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Abstract 

The physical road system plays a critical role in environmental and city planning. In the context 

of retail store site-selection, measures of accessibility and the ease and willingness of consumers 

to shop at a store can be essential to revenue generation and retail success. To quantify 

accessibility requires a detailed examination of the road networks and in many cases modelling 

to estimate potential traffic congestion that would inhibit accessibility. The application of 

network theory to assess the accessibility of road segments and land parcels is non-existent. 

Research on the effects of the structure of the road network, via network analysis, can facilitate 

identifying potential congestion issues and subsequently the effects of congestion on commercial 

performance (e.g., retail sales). The application of network analysis to a road network is 

distinctive from applications in other disciplines (e.g., sociology, ecology), since, among other 

network attributes, the road network is a low-dimension, link-centroid, and relatively static 

system with time-variant traffic flow. In addition to conceptually interrogating the difference 

between social and road networks for network analysis, the presented research results show the 

relationship among different network metrics and simulated traffic congestion and the strength 

of the relationship between network metrics and retail sales relative to socio-demographic and 

site-location characteristics. 
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Chapter 1: Introduction to location theory and the role of the road network in site selection 

1.1. Background 

1.1.1. Location theory and retail 

The history of location theory spans from ancient periods to the Renaissance, through the first 

industrial revolution, and continues to develop in contemporary times. In the Shang dynasty of 

ancient China (1556 BC to 1046 BC), feng-shui philosophy was developed as a systematic location 

theory for landscape arrangement and site selection of capitals, towns, and buildings (Hong, Song, 

& Wu, 2007); in the seventeenth century, location selection became an analytical science when 

Evangelista Torricelli devised a solution to Pierre de Fermat’s geometric median problem, which 

finds the optimal location to minimize the distance to given points in a Euclidean space (Krarup 

& Vajda, 1997); and in the nineteenth century, location selection was formulated as the land rent 

theory in The Isolated State by von Thunen (1826). It was not until the progression of social 

sciences before First World War that location theory was formally brought to the stage of 

economic geography by Alfred Weber, who reintroduced location theory and contributed to 

industrial location models. Contemporary concepts of location theory have been broadly 

implemented in many disciplines (e.g., economics, biology and ecology; Martin & Roper, 1988); 

however, facility site-selection remains one of the principle fields of location study.  

Retail site-selection is an application of location theory (Goodchild, 1984). A retail store’s 

location is critical to a retail business for it determines the store’s accessibility, defines the market 

area, and is exposed to the community’s atmosphere (Huff, 2003). According to the North 

American Industry Classification System (NAICS), the retail sectors comprises merchandises from 

twelve subsectors, from food, cloth, and hobby stores, to auto parts, furniture, and home 

improvement supplies dealers, including small shops and big-box chain stores, and even non-

store retailers. (Statistics Canada, 2016). While each retailer aims to maximize business 

profitability by allocating stores as intermediates between warehouses and prospective 

customers, the allocation strategy various among the types of retail. One could argue that the 

location decision for small merchandises is flexible and has more alternatives relative to the 

relatively inelastic decisions of big-box retailers who make large, fixed, and often long-term 

investment in store location choices.  Moreover, stores in the home improvement sector require 
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higher driving accessibility since customers are more likely to drive for shopping, and have less 

incentive to be located at the city centres because of the high rent, parcel size and availability, 

operational costs, and customers are willing to travel farther for large and less frequent 

purchases. 

Most retail site selection decisions primarily depend on the knowledge and subjective 

judgements of owner, corporation, or real-estate decision-makers (Evans, 2011; Fowler, 2016). 

However, the development of site-selection techniques and increased computational capacity 

have enabled a large variety of models, algorithms, and formulations to solve the site-selection 

problem in the retail sector using a number of different criteria. 

 Centuries after von Thunen (1826) first formalized location theory, the list of site-

selection criteria has diversified (Weber, Current, & Benton, 1991; Hoffman & Schniederjans, 

1994; Badri, 1999; Sarkis & Sundarraj, 2002; MacCarthy & Atthirawong, 2003). Facility site-

selection is divided into two stages: country or region selection and community or site selection 

(Brown & Gibson, 1972; Hoffman & Schniederjans, 1994).  

During regional selection, criteria are given consideration based on factors in a broad 

context, for example, the regional socio-economic, political, technical, natural and market factors. 

Specifically, the economic factors reflect monetary policy and economic conditions in a country 

(e.g., tax rates and average wage); the social factors reveal the social atmosphere (e.g., 

demography and crime rate); the policy factors include market regulations, restrictions, and 

incentives (e.g., potential trade barriers and tax relief); technical factors indicate the regional 

technology level (e.g., innovation cycle and cost); the natural factors include regional climate and 

natural disaster frequency and extent; and the market environment factors include competition 

and market potential, among other factors (Hoffman & Schniederjans, 1994).  

At the community or site selection stage, criteria should be focused on site attributes such 

as the parcel size, operation and construction cost, accessibility, visibility, neighbourhood 

environment, local demand, competitor density and prestige. These criteria can be classified into 

three groups. The first group includes critical (or location) criteria, which directly impact or 

restrict the facility’s location regardless of the existence of other conditions. For example, a retail 
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store is allocated close to the market demand points, and a manufacturing facility requires 

adequate labor supply nearby. The second group consists of objective criteria, which can be 

measured by crisp and precision-based monetary terms. Such criteria include labor, construction, 

and transportation costs. The last group includes subjective criteria with qualitative definitions 

in linguistic description. Unusually, such criteria may not be directly and precisely evaluated by 

numeric values. For example, shopping distances can be assessed by “farther” and “closer” 

(McGuirt, et al., 2014). 

Depending on the available data, the data input for a site-selection problem is either 

precision-based or fuzzy-based (Liang & Wang, 1991; Weber, Current, & Benton, 1991). Precision-

based data has an explicit numeric formation, such as the construction or travel cost, while fuzzy-

based data is usually expressed via linguistic variables and describes a conceptual status, such as 

preference, willingness and likelihood. Additionally, the fuzzy data can be transferred into precise 

numbers. For example, when expert or stakeholder opinions are integrated in a site-selection 

problem, the data input is often intuitive and prone to inconsistencies. In this case, methods like 

analytical hierarchy process (AHP) procedure can be used to convert fuzzy input into crisp 

numeric data (Zadeh, 1965; Liang & Wang, 1991; Rangone, 1996; Siddiqui, Everett, & Vieux, 1996; 

Charnpratheep, Zhou, & Garner, 1997; Cheng, Chan, & Huang, 2002; Mahler & De Lima, 2003). 

1.1.2. Site-selection problems and techniques 

The overarching goal of a retail site-selection problem is often to minimize cost and maximize 

revenue to maximize profitability. Therefore, store site-selection problem can be broken into 

three secondary goals (Brown & Gibson, 1972). The first goal of site-selection is to minimize the 

production cost. It is one of the main concerns in the early works of facility site-selection 

(Greenhut, 1956; Hoover, 1967). This site-selection strategy integrates fixed production costs like 

rent (Thünen, 1826) and labor (Weber A. , 1909) and is mainly achieved by analytical models.  

The second site-selection goal is to minimize distribution cost. It is mostly rooted in 

service providers or vendors whose main concern is the travel time and distance between the 

facility and the customers (Brown & Gibson, 1972). Many popular site-selection problems were 
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proposed based on travel costs, such as the single facility problem, the multi-facility problem, the 

p-median problem1 and the p-centre2 problem (Cooper, 1964; Hakimi, 1964).  

The third goal of retail site-selection is to maximize revenue. Methods of estimating 

customer expenditure or market potential are often based on the assumption of homo 

economicus, where the rational customers choose shopping behavior for their maximum benefits.  

A comprehensive site-selection strategy should integrate all the criteria including cost and 

revenue to optimize store profitability (Greenhut, 1956; Brown & Gibson, 1972). 

Beyond the three site-selection strategies, some facility location problems require an 

optimal coverage of demand locations, especially in the public sector, such as fire stations, and 

hospitals. Such location problem is formulated as a covering problem (Toregas, Swain, ReVelle, 

& Bergman, 1971; Church & ReVelle, 1974).  

To facilitate site location selection problems, mathematical models, heuristic algorithms, 

and multi-criteria/multi-attribute decision making (MCDM/MADM) methods have been 

proposed (Onut, Efendigil, & Kara, 2010). The mathematical models are feasible if precision-

based data is available. For example, integer programming is a basic mathematical optimization 

technique. It uses analytical models (e.g., linear and non-linear regression) as objective functions 

and constraints to find an optimal solution (Hillsman, 1984; Kao & Lin, 1996; Nema & Gupta, 1999; 

Chang & Wei, 2000).  

Heuristic algorithms are applied to find the best approximate solution when a location 

problem does not have a known solution in a polynomial time (i.e., NP-complete). Meta heuristics 

is a high-level procedure that coordinates known solutions (including heuristic) to avoid local 

                                                           
1 P-median is an optimization strategy of facility location problem where the objective is to 
optimize the total utility by minimizing the total travel distance from the demand points to the 
facilities. 
2 P-centre is an optimization strategy of facility location problem where the objective is to 
optimize individual benefit by minimizing the maximum distance from the demand points to 
the facility. 
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optimization, the most well adopted methods include the genetic algorithm3 (Holland, 1992), the 

Tabu search4 (Glover, 1986; Hansen, 1986), the ant colony optimization5 (Dorigo, Maniezzo, & 

Colorni, 1991) and simulated annealing 6  (Hebb, 1949; Minsky & Papert, 1969; Rumelhart, 

Smolensky, McClelland, & Hinton, 1986). Heuristic algorithms have been implemented in facility 

site-selection problems, for example, waste site selection (Ramu & Kennedy, 1994; Bautista & 

Pereira, 2006; Al-Jarrah & Abu-Qdais, 2006). 

The MCDM/MADM method facilitates site selection by ranking and making a selection 

from site alternatives via an explicit evaluation against the criteria. It is especially effective when 

the criteria are conflicting, the inputs have inconsistent forms, or the data input is fuzzy (e.g., 

inputs have different units or qualitative formats; Liang & Wang, 1991).  

1.2. Motivation 

A road infrastructure system is an indispensable part of a contemporary urban system. It provides 

a physical connection between locations and is also the principal mediator of urban sustainability 

(Ford, Barr, Dawson, & James, 2015). As a vital part of the urban system, the road network is 

related to many aspects of the economy, such as industrial production, land prices, and resident 

quality-of-life (Verhoef, 2010; Boyle, Barrilleaux, & Scheller, 2014) via the efficiency of 

transportation (Frost & Spence, 1995; Gutierrez, Gonzalez, & Gomez, 1996; Gutierrez, 2001; 

Vickerman, Spiekermann, & Wegener, 1999).  

One of the critical criteria for retail location is accessibility. For smaller retailers and 

retailers at the city centers, pedestrian accessibility might be a main concern; while for the big-

                                                           
3 The genetic algorithm is a heuristic method that uses the Darwinian evolution theory, where 
the population is updated by the best solution in each iteration via akin to natural selection, it 
also enables potential solutions to be explored through genetic crossover and mutation. 
4 The Tabu search is a meta-heuristic neighborhood search method that finds the best solution 
in the neighbours of the current solution in each iteration.  
5 Colony optimization is a meta-heuristic algorithm that was inspired by the pheromone in ant 
path seeking. In each iteration, the solution was updated with the bias from “pheromone” 
between elements.  
6 Simulated annealing is a meta-heuristic algorithm that finds the global optimum in a discrete 
space in a notion of “slow cooling”, which is achieved by a slow decrease in the probability of 
the acceptance of worse solutions.  
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box7 retailers, especially retailers in the home improvement sector, driving accessibility is the 

main factor. Moreover, the efficiency of the transportation system determines the overall cost 

of a supply chain via distribution and logistics processes.  

Travel cost has been a critical factor in site-selection problems since von Thunen proposed 

the rent model. However, travel cost should not be regarded as a simple function of distance 

(Hoover, 1967), but a function of the complex attributes of the road network (Allen, Liu, & Singers, 

1993; Hull, Silva, & Bertolini, 2012). The principal objective of retail site-selection problems is to 

minimize travel cost between a location and the consumers via an optimization of store 

accessibility (Hakimi, 1964; Cooper, 1964; Goodchild, 1984; Arentze, Borgers, & Timmermans, 

1996). Road infrastructure, which is the basis of travel behaviours, should have impacts on traffic 

flow and congestion.  However, these impacts have not been explicitly incorporated in retail 

location problems.  

The incorporation of network theory in the assessment of the effects of the road network 

on store revenue via accessibility and congestion is rare but is necessary to facilitate market 

research and to support retail store site selection. In site-selection problems, the spatial 

representation of locations and distances can be discrete, continuous, or network-based (Love, 

Morris, & Wesolowsky, 1988). Therefore, it is more appropriate to use road infrastructure as a 

network representation in a retail site-selection problem. 

In previous site-selection or planning studies, the descriptions of road network patterns 

were macroscopic and subjective, for example, the use of terms “dense” or “major” (Marshall, 

2005). Quantitative studies about road network structure should be integrated into site-selection 

problems; however, its integration has primarily been conducted in the field of transportation 

engineering (Möller & Schroer, 2014). Specifically, the infrastructure topology and geometry is 

used in traffic modelling, and some of the studies involved the implementation of network theory 

(Möller & Schroer, 2014).  

                                                           
7 Big-box stores are located in large-scale buildings which footage normally exceed 50,000 square feet (Basker, 
Klimek, & Hoang Van, 2012). 
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Network theory has a wide application in the analysis of technological, social, 

informational and biological networks (Newman, 2010). Network measures reflect the relations 

between the entities and the information flow through the network. In road network analysis, 

studies have focused on heterogeneity (entropy), importance (centrality), connection pattern 

(Xie & Levinson, 2007; De Montis, Barthélemy, Chessa, & Vespignani, 2007), and fractal 

dimension (Rodin & Rodina, 2000; Lu & Tang, 2004).  

However, the previous implementations of network theory in retail analysis mainly 

involved market organization, commercial activity (Jensen, 2006), and supply chain (Wagner & 

Neshat, 2010) rather than the impacts of road network on retail revenue generation (Coughlan 

& Grayson, 1998). The connection between retail and road network structure has been identified. 

