote this macro-tree,
for which k is the tier. During the process of locating µk, we are also able to determine the
node, xk, in µk that corresponds to a cluster containing x, and the node, yk, that is the
lowest α-ancestor of xk in µk. Note that yk 6= xk, and there is no α-node between x and
C(yk). Thus the α-parent of x is the lowest α-ancestor of x in C(yk), which can be found
as described below.

By accessing Dµk , we can determine the tier-(k − 1) macro-tree νk−1 that corresponds
to yk, and by accessing bνk−1

, we can further determine the lower boundary zk−1 of νk−1.
Then, the lowest node yk−1 in νk−1 whose corresponding cluster contains an α-ancestor of
x can be found in O(1) time as follows. By accessing Iνk−1

, we can determine whether yk−1

is equal to zk−1. If this is not the case, we use the lookup table G1 to determine the lowest
α-ancestor of zk−1 in νk−1, which is exactly yk−1.

Repeating this procedure, we can determine the tier-1 macro-tree ν1 whose correspond-
ing cluster contains the lowest α-ancestor of x in C(yk), and the lowest node y1 in ν1 whose
corresponding cluster contains an α-ancestor of x. The answer to parentα(x) can be thus
determined by traversing the micro-tree that corresponds to y1.

Our algorithm requires O(lg n/ lg lg n) time, since it accesses O(lg n/ lg lg n) macro-trees
and uses O(1) time on each of them.

Lemma 6.2.4. With an o(n)-bit universal lookup table, the data structures constructed in
this section can support LCA in O(lg n/ lg lg n) time.

Proof. We construct a lookup table G2 that stores, for any unlabeled binary tree, µ, of
size at most s and i, j ∈ [1..|µ|], the lowest common ancestor of its i-th and j-th nodes in
preorder. As a binary tree of size at most s can be encoded in O(s) = O(lg n/ lg lg n) bits,
the lookup table G2 contains 2O(s) × s × s = O(nδ) entries for some 0 < δ < 1. Thus G2

118

occupies o(n) bits of additional space and can be computed in o(n) time.
Let x and y be two nodes in the same binary tree of F and we now compute LCA(x, y).

The case in which x and y are in the same micro-tree is simple. Otherwise, by accessing
the pointers (uµ, pµ), we can find the macro-tree at the lowest level that contains both x
and y. Let µk denote this macro-tree, for which k is the tier. We also denote by xk/yk the
node in µk whose corresponding cluster contains x/y.

Using the lookup table G2, we can determine in O(1) time the lowest common ancestor,
zk, of xk and yk in µk. Thus we know that the lowest common ancestor of x and y must be
contained in the cluster C(zk). Let µk−1 be the tier-(k − 1) macro-tree that corresponds
to zk. We then compute the node, xk−1/yk−1, in µk−1 that is the closest node to x/y as
follows. If xk/yk is equal to zk, then xk−1/yk−1 is the node in µk−1 whose corresponding
cluster contains x/y. Otherwise, xk−1/yk−1 is the lower boundary of µk−1. Again, using
the lookup table G2, we can determine the lowest common ancestor, zk−1, of xk−1 and
yk−1 in µk−1. We repeat this procedure until µ0, x0 and y0 are determined, where µ0 is a
micro-tree and x0/y0 is the closest node of µ0 to x/y. The lowest common ancestor, z0, of
x0 and y0 is also that of x and y, which can be found using another table lookup to G2.

This algorithm requires O(lg n/ lg lg n) time, as there are O(lg n/ lg lg n) tiers of macro-
trees and our algorithm uses O(1) time for each tier.

Lemma 6.2.5. With an o(n)-bit universal lookup table, the data structures constructed in
this section can support summary in O(lg n/ lg lg n) time.

Proof. We create a lookup table G3 that stores, for any valid combination of {|µ|, Tµ} and
Iµ, and any i, j ∈ [1..|µ|], a bit vector of length σ + 1 in which the α-th bit is 1 iff µ[i]
is an ancestor of µ[j] and there is an α-node on the path from the root of C(µ[i]) to and
excluding the root of C(µ[j]). As in previous proofs, the lookup table G3 occupies o(n)
bits of space and requires o(n) preprocessing time.

Let x and y be two nodes in F and let z = LCA(x, y). Without loss of generality, we
only consider how to summarize the path from x to z. We decompose this path into a
series of subpaths, which are based on the variables defined in the proof of Lemma 6.2.4:

• the subpath from x to the root of the micro-tree ν0 containing x;

• for i ∈ [1..k − 1], the subpath from the root of C(νi) to and excluding the root of
C(νi−1), where νi is the tier-i macro-tree whose corresponding cluster contains x;

• the subpath from the root of C(x′k) to and excluding the root of C(xk), where x′k is
the child of zk in µk that is an ancestor of xk;

119

• for i ∈ [1..k − 1], the subpath from the root of C(x′i) to and excluding the root of
C(x′i+1), where x′i is the child of zi in µi that is an ancestor of xi;

• the subpath from x′0 to z.

The first and the last subpaths, which each are contained in a single micro-tree, can be
summarized in O(s) = O(lg n/ lg lg n) time. The others can each be summarized in O(1)
time by accessing the lookup table G3 and Iµ. The path can be decomposed using pointers
(uµ, pµ) and Dµ. With bitwise OR operations, these summaries can be combined using
O(lg n/ lg lg n) time. Thus we can support summary in O(lg n/ lg lg n) time and o(n) bits
of additional space.

Lemma 6.2.6. With an o(n)-bit universal lookup table, the data structures constructed in
this section can support pre succα and post predα in O(lg n/ lg lg n) time.

Proof. We only show how to support pre succα; the support for post predα is similar. We
construct a lookup table G4 that stores, for any valid combination of {|µ|, Tµ}, bµ and Jµ,
and any i ∈ [1..|µ|], j ∈ {1, 2}, a pair (i′, j′), where the j′-th preorder segment of C(µ[i′])
contains the first α-node in C(µ) that succeeds the j-th preorder segment of C(µ[i]). By
analysis similar to that in the proof of Lemma 6.2.3, the lookup table G4 occupies o(n)
bits of space.

To compute z = pre succα(x), we first find the α-successor y of x in the micro-tree
containing x. This can be done by checking the label of each node in the micro-tree, which
requires O(s) = O(lg n/ lg lg n) time. Note that y can be different from z even if y exists,
because z may be located in a micro-tree below the one containing x.

As shown in the proof of Lemma 6.2.3, for ` = 1, 2, 3, . . ., we determine the tier-`
macro-tree µ` whose corresponding cluster contains x. By accessing bµ` , we can further
determine the node x` in µ` and j` ∈ {1, 2} so that the j`-th preorder segment of C(x`)
contains x. This requires only O(1) time per marked level. Using the lookup table G4,
for ` = 1, 2, 3, . . ., we can further find the node y` of µ` and j′` ∈ {1, 2}, so that the j′`-
th preorder segment of C(y`) contains the first α-node in C(µ`) that succeeds the j`-th
preorder segment of C(x`). The j′`-th preorder segment of C(y`) is referred to as the tier-`
candidate segment. In addition, the node y is referred to as the tier-0 candidate segment.

If there does not exist any candidate segment, then we conclude that the targeted node
z does not exist, either. Otherwise, we find the first candidate segment in preorder. Let
k denote the tier of the candidate segment that precedes all other candidate segments we
have checked. The initial value k0 of k is the lowest tier that has a candidate segment. This
candidate segment is the j′′k0-th preorder segment of C(zk0), where (zk0 , j

′′
k0

) is (yk0 , j
′
k0

).

120

For ` = k0 + 1, k0 + 2, k0 + 3, . . ., we find the node z` in µ` and j′′` ∈ {1, 2} so that the
j′′` -th preorder segment of C(z`) contains the tier-k candidate segment, where (z`, j

′′
`) can

be computed from (z`−1, j
′′
`−1) in O(1) time by following the pointer (uµ`−1

, pµ`−1
). If the

tier-` candidate segment exists and precedes the j′′` -th preorder segment of C(z`), then k is
updated to be ` and (z`, j

′′
`) is reset to be (y`, j

′
`). As before, this procedure requires O(1)

time per marked level.
After determining the tier-k candidate segment, the remaining task is to find the first α-

node in this segment, which is z. If k = 0, then we return z = y as the answer. Otherwise,
letting νk−1 be the macro-tree that corresponds to yk, we can find the node z′k−1 of νk−1

and j̃k−1 ∈ {1, 2} so that the j̃k−1-st preorder segment of C(z′k−1) is a prefix of the tier-k

candidate segment. By accessing G4 with the information of νk−1, z′k−1 and j̃k−1, we can
find the node in νk−1 whose corresponding cluster contains z, and the preorder segment z
belongs to. Repeating this procedure, we will finally end up with z.

There are O(lg n/ lg lg n) tiers of macro-trees and a constant number of operations are
performed for each tier. Thus the algorithm uses O(lg n/ lg lg n) time and o(n) additional
bits of space.

Lemma 6.2.7. With o(n)-bit universal lookup tables, the data structures constructed in
this section support modify in O(lg n/ lg lg n) time, and link and cut in O(lg1+4ε n) time.

Proof. We construct another lookup table G5 that stores, for any valid combination of
{|µ|, Tµ}, bµ, Sµ, Iµ and Jµ, the following information:

• the number of the preorder segments of µ;

• a bit vector ρ of length σ + 1 in which the α-th bit is 1 iff C(µ) contains an α-node
on the path from its lower boundary to its root (if µ has no lower boundary, then
0-bits are stored in ρ);

• two bit vectors %[1..2] of length σ + 1 in which the α-th bit of %[j] is 1 iff the j-
th preorder segment of C(µ) contains an α-node (if µ has fewer than j preorder
segments, then 0-bits are stored in %[j]).

In other words, when µ corresponds to the i-th node of the macro-tree µ′ one level above,
Sµ′ [i], Iµ′ [i] and Jµ′ [i] can be found in G5 with the information of µ. By analysis similar
to that in the proof of Lemma 6.2.3, the lookup table G5 occupies o(n) bits of space.

The operation modify can be supported as follows. After changing the label of node x,
we first update the micro-tree µ and the tier-1 macro-tree µ1 whose corresponding clusters

121

contain x. It requires O(1) time for µ and O(lg n/ lg lg n) time for µ1, as the entries of Sµ1 ,
Iµ1 and Jµ1 that correspond to µ can be updated by traversing µ. Then, for ` = 2, 3, . . .,
we determine the tier-` macro-tree whose corresponding cluster contains x, access table G5

with the information of µ`−1, and update the entries of Sµ` , Iµ` and Jµ` that correspond to
µ`−1. This procedure requires O(1) time per marked level, and the overall update requires
O(lg n/ lg lg n) time.

To support link and cut, we first use Lemma 2.5.6 to update the directed topology
tree in O(lg n) time. Then, by the same lemma, we observer that at each marked level of
the directed topology tree, only a constant number of macro-trees have been modified. For
each modified macro-tree that has not been deleted, we traverse down the directed topology
tree to the next marked level below it, to construct the tree structure of the macro-tree
in O(lg4ε n) time, and rebuild the auxiliary structures of this macro-tree in O(lg4ε n) time.
The rebuilding of most of these structures is trivial; for structures such as Iµ and Jµ, we
make use of G5 again to fill the entries one by one. As there are O(lg n/ lg lg n) marked
levels, the entire process requires O(lg1+4ε n/ lg lg n) time.

