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Abstract

Finding the shortest paths in a graph has been studied for a long time, and there

are many main memory based algorithms dealing with this problem. Among these,

Dijkstra's shortest path algorithm is one of the most commonly used eÆcient al-

gorithms to the non-negative graphs. Even more eÆcient algorithms have been

developed recently for graphs with particular properties such as the weights of

edges fall into a range of integer. All of the mentioned algorithms require the graph

totally reside in the main memory. Howevery, for very large graphs, such as the

digital maps managed by Geographic Information Systems (GIS), the requirement

cannot be satis�ed in most cases, so the algorithms mentioned above are not ap-

propriate. My objective in this thesis is to design and evaluate the performance

of external memory (disk-based) shortest path algorithms and data structures to

solve the shortest path problem in very large digital maps. In particular the follow-

ing questions are studied: What have other researchers done on the shortest path

queries in very large digital maps? What could be improved on the previous works?

How eÆcient are our new shortest paths algorithms on the digital maps, and what

factors a�ect the eÆciency? What can be done based on the algorithm?

In this thesis, we give a disk-based Dijkstra's-like algorithm to answer short-

est path queries based on pre-processing information. Experiments based on our

Java implementation are given to show what factors a�ect the running time of our

algorithms.
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Chapter 1

Introduction

1.1 The problems of route optimization on Spa-

tial Database

In Geographical Information Systems (GIS), shortest path queries are one of the

most useful and most frequently asked questions. In combinatorics, the shortest

path problems on general graphs have already been well studied. For example,

Dijkstra's algorithm is widely used and actually very fast when using heap data

structures for priority queues [2]. Even faster algorithms are developed for graphs

that have special constraints on their edge weights. For example, Cherkassky,

Goldberg, and Radzik developed algorithms based on multi-level buckets [3]. The

constraint of the algorithm is that the weights of the edges must be integers. With

this algorithm, the time spent on searching is 1=2 to 1=3 that of Dijkstra's algorithm.

However, one assumption of all of the above algorithms is that the graph can be

1



CHAPTER 1. INTRODUCTION 2

stored in main memory. If the digital map is too large, the algorithms cannot

handle it.

Recently, several algorithms have been proposed to address this particular prob-

lem. The basic ideas are to use the divide-and-conquer method to divide the large

maps into small ones, then deal with the small chunks systematically, and at last

combine the solutions together. Some papers deal with the partitioning algorithms

and the optimality of the solution ([1], [2]).

Some try to balance between the I/O operations and computation time [12]. In

this thesis, a set of new algorithms is provided on graph partitioning and graph

pruning. The materialization method proposed is also di�erent from previous ones.

1.2 Terminology

Before proceeding to descriptions of the algorithms and the design of the system,

let us examine the de�nitions of the frequently used terms. Terms that are not

de�ned here are the common graph theory terms (such as vertex, edge, and path),

which can be found in [3, 7].

De�nition 1. (Graph)

The 3-tuple G = (V;E;W ) is de�ned to be a graph, where V = viji 2 [0; n� 1]

is the set of vertices with size of n. E = feijjeij =< vi; vj >; vi; vj 2 V g is the
set of edges. Each edge is determined by a \from" vertex vi and a \to" vertex vj,

denoted simply as eij. W = fw : E ! <�0jw is an one-to-one function from the

set of edges to non-negative real numbersg.
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The de�nition of graph is actually a simple graph. The multiple edges in a

graph are not considered in that we only care about the shortest paths in a graph,

a multiple graph can always be simpli�ed by removing multiple edges whose weights

are not the minimum. For example, Figure 1.1 shows a typical undirected graph.
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Figure 1.1: A Sample Undirected Graph

In this example, the set of vertices are labeled from 0 to 59. The edges can
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be identi�ed by the two end vertices, for example edge < 14; 18 > is the edge

connecting vertices 14 and 18. The weight of an edge is the Euclidean distance

from one end vertex to the other end vertex. In the above example, the weight of

edge < 14; 18 > is 2.

By the de�nition of graph, there are no constraints applied on the data struc-

ture when implementing it. For convenience, the graph data structure in memory

and the graph database in secondary storage are distinguished. The former is still

called graph, but the latter is called \digital map". In some sense, you can think

of digital map as a graph stored on secondary storage.

De�nition 2. (Digital Map)

A digital map D = (V;E;W ) is de�ned to be a persistent graph on the sec-

ondary storage, where the V , E, and W are the same as de�ned in de�nition 1.

Since digital map and graph are referring to the same concept in theory, the

only di�erence lies in the manner of implementation. When we describe the graph

algorithms and other theoretical descriptions not related to the implementation,

the term \graph" is used for simplicity.

De�nition 3. (Sub-graph)

A sub-graph S = (Vs; Es;Ws) of graph G = (V;E;W ) has the following proper-

ties: Vs � V , and exists three one-to-one functions fv : Vs ! V , fe : Es ! E, fw :

Ws ! W such that 8eij 2 Es; fe(eij) = (fv(vi); fv(vj)); fw(ws(eij)) = w(fe(eij)).



CHAPTER 1. INTRODUCTION 5

By the de�nition of sub-graph, the vertices in the sub-graph are a subset of

the vertices in the original graph. There is an edge connecting two vertices in the

sub-graph only if the two corresponding vertices in the original graph are adjacent.

The edge weights in the sub-graph are the same as those of corresponding edges in

the original graph. For example, a sub-graph of the graph in Figure 1.1 can be con-

structed. The vertices of the sub-graph are 0; 1; 3; 4; 5, the edges of the sub-graph

are < 0; 1 >, < 1; 4 >, < 0; 3 >, and < 3; 5 >. The weights of the edges are the

same as those in the original graph. Note that although < 1; 3 > and < 3; 4 > are

also edges in the original graph connecting the vertices in the sub-graph, it is not

necessary to include them in the sub-graph, which is di�erent from the de�nition

of a fragment.

De�nition 4. (Fragment)

Fragment F = (Vf ; Ef ;Wf ) is a connected sub-graph of G = (V;E;W ) , where

Vf � V , and 8eij 2 Ef ) fe(eij) 2 E, and 8eij 2 E ^ f�1v (vi); f
�1
v (vj) 2 Vf )

f�1e (eij) 2 Ef . The weight of the edge in the fragment is the weight of the corre-

sponding edge in the original graph. That is, 8eij 2 Ef ; wf (eij) = w(fv(vi); fv(vj)).

A fragment is a special kind of sub-graph with the following properties:

1. A fragment is a connected component. For undirected graphs, it is a complete

graph, i.e. every pair of vertices has a path connecting them.

2. There exists an edge connecting two vertices in a fragment if, and only if, the
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two corresponding vertices in the original graph are adjacent.

For example, in Figure 1.1, the original graph can be divided into six fragments

indicated by the dashed lines. Each fragment is a sub-graph of the original graph

and when the six fragments are merged together, we get the original graph. Note

that the vertices 23 and 24 are shared by two fragments (which are called boundary

vertices as de�ned later), so the edge (23; 24) is also shared by the two fragments by

the property 2. Later it will be seen that the edges connecting boundary vertices

of the same fragments need not satisfy the property 2 in order to get the correct

shortest path in our algorithm. That is the fragments satisfy the relaxed property:

20 If both vertices u and v are connected in the original graph and are con-

tained in k fragments. The edge (u; v) can be in any one or many of these k

fragments.

If a fragment satis�es property 1 and 20 , we call it \rimless fragment". Since

rimless fragment is the same as fragment in terms of shortest paths, sometimes they

are not distinguished.

De�nition 5. (Partition)

A partition of a graph G(V;E;W ) is a set of fragments fFi = (Vi; Ei;Wi)ji 2
[0; n� 1];

S
Vi = V g.

By de�nition of fragment, edges are \copied" from the original graph to the

fragment if both end vertices are in the fragment. Therefore, for a partition of a
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graph, we can also get the conclusion that
S
Ei = E,

S
Wi = W . This is also

true for rimless fragments. In the example of Figure 1.1, the partition is the six

fragments.

De�nition 6. (Interior Vertex, Boundary Vertex)

Vertices in a fragment F = (Vf ; Ef ;Wf ) of graph G = (V;E;W ) can be divided

into two sets: Vi and Vb, where Vf = Vi
S
Vb. A vertex in fragment vi 2 Vb , 9 an

adjacent vertex u of fv(vi) 2 V such that there does not exist a vertex vj in Vb such

that fv(vj) = u. That is, every boundary vertex connects to at least two fragments

of its partition. Vertices in Vb are called boundary vertices. Any other vertices in

Vi are called interior vertices.

Intuitively, boundary vertices are vertices that appear in more than one frag-

ment, and interior vertices are vertices appear in only one fragment. Based on

the de�nition, we can get the following properties of boundary vertex and interior

vertex:

1. 8vi 2 Vi; degree(vi) = degree(fv(vi)).

2. 8vj 2 Vb; degree(vj) < degree(fv(vj)).

The two properties of boundary vertices and interior vertices can be obtained

easily from the de�nition of fragment. The �rst property implies that an interior

vertex is only adjacent to the interior vertices of its own fragment or the bound-

ary vertices of its own fragment of its adjacent fragments. That is, there are no

edges connecting an interior vertex in one fragment to an interior vertex in another
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fragment. It follows that a path connecting an interior vertex with a vertex in

another fragment must pass through one or more boundary vertices. Note that, by

de�nition, the set of interior vertices could be empty, but in practice, in order to

get better performance, the set of interior vertices is always non-empty. Otherwise,

we cannot localize the program by partitioning the graph into fragments.

Also taking Figure 1.1 as an example, we can get the original graph when we

merge the six fragments. For the fragment at the lower left corner, interior vertices

are 0, 1, 2, 3, 4, 5, 6, and 7. The boundary vertices are 8, 9 and 10. All edges in the

original graph are \copied" to the fragment, and they are the only edges present in

the fragment. The edge weights remain the same with the original graph. If there

are edges connecting two boundary vertices in the original graph, the edges also

appear in those fragments, such as the edge <8,9> appears in both the lower left and

lower right fragments.

De�nition 7. (Boundary Set)

A boundary set is the set of all boundary vertices shared by two or more frag-

ments. A boundary set can be denoted byBS[fi; fj; : : : ; fk], where fi; fj; : : : ; fk are

the fragments that share the boundary vertices in the boundary set. fi; fj; : : : ; fk

are sorted in ascending order so that the sequence of fi; fj; : : : ; fk can uniquely

determine the boundary set. The sequence is also called the ID of the boundary

set.

The idea behind the concept of boundary set is that the boundary vertices in
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a boundary set are shared by the same set of fragments, so a boundary set can be

contracted into one super vertex when one is interested only in the connectivity of

boundary sets. Therefore, in terms of fragment connectivity, boundary set acts as

an equivalence set. This nice property is used in constructing sketch graphs.

Each fragment may have zero or more boundary sets. A boundary vertex can

be in two di�erent boundary sets. If this is the case, the boundary vertex must

be shared by more than two fragments. For example, in Figure 1.1, we have six

fragments. We can name them by integers, say 0, 1, 2, 3, 4, and 5 from left to right,

bottom to up. Therefore, the lower left is fragment 0, the lower right is fragment

1, the upper right is fragment 5, and so on. Seven boundary sets can be found in

this partition, namely BS[0; 1], BS[0; 2],BS[1; 3], BS[2; 3], BS[2; 4], BS[3; 5], and

BS[4; 5], where BS[0; 1] = f8; 9g, BS[0; 2] = f10g, BS[1; 3] = f40; 41g, BS[2; 3] =
f21; 22g, BS[2; 4] = f23; 24g, BS[3; 5] = f51; 52g, and BS[4; 5] = f32; 33g.

Note that a boundary vertex could be in multiple fragments. If boundary vertex

is allowed to appear in di�erent boundary sets, the boundary sets can be restricted

to be boundary sets between two fragments. For example, if a boundary vertex

is in fragment 1, 2 and 3, it should be in the boundary sets [1; 2], [2; 3] and [1; 3].

(Actually, the result of my thesis is that all the boundary sets are boundary sets

between two fragments. The reasons to do this are 1) there are few boundary ver-

tices in more than two boundary sets. 2) �nding boundary vertices between two

fragments is much easier than doing so among three or more fragments.)

De�nition 8. (Super Graph)



CHAPTER 1. INTRODUCTION 10

A super graph S = (Vs; Es;Ws) of a graph partition F1; F2; : : : Fn has the

following properties: Vs = fvbjvb is boundary vertex in Fi; i 2 [1; n]g, Es =

f(vi; vj)j9Fk; vi; vj 2 Vkg Ws = fws(eij)jws(eij) = min(fSDk(eij)jk 2 [1; n]g)g
where SDk is the shortest distance function from vi to vj in fragment Fk, min is

the minimum function, if vi and vj are not connected in Fk, SDk(eij) =1.

The super graph of a partition can be thought of as a graph consisting of one

complete sub-graph for each fragment. The vertices of the super graph are the

boundary vertices in the fragment. The edge weights of the sub-graph are the

minimumof shortest distances in the all sub-graphs containing the two end vertices,

or in�nity if no paths connect them. An example of the super graph of Figure 1.1

is illustrated in Figure 1.2.

In this example, only boundary vertices are included in the super graph, and for

each pair of boundary vertices in the same fragment, there is an edge connecting

them. The weights of the edges are the shortest distance inside the fragment from

one boundary vertex to the other boundary vertex.

De�nition 9. (�-value, �-value)

The �-value of a set of vertices S to a set of verticesD in graph G is the minimum

value of the shortest distances from any vertex v 2 S to any vertex u 2 D. It can
be written as �(S;D) = min(fSD(v; u)jv 2 S; u 2 Dg) . Similarly, the �-value of

a set of vertices S to D can be written as �(S;D) = max(fSD(v; u)jv 2 S; u 2 Dg).
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Figure 1.2: Super Graph

De�nition 10. (Sketch Graph, �-graph, �-graph)

A sketch graph S = (Vs; Es;Ws) of a graph partition fF1; F2; : : : ; Fng has

the following properties: Vs = fvsjvs corresponds to some boundary set in Fig,
that is 9 a bijection f , where BSi is the set of boundary sets in the ith frag-

ment Fi. Es = f(vi; vj)j9Fk; f(vi) � Vkg, where f is the bijection de�ned in Vs

Ws = fws : Es ! (<�0;<�0)g, where ws is an one-to-one function from the set
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of edges to a set of 2-tuple (�; �), where � and � are the �-value and �-value for

the two corresponding boundary sets in the super graph respectively. �-graph is a

sketch graph, but the weights of edges are the �-value of the two boundary sets in

super graph, instead of the 2-tuple (�; �). Similarly, �-graph is a sketch graph with

the �-values as edge weights. The shortest distance from s to d in the �-graph and

�-value are denoted as SD�(s; d) and SD�(s; d) respectively.

The sketch graph carries a high level outline of the partition, describing the

connectivity of boundary sets and what might be the possible shortest distance

from one boundary set to another. This information can be used to prune a super

graph to get a super graph. The sketch graph of example of Figure 1.1 is shown in

Figure 1.3.

In this sketch graph, there are only seven vertices corresponding to seven bound-

ary sets in the partition. Each pair of boundary sets in the same fragment has an

edge connecting them. The �-value and �-value are also labeled on the sketch graph.

De�nition 11. (Hierarchical Graph)

A hierarchical graph of a graph G is de�ned by H = fP0; P1; : : : ; Png, where P0

is the partition of the ground-level graph, P1 is the partition for the super graph

based on P0, Pi is the partition for the super graph based on Pi�1, and so on.

In the hierarchical graph decomposition principle, the ground level graph is

partitioned into small fragments �rst. Then the super graph is built on top of the
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Figure 1.3: Sketch Graph

partition. The super graph is further partitioned to generate even higher level super

graphs until the top-level super graph is small enough, i.e. suitable for conquering.

There are problems associated with this approach, which will be seen when the

SPC partitioning algorithm and HEPV approaches are analyzed.



Chapter 2

Survey on Previous Works

2.1 Fundamental Works

In this section, the previous fundamental works in the shortest path algorithms are

introduced. Four typical algorithms or approaches are selected:

� Dijkstra's shortest path algorithm.

� A� search heuristics.

� Lipton and Tarjan's planar graph separator algorithm.

� Frederickson's all-pair shortest path algorithm on planar graphs based on

hammock decomposition.

These algorithms are of particular interest because they have solved basic prob-

lems (small sized graphs) very well and gave inspiration for the new algorithms on

14
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extended problems. They still have limitations so we should not rely on them to-

tally. For example, both Lipton and Tarjan's planar graph separator algorithm and

Frederickson's hammock decomposition take planar graphs as partitioning input.

However, sometimes a partitioning algorithm is needed for very large non-planar

graphs, so a new graph partitioning algorithm should be developed, although it may

not be as optimal as the two algorithms mentioned above. The three fundamental

algorithms are introduced �rst. Then in Section 2.1.2, solutions for shortest paths

on very large graphs are discussed by means of divide-and-conquer approach.

2.1.1 Shortest Path Algorithm

The shortest path problem has been studied for a long time and the most frequently

used a general-purpose algorithm for non-negative graphs is the Dijkstra's shortest

path algorithm [1]. Almost all of the algorithms we will discuss later, which are

trying to tackle the shortest path problems on special property graphs, are based

on the Dijkstra's algorithm, here is a quick look at it �rst. Dijkstra's algorithm is

a best-�rst search greedy algorithm. It performs a search of the graph from the

source node s in iterations. Vertices in the graph can be divided into two classes:

� The shortest distance from s is already known. These vertices are called close

vertices.

� The shortest distance from s is not known, but they may have a distance

(candidate shortest distance) associated with them. These vertices are called

open vertices.
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In each iteration, one open vertex with the minimumdistance is selected and closed.

Then shortest distances are updated for all open neighbors of the newly closed ver-

tex. This process is called relaxation. The distances can be maintained in a priority

queue, which is usually implemented by heaps. Given the O(log n) complexity of

updating heaps, and O(n) updates in handling a planar graph, the time complexity

of constructing a shortest path tree is O(n log n) [1]. This time complexity is for a

single source problem. If we want all-pairs shortest paths, Dijkstra's algorithm need

to be executed n times, so the time complexity is O(n2 log n) for planar graphs.

2.1.2 A� Search Heuristics

A� search, like Dijkstra's algorithm, is a best-�rst search technique [2], but it uses a

heuristic function h(v) to calculate the estimate cost from a vertex v on the path to

the destination vertex d. This heuristic function, combined with another function

g(v) { the cost from the source vertex s to v, determines the evaluation function

f(v) , i.e. f(v) = f 0(g(v); h(v)) . Usually f 0 simply performs a sum of g(v) and

h(v), so f(v) = g(v) + h(v). The value of function represents the estimated cost

of the solution through vertex v. The algorithm using A� search is described as

follows: At the beginning, all vertices are open except the source vertex s. Starting

from s, for each of the open neighbor v of s, calculate the function g(v) and h(v), as

well as the evaluation function f(v) based on g(v) and h(v). Then choose the vertex

with the minimum value of f -value, say u, to be the next vertex on the shortest

path tree and mark it as closed. Restart the same procedure as above from u until

the destination vertex is closed.
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Usually g(v) is simply the distance from s to v, so if we do not take h(v)

as a parameter of evaluation function f(v), A� search is actually the same as

Dijkstra's shortest path algorithm. It is this heuristic function h(v) that let A�
search stand out from other algorithms. This heuristic function can be embedded

in the algorithm to represent some constraints enforced to the queries. For some

constraints, such as \the solution must not pass through a certain street" or \the

solution must not go to eastward", it can be speci�ed by heuristic functions easily.

Some may not. For example, if the query demands that the path must go through

an edge, you cannot simply label the edge cost to be a very small value or even �1,

since it cannot guarantee that the search will reach one of the vertices on the edge

in the �rst hand. There is no simple way to express such constraints. However, for

the constraints that can be expressed by heuristic function, A� search is a natural

way. For example, take into consideration the constraint, \the solution must not

pass through a certain street". Although you can also set the edge cost to be 1
in Dijkstra's algorithm, it cannot be maintained as easily as using A� search, since
the edge costs must be set before the algorithm starts o� for Dijkstra's algorithm,

whereas the calculation of h(v) is online for A� search. So, in the cases when the

query has constraints like \I do not want to pass streets with too many stop signs",

for Dijkstra's algorithm, the number of stop signs in each of the street in the map

must be counted, and an appropriate weight on the edge cost must be assigned.

But for A� search, only the stop signs on the streets which are incident to the

vertices examined need to be counted. Therefore, other streets do not have to be

calculated. This may save much time when the source and destination vertices are
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very close and the map is very large. Another advantage of A� search is that it

does not only allow embedding of constraints on queries, but also saves time on

the searching phase especially when the searching space is very large. For example,

if the coordinates of the source and destination vertices are known, the Euclidean

distances between any vertex to the destination vertex should be known. The A�
heuristics can take this distance as a guide to decide which vertex looks like the

next closed vertex.

The problem of A� search is that the heuristic function is not easy to generate

dynamically. It is prefered that the heuristic function be generated online because

in online applications such as route-planning systems, queries and constraints are

given by the end users. For each set of constraints, there should be a di�erent

heuristic function with which it is associated. Determining the heuristic function

dynamically based on the user's queries is not trivial. For some most frequently

speci�ed constraints, such as put some \barriers" on the map, a pre-determined

heuristic function can be embedded in the algorithm.

2.1.3 Lipton and Tarjan's Planar Graph Separator Algo-

rithm

In [34], Lipton and Tarjan gave a separator algorithm for planar graphs, which

guarantees the upper bound of the ratio of boundary vertices to interior vertices.