For example, retail density and land-use intensity are found to have relationships with road 

network measures like centralities (Porta, et al., 2009), which suggests that network theory 

would provide a novel method for road network analysis and retail location analysis. 

1.3. Research objectives 

This Master’s thesis was established based on a site-selection project for a big-box retail chain 

store, in which market potential and site suitability have been estimated and evaluated 

(Balulescu, 2015; Caradima, 2015). The overarching goal of this Master’s thesis is to improve the 

decision-making capacity of site-selection problem for a retail store by investigating the 

relationship of different network metrics with simulated traffic congestion and the relative effect 

of these results (i.e., network attributes) on retail sales compared to socio-demographic and site-

location characteristics. Within this context, this project aims to answer the following questions: 

1) To what extent are network metrics correlated to traffic congestion? 

2) Does the incorporation of road network metrics improve retail store sales modelling 

and if so what is their contribution relative to demographic or suitability analysis variables?  

To answer these questions, this thesis starts with a description of the unique properties 

of road networks, followed by the methodology and results that provide insights into the 

relationship of network metrics with simulated traffic congestion. Then these results are used to 
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statistically evaluate the strength of the relationship between network attributes and retail sales 

relative to socio-demographic and site-location characteristics. 

1.4. Thesis structure 

This thesis is structured as two separate and independent papers (Chapter Two and Chapter 

Three). This chapter provided an introduction to location theory and the relationship between 

site selection and the road network. The history of site-selection studies and the role and 

importance of including the road network structure in retail site-selection was discussed to point 

out the gap in the explicit linkage of location and network analysis. It established two research 

questions to understand the relationships of road network metrics with traffic congestions and 

retail store sales. Chapter Two provides a primer on network theory and presents a list of 

quantitative network metrics applied to the City of Toronto road network and compared with 

simulated traffic data to identify the degree of correspondence with traffic congestion. Chapter 

Three presents an exploratory study of the use of road network metrics in store sales modeling 

comparing the effect of network metrics relative to demographic and suitability variables in three 

types of retail sales models to assess their relative impact on retail sales. Chapter Four presents 

a conclusion relevant to the improvement regained.  
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Chapter 2: Application of network analysis on road traffic congestion: A case study of City 

of Toronto Retail Store Road Networks 

2.1. Introduction 

The road infrastructure creates a physical network that connects locations and facilitates 

movement of everything from people to commerce and ideas. The structure of the road network 

affects the efficiency of the movement of a society (e.g., transportation) and therefore has a 

mutual effect on many local-regional aspects of markets and, more broadly, the economy (Frost 

& Spence, 1995; Gutierrez, Gonzalez, & Gomez, 1996; Gutierrez, 2001; Vickerman, Spiekermann, 

& Wegener, 1999). Such effects can be reflected via economic indicators, for example, industrial 

production, retail sales, land prices, and residents' quality-of-life (Verhoef, 2010; Boyle, 

Barrilleaux, & Scheller, 2014). The physical road infrastructure system also plays a critical role in 

environmental planning and city planning. Some have even ventured to label the transportation 

system as the principal mediator of urban sustainability (Ford, Barr, Dawson, & James, 2015). 

Particularly, within the context of retail supply chain, the efficiency of transportation 

largely affects the success of retail stores. As retail sectors distribute goods from warehouses to 

stores and serve individual consumers or business entities, the travel cost caused by the 

separation of opportunities, services, and market demand in a distribution and logistics process 

has a significant impact on the overall cost of a supply chain (Allen, Liu, & Singers, 1993; Beamon, 

1998; Hull, Silva, & Bertolini, 2012). From the customers’ perspective, the efficiency of the road 

network near a store determines the store’s accessibility, which influences the level of ease and 

willingness of consumers' shopping journey (Páez, Mercado, Farber, Morency, & Roorda, 2010; 

Öner, 2015) and therefore affects a customer’s potential expenditure and store’s attractiveness 

(Teller & Reutterer, 2008). Although an urban transportation system also serves for pedestrian 

and public accesses, driving access is mainly discussed in this thesis for the retail big-box stores 

in the home improvement sector. 

The site-selection problem is formulated as the optimization of a store’s accessibility 

given the dispersed demands for a retail store (Goodchild, 1984). Traditionally, the objective of 

site-selection is either to optimize the total utility by minimizing the total travel distance from 

the demand points to the facilities (i.e., p-median problem; Hakimi, 1964; Cooper 1964) or to 
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optimize individual benefit by minimizing the maximum distance from the demand points to the 

facility (i.e., p-centre; Hakimi, 1964). More complex spatial interaction models may integrate the 

behavior of consumers or the characteristics of store sites (e.g., Huff’s model; Li & Liu, 2012). 

Road network is the basis of travel behaviors and the traffic conditions have marginal effect on a 

store’s accessibility. However, road network and traffic conditions have not been extensively 

incorporated in retail site-selection problems.  

The implementation of network theory leads to a novel method of road system analysis 

in the context of retail site selection. There are previous implementations of network theory in 

complex system analysis. For example, in the field of transportation engineering, network 

analysis has been applied on infrastructure topology for traffic modelling (Möller & Schroer, 

2014); in the retail sector, it has been adopted to global and regional market analysis for market 

optimization (Iori, De Masi, Precup, Gabbi, & Caldarelli, 2008). Nevertheless, the practice of 

assessing the impact of road network structure on store revenue is virtually non-existent. Such 

study is necessary to facilitate market research and to support retail store site-selection. 

A road network is distinctive from many other networks in sociology, ecology, or 

information technology. The representation of road network is a flat, edge-centroid, and static 

system that contains time-variant traffic information. For example, a national road network can 

be 99% planar with only a small number of overpasses due to the constraints on construction 

and maintenance costs. (Newman, 2010). It implies that road network studies, unlike other 

network studies, should not focus on degree distribution. Moreover, the road network 

heterogeneity is represented by road segments via the road operational or functional levels, 

traffic volume, and degree of congestion (Xie & Levinson, 2007). So analysis of a road network 

should focus on edge properties. Furthermore, a road system has a predominantly static 

structure but also has dynamic traffic information. Hence, road network studies should consider 

the variances of measurements in different time periods.  

The application of network theory on road infrastructure structure will further facilitate 

accessibility assessment and benefit business operations from the merits of simplicity and cost-

efficiency during retail store location decisions. This chapter aims to establish links between 
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network metrics and traffic congestion measures to answer the research question: to what 

extent do road network properties correlate with traffic congestion? We will describe 

methodology and results that provide insights into the relationship between network metrics 

and simulated traffic congestion. 

2.2. Network Analysis Methodologies 

For decades, network analysis has been widely adopted in the fields of social studies, biology, 

and information sciences among others (Wasserman & Faust, 1994; Robins, 2015); however, its 

implementation in research about road infrastructure is limited. If assuming the drivers are 

rational and have the ability to select the shortest path, some observation methods (e.g., network 

metrics) and analysis techniques (e.g., general linear model) could be adopted from other 

disciplines in road network analysis. Particularly, a road network can be assessed by either local 

measures (i.e., individual-based measures) or global measures (i.e., network structure measures).  

Local measures reflect the role that an individual node or edge plays in a network. For 

example, centrality is a set of measurements that describe the importance of a network element. 

Specifically, betweenness and load centrality are centrality metrics that measure the vitality of a 

node or an edge via the probability of passing the element during a traversal search. The higher 

betweenness or load centrality value indicates the higher frequency the node or edge is on 

"shortest paths" in a network. Therefore, the removal of such element will potentially partition 

the network. Closeness centrality is another example of centrality that measures the importance 

of a network element. It values edges or nodes that are closer to other edges or nodes regarding 

the network distances. Other centrality measures exist, for example, degree centrality. Degree 

centrality is calculated as the node degree standardized by the frequency of a node. In a road 

network, nodes with a high degree centrality are recognized as transportation hubs, and nodes 

with degree of one are the road dead-ends.  

Global measures represent the regional character of a road network. For example, 

average edge length is a primary feature that distinguishes a network. Like a highway system, it 

is characterised by short edges compared to other networks, such as the airline network and the 

continental internet (Gastner & Newman, 2006). Beyond length, road density reflects the 
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crowdedness of a network. The measure of road density may reflect and impact other social-

economic factors, like gasoline consumption (Su, 2011). Network entropy is another example of 

global measure that indicates the assortativity of road heterogeneity (Xie & Levinson, 2007). And 

fractal dimension is a global network measure that reflects the formation and density distribution 

of a regional road network (Lu & Tang, 2004). 

2.2.1. Centralities8 

Network centrality measures have been implemented in traffic flow and congestion modelling 

(Holme, 2003; Kazerani & Winter, 2009; Gao, Wang, Gao, & Liu, 2013). However, such 

implementation has not yet been extended to the assessment of road network accessibility. 

Accessibility is a function of traffic flow and road network structure. Traditionally, accessibility 

has been measured by travel cost via distance, time or network connectivity (Litman, 2003). 

However, for a road network in a metropolitan area (e.g., City of Toronto), computing a cost 

matrix would incur substantial computational overhead due to the large size of the network. 

Instead, centrality measures facilitate an efficient, detailed and comprehensive accessibility 

assessment scheme. In a broader context, measuring network centralities is the preliminary 

approach to investigating the role of network analysis in traffic congestion research and retail 

site selection. The network centralities explored in this study include betweenness centrality, 

load centrality, closeness centrality, and degree centrality.   

2.2.1.1. Betweenness Centrality 

Betweenness centrality reveals the importance of a network element according to the number 

of the dominated paths (Figure 2-1). The betweenness of a node is calculated as the fraction of 

the passing shortest paths over the total number of the shortest paths in the network9 (Equation 

2-1). A node or edge with high betweenness centrality passes many shortest paths in the network. 

Therefore, its removal may partition (i.e., split) the network into multiple components. 

                                                           
8 The algorithms used in this study were implemented by Hagberg in NetworkX load.py. 
9 Applying a shortest path algorithm on a network would produce a list of shortest paths that 
connect each pair of nodes in the network; among these paths, some pass through the 
node/edge of interest, they are referred as the "passing shortest paths". 
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Figure 2-1 Betweenness centralities of roads, screenshot of road network in the City of Toronto. 

According to the definition given by Everett and Borgatti (1999), the betweenness 

centrality of node v in network G is denoted as: 

              𝑐𝑣
𝑏 =  ∑

𝜎(𝑠,𝑡|𝑣)

𝜎(𝑠,𝑡)
𝑠,𝑡∈𝑉
𝑠 ≠𝑡

                                                   Equation 2-1 

where V is the node collection of network G; s, t are two nodes in V; (s, t) is a path from s to t; 

node v is a node on the path (s, t); 𝜎(𝑠, 𝑡) is the number of shortest paths10 between source node 

s and target node t; among these shortest paths, 𝜎(𝑠, 𝑡|𝑣) is the number of paths that pass 

through node v.  

Brandes (2008) developed an algorithm of betweenness centrality calculation by a 

recursively accumulation of “dependency”. A “dependency” variable is defined as:  

𝛿(𝑠, 𝑡|𝑒) =
𝜎(𝑠,𝑡|𝑒)

𝜎(𝑠,𝑡)
                                                         Equation 2-2 

where e is an edge on the path (s, t). After summation for all target nodes, the “one-sided 

dependency” from a source s to a single edge e is defined as:  

    𝛿(𝑠|𝑒) = ∑ 𝛿(𝑠, 𝑡|𝑒)𝑡∈𝑉                                                    Equation 2-3 

                                                           
10 The shortest paths were identified using Dijkstra’s algorithm. 
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This expression could be exploited as: 

            𝛿(𝑠|𝑒) = ∑
𝜎(𝑠,𝑣)

𝜎(𝑠,𝑤)
(1 + 𝛿(𝑠, 𝑤))𝑤:   𝑓𝑜𝑟 𝑒(𝑣,𝑤)∈𝐸,

𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑤

                    Equation 2-4 

where node v is the predecessor of node w in a single source shortest path from source node s. 

The initial value of 𝛿(𝑣) for all nodes is 0. Therefore, in each iteration the furthest edge has 𝛿(𝑒) 

of 0; and the nearest edge gets the largest value of 𝛿(𝑒). Then in the reverse discovery order in 

the shortest path algorithm, repeat this calculation on all nodes as source and accumulate 𝛿(𝑠|𝑒) 

for each edge. The final result is the betweenness centralities for each edge.  

2.2.1.2. Load Centrality 

Load centrality is a variation of betweenness centrality and shares similar definition and 

calculation (Figure2-2). Load centrality is defined as the ratio of the shortest paths that pass 

through a node in a network, indicating the influence of a node over the network via shortest 

paths. Since it was coined by Freeman in 1977, load centrality has been implemented by various 

algorithms. Particularly, Goh et al. (2001) proposed an efficient algorithm that works on large 

graphs. This algorithm was refined by Newman in his paper later in the same year (thence load 

centrality is also referred as Newman betweenness centrality in some literatures).  

 

Figure 2-2 Load centralities of roads, screenshot of road network in the City of Toronto. 

The calculation of load centrality shares the same formation with that of betweenness 

centrality. In network G, the load centrality of node v is denoted as: 
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              𝑐𝑣
𝑙 =  ∑

𝜎(𝑠,𝑡|𝑣)

𝜎(𝑠,𝑡)
𝑠,𝑡∈𝑉
𝑠 ≠𝑡

𝑠,𝑡 ≠𝑖

                                                   Equation 2-5 

where V is the node collection of network G; s, t are two nodes in V; (s, t) is a path from s to t; 

node v is a node on the path (s, t); 𝜎(𝑠, 𝑡) is the number of shortest paths between source node 

s and target node t; among these shortest paths, 𝜎(𝑠, 𝑡|𝑣) is the number of paths that pass 

through node v.  

Different from the calculation of betweenness centrality, the accumulation term is called 

“load”; it was defined by Newman (2001) as follow: 

        𝜑(𝑠|𝑣) = ∑
𝜑(𝑠|𝑤)

𝜎(𝑠|𝑤)𝑤:   𝑓𝑜𝑟 𝑒(𝑣,𝑤)∈𝐸,
𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑤

                                 Equation 2-6 

where node v is the predecessor of node w in a single source shortest path from source node s. 

