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Abstract 

Traditional engineering analyses and designs are based on deterministic input variables, and 

variability seen in the real world are often ignored to simplify the work. Formal reliability analyses 

are generally avoided by engineers due to large computational costs associated with the traditional 

methods, such as simulations. Analysis done by engineers in this age of advanced technology are 

done using finite element analysis which further increase the computational cost of analyzing a 

reliability problem . Using reliability methods such as Monte Carlo Simulation (MCS) with a finite 

element analysis requires thousands of trials to be done. This ultimately is not feasible for a 

complex problem which takes long computational time.  Multiplicative Dimensional Reduction 

Method (MDRM) is a tool which can be used to calculate the statistical parameters of the response 

of a function with a large reduction in computational efforts. This method has not been applied to 

uncertainty analysis, geomechanics and fire resistant design problems to determine if this method 

is indeed worth using over traditional reliability methods (MCS). The Cubature method is another 

tool which can be used to calculate the statistical moments of a response. This method will be 

compared to MCS and MDRM to determine its effectiveness. 

The research objectives in this thesis are therefore 1) to determine if the code developed to use 

MDRM provides accurate results, 2) to compare the results of MDRM and Cubature to MCS to 

see how accurate the results of MDRM and Cubature are based on equation based problems, 3) to 

determine the feasibility of using MDRM with uncertainty analysis problems (where epistemic 

and aleatory variables are defined), 4) to determine the feasibility of solving a MDRM reliability 

analysis for fire resistant design problems and 5) to determine the feasibility and computational 

efficiency of using MDRM for geomechanics problems which are both equation based and finite 

element analysis. 
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To perform the first objective a problem from Zhang & Pandey (2013) was redone using the code 

that was developed to make sure the results matched. The second objective was performed by 

solving steam generator tube failure problem and a time to leak of a pipe problem. The third 

objective was performed by solving the time to leak of a pipe problem again but this time 

designating one variable as epistemic and another as aleatory and comparing results between 

MDRM and MCS. To perform the fourth objective a performance based approach is outlined on 

how to calculate fire resistant design of a protected and unprotected beam. The results from 

MDRM and MCS are compared. The fifth and final objective is performed by first showing a step 

by step method on how to apply MDRM while solving a uni-dimensional consolidation example 

(settlement of foundation). Lastly two finite element analysis problems are solved to show the 

application of MDRM with the combination of a finite element analysis. The first problem is of 

vertical drains and the second problem is of a concrete infinite beam on an elastic foundation. 

These problems are done using MDRM and MCS and the results and computational effort are 

compared. 
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1 Introduction 
 

1.1 Motivation 
 

Uncertainties are unavoidable in a real world problem, therefore deterministic results do not 

provide much value to designers and engineers, and this makes it necessary to apply reliability 

analysis for quantifying the structural safety. Changing deterministic problems into reliability 

problems by making a variable uncertain as well as an integration of reliability analysis with the 

finite element analysis (FEA) is becoming popular in engineering practice. 

Basic issues of reliability analysis are that it takes too many function evaluations to estimate as 

accurately as possible, the probability distribution of the structural response. For instance, if using 

Monte Carlo Simulation (MCS), the major advantage is that accurate solutions can be obtained for 

any problem but the method can become computationally expensive depending on the number of 

random variables in the problem. Most reliability methods can be applied to simple structural 

systems which contain a small number of random variables. Even if we are able to calculate the 

probability statistics of the response (i.e. Mean, standard deviations, etc.) we have little knowledge 

of the probability distribution of the response.  

Thus the main motivation behind this research is to use a method that is computationally efficient, 

robust, and easy to implement method that can be compared to the accuracy of MCS. The method 

that will be used is the Multiplicative Dimensional Reduction Method (MDRM) which was 

developed by Zhang (2013). This method has been implemented before but now the focus is to use 

it for uncertainty problems with an epistemic variable, fire resistance problems and geomechanics 

problems to determine the effectiveness of MDRM. 
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1.2 Objective and Research Significance 
 

The goal of this research investigation is to compare the Multiplicative Dimensional Reduction 

Method to Monte Carlo simulation and also check out how Cubature Formulae match up with the 

Multiplicative Dimensional Reduction Method. The specific objectives of this research are: 

 To estimate the probability distribution of the structural response using the MDRM along 

with the maximum entropy principle. 

 To apply the MDRM to problems considering that all random variables are simply 

uncertain and compare with MCS and Cubature formulae. 

 To compare the efficiency and accuracy of MDRM with MCS and/or Cubature formulae. 

 To apply MDRM to a problem considering that one or more random variables are epistemic 

and compare with MCS. 

 To apply MDRM to fire safety design questions and compare with MCS. 

 To apply MDRM to geomechanics problems, specifically finite element analysis and 

compare with MCS. 

1.3 Outline of Thesis 

Chapter 2 provides an extensive literature review in reliability analysis, the Multiplicative 

Dimensional Reduction Method as well as Cubature method. The basic concepts and mathematical 

equations are provided for both of these methods. The required steps for applying both these 

methods are also provided. 

Chapter 3 presents a couple verification examples. The first example is a code check example to 

make sure that the developed code works correctly and provides similar results to problems done 
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by others. The second example shows that the MDRM as well as the Cubature method provide 

similar results to Monte Carlo Simulation results. These are both equation based problems. 

Chapter 4 presents the applicability of MDRM for an uncertainty analysis. The first example is 

done considering all random variables are simply uncertain meaning there is no distinction 

between an aleatory or epistemic variable. The second example is done considering one variable 

is an aleatory random variable while another is an epistemic random variable. These are both 

equation based problems. The results of the first example are used for the sake of accuracy 

comparison between MDRM, Cubature and MCS. Whereas for the second example Cubature 

method is not used and the results are used for the sake of accuracy comparison between MDRM 

and MCS. 

Chapter 5 presents the applicability of MDRM for fire resistant design of structures. The problem 

solved here is of a beam under fire load using a performance based approach. This problem is done 

twice, once for an unprotected beam and once for a protected beam. This is an equation based 

problem.  The results are then used for the sake of accuracy comparison between MDRM and 

MCS. 

Chapter 6 presents the applicability of MDRM for geomechanics problems. The first two examples 

are equation based problems of 1D consolidation. The first problem goes over a step by step 

detailed procedure on how to solve a problem using MDRM. Results of both these problems are 

used for the sake of accuracy comparison between MDRM and MCS. The second set of two 

problems are finite element analysis based problems. The first problem is a vertical drain problem 

solved using ABAQUS and a FORTRAN code developed by Dipanjan Basu. The second problem 

is of a concrete infinite beam on elastic foundation which was solved using a MATLAB code 

provided by Hesham Elhuni. This problem was done using two different foundation models (two 
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parameter Pasternak Model and Modified Vlasov Model). These two problems were used for the 

sake of computational efficiency and accuracy comparison between MDRM and MCS. 
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2 Literature Review 
 

2.1 Reliability Analysis 
 

Engineering design and analysis problems are often confounded by uncertainties (Cornell & 

Benjamin, 1970). There are two types of uncertainty, aleatory and epistemic (Tang & Ang, 2006). 

An aleatory uncertainty is one that is presumed to be the intrinsic randomness of a phenomenon. 

An epistemic uncertainty is one that is presumed as being caused by lack of knowledge (data) 

(Ditlevsen & Der Kiureghian, 2009). To incorporate these uncertainties in the analysis, a 

probabilistic analysis can be used since it allows characterizing the deterministic values as random 

variables (Madsen & Ditlevsen, 1996). 

An engineering design done following a reliability-based methodology requires consideration of 

uncertainty in the system parameters (Jeffers et al., 2012): 

𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) (2.1) 

Structural resistance, 𝑅, and load demand, 𝑆, are both random variables which depend on 𝑋 and 

characterized by its moments (mean, 𝜇, and standard deviation, 𝜎) and the probability distribution, 

𝑓.To determine the reliability, define the following performance function (Jeffers et al., 2012): 

𝐺(𝑋) = 𝑅(𝑋) − 𝑆(𝑋) (2.2) 

Which states that as when as the resistance is less than the load on the structure there will be failure 

(𝐺(𝑋) < 0). Therefore, the probability of failure is defined as the probability that 𝐺(𝑋) < 0: 

𝑃𝑓 = 𝑃(𝐺(𝑋) < 0) (2.3) 

This can be rewritten as the joint probability density functions over the failure region (Saouma & 

Puatatsananon, 2006): 
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𝑃𝑓 = ∫ 𝑓𝑋(𝑋)𝑑𝑋

𝐺(𝑋)<0

 

                                                                                                    

(2.4) 

Where 𝑓𝑋 is the probability density function for the random variables, 𝑋𝑖. This integral is however 

too complex to solve analytically in most cases, therefore numerical methods such as MCS have 

to be applied. When the probability of failure is less than the acceptable limit that is when a safe 

design is achieved. 

The likelihood of an event occurring denotes probability (Melchers, 1987), thus, the probability of 

failure denotes the probability that a structure or other object will stop working as required and fail 

at a specific time. Whereas reliability can be defined as follows (Lind, Krenk and Madsen, 2006): 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑝𝑓 (2.5) 

Overall, reliability analysis helps engineers determine whether or not the structure has been 

designed adequately to last its desired lifetime (Lind, Krenk and Madsen, 2006). 

A probabilistic treatment of a problem requires (Jeffers et al., 2012): 

1) The identification and characterization of the random variables. 

2) Definition of appropriate performance function(s) by which failure can be evaluated. 

3) The system reliability which is expressed by the probability of failure, 𝑃𝑓. 

2.2 Monte Carlo Simulation 
 

Monte Carlo Simulation (MCS) is a method used to determine the probability of failure of a 

function by simulating random variables. This method requires the use of a random number 

generator that can generate many random (pseudo) numbers (Botev, Taimre and Kroese, 2011). 

The evolution of computers has made this method widely applicable (Sobol, 1994). 
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There are 3 basic steps to using MCS (Balomenos. 2015):  

i. Select the distribution type for each random variable 

ii. Generate random numbers based on the selected distribution 

iii. Conduct simulations based on the generated random numbers 

The more trials/simulations performed the greater the accuracy of the estimation. MCS can be used 

to calculate the probability of failure with analysis of the function, which is a great advantage of 

this method along with the fact that it is simple to execute. On the other hand, many simulations 

are required to achieve an accurate probability of failure, which can be computationally expensive. 

This is just a brief overview on MCS, more information can be found in the following references, 

(Tang & Ang, 1984; Melchers, 1987). 

2.3 Multiplicative Dimensional Reduction Method 
 

The Multiplicative Dimensional Reduction Method (MDRM) is an alternative to Monte Carlo 

Simulation (MCS). MDRM provides a considerable advantage in terms of efficiency while still 

maintaining the accuracy of MCS.  