6.2.2 Navigation between Levels of W

Now we describe how to navigate between levels of the weight-balanced B-tree W , which
was defined at the beginning of Section 6.2. As discussed previously, we use Lemma 6.2.1
to encode each F` for ` > 0. For each node at the `-th level of W , we store a pointer to the
root of its corresponding directed topology tree in F`. Each tree node in F` can be uniquely
identified by a pointer to the micro-tree containing the node and its preorder rank in the
micro-tree. We call the pair of pointer and preorder rank the local id of this node in F`.

Since each node, x, of T appears once in F` as an original node for each ` ∈ [0..t], x
has one local id at each level of W . In our algorithm for path reporting, given the local
id of x in F`, we need to find its local id in F`−1 and F`+1. It would require superlinear
space to store the mappings for each node of each F` explicitly. Thus, our overall strategy
is to precompute, for only a subset of nodes of T , their local ids in F`−1 and F`+1. Then,
we design an algorithm to compute local ids of other nodes, by making use of the fact
that both tree extraction and our way of transforming each T (v) to B(v) preserve relative
preorder among nodes of T . Our approach originates from the idea of dynamic fractional
cascading [17, 81], and we further generalize the technique to data sets that are each
represented as a forest of ordinal trees.

We now show how to construct auxiliary data structures for each F` to facilitate the
navigation between forests constructed for subsequent levels of W . In F`, the clusters at
the first marked level of the directed topology trees are said to be mini-trees. By our

122

discussions in Section 6.2.1, each mini-tree then contains at most lg4ε n micro-trees, and
O(lg1+4ε n/ lg lg n) tree nodes. There is a one-to-one correspondence between mini-trees
and tier-1 macro-trees, but they are conceptually different: nodes of mini-trees each are
a node of F`, while nodes of tier-1 macro-trees each represent a micro-tree. Thus we
continue to store information about each micro-tree or each of its preorder segments in a
tier-1 macro-tree, while creating memory blocks for each mini-tree to store the subset of
pointers between nodes at different levels of W which are to be described later. We also
store a bidirectional pointer between a tier-1 macro-tree and its corresponding mini-tree,
and thus we do not distinguish the pointers to a tier-1 macro-tree from a pointer to its
corresponding mini-tree, even though technically they store different memory locations. We
say a micro-tree is the i-th micro-tree of a mini-tree (or its corresponding tier-1 macro-tree),
if this micro-tree is represented by the i-th node of the tier-1 macro-tree corresponding to
this mini-tree.

A node in F` can also be uniquely identified by a pointer to the mini-tree containing
the node and its preorder rank in the mini-tree. As local ids, we call the pair of pointer
and preorder rank the regional id of this node in F`. The following lemma shows how to
convert between regional ids and local ids in O(1) time and sublinear words of additional
space.

Lemma 6.2.8. With O(n lg lg n) bits of additional space, one can convert between the local
id and the regional id of a node x in F` using O(1) time.

Proof. To support the conversion, we construct, for each tier-1 macro-tree µ, an additional
two-dimensional array Nµ[1..|µ|][1..2], in which Nµ[i][j] stores the number of nodes of F`
in the j-th preorder segment of the i-th micro-tree of µ, and 0 if this micro-tree has fewer
than j preorder segments. Since each preorder segment of a micro tree has O(lg n/ lg lg n)
nodes, each entry of Nµ can be encoded in O(lg lg n) bits. Thus, Nµ uses O(|µ| lg lg n)
bits, and all tier-1 macro trees add up to O(n lg lg n) bits, which does not change the space
bound of Lemma 6.2.1 asymptotically.

We only show how to convert local ids to regional ids; the other direction can be proved
similarly. From x’s local id, we have a pointer that points to the micro-tree ν containing
x, and (uν , pν) that locates the mini-tree containing ν and x. Thus it suffices to compute
x’s preorder rank k in this mini-tree from x’s preorder rank in ν. We first determine the
preorder segment τ of ν that contains x by comparing x’s preorder rank with the preorder
rank of the lower boundary node stored in bν . We compute k as the sum of the following
two values: k1, the number of nodes within τ that precede x in preorder (including x);
and k2, the number of nodes in x’s mini-tree that strictly precede the first node of τ in
preorder. The value of k1 is x’s preorder rank in ν if τ is the first preorder segment of

123

ν, or 1 plus the difference between x’s preorder rank and bν otherwise. To compute k2 in
O(1) time, we construct a universal table G6 that stores, for each possible tier-1 macro-tree
µ, each i ∈ [1..blg4ε nc] and each j ∈ {1, 2}, the number of nodes of T in the mini-tree
corresponding to µ that strictly precedes, in preorder, the first node in the j-th preorder
segment of the i-th micro-tree in µ. Here macro-trees with different values in |µ|, Tµ, Sµ,
or Nµ are considered different. By analysis similar to that in the proof of Lemma 6.2.3, G6

occupies o(n) bits.

Because of the above lemma, we consider local ids and regional ids both as valid identi-
fiers of nodes in F` in the rest of the chapter, and do not explicitly perform constant-time
conversions between them.

Furthermore, we consider the support for parentα(µ, x) within any given mini-tree µ,
i.e., given a node x, we are interested in finding its α-parent in the same mini-tree if it
exists. By simplifying the proof of Lemma 6.2.3, we can easily show that parentα can be
supported in constant time in a given mini-tree, as we need only to use auxiliary structures
for two marked levels of directed topology trees instead of all the marked levels. We further
consider the following two operations over a mini-tree:

• pre rankα(µ, x): computes the number of α-nodes preceding x in preorder of µ
(including x itself if it is labeled α);

• pre selectα(µ, i): locates the i-th α-node in preorder of µ.

In the above definition, we allow α to be 0̄, which matches any label that is not 0. By
constructing data structures similar to Nµ for each label to record the number of α-nodes
in each preorder segment of a micro-tree, it is trivial to modify the proof of Lemma 6.2.8
to support pre rankα and pre selectα within each mini-tree in constant time. Thus, we
have the following lemma:

Lemma 6.2.9. With o(n) bits of additional space, parentα, pre rankα and pre selectα
can be supported in O(1) time over each mini-tree in F`.

We next define a set of pointers between nodes of mini-trees at different levels of W , for
which a pointer can be regarded as a directed edge from its source node to its destination
node. These inter-level pointers are defined for each mini-tree µ in any F`. Let v be the
node of W such that B(v) contains µ. If ` < t, then for each preorder segment of µ, we
create an up pointer for the first original node, x, of this segment in preorder. This pointer
points from x to the original node in F`+1 that corresponds to the same node of T . Such

124

a pointer essentially links v to its parent. Next, if ` > 1, for each preorder segment of µ
and for each label α ∈ [1..4d], if node y is the first node in this segment in preorder that is
labeled α, we store a down pointer from y to the original node in F`−1 that corresponds to
the same node of T that y represents. This pointer essentially links v to the α-th child of
v. No pointers are created for nodes labeled 0, as they are dummy nodes. So far we have
created at most 2(4d+ 1) = O(lgε n) inter-level pointers for each mini-tree, as a mini-tree
has up to two preorder segments. Finally, we create a back pointer for each up or down
pointer, doubling the total number of inter-level pointers created over all the levels of W .

Remember that the mini-tree µ is in B(v), which is part of F`. To store inter-level
pointers physically, we maintain all the pointers that leave from mini-tree µ in a structure
Pµ, including up and down pointers created for nodes in µ, and back pointers for some
of the up and down pointers created for mini-trees at adjacent levels of W . We further
categorize these pointers into at most 4d+ 1 types: A type-0 pointer arrives at a mini-tree
in F`+1, i.e., goes to the level above, and a type-α pointer for α > 0 arrives at a mini-tree
in B(vα), where vα is the α-th child of v. Note that it is possible that an up or down
pointer of µ and a back pointer from an adjacent level stored in Pµ have the same source,
which is a node in µ, and destination, which is a node in F`−1 or F`+1. In this case, the
back pointer is not stored separately in Pµ, and hence each inter-level pointer in Pµ can
be uniquely identified by its type and the preorder rank of its source node in µ. We also
store the preorder rank of the first node of each of the (at most two) preorder segments in
µ. The following lemma summarizes how Pµ is represented.

Lemma 6.2.10. Pµ can be represented in O(|Pµ| lg n) bits, where |Pµ| is the current number
of inter-level pointers that leave from µ, to support the following operations in O(1) time
with o(n)-bit universal lookup tables. Here we assume that x is a node that is identified by
its preorder rank in µ, and α ∈ [0..4d] is a type of inter-level pointers.

• pointer pred(µ, x, α): returns the closest preceding node (this could be x itself) in
the preorder segment of µ containing x that has a type-α inter-level pointer, as well
as the local id of the destination of this pointer;

• pointer insert(µ, x, α): inserts a type-α pointer that leaves from x; and

• pointer delete(µ, x, α): delete the type-α pointer that leaves from x.

Proof. We represent Pµ using the approach of Navarro and Nekrich [81, Section 6.3] with
trivial modifications, and we include a proof here for completeness.

First we observe that Pµ is polylogarithmic in n. This is because each pointer in Pµ
is uniquely identified by its type and its source node in µ, and there are O(lgε n) types

125

and O(lg1+4ε n) nodes in µ. We then use a B-tree Wµ with fanout fµ = Θ(lgε n) to store
the pointers in Pµ, which has only a constant number of levels. Each inter-level pointer
in Pµ is inserted into Wµ using the preorder rank of its source as its key. Each leaf of
Wµ stores a constant number of inter-level pointers in Pµ, and the information of each
pointer, including its type, the preorder rank of its source in µ and the local id of its
destination node, is encoded in O(lg n) bits. An internal node of Wµ is said to cover
the range [a..b] of preorder ranks in µ if all keys between a and b are stored in the leaf
descendants of this internal node. Each internal node then stores the size of the range
it covers, and, for 0 ≤ α ≤ 4d, the number of type-α inter-level pointers stored in the
subtree of each child. Thus the information for each internal node can be encoded in
fµ × (4d+ 1)×O(lg lg n) = O(lg2ε n · lg lg n) = O(lgε

′
n) bits for a constant ε′ ∈ (2ε, 1).

Given a node x in µ, we can use the following procedure to look for the the closest
node, y, preceding x that has a type-α inter-level pointer. Afterwards, we further compare
y with the preorder number of the first node in the preorder segment of µ containing x,
to decide whether y is in the same preorder segment. We first descend down the B-tree,
which has a constant number of levels to look for the leaf that covers the preorder rank
of x. This leaf can be located in constant time if we construct a universal table of o(n)
bits and use the O(lgε

′
n)-bit information encoded for each internal node to query it. The

leaf stores a constant number of inter-level pointers, so in O(1) time, we can either find y
and terminate, or find out that y is not stored in the same leaf. In the latter case, we go
up the tree, and for each ascendant node we visit, we find out whether it has a left sibling
whose subtree stores a type-α pointer using table lookup. Once we find such a left sibling,
we look for the last type-α pointer in preorder stored in its subtree by traversing down the
tree again. It is clear that we can find y or determine that it does not exist in O(1) time.
Thus pointer pred is supported.

For pointer insert and pointer delete, we first locate the appropriate leaf and
performing insertion or deletion at the leaf, update the information stored at each of its
ancestors in Wµ, and we may merge or split nodes of Wµ if necessary. Since a leaf stores
a constant number of inter-level pointers and each internal node can be updated, merged
with a sibling, or split in constant time using appropriate universal tables, this also requires
O(1) time.

