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ABSTRACT
Heat transfer in hydrodynamically-developed flow in

asymmetrically-heated channels and annuli has been studied
extensively. This study is an extension of earlier work where
heat transfer in an asymmetrically-heated parallel-plate channel
was examined in a resistor-network framework. It was shown
that the formulation of the problem in terms of a delta thermal-
resistor network has several advantages. A delta network can
also be used to represent heat transfer in asymmetrically-heated
annuli. Nevertheless, the evaluation of the three paired
convective resistances that characterize the network is not
straightforward. In the present paper, a new technique based on
solutions of the energy equation with perturbed boundary
conditions is proposed. The proposed technique is first verified
by comparison with the results previously obtained for the
parallel-plate channel problem. A superposition solution to the
energy equation is obtained for hydrodynamically-developed
laminar flow in an asymmetrically-heated annulus. The
developed technique is then applied to the annulus problem to
obtain the corresponding resistances. Results are validated by
examining limiting cases.

INTRODUCTION
The problem of calculating the forced-convective heat

transfer in hydrodynamically developed flow in
asymmetrically-heated channels and annuli has been studied
extensively. Several analytical and numerical solutions have
been published and many variations and extensions have been
investigated. New developments in emerging areas such as fuel
cells and micro flow devices have led to a renewed interest in
heat transfer in asymmetrically-heated passages. Reviews of the
classical treatments of the problem can be found in advanced
heat transfer texts, e.g. [1,2]. In recent studies of the problem,
the effects of viscous dissipation, porous media and non-
Newtonian fluids have been examined. See [3-5], for example.

Nusselt numbers based on the difference between the wall
temperatures and the bulk fluid temperature are traditionally
used to characterize internal-flow convective heat transfer. For
asymmetrically-heated passages, a temperature ratio is used to
specify the ordering of the boundary temperatures, particularly
the placement of the inlet fluid temperature with respect to the
wall temperatures. As discussed in a recent paper [6], this
approach has shortcomings when applied to asymmetrically-

NOMENCLATURE
A [m2] surface area
Cn [-] series solution coefficient
fn [-] eigenfunction
H [m] channel width
Q [W] heat transfer rate
q [W/m2] heat flux
k [W/mK] thermal conductivity
L [m] length
Nu [-] Nusselt number
Pr [-] Prandtl number
Re [-] Reynolds number based on hydraulic diameter
R [K/W] thermal resistance
r [m] radius radial locationr̅ [-] dimensionless radius: r̅ =r/r1

S [m] conduction shape factor
T [K] temperature
X [-] inverse Graetz number (Eq. 10)

Greek letters
θ dimensionless temperature: θi=(T-T0)/(Ti-T0)
λ eigenvalue
φ radius ratio: φ=r2/r1

Subscripts
0 (inlet) fluid
1 upper/outer wall
2 lower/inner wall

Superscripts
(2T) two-temperature solution
* perturbed condition

-heated channels with isothermal walls. Most notably: i) a non-
physical singularity occurs in the distribution of the wall
Nusselt number at the point where the bulk fluid temperature
reaches the temperature of either wall, and ii) the Nusselt
numbers depend on temperature ratio, which is inconsistent
with the physics of the problem. These features are apparent in
results presented by Hatton and Turton [7] and Mitrovic et al.
[8] for the parallel-plate channel, and by Mitrovic and Maletic
[9] and Coelho and Pinho [5] for concentric annuli. It was
shown [6] that the formulation of the parallel-plate channel
problem in terms of a delta thermal-resistor network eliminates
the non-physical singularities observed in the existing
solutions. In the present paper, the earlier work on parallel-plate
channels is extended to concentric annuli and the problem of
forced convection in hydrodynamically-developed, laminar
flow in an asymmetrically-heated annulus is examined in a
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resistor-network framework. This approach reveals more details
about the nature of the heat transfer phenomenon.

THE DELTA NETWORK
In Figure 1, a schematic of flow in an asymmetrically-

heated channel and the corresponding delta network are shown.
A delta network is characterized by three “paired” convective
resistances, each corresponding to a specific pair of nodes.
Unlike the traditional formulation, the resistor-network
formulation leads to convective resistances which are
independent of temperature and/or temperature ratio and can be
used to resolve the split of heat transfer between the channel
walls and the flow [6].