Multiple methods have been derived for dealing with the statistical analysis of multivariate 

problems in order to avoid the high computational cost of MCS. The first and second –order 

reliability methods (FORM and SORM) are considered the most popular methods for efficient 

reliability analysis of structures in the past several years (Hasofer and Lind, 1974), which are based 

on the first and second-order moments of performance functions. These two methods do however 

suffer from the problems of inaccuracy of the reliability assessment when the performance 

functions are strongly nonlinear (Zhang & Li, 2010) and numerical difficulties in searching for 

design points (Ono & Zhao, 2001). 
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The method of moments can be used to find an approximate solution to a multivariate problem 

(Taguchi, 1978) by calculating the first four moments of the response which are mean, variance, 

skewness and kurtosis. Once the first four moments are calculated the parameters of the 

distribution can be back calculated. The problem here however is that the calculation of moments 

involves multi-dimensional integrals which are very complex to solve. Various methods have been 

developed and researched to look at the efficient evaluation of these integrals. These methods 

include using point estimate methods (Taguchi, 1978), Rosenblueth, 1981), Taylors series 

approximation and non-classical orthogonal polynomial approximations (Lennox & Kennedy, 

2001). Methods such as high-dimensional model representation (Rabitz, Rosenthal and Li, 2001) 

and the dimensional reduction method (Rahman & Xu, 2004), (Xu & Rahman, 2004) have also 

been developed in which the multivariate function is decomposed into orthogonal component 

functions.  

To deal with the issue of sensitivity of tail probabilities, the principle of maximum entropy 

(MaxEnt) was introduced (Jaynes, 1957); this however required a significant amount of 

computational effort in the moment calculations when dealing with a large number of constraints.  

To reduce the computational effort required by using the principle of maximum entropy, fractional 

moments were introduced. A fractional moment is a moment of order of real numbers (Tagliani 

and Novi Inverardi, 2003). 

MDRM (Zhang, 2013) is a combination of fractional moments and the MaxEnt principle. Using 

MDRM, a kth statistical moment of the response can be approximated as: 

𝐸[𝑌𝑘] = 𝐸 [(ℎ(𝑥))
𝑘
] ≈ 𝐸 [(ℎ0

(1−𝑛) × ∏ℎ𝑖

𝑛

𝑖=1

(𝑥𝑖))

𝑘

] 

                                                                        

(2.6) 
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𝑌 = ℎ(𝑥)                                                   (2.7) 

Where n is the number of random variables, ℎ0 is the response when all random variables are held 

to their means, and ℎ𝑖(𝑥𝑖) is a one dimensional ith cut function where all random variables are held 

to their mean value except the one variable which is being changed. This will be discussed more 

in the gauss quadrature section. Assuming all input random variables are independent, the above 

equation can be written as: 

𝐸[𝑌𝑘] ≈ ℎ0
𝑘(1−𝑛)  ∏𝐸[

𝑛

𝑖=1

(ℎ𝑖(𝑥𝑖)
𝑘] 

                                                                                      

(2.8) 

The numerical integration can be optimized using Gauss quadrature formulas. The kth moment can 

be approximated as a weighted sum (Balomenos, 2015): 

𝐸[(ℎ𝑖(𝑥𝑖)
𝑘] =∑𝑤𝑗

𝐿

𝑗=1

[ℎ𝑖(𝑥𝑗)] 
𝑘 

                                                                                      

(2.9) 

To perform MDRM, all random variables except one are held at their mean value while each 

variable is changed one at a time depending on the Gaussian quadrature (5 point, 7 point etc.) using 

the 𝑥𝑗 equations listed in Table 2.1. 5-point gauss quadrature is most commonly used, the weights 

and points are shown in Table 2.2. 

Table 2.1. Gaussian integration formula for the one-dimensional fraction moment calculation. 

Distribution Gaussian 

Quadrature 

𝒙𝒋 Numerical Integration 

Formula 

Uniform Gauss-Legendre 𝑏 − 𝑎

2
𝑧𝑗 +

𝑏 + 𝑎

2
 ∑𝑤𝑗

𝐿

𝑗=1

[
1

2
ℎ(𝑥𝑗)] 

𝑘 

Normal Probabilists' Gauss-

Hermite 
𝜇 + 𝜎𝑧𝑗 

∑𝑤𝑗

𝐿

𝑗=1

[ℎ(𝑥𝑗)] 
𝑘 

Lognormal Probabilists' Gauss-

Hermite 
exp (𝜆 + 𝜁𝑧𝑗)*

 

∑𝑤𝑗

𝐿

𝑗=1

[ℎ(𝑥𝑗)] 
𝑘 
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Exponential Gauss-Laguerre 𝑧𝑗

𝜆
 

∑𝑤𝑗

𝐿

𝑗=1

[ℎ(𝑥𝑗)] 
𝑘 

Weibull Gauss-Laguerre 𝛽𝑧𝑗
(1 𝛼)⁄

** 
∑𝑤𝑗

𝐿

𝑗=1

[ℎ(𝑥𝑗)] 
𝑘 

* 𝜁 =  √ln (1 +
𝜎2

𝜇2
)  (shape parameter) and 𝜆 = ln(𝜇) −

1

2
𝜁2(scale parameter) 

** 𝛽 denotes the scale parameter and 𝛼 denotes the shape parameter. 

Note: 𝑧𝑗 denotes the gauss points, 𝑤𝑗 denotes the associated Gauss weights and L is the Gauss 

quadrature order used (i.e. 5-point gauss quadrature, L =5) 

Table 2.2. Weights and points of the five order Gaussian Quadrature rules. 

Gaussian 

Quadrature 

L 1 2 3 4 5 

Gauss-

Legendre 

𝑤𝑗 0.23693 0.47863 0.56889 0.47863 0.23693 

𝑧𝑗 -0.90618 -0.53847 0 0.53847 0.90618 

Probabilists' 

Gauss-

Hermite 

𝑤𝑗 0.01126 0.22208 0.53333 0.22208 0.01126 

𝑧𝑗 -2.85697 -1.35563 0 1.35563 2.85697 

Gauss-

Laguerre 

𝑤𝑗 0.52176 0.39867 0.07594 0.00361 2.34 x 10-5 

𝑧𝑗 0.36356 1.4134 3.5964 7.0858 12.641 

 

More orders of Gauss points and weights can be found in the textbook (Schaferkotter & Kythe, 

2004).  

The probabilists' Gauss-Hermite’s points and weights are not readily available online or in 

textbooks. Physicists’ gauss Hermite is what is mainly found but it is just listed as Gauss Hermite. 

To convert from physicists’ to probabilists' the following equations can be used (Sullivan, 2015): 

𝑤𝑗
𝑝𝑟𝑜𝑏 =

𝑤𝑗
𝑝ℎ𝑦𝑠

√𝜋
 

(2.10) 



11 
 

𝑧𝑗
𝑝𝑟𝑜𝑏 = √2𝑧𝑗

𝑝ℎ𝑦𝑠
 (2.11) 

For example with 4 variables, (a, b, c, d) a total of 21 calculations will be performed (nL+1 

=(4 × 5) + 1 = 21). 5 for each of the 4 variables (considering 5-point gauss quadrature) and one 

when all the variables are held at their respective mean value. The first moment (mean) for each 

variable is then calculated as follows: 

𝜌𝑎 =∑𝑤𝑗

𝐿=5

𝑗=1

ℎ(𝑎𝑗, 𝑏0, 𝑐0, 𝑑0) 
                                                                                      

(2.12) 

Where ℎ(𝑎𝑗, 𝑏0, 𝑐0, 𝑑0) is the response value by varying a by each Gaussian point according to the 

𝑥𝑗 formulas in table 1 and holding b, c, and d to their mean values. The second moment (mean 

square) is calculated similarly as follows (Pandey, Walbridge and Raimbault, 2015): 

𝜃𝑏 =∑𝑤𝑗

𝐿=5

𝑗=1

[ℎ(𝑎0, 𝑏𝑗 , 𝑐0, 𝑑0)]
2 

                                                                                      

(2.13) 

The mean and mean square of the response of Y can then be approximated as: 

𝜇𝑌 = 𝐸[𝑌] ≈  ℎ0
(1−𝑛) ×∏𝜌𝑖

𝑛

𝑖=1

 
                                                                                      

(2.14) 

𝜇2𝑌 = 𝐸[𝑌
2] ≈  ℎ0

(2−2𝑛) ×∏𝜃𝑖

𝑛

𝑖=1

 
                                                                                      

(2.15) 

The variance can then be calculated as: 

𝑉𝑌 = 𝜇2𝑌 − (𝜇𝑌)
2 (2.16) 

Where the standard deviation of the response is then the square root of the variance.  

Now that the input grid has been created the last step is to use this to find the Lagrange multipliers 

(𝜆𝑖) and fractional exponents (𝛼𝑖) that define the response. The MaxEnt principle with fractional 
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moment constraints ([𝑌𝛼] = 𝑀𝑌
𝛼) where 𝛼 is a real number not an integer. This principle states 

that by maximizing the entropy subjected to the fractional moment constraints, the most unbiased 

probability distribution can be estimated. The Lagrange multipliers (𝜆𝑖) and fractional exponents 

(𝛼𝑖) are therefore obtained by applying the following optimization (Balomenos, 2015): 

Randomize: {𝛼𝑖}𝑖=1
𝑚  (2.17) 

Find: {𝜆𝑖}𝑖=1
𝑚  (2.18) 

by  

Minimizing:𝐼(𝜆, 𝛼) = ln [∫ exp(−∑ 𝜆𝑖
𝑚
𝑖=1

∞

0
𝑦𝛼𝑖)𝑑𝑦] + ∑ 𝜆𝑖

𝑚
𝑖=1 𝑀𝑌

𝛼𝑖 (2.19) 

Where m is the number of fractional moments, 𝜆 = [𝜆0, 𝜆1, … , 𝜆𝑚]
𝑇 are the Lagrange multipliers 

and 𝛼 = [𝛼0, 𝛼1, … , 𝛼𝑚]
𝑇 are the fractional exponents. This optimization can be implemented in 

MATLAB using the simplex search method (Wright et. al., 1998). Randomize the 𝛼 values at least 

100 or more times, and find the 𝛼 and 𝜆 values which results in the lowest entropy (function 

evaluation at the 𝛼 and 𝜆 values which are obtained); the set of values which result in the lowest 

entropy is the answer to this optimization problem. The best way to randomize 𝛼 is to set the 

random values between a bound such as (-1,1), (-5,5) etc.  𝑀𝑌
𝛼 can be expanded and replaced in 

the above equation as follows: 

𝑀𝑌
𝛼 = 𝐸[𝑌𝛼] ≈ ℎ0

𝛼(1−𝑛)  ∏𝐸[

𝑛

𝑖=1

(ℎ𝑖(𝑥𝑖)
𝛼] 

                                                                                      

(2.20) 

𝐸[(ℎ𝑖(𝑥𝑖)
𝛼] =∑𝑤𝑗

𝐿

𝑗=1

[ℎ𝑖(𝑥𝑗)] 
𝛼 

                                                                                      

(2.21) 
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Using 3 fractional moments (m=3) is sufficient since entropy converges very quickly. Now that 

the 𝛼 and 𝜆 values have been solved for, the estimated probability density function (PDF) of the 

true PDF can be obtained (Balomenos, 2015): 

𝑓𝑌(𝑦) = exp(−∑𝜆𝑖

𝑚

𝑖=0

𝑦𝛼𝑖) 
                                                                                      

(2.22) 

For i=0, 𝛼0 = 0 and 𝜆0 is solved for using the following equation: 

𝜆0 = ln [ ∫ exp(−∑𝜆𝑖

𝑚

𝑖=1

∞

0

𝑦𝛼𝑖)𝑑𝑦] 
                                                                                      

(2.23) 

For more information on the derivations on the optimization, 𝑓𝑌(𝑦), and 𝜆0 equations or the 

MDRM in general please read (Balomenos, 2015; Zhang, 2013). A global sensitivity analysis can 

also be done using MDRM (Balomenos, 2015; Zhang, 2013). 