We now prove the following lemma, which enables us to traverse between different levels
of W .

Lemma 6.2.11. Give the local id of an original node x in F`, the local id of the original
node in F`+1 (if ` < t) or F`−1 (if ` > 1) that represents the same node of T can be
computed in O(1) time.

126

Proof. We first show how to locate the node, y, in F`+1 that represents the same node
of T . Let µ be the mini-tree in F` that contains x and let τ0 be the preorder segment
containing x in µ. We start by using Lemma 6.2.10 to find x′ = pointer pred(µ, x, 0),
where x′ could be x itself. The destination node, y′, of this pointer is also retrieved during
the same process, which is a node in F`+1. Node x′ always exists because the first original
node of each preorder segment in a mini-tree has an up pointer.

If x′ happens to be x itself, then y′ is y and the answer is found. If not, we prove that

τ0

τ1

τ2

y′

y′′

y

x

x′′

x′

B(u)

B(v)

Figure 6.2: A figure for the proof of Lemma 6.2.11.

y and y′ are in the same preorder segment of a mini-tree in F`+1 (Figure 6.2 illustrates
the objects defined in this proof). Assume to the contrary that y and y′ are in two
different preorder segments, τ1 and τ2, at the mini-tree level, respectively. Note that τ1

and τ2 may not be in the same mini-tree, but they must be in the same binary tree,
B(v), in F`+1. As both tree extraction and our transformation of ordinal trees to binary
trees preserve preorder relationship among original nodes, we claim that an original node
precedes another one in preorder of B(v) iff their corresponding nodes in T appear in the
same order in preorder. The same reasoning applies to the binary tree, B(u), that contains
x and x′. Furthermore, the original nodes in B(u) represent a subset of the nodes of T
that are represented by the original nodes in B(v), as u is a child of v in W . Therefore,
the relative preorder relationship among original nodes in B(u) is consistent to that of
the corresponding original nodes in B(v). Since x′ strictly precedes x in preorder, y′ also
strictly precedes y. This implies that the nodes of τ1 precede the nodes of τ2 in preorder of
B(v). There cannot be a down pointer from y, for otherwise, there would be a up pointer
from x and the presumption x′ 6= x would be contradicted. Thus there has to be another
node y′′ in τ2 that strictly precedes y in preorder and has a down pointer to some node x′′

in B(u). As y′′ is strictly between y and y′ in preorder of B(v), x′′ must be strictly between
x′ and x in preorder of B(u) and reside in the preorder segment τ0. As there is a back

127

pointer from x′′ to y′′, x′ would not be the closest predecessor of x in τ0 that has a type-0
inter-level pointer.

Suppose that u is the α-th node of v. It then follows that the number of α-nodes
of B(v) that are between y′ and y in preorder is equal to the number, k, of original
nodes between x′ and x in B(u). As the number of original and dummy nodes between
x′ and x in B(u) is equal to the difference between the preorder ranks of x′ and x, it
suffices to compute the number of dummy nodes between them, which can be expressed
as pre rank0(x)− pre rank0(x′) in B(u). By Lemma 6.2.9, this can be computed in O(1)
time since x and x′ reside in the same preorder segment at the mini-tree level. Then, the
preorder rank of y can be computed as pre selectα(pre rankα(y′) + k) in B(v), which
again requires constant time. This gives us the local id of y′, and the entire process uses
O(1) time.

We then briefly describe how to locate the node, z, in F`−1 that represents the same
node of T as x does. The process is similar to that used to locate y. Recall that µ is the
mini-tree in F` that contains x and τ0 is the preorder segment containing x in µ. Let β be
the label assigned to x. We first find the closest node x∗ in τ0 that precedes x in preorder
and has a type-β inter-level pointer. Let z∗ be the node in F`−1 that is the destination of
the inter-level pointer that leaves from x∗. Using similar reasoning, we can prove that z∗

and z are in the same preorder segment at the mini-tree level, and make use of Lemma 6.2.9
again to locate z in constant time.

6.2.3 Supporting Path Reporting

We now describe how to support path reporting queries and updates.

Lemma 6.2.12. The data structures described in this section answer a path reporting
query in O((lg n/ lg lg n)2 + occ · lg n/ lg lg n)) time, where occ is the output size.

Proof. Let x and y be the endpoints that define the query path, and let [p, q] be the query
range of weights. We perform a top-down traversal in W to locate up to two leaves that
represent ranges containing p and q, respectively. During this traversal, we visit at most
two nodes at each level of W . We further determine each node to visit at the next level
using binary search in O(lg d) = O(lg lg n) time, since each node has at most 4d children.
As there are O(lg n/ lg lg n) levels in W , it requires O(lg n) time to determine the nodes of
W to visit.

For each node, v, of W visited during the above top-down traversal, we also determine
the original nodes xv and yv in B(v) that represent the lowest ancestors of x and y in T

128

that are represented by nodes in B(v), respectively. Note that each node is considered to
be its own ancestor. These nodes are located during the top-down traversal as follows.
Initially, at the root node r of W , xr and yr are the nodes in B(r) that represent x and y,
respectively. Then, given that v is the α-th child of u, we show how to compute xv and
yv from xu and yu, respectively. We only show how to determine xv; the node yv can be
computed in a similar manner. If xu is labeled with α, then xv and xu represent the same
node of T , and we make use of Lemma 6.2.11 to locate xv in constant time. Otherwise, we
first locate xu’s α-parent, x′ = parentα(xu), in O(lg n/ lg lg n) time using Lemma 6.2.1,
and then compute xv as the node in B(v) that represents the same node of T as x′ does in
O(1) time using Lemma 6.2.11. The total time required to locate all these nodes is thus
O((lg n/ lg lg n)2).

For each node, v, of W visited during the traversal, if the range of at least one of
v’s children is contained entirely in [p, q], then we compute zv = LCA(xv, yv) in B(v). We
also perform a path summary query summary(xv, yv) in B(v), and let V be the bit vector
returned by the query. Suppose that the children of v whose ranges are contained in [p, q]
are labeled β1, β1 + 1, . . . , β2. As V has O(lgε n) bits, we can retrieve the position of each
1-bit in V [β1..β2] in O(1) time using an o(n)-bit universal lookup table. Then for each
γ ∈ [β1..β2] such that V [γ] = 1, we claim that there are γ-nodes along the path from
xv to yv in B(v), and these nodes represent a subset of the nodes of T to be reported.
Each γ-node from xv to zv (including xv and zv) can be located using parentγ in B(v)
repeatedly. All these nodes are found when we reach a node whose preorder rank in B(v)
is no greater than that of zv. For each of these nodes, we apply Lemma 6.2.11 repeatedly
to find its local id at the level above until we reach the root level of W , which immediately
gives us a node of T to report. The γ-nodes from yv to zv (including xv but excluding zv)
can be handled using the same approach.

We observe that a constant number of LCA and summary operations are performed at
each level of W , which require O((lg n/ lg lg n)2) time in total. Then, each node in the
output requires only O(lg n/ lg lg n) time to report: if we always charge each parentα
operation to the last node reported before this operation is performed, then each node is
charged a constant number of times, and the process described above, which finds the node
of T given its local id in B(v), requires O(lg n/ lg lg n) time. This completes the proof.

Lemma 6.2.13. The data structures described in this section can support node insert,
node delete and modify weight in O(lg2+4ε n) amortized time.

Proof. We only show how to support node insert; the other update operations can be
handled similarly. Note that update operations may eventually change the value of dlg ne,
which in turn affects the values of the branching factor d and the base cluster size. However,

129

this can be handled by rebuilding our data structure using node insert, as rebuilding is
only required after a linear number of update operations and thus the cost can be amortized
over these operations without changing our time bounds. Hence it suffices to consider the
case in which dlg ne does not change after an insertion.

Suppose that in an insertion operation, we insert a new node h with weight wh. The
new node h is inserted as a child of x, and a set of consecutive children of x between and
including child nodes y and z become the children of h after the insertion. Here we consider
the general case in which y and z exist and are different nodes; degenerate cases can be
handled similarly. In the first step of our insertion algorithm, we insert the weight wh into
W by creating a new leaf for it. This may potentially cause the parent of this new leaf to
split. We first consider the case in which a split will not happen, and then show how to
handle node splits in W later.

We next perform a top-down traversal of W to fix the structures created for the forest

Ft

x

x1

. . .

xj

. . .

xj−1

xk

xk+1

. . .

y

z

Figure 6.3: Forest Ft (containing a single tree) before node insert. Dashed red lines represent
edges to be removed by performing cut.

F` at each level ` of W . In our description, when we say node h (or x, etc.) in F`, we are
referring to the original node, either to be inserted to F` or already existing in F`, that
corresponds to this node in T . At the top level, i.e., the t-th level, of W , the forest Ft
contains one single binary tree. As we maintain bidirectional pointers between nodes in
T and nodes in Ft, we can immediately locate the nodes x, y and z in Ft. Let x1, x2, . . .
be the dummy nodes created for x in Ft, among which xj and xk are the dummy nodes

130

that are parents of y and z, respectively. We then perform a constant number of updates
to Ft as follows. First we perform the cut operation twice to remove the edge between
xj−1 and xj, and the edge between xk and xk+1. This divide Ft into three trees, which is
illustrated in Figure 6.3. We then create a tree on a new node x′j which is a dummy node,
and temporarily include this tree into Ft. Note that creating the directed topology tree
and associated auxiliary data structures for a tree on a single node can be trivially done
in constant time. We then replace the dummy node xj by the node h being inserted. This
can be done by first performing binary searches in the ranges of the children of the root,
r, of W , so that we know the correct label, α, to assign to h. Thus we call modify to
change the label of x′j from 0 to α. We then perform link to add three edges so that x′j
becomes the right child of xj−1, h becomes the left child of x′j, and xk+1 becomes the right
child of x′j. See Figure 6.4 for the illustration. It is clear that all these operations require

O(lg1+4ε n) time in total.
Let v be the α-th child of r. By the construction of W , h should be part of B(v) in

Ft

x

x1

. . .

xj−1

x′
j

xk+1

. . .
h

. . .

xk

y

z

Figure 6.4: Forest Ft after node insert. Dashed blue lines represent edges inserted by
performing link.

Ft−1. To update Ft−1, we observe that it suffices to update B(v) without making changes
to any other tree in Ft−1. Then, if x is also labeled α in B(r), we insert h as a child of the

131

original node corresponding to x in B(v); otherwise, we insert h as a child of the original
node of B(v) that corresponds to the node x′ = parentα(x) in B(r). If x′ does not exist,
then h is inserted as a child of the dummy root of B(v). We then observe that h will
be inserted to B(v) as the new parent of the set of children of x, x′ or the dummy root
(depending on which of the above three cases applies) that are between and including the
original nodes in B(v) that correspond to the nodes pre succα(y) and post predα(z) in
B(r). Thus, in O(lg n/ lg lg n) time, we have found where to insert h in Ft−1, and by the
approach shown in the previous paragraph, we can use link, cut and modify to update
F`−1 in O(lg1+4ε n) time. This process can then be repeated at each successive level of W .
Hence it requires O(lg2+4ε n/ lg lg n) time to update all the F`’s.