This algorithm is based on a theorem they gave in the same paper that any n-vertex

planar graph can be partitioned into three sets A, B and C, such that no edges joins

a vertex in A and a vertex in B, neither A nor B has more than 2n=3 vertices, and
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C contains no more than 2
p
2n vertices. In the shortest path problem, A and B

are the two subgraphs (fragments) divided by the separator C (boundary vertices).

The algorithm based on this theorem can �nd such sub-graphs and separator in

O(n) time. The concept behind the algorithm is as follows.

In order to divide vertices in the graph into two distinct partitions without

vertices in one partition having edges joining vertices in the other partition, the

vertices must be partitioned in a way such that the vertices in one class only connect

to vertices in the same class or to a limited number of other classes. This property

can be achieved by breadth-�rst spanning tree. The breadth-�rst spanning tree

is obtained as follows: choose an arbitrary vertex as root and perform breadth-

�rst search traversing the whole graph. The edges traversed the bread-�rst search

construct a tree structure. The vertices in the tree can be partitioned into levels

according to the distance from the root. The root vertex is the only vertex in level

0, the children of root is in level 1, and the children of vertices in level 1 is in level

2 and so on, until the bottom of the tree is reached. The height of the tree is called

em radius of the spanning tree. For example, the graph in Figure 2.1(a) can be

represented by the breadth-�rst spanning tree in Figure 2.1(b).

By properties of breadth-�rst search, it is known that all edges in the graph

are only within level l or from l to l + 1. That is there is no edge in the graph

connecting a vertex in level l � 1 and a vertex in level l + 1, otherwise the vertex

in the level l + 1 should be in level l, rather than l + 1. Lipton and Tarjan ([34])

then gave an important proof for the statement: there exists a separator C of size

no more than 2r + 1 (where r is the radius of the BFS spanning tree) such that C
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Figure 2.1: (a) An undirected graph. (b) The corresponding breadth-�rst spanning
tree rooted at v0. v0 is in level 0; v1, v3, v4 and v5 are in level 1; v2, v7, v9, v6 and
v8 are in level 2. The radius of spanning tree is 2.

separates the vertices in the planar graph into two sets A and B, neither of which

has cost more than 2=3. Then the separator theorem can be easily extended from

this statement and other lemmas. For detailed proofs, please see [34].

This separator theorem along with the O(n) algorithm thereof given by the

authors guarantee the upper bound of a planar vertex separator, and getting it

eÆciently. However, the separator theorem is only available for planar graphs. For

applications that cannot guarantee planarity, it cannot be used directly. However,

it is inspiring that the underlying BFS algorithm may be the right way to separate

common graphs.
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2.1.4 Frederickson's Hammock Decomposition

Frederickson's hammock decomposition [26, 31, 32, 33] is not used in any of the

algorithm discussed later, but due to the beautiful properties of hammocks and its

close relation to those algorithms discussed, a brief introduction here can be used

as a very good example for comparisons with other algorithms.

A hammock decomposition algorithm decomposes a planar graph into outerpla-

nar subgraphs, with the properties that at most, four vertices in each hammock

are boundary vertices, that are shared with the rest of the graph. The two nice

properties of hammocks, outerplanarity and bounded number of boundary vertices,

yield very promising results on the shortest path problem. Firstly, since the number

of boundary vertices are bounded, the possible number of routes from an interior

vertex in one subgraph to a vertex in another subgraph is bounded, i.e. there are

only 4 � 4 = 16 possible routes. Therefore, it is very fast to determine the short-

est one in the 16 routes. Secondly, since the hammocks are outerplanar graphs,

vertices can be labeled in a clockwise order around some faces which generates the

hammocks. Because the neighbors have the similar route from the source vertex,

vertices can be grouped into equivalence classes in terms of the shortest path. That

is, given a source vertex in the outerplanar graph, and supposing its out degree is

n, then the other vertices in the outerplanar graph can be partitioned into at most

n equivalence classes. Vertices are in the same equivalence class if, and only if,

the shortest paths from the source vertex to these vertices start o� from the same

out edge. For edges with no negative costs, it can be proved that each equivalence

class is a set of intervals according to the numbering of the vertices around their
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faces. The routing table can take advantage of this property and does not need

to encode every particular vertex in the routing table; instead it only needs to en-

code the intervals, which will reduce the amount of storage for the routing table

signi�cantly.

The limitation of Frederickson's algorithm is that the input graph must be

planar, which may not be satis�ed in many applications. Even if the input graph

is planar, the decomposed subgraphs may very small so the number of boundary

vertices is very large. For example, if the planar graph is a grid graph, the hammock

decomposition results O(n) subgraphs, each of which is a grid in the original graph.

This property reduces its usability in application such as road planning systems,

since many road systems have grid-like feature.

2.2 Previous Disk-based Shortest Path Algorithms

Normal internal-memory algorithms can perform terribly when the problem in-

stances get large [40], because RAM-complexity and I/O-complexity play di�erent

roles in di�erent problem instances. Disk-based (a.k.a. external-memory) algo-

rithms and data structures are the way around this limitation. An example of this

extension can be found in a B-tree, which is an disk-based extension of the internal

memory data structure k-nary tree. In the rest of this chapter, the two disk-based

shortest path algorithms based on divide-and-conquer approach will be surveyed.

The �rst is presented in [10, 11, 12, 13, 14] proposed by Jing, Huang and Runden-

stene, and was later studied by Shekhar, Fetterer, Goyal, Kohli, and Coyle. They

use a Spatial Partition Clustering (SPC) algorithm for partitioning the digital map
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and construct routing tables for auxiliary external data structure for shortest path

queries. The second algorithms is presented in [41, 42] proposed by Hutchinson,

Maheshwari, and Zeh which use an external-memory extension of a planar graph

separator algorithm (see [34]) to partition the digital map and external-memory

rooted trees for shortest path queries. Although they use di�erent particular algo-

rithms for partitioning and query answering problems, they share the same design

idea: divide-and-conquer.

2.2.1 General Ideas

By divide-and-conquer, the whole algorithm can be divided into two phases: pre-

processing phase and query processing phase. In the pre-processing phase, the

digital map is divided into suÆciently small fragments which are then stored in

disk-based data structures. Di�erent algorithms do di�erent pre-computation and

thus store di�erent information in disk-based data structures. No matter what the

information stored, the goal of materialization is the same: reduce the computation

in the querying phase by reading from the disk-based data structure. Thus, how to

organize the data in the disk-based data structure to access the information more

eÆciently is an important issue. Both algorithms organize the pre-computed infor-

mation into a hierarchical tree structure so that traveling down from root to a leaf

node need only small number of I/O. In the query processing, both algorithms need

to read data from the tree structure and do exhaustive comparisons on candidate

shortest paths. The path with the minimum value is recorded and returned as the

shortest distance. The construction of the shortest path depends on the particular
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algorithm. In the next two sections, the two algorithms are introduced in more

detail.

2.2.2 Routing Table Method

The routing table method is proposed in [10, 12, 13] for storing the shortest path

information in a routing table as those used in the computer network routers. The

method �rst partitions the digital map into small fragments, and then boundary

vertices are pushed to the second level to form a super graph. All-pair shortest

paths among the boundary vertices in the same fragment are also performed in

each fragment, and the corresponding edges are added to the super graph. If the

super graph is still too large, it is divided further into fragments and a third level

super graph is generated. This process goes on until the top-level super graph is

small enough. This whole set of super graphs and the ground level graph is called

a hierarchical graph. The all-pair shortest paths pre-computations at each level are

stored in routing tables.

After the pre-processing phase, the system is ready to accept the shortest path

queries. Given the source s and destination d, the systems should �rst look for the

fragments containing the two vertices, say S and D respectively. S and D are either

(a) in the same fragment, or (b) in di�erent fragments. In the case (a), the shortest

path could be totally in the fragment, or part of it could be in other fragments,

thus the path must pass through some boundary vertices of this fragment. In the

case (b), the shortest path connecting two di�erent fragments must pass through

some boundary vertices in each fragment. Therefore, a common operation of both
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cases is as follows:

1. Compute the shortest paths from s to all boundary vertices in the S (s  

BV (S)) and those from all boundary vertices in D to d (BV (D)  d).

2. Compute all possible combinations of s  BV (S)  BV (D)  d, and �nd

the minimum one.

In the case (b), the minimum one is the �nal answer. However, in the case (a), a

shortest path search must be done inside the fragment S and compare the distance

with the minimum value found in step 2. The lessen is the �nal answer.

Pre-processing Phase: Spatial Partitioning Cluster (SPC)

In [10], Huang, Jing and Rundensteiner gave a heuristic algorithm on how to par-

tition the digital map considering the following characteristics of a GIS road map:

1. GIS maps are relatively sparse, and fan out usually between 2 and 5.

2. GIS maps are strongly connected, with each node typically reachable from

near-by nodes in a few hops.

3. GIS maps consist of mostly short links comparing to their map size.

The Spatial Partition Clustering (SPC) takes these characteristics into considera-

tion, and the goal is to achieve I/O optimization in path query processing. The

SPC algorithm uses a plane sweep technique based on the order of coordinates and

is trying to get the fragment as square as possible. The algorithms works like this:

1. Sort all links by the x-coordinates of their origin nodes.
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2. The sweeping process stops periodically to sort the links swept since the last

stoppage to sort the links by y-coordinates of their origin nodes.

3. After each y-sort, the y-sorted links can be grouped into pages and written

to a new linked table that is SPC clustered.

The tricky part of the algorithm is to determine when to stop sweeping and start

y-sorting. Their heuristic is: the road information is stored in a link table at �rst.

The output would be a clustered link table in which adjacent links in a square-like

region are grouped into blocks. It maintains a temporary block table to store the

sorted links so far, and keeps track of three parameters: dxi indicates the di�erence

between the minimum and maximum x-coordinate values of the original nodes in

the block table, dyi indicates the di�erence between the minimum and maximum

y-coordinate values of the original nodes in the block table, p indicates how many

pages of link table has been written to the block table. The algorithm �rst reads

one page of x-coordinate sorted link table to the block table and increases p by

1. When there is more than one page in the block table, computer dp and dp�1 ,

where dp = j(dyp=p) � dxpj; dp�1 = j(dyp�1=(p � 1)) � dxp�1j. If dp > dp�1, this

is a stoppage and the links in block table should be sorted by their y-coordinates

and append them to the �nal clustered link table. Since there are exactly p pages

in the block table, the clustered link table is also extended by p pages. All of the

p pages are in a certain range of x-coordinates, and the y-coordinates of the links

in the �rst page are less or equal to the y-coordinates of those in the second page,

and so on. Therefore, each page resembles a square region. The idea behind the

heuristic is that when the �rst few pages are written to the block table, p and dxp
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are small, so dp = j(dyp=p) � dxpj is likely to be large. When more pages are read,

p and dxp will get larger, thus dp should get smaller, chances of dp being greater

than dp�1 will get larger, where the stoppage will happen.

The heuristic works �ne when the 
at map resembles a square or cycle, since in

such situations, the dyp does not change greatly, so the value of dp changes as we

expect. When the 
at map is in some particular shapes, such as a strip whose dx

is much greater or less than dy, the partitions based on SPC are not satisfactory.

Query Answering Phase: Exhaustive Comparative Shortest Path Algo-

rithm

After getting the partitions of the ground level graph, we can �nd the boundary

vertices for each fragment and compute the all-pair shortest paths among boundary

vertices, then the hierarchical graph can be generated bottom-up. A super graph

(non ground level graph) in the hierarchical graph consists of only the boundary

vertices of the next lower level graph (super or ground level graph), and there is an

edge in the super graph if the two vertices are in the same fragment. The weight

of the edge is the shortest distance from one vertex to the other. When the source

and destination vertices are provided, the algorithm enumerates all possible com-

binations of boundary vertices in the source fragment and those in the destination

fragment as shown in Figure 2.2.

The shortest path from s to d must be a combination of a shortest path from s

to a binary vertex u in S, the shortest path from u to a boundary vertex v in D, and

shortest path from v to d, i.e., SD(s; d) = minfSD(s; u) + SD(u; v) + SD(v; d)g
(�), where u and v are any boundary vertices in the fragment S and D respectively.
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Source fragment S
Destination fragment D

s
d

Figure 2.2: Exhaustive Comparing Algorithm

In Figure 2.2, the dashed lines in S and D represent the shortest paths from s

to boundary vertices in S or from boundary vertices in D to d. The solid lines

represent the shortest paths from boundary vertices in S to the boundary vertices in

D. The shortest paths within S and D are easy to acquire, just applying Dijkstra's

algorithm on the fragments. To �nd the shortest distance between any u and v, one

must go up one level and see if they are in the same fragment in the higher level.

If so, that means the shortest distance is already materialized and it only need to

be read from the routing table on disk. If not, going up one level further to see if

they are in the same fragment or not is necessary, until the top level is reached,

where every pair of boundary vertices has it shortest distance materialized. Assume

that there are k levels in the hierarchy; the worst case is that for every query of

SD(u; v) in (�) we have to go to the top level (level k). Assume that the number

of boundary vertices in each fragment is the same, say b. In the ground level (level

1), we need to submit b2 shortest distance queries to level 2. For every such query,
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level 2 also needs to submit b2 shortest distance queries to level 3, and so on, until

the top level is reached. Therefore, there are totally (b2)k�1 routing table lookups

on the top level. Usually it can be assumed that b = O(
p
(n)), so the complexity of

exhaustive comparing algorithm on multilevel hierarchical architecture is O(nk�1 .

When k is larger than 3, the asymptotic complexity of the exhaustive comparing

algorithm is worse than Dijkstra's algorithm, except that it can cope with larger

graphs. Therefore, if a disk-based Dijkstra's algorithm is possible, it should run

faster.

2.2.3 Rooted Tree Method

The rooted tree method [41, 42] is also a disk-based shortest path algorithm based

on divide-and-conquer. Its partitioning algorithm is an external-memory extension

of the Lipton and Tarjan's planar separator algorithm. Therefore, it can only

partition planar graphs. Also the disk-based data structure selected for storing

pre-computation information requires a lot of space, thus may not suitable for very

large digital maps. To see why is this case, the examination of what is stored in

the rooted tree and how the shortest path algorithm works is necessary.

Pre-processing Phase: Constructing Rooted Tree

The rooted tree data structure is a d-nary disk-based tree structure. Each node of

the tree is associated with a connected graph and its planar graph separator. The

children of a node are the connected components separated by its separator, i.e. let

G be a parent, S be the separator of G, G1; G2; : : : ; Gk be the resulting partitions
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of G, if Gi has more than one vertex, they should be have their own separtors Si,

otherwise the vertex itself is the separator. Then the parent of the the
S
Gi = GnS.

This is illustrated in the Figure 2.3

parent (G,S)

child (G1,S1) child (G2,S2) child (G3,S3) child (G4,S4)

Figure 2.3: Rooted Tree (dotted lines are separators)

The digital graph is �rst partitioned into two connected components A and B

using planar separator C. If A or B is not small enough, it is partitioned recur-

sively. In a certain stage, the partitioning algorithm pauses and all the connected

components generated from the last pause form one level of the rooted tree. For

example, in Figure 2.3, the parent graph G was �rst divided into two connected

components, then the two components are divided further into four connected com-

ponents. These four components (G1, G2, G3 and G4) together with their separators

(S1, S2, S3, and S4) form the next level of (G;S) in the rooted tree. If Gi is not

small enough, they are divided further as shown by the �ner dotted lines. Note

that the children of a graph G do not include vertices of the separator. Therefore,
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this guarantees that every vertex appears in exactly one node in the rooted tree if

the tree satis�es the two conditions:

1. At each level, only separators are stored.

2. Each leaf node contains only one vertex.

Given a vertex v, we can �nd exactly one node (Gk; Sk) in the rooted tree such

that v is in Sk (i.e. v is a boundary vertex of Gk), and v is an interior vertex

of its ancestors Gi; (i < k). Given two vertices u and v, we can �nd their lowest

level common ancestor (Gl; Sl). De�ne B(u; v) to be the union of the all boundary

vertices in their common ancestor, i.e. B(u; v) =
S
Si; (i � l). It can be proved

that the shortest path between u and v must pass through at least one vertex in

B(u; v). Intuitively, this is correct since if at least one of u or v is in Sl (one vertex

is another's ancestor), the claim is obviously true. If otherwise u and v are not in

Sl, then u and v must be the interior vertices of Gl. The vertices of B(u; v)� Sl

are the boundary vertices of connected components that encompass the connected

component Gl. Therefore, the shortest path must pass through either some vertex

in Sl or some vertex in B(u; v)� Sl.

Based on this observation, the shortest distance from s to d can be written

as : dist(s; d) = min(dist(s; b) + dist(b; d)), where b is the boundary vertices in

the ancestor of x, dist is the local shortest distance between two vertices. The

shortest distance query then can be implemented by an exhaustive comparative

algorithm: for each boundary vertex b in the B(s; d), �nd the minimum value

of dist(s; b) + dist(b; d). If the shortest distance from any interior vertex to any

boundary vertex is already known for each node in the rooted tree, the shortest
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distance query problem is boiled down to how to eÆciently retrieve the shortest

distance from one interior vertex to a boundary vertex. The thesis [42] discussed

the external memory data structure for storing the rooted tree for eÆcient I/O.

The problem in the above method is that it requires a lot of disk space for

storing the shortest distance for the rooted tree and a lot of pre-computation for

the shortest distances. Assume that the ground level digital map has n vertices.

Therefore, there are
p
n boundary vertices on the root if using the Lipton and

Tarjan's planar graph separator. For each interior vertex, there should be a shortest

distance to every boundary vertex stored in the rooted tree data structure. That

is there are �(n3=2) shortest distance computations for the pre-computation and

�(n3=2) shortest distances stored in the tree. This will be too much computation

and the storage requirement will be too great. For example, in California, there are

about 1 million vertices. Then there will be 1 billion shortest path computations

and 1G shortest distances just for the root of the tree.

2.3 Our New Disk-based Shortest Path Algorithm

In order to get around the problems and limitations of the previous methods, it

is proposed that some practical improvements and new algorithms targeting on

very large digital maps be developed. The general idea is the same as described

in section 2.2.1, but we use di�erent partitioning algorithms, hierarchical scheme,

pre-computation materialization scheme, and shortest path querying algorithms.

Our contributions lie in the following aspects:

� A partitioning algorithm based on BFS and Hilbert R-Tree is issued. The
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advantages of this algorithm are that it is scalable and can be easily extended

to certain semantics.

� A 2-level hierarchical graph instead of multi-level (� 3) hierarchies are used.

The more the levels in the hierarchy, the more work needed for answering

shortest path queries. 2-level hierarchical may have a upper bound for the

size of the digital map, but it can handle a reasonable large digital map (for

example, in the scale of 108 vertices and edges) on contemporary personal

computers .

� I/O is optimized by clustering the results of pre-computation, and storing

them as objects in the spatial database.

� The results of pre-computation are stored in a disk-based data structure { a

virtual hash table, rather than routing tables or rooted tree.

� An auxiliary data structure \sketch graph" is used to capture the outline of

the super graph and to help to prune the super graph when answering the

shortest path queries.

� A di�erent disk-based shortest path algorithm similar to Dijkstra's algorithm

is used, rather than exhaustive comparative algorithm used by the routing

table approach and rooted tree method.



Chapter 3

Design of the Shortest Path

Query Engine

3.1 Problems Trying to Solve

Based on the discussion in last chapter, we have a clear idea on how the general

framework works. However, there are still many practical diÆculties when designing

the concrete algorithms. In particular, the following questions must be answered:

1. How to partition the digital map if the whole graph cannot be seen? It is

required that the partitioning algorithmmust work correctly even if it only has

a partial image of the whole digital map at any time. This will be answered

in Section 3.2.

2. What information should be recorded in the pre-computation? How fast can

it be done? And what data structure should be used in order to retrieve it

34
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eÆciently in the query-answering phase? Keeping the size of storage as small

as possible to save the storage space without the loss of any information is a

goal. These questions are answered in Section 3.3 and 3.4.

3. Is there any way to prune the searching space without the loss of optimality

of the shortest path? What additional information should be kept in the

pre-computation phase? The pruning process is particularly useful when the

source and destination vertices are close to each other while the searching

space is huge. This question is answered in Section 3.4 and 3.5.

4. What the e�ect of di�erent data structures on the disk-based shortest path

algorithm? What are the criteria of choosing a particular data structure?

This question will be discussed in Section 3.6 and later in Chapter 5 on the

performance analysis of di�erent data structures.

3.2 Graph Partitioning Algorithm

The input of our graph partitioning algorithm is a general graph, and may or may

not be planar, so Lipton and Tarjan's planar separator is not a good candidate.

The output is a set of fragments (or rimless fragments) as de�ned in Section 1.2.

Throughout the discussion of this partitioning algorithm, it is assumed that only

part of the graph can be loaded into main memory at any time, while the rest of

the graph is available on disk.
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3.2.1 Algorithm Description

No matter what the graph is (planar or non-planar) or where it is stored, the

graph must somehow be traversed in order to partition it. A good candidate of

a graph traversing algorithm is the breadth-�rst search (BFS), which is also used

in the Lipton and Tarjan's planar separator algorithm. The di�erence from their

approach is that the bread-�rst spanning tree is not constructed for the whole graph

in our algorithm. Rather the algorithm frequently pause traversing when a certain

condition is satis�ed, then the traversed vertices and edges are extracted to form a

fragment and saved to the disk. Then the fragment is removed from main memory

to save space for other untraversed part of the graph to load in. This heuristic

algorithm cannot guarantee the optimality of the vertex separator (i.e. no more

than 2
p
2n boundary vertices) as done by the Lipton and Tarjan's algorithm, but

the payo� is its simplicity to implement and its capability to partition non-planar

graphs. Another nice property of this algorithm is that it can be easily extended to

accommodate particular semantics. For example, the digital map can be partitioned

such that some special type of street blocks, say interstate highway, can only be on

the boundary of fragments. In this case, the pause condition is that all the next

boundary vertices ready for BFS exploring are vertices corresponding to interstate

highway intersections. A more realistic case is to combine many conditions together

to form a pause function. Whenever the function returns true, the exploring process

pauses and saves the result.