2.4 Cubature Formulae 

There are many cubature formulae with fixed algebraic degree of accuracy developed by 

mathematicians which help to solve problems efficiently rather than using MCS. Just like MDRM, 

the cubature formulas can evaluate the statistical moments of the function. However, different 

cubature formula will give a different degree of accuracy (Xu & Lu, 2017) 

Before the cubature formulas can be implemented or discussed some steps need to be taken to 

transform the random variables as functionals of normal random variables. The Probability Integral 

Transform is applied to change the variables. Replace the random variable with the corresponding 

transformation equation from Table 2.3. 
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Table 2.3. Representation of common univariate distributions as functionals of normal random 

variables. 

Distribution Type Transformation 

Uniform (𝒂, 𝒃) 
𝑎 + (𝑏 − 𝑎) (

1

2
+
1

2
erf (

𝜉

√2
)) 

Normal (𝝁, 𝝈) 𝜇 + 𝜎𝜉 

Lognormal (𝝁, 𝝈) exp(𝜆 + 𝜁𝜉)* 

Gamma (𝒂, 𝒃) 

𝑎𝑏(𝜉√
1

9𝑎
+ 1 −

1

9𝑎
)

3

 

Exponential (𝝀) 
−
1

𝜆
log (

1

2
+
1

2
erf (

𝜉

√2
)) 

Weibull (𝜶, 𝜷) 
𝛽 (− log (

1

2
−
1

2
erf (

𝜉

√2
)))

1 𝛼⁄

 

* 𝜁 =  √ln (1 +
𝜎2

𝜇2
)  (shape parameter) and 𝜆 = ln(𝜇) −

1

2
𝜁2(scale parameter) 

Note: 𝜉 is the cubature point corresponding to the cubature formula being used. All equations 

found from (Isukapalli, 1999) except Weibull equation (Villanueva, Feijóo & Pazos, 2013). 

For example, a response function in the form, ℎ(𝑋) = 𝑋1 + 𝑋2 + 𝑋3 with 𝑋1 being a normal 

random variable, 𝑋2 being a lognormal random variable and 𝑋3 being a weibull random variable, 

is being evaluated. After changing the variables and applying the corresponding equations from 

Table 2.4, the response function changes to: 

ℎ(𝜉) = [𝜇 + 𝜎𝜉] + [exp(𝜆 + 𝜁𝜉)] + [𝛽 (− log (
1

2
−
1

2
erf (

𝜉

√2
)))

1 𝛼⁄

] 
                                                                                      

(2.24) 

Now that the variables have been changed, the next step is to perform the integral of the form: 

𝐼(𝑓) = ∫ 𝑒−𝜉
𝑇𝜉

ℝ𝑛
𝑓(𝜉)𝑑𝜉 

                                                                                      

(2.25) 
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The integrand f(x) is usually not an analytical expression but it is an output from some 

computational simulation, therefore approximation methods such as the cubature formulae are 

needed (Lu & Darformal, 2004). This reduces the above integral to the following sum: 

𝐼(𝑓) ≈∑𝐵𝑗

𝑁

𝑗=1

𝑓(𝜉𝑗,1, … , 𝜉𝑗,𝑛) 
                                                                                      

(2.26) 

Where 𝐵𝑗 and 𝜉𝑗 = (𝜉𝑗,1, … , 𝜉𝑗,𝑛) are the weights and quadrature points respectively, and N is the 

number of quadrature points (Wei, Cui & Chen, 2008).   

The first two moments, i.e. Mean and standard deviation, are given as: 

𝜇𝑌 =∑𝐵𝑗

𝑁

𝑗=1

ℎ(𝜉𝑗) 
                                                                                      

(2.27) 

𝜎𝑌 =∑𝐵𝑗

𝑁

𝑗=1

[ℎ(𝜉𝑗) − 𝜇𝑌]
2
 

                                                                                      

(2.28) 

Where Y=h(𝜉) is the response function. Derivations for these two equations as well as the 

equations for the third and fourth moments (i.e. Skewness and Kurtosis) can be found (Xu & Lu, 

2017). 

In equation 2.25 and 2.26, 𝑓(𝜉) represents the arbitrary integrand, for example for  𝜎𝑌, 𝑓(𝜉) =

[ℎ(𝜉𝑗) − 𝜇𝑌]
2
, or 𝑓(𝜉) = ℎ(𝜉𝑗) for 𝜇𝑌. 

In this section the 5 most efficient known cubature formulae of degree 5 will be used. Formulas of 

degree 5 are well developed and particularly useful for Gaussian weighted integration (Wei, Cui 

& Chen, 2008).   
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Cubature Formula 1 

This is a formula that is valid for 2 ≤ 𝑛 ≤ 7, where n is the number of random variables, given by 

Stroud (1966) for numerical integration over infinite regions:  

𝐼(𝑓) = 𝑎[𝑓(√2𝜂, √2𝜂,… , √2𝜂) + 𝑓(−√2𝜂, −√2𝜂,… ,−√2𝜂)] 

              +𝑏 [ ∑ 𝑓(√2𝜆, √2𝜉,… , √2𝜉) + 𝑓(−√2𝜆,−√2𝜉,… ,−√2𝜉)

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

] 

              +𝑐 [ ∑ 𝑓(√2𝜇, √2𝜇, √2𝛾,… , √2𝛾) + 𝑓(−√2𝜇,−√2𝜇,−√2𝛾,… ,−√2𝛾)

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

] 

                                                                                       

 

 

 

(2.29) 

Where the values of the 8 parameters, (𝑎, 𝑏, 𝑐, 𝜂, 𝜆, 𝜉, 𝜇, 𝛾), are given by (Stroud, 1966) and are 

shown in Table 2.5, and where the summations are taken over all distinct permutations of the input 

variables. This formula requires a total of 𝑛2 + 𝑛 + 2 points. It contains fewer points than any 

other 5th degree formula when 𝑛 ≥ 4 (Wei, Cui & Chen, 2008).   

Cubature Formula 2 

This is a formula that is valid for 𝑛 > 3, where n is the number of random variables, which is 

derived by Mysovskikh (1980) for the surface of the sphere. This formula is expressed as: 

𝐼(𝑓) =
2

𝑛 + 2
𝑓(0) +

𝑛2(7 − 𝑛)

2(𝑛 + 1)2(𝑛 + 2)2
∑[𝑓(√𝑛 + 2 × 𝑎(𝑗)) + 𝑓(−√𝑛 + 2 × 𝑎(𝑗))]

𝑛+1

𝑗=1

 

+
2(𝑛 − 1)

(𝑛 + 1)2(𝑛 + 2)2
∑ [𝑓(√𝑛 + 2 × 𝑏(𝑗)) + 𝑓(−√𝑛 + 2 × 𝑏(𝑗))]

𝑛(𝑛+1)/2

𝑗=1

 

                                                                                       

 

 

(2.30) 
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Where 𝑎(𝑗) and 𝑏(𝑗) are:  

𝑎(𝑗) = (𝑎1
(𝑗)
, 𝑎2
(𝑗)
, … , 𝑎𝑛

(𝑗)
) , 𝑗 = 1,2, … , 𝑛 + 1                                                                                       

(2.31) 

𝑏(𝑗) = √
𝑛

2(𝑛 − 1)
(𝑎(𝑘) + 𝑎(𝑙)), 𝑘 < 𝑙, 𝑙 = 1,2, … , 𝑛 + 1 

                                                                                      

(2.32) 

𝑎𝑖
(𝑗)
=

{
 
 

 
 −(

𝑛 + 1

𝑛(𝑛 − 𝑖 + 2)(𝑛 − 𝑖 + 1)
)
1 2⁄

, 𝑓𝑜𝑟 𝑖 < 𝑗

(
(𝑛 + 1)(𝑛 − 𝑗 + 1)

𝑛(𝑛 − 𝑗 + 2)
)

1/2

, 𝑓𝑜𝑟 𝑖 = 𝑗

0, 𝑓𝑜𝑟 𝑖 > 𝑗

 

                                                                                       

 

 

(2.33) 

This formula requires a total of 𝑛2 + 3𝑛 + 3 points. When 𝑛 < 7 the weights are all positive but 

for 𝑛 > 7 the weights end up being negative (Xu, Chen & Li, 2012). 

Cubature Formula 3 

A formula proposed in Stroud & Secrest (1963) which requires the use of 2𝑛2 + 1 points is: 

𝐼(𝑓) =
2

𝑛 + 2
𝑓(0) +

4 − 𝑛

2(𝑛 + 2)2
∑ 𝑓(±√𝑛 + 2

𝑓𝑢𝑙𝑙 𝑠𝑦𝑚

, 0, … , 0)

+
1

(𝑛 + 2)2
∑ 𝑓(±√

𝑛

2
+ 1

𝑓𝑢𝑙𝑙 𝑠𝑦𝑚

, ±√
𝑛

2
+ 1, 0, … , 0) 

                                                                                       

 

 

(2.34) 

Where the summation is done over all the different reflections and permutations and this formula 

holds for arbitrary dimensions(𝑛). 

Cubature Formula 4 

A formula constructed by McNamee & Stenger (1967) and Phillips (1980) which requires the use 

of 2𝑛2 + 1 points is: 
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𝐼(𝑓) =
𝑛2 − 7𝑛 + 18

18
𝑓(0) +

4 − 𝑛

18
∑ 𝑓(±√3

𝑓𝑢𝑙𝑙 𝑠𝑦𝑚

, 0, … , 0)

+
1

36
∑ 𝑓(±√3

𝑓𝑢𝑙𝑙 𝑠𝑦𝑚

, ±√3, 0, … , 0) 

                                                                                       

 

 

(2.35) 

Where the summation is done over all the different reflections and permutations and this formula 

holds for arbitrary dimensions (𝑛). 

Cubature Formula 5 

Victoir (2004) constructed some cubature formulae called the quasi-symmetric point method (Q-

SPM). The Q-SPM is efficient because it only uses parts of points in the same symmetric point set 

and the points in the same point set possess the same weight value (Xu, Chen & Li, 2012). The 

second class of Q-SPM integral points are given by: 

𝑥0 = (ℎ𝑟, 0, … ,0), 𝑥1 = (ℎ𝑠, ℎ𝑠, … , ℎ𝑠) (2.36) 

Where: 

𝑟 = √
𝑛 + 2

2
, 𝑠 = √

𝑛 + 2

𝑛 − 2
 

                                                                                      

(2.37) 

Where h is the permutation of ±1, 𝑥0 and 𝑥1 represent the two symmetric point sets where 𝑁1 and 

𝑁2 points are involved respectively. The total number of points required is (𝑁 = 𝑁1 +

𝑁2, where 𝑁1 = 2𝑛 and 𝑁2 << 2𝑛) is listed in Table 2.6, when the number of random variables 

varies from 3 to 20. The weights for the points are: 

𝛼0 =
4

(𝑛 + 2)2
, 𝛼1 =

(𝑛 − 2)2

(𝑛 + 2)2(𝑁 − 2𝑛)
 

                                                                                      

(2.38) 
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Where N can be found in Table 3. There the integration equation is (Xu & Lu, 2017): 

𝐼(𝑓) = 𝛼0∑𝑓(𝑥0) + 𝛼1∑𝑓(𝑥1) 
(2.39) 

All 5 of the above formulae are efficient, where depending on the number of random variables, 

tens of points or a few hundred are needed. As stated before different formulae will give different 

results, one formula might give a more accurate result for 3 random variables while another might 

give a more accurate result for 4 random variables. 