When updating the F`’s, we also update inter-level pointers. As we only perform cut,
link and modify a constant number of times over each F`, by Lemma 2.5.6, in each F`
only a constant number of mini-trees will be modified. For each such mini-tree µ except
those that are deleted, we reconstruct Pµ entirely. We first recompute all the up and down
pointers leaving from µ, and the destinations of each of these pointers can be computed
in constant time using the inter-level pointers maintained before the insertion. Then, for
each Pν that will be deallocated (either because the mini-tree ν is deleted or its content
is changed so that a new Pν is being built), we iterate through all the inter-level pointers
stored in it. For each of these pointers, we determine whether it is a back pointer of an up
or down pointer leaving from an adjacent level, which can be done using labeled pre rank

and preorder ranks of the first nodes of each preorder segments in the mini-tree in constant
time per pointer. If a pointer fits into the above case, then we locate its source node after
the update, and update the corresponding structure for inter-level pointers that leave from
the mini-tree containing this source node. Here the source node can be located in constant
time if, when mini-trees are being modified, we temporarily maintain pointers between the
same node in a newly inserted mini-tree and a mini-tree to be deleted. We also follow the
same back pointer to update the inter-level pointer leaving from a mini-tree at an adjacent
level that is the reversal of this pointer.

From these discussion, we can see that the time spent on updating inter-level pointers
for each level of W is proportional to the maximum number of inter-level pointers that
leave a mini-tree. Since each node of a mini-tree can be the source of at most two of
these pointers (one to the level above and the other to the level below), we claim that it
requires O(lg1+4ε n) time to update the inter-level pointers for each level, and thus requiring
O(lg2+4ε n/ lg lg n) time again for all levels of W . One final detail is that the binary tree in
F1 that contains the newly inserted node should be completely rebuilt, as the insertion of
this node may cause many nodes in this tree to change labels. This however can be done
in O(lgε n) time easily, as a binary tree in F1 has up to O(d) = O(lgε n) nodes.

So far we have shown that if no node in W has to split, node insert can be performed

132

in O(lg2+4ε n/ lg lg n) time. We now amortize the cost of splitting nodes. Let v be a node at
level ` of W that is to be split, and let v1 and v2 be the two nodes that v is split into. This
requires us to split the binary tree B(v) into two trees B(v1) and B(v2). The two new trees
themselves can be computed by first converting B(v) back to an ordinal tree containing
its original nodes only, and then performing tree extraction to generate two ordinal trees
which can in turn be transformed into B(v1) and B(v2). When updating F`, however, a
tree can only be deleted by cutting out its nodes one-by-one using cut and deallocate
them, and a new tree can only be created by allocating memory for its nodes one by one
(recall that the directed topology tree for a tree on a single node can be created trivially in
constant time) and then linking them together using link. This requires O(|B(v)| lg1+4ε n)
time. The affected inter-level pointers can be created or updated in O(|B(v)|) time, using
an approach similar to the one discussed in the previous paragraphs. Thus the total cost
is O(|B(v)| lg1+4ε n).

This cost can be amortized using the following two properties of weight-balanced B-
trees: First, a node at level ` has at most 2d` leaf descendants. Therefore, |B(v)| ≤ 2d` and
thus the total cost is O(d` lg1+4ε n). Second, after the previous split of a node v at level
`, at least d`/2 insertions have to be performed below v before v splits again. Therefore,
we can amortize the O(d` lg1+4ε n) total cost over d`/2 insertions, which is O(lg1+4ε n) time
per insertion.

Let u be the parent of v. The above split will replace v by two nodes v1 and v2. This
may potentially affect the labels of a large number of nodes in B(u), and thus we have
to perform modify on affected nodes of u, and update some inter-level pointers. This
can cost O(|B(u)| lg n/ lg lg n) time, which is O(d`+1 lg n/ lg lg n). When amortizing this
cost over the d`/2 insertions described in the previous paragraph, each insertion is charged
O(d lg n/ lg lg n) = O(lg1+ε n/ lg lg n) time. Finally, since an node insert can potentially
cause up to t nodes in W to split, all the way to the root level, the amortized time cost
is O(lg2+4ε n/ lg lg n) per insertion. Therefore, each node insert can be performed in
O(lg2+4ε n) amortized time.

Lemma 6.2.14. The data structures constructed in this section occupy O(n) words of
space.

Proof. We first bound the total space required to store the inter-level pointers. As each Pµ
structure uses O(lg n) bits or O(1) words per pointer, the space cost in words is linear in
the total number of inter-level pointers, which is in turn twice as many as the total number
of up and down pointers. Let p` denote the number of up and down pointers created for
F`. To bound the sum of p`’s over all levels of W , it suffices to bound the total number of
mini-trees, because each mini-tree is associated with O(lgε n) up and down pointers. Let

133

f` be the number of binary trees in F`, i.e., the number of nodes at the `-th level of W , and
let n`,i denote the number of nodes in the i-th binary tree of F`. Note that

∑f`
i=1 n`,i ≤ 2n,

as the number of dummy nodes created in F` is at most n. By Lemma 2.5.5, the number
of mini-trees in the i-th binary tree is

O(n`,i/s+ 1) · (5/6)4ε lg lgn + 1 < O(n`,i/s+ 1) · (1/2)ε lg lgn + 1

≤ O(n`,i · lg lg n/ lg1+ε n+ 1).

Then the total number of mini-trees is

f∑̀

i=1

O(n`,i · lg lg n/ lg1+ε n+ 1) = O(n lg lg n/ lg1+ε n+ f`).

Therefore, the total number of up and down pointers created for F`, where ` > 1, is
O(n lg lg n/ lg n + f`). Note that no inter-level pointers are stored for F0. As each node
in W has between d/4 and 4d children, we have f` ≤ n

(d/4)`
. Recall that the total number

of levels of W is defined to be t + 1 = O(lg n/lg lg n). Therefore, the total number of
inter-level pointers in our entire data structure is

O(
t∑

`=1

(n lg lg n/ lg n+ f`)) ≤ O(n) +O(
∞∑

`=1

n

(d/4)`
) = O(n) +O(

n

d/4− 1
)

= O(n) +O(n/ lgε n) = O(n).

Hence inter-level pointers occupy O(n) words of space in total.
Next we bound the total space used by auxiliary data structures constructed by micro-

trees and macro-trees. Again, these structures are constructed for F` where ` ≥ 1. It
is clear that the additional structures we constructed for each tier-1 macro-tree to prove
Lemma 6.2.9 will not change the space bound in Lemma 6.2.1. The total space is thus
O(
∑t

`=1(n lg lg n+ f` lg n)) = O(n lg n) bits, which is O(n) words.
The weight-balanced B-tree W occupies O(n) words of space. Finally, all the universal

tables constructed in previous proofs use o(n) bits of space in total. Therefore, the total
space cost is O(n) words.

Combining Lemmas 6.2.12 to 6.2.14, and replacing ε with ε/4, we have our main result:

Theorem 6.2.15. Under the word RAM model with word size w = Ω(lg n), an ordinal
tree on n weighted nodes can be stored in O(n) words of space, such that path reporting
queries can be answered in O((lg n/ lg lg n)2+occ·lg n/ lg lg n)) time, where occ is the output
size, and modify weight, node insert and node delete can be supported in O(lg2+ε n)
amortized time for any constant ε ∈ (0, 1).

134

6.3 Dynamic Path Counting and Path Selection

In this section we describe our dynamic data structures for path counting and path selec-
tion. Our strategy is similar to He et al.’s approach for dynamic range selection [63]. We
include full details for the sake of completeness.

Let T denote the input weighted tree and let n denote the size of T . As described in
Section 2.5.1, the structure of T can be represented as a sequence, P [1..2n], of balanced
parentheses. We annotate each parenthesis P [i] with a weight a(i), which is equal to the
weight of the node that corresponds to P [i], and a score e(i), which is equal to 1 if P [i] is an
opening parenthesis, or −1 if P [i] is a closing parenthesis. See Figure 6.5 for an example.
To support path counting and path selection queries, we define two types of queries over
P :

• par range sum(i, j, [p, q]): given that 1 ≤ i ≤ j ≤ 2n and a range [p, q], the range
sum query returns the sum of scores over P [i..j] whose weights are between p and q;

• par range sel(i, j1, j2, k): given opening parentheses at indices i, j1, and j2 that
satisfy 1 ≤ i ≤ j1 ≤ j2 < findclose(i) and an integer k > 0, the two-range selection
query returns the minimal q that satisfies the following inequality

par range sum(i, j1, (−∞, q]) + par range sum(i, j2, (−∞, q]) ≥ k.

3

2 1 2

1 4 3 1 4

T

(a)

P [1..18] = ((()())()(()()()))

a[1..18] = 321144211233114423

(b)

Figure 6.5: (a) An input tree T on 9 weighted nodes. (b) The sequence P of balanced
parentheses and the sequence a of weights that correspond to T . The score sequence e can
be derived from P easily.

In Lemmas 6.3.1 and 6.3.2, we reduce path counting and path selection queries to these
two types of range queries, without adding too much time/space cost.

135

Lemma 6.3.1. For any node x and its ancestor z, and any weight range [p, q], the number
of nodes on the path from x to z whose weights are in [p, q] is equal to

par range sum(findopen(P, z), findopen(P, x), [p, q]). (6.1)

Proof. Let us consider the substring of P that begins with findopen(P, z) and ends with
findopen(P, x), i.e., P [findopen(P, z)..findopen(P, x)]. By the properties of balanced
parentheses, there are more opening parentheses than closing parentheses in this substring.
In addition, each opening parenthesis in this substring has a matching closing parenthesis
before findopen(P, x) iff this opening parenthesis corresponds to a node that is not between
x and z. Hence, only a node on the path from x to z whose weight is in [p, q] contributes
1 to the value computed in Equation 6.1.

Lemma 6.3.2. Within O(n) words of additional space and O(lg n) additional query/update
time, path counting queries and path selection queries over T can be reduced to a constant
number of range sum queries and two-range selection queries over P [1..2n], respectively.

Proof. We make use of an augmented red-black tree [37] to store the identifiers of nodes
in preorder. The leaves of this red-black tree each represent a single parenthesis, and the
internal nodes each represent a substring of P . Inside each internal node, we maintain two
values: the size of the substring this internal node represents and the sum of scores over all
parentheses in the substring. Clearly conversions between identifiers and preorder ranks
can be supported in O(lg n) query/update time and O(n) words of space. In addition, we
maintain P [1..2n] using Navarro and Sadakane’s structure [82]. Thus, given the identifier of
a node x, we can obtain the positions of the corresponding opening and closing parentheses
for x within the same amount of query/update time and space.

First we show how to reduce path counting queries. Let x and y be the endpoints of a
query path, and let [p, q] be a query range. We compute z = LCA(x, y), i = findopen(P, z),
j1 = findopen(P, x), and j2 = findopen(P, y). By Lemma 6.3.1, the answer to the path
counting query is equal to

par range sum(i, j1, [p, q]) + par range sum(i, j2, [p, q])− 1p,q(z),

where 1p,q(z) is 1 if the weight of z is in [p, q], or 0 otherwise. In other words, we decompose
the query path from x to y into two top-to-bottoms paths that join at z, count nodes on
these top-to-bottoms paths by calling par range sum, and deduct 1 if the weight of z is in
the query range.

The reduction for path selection queries is similar. Let x and y be the endpoints of a
query path, and let k be the rank of the weight we want to select. We still obtain z, i, j1, and

136

j2 as in the previous paragraph; clearly P [i], P [j1], and P [j2] are all opening parentheses.
Then we compute q = par range sel(i, j1, j2, k) and q′ = par range sel(i, j1, j2, k + 1).
Thus, the answer to the original path selection query is q if the weight of z is larger than
q, or q′ otherwise.