To get around the problem raised by question 1 in Section 3.1, it is necessary to

have the capability to read in any region of the digital map. This can be done by
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indexing the geometric objects in the digital map by means of a Hilbert R-tree. By

Hilbert R-tree, geometric objects (line features in our algorithm) are clustered in

Minimum Bounded Retangles (MBR), which is represented by the coordinates of

the right-upper corner and the left-lower corner of the rectangle). Given any MBR,

we can retrieve all geometric objects that intersect the rectangle. Then a region

of the digital map can be constructed by assembling all the returned geometric

objects into a graph. Regions can be merged together to form a \window" (or

view) of the digital map, in which we can do BFS exploring without touching any

vertices or edges outside the window. For example, the grids in Figure 3.1 represent

the regions in a digital map. The shaded regions constitute a window, of which

grid 0 is the center.

876

04 5

321

Figure 3.1: Grids in a Digital Map

If the following two requirements can be satis�ed:

1. The window can grow to cover all the regions of the digital map eventually.

2. In any time, the BFS process only explores vertices and edges within this

window.
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Then it can be easily proved that our BFS searching based on window moving

explores all the vertices and edges in the digital map, since at each step of BFS

in the window, the visible adjacent vertices and incident edges of a vertex are the

same as those in a BFS on the whole graph in main memory.

The algorithm of preparing and maintaining the window for BFS exploring is

called \Prepare", which is shown in Algorithm 1. The goal of the algorithm is

to guarantee all the neighbor vertices and incident edges of a vertex v is inside

the window. Therefore, when we explore on it, BFS would not loss any adjacency

information of that vertex.

In this algorithm, the graph G represents the window. After preparing, G is

guaranteed to contain all the adjacent vertices and incident edges of v. However

there is a special case. If there is an edge outside the window so long that the

other end vertex, say u, is not in any of the eight neighbor regions of the center

region, the region containing u will not be merged into G by the Prepare algorithm.

Notice that the edge (v; u) must intersect one of the eight neighbor regions. The

edge must have been merged into G after preparing, so the post-condition still hold.

Later, when u is the next vertex to be prepared, the region containing it and all

the neighbor regions thereof will be merged into G (line 8-18 of the algorithm).

The size of G is non-decreasing in terms of the preparing process, but after a

fragment (which should be a subgraph of G) is stored on disk, it can be removed

from G. Therefore, the window would not grow as large as the digital map. The

partitioning algorithm is shown in Algorithm 2.

This algorithm is based on the Hilbert R-Tree and breadth-�rst search (BSF).
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Algorithm 1 PREPARE(G,v,C) fPrepare for BFSg
Input: the graph G which will be prepared for BFS, the vertex v which is the next

vertex to explore by BFS, the current central region C.

Output: well prepared G for v
Require: the digital map is already divided into grid regions

Ensure: all v's the incident arcs and adjacent vertices are merged into G

1: if v is in MBR(C) then fif any of the 8 neighbor regions of C has not been
merged into G, merge itg

2: for all neighbor C 0 of C do

3: if C 0 has not been merged into G then

4: G( G + C 00 fmerge C 00 into Gg
5: end if

6: end for

7: else fv is not in the region MBR(C)g
8: C ( region(v) f�nd the region in which v isg
9: G( G+ C fmerge C 00 into Gg

10: for all neighbor C 0 of C do fif any of the 8 neighbor regions of C 0 has not

been merged into G, merge itg
11: if v is in MBR(C 0) then
12: for all neighbor C 00 of C 0 do

13: if C 00 has not been merged in G then

14: G( G+ C 00 fmerge C 00 into Gg
15: end if

16: end for

17: end if

18: end for

19: end if

20: set the color of newly added vertices in G to be WHITE
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Algorithm 2 PARTITION(Map,min size,max size) fPartitioning the digital

mapg
Input: Map is a digital map indexed by Hilbert R-tree, min size and max size

are the prefered minimum and maximum size of fragments respectively.

Output: a fragment database F
Require: 1 < min size � max size < 2 �min size.

1: Divide Map into grid regions.

2: Initialize C, v, and G frandomly pickup a region C, v in C, G ;g
3: PREPARE(G; v;C) fprepare G for BFS from vg
4: Q V (G) finitialize queue Q to contain all vertices in Gg
5: while Q 6= ; do
6: if f .size � min size then ftime to pauseg
7: F = F [ ffg fadd fragment f to databaseg
8: G G � f fremove f from \window" Gg
9: Q RandomlyPickFrom(Q) fclear all but one vertices in Qg

10: else

11: u Q.dequeue()
12: for all v 2 Adjacent(u) do

13: f = f + v + (u; v) fadd vertex v and edge (u; v) to fragment fg
14: if v.COLOR = WHITE then

15: v.COLOR  GRAY

16: end if

17: end for

18: u.COLOR = BLACK fu can be safely removed from main memory nowg
19: end if

20: end while

21: if 9v such that v.COLOR = GRAY then

22: Q.enqueue(v)
23: goto 5

24: end if

25: if 9v such that v.COLOR = WHITE then

26: v.COLOR = GRAY
27: Q.enqueue(v)

28: goto 5
29: end if

30: Merge tiny fragments into larger ones if possible

31: for all f1 2 F do

32: for all f2 2 F ^ f2 6= f1 do

33: Find the boundary set between f1 and f2.

34: end for

35: end for
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It takes three parameters:

� A geometric database (digital map) indexed by Hilbert R-Tree.

� The minimum number (lower bound) of vertices in the resulting fragments.

� The maximum number (upper bound) of vertices in the resulting fragments.

The output is a fragment database containing fragments covering the digital map.

The size (number of vertices) of the fragments should be less than maximum num-

ber.

In this algorithm, the digital map is �rst divided into small enough regions, each

of which should be smaller than the minimum size of fragment. Then we randomly

pick one region as the central region C and one vertex v in C as root to start BFS

exploring. Since an edge could cross the border of two adjacent regions when we

do a breadth-�rst-search, we have to \prepare" the graph for the central region

and the root vertex before exploring the graph. Each vertex in the graph has a

color property, which can be one of the three colors: WHITE, GRAY or BLACK.

Before exploring the graph, all vertices are initially \painted" to be WHITE. When

a vertex is seen the �rst time, its color is set to be GRAY, indicating that it is

already \discovered", but it is not known whether its adjacent vertices, if any, have

been discovered or not. BLACK vertices are those vertices that all of its neighbors

are discovered (i.e. all of its neighbors are of color GRAY or BLACK). By giving

each vertex a color property, we can divide the vertices into three sets, which

require di�erent treatments. All GRAY vertices of the current fragment are stored

in a queue Q, and every time we want to go on exploring the graph, we should
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get the next vertex from Q, i.e. a GRAY vertex. Thus the GRAY vertices are the

border vertices of the current fragment. (Note that a border vertex is not the same

as a boundary vertex. It is a candidate of a boundary vertex. A gray vertex may

not be a boundary vertex as explained later in this section). The BFS algorithm

enlarges the fragment by keeping picking a border vertex and adding its adjacent

vertices to Q until some condition comes true, in which case a fragment is generated

and can be written to the database. When all neighbors of a GRAY vertex have

been discovered, the GRAY vertex can be darkened to BLACK, indicating that it

is an interior vertex of the current fragment. Since an interior vertex has no edges

connecting to interior vertices in the other fragment, it is safe to remove interior

vertices and all incident edges from the graph without a�ecting other fragments.

This will save memory space for other vertices and edges loading into memory.

When Q is empty, we still need to check if GRAY vertices or WHITE vertices exist

as shown in line 21-28. GRAY vertices may exist when Q is empty because Q only

carries the GRAY vertices of the current fragment. It is possible that half of the

graph has been explored and the north bound of the map is reached, therefore Q

is empty. But the source half of the graph is still not explored, and the GRAY

vertices are right there waiting.

The reason for checking the existence of WHITE vertices when Q is empty

and there are no GRAY vertices, is that the digital map may not be connected.

If starting from one connected component, we cannot reach the other connected

components by BFS. Therefore, we have to check out the existence of WHITE

vertices for other connected components. Di�erent connected components belong
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to di�erent fragments even if they are smaller than the minimum size.

3.2.2 Proof of Correctness

By de�nition, a partition is a set of fragments where the union of the vertices in

fragments equals to the set of vertices in the original graph. First it is proven that

the sub-graphs generated by algorithm Graph-Partitioning are rimless fragments.

Then it is proven that every vertex in the original graph is in some fragment of the

partitioning, and every vertex in each fragment is in the original graph.

Now it is shown that when the pause condition (line 6 in Algorithm 2) is satis�ed,

the sub-graph written out is actually a rimless fragment. By de�nition in section

1.2, a rimless fragment is a special kind of sub-graph such that the vertices can

be divided into two sets: interior vertices and boundary vertices, where interior

vertices cannot be an empty set. Actually, when the pause condition is satis�ed, the

BLACK vertices in current fragment are a subset of interior vertices, and the GRAY

vertices are a super set of boundary vertices. Since min size > 1 by precondition,

the root vertex and all of its adjacent vertices are always added into the current

fragment if they are not already in the current fragment. The edges connecting the

root vertex to its adjacent vertices are added to the current fragment as well. This

means that the degree of the BLACK vertex in the current fragment is the same

as the degree of the corresponding vertex in the original graph. Thus the BLACK

vertices are a subset of interior vertices. By de�nition, a boundary vertex connects

interior vertices in di�erent fragments. When the stoppage condition is satis�ed,

the vertices in Q are all GRAY, and they are the only GRAY vertices in current
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fragment. A GRAY vertex in Q occurs in two cases:

1. All of its adjacent vertices are interior vertices in the current fragment.

2. An adjacent vertex exists, but not in the current fragment.

In the �rst case, the GRAY vertex is actually an interior vertex of the current

fragment since it is not adjacent to any interior vertices in other fragments. It will

be merged into the current fragment in line 30 of the algorithm. In the second case,

the GRAY vertex is a real boundary vertex since its degree in the current fragment

is less than its degree in the original graph. Thus the GRAY vertices are a superset

of boundary vertices. From the description above, it is known that for the current

fragment, at least one BLACK vertex and its adjacent vertices in current fragment

can be found, thus the interior vertices set is not empty; or the whole fragment

is merged into another fragment. Therefore, the sub-graph we get is actually a

fragment.

It is obvious that all the vertices in fragments are in the original graph by the

characteristics of BFS graph traversal algorithms. Now it will be shown that every

vertex in the original graph is in some fragment(s).

The original graph can be either connected or unconnected. For connected

graphs, if jV j � min size, the stoppage condition in line 6 will never be satis�ed

before Q gets empty. Therefore, the whole graph is a fragment and there is no

boundary vertex. If jV j > min size, the condition 6 will be eventually satis�ed be-

fore Q gets empty. In this case, the current fragment (all BLACK vertices, GRAY

vertices, and all edges connecting them) is saved to a spatial database. A GRAY

vertex is picked up as the new root for BFS either from Q or from a GRAY node
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repository as in line 21-29 in the algorithm. The code between line 21 to 29 is nec-

essary since BLACK vertices in the current fragment are removed from the original

graph. The remaining graph could be still connected or becoming unconnected. In

either case, there must be at least one vertex in each connected component that is

of the color GRAY, otherwise it is contradictory to the assumption that the orig-

inal graph is connected. The existence of the GRAY vertex repository guarantees

all connected components are explored. Thus no WHITE vertex exists when the

algorithm terminates, which means every vertex must be saved in some fragment.

If the original graph is not connected, then we start o� from one connected

component and the algorithm guarantees that all the vertices in this connected

component are stored in some fragment. Line 21-29 of the algorithm will check if

there are still WHITE vertices, which means there exists other connected compo-

nents that are not explored. If so, the algorithm will pick one WHITE vertex in

the connected component and do the same procedure until no WHITE vertices are

left. This guarantees that all vertices are BLACK or GRAY and should be saved in

some fragment in the database. Thus the resulting fragments are in fact a partition

of the original graph.

To sum up, it has been proven that all vertices in the original graph are in some

fragment(s) and all vertices in the fragments are in the original graph. Furthermore,

for each fragment, the BLACK vertices are interior vertices, the GRAY vertices are

boundary vertices



CHAPTER 3. DESIGN OF THE SHORTEST PATH QUERY ENGINE 46

3.2.3 Complexity Analysis

Since the algorithm does a lot of I/O operations, we have to take into account both

CPU usage and I/O costs. The I/O cost is measured by the number of geometric

objects that are read in or written out.

In terms of I/O cost, since caching is used in persistent data structures (see

Section 3.2.6), the actual I/O cost depends on the bu�er size and the query pattern,

which is not known at this time. In order to get around of this, only the worst case

is considered. That is, there is only one entry in the cache bu�er, and every time a

data entry is accessed, it must be from the disk. In the initialization step (Line 1

and 2 of the algorithm), the I/O costs are 2m, where m is the number of edges in

the digital map. From line 5 to 29, the whole digital map is traversed once and the

resulting fragments are stored in the spatial database. Therefore, the I/O costs are

also 2m. In line 30, if there are no assistant data structures, each pair of fragments

and the common vertices between them should be checked for. Since the upper

bound of fragment size is max size, and there are at most m=min size fragments

of size larger or equal to min size, the upper bound of I/O costs is (1+2+3+ : : :+

m=min size)�max size = (m+min size)�m�max size=min size. Since the actual

max size is usually less than 2min size, the upper bound is 2m(min size + m).

Since m is usually huge, this operation is very costly. In practice, if an MBR

for each fragment is kept in main memory, it reduces the I/O cost drastically. If

this is being done, for each fragment, we only read those fragments that have an

overloading MBR. Since the number of such fragments is usually 3 to 5, the actual

I/O cost for line 30 is around 5m. If using a caching technique, the I/O cost could
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be reduced even more depending on the number of bu�ers. Similarly for line 31

to 34, if no extra data structure is used, the I/O cost is in O(m2). However, if

the MBR's of fragments are checked before accessing the fragment, the I/O cost is

around 5m also. Therefore, the total I/O cost is around 2m+2m+5m+5m = 14m.

In terms of CPU time, step 1 to 4 take time in order O(m), since they are

all linear operations on edges of the digital map. In step 5 and 6, the whole

digital map is traversed by BFS algorithm, so the time complexity is O(n + m).

In step 7 and 8, if MBR is used, each vertex in one fragment is looked up in its

adjacent fragments. Therefore, the worst case is in O(n logmax size), assuming

that looking up vertex in a fragment takesO(logmax size) time, wheremax size is

the maximum fragment size. We will see in chapter 4, that the looking-up operation

in fact takes O(logmax size) time. Hence the upper bound of CPU running time

of the graph partitioning algorithm is O(n log(max size) +m).

3.2.4 Adaptability to Particular Semantics

A good thing about this algorithm is that you can easily extend it to accommodate

di�erent semantics by replacing the queue data structure Q with a priority queue,

and applying a pause checking function in line 6 of Algorithm 2 rather than just

comparing the size of current fragment with the minimum size. Vertices are given

priorities according to the preference of being interior vertices. Therefore, when

we get the next vertex from Q to explore, we will always get the vertex with the

lowest priority which prefer being a boundary vertex. A pause checking function

can help to determine where to stop according to the lowest priority in Q, as
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well as the size of the current fragment. This is a more 
exible algorithm than

the SPC partitioning algorithm in [10]. Also it does not bias the near square or

circle digital maps, as SPC does. It is scalable since the input data are stored

in geometric object �les and the output fragments are stored in persistent data

structures. The quality of the partitioning algorithm is also very good. Because of

the properties of BFS, the fragment naturally resembles a circle or square in itself,

and the number of boundary vertices can also be minimized by such heuristics

that assign the higher degree vertices higher priorities. In this way, the boundary

vertices of one fragment by and large connect to less (boundary) vertices of other

fragments. Thus the total number of boundary vertices and the number of edges

connecting those boundary vertices should be minimized. Experiments show that

the average number of adjacent fragments is around 3 to 5, with almost half of the

number are 4. This is comparative to the grid meshing method.

3.3 k-pair shortest paths algorithm

After the digital map is partitioning into fragments, each fragment has zero or more

boundary sets depending on whether it shares vertices with adjacent fragments or

not. If the number of boundary sets is non-zero, boundary vertices are push up

one level to form the next higher level of super graph. In addition, there should be

a super edge connecting each pair of boundary vertices. Therefore, it is necessary

to computer the shortest paths between every pair of boundary vertices in the

fragment.

The easiest way is to use the all-pair shortest paths algorithm directly to the
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fragment. When the all-pair shortest paths among all vertices in a fragment are

found, it is trivial to get the all-pair shortest paths among boundary vertices. There

are two main methods for computing all-pair shortest paths: iterative Dijkstra's al-

gorithm and dynamic programming. The iterative Dijkstra's algorithm is straight-

forward: simply apply Dijkstra's shortest path algorithm on each vertex. The

Johnson's algorithm introduced in [1] is based on this idea. This approach is e�ec-

tive when the graph is sparse. The complexity is O(mn+n2 log n) , where m is the

number of edges, n is the number of vertices.

Dynamic programming is aother approach, which construct the all-pair shortest

paths in a bottom-up way so that the latter shortest paths are built upon previous

shortest paths. The complexity of this algorithm is O(n3) . This algorithm is e�ec-

tive when the graph is dense, since then m = �(n2) and the Johnson's algorithm

is also in O(n3). In this case, the dynamic programming approach is more eÆcient

than Johnson's algorithm since there is a small constant due to its simplicity. The

dynamic programming approach can be even faster if the base shortest paths are

chosen carefully and the shortest paths are ordered in a Fibonacci heap. In [25], the

authors introduced a new algorithm based on dynamic programming that runs in

O(m�n+ n2 log n) , where m� is the number of edges in the all-pair shortest paths.

This algorithm is likely to be fast in practice because it is already known with high

probability in many distributions of the edge weights [25].

Although dynamic programming could be more eÆcient than iterative Dijkstra's

algorithm in the case of all-pair shortest paths, it usually is not the case in k-pair

shortest paths (k � n). In our application, the number of boundary vertices is



CHAPTER 3. DESIGN OF THE SHORTEST PATH QUERY ENGINE 50

in the order of
p
n, where n is the number of vertices in a fragment. Computing

all-pair shortest paths in a fragment will incur a lot of overhead. For example, if

the size of a fragment is around 10,000, the average number of boundary vertices

is about 300, then about ( 30

10;000
)2 � 0:1% of CPU time is actually spent on the

result we want. Therefore, our k-pair shortest path algorithm is based on iterative

Dijkstra's shortest path algorithm with some heuristics to speed up the process.

The heuristics we added to the iterative Dijkstra's algorithm is based on the

observation that the boundary vertices are not uniformly distributed in the frag-

ment, but clustered as boundary sets. Since many boundary vertices are adjacent

to each other, the shortest path from one boundary vertex to another boundary

vertex is very likely to pass through other boundary vertices. This will save many

runs of Dijkstra's algorithm because if the shortest path from u to v passes through

another vertex w, then it is obvious that the shortest paths from u to w and w to

v are overlapping with the shortest path from u to v, otherwise the shortest path

from u to v is not the shortest. Moreover, if there are more than two vertices, say

w1; w2; : : : ; wk, lie in the shortest path from u to v, the shortest paths between u

to w1, wi to wi+1 (where 1 �i� k � 1), and wk to v are also known. This is shown

in the Algorithm 3 line 9-14.

Our algorithm �rst creates a matrixM , whereMi;j is the shortest distance from

boundary vertex vi to vj. At �rst, every element in matrixM is initialized to +1.

Whenever a shortest distance between vi and vj is found, it is �lled out in Mi;j.

Then we check whether there are other boundary vertices on the path. If so, assign

the correct value to the corresponding element in the matrix. The idea of this
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Algorithm 3 k-Pair-SP(f , B) fk-pair Shortest Path Algorithmg
Input: f is a fragment, B is the set of boundary vertices in f
Output: a jBj � jBj matrix M containing the shortest distances between every

pair of vertices in B
Require: B � V (f)

Ensure: M [i; j] contains the shortest distance from vertex i to j, M [i; j] = +1 if
no path from i to j

1: if i = j then finitialize the matrixg
2: M [i; j] = 0

3: else

4: M [i; j] = +1
5: end if

6: for all u 2 B do

7: for all v 2 B ^ v 6= u do

8: if M [u; v] = +1 then

9: p SP (f; u; v) f�nd the shortest path from u to v in fragment fg
10: Find fw1; w2; : : : ; wkg � B \ V (p), where u = w1; v = wk

11: for 1 � i � k do

12: for i < j � k do

13: M [wi; wj] dist(wj)� dist(wi)

14: end for

15: end for

16: end if

17: end for

18: end for
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heuristic is to reuse the information calculated for one run of Dijkstra's algorithm

as much as possible. Although only sequential algorithms are considered in this

thesis, this idea is particular suitable for parallel processing in which each thread is

dedicated to one run of Dijkstra's algorithm on one pair of boundary vertices. All

threads share one distance matrix. One thread can make use of the results of other

threads and also can contribute to the matrix.