Xu & Lu (2017) work on multiple examples to choose the “best” cubature formula out of these 5. 

The criterion used to determine the “best” cubature formula is one that is able to efficiently achieve 

the statistical moments with the highest accuracy. Out of the 5 cubature formulae, formula 1 is 

chosen as the “best” the most amount of times. 

Table 2.4.  Values of parameters depending on number of random variables from 2 to 7. 

n Parameter Value 

2 𝜂 0.446103183094540 

𝜆 1.36602540378444 

𝜉 −0.366025403784439 

𝜇 1.98167882945871 

𝛾 --- 

𝑎 0.328774019778636 

𝑏 0.0833333333333333 

𝑐 0.00455931355 69736 

3 𝜂 0.476731294622796 

𝜆 0.935429018879534 

𝜉 −0.731237647787132 

𝜇 0.433155309477649 

𝛾 2.66922328697744 

𝑎 0.24200 00000 00000 

𝑏 0.081000 00000 00000 

𝑐 0.0050000 00000 00000 

4 𝜂 0.523945658287507 

𝜆 1.19433782552719 

𝜉 -0.398112608509063 

𝜇 -0.318569372920112 
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𝛾 1.85675837424096 

𝑎 0.155502116982037 

𝑏 0.0777510584910183 

𝑐 0.00558227484231506 

5 𝜂 2.14972564378798 

𝜆 4.64252986016289 

𝜉 -0.623201054093728 

𝜇 -0.447108700673434 

𝛾 0.812171426076331 

𝑎 0.000487749259189752 

𝑏 0.000487749259189752 

𝑐 0.0497073504444862 

6 𝜂 1.0000000000000000 

𝜆 1.41421356237309 

𝜉 0 

𝜇 -1.0000000000000000 

𝛾 1.0000000000000000 

𝑎 0.0078125000000000 

𝑏 0.0625000000000000 

𝑐 0.0078125000000000 

7 𝜂 0 

𝜆 0.959724318748357 

𝜉 -0.772326488820521 

𝜇 -1.41214270131942 

𝛾 0.319908106249452 

𝑎 0.111111111111111 

𝑏 0.013888888888889 

𝑐 0.013888888888889 
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Table 2.5. Number of points required for Q-SPM, based on the number of random variables. 

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Points 14 24 42 44 78 144 146 276 278 280 282 284 286 288 546 548 550 552 
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3 MDRM Analysis: Verification Examples 

3.1 Introduction 

3.1.1 Objective 

The objective of this chapter is to determine if the code that has been developed works properly 

and gives the values required. Also this chapter will go over a simple problem to demonstrate how 

to solve a problem using MDRM and Cubature. The results will then be compared with MCS to 

see the accuracy and efficiency of MDRM and Cubature. 

3.1.2 Organization 

The organization of this chapter is as follows. Section 3.2, firstly presents a MDRM code check to 

provide evidence that the MATLAB code that was developed was implemented correctly. A 

problem is done from Zhang & Pandey (2013) to compare results. Section 3.4 presents a steam 

generator failure problem. This is an equation based problem that is solved using MDRM, MCS 

and Cubature and the results from each methods is compared. The conclusions are then 

summarized in Section 3.4. 

3.2 MDRM Code Verification 

To ensure the code was implemented correctly a problem from Zhang & Pandey (2013) was done 

to see if the entropy values and the probability density function matched up. The entropy values 

matching up shows that the 𝛼 and 𝜆 don’t have to match up with what Zhang & Pandey (2013) 

determined them to be in order to obtain the same results. Making sure the graphs match ensures 

that even though the 𝛼 and 𝜆 don’t match up with what Zhang & Pandey (2013) determined them 

to be the probability density function produced is still the same. 
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The problem that was done from Zhang & Pandey (2013) involved figuring out the ultimate 

bending moment of resistance of a reinforced beam using the following equation: 

𝑀𝑈(𝑋) = 𝑋1𝑋2𝑋3 − 𝑋4
𝑋1
2𝑋2

2

𝑋5𝑋6
 

                                                                                      

(3.1) 

The distributions for each of the 6 random variables are given in Table 3.1 below: 

Table 3.1. Random variables in the reinforced concrete beam example. 

Variable Description Distribution Mean St.Deviation 

𝑿𝟏 Area of reinforcement Lognormal 1260 252 

𝑿𝟐 Yield stress of 

reinforcement 

Lognormal 300 60 

𝑿𝟑 Effective depth of 

reinforcement 

Lognormal 770 154 

𝑿𝟒 Stress-Strain factor of 

concrete 

Lognormal 0.35 0.035 

𝑿𝟓 Compressive strength of 

concrete 

Weibull 25 5 

𝑿𝟔 Width of beam Normal 200 40 

 

Using this information, the entropy was found to be 5.9143 whereas the entropy given in Zhang & 

Pandey (2013) is 5.9147 which results in a relative error of 0.0068% showing that the entropy 

found in this paper is approximately equal to the entropy found in Zhang & Pandey (2013). Next 

the probability distribution found in this paper is shown below in Figure 3.1. 



24 
 

 

Figure 3.1. Probability density function (PDF) of the ultimate bending moment (MU) 

This probability density function is exactly the same as Fig 2 in Zhang & Pandey (2013). They 

both have a maximum value of about 0.0045, start having non zero values at about 60 kNm and 

go back to zero at about 660 kNm. 

In summary the entropy values and the PDF’s match exactly with what is determined in Zhang & 

Pandey (2013) thus providing evidence that the code developed in this paper is correct and can be 

used to solve other problems. 

3.3 Steam Generator Tube Failure Problem 

Steam generator tubes in pressurized water reactors serve as a pressure boundary and a 

containment boundary. Rupture of a steam generator tube can have significant safety and 

environmental consequences. Fretting between steam generator tubes and secondary support 

structures or between neighbouring steam generator tubes is a widespread degradation mechanism, 
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which can ultimately cause the retirement of a nuclear power plant (Duan, Wang and Kozluk, 

2015). 

Consider the following empirical equation for the predicted capacity expressed as the failure 

pressure, 𝑃𝐹𝑃, of CANDU steam generator tubes with a fretting flaw (Kozluk, Mills, & Pagan, 

2006): 

𝑃𝐹𝑃 = [−0.3668 + 1.334√1 −
𝑎

ℎ
+ 2.277 (

𝑎

ℎ
) (

ℎ

2𝐿
) + 𝜀] ×

2ℎ

𝐷0 − ℎ
𝜎𝑓 

                                                                                      

(3.2) 

Where 𝑎 is the flaw depth, ℎ is the wall thickness, 2𝐿 is the flaw length, 𝜀 is the model uncertainty, 

𝐷0 is the outside diameter and 𝜎𝑓 is the flow strength (Duan, Wang and Kozluk, 2015). The flaw 

depth 𝑎 at the end of the evaluation period is defined as follows: 

𝑎

ℎ
=
𝑎0
ℎ
+
𝑎𝑔

ℎ
+
𝑎𝑒
ℎ

 
                                                                                      

(3.3) 

Where 𝑎0 is the beginning of the evaluation period flaw depth, 𝑎𝑔 is the flaw growth during the 

evaluation period, and 𝑎𝑒 is the Non Destructive Examination (NDE) measurement error of the 

flaw depth 𝑎0 (Duan, Wang and Kozluk, 2015). This problem will be solved considering that all 

random variables are simply uncertain with no specific designation as either epistemic or aleatory, 

this is a first order random variable probabilistic model definition. Table 3.2 defines each variable 

in the failure pressure equation. 

Table 3.2. Variables. 

Variable Type of Distribution  Parameters of Distribution 

𝜺 Normal (0, 0.0185) – (mean, st.dev) 

𝝈𝒇 Normal (452, 11) – (mean, st.dev) 

𝒂𝒆 𝒉⁄  Normal (0, 2.551067) – (mean, st.dev) 

𝒂𝟎 𝒉⁄  Lognormal (28,0.2) – (mean, st.dev)  

𝒂𝒈 𝒉⁄  Weibull (1.43595, 0.319793 months) – (shape, scale) 

𝒉 Constant 1.13 mm 
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𝟐𝑳 Constant 40 mm 

𝑫𝟎 Constant 15.94 mm 

 

This problem was solved using Monte Carlo Simulation (MCS), the Multiplicative Dimensional 

Reduction Method (MDRM) and the 5 Cubature formulas. 

Using MCS, 106 simulations were done for each random variable and each corresponding failure 

pressure was calculated. Figure 3.2 shows the cumulative distribution of failure pressure, 𝑃𝐹𝑃. The 

mean and standard deviation were calculated as 54.1319 and 2.2237 respectively.  

 

Figure 3.2. Cumulative distribution function of failure pressure. 

The MDRM was done using the fifth order (L=5) Gauss quadrature and considering five input 

random variables (n=5).  An input grid is generated to evaluate the response which is seen in table 

3.3. The Gauss Hermite and Gauss Laguerre formulas are adopted since 4 random variables follow 

Normal/Lognormal distribution and the other follows Weibull distribution. In total there are 

(5 × 5) + 1 = 26 response evaluations. For each evaluation point, the other random variable is 

fixed to its mean value. 
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Table 3.3. Input Grid for the response evaluation. 

