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ABSTRACT 
 

Helmholtz’s classical theory of accommodation states that, within the eye, contraction of the annular 

ciliary muscle releases the passive tension of zonules that hold the lens in a flattened state.  As a 

result, the surface curvature of the lens steepens, and so too does dioptric power of the eye, allowing 

for nearby vision.  It was also hypothesized that presbyopia, the age-related loss of accommodation, 

is due to the loss of ability for the lens to deform with age.  Recently, the crystalline lens has been 

shown to possess a network of actomyosin filaments that are organized to help give the lens 

structural integrity.  Given that cytoskeletal proteins are known to contribute to the integrity and 

biomechanical properties of cells, the question is raised of whether lenticular cells and the lens as a 

whole are affected by changes to these proteins and their distributions, and if so, whether a drug 

therapy can be designed to specifically target and soften the crystalline lens by inhibiting 

cytoskeletal protein interactions.  This study was carried out in three stages: 

(1) Investigating the effects of various physiological inhibitors on the overall stiffness of the 

crystalline lens.  

(2) The development of a targeted drug therapy using one of the aforementioned inhibitors. 

(3) Testing the newly synthesized targeted drug therapy on an in vivo system, and assessing its 

effect on the accommodative system. 
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I. INTRODUCTION 
 

Within the anterior segment of the human eye, there exists a transparent biconvex structure known as 

the crystalline lens.  The crystalline lens assists the cornea with the refraction of incident light onto 

the retina such that objects at a distance are perceived to be in focus.  In order for vision to transition 

from distance to near, the lens must undergo a shape change to steepen its surface curvatures, which 

leads to increases in the focusing power of the eye as a whole.  The aforementioned process is 

known as accommodation, and is achieved via the contraction of an annular muscle surrounding the 

equator of the crystalline lens (Helmholtz, 1962).  However, as the eye ages, the mechanism of 

accommodation becomes increasingly compromised, which results in the eventual loss of near vision 

(Atchison, 2002; Duane, 1908).  The inability to focus on nearby objects is a condition known as 

presbyopia, and is presently considered to be the most common refractive disorder in later life 

(Davies, Croft, Papas, & Charman, 2016).  The onset of presbyopia typically occurs at 38 to 45 years 

of age, with a prevalence rate of 100% by the age of 55 (Koretz, Cook, & Kaufman, 2002).  All 

individuals eventually require intervention for presbyopia, regardless of any pre-existing refractive 

conditions in the eye (Holden et al., 2008; The Eye Diseases Prevalence Research, 2004).  However, 

unlike normal (emmetropic) and farsighted (hyperopic) individuals, short-sighted (myopic) 

individuals benefit slightly from their near-sightedness, and may not require intervention until 

slightly later on in life, although their amplitude of accommodation diminishes with age in a similar 

manner (Koretz & Cook, 2001). 

  The current non-invasive solutions to presbyopia include bifocal or progressive spectacles, 

multifocal contact lenses, and monovision correction (Meister & Fisher, 2008).  However, a small 

percentage of presbyopic individuals that dislike the use of ocular prosthetics require or elect to have 
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either multifocal corneal refractive surgery, implantation of corneal inlays that increase depth of 

focus, or implantation of accommodative intraocular lenses (Charman, 2014; Davidson et al., 2016; 

Gil-Cazorla, Shah, & Naroo, 2016; Ong, Evans, & Allan, 2014).  These solutions to presbyopia are 

considered management strategies rather than treatment options because they do not treat the 

underlying physiological cause of presbyopia; rather, they provide an optical solution to which the 

majority of the presbyopic population is content with. 

 It is likely that an actual physiological cure for presbyopia has not yet been resolved because 

of the residual uncertainty that still remains regarding the mechanism of accommodative degradation 

with age.  In general, there are three schools of thought for presbyopia, which are  based on 

Helmholtz’s theory of accommodation (Atchison, 2002): (1) lens and capsule based theories, which 

consider the continued lens fibre deposition and the loss of capsule elasticity with age, (2) 

extralenticular theories, which consider ongoing choroidal development and ciliary muscle atrophy, 

and (3) geometric theories, which consider changes in the zonular attachment positions to the lens 

with age.  The consensus is that the onset of presbyopia occurs as a result of these three theories 

acting in synchrony, and although the importance of each individual factor remains heavily disputed, 

it is widely believed that presbyopia is primarily caused by a loss of lenticular elasticity with age 

(Glasser & Campbell, 1998; Strenk, Strenk, & Koretz, 2005). 

 In an attempt to further understand lenticular biomechanics, several groups have investigated 

the composition and distribution of cytoskeletal proteins within the lens (Bassnett, Missey, & 

Vucemilo, 1999; Yeh, 1986).  In 1999, Bassnett et al. (1999) imaged a hexagonal network of 

extracellular cytoskeletal proteins that serves to anchor lens fibre cells to the surrounding lens 

capsule, known as the basal membrane complex (BMC).  The composition and architecture of the 

BMC suggest that it plays a critical role in maintaining the biomechanical integrity of the lens.  
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Furthermore, the distribution of actomyosin elements in the BMC, along with the presence of 

myosin light chain kinase (MLCK), suggests that the BMC may have two-dimensional contractile 

tones (Bassnett et al., 1999).   

  The objectives of this thesis are threefold: (1) to investigate the disruptive effects of 

cytoskeletal inhibitors on the biomechanical integrity of the crystalline lens, if so, (2) to identify 

whether an inhibitor could be modified to target and soften the crystalline lens, and finally (3) to 

assess the in vivo effects of the modified inhibitor on the accommodative mechanism of the eye.  
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II. LITERATURE REVIEW 
 

2.1 THE EYE 

 

The eye of any eukaryotic organism is an organ that is fundamentally responsible for the detection of 

light in order to form an image.  However, the complexity of the eye varies greatly in nature, and as 

a result, some visual systems are able to perceive more than others (Prince, 1956; Walls, 1942).  The 

simplest versions of eyes are found among single-cell organisms, such as the aquatic protozoan 

Euglena (Oyster, 1999).  Euglenas possess a single eye, known as a stigma, which is located at the 

base of their flagella, and is more of an organelle that can only recognize the direction from which 

incident light arises.  When stimulated, the stigma directs the Euglena towards light energy and 

nutrients.   

In contrast to the Euglena, the ability to process visual details and form images of 

surrounding environments requires a much more complicated eye; a multicellular organ has an 

aperture to regulate the amount of incident light, fixed and adjustable refractive elements to focus 

light from varying distances, and a network of diverse photosensitive cells that converts images into 

electrical signals to be received by a central nervous system (Oyster, 1999).  To that end, the human 

eye exemplifies a complex visual organ, and yet, it is well known that the design of the human eye is 

far from perfect.  For example, the photoreceptor cells of the human eye do not face the direction of 

incoming light.  Instead, they are embedded in a layer of surrounding tissue, and their neurons run 

towards the direction of incoming light.  As a result of this awkward directionality, the neurons must 

then exit the eye in order to reach the brain by passing back through the layer of photoreceptor cells 

from which they originally received their signals, thereby effectively creating a blind spot.  The blind 
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spot represents one of only a number of shortcomings in the human eye.  It is therefore crucial to 

understand the anatomy and physiology of the visual system in order to improve upon and develop 

remedies for the human eye.   

 

2.2  FUNCTIONAL ANATOMY OF THE HUMAN EYE 

 

The human eye, for the most part, is a spherical structure formed by three layers of tunics that 

encapsulate a pressurized chamber filled with a jelly-like substance (Fig. II-1) (Oyster, 1999).  The 

outermost tunic consists of a tough white scleral tissue that surrounds the posterior and majority of 

the eye.  Anteriorly, the sclera is continuous with the cornea, which is a transparent window that 

allows light to enter into the chamber.  The middle tunic, also known as the uvea, consists of the iris, 

an aperture that regulates the amount of light entering the eye, and the ciliary body, a muscle which 

 

Figure II-1: Schematic diagram of the human eye.  Anterior side facing left.  The 

outer tunic consists of the cornea and sclera, the middle tunic consists of the iris, ciliary 

body, and choroid, and the inner tunic is known as the retina.  The crystalline lens is 

suspended on the optical axis by the ciliary body. 
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suspends the crystalline lens at the front and centre of the chamber, just posterior to the iris.  The 

posterior end of the ciliary body is continuous with the choroid, which acts as a black body that 

absorbs stray light and provides the vascular supply to the retina, which is the innermost tunic. 

 

2.2.1 THE CORNEA AND THE SCLERA 
 

Although the cornea and the sclera are continuous with one another and are composed 

predominantly of the same components, their structures and functions are quite different.  The 

cornea is transparent and serves as the primary refractive element in the eye, whereas, the sclera is 

opaque, tougher to penetrate, and serves as the attachment point for various extraocular muscles 

(Oyster, 1999).  These dissimilarities are primarily due to the organizational differences of collagen 

fibrils between the two tissues (Borcherding et al., 1975; Komai & Ushiki, 1991).  In both the cornea 

and the sclera, collagen fibrils are organized into lamellae.  However, the diameter and spacing of 

individual fibres in the cornea are much smaller (< 200 nm apart) and more consistent than the 

sclera, whose fibres vary greatly in both characteristics.  The difference in mechanical strength and 

optical properties of the two tissues can be attributed to the lamellae of the cornea being stacked 

neatly on top of one another in order to allow for light to pass through easily, while the lamellae of 

the sclera is interwoven chaotically to increase tissue integrity at the cost of transparency 

(Borcherding et al., 1975; Maurice, 1957, 1970). 

 The air-water interface on the surface of the cornea, along with the cornea and its surface 

curvature, represents the most powerful refractive element in the eye (Holly & Lemp, 1977).  

Together, they provide two thirds of the total dioptric power of the eye.  The cornea is often referred 

to as the window of the eye, as it is the clear structure through which light first passes in order to 
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form an image.  The cornea is approximately 500-600 µm thick, depending on the region, and from 

anterior to posterior, it is composed of five distinct layers: (1) the corneal epithelium, (2) Bowman’s 

membrane, (3) the corneal stroma, (4) Descemet’s membrane, and (5) the corneal endothelium (Fig. 

II-2) (Maurice, 1957).  The corneal epithelium contains squamous cells, wing cells, and basal cells 

with each cell type originating from the layer below.  Basal cells, in turn, originate from stem cells 

that are found at the transition between the cornea and sclera, a region known as the corneal limbus 

(Kruse, 1994; Pellegrini et al., 1999); these cells can develop into any of the aforementioned cell 

types (Li et al., 2007).   

Aside from damage caused by trauma or surgery, the importance of the corneal regenerative 

mechanism arises due to squamous epithelial cells normally lost while blinking (Thoft & Friend, 

 

 

Figure II-2: Light micrograph of a histological cross-section of the primate cornea.  

Images taken with a (A) 10x objective lens, scale bar = 100 μm, and (B) 40x objective 

lens, scale bar = 5 μm.  Anterior side facing up.  Under low magnification, 3 layers of 

the cornea are visible: the corneal epithelium, the corneal stroma, and the corneal 

endothelium.  The corneal epithelium is composed of 3 cells types: squamous cells, wing 

cells, and basal cells.  The basement membrane of the epithelium is known as Bowman’s 

membrane.  Photo taken from a Turtox slide of the primate eye.  
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1983).  The basement membrane of basal epithelial cells interacts intimately with the subsequent 

corneal layer, known as Bowman’s layer, an 8-12 µm layer composed predominantly of collagen 

fibrils that is speculated to serve as a protective sheet for the corneal stroma and endothelium.  The 

corneal stroma constitutes approximately 90% of the total corneal thickness, and is composed 

primarily of keratocytes and collagen fibrils.  The posterior most layer of the cornea is known as the 

corneal endothelium, and is composed of a single-cell layer of simple cuboidal cells.  The metabolic 

activity of the endothelium helps with the essential role of maintaining a detergesced state in the 

cornea, so that over-hydration of corneal stromal cells does not cause losses in transparency.  The 

basement membrane of the endothelial cell layer is known as Descemet’s membrane, and lies 

between the endothelial cells and the posterior corneal stroma.  As Descemet’s membrane does not 

affect the metabolic interchange between the endothelium and stroma, its function is speculated to be 

primarily protection against perforation of the cornea (Yurchenco & Schittny, 1990).  

 

2.2.2 THE IRIS 
 

The iris of the eye is the coloured diaphragm that rests gently on the anterior surface of the 

crystalline lens.  The aperture or hole formed by the iris is known as the pupil, whose diameter can 

be varied by a set of muscles found within the iris in order to regulate the amount of light that enters 

the eye (Campbell, Robson, & Westheimer, 1959).  From a cross-sectional point of view (Fig. II-3), 

the iris consists of a large stromal body primarily composed of pigmented fibrous connective tissue 

(Freddo, 1996; van der Zypen, 1978).  At the posterior surface of the stroma is a stratified double 

layer of pigmented epithelial cells (Oyster, 1999).  At the pupil margin, a small length of the 

pigmented epithelial cell layers, known as the pupillary ruff, curls over to the anterior side of the iris 
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to increase the sharpness of the aperture stop (Oyster, 1999).  

Within the stroma of the iris, there exists an intricate network of vasculature with two arterial 

circles as its foundation.  Additionally, the expansion and contraction of the iris, which control the 

size of the pupillary aperture, are mediated by two muscles found in the stroma that act oppositely 

from one another (Lowenstein & Loewenfeld, 1950).  The dilator muscle, which is a thin 

myoepithelium produced by the more anterior of the two irideal epithelial layers, is arranged along 

the length of the iris; this muscle, sympathetically innervated, acts as an antagonist to the sphincter 

muscle, and functions to increase the radius of the pupil in order to augment the amount of light 

entering the eye.  The sphincter muscle, found at the margins of the pupil and arranged 

 

Figure II-3: Light micrograph of a histological cross-section of the primate iris.  

Images taken at with a (A) 10x objective lens, scale bar = 100 μm, (B) 20x objective 

lens, scale bar = 5 μm, and (C) 20x objective lens, scale bar = 5 μm.  Anterior side 

facing up.  The bulk of the iris consists of stroma which resides posterior to the anterior 

border layer.  The sphincter muscle resides within the stroma, closest to the pupillary 

end, whereas the dilator is a thin layer just anterior to the pigmented epithelium.  Photo 

taken from a Turtox slide of the primate eye. 
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circumferentially around the pupil is parasympathetically innervated, and functions to decrease the 

radius of the pupil in order to limit the amount of light entering the eye.  At the other end of the 

pupillary margin, the root of the iris is joined to the ciliary body of the middle tunic (Oyster, 1999). 

 

2.2.3 THE ANTERIOR CHAMBER 
 

Within the eye, between the cornea and the iris, is a fluid-filled compartment known as the anterior 

chamber (Oyster, 1999).  The fluid, known as aqueous humour, is produced by the ciliary body, and 

flows from the posterior chamber to the anterior chamber, where it is drained (Bill & Hellsing, 

1965).  The drainage system for the aqueous humour, known as the trabecular meshwork (Oyster, 

1999) is located at the lateral sides of the anterior chamber, the cornea and the iris meet at a junction 

known as the anterior angle (Fig.II-4).  The trabecular meshwork, in turn, has two drainage routes:  

(1) the corneoscleral meshwork, which accounts for 90% of the aqueous drainage, and (2) the uveal 

meshwork, which accounts for the remaining 10% of aqueous drainage (Weinreb, 2000).  Aqueous 

humour running out of the corneoscleral meshwork enters a large tubular canal of Schlemm, which 

is connected to the veins of the external sclera, that join the venous system (Bill, 1984; Tripathi, 

1971).  In contrast, aqueous humour exiting through the uveoscleral meshwork is removed by the 

smaller veins of the ciliary body after travelling through the interstitial space of the ciliary muscle. 

(Alm, 2000; Bill & Hellsing, 1965). 

 

2.2.4 THE CILIARY BODY 
 

Posterior and lateral to the iris root, the uvea continues as the ciliary body, an annular structure that 
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suspends the crystalline lens at the centre of the optical axis (Fig. II-5) (Oyster, 1999).  In addition to 

supporting the lens, the ciliary body functions to change the shape of the lens, as well as to produce a 

nutrient-rich fluid, known as aqueous humour, for the anterior ocular structures.  The stromal tissue 

of the ciliary body is highly vascularized, with a majority of the stroma composed of smooth muscle 

responsible for manipulating the shape of the lens in a process known as accommodation (Chapter 

II-1.5).  The ciliary muscles vary in length, with the circular fibres staying in the pars plicata, a 

region of the ciliary body containing finger-like projections known as ciliary processes, the oblique 

muscle ending in the pars plana, the region just posterior to the pars plicata containing flat ciliary 

body surfaces, (Fisher, 1977; Tamm, Tamm, & Rohen, 1992) and the longitudinal fibres terminating 

beyond the ciliary body, at the choroid.  The ciliary processes of the pars plicata project towards the 

 

Figure II-4: Light micrograph of a histological cross-section of the primate anterior 

angle.  Images taken with a 10x objective lens, scale bar = 100 μm, anterior side facing 

up.  At the junction between the cornea, sclera and uvea, a trabecular meshwork (also 

known as corneoscleral meshwork) and a uveaoscleral meshwork exists to drain aqueous 

fluid form the anterior chamber of the eye.  Photo taken from a Turtox slide of the 

primate eye. 
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lens and extend suspensory ligaments that attach to the lens equator.  Blood circulating through the 

ciliary processes are filtered through the ciliary epithelium, to produce aqueous humour, which is 

secreted into the posterior chamber for circulation through the pupil and in to the anterior chamber.  

At the tail end of the pars plana, towards the back of the eye, the epithelial cells expand to become 

the retina and the retinal pigmented epithelium, while the stroma continues as the choroid. 

 

2.2.5 THE CRYSTALLINE LENS 
 

The crystalline lens is a transparent ellipsoid structure that is centred on the optical axis by the 

annular ciliary muscle (Fig. II-6).  The anterior surface of the lens is less curved than that of the 

posterior surface.  In the adult, the lens is typically 10 mm in diameter with an axial length of 4 mm. 

 

Figure II-5: Light micrograph of a histological cross-section of the primate ciliary 

body. Image taken with a 10x objective lens, scale bar = 100 μm, anterior side facing 

up.  The bulk of the ciliary body is composed of 3 ciliary muscles that run in circular, 

oblique, and longitudinal orientations.  The region formed by the projections of the 

ciliary processes is known as the pars plicata, while the flat posterior underside is known 

as the pars plana.  Photo taken from a Turtox slide of the primate eye. 
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 It is, however, important to note that the size and shape of the lens can change due to 

accommodation (Chapter II-2.5) and because the lens continues to grow throughout life.  The 

structure of the crystalline lens can be divided into three main components; (1) the lens capsule, (2) 

the lens epithelium, and (3) the lens fibres (Rafferty, 1985).  The lens capsule is a thin (~2-28 µm) 

layer of collagen and sulfated glycosaminoglycans (GAGs) that surrounds the entirety of the lens 

(Kuwabara, 1975) and maintains the rigidity and shape of the lens as a whole.  Underneath the lens 

capsule, a single-cell layer of epithelial cells cradles anterior face of the lens (Taylor et al., 1996).  

At the equator of the lens, increasing concentrations in fibroblast growth factor (FGF) stimulate 

 

Figure II-6: Light micrograph of a histological cross-section of the primate 

crystalline lens. Image taken with a 10x objective lens, scale bar = 100 μm, anterior 

side facing up.  The anterior side of the crystalline lens is cradled by a layer of epithelial 

cells.  At the lens equator epithelial cells divide, differentiate, and elongate to become 

lens fibre cells that migrate towards the centre of the lens.  Photo taken from a Turtox 

slide of the primate eye. 
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epithelial cells to divide, differentiate, and elongate, respectively, to become lens fibre cells 

(McAvoy & Chamberlain, 1989), all of which occur simultaneously while they migrate posteriorly 

(Kuwabara, 1975).  The bulk of the lens is composed of lens fibre cells, with the oldest cells residing 

in the central lens nucleus, and the youngest cells residing close to the equator of the lens.  As they 

migrate, lens fibre cells undergo a modified apoptotic procedure in order to lose organelles while 

also maintaining the minimum requirements to survive so that light may pass unscattered through the 

centre of the lens (Kuwabara, 1975). 

 

2.2.6 THE RETINA 
 

In order for light to be perceived, it must be  detected by a specialized light-sensitive cell known as a 

photoreceptor.  In brief, there are two types of photoreceptors in the human eye: (1) rods, which are 

responsible for low light (scotopic), achromatic, low spatial acuity vision, and (2) cones, which are 

responsible for high light (photopic), chromatic, high spatial acuity vision.  A photoreceptor has five 

main anatomical regions (Baylor, 1996; Nathans, 1987) (Fig II-7): (1) the outer segment, which 

contains an excitable photopigment, (2) the inner segment, a site of metabolically driven pumps that 

 

Figure II-7: Schematic diagram of a photoreceptor cell.  Photons are absorbed by a 

photopigment that resides in the outer segment which produces an electrical signal that 

travels down the axon, past the nucleus, to the synaptic terminal where it is passed on to 

other cells. 
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sustains electric-current flow throughout the photoreceptor, (3) the nucleus, which controls the cells 

gene expression and interrupts, (4) the axon, which carries electrical impulses in the form of slow 

potentials to (5) the synaptic terminal, which produces neurotransmitters to communicate with other 

retinal neurons further downstream.   

The structure within the eye that houses photoreceptors is known as the retina, and is 

responsible for receiving, regulating, and transmitting light information from the eye to the visual 

cortex and the brain. Of the various intraocular structures, the retina is certainly the most 

anatomically complicated, however, due to the specific nature in which light information is received 

and travels out of the eye, the retina is organized into 10 distinct functional layers (Boycott, 

Dowling, & Kolb, 1969; Dowling & Boycott, 1966; y Cajal, 1893) (Fig. II-8).   The RPE is a 

single layer of melanin-rich epithelial cells just outside the photoreceptor layer.  Pigmented 

processes from the RPE extend into the photoreceptor layer and isolate the outer segments of each 

photoreceptor, which helps to increase the resolution of images by absorbing stray photons that have 

the potential to stimulate multiple photoreceptor cells.  Just anterior to the RPE is the photoreceptor 

layer, which contains the inner and outer segments of the photoreceptors.  The nuclei of these 

photoreceptors are found in the outer nuclear layer and are separated from their inner segments by an 

external limiting membrane.  The axons of photoreceptors continue through the outer plexiform 

layer, where their synaptic terminals meet the dendrites of receiving intermediate neurons.  The inner 

nuclear layer houses the nuclei of three intermediate neurons: bipolar cells, horizontal cells, and 

amacrine cells, which are responsible for the vertical and horizontal transmission and regulation of 

signals running through the retina.  The nuclei of Müller cells, which are the principle glial cells of 

the retina that form the internal and external limiting membranes, also reside in this layer.  The inner 

plexiform layer houses the axons of neurons synapsing with ganglion cells and amacrine cells.  The 
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final nuclear layer of the retina is known as the ganglion cell layer, and houses the cell bodies of 

ganglion cells and displaced amacrine cells.  The axons of ganglion cells run anteriorly and 

horizontally in the nerve fibre layer, and eventually exit the eye as the optic nerve in order to reach 

the brain.  Because the nerve fibre layer exits through the retina, a region exists where no 

photoreception is possible, effectively creating a blind spot in the eye (Fig. II-9). 

 A special region of the retina exists for high spatial acuity vision, known as the fovea, whose 

centre occurs approximately 4.9 mm temporally from the centre of the optic disc (Williams & 

Wilkinson, 1992).  The fovea is approximately 1500 μm in diameter, with a central region of about 

200 μm known as the foveola (Fig. II-10).  At the foveola, the retina is approximately 100 μm thick 

and consists of only 6 of the 10 retinal layers: the RPE, the photoreceptor layer, external limiting 

 

Figure II-8: Light micrograph of a histological cross-section of the primate retina. 

Image taken with a 20x objective lens, scale bar = 50 μm, anterior side facing up.  From 

interior to exterior, the retina is composed of 10 layers: (1) internal limiting membrane, 

(2) nerve fibre layer, (3) ganglion cell layer, (4) inner plexiform layer, (5) inner nuclear 

layer, (6) outer plexiform layer, (7) the outer nuclear layer, (8) the external limiting 

membrane, (9) the photoreceptor layer, (10) the retinal pigmented epithelium (RPE).  

Photo taken from a Turtox slide of the primate eye. 

 



17 

 

 

Figure II-9: Light micrograph of a histological cross-section of the primate optic 

nerve head. Image taken with a 10x objective lens, scale bar = 100 μm, anterior side 

facing up.  At the optic nerve head, nerve fibre cells exit through the retinal layers, 

creating a blind spot.  Photo taken from a Turtox slide of the primate eye. 

 

 

Figure II-10: Light micrograph of a histological cross-section of the primate fovea. 

Image taken with a 20x objective lens, scale bar = 75 μm, anterior side facing up.  At the 

fovea, only the RPE, the photoreceptor layer, external limiting membrane, outer nuclear 

layer, outer plexiform layer, and the inner limiting membrane are present.  Photo taken 

from a Turtox slide of the primate eye. 
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membrane, outer nuclear layer, outer plexiform layer, and the inner limiting membrane.  The missing 

layers of the retina at the foveola have been pushed aside to optimize photoreception in this region, 

and can be observed at the edge of the foveal rim.  The principle reason for the sharp central vision 

of the fovea is due to the high density and exclusive presence of cones in the photoreceptor layer.  

Furthermore, almost no horizontal dispersion of light information occurs as the photoreceptors in the 

fovea are connected in a near 1:2:2 ratio with bipolar and ganglion cells, respectively (Mollon & 

Bowmaker, 1992).  

 

2.2.7 THE CHOROID 
 

Surrounding the retina, just outside of the photoreceptor cells, is a heavily pigmented layer of 

vascular tissue known as the choroid (Fig. II-11), which is the continuation of the uveal tract at the 

posterior end of the ciliary body (Oyster, 1999).  The vasculature of the choroid provides nutrients 

and metabolic exchange to the photoreceptor cells (Oyster, 1999).  Furthermore, the heavy 

pigmentation serves to absorb stray light that is not received by the photoreceptor layer. 

 

2.3 COMPARATIVE ANATOMY AND EVOLUTION OF THE EYE 

 

Although modern day discussions about evolution utilise the phylogenetic descriptions, a good 

number of investigations concerning the evolution of the eye also use the Linnaean system.  

Discussions on evolution of the eye in this thesis follow the conventions of the references.  Given 

that early references to evolution were written before phylogenetic advances, the descriptions in this 

thesis are organised in the classical Linnaean system, unless otherwise noted. 
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In comparison with other visual organs in the animal kingdom, the human eye is not the most 

highly evolved visual structure, nor is it the most fundamental.  It cannot detect wavelengths outside 

the visible spectrum (about 390 nm to 700 nm), unlike American kestrels (Rajchard, 2009), nor does 

it have the incredible distance vision of red-tailed hawks (Jones, Pierce, & Ward, 2007), nor the 

ultra-rapid tracking of flycatchers (Boström et al., 2016).  The human eye is, perhaps surprisingly, 

average.  And yet, with only materials such as cells, water, and jelly, nature has created a diverse 

number of optical systems delicately tuned to allow survival of each species.  Therefore, in order to 

understand, research, and improve upon the human eye, it is important to compare and contrast the 

human visual organ to that of others in the animal kingdom. 

 

 

Figure II-11: Light micrograph of a histological cross-section of the primate 

choroid. Image taken with a 20x objective lens, scale bar = 50 μm, anterior side facing 

up.  The vasculature of the choroid is organized into three layers in which the diameters 

of the vessels progressively become smaller as they approach the photoreceptor layer; 

Haller’s layer is the outermost region and contains the largest blood vessels of the 

choroid, Sattler’s layer is immediately interior to this layer and contains blood vessels 

with medium sized diameters, and finally, the choriocapillaris layer is closest to the RPE 

and contains the capillaries that nourish the photoreceptor layer.  Between the 

choriocapillaris and the RPE, a basement membrane composed of equal parts choroid 

and RPE exists, and is known as Bruch’s membrane. 

 



20 

 

2.3.1 THE AQUATIC EYE 
 

Regardless of the vertebrate type, whether it be mammalian, amphibian, or avian, its eye originated 

and emerged from the water.  It is for this reason that the physical and chemical properties of water 

have such a profound relationship with the vertebrate eye.  Indeed, the refractive structures, as well 

as the aqueous and vitreous substance of vertebrate eyes are composed of and rely predominately on 

water and its special properties.  The origin of water in the vertebrate eye, in turn, arose from the 

phenomenon known as osmosis, or the passive movement of water through membranes towards 

higher concentrations of dissolved substances. 

 One aquatic species that still takes advantage of the osmotic phenomenon is the 

Petromyzontidae (Collin, 2009), also known as lampreys, of the Cyclostomata clade (Gabbott & 

Donoghue, 2016).  Their semi-permeable corneas allow for the influx of water to help maintain a 

desired intra-ocular pressure (Collin & Collin, 2001).  In addition to this mechanism, the cornea, 

along with an overlying sheath known as the spectacle, is also responsible for accommodation in 

lampreys (Sivak & Woo, 1975).  The cornealis muscle, which is extra-ocular, inserts into the skin of 

the spectacle from the posterior side.  Contraction of the cornealis muscle causes a flattening of the 

cornea, whose interior surface simultaneously pushes on the lens, resulting in its translational 

movement.  The majority of aquatic eyes are required to accommodate by translation of the lens due 

to the refractive properties of the cornea being rendered neutral by the surrounding water.  As a 

result, aquatic lenses are considerably more spherical than human lenses, and so accommodation by 

a change in lens shape would not be as effective at changing focal lengths as a translational 

movement.  Aside from the delicately balanced corneal osmotic mechanism, and the translational 

accommodation mechanism, however, the lamprey eye is rather primitive, and considered the 
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simplest amongst non-degenerate eyes of vertebrates.     

 Amongst the more complex of the aquatic eyes are those of the teleosts, which make up 96% 

of the fish population (Walls, 1942).  Due to the overwhelming diversity of species in this class, the 

eyes of teleosts are incredibly diverse; therefore, only the anatomical structures found amongst the 

majority of these fish will be highlighted.  The teleost eye, like that of the lampreys, has a clear 

dermal sheath that sits on top of the corneal layer; however, this sheath is not responsible for 

accommodation (Sivak, 1975; Tamura, 1957).  Instead, the spherical lens, which is held in place by a 

suspensory ligament, is attached at its equator to a retractor lentis muscle that pulls it temporally and 

backwards in order to increase refractive power in the eye (Somiya, 1987; Somiya & Tamura, 1973).  

The retractor lentis originates from the falciform process, which is a protrusion of the choroid into 

vitreal space that helps nourish and aid with the metabolic exchange of the inner retina.  In nearly all 

teleosts, the retina contains three types of visual cells: rods, single cones, and twin cones (Levine & 

MacNichol, 1979). As a result, most teleosts have colour vision, and are able to see in both scotopic 

and photopic conditions.  The exact function of the twin cones is not known, however, it is 

speculated by Lyall (1957) and Walls (1942), that they are associated with vision in deeper waters.  