3.4 Sketch Graph

In the approach of [10], nothing is done to the super graph except that the super

graphs are partitioned further to generate higher-level graphs. Since the perfor-

mance deteriorates greatly when the hierarchical graph gets too many levels (more

than three), it is not an appropriate method for very large digital maps such as

the whole road system of the United States. In our algorithm, the digital maps,

and the ground level graphs, are partitioned and the super graphs are stored in a

spatial database (virtual hash table). There are only two levels in the hierarchy.

The bene�ts of having fewer levels in hierarchical graph is that the performance

can be guaranteed for a large map. The downside is that the super graph is also

huge when the digital map is at the size of more than 100,000 vertices. Finding

the shortest paths on the huge super graph may cost hours using the conventional

graph traversal algorithms since it requires a lot of I/O.

To tackle the diÆculties, a data structure called a \sketch graph" was created

which captures the high-level outline of the super graph and is much smaller. More-

over, the more interesting thing about sketch graph is that it can be used for pruning
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the super graph when given source and destination vertices. A pruning algorithm

{ vertical pruning (or �-� pruning) { can be applied to the sketch graph. First, the

sketch graph and the algorithm generating the sketch graph are introduced in this

section. Then the vertical pruning algorithm is introduced in the next section.

According to the de�nition in section 1.2, a super graph contains only boundary

vertices in the ground level graph, and for pairs of boundary vertices in the same

fragment, there is an edge connecting them. Therefore, it is actually a very dense

graph that consists of cliques. The number of cliques is the number of fragments

in the ground level graph. The property of a graph that consists of cliques is that

the number of boundary vertices is not that large, but the number of edges is. For

example, for the road systems in Connecticut, the number of vertices in the ground

level graph is about 160,000, and the number of edges is about 190,000. When

using the graph partitioning algorithm introduced in section 3.2.1, the number

of boundary vertices is about 1200 for 15 fragments. The size of the boundary

vertices in each fragment varies from 120 to 290. The total number of edges in

the super graph is about 190,000, approximately the same size of the ground level

graph. Finding the shortest paths in the super graph is of the same complexity

as �nding them in the ground level graph, and requires a similar amount of main

memory. Thus divide-and-conquer does not help much. When looking at the super

graph carefully, some nice properties can be discovered that allow you not take into

consideration the whole super graph yet still get the optimal solution.

One of these nice properties is that the boundary vertices in each fragment are

fully connected, and they can be partitioned by equivalence sets called boundary
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sets as de�ned in section 1.2. Two boundary vertices are in the same equivalence

set if, and only if, they have the same adjacent vertices in the super graph, i.e. ver-

tices in the same boundary set have the same connectivity properties. Therefore,

a boundary set can be safely contracted into a super vertex without losing its con-

nectivity properties. If two boundary sets are fully connected (they form cliques),

we can connect such two vertices with an edge. It can be easily proven that the

reversion of the contraction process (expanding a vertex in the sketch graph to a

set of vertices and connecting each pair of vertices in the two sets if and only if the

two vertices in the sketch graph are connected) will restore the connectivity in the

original super graph.

In addition to the connectivity property, the sketch graph also keeps the min-

imum and maximum distances from vertices in one boundary set to the vertices

in another boundary set (�-value and �-value). In this way, part of the shortest

distance information is reserved in the sketch graph, and it can be used to prune

the sketch graph later. The algorithm for generating the sketch graph is as shown

in Algorithm 4.

The sketch graph consists of cliques, but in a very small size, since the number of

vertices (boundary sets in original fragments) in the clique is small (usually 3 5), the

average degree of vertices is about 6 to 10, so jEj is around 3 � jV j to 5 � jV j, which
is very sparse compared to the super graph. In the same example of road systems

in Connecticut state, the original graph is divided into 15 fragments. The number

of vertices and number of edges in the sketch graph are 21 and 65 respectively. In

such a small and sparse graph, the vertical pruning algorithm based on Dijkstra's
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Algorithm 4 Get-Sketch(gs) fGet the sketch graph from super graphg
Input: the super graph gs
Output: the sketch graph k

1: for all fragment f in in gs do

2: for all boundary set b in f do
3: construct a super vertex v corresponding to b
4: if v is not in k then
5: k  k + v

6: end if

7: end for

8: for all boundary set x in f do
9: for all boundary set y in f and x 6= y do

10: e (x; y) fcreate a super edge eg
11: e:� min(SP (xi; yi));8xi 2 x; yi 2 y
12: e:�  SP (x�; y�) fx� and y� are the delegate vertices of boundary sets

x and y respectivelyg
13: k = k + e fmerge super edge e to sketch graphg
14: end for

15: end for

16: end for
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algorithm (in O(n logn+m)) can be done almost instantly. We hope that the extra

e�orts of pruning are worth the time saved on exploring the super graph. In Chapter

5, we will see the experimental results to see if it is true in the real world.

3.5 Pruning Algorithm

If the sketch graph is large and the source and destination vertices are very close,

intuitively it is not necessary to explore the whole graph to �nd the shortest path.

The sketch graph can be pruned in such a way that even if some super nodes and

super arcs are eliminated, the optimal solution can still be found.

3.5.1 Algorithm Description

In order to get the lossless pruning, it is necessary to keep more information in

the sketch graph { � and � values { associated with super edges in the sketch

graph. According to the de�nition of sketch graph, each edge associates a 2-tuple

(�; �), where � and � respectively are the minimum and maximum values of the

shortest distance from any boundary vertex in one boundary set, to any boundary

vertex in another boundary set. Knowing this fact, a range in which the shortest

distance from one vertex to where the other vertex falls could be found. The

vertical pruning algorithm is used to calculate this range and delete any vertices

and incident edges that should not be passed through. Otherwise the sum of the

shortest distance from source to this vertex and from this vertex to the destination

exceeds the upper bound. This algorithm can also be called �-� pruning. It takes

three parameters: the sketch graph, source, and destination vertices. The result is
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a pruned sketch graph. The algorithm is shown in Algorithm 5.

Algorithm 5 Pruning(k,s,d,S,D) fPruning Sketch Graphg
Input: k is the sketch graph, s and d are the source and destination vertices

respectively, S and D are the fragments in which s and d are in respectively.
Output: a subgraph of k

Require: s is in S, d is in D

Ensure: the shortest path from s to d remain the same on k and the pruned sketch
graph

1: add vertices s and d to k
2: add edges connecting s to the boundary sets in S and edges connecting d to

the boundary sets in D

3: label the edges of sketch with their � values
4: �nd the shortest distance SD�(s; d) from s to d in k
5: label the edges of sketch with their � values
6: select s as root and perform shortest path algorithm to get the shortest path

tree Ts

7: select d as root and perform shortest path algorithm to get the shortest path
tree Td

8: for all vertex v in k do
9: if Ts(s; v) + Td(v; d) > SD�(s; d) then

10: k  k � v fremove the super vertex v and its incident super edges from

kg
11: end if

12: end for

In line 3 of the algorithm, the sketch graph is converted to a general graph

(called �-graph) with the edges being labeled by �. In line 4, the shortest distance

SD�(s; d) obtained from �-graph is actually the upper bound for the shortest dis-

tance from s to d. In line 5-7, the sketch graph is converted to a general graph

(called �-graph) by labeling the edges with their � values. The shortest path trees

from s and d are computed in the a-graph. Since we are considering the undi-

rected graph only, the shortest path tree from d to other vertices is actually the

shortest path tree from other vertices to d. For the directed graph, we can reverse
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the direction of each edge �rst, and then apply the single source shortest path tree

algorithm. The complexities remain the same.

3.5.2 Proof of Correctness

In order to prove that the correctness of the vertical pruning algorithm, we have to

justify two statements:

1. The shortest distance from s to d in the �-graph SD�(s; d) is an upper bound

for the shortest distance SD(s; d).

2. If there exists a boundary set B in the super graph such that �(s;B) +

�(B; d) > SD�(s; d), the shortest path cannot pass through any vertex in B.

Therefore, it is safe to remove B and all the incident edges.

Proof of the �rst statement:

It must be proven to be true in two cases:

1. If s and d are in the same fragment, SD�(s; d) = SD(s; u) + SD(v; d), where

u and v are boundary vertices in some boundary set such that SD(s; u) �
SD(s; v) according to the de�nition of �-graph. Therefore, we get SD�(s; d) �
SD(s; v) + SD(v; d) � SD(s; d). Thus SD�(s; d) is an upper bound for

SD(s; d).

2. If s and d are in di�erent fragments, and we assume that the shortest path

in �-graph passes n boundary sets (n > 0). Then SD�(s; d) = SD(s; u1) +

SD(v1; u2)+SD(v2; u3)+ : : :+SD(vi; ui+1)+ : : :+SD(vn�1; un)+SD(vn; d),
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where ui, vi are boundary vertices in the i
th boundary set. By de�nition of �-

graph, SD�(s; d) � SD(s; v1)+SD(v1; v2)+SD(v2; v3)+ : : :+SD(vi; vi+1)+

: : :+SD(vn�1; vn)+SD(vn; d) � SD(s; d). Thus SD�(s; d) is an upper bound

for SD(s; d).

Proof of the second statement:

Prove by contradiction: if the shortest path passes through a vertex v in bound-

ary set B and �(s;B) + �(B; d) > SD�(s; d). Since we know that SD(s; v) �
�(s;B) and SD(v; d) � �(B; d), SD(s; d) = SD(s; v) + SD(v; d) � �(s;B) +

�(B; d) > SDb(s; d). We know that SD�(s; d) is the upper bound of SD(s; d), so

SD(s; d) � SDb(s; d). There is a contradiction. Thus the shortest path cannot

pass through a vertex in boundary set B.

3.5.3 Complexity Analysis

The running time can also be divided into two parts: I/O time and CPU time. I/O

only takes place in step one. If a dictionary for the MBR's in each fragment is not

available, it is necessary to read through all fragments in the spatial database in

the worst case. Therefore, it takes m reads, where m is the number of geometric

objects in the spatial database. However, if the MBR's of all fragments are kept in

main memory, to determine which fragment contains s or d, one needs only to read

constant fragments from the spatial database. Therefore, the I/O costs depend

only on the size of fragments.

For CPU time, step 2 can be done in O(nf log nf +mf ), where nf is the number

of vertices in the fragment, and mf is the number of edges in the fragment. In step
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3 and 5, we have to traverse every edge in the sketch graph, so the time complexity

is O(ms), where ms is the number of edges in the sketch graph. In step 4, 6 and 7,

we use Dijkstra's shortest path algorithm and the complexity is O(ns log ns +ms),

where ns is the number of vertices in the sketch graph. In step 8, we check each

vertices in the sketch graph, so the time complexity is O(ns). Therefore, the overall

time complexity is O(nf log nf +mf + ns log ns +ms).

3.6 A Disk-based Shortest Path Algorithm

After pruning a sketch graph, we can construct a super graph by reading all bound-

ary vertices and super edges from the super graph database, and merging the frag-

ments containing source and destination vertices with the super graph, then the

shortest path can be found by applying Dijkstra's algorithm on the resulting graph.

This is feasible for small digital maps, but not for very large digital maps, since the

size of the super graph is almost the same as or even larger than the digital map,

so the same problem, insuÆcient main memory, also persists. In this case a disk-

based algorithm needs to be designed to store part of the information on hard disk,

and load it dynamically when needed. The di�erences between the main memory

shortest path algorithms and disk-based shortest path algorithm are discussed in

the following section.

3.6.1 Di�erences from the Previous Algorithms

My disk-based algorithm is also based on the idea of Dijkstra's algorithm, i.e.

keeping track of the shortest distance information in a data structure, organizing
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the vertices in an ascending order on the current shortest distance from the source,

keeping \closing" vertices with the minimumshortest distance so far, until no vertex

is open. The main di�erences between the disk-based shortest path algorithm and

the previous algorithms rely on the following two aspects:

1. Whether to use external memory data structures or not.

2. Whether to use pre-calculated information or not.

For the main memory Dijkstra's algorithm, the information of vertices (current

shortest distance from the source, the preceding vertex in the current shortest path,

and whether the vertex is closed or not) is stored in a hash table or tree. Retrieving

this information is very fast due to fast memory access and little computation. In

disk-based algorithm, since the information is too large to �t into memory, part of

it should be stored on disk. Whenever the information needs to be accessed, an

I/O operation is necessary. Therefore, one of the goals of the new data structures

is to minimize the number of I/O operations. With main memory algorithms, the

vertices could be ordered in a binary heap or Fibonacci heap. In [19], Goldberg and

Tarjan showed that a binary heap could be more eÆcient than a Fibonacci heap in

a sparse graph due to relatively small number of decreaseKey operations, although

a Fibonacci heap has smaller asymptotic order. Recently, new data structures

were developed for special input graphs. For example, in [20, 21, 22], Cherkassky,

Goldberg, and Silverstein tested the performances using di�erent data structures

(buckets, multilevel buckets, hot-spot queues, heap-on-top queues) on organizing

vertices according to their distances. Some very interesting results came out for

special graphs such as the weights of edges are bounded in a range of integers.
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However, none of them are designed to facilitate disk-based algorithms, i.e. their

performances rely on the fact that data can be randomly accessed in main memory

in constant time. Our new data structure has to consider the situation in which the

main memory is limited and data needs to be swapped out to disk. The relationship

between the previous main memory data structure used in Dijkstra's algorithm and

our data structure is like the relationship between the binary search tree and the

B-tree.

The second di�erence is whether to use the materialized information that is

computed before the query phase to answer the query. All the main memory algo-

rithms mentioned above do not make use of the result of pre-computation. When-

ever a new shortest path query comes, it just starts all over again. In contrast,

the pre-computed information is materialized (stored) to hard disk in disk-based

algorithm. It can be used over and over again for new queries. For example, in

this algorithm, the fragment database generated by the partitioning algorithm, the

shortest distance matrix generated by the k-pair shortest paths algorithm, and the

pruned sketch graph generated by the pruning algorithm are reused. This can save

a lot of work. However, if the underlying digital map is not static, for example, the

weight of the edge can be changed, and changing the materialized pre-computation

database needs a lot of time. Therefore, the query result may not be up-to-date

until the materialized information has been updated. This is a trade-o� between

optimality and eÆciency.
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3.6.2 Algorithm Description

The disk-based shortest path algorithm takes seven inputs: the source node s and

the destination node d, the two fragments S and D in which s and d are contained

respectively, the whole set of fragments (also called fragment database) frags, the

set of distance matrices (also called distance database) matrixDB one for each

fragment, and the pruned sketch graph sketch. The data structure for holding the

fragments and distance matrices are disk-based data structure { virtual hash tables.

The detailed discussion of virtual data structure will be defered to Chapter 4. At

the time being, it is necessary to know that a virtual hash table can be treated as

its main memory counterpart { hash table. That is, to store an object, the object

as well as a key to that object are required. To retrieve an object, only given a key

of that object is necessary.

Intuitively, we can get the shortest path by merging the source and destination

fragments S and D with the super graph, and then apply Dijkstra's shortest path

algorithm on the merged graph. The diÆculty in this is that the super graph is

too large to �t into main memory. My approach is to make the super graph a

disk-based data structure, in which a set of bu�ers (a.k.a cache) in main memory

is maintained. Part of the super graph can be loaded from disk when needed and


ush some entries to disk when bu�er is full and new entries are required.

Initially all vertices in S,D and all boundary vertices are open and their distance

from s is in�nity except s itself which is 0. The algorithm �rst constructs a shortest

path tree from s to every vertex in fragment S. This process can be done using

Dijkstra's algorithm since the fragment is small enough to �t into main memory.
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During the process, whenever a boundary vertex is closed, the relaxation process

in Dijkstra's algorithm [1] should be applied to any adjacent boundary vertex in

the super graph. Since boundary vertices for super graph are stored on disk and

the distances from the closed boundary vertex to its adjacent boundary vertices

are also stored on disk, this process may incur I/O operations if they are not in

cache yet. In each iteration, the vertex with the minimum shortest distance so far

is closed. The relaxation and closing process keeps going until all boundary vertices

of fragment D are closed. The next step is to �nd the shortest distance from every

boundary vertex in D to destination vertex d. After this we have get a \guideline"

of the shortest path. The guideline consists of three parts: the shortest path from s

to the last boundary vertex bs in S, the shortest path from the �rst boundary vertex

bd in D to d, and a sequence of boundary vertices on the shortest path between

bs and bd. The �rst two parts are a complete comparison to the resulting shortest

path, but the third part may have missing interior vertices between each pair of

boundary vertices. The last step of this algorithm is to \�ll up" the missing vertices

by looking up the intermediate fragments from the fragment database and apply

Dijkstra's algorithm to these fragments.

In order to minimize the I/O operations, it is preferable to cluster the boundary

vertices in such a way that adjacent boundary vertices are in as few clusters as

possible. In our speci�c application, probably the most eÆcient way is to cluster

the boundary vertices is fragment clustering. That is, two boundary vertices are

in the same cluster if, and only if, they are in the same fragment. In this way, a

relaxation only need to read 2 to 4 clusters (since usually one boundary vertex is
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in no more than 4 fragments). However, since a boundary vertex is in more than

one fragment, then you have to load at least two fragments, say F1 and F2, for

updating one fragment, and these two fragments have many common boundary

vertices - those in the boundary set . The boundary set is read twice, thus incurs

I/O overhead. Another way to cluster boundary vertices is by boundary sets. Since

very few boundary vertices are in more than one boundary set, it has very little

I/O overhead comparing to fragment clustering. The downside of boundary set

clustering is that boundary sets must be read one by one, rather than reading

several boundary sets in the same fragment in batch. However, since a boundary

set is usually large (in the scale of 50 vertices), it does not loose the advantages of

bu�ered reading and writing. Therefore, boundary set clustering is a better way

than fragment clustering in general.

As with Dijkstra's shortest path algorithm, we keep track of information for

each vertex, which includes the shortest distance from s so far, the parent node in

the shortest path, and whether it is closed or not. In Dijkstra's algorithm, nodes

are stored in a priority queue, usually binary heap, ordered by their distance from

s. In my algorithm, nodes are organized in three kinds of priority queues (heaps)

as shown in Figure 3.2.

Nodes in S and D can be put in a binary heap interQ as in Dijkstra's algorithm.

However, unlike Dijkstra's algorithm, the minimum value a in interQ is not neces-

sarily the next closed node. Rather it should be compared with the minimumvalue

of boundary vertices b, and the smaller one of these two is the next closed vertex.

Boundary vertices are clustered into boundary sets. The attributes of a boundary
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interQ: BinaryHeap
(nodes in S and D)

bsQ: UHeap
(delegate nodes
of boundary sets)

distVect0:
FibHeap

  = interQ.min()   = bsQ.min()

next closed vertex = min(   )

Heap for nodes in S and D Heap for boundary nodes

Memory

Disk

m
in

(boundary nodes in each boundary sets)

distVect1:
FibHeap

distVectk:
FibHeap

Figure 3.2: Data Structures for Disk-based Shortest Path Algorithm

set are stored in a data structure, Distance Vector (distV ect), which is stored on

disk. The boundary vertices in a distance vector are organized in a Fibonacci heap

ordered by their distance from s. Each boundary set has a delegate boundary ver-
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tex which is put into a global \Updatable Heap (U-Heap)" (see section 3.6.3 for

detail) in main memory. The selection of the delegate is based on the criteria that

its shortest distance from s is the minimum within all open boundary vertices in

the boundary set. The Updatable Heap is similar to the Mergable Heap introduced

in [5], but with an additional method that allows updating the key of an entry in

the heap. The algorithm is sketched in Algorithm 6.

The algorithm works like this: in step 1 we initialize the two queues interQ and

bsQ for nodes in S and D, and delegate nodes in boundary sets respectively. For

each boundary set, a distance vector is also constructed (e.g. an internal Fibonacci

heap is generated) to hold all boundary vertices in this boundary set. These distance

vectors are stored in a virtual hash table dvDB with the boundary set ID as the

key. Initially all vertices in S and D expect s itself have a distance of 1 from s.

Distances from s to every boundary vertex is also set to be1 in the distance vector

initially. In step 2 of the algorithm, we initialize the distance of s to be 0 and the

closed property to be true. Step 3 is the main part of this algorithm. It is same

as the relaxation part of Dijkstra's algorithm, except that there is an additional

step to do the main thrust if the next closed vertex is a boundary vertex. Main

thrust is shown in Algorithm 7 and the discussion will be delayed until later in this

section. After step 3, every vertex in S and every boundary vertex is closed, but

interior vertices in D are not closed, if S and D are not equal. Therefore, in step 4,

we push all boundary vertices in D into the binary heap interQ (which should be

empty after step 3), and �nd the shortest path from these boundary vertices to d.