Random 

Variable 

Trial 𝒛𝒋 𝒂𝒆 𝒉⁄  𝒂𝟎 𝒉⁄  𝒂𝒈 𝒉⁄  𝝈𝒇 𝜺 𝒂 𝒉⁄  𝑷𝑭𝑷 

 1 -2.857 -7.2884 28 0.29036 452 0 0.21002 57.41342 

 2 -1.3556 -3.45823 28 0.29036 452 0 0.248321 55.57616 

𝒂𝒆 𝒉⁄  3 0 0 28 0.29036 452 0 0.282904 53.87291 

 4 1.3556 3.458227 28 0.29036 452 0 0.317486 52.12433 

 5 2.857 7.288399 28 0.29036 452 0 0.355788 50.13052 

 6 -2.857 0 27.4337 0.29036 452 0 0.277241 54.15485 

 7 -1.3556 0 27.72948 0.29036 452 0 0.280198 54.00774 

𝒂𝟎 𝒉⁄  8 0 0 27.99929 0.29036 452 0 0.282896 53.87327 

 9 1.3556 0 28.27171 0.29036 452 0 0.285621 53.73721 

 10 2.857 0 28.57653 0.29036 452 0 0.288669 53.58464 

 11 0.26356 0 28 0.126348 452 0 0.281263 53.95469 

 12 1.4134 0 28 0.406925 452 0 0.284069 53.81473 

𝒂𝒈 𝒉⁄  13 3.5964 0 28 0.779788 452 0 0.287798 53.62827 

 14 7.0858 0 28 1.250493 452 0 0.292505 53.39213 

 15 12.641 0 28 1.871333 452 0 0.298713 53.07935 

 16 -2.857 0 28 0.29036 420.573 0 0.282904 50.1272 

 17 -1.3556 0 28 0.29036 437.0884 0 0.282904 52.09563 

𝝈𝒇 18 0 0 28 0.29036 452 0 0.282904 53.87291 

 19 1.3556 0 28 0.29036 466.9116 0 0.282904 55.65019 

 20 2.857 0 28 0.29036 483.427 0 0.282904 57.61863 

 21 -2.857 0 28 0.29036 452 -0.05285 0.282904 50.22727 

 22 -1.3556 0 28 0.29036 452 -0.02508 0.282904 52.14312 

𝜺 23 0 0 28 0.29036 452 0 0.282904 53.87291 

 24 1.3556 0 28 0.29036 452 0.025079 0.282904 55.60271 

 25 2.857 0 28 0.29036 452 0.052855 0.282904 57.51855 
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Fixed mean 

values 

26 N/A 0 28 0.29036 452 0 0.282904 53.87291 

Note: zj denotes the Gauss Laguerre and Gauss Hermite points. 
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As many significant figures as possible are shown in all the tables in case these problems in case 

the problems are to be repeated. The next step is to calculate the mean (𝜌𝑖) and the mean square 

(𝜃𝑖) of an 𝑖𝑡ℎ cut function is approximated as a weighted sum (Table 3.4). Then the MDRM 

approximation is used to calculate the statistical moment of the response function (Table 3.5). 

Table 3.4. Output Grid for each cut function evaluation. 

Random 

Variable 

Trial 𝒘𝒋 𝑷𝑭𝑷 𝒘𝒋 × 𝑷𝑭𝑷 𝝆𝒊 𝒘𝒋 × 𝑷𝑭𝑷
𝟐
 𝜽𝒊 

 1 1.13E-02 57.41342 0.65  37.11  

 2 0.22208 55.57616 12.34  685.94  

𝒂𝒆 𝒉⁄  3 0.53333 53.87291 28.73 53.86 1547.88 2902.59 

 4 0.22208 52.12433 11.58  603.38  

 5 1.13E-02 50.13052 0.56  28.29  

 6 1.13E-02 54.15485 0.61  33.01  

 7 0.22208 54.00774 11.99  647.77  

𝒂𝟎 𝒉⁄  8 0.53333 53.87327 28.73 53.87 1547.90 2902.30 

 9 0.22208 53.73721 11.93  641.30  

 10 1.13E-02 53.58464 0.60  32.32  

 11 0.52176 53.95469 28.15  1518.90  

 12 0.39867 53.81473 21.45  1154.56  

𝒂𝒈 𝒉⁄  13 7.59E-02 53.62827 4.07 53.87 218.41 2902.23 

 14 3.61E-03 53.39213 0.19  10.30  

 15 2.34E-05 53.07935 0.00  0.07  

 16 1.13E-02 50.1272 0.56  28.29  

 17 0.22208 52.09563 11.57  602.72  

𝝈𝒇 18 0.53333 53.87291 28.73 53.87 1547.88 2904.02 

 19 0.22208 55.65019 12.36  687.77  

 20 1.13E-02 57.61863 0.65  37.37  

 21 1.13E-02 50.22727 0.57  28.40  

 22 0.22208 52.14312 11.58  603.81  

𝜺 23 0.53333 53.87291 28.73 53.87 1547.88 2903.93 

 24 0.22208 55.60271 12.35  686.60  

 25 1.13E-02 57.51855 0.65  37.24  

Fixed 

mean 

value 

26 N/A 53.87291     

Note: wj denotes the Gauss Laguerre and Gauss Hermite weights. 



30 
 

Table 3.5. Statistical Moments of the response. 

𝑷𝑭𝑷 MDRM (26 Trials) MCS (106  Simulations) Relative Error 

(%) 

First Moment 53.8609 54.1319 0.5 

Second Moment 2905.918 2935.205 0.998 

Standard Deviation 2.2188 2.2237 0.22 

COV 0.04119 0.04108 0.268 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

Table 3.5 shows the agreeability of these two methods. The relative errors are all within 1% thus 

proving that the MDRM is a very good alternative to the high computational cost of MCS. 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 3.6 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4.  

Table 3.6. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 704.381 -175.621 0.04756   

m=2 2.2061 𝛼𝑖  0.4025 2.0544   

  𝑀𝑋
𝛼𝑖  2.765E-09 78167.41   

  𝜆𝑖 704.379 50.8772 -138.566 49.1863  

m=3 2.2060 𝛼𝑖  -2.7479 0.8101 1.0137  

  𝑀𝑋
𝛼𝑖  1.398E+08 1.029E-07 7.878E+06  

  𝜆𝑖 704.378 22.6168 47.3913 0.03417 -114.8718 

m=4 2.2060 𝛼𝑖  1.0743 -4.4391 1.5810 0.7581 

  𝑀𝑋
𝛼𝑖  3.556E-08 0.8104 2.918E-07 0.02064 

 

The estimated probability distribution of the failure pressure is compared to the MCS (Figure 3.3). 

Then the probability of failure is estimated by plotting the probability of exceedance (POE). From 
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these two figures it is seen that MDRM provides highly accurate approximation for almost the 

entire range of the output response distribution (Figure 3.4). 

Cubature was done using the 5 formulas stated earlier. With Formula 1, 32 points were used to 

determine the mean and standard deviation, Formula 2 required the use of 43 points. Formula 3 

and 4 both used 51 points, and Formula 5 used 42 points. 

Data points were simulated using equation (3.2) and a probability paper plot was done. From the 

probability paper plot, it was determined that a Normal distribution most accurately depicted the 

probability density function for equation (3.2). Once the means and standard deviations were found 

using the cubature method, the shape and scale factors were calculated and a MCS of 5000 

simulations was done to determine the PDF and POE of each Formula (1, 2, 3, 4, and 5). Table 3.7 

compares the means and standard deviations of the Cubature Formulas, MCS and MDRM. 

Table 3.7. Means and Standard Deviations of the response. 

𝑷𝑭𝑷 MDRM 

(26 

Trials) 

MCS 

(106 

Trials) 

Formula 

1 

Formula 

2 

Formula 

3 

Formula 

4 

Formula 

5 

Mean 53.8609 54.1319 53.8602 32.88 53.8604 53.8604 53.245 

St. Dev 2.2188 2.2237 2.2341 16.9785 2.2340 2.2340 2.1676 

M_RE(%) 0.5 N/A 0.502 39.26 0.502 0.502 1.64 

S_RE(%) 0.22 N/A 0.468 663.5 0.463 0.463 2.53 

Note: M_RE is the mean relative error and S_RE is the standard deviation relative error, 

compared to MCS, where Relative Error (%) =  
|𝑀𝐶𝑆−𝑥|

𝑀𝐶𝑆
×  100 

From Table 3.7 it is seen that Formula 1, 3 and 4 give the closest values to MCS whereas Formula 

5 is not as close. Formula 2 is not close at all, there is definitely some error that results in the values 

being so far off. A possible error is that the formula was not applied correctly or was interpreted 

incorrectly. Formula 1 was selected as the “best” cubature formula in terms of being able to 

efficiently be able to achieve the statistical moments with the highest accuracy for multiple 
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examples (Xu & Lu, 2017). This is clearly seen here between the 5 formulas and also on the PDF 

and POE plots below, Figure 3.3 and 3.4. 

  

Figure 3.3. Probability density function of the response. 
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Figure 3.4. Probability of Exceedance (POE) of the response.  

In this example, there were 5 random variables which causes Formula 1 to use 32 trials whereas 

MDRM uses only 26 while providing better efficiency which can be seen in Table 3.7 through the 

relative errors and Figures 3.3 and 3.4.  

3.4 Conclusions 

In conclusion, the code was developed correctly as the results of entropy and probability density 

function from this paper matched up with Zhang & Pandey (2013). Also, the results from MDRM 

and Cubature formulae show very good agreement with the MCS results. In this one example 

MDRM uses the least amount of evaluation points to solve the problem and provides the closest 

results to MCS. Of all the cubature formulae, Formula 1 provided the most accurate results with 

the least number of points needed. 

 



34 
 

4 MDRM for Uncertainty Analysis 

4.1 Introduction 

Uncertainty analysis investigates the uncertainty of variables that are used in the analysis or 

decision-making problems in which observations and models represent the knowledge base. In 

other words, uncertainty analysis aims to determine the uncertainty of the variable and the type of 

random variable (epistemic or aleatory). 

The objective of this chapter is to examine the applicability, accuracy of the MDRM and 

comparing it to MCS and Cubature Formulae to determine what method is the “best.” This problem 

will first be solved considering that all random variables are simply uncertain with no specific 

designation as either epistemic or aleatory and the second time it will be solved considering one 

random variable is epistemic while another is aleatory. 

4.1.1 Organization 

The organization of this chapter is as follows. Section 4.2 presents a simply uncertain problem of 

a time to leak for a pipe. This is an equation based problem where no distinction is made for the 

random variables as to whether they are aleatory or epistemic. This problem is done using MDRM, 

MCS and Cubature methods and the results are compared. Section 4.3 solves the same problem as 

Section 4.2 but this time one random variable is designated as aleatory and another is designated 

as epistemic. This time the problem is only done using MDRM and MCS and the results are 

compared. Finally, the conclusions are summarized in Section 4.4. 
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4.2 Simple Uncertain Problems 
 

4.2.1 Time to Leak for a Pipe Problem 

 

Consider the following simple model for the time to leak for a pipe, for example from stress 

corrosion cracking, as: 

𝑇𝐿 = 𝑇𝐼 +
𝑊

𝑅
 

(4.1) 

 

where 𝑇𝐿 is the time to leak (months), 𝑇𝐼 is the time to crack initiation (months), 𝑊 is the wall 

thickness (mm), and 𝑅 is the crack growth rate (mm/month). 
𝑊

𝑅
 represents the time it takes for an 

initiated crack to grow through the pipe wall, which results in a leak. Assuming all variables are 

deterministic and known precisely, this problem can be solved directly without any uncertainty. 

However, in reality this is not the case, many of the parameters are unknown and hence described 

as uncertain or random variables. (Jyrkama & Pandey, 2016) 

There are two types of random variables, epistemic and aleatory. An aleatory uncertainty is one 

that is presumed to be the intrinsic randomness of a phenomenon. An epistemic uncertainty is one 

that is presumed as being caused by lack of knowledge (data) (Ditlevsen & Kiureghian, 2009).  

Figure 4.1 shows the difference between a first order random variable probabilistic model 

definition and a second order random variable probabilistic model definition. 
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Figure 4.1. First vs second order random variable probabilistic model definition. 

This problem will first be solved considering that all random variables are simply uncertain with 

no specific designation as either epistemic or aleatory, this is a first order random variable 

probabilistic model definition. Table 4.1 defines each variable in equation (4.1). 

Table 4.1. Variables. 