It was shown [6] for channel flow that, given a symmetric
velocity profile and constant fluid properties, the two wall-to-
fluid resistances will be equal. Nodal energy balances were
then used to obtain expressions for three convective resistances,
{Rij}, in terms of the three nodal temperatures, {Ti}, and the
total heat transfer rates, {Qi}. The analytical solution by Hatton
and Turton [7] was used to derive expressions for {Rij} in

dimensionless form, i.e. paired Nusselt numbers, }Nu{ ij .

Given the advantages of the resistor-network approach,
most notably significant simplification of the results and
consistency with the physics of the problem, it is tempting to
apply this approach to other three-temperature convection
problems – convection problems where heat transfer occurs
between more than two isothermal heat sources/sinks. Flow in
asymmetrically-heated annuli, shown schematically in Figure 2,
is in this category. While the delta network of Figure 1 can also
be used to represent this configuration, the two wall-to-fluid
resistances are not equal simply due to geometric asymmetry.
Therefore, the nodal energy balances alone cannot be used to
find the three convective resistances of the network.

In the present paper, a new technique is proposed to
overcome this difficulty. This technique entails solutions of the
energy equation with perturbed boundary conditions.

METHODOLOGY
Consider the three-resistor network shown in Figure 1. The

set of paired resistances, {Rij}, is sought.
The set of total heat transfer rates, {Qi}, can be calculated

for any given {Ti}. But heat transfer at a node, say Q2, is split
between the two legs of the network connected to that node.
See Equation 1.

21202 QQQ  (1)

Each component on the RHS of Equation 1 can be written
in terms of the corresponding driving temperature difference
and paired resistance. See Equation 2.

ij

ji
ij R

T-T
Q  (2)

Applying the nodal energy balance (Equation 1) at the three
nodes, three algebraic equations are obtained with the three
resistances, {Rij}, unknown. But these equations are not
independent; they are interconnected by the overall energy
balance of the network: 0QQQ 210  . The system of

equations is therefore under-defined with three unknowns and
only two independent equations. For constant-property,
hydrodynamically-developed flow in a parallel-plate channel,
the two wall-to-fluid resistances are equal due to symmetry.
The number of the unknowns is therefore reduced to two and
the system of equations can be solved for {Rij} [6]. In the
absence of symmetry, the more general case, an additional
equation is needed to close the system.

If one of the temperatures, say T1, is perturbed by δT1, Q2

will change as a result by some amount δQ2. These changes are
shown in Equations 3 and 4, where asterisks are introduced to
designate the perturbed condition.

11
*
1 δTTT  (3)

22
*
2 δQQQ  (4)

The energy balance (Equation 1) can also be applied to the
perturbed condition, as shown in Equation 5.

*
12

*
12

*
20

02*
2

R

T-T

R

T-T
Q  (5)

Note that a convective resistance is function of the velocity
field and the fluid properties. Hence, a change in T1 could
change both R20 and R12 through temperature-dependent fluid
properties or thermal effects on the velocity field, e.g.
buoyancy. Nevertheless, in a constant-property forced-
convection problem there is a one-way coupling between the
velocity field and the temperature. The convective resistances
are thus independent of the temperature field, i.e. Rij

*=Rij.
Equation 4 can then be rewritten as shown in Equation 6.

12
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2
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T-T

R

T-T
QQQ  (6)

Equation 6 is the additional equation that closes the system;
{Rij} can now be obtained. R12, for example, is found as shown
in Equation 7.

2

1
12 δQ

δT
R  (7)

In a constant-property forced-convection problem, the
energy equation is linear with respect to temperature. Hence
Equation 7 can be written in the differential form shown in
Equation 8.

1

2

12 T

Q

R

1



 (8)

For convenience, the proposed technique, which gives a
paired resistance Rij as the ratio between δQj and δTi, is dubbed
dQdT. A similar technique has been applied to evaluate the
paired resistances of some other three-temperature convection
problems [10,11,12].