In 1953, Wilmer found that the twin cones share a similar function as but are more sensitive than 

their single cone counterpart. Additionally, Wilmer demonstrated that both cod and whiting fish, 

which are both species that live in considerable depths, have almost exclusively double cones in their 

retinas.  These two pieces of evidence suggest that the twin cones most likely serve as an 

intermediate light receptor, between that of rods and single cones, to provide colour vision in low 

light conditions, such as that of a deep water environment (Lyall, 1957). 

 Elasmobranchs, which is the subclass that contains sharks and rays, possess the largest of the 

non-mammalian aquatic eyes (Hodgson & Mathewson, 1978).  For the most part, the elasmobranch 
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eye possesses the typical characteristics of an aquatic eye; they have a flatter anterior segment, with 

an inner surface of the cornea that rests on the anterior surface of a spherical lens (Sivak, 1990).  

However, accommodation in elasmobranchs is extraordinarily different from that of the cyclostomes 

and teleosts.  A translational movement of the lens is achieved by a bowing out of the 

suprachoroidea, which pulls the entire anterior segment backwards, while leaving the retina and its 

curvature in place (Sivak, 1978).  In addition to this mechanism, almost all elasmobranchs possess a 

specialized reflective layer in their choroids known as the tapetum lucidum, which allows for 

increased sensitivity in low light conditions (Best & Nicol, 1967; Heath, 1990). 

 

2.3.2 THE AMPHIBIOUS EYE 
 

During the transition of vertebrates from aquatic to terrestrial living, the most important adaptation 

was that of the anterior surface.  The corneal interface with air immediately presented refractive 

advantages to the eye; however, certain disadvantages arose as well.  The corneal surface had to 

remain transparent, and safe from injury.  As a result, it became necessary to evolve lids that would 

protect and wipe the eye, coat it in tear film, and distribute that tear film evenly (Walls, 1942).  

Because the lens was no longer the essential refractive element in the eye, it receded further back, 

towards the retina, allowing for the development of an aperture and diaphragm mechanism, that are 

the pupil and iris, respectively.  Additionally, the shape of the lens became less spherical, allowing 

for the accommodative system to go from a translational movement to a shape change mechanism 

(Walls, 1942).  Due to the aquatic and terrestrial nature of amphibians, the evolution of their eyes is 

caught in an awkward state between the two environmental paths.  According to Walls (1942), ―the 

Amphibia have never felt fully the penalties, nor completely realized the possibilities of either 
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situation.‖  Their eyelids and associated glands are suboptimal, and at times, barely functional 

(Walls, 1942).  Additionally, they still use a translational system for accommodation, without ever 

having developed a muscular ciliary body. 

 Anurans, the order to which frogs belong, demonstrate a very interesting path of ocular 

development, as they are hatched aquatically, as tadpoles, and transition through metamorphosis to 

become terrestrial adult frogs.  During the transition from water to land, the eye of the anuran 

develops lids and a nictitating membrane to protect and lubricate the eye.  Additionally, the dermal 

spectacle, like those typically found in aquatic eyes, either fuses with the dural cornea or atrophies, 

to produce a single corneal structure.  Finally, a massive Harderian gland develops, which secretes 

mucous, serous, and/or lipid components to the tear film depending on the species (Chieffi et al., 

1992; Payne, 1994; Shirama, Kikuyama, Takeo, Shimizu, & Maekawa, 1982).  Adult frogs possess a 

broad bifurcation of the external rectus muscle, known as the retractor bulbi, which is so powerful 

that in some species, can help with mastication and ingestion of food while also protecting the 

eyeball (Levine, Monroy, & Brainerd, 2004).  The accommodation mechanism in frogs is quite 

unique in that they possess two muscles, one dorsal and one ventral, both of which originate from the 

iris root and insert near the posterior side of the ciliary triangle (Douglas, Collett, & Wagner, 1986).  

Contraction of these muscles draws the zonule anchors forward, resulting in the approximation of the 

lens moving towards the cornea (Douglas et al., 1986).  Therefore, the unaccommodated state of the 

frog eye, unlike humans, allows for near vision, and accommodation allows for distance vision.  The 

retinal pigmented epithelium (RPE) of certain frogs that have suboptimal eye lids contains an 

interesting pigment migration mechanism.  During intense photopic conditions, pigment from the 

RPE migrates over the photoreceptor layer in order to prevent bleaching of photopigments.  In 

contrast, a transition to scotopic conditions leads to the retraction of mechanical pigments back to the 
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RPE layer (Bäck, Donner, & Reuter, 1965; Burnside & Nagle, 1983). 

 The urodeles, or salamanders, possess eyes that are similar in structure to that of anurans, 

however, the visual organs of salamanders are considerably smaller and simpler than that of frogs 

(Walls, 1942).  It is uncertain whether or not these differences are a result of salamanders not 

requiring as much vision as frogs, or because they are the ancestral precursors of frogs.  The urodele 

extraocular muscles, accommodative system, and retina possess the same morphological elements as 

anurans (Jordan, Luthardt, Meyer-Naujoks, & Roth, 1980; Ott, 2006).  However, salamanders differ 

primarily by having photoreceptors that are larger in size and smaller in number.  Furthermore, they 

have the most extensive ability in the animal kingdom to regenerate complex structures (Reyer, 

1977; Stone & Farthing, 1942), such as the lens (Reyer, 1954) and the retina (Mitashov, 1996; 

Mitsuda, Yoshii, Ikegami, & Araki, 2005), in addition to many other parts of their body (Ghosh, 

Thorogood, & Ferretti, 1994; Tassava & Huang, 2005).  The regenerative mechanism in salamanders 

is thought to be initiated by local activation of thrombin, which signals cell cycle re-entry and 

regeneration (Imokawa & Brockes, 2003; Simon & Brockes, 2002; Tanaka & Brockes, 1998).  In 

contrast, mammalian liver regeneration is initiated by serotonin release, which signals proliferation 

in residual hepatocytes (Lesurtel et al., 2006).  The differences in signalling pathways is speculated 

to be an important clue as to why mammalian regeneration is so distinctly limited (Godwin & 

Brockes, 2006). 

 

2.3.3 THE TERRESTRIAL EYE 
 

The link from amphibians to reptiles would be all but lost if it were not for the discovery of the 

Seymouria, an extinct amphibious descendant considered to be the first reptile (Watson, 1918).  The 
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Seymouria was found to have adapted the necessary organs to exclusively live on terrain.  The 

Seymouria are thought to have evolved the lens-squeezing mechanism of accommodation, and with 

it, striated muscle in the ciliary body, attachment points of the ciliary muscle to the scleral spur, 

scleral ossicles, and a thickening of the lens equator, known as an annular pad (Walls, 1942).  

Reptilian descendants of the Seymouria would eventually develop striated muscle in their irises, 

along with a pigmented and vascular conical protrusion from the optic nerve head known as the 

conus papillaris.  Due to their lack of a central retina artery, the conus papillaris serves to nourish the 

innermost layers of the retina by diffusing nutrients through the vitreous, much like the falciform 

process in teleosts (Walls, 1942).   

Although snakes belong to the reptilian class, their eyes are widely different than any other 

reptilian suborder, and even differ greatly from their lizard ancestors (Walls, 1942).  Of all the 

reptilian species, only snakes have the dermal spectacles that are found universally in aquatic eyes.  

In addition, the choroid and the sclera are so firmly fused, that it appears as if no embryological 

differentiation has occurred (Walls, 1942).  The lens of snakes is much more spherical than that of 

other reptiles, and also develops sutures with age (Phillips, 2009).  Furthermore, aside from certain 

aquatic snakes that accommodate by a translational movement of the lens, most species of snakes 

have hard lenses, and uncertain mechanisms of accommodation (Sivak, 1977; Walls, 1942).  One 

characteristic that snakes do share with other reptiles is their reversion from diurnality and pure-cone 

retinas to nocturnal lifestyles supported by rod-rich or even pure rod-retinas (Davies et al., 2009). 

Similar to reptiles, the majority of non-primate mammals are either nocturnal or crepuscular.  

The nocturnality of these animals is speculated to have evolved as a survival mechanism during the 

triassic-jurassic period to avoid the diurnal dinosaurs (Gerkema, Davies, Foster, Menaker, & Hut, 

2013; Walls, 1942); this concept, proposed by Walls in 1942, is known as the bottleneck theory, and 
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is supported to this day (Gerkema et al., 2013).  As a result of switching from photopic to scotopic 

vision, a reflecting structure within the eye, known as the tapetum, was evolved (Ollivier et al., 2004; 

Walls, 1942).  In most mammals and reptiles, the tapetum is a reflective layer that appears between 

the choroid and retinal pigmented epithelium, and in scoptopic conditions, provides the 

photoreceptors of the retina with a second opportunity for stimulation, thereby enhancing visual 

sensitivity (Braekevelt, 1986, 1990).  Most of the noctural mammals, such as the monotremes and 

marsupials possess tapeta, and operate almost exclusively in dim light conditions (Walls, 1942).  The 

monotreme eye is, in fact, so similar to the reptilian eye (O’Day, 1952), that it alone can prove the 

reptilian origin of the entire mammalian class.  The only difference between the eyes of reptiles and 

monotremes is the lack of a ciliary body in the latter.  Instead, monotremes possess a ciliary web 

(Walls, 1942), which is essentially a thin iris, void of muscle, interconnecting the ends of the ciliary 

processes.  This small difference, however, indicates that no monotreme has any demonstratable 

mechanism of accommodation.  In fact, the majority of  mammals, including placentals such as mice 

and rats, display little to no accommodative ability (Barrett, 1938).  Accommodation was not 

considerably present in mammals until its necessity arose in predatory or high-functioning species 

(Barrett, 1938; Walls, 1942). 

Despite the large differences in appearances between birds and reptiles, the bird eye also 

contains no important feature that does not already occur in the reptilian eye.  The reason is likely to 

be because no evolutionarily beneficial structure was required since its separation from its reptilian 

common ancestor.  The avian class, however, relies much more on its visual organs, and it is perhaps 

for this reason that the bird eye is so significantly larger, on average, than that of the reptiles.  The 

eyes of a fully developed hawk or owl, whose body sizes are a fraction of adult humans, are 

comparable in size, if not larger, than of humans.  Because of their relatively large eyes, there is only 
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room for a small cranial cavity.  The eyes of birds fall in to one of three categories: (1) flat, such as 

those found in swans and chickens; (2) globose, such as those found in hawks, eagles, and buzzards, 

or (3) tubular, such as those found in owls.  In all three categories, the eye exhibits a region of 

concavity, directly peripheral to the corneal limbus, which is shaped by a ring of bones known as the 

scleral ossicles.  The scleral ossicles, in turn, support the anterior eye during accommodation, which 

is particularly strong in birds due to the immense striated muscle found in the avian ciliary body.  

The majority of birds are non-predatory, and thus, are capable of surviving with the short axis 

offered by the flat eye (Sillman, 1973).  Birds of prey, however, need high resolution sight at great 

distances in order to hunt and survive, and therefore require a longer axis, such as that of the globose 

eye (Hocking & Mitchell, 1961).  The longest axis is found in the tubular eye, so named due to the 

shape the lengthy eye must adopt in order to fit within the meagre skull.  The owl, however, does not 

require the axial length of its eyes to view great distances, but more so for higher visual acuity, and a 

broadening of the image at the visual-cell level (Hocking & Mitchell, 1961).  Interestingly, the 

superior nocturnal vision of owls does not arise from a direct difference in anatomical structure, but 

from secondary neural processing of the larger retinal image produced by the tubular eye 

(Bowmaker & Martin, 1978; Hocking & Mitchell, 1961).   

Aside from the differences of ocular morphology in the various bird species based on visual 

activity, the anatomical structures within the avian eye are quite uniform.  The cornea of birds is 

histologically similar to that of humans; however, it is not wiped by their eye lids, but by a 

nictitating membrane that runs beneath the lids in a perpendicular direction.  The sclera, in turn, is 

substantially more rigid due to the presence of a hyaline cartilage that extends from the peripheral 

edge of the ossicles to the back of the eye.  The entry position of the optic nerve into the eye is 

protected by a bone in the shape of a washer known as Gemminger’s ossicle.  The choroid of birds is 
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substantially thicker than that of any other class, however, even in nocturnal species, they never 

contain a tapetum lucidum (Jones et al., 2007; Sillman, 1973).  At its anterior, the choroid thins to 

become the ciliary body, which, like reptiles, is more closely associated with the sclera than it is with 

the uvea (Walls, 1942).  The reason for this difference is due to the stronger lens-squeezing 

accommodation mechanism in birds and reptiles than that of higher marsupials and primates.  

Because the ciliary body in birds is composed of skeletal, rather than smooth, muscle, its forceful 

contraction requires anchoring to the sclera so as not to damage the middle tunic (Levy & Sivak, 

1980).  Additionally, accommodation in birds is highly effective due to direct contact, and therefore 

direct contraction, of the ciliary body on to the lens equator; instead of relying on intrinsic forces for 

the lens to change shape, as do higher mammals, the avian eye exerts direct equatorial force, using 

skeletal muscle, to steepen the lens surface curvature (Levy & Sivak, 1980).   

Interestingly, it has been shown that certain avian species have corneal in addition to 

lenticular accommodation.  Schaeffel and Howland (1991) demonstrated that up to half of the full 

range of accommodation in chickens and pigeons could be accounted for by corneal accommodation.  

The mechanism and optical change of avian corneal accommodation, however, remains heavily 

disputed.  In 1831, Crampton, as reported by Walls (1942), hypothesized that a contraction of the 

ciliary muscle would flatten the cornea for distance vision.  In 1846, Brücke (1846) challenged this 

hypothesize by proposing that the central corneal curvature would steepen as a result of the 

contraction in, ironically, Crampton’s muscle.  Since then, a multitude of corneal accommodation 

theories have been proposed, including one which hypothesizes that the curvature of the avian 

cornea changes with increases in hydrostatic pressure within the eye.  However, other investigators 

(Glasser, Pardue, Andison, & Sivak, 1997; Glasser, Troilo, & Howland, 1994; Pardue & Sivak, 

1997) have demonstrated that contraction of the ciliary muscle in birds is, indeed, responsible for 
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steepening the curvature of the corneal surface.  Furthermore, Glasser et al. (1994) found that during 

in vivo accommodation, the hydrostatic pressure changes in the eye could not account for the 

changes in shape of the cornea. 

 

2.4 THE CRYSTALLINE LENS 

 

2.4.1 THE AVIAN LENS 
 

The avian lens is a highly refractive structure and soft structure, particular in species where the range 

of accommodation is great (Jones et al., 2007; Sillman, 1973).  Unlike primates, the avian lens has a 

thick pad called the ringwulst (or annular pad), which takes up half the area of a coronal section of 

the whole lens, that serves to increase accommodative amplitude through direct contact with the 

ciliary body (Walls, 1942).  Between the ringwulst and the lens proper, a slender space exists into 

which the inner ends of the ringwulst fibres secrete a lubritive substance (Walls, 1942); this 

lubricated space is speculated to allow the surrounding structures to shift past one another during 

contraction of the ciliary muscle to increase deformation of the of the lens and increase 

accommodative amplitudes (Walls, 1942).  

 

2.4.2 EMBRYOLOGICAL DEVELOPMENT 
 

During early stages of ocular development, the optic cup, a structure that eventually becomes the 

retina, induces a thickening of surface ectoderm that gives rise to the lens placode (Oyster, 1999) 

(Fig. II-12A).  The lens placode then invaginates and buckles inward, forming the lens pit (Oyster, 
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1999) (Fig II-12B).  The mouth of the lens pit eventually closes (Fig. II-12C) and the entire structure 

buds off of the surface ectoderm, eventually forming the lens vesicle (Fig. II-12D), a single-cell 

layered sphere with a hollow cavity in its centre (Oyster, 1999).   

At this stage, the epithelial cells of the lens vesicle secrete a collagenous outer layer that 

encapsulates the lens, which gives rise to the lens capsule (Oyster, 1999) (Fig. II-13A).  The 

posterior-most epithelial cells of the crystalline lens begin to differentiate into primary lens fibre 

cells and elongate towards the anterior surface (Fig. II-13B), filling the empty lumen of the lens 

vesicle (Fig. II-13C) (Oyster, 1999).  Secondary fibres arise from the proliferation, migration and 

 

Figure II-12: Formation of the lens vesicle. The optic vesicle induces the formation of 

the lens vesicle. Throughout the formation of the lens vesicle, the optic vesicle 

invaginates simultaneously to produce the primitive retina (modified with permission 

from Figure 1.8, Oyster, CW (1998). The Human Eye, Sinauer Associates Inc.). 

 

 

Figure II-13: Formation of the primitive lens. Posterior epithelial cells elongate 

anteriorly, filling the hollow cavity (with permission from Figure 1.12, Oyster, CW 

(1998). The Human Eye, Sinauer Associates Inc.). 
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differentiation of cells at the equator of the lens (Section 2.2.5). 

 

2.4.3 CRYSTALLINS 
 

The dry weight of the crystalline lens is composed of approximately 95% protein, making it a 

reservoir for one of the highest protein concentrations in the human body.  The proteins in the lens 

are often categorized as (1) water soluble or (2) water insoluble types.   As the lens plays a vital role 

in the refraction of light, it requires a very high concentration of water soluble proteins in order to 

create a refractive index greater than water, while also maintaining overall lens transparency; the 

most abundant of these proteins, making up over 90% of the total protein concentration in the lens, 

are the crystallins (Horwitz, 2009).  Crystallins are responsible for the transparency and precise 

refractive index of the lens, and as with the cornea, organization is the key to these optical properties 

(Oyster, 1999).  The three-dimensional structure of crystallins allows for them to  form dense, high-

molecular weight aggregates that pack tightly into lens fibre cells, thereby increasing the refractive 

index while maintaining lens transparency (Oyster, 1999).  Additionally, crystallins are self-

maintaining, as certain crystallins act as molecular chaperones which are responsible for maintaining 

the native state of other crystallins (Horwitz, 2009), achieved by either preventing denaturation of 

other crystallins or guiding the proper reassembly of denatured crystallins (Horwitz, 2009).  With 

age, chaperone crystallins lose their effectiveness in the reassembly of fellow proteins, and together 

with increasing amounts of reactive oxygen species (due to long-term ultraviolet light exposure) 

could result in the inability of lenses to maintain transparency and the eventual development of 

cataracts (Li & Spector, 1996).  Since their discovery and implication in cataractogenesis, they have 

been the focus of lens and cataract research.  However, providing the lens with its optical properties 
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is not the sole function of these crystallins.  The secondary roles they perform are largely dependent 

on the superfamily from which they were recruited (Table II-1) (Piatigorsky, 1993).  Indeed, 

crystallins are not proteins unique to the lens, nor did they appear spontaneously throughout the 

course of evolution.  They are enzymes and stress proteins recruited from outside the eye to help the 

lens perform its optical function in addition to their native role in the body. 

In the human lens, there exist three groups of crystallins that fall into one of two major 

superfamilies; α- or βγ- crystallins.  α-crystallins are the most abundant of the three, and are also 

known as heat shock protein 70 (HSP70), a 70 kDa heat shock protein found ubiquitously 

throughout the body.  In contrast, β- and γ- crystallins are found primarily in the lens, but have 

analogs that are speculated to help protect the body against certain microbial infections (Lee et al., 

1993; Wistow, 1993). 

 

2.4.3.1 α-CRYSTALLINS 
 

From the late 1980s to the early 2000s, a significant amount of lens research was dedicated to 

uncovering the structure and function of α-crystallins.  It was found that two genes existed for α-

crystallins: alpha A (αA-) and alpha B (αB-), with an amino acid sequence similarity of 57% 

Table II-1: Crystallin diversity and their respective functions 

Crystallins Species Recruited Protein 

α- Vertebrates Small heat shock protein 

β- and γ- Vertebrates Microbial stress protein 

 Scallop Aldehyde dehydrogenase 

δ- Birds, Reptiles Argininosuccinate lyase 

 Birds, Crocodiles Lactate dehydrogenase 

 Frogs NADPH reductases 

 Guinea Pigs Alcohol dehydrogenase 

 Camels Lactate dehydrogenase 
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between the two isoforms (Bloemendal, 1981).  In 1989, researchers discovered that αA-crystallins 

were found primarily in the lens with trace amounts in other tissues, while αB-crystallins are found 

ubiquitously throughout the body (Bloemendal & Bloemendal, 1998; Srinivasan, Nagineni, & Bhat, 

1992).  Additionally, it was shown that αB-crystallins were completely homologous to heat shock 

protein 70 (Klemenz, Fröhli, Steiger, Schäfer, & Aoyama, 1991).  Shortly afterwards, it was 

demonstrated that αA-crystallins, αB-crystallins, and other small heat shock proteins, could assist in 

the folding/unfolding and assembly/disassembly of other macromolecules (Horwitz, 1992; Jakob, 

Gaestel, Engel, & Buchner, 1993) – properties that are attributed to proteins known as molecular 

chaperones.   

 Because lens fibre cells never truly die, that is, they undergo a modified apoptosis to shed 

organelles as they migrate towards the centre of the lens, nuclear fibre cells of adult lenses contain 

crystallins synthesized during the embryogenesis (Bassnett & Winzenburger, 2003; Kusak & Brown, 

1994).  Additionally, due to the lack of vascularisation, macromolecules such as α-crystallins remain 

physically stagnant throughout life (Derham & Harding, 1997).  For these reasons, chaperone 

activity of α-crystallins is vital for maintaining proper protein assembly in order to preserve both 

optical and structural properties of the aging lens (Carver, Nicholls, Aquilina, & Truscott, 1996; P. 

Vasantha Rao, Huang, Horwitz, & Zigler, 1995; Takemoto & Boyle, 1994; K. Wang & Spector, 

1994). 

 α-crystallins function by recognizing unfolded or denatured proteins that have a high risk of 

aggregating with other molecules.  Upon recognition, the α-crystallins prevent further disassembly of 

the protein and maintain a refoldable confirmation that is energetically favourable (Haslbeck, 

Peschek, Buchner, & Weinkauf, 2016).  However, it is speculated that the chaperone system of α-

crystallins at the centre of the lens lacks the ability to repair proteins that have been extensively 
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unfolded or disassembled.  Additionally, it has been shown that the aging lens contains a much lower 

concentration of functional α-crystallins in their nuclei, and as a result of rampant protein 

misfolding, leads to a loss in the ability to prevent the development of nuclear cataracts (Vasantha 

Rao et al., 1995; Roy & Spector, 1976).  

 In a study by Hanson et al. (2000), it was found that 50-65 year old lenses contained high 

levels of α-crystallins bound to γS-, γD-, and various β-crystallins.  This observation indicates that α-

crystallins have a high affinity for other crystallins that require repairing.  Additionally, it has been 

shown that α-crystallins can also bind to housekeeping enzymes, such as glyceraldehyde-3-

phosphate dehydrogenase and enolase (Horwitz, 2003) as well as various water-soluble cytoskeletal 

components (Quinlan et al., 1999a).  Furthermore, a study by Muchowski et al. (1999) that subjected 

lenticular cells to thermal stress resulted in αB-crystallins selectively binding to intermediate 

filament proteins.  Together, these results indicate that αB-crystallins are perhaps tailored to 

repairing the lens cytoskeleton, whereas αA-crystallins are responsible for repairing other crystallins. 

 

2.4.3.2 βγ-CRYSTALLINS  
 

Not much is known about the function of β- and γ-crystallin families, however, their structures have 

been extensively studied in an attempt to reveal homologous proteins that may occur elsewhere in 

the body.  βγ-crystallins are constructed from four homologous Greek key motifs organized into two 

domains (Lubsen, Aarts, & Schoenmakers, 1988).  They were originally thought to be unique to the 

lens, however, a study by Wang et al. (2004) showed that βγ-crystallins occur not only in lens fibre 

cells and lens epithelial cells, but also in various tissues outside the lens.  The expression site and 

patterns of certain βγ-crystallins indicate that they function in response to some form of stress.  
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Additionally, two microbial proteins, spherulin 3a and protein S, share their tertiary structure and 

resemble the topology of βγ-crystallin (Clout, Kretschmar, Jaenicke, & Slingsby, 2001).  However, 

the resemblance of βγ-crystallin to these microbial proteins gives no further indication of its 

potential function. 

 

2.4.3.3 δ-CRYSTALLINS 
 

δ-crystallin is a major structural protein that occurs within the lenses of birds and reptiles, but is 

absent from the lenses of teleost, amphibia, and mammals (Chiou, Chang, Lo, & Chen, 1987; 

Piatigorsky, 1984).  In the embryonic lens, it comprises 70-80% of the total soluble protein 

concentration, however, that percentage diminishes shortly thereafter as synthesis ceases upon 

maturation of the lens; thus, the study of δ-crystallin synthesis is important, as it offers the 

opportunity to investigate the switching on and off of a gene product during normal development 

(Piatigorsky, 1984).  In 1988, Piatigorsky et al. (1988) demonstrated the similarity of δ-crystallin to 

the enzyme argininosuccinate lyase (ASL).  Furthermore, it was shown that duck δ-crystallin 

demonstrates high ASL activity, indicating the possibility that ASL may have been recruited, 

through gene sharing, for their ideal properties to serve as the transparent, water-soluble protein 

within the lenses of birds and reptiles (Piatigorsky et al., 1988). Like all vertebrates, bird lenses also 

contain α- and ß-crystallins, although delta-crystallins remains the predominant crystallin in the bird 

lens (Slingsby, Wistow, & Clark, 2013). 
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2.4.4 GRADIENT REFRACTIVE INDEX (GRIN) 
 

The optics of the crystalline lens is quite unique in that, unlike the cornea, the refractive index is not 

uniform throughout the entire structure (Pierscionek & Chan, 1989).  The lens cortex has an index of 

1.37 which gradually increases to approximately 1.5 in the lens nucleus (Pierscionek & Chan, 1989).  

Although much uncertainty exists as to how this gradient is achieved, it is speculated that the 

difference in crystallin concentration throughout the lens is responsible for this phenomenon (Delaye 

& Tardieu, 1982).  Because the refractive index is a function of protein concentration, this model 

works quite nicely; crystalline concentrations are highest within the lens nucleus, and gradually 

decrease towards the cortex.  

 In lenses with a gradient refractive index, the refraction near the centre of the lens is greater 

than lenses with a uniform refractive index, leading to a greater total refractive power of the lens 

(Moore, 1980;Pierscionek, 1989).  As a result, peripheral rays have a shorter focal length than 

central rays, which forms an optical effect known as spherical aberration.  However, the gradient 

refractive index, with the highest index at the centre of the lens in the crystalline lens refracts light 

more at the centre and less at the periphery.  Together, the shape of the lens and the gradient can 

nearly abolish spherical aberrations in some vertebrate lenses (Sivak & Kreuzer, 1983).  It should be 

noted spherical aberrations in chickens are negatively aberrated (Sivak, Ryall, Weerheim, & 

Campbell, 1989b) and this aberration becomes more prominent with age (Priolo, Sivak, & Kuszak, 

1999).  
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2.4.5 SUTURES 
 

Sutures form at the anterior and posterior poles of the lens where fibre cells growing from opposite 

sides of the lens abut at their apical and basal ends.  In human embryos, elongated lens fibre cells 

meet at three planes, forming an upright ―Y‖ at their anterior ends (with respect to the superior–

inferior axis of the eye) and an inverted ―Y‖ posteriorly (Oyster, 1999). As the human lens grows, 

the suture planes formed by more superficial shells of fibres become increasingly complex (Oyster, 

1999). The first evidence of this new pattern typically occurs soon after birth, when two new suture 

planes form at the ends of each of the three branches of the Y sutures (Oyster, 1999).  As new fibres 

are added during lens growth, the branch points of the newly formed sutures gradually ―migrate‖ 

towards the centre, eventually forming the adult stellate structure (Oyster, 1999).  In some species, 

particularly of birds (Kuszak, 1995; Walls, 1942) and reptiles (Walls, 1942), all fibre cells meet near 

the midline of the lens, forming an ―umbilical‖ or point suture (Kuszak, Bertram, Macsai, & Rae, 

1984).  Similar to humans, with age, sutures in bird lenses become less organized (Priolo et al., 

1999b). 

 

2.4.6 METABOLISM 
 

As the lens is an avascular structure, it must receive its essential nutrients from and expel 

metabolic waste through the surrounding aqueous and vitreous humours.  In addition, lens fibre cells 

lack the usual sodium channels and sodium-potassium pumps for circulation of critical ions (Cheng 

& Chylack, 1985; van Heyningen, 1969).  The pathway by which nuclear lens fibre cells receive 

their nutrients is heavily debated even to this day.  There are currently two schools of thought in this 
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debate: (1) that a fluid microcirculatory system exists for the flow of ionic current, and (2) that a 

circulatory system is unnecessary, as nuclear lens fibre cells do not require nutrients to carry out 

their function.  As early as 1982, Robinson and Patterson (1982) proposed a fluid microcirculatory 

system of the lens that was subsequently theoretically tested more thoroughly as a model to explain 

the functions of intercellular components of the lens, such as the gap junctions, and the mechanisms 

for cataractogenesis (Donaldson, Musil, & Mathias, 2010; Mathias, Kistler, & Donaldson, 2007; 

2004; Mathias, 1997).  In brief, sodium ions are actively pumped into the lens at the anterior pole, 

and trickle in passively through extracellular clefts of fibre cells at the posterior pole (Fig. II-14).  

The sodium ions then flow towards the centre of the lens via an intracellular pathway mediated by 

gap junction channels.  Because gap junction coupling conductance in the outer shell of 

differentiating fibres is concentrated at the equator, the intracellular current is then directed to the 

equatorial epithelial cells where the highest densities of sodium-potassium pumps reside to actively 

transport sodium out of the lens.   

In a recent debate, Beebe et al (2010) stated that mature fibre cells have no need for 

metabolic activity, and that empirical evidence demonstrates that little to no metabolic activity exists 

in the lens nucleus.  Furthermore, fluid flow from the centre to the periphery of the lens would be 

detrimental to the lens, as glutathione, an antioxidant responsible for removing harmful reactive 

oxygen species, would be inadvertently removed from the nucleus, where it is most required.  In 

support of this counter-argument, Beebe et al. pointed to work by Shestopalov and Bassnett (2000) 

who injected a fluorescent dye into individual lens fibres at various distances from the nuclear 

centre.  At all points of injection, the fluorescent dye diffused radially, which demonstrated that a 

unidirectional current flow within the lens was non-existent.  While there is a substantial amount of 

evidence in favour of the lens not requiring metabolic activity, the lens microcirculatory system 
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remains to be disproven.  It should be noted that the optimal system has yet to be observed. 

 

2.4.7 CATARACTS 
 

Although there are a number of mechanisms within the lens that exist to maintain its transparency 

throughout life, a variety of factors can overcome these mechanisms and cause the lens to become 

opaque or cataractous.  These opacities occur due to the unfolding, aggregation, and precipitation of 

proteins within the lens, which manifest as a result of ultraviolet (UV) light exposure or aging.   