Variable Type of Distribution  Parameters of Distribution 

𝑻𝑰 Weibull (3,480 months) – (shape, scale) 

𝑾 Constant 40 mm 

𝑹 Normal (5 mm/month, 1 mm/month) – (mean, st.dev) 

 

This problem was solved using Monte Carlo Simulation (MCS), the Multiplicative Dimensional 

Reduction Method (MDRM) and the 5 Cubature formulas. 
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Using MCS, 1,000,000 simulations were done for each random variable and each corresponding 

time to leak was calculated. Figure 4.2 shows the cumulative distribution of time to leak, 𝑇𝐿. The 

mean and standard deviation were calculated as 437.0078 and 155.6737 respectively.  

 

Figure 4.2. Cumulative distribution function of time to leak. 

 

The MDRM was done using the fifteenth order (L=15) Gauss quadrature and considering two 

input random variables (n=2).  An input grid is generated to evaluate the response which can be 

seen in Table 4.2. The Gauss Hermite and Gauss Laguerre formulas are adopted since one random 

variable follows Normal distribution and the other follows Weibull distribution. In total there are 

(2 × 15) + 1 = 31 response evaluations. For each evaluation point, the other random variable is 

fixed to its mean value.  
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Table 4.2. Input Grid for the response evaluation. 

Random 

Variable 

Trial zj Ti (months) R (mm/month) W 

(mm) 

Tl 

(months) 

 1 0.093308 217.7111 5 40 225.7111 

 2 0.492692 379.111 5 40 387.111 

 3 1.215595 512.2763 5 40 520.2763 

 4 2.26995 630.8314 5 40 638.8314 

 5 3.667623 740.2347 5 40 748.2347 

 6 5.425337 843.4321 5 40 851.4321 

 7 7.565916 942.3128 5 40 950.3128 

Ti 8 10.12023 1038.257 5 40 1008.93 

 9 13.13028 1132.398 5 40 921.9758 

 10 16.65441 1225.794 5 40 1275.559 

 11 20.77648 1319.568 5 40 1342.948 

 12 25.62389 1415.108 5 40 1430.687 

 13 31.40752 1514.441 5 40 1526.229 

 14 38.53068 1621.226 5 40 1630.748 

 15 48.02609 1744.752 5 40 1752.752 

 16 -6.36395 428.6302 -1.36 40 399.3035 

 17 -5.19009 428.6302 -0.19 40 218.2075 

 18 -4.19621 428.6302 0.80 40 478.3943 

 19 -3.28908 428.6302 1.71 40 452.0094 

 20 -2.43244 428.6302 2.57 40 444.2091 

 21 -1.60671 428.6302 3.39 40 440.4181 

 22 -0.79913 428.6302 4.20 40 438.152 

R 23 -2.32E-16 428.6302 5.00 40 436.6302 

 24 0.799129 428.6302 5.80 40 435.5278 

 25 1.60671 428.6302 6.61 40 434.6846 

 26 2.432437 428.6302 7.43 40 434.012 

 27 3.289082 428.6302 8.29 40 433.4558 

 28 4.196208 428.6302 9.20 40 432.9798 

 29 5.190094 428.6302 10.19 40 432.5555 

 30 6.363948 428.6302 11.36 40 432.1501 

Fixed 

Mean 

Values 

31 N/A 428.6302 5.00 40 436.6302 

Note: zj denotes the Gauss Laguerre and Gauss Hermite points. 
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The next step is to calculate the mean (𝜌𝑖) and the mean square (𝜃𝑖) of an 𝑖𝑡ℎ cut function is 

approximated as a weighted sum (Table 4.3). Then the MDRM approximation is used to calculate 

the statistical moment of the response function (Table 4.4). 

Table 4.3. Output Grid for each cut function evaluation. 

Random 

Variable 

Trial wj TL wj x TL 𝝆𝒊 wj x TL
2 𝜽𝒊 

 1 0.218235 225.711 49.25804  11118.09  

 2 0.34221 387.111 132.4733  51281.87  

 3 2.63E-01 520.276 136.847  71198.26  

 4 0.126426 638.831 80.76478  51595.08  

 5 4.02E-02 748.234 30.08417  22510.02  

 6 0.008564 851.432 7.291561  6208.269  

 7 1.21E-03 950.312 1.152194  1094.944  

TI 8 1.12E-04 1008.93 0.112672 437.989 113.6778 215126.06 

 9 6.46E-06 921.975 0.005956  5.491192  

 10 2.23E-07 1275.55 0.000284  0.362233  

 11 4.23E-09 1342.94 5.68E-06  0.007624  

 12 3.92E-11 1430.68 5.61E-08  8.03E-05  

 13 1.46E-13 1526.22 2.22E-10  3.39E-07  

 14 1.48E-16 1630.74 2.42E-13  3.94E-10  

 15 1.60E-20 1752.75 2.81E-17  4.92E-14  

 16 8.59E-10 399.303 3.43E-07  0.000137  

 17 5.98E-07 218.207 0.00013  0.028452  

 18 5.64E-05 478.394 0.026992  12.91268  

 19 1.57E-03 452.009 0.70846  320.2308  

 20 1.74E-02 444.209 7.71E+0  3426.645  

 21 0.089418 440.4181 39.38122  17344.2  

 22 0.232462 438.152 101.8538  44627.45  

R 23 0.31826 436.6302 138.9617 436.999 60674.87 190972.67 

 24 0.232462 435.5278 101.2438  44094.48  

 25 0.089418 434.6846 38.86854  16895.56  

 26 1.74E-02 434.012 7.536954  3.27E+03  

 27 1.57E-03 433.4558 0.67938  294.4813  

 28 5.64E-05 432.9798 0.024429  10.57742  

 29 5.98E-07 432.5555 0.000258  0.111803  

 30 8.59E-10 432.1501 3.71E-07  0.00016  

Fixed 

Mean 

Values 

31 N/A 436.6302     



40 
 

Note: wj denotes the Gauss Laguerre and Gauss Hermite weights. 

Table 4.4. Statistical Moments of the response. 

TL MDRM (31 Trials) MCS (106 Simulations) Relative Error 

(%) 

First Moment 438.36 437.0078 0.309 

Second Moment 215494.80 215210.1181 0.132 

Standard Deviation 152.76 155.6737 1.87 

COV 0.3485 0.3562 2.16 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

Table 4.4 shows the agreeability of these two methods. The relative errors are all within 2% thus 

proving that the MDRM is a good alternative to the high computational cost of MCS. 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 4.5 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4. The estimated probability distribution of the time to leak is compared to the MCS (Figure 

4.3) then the probability of failure is estimated by plotting the probability of exceedance (POE). 

From these two figures it is seen that MDRM provides highly accurate approximation for almost 

the entire range of the output response distribution (Figure 4.4). 

Table 4.5. MaxEnt parameters for time to leak. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 22.6948 -2.4025 0.03409   

m=2 6.4310 𝛼𝑖  0.4174 0.9859   

  𝑀𝑋
𝛼𝑖  12.4727 401.8782   

  𝜆𝑖 5.4455 0.9562 27.2316 -1.3553  

m=3 6.4306 𝛼𝑖  0.8193 -0.2335 0.7689  

  𝑀𝑋
𝛼𝑖  144.6556 0.2463 106.2883  

  𝜆𝑖 20.02579 0.008981 0.00009737 1.2785 -2.3776 
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m=4 6.4306 𝛼𝑖  1.1386 -2.1609 0.08132 0.3888 

  𝑀𝑋
𝛼𝑖  1028.4586 3.154E-06 1.6319 10.4808 

 

Cubature was done using the 5 formulas stated earlier. With Formula 1, 8 points were used to 

determine the mean and standard deviation. Formula 2 could not be used because this problem 

does not have 3 or more random variables, this is the same reason Formula 5 could not be used as 

well. Formula 3 and 4 both used 9 points.  

Data points were simulated using equation (1) and a probability paper plot was done. From the 

probability paper plot, it was determined that a Weibull distribution most accurately depicted the 

probability density function for equation (1). Once the means and standard deviations were found 

using the cubature method, the shape and scale factors were calculated and a MCS of 106 

simulations was done to determine the PDF and POE of each formula (1, 3, and 4). Table 4.6 

compares the means and standard deviations of the Cubature Formulas, MCS and MDRM. 

Table 4.6. Means and Standard Deviations of the response. 

TL MDRM 

(31 

Trials) 

MCS (106 

Simulations) 

Formula 1 Formula 3 Formula 4 

Mean 438.36 437.0078 437.03 598.21 599.14 

St. Dev 152.76 155.6737 155.67 234.39 243.69 

M_RE(%) 0.31 NA 0.005 36.9 37 

S_RE(%) 1.87 NA 0.002 50.6 56.5 

Note: M_RE is the mean relative error and S_RE is the standard deviation relative error, 

compared to MCS, where Relative Error (%) =  
|𝑀𝐶𝑆−𝑥|

𝑀𝐶𝑆
×  100 

From Table 4.6 it is seen that Formula 1 gives the closest values to MCS and MDRM whereas 

Formulas 3 and 4 are not close at all. Formula 1 was selected as the “best” cubature formula in 

terms of being able to efficiently be able to achieve the statistical moments with the highest 
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accuracy for multiple examples (Xu & Lu, 2017) and in this case gives values that are even more 

accurate than the MDRM. This is clearly seen here between the 3 formulas and also on the PDF 

and POE plots below, Figure 4.3 and 4.4. 

 

Figure 4.3. Probability Distribution of the response. 



43 
 

 

Figure 4.4. Probability of Exceedance (POE) of the response.  

In this example there are only 3 random variables; with this low amount of random variables 

Cubature formulae provide a more accurate answer than the MDRM that is also achieved more 

efficiently. This is seen in the graphs above and in Table 4.6. 

4.2.2 Observations 

 

From this problem and the one solved in the previous chapter it is observed that Cubature formulae 

do not match up with efficiency and accuracy of MDRM as the number of random variables 

increase. The number of points needed for Cubature formulae increase exponentially as the number 

of random variables increase whereas the accuracy stays the same as compared to MDRM. Since 

this is the case the problems done from here on out will not be done using Cubature formulae, only 

MDRM and MCS.  
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4.3 Problem with Epistemic Variable 
 

4.3.1 Time to Leak for a Pipe Problem with Epistemic Random Variable 

 

To show the impact of the separation of variables, as aleatory and epistemic, the time to initiation 

(𝑇𝐼) is subject to epistemic uncertainty while the crack growth rate (𝑅) is subject to aleatory 

uncertainty. Figure 4.5 outlines the process required to solve a problem of this nature. 

 

Figure 4.5. Two-staged nested Monte Carlo Simulation/ Multiplicative Dimensional Reduction 

Method approach involving separated aleatory and epistemic random variables 
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The time to initiation is sampled as part of the outer epistemic loop while the crack growth rate is 

part of the inner aleatory loop, this is a second order random variable probabilistic model 

definition. Table 4.7 defines each variable. The outcome of the second-order uncertainty is that the 

probability of time to leak will be random as well. The uncertainty in the probability of the time to 

leak will be further influenced by the degree of uncertainty of the distribution parameters (Duan, 

Wang & Kozluk, 2015). 

This was problem was also solved using both Monte Carlo Simulation (MCS) and Multiplicative 

Dimensional Reduction Method (MDRM). 

Table 4.7. Variables. 