By the reduction, we need only to consider the support for range sum and two-range
selection queries.

6.3.1 Supporting Range Sum and Path Counting

The main structure is a weight-balanced B-tree [7], W , with leaf parameter 1 and branching
factor d1 = dlgε1 ne for some constant 0 < ε1 < 1/2. The tree W stores parentheses at its
2n leaves, sorted in non-decreasing order of associated weights. As in Section 6.2, the levels
of W are numbered 0, 1, 2, . . ., t1, starting from the leaf level, where t1 = O(lg n/ lg lg n)
denotes the number of the root level. Inside each internal node v of W , we store the
smallest and largest weights in the subtree, W (v), rooted at the node v. Given 1 ≤ i ≤ 2n,
one can determine the path from the root of W to the leaf storing P [i] in O(lg n) time, as
it requires O(lg lg n) time to perform a binary search over the values stored in the children
of an arbitrary internal node.

We also store a dynamic sequence Y (v) for each internal node v in W , which represents
all of the parentheses stored in the leaves of W (v), sorted in non-decreasing order of their
indices in P . Each parenthesis is represented by a label α, which is the index of the child
of node v’s subtree in which the parenthesis is contained, and a score e, which is equal to
+1 if the parenthesis is an opening one and −1 otherwise. Clearly the label is bounded
above by 4d1 = O(lgε1 n). For ` > 0, we concatenate all the sequences Y (v) for each node
v at level ` in W into a sequence of length n, denoted by Y`.

We represent each sequence Y` using the dynamic data structure of He and Munro [61].
Depending on the context, we denote by Y` both the sequence and the data structure that
represents the sequence. The following operations on the sequence Y` are supported:

• access(Y`, i): returns the label and the score of the i-th entry in Y`;

• rankα(Y`, i): returns the number of occurrences of label α in Y`[1..i];

• range sum(Y`, i1, i2, α1, α2): returns the total score of entries in Y`[i1..i2] whose labels
are in [α1..α2];

• insert(Y`, i, α, e): inserts an entry, which has label α and score e, between Y`[i− 1]
and Y`[i];

137

• delete(Y`, i): deletes Y`[i] from Y`.

Lemma 6.3.3 (Modified from [61, 63]). Under the word RAM model with word size w =
Ω(lg n), a sequence Y`[1..2n] of parentheses whose labels are drawn from an alphabet of
size σ = O(lgε n) for some constant ε ∈ (0, 1), and scores are drawn from {+1,−1}, can
be represented using 2n lg σ + o(n lg σ) bits to support access, rank, range sum, insert

and delete in O(lg n/ lg lg n) time. Furthermore, a batch of m update operations can be
performed in O(m) time on Y`[i..i+m− 1] in which the j-th update operation changes the
label of Y`[i+ j − 1], provided that m > 5M/ lg σ and M = ddlg ne2/ lgdlg nee.

Proof. Note that our formulation of this lemma can be reduced to its original form, where
the score of each element is 1 (He and Munro [61] and He et al. [63] did not define the
score function at all, but they defined operations that are equivalent to those defined in
our chapter when the score of each element is 1). To show their equivalence, we need
only to construct another sequence, Z[1..2n], of integers. For 1 ≤ i ≤ 2n, Z[i] is equal to
the label of Y`[i] if Y`[i] is an opening parenthesis, or the label of Y`[i] plus σ if Y`[i] is a
closing parenthesis. Maintaining the sequence Z using the original form of this lemma as
described by He et al. [63], it is easy to reduce the above operations on Y` to the supported
operations on Z.

We now describe how to support par range sum(i, j, [p, q]) queries over P . Starting
with the t1-st level, or the root node, r, of W , we compute the first child and the last child
of r whose leaf descendants have weights in [p, q], using binary search. Let their indices
be α1 and α2. We only consider the case in which α1 and α2 both exist; the degenerate
cases can be handled similarly. Let q′ be the smallest weight contained in the α1-st subtree
of r and p′ be the largest weight contained in the α2-nd subtree of r, respectively. Thus
we can split the query range [p, q] into [p, q′), [q′, p′], and (p′, q]. The middle subquery
can be computed by calling range sum(Yt1 , i, j, α1, α2). The first subquery can be solved
recursively by querying on the (α1 − 1)-st subtree of r, for which i and j are translated
to rankα1−1(Yt1 , i − 1) + 1 and rankα1−1(Yt1 , j), respectively. The third subquery can be
handled similarly by querying on the (α2 + 1)-st subtree of r.

Finally we analyze the query time and space cost in the following lemma.

Lemma 6.3.4. The data structures described in this section support par range sum queries
and thus path counting queries in O((lg n/ lg lg n)2) time and O(n) words of space.

Proof. Given a query range, the algorithm described above will split it into O(t1) =
O(lg n/ lg lg n) subqueries, each requiring a call to range sum. By Lemma 6.3.3, the overall

138

query time is O((lg n/ lg lg n)2).
Regarding the space cost, Lemma 6.3.2 and the weight-balanced B-tree W require O(n)

words of space. For 1 ≤ ` ≤ t1, each Y` occupies O(n lg σ) = O(n lg lg n) bits of space.
Therefore the overall space cost is O(n) words.

6.3.2 Space-Efficient Ranking Trees

Following He et al.’s approach [63], we build a space-efficient ranking tree, R(v), on each
internal node v of W , which represents all of the parentheses stored in the leaves of W (v),
sorted in non-decreasing order of indices. Each space-efficient ranking tree is a weight-
balanced B-tree with leaf parameter Θ(M/ lgdlg ne) = Θ((lg n/ lg lg n)2), where M is de-
fined in Lemma 6.3.3, and branching factor d2 = dlgε2 ne for constant 0 < ε2 < 1 − ε1.
Thus, the height, t2, of the ranking tree R(v) is bounded above by O(lg n/ lg lg n), and each
leaf of R(v) corresponds to a substring of Y (v), which is stored in the dynamic sequence
Y`.

On each internal node, u, of R(v), we maintain a dynamic searchable partial sums
structure [92] for making branching decisions. Let f2 be the degree of u in R(v), and, for
1 ≤ i ≤ f2, let pi be the number of parentheses stored in the subtree rooted at the i-th child
of u. We also denote by T ′(u) the subtree rooted at u. Given a rank j within the parenthe-
ses stored in the leaves of T ′(u), this structure can determine in O(1) time the smallest i
so that p1 +p2 + · · ·+pi ≥ j, i.e., the subtree of u that contains the parenthesis whose rank
is j. With an o(n)-bit precomputed universal lookup table, this structure uses O(lg n) bits
of space per child of u, and requires O(1) update time to handle insertions/deletions of a
parenthesis within T ′(u).

We also store the matrix structure of Brodal et al. [23] on each internal node u of R(v).
We denote by f1 the degree of v in W , and denote by W (v1), . . . ,W (vf1) the subtrees
rooted at each child of v from left to right. Similarly, T ′(u1), . . . , T ′(uf2) denote the sub-
trees rooted at each child of u from left to right, where f2 is the degree of u in R(v) as
defined in the previous paragraph. It is clear that f1 ≤ d1 and f2 ≤ d2. The matrix struc-
ture associated with node u is a partial sum structure with respect to W (v1), . . . ,W (vf1)
and T ′(u1), . . . , T ′(uf2). More formally, the matrix structure Mu is a f1×f2 matrix, where
entry Mu

p,q is the summation of scores over the parentheses that are contained in both⋃p
i=1W (vi) and

⋃q
j=1 T

′(uj). It should be drawn to the reader’s attention that the summa-
tion of scores is equal to the number of opening parentheses minus the number of closing
parentheses, which could result in a positive or negative value. The matrix structure Mu

is stored in two ways. The first representation is a standard table, where each entry is
stored as two’s complement in O(lg n) bits. In the second representation, we divide each

139

entry into sections of Θ(lgε1 n) bits, and number them s1, s2, . . . , sg, where g = Θ(lg1−ε1 n)
and sg contains the most significant bits. For technical reasons, consecutive sections have
an overlap of b = d2 lg lg ne bits. In the second representation, for each column c, the i-th
section of each entry in column c is packed into a single word wuc,i. For similar technical
reasons, each section stored in the packed word wuc,i is padded with two leading zero bits.

We will later show how to support path selection queries using the matrix structure in
Section 6.3.3. Here we only summarize its properties in the following lemma.

Lemma 6.3.5 ([23, 63]). The matrix structure Mu for node u in the ranking tree R(v)
occupies O(lg1+ε1+ε2 n) bits of space, and can be constructed in o(lg1+ε1+ε2 n) time. When-
ever a parenthesis is inserted into or deleted from R(v), the matrix structure stored on each
node along the update path can be updated in O(1) amortized time per node.

As in He et al.’s work [63], we reduce the space cost of ranking trees by storing the
leaves of R(v) implicitly.

Lemma 6.3.6. Let u be a leaf in R(v) and S be the substring of Y (v) that u represents,
where each parenthesis in S is associated with a label drawn from an alphabet of size σ =
O(lgε n) for some constant 0 < ε < 1, and a score drawn from {+1,−1}. Using a universal
table of size o(n) bits, for any 1 ≤ z ≤ |S|, one can compute an array Cz = {c1, c2, . . . , cσ}
in O(lg n/ lg lg n) time, where cα = range sum(S, 1, z, 1, α) for 1 ≤ α ≤ σ.

Proof. Let ` be the level of v; clearly S is a substring of Y`. Remember that, in the proof
of the Lemma 6.3.3, Y` is stored as a sequence, Z[1..2n], of integers drawn from [1..2σ]. For
1 ≤ i ≤ 2n, Z[i] is equal to the label of Y`[i] if Y`[i] is an opening parenthesis, or the label
of Y`[i] plus σ if Y`[i] is a closing parenthesis. Thus, S also corresponds to a substring,
Z ′, of the sequence Z. Following the same approach of He et al. [63], one can compute
an array C ′z = {c′1, c′2, . . . , c′2σ} using O(lg n/ lg lg n) query time and a universal table with
o(n) bits of space, where c′β = rankβ(S, z) for 1 ≤ β ≤ 2σ. Finally we obtain Cz by setting
cα =

∑
1≤β≤α(c′β − c′β+σ).

The analysis for the space cost and construction time is summarized in the following
lemma.

Lemma 6.3.7. For any node v in W , its ranking tree R(v) requires O(m(lg lgn)2

lg1−ε1 n
+ w) bits

of space and O(m) construction time, if W (v) consists of m parentheses and constant-time
access to Y (v) is supported.

140

Proof. The ranking tree R(v) contains O(m/d2× (lg lg n/ lg n)2) = O(m(lg lg n)2/ lg2+ε2 n)
internal nodes. As the searchable partial sums structure and the matrix structure stored
for each internal node of R(v) occupies O(lg1+ε2 n) and O(lg1+ε1+ε2 n) bits of space, respec-
tively, the space occupied by all the internal nodes is O(m(lg lg n)2/ lg1−ε1 n) bits. The
pointers between the internal nodes can be maintained in O(lg n) bits per pointer and
O(1) amortized time per update using the memory blocking techniques for dynamic data

structures (see [61, Appendix J] for an example). The overall space cost is O(m(lg lgn)2

lg1−ε1 n
+w)

bits, as we always need to keep a pointer to the root of the ranking tree.
The analysis of the construction time is similar. The number of internal nodes is

O(m(lg lg n)2/ lg2+ε2 n), and each internal node requires O(lgε2 n) and o(lg1+ε1+ε2 n) time
to construct. Thus the overall construction time is O(m).