Under normal circumstances, the lens contains yellow pigments (3-hydroxy kynurenine and 

its glucoside) which function to absorb and subsequently dissipate day-to-day levels of UV radiation 

(Roberts, 2011).  However, if the lens undergoes acute exposure to intense UV radiation or chronic 

exposure to mild UV radiation, the lenticular pigments get overwhelmed, photooxidation occurs, and 

 

Figure II-14: The lens microcirculatory system theory.  The ionic current enters at 

the anterior and posterior poles of the lens and exits at the equator of the lens.  After 

Journal of Membrane Biology, The Lens Circulation, 216, 2007, 1-16, Mathais, R.T., 

Kistler, J. and Donaldson, P.J., (© Springer Science+Business Media, LLC 2007). With 

permission of Springer.   
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harmful reactive oxygen species (ROSs), such as free radicals or singlet oxygen, are produced (Ji et 

al., 2015; Linetsky & Ortwerth, 1996; Zigman, 2000).  ROSs cause extensive protein unfolding and 

aggregation, which eventually leads their precipitation and lenticular cataractogenesis.  Molecular 

chaperones, such as α-crystallins, repair unfolded proteins, but over time, the amount of functional 

crystallins within the lens deteriorates, resulting in nuclear and cortical cataracts, the two most 

prevalent forms of this condition (Sperduto & Hiller, 1984).  A third less-common form of this 

condition exists, known as posterior subcapsular cataracts, in which exposure to UV radiation causes 

erroneous differentiation and elongation of equatorial lens fibre cells (Bochow et al., 1989; Drews, 

1979).  The abnormal cells migrate posteriorly, where their irregular morphology causes a breach in 

fibre cell organization resulting in an opacity of the lens.  

 

2.5 THEORIES OF ACCOMMODATION 

 

The primary function of the crystalline lens is to maintain a sharp image on objects that transition 

from distant to nearby locations, a process known as accommodation (Helmholtz, 1855; Helmholtz, 

1962).  The most widely accepted theory of accommodation is that proposed by Helmholtz in 1909 

(Gullstrand & Helmholtz, 1909), wherein, the accommodative process is parasympathetically 

controlled by the ciliary muscle that surrounds the lens (Helmholtz & Southall, 1924).  In its resting 

state, the ciliary muscle draws tightly on the zonules and maintains a taut and flattened lens shape 

while in its contracted state, the zonules lose tension and the lens becomes thick and round 

(Helmholtz, 1855; Strenk et al., 2005).  Therefore, while the ciliary muscle is contracted, the lens 

curvatures steepen, ultimately increasing the refractive power of the eye as a whole and allowing for 

near-sighted vision (Helmholtz, 1962).  The age-related loss of accommodative power is known as 
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presbyopia, and can be primarily attributed to the loss of elasticity of the lens as a whole (Koretz et 

al., 2002).   

In diametric opposition of Helmholtz’s theory, a proposal by Schachar suggests that 

contraction of the ciliary muscle results in increasing tension on the zonules at the equator, leading to 

a thickening and steepening of the central portion of the lens.  In addition, the peripheral surfaces of 

the lens flatten and the equator of the lens moves toward the sclera (Schachar, 1992).   In light of this 

controversy, Glasser and Kaufman (1999) demonstrated that the equatorial diameters of both human 

and non-human primate crystalline lenses decreased during accommodation using various imaging 

techniques, thereby disproving Schachar’s theory of accommodation and presbyopia.  Additionally, 

in vitro laser imaging showed that the crystalline lens did not change focal length when increasing 

and decreasing radial stretching forces were applied, thus supporting Helmholtz’s classical theory of 

accommodation (Glasser & Kaufman, 1999). 

In terms of the neural pathway for accommodation, the afferent loop of accommodation 

begins with the detection of a blurred image in the retina (Atchison, 2002).  The signal of the blurred 

image travels down the optic fibres and synapses with the lateral geniculate nucleus, which 

subsequently relays the signal to the visual cortex.  The signal is then relayed to the Edinger-

Westphal (oculomotor) nucleus of the brain stem, which is the origin of the efferent loop of the 

accommodative reflex; signals carried by the fibres of the occulomotor nerve synapse with the 

ciliary nerve which causes contraction of the ciliary muscles (Nolte, 2002). 

 

2.5.1 PRESBYOPIA 
 

Children approximately 5 years of age possess the highest amplitudes of accommodation, reaching 
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values upwards of 14 dioptres (Garner, 1983).  Perhaps surprisingly, from this age onwards, 

accommodative amplitude declines steadily at about 1 dioptre every 5 years until the age of 30, 

where the rate of decline accelerates to just under 4 dioptres at age 45 (Garner, 1983).  It is at this 

point that the near work becomes difficult; the accommodative amplitude becomes less than the 

normal reading or working distance and objects must be extended further away to be seen clearly.  

Therefore, with age, the loss of accommodation is inevitable, and the subsequent inability to focus 

on near objects is a condition known as presbyopia.   

To this day, the exact mechanism of presbyopia remains uncertain (Richdale et al., 2013; 

Schachar, 2015).  However, several theories on the development of this condition have come to light, 

and can be divided into two categories: lenticular and extralenticular.  Lenticular theories, such as 

the Hess-Gullstrand, and Fincham theories, propose the idea that the lens hardens or becomes more 

rigid with age (Fincham, 1937; Fincham, 1951; Gullstrand, 1924).  As a result, the lens becomes 

increasingly resistant to the elastic forces of the capsule during accommodation.  In contrast, the 

geometric theory attributes the loss of accommodation to changes of size and shape of the lens, 

particularly with regards to the steepening of anterior surface curvature and posterior shifts of 

zonular insertions.  Koretz and Handelman (1982) propose that a combination of these two factors 

results in the relaxation of zonules having a smaller effect on the lens shape. 

 Extralenticular theories, such as that proposed by Duane, suggest that the ciliary muscle 

becomes weaker with age (Duane, 1925, 1931).  However, evidence by Fisher demonstrates that the 

contractile force of the ciliary muscle, in fact, reaches a maximum during the onset of presbyopia, 

and a weakening does not occur until well after this 45 years of age (Fisher, 1988).  It has also been 

proposed that the deterioration of the elastic components of the ciliary body and choroid may be 

responsible for the decline of accommodation with age, however, evidence of this deterioration has 
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yet to be demonstrated (Bito, 1988).  The most widely accepted theory is that of Weale, who claims 

that presbyopia has more than one cause; it arises due to a combination of changes in the lens 

capsule and lenticular elasticity combined with a change in lens geometry (Weale, 1962).  

 Despite the major differences in anatomy between birds and primates (Walls, 1942), 

specifically the direct contact of the ciliary muscle of birds onto their lens equator, the chicken eye is 

also susceptible to presbyopia (Choh, Sivak, & Meriney, 2002). Although it remains unclear which 

exact mechanism causes the loss of accommodative amplitude in chickens, this study demonstrates 

the possibility of using chicken eyes as a model for presbyopia.  

 

2.6 ACTIN, MYOSIN, AND THEIR INTERACTIONS 

 

The interaction between actin filaments and myosin motors is responsible for an array of biological 

movements.  The effects of these movements can be observed both microscopically, such as the 

division of cells during mitosis and meiosis, as well as macroscopically, such as the contraction of 

skeletal muscles.  

 Actin is a family of structural, globular proteins that assembles amongst themselves to form 

microfilaments, the thinnest of biological cables.  Each monomeric actin subunit, known as globular 

(g-)actin, has a plus end and a minus end.  When bound to adenosine triphosphate (ATP), the 

monomeric actin binds head-to-tail with other g-actin in order to form a strand of filamentous (f-

)actin (Silverthorn, Ober, Garrison, & Johnson, 2009).  As f-actin is the smallest of the biological 

tubules, it is quite flexible when compared to larger intermediate, and microtubules.  However, the 

thinner diameter allows for an ideal surface on which motor proteins, such as myosin, can traverse. 

 Myosin II, which is the conventional myosin, was the first motor protein to be identified, and 
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is responsible for the contraction of all muscle types (Alberts et al., 1995); it is an elongated protein 

that resembles two golf clubs with their shafts coiled around one another.  In this analogy, the double 

club heads are the force-generating machinery that form the N-terminus of the protein, and that 

interact with the actin microfilaments to generate movement (Silverthorn et al., 2009).  The C-

terminus is therefore found at the opposite end of the shaft.  The long axes of myosin proteins are 

aligned parallel to one and other, and are connected tail-to-tail, in order to form a myosin filament, 

which resembles a long strand with multiple myosin heads protruding out of its sides.  The 

interaction of myosin strands with actin filaments is responsible for the contraction of muscle. 

 

2.6.1 MUSCLE CONTRACTION 
 

In vertebrates, there are three different types of muscle tissues: (1) skeletal muscle, which is attached 

to the bones of the skeleton, (2) smooth muscle, which controls the movement of internal organs and 

tubes, and (3) cardiac muscle, which controls beating of the heart (Silverthorn et al., 2009).  Skeletal 

and cardiac muscle are often referred to as having striations, due to the alternating light and dark 

bands that they are observed to have when examining these tissues under a light microscope.  

Because the contractile fibres in smooth muscle are considerably less organized, no striations are 

observed in their tissue.  

 Skeletal muscle is often described as being voluntary, while cardiac and smooth muscle are 

involuntary (Silverthorn et al., 2009).  It is well known, however, that movement of skeletal muscle 

may occur unconsciously, and a certain degree of control over cardiac and smooth muscle may be 

learned.  Therefore, a more precise way of describing skeletal muscle is that they can only contract 

in response to a signal from a somatic motor neuron.  In contrast, cardiac and smooth muscle are 
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controlled primarily by the autonomic nervous system, and their activities are subject to modulation 

by hormones of the endocrine system (Silverthorn et al., 2009). 

 

2.6.1.1 SKELETAL MUSCLE CONTRACTION 

 

The functional units in skeletal muscle are known as fascicles, which are bundles of muscle fibres 

sheathed in a tube of connective tissue.  Each muscle fibre, in turn, contains a thousand or more 

myofibrils that occupy a majority of the intracellular space, leaving little room for the organelles.   

The primary contractile proteins in myofibrils are actin and myosin, where bundles of actin form thin 

filaments, and bundles of myosin form thick filaments (Silverthorn et al., 2009).  The overlapping 

arrangement of thick and thin filaments in skeletal and cardiac muscle create an alternating light and 

dark pattern, which are the striations observed under light microscopy.  A single repetition of this 

pattern forms what is known as a sarcomere, which is the contractile unit found within myofibrils, 

and the basis for the sliding filament theory of contraction.  In this model, actin and myosin 

filaments use adenosine triphosphate (ATP) energy to slide past one another, which, in synchrony 

with other sarcomeres and myofibrils, results in muscle contraction.  

 At rest, myosin heads form tight crossbridges with actin in a rigor state.  During muscle 

contraction, myosin heads interact with f-actin by, quite literally, stepping along each individual 

actin subunit by the following mechanism: 

1. ATP binds to myosin, causing the myosin head to lose affinity towards actin. 

2. While unbound, myosin hydrolyzes ATP to produce adenosine diphosphate (ADP) and 

inorganic phosphate (Pi), causing a rotation of the myosin head and a subsequent 

reattachment further along the f-actin filament.  The rotational movement of myosin causes a 
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coiling of its shafts, resulting in the increase of potential energy. 

3. Calcium ions (Ca
2+

) signal the beginning of a power stroke, which causes myosin to adhere 

tightly to its new position, and a subsequent release of Pi from the myosin head.  Release of 

Pi discharges the coiled energy in the myosin molecule and causes the heads to swivel, 

resulting in the entire myosin filament sliding forward along the actin filament. 

4. Upon completion of the power stroke, the myosin head releases the ADP to once again 

become tightly bound with actin in a low-energy rigor state. 

 

2.6.1.2 SMOOTH MUSCLE CONTRACTION 

 

Although the contractile fibres in smooth muscle cells are not arranged in sarcomeres, they possess 

the same contractile proteins as those found in skeletal muscle tissue, with the exception of having a 

different myosin II isoform.  In smooth muscle fibres, the actin and myosin filaments crisscross 

diagonally around the cell periphery, resembling a water balloon inside of a fish net.  Due to this 

oblique arrangement of myofibrils, smooth muscle fibres become more globular during contraction, 

rather than shortening as skeletal muscle fibres do.   

During muscle contraction, the interaction between actin and myosin filaments is identical in 

both smooth and skeletal muscle fibres.  However, the signalling cascade for the onset of contraction 

in smooth muscle tissues is slightly different than that of skeletal muscle tissue, and occurs as 

follows: 

1. An increased level of intrinsic Ca
2+

 initiates the contraction process. 

2. Ca
2+

 binds to calmodulin, which begins a signal transduction pathway that activates myosin 

light chain kinase (MLCK)  
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3. MLCK enhances myosin ATPase activity by phosphorylating light protein chains of the 

myosin head, which results in muscle contraction. 

Note that the onset of contraction in smooth muscle tissues has a variety of influences.  Muscle 

contraction may be influenced by physical stretch 

 

2.6.1.3 CARDIAC MUSCLE CONTRACTION 

 

Cardiac muscle tissue shares features with both skeletal and smooth muscle tissues.  Like skeletal 

muscle fibres, cardiac muscle fibres are striated due to the organization of their myofibrils into 

sarcomeres.  Thus, they share a similar contraction mechanism with that of skeletal muscle.  

However, because of the smaller area that cardiac muscle has to cover, their muscle fibres are shorter 

than those of skeletal muscle and branch out in accordance with the shape of the heart.  Additionally, 

cardiac muscle fibres are specially linked to one another via intercalated disks, which enable rapid 

transmission of electrical impulses throughout the network.  As a result, coordinated contractions can 

be made in rapid succession in order to sequentially pump blood through the various chambers of the 

heart.  

 

2.6.2 NON-MUSCLE MYOSIN 
 

Myosin is not only found in the fibres of muscle tissue, but is also present and interacts with actin in 

non-muscle cells.  The majority of non-muscle myosin are, like muscle myosin, part of the class II 

double-headed family, in addition to being of similar isoforms (IIA and IIB).  Together with actin, 

these contractile proteins are responsible for a variety of important cellular functions such as 
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intracellular transportation, support, and cytokinesis.  For example, interaction of myosin II with 

corticol actin filaments increases the stiffness of the plasma membrane, reducing the chance of cell 

surface deformation.  In addition, during cytokinesis, actin and myosin II form a contractile ring 

around the dividing cell in order to pinch the cell into two halves.  Finally, myosin I and V have been 

demonstrated to help with intracellular translocation of membrane-limited vesicles along actin 

filaments (Lodish et al., 2000; Woolner & Bement, 2009).  

 

2.7 THE LENS CYTOSKELETON 

 

Much like other cells in the human body, the cytoskeleton of the crystalline lens is composed of 

three categories of filaments; microfilaments (otherwise known as actin filaments, ~6-8 nm in 

diameter), intermediate filaments (~10 nm in diameter), and microtubules (~25 nm in diameter) ( 

Quinlan et al., 1999b).  The majority of these filaments function similarly to those in other 

extralenticular cells.  Microfilaments in the lens facilitate changes in cell shape, strengthen cell-to-

cell/cell-to-extracellular matrix interactions, and define plasma membrane compartments (Quinlan et 

al., 1999a).  Microtubules in the lens help with intracellular transport processes and the distribution 

of organelles (Quinlan et al., 1999a).  Intermediate filaments are perhaps the most distinctive of the 

three cytoskeletal systems within the lens, as they not only contribute for maintaining the structural 

integrity and transparency of the lenticular system as a whole, but also resist the physical strain 

brought on by the accommodative mechanism of the eye (Quinlan et al., 1999b; Song et al., 2009).  

Bradley et al. (1979) showed that age-related changes in the cytoskeleton of human lenses included 

redistributions of intermediate filaments and proteins thought to microfilaments.  Despite these 

studies suggesting a possible role for cytoskeletal proteins in accommodation and therefore 

presbyopia, not many studies have examined how these proteins may affect the biomechanical 
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properties or accommodative capabilities of the lens.  A study by Luck and Choh (2010) hinted at a 

role for low concentrations of myosin light chain kinase in softening lenses.  Recent work by Fudge 

et al. (2011) showed that  lenses from knock-out mice without beaded intermediate filaments showed 

lenses that were less stiff and more resilient than wild-type mice.  Of the three major classes of 

cytoskeletal proteins, actin and its interacting proteins show the most promise in the potential to 

facilitate lenticular shape changes.   

 

2.7.1 MICROFILAMENTS 
 

Since the late 1970’s, it has been known that an abundance of actin filaments exists within the 

crystalline lens (Ireland, Lieska, & Maisel, 1983; Kibbelaar, Selten-Versteegen, Dunia, Benedetti, & 

Bloemendal, 1979).  In addition to either participating in or regulating a variety of biological 

functions, such as morphogenesis, cell migration, cell adhesion, cell movement, and cell division 

(Burridge & Wennerberg, 2004; Hall, 1998; Ridley et al., 2003; Tapon & Hall, 1997), actin 

filaments are known to interact with myosin to form a rigid structure that could offer tensile strength 

in order to maintain lens shape and accommodative function in the eye (Bassnett et al., 1999; 

Kibbelaar et al., 1980; Rafferty, Scholz, Goldberg, & Lewyckyj, 1990).  In epithelial cells, actin 

filaments are organized as bands or belts that wrap around the cell just inside the cell membrane.  

Tightening the actin belt of an epithelial cell will force a rearrangement of the cytoskeleton and a 

corresponding change in cell shape (Oyster, 1999) whose length may increase on the order of several 

hundred-folds during the process of differentiating into a lens fibre cell (Piatigorsky, 1981; Taylor et 

al., 1996).  As the lens fibre cells elongate and mature, lamellipodial extensions from the cell surface 

help fibre cells migrate from the equator of the lens to the centre (Taylor et al., 1996).  
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 The apical surface of the lens fibre cells are anchored to the anterior layer of epithelial cells 

while the basal surface of the lens fibre cells are anchored to the posterior lens capsule (Taylor et al., 

1996).  The basal surface of lens fibre cells are anchored to a set of structures known as the basal 

membrane complex (BMC) (Bassnett et al., 1999).  In addition to adhering the lens fibre cells to the 

posterior lens capsule, the BMC facilitates migration of lens fibres during their differentiation 

process (Bassnett et al., 1999).  The BMC was first observed by Rafferty’s group (Rafferty et al., 

1990; Yeh, 1986) as early as 1986 (Fig. II-15A), where these investigators determined that the 

structure was composed primarily of filamentous-actin (f-actin) arranged in a polygonal array.  

Further investigation by Bassnett’s group revealed that the polygonal array is co-localized with non-

muscle myosin II and N-cadherin, forming a hexagonal lattice (Fig. II-15B).  The specific 

arrangement of actin and myosin in the BMC, along with the adhesive protein N-cadherin, suggests 

that the polygonal array may have contractile properties of its own (Fig. II-16), that is, the lens 

produces a contractile force independent of the surrounding ciliary muscle.   

 

Figure II-15: Confocal images of actin microfilaments found at the lens capsule. (A) 

Anterior (Rafferty et al. in 1990) and (B) posterior surfaces (Bassnett et al. in 1999) both 

exhibit polygonal arrays of actin.  (A) Republished with permission of the Association 

for Research in Vision and Ophthalmology from Rafferty et al. (1990), (B) Republished 

with permission of The Company of Biologists Ltd from Bassnett et al. (1999). 
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2.7.2 INTERMEDIATE FILAMENTS 
 

Unlike microfilaments, which are simply polymerized strands of actin monomers, there are 

numerous types of intermediate filaments (IFs) that vary in shape and function based on their protein 

architecture (review by Quinlan et al., 1999b).  However, intermediate filament proteins share the 

same general structure (Fig. II-17) in that they are composed of a central rod domain flanked by two 

terminal domains (Quinlan et al., 1999a).  The central rod domain consists of one or more α-helical 

domains with an N-terminal head on one end and a C-terminal tail on the other.  The N-terminal 

domain is essential for assembly of IFs, whereas the C-terminal domain’s function varies depending 

on the role of the particular IF in question.  Conserved sequences LNDR and TYRKLLEGE are 

found at the N- and C- terminal ends, respectively, of the central rod domain, and are essential to IF 

assembly (Perng, Zhang, & Quinlan, 2007).     

 

 

Figure II-16: Schematic diagram of a potential two-dimensional muscle.  The 

specific arrangement of actin (green), myosin (red), and N-cadherin (blue) in the basal 

membrane complex suggests that the structure as a whole can contract laterally to 

increase the tension of the crystalline lens surface as a whole.  Redrawn after (Bassnett 

et al., 1999). 
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Intermediate filaments are not essential for cell survivability (Perng et al., 2007; Song et al., 

2009).  In fact, single cell eukaryotes do not have intermediate filaments whatsoever, suggesting that 

these filaments have a more recent emergence on the evolutionary stage and perhaps a more 

specialized role in the cell (Song et al., 2009).  The notion that the lenticular cell is specialized is 

exemplified by the expression of a unique intermediate filament, the beaded filament, that are crucial 

for maintaining both the structural integrity as well as the optical clarity of the lens as a whole.   

Although a number of IF families found within the lens occur throughout the human body and the 

crystalline lens contains a wide variety of intermediate filaments (see Table II-2), the beaded 

filament, first discovered by Maisel and Perry in 1972 (1972), is by far the most abundant and is 

found exclusively within lens fibre cells (Ireland & Maisel, 1983;  Rao & Maddala, 2006).  These 

Table II-2: Intermediate filaments found in the developing and adult crystalline lens 

Intermediate 
Filament Protein 

Developing Lens Adult Lens 
Epithelium Fibres Epithelium Fibres 

Filensin (CP115) - + - + 
Phakinin (CP49) - + - + 
Vimentin + + + + 
GFAP + - + - 
K8/K18/K19 + - + - 
Nestin + + - - 
Synemin + + + + 
Data compiled from Maisel and Perry (1972), Ireland & Maisel (1983), and Rao & Maddala (2006) 

 

Figure II-17: Schematic representation of the general structure of an intermediate 

filament (IF).  Each IF is composed of a rod domain flanked by N-terminal and C-

terminal domains. 
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lens-specific IFs are crucial for maintaining both the structural integrity as well as the optical clarity 

of the lens as a whole.  

The term ―beaded filament‖ was first used by Maisel and Perry in 1972, to describe the oddly 

shaped filaments that they observed in cryogenic sections of chick lenses (Maisel & Perry, 1972).  

At the time of discovery, the identity of these beads were unknown and simply thought to be 

artefacts.  It is now known that the beads are organized clusters of α-crystallins, the crucial proteins 

found within the lens that are responsible for maintaining lenticular transparency (Song et al., 2009).   

Interestingly, the in vitro assembly of beaded filament structural proteins (BFSPs) into 10 nm 

intermediate filaments requires the presence of both filensin (BFSP1) and phakinin, also known as 

CP49 (BFSP2) (Quinlan et al., 1999b) (Fig. II-18A).  Furthermore, the addition of α-crystallins to 

filensin and CP49 results in the complete assembly into beaded filaments (Quinlan et al., 1999b) 

(Fig. II-18B), indicating an inherent mechanism of assembly amongst these three components. 

However, perhaps unsurprisingly, the in vitro assembly of filensin, CP49, and α-crystallins is 

unregulated and produces disorganized branches of beaded filaments, as opposed to the organized 

columns observed in vivo (Quinlan et al., 1999a).  

The specific assembly of BFSPs along with their unique structural features are likely due to 

their distinct motifs (LGER and RYHRIIEIE in mammalian BFSP1 and LGGC and SYHALLDRE 

in mammalian BFSP2) in place of the highly conserved LNDR and TYRKLLEGE motifs, which set 

them apart from other IFs.  This theory is reinforced by the close resemblance of BFSP structures to 

the general structure of IFs with only the conserved sequences that differ.  

The collective data thus far on CP49 and filensin indicate that they are two key lens-specific 

intermediate filament proteins, and are vital for both the transparency and structural integrity of the 

crystalline lens as a whole (Quinlan et al., 1999b).  Therefore, interactions of CP49 and filensin, with 
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both cytoplasmic and plasma membrane proteins, may be important in the prevention of lens 

abnormalities. 

 

2.7.3 MICROTUBULES 
 

Microtubules (MTs) were first observed in the crystalline lens by Cohen (1965).  As the formation of 

the adult lens involves continuous mitosis of lens epithelial cells, in addition to complex migration 

and extensive elongation of lens fibre cells, it was speculated at the time that the role of lens 

microtubules was largely developmental.  Evidence that MTs were primarily intracellular 

 

Figure II-18: Electron micrographs of beaded filament assembly.  (A) in vitro 

assembly without α-crystallins and (B) native filaments in the lens.  Large arrowheads 

denote smooth 10-nm filaments, while large arrows denote beaded filaments. Small 

arrows indicate α-crystallin particles.  Republished with permission of the American 

Society of Clinical Investigations, from Functions of the intermediate filament 

cytoskeleton in the eye lens, Song, S., Landsbury, A., Dahm, R., Liu, Y., Qingjiong, Z. 

and Quinlan, R.A., 2009, 119(7), 1837-1848 (permission conveyed through Copyright 

Clearance Center, Inc.).   
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developmental agents was presented by Pearce and Zwaanby in 1970, when they treated chicken 

embryos with colcemid, a microtubule-dissociating agent (Pearce & Zwaan, 1970); lenticular cells of 

colcimid-treated embryos were arrested in metaphase and further elongation of interphase cells 

ceased.  Additionally, colcimid-treated tissues maintained a pseudostratified columnar appearance, 

indicating that microtubules are not needed to maintain the columnar shape, but are absolutely 

necessary for fibre cell elongation.  Further support for microtubule involvement in lens cell 

elongation was shown by Piatigorsky et al. in 1972, when they cultured primary explants of 

epithelial cells and found that elongation was correlated with longitudinally-oriented microtubules 

(Piatigorsky, Webster, & Wollberg, 1972).  Additionally, lenticular cell elongation in this 

experiment was shown to be prevented by treatment with colchicine or vinblastine sulphate, agents 

that dissociate cytoplasmic microtubules.  

Despite these findings, the role of MTs within the lens was heavily debated in the early 

1980s, when Farnsworth, Shyne, and Caputo (1980) showed an abundance of MTs in lenses of 

normal post-mortem human eyes ranging in age from 6 to 54.  As the lenses in the study maintained 

their transparency and viscoelastic properties post-mortem, it was speculated that MTs played a 

major role in lens clarity and structural integrity.  However, it is now known that the integrity, 

modulus, and transparency of the lens are results of the interaction between microfilaments, 

intermediate filaments and lenticular crystallins; studies of microfilaments in the crystalline lens to 

date suggest that MTs are only responsible for cell migration, mitosis, and development (Piatigorsky, 

1981) 
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2.8 INHIBITORS 

 

2.8.1 BLEBBISTATIN 
 

Blebbistatin (1-phenyl-1,2,3,4-tetrahydro-4-hydroxypyrrolo[2.3-b]-7-methylquinolin-4-one) (Fig. II-

19) is a small molecule inhibitor with high affinity to myosin II.  It is permeable to cell membranes, 

and is a potent inhibitor of skeletal and non-muscle myosin II isoforms.  It preferentially binds to 

myosin heads within the aqueous cavity between the nucleotide pocket and the cleft of the actin-

binding interface.  This binding blocks myosin II in an actin-detached state and slows down 

phosphate release, blocking the myosin heads in the ATPase intermediate (with ADP and phosphate 

bound at the active site) with low actin affinity.  Because of this property, blebbistatin prevents rigid 

actomyosin crosslinking.  

  A recent study by Kovacs et al. (2004) demonstrated that blebbistatin has little to no effect on 

several unconventional myosins, such as myosin I, V, and X, although the sequence of the structural 

elements comprising the ATP-binding site is highly conserved through the myosin superfamily 

(Kovacs, 2004) (Fig. II-20).  This absence of an effect indicates that the inhibitor does not directly 

  

Figure II-19: Chemical structure of blebbistatin.  
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bind into the nucleotide pocket of myosin II but, instead, causes specific perturbations in the 

structure of that region, which decreases the rate of inorganic phosphate released, ultimately 

blocking myosin in a low actin affinity products complex. 

 

2.8.2 LATRUNCULIN A 
 

Latrunculia magnificans, is a Red Sea sponge that exudes a noxious, red fluid that kills fish within 

minutes.  Latrunculin-A ([1R-[1R*, 4Z, 8E, 10Z, 12S*, 15R*, 17R*(R*)]]-4-(17-Hydroxy-5,12-

dimethyl-3-oxo-2,16-dioxabicyclo[13.3.1]nonadeca-4,8,10-trien-17-yl)-2-thiazolidinone) (Fig. II-21) 

is a drug purified from this fluid, and is capable of rapidly, reversibly, and specifically disrupting the 

actin cytoskeleton by associating with globular (g-)actin monomers, and preventing polymerization 

into filamentous (f-)actin.  

 

Figure II-20: Binding site of blebbistatin, ATP, ADP and Pi in myosin II. 
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2.8.3 ML-7 
 

ML-7 (1-(5-Iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride) (Fig. II-22) 

has been shown to inhibit Ca
2+

-dependent and independent smooth muscle MLCK (myosin light 

chain kinases) via competitive inhibition of ATP and also inhibits protein kinases C and A. ML-7 

also inhibits cell transporters activated by shrinkage and affects the osmotic volume regulation of 

cells.  Mechanistic studies suggest that both processes are mediated via stimulation of potassium 

chloride co-transport, a cell volume regulating ion (Tian, Brumback, & Kaufman, 2000).  ML-7 has 

also been reported to affect the superoxide O2-producing system of human neutrophils in a myosin 

light chain kinase independent manner. 

  

  

Figure II-21: Chemical structure of Latrunculin-A 

  

Figure II-22: Chemical structure of ML-7 
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III. THE EFFECTS OF ACTOMYOSIN DISRUPTORS ON THE 
MECHANICAL INTEGRITY OF THE AVIAN CRYSTALLINE LENS 
 

This chapter was published in Won G, Fudge DS and Choh V (2015).  The effects of actomyosin 

disruptors on the mechanical integrity of the avian crystalline lens. Mol. Vis., 21: 98-109.* [Won: 

designed experiments, conducted experiment, analysed/interpreted data, wrote manuscript and 

proofed/revised manuscript; Fudge: provided materials, proofed/revised manuscript; Choh: designed 

experiments, analysed/interpreted data, provided materials, proofed and edited manuscript].   

Addendum: 10 µM is the dosage that was used for all inhibitors as it in the range that has been used 

in a variety of other studies (Zhang, 2011; Feng, 2010; Luck, 2010; Yin, 2010) 

3.1 OVERVIEW 

 

Purpose: Actin and myosin within the crystalline lens maintain the structural integrity of lens fibre cells and 

form a hexagonal lattice cradling the posterior surface of the lens.  The actomyosin network was 

pharmacologically disrupted to examine the effects on lenticular biomechanics and optical quality.   

Methods: One lens of 7-day-old White Leghorn chickens was treated with 10 µM of disruptor and the other 

with 0.01% dimethyl sulfoxide (vehicle).  Actin, myosin, and myosin light chain kinase (MLCK) disruptors 

were used.  The stiffness and the optical quality of the control and treated lenses were measured.  Western 

blotting and confocal imaging were used to confirm that treatment led to disruption of the actomyosin 

network.  The times for the lenses to recover stiffness to match control values were also measured.  

Results: Disruptor-treated lenses were significantly less stiff than their controls (p ≤ 0.0274 for all disruptors).  