Then load 𝜑(𝑠|𝑣) is accumulated for each node in the spinning tree from the farthest end to the 

source s. For calculation purpose, 𝜑(𝑣) for each v is assigned an initial value of 1, and after the 

accumulation in each single source iteration, 1 is deducted from 𝜑(𝑠|𝑣) for each node. Therefore, 

both the leaves and the root of one spinning tree have load values of 0.  

To compare with other edge-based network metrics, edge load centrality was calculated 

as the average the load centrality values of the two endpoints:  

             𝑐 (𝑣,𝑤)
(𝑣𝑤)∈𝐸

𝑙 =
1

2
(𝑐𝑣

𝑙 + 𝑐𝑤
𝑙 )                                           Equation 2-7 

2.2.1.3. Closeness Centrality  

Closeness centrality indicates the influence of a node based on the geodetic distance. It is 

measured by the mean distance from a node to the rest of the nodes in a graph (Figure 2-3).  

Newman (2001) defined the closeness centrality of a node u as the reciprocal of the sum 

of the distances from node u to all other n-1 nodes: 

             𝑐𝑢
𝑐 =  

𝑛−1

∑ 𝑑(𝑣,𝑢)𝑛−1
𝑣=1

                                                    Equation 2-8 
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where n is the number of nodes in the graph, v is a node in the node collection, and d(v, u) is the 

distance of the shortest path between node v and node u. A large closeness value means the 

node is comparably closer to other nodes and thus is considered to be more centralized. The 

edge closeness centrality was calculated as the average of the closeness values of the two 

endpoints: 

                    𝑐(𝑣,𝑤)
𝑐 =

1

2
(𝑐𝑣

𝑐 + 𝑐𝑤
𝑐 )                                            Equation 2-9 

 

Figure 2-3 Closeness centralities of roads, screenshot of road network in the City of Toronto.  

2.2.1.4. Degree Centrality 

Degree centrality is the simplest centrality measure which is calculated as the number of edges 

that connects to a node (Figure 2-4). In this study, degree centrality is normalised by (n-1), which 

is the maximum possible degree of a node (Newman, 2010):  

𝑐𝑖
𝑛 =  

𝑑𝑖

𝑛−1
                                                         Equation 2-10 

where 𝑑𝑖 is the degree of node i, and n is the total number of nodes in the network. The node 

centrality in a road network indicates the complexity of an intersection. A high degree centrality 

value is detected at an intersection that connects many roads, where traffic flow comes from 

multiple possible directions and potential congestions may occur. Again, node degree centrality 

can be transformed to edges to compare with edge-based metrics.  
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Figure 2-4 Degree centralities of roads, screenshot of road network in the City of Toronto. 

2.2.1.5. Exceptions and Errors 

The real-world road network can be complex and centrality calculation in a road network may 

contain exceptions or errors.  For example, value 0 may be assigned to betweenness which infer 

that the edge (i.e., road segment) does not pass any traffic in a network. Betweenness centrality 

is accumulated during a Breadth First Search11 (BFS), so that non-tree-edges (back, forward, and 

cross edges), form circles in a road network and yield a betweenness value of 0 (Figure 2-5). 

However, practically there is hardly a road segment that has no traffic flow. Therefore, such value 

was excluded from the results before further analysis in this presented study.  

 

Figure 2-5 Instances of centrality calculation exception. In the screenshot of City of Toronto road 
network, edge betweenness centrality of 0 on a circle is highlighted in bold line. 

                                                           
11 Implemented in Dijkstra’s algorithm in this presented research. 
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Errors are often detected at overpasses or intersections in road network generation and 

they can lead to erroneous degree centrality values. For example, many of the multi-arm 

intersections detected at overpasses turn out to be errors of planarization. The overpass in Figure 

2-6 (a) involves roads from different levels; however, it was recognised as one intersection during 

network generation. In this case, the measured degree is the sum of the degrees of the two 

intersections from different levels.  

Specification is another type of error that also induces false high degree centrality. For 

instance, according to the satellite image, the six-arm intersection in Figure 2-6 (b) is a two-way 

street with barriers intersecting with another two-way street without a barrier. The error of 

specification misleads to increased number of possible traffic directions. Theoretically, there 

should be 𝑃6
2 = 30  possible directions for traffic flows at a two-way six-arm intersection. 

However, at this shown intersection, traffic is forbidden for at least ten directions (with U-turn 

restriction). Therefore, it is more reasonable to consider this intersection as a four-way junction 

with a degree of four.  

The error of overestimation of node degree was manually corrected using a geographic 

information system (i.e., ArcMap). In the planarization problem, roads were merged to eliminate 

intersections that were induced by errors; in specification problem, extra intersection was 

created for the divided roads. 

 

                                      (a)                                                                                   (b)                                               

Figure 2-6 Instances of error: overestimation of degree centralities  

Note: (a) Planarization: The node with a degree of seven is a combination of two intersections at 
two levels with degree of three and four. (b) Specification: The road from north-east to south-
west is divided by barriers, and traffic is not permitted to go into the oncoming direction; however, 
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as the road is specified as two separate roads, the intersection can be mistaken as a six-arm 
junction. Satellite image source: Google Maps 

2.2.2. Global network metrics 

2.2.2.1. Network Entropy  

Entropy is a global measure that represents the degree of uncertainty in a system (i.e., 

randomness and noise; Shannon, 1948). A system X contains objects from different categories, 

which are indexed by i. The proportion of the objects of interest in category i is represented as 

𝑝𝑖, whose range is [0, 1]. Then the entropy of the system is expressed as: 

                                   𝐻(𝑋) =  − ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)
𝑚
𝑖=1                                      Equation 2-11 

The value of entropy ranges from 0 to 𝑙𝑜𝑔2𝑚. A low entropy value indicates system homogeneity, 

it is observed in a system when a large proportion of the objects of interest fall within a single 

category and other categories cumulatively have a small proportion of the objects of interest in 

the system. Specifically, if a category covers nearly all or none of the objects of interest, the term 

𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)  approaches value 0. And thus the aggregation of the objects of interest in one 

category would yield a summation value closes to 0.  In contrast, a higher value of entropy implies 

a higher degree of heterogeneity, which can be observed when 𝑝𝑖 is close to 1/m in all categories.  

The concept of entropy is not new to network analysis. Balch (2000) has studied the 

diversity of an artificial society by measuring system entropy, and Xie and Levinson (2007) 

calculated the entropies of modelled road networks to compare their heterogeneity. In this 

presented research, entropy was calculated based on road length and road functional 

classifications. Thereby, the value of entropy would indicate the degree of diversity of road types 

in a road network (Figure 2-7). According to the designed road functionalities, a road network 

with low entropy that contains a significant portion of local streets has the advantage of 

accessibility to property parcels. And a network with low entropy that is dominated by highways 

or arterial roads has better traffic movement with high speed limits and large road capacities. In 

contrast, the road networks with high entropy values have an assortment of road types and are 

more complex and balanced between property accessibility and traffic movement.   
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Figure 2-7 Entropy and road functional types. 

2.2.2.2. Fractal Analysis 

The patterns of many natural objects and human activities are visually complex; however, the 

disorder and irregularity underlying these real-world phenomena may show a scale-invariant 

repeating pattern. “Fractal dimension” was developed to describe this pattern using the concept 

of “dimension” in Euclidean space. The theory of fractal originated in 1970’s, when Mandelbrot 

(1967) first coined the term “fractal” to describe the shape of British coastline. It has attracted 

the attention of geographers, especially in the field of city and city system studies (Batty & 

Longley, 1987). After Thomson (1977) first conducted fractal measurements on transportation 

systems and related them to urban form, the fractal measurements of the transportation system 

have proved to be associated with other urban subsystems in economic, institutional, and social 

processes system (Thomson, 1977; Benguigui & Daoud, 1991; Lu & Tang, 2004).  

In Euclidean space, geometry measures follow a proportional relationship: 

                                                            𝐿
1

1 ∝ 𝑆
1

2 ∝ 𝑉
1

3                                                              Equation 2-12 

where L stands for length, S is the surface area, and V is volume, representing one, two, and 

three-dimensional measures, respectively. This relationship can be extended to spaces of any 

dimensions:  
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                                                            𝐿
1

1 ∝ 𝑀
1

𝑑                                                                 Equation 2-13 

where M can be replaced by any of L, S, V, or any other spaces; and d stands for dimension. If d 

is a non-integer, then the object is called fractal and d is an instance of fractal dimension (D).  

For a road network with an area of S, its total length L(S) has a fractal dimension of D and 

follows: 

                                                            𝐿(𝑆)
1

𝐷 ∝ 𝑆
1

2                                                              Equation 2-14 

Assuming the network has a circle sampling area, then 𝑆 ∝ 𝑟2, where r is the radius of the circle. 

Substitute 𝑆 by 𝑟2, and Equation 2-14 can be simplified as: 

                                                            𝐿(𝑟) ∝ 𝑟𝐷                                                             Equation 2-15 

Or, further specify the length-radius fractal dimension D as 𝐷𝐿: 

                                                            𝐷𝐿 ∝ 𝑙𝑜𝑔𝑟𝐿(𝑟)                                                          Equation 2-16 

If we define road network density 𝜌(𝑟) ∝
𝐿(𝑟)

𝑟2  as the length of road per unit area, the density is 

proportional to 𝑟𝐷𝐿−2: 

                                                            ρ(r) ∝ rDL−2                                                        Equation 2-17 

In a road network, the fractal dimension reflects the distribution and development stage 

of the road networks (Figure 2-8). If 𝐷𝐿 < 2, the density of the road network decreases from the 

core to the periphery, indicating the urban space allows further development; if 𝐷𝐿 = 2, the road 

network is evenly distributed in the area, and the space is filled up densely by the transportation 

system; if 𝐷𝐿 > 2, the density of road network increases from the core to the periphery, which 

implies the circle centre is not a centre of transportation system or human settlement.  
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Figure 2-8 Fractal dimension and road network density. 

 

 

Figure 2-9 Examples of fractal dimension measurement 

Note: In the Etobicoke road network (on the left), there are complex highways passing by the 
store (i.e., the centroid), and also some open spaces distributed across the sample area. 
Therefore, the road density decreases from the sample core as measured by a fractal dimension 
lower than 2. In contrast, the Scarborough road network (on the right) is more evenly 
distributed in general. There are two major roads at the periphery on the west and the east-
west, and a dense road cluster at the south of the periphery. Thence, the fractal dimension is 
higher than 2. 
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In this presented research, the fractal dimension of a road network was measured based 

on the total length of the road network and the radius of the sample area via Ordinary Least 

Squares regression. The road networks were clipped by a set of concentric circles around each 

store in ArcMap (Figure 2-9). The radius of the smallest circle was 800 metres, and the radius 

increment by 400 metres, until the outermost circle reached a radius of 10,000 metres. Ideally, 

each store should be sampled by a set of 24 concentric circles. However, some stores are located 

along the waterfront, and part of the corresponding sampling area covers open water where the 

road network does not exist. Therefore, the number of sampled concentric circles were shrunk 

for such stores' road networks to exclude water body from samples.  

2.3. Case Study: Ontario Road Networks and Traffic 

Traffic congestion potentially has negatively effects on a store’s accessibility and attractiveness. 

Whereas, the high (and slow) traffic volume that causes congestion may also increase store 

visibility to the drivers and passengers. Moreover, traffic congestion is often related to high 

market density (Wheaton, 1998), which can benefit a retail store due to agglomeration and 

spillover effects. Therefore, the impact of traffic congestion on retail revenue is controversial. To 

reveal the impacts of road network structure on retail performance, we first investigated the 

relationship between the road network and the traffic congestion in a case study situated in the 

census division of City of Toronto, Ontario, Canada. 

2.3.1. Study area  

City of Toronto is the provincial capital of Ontario, Canada, covering 636 km2 (Figure 2-10). It is 

the most populated metropolitan region in Canada, with a population of 2,576,025 in 2011 

(Statistics Canada, 2011). The large population coincides with a high demand for mobility. The 

road system of City of Toronto has a total length of 6,604 kilometres. It carries over one million 

people during daily commutes between home and work (Statistics Canada, 2011). Due partially 

to the volume of traffic, traffic congestion is a reality for many Toronto residents. In 2011, the 

average commuting time from home to work was over 30 minutes (City of Toronto, 2013).   

City of Toronto road network derived from Ontario Road Network (ORN) 2010 published 

by Natural Resources Canada was used in this study. The ORN data comprises road geometry and 
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a set of attributes such as road length and road classification. During calculations, a 50-kilometre 

buffer was applied to the census division to eliminate edge effects, and the network measures 

were reported only within the study area’s boundary. 

 

Figure 2-10 City of Toronto census division in Ontario 

2.3.2. Road Traffic Congestion Analysis 

Traffic congestion is a state of a traffic condition with the occurrence of an impeded traffic flow, 

reduced travel speed, and delayed travel time. Aside from road-side exceptions, such as incidents 

or constructions, traffic congestion is most commonly seen at intersections or at the connections 

of different types of roads (Xie & Levinson, 2007). Also, reduced travel speed is often observed 

on the “major” and "busy" roads that undertake heavy traffic flow. Moreover, areas with dense 

human settlements or business are prone to large traffic volume. Such intersections, road 

segments, or areas that are vulnerable to traffic flow can be identified via road network analysis 
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(Dunphy & Fisher, 1996; De Montis, Barthélemy, Chessa, & Vespignani, 2007; Xie & Levinson, 

2007; Kazerani & Winter, 2009; Gao, Wang, Gao, & Liu, 2013). 

The occurrence of congestion can be defined by the relationships among three basic 

macroscopic elements of a traffic state: velocity (speed), flux (flow), and density (May, 1990). The 

relationship between speed, flow, and density has been formalized in many traffic stream models 

(Underwood, 1961; Greenberg, 1959; Pipes, 1967; Ceder, 1976; van Aerde & Rakha, 1995). 

Among others Greenshield's macroscopic stream model provides a simple and straightforward 

explanation of the interrelationship of the three factors (Figure 2-11).  