VERIFICATION
For the purpose of verification, the dQdT technique was

applied to hydrodynamically-developed, laminar flow in an
asymmetrically-heated parallel-plate channel (Figure 1). The
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results obtained in [6] by equating the two wall-to-fluid
resistances and solving the nodal energy balances is used here
to validate the dQdT results. To apply dQdT, the solution by
Hatton and Turton [7] was used to obtain expressions for {Qi}.
These expressions were then differentiated with respect to {Ti},
according to Equation 8, to get {Rij}. Results are presented in
terms of paired Nusselt numbers, defined as shown in Equation
9. The two sets of results are plotted in Figure 3 versus the
inverse Graetz number, X, which represents dimensionless
position along the channel (Equation 10).
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 (10)

It can be seen from the curves shown in Figure 3 that the
dQdT results are identical to the energy-balance results
reported in [6]. The proposed technique for calculating the
paired resistances is thus verified.

RESULTS
Lundberg et al. [13] solved the problem of constant-

property, hydrodynamically-developed, laminar flow in
asymmetrically-heated concentric annuli for the special case
where one of the walls is maintained at the same temperature as
the inlet flow and the other wall is heated to a second
temperature. Similar to the solution by Hatton and Turton for
channel flow, the solution by Lundberg et al. is expressed in
terms of a one-dimensional solution for the non-homogeneous
boundary conditions, i.e. the fully developed solution, θfd, and a
series solution for the homogeneous boundary conditions. See
Equation 11.







0n

2
nninifd,i X)λexp(f)(Cθθ (11)

In Equation 11, )T(T)TT(θ 0i0i  is dimensionless

temperature, and X is the inverse Graetz number defined
similar to Equation 10 but with H/2 replaced with 2(ro-ri). Cn, fn

and λn are, respectively, the coefficients, eigenfunctions and
eigenvalues of the series solution reported by Lundberg et al.
[13] for the “fundamental solution of the first kind,” i.e. for
Dirichlet conditions on all boundaries. The subscript i denotes
the heated wall: θ2, for example, is the fundamental solution of
the first kind for the case where the outer wall is at the same
temperature as the inlet flow (T1=T0), while the inner wall is
heated to a different temperature (T2). The fully developed
temperature profile, θfd, is given by Equation 12.

)/rln(r

)ln(r/r
θ

ji

j
ifd,  (12)

Given the linearity of the energy equation, a solution to the
generic case where neither wall is at the same temperature as
the inlet flow – the three-temperature problem – can be
constructed using superposition. See Equation 13, where the
solution to the three-temperature case, T, is expressed as the

sum of the solution to a two-temperature case where the outer

wall is heated; (2T)
1T , and the solution to a two-temperature

case where the inner wall is heated; (2T)
2T . This is illustrated

schematically in Figure 4.

(2T)
2

(2T)
1 TTT  (13)

With Ti
(2T) known (in dimensionless form, θi) from the work

of Lundberg et al., and noting that superposition requires
Ti'+Ti''=Ti; the three-temperature solution is obtained as shown
in Equation 14.

0202101 Tθ)T(Tθ)T(TT  (14)

Equation 14 is differentiated to find the heat flux at a wall.
The wall heat fluxes are then integrated along the annulus to
obtain total heat transfer rates, {Qi}. Finally, Equation 8 is
applied to obtain the convective resistances. Results are
reported in terms of paired Nusselt numbers, defined in
Equation 15. In this definition, a characteristic length of

)rr( 21  is used to match the parallel-plate channel results

(based on the channel width, H) in the r2/r1 →1 limit.
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The resulting expressions for paired Nusselt numbers are
shown in Equations 16, 17 and 18. In these equations, r̅ =r/r1 is
dimensionless radial location and φ=r2/r1 denotes radius ratio.
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These (average) paired Nusselt numbers are plotted in
Figure 5 for a sample radius ratio of φ=0.5. The coefficients,
eigenvalues and eigenfunction derivatives given by Lundberg et

al. [13] were used to evaluate }Nu{ ij . Wall-to-fluid heat

transfer is infinitely large at the annulus inlet (similar to the
leading-edge singularity point in flow over a flat plate). The
asymmetry in geometry, i.e. the different curvature of the inner
and outer walls, leads to a difference between the two wall-to-

fluid Nusselt numbers, 10Nu and 20Nu . As expected, the

surface with the lower curvature has a lower wall-to-fluid

Nusselt number: 2010 NuNu  . As the flow develops

thermally, with the temperature profile approaching the fully
developed profile of Equation 12, wall-to-fluid heat transfer
decays, approaching the limiting value of zero at X→∞. Wall-
to-wall heat transfer, on the other hand, increases from zero at
the inlet and to the pure-conduction limit. The slight departure
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of 12Nu from 0 at X=0 is because only the first four

eigenvalues were used.
To demonstrate the validity of these results, two limiting

cases may be considered. First: in the thermally developed limit
(X→∞), there is zero heat transfer between the annulus walls
and the flow, hence: 0NulimNulim 20