In particular, as He et al. pointed out, we do not even need to store the ranking tree
if m = O((lg n/ lg lg n)2). Instead, by Lemma 6.3.6, we can directly query Y (v) and make
a branching decision in O(lg n/ lg lg n) time.

6.3.3 Supporting Two-Range Selection and Path Selection

In this section we describe how to make use of ranking trees to support two-range selection
queries, and thus path selection queries. First we observe that:

Lemma 6.3.8. For opening parentheses at indices i and j that satisfy 1 ≤ i ≤ j <
findclose(i), the value of par range sum(i, j, (−∞, q]) is increasing with q.

Proof. Let x and z be the nodes that correspond to the opening parentheses at indices i
and j, respectively. By Lemma 6.3.1, par range sum(i, j, (−∞, q]) is equal to the number
of nodes between x and z whose weights are less than or equal to q. Therefore, the value
par range sum(i, j, (−∞, q]) must be increasing with q.

Lemma 6.3.8 enables us to answer par range sel queries using range sum operations
and binary search, which could imply a basic query algorithm that uses O(lg2 n/ lg lg n)
time. For each internal node v in W and i, j1, j2 given in the context, we define sv,γ =
range sum(Y (v), i, j1, 1, γ)+range sum(Y (v), i, j2, 1, γ). Given a two-range selection query
par range sel(i, j1, j2, k), starting with the root node r of W , we determine the value of
γ so that sr,γ−1 < k and sr,γ ≥ k. Using binary search, this uses O(lg f1) = O(lg lg n)
calls to range sum, which require O(lg n) time in total. The answer is located in the γ-th
subtree of r, which we recurse on after translating i, j1, and j2 into rankγ(Y (r), i− 1) + 1,

141

rankγ(Y (r), j1), and rankγ(Y (r), j2), respectively. For each of these t1 levels, our query
algorithm uses O(lg n) time, and its overall query time is O(lg2 n/ lg lg n).

To reduce query time, we will avoid performing binary search on each level of W . The
main idea is to use word-level parallelism and the second representation of matrix structures
stored in internal nodes of ranking trees. For each node v on the root-to-leaf path of W
our algorithm will traverse through, we conceptually divide the values of sv,1, sv,2, . . . into
sections in the same way as we divide the entries of the matrix structures into sections.
During the traversal from the root of W to a leaf, our algorithm will maintain an index h
such that, when node v on the path is being examined, the indices of the most significant
non-zero sections of sv,1, sv,2, . . . are no greater than h. The value of h is equal to g initially,
and will be decremented during the traversal. Our algorithm will calculate and examine
the h-th sections of sv,1, sv,2, . . . in a parallel manner. We query R(v) for the path from
the root of R(v) to the leaf whose corresponding substring contains Y (v)[j1]. If the search
path goes through the c-th child on node u of R(v), then we add wuc,h into a running total
w1. Similarly, we obtain running totals w2 and w0 for j2 and i− 1, respectively. Then we
compute w1 +w2 and set the most significant bit of each section to be 1, and compute 2w0

and set the most significant bit of each section to be 0. Subtracting the word representing
2w0 from that representing w1 +w2, and setting the most significant bit of each section to
be 0 in the result w, we finally obtain an approximation of the h-th sections of sv,1, sv,2, . . .
as sv,1, sv,2, The computation of w requires O(lg n/ lg lg n) query time, because, in
the second representation of the matrix structures, consecutive sections have an overlap of
b = d2 lg lg ne bits, and each section is padded with two leading zero bits. For β = 1, 2, . . .,
the difference between sv,β and sv,β is O(lg n/ lg lg n), which is the number of additions and
subtractions we used to compute w.

We then determine the range [α1..α2] of children of v such that, for any β ∈ [α1..α2],
the difference between the h-th section of sv,β and that of k is smaller than 2b−1. This can
be also done in O(1) time using a universal lookup table of size o(n) bits, since w occupies
O(lg n) bits. Here we know that γ must be contained in [α1..α2]. We can use at most two
calls to range sum to determine whether γ = α1 or γ = α2. If neither of them is true, then
we simply determine the value of γ using a binary search. After the binary search, the
value of h will be decremented by 1, since the values of sv,α1 and sv,α2 differ by at most 2b.

Now we can analyze the query time. On each node v between the root and some
leaf of W , the algorithm queries the ranking tree R(v) to obtain w. By Section 6.3.2,
this requires only O(lg n/ lg lg n) time per level of W , and O((lg n/ lg lg n)2) time in total.
Whenever we use binary search to determine γ, the value of h is decremented by 1. Thus
we only need to use binary search at most g = O(lg1−ε1 n) times, and the time cost is up
to O(lg n)× g = o((lg n/ lg lg n)2). Summing up the discussions, the overall query time is
only O((lg n/ lg lg n)2), which improves the initial basic solution by a factor of lg lg n.

142

The following lemma summarizes the query time and space cost of supporting path
selection queries.

Lemma 6.3.9. The data structures described in this section support par range sel queries
and thus path selection queries in O((lg n/ lg lg n)2) time and O(n) words of space.

Proof. The query time has been analyzed, and the analysis of the space cost is based on
Lemmas 6.3.4 and 6.3.7. By Lemma 6.3.7, for each level of W except the bottom O(lg lg n)

ones, the ranking trees require O(n(lg lgn)2

lg1−ε1 n
) bits of space. In addition, the ranking trees

for the bottom O(lg lg n) levels require no extra space. Adding the space occupied by the
weight-balanced B-trees and dynamic sequences, the overall space cost is O(n) words.

6.3.4 Handling Updates

Remember that the input tree T is represented as a sequence P of balanced parentheses.
To insert a node into T or delete one from T , we need only to insert into P or delete from
P a corresponding pair of parentheses. In the rest of this section, we will describe how to
insert a single parenthesis into P , which requires us to update the weight-balanced B-tree
W , ranking trees R(v)’s and sequences Y`’s accordingly. Deletions of parentheses can be
handled similarly by following the approach of Brodal et al. [20], which marks nodes that
have been deleted, and rebuilds the whole data structure after Θ(n) updates.

A parenthesis ρ to insert is specified by its weight a, its score e, and its index i in P
after insertion. To insert ρ, we first determine the update path π of ρ in W , which starts
at the root of W and ends at the leaf that will store ρ after the insertion. This path can
be found in O(lg n) time by performing binary search on each internal node of π. Starting
from the root node of W , we update each internal node v on π level by level, for which the
ranking tree R(v) and the dynamic sequence Y (v) are also updated accordingly. During
the process, some internal node of W may have too many children and will split. For now,
we only consider the case in which no node of W will split during the update.

On the root r of W , we first update its node structure, which requires O(d1) = O(lgε1 n)
time by the properties of weight-balanced B-trees. We also perform insert(Y (r), i, α, e) if
the α-th child of r is also on the path π, which requires O(lg n/ lg lg n) time by Lemma 6.3.3.
Then we insert the parenthesis ρ into the ranking tree R(r), where, after the insertion, ρ’s
index will be of rank i over the parentheses stored in the leaves of R(r). Starting from the
root node of R(v), we update each internal node u on the update path of ρ in R(v) from
top to bottom, for which the node structure of u is updated in O(d2) = O(lgε2 n) time,
while the searchable partial sums structure and the matrix structure Mu are updated in

143

O(1) amortized time. Whenever a node u of R(v) splits, we need to rebuild the auxiliary
data structures on u’s parent and create auxiliary data structures for the nodes that u is
split into. By Lemma 6.3.5 and the properties of the searchable partial sums structure,
these auxiliary structures require o(lg1+ε1+ε2 n) construction time, which is o(1) amortized
time per insertion to R(v) according to the properties of weighted-balanced B-trees. After
that, we reset i = rankα(Y (r), i) and recurse on the α-th child of r. So far our algorithm
uses O(lg n/ lg lg n) time per level, and O((lg n/ lg lg n)2) update time to insert ρ.

Now we consider how to split node v of W when v has too many children. Without loss
of generality, we assume that v has a parent vp at level `. After v splits, we need to update
the ranking tree R(vp) and the substring Y (vp) of the sequence Y`, because the index of v
has changed with respect to the other children of vp. Let m be the number of parentheses
stored in W (v). Thus the length of Y (vp) is bounded above by O(md1) = O(m lgε1 n), and
we will later show how to replace Y (vp) in O(m lgε1 n) time. By Lemma 6.3.7, R(vp) can
be reconstructed in O(m lgε1 n) time, provided that we have access to the sequence Y (vp)
after the split. By properties of weight-balanced B-trees, at least m/2 insertions have to
be performed below v since the more recent split of v. By amortizing the reconstruction
cost over these insertions, this is O(lgε1 n) time. As splits can happen at each level of W ,
the amortized cost per insertion to W is O(lgε1 n× lg n/ lg lg n) time.

The remaining task is to update Y (vp). Let f denote the degree of v; clearly f =
O(lgε1 n) and d ≤ f . Similarly, let fp be the degree of vp, and suppose that v is the γ-th
child of vp. We also denote by v1 and v2 the nodes which v splits into. After the split,
the first d children of v will be assigned to v1, while the others will be assigned to v2. We
will generate an updated sequence Y ′(vp) for the node vp after the split, and replace Y (vp)
with Y ′(vp) in Y` using batched updates.

To generate Y ′(vp), we first retrieve the sequences Y (vp) and Y (v) by traversing the
B-tree structure that stores Y (vp). This requires O(m lgε1 n+lg n/ lg lg n) time, as we have
to traverse at least one root-to-leaf path of the B-tree. We then scan Y (vp) from left to
right, and append parentheses to Y ′(vp) during the process, where Y ′(vp) is initially empty.
When we encounter a parenthesis with label α and score e, we append a parenthesis with
the same score and label β ∈ {α, α+1} to Y ′(vp). The value of β is α if α ∈ {1, . . . , γ−1},
as the parenthesis belongs to some child of vp that appears before v, while β is α + 1 if
α ∈ {γ + 1, . . . , fp}, as the parenthesis belongs to some child of vp that appears after v. In
the case when α = γ, or the parenthesis belongs to v before the split, we further check the
label α′ of the corresponding entry of Y (v). The value of β is γ if α′ ∈ {1, . . . , d}; otherwise
β is γ + 1. In sum, it requires O(m lgε1 n+ lg n/ lg lg n) time to generate Y ′(vp), where the
additive O(lg n/ lg lg n) term is absorbed in all but a constant number of levels close to the
leaves of W . By an analysis similar to that of updating the ranking tree, the amortized
cost of the sequence generation algorithm is O(lgε1 n × lg n/ lg lg n) time per insertion to

144

W .
Finally we replace Y (vp) with Y ′(vp) in Y`. If the size of W (vp) is greater than 5M/ lg σ

for M = ddlg ne2/ lgdlg nee, then we make use of the batched updates as described in
Lemma 6.3.3, which requires O(1) time for each parenthesis to replace. If the size of
W (vp) is smaller, which only occurs at a constant number of bottom levels of W , we simply
replace each parenthesis using insert and delete operations in O(lg n/ lg lg n) time. As
the algorithm that generated the sequence Y ′(vp), the amortized cost per insertion to W
is O(lgε1 n× lg n/ lg lg n) time.