On each road, free-flow speed is the maximum achievable driving speed on a road 

segment, and once the traffic density exceeds the free flow density, the actual driving speed 

decreases with increase in traffic density (Figure 2-11 (a)). Also, there is a threshold (often known 

as the critical point) where traffic flow reaches the maximum achievable flow (known as capacity) 

and congestion occurs. In an urban road system, traffic density is usually controlled by traffic 

signals to keep traffic flow below the capacity. Therefore, practically the increase of traffic flow 

corresponding to the decrease of speed (Figure 2-11 (b)) and the increase of density (Figure 2-11 

(c)).  

  

Figure 2-11 Greenshield’s macroscopic stream model 

Notably, the relationships among traffic flow, speed and density are not monotonic. 

Before reaching the critical point, flow-speed relationship is negtive and flow-density relationship 

is positive; once the critical point is passed, the relationships reverse and eventually reaches a 
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status of congestion where the flow is very low but density is high. Therefore, low speed or high 

density may indicate a traffic congestion more directly, since a low flow can be observed either 

on roads with little traffic (low density and high speed) or overwhelmed traffic (high density and 

low speed).   

Due to the proprietary nature of traffic information, data provided by government, 

companies, and other organizations are void of congestion information (e.g., Google Traffic data, 

Ontario Ministry of Transportation Annual Average Daytime Traffic). Therefore, traffic simulation 

data were solicited from the Travel Modelling Group (TMG) from the University of Toronto 

(Travel Modelling Group, 2015). The simulation uses road-segment-based traffic data such as 

speed, flow, and capacity. Three congestion indicators (speed difference, volume overflow, and 

road occupancy time) were calculated based on traffic simulation.  

Speed difference was calculated as the difference between free-flow traffic speed and 

the simulated speed:  

                                                           𝛿𝑣 = 𝑣𝑓𝑟𝑒𝑒 − 𝑣𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑                                        Equation 2-18 

A larger speed difference value implies a higher possibility of traffic congestion.  

Volume overflow was represented by the ratio between volume and capacity (VCR): 

                                                            𝑉𝐶𝑅 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
                                               Equation 2-19 

VCR ranges from 0 to 1. A VCR value closer to one indicates that the traffic volume is approaching 

to the capacity and a congestion may occur. 

Lastly, occupancy ratio12 was calculated as the ratio between traffic flow and speed: 

                                                           
12 Occupancy ratio shares the same formula with traffic density. The occupied time for a unit 

length road segment is the product of volume and the travel time for each vehicle to pass the 

road segment. If given a time slot T, the traffic volume (i.e., the number of vehicles passing a 

point on the road) within T is T × flow. The travel time for each vehicle to pass a point on the 
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                                   𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =
𝑣𝑜𝑙𝑢𝑚𝑒

𝑠𝑝𝑒𝑒𝑑
                                       Equation 2-20 

A high value of occupancy indicates a high possibility of congestion and vice versa.  

The road-segment-based traffic-simulation data were acquired for four time 

periods (Table 2-1). They are morning (06:00 to 09:00, denoted as “AM”), mid-day (09:00 

to 15:00, denoted as “MD”), afternoon (15:00 to 19:00, denoted as “PM”), and evening 

(19:00 to 24:00, denoted as “EV”). Morning (AM) and afternoon (PM) contain peak traffic 

hours (Transportation Services, 2014) and there are high possibilities for congestion 

according to the statistics on congestion measures (Table 2-1). 

Table 2-1 Averages of congestion measures in four time slots 

 

2.3.3. Measuring the relationship between road network metrics and traffic 

congestion 

2.3.3.1. Network centralities and traffic congestion 

The segment-based centrality metrics13 and congestion measures in the four time periods were 

compared in a simple Ordinary Least Squares Linear Regression model, where network centrality 

measurements were independent variables and congestion measures were dependent variables. 

                                                           

road is 
vehicle length

speed
. Therefore, the occupied time is volume ×

vehicle length

speed
. We assume that 

vehicle length is identical then the occupancy can be simplified as Equation 2-20. 

13  The measure of average road length is also a local network measure. However, the road 

network is segmented with random lengths despite of location. An average of segments length 

cannot capture the spatial heterogeneity of a road system, and therefore was not used in this 

presented study.  
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Moreover, indicator variables were included to improve the exploratory power of a single 

network metric of congestion. Variables included were noted in existing literature as having an 

effect on simulated congestion, which were factors like road class (McNally & Ryan, 1992), road 

capacity (Wilson, 1983), free-flow speed (Hadiuzzaman, Qiu, & Lu, 2012), and volume-delay 

function (i.e., VDF; Engelson & van Amelsfort, 2011). A model of the following form was used: 

                                          𝑉𝑐 = 𝛼 + 𝛽𝑛 × 𝑁 + 𝛾1𝐼1 + ⋯ + 𝛾𝑖𝐼𝑖 + ⋯ + 𝛾𝑛𝐼𝑛               Equation 2-21 

where Vc is the congestion variable, 𝛼 is the intercept, 𝛽𝑛 is the coefficient for the network metric 

N, 𝛾𝑖  is the coefficient for the indicator variable Ii and n is the number of categories in the 

indicator variable. 

 The goodness of fit was tabulated by indicator variable. And network metrics were 

assessed for their ability to affect congestion according to adjusted R-squared and significance 

tests. 

2.3.3.2. Global network metrics and traffic congestion 

While both of the local measures (e.g., centralities) and congestion measures are segment-based, 

entropy and fractal dimension are global measures that cannot be directly compared to segment-

based variables. Hence, to assess the effects of entropy or fractal on traffic congestion, the 

segment-based congestion measures were scaled up by taking global mean values.  

Specifically, congestion was summarized at the following four spatial scales: adjacent 

roads, network community, 5-kilometer neighbourhood, and 19 minutes network-drive-time 

service area (Figure 2-12). Moreover, to compare with fractal dimension, congestion measures 

were summarized at the sampling area (i.e., the largest concentric circle that was used in fractal 

calculation). A high regional mean value of a congestion measure implies that the regional road 

network is more likely to incur traffic congestion relative to other regions with a lower mean 

value.  

Global network metrics and congestion measures were compared based on observations 

near the five targeted retail stores in the City of Toronto. With the limited sample size, a 
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correlation analysis was performed to determine if there is a relationship between global 

network metrics and congestion measures according to the Pearson correlation coefficient.  

 

Figure 2-12 City of Toronto census division area and spatial scales for network analysis 

2.3.4. Results  

2.3.4.1. Relation of network centralities to congestion 

Ordinary Least Squared Regressions were used to determine if a relationship exists between 

network centrality metrics (i.e., betweenness, load, closeness, degree maximum, degree 

standard deviation, and degree mean) and congestion measures (i.e., speed difference, VCR, and 

occupancy) during the four different periods of the day (morning, mid-day, afternoon, and 

evening) using 26 samples. The best predictor and indicator variables for each congestion metric 

were determined according to the p-values of the predictor and adjusted R-squares of the model. 

a. Speed difference (δv) 

All of the edge centrality metrics were significant at p < 0.01 when regressed against speed 

difference (δv), with each indicator variable included, over all time periods (Table 2-2). In contrast, 
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degree centrality statistics do not always hold a significant relationship with congestion 

measures14.  

The goodness of fit, as measured by adjusted R-squared, were low overall between speed 

difference and network metrics – with models included significant predictors at 0.01 level 

yielding a range of adjusted R-squared of 0.13 – 0.24 in the morning, 0.05 – 0.13 in the mid-day, 

0.12 – 0.22 in the afternoon, and 0.01 to 0.03 in the evening. The closeness metric offered the 

highest goodness of fit in all time periods. Free-flow speed outperformed other indicator 

variables in terms of the goodness of fit, implying that partitioning the road network by free-flow 

speed would improve speed difference estimation via centralities. 

Table 2-2 OSL regression of speed difference against network measures 
(Adjusted R-squares and significance) 

AM: morning; MD: mid-day; PM: afternoon; EV:  evening 
*** P < 0.01; ** P < 0.05; * P < 0.1 

 

                                                           
14 Specifically, none of the degree centralities was significant at P<0.05 in the evening; degree 
mean was not significant at p<0.01 with any indicator in any time slot; the significance of 
degree maximum and standard deviation varies with each indicator among the time slots. 
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Based on the goodness of fit and significance test (p < 0.01), the best model for predicting 

congestion via speed difference uses the closeness network metric and free-flow speed as an 

indicator variable in the morning. The equation from these metrics has the following form:  

𝛿𝑣 =  −11.986 +  644.7 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 +  0.0 𝑓𝑓𝑠40 +  2.594 𝑓𝑓𝑠50 +  5.413 𝑓𝑓𝑠60 +  8.689 𝑓𝑓𝑠70 

+ 6.334 𝑓𝑓𝑠80 +  9.15 𝑓𝑓𝑠90 +  14.770 𝑓𝑓𝑠100 +  26.474 𝑓𝑓𝑠110                              Equation 2-22 

where 𝛿𝑣 is the speed difference; Closeness is closeness centrality; and ffsx is the free flow speed 

with a value of x.  

b. VCR 

In regression analysis of centrality metrics against VCR, all predictors except for the mean degree 

centrality were significant at 0.01 level with all indicator variables in all time slots (Table 2-3). The 

ranges of the goodness of fit were 0.29 – 0.43 in the morning, 0.27 – 0.40 in the mid-day, 0.29 – 

0.42 in the afternoon, and 0.26 – 0.38 in the evening. The results show that there were stronger 

relationships between VCR and centrality metrics compared to those between speed difference 

and centrality metrics. VCR was best estimated by closeness across all time slots. While VDF 

provided the best indicator variable by generating the highest R2, road capacity and free-flow 

speed yielded comparable results, but road class had the poorest performance. These results 

suggest segmenting the road network by VDF improves VCR prediction using centrality metrics.  

Based on the goodness of fit and significance test (p < 0.01), the best models for predicting 

congestion via VCR uses the closeness network metric and VDF as indicator variable based on 

morning traffic simulation. The equation from these metrics has the following form: 

 𝑉𝐶𝑅 =  −1.356 +  47.812 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 +  0.0 𝑉𝐷𝐹0 +  3.390 𝑉𝐷𝐹11 +  0.841 𝑉𝐷𝐹13 + 2.448 𝑉𝐷𝐹14

+  1.270 𝑉𝐷𝐹15 +  1.134 𝑉𝐷𝐹16 +  0.472 𝑉𝐷𝐹17 +  0.857 𝑉𝐷𝐹20 +  1.594 𝑉𝐷𝐹21

+  0.847 𝑉𝐷𝐹22 +  1.270 𝑉𝐷𝐹30 +  1.079 𝑉𝐷𝐹40 +  0.519 𝑉𝐷𝐹41 +  0.746 𝑉𝐷𝐹42 

+ 0.804 𝑉𝐷𝐹43 +  0.813 𝑉𝐷𝐹50 +  0.629 𝑉𝐷𝐹51                                                            Equation 2-23 

where VCR stands for Volume-Capacity Ratio; Closeness is closeness centrality; and VDFx is the 

VDF with index of x.  

 



Chapter 2 Application of network analysis on road traffic congestion: A case study of City of Toronto 
Retail Store Road Networks 

32 
 

Table 2-3 OSL regression of VCR against network measures 
(Adjusted R-squares and significance) 

AM: morning; MD: mid-day; PM: afternoon; EV:  evening 
*** P < 0.01; ** P < 0.05; * P < 0.1 

 

c. Occupancy Ratio 

Occupancy ratio reflects the traffic crowdedness by occupied time of a road segment. When 

Occupancy was regressed against network centrality metrics in the four time slots, each edge 

centrality (betweenness, load, and closeness) was significant at 0.01 level, but degree centrality 

statistics were not always significant (Table 2-4). Specifically, degree maximum was not 

significant with road class in the morning and afternoon, degree standard deviation was 

significant with all indicators in all time slots, and degree mean was significant at 0.05 level in the 

mid-day and evening with three indicators except for road class.  

The goodness of fit of Occupancy estimation has ranges of 0.23 - 0.34, 0.29 – 0.44, 0.25 – 

0.37, and 0.31 – 0.45 during morning, mid-day, afternoon, and evening, respectively. The 

goodness of fit is comparable to that in VCR estimation. Again, closeness was the best estimator 
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for Occupancy in all time slots although other edge centralities produced very close goodness of 

fit; VDF outperformed other indicators and improved the goodness of fit the most.  

Table 2-4 OSL regression of occupancy against network measures 
(Adjusted R-squares and significance) 

AM: morning; MD: mid-day; PM: afternoon; EV:  evening 
*** P < 0.01; ** P < 0.05; * P < 0.1 

 

Therefore, the best models for predicting congestion via Occupancy uses the closeness 

network metric and VDF as an indicator variable on evening traffic data. The equation from these 

metrics has the following form:  

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 = −4.19 +  147.92 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 +  0.0 𝑉𝐷𝐹0 +  17.58 𝑉𝐷𝐹11 +  4.93 𝑉𝐷𝐹13 +  2.42 𝑉𝐷𝐹14

+  2.44 𝑉𝐷𝐹15 +  0.52 𝑉𝐷𝐹16 +  1.44 𝑉𝐷𝐹17 +  2.49 𝑉𝐷𝐹20 +  5.01 𝑉𝐷𝐹21 +  2.47 𝑉𝐷𝐹22

+  4.03 𝑉𝐷𝐹30 +  3.68 𝑉𝐷𝐹40 +  1.79 𝑉𝐷𝐹41 +  1.88 𝑉𝐷𝐹42 +  1.11 𝑉𝐷𝐹43 +  2.29 𝑉𝐷𝐹50 

+ 1.68 𝑉𝐷𝐹51                                                                                                                    Equation 2-24 

where Occupancy is the Occupancy Ratio; Closeness is closeness centrality; and VDFx is the VDF 

with index of x.  
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In summary, congestion estimations via VCR and occupancy had better performance than the 

estimation via speed difference. Closeness was the most suitable predictor regarding goodness 

of fit and significance and VDF was the best indicator variable overall. Traffic during peak hours 

(morning and afternoon slots) were best estimated via VCR by closeness and indicator variable 

with adjusted R-squared of 0.43 and 0.42. Traffic during off-peak hours (mid-day and evening) 

are the best estimated via occupancy by closeness with adjusted R-squared of 0.44 and 0.45. 