Variable Type of Distribution  Parameters of Distribution 

𝜶 Normal (3.5,0.5) – (mean, st.dev) 

𝑻𝑰 Weibull (α,480 months) – (shape, scale) 

𝑾 Constant 40 mm 

𝑹 Normal (5 mm/month, 1 mm/month) – (mean, st.dev) 

 

Using MCS, 100 simulations were taken for the outer loop and 104 simulations were taken for the 

inner loop. To solve this problem using MCS, the outer loop values are simulated first. Then by 

taking each of the 100 simulated values; 104 simulations of the time to initiation and crack growth 

rate are taken, and each corresponding time to leak is calculated. Figure 4.6 shows the cumulative 

distribution of time to leak, 𝑇𝐿. 
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Figure 4.6. Cumulative distribution function of time to leak. 

 

The MDRM was done using the fifteenth order (L=15) Gauss quadrature and considering two 

input random variables (n=2).  Even though alpha is now a random variable it does not go into the 

input grid and therefore the number of random variables is still two. If for example there were 2 

epistemic variables, then for each evaluation point (ex. (2 × 15) = 30 hypothetical evaluation 

points, ((2 × 15) + 1) × 30 = 930 hypothetical response evaluations for this case) the other 

random variable is held to its mean value. 15 input grids are generated to evaluate the response. 

The Gauss Hermite and Gauss Laguerre formulas are adopted since one random variable and alpha 

follows Normal distribution and the other follows Weibull distribution. In total there are 

((2 × 15) + 1) × 15 = 465 response evaluations. The first step is to generate the 15 alpha values. 

Then for each of the 15 alpha values (Table 4.8), an input grid is generated (Table 4.9). For each 

evaluation point, the other random variable is fixed to its mean value.  
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Table 4.8. Alpha values to be used. 

 zj 𝜶 

1 -6.36394788 0.318026 

2 -5.19009359 0.904953 

3 -4.19620771 1.401896 

4 -3.28908242 1.855459 

5 -2.43243682 2.283782 

6 -1.60671006 2.696645 

7 -0.79912906 3.100435 

8 -2.32E-16 3.5 

9 0.799129068 3.899565 

10 1.606710069 4.303355 

11 2.432436827 4.716218 

12 3.289082424 5.144541 

13 4.196207711 5.598104 

14 5.190093591 6.095047 

15 6.363947889 6.681974 

 

Table 4.9. Input Grid for the response evaluation of alpha 4. 

Random 

Variable 

Trial zJ TI (months) R 

(mm/month) 

W 

(mm) 

TL 

(months) 

 1 0.093307812 133.6836444 5 40 141.6836 

 2 0.49269174 327.7589841 5 40 335.759 

 3 1.215595412 533.259154 5 40 541.2592 

 4 2.269949526 746.6486117 5 40 754.6486 

 5 3.667622722 966.9777806 5 40 974.9778 

 6 5.425336627 1194.154981 5 40 1202.155 

 7 7.565916227 1428.577772 5 40 1436.578 

TI 8 10.12022857 1671.047613 5 40 1641.721 

 9 13.13028248 1922.805431 5 40 1712.383 

 10 16.65440771 2185.670626 5 40 2235.435 

 11 20.7764789 2462.334124 5 40 2485.713 

 12 25.62389423 2756.962767 5 40 2772.542 

 13 31.40751917 3076.577833 5 40 3088.366 

 14 38.53068331 3434.884829 5 40 3444.407 

 15 48.02608557 3867.887286 5 40 3875.887 

 16 -6.363947889 426.2927152 -1.36 40 396.9661 

 17 -5.190093591 426.2927152 -0.19 40 215.8701 

 18 -4.196207711 426.2927152 0.80 40 476.0568 

 19 -3.289082424 426.2927152 1.71 40 449.672 
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 20 -2.432436827 426.2927152 2.57 40 441.8717 

 21 -1.606710069 426.2927152 3.39 40 438.0807 

 22 -0.799129068 426.2927152 4.20 40 435.8146 

R 23 -2.32E-16 426.2927152 5.00 40 434.2927 

 24 0.799129068 426.2927152 5.80 40 433.1903 

 25 1.606710069 426.2927152 6.61 40 432.3472 

 26 2.432436827 426.2927152 7.43 40 431.6745 

 27 3.289082424 426.2927152 8.29 40 431.1183 

 28 4.196207711 426.2927152 9.20 40 430.6423 

 29 5.190093591 426.2927152 10.19 40 430.2181 

 30 6.363947889 426.2927152 11.36 40 429.8126 

Fixed 

mean 

values 

31 N/A 426.2927152 5.00 40 434.2927 

Note: zj denotes the Gauss Laguerre and Gauss Hermite points. 

The next step is to calculate the mean (𝜌𝑖) and the mean square (𝜃𝑖) of an 𝑖𝑡ℎ cut function is 

approximated as a weighted sum (Table 4.10). Then the MDRM approximation is used to calculate 

the statistical moment of the response function (Table 4.11).  

Table 4.10. Output Grid for each cut function evaluation for alpha 4. 

Random 

Variable 

Trial wJ TL wj x TL 𝝆𝒊 wj x TL
2 𝜽𝒊 

 1 0.218234886 141.68364 30.9203  4380.90  

 2 0.342210178 335.75898 114.900  38578.7  

 3 2.63E-01 541.25915 142.366  77056.9  

 4 0.126425818 754.64861 95.4070  71998.8  

 5 4.02E-02 974.97778 39.2008  38219.9  

 6 0.008563878 1202.1549 10.2951  12376.3  

 7 1.21E-03 1436.5777 1.74175  2502.17  

TI 8 1.12E-04 1641.7209 0.18333 435.0261 300.990 245434 

 9 6.46E-06 1712.3827 0.01106  18.9421  

 10 2.23E-07 2235.4347 0.00049  1.11252  

 11 4.23E-09 2485.7133 1.05E-05  0.02612  

 12 3.92E-11 2772.5417 1.09E-07  0.00030  

 13 1.46E-13 3088.3658 4.5E-10  1.39E-06  

 14 1.48E-16 3444.4066 5.11E-13  1.76E-09  

 15 1.60E-20 3875.8872 6.2E-17  2.4E-13  

 16 8.59E-10 396.96608 3.41E-07  0.00013  
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 17 5.98E-07 215.87005 0.00012  0.02784  

 18 5.64E-05 476.05681 0.02686  12.7868  

 19 1.57E-03 449.67198 7.05E-01  316.927  

 20 1.74E-02 441.87168 7.67E+0  3390.67  

 21 0.089417795 438.08068 39.1722  17160.5  

 22 0.232462294 435.81455 101.310  44152.5  

R 23 0.318259518 434.29271 138.217 434.6622 60026.9 188935 

 24 0.232462294 433.19030 100.700  43622.4  

 25 0.089417795 432.347165 38.6595  16714.3  

 26 1.74E-02 431.674530 7.49636  3.24E+0  

 27 1.57E-03 431.118339 0.67571  291.313  

 28 5.64E-05 430.642334 0.02429  10.4635  

 29 5.98E-07 430.218096 0.00025  0.11059  

 30 8.59E-10 429.812618 3.69E-07  0.00015  

Fixed 

mean 

values 

31 N/A 434.292715     

Note: wj denotes the Gauss Laguerre and Gauss Hermite weights. 

To calculate the total mean of the response, the following equation is used: 

Mean of means:  

𝜇𝜇𝑌 = 𝐸[𝜇𝑌] ≈ 𝑚0
(1−𝑚)

×∏[∑𝑤𝑗  × (𝜇𝑌𝑗)

𝐿

𝑗=1

]

𝑚

𝑖=1

 

                                                                                      

(4.2) 

where 𝑤𝑗 denotes the Gauss Laguerre weights corresponding to the alpha values in this case, m is 

the number of distribution parameters that are random variables which in this problem is equal to 

one, 𝑚0 is the mean value from the inner loop when all epistemic variables are held to their mean. 

Since m=1 in this example there is no need to calculate this mean value. 

Mean of mean squares: 

𝜇𝜇2𝑌 = 𝐸[𝜇2𝑌] ≈ 𝑚0
(1−𝑚)

×∏[∑𝑤𝑗  × (𝜇2𝑌𝑗)

𝐿

𝑗=1

]

𝑚

𝑖=1

 

                                                                                      

(4.3) 
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The variance then: 

𝑉𝜇𝑌 = 𝜇𝜇2𝑌 − (𝜇𝜇𝑌)
2
 (4.4) 

Where the standard deviation can be calculated as the square root of the variance. 

Table 4.11. Statistical Moments of the response. 

TL MDRM (465 

Trials) 

MCS (105 Simulations) Relative Error 

(%) 

First Moment 441.7064 440.1863 0.35 

Second Moment 213850.4087 213658.702 0.09 

Standard Deviation 136.9154 139.8482 2.10 

COV 0.3099 0.3177 2.46 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

Table 4.11 shows the agreeability of these two methods. The relative errors are all within 2.5% 

thus proving that the MDRM matches the accuracy of MCS. 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 4.12 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response for alpha 4. The number of fractional moments used 

are m=2, m=3, and m=4. Then the probability of failure is estimated by plotting the probability of 

exceedance (POE). From this figure it is seen that MDRM provides highly accurate approximation 

for almost the entire range of the output response distribution (Figure 4.7). Where the red plots are 

from MCS and the blue plots are from MDRM. The MDRM encapsulates all of the MCS plots. 

Table 4.12. MaxEnt parameters for time to leak for alpha 4. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 -1.6972 0.006356 30.47323   

m=2 6.7984 𝛼𝑖  0.9937 -0.2821   
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  𝑀𝑋
𝛼𝑖  0.006619 0.126   

  𝜆𝑖 4.4183 -0.1845 33.0421 0.1544  

m=3 6.7952 𝛼𝑖  0.8826 -0.5117 0.9142  

  𝑀𝑋
𝛼𝑖  0.08386 174.6405 0.9575  

  𝜆𝑖 706.024 1398.961 -1200.386 733.0901 -397.4088 

m=4 6.7911 𝛼𝑖  -1.2174 0.1214 0.1541 -0.3106 

  𝑀𝑋
𝛼𝑖  2.00E+13 2.79E-11 0.6162 5674.9473 

 

Figure 4.7. Probability of Exceedance (POE) of the response.  

4.3.2 Observations 

After solving this problem it was concluded that it is more efficient to just use MCS rather than 

MDRM when solving an equation based uncertainty analysis with an epistemic variable. The 

number of gauss points chosen for the epistemic variable (15 in this case) determines the number 

of times the MDRM has to be done. There was only one epistemic variable in this problem but 
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with more, the number of times the MDRM would have had to be done would be multiplied by the 

number of epistemic variables. 

4.4 Conclusion 
 

In conclusion, after comparing all the results, it is seen that MDRM is the most logical and “best” 

method to use out of the three methods used in the comparison. MDRM provides the accuracy of 

MCS while decreasing the number of evaluation points significantly. While also being able to 

solve for the probability density function. 

Cubature formulae are also very good but their downside is that as the number of random variables 

in a reliability problem increases the number of trials increase exponentially. Out of the 5 cubature 

formulae the ‘best’ (most efficient and accurate) is Formula 1, which rivals the MDRM when there 

are a low number of random variables (up to 3).  