Summarizing the discussions above, and combining Lemmas 6.3.4 and 6.3.9, we present
the following theorem:

Theorem 6.3.10. Under the word RAM model with word size w = Ω(lg n), an ordinal
tree on n weighted nodes can be stored in O(n) words of space, such that path counting
queries can be answered in O((lg n/ lg lg n)2) time, and modify weight, node insert and
node delete can be supported in O((lg n/ lg lg n)2) amortized time.

6.4 Discussion

The major open problem is whether our dynamic data structure for path reporting queries
can be further improved. As an example, is it possible to reduce the update time de-
scribed in Theorem 6.2.15 to O((lg n/ lg lg n)2) while preserving the same query time and
space cost? There are two bottlenecks: cut and link are supported using ω(lg n) time
in Lemma 6.2.7; the inter-level pointers for each level require ω(lg n) update time in the
proof of Lemma 6.2.13. Whether the (lg n/ lg lg n)2 term in query time can be decreased
without sacrificing update time or space cost is another interesting problem.

145

Chapter 7

Conclusion

In this thesis we have studied several data structure problems for labeled or weighted
trees. We have designed in-memory data structures to support various types of path
queries and operations using efficient space and query time. In dynamic settings, we have
also considered how to handle insertions or deletions of nodes, and modifications to weights
of nodes.

In Chapter 3, we design succinct data structures to encode an input tree T using
nH(WT)+2n+o(n lg σ) bits of space, where T consists of n nodes, their weights are drawn
from [1..σ], and H(WT) is the entropy of the multiset of the weights of the nodes in T . Our
data structures support path counting queries in O(lg σ/ lg lg n + 1) time, path reporting
queries in O((occ+ 1)(lg σ/ lg lg n+ 1)) time, and path median and path selection queries
in O(lg σ/ lg lg σ) time, where occ is the size of the output. Our results not only greatly
improve the best known data structures [31, 75, 65], but also match the lower bounds for
path counting, median and selection queries [86, 87, 71] when σ = Ω(n/polylog(n)).

In Chapter 4, we design succinct representations of labeled ordinal trees that support
a much broader collection of operations than previous work. Our approach presents a
framework for succinct representations of labeled ordinal trees that is able to handle large
alphabets. This answers an open problem presented by Geary et al. [54], which asks for
representations of labeled ordinal trees that remain space-efficient for large alphabets. We
further extend our work and present the first succinct representations for dynamic labeled
ordinal trees that support several label-based operations including finding the level ancestor
with a given label.

In Chapter 5, we design novel succinct indices for path minimum queries. We present

• an index within O(m) bits of additional space that supports queries in O(α(m,n))

146

time and O(α(m,n)) accesses to the weights of nodes, for any integer m ≥ n; and

• an index within 2n+ o(n) bits of additional space that supports queries in O(α(n))
time and O(α(n)) accesses to the weights of nodes.

Here α(m,n) is the inverse-Ackermann function, and α(n) = α(n, n). These indices give
us the first succinct data structures for the path minimum problem. Following the same
approach, we also develop succinct data structures for semigroup path sum queries. One
of our data structures requires n lg σ+2n+o(n lg σ) bits of space and O(α(n)) query time,
where σ is the size of the semigroup.

In the same chapter, using the succinct indices for path minimum queries, we achieve
three different time-space tradeoffs for path reporting by designing

• an O(n)-word data structure with O(lgε n+ occ · lgε n) query time;

• an O(n lg lg n)-word data structure with O(lg lg n+ occ · lg lg n) query time; and

• an O(n lgε n)-word data structure with O(lg lg n+ occ) query time.

Here occ is the number of nodes reported and ε is an arbitrary constant between 0 and 1.
These tradeoffs match the state of the art of two-dimensional orthogonal range reporting
queries [27], which can be treated as a special case of path reporting queries. When the
number of distinct weights is much smaller than n, we further improve both the query time
and the space cost of these three results.

In Chapter 6, we design the first non-trivial linear-space data structure that supports
path reporting in O((lg n/ lg lg n)2 +occ lg n/ lg lg n)) query time, where n is the size of the
input tree and occ is the output size, and the insertion and deletion of a node of an arbi-
trary degree in O(lg2+ε n) amortized time, for any constant ε ∈ (0, 1). Our data structure
supports queries much faster than the obvious solutions that directly dynamize solutions
to the static version of this problem, which all require Ω((lg n/ lg lg n)2) time for each node
reported. We also design data structures that support path counting and path reporting
queries in O((lg n/ lg lg n)2) time, and insertions or deletions of nodes in O((lg n/ lg lg n)2)
amortized time. This matches the best known results for dynamic two-dimensional range
counting [62] and range selection [63].

In addition to the specific open problems mentioned in the discussion sections of Chap-
ters 3 to 6, we would like to point out several general directions for future work. First, it
would be interesting if more types of path queries can be examined. A recent attempt has
been made by Durocher et al. [41] to study path least-frequent element, path α-minority
and path top-k color queries. Second, the results in this thesis are obtained under the

147

standard word RAM model, which is for internal memory. When the data set does not
fit into the memory, we need to design I/O-efficient algorithms and data structures. It
remains open to extend our work to handle data sets in external memory. Finally, proving
lower bounds for time-space tradeoffs and query-update tradeoffs is another open research
field, especially the lower bounds that capture the differences between data structure prob-
lems on trees and paths. Can we find a family of queries that require more time and/or
space cost on trees than paths? As described in Lemma 5.2.1, the query that asks for the
minimum node is an example.

148

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. On finding lowest common
ancestors in trees. SIAM J. Comput., 5(1):115–132, 1976.

[2] Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product
queries. Technical report, Tel Aviv University, 1987.

[3] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for
orthogonal range searching. In 41st Annual Symposium on Foundations of Computer
Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages
198–207, 2000.

[4] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Optimal static range
reporting in one dimension. In Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, STOC 2001, Heraklion, Crete, Greece, July 6-8, 2001, pages
476–482, 2001.

[5] Stephen Alstrup and Jacob Holm. Improved algorithms for finding level ancestors
in dynamic trees. In Automata, Languages and Programming, 27th International
Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000, Proceedings, pages
73–84, 2000.

[6] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In
39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November
8-11, 1998, Palo Alto, California, USA, pages 534–544, 1998.

[7] Lars Arge and Jeffrey Scott Vitter. Optimal external memory interval management.
SIAM J. Comput., 32(6):1488–1508, 2003.

[8] Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Tatiana A.
Starikovskaya. Wavelet trees meet suffix trees. In Proceedings of the Twenty-Sixth

149

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 572–591, 2015.

[9] Jérémy Barbay, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Adap-
tive searching in succinctly encoded binary relations and tree-structured documents.
Theoretical Computer Science, 387(3):284–297, 2007.

[10] Jérémy Barbay, Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct indexes for
strings, binary relations and multilabeled trees. ACM Transactions on Algorithms,
7(4):52, 2011.

[11] Jérémy Barbay and S. Srinivasa Rao. Succinct encoding for XPath location steps.
Technical Report CS-2006-10, University of Waterloo, 2006.

[12] Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for
representing sequences. ACM Transactions on Algorithms, 11(4):31, 2015.

[13] Amir M. Ben-Amram. What is a ”pointer machine”? SIGACT News, 26(2):88–95,
1995.

[14] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In
LATIN, pages 88–94, 2000.

[15] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman,
and S. Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275–
292, 2005.

[16] Philip Bille. A survey on tree edit distance and related problems. Theor. Comput.
Sci., 337(1-3):217–239, 2005.

[17] Guy E. Blelloch. Space-efficient dynamic orthogonal point location, segment inter-
section, and range reporting. In Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA,
January 20-22, 2008, pages 894–903, 2008.

[18] Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin. Succinct orthogonal
range search structures on a grid with applications to text indexing. In Algorithms
and Data Structures, 11th International Symposium, WADS 2009, Banff, Canada,
August 21-23, 2009. Proceedings, pages 98–109, 2009.

150

[19] Karl Bringmann and Kasper Green Larsen. Succinct sampling from discrete distribu-
tions. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing,
STOC 2013, Palo Alto, California, USA, June 1-4, 2013, pages 775–782, 2013.

[20] Gerth Stølting Brodal, Pooya Davoodi, Moshe Lewenstein, Rajeev Raman, and
S. Srinivasa Rao. Two dimensional range minimum queries and fibonacci lattices.
In Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia,
September 10-12, 2012. Proceedings, pages 217–228, 2012.

[21] Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao. Path minima queries
in dynamic weighted trees. In Algorithms and Data Structures - 12th International
Symposium, WADS 2011, New York, NY, USA, August 15-17, 2011. Proceedings,
pages 290–301, 2011.

[22] Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao. On space efficient two
dimensional range minimum data structures. Algorithmica, 63(4):815–830, 2012.

[23] Gerth Stølting Brodal, Beat Gfeller, Allan Grønlund Jørgensen, and Peter Sanders.
Towards optimal range medians. Theor. Comput. Sci., 412(24):2588–2601, 2011.

[24] Gerth Stølting Brodal and Allan Grønlund Jørgensen. Data structures for range
median queries. In Algorithms and Computation, 20th International Symposium,
ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings, pages
822–831, 2009.

[25] Adam L. Buchsbaum, Loukas Georgiadis, Haim Kaplan, Anne Rogers, Robert Endre
Tarjan, and Jeffery Westbrook. Linear-time algorithms for dominators and other
path-evaluation problems. SIAM J. Comput., 38(4):1533–1573, 2008.

[26] Timothy M. Chan, Meng He, J. Ian Munro, and Gelin Zhou. Succinct indices for
path minimum, with applications to path reporting. In Algorithms - ESA 2014 - 22th
Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings,
pages 247–259, 2014.

[27] Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal range
searching on the RAM, revisited. In Proceedings of the 27th ACM Symposium on
Computational Geometry, SoCG 2011, Paris, France, June 13-15, 2011, pages 1–10,
2011.

151

[28] Timothy M. Chan and Mihai Pǎtraşcu. Counting inversions, offline orthogonal range
counting, and related problems. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, Jan-
uary 17-19, 2010, pages 161–173, 2010.

[29] Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal
range counting. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, pages 241–251, 2013.

[30] Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM J.
Comput., 15(3):703–724, 1986.

[31] Bernard Chazelle. Computing on a free tree via complexity-preserving mappings.
Algorithmica, 2(1):337–361, 1987.

[32] Bernard Chazelle. A functional approach to data structures and its use in multidi-
mensional searching. SIAM J. Comput., 17(3):427–462, 1988.

[33] Bernard Chazelle. Lower bounds for orthogonal range searching: I. the reporting
case. J. ACM, 37(2):200–212, 1990.

[34] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring
technique. Algorithmica, 1(2):133–162, 1986.

[35] Bernard Chazelle and Burton Rosenberg. The complexity of computing partial sums
off-line. Int. J. Comput. Geometry Appl., 1(1):33–45, 1991.

[36] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary storage (ex-
tended abstract). In Proceedings of the Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, 28-30 January 1996, Atlanta, Georgia., pages 383–391, 1996.

[37] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[38] Erik D. Demaine, Gad M. Landau, and Oren Weimann. On cartesian trees and range
minimum queries. Algorithmica, 68(3):610–625, 2014.

[39] Erik D. Demaine and Alejandro López-Ortiz. A linear lower bound on index size for
text retrieval. J. Algorithms, 48(1):2–15, 2003.

152

[40] Brandon Dixon, Monika Rauch, and Robert Endre Tarjan. Verification and sensitiv-
ity analysis of minimum spanning trees in linear time. SIAM J. Comput., 21(6):1184–
1192, 1992.