The disruptors led to changes in the relative protein amounts as well as distributions of proteins within the 

lattice.  However, the disruptors did not affect the clarity of the lenses (p≥0.8051 for all disruptors) and 

spherical aberration differences were only observed for myosin-inhibited lenses (p=0.0500).  The effects of all 
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three disruptors were reversible, with lenses recovering from treatment with actin, myosin and MLCK 

disruptors after 4 hours, 1 hour, and 8 minutes, respectively. 

Conclusion: Cytoskeletal protein disruptors led to a decreased stiffness of the lens, and the effects were 

reversible.  Optical quality was mostly unaffected but the long-term consequences remain unclear.  Our 

results raise the possibility that the mechanical properties of the avian lens may be actively regulated in vivo 

via adjustments to the actomyosin lattice. 

 

3.2 INTRODUCTION 

 

The process of accommodation allows for the eye to focus on nearby objects.  The mechanism by 

which accommodation occurs in vertebrates involves either a translation of the lens or a change in 

lens curvature in order to increase the optical power of the eye (Helmholtz, 1962).  Humans and 

birds are similar in that both species use the latter method to accommodate (Helmholtz, 1962; Sivak, 

1980), however, the changes in the human lens occur via relaxation of zonules attached to the ciliary 

muscle (Helmholtz, 1962; Zinn & Wrisberg, 1780), whereas the ciliary muscle in the avian eye 

directly articulates with the equator of the lens (Sivak, 1980), resulting in squeezing of the lens in the 

equatorial plane.   

 The lens maintains its integrity and transparency due to the organization of its cells, which 

are epithelial in origin (Bettelheim, 1985; Clark, Matsushima, David, & Clark, 1999; Maddala et al., 

2004).  Similar to other epithelial cells in the body, lens epithelial cells contain cytoskeletal 

filaments, the smallest of which are known as microfilaments and are found throughout the lens 

(Ireland et al., 1983). Microfilaments are composed largely of filamentous  (f-)actin and are 

responsible for an array of essential biological functions, including facilitating changes in cell shape, 
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fortifying cell-cell and cell-extracellular matrix interactions, as well as the compartmentalization of 

plasma membranes (Alberts, 2008; Quinlan et al., 1999b).   

In most cells, f-actin function relies on its ability to interact with myosin II, a non-muscle and 

smooth muscle motor protein, to form actomyosin assemblies (Rao & Maddala, 2006).  In smooth- 

and non-muscle systems, contraction of actin and myosin is triggered by myosin light chain kinase 

(MLCK), an upregulator of ATPase activity and a catalyst for actin-myosin cross-linking (Hai & 

Murphy, 1988; Kamm & Stull, 1985; Yuen, Ogut, & Brozovich, 2009).  The ATP is used by myosin 

heads to move along actin filaments and results in contractile movement of myofilaments.  In 

squirrel, rabbit, and humans, f-actin is arranged in polygonal arrays at the anterior face of crystalline 

lenses and is associated with myosin within the epithelium (Rafferty et al., 1990).  Similarly, at the 

posterior surface of the avian crystalline lens, f-actin, non-muscle myosin, and N-cadherin are 

arranged in a hexagonal lattice resembling a "two-dimensional muscle" (Bassnett et al., 1999).  The 

actomyosin complex at the anterior epithelium has been speculated to facilitate accommodation by 

allowing the epithelial cells to change shape or by permitting the lens as a whole to change into a 

more spherical shape (Yeh, 1986) while the proteins collectively at the basal membrane complex of 

the posterior lens surface have been shown to mediate fibre cell migration across, and anchor fibre 

cells to, the lens capsule (Bassnett et al., 1999).  In addition, the presence of highly regular 

actomyosin lattices in the lens raises the possibility that these networks are involved in setting the 

passive biomechanical response of the avian lens to external forces such as those exerted by the 

ciliary muscle.  Indeed, previous research using knockout mice has shown that in the murine lens, 

beaded filaments, which are intermediate filaments unique to the lens, contribute significantly to lens 

stiffness (Fudge et al., 2011).  Furthermore, the fact that the actomyosin network has the potential to 

be contractile raises two even more intriguing possibilities - that lens stiffness could be actively 
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tuned by adjusting the amount of tension in the network, and that the shape of the lens itself could be 

similarly adjusted (Bassnett et al., 1999; M. A. Kibbelaar et al., 1980; Kuszak, Zoltoski, & 

Tiedemann, 2004; Ramaekers, Poels, Jap, & Bloemendal, 1982; Yeh, 1986).  The demonstration that 

the MLCK inhibitor, ML-7, has significant effects on the focal length, and therefore almost certainly 

the shape, of avian lenses seems to support this idea (Luck & Choh, 2010).  The purpose of this 

study was to test the hypothesis that lenticular actomyosin networks affect the biomechanics and 

optics of the whole avian lens by pharmacologically disrupting them and measuring the effects on 

lens stiffness and optical clarity. 

 

3.3 METHODS 

 

3.3.1 ANIMALS 
 

White leghorn (Gallus gallus domesticus) hatchling chicks were obtained from the Maple Leaf 

hatchery in New Hamburg, Ontario and were fed ad libitum.  They were housed in stainless steel 

brooders with a heat source, and kept on a 14:10 day:night light cycle.  Chicks were raised in 

accordance to the Guidelines of the Canadian Council on Animal Care and conform to the ARVO 

Statement for the Use of Animals in Ophthalmic and Vision Research.  As the focus of this study 

was to test the fundamental question of whether disrupting cytoskeletal proteins could have an effect 

on lenticular biomechanics, chicks with robust amounts of accommodation (about a week old) were 

used instead of older birds, which will be considered for a future study once the functions of 

disruptors have been well established.  Week-old chicks also show highly monotonic spherical 

aberrations (Choh, Sivak, & Meriney, 2002) thereby providing a model for which optical changes 



63 

 

could be assessed. 

 

3.3.2 LENS DISSECTIONS 
 

Six to eight day old chicks were sacrificed by decapitation and their eyes were enucleated.  Eyes 

were placed in chilled oxygenated Tyrode’s solution (TS: 134 mM NaCl, 3 mM KCl, 20.5 mM 

NaHCO3, 1 mM MgCl2, 3 mM CaCl2) before removal of  the posterior globe and vitreous humour.  

The exposed lens was then separated from the surrounding ciliary body and extracted from the 

anterior segment, taking care to minimize damage to the lens capsule. 

 

3.3.3 DISRUPTORS 
 

Latrunculin A (LAT-A) is a drug that rapidly, reversibly, and specifically disrupts actin cytoskeleton 

by preventing polymerization (Morton, 2000; Spector, 1983).  1-phenyl-1,2,3,4-tetrahydro-4-

hydroxypyrrolo[2.3-b]-7-methylquinolin-4-one (blebbistatin) is a reversible inhibitor with specificity 

and high-affinity for several class II myosins and acts by reducing the actin affinity of the myosin 

heads (Kovacs, 2004).  1-(5-Iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine 

hydrochloride (ML-7) selectively disrupts myosin light chain kinase activity by preventing myosin II 

light-chain phosphorylation (Saponara, 2012). 

 

3.3.4 LENS TREATMENTS 
 

For each bird, one eye was treated for 15 minutes with either 10 μM latrunculin (n=18), in 0.01% 
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(v/v) dimethyl sulfoxide (DMSO) in TS, 10 μM blebbistatin (n=16), in 0.01% (v/v) DMSO in TS or 

10 μM ML 7 (n=14) in 0.01% (v/v) DMSO in TS.  The lenses from the opposite eyes were subjected 

to vehicle (0.01% (v/v) DMSO in TS; 15 min).  Assignment to the treatment group alternated 

between left and right eyes.  All lenses were briefly rinsed in TS prior to biomechanical testing, 

Western blot analysis, immunocytochemical processing, or assessment of optical quality.   

 

3.3.5 LENS COMPRESSIONS 
 

The mechanical properties of the lens were measured using a universal testing machine (Instron, 

Norwood, MA, USA).  Each lens was placed anterior side down on a pedestal located in the 

compression chamber containing chilled TS.  Lenses were then compressed 0.75 mm using an 

aluminum compression element connected to a 10-N load cell (Fig. III-1) and measurements of the 

resultant force exerted by the lens  were collected.  For experiments examining whether the effects 

on the biomechanics were reversible, a 5-N sensitive load cell was used and compressions were 

  

Figure III-1: Image of a lens in the compression chamber. The lens (arrow) is 

submerged in TS, sitting anterior side up on a pedestal and compressed from above by 

an aluminum compression element connected to a load cell. 
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carried out immediately after the 15 minute disruptor/vehicle treatment at the following time points: 

1 min., 2 min., 4 min., 8 min., 16 min., 32 min., 1 hr., 2 hr., 4 hr., 8 hr., 16 hr., and 32 hr. after 

treatment.  Force-compression data for each lens were collected using Bluehill software (ver. 9, 

Instron, Norwood, MA, USA).   

 

3.3.6 ANALYSIS OF STIFFNESS 
 

Force data were adjusted to account for buoyancy exerted by the surrounding solution on the 

compression element, as it displaced more or less test solution during compression and relaxation of 

the lens. The resulting force-compression curves that were generated for each lens were then best-fit 

to a 3-parameter exponential curve with the equation y = y0 + ae
bx

.  As the b-coefficient of the 

exponential equation is a unitless constant that describes a relationship of how rapidly the force 

increases as compression distance increases, it was used to assess the relative stiffness between 

lenses (Demer & Yin, 1983; Higashita et al., 1996) with larger numerical values for the b-coefficient 

representing steeper curves, and thus stiffer lenses.   B-coefficients from each curve were extracted 

and means and standard deviations were calculated from these data.  Dimensionless b-coefficient 

values for whole lenses should not be confused with the Young’s Modulus, which is known to vary 

in different parts of the lens (Weeber & van der Heijde, 2008) and was not measured in this study.  It 

should be noted that there were no significant differences in the size of control and treated lenses, 

thus differences in b-coefficient likely correspond with differences in the Young’s Modulus of at 

least part of the lens, although our data cannot tell us which part.   
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3.3.7 WESTERN BLOT ANALYSIS 
 

Western blot analysis was carried out to confirm that disruptors had the expected effects on the lens.  

Disruptor and vehicle treatments were identical to those for the compression trials.  Lenses were 

dissected and separated into 1) posterior capsule samples, and 2) decapsulated lens fibre samples 

(composed of cortical+nuclear fibres).  Each sample was separately ground using mini pestles, and 

lysed with Radioimmunoprecipitation Assay Buffer (RIPA; R0278, Sigma-Aldrich Co., Oakville, 

ON, Canada) containing a general use protease inhibitor cocktail (P2714, Sigma-Aldrich Co., 

Oakville, ON, Canada). The total protein of lens tissue samples was quantified using the BioRad DC 

protein assay (500-0111; BioRad Laboratories, Inc., Mississauga, ON, Canada).  Samples were 

prepared with Laemmli sample buffer, run on 10% precast gels (456-1033, BioRad Laboratories, 

Inc., Mississauga, ON, Canada) in the BioRad Mini-Protean System (165-8000, BioRad 

Laboratories, Inc., Mississauga, ON, Canada), transferred to a polyvinyldene fluoride (PVDF; 162-

0175, BioRad Laboratories, Inc., Mississauga, ON, Canada) membrane and visualized with 

antibodies specific to the protein being blotted.  Mono- and polymeric actin levels in the lens capsule 

were quantified using a globular (g-)actin/filamentous (f-)actin in vivo assay biochemistry kit 

(BKO37, Cytoskeleton, Inc., Denver, CO, USA).  In brief, lens samples were homogenized and a 

detergent-based lysis buffer that stabilizes and maintains the globular and filamentous forms of 

cellular actin was added.  The lysate containing each sample was then centrifuged (21,100 × g, 

Thermo Scientific Sorvall Legend Micro 21), with the resulting supernatant and pellet containing g-

actin and f-actin, respectively.  Actin levels in both supernatant and pellet were then quantified by 

Western blot analysis for three replicates.  ML-7 inhibits MLCK, which phosphorylates myosin, 

therefore antibodies against phosphorylated myosin (M6068, Sigma-Aldrich Co., Oakville, ON, 

Canada) were used for ML-7-treated samples.  Secondary antibodies conjugated with horseradish 
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peroxidase were detected by enhanced chemiluminescence using Amersham ECL prime (RPN2236, 

GE Healthcare, Mississauga, ON, Canada).  Western Blots were visualized using a Storm 860 

scanner (GE Healthcare, Mississauga, ON, Canada), and assessed using ImageQuant software (GE 

Healthcare, Mississauga, ON, Canada).   

 

3.3.8 OPTICAL QUALITY 
 

The optical quality of lenses was assessed using a ScanTox© scanning laser monitor.  In brief, lenses 

were placed anterior side down in a rectangular glass chamber in TS and 5% fetal bovine serum, the 

latter to visualize the helium-neon laser beams passing through the lens at various eccentricities from 

the optical axis.  Refracted beams were captured and recorded with a camera and back vertex focal 

lengths were calculated using software associated with the scanner.  Beams passing through the 

sutures were omitted, as they produce highly inaccurate back vertex focal lengths.  The optical 

quality of lenses was assessed based on changes in scatter and spherical aberration.  For calculations 

of spherical aberration, data were first converted to dioptric values (vergences) using a thin lens 

approximation in water; the refractive index of water (nw = 1.33) was divided by the back vertex 

focal lengths (in meters).  The vergences were then fitted using a 3rd order polynomial line of 

regression to determine the back vertex distance at the optical axis (Fig. III-2).  The amounts of 

spherical aberration were determined for a 1.5 mm pupil size by averaging the spherical aberration 

calculations for the positive (0 to 0.75 mm) and negative (0 to -0.75 mm) eccentricities.  As bird 

lenses typically show a high negative spherical aberration (SA) (Choh et al., 2002; Glasser & 

Howland, 1995; Sivak & Kreuzer, 1983; Sivak, Ryall, Weerheim, & Campbell, 1989a), scatter was 

quantified as the mean deviation of the various focal lengths from the best fitting 3rd order 
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polynomial line of regression.  Higher deviations indicated higher degrees of scatter. 

 

3.3.9 CONFOCAL MICROSCOPY 
 

Blebbistatin- and latrunculin-treated lenses and the controls for these lenses were fixed with 2% 

(v/v) paraformaldehyde in TS.  Lenses were permeabilized in toto using 0.05% v/v Triton X-100 in 

phosphate buffered saline (PBS) before addition of mouse anti-myosin-light-chain antibody (M4401, 

Sigma-Aldrich, 1:100 dilution in PBS, 2 hrs. at 37°C)  followed by rabbit anti-mouse secondary 

antibody conjugated to Texas Red (1:500 in PBS, overnight at RT).  Following a 3 x 5 minutes 

wash, lenses were counterstained with phalloidin FITC (P5282, Sigma-Aldrich, 1:400 dilution in 

PBS, 15 min, RT).  Lenses were mounted in toto posterior pole up onto slides using 5% (w/v) agar 

solution in water with 0.05 mg/ml phenylenediamene (P6001, Sigma-Aldrich; in 50% (v/v) glycerol 

  

Figure III-2: Effects of disruptors on lenticular optics.  Line graph showing the focal 

length (mm) at various eccentricities (mm) of a typical avian crystalline lens. Graphs 

were fitted with third-order polynomial equations to calculate the amount of scatter and 

SA. 
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in water).  A coverslip coated with ProLong Gold (P36934, Life Technologies) was then placed on 

top of the posterior pole of the lens and adhered to the slide with the agar.  The protein distribution 

of lenses was visualized using a Zeiss LSM 510 confocal microscope and images were captured and 

processed using the Zen 2011 software (Zeiss).  

Protein distributions were quantified using nearest neighbour analysis, which assesses the 

closeness of points of interest (POIs) on an image and assigns a value between 0 and 2.15, where a 

score of 0 represents clustered POIs, a score of 1 represents random distribution of POIs, and a score 

of 2.15 is highly regular distribution of POIs.  For latrunculin-treated lenses (n=3), the POIs used 

were the vertices of actin hexagons, while for blebbistatin-treated lenses (n=3), the POIs used were 

the centre of myosin globules.  POIs were targeted and selected using NIH Image or Scion Image 

software.  Nearest neighbour values (Rn) were calculated using the equation    
      

   √   
, where 

D(Obs) is the mean observed nearest neighbour distance, a is the area, and n is the total number of 

POIs. 

 

3.3.10 STATISTICAL ANALYSIS 
 

The effects of the disruptors on the stiffness and optical quality of the lenses were analysed using 

mixed-model analysis of variance, with disruptor versus vehicle as the repeated measure and the type 

of disruptor used as a factor.  For the longitudinal (reversibility) study, a two-way repeated measured 

analysis of variance (ANOVA) was used with the disruptor versus vehicle as one measure, and time 

as the other.  Tukey or Bonferroni-corrected post-hoc multiple comparison tests were carried out 

where applicable.  Comparisons of the optical quality of the lenses, and of nearest neighbour values 

were assessed using paired t-tests.  For all statistical tests, results were considered significant at p ≤ 
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0.05. 

 

3.4 RESULTS 

 

Force-compression curves were generated for each lens (Fig. III-3).  Linear regression of the data to 

a 3-parameter exponential curve (y = y0 + ae
bx

) yielded mean r
2
 values (± SEM) of 0.9861 ± 0.0217 

(range: 0.8787 and 0.9999).  For most pairs of lenses, treatment with disruptors was associated with 

a decrease in stiffness of the lens, as indicated by the shallower force-compression curves (Fig. III-3, 

filled symbols).  Specifically, for 15 of the 18 pairs of eyes in the latrunculin group, treated lenses 

exhibited relatively lower stiffness values for the latrunculin-treated lenses compared to its vehicle-

control, while 3 pairs showed the opposite trend, with stiffness in latrunculin-treated lenses relatively 

higher than those exposed to vehicle.  The mean stiffness values reflected the general trend (Fig. III-

4), with latrunculin-treated lenses significantly lower (± SEM) at 2.64 ± 1.28 compared to the 

vehicle-treated lenses at 4.15 ± 1.15 (p=0.0011; Fig. III-4A).  Similarly, 14 of 16 pairs of lenses 

showed relatively lower stiffness values for the blebbistatin-treated lenses compared to the vehicle-

treated counterpart, with 2 pairs showing the opposite trend.  Again, the mean stiffness values (± 

SEM) were lower for blebbistatin-treated lenses (3.25 ± 0.23) compared to those exposed to vehicle 

(4.47 ± 0.57; p=0.0274; Fig. III-4B).  Finally, for 12 out of 14 pairs of lenses, the stiffness of ML-7 

treated lenses were relatively lower compared to the vehicle-treated lenses, while lenses for 2 pairs 

were relatively higher.  The mean stiffness for ML-7-treated lenses were, again, lower than of their 

fellow eyes (2.90 ± 1.19 vs. 4.49 ± 1.23, respectively; p=0.0027; Fig. III-4C).  Mixed model analysis 

revealed no significant difference in stiffness levels between the disruptors (p=0.2379) nor was there 

an interaction effect (p=0.7483).  
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Figure III-3: Force-compression 

curves of all lenses. Mean force ± 

SEM of (A) latrunculin-, (B) 

blebbistatin-, and (C) ML-7-treated 

lenses (filled symbols) and their 

controls (empty symbols), as a 

function of compression. Force-

compression curves of individual 

disruptor-treated (solid gray lines) 

and vehicle-treated (dashed gray 

lines) lenses are also included. 
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Figure III-4: Effects of disruptors on 

lenticular stiffness. Mean stiffness values 

± SEM of disruptor- and vehicle-treated 
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10 µM ML-7 (n = 14). Asterisks denote 

significant differences (all groups 
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 Western blot analysis indicated that latrunculin and ML-7 treatments were effective in 

disrupting actin levels and myosin phosphorylation, respectively, at both the basal membrane 

complex (BMC) and the cortical lens fibres (Fig. III-5).  Actin levels in latrunculin-treated lenses 

were quantified using a g-actin/f-actin in vivo assay kit, which revealed a large decrease in f-actin at 

both the BMC and in the lens fibre cells as a result of lens tissue treatment.  In BMC samples treated 

with Western blot analysis indicated that latrunculin and ML-7 treatments were effective in

 

 

 

Figure III-5: Effects of disruptors on protein concentrations in the lens. (A) 

Western blots of f- and g-actin in BMC and lens fiber cell samples treated with 

latrunculin. Numbers in parentheses represent the mean percentage optical density 

(±SEM) relative to the total amount of actin. (B) Western blots of phosphomyosin in 

BMC and lens fiber cell samples treated with ML-7 (+) and vehicle (-).  Numbers in 

parentheses represent the mean optical densities (±SEM). β-actin was used as the 

loading control. 



74 

 

disrupting actin levels and myosin phosphorylation, respectively, at both the basal membrane 

complex (BMC) and the cortical lens fibres.  Actin levels in latrunculin-treated lenses were 

quantified using a g-actin/f-actin in vivo assay kit, which revealed a large decrease in f-actin at both 

the BMC and in the lens fibre cells as a result of lens tissue treatment.  In BMC samples treated with 

latrunculin, the mean intensity (± SEM) of f-actin was 12.0 ± 1.2, while the mean intensity of g-actin 

was 19.3 ± 1.9, representing 38.4 ± 0.5% and 61.6 ± 0.5% of the total actin amount, respectively, 

indicating substantial depolymerization of f-actin as a result of latrunculin treatment (Fig. III-5A).  

In comparison, control samples showed a ratio of approximately 1:1, with mean intensities of f- and 

g-actin at 14.2 ± 1.4 and 13.7 ± 1.4, representing 51.0 ± 0.5% and 49.0 ± 0.5% of the total actin 

amount, respectively.  In cortical fibre samples treated with latrunculin, the mean intensity (± SEM) 

of f-actin was 10.0 ± 1.55, while the mean intensity of g-actin was 18.3 ± 1.9, representing 35.4 ± 

0.55% and 64.7 ± 0.7% of the total actin amount, respectively (Fig. III-5B). In comparison, control 

samples again showed a ratio of approximately 1:1, with mean intensities of f- and g-actin at 13.4 ± 

1.3 and 13.3 ± 1.2, representing 50.2 ± 0.5% and 49.9 ± 0.5% of the total actin amount, respectively.  

The relative intensities of phospho-myosin were lower in both BMC (by 21.1%) and lens fibre cell 

(by 15.6%) samples when treated with ML-7 (Fig. III-5C, 5D, respectively), indicating ML-7-

dependent inhibition of myosin phosphorylation. 

Confocal images indicated that latrunculin led to rearrangement and thinning of the actin 

cables at the basal membrane (Fig. III-6).  Actin in the latrunculin-treated lenses appeared different 

from vehicle-treated lenses, which showed the typical punctate staining of the highly regular 

hexagonal vertices.  Additionally, myosin bundles localized at the centre of the actin formations 

appeared more variable in size and neighbouring distance.  Nearest neighbour analysis indicated a 

significant increase in the disorder of the myosin associated with the actin lattice (Rn for treated 
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lenses: 1.75 ± 0.02 vs. Rn for control lenses: 2.06 ± 0.05; p=0.0025).  The actin distribution in lenses 

treated with latrunculin had an Rn (± SEM) of 1.83 ± 0.05, while its vehicle counterpart had an Rn of 

2.09 ± 0.05, indicating a small increase in f-actin disorder (Fig. III-6A and B), although these 

changes were not significant (p = 0.0593).  Both actin and myosin organization were adversely 

affected by blebbistatin.  The myosin distributions in lenses treated with blebbistatin were even less 

ordered than those observed in latrunculin-treated lenses, and treated lenses showed an even lower 

Rn of 1.58 ± 0.08, while its vehicle counterpart had an Rn of 2.05 ± 0.03 (p=0.0183, Fig. III-6C and 

D).  The actin distribution was also affected; blebbistatin-treated lenses lost the regular repeating 

arrays of punctate staining and the Rn of 1.52 ± 0.02 in these lenses was significantly different from 

  

Figure III-6: Effects of disruptors on actin and myosin distributions in the lens. 

Confocal images of posterior lens capsules showing the distribution of actin (green) and 

myosin (red) in a (A) latrunculin-treated lens and (B) its vehicle-treated counterpart, as 

well as a (C) blebbistatin-treated lens and (D) its vehicle-treated counterpart. Scale bar = 

5 µm for all images. Rn values for actin (Rna, green) and myosin (Rnm, red) distributions 

are included. 
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that of control lenses, at an Rn of 2.00 ± 0.005 (p=0.0183), indicating a large increase in disorder.  

Despite the rearrangement of the cytoskeletal proteins at the BMC, the optical quality of 

disruptor-treated lenses, assessed using two criteria, scatter and spherical aberration (Table III-1), 

were unaffected; none of the disruptor-treated lenses showed a difference in the amounts of scatter 

compared to its respective control nor did any disruptor treatments result in differences in the 

amount of spherical aberration. 

 

In the longitudinal (reversibility) compression trials, it was found that lenses treated with 

latrunculin took the longest to recover, showing significant differences in stiffness up until the four-

hour mark, (mean stiffness ± SEM at 4 hours: control lenses, 6.17 ± 0.43 vs. treated lenses, 4.98 ± 

0.56; p=0.0730; Fig. III-7A).  Lenses treated with blebbistatin were found to have a recovery time of 

1 hour (mean stiffness at 1 hour: control lenses, 5.37 ± 0.19 vs. treated lenses, 5.27 ± 0.51; p=1.000; 

Fig. III-7B). Lenses treated with ML-7 had the quickest recovery time at 8 minutes (mean stiffness at 

8 minutes: control lenses, 6.02 ± 0.36 vs. treated lenses, 5.17 ± 0.40; p=1.000; Fig III-7C). 

 

Table III-1: Mean spherical aberration (D) ± SEM and mean scatter (mm) ± SEM for 

latrunculin-, blebbistatin-, and ML-7-treated lenses and their controls. 

Disruptor 
Spherical aberration (D) Scatter (Mean deviation; mm) 

Treated Control p-value Treated Control p-value 

Latrunculin -11.80±0.50 -11.57±0.48 0.6093 1.15 ± 0.03 1.15 ± 0.04 0.9858 

Blebbistatin -11.62±0.31 -11.59±0.26 0.9212 1.19 ± 0.07 1.14 ± 0.02 0.4696 

ML-7 -11.94±0.69 -12.44±0.78 0.2245 1.15 ± 0.03 1.13 ± 0.05 0.7526 
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Figure III-7: Time course of lenticular 

stiffness following disruptor removal. 

Longitudinal recovery effects of (A) 10 µM 

latrunculin (n = 6), (B) 10 µM blebbistatin 

(n = 6), and (C) 10 µM ML-7 (n = 6) on lens 

stiffness compared to vehicle controls. 

Asterisks (*) indicate significant differences 

between disruptor- and vehicle-treated 

lenses.  
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3.5 DISCUSSION 

 

The compression trials showed that treatment with actomyosin disruptors results in significant 

changes in the distributions of actin and myosin and significant decreases in the stiffness of the 

whole lens.  While it is possible that other mechanisms were responsible for lens softening, the 

simplest explanation is that the decrease in stiffness was a direct result of the changes to the structure 

of the actomyosin lattice wrought by the disruptors. 

Responses were reversible for all three disruptors, but the kinetics of recovery differed. 

Latrunculin-treated lenses recovered the slowest, perhaps due to the ubiquitous presence of actin 

microfilaments, found not only at the lens capsule and BMC, but also within the lens cortex and 

nucleus, the latter two of which form the bulk of the lens (Ireland et al., 1983).  More actin would 

presumably require more time to reassemble.  Although optimal assembly conditions for actin and 

myosin differ, it should be noted that, at least theoretically, actin has a slower association rate than 

that of myosin II, with the elongation rates of actin filaments of 11.6 ± 1.2 x 10-6 M-1s-1 at the 

barbed ends and 1.3 ± 0.2 x 10-6 M-1s-1 at the pointed ends (Pollard, 1986) compared that for 

myosin II at ≥ 2.0 x 108 M-1s-1 (Sinard & Pollard, 1990).  It is most likely that, blebbistatin and 

ML-7-treated lenses were much faster in their recovery times because these disruptors do not 

physically segregate the target protein into its monomeric components.  Instead, the myosin 

disruptors act by preventing phosphorylation and competitively binding to key structures in the 

actomyosin cascade, a process that is presumably easier and quicker to reverse (Kovacs, 2004; Kuhn 

& Pollard, 2005).   

It should be noted that preliminary trials in which acute treatment of lenses with a higher 

concentration of ML-7 (100 µM) resulted in lens stiffening, with 4 of 16 lenses physically bursting 
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during force-compression trials (data not shown).  Stiffening as a result of high concentrations of 

ML-7 could be due to a biphasic dose response of the MLCK-inhibitor. Indeed,  in the case of cell 

spreading, another process mediated by dynamics of the actomyosin network, ML-7 had opposite 

effects in COS7 carcinoma cells when its dose was increased by a factor of five (Takizawa, Ikebe, 

Ikebe, & Luna, 2007).  Moreover, results of two-dimensional gel electrophoresis of 100 µM ML-7-

treated posterior lens capsule tissues suggests increases in protein phosphorylation compared to a  

samples treated with10 µM ML-7 (data not shown).   

In a related study on lens shape changes by Luck and Choh (2010), low and high 

concentrations of ML-7 resulted in longer and shorter avian lens focal lengths, respectively.  

Although the directionality of 10 and 100 µM changes is in agreement with the stiffening observed 

in our experiment, we did not observe any focal length changes with these two ML-7 concentrations.  

One difference may be that Luck and Choh conducted the optical trials on lenses in situ, where the 

lens was still in its accommodative apparatus, while we conducted our optical trials on lenses in 

vitro, i.e., on lenses that had been extracted from its surrounding tissue.  In our experiments, lenses 

may have ―rounded up‖, a phenomenon that has been described before for lenses separated from 

their surrounding anatomy (Glasser, Murphy, Troilo, & Howland, 1995).  This idea seems to be 

supported by the average focal length of our vehicle treated lenses (14.1 ± 0.2 mm; data not shown), 

which was shorter and therefore more powerful than the vehicle-treated lenses in Luck and Choh’s 

study (19.6 mm).  It is possible that, in our experiment, lenses were maximally rounded and 

therefore any further release of tension associated with the actin-myosin network would be too small 

to detect. 

Indications that cytoskeletal proteins might play a role in lenticular biomechanics were noted 

by Rafferty et al. (1994), who showed that increasing intracellular calcium levels in rabbit anterior 
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epithelial cells in the lens resulted in changes in actin stress fibre distributions.  Although the 

concentration of myosin is generally lower than actin in contractile networks, such as that found in 

lens epithelial cells (Rafferty et al., 1990), it is nonetheless crucial for structural integrity.  Two of 

the disruptors used targeted myosin or myosin function and both were able to exert effects that were 

similar to that exerted by the actin disruptor.  However, it should also be noted that cytoskeletal 

integrity is not limited to the actomyosin system; intermediate filaments and microtubules also play a 

role in maintaining cellular architecture (Quinlan et al., 1999b).  Lenses from mice in which a gene 

for beaded filaments, which belong to the intermediate filament gene family, is knocked out, are less 

stiff than those from wild-type mice (Fudge et al., 2011).  Our results add to the growing body of 

evidence showing the importance of cytoskeletal protein integrity to lenticular biomechanics.  While 

studies by Fudge (2011) and the present study examined how disrupting cytoskeletal integrity affects 

the biomechanics of the lens as a whole, a previous study investigated their effects on lenticular cells 

individually.  Unlike our results, Hozic and colleagues (2012) showed no difference in the stiffness 

of the individual lenticular cells with cytochalasin, an actin disruptor.  The difference between the 

present study and that of Hozic and colleagues (2012) may be related to the disruptor used 

(latrunculin vs. cytochalasin B); cytochalasin works by inhibiting actin polymerization, essentially 

preventing the formation of actin networks (blocks monomer addition) while latrunculin 

depolymerizes f-actin. 