Notably, network metrics that focused on edge attributes typically outperformed metrics 

that used node centrality statistics. The limitation on the exploratory power of node degree 

statistics in the regression analysis could be owing to the little variance in node degree in the 

road network.  

2.3.4.2. Relation of global network metrics to congestion 

The correlation analysis between entropy and congestion, or fractal and congestion, did not yield 

significant results (Table 2-5). The resulting p-values had a minimum value of 0.15 (between 

entropy at community level and speed difference measured in the evening) and an average of 

0.72, suggesting that entropy or fractal dimension of road network are not significantly 

correlated to traffic congestion.   

Table 2-5 Correlation tests between entropy, fractal, and congestion 

Pearson correlations coefficient (r) and p-values (in italic) 
AM: morning; MD: mid-day; PM: afternoon; EV:  evening 

 

Note: positive correlation (r>=0.1) in bold with shading; negative correlation (r<=-0.1) with 
shading; no correlation (-0.1<r<0.1) in hallow. 



Chapter 2 Application of network analysis on road traffic congestion: A case study of City of Toronto 
Retail Store Road Networks 

35 
 

For correlations between entropy and congestion measures, the results contained high 

p-values and an inconsistency across spatial scales, time slots, or among congestion measures. 

Although, some correlations existed within certain spatial scales or time slots. For example, at 

adjacent road level, entropy was positively correlated (correlation coefficient > 0.1) with 

congestion for 10 out of the 12 tests. Or during mid-day, entropies was positively correlated with 

VCR and Occupancy at all scales. However, negtive correlations with speed difference were 

observed at the 5km neighborhood and community scales across all time slots. Therefore, 

entropy cannot be used as a strong predictor of congestion as measured by speed difference, 

VCR, or Occupancy.  

The correlations between fractal dimension and congestion measures were more 

consistent than those attained for entropy (Table 2-5). The mean values of VCR and Occupancy 

were slightly negatively correlated with fractal dimension in all time slots, implying traffic 

congestion is more likely to occur at cores of road networks. For example, the road network 

around the Etobicoke store yielded the highest mean VCR value (1.242) and the smallest fractal 

value (1.807) among the tested road networks; while the road network around the Scarborough 

store had a higher fractal dimension (2.133) and less congestion (0.975) with a less dense core 

(Figure 2-9 in section 2.2.2.2., Chapter 2). 

2.4. Discussion 

In this research we identified the relationship between traffic congestion measures and network 

metrics in a case study of the City of Toronto road network. Positive correlations between 

congestion measures and road centrality metrics were identified. Specifically, during peak hours, 

congestion was best estimated via VCR with adjusted R-squared values of 0.43 (AM) and 0.42 

(PM); during off-peak hours, congestion was best estimated via occupancy ratio with adjusted R-

squared values of 0.44 (MD) and 0.45(EV). These results indicate that the important road 

segments which are identified by high centrality values have greater possibilities for the 

occurrence of traffic congestion. This finding suggests that centrality metrics are able to serve as 

indicators of traffic congestion. Moreover, we identified that closeness centrality was the best 

estimator of congestion among other centrality metrics. And the inclusion of VDF as an indicator 

variable in the regression with traffic simulation yielded the best quality of the results. 
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However, the results of correlation tests between global network metrics (i.e., entropy 

and fractal) and congestion measures were ambiguous. First, correlation results contained high 

p-values (with minimum of 0.15, average of 0.75), suggesting there was no or a weak relationship 

between global network metrics and congestion measures. Second, the Pearson correlation 

coefficients between global network metrics and congestion measures were not consistent 

across different spatial scales or time slots. Therefore, no concrete conclusion about the 

relationships between entropy and congestion, or fractal and congestion can be drawn from the 

results of this presented research. However, both global network metrics reflect the formation 

and spatial configuration of a road network, and their potential underlying correlations to 

congestion or other socio-economic factors should be expected in further studies.  

2.4.1. Limitations 

2.4.1.1. Observation techniques  

The ambiguity in the correlation results between global network metrics and congestion is 

partially induced by the limited sample size (i.e., only five sample locations were tested by global 

network metrics in this research). Having small sample size would increase the probability of 

introducing type 2 errors into a correlation test. According to the Law of Large Numbers15, 

increasing sample size in the future studies may provide better estimation of the distribution of 

exploratory and response variables, and therefore improve the detection of the correlation 

between global network metrics and congestion measures. However, because entropy are 

measured at certain fixed spatial scales (e.g., service area or community), and network metrics 

may loss integrity across two cities, increasing sample size would require extending the study 

area to other census division areas. In contrast, increasing sample size of road network fractal 

dimension measurement can be achieved by applying a moving window on each road segment 

for fractal dimension calculation. However, this method would result in a high computational 

overhead.  

                                                           
15 Law of Large Numbers: the convergence of the results’ average to the expected value for a 
random process as the number of trials increases. 
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Another possible reason for the lack of correlation between statistical network metrics 

and traffic congestion could be the generalization in the statistics of segment-based values. When 

calculating the correlation, road-segment-based congestion measures (i.e., speed difference, 

VCR and occupancy ratio) were summarized by averages at the corresponding spatial scales of 

entropy and fractal dimension measurements. Although the method of summarizing network 

data by mean value is simple and direct, the statistic contains bias which is induced from unequal 

road segment length and spatial heterogeneity. Instead, spatial statistical methods are 

recommended for the comparison between segment-based traffic data and global network 

metrics in further studies. For example, the Network Kernel Density Estimation approach (Xie & 

Yan, 2008) uses a Kernel function to create a probability model for each individual point on the 

road network. It provides a method for the integration of global network metrics by using an 

identical parameter in the model.  

While traffic data were obtained from the Ministry of Transportation in the form of 

Average Annual Daily Traffic variables, the acquisition of real-world congestion data is both 

difficult and costly. To overcome this issue, simulation results are widely adopted (Mahmassani 

& Chang, 1986; Minderhoud & Bovy, 2001). The present research used the traffic simulation data 

provided by the Travel Modelling Group from the University of Toronto. Despite the inaccuracy 

and limitations of simulated data, we used traffic simulation data in this study as they capture 

the movement in a transportation system and provided comprehensive spatial and temporal 

coverage, which would be difficult to attain from a private company (e.g., Google Traffic). Real-

world and real-time traffic data may be available in the near future from initiatives like the 

Vehicular Ad hoc Network (VANET). The VANET is a widely discussed system which collects 

comprehensive real-time traffic data and facilitates intelligent traffic management (Harri, Filali, 

Bonnet, & Fiore, 2006; Piorkowski, et al., 2008; Nzouonta, Rajgure, Wang, & Borcea, 2009); 

although this technique is still pending for mass application due to market penetration process 

(Sam & Raj, 2014) and authentication challenges (Studer, Shi, Bai, & Perring, 2009), high quality 

traffic data should be expected in the near future with the development of technology and 

market acceptance.  
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2.4.1.2. Study design 

A network model uses nodes and edges to represent entities, processes, and their underlying 

structure in the real world (Newman, 2010). The interactions and reciprocations among entities 

or processes are inevitably included in a network model. Therefore, road network metrics, like 

centrality metrics, inherently contains dependent data and violate the assumption of 

independence in a standard statistical model (Robins, Pattison, Kalish, & Lusher, 2007; Valente, 

Coronges, Lakon, & Costenbader, 2008). Some statistical models have been proposed to 

investigate the reciprocation between network elements. For example, exponential random 

graph models (ERGMs) uses Markov chain Monte Carlo (MCMC) method to estimate the 

probability of the formation of edges in the observed network (Robins, 2011). 

Road network in geographic information system (GIS) is an instance of geometric network 

that describes the physical structure of a road system (Okabe & Sugihara, 2012). So the entities 

in the network also follow the First Law of Geography: everything is related to everything else, 

but near things are more related than distant things (Tobler, 1970). In a road network, traffic flow 

is inclined to be affected by the nearby traffic conditions. Black (1992) pointed out the necessity 

of using spatial autocorrelation in network analysis, and proposed an approach of calculating 

network Moran’s I. The incorporation of spatial autocorrelation in road network and 

transportation analysis is highly recommended for future research to explore the clustering, 

dispersion, or random pattern of road network structure and traffic congestion.  

2.4.2. Contributions and future directions 

The presented research established a link between network metrics and traffic congestion 

measures. The findings in this research enabled a cost-efficient congestion estimation method 

which requires a publicly accessible input (i.e., road infrastructure network). This method is 

especially suitable for large network analysis. It benefits researchers, commercial firms, and 

organizations whose access to detailed traffic data is limited. The direct implementation of 

network metrics is to facilitate traffic planning via congestion prediction for transportation 

engineers and city planners.  
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Road network is an indispensable component of an urban system, and there are mutual 

impacts between the transportation system and human settlements/economic activities. Beyond 

traffic estimation, the identified relationships between road network metrics and traffic 

congestion measures can also be implemented to explore economic phenomenon, for example, 

retail stores sales modelling.  

2.5. Conclusion 

Traffic system is an essential part of an urban environment. In the retail sector, the efficiency of 

a road network and the retail store’s accessibility affect a store’s attractiveness and hence are 

crucial to a store’s performance. The analysis of the impacts of road network structure on traffic 

congestion is necessary in retail site-selection decision making process. However, there is little 

published evidence about such implementation. This study presented a novel method based on 

network theory to analysis road network structure and link network metrics with traffic 

congestion measures.  

The presented results confirm that traffic congestion measures are positively correlated 

with road network centrality metrics, meaning that the occurrence of congestion is often 

corresponding to the importance of road segments or intersections. While no clear correlation 

between network entropy and congestion was identified, the impacts of the assortativity of road 

types on traffic congestion remains a question for future research. Lastly, congestion had a weak 

and negative correlation with road network fractal dimension, suggesting that density changes 

in a road network may affect congestion.  

The application of network theory to assess the accessibility of road segments and land 

parcels is previously non-existent. Network analysis on the effects of the road network structure 

provides a cost-efficient and convenient method for identifying potential congestion and 

subsequently the effects of congestion on other socio-economical activities.
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Chapter 3: Estimating the effects of road network metrics on retail store sales modelling 

3.1. Introduction 

Many retail strategies are highly elastic, such as market communications, pricing strategy, and 

product assortment (Levy, Weitz, & Grewal, 1998; Kapferer, 2012). In contrast, store location is 

relatively inelastic and often represents a long-term investment (e.g., 99 year lease and building 

costs). Store location is chosen among many non-controllable elements, for example, demand 

distribution, market area, accessibility, and competition (Huff, 2003). While brick and mortar 

retail retain the majority of sales (Statistics Canada, 2017), the growing proportion of sales 

attributed to e-commerce suggests that a new hybrid retail approach is on the horizon. In the 

face of online competition, only the most accessible locations can retain the offline market (Qi, 

2015). The survived stores function as not only traditional physical retail sites but also showrooms 

of the online market, and it would possible only if the showrooms have easy access. Therefore, 

site-selection decision was always one of the main concerns of decision-makers in the retail 

sector and will remain to be a critical problem in the future.  

In site-selection problems, the overarching goal is to simultaneously allocate spatially 

dispersed (and heterogeneous) demands to potential facility locations to optimize an objective 

(Goodchild, 1984). Specifically, retail site selection primarily aims to maximize profitability by 

allocating stores as intermediates between central facilities and prospective customers. 

Traditionally, retail site selection largely relied on the knowledge and experience of decision-

makers using simple checklists or analogues comprising criteria identified at successful stores 

(Clarkson, Clarke-Hill, & Robinson, 1996; O’Malley, Patterson, & Evans, 1997; Evans, 2011; Wood 

& Reynolds, 2012). Frequently, these criteria and similar methods were subjectively defined and 

composed without objective statistical or spatial analytical approaches (Baumgartner & 

Steenkamp, 2011).  

While these simple approaches remain frequently adapted, there is an increasing use of 

analytical methods such as regression, discriminant, and decision tree analyses based on 

empirical data. Moreover, more complex spatial interaction and optimization methods have been 

integrated into site-selection decision-making process (Mendes & Themido, 2004; Canbolat, 
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Chelst, & Garg, 2007; Duthie, Brady, Mills, & Machemehl, 2010). For example, Geographic 

Information Systems (Clarke, Bennison, & Pal, 1997), gravity models (Benoit & Clarke, 1997), and 

Artificial Neural Networks (Hernandez & Bennison, 2000).  

Store accessibility is an important factor during retail site-selection (Goodchild, 1984; 

Arentze, Borgers, & Timmermans, 1996; Onut, Efendigil, & Kara, 2010). According to the North 

American Industry Classification System (NAICS), the retail sectors comprises merchandises such 

as motor vehicle and parts dealers, furniture and home furnishings stores, electronics and 

appliance stores, building material and garden equipment and supplies dealers, food and 

beverage stores, health and personal care stores, gasoline stations, clothing and clothing 

accessories store, sporting goods, hobby, book and music stores, general merchandise stores, 

miscellaneous stores, and non-store retailers (Statistics Canada, 2016). Driving accessibility is 

critical to some retailers, especially the home improvement stores, where the customers usually 

shop by vehicle.  

While the essential approach in site-selection is to minimize travel cost between facilities 

and consumers, accessibility determines the marginal cost relative to travel distance (Cooper, 

1964; Hakimi, 1964; Arentze, Borgers, & Timmermans, 1996). Factors that impact site 

accessibility include the access to roads or public transport, the level of transport, the quality of 

ingress and egress, and the availability of parking space (Arentze, Borgers, & Timmermans, 1996; 

Onut, Efendigil, & Kara, 2010). Practically, a store that provides convenient access can be more 

attractive to consumers. And consequentially, two neighboring analogous stores can generate 

significant difference in revenue due to varying accessibility.  

A transportation network, particularly a road network in an urban area, is the base of 

traffic activities and determines the accessibilities of the parcels along the road network. 

However, in previous city planning studies, the description and use of road network patterns has 

been subjective and somewhat ambiguous as they have typically lacked quantitative 

measurements or converged on a set of standard measurements (Marshall, 2005; Xie & Levinson, 

2007). The previous chapter illustrated a network analysis approach to quantify road segment 
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accessibility via traffic congestion. It provides a set of standard measurements for which different 

locations, regions, or service areas may be compared.  