Step 4 is the same as Dijkstra's algorithm if we draw an edge between s and every
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Algorithm 6 DiskSP(s,d,S,D,F ,M ,k)

Input: s and d are the source and destination vertices respectively, S and D are

the fragments in which s and d are in respectively, F is the fragment database,

M is the distance matrix database, k is the sketch graph

Output: the shortest path from s to d
Require: s is in S, d is in D

1: for all vertex v 2 S do finitialize UHeap and distance vectors for boundary

setsg
2: v.distance= +1
3: interQ.enqueue(v)

4: end for

5: Initialize distance vector database
6: bsQ.enqueue(dv.delegate())
7: s.distance  0 finitialize binary heap for interior verticesg
8: s.closed = TRUE

9: interQ.enqueue(s)
10: g  S +D fmerge S and D to graph gg
11: while :bsQ.empty() _:interQ.empty() do

12: a interQ.min()
13: b bsQ.min()

14: if interQ.empty() _ (b.distance < a.distance) then

15: do MainThrust on b frelax all boundary vertices adjacent to bg
16: b.closed = TRUE
17: else

18: interQ.dequeue()

19: relax all vertices adjacent to a in g
20: if a is boundary vertex then
21: do MainThrust on a

22: end if

23: a.closed = TRUE

24: end if

25: end while

26: for all vertex v 2 D do f�nd the shortest paths from boundary vertices to d

within fragment Dg
27: interQ.enqueue(v)

28: end for

29: while :interQ.empty() do
30: a = interQ.dequeueMin()

31: relax all vertices adjacent to a in g
32: a.closed = TRUE

33: end while

34: FillSP() fconstruct the complete shortest path from the simpli�ed shortest path
got from steps 1 to 4g
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boundary vertex in D with the edge weight being the shortest distances between

them so far as seen from step 3. After step 4, we get an incomplete shortest path,

which can be seen as concatenation of three parts: a shortest path from s to the

last boundary vertex bs in S (by the last vertex we mean that all its subsequent

vertices in the shortest path are not in S while its previous vertex in the shortest

path is in S), a simpli�ed shortest path from bs to the �rst boundary vertex bd in

D (by �rst we mean all the subsequent vertices in the shortest path are in D while

the previous vertex in the shortest path is not in D), and a shortest path from bd

to d in D. It is shown in Figure 3.3.

s d
bs

bdsimplified path
consisting boundary

vertices only

source fragment S destination fragment D

Figure 3.3: Simpli�ed Shortest Path

In step 5, we complete the simpli�ed path (dashed line in Figure 3.8) by looking

at the fragments through which it passes. This algorithm is shown in Figure 3.10.

First we see what main thrust does in Figure 3.9. The purpose of main thrust

is to relax all adjacent boundary vertices of a boundary vertex in the super graph.

First in step 1, we �nd the boundary set in which the boundary vertex u is. Since

a boundary set is all boundary vertices shared by two fragments (F1 and F2), all
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Algorithm 7 MainThrust(u,d,k,bsQ,dvDB,M)

Input: u is the next closed boundary vertex, d is the distance of u, k is the sketch

graph, bsQ is the U-Heap containing delegates of boundary sets, dvDB is the

distance vector of boundary sets, M is the distance matrix
Output: none

Ensure: every boundary vertex adjacent to u is relaxed

1: �nd the boundary set bs = [F1; F2] in which u is in
2: �nd the adjacent boundary sets B of bs from k

3: separate boundary sets in B into two lists L1 and L2 such that 8b1 2 L1; b1 �
F1;8b2 2 L2; b2 � F2, and L1 [ L2 = B

4: for all boundary set b 2 L1 do

5: m =M .get(F1) fget the distance matrix for fragment F1 from databaseg
6: for all boundary vertex v 2 b do fdo relaxationg
7: if v.distance > d +m.get(u,v) then
8: v.distance = d+m.get(u,v)
9: v.predecessor = u

10: end if

11: end for

12: bsQ.updateValue(b,b.distance) fkeep bsQ's heap propertyg
13: end for

14: for all boundary set b 2 L2 do

15: m =M .get(F2) fget the distance matrix for fragment F2 from databaseg
16: for all boundary vertex v 2 b do fdo relaxationg
17: if v.distance > d +m.get(u,v) then

18: v.distance = d+m.get(u,v)
19: v.predecessor = u

20: end if

21: end for

22: bsQ.updateValue(b,b.distance) fkeep bsQ's heap propertyg
23: end for
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the boundary vertices in F1 and F2 are adjacent to u in the super graph and should

be relaxed. In the DiskSP algorithm, there are two places that call MainThrust.

The �rst is in line 4 of step 3. Here b is the delegate boundary vertex of a boundary

set. Therefore, the boundary set is already known and �nding which one is b is

necessary. The second place is in line 10 of step 3, where the boundary vertex in

the source fragment S is the next closed vertex. If the boundary vertex is in only

one boundary set, we can just iterate through all the boundary sets and �nd it.

Otherwise, if the boundary vertex is in multiple boundary sets, we can arbitrarily

choose one and let it be the boundary set in which b is and do MainThrust. It

will be proven later that this does not a�ect the correctness of the shortest path

algorithm. In step 2, all the boundary vertices in F1 and F2 are found by looking

up their boundary sets from sketch graph. In the sketch graph, the nodes represent

the boundary sets in the fragments. There is an edge between two nodes if the

two corresponding boundary sets are in the same fragment. Therefore, �nding all

boundary sets in F1 and F2 can be done by �nding all adjacent nodes in the sketch

graph. In step 3, we divide the boundary sets into two sets according to which

fragment they belong to (bs is in both fragments so it should be in both sets). The

reason for this is that we have to retrieve the fragment's distance matrix from a

virtual data structure. Grouping boundary sets by fragment can reduce the number

of retrievals to the virtual data structure, thus reducing I/O cost when the bu�er of

virtual data structure is small. Step 4 and 5 are doing the same thing - relaxation

on every boundary vertex { in L1 and L2 respectively.

Now the FillSP algorithm is introduced which is shown in Algorithm 8. The
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correctness proof of DiskSP is deferred to section 3.6.4 after the data structure is

introduced.

Algorithm 8 FillSP(F ,dvDB,S,D,s,d)

Input: F is the fragment database, dvDB is the distance vector database, S and

D are the source and destination fragments respectively, s and d are the source

and destination vertices respectively.

Output: a complete path from s to d
Require: the shortest path tree has been established, i.e. every vertex has the

shortest distance and predecessor records

Ensure: the path returned is the compatible with the shortest path tree, i.e. the
shortest path

1: p d

2: while p 6= s ^ :p.isBoundary() do fconstruct part within fragment Dg
3: pre = p:predecessor

4: nodes.push(pre) fpush vertex pre to the nodes stackg
5: edges.push((pre; p)) fpush edge (pre; p) to the edges stackg
6: p pre

7: end while

8: pre p.predecessor
9: while p =2 S ^ p is not the last boundary vertex in the shortest path do

fconstruct the part between fragments D and Sg
10: �nd the shortest path subp between pre and p

11: nodes.push(V (subp)) fpush all vertices in subp into nodes stackg
12: edges.push(E(subp)) fpush all vertices in subp into nodes stackg
13: pre p.predecessor

14: end while

15: while p 6= s do fconstruct the part within fragment Sg
16: pre p.predecessor
17: nodes.push(pre) fpush vertex pre to the nodes stackg
18: edges.push((pre; p)) fpush edge (pre; p) to the edges stackg
19: p pre

20: end while

21: path CONSTRUCT-PATH(nodes,edges)

The purpose of the FillSP algorithm is to complete the simpli�ed shortest path

by �lling out the missing interior vertices in the interior fragments. The completion
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is done backward from vertex d in D to vertex s in S. The �rst step is to �nd the

vertices and edges of the shortest path within the fragment D and put them into

two stacks respectively. The second step �nds the actual shortest paths between

two boundary vertices in the interior fragments. This is done by applying Dijkstra's

algorithm on the interior fragments. The vertices and edges of the shortest paths

are also put in the same stacks. The third step is to �nd the vertices and edges

with the shortest path with the fragment S. Again the vertices and edges are put

into the stacks. The last step is to construct the shortest path from the node stack

and edge stack.

3.6.3 Data structures

In this section the following topics are introduced: the updatable heap (U-Heap),

distance vector and distance matrix data structures used in disk-based shortest

path algorithm, and why we choose these data structures (binary heap, U-Heap,

Fibonacci heap) in the algorithm.

A U-Heap implements a priority queue interface with the major two operations:

� FindMin(): Returns the object with the minimum value in the heap.

� UpdateValue(key): Update the value of an object in the heap according to

the given key.

An example of an updatable table is shown in Figure 3.4.

An updatable heap can be thought of as a full and complete binary tree, in

which only the leaf nodes contain data. A binary tree is a full binary tree if each
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Figure 3.4: U-Heap Data Structure

node has zero children or exactly two children. A complete binary tree is a binary

tree in which all leaf nodes are at level h or h� 1, where h is the height of the tree,

and all nodes in level h are toward left [47]. It can be easily proved by mathematical

induction that given any number of data items, a full and complete binary tree can

always be constructed, such that all the data items are leaf nodes of the tree. The

total number of nodes in a U-Heap is 2n� 1, where n is the number of data items

(leaf nodes) in the U-Heap. A U-Heap can be implemented using an array, in which

the parent of the ith element a[i] is a[(i� 1)=2], and its two children are a[2i+ 1]

and a[2i+ 2].

In a U-Heap, each node is composed of two �elds: key and value. The key

�eld is any comparable data structure and can be duplicated. The value �eld is

any object associated with the key. They have di�erent usage in the U-Heap data

structure. At �rst, the key �eld is used to sort the leaf nodes in the binary tree.

Once they are sorted, their positions are �xed at the bottom level. The value �eld
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is then used to construct the tree structure bottom up. That is, to compare the

values of each pair of nodes which belong to the same parent, so that the node with

the minimumvalue are pushed up one level as the parent. This process keeps going

until the root of the tree is generated. Therefore, a non-leaf node has the minimum

value among all of the leaf nodes in its subtree. Particularly, the root node contains

the minimum valued leaf node. Therefore, the running time of FindMin operation

is �(1). The UpdateV alue operation consists of two steps: �nding the leaf nodes

which have the given key, and updating all the ancestors of these satis�ed leaf

nodes. By sorting the leaf nodes by their keys, it is easy to �nd a leaf node in

�(log n) given the key. Since the height of the tree is in �(log n) , updating the

ancestors of a given leaf node also requires �(log n) time, so the total asymptotic

complexity of UpdateValue operation is �(log n).

A distance matrix is a very simple data structure that keeps the static informa-

tion about the shortest distance of every pair of vertices in a fragment. Its purpose

is to provide a fast way to answer the shortest distance query between two ver-

tices in the fragment. There is only one major method in its interface: get(c1; c2),

where c1 and c2 are the coordinates of two vertices. It returns the shortest distance

between these two vertices within this fragment. The shortest distances can be

stored as a nxn matrixM , where n is the number of vertices in the fragment. Then

the shortest distance from the ith vertex to the jth vertex is given by M [i; j]. The

problem for this is that we have to de�ne a mapping from the coordinate of a vertex

to its index on the matrix. This can be done by storing the coordinate and index

in a hash table, or a sorted array. When the original graph is undirected, the path
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from the ith vertex to the jth vertex is the same as the path from the jth vertex to

the ith vertex. Therefore, we can delete half of the matrix (upper triangle or lower

triangle) to save the space. That is, only M [i; j], i < j is saved (all M [i; i] = 0).

A distance vector is a data structure of boundary sets to keep track of the

shortest distance information from the source vertex. In the disk-based algorithm,

when a boundary vertex is chosen to be the next closed vertex, all of its adjacent

boundary vertices in the super graph should be relaxed. Since all boundary vertices

are clustered into boundary set, a batch relaxation for a boundary set can be done.

In order to do the batched relaxation, the following information about the boundary

set is necessary.

� A collection of open vertices, so that the necessary vertices will be updated.

� A way to keep the precedent vertex of a boundary vertex in the shortest path.

� The minimum value among all shortest distances from source vertex to the

open vertices after relaxation so that the delegate vertex for this boundary

set can be updated.

To provide the �rst and section information, the open vertices are organized

in a hash table keyed by their coordinate and keep the open/closed information

for each boundary vertex, as well as the precedent vertex. To provide the third

information quickly, it is more diÆcult. A priority queue is used to organize the

open vertices. Various kinds of heaps are candidates for this data structure; for

example binary heaps, Fibonacci heaps, and et al. Binary heaps are practically

more eÆcient when the graph is sparse, i.e. when there are few vertices that need
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to decrease their keys. When the key of one vertex is determined to decrease,

we can only insert the vertex again with the new key and save a lot of time from

eliminating the expensive decreaseKey operations. Since inserting a vertex multiple

times may make the heap over
ow, we have to dynamically expand the heap space

when needed. If there very few vertices that need to decrease their keys, the

expansions seldom happen, so the average running time is lower. However, if there

are many vertices that need to decrease keys, the binary heap is not as eÆcient since

eventually the cost of expansion will exceed the cost of decreaseKey operations,

in which case the Fibonacci heap probably is the most suitable data structure. In

our speci�c application, the super graph is composed of cliques, each corresponds

to one fragment. When one boundary vertex is to be closed, all boundary vertices

in the fragment should be relaxed. This may incur a lot of decreaseKey operations

because the graph is dense.

As shown in Figure 3.6, three kinds of heaps are used for the three types of

priority queues. This is due to the usage pattern of these three priority queues.

The interQ priority queue is used for organizing the vertices in sparse graphs,

fragment S and D. Since there are few decreaseKey operations in sparse graphs,

binary heap is the most suitable data structure for interQ. On the other hand,

distV ect contains the boundary vertices in a boundary set, which is a subset of the

super graph. Since the super graph is a dense graph composed of complete graphs,

Fibonacci heap is more suitable for distV ect. Unlike interQ and distV ect, bsQ is a

priority queue that contains delegate vertices for boundary sets. Since the number

of updateV alue operations is large (the worst case is one updateV alue operation
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for each boundary vertex), using binary heap is not appropriate because it does

not provide an eÆcient way to search a particular node in the heap. Also because

updating a value of a node in the priority queue is not always decreasing the value,

Fibonacci heaps are not appropriate for this situation either. Therefore, U-Heap is

the most appropriate data structure for bsQ among these three data structures.

3.6.4 Correctness Proof

To prove that the DiskSP algorithm is correct, it is only necessary to prove that:

1. The DiskSP is equivalent to the Dijkstra's algorithm on the graph S +D +

SuperGraph, where \+" is the graph merging operator and SuperGraph is a

properly pruned super graph of the digital map. Since the graph-pruning

algorithm is independent to the DiskSP algorithm, it has already been

proved correct in section 3.5.2. Without the loss of generality, we assume

that SuperGraph is the unpruned super graph.

2. The result found from step 1) is the same as the result found from applying

Dijkstra's algorithm directly on the digital map.

In Step 1, the super graph is composed of cliques, one for each fragment. The

vertices in a clique are all the boundary vertices in a fragment. The edge weights

are the shortest distances from its start vertex to its end vertex. In this algo-

rithm the edge weights of a fragment are stored in a DistMatrix. It will be

shown that the combination of a sketch graph and all of the DistMatrix's can

replace the need of super graph in the Dijkstra's algorithm. In Dijkstra's algo-

rithm on S +D + SuperGraph, all the open vertices (including those in S, D and
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SuperGraph) are stored in a priority queue. The vertex with the minimumshortest

distance is extracted from the queue to be the next closed vertex. In the DiskSP

algorithm, vertices are split into two parts: vertices in S and D are stored in a

priority queue (interQ) as in the Dijkstra's algorithm; boundary vertices are stored

on disk, clustered by boundary sets. One vertex in each boundary set with the min-

imum shortest distance is selected and put in another priority queue (bsQ) in the

main memory. The minimum between the two minimum values in interQ and bsQ

is extracted to be the next closed vertex. Therefore, the shortest distance of the

next closed vertex is the minimum among all open vertices in S+D+SuperGraph.

Therefore, the Dijkstra's algorithm on S +D + Supergraph and the DiskSP are

the same if the set of open vertices and their shortest distance information is the

same.

Then it will be shown that after each open vertex is closed, the relaxation

processes in both Dijkstra's and DiskSP algorithm give the same shortest path

information for all vertices in S + D + SuperGraph. At �rst, the initial step is

the same, the source vertex s is selected as the next closed vertex and its shortest

distance is 0. Then all vertices adjacent to s are relaxed in Dijkstra's algorithm.

Assume that s is not a boundary vertex, then in DiskSP algorithm, the relaxations

happens on the same set of vertices. Suppose that at some step, a boundary vertex

v is chosen to be the next closed vertex, all the adjacent vertices to v should be

relaxed in the Dijkstra's algorithm. These vertices include the interior vertices, if

any, in S + D and boundary vertices SuperGraph. Note that a boundary vertex

in boundary set [i; j] is adjacent to every boundary vertex in fragment i and j.
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Therefore, every boundary vertex in fragment i and j should be relaxed. This is

exactly what theMainThrust procedure in theDiskSP algorithm does. Note that

a boundary vertex in the super graph may be in more than one boundary set, that

is, it may be in more than two fragments. This could be true in our partitioning

algorithm. It will be shown that even in this situation, the MainThrust operation

can guarantee that all copies of the boundary vertices indi�erent to boundary sets

are consistent, i.e. their shortest distance from s equals to the optimal one. At the

time being, it is assumed that all boundary vertices are in exactly one boundary set,

so a boundary vertex is relaxed in DiskSP algorithm if, and only if, it is relaxed

in the Dijkstra's algorithm, and the relaxation update the same set of boundary

vertices with the same information. Therefore, at each step, a boundary vertex is

closed and the same set of vertices are updated with the same information. By

induction, the results of Dijkstra's algorithm on S+D+SuperGraph and DiskSP

algorithm are the same.

Next it is proven that even if a boundary vertex is contained in more than

one boundary set, the MainThrust procedure still gives the same result. First, an

example of why a boundary vertex can be contained in more than two fragments. In

Figure 3.5, suppose that u, v, w, x, and y are open vertices and we start partitioning

from fragment F1. When u is closed (all its adjacent vertices including v and w are

explored) a fragment stop point is reached and all the vertices and edges explored

are saved to form a fragment. Therefore, F1 contains u, v and w. Then w is

chosen to be next root for BFS to generate another fragment. After x is closed (v

is explored again), another stop point is reached and F2 is generated. Therefore,
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F2 contains v and w.

F3
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F1

v

u

w

x
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F0

Figure 3.5: A partitioning on the graph containing vertices u, v, w, x and y: solid
lines represent edges, dashed line connecting w and x represent a path between
them, small dashed ellipses represent fragments F0, F1, F2, and F3

Suppose we select v as the next root for BFS, y is eventually explored and should

be contained in the third fragment, say F3. (Note: x could be a boundary vertex

shared by F2 and F3 depending on whether x is adjacent to an interior vertex in F3

or not. For simplicity, it is assumed that x is not in F3). In this case, vertex v is

contained in three fragment and three boundary sets - [F1; F2], [F1; F3] and [F2; F3].

The diÆculty for v in more than one boundary set is that the information (shortest

distance and so on) are stored in each of these boundary sets, and they may be

inconsistent at some point in time. However, it will be shown that once the �rst

copy of v is to be closed, all the other copies are consistent to it and their shortest

distances could not be less than the �rst closed copy. The idea behind this is
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that a boundary vertex can be reached from di�erent boundary vertices in di�erent

fragments. Their shortest distance from s could be di�erent. However, once it

is determined that the shortest distance from one fragment should be the \real"

shortest distance, all the shortest distances information in other copies should be

set to this value. Therefore, the inconsistences of multiple copies before the closing

of one copy does not a�ect the correctness as long as they are consistent after one

copy is closed.

For example in Figure 3.12, assume the source fragment S = F0. Whenever

a boundary vertex in the boundary set [F0; F1] is closed, all boundary vertices in

[F1; F2] and [F1; F3] should be relaxed. Therefore, the information of v stored in

[F1; F2] and [F1; F3] are updated and should be the same. However, v in [F2; F3]

may not be the same as those in [F1; F2] and [F1; F3], but once one of the copies

of v in these boundary sets is closed, the shortest distance information for all

other copies in di�erent boundary sets should be the same. No matter which

copy of v in [F1; F2], [F1; F3] or [F2; F3] is the next closed vertex, it should be the

minimum value among all copies. Without the loss of generality, assume that v

in [F1; F2] is the �rst closed in these three boundary sets, then all the boundary

vertices in F1 and F2 should be relaxed, thus the copies of v in [F1; F3] and [F2; F3]

should be relaxed and their shortest distance values should be the same value as

v in [F1; F2] (since the shortest distance from v to itself is always 0). After the

relaxation, the distance information for all copies of v in di�erent boundary sets

are consistent, and v's in [F2; F3] and [F1; F3] should be the next closed vertices

if no other vertices are equal to the same shortest distance value. It will been
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proven that the result of DiskSP algorithm is the same as the result of Dijkstra's

algorithm on S + D + SuperGraph . That the result of Dijkstra's algorithm on

S+D+SuperGraph is the same as the result of Dijkstra's algorithm on the digital

map still needs to be proven. In fact, one instance of Dijkstra's algorithm can be

represented by a sequence of vertices associated with the shortest distances from

s. For example, the sequence p =< s(0); u)3); v(5); w(5); x(8); d(10) > represents

an instance of Dijkstra's algorithm on a graph containing vertices s, u, v, w, x and

d. The order is the closed order of these vertices, which also de�nes the index of

a vertex in the sequence. For example vertex v can be represented by p[2]. The

number in the parentheses is the shortest distance from s to the vertex at the point

it is closed, and also is the \real" shortest distance. The shortest distance of a

vertex v in the sequence p is denoted by SDp(v), or SDp[2] if the index is used.

Also the subsequence between u and v in sequence p is denoted by p(u; v). The

pre�x of sequence p before u (exclusive) is denoted by p(�; u). Similarly, the suÆx

of a sequence p after u (exclusive) is denoted by p(u;�). First, two de�nitions used
in the proof are o�ered. We de�ne that two such sequences are equivalent if, and

only if:

1. the two sets of vertices are the same, and

2. the shortest distances associated with each vertex are the same, and

3. the order of the vertices are the same unless they have the same shortest

distance value.
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For example, the shortest distance of v and w are the same in the above example,

so it is equivalent to the sequence < s(0); u(3); w(5); v(5); x(8); d(10) > but not

others.