In both the acute and longitudinal compression trials, lenses were kept in Tyrode’s solution in 

temperatures upwards of 5°C in order to retard cell metabolism and prevent the tissue from 

degrading, particularly for the longitudinal trials that required ex vivo viability for upwards of 32 

hours.  It should be noted that lenses in situ would be closer to body temperature (Al-Ghadyan & 

Cotlier, 1986) and, moreover, that cold temperatures could promote depolymerization of actin 
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microfilaments.  Hall et al. (1996; 1994) showed that cells exposed to a temperature of 4°C for 2-4 

hours exhibit a marked thinning of actin filaments. However, Matthews et al (2005) found no effects 

of these conditions on actin structure. Our lenses were exposed to a minimum of 5°C for a maximum 

of 15 minutes, and thus cold-induced depolymerization of f-actin should have been minimal. 

Furthermore, any cold-induced depolymerization was accounted for by our control lenses, which 

experienced identical conditions aside from the disruptor treatment.   

The confocal imaging and Western blots together indicate that the disruptors penetrated the 

lens at a deep enough level to affect the cytoskeletal distribution at the BMC in addition to the lens 

fibre cells.  Given that confocal images were acquired between 12-13 µm below the lens capsule, it 

is known that the depth of disruptor penetration is at least to this extent.  It is unclear how deeply the 

disruptors penetrate the lens, and whether they diffuse uniformly throughout the lens, however, it is 

sure to be different as  a disparity between the diffusion patterns at the surface of the lens compared 

to the lens core syncytium exists and has been shown by Shestapolov and Bassnett (2000, 2003). 

While f-actin depolymerization was an expected outcome of latrunculin treatment, myosin 

organization was also affected (Fig. 6A). It has been proposed that in order for myosin II to remain 

in the cytoskeleton, it must be bound to stable actin (Kolega & Kumar, 1999).  Similarly, 

blebbistatin also appears to enhance depolymerization of f-actin (Fig. 6C).  Blebbistatin is known to 

disassemble actin (Martens & Radmacher, 2008), presumably by reducing myosin activity and 

therefore actin cross-linkings.  Although ML-7 affects phosphorylation and therefore the ability of 

actin and myosin to interact, it would not be expected to physically alter the architecture of the 

actomyosin network, which was indeed the case (ML-7-treated Rn = 2.02±0.02 vs. vehicle-treated 

Rn=2.01 ± 0.02; data not shown). 

Our results showed that despite the cytoskeletal distribution changes at the BMC and the 
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measured changes in stiffness, the optics of the isolated lenses was unaffected by the disruptors 

(Table 1) and during the acute study trials, it was noted that lenses maintained transparency (note 

clarity of the lens in Fig. 2).  Either the disruption at the BMC was too small to confer a change in 

spherical aberration and scatter, or the regular arrangement and tight packing of the lens fibre cells 

rendered any disruption of the actomyosin distributions negligible.  However, while lenses were 

clear during the acute experiment, the long-term effects of disruptors on lenticular transparency 

remain unknown; qualitative assessment of the lenses indicated that incubation with disruptors for 

about an hour resulted in turbidity and development of cataracts (data not shown).  Whether turbid 

lenses can recover optical clarity also remains unknown, therefore, the use of cytoskeletal disruptors 

as permanent effectors for changing lens biomechanics must take into account other possible effects 

on functions such as optical clarity.  

  Other questions that need to be answered include whether these disruptors can be as effective 

on older lenses.  As mentioned above, the focus of this experiment was to determine whether 

disruption of the actomyosin lattice could alter lenticular biomechanics, and for experimental 

convenience we used young chicks.  While it is tempting to relate our results to presbyopia, which is 

accompanied by profound increases in lenticular stiffness with age (refs), further investigation will 

require the use of older experimental animals.  

We have found that by targeting the cytoskeletal proteins that are known to have structural 

roles in cells, lenses become less stiff, but whether the lens plays more than a passive role during 

accommodation remains unclear.  The physiology and cellular arrangement of the lens are mostly 

dedicated to maintaining optical clarity, by ordering the fibre cells into a regular arrangement, and 

reducing the intercellular spaces between them, so that light is less scattered.  The hexagonal shape 

conferred upon the lens fibre cells fulfils both of these functions and therefore the finding that a 
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geodesic hexagonal network is present at the posterior surface may simply reflect the shape of the 

highly organized fibres cells and function to resist deformations that could disrupt this organization. 

In summary, we found that disruption of actomyosin networks in young avian lenses causes 

significant decreases in the stiffness of isolated lenses, but no differences in their optical properties. 

These results are consistent with the hypothesis that lens stiffness may be actively tuned via 

adjustments to the actomyosin networks in lens cells. The lack of an effect on lens optical properties 

may have been due to a ―rounding up‖ artefact caused by isolation of the lens from the eye. 
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IV. DEVELOPING AN ANTIBODY-DRUG CONJUGATE TO 
SPECIFICALLY TARGET AND SOFTEN THE CRYSTALLINE LENS IN 
VIVO 
 

4.1 OVERVIEW 

 

Purpose:  The purpose of this study was to synthesize a novel drug delivery platform designed to specifically 

target and soften the lens.  Given that blebbistatin, a selective myosin II inhibitor, was shown to be able to 

soften the crystalline lens by disrupting the lenticular cytoskeletal network, a lens-specific antibody was 

hybridized to blebbistatin to form b-AQP0Fab.  Validation of b-AQP0Fab and its in vitro effects on various 

ocular tissues were also investigated. 

Methods:  Blebbistatin was hybridized to a fragmented (Fab) custom anti-AQP0 antibody via a labile 

crosslinker to produce b-AQP0Fab, an antibody-drug conjugate.  Successful hybridization of b-AQP0Fab was 

verified by non-denaturing  polyacrylamide gel electrophoresis (PAGE), and its binding capacity was 

assessed by direct enzyme-linked immunoabsorbant assay (ELISA).  The effects of b-AQP0Fab on myosin II 

levels of various intraocular tissues were assessed by Western blot analysis.  

Results: SDS-PAGE indicated a successful hybridization of blebbistatin to anti-AQP0 using a PDPH 

crosslinker when compared to unconjugated anti-AQP0.  Additionally, direct ELISA analysis indicated that b-

AQP0Fab retained its binding strength to AQP0.  Western blot analysis demonstrates that, despite treatment 

of global intraocular structures, only lenticular tissue exhibited a change in myosin II activity.  

Conclusion:  b-AQP0Fab was synthesized successfully and shows specificity towards lenticular aquaporin-0.  

Additionally, extra-lenticular tissues were not affected by b-AQP0Fab.  Further studies should be conducted 

to investigate the in vivo specificity of b-AQP0Fab and its effects on the accommodative mechanism in the 

eye.  
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4.2 INTRODUCTION 

 

In 1900, Paul Ehrlich, a German physician and Nobel laureate, proposed that ―if a compound could 

be made that selectively targeted a disease-causing organism, then a toxin for that organism could be 

delivered with the agent of selectivity‖ –  he would eventually coin the term magische kugel or 

―magic bullet‖ for this idea (Ehrlich & Herter, 1904).  In essence, the magic bullet is a targeted drug 

delivery theory that has: (1) a selective component that can specifically recognize a target, and (2) a 

pharmaceutical payload to treat the target.  The advantage of this delivery system is that it increases 

the specificity and efficacy of a drug to diseased or pathogenic tissues, while exhibiting low or no 

toxicity on healthy tissues in the body.   

There are currently three categories of targeting drug delivery systems: (1) physical targeting, 

which localizes agents to target areas by using their biophysical characteristics, such as size and 

composition, (2) chemical targeting, which localizes agents to target areas using prodrugs, enzyme, 

or chemical reactions, and (3) biological targeting, which allows localized agents to target areas 

through antibodies, peptides, or any other molecules that have an affinity towards receptors, tissues, 

or organs (Mills & Needham, 1999).   

Due to their remarkable specificity, antibodies have received the most attention and have the 

greatest potential to realize Ehrlich’s proposal of a magic bullet.  Recently, with the development of 

extraction, isolation, and engineering procedures for monoclonal antibodies, biological targeting, 

particularly against cancerous tissue, has seen rapid increases in research and development (Troy, 

2015).  One targeting therapy in particular takes advantage of the site-specific binding properties of 

antibodies to localize the delivery of a therapeutic agent using an antibody-drug conjugate (ADC) 

(Zolot, Basu, & Million, 2013);  ADCs delivers biological payloads attached to monoclonal 
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antibodies in order to specifically target and destroy tumours without affecting healthy tissues.  At 

present, there are only two ADCs approved by the U.S. Food and Drug Administration (FDA): 

Trastuzumab emtansine (Kadcyla®) and Brentuximab vedotin (Adcetris®) (Sassoon & Blanc, 

2013).  Trastuzumab emtansine arrests the growth of cancer cells by binding to tumour-specific 

HER2/neu receptors and delivering emtansine (DM1), a tubulin inhibitor.  Brentuximab vedotin 

functions by binding specifically to CD30 proteins found specifically in Hodgkin’s and systemic 

anaplastic large cell lymphomas, and delivers a dosage of Monomethyl auristatin E (MMAE), an 

anti-mitotic agent, that inhibits cell division by block the polymerization of tubulin.  Although there 

are only two ADCs on the market, there are currently over 40 new ADCs in clinical development 

(Donaghy, 2016; Schumacher, Hackenberger, Leonhardt, & Helma, 2016). None of these ADCs, 

however, are designed to treat the eye. 

Presbyopia is an age-related deterioration of the eye’s ability to focus on nearby objects.  It is 

believed that the predominant physiological mechanism by which presbyopia occurs is by a loss of 

elasticity in the crystalline lens of the eye, and as a result, the eye is unable to increase in dioptric 

power (Beers & Van der Heijde, 1996; Glasser & Campbell, 1998).  The current solutions to 

presbyopia only serve to manage its symptoms and do not cure the physiological cause, primarily 

because restoring elasticity to the lens has several complications; the various factors contributing to 

lens elasticity are not completely understood (Strenk et al., 2005), and few attempts have been made 

to investigate biological agents capable of restoring lens elasticity.  Additionally, the lens is an 

internal structure, and studying the mechanical properties of the isolated lens has serious limitations; 

post-mortem changes, artefactual deformation, and application of non-physiological forces all 

contribute to discrepancies between in vivo and in vitro lens traits (Strenk et al., 2005).  However, 

developing an antibody-drug conjugate capable of specifically targeting and softening the crystalline 
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lens would allow for the treatment of the physiological cause of presbyopia.  The ADC would 

require three components (Fig. IV-1): (1) an antibody capable of recognizing an antigen unique to 

the crystalline lens, (2) a cytotoxic agent or drug capable of softening the crystalline lens, and (3) a 

crosslinker with the appropriate functional groups to attach the antibody with the cytotoxic agent. 

As the targeting mechanism of ADCs is dependent on the antigen-binding site of the 

antibody component, the antibody component can be engineered to target any protein or peptide 

sequence, provided that the sequence of the amino acids is known.  Because the crystalline lens 

contains several unique proteins that are not found elsewhere in the human body, the principle of the 

ADC and its targeting mechanism can be applied to the crystalline lens within the eye.  AQP0 is a 

transmembrane water channel found uniquely in the lens that is expressed prolifically in fibre cell 

membranes (Broekhuyse, Kuhlmann, & Winkens, 1979; Chepelinsky, 2003; Goodenough, 1979).  

Although it was initially demonstrated that AQP0 had weaker water permeation than those observed 

in other aquaporins, it was later discovered that under low pH conditions, such as that within the 

lens, a drastic increase in water channel activity was observed (Németh-Cahalan, Kalman, & Hall, 

2004).  For this reason in addition to its prolific expression within fibre cell membranes, it was 

speculated that AQP0 could provide anchors for cytoskeletal structures, such as beaded filaments, to 

  

Figure IV-1: Schematic representation of an antibody-drug conjugate.  The 

antibody (purple) is attached to the drug (orange) via a crosslinker (grey line). 
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confer fibre cell shape, architecture, and integrity (Sindhu Kumari et al., 2015).    The extracellular 

portion of AQP0 is therefore an ideal antigen site for an antibody-drug conjugate to target.  The 

selection of peptide sequences found on AQP0 to which an antibody should be conjugated against 

requires careful consideration to increase the chances of an immune reaction.  Several factors that 

increase antigen binding strength include: longer amino acid chains, appropriate three-dimensional 

conformations, and increased hydrophilicity of peptide sequences.  The total size of the ADC, to 

which the antibody carrying the specific peptide sequence is conjugated, may also play a role in 

antigen affinity, as the limited pore size of the lens capsule restricts transit of larger molecules.  The 

lens capsule has, however, been observed to diffuse positively charged molecules and neutral 

dextrans, of up to 147.8 kDa in size, quite quickly (Lee et al., 2006).  Furthermore, proteins of 

similar molecular weight carrying a net negative charge have also been observed to pass through the 

lens capsule, although, at a much slower rate (Danysh, Czymmek, Olurin, Sivak, & Duncan, 2008), 

indicating that ADCs of approximately 150 kDa in size should pass through the lens capsule.   

Antibodies can, however, be cleaved into various components using fragmentation kits.  A 

standard immunoglobulin G (IgG) antibody consists of two light chains and two heavy chains which, 

together, form the Y-shaped structure.  On each antibody, two variable domains exist, and are 

responsible for recognizing antigenic peptide sequences.  The tail of the body is known as the 

constant domain and functions to recruit secondary immune responses, which may not be necessary 

in certain applications.  A pepsin digestion kit can be used to separate the constant domain from the 

body in order to form an F(ab')2 fragment.  Further digestion of F(ab')2 with β-mercaptoethanol 

cleaves the molecule in half, resulting in an F(ab') fragment.  In cases where the disulphide bond in 

F(ab') are not required, a papain digestion kit may be used to produce an F(ab) fragment, despite its 

smaller size, stills consists of the variable domain capable of binding to antigenic peptide sequences 
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(Fig. IV-2).  

It was previously demonstrated that treatment of the crystalline lens using several 

cytoskeletal inhibitors (latrunculin, blebbistatin, and ML-7) to disrupt the lenticular actomyosin 

network causes the lens to soften as a whole (Won, Fudge, & Choh, 2015)  (Chapter III).   Moreover, 

treated lenses did not show changes in light scatter or spherical aberration, and were not found to 

develop any form of turbidity or cataracts, indicating that these inhibitors could potentially be used 

to treat lenses that have lost their elasticity.  The chemical structures of these inhibitors will therefore 

be examined to determine the best candidate for hybridization; ideal characteristics include: 

accessibility, appropriate and reactive functional groups, small molecule size, and attenuated 

functionality while hybridized.  It should be noted that only limited types of crosslinkers are 

commercially available, and therefore, only certain functional groups are compatible.  Additionally, 

certain crosslinkers are labile, allowing the release of the hybridized payload under appropriate 

physiological conditions, a characteristic that can be taken advantage of in order to increase ADC 

specificity.  

  

Figure IV-2: Schematic representation of a standard IgG antibody along with the 

various fragments that it may be cleaved into using appropriate digestion kits.  The 

standard IgG antibody consists of 2 light chains (blue outlines), and 2 heavy chains 

(purple outlines).  The antigen recognition sites occur at the tips of each variable domain 

(dotted outlines) of the antigen binding regions (empty squares).  The tail of the IgG is 

known as the constant region (filled squares). 
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The purpose of this study was to identify an ideal antigen binding site, crosslinker, and 

biological agent to successfully develop an antibody-drug conjugate that is able to target and soften 

the avian crystalline lens in vivo. 

 

4.3 MATERIALS 

 

4.3.1 SELECTION OF PEPTIDE SEQUENCE FOR ANTI-PEPTIDE CONJUGATION:  
 

Several factors were considered to determine the optimal peptide sequence for anti-peptide 

conjugation in order to elicit an appropriate antigenic response; (1) peptide amino acid composition, 

(2) peptide length, (3) peptide solubility, and (4) peptide secondary structure.  In brief, the peptide 

sequence should contain amino acids that are found on the surface of the native protein with both 

hydrophobic and hydrophilic residues (Lee et al., 2010).  Longer peptide sequences are harder to 

synthesize and purify, however, they generally result in better antigenic responses (Lee et al., 2010).  

The major caveat for lengthy peptide sequences is the formation of incompatible secondary 

structures that reduce antigenicity.  Finally, the hydrophobicity of each individual amino acid heavily 

influences the solubility of the peptide sequence, and should be kept below 50% (Hopp & Woods, 

1981).   

Chicken AQP0 (Uniprot ID P28238, NCBI 989597) was determined to exist solely within the 

crystalline lens using the basic local alignment search tool (BLAST).  Interestingly, BLAST analysis 

of protein alignment revealed a 68.4% similarity with AQP0 in the Mississippi alligator lens, a 

65.4% similarity with AQP0 in yak and cattle, and a 65% similarity with AQP0 in sheep.  Chicken 

AQP0 was further characterized using the Genscript® antigen profiler to determine optimal peptide 
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sequences (PSs) for targeting purposes.  Based on the topology of AQP0 (Fig. IV-3), three external 

peptide sequences of the transmembrane water channel are exposed for possible binding: (1) 

RWAPGP (PS01; 033-038), (2) TPAAVRGTLGLSALHPSVG (PS02; 108-126), (3) TRNFTN 

(PS03; 195-200). 

Optimal sequences were further screened using the ThermoFisher® peptide synthesis and 

proteotypic peptide analyzing tool in order to determine the best candidates for antigenic response.  

The characteristics of interest in peptide sequences include: sequence length, hydrophobicity, grand 

average of hydropathicity (GRAVY), average molecular weight, and monoisotopic molecular weight 

(results summarized in Table IV-1). 

As longer, higher molecular weight peptide sequences are generally considered more likely 

to specifically attach antigenic sites, PS02 (TPAAVRGTLGLSALHPSVG) was selected for 

antibody conjugation (Frahm et al., 2004).  Additionally, PS02 only contains one of the unstable 

amino acids (C, M, W, N, P, D and Q, E at N-termimus) that can cause side reactions during 

  

Figure IV-3: Schematic representation of the AQP0 peptide sequence.  External 

sequences of interest circled in red.  Transmembrane regions are denoted with green 

squares, and the first sequence (1-8) occurs interiorly.   
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immunization and thereby alter the purity of the end product.  PS02 is also moderately hydrophobic 

(Fig. IV-4, green line in blue box), and so is compatible for antibody conjugation.  Of the two shorter 

chains, PS01 (RWAPGP) is more hydrophobic, however, it is not a sequence unique to chicken 

biology, and contains several unstable amino acids.  Alternatively, PS03 (TRNFTN) is unique to the 

chicken lens, but it is the least hydrophobic (Fig. IV-4, green line in orange box) of the three 

sequences, and contains several unstable amino acids.  It has, however, been shown that unstable 

amino acids are less problematic for conjugation of short-chain amino acids. For these reasons, PS03 

was also selected for antibody conjugation.  

Anti-AQP0-peptide synthesis and validation was conducted by Cedarlane labs using a 

standard 2-rabbit (New Zealand White) 70-day immunization protocol.  In brief, TRNFTN and 

TPAAVRGTLGLSALHPSVG peptide sequences, conjugated to keyhole limpet hemocyanin to 

boost immune response, were synthesized prior to immunization.  On day 0, approximately 5 mL of 

control serum was collected per rabbit.  On day 1, each rabbit was immunized with 0.50 mg of either 

TPAAVRGTLGLSALHPSVG or TRNFTN in Complete Freund’s Adjuvant (CFA).  On days 14 and 

28, both rabbits received a booster shot with 0.25 mg of the appropriate peptide antigen in 

Incomplete Freund’s Adjuvant (IFA).  On day 35, approximately 25 mL of serum was collected per 

Table IV-1: Summary of PS01, PS02, and PS03 peptide characteristics 

 PS01: RWAPGP PS02: TPAAVR… PS03: TRNFTN 

Sequence Length 6 19 6 

Hydrophobicity 13.61 33.02 7.79 

GRAVY -1.200 0.532 -1.683 

Average MW 682.7863 g/mol 1804.0963 g/mol 751.8043 g/mol 

Monoisotopic MW 682.3551 1803.0004 751.3613 
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rabbit.  On day 42, a third booster shot, identical to previous boosts, was given to each rabbit.  On 

days 56 and 58, approximately 50 mL of serum was collected per rabbit.  On day 60, ELISA 

titrations were conducted, and rabbits were euthanized. 

 

4.3.2 SELECTION OF BIOLOGICAL PAYLOAD 
 

Of the three cytoskeletal inhibitors (latrunculin A, blebbistatin, and ML-7) that were shown to soften 

the lens (Won et al., 2015), only blebbistatin was selected.  Although latrunculin A has an array of 

ketones, amines, and alcohol groups to use as reactive groups for crosslinking, the three-dimensional 

structure and large size of the molecule are detrimental to conjugation with a crosslinker.  

Additionally, the numerous reactive groups present could form various isomers that would require 

purification and individual analysis of functionality, rendering the molecule more complicated to 

  

Figure IV-4:  Hydrophobicity (green line) and hydrophilicity (red line) chart of the 

entire AQP0 peptide sequence.  PS02 sequence located within blue bars, PS03 

sequence located within orange bars. 
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use.  In contrast, ML-7 has a small and simple chemical structure, however, its most reactive 

functional group, the sulphonamide, is relatively inert, and is nestled between a large aromatic and 

azocane ring, rendering it inaccessible.  Due to its relatively simple chemical structure and 

effectiveness at softening the crystalline lens, blebbistatin was selected as the biological agent for 

ADC conjugation.  The exposed carbonyl group on the piperidine ring provides easy access for 

binding with an aldehyde-reactive crosslinker chain.  Furthermore, few isomers are likely to form as 

both reactive ends of the crosslinker chain do not favourably bind to the amine or hydroxyl groups of 

blebbistatin.  

 

4.3.3 SELECTION OF CROSSLINKER 
 

With the advent of antibody derived therapeutics, the understanding of reactive amino acids within 

antibodies became increasingly important.  The most notable amino acid group occurring in IgG1 

antibodies are cysteine residues, as they are highly conserved throughout evolution, occur in 

abundance, and contain reactive sulfhydryl groups for chemical manipulation (Lee et al., 2010)..  In 

its native state, the cysteine residues of IgG1 are bridged to form cystine groups connected by a 

disulphide bond (Fig. IV-5).  Reduction of cystine using thiols, such as β-mercaptoethanol or 

dithiothreitol (DTT) opens the disulphide bridge for chemical manipulation (Lee et al., 2010). 

 

Figure IV-5: Schematic representation of cystine (disulphide bond) formation by 

two cysteine residues.  
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 Within the IgG1 molecule, 16 disulphide bonds are present (Fig. IV-6); 12 occur within 

chains (2 in each light chain, and 4 in each heavy chain), while 4 occur between chains (1 connecting 

each antigen binding region, and 2 connecting the constant region) (Lee et al., 2010).  It should be 

noted that interchain cysteine groups are rarely used for conjugation, as their reduction would result 

in cleavage of the antibody, and an ultimate loss of antibody function (Bjork & Tanford, 1971; 

Burton, 1985; Chan & Cathou, 1977).  Fortunately, it has been demonstrated that under mild 

reduction conditions, interchain bridges of IgG structures remain intact but intrachain disulphide 

bonds reduce to allow for conjugation (Schroeder, Tankersley, & Lundblad, 1981; Willner et al., 

1993).  Studies on individual domains without the complete intrachain disulphide bond have 

demonstrated lower stability and biological function (Harris, 2005; McAuley et al., 2008; Ouellette 

et al., 2010; Thies et al., 1999).  Therefore, although it is theoretically possible to attach a total of 12 

crosslinkers to a single IgG1 antibody, a maximum of 6 attachments can be made without affecting 

  

Figure IV-6: Schematic representation of disulfide bonds found in conventional 

IgG1. Each IgG1 contains 12 intrachain cysteine residues (black S-S), and 4 interchain 

cysteine residues (red S-S).  Green arrows indicate disulfide bridges that may be used 

for conjugation without affecting antibody functionality.  Orange arrows indicate 

disulfide bridges that may cause a loss of secondary immune response if used for 

conjugation.  
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antibody functionality (Lee et al., 2010).  If the antibody conjugation is not required to elicit a 

secondary immune response from its constant region, a maximum of 8 attachments can be made.  

In order to attach the reduced cysteine sulfhydryl groups of IgG antibodies to the carbonyl 

ketone on blebbistatin, a heterobifunctional crosslinker, which is a crosslinker with two different 

reactive ends, must be used.  Of the non-cleavable crosslinkers reactive to sulfhydryl and carbonyl 

groups, three lengths were available: (1) N-β-maleimidopropionic acid hydrazide (BMPH, MW: 

297.19, spacer arm: 8.1Å), (2) N-ε-maleimidocaproic acid hydrazide (EMCH, MW: 339.27, spacer 

arm: 11.8Å), and (3) N-κ-maleimidoundecanoic acid hydrazide (KMUH, MW: 409.40, spacer arm: 

19.0Å).  Because of its shorter spacer arm and lower molecular weight, BMPH (Fig. IV-7i) was 

selected to reduce the chance of homodimerization, and decrease the total weight of the final ADC 

product. Several options were available for labile crosslinkers reactive to sulfhydryl and carbonyl 

groups, however, only 3-(2-pyridyldithio)propionyl hydrazide (PDPH, MW: 229.32, spacer arm: 

9.1Å, Fig. IV-7ii) contained a disulphide cleavage site that can potentially be cleaved by lenticular 

conditions.  

 

 

 

Figure IV-7: Chemical structures of (i) N-β-maleimidopropionic acid hydrazide 

(BMPH) and (ii) 3-(2-pyridyldithio)propionyl hydrazide (PDPH) 
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4.4 METHODS 

 

4.4.1 SYNTHESIS OF ADC: b-AQP0ab 
 

10 mM N-β-maleimidopropionic acid hydrazide (BMPH, crosslinker) solvent was prepared.  A 5-

fold molar excess of crosslinker reagent over protein was mixed with 1mg/mL DTT-reduced 

AQP0ab, and the reaction mixture was incubated for 2 hours at room temperature for 4 hours at 4°C 

(Reaction 1; Fig. IV-8).  Samples were dialyzed overnight at room temperature against a coupling 

buffer (0.1M sodium phosphate, 0.15M NaCl, pH 7.2) to remove excess reagent and exchange 

crosslinker buffer.  Crosslinker-modified sulhydryl proteins were mixed with blebbistatin in a 1:10 

molar ratio, respectively (Reaction 2; Fig. IV-8).  The reaction mixture was incubated for 2 hours at 

room temperature. 

 

 

Figure IV-8: Schematic representation of the b-AQP0ab reaction mechanism. The 

conjugation reaction occurred in two steps: (1) attaching the AQP0 antibody (ab) to the 

BMPH crosslinker, and (2) attaching the product of reaction (i) to blebbistatin to form b-

AQP0ab. 
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4.4.2 ANTIBODY FRAGMENTATION 
 

Whole anti-peptide antibodies were fragmented using the Pierce Fab Preparation Kit (Thermo 

Scientific #44985).  Immobilized papain was equilibrated by centrifuge at 5000 x g for 1 minute. 

The resulting resin was washed with 0.5 mL of digestion buffer, and centrifuged for 5000 x g for 1 

minute.  Anti-AQP0 samples were prepared by centrifugation in a Zeba Spin Desalting Column at 

5000 x g for 2 minutes.  Approximately 0.5 mL of 4 mg/mL IgG was collected.  Fragments were 

generated by adding the anti-AQP0 sample to the spin column containing equilibrated immobilized 

papain.  The digestion reaction was incubated for 7 hours (4 mg/mL rabbit IgG) on a tabletop rocker 

at 37°C, and centrifuged in a column at 5000 x g for 1 minute to separate digest from immobilized 

papain.  The resulting resin was washed with 0.5 mL phosphate buffered saline (PBS), and 

centrifuged in a column at 5000 x g for 1 minute, and the fragmented anti-AQP0 (anti-AQP0Fab) 

was collected. 

 

4.4.3 REFINEMENT OF ADC: b-AQP0Fab 
 

11 mg of 3-[2-Pyridyldithio]propionyl hydrazide (PDPH) was dissolved in 1 mL of 

dimethylsulfoxide (DMSO) to produce 50 mM PDPH in crosslinker solvent.  0.5 mL of 8 mg/mL 

Fab was added to 0.5 mL of the 50 mM PDPH solution and incubated for 2 hours at room 

temperature (Reaction 3; Fig. IV-9).  The Fab-PDPH mixture was purified using a size exclusion 

column (Superdex 75) to remove unbound PDPH, and dialyzed overnight against 0.1 M PBS (pH 

7.4).  1 mL of the dialyzed Fab-PDPH sample was added to 1 mL of 0.05 M blebbistatin under 

sulfhydryl reducing conditions (5mM dithiothreitol) (Reaction 4; ; Fig. IV-9).  The reaction mixture 
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was incubated for 2 hours at room temperature and purified using a size exclusion column (Superdex 

75) to remove unbound blebbistatin from the final product, b-AQP0Fab.  Two isoforms of b-

AQP0Fab were synthesized, one with antigenic response to the TPAAVRGTLGLSALHPSVG 

peptide sequence and the other to the TRNFTN peptide sequence.   

 

4.4.4 LABELLING B-AQP0FAB WITH FLUORESCEIN ISOTHIOCYANATE 
 

The reaction product b-AQP0Fab was fluorescently labelled with fluorescein isothiocyanate (FITC) 

isomer I (Sigma-Aldrich F2502) for detection purposes in validation experiments.  A 4 mg/mL 

solution of b-AQP0Fab was prepared in 0.1 sodium carbonate buffer (pH 9). 1 mg/mL of FITC was 

dissolved in anhydrous dimethyl sulfoxide (DMSO).  50 µL of FITC solution was slowly added (in 5 

µL aliquots) for every 1 mL of b-AQP0Fab solution during continual stirring.  The reaction was 

incubated for 8 hours at 8°C in the dark.  After incubation, 50 mM of NH4Cl was added, and the 

 

Figure IV-9: Schematic representation of the b-AQP0Fab reaction mechanism. The 

conjugation reaction occurred in two steps: (1) attaching the fragmented AQP0 antibody 

(Fab) to the PDPH crosslinker, and (2) attaching the product of reaction (iii) to 

blebbistatin to form b-AQP0Fab. 
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reaction was incubated again for 2 hours at 8°C in the dark.  Unbound FITC was separated from 

fluorescently labelled b-AQPOFab using a Sephadex G-10 column (GE Life Sciences #17-0010-01), 

and stored at 8°C in a lightproof container.  