Traditionally, in the retail sector, store sales was mainly estimated based on socio-

economic factors (Meade & Sarkis, 1998). This chapter builds off the previous chapter to determine 

the significance of road network on store sales modelling. Two research questions will be 

answered in the following sections: Do network metrics outperform demographic or suitability 

variables in retail store sales modelling? Will incorporating road network metrics improve retail 

store sales modelling? Regression and mathematical models will be used as sales modelling 

methods to investigate the research questions. 

3.2. Methods 

3.2.1. Study area 

Ontario is located in east-central Canada, bordering the United States and four of the five Great 

Lakes (Figure 3-1). It is the largest province by population in Canada with about 12.85 million 

people (Statistics Canada, 2011), which is 38.5 percent of the total population in Canada and is 

1.6 times of that of the second largest province, Quebec. Ontario is also one of the largest 

economic entities in Canada. Through 2011 to 2014, Ontario contributed approximately 37 

percent Canada’s gross domestic product (GDP) with a steady growth over the four-year period 

(Table 3-1). Meanwhile, the retail sector plays an important role in Ontario marketplace. With 

the thriving economy, the retail trade (North American Industry Classification System (NAICS), 

44-45) GDP in Ontario had an average annual growth rate of 3.5% with 1.04 billion GDP annual 

increment from 2012 to 2014. Notably, the annual growth rate of home improvement stores 

(identified by NAICS 444) in Ontario from 2012 to 2014 was 4.5%, which is higher than that of the 

overall retail sector (3.5%).  
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Figure 3-1 Ontario census divisions that contain stores of interest 

Note: Ontario is located in east-central Canada. 26 home improvement (HI) store distributed in 
16 census divisions were studied. 

 

Table 3-1 Annual GDP at basic prices in Canada and Ontario 
Reported in annual million dollars (2007 Chained dollars) 

 

Source: Statistics Canada, Table 379-0030 - Gross domestic product (GDP) at basic prices, by North 

American Industry Classification System (NAICS), provinces and territories, annual (dollars). 
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3.2.2. Data 

Twenty-six home improvement retail stores were distributed in sixteen census divisions in 

Ontario. The sales and location information of the sampled stores were acquired and the road 

networks of the studied census divisions were derived from the Ontario Road Network (2011). A 

set of road network metrics were used in conjunction with store sales data (2013) to reveal the 

relationship between road network and store revenue. Meanwhile, demographic information 

and suitability criteria were developed from data sources from Statistics Canada, Ontario Ministry 

of Natural Resources, and Ontario Ministry of Transportation (Balulescu, 2015; Caradima, 2015). 

The derived variables were used in parallel or affiliation with road network metrics in store sales 

modelling. 

3.2.2.1. Road Network Metrics 

In the previous chapter, the road networks were measured by centralities, entropy, and fractal 

dimension. Among these measures, centralities are local measurements based on individual 

edges or nodes, while entropy, fractal, and density are global measurements that characterize 

the structure of a regional road network. To compare the local and global road metrics with point-

based store sales, network metrics were summarized at multiple scales for each store location 

(Table 3-2).  

Table 3-2 Road network metrics and statistics 

 

Note: BC: betweenness centrality; LC: load centrality; CC: closeness centrality; NDC: node degree 
centrality; NCC: node closeness centrality; NLC: node load centrality. 

Aside from the fractal area used for fractal dimension calculation, five spatial scales were 

used for road network centrality statistics, including census division area, 19-minute-drive service 

area, 5-km neighbourhood, community, and adjacent roads. Specifically, sixteen census divisions 
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in the south-western Ontario were selected for containing stores of interest; twenty-six 19-

minute-drive service areas were calculated based on network distance (Caradima, 2015); twenty-

six communities were identified by strong network connections 16 ; twenty-six store 

neighborhoods with five kilometres buffer areas; and adjacent roads were the roads that provide 

direct access to a store or the corresponding plaza (Figure 2-12 in section 2.3.3.2.,  Chapter 2).  

The statistics on network metrics produced 69 variables (Table 3-2). The large amount of 

data input would potentially create a computational overhead and reduce model efficiency. To 

reduce the number of network metrics in modelling and determine the statistically significant 

metrics, a stepwise regression was performed with a threshold of p-value<0.12 to select a subset 

with proper size. Nine network metrics were selected (Table 3-3): entropy at community level 

(ETP), mean of closeness centrality at 5km neighborhood area (𝐶𝐶𝑎𝑣𝑔), standard deviation of 

closeness centrality at community level (𝐶𝐶𝑠𝑡𝑑), sum of node closeness centrality at community 

level (𝑁𝐶𝐶𝑠𝑢𝑚 ), mean of node closeness centrality at community level (𝑁𝐶𝐶𝑎𝑣𝑔 ), standard 

deviation of betweenness centrality at community level (BC), mean of node load centrality at 

adjacent roads (NLC), sum of degree centrality at service area (𝐷𝐶1),  and sum of degree centrality 

at 5km (𝐷𝐶2).  

3.2.2.2. Demographic attributes  

Balulescu (2015) proposed five demographic variables and one site variable for retail store sales 

modelling (Table 3-3). These demographic variables were immigrant population (Imm), average 

dwelling value (𝐷𝑉), count of dwelling owner (𝐷𝑂), dwelling counts (𝐷𝑉), and households with 

income over CAD 100,000 (Inc).Demographic data were derived from the 2011 Census and 

National Household Survey (NHS) and were calculated in a 19 minutes network-drive-time service 

area. Statistics Canada conducts a national survey every five years. In 2011, the long mandatory 

census was replaced by a combination of a short census and the NHS, which is a detailed 

voluntary survey. The census data covers topics of population and dwelling counts, age and sex, 

families, households and marital status, structural type of dwelling and collectives, and language. 

                                                           
16 Community detection was implemented by “community” algorithm in NetworkX package.  
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The NHS data includes immigration, income and housing, etc. (Statistics Canada, 2011). And the 

proposed site variable was store area (S), which as calculated by digitizing store foot print.  

3.2.2.3. Suitability criteria  

Caradima (2015) identified nine site and situational criteria for retail site suitability. The criteria 

include topography, traffic, transportation, market, and expenditure (Table 3-3; for more details 

see Appendix A). The data were derived from primary datasets such as digital elevation model 

(DEM; Ontario Ministry of Natural Resources), annual average daily traffic (AADT; Ontario 

Ministry of Transportation), Ontario road network (ORN, Ontario Ministry of Transportation), 

retail store information, and census data. Most of the primary data are publicly available; 

however, retail store location and store attributes were geo-coded and digitized in ArcGIS with 

Google Maps API.  

Table 3-3 Variable, symbol, and description 

  

3.2.3. Model selection 

3.2.3.1. Categories of predictors 

The aforementioned predictor groups (i.e., network metrics, demographic variables and 

suitability criteria) were used in isolation and combination for store sales modelling. The 

nomenclature used in this presented study was consistent among all tested models. N stands for 
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network metrics, D stands for demographic variables, and S stands for suitability criteria. 

Therefore, the isolated variable groups were denoted as N, D, or S; the combined variable groups 

were denoted as ND, NS, DS, or NDS (Table 3-4).  

Table 3-4 Categories of predictors of sales models 

 

3.2.3.2. Predictor selection 

Predictors were selected from each variable group using cross-validation as variable evaluation 

scheme. The number of potential combination of variables varies with the number of predictors 

and the number of the variable candidates in each group. Take network metrics for example, 

there were 𝐶9
1 = 9 one-predictor combinations, 𝐶9

2 = 36 two-predictor combinations, 𝐶9
3 = 84 

one-predictor three-predictor combination, etc.  

Both 10-fold (denoted as 10-F in the following content) and Leave-P-Out (denoted as LPO 

in the following content) cross-validation schemes were used for comparison. During a 10-F cross 

validation, the input dataset is split into ten groups, then one group is selected as test group and 

the remaining groups are used as training data. This process is repeated iteratively until all groups 

have been tested. The LPO cross-validation has similar mechanism but has a test group of size p 

(p=2 in this presented study, so it is also denoted as L2O). The test group(s) is (are) selected using 

an exhaustive enumeration (scikit-learn developers, 2017). In this presented research, the LPO 

produced 𝐶26
2 = 325 validation comparisons. 

At the validation stage, the trained models were fitted by the test data and were scored 

by the mean squared error (MSE). A smaller MSE indicates less information loss and better sales 

modelling. Therefore, variable combinations with small MSE will be selected as model inputs.  
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3.2.4. Store sales modelling methods 

Three sales modelling methods are presented in this chapter to investigate the significance of 

road network, demographic, and suitability factors on store sales and to test if the inclusion of 

road network metrics improves sales modelling. The first modelling method is backwards 

Ordinary Least Square (OLS) regression; the second modelling method is Partial Least Square (PLS) 

regression; the last modelling method is mathematical modelling (MM) via an artificial 

intelligence enabled software17.   

3.2.4.1. Backwards OLS regression model 

Stepwise regression is a semi-automated process for model building and variable subset selection 

(Hengl, Heuvelink, & Stein, 2004). It is an effective coefficient estimation method in a general 

linear model when the number of predictors is large and the data are limited. Backwards stepwise 

regression determines the significances of variables based on a sequence of t-test and R-squared 

values, then uses a greedy variable selection algorithm to remove the variable with p-values 

below the threshold (0.1  in the presented research) in backwards eliminations. The resulting model 

contains only statistically significant variables in a store sales modelling.  

3.2.4.2. PLS regression model 

The OLS models regressed a set of predictors against the sales data but did not detect nor 

eliminate multicollinearity among predictors. To detect multicollinearity, correlation test was 

performed among predictors. Also, unlike an OLS model, PLS reduces multicollinearity among 

predictors by project predictors and response to an orthogonal space.  

Considering that some of the components add little explanatory power to a model, a 

leave-one-out cross-validation was used for component reduction. During the validation process, 

PLS starts from a model with a single component, and one observation is omitted from modelling. 

Then the resulting model is fitted to the test data to generate residual and R-squared. The process 

is repeated until all observations have been omitted for one time, prediction residual sum of 

squares (PRESS) and predicted R-squared values are calculated as the average of the test results.  

                                                           
17 Eureqa by Nutonian. 
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Then another component is added into the model and the cross-validation procedure is 

repeated until all models (all components have been added) have been validated. The model with 

the lowest PRESS and the highest predicted R-squared will be chosen. Moreover, the variables 

are rescaled to standardize the deviations to 1, therefore the results would be unbiased regarding 

the scales of variables. 

3.2.4.3. Mathematical models 

Predetermined algorithms and hypotheses are required in traditional data analysis; however, it 

is not unusual to have a large set of predictors and implicit relationships with the dependent 

variables. Instead of manually specifying the functional form of model, a mathematical modelling 

software (i.e., Eureqa) provides a data-driven analysis that searches for the best-fit model. This 

artificial intelligence enabled software is capable of iteratively testing a wide choice of 

algorithmic building blocks, including addition and subtraction, trigonometry, and exponential, 

among others. The method has the advantage of generating highly fitted models; however, the 

result is not always interpretable because the empirical reasoning is omitted from the modelling 

process.  

3.2.4.4. Model assessment 

The models were assessed regarding complexity (number of coefficients), information loss (sum 

of squared errors (SSE), Akaike information criterion (AIC), and mean squared error (MSE)), and 

goodness-of-fit (R-squared and adjusted R-squared). Notably, mathematical modelling may 

produce non-linear models, where the uses of R-squared and adjusted R-squared are 

controversial (Spiess & Neumeyer, 2010). Although they may not reflect the explanatory power 

of non-linear models, R-squared was calculated to indicate and compare model residual with the 

following formula: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
                                                           Equation 3-1 

where SSE is the sum of squared error, and SST is the total sum of squared. 

 

 



Chapter 3: Estimating the effects of road network metrics on retail store sales modelling 

50 
 

3.3. Results 

3.3.1. Model selection 

A model with lower average MSE during cross-validation yields less information loss in sales 

modelling. In a group of models with the same number of predictors, the best model is identified 

by the minimum MSE and the worst model is identified by the maximum MSE. Sometimes the 

two cross-validation schemes (LPO and 10-F) ranked the model differently (Table 3-5).  

The minimum MSE of models varies according to the predictor groups and the number of 

predictors (Figure 3-2). Among models based on network metrics, additional predictors improve 

model performance; while among models based on demographic variables or suitability criteria, 

increasing the number of predictors did not always decrease MSE. For demographic variables, 

the lowest MSE observed via L2O was on a model with three predictors (4.19E13) and the lowest 

MSE observed via 10-fold was on a model with five predictors (4.18E13). For suitability criteria, 

models with two (4.60E13 via L2O, 4.69E13 via 10-Fold), three (4.52E13 via L2O, 4.71E13 via 10-

Fold), and four (4.55E13 via L2O, 4.77E18 via 10-Fold) predictors yielded lower MSE than models 

of other sizes.  

Table 3-5 MSE of the best models of each variable group in cross-validation 
Reported in squared million dollars 

 

Note: See Appendix C for more details about predictor selections. 
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Figure 3-2 Variable selection via cross-validation with the highest MSE of each variable group.   

In social research, the number of predictors should match sample size to yield an unbiased 

regression result (VanVoorhis & Morgan, 2007). When the number of predictors is small, Harris 

(2001) suggested that sample size should be 50 larger than the number of predictors. And Green 

(1991) suggested that sample size should be 50 larger than eight times of the number of 

predictors. However, the available sales data was limited to 26 stores in this study. Hence, the 

number of predictors should be minimized and the exploratory power should be retained as 

possible.  

Although the MSEs of models with network metrics reduced with the increase of the 

number of predictors, the MSEs of models with demographic or suitability variables were 

comparable when the number of predictors was 2, 3, or 4. Therefore, the model size was limited 

to two predictors in this study.  

Another problem encountered in model selection was that the best models recognized 

by L2O and 10-F cross-validations were inconsistent (Appendix C). For example, the combination 

of ETP and 𝐶𝐶𝑠𝑡𝑑 was recognized as the best in L2O with an MSE of 3.65E13 and ranked as the 

second best in 10-F with an MSE of 4.27E13; while the combination of 𝑁𝐶𝐶𝑎𝑣𝑔  and 𝐷𝐶1  was 

recognized as the best in 10-F with an MSE of 4.22E13 but only ranked as the fourth best model 

in L2O with an MSE of 4.35E13. Considering the overall performance, the model with ETP and 

𝐶𝐶𝑠𝑡𝑑 was more stable than the other model and was therefore selected for further analysis. 