We de�ne that one shortest path sequence p is compatible with another shortest

path sequence q if, and only if:

1. the vertices in p is a subset of the vertices in q, with a restriction that the

�rst and last vertices in q must appear in p, and

2. the shortest distance associated with each of the vertices in p is the same as

the shortest distance associated with corresponding vertices in q, and

3. the total order of vertices in p is a partial order of the corresponding vertices

in some equivalent subsequent of q.

It is easy to see that if two sequences are equivalent, they get the same shortest

distance from s to d. If one sequence is compatible with another sequence, they will

also get the same shortest distance from s to d. Therefore, if the results of instances

of an algorithm are always compatible with the results of instances of another

algorithm, it can be said that the two algorithms always get the same results. That

the sequences generated by Dijkstra's algorithm on S+D+SuperGraph are always

compatible with the sequences generated by Dijkstra's algorithm on the digital map

directly will be shown next.

To prove that the sequence generated by the Dijkstra's algorithm on S +D +

SuperGraph (can be thought of as a Turing Machine TM1) s1 is compatible with

the sequence generated by the Dijkstra's algorithm on the digital map (suppose the
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Turing Machine is TM2) s2, it need only be proven that the vertices outputted by

TM1 is a subset of vertices outputted by TM2 and the shortest distances in the

corresponding vertices are the same. Based on the non-decreasing monotonicity

of the vertex order on their shortest distances, s1 is always compatible with s2.

Since the vertices in s1 are vertices in S and D plus all the boundary vertices, it

is always a subset of the vertices in s2 which are the vertices in the digital map.

Also it is obvious that the subsequence before the �rst boundary vertex in s1 is

equivalent to the same sized pre�x of s2 because both of which are the results of

applying Dijkstra's algorithm on fragment S. Suppose that v is the �rst vertex in s1

such that s1(�; v) is compatible with s2(�; v), and SDs1(v) > SDs2(v). (SDs1(v)

cannot be less than SDs2(v) because SDs2(v) is always the optimal solution to the

shortest path problem). Suppose u is the preceding vertex to v in s1, by assumption

SDs1(u) = SDs2(u), we know that u is the parent vertex of v in the shortest path

in TM2. From Dijkstra's algorithm, we know that SD(v) = SD(u) + SD(u; v) ,

where SD(u; v) is the shortest distance between u and v in their common fragment,

say F1. Suppose that all vertices in the subsequence s2(u; v) are in fragment F1,

which means the actual optimal shortest path from u to v in the digital map

is within fragment F1. Therefore, this should have been SDs2(v) � SDs2(u) =

SDs1(v)�SDs1(u), which is contradictory to SDs1(v) > SDs2(v). The other case is

that there are vertices in other fragment(s) in the subsequence s2(u; v), which means

that the actual optimal shortest path from u to v is totally within fragment F1. If

there is no boundary vertex in the subsequence s2(u; v), which implies u and v are in

the same boundary set, say [F1; F2] (otherwise the shortest path must pass though
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at least one other boundary vertex to reach v from u), and all vertices in s2(u; v)

are in fragment F2. Therefore, when u is closed, v is relaxed for both fragments

F1 and F2. Based on the Dijkstra's algorithm, we have SDs1(v) = min(SDs1(u) +

SDF1(u; v); SDs1(u) + SDF2 (u; v)) = SDs2(v), which leads to a contradiction. If

on the other hand, there are boundary vertices, say w1; : : : ; wk, in s2(u; v) , they

should be in s1(�; u) or s1(v;�), otherwise it is contradictory to that fact that u is

the preceding boundary vertex of v in s1. We assume that SDs1(wi) 6= SDs1(u) ,

otherwise these two sequences are equivalent and thus would be compatible already.

If wi is in s1(�; u), we have SDs1(wi) = SDs2(wi) < SDs1(u) = SDs2(u), which is

contradictory to the assumption SDs2(wi) > SDs2(u). If wi is in s1(v;�), we have
SDs1(wi) > SDs2(v) � SDs1(u) � SDs2(u) � SDs2 (wi), which means in TM2,

the boundary vertex wi is relaxed when u is relaxed which is contradictory to the

algorithm. Therefore, all possibilities lead to a contradiction, hence the conclusion

is that there is no boundary vertex in s2 such that its shortest distance value is

di�erent from that in s1. Therefore, TM1 and TM2 are always generating the same

results on the same input graph.

�

3.6.5 Complexity Analysis

The complexity of the disk-based shortest path algorithm is two-fold: the CPU

complexity, and the I/O complexity. Much of the CPU complexity comes from the

update of the main memory data structure and relaxation. The I/O complexity is

more complicated since di�erent bu�er management schemes result in di�erent I/O
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performance results. Therefore, for I/O complexity, the worst case is calculated,

i.e. assume there is no bu�er. Every time the algorithm accesses a disk-based data

structure, it results in an I/O operation. Later in Chapter 5, the empirical results

of the e�ects of the bu�er management scheme will be shown.

In Algorithm 6, there are three types of heaps: a binary heap for vertices in

S and D, a U-Heap containing the delegate vertices of all boundary sets, and a

Fibonacci heap for vertices in each boundary set. The �rst two types of heaps are

stored in main memory; the Fibonacci heaps are stored on disk but ready to load

into main memory when it is required. Therefore, the CPU complexity consists of

the manipulations of these three types of heaps, plus the relaxation process for the

vertices in S and D, as well as in theMainThrust process. For the manipulation of

binary heaps, the CPU complexity is the same as Dijkstra's shortest path algorithm

on S and D. Therefore, it is O(n log n +m), where n is the maximum number of

vertices in a fragment, m is the sum of number of edges in S and D. For the

manipulation of U-Heap, the worst case is that you have to update the U-Heap

every time when you have done a relaxation on a boundary set. A boundary set

is relaxed every time a boundary vertex in the two adjacent fragments is ready

to close. Assume that the number of boundary vertices in a fragment is b, and

there are s boundary sets. Then each boundary set is relaxed 2b times, so the

total times of relaxation is 2b � s. For each relaxation, the U-Heap updates the

value of a leaf node. Then the ancestors of the leaf nodes should also be updated if

necessary. The worst case is that all the ancestors are updated, so the update takes

(log s) times. Therefore, the running time complexity of U-Heap is O(b � s � log s).
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For the manipulation of Fibonacci heap, the worst case is that the decreaseKey

operation of a node must be done every time it is relaxed. Since the maximumtimes

a boundary vertex begin relaxed is 2b, and there are b � s boundary vertices, the

maximumtimes of decreaseKey operations in a Fibonacci heap is 2�b2�s. Since the
amortized running time of decreaseKey operation in the Fibonacci heap is O(1),

the total complexity of decreaseKey operation is O(b2 � s). Another operation

in the Fibonacci heap is the extractMin which runs in O(lg b) amortized time.

The total number of extractMin operations is the number of boundary vertices

b � s. Therefore, the complexity of extractMin operations in the Fibonacci heap is

O(s � b � lg b). Since the number of summations and comparisons in the relaxation

is the worst case of number of decreaseKey operations in the Fibonacci heap,

its complexity is in a lower order of the complexity of decreaseKey operations.

Therefore, summing up the complexities of the three types of heaps, we get the

total CPU complexity as follows:

O(n log n+m+ bs log s+ sb lg b+ sb2) = O(n log n +m+ sb2 + bs log s)

For the I/O complexity, it is assumed that every time we access a disk-based

data structure, there will be a Bi-bytes I/O operation, where Bi is di�erent for

di�erent disk-based data structures. Therefore, the I/O complexity can be sim-

pli�ed by two measurements: the number of I/O's and the number of bytes being

read in and written out. The disk-based data structure in the DiskSP algorithm

is used for containing distance vectors for boundary sets, the fragment database

and the distance matrix database. The distance vector is accessed whenever its
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corresponding boundary set is relaxed. By the analysis of CPU complexity, it is

known that there are totally 2b�s relaxation of boundary sets. Since the relaxation

of boundary vertices in a boundary set can be batched, it is possible to have only

one I/O for each relaxation of a boundary set. The I/O of a distance matrix is

also during relaxation. Each distance matrix is accessed once whenever its corre-

sponding fragment has a boundary set to relax in the worst case. Therefore, the

number of distance matrix access is the same as the number of relaxation of bound-

ary sets, i.e. 2b�s. The number of I/O of fragment database depends on how many

fragments the resulting shortest path traverses, since the fragment database does

an I/O in the FillSP algorithm, i.e. to complete the simpli�ed shortest path by

applying Dijkstra's shortest path to the intermediate fragments. The worst case is

that every fragment is traversed once. Therefore, the number of I/O is the number

of fragments, i.e. in O(s). Therefore, the total number of I/O is in

O(s + b � s+ b � s) = O(bs)

the total bytes of I/O is in

O(sB1 + bsB2 + bsB3)

whereB1, B2,B3 are the numbers of bytes being read in or written out by a fragment

database, distance vector and distance matrix data structures respectively.



Chapter 4

Implementation

The system architecture, testing data source, and the implementation details on

the data structures and the algorithms are discussed in this chapter.

4.1 System Architecture

Java was chosen as the implementation language because Java is a fully object-

oriented and a fast prototyping programming language. Java is also a network-

centric language. The program can be easily migrated to multi-tier application

architecture shown in Figure 4.1

In this architecture, the server side is divided into three tiers: Web Server

and GUI server, Route Query Engine, and Spatial Database Server. The Web

server and GUI Server tier is responsible only for receiving the users' requests and

displaying the shortest paths results; the Route Query Engine tier does the actual

route planning job; the Spatial Database tier provides the data required by the

90
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Web Server/GUI

Route Query Engine

User

GeoDB

Internet

RMI Corba/Socket

RMI Corba/Socket

HTTP

RMI Corba/Socket

Figure 4.1: Route Query Application Architecture

Route Query Engine tier and the GUI server, and is also responsible for updating

the volatile data (such as edge weights and path views). With this architecture, a

route-planning query goes like this:

� The end users submit route-planning queries through a web browser or other

client programs.

� The GUI server gets queries from the Web server and calls the services pro-

vided by the Route Query Engine.

� The Route Query Engine receives the queries, parses them, calls the services

provided by the Spatial Database Server to get the appropriate geometric
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data, and then launches the appropriate route-�nding algorithms on the data

to �nd the path. At last, the Route Query Engine returns the �nal results to

the GUI server.

� The GUI server then calls the services provided by the Spatial Database Server

to get the geometric data for the resulting paths, which are used to render

the map to the end user through the Web server.

The tasks of each server will be de�ned in Section 4.2. Determining how to

call the services provided by them is also necessary. Using Java, there are three

approaches on the candidate list. The �rst is to use Socket programming. In this

approach, a server is a daemon program listening to a particular port. The second

choice is to use Java RemoveMethod Invocation (RMI), which is an object-oriented

and platform independent approach. The third is to use Common Object Request

Broker Architecture (CORBA), which is an independent language as well as having

the advantages of RMI. The disadvantage of CORBA is that it is considerably slower

and more complicated to implement. The socket approach is the fastest of the three,

but it takes extra e�orts to de�ne the communication protocols and to manipulate

the data. The RMI approach may best �t this kind of application, since all our

programs are written in Java. Therefore, it is not necessary to sacri�ce eÆciency for

the language independency that CORBA pursues. It also provides remote objects

and method calls which is a very nice feature and great advantage over socket

programming. In the following discussion, we de�ne the services provided by servers

as remote objects and methods. By de�ning the objects and methods in them, we

can know precisely what services could be acquired from that server. The services
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and API's will be introduced in section 4.2.

The advantages of this architecture is that

1. It is highly portable and platform independent.

2. By distributing the task to di�erent servers, better performance and scalabil-

ity is attained.

3. This multi-tier system can be upgraded more easily than client-server archi-

tecture. Since tasks are distributed to di�erent servers according to their

functions, the corresponding servers can be upgraded without a�ecting other

servers. For example, for dynamics query cases, the weights of edges can

change at any time. Therefore, it is better to store the edge weights in a

di�erent database rather than the relatively stable digital map databases.

Maintaining the edge weights only a�ects the spatial database server, not the

route query engine or web server.

4. Hardware resources are not as demanding as client-server architectures thus

the costs could be lowered. Since both the route query engine and the spatial

databases are resource consuming (route query engine requires a powerful

CPU and spatial databases prefer faster I/O processing time), dividing these

two sub-tasks into two servers is preferable. One has a faster CPU but might

have a slower I/O; the other has a faster I/O ability but might not have as

fast a CPU.

However, this architecture also has disadvantages:
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1. There is communication overhead between servers in di�erent tiers. Part of

the overhead comes from the data transfer via the network; the other part

comes from the overhead over the software (RMI or CORBA). Nevertheless,

with the emerging high speed and broadband networks, network communica-

tions are even faster than hard disk I/O. With operating systems and other

low level software accommodating the hardware changes, the networks not

longer need to be considered as bottlenecks. As for overheads caused by RMI

and CORBA, some techniques have been developed to improve the perfor-

mance, such as caching techniques.

2. Multi-tier applications are more complex than client-server architecture in

terms of implementation. Since the application is distributed over the net-

work, more work should be performed on communication, synchronization and

management than the client-server applications. Nevertheless, with the new

technologies such as Enterprise Java Beans (EJB) and XML, programming

on distributed environments and managing distributed objects can be much

easier. Java is the most leading-edge language that provides such services at

the date this thesis is written.

4.2 Data Sources

For GIS systems, the data could come from various data sources. In the United

States, the geographical information is maintained in di�erent ways. For example,

the Bureau of The Census maintains a database called Census TIGER (Topologi-
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cally Integrated Geographic Encoding and Referencing) [43]. The TIGER/Line �les

are extracts from the TIGER database of selected geographic and cartographic in-

formation. It contains the line segments that represent physical features, and legal

and statistical boundaries. The �les consists of 17 record types, including the basic

data record, the shape coordinate points (feature shape records), and geographic

area codes that can be used with appropriate software to prepare maps. From the

17 record types, the data can be divided into three major types of features:

� Line features including roads, railroads, hydrography, miscellaneous trans-

portation features and selected power lines and pipelines, and boundaries.

� Landmark features including point landmarks such as schools and churches,

area landmarks such as parks and cemeteries, and key geographic locations

(KGL) such as apartment buildings and factories.

� Polygon features including geographic entity code for areas used to tabulate

the 1990 census statistical data and current geographic areas, locations of

area landmarks, and locations of KGL.

In terms of network queries in the Spatial Database systems, we do not have to

worry about the landmark features and polygon features, so we can extract the line

features from the TIGER/Line �les only. In order to be able to deal with multiple

types of data sources, it is better to extract the common properties of line features

in various data sources and construct an abstract layer which is called Abstract

Line Feature Layer (ALFL), as shown in the Figure 4.2 below.
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Abstract Line Feature Layer (ALFL)

Canadian Road System TIGER/Line Files Other Data Sources

GIS
Systems

Shortest Path
Query Engine

Figure 4.2: Geographical Line Features Abstraction

It is only necessary to program on the ALFL in our shortest path query engine

without worrying about the speci�c data source we are working on. The ALFL

actual hides the di�erences of the data sources, and acts as an interface to the

upper layer software.

In this implementation, the ALFL is a set of tables in relational database sys-

tems. By de�ning the columns and constraints on the columns on di�erent tables,

the ALFL interface can be de�ned in a precise way. The tables and their relation-

ships are shown in Figure 4.3.

In the Abstract Line Feature Layer, the StreetBlocks table plays a central role by

storing all street blocks (line features) in one table. Each street block is uniquely
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BlockID: CHAR(10) NOT NULL PK
Type: CHAR(3) NOT NULL
FrLong: DOUBLE NOT NULL
FrLat: DOUBLE NOT NULL
ToLong: DOUBLE NOT NULL
ToLat: DOUBLE NOT NULL
State: CHAR(2) NOT NULL
County: CHAR(3) NOT NULL

StreetBlocks

BlockID: CHAR(10) NOT NULL PK
Seq: INTEGER NOT NULL PK
PntLong: DOUBLE NOT NULL
PntLat: DOUBLE NOT NULL

BlockShape

FeatureID: INTEGER NOT NULL PK
FeatureName: CHAR(38) NOT NULL

Features

FeatureID: INTEGER NOT NULL
BlockID: CHAR(10) NOT NULL
Seq: INTEGER NOT NULL
Primary: CHAR(1)

Roads BlockID: CHAR(10) NOT NULL
FrAddL: CHAR(11)
ToAddL: CHAR(11)
ZipL: CHAR(5)
FrAddR: CHAR(11)
ToAddR: CHAR(11)
ZipR: CHAR(5)

AddressRangeZip

BlockIDL: CHAR(10)
BlockIDR: CHAR(10)
StateL: CHAR(2)
CountyL: CHAR(3)
StateR: CHCAR(2)
CountyR: CHAR(3)
FrLong: DOUBLE
FrLat: DOUBLE
ToLong: DOUBLE
ToLat: DOUBLE

BoundaryBlocks

Edit Date: 4/19/2000 11:56:36 AM

Description: tables created from TIGER DB. The tables
include both alphanumerical data and geometric data. The
goal of the design is to minimize the redundency yet efficient
in queries.Target DB: DB2 UDB Rev: 0 Ning Zhang

Filename: SDB_ERD.vsd University of Waterloo

SDB

State: CHAR(2)
County: CHAR(3)

County

feat: CHAR(8)
tlid: CHAR(10)

featemp$$

Figure 4.3: Abstract Line Features Layer Tables

identi�ed by a block ID which is a 10-character length string. If the roads are

classi�ed, the type of the street block (interstate highway, state highway or local

road) is captured in the Type �eld in the StreetBlocks table. The longitude and

latitude of the \from" node or \to" node (FrLong and FrLat, or ToLong and ToLat
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�elds) in the StreetBlocks table uniquely determines an intersection in the road

system. The State and County �elds hold which state and county this street block

is located in. If a street block lies exactly on the border of two counties, the State

and County �elds are set to a special value (\00" and \000" in this implementation).

In this case, the StreetBlocks table must be joined with the BoundaryBlocks table

to �nd the state and county information on both sides. The �elds BlockIDL (block

ID on the left hand side starting from \from" node to \to" node) and BlockIDR

(block ID on the right hand side) are the proper foreign keys to the join operation.

If the shape of a street block is not a straight line, it is simulated by a sequence

of ordered straight lines with one's head being another's tail. The coordinates of

the intermediate points (shape points) are given in the BlockShape table. The

BlockID �eld in the BlockShape table acts as a foreign key to the BlockID in the

StreetBlocks table. The seq �eld in the BlockShape table indicates the order of the

shape point in the street block. The less the seq, the closer it is to the \from" node.

The Roads and Features tables together capture the road features in the trans-

portation system. A road feature is de�ned to be a connected sequence of street

blocks that have the same feature name. Since feature name itself cannot uniquely

determine a road (for example both Waterloo and Toronto have a King Street), a

unique feature ID �eld was introduced to identify the road features. The seq �eld

indicates the order of a certain street block in a certain road feature, while which

street block in the road feature is the starting block, is unde�ned. Some roads may

have more than one name. In this case, the same road may belong to more than

one feature, but one feature name must be its primary name. This information (a
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single character 'Y' or 'N') is kept in the primary �eld in the Roads table indicating

whether the feature name is its primary name or not.

Address ranges and zip code information is stored in table AddressRangeZip

that can be joined with StreetBlock table by the foreign key BlockID. For one

street block, the addresses on either side may not constitute only one range. It is

possible (at least in theory) that the address ranges of two street blocks interleave.

In this case, we have to break down the address range into �ner ranges. For each

address range, there is a unique zip code associated with it. This is the constraint

on the input of this table.

The County table is an auxiliary table that keeps track of which counties have

been processed and stored in the tables. It is useful when it is necessary to incre-

mentally insert data from TIGER table to the ALFL tables. The featemp$$ table

is another temporary table for optimizing the query performance when populating

the Features and Roads table from the StreetBlocks table.

In this implementation, another program reads the data from the ALFL tables

and constructs a geometric database consisting of geometric objects, and then a

Hilbert R-Tree can be built on the geometric database, both of which, can be

applied to our graph partitioning algorithm. The process procedure is shown in

Figure 4.4 as follows.

In respect to the �gure above, the program used to convert the TIGER/Line �les

to ALFL tables is called MakeSDB.java. It is necessary to provide the TIGER/Line

�le names and the database name for storing the ALFL. Converting ALFL to the

Geometric Database is done by the Sdb2Gdb.java. For this program, it is necessary
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TIGER/Line Files ALFL Geometric Database Fragments
Super Graph
Sketch Graph

Hyper Graph

Preprocessing Phase
Query Phase

Input Queries

Figure 4.4: Data Flow

only to provide the database name. From the geometric database to the fragments

database, it is necessary to invoke the graph partitioning algorithm, which is im-

plemented in the HRTreePartition.java. The program takes four arguments, the

geometric database name, as well as the Hilbert R-Tree, the minimum and maxi-

mum number of vertices in the resulting fragment, and the name of the resulting

fragment database. The super graph database and the sketch graph are generated

by the program MakeSPDB.java by taking the fragment database as the input.

After these processes, the preprocessing phase is over and the input queries

are ready to be accepted. The input query is composed of a pair of source and

destination vertices. With the input vertices and sketch graph, pruning on the

sketch graph can be done, and then pruned sketch graph can be generated. At last

the Dijkstra's shortest path algorithm is applied on the pruned sketch graph and the

shortest path connecting source and destination can be found. The implementation

details of the pruning algorithm are described in section 4.3.2.
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4.3 Graph Representation and Class Hierarchical

Structures

Bearing the system architecture in mind, we should design the program such that

as little data as possible is transferred from one system to another. The classes and

their relationships are shown in UML in Figure 4.5.