X
10

X



. Wall-to-wall

heat transfer, on the other hand, approaches the pure-

conduction limit with 0.72Nulim 12
X




. Using this limiting

value, obtained by dQdT, the wall-to-wall heat transfer rate at
X→∞ can then be calculated as shown in Equation 19.
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)TkL(T9.064 21  (19)

Alternatively, the wall-to-wall heat transfer rate in the pure-
conduction limit can be calculated using the conduction shape
factor of the annulus. The conduction shape factor of a
concentric annulus is  1/φπL/ln2S  , which yields S=9.065L

for φ=0.5. The fully-developed wall-to-wall heat transfer rate is
then obtained as shown in Equation 20. Comparing Equations
19 and 20, the accuracy of the dQdT results is obvious.

)TkL(T9.065)TSk(TQlim 212112
X




(20)

The second case is the limit where the curvature of both
annulus walls approaches zero and φ→1. In this limit, the
solution to the annular problem must approach the solution to
the parallel-plate channel problem. In Figure 6, the distribution

of the inner-to-fluid paired Nusselt number, 20Nu , is plotted

for various radius ratios. It can be seen that as φ→1, inner-to-
fluid Nusselt number approaches the wall-to-fluid Nusselt
number of the channel problem reported in [6]. Note that the
φ=1 curve and the channel-flow curve (dashed) were generated
using two different sets of eigenvalues which were obtained
using two different numerical schemes. The slight discrepancy
between the two is, therefore, not unexpected.

CONCLUSIONS
This study is part of an ongoing research project on multi-

temperate convection problems, and an extension of earlier
work on resistor-network modeling and characterization of heat
transfer in an asymmetrically-heated parallel-plate channel.
Since the two wall-to-fluid convective resistances of an annulus
are not equal, the nodal energy balances alone cannot be used
to obtain the three resistances that characterize the delta
thermal-resistor network of the problem. A new technique,
dQdT, was proposed to generate an additional equation which,
in combination with the nodal energy balances, can be solved
for all three resistances. The validity of the proposed technique
was demonstrated by application to the parallel-plate channel
geometry: dQdT successfully reproduces the energy-balance
results.

A superposition solution to the energy equation for
hydrodynamically-developed, laminar flow in asymmetrically-

heated annuli with was obtained using a classical solution from
the literature. dQdT was then applied to obtain the three paired
Nusselt numbers that characterize the delta network
representing the problem. The results were shown to be in
agreement with the physics of the problem. Two limiting cases
were examined: 1) in the thermally developed limit, where
there is zero wall-to-fluid heat transfer, the dQdT results for
wall-to-wall heat transfer match calculations based on the
conduction shape factor of a concentric annulus. 2) In the limit
where the curvature of the walls approaches zero, the wall-to-
fluid Nusselt number of the annulus was shown to approach the
wall-to-fluid Nusselt number of the parallel-plate channel.

Although the dQdT technique is developed for and applied
to a specific case with hydrodynamically-developed, laminar
flow; there are no assumptions or restrictions precluding its
application to other multi-temperature convection problems.
Extension of the resistor-network approach and application of
the dQdT technique to turbulent and simultaneously developing
flows will be examined in future work.
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Figure 1 Schematic and resistor network of hydrodynamically developed flow in asymmetrically-heated channel

Figure 2 Schematic of hydrodynamically developed flow in asymmetrically-heated annulus

Figure 3 Average paired Nusselt numbers obtained by dQdT and from nodal energy balances
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Figure 4 Generic three-temperature solution as superposition of fundamental two-temperature solutions

Figure 5 Average paired Nusselt numbers calculated using dQdT (φ=0.5)

Figure 6 Average inner-wall--to-fluid Nusselt number for different radius ratios
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