Moreover, Imm and 𝐷𝑉  in demographic variables and 𝑒𝑝  and 𝑒𝑐  in suitability criteria 

outperformed other models in both L2O and 10-F cross-validations.  
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3.3.2. Linear regression models 

The OLS regression models were established based on isolated or combined predictor groups. 

The results showed the influence of each predictor on store sales (Table 3-6). The Pearson 

coefficient indicated the degree of effect and the p-value represented the significance of effect.  

Table 3-6 Backward stepwise regression model and variable selection 
Coefficients in bold, p-values in Italic 

 

3.3.2.1. OLS with isolated predictor groups 

In model OLS-N, both entropy at community (ETP) and closeness centrality standard deviation 

(𝐶𝐶𝑠𝑡𝑑) were included at a significance level of 0.05. And both were negatively correlated with 

annual store sales.  

Entropy (ETP) represents the heterogeneity of road categories at a community level. A 

high ETP value indicates a high assortativity of road categories, and a low ETP value implies that 

the road network is dominated by a single category of road segments.  

At a community level, the standard deviation of closeness centrality (𝐶𝐶𝑠𝑡𝑑) indicates the 

variance of closeness centrality among a road network. A regional road network can be divided 

into three parts: the “centroid”, which has high closeness centrality; the “periphery”, which has 

low closeness centrality; and the “connection”, where the variance of closeness centrality is high. 

A high 𝐶𝐶𝑠𝑡𝑑 is observed in community road networks distributed in the “connection”  part of a 

regional network where the variance of closeness centrality is large; community road networks 

with small 𝐶𝐶𝑠𝑡𝑑 values are at either the “centroid” or “periphery” of a regional network where 

the 𝐶𝐶𝑠𝑡𝑑 is more stable and has less variance.  
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Spiess and Neumeyer (2010) suggested that big-box retail stores are ideally allocated to 

industrial zones with easy highway access where both land price and accessibility are optimized. 

Such areas are more commonly seen outside of city centres. It is corroborated by the regression 

results of OLS-N that high store sales is more likely to be observed in an area with less road 

assortativity and at the periphery of an urban area. 

In model OLS-D, both immigrant population (Imm) and dwelling value (𝐷𝑉) were included 

at the significance level of 0.05. The coefficient of Imm was -11.58, indicating a negative effect 

on store sales. However, the impacts of immigrants on the economy are ambiguous in the 

literature (Bodvarsson & Van den Berg, 2006; Bodvarsson, Van den Berg, & Lewer, 2008). On one 

hand, immigrants bring retail demand to the local marketplace, but on the other hand, the 

exogenous immigrated labors may lead to a wage fall or even out-migration, and the retail 

market will shrink especially when the labor demand is not wage elastic. In this study, the 

negative effect of immigrant population on store sales implies that the impacts of immigration 

population on the shrink of retail market is stronger than that on the increase of retail demand.  

Meanwhile, dwelling value (𝐷𝑉) showed a positive impact at sales of home improvement 

retail stores. Past studies have shown that the correlation between neighborhood demographic 

and retail activity may differ by retail sectors. Meltzer and Schuetz (2012) found that in New York 

City, the retail establishment is significantly denser and more diverse in higher income 

neighbourhoods, while the lower income neighbourhoods have more accesses to the necessities, 

which may be lower in both quality and cost. For example, the average dwelling value was slightly 

lower in neighbourhoods with a supermarket in a study conducted in Edmonton, Canada 

(Smoyer-Tomic, et al., 2008). Compared with supermarkets and grocery stores, home 

improvement retail stores provide products and services that are of higher cost and require less 

frequent purchases so that customers would be more likely to travel farther. Therefore, the 

incitation of allocating a home improvement store to a low-income neighborhood should be 

lower than other retailers.  

In model OLS-S, the expenditures are the allocated demand to a potential store location 

(Balulescu, 2015). The impacts of competitive expenditure ( 𝑒𝑐 ) and potential expenditure 
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without competition (𝑒𝑝) on store sales had different directions: the competitive expenditure 

had a slightly negative impact on sales with a coefficient of -0.0086, while the potential 

expenditure showed a positive impact with a coefficient of 1.436. Since stores with higher 

demand are more likely generate higher sales, the negative impact of competitive expenditure 

can be a result of its collinearity with potential expenditure. Also, potential expenditure showed 

a stronger influence on store sales and therefore might have an effect on parameter estimation 

of the other predictor. However, both expenditure variables may have more complex relations 

to store sales, given the large residuals during a linear regression. 

The sizes of predictor sets of models based on isolated variable groups were identical, all 

of these models had two predictors. However, there were differences in information loss among 

the models. Model OLS-N had lower SSE (741.12) and AIC (810.03) than that of OLS-D (SSE: 894.45, 

AIC: 814.92) or OLS-S (SSE: 916.43, AIC: 815.55). Also, OLS-N yielded the highest adjusted R-

squared of 0.28, while the adjusted R-squared of OLS-D and OLS-S were significantly lower (0.14 

and 0.11). Therefore, when included as a single predictor group in regression on sales, network 

metrics were more influential on sales than demographic and suitability variables. 

3.3.2.2. OLS with combined predictor groups  

The OLS models with combination of predictor groups retained the same (or similar) coefficients 

and the corresponding confidence levels with those in models with isolated predictor group 

(Table 3-6).  

The assessments of OLS models with combined predictor groups showed that the 

inclusion of network metrics in sales modelling had improved the model quality. Firstly, the 

information loss of OLS-ND (SSE: 558.86, AIC: 808.07) and OLS-NS (SSE: 606.90, AIC: 810.22) were 

lower than that of either OLS-D or OLS-S. In contrast, without network metrics, model OLS-DS 

(SSE: 774.71, AIC: 813.75), which was established on the combination of demographic variables 

and suitability criteria, showed less improvement relative to OLS-D or OLS-S regarding SSE or AIC. 

Lastly, model OLS-NDS, which included all three categories of predictors (but Imm and 𝑒𝑐 were 

omitted in backward selection) yielded the second lowest information loss (SSE: 576.16, AIC: 

808.87) among the seven OLS models.  
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The inclusion of network metrics in sales modelling also improved the goodness of fit. 

When combined with network metrics, OLS-ND and OLS-NS were greatly improved from OLS-D 

and OLS-S regarding adjusted R-squared (0.41 and 0.36 respectively). Whereas, without network 

metrics, OLS-DS generated an adjusted R-squares of 0.22, where the improvement from OLS-D 

or OLS-S was less significant. Moreover, OLS-NDS included three groups of predictors and yielded 

the second highest adjusted R-squared of 0.39.  

3.3.3. PLS Regression models 

Strong correlations (Pearson correlation coefficient was greater than 0.80 at significance level of 

0.01) were identified among all pairs of demographic and suitability predictors (Table 3-7; see 

Appendix B for correlations among the full variable set), indicating multi-collinearity exists in 

model OLS-D, OLS-S, OLS-DS, and OLS-NDS. Correlation among all the other variables 

combinations were below 0.35 and insignificant, except for the correlation between 𝐶𝐶𝑠𝑡𝑑 and 

𝐷𝑉, which was significant at 0.1.  

Table 3-7 Pearson correlation coefficient between predictors 
*** P < 0.01; ** P < 0.05; * P < 0.1 

 

PLS was then implemented to eliminate multi-collinearity (Table 3-8). During a PLS 

regression, the predictors and response were projected to a multi-dimensional orthogonal space 

and redundancy was removed via dimension reduction instead of predictor selection. Therefore, 

all input predictors were included in PLS results. Moreover, standardized coefficients were 

calculated to indicate the unbiased contributions of predictors in the models. They were 

calculated corresponding to the standardized predictors and response, which were derived by 

rescaling variable variances to one.  
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Table 3-8 PLS regression models 

 

3.3.3.1. PLS with isolated predictor groups  

The directions of signs and magnitudes of coefficients of the PLS models with isolated predictor 

groups were comparable to those in OLS models. Model PLS-N was established on network 

metrics and both of ETP and 𝐶𝐶𝑠𝑡𝑑 had negtive effects on sales. In model PLS-D, Imm contributed 

negatively while 𝐷𝑉 contributed positively. In model PLS-S, 𝑒𝑐 and 𝑒𝑝 still had different impacts 

on sales 

All PLS models with isolated predictor groups had the identical size of two predictors. In 

terms of information loss, the models established on demographic (PLS-D, SSE: 894.45, AIC: 

816.40) and suitability (PLS-S, SSE: 916.43, AIC: 817.03) predictors produced higher SSE and AIC 

than the model based on network metrics (PLS-N, SSE: 741.12, AIC: 811.51). The results of 

information loss showed a significant difference of PLS-N with PLS-D and PLS-S. Also, model PLS-

N outperformed PLS-D and PLS-S regarding the goodness-of-fit. PLS-N had an adjusted R-squared 

value of 0.28, while the adjusted R-squared of PLS-D and PLS-S were 0.14 and 0.11. Therefore, 

when included as a single predictor group in PLS regression on sales, network metrics were more 

influential on sales than demographic and suitability factors. 

3.3.3.2. PLS with combined predictor groups  

The PLS models with combined predictor groups kept the similar coefficients with that in PLS 

models with isolated predictor groups. Among the three groups of predictors, demographic 

variables (Imm and 𝐷𝑉 ) had more significant impacts on sales since their standardized 

coefficients were larger than the other predictors in absolute values. And according to the 
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standard coefficients in model PLS-NS, suitability criteria (𝑒𝑐 and 𝑒𝑝) were more important than 

network metrics; while in model PLS-NDS the two groups of predictors played comparable roles.  

Each of the PLS models with two predictor groups had the size of four, and model PLS-

NDS had a size of six. The largest information loss was produced by model PLS-DS (SSE: 815.29, 

AIC: 817.99), followed by PLS-NS (SSE: 606.90, AIC: 810.31) and PLS-ND (SSE: 558.86, AIC: 808.17). 

Model PLS-NDS had the least information loss (SSE: 515.65, AIC: 810.08) among the four PLS 

models. 

The goodness of fit corresponded to information loss of these PLS models. PLS-ND had 

the best fit with an adjusted R-squared of 0.41, followed by PLS-NDS (adjusted R-squared: 0.40) 

and PLS-NS (adjusted R-squared: 0.36). The worst goodness of fit was produced by model PLS-DS, 

which had an adjusted R-squared of 0.14. 

The performance of PLS models was very similar to the OLS models according to 

complexity, information loss, and goodness-of-fit. PLS-ND had the best performance in sales 

modelling with less complexity, better fitting and less information, and PLS-NDS generated 

comparable results.  

3.3.4. Mathematical modelling 

Seven non-linear models have been developed corresponding to the seven predictor groups via 

a mathematical modelling software (Eureqa by Nutonian; Table 3-9; for details see Appendix Table 

C-5).  

Table 3-9 Mathematical modelling summary 

 
 

Because mathematical modelling uses non-linear modelling blocks, the number of 

coefficients may not correspond to the number of predictors. The number of coefficients ranged 

from six to nine among the seven models. Also, model quality did not always match model 
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complexity. For example, MM-S had nine coefficients but yielded the largest information loss 

(MSE: 13.74, AIC: 815.78) among the seven models, while MM-NDS had only six coefficients and 

produced the least information loss (MSE: 5.16, AIC: 777.48).  

Among the models with isolated predictor groups, MM-N produced the best quality of 

sales modelling with the lowest information loss (MSE: 7.62E12, AIC: 787.64) and the highest 

goodness of fit (R-squared of 0.82). However, in contrast with OLS and PLS models, adding 

network metrics into mathematical modelling did not always improve the quality of models. 

Model MM-DS (MSE: 3.98, AIC: 778.82, R-squared: 0.91) outperformed MM-ND (MSE: 7.88, AIC: 

788.52, R-squared: 0.82) and MM-NS (MSE: 9.22, AIC: 796.37, R-squared: 0.79). Except for the 

uncertainty contained in the differences in model complexity and model building time, the higher 

performance of demographic and suitability variables in mathematical modelling might be 

because of nonlinear relations or interactions among the socio-economic variables and sales 

were captured by the models. Moreover, model MM-NDS combined three groups of predictors 

and reduced the number of coefficients but also decreased the model quality regarding MSE 

(5.16), AIC (777.48), and R-squared (0.88). 

3.4. Discussion 

This presented study finds that across all models tested (i.e., OLS, PLS, and mathematical 

modelling), road network metrics played a very important role in retail store sales modelling. 

While most retail site location analyses are simple regression or suitability analysis, this study has 

shown that the road network metrics derived from network analysis outperformed traditional 

demographic and suitability variables. Specifically, among the OLS models, OLS-N had better fit 

(adjusted R-squared: 0.28) and less information loss (SSE: 741.12, AIC: 810.03) compared to OLS-

D (adjusted R-squared: 0.14, SSE: 894.45, AIC: 814.92) or OLS-S (adjusted R-squared: 0.11, SSE: 

916.43, AIC: 815.55). The results in PLS were very similar to that in OLS, the network metrics 

outplayed the other two variable categories. And network metrics remained the best overall 

performance in mathematical modelling, where the network metrics yielded R-squared of 0.82 

and AIC of 787.64 while the demographic and suitability variables had R-squared of 0.79 and 0.68 

and AIC of 804.54 and 815.78 respectively.  
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The inclusion of network metrics in sales modelling improved the quality of the model, 

especially OLS and PLS models. When integrated with network metrics, OLS-NS, OLS-ND and OLS-

NDS had great improvements from the OLS models based on isolated predictor groups while OLS-

DS had a less significant improvement. Similarly, among the PLS models based on combined 

predictor groups, PLS-ND, PLS-NS, and PLS-NDS had significantly higher adjusted R-squared 

values and less information loss than PLS-DS, which did not improve much from PLS-D not PLS-S. 

In more complex modelling approaches (i.e., mathematical and non-linear modelling), the road 

network metrics remained highly influential but the traditional metrics continued to play 

dominant roles.  