 

4.4.5 NON-REDUCING SODIUM DODECYL SULPHATE POLYACRYLAMIDE GEL 

ELECTROPHORESIS (SDS-PAGE) 
 

In order to observe the successful conjugation of b-AQP0ab and b-AQP0Fab, non-reducing, sodium-

dodecyl-sulfate polyacrylamide gel electrophoresis (PAGE) was used to indicate the approximate 

size of the final products.  Gels were freshly prepared before each assay.  10 mL of 15% separating 

gel (3 kDa to 100 kDa molecular weight range) was prepared by mixing 5 mL of acrylamide/bis-

acrylamide (30%/0.8% w/v), 4.89 mL 0.375M Tris-HCl (pH 8.8), 100 µL of ammonium persulfate  

(AP, 10% w/v), and 10 µL tetramethylethylenediamine (TEMED). The separating gel mixture was 

pipetted into gel casting plates, and allowed to polymerize for 30 minutes.  The remainder of the 

plate was filled with isopropanol to prevent evaporation and to ensure even surface gelation.  5 mL 

of stacking gel was then prepared by mixing 4.275 mL of 0.375 M Tris-HCl (pH 8.8), 0.67ml 

acrylamide/bis-acrylamide (30%/0.8% w/v) 0.05 mL of 10% (w/v) AP, and 5 μL TEMED.  The 

isopropanol atop of the separating gel was drained, the stacking gel was pipetted on top, and a gel 

comb (15-well, 40 µL, custom 3D printed) was inserted into the mixture.  The stacking gel was 

allowed to polymerize for 30 minutes.  

Protein solutions were individually mixed in a 1:1 volume ratio with 2x sample buffer (62.5 

mM Tris-HCl (pH 6.8), 25% glycerol, 10% sodium dodecyl sulphate, and 1% bromophenol blue), 

and loaded into wells.  Running buffer for electrophoresis was composed of 25 mM Tris and 192 
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mM glycine at a pH of 8.3.  The electrophoresis was conducted at low voltage and on ice to prevent 

degradation of proteins.  Completed gels were stained with Coomassie blue to visualize protein 

bands. 

 

4.4.6 SIZE EXCLUSION CHROMATOGROPHY - MASS SPECTROMETRY (SEC-MS) 
 

Samples of b-AQP0Fab were separated using a Superdex 75 increase 10/300 GL column (GE 

Healthcare Life Sciences #17-5174-01).  Mass spectral data for the ADC was acquired on an Agilent 

6510 QTOF (Agilent, Santa Clara, CA) in positive electrospray ionization (ESI) mode in the range 

of 1000−8000 mass to charge ratio (m/z). Nitrogen gas was used as both drying and nebulizing 

gasses.  The drying gas temperature was 350 °C, and flow rates for the drying gas and the nebulizer 

gas pressure were 12 Litres/hour and 35 psi, respectively. The capillary, fragmentor, and octupole 

radio frequency voltages were set at 5000, 450, and 750, respectively. 

 

4.4.7 ENZYME-LINKED IMMUNOABSORBANT ASSAY (DIRECT) 
 

The binding capability of b-AQP0Fab to aquaporin peptide sequence was assessed by a custom 

direct enzyme-linked immunoabsorbant assay (ELISA).  96-well plates were coated with 2 µg/mL of 

BSA either conjugated with TPAAVRGTLGLSALHPSVG or conjugated with TRNFTN and 

incubated for 2 hours at room temperature.  TPAAVRGTLGLSALHPSVG- and TRNFTN-

conjugated BSA were provided with the custom anti-peptide antibodies ordered from Cedarlane 

Labs.  Coated wells were then washed 3x with PBS and blocked with unconjugated BSA.  

Triplicates of b-AQP0Fab samples were added to the coated wells in 10 dilution ratios: 1:256k, 
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1:128k, 1:64k, 1:32k, 1:16k, 1:8k, 1:4k, 1:2k, 1:1k, 1:500.  Wells were then washed 3x with PBS.  

Samples were viewed using a SpectraMax M5
e
 (Molecular Devices, Sunnyvale, CA, USA) 

 

4.4.8 WESTERN BLOT ANALYSIS 
 

Western blot analysis was conducted to evaluate the disruptive strength of blebbistatin on lenticular 

tissue after antibody hybridization.  In brief, lenses from 7-day-old chickens were ground using mini 

pestles, and lysed with Radioimmunoprecipitation Assay Buffer (RIPA; R0278, Sigma-Aldrich Co., 

Oakville, ON, Canada) containing a general use protease inhibitor cocktail (P2714, Sigma-Aldrich 

Co., Oakville, ON, Canada). The total protein of lens tissue samples was quantified using the 

BioRad DC protein assay (500-0111; BioRad Laboratories, Inc., Mississauga, ON, Canada).  

Samples were prepared with Laemmli sample buffer, run on 10% precast gels (456-1033, BioRad 

Laboratories, Inc., Mississauga, ON, Canada) in the BioRad Mini-Protean System (165-8000, 

BioRad Laboratories, Inc., Mississauga, ON, Canada), transferred to a polyvinyldene fluoride 

(PVDF; 162-0175, BioRad Laboratories, Inc., Mississauga, ON, Canada) membrane. The transferred 

membrane was treated with a 1:100 dilution of rabbit anti-myosin heavy chain 9 (MYH9; Sigma-

Aldrich HPA001644), prior to treatment with a 1:400 dilution ratio of  goat anti-rabbit IgG 

conjugated with horseradish peroxidase (Sigma-Aldrich A0545).  Treated membranes were then 

visualized using Amersham ECL prime (RPN2236, GE Healthcare, Mississauga, ON, Canada), 

imaged with a Storm 860 scanner (GE Healthcare, Mississauga, ON, Canada), and assessed using 

ImageQuant software (GE Healthcare, Mississauga, ON, Canada). 
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4.4.9 IN VITRO ASSESSMENT OF b-AQP0Fab EFFECTS ON LENS STIFFNESS 
 

The mechanical properties of lenses treated with b-AQP0Fab were measured using a universal 

testing machine (Instron, Norwood, MA, USA).  Each lens was placed anterior side down on a 

pedestal located in the compression chamber containing chilled TS.  Lenses were then compressed 

0.75 mm using an aluminum compression element connected to a 10-N load cell and measurements 

of the resultant force exerted by the lens were collected. 

 

4.5 RESULTS 

 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) on b-AQP0ab indicated 

that hybridization of whole anti-AQP0 to the BMPH crosslinker was successful (Fig. IV-10).  

However, due to the low molecular weight of blebbistatin, no conclusions were made regarding its 

conjugation.  Additionally, the reaction of anti-AQP0, BMPH, and blebbistatin resulted in a product 

with an approximate molecular weight of 200 kDa, which is substantially greater than the 

unconjugated anti-AQP0 (by approximately 50 kDa), and possibly indicating homedimerization of 

BMPH. 

Western blot (WB) analysis to verify the functionality of b-AQP0ab-conjugated blebbistatin 

indicated only a slight disruption of MYH9 activity (Fig. IV-11).  Mean band intensities (± SEM) of 

lens tissue treated with blebbistatin indicated a much lower concentration of MYH9 (9.74 ± 1.15) 

when compared to lens tissue treated with b-AQP0ab (24.69 ± 2.26) and untreated lens tissue (28.69 

± 2.18). 
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Figure IV-10: Non-reducing SDS-PAGE comparing the molecular weight of b-

AQP0ab and its unconjugated constituents.  Lanes 1 & 8: BMPH crosslinker, lanes 2 

& 3: stock anti-AQP0 antibody, lane 4: molecular weight marker, lane 5: unconjugated 

mixture of b-AQP0ab components, lane 6 & 7: b-AQP0ab.  Gel visualized using 

Coomassie brilliant blue stain.  

 

 

 

Figure IV-11:  Western blot comparing myosin heavy chain 9 (MYH9) levels in 

lenticular tissue treated with dimethyl sulfoxide (DMSO, control), b-AQP0ab, and 

blebbistatin. 
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Furthermore, direct enzyme-linked immunoabsorbant assay (ELISA) analysis of antibody to 

AQP0 affinity indicated that both peptide isoforms of b-AQP0ab experienced a loss of recognition 

towards their respective antigen sequences (Fig. IV-12).  At 1:500 dilution ratios, both 

TPAAVRGTLGLSALHPSVG- and TRNFTN-conjugated b-AQP0ab samples demonstrated a 

substantial loss of optical density (OD450: 0.2740 ± 0.1010 and 0.2294 ± 0.0190, respectively) 

compared to their unconjugated counterparts (OD450: 0.5350 ± 0.0210 and 0.3250 ± 0.0221, 

respectively). 

 Despite the low antigen affinity and low blebbistatin functionality of b-AQP0ab, whole 

lenses treated with b-AQP0ab exhibited a decrease in overall lens stiffness.  Lenses treated with b-

 

Figure IV-12: Binding strength of b-AQP0ab isoforms.  Direct enzyme-linked 

immunoabsorbant assay (ELISA) indicated lower antigen affinity of 

TPAAVRGTLGLSALHPSVG- (empty circle) and TRNFTN- (empty triangle) isoforms 

of b-AQP0ab compared to their native IgG counterparts (filled circle and filled triangle, 

respectively). 
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AQP0ab showed significantly lower stiffness coefficients (±SEM) at 4.10 ± 0.25 when compared to 

lenses treated with anti-AQP0 at 5.05 ± 0.10 (Fig. IV-13A, p=0.0363).  Similarly, lenses treated with 

b-AQP0ab also displayed a significantly lower stiffness coefficient (±SEM) when compared to 

lenses treated with vehicle control (Fig. IV-13B, compare 5.05 ± 0.07 and 3.93 ± 0.27, respectively, 

p=0.0262). 

Following the refinement of b-AQP0ab to produce b-AQP0Fab, the new ADC was subjected 

to SDS-PAGE.  The SDS-PAGE indicated proper cleaving and purification of the anti-AQP0 IgG 

into Fab fragments (Fig. IV-14, lane 4 band (approximately 45 kDa)) through the use of a papain 

digestion kit.  Additionally, the native PAGE also demonstrated the successful hybridization of 

fragmented anti-AQP0 with the PDPH crosslinker (Figure IV-14, compare lane 4 band 

(approximately 45 kDa) with lane 5 band (approximately 50 kDa), respectively).  The difference 

between the weight of Fab-AQP0 and Fab-ADC indicates multiple attachments of PDPH to Fab-

 

Figure IV-13: Bar graphs comparing stiffness of (b-)coefficients.  Lenses treated 

with b-AQP0ab were less stiff than those treated with anti-AQP0 (A) and were less stiff 

than those treated with phosphate buffered saline (control) (B).  Asterisks denote a 

significant decrease in lens stiffness.  
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AQP0 occurred; however, the difference in weight between the two lanes was not large enough to 

indicate homodimerization of PDPH.  

Size exclusion chromatography – mass spectrometry (SEC-MS) revealed 4 peaks 

corresponding to 4 reaction products as a result of b-AQP0Fab conjugation (Fig. IV-15, data 

summarized in Table IV-2).  Peak 1 corresponds to unconjugated Fab (theoretical mass (TM): 

50,000 Da), peak 2 corresponds to Fab with 1 conjugation (TM: 50,521 Da), peak 3 corresponds to 

Fab with 2 conjugations (TM: 51,042 Da), and peak 4 corresponds to Fab with 3 conjugations (TM: 

51,563 Da).  No peaks were observed for Fab with 4 conjugations.  Based on the percentage 

intensity of each peak, reaction samples were composed predominantly of Fab with 2 conjugations 

 

Figure IV-14: Non-reducing SDS-PAGE comparing the molecular weights of b-

AQP0Fab and its unconjugated constituents.  Lane 1: molecular weight marker, lane 

2: native AQP0 antibody, lane 3: PDPH crosslinker, lane 4: papain digested AQP0, lane 

5: b-AQP0Fab.  Gels visualized using Coomassie brilliant blue stain. 
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(51.29%), followed by Fab with 1 conjugation (31.03%), and Fab with 3 conjugations (15.29%).  

Only 2.38% of the sample remained unconjugated. 

Once again, to verify the functionality of blebbistatin after conjugation to anti-AQP0Fab, the 

activity of lenticular MYH9 was assessed by Western blot analysis (Fig. IV-16).  Mean band 

 

Figure IV-15: Characterization of b-AQP0Fab by size exclusion chromatography – 

mass spectrometry (SEC-MS).  The various reaction products resulting from the 

conjugation of b-AQP0Fab were (1) unconjugated b-AQP0Fab, (2) b-AQP0Fab with 1 

conjugation, (3) b-AQP0Fab with 2 conjugations, (4) b-AQP0Fab with 2 complete and 1 

incomplete conjugation. 

 

 

Table IV-2: Summary of SEC-MS Data 

 
Peak 

1 2 3 4 

Theoretical  Mass (Da) 50,000 50,521 51,042 51,563 

Deconvoluted Mass (Da) 50,007.51 50,540.78 51,071.47 51,611.46 

Intensity 4.35% 56.67% 93.67% 27.92% 

Sample Proportion 2.38% 31.03% 51.29% 15.29% 
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intensities (±SEM) of lens tissues treated with b-AQP0Fab (13.97 ± 1.81) indicated a decrease in 

MYH9 staining comparable to that of unconjugated blebbistatin (11.25 ± 0.42).  Furthermore, both 

treatments resulted in a substantial decrease in MYH9 labelling when compared to untreated lens 

tissue (32.70 ± 2.97). 

Direct ELISA indicated that the TPAAVRGTLGLSALHPSVG isoform of b-AQP0Fab (Fig. 

IV-17, empty circle) maintained a strong response towards its respective antigenetic site compared 

its unconjugated anti-AQP0Fab counterpart (Fig. IV-17, filled circle).  At a 1:500 dilution ratio, 

TPAAVRGTLGLSALHPSVG-conjugated b-AQP0Fab demonstrated only a slight loss of optical 

density (OD450: 0.4600 ± 0.0210) compared to its unconjugated counterpart (OD450: 0.5780 ± 

0.0219).  Although the TRNFTN isoform of b-AQP0Fab retained comparable binding strength to its 

unconjugated anti-AQP0Fab counterpart (compare OD450: 0.1700 ± 0.0130 and 0.1660 ± 0.1440, 

respectively), both antibodies show low overall affinity towards their respective TRNFTN antigenic 

sites.  

Finally, the effects of the newly refined TPAAVRGTLGLSALHPSVG isoform of b-

AQP0Fab on the biomechanics of the crystalline lens were assessed.  Whole lenses treated with b-

AQP0Fab exhibited a decrease in overall lens stiffness.  Lenses treated with b-AQP0Fab showed 

 

Figure IV-16: Western blot comparing myosin heavy chain 9 (MYH9) levels in 

lenticular tissue treated with dimethyl sulfoxide (DMSO, control), b-AQP0Fab, and 

blebbistatin.  MYH9 expression was lower in b-AQP0Fab-treated lenses compared to 

its control, but was not as low as that of blebbistatin-treated lenses, indicating a slight 

loss of blebbistatin activity after ADC conjugation.  
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significantly lower stiffness coefficients (±SEM) at 3.53 ± 0.15 when compared to lenses treated 

with anti-AQP0 at 5.33 ± 0.16 (Fig. IV-18, p = 0.0262).  Similarly, lenses treated with b-AQP0Fab 

also displayed a significantly lower stiffness coefficient (±SEM) when compared to lenses treated 

with vehicle control (compare 5.19 ± 0.13 and 3.53 ± 0.16, respectively, p = 0.0161). 

 

4.6 DISCUSSION 

 

An antibody-drug conjugate (ADC) was synthesized to specifically target and soften the crystalline 

 

Figure IV-17: Direct enzyme-linked immunoabsorbant assay (ELISA) comparing 

the binding strength of TPAAVRGTLGLSALHPSVG- (empty circle) and 

TRNFTN- (empty triangle) isoforms of b-AQP0Fab with their unconjugated Fab 

counterparts (filled circle and filled triangle, respectively). 
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lens.  The ADC constituents were carefully selected in order to optimize the specificity, efficacy, and 

efficiency of the total compound.  The first iteration of the ADC, b-AQP0ab, was composed of an 

unfragmented custom polyclonal IgG antibody (specific to the external 

TPAAVRGTLGLSALHPSVG- and TRNFTN-peptide sequences of AQP0) hybridized to 

blebbistatin using BMPH, an uncleavable hydrazide crosslinker.  Non-reducing SDS-PAGE 

indicated that hybridization of the three components was successful; however, b-AQP0ab produced a 

band much heavier than the theoretical sum of the three components.  The theoretical weight of 

unfragmented, unconjugated AQP0ab should have been approximately 150 kDa, which was 

observed.  A total maximum of 12 BMPH crosslinker chains (at approximately 297 daltons each) 

and 12 molecules of blebbistatin (at approximately 292 daltons each) may be linked to AQP0ab to 

produce an ADC with a theoretical molecular weight of 157,068 daltons.  The SDS-PAGE produced 

a band for b-AQP0ab with a range of approximately 160kDa to 200 kDa.  The colossal difference 

 

Figure IV-18: Bar graphs showing stiffness (b-)coefficients of (A) lenses treated 

with AQP0Fab vs. lenses treated with b-AQP0Fab, and (B) lenses treated with 

phosphate buffered saline (control) vs. lenses treated with b-AQP0Fab.  Asterisks 

denote a significant decrease in lens stiffness. 
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observed in the theoretical vs. observed molecular weights are speculated to be as a result of 

dimerization and oligomerization of the BMPH crosslinker, which arises in high crosslinker reaction 

concentrations (Hemaprabha, 2012). 

Western blot analysis indicated that conjugation of blebbistatin to the BMPH crosslinker 

severely attenuated the disruptive effects of blebbistatin (Fig. IV-11).  Direct enzyme-linked 

immunabsorbant assay (ELISA) of both b-AQP0ab isoforms demonstrated a substantial loss of 

binding specificity to their respective antigen peptide sequences (Fig. IV-12).  However, despite the 

low characterized efficacy of antigen-binding and attenuated blebbistatin activity of the b-AQP0ab, 

treatment of whole lenses resulted in a significant decrease in their biomechanical integrity.  

Together, these results suggest a potent effect of blebbistatin on disrupting the cytoskeletal 

foundation of the crystalline lens. 

 As a result of this preliminary study, various refinements were made to b-AQP0ab to 

optimize its specificity and efficacy.  The unconjugated AQP0ab was digested using a papain kit to 

produce smaller, yet still specific, fragments of the antibody.  In brief, papain digestion cleaves the 

peptide bonds at the hinge region of the antibody, resulting in two 50 kDa Fab fragments and a 50 

kDa Fc fragment.   As Fab fragments retain both the variable heavy and light chain regions, and 

therefore, the antigen binding site, the targeting characteristic of the antibody is preserved.  The Fc 

fragments, however, were discarded to reduce the overall size of the antibody and because their role 

in secondary immune response recruitment was not required.  Note that as a result of papain 

digestion, Fab fragments can only have a total maximum of 4 conjugation sites.  Furthermore, 

because intrachain disulphide reduction of variable domains causes a decrease in stability and 

specificity of the Fab fragment (McAuley et al., 2008; Ouellette et al., 2010), Fab conjugations must 

occur in the non-variable domains in order to function.  As a result, a maximum of 2 conjugations 
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are possible per Fab fragment.  The Fab fragments were then conjugated to a new cleavable 

crosslinker, PDPH, in an effort to bolster the effect of conjugated blebbistatin. 

SDS-PAGE demonstrated that the second iteration of the ADC, b-AQP0Fab, was also 

successful in conjugation (Fig. IV-14).  The Fab fragment of AQP0ab has a theoretical molecular 

weight of approximately 50 kDa, which was observed, while PDPH has a molecular weight of 

approximately 229 daltons, and blebbistatin has a molecular weight of 292 daltons.  With four 

possible attachment sites, b-AQP0Fab has a total theoretical maximum weight of 52,084 daltons.  A 

molecular band for b-AQP0Fab greater than AQP0Fab was observed, however, a close estimate was 

hard to make due to the limited space provided by the ladder for the large range of molecular 

weights.  SEC-MS revealed that the conjugation protocol for b-AQP0Fab resulted in 4 products with 

differing molecular weights.  The sample was composed predominantly of Fab with 2 conjugations 

(51.29%), followed by Fab with 1 conjugation (31.03%), and Fab with 3 conjugations (15.29%).  As 

Fab was the limiting reagent for this reaction, it is logical that only 2.38% of the sample was 

unconjugated.  It should be noted, however, that not all of the aforementioned conjugations may 

result in a functional ADC, as conjugation to cysteine groups within the variable domains reduces 

antibody specificity (Ouellette et al., 2010).  Assuming an equal reaction chance of conjugation at 

each intrachain disulphide bond, only 2 of 4 Fabs with 2 conjugations are guaranteed to be 

functional.  Similarly, only 2 of 4 Fabs with 1 conjugation will be functional.  Unfortunately, none of 

the Fabs with 3 conjugations will be functional, as one variable domain must have been 

compromised.  Nevertheless, 41.15% (½ of 1-conjugation Fab + ½ of 2-conjugation Fab) of the total 

sample contains b-AQP0Fab with functional antigen recognition.  Further experimentation is 

required to yield a higher percentage of functional b-AQP0Fab.  

Western blot analysis demonstrated that using the labile crosslinker PDPH, to hybridize 
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blebbistatin with AQP0Fab, resulted in a substantial increase in reactivity of conjugated blebbistatin 

towards lens tissue.  The use of PDPH is advantageous for two reasons:  its labile site is susceptible 

to cleavage in lenticular conditions, and following cleavage, blebbistatin may revert back to its 

native unconjugated structure.  The labile site for PDPH is a disulphide bridge, which is cleavable by 

thiols such as reduced glutathione.  Glutathione, in turn, is found in high concentrations within the 

lens (Reddy, 1990; Rosner, Farmer, & Bellows, 1938), and acts as an anti-oxidant to prevent 

cataractogenesis (Giblin, 2000; Reddy, 1990).  Upon cleavage of the disulphide bridge, the electron 

cloud of the remaining spacer arm (of the crosslinker) attached to blebbistatin destabilizes.  The 

existence of the strong double bond makes it unlikely for the blebbistatin molecule to revert back to 

its native conformation, although theoretically, a high level of thermal and/or mechanical energy 

could mediate such changes (Fig. IV-19).  Although, lenses treated with b-AQP0Fab showed a 

substantially lower concentration of MYH9 when compared to untreated tissue, it should be noted 

that unconjugated blebbistatin remains as the most effective disruptor of MYH9.  However, the 

effect of b-AQP0Fab on MYH9 levels of lenticular tissue is substantially greater than that of b-

AQP0ab, indicating successful reactivation of blebbistatin upon crosslinker cleavage. 

 Direct ELISA of both b-AQP0Fab isoforms demonstrated that conjugated Fab fragments 

resulted in binding strengths that were comparable to their native fragmented states.  Although 

 

Figure IV-19: Proposed reaction schematic of blebbistatin release following 

cleavage of PDPH disulfide bonds. 
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TPAAVRGTLGLSALHPSVG-sequence b-AQP0Fab showed a slight loss of specificity when 

compared to its unconjugated counterpart, the overall binding strength was substantially higher than 

both native and conjugated TRNFTN-sequence b-AQP0Fabs.  It is speculated that the difference in 

specificity is largely due to the difference in size of both peptide sequences, where the longer 

sequence has a higher potential of binding to its respective antigenic site.  As a result, 

TPAAVRGTLGLSALHPSVG-sequence b-AQP0Fab was selected for further experimentation. 

 Lenses treated with TPAAVRGTLGLSALHPSVG-sequence b-AQP0Fab showed a 

significant decrease in biomechanical integrity, indicating that the blebbistatin component was 

effective at disrupting the interaction of lenticular actomyosin networks.  Interestingly, the difference 

in efficacy of the refined TPAAVRGTLGLSALHPSVG-sequence b-AQP0Fab  and b-AQP0ab on 

lens stiffness was negligible, indicating that a blebbistatin is highly effective at disrupting lens 

integrity and that lower concentrations of blebbistatin may be used should adverse effects be 

observed.  
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V. THE EFFECTS OF INTRAVITREALLY INJECTED B-AQP0AB ON 
THE ACCOMMODATIVE MECHANISM OF AVIAN EYES 
 

5.1 OVERVIEW 

 

Purpose:  b-AQP0Fab, an antibody-drug conjugate designed to specifically target and soften the crystalline 

lens, was synthesized and validated in a previous study.  In this study, 7-day-old birds were injected with b-

AQP0Fab to investigate the in vivo effects of the ADC on the mechanism of accommodation and distribution 

of lenticular actomyosin lattice.  

Methods: One eye of 7-day-old White Leghorn chickens was intravitreally injected with 100 µM of b-

AQP0Fab and the other with 100 µM of anti-AQP0 conjugated with PDPH.  Eyes were enucleated at 1 hour, 

2 hour, 4 hour, and 8 hour time points.  Enucleated eyes were attached to an electrophysiological stimulator, 

and the focal lengths of the eye were measured pre-, during-, and post accommodative stimulation.  

Additionally, confocal microscopy was used to assess changes in lenticular actomyosin distribution between 

control and treated eyes. 

Results: b-AQP0Fab demonstrated the ability to penetrate the lens capsule and bind specifically to the lens 

fibre cell membrane.  Furthermore, intravitreal injection of b-AQP0Fab into the eye resulted in disruption of 

the lens basal membrane complex.  After 4 hours of treatment, intravitreally-injected eyes demonstrated a 

significant decrease in back vertex focal length (BVFL) during stimulation compared to control eyes (P = 

0.03), in addition to an increase in BVFL during recovery (p = 0.04).  No notable changes occurred during 1 

hour, 2 hour, and 8 hour time groups.  

Conclusions: b-AQP0Fab was successful in specifically targeting and softening the crystalline lens.  

However, the effects of the ADC wore off quickly, indicating the need for further optimization. 
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5.2 INTRODUCTION 

 

Within recent years, intravitreally-injected sustained-release formulations have shown promise to 

become powerful delivery platforms for intraocular therapeutics (Gaudana, Ananthula, Parenky, & 

Mitra, 2010).  Indeed, common diseases such as age-related macular degeneration, macular edema, 

and diabetic retinopathy have seen a marked decline in prevalence with the development of 

antibody-derived therapeutics, such as bevacizumab, ranibizumab, and aflibercept, which are 

injected into the vitreous chamber.  As intravitreal injections offer a bypass to ocular surface 

barriers, the attention of most pharmacologists and drug delivery scientists has focused on treating 

diseases that affect the posterior segment of the eye.  However, a number of anterior structures 

within the eye, such as the crystalline lens, remains difficult to target with topical drugs due to the 

exceptionally tight corneoscleral barrier (Leong & Tong, 2015).  To date, there are no FDA-

approved treatments that offer a cure to the physiological decline of lens elasticity with age.  This 

inevitable, age-related loss of lens elasticity results in the eventual decline of accommodative power 

in the eye, and in the inability to focus on nearby objects, a condition known as presbyopia 

(Atchison, 2002; Strenk et al., 2005).  Certain pharmaceutical groups have claimed the discovery of 

a small molecule eye drop that can soften the lens specifically, however, no refereed publications 

have been presented nor have the targeting and reaction mechanisms been revealed (Crawford, 

Garner, & Burns, 2014; W. H. Garner, Garner, Crawford, & Burns, 2014).  Additionally, small 

molecule drugs that are able to circumvent the corneoscleral barrier demonstrate low or no 

specificity to the lens, and can cause adverse systemic effects that are even more detrimental to the 

eye.  Alternatively, some presbyopia researchers have proposed the use of miotics, such as the 

muscarinic agonist pilocarpine (Kaufman, 2008; Wendt, He, & Glasser, 2013), or a combination of 

the cholinergic agonist carbachol with the α2-adrenergic agonist brimonidine, in order to constrict 
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the ciliary muscle and decrease the pupillary diameter, resulting in an improvement in the ocular 

depth of focus (Abdelkader, 2015).  Unfortunately, intervention using miotics is unsustainable due to 

the inevitable build-up of receptor tolerance with prolonged treatment (Ostrin & Glasser, 2010).  

Although the majority of the presbyopic population is content with a simple management 

solution, such as bifocal or progressive addition spectacles, it remains important to investigate and 

develop pharmaceutical methods of restoring the elastic modulus of the lens in order to revert the 

eye’s accommodative machinery to a healthy, functioning state.  A description of the synthesis of a 

custom antibody-drug conjugate (ADC), b-AQP0Fab, to specifically target and soften the crystalline 

lens was previously described (Chapter IV).  In brief, b-AQP0Fab is a hybridization of a peptide 

antibody that recognizes a unique sequence of the extracellular region of the transmembrane protein 

aquaporin-0 (AQP0), linked to blebbistatin, a selective myosin II inhibitor, by a labile hydrazide 

linker that is cleaved by exposure to high thiolic conditions, such as that which may be found in the 

lens.  In vitro, b-AQP0Fab was demonstrated to have high affinity towards native AQP0 in addition 

to retaining the disruptive capacity of blebbistatin.  The purpose of this investigation was to examine 

the in vivo effects of intravitreally injecting b-AQP0Fab into the eye of chickens. 

 

5.3 METHODS 

 

5.3.1 ANIMALS 
 

White leghorn (Gallus gallus domesticus) hatchling chicks were obtained from the Maple Leaf 

hatchery in New Hamburg, Ontario and were fed ad libitum.  They were housed in stainless steel 

brooders with a heat source, and kept on a 14:10 day:night light cycle.  Chicks were raised in 
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accordance to the Guidelines of the Canadian Council on Animal Care and conform to the ARVO 

Statement for the Use of Animals in Ophthalmic and Vision Research.  As the focus of this study 

was to test the fundamental question of whether disrupting cytoskeletal proteins could have an effect 

on lenticular biomechanics, chicks with robust amounts of accommodation (about a week old) were 

used.  Older birds, will be considered for a future study once the functions of disruptors have been 

well established.  Week-old chicks also show highly monotonic spherical aberrations (V. Choh et al., 

2002) thereby providing a model for which optical changes could be assessed. 

 

5.3.2 INTRAVITREAL INJECTIONS 
 

Six- to eight-day-old chicks were used for intravitreal injections.  Prior to injections, chicks were 

anesthetized with 1.5% isoflurane in oxygen.  Chicks were injected intravitreally with 20 μL of 

either 100 μM b-AQP0ab or 100 μM control (AQP0ab).  Intravitreal injections were carried out 

using a 20 μL Hamilton 702N syringe (Sigma# 20735), and in order to ensure delivery into the 

vitreal chamber, the needle was fitted through Tygon tubing to limit the puncture depth to 2.47 mm.  

The site of injection was immediately rostral to the orbital notch on the lateral orbit.  The site of 

injection was held closed by forceps for 20 seconds to prevent leakage and to maximize drug 

delivery after removal of the syringe.  Intravitreally-injected chicks were sacrificed at 1 hour, 2 hour, 

4 hour, and 8 hour time points to assess the effect of b-AQP0ab and control treatments. 