+getNumberOfArcs() : int
+getNumberOfNodes() : int
+containsArc() : bool
+containsNode() : bool
+addArc() : bool
+addNode() : bool
+removeArc() : bool
+removeNode() : bool
+getNodes() : sequence(idl)
+getNode()
+getArcs() : sequence(idl)
+getArc()
+getAdjacentNodes()
+getConnectedComponents()
+writeGDB()
+mergeWith()
+substract()
+subgraph()

#nodes
#arcs
#nodeSeq

Graph

+getCoordinate()
+setCoordindate()
+getId()
+setId()
+getWeight()
+setWeight()
+isBoundary()
+setBoundary()
+isAvailable()
+setAvailable()
+getDegree()
+getIncidentArcs()
+addIncidentArc()
+deleteIncidentArc()

#id
#weight
#coord
#incidentArcs
#boundary : bool
#available : bool

Node

+getId() : String
+setId()
+getName() : String
+setName()
+getType() : String
+setType()
+getWeight() : long
+setWeight()
+getFrom() : Node
+setFrom()
+getTo() : Node
+setTo()
+getInterPts()
+getPeer() : Node
+isAvailable() : bool
+setAvailable()

#id : String
#from : Node
#to : Node
#weight : long
#name : String
#points
#available : bool

Arc

1#arcs0..*

+convertToMinGraph()
+convertToMaxGraph()

SketchGraph

1 #nodes0..*

+getMin() : long
+getMax() : long
+setMin()
+setMax()
+getFragmentId() : int
+setFragmentId()

#alpha : long
#beta : long

SuperArc

+setMBR()
+getMBR()
+getIncidentArcs()
+setCoordinate()
+arcIncidentArc()
+getDegree()
+deleteIncidentArc()

#degree : int
#incidentArcs
#mbr

SuperNode

0..*

1 1

0..*

Figure 4.5: Graph and SketchGraph UML

In this implementation, each fragment can be viewed as a graph object, which
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consists of a set of arcs and a set of nodes. Both of them are stored in hash

tables. For the node hash table, the keys are the ID's of the nodes, which are their

coordinates. For the arc hash table, the keys are also their ID's, which are unique

10-character ID's. Since currently we use TIGER/Line �les as our input, the ID of

an arc is already given and is guaranteed to be unique for the data in the United

States. If other data sources are used and they do not provide unique ID's for arcs,

they must be assigned unique ID's.

When the boundary vertices are pushed up to the higher level and form a super

graph, the super graph itself can also be represented by a graph object. However,

when the sketch graph is extracted from the super graph, it cannot be represented

by a graph object any longer. SketchGraph is a separate class containing SuperArcs

and SuperNodes instead of Nodes and Arcs. A SuperNode represents a boundary

set, while a SuperArc represents the all pair shortest paths from one boundary set

to another boundary set in some fragment. In SuperNode, we record the MBR of

the boundary set. In SuperArc, we record the minimum and maximum shortest

distances (alpha and beta respectively) from some vertex in one boundary set to

some vertex in another boundary set. Since we have two special properties a and b

associated with each super edge in the SketchGraph, we de�ne two methods in the

SketchGraph: convertToMinGraph() and convertToMaxGraph(). The �rst method

converts the SketchGraph to a general Graph object with the edge weight being the

a value. The second method does a similar processing except that the edge weight

is the b value. These two methods are useful when vertical pruning to the sketch

graph is done to the sketch graph.
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4.4 Implementation Details

In this section, the implementation details about the graph partitioning algorithm

based on BFS, the vertical pruning algorithm, the disk-based shortest path algo-

rithm and the virtual data structures are introduced. Particular source codes are

included with comments.

4.4.1 Building the Shortest Path Query Engine Step by

Step

Now a detailed description is given of how to build the database for a shortest path

query from raw TIGER/Line �les. There are two phase: pre-processing phase and

querying phase, and seven steps totally, in the two phases:

1. Pre-processing phase: build up the databases for shortest path query. There

are �ve steps in this phase:

Building up TIGER database from TIGER/Line �les. Sample command:

java Library.Route.MakeTigerDB tgr09001 NYC

This command insert the data in the raw TIGER/Line �le \tgf09001" into a

TIGER database contained in the data source \NYC". If you want to insert

multiple TIGER/Line �les into the same TIGER database, just invoke the

command multiple times with di�erent arguments.

Building up ALFL database from TIGER database. Sample command:

java Library.Route.MakeSDB NYC



CHAPTER 4. IMPLEMENTATION 104

This command convert the TIGER database in NYC to ALFL database in

the same data source. Note that a data source can contain di�erent databases

(set of tables) at the same time.

Building up a Geometric Object Database (GDB) and the Hilbert R-tree

on them. Sample command:

java Tools.Sdb2Gdb NYC

This command reads the line features from the ALFL database, converts them

into geometric objects, stores the geometric objects in a geometric database,

and builds the Hilbert R-tree index on the GDB.

Partitioning the GDB based on the Hilbert R-tree into fragments and

stored in a fragment database. Sample command:

java Library.Route.HRTreePartition NYC 15000 20000 NYC\_frag.db

This command partitions the geometric objects contained in the GDB NYC

into fragments, which are stored in the �le \NYC frag.db". the two �gures

15000 and 20000 specify the range of (minimum and maximum respectively)

number of vertices of the fragments when partitioning.

Calculating the k-pair shortest paths for all fragments in the database and

store the shortest distances in a Distance Matrix Database. Meanwhile, the

sketch graph for the fragments are also generated and materialized to hard
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disk. Sample command:

java Library.Route.MakeSPDB NYC\_frag.db

This command computes the k-pair shortest paths for every fragment in the

database \NYC frag.db". The distance matrix database is stored in a de-

fault �le \DistMatrix.db". The sketch graph is serialized into a default �le

\sketch.ser". And the boundary sets of the fragments are stored in another

�le \BoundarySets.db" for ease of loading boundary sets without loading a

whole fragment.

2. Querying phase: accept user's shortest path query, and return the result.

There are two steps in this phase:

Pruning the sketch graph by the given pair of vertices, and generate a

pruned sketch graph. Sample command:

java Library.Route.PrunedSP sketch.ser NYC\_frag.db (-73.249459,41.367495) (-

This command takes the two vertices represented by their coordinates in

the form of inside parentheses as source and destination, and tries to prune

the sketch graph which is serialized in \sketch.ser". The fragment database

\NYC frag.db" is used to �nd the fragments in which the source and destina-

tion vertices are. If the information is given by other processes, the fragment

database argument is not necessary.
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Finding the shortest path by the pruned sketch graph as well as the

Distance Matrix Database and the fragment database using the disk-based

shortest path algorithm. Sample command:

java Library.Route.PrunedSP pruned.ser ct\_frag.db (-73.249459,41.367495) (-

This command is taking the same source and destination vertices as those in

the above pruning step and the pruned sketch graph, as well as the fragment

database as input, �nds the shortest path between these two vertices.

In the above seven steps, not all of them are executed once whenever there is

a new shortest path query submitted. The �ve steps in the pre-processing phase

should be executed only once for static shortest path queries. When new source and

destination pairs come, only the last two steps in the querying phase are executed.

Therefore, our algorithm should optimize these two steps as far as possible.

4.4.2 Graph Partitioning Algorithm

The purpose of the graph partitioning algorithm is to divide the digital map into

fragments such that they are small enough to be read into main memory. The

fragments are stored into fragment databases by a virtual data structure. Since

super graphs must be constructed based on these fragments, the boundary vertices

should also be found out and attached to the fragments. Based on this requirement,

at least two classes are needed: Fragment class and BoundarySet class. A Fragment

class extends from a Graph class, but with some extra properties: a unique fragment
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ID (integer), the MBR of the fragment, and a set of BoundarySet of this fragment.

BoundarySet class is the set of boundary vertices shared by and only by certain

fragments. The ID of a boundary set is the ordered sequence of the fragment ID's.

For example, fragments 1, 3 and 10 are adjacent fragments, and their vertices are

v1; v2; v3; v4, v3; v4; v5; v6, and v3; v5; v7; v8 respectively. There are three boundary

sets < 1; 3 >, < 3; 10 >, and < 1; 3; 10 >. Boundary set < 1; 3 > contains vertices

v4, which are common vertices shared by fragments 1 and 3. Likewise, < 3; 10 >

and < 1; 3; 10 > contains v5 and v3 respectively. Note that v3 is not in the boundary

set < 1; 3 > nor < 3; 10 > since it is a common vertex in fragment 1, 3 and 10,

so fragment 1 and 3, or 3 and 10, are not the only fragments contains v3. In this

example, boundary sets < 1; 3 > and < 1; 3; 10 > are associated with fragment 1;

< 1; 3 >, < 3; 10 > and < 1; 3; 10 > are associated with fragment 3; and < 3; 10 >

and < 1; 3; 10 > are associated with fragment 10.

Since the digital map is too large, part of the mapmust be read �rst into memory

and then explored using BFS. During the graph traversal, part of the graph in

memory can be removed and other parts could be read into memory and merged to

the existing one. According to the algorithm given in Section 3.2.1, the digital map

should be partitioned into small grids �rst and then the grids should be merged as

the algorithm goes. With Hilbert R-Tree, partitioning the digital map into grids is

very easy, just by calling the method query(mbr, objs) in the HRTree class. The

�rst parameter mbr is the MBR which will retrieve the geometric objects. The

second parameter objs is an empty vector object that when the method returns,

contains the �le pointers of the geometric objects in the geometric database �le.
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Then the geometric objects can be read from the database according to the �le

pointers, and assembled into a graph object.

In order to keep track of which grids have been read into memory and merged,

we de�ne a Grid inner class as follows:

class Grid
{

sdbRectangle mbr;
boolean untouched; // is it already explored?
Grid(sdbRectangle rect)
{

mbr = rect;
untouched = true;

}
}

It contains two �elds: mbr and untouched. The mbr �eld records the rectangle

of the grid. The untouched �eld keeps the status of the grid. The grid formatted

digital map can be illustrated as in Fig. 3.2.

Suppose one vertex was selected in grid 0 as our starting point for traversing.

Since the next vertex could possibly be in grids 1 to 8, grids 1 to 8 must be read and

merged into a graph object before traversing. Merging the eight neighbour grids

(north, northeast, east, southwest, south, southwest, west, northwest) of a center

grid is called preparing-graph. This process guarantees that the BFS behaves the

same way on the partial digital map as on the digital map itself. Each grid of the

digital graph has a Grid object in main memory. When a grid is read and merged,

the untouched �eld in the corresponding Grid object is set to be false. When a new

vertex is explored, its grid is examined to see if all of its eight neighbours have been

\touched". When a fragment is constructed, it has to be removed from the graph

object in memory, otherwise the graph object will grow too large.
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4.4.3 Vertical Pruning Algorithms

For the vertical pruning algorithm, the inputs are the sketch graph and a pair of

source and destination vertices. The output is the pruned sketch graph. Given the

pruned sketch graph together with the fragment database and the distance matrix

database, the shortest path between the source and destination pair can be easily

found using the disk-based shortest path algorithm.

The vertical pruning algorithms are always used together, so they are bounded

into one method PrunedHyper() in the GraphAlgorithms class in this implementa-

tion. They work like a pipeline as shown in Figure 4.6.

Vertical
Pruning

Sketch Graph Hyper Graph

PruneHyper

Fragment Database
Distance Matrix Database

(source, destination)

Figure 4.6: Pruning Sketch Graph
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4.4.4 Virtual Data Structures

Figure 4.7 depicts the internal of virtual data structures.

76543210

520

index / key

key

object reference

file  pointer

object   data

secondary storage disk

Cache Table Object Data File

Stub Table

object data file (each square is
an object)

Figure 4.7: Virtual Data Structure Diagram

Inside the virtual vector and virtual hash table, there are two tables maintained

by the data structure in main memory; a stub table recording all data entries in

the virtual vector or virtual hash table, and a cache table for boosting performance
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by bu�ering a small number of objects in main memory.

The entry in the stub table is simply a 3-tuple { (InCache, Key, FilePointer),

where InCache is a Boolean variable indicating whether this data entry is in the

cache table or not. In Figure 4.7 the shaded entries 0, 2, and 5 are in cache while

others are not. FilePointer indicates the location in the �le where the object data

should be read or written out. Some entries in the stub table may not have �le

pointers such as entries 0 and 2 in Figure 4.7. This can only occur to entries in cache

because of the \lazy synchronization" policy used. With lazy synchronization, a

newly added object is not written to the object data �le immediately. Rather it will

be put to the cache �rst. When the object is going to be swapped out or the virtual

data structure is going to be closed, it is written out to the object data �le. Also

because it is not known whether the object has been modi�ed by the programmer

or not, when it is written out, we have to check the size of the object. If its size is

the same as it is recorded in the object data �le, the object data is written to the

same location as where it is read, otherwise the object should be appended to the

end of the �le and the previous copy, if any, should be marked as removed. In the

virtual data structure, each entry has an associated key boosting search operations.

In the virtual vector, the stub table is a vector, so the key is the index of the stub

vector; while in the virtual hash table, the stub table is a hash table, and we simply

use the key of the hash table as the key of virtual hash table.

The entry in the cache table is a 2-tuple - (Key, Object). The �rst �eld has the

same meaning as the \key" �eld in the stub table. Therefore, the key set in the

cache table is a subset of keys in the stub table with the InCache 
ag being true.
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The other �eld is an object reference to the actual object data. We use the Least

Recently Used (LRU) algorithm to determine which entry should be swapped out

from the cache bu�er.

In the Java implementation, the cache bu�er does not have a �xed size, although

a maximum bu�er size can be speci�ed. After version 1.2, JDK provides a useful

class called SoftReference. You can instantiate an object and point it with a SoftRe-

ference. When the Java Virtual Machine runs out of memory, the objects pointed by

only soft references are guaranteed to be reclaimed before an OutOfMemory excep-

tion is thrown. This feature is very useful in memory management. In the virtual

data structure, the objects in cache can be assigned to SoftReferences. Therefore,

you do not have to worry about the bu�er size being too large for certain database,

since the JVM will do the swapping automatically if necessary. However, another

diÆculty arises if the JVM determines which object should be eliminated from the

cache: it is necessary to synchronize the object to the object data �le before it is

reclaimed. Fortunately, Java o�ers a �nalize() method allowing some destructive

work to be done before the object is reclaimed. Therefore, the �nalize() method

must be overwritten in the cache entry class to ensure the consistency of the object

data �le with the cache. The snippet of �nalize() method for CacheEntry is show

as follows:

protected void finalize()
{

// we don't deal with the the CacheEntry that
// is already removed from the cache.

if ( ! ((StubEntry)rows.get(key.intValue())).inCache )
return;

else if (cache.get(this.key).hashCode() != this.hashCode())
return;
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// manipulate StubEntry table.
try {

StubEntry se = syncEntry(this); // write out data to object
// data file if necessary

se.inCache = false;
} catch (IOException e) { e.printStackTrace(); }

// manipulate LRU doubly linked list
if ( this == firstCacheEntry )

firstCacheEntry = next;
if ( this == lastCacheEntry )

lastCacheEntry = prev;
if ( prev != null )

prev.next = next;
if ( next != null )

next.prev = prev;

iCacheSize--;
}

In this implementation, an object in the cache is �rst serialized to a byte stream,

and then the length of the byte stream is written to the �le followed by the byte

stream itself. For the virtual vector, when an existing object data �le is opened,

the stub table can be constructed on the 
y by reading through all objects in the

�le. Therefore, no further information needs to be stored in the object data �le.

However, for the virtual hash table, the keys of the stub table cannot be obtained

by reading through the objects themselves. The only way is to store the keys also

in the object data �le. In this implementation, the stub table itself is also serialized

and appended to the end of the object data �le, followed by the length of its byte

stream. In this way, when a virtual hash table is opened, the last four bytes in the

object data �le, which is the length of the stub table, are read �rst. Then read in

the stub table from the end of the �le. The �le format is show as Figure 4.8
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len1 obj1 len2 obj2 len3 obj3 stub lenstub

Figure 4.8: Object data �le for Virtual Data Structure

4.4.5 Disk-based Shortest Path Algorithm

In the DiskSP algorithm, there are �ve data structures used: binary heap, U-Heap,

Fiboancci heap, distance vector, and distance matrix, each of which is implemented

by a class in Java.

Details in Binary Heap

The binary heap is implemented by an array as suggested in [1], because accessing

elements in an array is much faster than dereferencing nodes in a tree structure

in Java. This implementation of binary heap does not include the decreaseKey

operation, since 1) decreaseKey operation is expensive, 2) decreaseKey operations

are not a must, since every time we it is necessary to decrease the key of a vertex

in the heap, a new element pointing to the same vertex can be inserted instead,

with the decreased key. Then the newly inserted copy should be extracted earlier

than the old copy and after the vertex is closed, the old copy, which also points

to the same vertex, will be skipped. Using this scheme, it is necessary to protect

the binary heap from over
owing, since a vertex can be inserted multiple times,

although in sparse graphs over
ow is rare if the initial size is set to be the number

of vertices. A way to get around this is to make the binary heap a dynamically

extensible array. That is, whenever an over
ow is about to occur, the size of array

is extended by a factor of � (� > 1). In our implementation, � is set to be 2. The
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enqueue method which did the automatic extension is listed as follows.

/**
* Insert an entry to the bindary heap.
* If the bindary heap is full, it will automatically double its
* size.
*/
public void enqueue (Comparable object)
{

if (count == array.length - 1)
{

// BinaryHeap is full, doubling it.
Comparable[] newArray = new Comparable[array.length<<1];
System.arraycopy(array,0,newArray,0,array.length);
array = newArray;

}
++count;
int i = count, parent;
while (i > 1 && array[parent=(i>>1)].compareTo(object)>0)
{

array[i] = array[parent];
i = parent;

}
array[i] = object;

}

In this code, \array" is the array containing elements in the binary heap; \count"

is the actual number of elements in the array. The �rst if-statement checks the array

size to do an extension if necessary. The while-loop does the actual job of inserting

the element to the binary heap.

We do not do array-shrink when an element is extracted from the binary heap

since 1) Array copy is an expensive operation. It should be avoided unless it is

necessary. 2) Many small-sized array allocated frequently could make the memory

fragmented resulting in the slowing down of Java's garbage collector.

Details in U-Heap

Since a U-Heap is a full and complete binary tree as de�ned in Section 3.2.1, it is

very easy to implement it using an array. To construct a U-Heap for boundary sets,
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it is necessary to know the number of boundary sets l �rst. Each of the boundary

sets corresponds to a leaf node in the U-Heap. According to the nature of full and

complete binary tree, the totally number of nodes in the U-Heap is 2l � 1, which

can be easily get from mathematical induction. The code for initializing a U-Heap

is as follows:

/**
* Initialize a U-Heap according to an input array d.
* Input: d - data array. The elements should be the leaf nodes of
* the U-Heap.
*/
public UHeap(KeyValuePair[] d)

{
// allocate an array for the U-Heap,
// the size of the array is 2 * d.length - 1
size = d.length;
data = new KeyValuePair[(size<<1)-1];

// build up leaf nodes
System.arraycopy(d,0,data,size-1,size);
Arrays.sort(data,size-1,(size<<1)-1); // sort the data set by

// their keys

// build the heap structure by their "value" -- fill out
// non-leaf nodes
KeyValuePair left, right;
Comparable l,r;
for ( int i = size - 2; i >= 0; i-- )
{

left = data[(i<<1)+1];
right = data[(i<<1)+2];
l = (Comparable) left.getValue();
r = (Comparable) right.getValue();
data[i] = (l.compareTo(r) > 0) ? right : left;

}
}

Fibonacci Heap and Distance Vector

A Fibonacci heap is a collection of heap-ordered trees. To be speci�c, it is a col-

lection of \unordered" binomial trees [1]. Our implementation of the Fibonacci
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heap is based on the Chapter 22 of [1]. More details on how to implement the Fi-

bonacci heap can be found there. Here we only introduce the usage of the Fibonacci

heaps in the distance vector data structure, which keeps the boundary vertices in

a boundary set.

Fibonacci heaps are used for organizing boundary vertices in distance vectors

in \heap order". The key for a boundary vertex is its shortest distance from the

source vertex s. Since the Fibonacci heap does not provide \search" functionality,

operations (such as decreaseKey) which refer to a given Fibonacci node, require a

pointer to that node as part of their input. Therefore, when the Fibonacci heap is

constructed, all its newly generated nodes should be kept in a dictionary or map.

In this implementation, there are two hash maps in the distance vector as well as

the Fibonacci heap. The class variables and constructors of the DistVect class is

as follows:

public class DistVect implements Serializable
{

HashMap table; // (key=Coordinate,value=BsAux) pair
FibHeap queue; // open vertices in heap order by their

// distances,
HashMap openVertices; // contains the mapping from the open

// vertices the FibHeapNodes

/**
* Construct a distance vector.
* @param boundaryVertices the boundary vertices of the
* boundary set.
*/
public DistVect(Coordinate[] boundaryVertices)
{

int n = boundaryVertices.length;
table = new HashMap();
openVertices = new HashMap(n);
queue = new FibHeap();
FibHeapNode fhn;
for ( int i = 0; i < n; i ++ )
{
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table.put(boundaryVertices[i],new BsAux());
fhn = queue.insert(boundaryVertices[i],Long.MAX_VALUE);
openVertices.put(boundaryVertices[i],fhn);

}
} // End of DistVect()

} // End of Class DistVect

In this implementation, \queue" is a Fibonacci heap. All nodes in the heap are

initialized to Long.MAX VALUE. The hash map \table" contains a mapping from

a boundary vertex to its shortest path information kept in BsAux. This information

includes the shortest distance from s so far, the parent vertex in to shortest path,

and whether it is closed or not. The second hash map \openVertices" contains a

mapping from an open boundary vertex to a Fibonacci node in the Fibonacci heap.