[41] Stephane Durocher, Rahul Shah, Matthew Skala, and Sharma V. Thankachan.
Linear-space data structures for range frequency queries on arrays and trees. Al-
gorithmica, 74(1):344–366, 2016.

[42] Arash Farzan and J. Ian Munro. A uniform paradigm to succinctly encode various
families of trees. Algorithmica, 68(1):16–40, 2014.

[43] Arash Farzan, Rajeev Raman, and S. Srinivasa Rao. Universal succinct represen-
tations of trees? In Automata, Languages and Programming, 36th International
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I,
pages 451–462, 2009.

[44] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Com-
pressing and indexing labeled trees, with applications. Journal of the ACM, 57(1),
2009.

[45] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed
representations of sequences and full-text indexes. ACM Transactions on Algorithms,
3(2), 2007.

[46] Paolo Ferragina and Rossano Venturini. A simple storage scheme for strings achieving
entropy bounds. Theoretical Computer Science, 372(1):115–121, 2007.

[47] Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range
minimum queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011.

[48] Greg N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM J. Comput., 14(4):781–798, 1985.

[49] Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity
and k smallest spanning trees. SIAM J. Comput., 26(2):484–538, 1997.

[50] Greg N. Frederickson. A data structure for dynamically maintaining rooted trees. J.
Algorithms, 24(1):37–65, 1997.

[51] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993.

153

[52] Harold N. Gabow. Data structures for weighted matching and nearest common
ancestors with linking. In Proceedings of the First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 1990, San Francisco, California, USA, January 22-
24, 1990, pages 434–443, 1990.

[53] Travis Gagie, Gonzalo Navarro, and Simon J. Puglisi. New algorithms on wavelet
trees and applications to information retrieval. Theor. Comput. Sci., 426:25–41, 2012.

[54] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees
with level-ancestor queries. ACM Transactions on Algorithms, 2(4):510–534, 2006.

[55] Beat Gfeller and Peter Sanders. Towards optimal range medians. In Automata,
Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes,
Greece, July 5-12, 2009, Proceedings, Part I, pages 475–486, 2009.

[56] Alexander Golynski. Optimal lower bounds for rank and select indexes. Theor.
Comput. Sci., 387(3):348–359, 2007.

[57] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA.,
pages 841–850, 2003.

[58] Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. More haste,
less waste: Lowering the redundancy in fully indexable dictionaries. In Proceedings
of the 29th International Symposium on Theoretical Aspects of Computer Science,
volume 25 of Leibniz International Proceedings in Informatics (LIPIcs), pages 517–
528, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[59] Torben Hagerup. Sorting and searching on the word RAM. In STACS 98, 15th An-
nual Symposium on Theoretical Aspects of Computer Science, Paris, France, Febru-
ary 25-27, 1998, Proceedings, pages 366–398, 1998.

[60] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. Comput., 13(2):338–355, 1984.

[61] Meng He and J. Ian Munro. Succinct representations of dynamic strings. In Proceed-
ings of String Processing and Information Retrieval - 17th International Symposium,
volume 6393 of Lecture Notes in Computer Science, pages 334–346. Springer, 2010.

154

[62] Meng He and J. Ian Munro. Space efficient data structures for dynamic orthogonal
range counting. Comput. Geom., 47(2):268–281, 2014.

[63] Meng He, J. Ian Munro, and Patrick K. Nicholson. Dynamic range selection in linear
space. In Algorithms and Computation - 22nd International Symposium, ISAAC
2011, Yokohama, Japan, December 5-8, 2011. Proceedings, pages 160–169, 2011.

[64] Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct ordinal trees based on
tree covering. ACM Transactions on Algorithms, 8(4):42, 2012.

[65] Meng He, J. Ian Munro, and Gelin Zhou. Path queries in weighted trees. In Algo-
rithms and Computation - 22nd International Symposium, ISAAC 2011, Yokohama,
Japan, December 5-8, 2011. Proceedings, pages 140–149, 2011.

[66] Meng He, J. Ian Munro, and Gelin Zhou. Succinct data structures for path queries.
In Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia,
September 10-12, 2012. Proceedings, pages 575–586, 2012.

[67] Meng He, J. Ian Munro, and Gelin Zhou. Dynamic path counting and reporting
in linear space. In Algorithms and Computation - 25th International Symposium,
ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings, pages 565–577,
2014.

[68] Meng He, J. Ian Munro, and Gelin Zhou. A framework for succinct labeled ordinal
trees over large alphabets. Algorithmica, 70(4):696–717, 2014.

[69] Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina, USA,
30 October - 1 November 1989, pages 549–554, 1989.

[70] Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast
algorithms for multidimensional dominance reporting and counting. In ISAAC, pages
558–568, 2004.

[71] Allan Grønlund Jørgensen and Kasper Green Larsen. Range selection and me-
dian: Tight cell probe lower bounds and adaptive data structures. In Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 23-25, 2011, pages 805–813, 2011.

[72] Haim Kaplan and Nira Shafrir. Path minima in incremental unrooted trees. In
Algorithms - ESA 2008, 16th Annual European Symposium, Karlsruhe, Germany,
September 15-17, 2008. Proceedings, pages 565–576, 2008.

155

[73] Valerie King. A simpler minimum spanning tree verification algorithm. Algorithmica,
18(2):263–270, 1997.

[74] János Komlós. Linear verification for spanning trees. Combinatorica, 5(1):57–65,
1985.

[75] Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range mode and range median
queries on lists and trees. Nord. J. Comput., 12(1):1–17, 2005.

[76] Frank Thomson Leighton. Methods for message routing in parallel machines. In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada, pages 77–96, 1992.

[77] Giovanni Manzini. An analysis of the burrows-wheeler transform. Journal of the
ACM, 48(3):407–430, 2001.

[78] Peter Bro Miltersen. Lower bounds on the size of selection and rank indexes. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 11–
12, 2005.

[79] J. Ian Munro and Yakov Nekrich. Compressed data structures for dynamic se-
quences. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras,
Greece, September 14-16, 2015, Proceedings, pages 891–902, 2015.

[80] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses
and static trees. SIAM J. Comput., 31(3):762–776, 2001.

[81] Gonzalo Navarro and Yakov Nekrich. Optimal dynamic sequence representations.
SIAM J. Comput., 43(5):1781–1806, 2014.

[82] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic suc-
cinct trees. ACM Transactions on Algorithms, 10(3):16:1–16:39, 2014.

[83] Yakov Nekrich. Orthogonal range searching in linear and almost-linear space. Com-
put. Geom., 42(4):342–351, 2009.

[84] Gabriel Nivasch. Inverse ackermann without pain. http://www.gabrielnivasch.

org/fun/inverse-ackermann.

[85] Manish Patil, Rahul Shah, and Sharma V. Thankachan. Succinct representations of
weighted trees supporting path queries. J. Discrete Algorithms, 17:103–108, 2012.

156

http://www.gabrielnivasch.org/fun/inverse-ackermann
http://www.gabrielnivasch.org/fun/inverse-ackermann

[86] Mihai Pǎtraşcu. Lower bounds for 2-dimensional range counting. In Proceedings of
the 39th Annual ACM Symposium on Theory of Computing, San Diego, California,
USA, June 11-13, 2007, pages 40–46, 2007.

[87] Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM J. Com-
put., 40(3):827–847, 2011.

[88] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle,
WA, USA, May 21-23, 2006, pages 232–240, 2006.

[89] Holger Petersen. Improved bounds for range mode and range median queries. In
SOFSEM 2008: Theory and Practice of Computer Science, 34th Conference on Cur-
rent Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia,
January 19-25, 2008, Proceedings, pages 418–423, 2008.

[90] Holger Petersen and Szymon Grabowski. Range mode and range median queries in
constant time and sub-quadratic space. Inf. Process. Lett., 109(4):225–228, 2009.

[91] Seth Pettie. An inverse-ackermann type lower bound for online minimum spanning
tree verification. Combinatorica, 26(2):207–230, 2006.

[92] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encoding k -ary trees, prefix sums and multisets.
ACM Transactions on Algorithms, 3(4), 2007.

[93] Kunihiko Sadakane and Roberto Grossi. Squeezing succinct data structures into
entropy bounds. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006,
pages 1230–1239, 2006.

[94] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic
trees. J. Comput. Syst. Sci., 26(3):362–391, 1983.

[95] Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. J. Comput. Syst. Sci., 18(2):110–127, 1979.

[96] Dekel Tsur. Succinct representation of labeled trees. Theor. Comput. Sci., 562:320–
329, 2015.

[97] Jean Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239,
1980.

157

[98] Andrew Chi-Chih Yao. Should tables be sorted? (extended abstract). In 19th Annual
Symposium on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18
October 1978, pages 22–27, 1978.

[99] Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries (extended
abstract). In Proceedings of the 14th Annual ACM Symposium on Theory of Com-
puting, STOC 1982, San Francisco, California, USA, May 5-7, 1982, pages 128–136,
1982.

[100] Gelin Zhou. Path queries in weighted trees. Master’s thesis, Waterloo, ON, Canada,
2012.

158

	List of Tables
	List of Figures
	Introduction
	Organization of the Thesis

	Preliminaries
	Models of Computation
	Notation
	Bit Vectors
	Sequences
	Wavelet Trees and the Ball-Inheritance Problem

	Ordinal Trees
	Balanced Parentheses
	Tree Covering
	Tree Extraction
	Restricted Topological Partitions

	Static Succinct Data Structures for Path Queries
	Introduction
	Previous Work
	Our Contributions
	The Organization of This Chapter

	Applying Tree Extraction to Path Queries
	Data Structures under the Pointer Machine Model
	Word RAM Data Structures with Reduced Space Cost
	Succinct Data Structures with Improved Query Time
	Succinct Ordinal Trees over an Alphabet of Size O(lgn)
	Path Counting and Reporting
	Path Median and Path Selection

	Discussion

	Static and Dynamic Succinct Labeled Ordinal Trees
	Introduction
	Static Trees over Large Alphabets : Theorem 4.1.2
	Operations label, pre_rank, pre_select and nbdesc
	Conversion between Nodes in T and T
	Operations parent, level_anc, LCA and depth
	Operations child_rank, child_select and deg
	Operation height
	Operations post_rank and post_select
	Operations dfuds_rank and dfuds_select
	The -operations Related to Leaves
	Completing the Proof of Theorem 4.1.2

	Static Trees over Small Alphabets : Theorem 4.1.1
	Dynamic Trees Supporting Level-Ancestor Operations : Theorem 4.1.3
	Discussion

	Static Succinct Indices for Path Minimum, with Applications
	Introduction
	Path Minimum
	Semigroup Path Sum
	Path Reporting
	An Overview of the Chapter

	Path Minimum Queries
	A Lower Bound under the Encoding Model
	Upper Bounds under the Indexing Model

	Semigroup Path Sum Queries
	Encoding Topology Trees: Proof of Lemma 5.2.3
	Path Reporting Queries
	Further Refinements for Range and Path Reporting
	Discussion

	Dynamic Data Structures for Path Queries
	Introduction
	Dynamic Path Reporting
	Representing Dynamic Forests with Small Labels to Support Path Summary Queries
	Navigation between Levels of W
	Supporting Path Reporting

	Dynamic Path Counting and Path Selection
	Supporting Range Sum and Path Counting
	Space-Efficient Ranking Trees
	Supporting Two-Range Selection and Path Selection
	Handling Updates

	Discussion

	Conclusion
	References