 

5.3.3 LIGHT AND CONFOCAL MICROSCOPY 
 

Seven-day-old chicks were sacrificed by decapitation and their eyes were enucleated.  Eyes 
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were placed in oxygenated Tyrode’s solution (TS: 134 mM NaCl, 3 mM KCl, 20.5 mM NaHCO3, 1 

mM MgCl2, 3 mM CaCl2) before removal of the posterior globe and vitreous humour.  For light 

microscopy, the anterior segment was fixed in 4% (w/v) paraformaldehyde solution in 0.1M 

phosphate buffered saline (PBS) for 20 minutes.  The tissue was then washed (3 x 5 mins) with 0.1M 

PBS and cryoprotected in 30% (w/v) sucrose in PBS overnight.  The tissue was then embedded in 

22x22 mm molds (Fischer Scientific #38-104-18) filled with optimal cutting temperature embedding 

medium (OCT medium, VWR #27900-246) before being frozen.  Eyes were sectioned sagittally at 

15 μm (Leica CM 1900 UV cryotome) and mounted onto Superfrost Plus glass slides (Fischer 

Scientific #12-550-15).  Slides with sections were air-dried for 30 minutes and stained with Texas 

Red-phalloidin (1:400 dilution in PBS; ThermoFisher Scientific #T7471) for 15 mins at room 

temperature (RT; 21°C) before a coverslip coated with ProLong Gold (P36934, Life Technologies) 

was then placed on top.  Coverslips were sealed onto slides using nail polish. 

For confocal microscopy, after enucleation and removal of the posterior globe, the exposed 

lens was separated from the surrounding ciliary body and extracted from the anterior segment, taking 

care to minimize damage to the lens capsule.  Lenses were permeabilized in toto using 0.05% (v/v) 

Triton X-100 in PBS before the addition of mouse anti-myosin-light-chain antibody (M4401, Sigma-

Aldrich, 1:100 dilution in PBS, 2 hrs. at 37°C), followed by rabbit anti-mouse secondary antibody 

conjugated to Texas Red (1:500 in PBS, overnight at RT).  Following a 3 x 5 minutes wash, lenses 

were counterstained with fluorescein isothiocyanate (FITC)-phalloidin (P5282, Sigma-Aldrich, 

1:400 dilution in PBS, 15 min, RT).  Lenses were mounted in toto posterior pole up onto slides using 

5% (w/v) agar solution in water with 0.05 mg/ml phenylenediamene (P6001, Sigma-Aldrich; in 50% 

(v/v) glycerol in water).  A coverslip coated with ProLong Gold (P36934, Life Technologies) was 

then placed on top of the posterior pole of the lens and adhered to the slide with the agar.  The 
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protein distribution of lenses was visualized using a Zeiss LSM 510 confocal microscope and images 

were captured and processed using the Zen 2011 software (Zeiss).   

Protein distributions were quantified using nearest neighbour analysis, which assesses the 

closeness of points of interest (POIs) on an image and assigns a value between 0 and 2.15, where a 

score of 0 represents clustered POIs, a score of 1 represents a random distribution of POIs, and a 

score of 2.15 represents a highly regular distribution of POIs.  For latrunculin-treated lenses (n=3), 

the POIs used were the vertices of actin hexagons, while for blebbistatin-treated lenses (n=3), the 

POIs used were the centre of myosin globules.  POIs were targeted and selected using NIH Image or 

Scion Image software.  Nearest neighbour values (Rn) were calculated using the equation    

      

   √   
, where D(obs) is the mean observed nearest neighbour distance, a is the area, and n is the 

total number of POIs. 

 

5.3.4 OPTICAL MEASUREMENTS OF THE LENS DURING ACCOMMODATION 
 

Chicks were euthanized by decapitation and their heads were bisected sagitally in order to enucleate 

the eyes while taking care to minimize any damage to the nerves.  Enucleated eyes were submerged 

and subsequently dissected in oxygenated (95% O2, 5% CO2) Tyrode’s solution (TS).  For each eye, 

the optic nerve was removed to expose and isolate the ciliary nerve and ganglion.  The anterior 

segment was left completely intact, while the posterior globe was removed, aside from a wedge 

containing the ciliary nerve and ganglion. 

 Optical measurements of the lens were taken using a ScanTox scanning laser monitor as 

previously described (Section 3.3.8.), however, a modified ScanTox chamber with an open-ended 
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tube was used in place of the normal chamber (Fig. V-1).  The dissected eye was pinned anterior-

side down to a Sylgard® (Dow Corning 184) washer, and placed into the modified ScanTox 

chamber.  A suction electrode was passed through the open-ended tube of the modified chamber to 

connect the ciliary nerve and ganglion to an electrophysiological stimulator (Grass S48 Stimulator).  

The exit of the open-ended tube was plugged with dielectric tune-up grease, and the chamber was 

filled with 5% (v/v) fetal bovine serum in oxygenated TS. 

 The dissected eyes connected to the electrode were scanned pre-, during, and post-

stimulation in order to determine back vertex focal lengths during the resting, accommodating, and 

recovering states of the eye.  The stimulus for the ciliary nerve was carried out at a pulse rate of 0.4 

ms at 40 Hz with a current of 2 mA.  For scans during the accommodation state, the eye was 

stimulated immediately before capturing the beam image at each eccentricity.  The step sizes for the 

eccentricities were set to 0.13 mm, and 13 radial steps were used in total.  As the sutures of each lens 

 

Figure V-1: Top-down view of the in situ accommodation system.  The anterior 

segment of the eye sits anterior-side down inside the ScanTox chamber.  The electrode-

syringe enters through a tube fashioned into the side of the ScanTox chamber and 

contacts the ciliary nerve of the posterior wedge.  
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produce large variability of the central focal lengths (Bantseev, Herbert, Trevithick, & Sivak, 1999; 

Kuszak et al., 2004; Sivak, Herbert, Peterson, & Kuszak, 1994), the four central rays of each scan 

were omitted during the collection of data.  Additionally, eccentricities where the iris hindered the 

peripheral beams during accommodation were omitted in all three states during the calculation of 

average focal lengths.  

 

5.3.5 WESTERN BLOT ANALYSIS 
 

Western blot analysis was carried out to confirm that b-AQP0Fab had the expected effects on 

lenticular myosin heavy chain 9 (MYH9) levels.  ADC-injected eyes were dissected, and tissue from 

the lens, cornea, ciliary body, and retina were collected.  Each sample was separately homogenized 

using mini pestles, and lysed with Radioimmunoprecipitation Assay Buffer (RIPA; R0278, Sigma-

Aldrich Co., Oakville, ON, Canada) containing a general use protease inhibitor cocktail (P2714, 

Sigma-Aldrich Co., Oakville, ON, Canada). The total protein of lens tissue samples was quantified 

using the BioRad DC protein assay (500-0111; BioRad Laboratories, Inc., Mississauga, ON, 

Canada).  Samples were prepared with Laemmli sample buffer, run on 10% precast gels (456-1033, 

BioRad Laboratories, Inc., Mississauga, ON, Canada) in the BioRad Mini-Protean System (165-

8000, BioRad Laboratories, Inc., Mississauga, ON, Canada), transferred to a polyvinyldene fluoride 

(PVDF; 162-0175, BioRad Laboratories, Inc., Mississauga, ON, Canada) and incubated with a 

primary anti-MYH9 antibody.  Secondary antibodies conjugated with horseradish peroxidase were 

detected by enhanced chemiluminescence using Amersham ECL prime (RPN2236, GE Healthcare, 

Mississauga, ON, Canada).  Western Blots were visualized using a Storm 860 scanner (GE 

Healthcare, Mississauga, ON, Canada), and assessed using ImageQuant software (GE Healthcare, 
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Mississauga, ON, Canada).   

 

5.3.6 STATISTICAL ANALYSIS 
 

The effects of b-AQP0Fab on the accommodative properties of the lenses were analysed using 

repeated analysis of variance, with b-AQP0Fab versus vehicle one repeated measure and time as a 

second measure.  Greenhouse-Geisser corrected values were used for epsilon values < 0.75. 

Bonferroni-corrected post-hoc multiple comparison tests were carried out where needed.  

Comparisons of the optical quality of the lenses, and of nearest neighbour values were assessed 

using paired t-tests.  For all statistical tests, results were considered significant at p ≤ 0.05. 

 

5.4 RESULTS 

 

Lenses of both b-AQP0Fab-treated and control eyes of intravitreally injected 7-day-old birds 

showed predominantly negative spherical aberrations during 1 hour, 2 hour, 4 hour, and 8 hour time 

points (Fig. V-2).  Additionally, the pattern of spherical aberration remained largely negative for all 

three physiological states of accommodation, where paraxial rays were shorter than those of the 

periphery.  Within the 4 hour group, 1 pair of lenses demonstrated positive spherical aberration (data 

not shown), causing the peripheral eccentricities of the 4 hour time point back vertex focal lengths 

(BVFLs) averages to taper positively (Fig. V-2C).  Lenses undergoing accommodative stimulation 

demonstrated a trend towards a higher degree of negative spherical aberration for 1 hour, 2 hour, and 

negativity for spherical aberrations were observed within the physiological states of these groups 

(Fig. V-3, 1 hour: p = 0.0921; 2 hour: p = 0.8352; 4 hour: p = 0.9701; 8 hour: p = 0.8003).  Spherical 
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aberrations were measured with a pupil size of 1.95 mm.  

Assessment of the mean back vertex focal lengths demonstrated that changes in focal lengths 

for both treated and control eyes were shorter during ciliary nerve stimulation for the 1 hour, 2 hour, 

 

Figure V-2: Mean back vertex focal lengths (± SEM) at various eccentricities of 

lenses from intravitreally injected eyes.  (A) 1 hour, (B) 2 hours, (C) 4 hours, and (D) 

8 hours after treatments.  Lenses from treated (filled) and control (empty) eyes were 

scanned prior to stimulation (circle), during stimulation (triangle), and after stimulation 

(square). 
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and 4 hour groups (Fig. V-4); however, ADC-associated differences in focal lengths were observed 

only in the 4 hour group (Fig. V-4C).  At 1 hour, both treated and control eyes demonstrated shorter 

focal lengths during stimulation than at resting states (treated eye at rest vs.  during stimulation: 

15.24 ±0.51 mm vs. 13.31 ± 0.54 mm, respectively, p = 0.0265; control eyes at rest vs. during 

stimulation: 14.42 ± 1.07 vs. 13.04 ± 0.91 mm, respectively, p = 0.0312; Fig. V-4A), however, no 

differences were observed as a result of treatment (p = 0.7110).  Similarly, at 2 hours, stimulated 

 

Figure V-3: Mean spherical aberrations (± SEM) of lenses from intravitreally 

injected eyes after (A) 1 hour, (B) 2 hour, (C) 4 hour, and (D) 8 hour treatments.  Note 

the general increase in negative spherical aberration during stimulation compared to pre- 

and post- accommodation values for 1 hour, 2 hour, and 8 hour time point groups.  
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eyes in both treated and control groups demonstrated shorter focal lengths when compared to their 

resting states (treated eye at rest vs.  during stimulation: 13.77 ± 0.71 mm vs. 12.28 ± 0.20 mm, 

respectively, p = 0.0227; control eyes at rest vs. during stimulation: 13.22 ± 1.00 mm vs. 11.86 ± 

0.55 mm, respectively, p = 0.0419; Fig. V-4B).  At 4 hours, both treated and control eyes also 

demonstrated shorter focal lengths during stimulation than at resting states (treated eye at rest vs.  

 

Figure V-4: Mean back vertex focal lengths (±SEM) of lenses from intravitreally 

injected eyes (A) 1 hour, (B) 2 hours, (C) 4 hours, and (D) 8 hours after treatment.  For 

each eye, asterisks denote a significant change in focal lengths compared to the pre-

stimulation state, while daggers represent significant differences between treated (filled 

symbol) and control (empty symbol) samples at that physiological state. 
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during stimulation: 14.97 ± 0.99 mm vs. 10.75 ± 0.55 mm, respectively, p = 0.0519; control eyes at 

rest vs. during stimulation: 14.19 ± 0.74 mm vs. 12.28 ± 0.20 mm, respectively, p = 0.0321; Fig. V-

4C), however, a significant decrease in focal length was demonstrated during stimulation as a result 

of treatment (compare 10.75 ± 0.55 mm to 12.28 ± 0.99 mm; p = 0.0346; Fig. V-4C).  Furthermore, 

during the recovery state, focal lengths of treated eyes were significantly longer than those of control 

eyes (compare 15.17 mm ± 0.54 to 13.72 ± 0.39 mm; p = 0.0431; Fig. V-4C).  At 8 hours, no 

changes in the focal lengths of both treated and control eyes were observed during stimulation than 

at resting state (treated eye at rest vs.  during stimulation: 12.81 ± 1.98 mm vs. 11.07 ± 1.68 mm, 

respectively, p = 0.2814; control eyes at rest vs. during stimulation: 12.13 ± 1.56 mm vs. 10.55 ± 

0.50 mm, respectively, p = 0.0358; Fig. V-4D). No changes in focal lengths were observed as a 

result of treatment in this group (p = 0.5613).  

 After 1 hour of b-AQP0Fab treatment, birds exhibited a slight increase in accommodative 

and recovery amplitudes (treated eye accommodation vs. recovery: 14.44 ± 1.68 D vs. 10.21 ± 1.36 

D, respectively, p = 0.0212; control eyes accommodation vs. recovery: 14.65 ± 0.74 D vs.  6.14 ± 

1.29 D, respectively, p = 0.0013; Fig. V-5A), however, after 2 hours of b-AQP0Fab treatment, the 

increase in amplitudes was no longer observed (treated eye accommodation vs. recovery: 11.03 ± 

1.27 D vs. 12.05 ± 1.27 D, respectively, p = 0.531; control eyes accommodation vs. recovery: 12.56 

± 1.38 D vs. 10.18 ± 1.14 D, respectively, p = 0.117; Fig. V-5B).  Birds treated with 4 hours of b-

AQP0Fab exhibited a large increase in both amplitudes of accommodation and recovery when 

compared to control groups (treated eye accommodation vs. recovery: 34.89 ± 0.85 D vs. 15.09 ± 

0.61 D, respectively, p = 0.0021; control eyes accommodation vs. recovery: 35.70 ± 0.99 D vs. 13.98 

± 0.48 D, respectively, p = 0.0015; Fig. V-5C).  However, after 8 hours of treatment, no changes in 

the amplitudes of accommodation and recovery were observed (treated eye accommodation vs. 
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recovery: 17.33 ± 1.62 D vs. 18.66 ± 1.26 D, respectively, p = 0.386; control eyes accommodation 

vs. recovery: 17.63 ± 1.09 D vs. 15.68 ± 1.59 D, respectively, p = 0.4382; Fig. V-5D) 

To assess the overall specificity and efficacy of b-AQP0Fab, Western blot analysis of lens 

tissue, as well as various tissues surrounding the lens (cornea, ciliary body, and retina), was 

 

Figure V-5: Mean accommodative and recovery amplitudes (±SEM).  Treated lenses 

(filled bars) and their controls (empty bars) at (A) 1 hour, (B) 2 hour, (C) 4 hour, and 

(D) 8 hour time points.  Daggers denote a significant difference in accommodation or 

recovery amplitudes between the eyes.  
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conducted (Fig. V-6) following intravitreal injection of 7-day-old birds with the ADC.  As the 4 hour 

time point was most effective during the accommodation studies, tissues from the 4 hour group were 

used for the Western blot.  Band intensities of myosin heavy chain 9 (MYH9) concentrations were 

found to be substantially lower in lenticular tissues treated with b-AQP0Fab (10.62 ± 0.40) 

compared to corneal, ciliary body, and retinal tissues of eyes treated with b-AQP0Fab (33.01 ± 2.47, 

35.75 ± 2.09, 30.37 ± 1.89, respetively); untreated retinal tissue had a 90.5% MYH9 to β-actin 

percentage ratio, while treated lenticular tissue had a 23.3% MYH9 to β-actin percentage ratio.  In 

positive control samples of retinal and lenticular tissues (See Fig. A-1 in appendix), band intensities 

of MYH9 concentrations were found to be similar, and similarly proportional to β-actin levels 

(80.5%  vs. 70.2% MYH9 to β-actin percentage ratio, respectively;  Fig. A-1).  Together, these 

  

Figure V-6: Western blot of myosin heavy chain 9 (MYH9) levels in corneal, ciliary 

body (C.B.), retinal and lenticular tissues treated with b-AQP0Fab.  Lane 1: 

molecular weight marker, lane 2: corneal tissue sample, lane 3: ciliary body tissue 

sample, lane 4: retinal tissue sample, and lane 5: lenticular tissue sample.  β-actin was 

used as a loading control.  
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results suggest that only lenticular tissue was affected.  

Eyes treated with FITC-labeled b-AQP0Fab demonstrated staining specific to the nasal (Fig. V-7A) 

and temporal (Fig. V-7C) regions of the lens, immediately underneath the capsule, compared to 

lenses treated with FITC isolate only (data not shown).  Eyes counterstained with Texas Red-

phalloidin demonstrated the presence of the ciliary body in the same nasal (Fig. V-7B) and temporal 

(Fig. V-7D) regions of the anterior segment.  

Confocal microscopy of lenses treated with b-AQP0Fab demonstrated a substantial loss of 

myosin organization when compared to control lenses (Fig V-8A and B vs. Fig. V-8C and D, 

respectively).  Nearest neighbour analysis showed that lenses treated with b-AQP0Fab resulted in the 

dissolution and disorganization of myosin bundles (Rn = 1.53 ± 0.16) when compared to myosin 

bundles within the control lens (Fig. V-8A and B, Rn = 2.07 ± 0.02, p = 0.0213).  The hexagonal 

arrangements of filamentous actin between treated (2.05 ± 0.02) and control lenses (2.05 ± 0.02), 

however, remained unaffected (Fig. V-8C and D, p = 0.6747). 

 

5.5   DISCUSSION 

 

In previous studies (Choh, 2001; Priolo, Sivak, & Kuszak, 1999a; Schaeffel, Glasser, & Howland, 

1988), it was demonstrated that emmetropic 7-day-old chicks lenses were non-monotonic and 

spherical aberrations were negative.  Additionally, the lenses maintained negative spherical 

aberrations during physiological accommodative stimulation and recovery.  In the present study, 

optical scans performed on the anterior segments of 7-day-old chick eyes confirmed these optical 

traits; except for one pair of eyes (one treated and one control eye) within the 4 hour treatment 

group, lenses across all time points exhibited negative spherical aberration during all three 
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physiological states.  It is speculated that the bird with positively aberrated lenses had a 

developmental defect within its lenses.  Although the eye of the developing chicken has never been 

observed to produce a positive spherical aberration (Choh & Sivak, 2000b; V. Choh et al., 2002; 

Priolo et al., 1999a; West, Sivak, & Doughty, 1991), positively aberrated lenses have been observed 

in humans as they age (Amano et al., 2004; Guirao, Redondo, & Artal, 2000; McLellan, Marcos, & 

Burns, 2001), therefore it is possible that a shape or gradient refractive index anomaly existed in this 

bird.  Alternatively, as this pair of eyes was the first in the experiment to be assessed, it is possible 

 

Figure V-7: Light micrographs of lenses treated with FITC-conjugated b-

AQP0Fab.  FITC-conjugated b-AQP0Fab (green) presence at the anterior (A) nasal, and 

(B) temporal regions of the lens vs. actin (red) presence at the anterior (A) nasal, and (B) 

temporal regions of the lens.  Scale bars = 100 μm. 
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that the anterior segment was damaged during the dissection process, although visual inspection of 

the segments did not indicate any apparent damage.  It should be noted that removal from the data of 

the first pair of eyes did not result in a significant change in the degree of spherical aberration, 

 

Figure V-8: Confocal micrographs of 

lens basal membrane complexes after 

intravitreal injection.  (A) b-

AQP0Fab, (B) 2x magnification of A, 

(C) vehicle, and (D) 2x magnification 

of C. Actin stained in green, myosin 

stained in red. Scale bars, 10μM for A 

and C, 5μM for B and D. 
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however, the trend of increased spherical aberration during stimulation was now apparent for the 4 

hour group (compare Fig. V-9A and B), much like the trend observed for other time points (Fig. V-

3A, B, and D). Additionally, removal of the data from the aberrant bird did not result in a different 

statistical result for accommodation and recovery amplitudes between treated and control eyes 

(treated eye accommodation vs. recovery: 26.49 ± 0.76 D vs. 12.54 ± 0.66  D, respectively, p = 

0.0158; control eyes accommodation vs. recovery: 26.94 ± 0.95 D vs. 11.13 ± 0.56 D, respectively, p 

= 0.0124; compare Fig.V-9C vs. Fig. V-9D). Furthermore, the mean accommodative amplitudes for 

the 4 hour group were still greater than those for the 1, 2 and 8 hour groups (compare Fig V-9 D with 

Fig. V-5A, B, and D). 

Assessment of mean back vertex focal lengths demonstrated that b-AQP0Fab was most 

effective at 4 hours.  As the function of b-AQP0Fab is to soften the lens, a shortening of the focal 

lengths during accommodation is to be expected.  Furthermore, assessment of focal lengths post-

stimulation indicated that treated eyes recovered significantly more than control eyes, although, it 

should be noted that smaller standard errors were also observed for the post-stimulation values.  An 

increase in focal length at rest might be expected with a softer lens, as the same amount of tension 

exerted by the zonules on the lens would be expected to result in a flatter surface curvature of the 

lens, and ultimately less refraction in softer than harder lenses (Maggs, Miller, & Ofri, 2012).  In the 

8 hour group, the lack of significance in focal lengths between physiological states of both treated 

and control eyes can be attributed to the large amount of variation between measurements, as 

stimulation of 7-day old birds has been previously shown to demonstrate significant differences in 

focal length (Choh & Sivak, 2000a).  Alternatively, intravitreal injection of PBS may have a long-

term effect on the accommodative mechanism, as it has been shown that Rhesus monkeys injected 

with saline demonstrate a slight decrease in accommodation compared to no injection (Ostrin, 
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Frishman, & Glasser, 2004).  

In a previous study, unbound blebbistatin (at similar concentrations), was demonstrated to 

soften the lens in vitro 15 minutes after treatment (Won et al., 2015) (Chapter 3).  Upon removal of 

the lens from treatment, the lens returned to its initial stiffness state after an hour of equilibration.  In 

the present study, the effects of ADC-associated blebbistatin were not observed in situ until 4 hours 

 

Figure V-9: Comparison of mean spherical aberration and 

accommodation/recovery amplitude charts at 4 hours.  Mean spherical aberrations 

with (A) and without (B) the first pair of data.  Accommodation and recovery charts 

with (C) and without (D) the first pair of data.  
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after intravitreal injection, indicating that crosslinker cleavage and subsequent tissue saturation with 

blebbistatin takes approximately that amount of time.  Furthermore, clearance of blebbistatin from 

lenticular tissue and tissue reversibility was demonstrated, as 8 hour treatment groups no longer 

produced changes in accommodation.  

To assess the in vivo specificity of b-AQP0Fab after intravitreal injection of the ADC, 

Western blot analysis was conducted on various ocular tissues to determine myosin heavy chain 9 

(MYH9) levels.  As the TPAAVRGTLGLSALHPSVG peptide sequence only occurs in the external 

region of aquaporin-0 (AQP0), and AQP0 water channels only occur in lens fibre cells, the 

TPAAVRGTLGLSALHPSVG recognition site of b-AQP0Fab should specifically target the lens.  

As expected, MYH9 levels of lenticular tissue treated with b-AQP0Fab were significantly lower than 

those of corneal, ciliary body, and retinal tissues, indicating the functional specificity of the ADC to 

the lens.  Furthermore, although other aquaporins that occur ubiquitously throughout the eye have 

similar homologies to AQP0, b-AQP0Fab did not appear to target their peptide sequences.  It should 

be noted that only tissues within the immediate vicinity of the lens were investigated for adverse 

reactions.  Although further tissues are not expected to be affected by the direct mechanism of b-

AQP0Fab, unbound b-AQP0Fab that is expelled systemically, may inadvertently be cleaved, and 

result in effects on tissue outside of the eye; however, due its concentration, the effects are likely to 

be minimal.  Western blot analyses at various time points and locations are required to further 

characterize the effects of b-AQP0Fab on ocular tissue.  

Light microscopy demonstrated that b-AQP0Fab was specific to lenticular tissue and was 

able to penetrate the lens capsule, although the penetration depth was not extensive.  The shallow 

penetration of b-AQP0Fab is speculated to be as a result of the large size of the total molecule 

(approximately 51kDa).  Because b-AQP0Fab has a theoretical isoelectric point of 9.1, which is 
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slightly higher than the pH of the crystalline lens (approximately 7.4), it carries a net positive charge, 

which has been shown to be beneficial in permeating the lens capsule (Lee et al., 2006).  As further 

digestion of AQP0Fab would eliminate all possible conjugation sites, the size of the ADC can no 

longer be diminished, therefore, the charge of b-AQP0Fab must be increased in order to optimize 

penetration.  The effect of conjugated blebbistatin (in b-AQP0Fab; Fig. V-9A and B) was found to 

disrupt the actomyosin distribution of the lens BMC differently than that of unconjugated 

blebbistatin (Fig. III-6C and D); with b-AQP0Fab treatment, the actin distribution was not found to 

be affected, however, unconjugated blebbistatin caused a large disruption of both actin and myosin 

arrays.  This difference is speculated to be due to the amount of effective free blebbistatin in solution 

after treatment, as conjugation of blebbistatin may result in attenuation with or without cleavage of 

the crosslinker. 

In summary, it was found that intravitreal injection of b-AQP0Fab resulted in a significant 

increase in the amplitude of accommodation and recovery in 7-day-old birds after 4 hours of 

incubation.  Furthermore, Western blot analysis and light microscopy demonstrated a high 

specificity of b-AQP0Fab to lens tissue, while exhibiting low to no affinity to other ocular tissues.  

Finally, confocal micrographs revealed that blebbistatin disrupted the actomyosin lattice of the lens 

basal membrane complex by breaking down the organization of myosin filaments. 
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VI. CONCLUSION 
 

The findings in this thesis demonstrate that a treatment for the physiological cause of presbyopia is 

possible; however, pharmacokinetic modelling of b-AQP0Fab is required to determine the drug 

concentration-time courses in body fluids after its administration.  Along with the 

pharmacodynamics of b-AQP0Fab observed in this thesis, a dose-concentration-response 

relationship may be established to ultimately predict the effect-time of the ADC after administration 

(Meibohm & Derendorf, 1997).   

In order to translate b-AQP0Fab for use in human eyes, an iteration of the ADC must be 

synthesized to target the mammalian lens.  As the aquaporin-0 (AQP0) water channel that occurs in 

mammals has a different peptide sequence, an analysis of optimal peptide sequences is once again 

required in order to synthesize anti-peptides capable of targeting the mammalian lens.  Additionally, 

the long-term effects of binding antibodies to AQP0 must be investigated as it has been 

demonstrated that the knockout of AQP0 in mice results in significant changes to the lenticular 

refractive index as well as lens biomechanics (Sindhu Kumari et al., 2015).  Furthermore, although 

the binding of anti-AQP0 to AQP0 did not result in a change in lens integrity, it has been shown that 

a decrease in AQP0 permeability could reduce fluid fluxes during the shape changes of 

accommodation, potentially contributing to presbyopia (Gerometta & Candia, 2016).  Therefore, 

using the experimental principles outlined in this thesis, the development of an antibody-drug 

conjugate to specifically target and soften the crystalline lens in humans is possible; however, 

several translational milestones must be met in order for this targeted therapy to be successfully 

realized.  
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price therefor; any unauthorized (and unlicensable) use that is not terminated immediately 

for any reason (including, for example, because materials containing the Work cannot 

reasonably be recalled) will be subject to all remedies available at law or in equity, but in 

no event to a payment of less than three times the Rightsholder's ordinary license price for 

the most closely analogous licensable use plus Rightsholder's and/or CCC's costs and 

expenses incurred in collecting such payment. 

 

8. Miscellaneous. 

 

8.1 User acknowledges that CCC may, from time to time, make changes or additions to 

the Service or to these terms and conditions, and CCC reserves the right to send notice to 

the User by electronic mail or otherwise for the purposes of notifying User of such 

changes or additions; provided that any such changes or additions shall not apply to 
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permissions already secured and paid for. 

 

8.2 Use of User-related information collected through the Service is governed by CCC’s 

privacy policy, available online 

here:http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html. 

 

8.3 The licensing transaction described in the Order Confirmation is personal to User. 

Therefore, User may not assign or transfer to any other person (whether a natural person 

or an organization of any kind) the license created by the Order Confirmation and these 

terms and conditions or any rights granted hereunder; provided, however, that User may 

assign such license in its entirety on written notice to CCC in the event of a transfer of all 

or substantially all of User’s rights in the new material which includes the Work(s) 

licensed under this Service. 

 

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed 

by the parties. The Rightsholder and CCC hereby object to any terms contained in any 

writing prepared by the User or its principals, employees, agents or affiliates and 

purporting to govern or otherwise relate to the licensing transaction described in the Order 

Confirmation, which terms are in any way inconsistent with any terms set forth in the 

Order Confirmation and/or in these terms and conditions or CCC's standard operating 

procedures, whether such writing is prepared prior to, simultaneously with or subsequent 

to the Order Confirmation, and whether such writing appears on a copy of the Order 

Confirmation or in a separate instrument. 

 

8.5 The licensing transaction described in the Order Confirmation document shall be 

governed by and construed under the law of the State of New York, USA, without regard 

to the principles thereof of conflicts of law. Any case, controversy, suit, action, or 

proceeding arising out of, in connection with, or related to such licensing transaction shall 

be brought, at CCC's sole discretion, in any federal or state court located in the County of 

New York, State of New York, USA, or in any federal or state court whose geographical 
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jurisdiction covers the location of the Rightsholder set forth in the Order Confirmation. 

The parties expressly submit to the personal jurisdiction and venue of each such federal or 

state court. If you have any comments or questions about the Service or Copyright 

Clearance Center, please contact us at 978-750-8400 or send an e-mail to 

info@copyright.com. 

v 1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



155 

 

FIGURE II-15B 

 

 

The Company of Biologists Ltd LICENSE 

TERMS AND CONDITIONS 

Jan 29, 2017 

 

 

 

This is a License Agreement between University of Waterloo -- Gah-Jone Won ("You") and 

The Company of Biologists Ltd ("The Company of Biologists Ltd") provided by Copyright 

Clearance Center ("CCC"). The license consists of your order details, the terms and 

conditions provided by The Company of Biologists Ltd, and the payment terms and 

conditions. 

All payments must be made in full to CCC. For payment instructions, please see 

information listed at the bottom of this form. 