3.4.1. Parameter estimation with small sample size and collinearity 

Two challenges encountered in the presented research to investigating the effects of network, 

demographic, and suitability variables on store sales, which were small sample size and 

multicollinearity. Collinearity is the interdependency between a pair of predictors in a regression 

(Farrar & Glauber, 1967), and multicollinearity exists when more than two predictors are 

correlated. In an OLS regression, the parameters are estimated based on the observations of the 

predictors and the response. Therefore, the accuracy of parameter estimation is determined by 

(1) the quality of the sample observations (e.g., are they unbiased and do they reflect the real 

distribution of the total population?); (2) sample size (e.g., is the sample size large enough 

regarding the number of parameters?); and (3) experimental design (e.g., are the predictors well 

designed to exclude collinearity?). However, in social studies, the sample size is often limited and 

the collinearity (or multicollinearity) is commonly inherent (Baguley, 2012).  

In a regression model with collinearity, parameter estimation is more imprecise and 

unstable as there will be a large variance of the estimated parameter with the absence or 

presence of other predictors. In an extreme case where there is a perfect correlation between 

two predictors, the inclusion of the second predictor does not create additional information to 

the model so that the associated parameters cannot be determined (or say, there are infinity 

solutions for parameters estimation). In a less severe case where the correlation is high between 

two predictors, the parameters can be determined but with a large inflation (which is reflected 

by variance inflation factor, i.e., VIF). Generally, although the existence of collinearity does not 
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affect the overall performance of a regression model regarding predictive power, it is often 

difficult to interpret the effect of an individual predictor if the parameter of the predictor is not 

precise.  

In this study, high correlations existed among the three predictor groups. Especially, there 

were high pair-wise correlations (Pearson correlation coefficient > 0.8 at 0.01 level) among many 

of the demographic variables and suitability criteria (Appendix B). Furthermore, because of 

restrictions on the availability of confidential sales data, the sample size is limited in this study 

(sales data available from only 26 stores of interest). On the other hand, despite the sampling 

method, the probability of bias increases in parameters estimation when the sample size is too 

small (e.g., less than 50). For example, the true correlation between competitive expenditure (𝑒𝑐) 

and potential expenditure (𝑒𝑝) was not captured in the sample. Among the 162,692 land parcels 

in the southwestern Ontario, the correlation between 𝑒𝑐 and 𝑒𝑝 is 0.72, which is smaller than the 

measured correlation in this study (0.939).   

Collinearity is an inherent problem in most social studies (Baguley, 2012). It is often 

tolerable if the degree of collinearity is mild or the variable of interest is not involved (Farrar & 

Glauber, 1967). In other cases, significant collinearity can be eliminated by (1) removing a variable 

from the correlated pair or(2) using dimension redundancy methods, such as Partial Least 

Squares (PLS) or Principal Component Analysis (PCA). The implementation of PLS is presented in 

this chapter, and a comprehensive comparison among these methods is displayed in Appendix D. 

Whereas, none of these methods seem effective in reducing collinearity while maintaining good 

explanatory power in this study. Therefore, this study provides an exploratory evaluation of the 

effects of selected road network, demographic, and suitability factors on store sales. Subsequent 

investigations of the effects of certain factors require adequate sales data (or sales estimation as 

an alternative) in future studies.     

3.4.2. Contributions and future directions 

This chapter identified the strong effects of road network metrics relative to demographic and 

suitability variables on store sales. The findings suggest that road network metrics are more 

influential in store sales modeling and should be incorporated in future studies to improve model 
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explanatory power. This presented study is based on the data provided by a home improvement 

retail chained store in Ontario, Canada, who is also the direct beneficiary of this study. Therefore, 

extending and adapting of the findings in this study to other businesses or other regions need 

further examination. The findings also have implications for city-planners in research on the 

relationship between road network and land-use intensity, and can be eventually used to 

facilitate land-use zoning and retail planning.  

3.5. Conclusion 

The structure of road infrastructure affects a retail store’s performance via store accessibility and 

therefore should be incorporated in retail site selection approach. This study explored the 

explanatory power of explicit road network metrics on store sales. Across all models tested in 

this study, road network metrics played a very important role in predicting site location success. 

They outperform demographic and suitability variables, which are traditionally used in site 

location analyses. Moreover, the inclusion of road network metrics improved the quality of store 

sales modeling especially in OLS and PLS models. In more complex modelling approaches (i.e., 

mathematical and non-linear modelling) the network metrics remained highly influential but the 

traditional metrics continued to play a dominant role. 

 However, this study is just an exploratory of the use of road network metrics in store 

performance modeling in Ontario based on the implementation of network theory in quantitative 

road network analysis. Further research is recommended for the adaption of the findings in this 

study in other businesses or regions. 
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Chapter 4: Conclusion 

This Master’s thesis confirmed the influence of road network structure on traffic congestion and 

retail store sales, and in store sales modelling, road network metrics has outperformed other 

tested socio-economic variables and improved model performance.  

In Chapter Two, a novel method based on network theory was presented to analyze road 

network structure and to establish a link between network metrics and traffic congestion 

measures. Specifically, network metrics, including centralities (e.g., betweenness, closes, load 

and degree centrality), entropy, and fractal dimension, were derived for the City of Toronto road 

network. OLS or correlation test was used to investigate the relationship between road network 

metrics and congestion measures. Congestion measures were found to be positively correlated 

with network centralities, especially closeness centrality, during peak travel hours. However, 

there was no solid conclusion for the impacts of road entropy and fractal dimension on traffic 

congestion since their relationships were either ambiguous or very weak in this study.  

Chapter Three furthered this study by exploring the predictive power of road network 

metrics on retail store sales. Road network metrics were compared to traditional site location 

analysis variables (i.e., demographic and suitability variables) in linear and non-linear store sales 

models. When incorporated as an isolated predictor group, road network metrics outperformed 

other variables in store sales modelling; when combined with other variables, road network 

metrics also improved sales models regarding increased exploratory power and decreased 

information loss. Although, in a more complex mathematical modelling approach, traditional 

variables continued to play a dominant role, network metrics remained highly influential. 

4.1. Limitations 

One of the major limitations encountered in this study was a small sample size due to restricted 

access to confidential sales data. Specifically, in the second chapter, there were only five stores 

of interest in City of Toronto census division. Consequentially, the global network metrics (i.e., 

entropy and fractal dimension) had only five observations and their correlations with traffic 

congestion were ambiguous. In the third chapter, twenty-six stores in Ontario were available for 

sales data. The sample size was so small that the distribution of variables could be biased. 
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According to the Law of Large Numbers, increasing sample size allows better estimations of the 

distributions of total population and therefore improves the performance of sales modelling. 

However, store sales data are often confidential information and have restricted access. 

Alternatively, modelled sales data can be used if quality and reliability of sales are not the main 

concerns in a study.  

Another issue encountered in this presented study was the inclusion of dependency, 

interaction, and correlation in models. It violated the assumption of independency and caused 

imprecise and unstable model estimations. Therefore, such relationships among variables should 

be explicitly addressed in modelling. Specifically, network centrality of road segments inherently 

contains dependency and interaction as it represents the relationship between network entities. 

To address the reciprocation among network metrics in the road network, statistical models like 

exponential random graph models (ERGMs) are recommended. Also, as measures of the 

structure of spatial features (i.e., the road network), network centralities and other network 

metrics are prone to have spatial autocorrelations. To address this issue, residual of empirical 

models should be tested by network Moran’s I (Chun & Griffith, 2011), and if the spatial 

correlation is significant, spatial regression models (e.g., spatial lag, spatial error, geographically-

weighted regression) should be used instead (Anselin, 2002). Moreover, strong collinearity was 

detected among variables in sales models in Chapter Three. To reduce the degree of collinearity, 

experimental design should be refined by expanding variable selection and enlarging sample size.  

4.2. Contributions and future directions 

This thesis presents an exploration of the implementation of network theory in quantitative road 

network analysis and the use of road network metrics in store sales modelling. It provides a 

method for city-level road network analysis especially when the access to detailed traffic data is 

limited. The correlations among road network, store sales, and other socio-economic factors 

reflect that road network structure may be capable of capturing the variance of the socio-

economic variables via spatial configuration and relative locations. Therefore, network analysis 

of road system can be used to not only facilitate traffic congestion estimation but also locate 

retail stores. However, the findings of this study are restricted to Ontario, Canada and require 

further tests before being adapted to other businesses and regions.  
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Road network metrics were found to have strong correlation with traffic congestion and 

very influential on retail store sales in this study. Therefore, road network analysis is 

recommended to future retail site-selection studies. Adequate data sources for real traffic data 

and real sales data (or estimations as an alternative) are required in future studies to eliminate 

the potential bias in data. Meanwhile, a comprehensive selection of variables would be beneficial 

for preventing collinearity in sales modelling via variable selection. Furthermore, spatial 

statistical methods are recommended to incorporate the spatial heterogeneity of road networks. 
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Appendix A – Descriptions of site suitability criteria 

Table A-1 development of site suitability criteria 

Criteria Category Criteria Name Criteria Definition and Calculation 

Site variable site maximum slope The maximum value of the parcel’s slope. 

Traffic and 
transportation 
variables 

traffic visibility Visibility is correlated with distance from the major highways and the 
traffic volume. 

𝑆𝑖 = (1 −
𝐷𝑖

𝐷𝑚𝑎𝑥
) ∗

𝑇𝑖

𝑇𝑚𝑎𝑥
 

𝑆𝑖: the suitability of parcel I;  
𝐷𝑖: the distance of parcel i to the nearest highway; 𝐷𝑚𝑎𝑥: the distance 
threshold of visibility; 
𝑇𝑖: traffic volume of the adjacent highway; 
𝑇𝑚𝑎𝑥: the highest traffic volume in the census division. 

highway accessibility Travel time from a parcel to the nearest highway access point. 

distance to distribution centre The network distance to the nearest distribution centre. 

Market variables market representation Location quotient of a dissemination area. 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 =  
𝑐 𝐶⁄

𝑟 𝑅⁄
 

c: the number of NAICS 444 retailers in a DA’s trade area; 
C:  the number of all retailers in the DA’s trade area; 
r: the number of NAICS 444 retailors in Ontario; 
R: the number of all retailers in Ontario.  

density of competitors The number of competitors per unit area in the trade area. 

density of retail stores The number of retailers per unit area in the trade area.  

Potential expenditures Estimated expenditure without competitors using Huff’s model18. 

Competitive expenditures Estimated expenditure with competitors using Huff’s model. 

Note: Adapted from Caradima (2015) 

 

                                                           
18 For details about Huff’s model see Caradima (2015). 
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Appendix B – Full correlation table 

Table B-1 Correlations among the full list of variables 

*** P < 0.01; ** P < 0.05; * P < 0.1 

 

Note: high correlations (correlation coefficient > 0.8 at significant level of 0.01) are shaded. 
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Appendix C – Model selection and model details 

Table C-1 MSE of network models in cross-validation 
Reported in squared million dollars 

 

Table C-2 MSE of demographic models in cross-validation 
Reported in squared million dollars 

 

Table C-3 MSE of suitability models in cross-validation 
Reported in squared million dollars 

 

Table C-4 PLS loading table 
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Table C-5 Mathematical models 
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Appendix D – Exploration of variable reduction methods 

In Chapter Three, models were selected via cross-validation based on MSE values. However, 

there turned out to be high correlations among the selected variables. Variance inflation factor 

(VIF) is an indicator of collinearity among predictors in a model. Therefore, model selection based 

on VIF may help to reduce collinearity problem. The following sections present three model 

selection approaches used the unselected variables presented in Chapter Three section 2.2. 

These approaches were not adapted in this thesis for the resulting models had poor 

performances.  

1. VIF-based backward selection 

This model selection approach uses a backward selection of predictors by greedily 

removes predictor with the highest VIF in each step until only two predictors are left in an OLS 

model. Whereas the resulting models (Table D-1 to D-3) had lower adjusted R-squared values 

compared to the OLS models used in Chapter Three. Especially the models based on demographic 

and suitability variables had almost zero explanatory power in sales modeling. Therefore, this 

approach was not adapted in this thesis.  

Table D-1 Network variable VIF in a backward variable selection approach 
Variables selected in this thesis are in bold 
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Table D-2 Demographic variable VIF in a backward variable selection approach 
Variables selected in this thesis are in bold 

 

Table D-3 Suitability variable VIF in a backward variable selection approach 
Variables selected in this thesis are in bold 

 

2. The best models in cross-validation 

Cross-validation provided a list of variable combinations that generated low MSE in OLS 

models. However, there was a trade-off between the VIF of variables and the fitness of the 

models. The selected variables combination might not have the lowest VIF values among the best 

10 groups in each cross-validation but they all generated the highest adjusted R-squared values 

and the lowest SSE. In contrast, the models with lower VIF values have poor performance 

regarding fitness and information loss (Table D-4 to D-6). Therefore, they were not used in this 

thesis. 
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Table D-4 The top 10 groups of network variables in cross-validation, sorted by VIF 
Variables selected in this thesis are in bold 

 

Table D-5 The top 10 groups of demographic variables in cross-validation, sorted by VIF 
Variables selected in this thesis are in bold 

 

Table D-6 The top 10 groups of suitability variables in cross-validation, sorted by VIF 
Variables selected in this thesis are in bold 
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3. Dimension reduction 

PCA and PLS are two commonly adapted dimension reduction methods when collinearity 

exists. A major difference between PCA and PLS is that PCA only captures the correlation among 

predictive variables while PLS includes relations among both predictive and target variables 

(Maitra & Yan, 2008).  

In this case study, the results of PCA and PLS were compared by the number of principle 

components and the goodness of fit (Table D-7). The objective of component reduction in PCA 

was set to two. The PCA method produced three models with either low goodness of fit or 

extremely high VIF. Among the models produced by PLS method, the network model had high 

goodness of fit but also a large number of components; the demographic and suitability models 

had comparable fitness with the models adapted in this thesis but did not show advantages 

regarding the number of components. Although the results of PCA and PLS were not directly 

comparable because of the variance in the number of components, both of them showed some 

disadvantages compared to the PLS models adapted in this thesis.  

Table D-7 PCA and PLS based on the full list of variables 

 