Therefore, whenever a Fibonacci heap operation needs a node as a parameter (for

example decreaseKey to a boundary vertex), the \openVertices" can be looked up

by giving the coordinate of the boundary vertex.

Details in Distance Matrix

A distance matrix could be simply a 2-dimensional matrix that contains the shortest

distances between every pair of boundary vertices in a fragment. However, since

the goal is to retrieve the shortest distance by two boundary vertices, it is necessary

to keep the boundary vertices in the distance matrix too. A simple way to do this is

to keep the boundary vertices sorted in an array; the index of the boundary vertex

in the vertex array is the index in the distance 2-D array. For example, suppose the

indices of boundary vertex u and v are i and j respectively, the shortest distance

can be found in the distance array [i; j]. Another trick that can be played for an

undirected graph is based on the symmetric property of the distance array. More
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than 50% space can be saved by only recording the shortest distance from i to j

where i < j. Then the 2-D distance matrix can be represented by a 1-D array,

where rows in the upper triangle matrix are appended to the array head by tail.

The length of the array is given by n(n� 1)=2 where n is the number of boundary

vertices in the fragment. Given two indices in the vertex array i and j, the shortest

distance between them are given by:

shortestdistance =

8>>>>>><
>>>>>>:

0 i = j

matrix[i � (2n � i� 1)=2 + j � i� 1] i < j

matrix[j � (2n� j � 1)=2 + i� j � 1] i > j

The code for DistMatrix constructor and get method is given as follows:

public class DistMatrix implements Serializable
{

Coordinate[] coords; // ordered coordinates of boundary vertices
long[] linearMatrix; // 1-D array simulating distance matrix
int n;

/**
/* Construct the DistMatrix object.
/* @param c the boundary vertices.
/* @m the distance matrix
*/
public DistMatrix(Node[] c, long[][] m)
{

coords = new Coordinate[c.length];
for ( int i = 0; i < c.length; i++ )

coords[i] = c[i].getCoordinate();
int index = 0,len;
n = m.length;
linearMatrix = new long[n*(n-1)/2];

for ( int i = 0; i < n; i++ )
{

len = n-i-1;
System.arraycopy(m[i],i+1,linearMatrix,index,len);
index += len;

}
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}

/**
/* Get the shortest distance between two vertices with indices
* i and j.
/* @param i the index of vertex 1.
/* @param j the index of vertex 2.
/* @return the shortest distance between vertex 1 and 2.
*/
public long get(int i, int j)
{

if ( i == j )
return 0;

if ( i < j )
return linearMatrix[(i*((n<<1)-i-1)>>1)+(j-i-1)];

else // (j < i)
return linearMatrix[(j*((n<<1)-j-1)>>1)+(i-j-1)];

}
...
}



Chapter 5

Experiments

In chapter 3 and chapter 4, we have seen many data structures and heuristics

designed to optimize the running time in terms of both CPU and I/O time. In this

chapter, we will see the experimental results on real-world digital maps. We test

the correctness, eÆciency, and e�ectiveness of my implementation. The testing is

divided into two parts: the pre-processing phase and the querying phase. In the

pre-processing phase, the most important thing is the correctness. Although the

running time is also optimized for certain algorithms (such as in the k-pair shortest

paths algorithm), we do not focus on the performance issue as long as it can be

done in a reasonable time (it may take days for very large digital maps). On the

other hand, the running time is the most important measurement in the querying

phase, so we want to focus on the eÆciency of the pruning algorithm and disk-based

shortest path algorithm in the second phase.

The computer for testing is a dual-processor system with two Pentium III

933MHz CPU's and 1 GB SDRAM, with 16KB level 1 cache and 256KB level

2 cache. The hard disk is Ultra 160 SCSI drive. The operating system is Microsoft

121
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Windows 2000 Server SP1. We use Sun Java 1.3 HotSpot Client VM (build 1.3.0-C

mixed mode), and the relational database is IBM DB2 Universal Database Server

7.0.

The programs can be run on less powerful computers (for example, a Pentium

II 333MHz with 128MB memory and EIDE hard drive), as long as the minimum

memory requirement (depending on the maximum fragment size you speci�ed when

partitioing) is met. The only di�erence is the running time, which depends largely

on the power of CPU and the capacity and bandwidth of main memory.

5.1 Pre-processing phase

In the pre-processing phase, there are �ve steps: creating TIGER database in a

relational database system, converting TIGER database to Abstract Line Features

(ALF), generating object data �les and Hilbert R-tree for the geometric objects,

partitioning the object �le into fragments using Hilbert R-tree, and calculating k-

pair shortest paths between every pair of boundary vertices in each fragment. In

these �ve steps, I will not analysis the performance of creating Hilbert R-tree on

geometric objects because it was evaluated by other papers in our project group

[48].

5.1.1 Creating Tables for TIGER/Line Data Source

The TIGER/Line data is stored in plain text �les. There are seventeen �les cor-

responding to seventeen records for each county. In the relational database, we

need to create one table for each record. Data in the same record type in di�erent

counties are put in the same table. We use Java Data Base Connection (JDBC)
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as interface for accessing IBM DB2 database. The experimental results show that

the running time is proportional to the number of tuples inserted into the tables.

Reading from the TIGER/Line �les only contributes little to the running time. On

average, inserting every 1,000 tuples takes 6.33 seconds, while reading 1,000 lines

of TIGER/Line records and parsing it only takes about 0.013 second. Figure 5.1

shows the relationship between the running time and the number of tuples inserted

into the tables.

Figure 5.1: Running time of populating TIGER Databases

5.1.2 Creating Tables for Abstract Line Features

When creating tables for Abstract Line Features (ALF), we need to read tuples from

TIGER database, process the data, and save the results to ALF tables. Therefore,

unlike creating TIGER database, we need to measure the time for querying as well



CHAPTER 5. EXPERIMENTS 124

as insertion in RDBMS. Again, the major part (97% in average) of running time

is due to the execution of the SQL statements - queries and insertions in RDBMS.

Data processing is minimized to just a few simple type conversions for each tuple.

The SQL query statements are very simple like: \SELECT tlid, cfcc, frlong, frlat,

tolong, tolat, side1, countyl, countyr, statel, stater FROM tgr06001rt1 WHERE

cfcc LIKE 'A '". They do not have subqueries and aggregations. Joins are simply

between two tables. Insertion is also simple insertion without subqueries. In these

two types of SQL statements, insertions take about 91% of SQL time (i.e. 89%

of total running time). The percentages of running time contributed by di�erent

operations are shown in the Figure 5.2.

Figure 5.2: Time Distributtion of Making Abstract Line Features

According to the pie diagram of Figure 5.2, there is little to optimize since

insertions in most RDBMS are usually not optimized for running time performance.
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Rather, much overhead done for ensuring the data integrity and consistency slows

down the insertion process.

5.1.3 Partitioning Digital Maps into Fragments

In this experiment, we set the minimum and maximum number of vertices in frag-

ments to be 15,000 and 20,000. Road systems of seven states are chosen to form four

testing digital maps: Connecticut (CT), New Mexico (NM), California (CA) and

the eastern �ve states (East5, which is composed of Connecticut, Massachusetts,

New Jersey, New York, and Pennsylvania). The running time is divided into three

measurements: I/O time of virtual data structures, Hilbert R-Tree querying time,

and others as shown in Figure 5.3.

Figure 5.3: Time Distribution of Partitioning Algorithm on Di�erent Size Data

The time spent other than I/O and Hilbert R-Tree is mainly due to BFS graph
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traversing and �nding the boundary vertices between every pair of fragments. Ac-

cording to Figure 5.3, this process together with I/O time for virtual data structures

constitute the major part of total running time. The relationship between the total

running time and the number of arcs in the digital map is shown in Figure 5.4. It

is clear that the total running time is almost linear to the number of edges, which

is optimal for partitioning large digital maps.

Figure 5.4: Running time of comparing with number of edges

The statistic values (number of boundary sets in each fragment, number of

boundary vertices in each fragment, and so on) are shown in Table 5.1.

From the table, we can see that the average numbers of boundary vertices in

boundary sets are steadily around 40 to 50. The average number of boundary sets

per fragment is from 1.8 to 2.45. The average number of arcs in fragments is from

19,045 to 19,952. The relation between number of arcs and number of boundary
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State
(Number of
Arcs)

Number of
fragments

Number of
boundary
sets

Number of
boundary
vertices

Average number of
boundary vertices
per boundary set

CT
(199518)

10 18 1003 55

NM
(609424)

32 76 3216 42

CA
(2079668)

108 265 11705 44

East5
(3169730)

164 402 19434 48

Table 5.1: Partitioning results: fragments, boundary sets, and boundary vertices

vertices is shown in Figure 5.5.

Figure 5.5: Relation between number of edges and number of boundary vertices

From the experimental results, our partitioning algorithm is not as optimal

(in terms of number of boundary vertices) as Lipton and Tarjan's 2
p
2n planar

separator in planar graphs. Rather, the number of boundary vertices looks like in
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O(n). If we know the input graph is planar beforehand, implementing a disk-based

Lipton and Tarjan's planar graph separator algorithmmay give a much better result

for the disk-based shortest path algorithm.

5.1.4 Calculating k-pair Shortest Paths

The last step in the pre-processing phase is to compute the k-pair shortest paths

and materialize the results (distance matrices and sketch graph) on hard disk.

The running time can be divided into two parts: I/O time and k-pair shortest

path calculating time, in which the latter occupies the major part. The statistics

recorded in the four test cases are shown in the Figure 5.6.

Figure 5.6: Running Time of k-pair Shortest Path Algorithm

The relationship of running time and number of edges and number of boundary

vertices is shown in Figure 5.7.

From this diagram, we can see that the running time of k-pair shortest path
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Figure 5.7: Relation between running time and boundary vertices

algorithm is almost linear to the number of boundary vertices. It is better than the

Johnson's all-pair shortest path algorithm, which is in O(n2 log n). If the number

of boundary vertices can be decreased to O(
p
n), the running time can be reduced

greatly, which is very good for extending the algorithms to dynamic graphs.

5.2 Querying Phase

In the query phase, there are two steps: pruning the sketch graph given the source

and destination vertices, and �nding the shortest path between them using disk-

based shortest path algorithm.
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5.2.1 Pruning Sketch Graph

For the pruning algorithm, we test the eÆciency as well as its e�ectiveness. That

is, we have to test how long it takes to prune the sketch graph and how much

computation (CPU and I/O time) can be saved due to the pruning. The time the

pruning algorithm takes is composed of two parts: building the shortest path trees

in the source and destination fragments, and checking the � and � values of all

super edges to prune the super nodes. In these two parts, the second part can be

considered solely as the cost of pruning process. As for the �rst part, the result

can be shared by the disk-based shortest path algorithm. Therefore, when we talk

about the cost of pruning algorithm, we only consider the second part (denoted by

Tc). The saving of pruning algorithm also consists of two parts: the time saving

because of fewer distance vectors being constructed and fewer nodes in U-Heap

being generated (denoted by T1), and the time saving because of fewer main thrust

operations being performed (denoted by T2). T1 is determined by the number of

super nodes pruned, and T2 is determined by the number of main thrust operations

saved. The e�ectiveness of the pruning algorithm is measured by the bene�t of

pruning, which is de�ned as the actual saved running time (T1 + T2 � Tc). If the

value is negative, then the saving in shortest path algorithm is not worth the cost

of pruning process.

We tested the program on the digital map of New Mexico State with 1,000

randomly generated test cases. The 1,000 test cases are divided into three categories

based on the geographical relation between the source fragment S and destination

fragment D: non-adjacent, adjacent, and equal (i.e. S = D). Table 5.2 shows the
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results.

S and D are Number of

test cases

Total number

of SuperN-

odes removed

Total number of

MainThrust()

saved

Pruning time

(seconds)

Non-adjacent 838 1,759 106 354.267
Adjacent 140 4,291 432 53.254

Equal 22 1,256 243 8.423

Table 5.2: Testing Results of Pruning Algorithm

From table, we can see that the cost of pruning algorithm (pruning time) is

approximately proportional to the number of test cases. It means that pruning cost

is independent of the geographical relationship between S and D. (This actually

makes sense because according to the theoretical complexity analysis in Section 5.2,

the cost of pruning algorithm should only depend on the size of the sketch graph).

On the other hand, the saving of pruning process does depend on the geographical

relationship between S and D. In the 1,000 randomly generated test cases, most

of them (83.8%) are in non-adjacent category, but they only contribute 24.1% and

13.6% of the total savings in �T1 (total time savings because of less distance vectors

and nodes in U-Heap) and �T2 (total time savings for less MainThrust method calls)

respectively. The average bene�t for one test case is �0:41 seconds (based on our

experiments, the average time spent on constructing a distance vector and a node

in the U-Heap corresponding to a super node in the sketch graph is 0.00267 second.

The average time spent on one MainThrust method is 0.029 second). Therefore, in

general, it is not worth pruning if the two vertices are in non-adjacent fragments. In

contrast, only 2.2% of the test cases are in the category of \S equals to D" as shown

in Table 5.2, but they contribute to 17.2% and 31.1% of �T1 and �T2 respectively.
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The average bene�t per test case is 0.09 second. The rest of the saving are due to

the test cases that S and D are adjacent fragments, whose average bene�t is �0:21
second. From the experimental results, we can see that pruning algorithm is not

very e�ective when the source and destination vertices are far apart. The pruning

process is worthwhile only when the two vertices are in the same fragment, but the

bene�t is insigni�cant (much less than 1 second on average).

5.2.2 Disk-based Shortest Path

For the disk-based shortest path algorithm, we tested the correctness of the algo-

rithm and its running time performance. For correctness, two ways were taken:

boundary case testing and random testing. The result was compared with the

shortest path got from main memory version of Dijkstra's algorithm.

Correctness Testing

We came up with seventeen boundary test cases shown below to ensure the special

cases are handled correctly. Suppose the source vertex is s and the destination

vertex is d.

1. Shortest path passed a boundary vertex that is in multiple boundary sets.

2. s and d are in two di�erent connected components.

3. s and d are in the same fragments.

4. s and d are in adjacent fragments.

5. s and d are in non-adjacent fragments.

6. s and d are in the same fragment, and s is a boundary vertex.

7. s and d are in the same fragment, and d is a boundary vertex.

8. s and d are in the same fragment, and s and d are both boundary vertices.
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9. s and d are in adjacent fragments, and s is a boundary vertex.

10. s and d are in adjacent fragments, and d is a boundary vertex.

11. s and d are in adjacent fragments, and s and d are both boundary vertices.

12. s and d are in non-adjacent fragments, and s is a boundary vertex.

13. s and d are in non-adjacent fragments, and d is a boundary vertex.

14. s and d are in non-adjacent fragments, and s and d both are boundary vertices.

15. s = d, and s is not boundary vertex.

16. s = d, and s is a boundary vertex.

17. s and d are boundary vertices and in the same boundary set.

In addition to these boundary test cases, we also tested it by randomly generate

pairs of source and destination. The number of randomly generated test cases is

1,000 for both Connecticut and New Mexico states. All results equal to the result

got from main memory version of Dijkstra's algorithm.

Performance Testing

For performance testing, we examine the e�ects of di�erent parameters to the run-

ning time. By di�erent parameters, we mean the number of entries in the cache

for virtual data structures, and the amount of main memory allocated to the Java

Virtual Machine when it starts up. Among the virtual data structures, distance

vector (DistVect) and distance matrix (DistMatrix) are the two most frequently

used virtual data structures (both are virtual hash tables). To be more accurate,

we do not count the running time of FillSP algorithm, since that depends on how

far apart the destination from the source vertex. To simplify the experiment, we

�rst see the e�ects of the cache sizes of distance matrix and distance vector to the

running time when the amount of memory is suÆcient for Java Virtual Machine
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to put the maximum number of objects in the virtual data structures, then we see

what if the memory is not enough to �ll in the caches in virtual data structures.

Figure 5.8 shows the relation among the size of caches for distance vectors and

distance matrices and the running time using 500MB memory for JVM.
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Figure 5.8: Running time with various sizes of distance vectors and distance ma-
trices with 500MB for JVM

From the �gure, we can see that the cache size for distance vector greatly a�ect

the running time if it is less than 18, but the cache size of distance matrices does

not a�ect too much of the performance. This can be seen from the cross section of

the �gure along jDistanceV ectorj axis and jDistanceMatrixj axis, which is shown
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in Figure 5.9.
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Figure 5.9: The e�ects of cache size of distance vector and distance matrix (a)
running time for di�erent cache size of distance vectors (b) running time for di�erent
cache size of distance matrix

Another parameter a�ecting the performance is the amount of memory available

for JVM. Figure 5.10 shows the running time for di�erent cache sizes of distance

vector and distance matrix using 60MB memory for JVM.

From the �gure, we can see that di�erent amount of memory for JVM does not

change the \shape" of the surface. This is so because JVM garbage collector does

not bias to distance vector or distance matrix. Therefore, the only result is that
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Figure 5.10: Running time with various sizes of distance vectors and distance ma-
trices with 60MB for JVM

running time is decreasing when more memory is allocated to JVM. Figure 5.11

shows the running time for di�erent amount of memory assigned to JVM when the

cache size of distance vector equals to 4 and the cache size of distance matrix equals

to 2.

Another thing we want to test is the di�erence between binary heap and Fi-

bonacci heap in shortest path algorithms for sparse graphs and dense graphs. We

can think of road systems as sparse graphs since they are usually planar, whereas

super graphs can be thought of as dense graphs since they are composed of cliques.
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Figure 5.11: Running time for di�erent memory size with jDistMatrixj = 2,
jDistV ectorj = 4

We test the running time of disk-based shortest path algorithm using binary heaps

and Fibonacci heaps respectively for containing the vertices in distance vectors.

The results show that the average running time using Fibonacci heaps is 10%

faster than using binary heaps. The reason for that is because there are many

decreaseKey operations during MainThrust method, and Fibonacci heap has a less

asymptotic complexity for this operation than binary heap. However, when the

Fibonacci heap is used for Dijkstra's shortest path algorithm in fragments (sparse

planar graphs), the performance is 2% slower than using binary heap. The reason

for that is that Fibonacci heap's relatively large constant outweighs the relatively

small number of decreaseKey operations.
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Conclusions and Future Work

6.1 Summary

Memory-based shortest path algorithms are very well studied and many theoretical

and empirical results have come out. However, disk-based or external memory

shortest path algorithms are not studied very well. Some of the previous works have

built some theoretical models and have gotten empirical results from prototypes,

but none of them has shown that their algorithms are practical to very large spatial

databases such as the road system of California or even larger digital maps. My

thesis proposed a disk-based algorithm working like Dijkstra's algorithm and had

gotten promising empirical results from the real road systems. Experiment shows

that the running time of our disk-based shortest path algorithms is about two to

four times slower than the main memory version of Dijkstra's algorithm given that

the memory is large enough. This conclusion is based on the assumption that

the whole map can be �t into main memory and it is already loaded in advance.

If the I/O time for loading the whole graph is counted, our disk-based shortest

path algorithm is even faster in most cases. This is because we make use of the

138
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pre-computation information and it is well clustered on the disk.

An important factor of the eÆciency of our algorithm is the data structure we

used for the priority queue. Fibonacci heaps are better than binary heaps when the

graph is dense but are not as good when the graph is sparse. Fortunately, we can

di�erentiate dense graphs from sparse graphs o�ine, so applying di�erent priority

queues to di�erent kinds of graphs is possible.

Another even more important parameter is the cache size of virtual data struc-

tures. Experiments show that if the cache size is less than a certain value for

distance vector, the performance deteriorates very fast. This is because of the

locality of relaxation operations in the shortest path algorithm.

6.2 Future Works

In this thesis, we have shown that it is possible to answer the shortest path queries

in very large spatial databases quite fast. However, in order to make it applicable

to answer hundreds of queries per seconds in near real-time, much work has to be

done. Here I propose the most important and obvious work that should be done in

the future.

� Parallel computing: the idea behind our algorithm is divide-and-conquer, for

which parallel computing is one of the most suitable ways to speed up the

query processing phase. In the disk-base shortest path algorithm, when a

boundary vertex is the next closed vertex, all boundary sets in the same

fragment with the boundary vertex should be relaxed. This process can be

done in parallel, i.e. one thread is responsible for relaxing one boundary
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set. Since the MainThrust is the most costly operation in the shortest path

algorithm, this parallelism can contribute a lot to the overall performance.

� Di�erent replacement algorithms for virtual data structures: right now we are

using the Least Recently Used (LRU) algorithm to determine which item in

the cache should be swapped out to the hard disk. For shortest path problem,

it may not be the most appropriate algorithm. In the future work, modi�-

cations need to be done to the virtual data structure to let the programmer

choose replacement algorithms easily.

� Di�erent priority queues for sparse and dense graph shortest path algorithms:

we have tested the two most commonly used priority queues - binary heap

and Fibonacci heap. There are other data structures which may be more

eÆcient than these two in our particular applications.

� Lipton and Tarjan's planar graph separator for planar graphs: if the digital

map is planar, Lipton and Tarjan's planar graph separator algorithm could

result in much fewer boundary vertices. This can greatly reduce the com-

putation time of k-pair shortest path algorithm and the disk-based shortest

path algorithm as well.

� Dealing with dynamic graphs and online shortest path algorithms: in the real

world, the weight of an edge could be more complex than just the length

of the street block. It can be a function of time, or something you do not

know beforehand. Therefore, how to deal with the dynamic graph and online

problems is a very important and realistic problem. Some work has been done
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in theory, but not much in practice, especially for very large spatial databases.

This problem remains a major challenge for the future research.
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