License Number 3961981345969 

License date Oct 04, 2016 

Licensed content publisher The Company of Biologists Ltd 

Licensed content title Journal of cell science 

Licensed content date Jan 1, 1966 

Type of Use Thesis/Dissertation 

Requestor type Academic institution 

Format Print, Electronic 

Portion image/photo 

Number of images/photos requested 1 

Title or numeric reference of the 

portion(s) 

Figure 13 

Title of the article or chapter the Molecular architecture of the lens fiber cell basal membrane 
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portion is from complex 

Editor of portion(s) n/a 

Author of portion(s) Steven Bassnett, Heather Missey, and Ivica Vucemilo 

Volume of serial or monograph. n/a 

Issue, if republishing an article from 

a serial 

n/a 

Page range of the portion Page 2164 

Publication date of portion June 10, 1999 

Rights for Main product 

Duration of use Life of current edition 

Creation of copies for the disabled no 

With minor editing privileges yes 

For distribution to Worldwide 

In the following language(s) Original language of publication 

With incidental promotional use no 

The lifetime unit quantity of new 

product 

Up to 499 

Made available in the following 

markets 

Academia, Online 

The requesting person/organization 

is: 

Gah-Jone Won/University of Waterloo 

Order reference number  

Author/Editor Gah-Jone Won 

The standard identifier of New Work n/a 

The proposed price n/a 

Title of New Work The Development of an Antibody-Drug Conjugate to 

Specifically Target and Soften the Crystalline Lens in vivo 

Publisher of New Work University of Waterloo 

Expected publication date Nov 2016 
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Estimated size (pages) 215 

Billing Type Credit Card 
 

Credit card info Visa ending in 6297 
 

Credit card expiration 08/2020 
 

Total (may include CCC user fee) 3.50 USD 
 

Terms and Conditions 
 

 

TERMS AND CONDITIONS 

The following terms are individual to this publisher: 

The acknowledgement should state "Reproduced / adapted with permission" and give the 

source journal name. The acknowledgement should either provide full citation details or 

refer to the relevant citation in the article reference list. The full citation details should 

include authors, journal, year, volume, issue and page citation. 

Where appearing online or in other electronic media, a link should be provided to the 

original article (e.g. via DOI): 

Development: dev.biologists.org 

Disease Models & Mechanisms: dmm.biologists.org 

Journal of Cell Science: jcs.biologists.org 

The Journal of Experimental Biology: jeb.biologists.org 

 

Other Terms and Conditions: 

STANDARD TERMS AND CONDITIONS 

 

1. Description of Service; Defined Terms. This Republication License enables the User to 

obtain licenses for republication of one or more copyrighted works as described in detail on 

the relevant Order Confirmation (the ―Work(s)‖). Copyright Clearance Center, Inc. 

(―CCC‖) grants licenses through the Service on behalf of the rightsholder identified on the 

Order Confirmation (the ―Rightsholder‖). ―Republication‖, as used herein, generally means 

the inclusion of a Work, in whole or in part, in a new work or works, also as described on 

the Order Confirmation. ―User‖, as used herein, means the person or entity making such 
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republication. 

 

2. The terms set forth in the relevant Order Confirmation, and any terms set by the 

Rightsholder with respect to a particular Work, govern the terms of use of Works in 

connection with the Service. By using the Service, the person transacting for a 

republication license on behalf of the User represents and warrants that he/she/it (a) has 

been duly authorized by the User to accept, and hereby does accept, all such terms and 

conditions on behalf of User, and (b) shall inform User of all such terms and conditions. In 

the event such person is a ―freelancer‖ or other third party independent of User and CCC, 

such party shall be deemed jointly a ―User‖ for purposes of these terms and conditions. In 

any event, User shall be deemed to have accepted and agreed to all such terms and 

conditions if User republishes the Work in any fashion. 

 

3. Scope of License; Limitations and Obligations. 

 

3.1 All Works and all rights therein, including copyright rights, remain the sole and 

exclusive property of the Rightsholder. The license created by the exchange of an Order 

Confirmation (and/or any invoice) and payment by User of the full amount set forth on that 

document includes only those rights expressly set forth in the Order Confirmation and in 

these terms and conditions, and conveys no other rights in the Work(s) to User. All rights 

not expressly granted are hereby reserved. 

 

3.2 General Payment Terms: You may pay by credit card or through an account with us 

payable at the end of the month. If you and we agree that you may establish a standing 

account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance 

Center, Dept 001, P.O. Box 843006, Boston, MA 02284-3006. Payments Due: Invoices are 

payable upon their delivery to you (or upon our notice to you that they are available to you 

for downloading). After 30 days, outstanding amounts will be subject to a service charge of 

1-1/2% per month or, if less, the maximum rate allowed by applicable law. Unless 

otherwise specifically set forth in the Order Confirmation or in a separate written agreement 
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signed by CCC, invoices are due and payable on ―net 30‖ terms. While User may exercise 

the rights licensed immediately upon issuance of the Order Confirmation, the license is 

automatically revoked and is null and void, as if it had never been issued, if complete 

payment for the license is not received on a timely basis either from User directly or 

through a payment agent, such as a credit card company. 

 

3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is 

―one-time‖ (including the editions and product family specified in the license), (ii) is non-

exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions 

(such as, but not limited to, limitations on duration of use or circulation) included in the 

Order Confirmation or invoice and/or in these terms and conditions. Upon completion of 

the licensed use, User shall either secure a new permission for further use of the Work(s) or 

immediately cease any new use of the Work(s) and shall render inaccessible (such as by 

deleting or by removing or severing links or other locators) any further copies of the Work 

(except for copies printed on paper in accordance with this license and still in User's stock 

at the end of such period). 

 

3.4 In the event that the material for which a republication license is sought includes third 

party materials (such as photographs, illustrations, graphs, inserts and similar materials) 

which are identified in such material as having been used by permission, User is responsible 

for identifying, and seeking separate licenses (under this Service or otherwise) for, any of 

such third party materials; without a separate license, such third party materials may not be 

used. 

 

3.5 Use of proper copyright notice for a Work is required as a condition of any license 

granted under the Service. Unless otherwise provided in the Order Confirmation, a proper 

copyright notice will read substantially as follows: ―Republished with permission of 

[Rightsholder’s name], from [Work's title, author, volume, edition number and year of 

copyright]; permission conveyed through Copyright Clearance Center, Inc. ‖ Such notice 

must be provided in a reasonably legible font size and must be placed either immediately 
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adjacent to the Work as used (for example, as part of a by-line or footnote but not as a 

separate electronic link) or in the place where substantially all other credits or notices for 

the new work containing the republished Work are located. Failure to include the required 

notice results in loss to the Rightsholder and CCC, and the User shall be liable to pay 

liquidated damages for each such failure equal to twice the use fee specified in the Order 

Confirmation, in addition to the use fee itself and any other fees and charges specified. 

3.6 User may only make alterations to the Work if and as expressly set forth in the Order 

Confirmation. No Work may be used in any way that is defamatory, violates the rights of 

third parties (including such third parties' rights of copyright, privacy, publicity, or other 

tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In 

addition, User may not conjoin a Work with any other material that may result in damage to 

the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any 

infringement of any rights in a Work and to cooperate with any reasonable request of CCC 

or the Rightsholder in connection therewith. 

 

4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, 

and their respective employees and directors, against all claims, liability, damages, costs 

and expenses, including legal fees and expenses, arising out of any use of a Work beyond 

the scope of the rights granted herein, or any use of a Work which has been altered in any 

unauthorized way by User, including claims of defamation or infringement of rights of 

copyright, publicity, privacy or other tangible or intangible property. 

 

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE 

RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL 

OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES 

FOR LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS 

INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK, 

EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their 

respective employees and directors) shall not exceed the total amount actually paid by User 
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for this license. User assumes full liability for the actions and omissions of its principals, 

employees, agents, affiliates, successors and assigns. 

 

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED ―AS IS‖. 

CCC HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE 

ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER 

DISCLAIM ALL OTHER WARRANTIES RELATING TO THE WORK(S) AND 

RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION 

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 

PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE 

ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER 

PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER 

CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT 

NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL 

RIGHTS TO GRANT. 

 

7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User 

of a Work beyond the scope of the license set forth in the Order Confirmation and/or these 

terms and conditions, shall be a material breach of the license created by the Order 

Confirmation and these terms and conditions. Any breach not cured within 30 days of 

written notice thereof shall result in immediate termination of such license without further 

notice. Any unauthorized (but licensable) use of a Work that is terminated immediately 

upon notice thereof may be liquidated by payment of the Rightsholder's ordinary license 

price therefor; any unauthorized (and unlicensable) use that is not terminated immediately 

for any reason (including, for example, because materials containing the Work cannot 

reasonably be recalled) will be subject to all remedies available at law or in equity, but in no 

event to a payment of less than three times the Rightsholder's ordinary license price for the 

most closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses 

incurred in collecting such payment. 
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8. Miscellaneous. 

 

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the 

Service or to these terms and conditions, and CCC reserves the right to send notice to the 

User by electronic mail or otherwise for the purposes of notifying User of such changes or 

additions; provided that any such changes or additions shall not apply to permissions 

already secured and paid for. 

 

8.2 Use of User-related information collected through the Service is governed by CCC’s 

privacy policy, available online 

here:http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html. 

 

8.3 The licensing transaction described in the Order Confirmation is personal to User. 

Therefore, User may not assign or transfer to any other person (whether a natural person or 

an organization of any kind) the license created by the Order Confirmation and these terms 

and conditions or any rights granted hereunder; provided, however, that User may assign 

such license in its entirety on written notice to CCC in the event of a transfer of all or 

substantially all of User’s rights in the new material which includes the Work(s) licensed 

under this Service. 

 

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed 

by the parties. The Rightsholder and CCC hereby object to any terms contained in any 

writing prepared by the User or its principals, employees, agents or affiliates and purporting 

to govern or otherwise relate to the licensing transaction described in the Order 

Confirmation, which terms are in any way inconsistent with any terms set forth in the Order 

Confirmation and/or in these terms and conditions or CCC's standard operating procedures, 

whether such writing is prepared prior to, simultaneously with or subsequent to the Order 

Confirmation, and whether such writing appears on a copy of the Order Confirmation or in 

a separate instrument. 
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8.5 The licensing transaction described in the Order Confirmation document shall be 

governed by and construed under the law of the State of New York, USA, without regard to 

the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding 

arising out of, in connection with, or related to such licensing transaction shall be brought, 

at CCC's sole discretion, in any federal or state court located in the County of New York, 

State of New York, USA, or in any federal or state court whose geographical jurisdiction 

covers the location of the Rightsholder set forth in the Order Confirmation. The parties 

expressly submit to the personal jurisdiction and venue of each such federal or state court. If 

you have any comments or questions about the Service or Copyright Clearance Center, 

please contact us at 978-750-8400 or send an e-mail to info@copyright.com. 

v 1.1 
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FIGURE II-18 

 

American Society for Clinical Investigation LICENSE 

TERMS AND CONDITIONS 

Jan 29, 2017 

 

 

 

This is a License Agreement between University of Waterloo -- Gah-Jone Won ("You") and 

American Society for Clinical Investigation ("American Society for Clinical Investigation") 

provided by Copyright Clearance Center ("CCC"). The license consists of your order 

details, the terms and conditions provided by American Society for Clinical Investigation, 

and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 

information listed at the bottom of this form. 

License Number 3962050444868 

License date Oct 04, 2016 

Licensed content publisher American Society for Clinical Investigation 

Licensed content title JOURNAL OF CLINICAL INVESTIGATION. ONLINE 

Licensed content date Dec 31, 1969 

Type of Use Thesis/Dissertation 

Requestor type Academic institution 

Format Print, Electronic 

Portion image/photo 

Number of images/photos 

requested 

1 

Title or numeric reference of 

the portion(s) 

Figure 3 

Title of the article or chapter 

the portion is from 

Functions of the intermediate filament cytoskeleton in the eye 

lens 
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Editor of portion(s) n/a 

Author of portion(s) Shuhua Song, Andrew Landsbury, Ralf Dahm, Yizhi Liu, 

Qingjiong Zhang, Roy A. Quinlan 

Volume of serial or monograph. n/a 

Issue, if republishing an article 

from a serial 

n/a 

Page range of the portion 1840 

Publication date of portion July 1, 2009 

Rights for Main product 

Duration of use Life of current edition 

Creation of copies for the 

disabled 

no 

With minor editing privileges yes 

For distribution to Worldwide 

In the following language(s) Original language of publication 

With incidental promotional use no 

The lifetime unit quantity of 

new product 

Up to 499 

Made available in the following 

markets 

Academia, Online 

The requesting 

person/organization is: 

Gah-Jone Won/University of Waterloo 

Order reference number  

Author/Editor Gah-Jone Won 

The standard identifier of New 

Work 

n/a 

The proposed price n/a 

Title of New Work The Development of an Antibody-Drug Conjugate to Specifically 

Target and Soften the Crystalline Lens in vivo 

Publisher of New Work University of Waterloo 
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Expected publication date Nov 2016 

Estimated size (pages) 215 

Total (may include CCC user 

fee) 

0.00 USD 

 

Terms and Conditions 
 

 

TERMS AND CONDITIONS 

The following terms are individual to this publisher: 

None 

 

Other Terms and Conditions: 

STANDARD TERMS AND CONDITIONS 

 

1. Description of Service; Defined Terms. This Republication License enables the User to 

obtain licenses for republication of one or more copyrighted works as described in detail on 

the relevant Order Confirmation (the ―Work(s)‖). Copyright Clearance Center, Inc. 

(―CCC‖) grants licenses through the Service on behalf of the rightsholder identified on the 

Order Confirmation (the ―Rightsholder‖). ―Republication‖, as used herein, generally means 

the inclusion of a Work, in whole or in part, in a new work or works, also as described on 

the Order Confirmation. ―User‖, as used herein, means the person or entity making such 

republication. 

 

2. The terms set forth in the relevant Order Confirmation, and any terms set by the 

Rightsholder with respect to a particular Work, govern the terms of use of Works in 

connection with the Service. By using the Service, the person transacting for a 

republication license on behalf of the User represents and warrants that he/she/it (a) has 

been duly authorized by the User to accept, and hereby does accept, all such terms and 

conditions on behalf of User, and (b) shall inform User of all such terms and conditions. In 

the event such person is a ―freelancer‖ or other third party independent of User and CCC, 

such party shall be deemed jointly a ―User‖ for purposes of these terms and conditions. In 

 



167 

 

any event, User shall be deemed to have accepted and agreed to all such terms and 

conditions if User republishes the Work in any fashion. 

 

3. Scope of License; Limitations and Obligations. 

 

3.1 All Works and all rights therein, including copyright rights, remain the sole and 

exclusive property of the Rightsholder. The license created by the exchange of an Order 

Confirmation (and/or any invoice) and payment by User of the full amount set forth on that 

document includes only those rights expressly set forth in the Order Confirmation and in 

these terms and conditions, and conveys no other rights in the Work(s) to User. All rights 

not expressly granted are hereby reserved. 

 

3.2 General Payment Terms: You may pay by credit card or through an account with us 

payable at the end of the month. If you and we agree that you may establish a standing 

account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance 

Center, Dept 001, P.O. Box 843006, Boston, MA 02284-3006. Payments Due: Invoices are 

payable upon their delivery to you (or upon our notice to you that they are available to you 

for downloading). After 30 days, outstanding amounts will be subject to a service charge of 

1-1/2% per month or, if less, the maximum rate allowed by applicable law. Unless 

otherwise specifically set forth in the Order Confirmation or in a separate written agreement 

signed by CCC, invoices are due and payable on ―net 30‖ terms. While User may exercise 

the rights licensed immediately upon issuance of the Order Confirmation, the license is 

automatically revoked and is null and void, as if it had never been issued, if complete 

payment for the license is not received on a timely basis either from User directly or 

through a payment agent, such as a credit card company. 

 

3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is 

―one-time‖ (including the editions and product family specified in the license), (ii) is non-

exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions 

(such as, but not limited to, limitations on duration of use or circulation) included in the 
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Order Confirmation or invoice and/or in these terms and conditions. Upon completion of 

the licensed use, User shall either secure a new permission for further use of the Work(s) or 

immediately cease any new use of the Work(s) and shall render inaccessible (such as by 

deleting or by removing or severing links or other locators) any further copies of the Work 

(except for copies printed on paper in accordance with this license and still in User's stock 

at the end of such period). 

 

3.4 In the event that the material for which a republication license is sought includes third 

party materials (such as photographs, illustrations, graphs, inserts and similar materials) 

which are identified in such material as having been used by permission, User is 

responsible for identifying, and seeking separate licenses (under this Service or otherwise) 

for, any of such third party materials; without a separate license, such third party materials 

may not be used. 

 

3.5 Use of proper copyright notice for a Work is required as a condition of any license 

granted under the Service. Unless otherwise provided in the Order Confirmation, a proper 

copyright notice will read substantially as follows: ―Republished with permission of 

[Rightsholder’s name], from [Work's title, author, volume, edition number and year of 

copyright]; permission conveyed through Copyright Clearance Center, Inc. ‖ Such notice 

must be provided in a reasonably legible font size and must be placed either immediately 

adjacent to the Work as used (for example, as part of a by-line or footnote but not as a 

separate electronic link) or in the place where substantially all other credits or notices for 

the new work containing the republished Work are located. Failure to include the required 

notice results in loss to the Rightsholder and CCC, and the User shall be liable to pay 

liquidated damages for each such failure equal to twice the use fee specified in the Order 

Confirmation, in addition to the use fee itself and any other fees and charges specified. 

 

3.6 User may only make alterations to the Work if and as expressly set forth in the Order 

Confirmation. No Work may be used in any way that is defamatory, violates the rights of 

third parties (including such third parties' rights of copyright, privacy, publicity, or other 
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tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In 

addition, User may not conjoin a Work with any other material that may result in damage to 

the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any 

infringement of any rights in a Work and to cooperate with any reasonable request of CCC 

or the Rightsholder in connection therewith. 

 

4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, 

and their respective employees and directors, against all claims, liability, damages, costs 

and expenses, including legal fees and expenses, arising out of any use of a Work beyond 

the scope of the rights granted herein, or any use of a Work which has been altered in any 

unauthorized way by User, including claims of defamation or infringement of rights of 

copyright, publicity, privacy or other tangible or intangible property. 

 

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE 

RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL 

OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES 

FOR LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS 

INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK, 

EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their 

respective employees and directors) shall not exceed the total amount actually paid by User 

for this license. User assumes full liability for the actions and omissions of its principals, 

employees, agents, affiliates, successors and assigns. 

 

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED ―AS IS‖. 

CCC HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE 

ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER 

DISCLAIM ALL OTHER WARRANTIES RELATING TO THE WORK(S) AND 

RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION 

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 
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PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE 

ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER 

PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER 

CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT 

NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL 

RIGHTS TO GRANT. 

 

7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User 

of a Work beyond the scope of the license set forth in the Order Confirmation and/or these 

terms and conditions, shall be a material breach of the license created by the Order 

Confirmation and these terms and conditions. Any breach not cured within 30 days of 

written notice thereof shall result in immediate termination of such license without further 

notice. Any unauthorized (but licensable) use of a Work that is terminated immediately 

upon notice thereof may be liquidated by payment of the Rightsholder's ordinary license 

price therefor; any unauthorized (and unlicensable) use that is not terminated immediately 

for any reason (including, for example, because materials containing the Work cannot 

reasonably be recalled) will be subject to all remedies available at law or in equity, but in 

no event to a payment of less than three times the Rightsholder's ordinary license price for 

the most closely analogous licensable use plus Rightsholder's and/or CCC's costs and 

expenses incurred in collecting such payment. 

 

8. Miscellaneous. 

 

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the 

Service or to these terms and conditions, and CCC reserves the right to send notice to the 

User by electronic mail or otherwise for the purposes of notifying User of such changes or 

additions; provided that any such changes or additions shall not apply to permissions 

already secured and paid for. 

 

8.2 Use of User-related information collected through the Service is governed by CCC’s 
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privacy policy, available online here: 

http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html. 

 

8.3 The licensing transaction described in the Order Confirmation is personal to User. 

Therefore, User may not assign or transfer to any other person (whether a natural person or 

an organization of any kind) the license created by the Order Confirmation and these terms 

and conditions or any rights granted hereunder; provided, however, that User may assign 

such license in its entirety on written notice to CCC in the event of a transfer of all or 

substantially all of User’s rights in the new material which includes the Work(s) licensed 

under this Service. 

 

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed 

by the parties. The Rightsholder and CCC hereby object to any terms contained in any 

writing prepared by the User or its principals, employees, agents or affiliates and purporting 

to govern or otherwise relate to the licensing transaction described in the Order 

Confirmation, which terms are in any way inconsistent with any terms set forth in the Order 

Confirmation and/or in these terms and conditions or CCC's standard operating procedures, 

whether such writing is prepared prior to, simultaneously with or subsequent to the Order 

Confirmation, and whether such writing appears on a copy of the Order Confirmation or in 

a separate instrument. 

 

8.5 The licensing transaction described in the Order Confirmation document shall be 

governed by and construed under the law of the State of New York, USA, without regard to 

the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding 

arising out of, in connection with, or related to such licensing transaction shall be brought, 

at CCC's sole discretion, in any federal or state court located in the County of New York, 

State of New York, USA, or in any federal or state court whose geographical jurisdiction 

covers the location of the Rightsholder set forth in the Order Confirmation. The parties 

expressly submit to the personal jurisdiction and venue of each such federal or state court. 

If you have any comments or questions about the Service or Copyright Clearance Center, 

javascript:void(0)
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please contact us at 978-750-8400 or send an e-mail to info@copyright.com. 

v 1.1 
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CHAPTER IV 

Creative Commons 

1. Attribution-NonCommercial-NoDerivs 3.0 Unported 

 

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL 

SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT 

RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. 

CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED, 

AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE. 

2. License 

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE 

COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT 

AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED 

UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED. 

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 

BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 

TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 

CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS. 

1. Definitions 

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing 

works, such as a translation, adaptation, derivative work, arrangement of music or other 

alterations of a literary or artistic work, or phonogram or performance and includes 

cinematographic adaptations or any other form in which the Work may be recast, transformed, 

or adapted including in any form recognizably derived from the original, except that a work that 

constitutes a Collection will not be considered an Adaptation for the purpose of this License. 

For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the 

synchronization of the Work in timed-relation with a moving image ("synching") will be 

considered an Adaptation for the purpose of this License. 

https://creativecommons.org/


174 

 

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and 

anthologies, or performances, phonograms or broadcasts, or other works or subject matter 

other than works listed in Section 1(f) below, which, by reason of the selection and 

arrangement of their contents, constitute intellectual creations, in which the Work is included in 

its entirety in unmodified form along with one or more other contributions, each constituting 

separate and independent works in themselves, which together are assembled into a collective 

whole. A work that constitutes a Collection will not be considered an Adaptation (as defined 

above) for the purposes of this License. 

c. "Distribute" means to make available to the public the original and copies of the Work through 

sale or other transfer of ownership. 

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the 

terms of this License. 

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, 

entity or entities who created the Work or if no individual or entity can be identified, the 

publisher; and in addition (i) in the case of a performance the actors, singers, musicians, 

dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise 

perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the 

producer being the person or legal entity who first fixes the sounds of a performance or other 

sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast. 

f. "Work" means the literary and/or artistic work offered under the terms of this License including 

without limitation any production in the literary, scientific and artistic domain, whatever may be 

the mode or form of its expression including digital form, such as a book, pamphlet and other 

writing; a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-

musical work; a choreographic work or entertainment in dumb show; a musical composition 

with or without words; a cinematographic work to which are assimilated works expressed by a 

process analogous to cinematography; a work of drawing, painting, architecture, sculpture, 

engraving or lithography; a photographic work to which are assimilated works expressed by a 

process analogous to photography; a work of applied art; an illustration, map, plan, sketch or 

three-dimensional work relative to geography, topography, architecture or science; a 

performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a 

copyrightable work; or a work performed by a variety or circus performer to the extent it is not 

otherwise considered a literary or artistic work. 

g. "You" means an individual or entity exercising rights under this License who has not 

previously violated the terms of this License with respect to the Work, or who has received 

express permission from the Licensor to exercise rights under this License despite a previous 

violation. 
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h. "Publicly Perform" means to perform public recitations of the Work and to communicate to 

the public those public recitations, by any means or process, including by wire or wireless 

means or public digital performances; to make available to the public Works in such a way that 

members of the public may access these Works from a place and at a place individually 

chosen by them; to perform the Work to the public by any means or process and the 

communication to the public of the performances of the Work, including by public digital 

performance; to broadcast and rebroadcast the Work by any means including signs, sounds or 

images. 

i. "Reproduce" means to make copies of the Work by any means including without limitation by 

sound or visual recordings and the right of fixation and reproducing fixations of the Work, 

including storage of a protected performance or phonogram in digital form or other electronic 

medium. 

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from 

copyright or rights arising from limitations or exceptions that are provided for in connection with the 

copyright protection under copyright law or other applicable laws. 

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a 

worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to 

exercise the rights in the Work as stated below: 

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to 

Reproduce the Work as incorporated in the Collections; and, 

b. to Distribute and Publicly Perform the Work including as incorporated in Collections. 

The above rights may be exercised in all media and formats whether now known or hereafter devised. 

The above rights include the right to make such modifications as are technically necessary to exercise the 

rights in other media and formats, but otherwise you have no rights to make Adaptations. Subject to 8(f), 

all rights not expressly granted by Licensor are hereby reserved, including but not limited to the rights set 

forth in Section 4(d). 

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the 

following restrictions: 

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You 

must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every 

copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms on 

the Work that restrict the terms of this License or the ability of the recipient of the Work to 
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exercise the rights granted to that recipient under the terms of the License. You may not 

sublicense the Work. You must keep intact all notices that refer to this License and to the 

disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When 

You Distribute or Publicly Perform the Work, You may not impose any effective technological 

measures on the Work that restrict the ability of a recipient of the Work from You to exercise 

the rights granted to that recipient under the terms of the License. This Section 4(a) applies to 

the Work as incorporated in a Collection, but this does not require the Collection apart from the 

Work itself to be made subject to the terms of this License. If You create a Collection, upon 

notice from any Licensor You must, to the extent practicable, remove from the Collection any 

credit as required by Section 4(c), as requested. 

b. You may not exercise any of the rights granted to You in Section 3 above in any manner that is 

primarily intended for or directed toward commercial advantage or private monetary 

compensation. The exchange of the Work for other copyrighted works by means of digital file-

sharing or otherwise shall not be considered to be intended for or directed toward commercial 

advantage or private monetary compensation, provided there is no payment of any monetary 

compensation in connection with the exchange of copyrighted works. 

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request has 

been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, 

reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or 

pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate 

another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution 

("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable 

means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent 

reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work, 

unless such URI does not refer to the copyright notice or licensing information for the Work. 

The credit required by this Section 4(c) may be implemented in any reasonable manner; 

provided, however, that in the case of a Collection, at a minimum such credit will appear, if a 

credit for all contributing authors of Collection appears, then as part of these credits and in a 

manner at least as prominent as the credits for the other contributing authors. For the 

avoidance of doubt, You may only use the credit required by this Section for the purpose of 

attribution in the manner set out above and, by exercising Your rights under this License, You 

may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement 

by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use 

of the Work, without the separate, express prior written permission of the Original Author, 

Licensor and/or Attribution Parties. 

d. For the avoidance of doubt: 
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i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right 

to collect royalties through any statutory or compulsory licensing scheme cannot be 

waived, the Licensor reserves the exclusive right to collect such royalties for any 

exercise by You of the rights granted under this License; 

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to 

collect royalties through any statutory or compulsory licensing scheme can be waived, 

the Licensor reserves the exclusive right to collect such royalties for any exercise by 

You of the rights granted under this License if Your exercise of such rights is for a 

purpose or use which is otherwise than noncommercial as permitted under Section 

4(b) and otherwise waives the right to collect royalties through any statutory or 

compulsory licensing scheme; and, 

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties, 

whether individually or, in the event that the Licensor is a member of a collecting 

society that administers voluntary licensing schemes, via that society, from any 

exercise by You of the rights granted under this License that is for a purpose or use 

which is otherwise than noncommercial as permitted under Section 4(b). 

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by 

applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as 

part of any Collections, You must not distort, mutilate, modify or take other derogatory action in 

relation to the Work which would be prejudicial to the Original Author's honor or reputation. 

5. Representations, Warranties and Disclaimer 

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS 

THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND 

CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, 

WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR 

PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, 

ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. 

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH 

EXCLUSION MAY NOT APPLY TO YOU. 

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO 

EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, 

INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS 

LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES. 
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7. Termination 

a. This License and the rights granted hereunder will terminate automatically upon any breach by 

You of the terms of this License. Individuals or entities who have received Collections from You 

under this License, however, will not have their licenses terminated provided such individuals 

or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will 

survive any termination of this License. 

b. Subject to the above terms and conditions, the license granted here is perpetual (for the 

duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves 

the right to release the Work under different license terms or to stop distributing the Work at 

any time; provided, however that any such election will not serve to withdraw this License (or 

any other license that has been, or is required to be, granted under the terms of this License), 

and this License will continue in full force and effect unless terminated as stated above. 

8. Miscellaneous 

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to 

the recipient a license to the Work on the same terms and conditions as the license granted to 

You under this License. 

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not 

affect the validity or enforceability of the remainder of the terms of this License, and without 

further action by the parties to this agreement, such provision shall be reformed to the 

minimum extent necessary to make such provision valid and enforceable. 

c. No term or provision of this License shall be deemed waived and no breach consented to 

unless such waiver or consent shall be in writing and signed by the party to be charged with 

such waiver or consent. 

d. This License constitutes the entire agreement between the parties with respect to the Work 

licensed here. There are no understandings, agreements or representations with respect to the 

Work not specified here. Licensor shall not be bound by any additional provisions that may 

appear in any communication from You. This License may not be modified without the mutual 

written agreement of the Licensor and You. 

e. The rights granted under, and the subject matter referenced, in this License were drafted 

utilizing the terminology of the Berne Convention for the Protection of Literary and Artistic 

Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO 

Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the 

Universal Copyright Convention (as revised on July 24, 1971). These rights and subject matter 



179 

 

take effect in the relevant jurisdiction in which the License terms are sought to be enforced 

according to the corresponding provisions of the implementation of those treaty provisions in 

the applicable national law. If the standard suite of rights granted under applicable copyright 

law includes additional rights not granted under this License, such additional rights are deemed 

to be included in the License; this License is not intended to restrict the license of any rights 

under applicable law. 

3. Creative Commons Notice 

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with 

the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages 

whatsoever, including without limitation any general, special, incidental or consequential damages arising 

in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has 

expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor. 

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL, 

Creative Commons does not authorize the use by either party of the trademark "Creative Commons" or 

any related trademark or logo of Creative Commons without the prior written consent of Creative 

Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark 

usage guidelines, as may be published on its website or otherwise made available upon request from 

time to time. For the avoidance of doubt, this trademark restriction does not form part of this License. 

Creative Commons may be contacted at https://creativecommons.org/. 

  

https://creativecommons.org/
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APPENDIX 
 

In Figure V-6, untreated retinal tissue had a 90.5% MYH9 to β-actin percentage ratio, while treated 

lenticular tissue had a 23.3% MYH9 to β-actin percentage ratio.  In positive control samples of 

retinal and lenticular tissues, band intensities (±SEM) of MYH9 concentrations were found to be 

similar to one another, and similarly proportional to β-actin levels.  Untreated retinal and lenticular 

tissues from 7 day old chickens were collected and processed for western blot as previously 

described (Section 5.3.5.).  In Figure A-1, untreated retinal tissue had a 80.5% MYH9 to β-actin 

percentage ratio, while untreated lenticular tissue had a 70.2% MYH9 to β-actin percentage. 

 

Figure A-1: Western blot of myosin heavy chain 9 (MYH9) levels in untreated retinal 

and lenticular tissues.  Lane 1: molecular weight marker, lane 2: retinal tissue sample, 

lane 3: lenticular tissue sample.  β-actin was used as a loading control. 
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