For MDRM use in equation based double loop problems (where the random variables are split 

between aleatory and epistemic), MDRM is not a good solution as the computational effort 

significantly increases based on the number of gauss quadrature points used for the aleatory 

random variable.  
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5 MDRM for Fire Resistant Design of Structures 
 

5.1 Introduction 
 

5.1.1 Reliability Studies for Fire Resistant Design of Structures 

 

When preparing any sort of structural design is always essential that the designer has a sense of 

the level of risk associated with design they have come up with. However, current practices in the 

standard fire test fail to give any information about the reliability of the structure due to a fire. The 

only information given is the fire resistance under a standard fire. Prescriptive methodology is 

considered to be generally over conservative (Bailey, 2006); which results in a practice in which 

the structural reliability is indeterminate (Lange, Usmani and Torero, 2008) and inconsistent with 

the design for other hazards such as wind and earthquake (Ellingwood, 2005).  

Research that led to the formulation of performance-based methods of structural fire design has 

provided an improved understanding of structural fire resistance (Jeffers et al, 2012). Apart from 

the philosophical basis for the reliability-based design methodology, the probabilistic treatment of 

structural performance in fire is a matter of practicality in understanding the structural responses 

observed in fire resistance tests. For example, in standard fire tests, a large amount of scatter can 

be observed in results from different testing facilities due to variations in heating conditions, 

material properties of the specimens, magnitudes of applied loads, and the degrees of restraint 

provided by the surrounding structure (Witteveen & Twilt, 1981). Furthermore, the fire resistance 

of steel structures is dependent on the level of fire protection that is present. The spray-applied fire 

resistant materials (SFRMs) have large variability’s due to the nature of the materials, the manner 

in which they are applied in the fields and their adhesion and durability characteristics (Ryder, 

Wolin and Milke, 2002). There is a lot of uncertainty in construction as well. What an engineer 
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has designed may not be what ends up being constructed due to this uncertainty. This will also 

affect the fire resistance of the steel. 

The topic of structural reliability in fire is not new, but a review of literature reveals that the 

coverage of this topic is fairly incomplete and although progress has been made, previous work is 

limited to Monte Carlo simulations (Guo & Jeffers, 2015). The work described herein will mainly 

take inspiration from the work of Jeffers et al (2012). Jeffers et al (2012) utilized probabilistic 

methods to evaluate the fire resistance of structures given uncertainties in key model parameters. 

The proposed methodology accounted for the uncertainty stemming from the fire exposure and 

structural resistance parameters. The approach is capable of giving designers the ability to 

rationally evaluate the robustness provided by the various design options by providing a 

quantitative measure of the structure’s reliability. (Jeffers et al, 2012) conducted an analysis of a 

protected steel beam given uncertainties in the fire load and structural resistance parameters via a 

sequentially coupled, stochastic finite element simulation embedded within a Monte Carlo 

simulation. This research demonstrates that a probabilistic treatment of the structural fire problem 

yields a wealth of data that may lead to a better understanding of the factors affecting structural 

fire resistance. 

5.1.2 Objective 

 

The work in this section includes the analysis of a protected steel beam given uncertainties in the 

fire load and structural resistance parameters using a performance-based design embedded within 

a Multiplicative Dimensional Reduction Method (MDRM) and comparing it to Monte Carlo 

simulation (MCS). MCS is overwhelmingly expensive for calculating failure probabilities that are 

relatively small (Madsen et al., 2006), and therefore researchers tend to be less inclined to using 

this method. This research demonstrates that the MDRM is a ‘better’ method (versus MCS) to use 
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in terms of computational effort, while also demonstrating the importance of a reliability analysis; 

which is, that a reliability-based analysis of structural performance in fire provides data that 

enables risk-informed decision making, which is an essential component of performance design. 

5.1.3 Organization 

The organization of this chapter is as follows. Section 5.2 presents the performance based approach 

to solving a fire resistance problem that will be used. Section 5.3 presents the results that were 

obtained by using the performance based approach. This was done using MDRM and MCS and 

the results were compared. Conclusions are summarized in Section 5.4. 

5.2 Performance Based Approach for Calculating Fire Resistance 
 

The following steps must be taken in order to calculate the fire resistance time of a steel beam with 

loads acting all along the beam. 

First the beam properties such as beam span (𝐿), section modulus (𝑍𝑋), beam area (𝐹), beam 

volume (𝑉), steel yield strength (𝑓𝑦), and the dead (𝐺𝑘) and live loads (𝑄𝑘) acting on the beam 

must be known.  

The calculations for the beam at room temperature must be done first to determine if the beam can 

support the loads that will be placed on it. Using the dead and live loads calculate the factored 

design load (𝑤𝑐) and the bending moment (𝑀𝑐𝑜𝑙𝑑
∗ ) caused by this factored design load (units in 

brackets): 

𝑤𝑐 = 1.25𝐺𝑘 + 1.5𝑄𝑘 (
𝑘𝑁

𝑚
) 

                                                                                      

(5.1) 

𝑀𝑐𝑜𝑙𝑑
∗ =

𝑤𝑐𝐿
2

8
 (𝑘𝑁𝑚) 

                                                                                      

(5.2) 
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Next calculate the bending strength (𝑀𝑛) and design flexural strength (𝜙𝑀𝑛) of the beam (units 

in brackets): 

𝑀𝑛 = 𝑍𝑋𝑓𝑦 (𝑘𝑁𝑚)  (5.3) 

𝜙𝑀𝑛 (5.4) 

𝜙 = 0.9 

Now check if the beam will be able to support the loads by determining 𝑀𝑐𝑜𝑙𝑑
∗ < 𝜙𝑀𝑛. If this is 

the case then the beam is good, if not select another beam.  

Now that the calculations at room temperature are done, the next step is to do the calculations for 

when the beam is under a fire load. First calculate the factored design load (𝑤𝑓) and the bending 

moment (𝑀𝑓𝑖𝑟𝑒
∗ ) caused by this factored design load (units in brackets): 

𝑤𝑓 = 𝐺𝑘 + 0.4𝑄𝑘 (
𝑘𝑁

𝑚
) 

                                                                                      

(5.5) 

𝑀𝑓𝑖𝑟𝑒
∗ =

𝑤𝑓𝐿
2

8
 (𝑘𝑁𝑚) 

                                                                                      

(5.6) 

Next calculate the load ratio (𝑟𝑙𝑜𝑎𝑑) between the moment of the beam under fire and the bending 

strength: 

𝑟𝑙𝑜𝑎𝑑 =
𝑀𝑓𝑖𝑟𝑒
∗

𝑀𝑛
 

                                                                                      

(5.7) 

Using the load ratio calculate the limiting steel temperature (𝑇𝑙𝑖𝑚 − °C): 

𝑇𝑙𝑖𝑚 = 905 − 690𝑟𝑙𝑜𝑎𝑑 (5.8) 

From here there are two different ways to continue this problem, one is if the beam is unprotected 

meaning no insulation on the beam to protect it from fire and the other is if the beam is protected 

by insulation. Calculations for both cases will be shown. 
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For unprotected steel beams the time to reach the limiting temperature (also can be referred to as 

the fire resistance) is calculated as follows:    

𝑡 = 0.54
(𝑇𝑙𝑖𝑚 − 50)

(𝐹 𝑉⁄ )0.6
 

                                                                                      

(5.9) 

Where 𝑡 is the time in minutes, and 𝐹 𝑉⁄  is the area to volume ratio (m-1). To determine the area 

to volume ratio first calculate the area of the cross section of the beam (m2) then multiply this by 

1m of length to get the volume (𝑉). Next calculate the perimeter of the cross section and multiply 

it by 1m length to determine the surface area (𝐹). 

For protected steel beams, the properties of the insulation must be known. The properties needed 

are the thickness of the insulation(𝑑𝑖 −𝑚𝑒𝑡𝑒𝑟𝑠), the thermal conductivity of the insulation(𝑘𝑖 −

𝑊/(𝑚𝐾)), the moisture content of the insulation(𝑚 −%), and the density of the insulation(𝜌𝑖 −

𝑘𝑔

𝑚3).  

The time to reach the limiting temperature is calculated as follows: 

𝑡 = 40(𝑇𝑙𝑖𝑚 − 140) [
𝑑𝑖 𝑘𝑖⁄

𝐹 𝑉⁄
]

0.66

 
                                                                                      

(5.10) 

Where t is time in minutes and 𝐹 𝑉⁄  is still calculated the same as it was for unprotected steel 

beams. The insulation causes there to be a time delay which can be calculated as follows: 

𝑡𝑣 =
𝑚𝜌𝑖𝑑𝑖

2

5𝑘𝑖
 

                                                                                      

(5.11) 

The total time (also can be referred to as the fire resistance) is then: 

𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡 + 𝑡𝑣 (5.12) 
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All equations used in the performance based approach were provided by Dr. Venkatesh Kodur 

through his class notes. 

5.3 Problem and Analysis 
 

Firstly, a problem of a W360x900 beam that was unprotected was done. This example had 3 

random variables which were the loads (dead and live) and the steel yield strength. These random 

variables did not cause the final fire resistance to vary much at all which renders the reliability 

analysis useless. Unless there were random variables for the dimensions of the beam itself (i.e. the 

thickness of the web, etc.), then there is no need to conduct a reliability analysis for an unprotected 

beam. The variables in Table 5.1 (other than variables for the spray applied fire resistant material) 

were used to solve this problem, which resulted in a mean of 69.3 and a standard deviation of 0.015 

using MCS. The low standard deviation proves that there is no need to do a reliability analysis in 

this case since most of the values will be near the mean value of 69.3. 

 

Figure 5.1. Protected steel beam exposed to fire: (a) loading, and (b) cross-section. (Jeffers et al, 

2012)  
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Secondly, a problem of a W200x42 beam that is protected by spray applied fire resistant material 

(SFRM) which is seen in Figure 5.1 will be solved considering 6 random variables. This beam 

must achieve a 1-hr fire rating; the probability of failure will be determined. Table 5.1 defines each 

variable that will be used in this problem including the constants. 

Table 5.1. Variables. 

Variable Type of Distribution  Parameters of Distribution 

𝑮𝒌 Normal  (1.05 x nominal, 0.10) – (mean, COV) 

Nominal Value 5.15 kN/m 

𝑸𝒌 Weibull (0.24 x nominal, 0.80) – (mean, COV) 

Nominal Value 3.65 kN/m 

𝒇𝒚 Normal (380 MPa, 0.08) – (mean, COV) 

𝒅𝒊 Lognormal (1.6 mm + nominal, 0.20) – (mean, COV) 

Nominal Value 11.1 mm 

𝒌𝒊 Lognormal (0.12, 0.24) – (mean, COV) 

𝝆𝒊 Normal (300, 0.29) – (mean, COV) 

𝑳 Constant 4.88 m 

𝒁𝑿 Constant 445 x 103 mm3 

𝒎 Constant 15% 

 

This problem was solved using Monte Carlo Simulation (MCS) and the Multiplicative 

Dimensional Reduction Method (MDRM).  

Using MCS, 106 simulations were done for each random variable and each corresponding fire 

resistance was calculated. Figure 5.1 shows the cumulative distribution of fire resistance, 𝑡𝑡𝑜𝑡𝑎𝑙. 

The mean and standard deviation were calculated as 86.7014 and 20.6131 respectively.  
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Figure 5.2. Cumulative distribution function of fire resistance. 

 

The MDRM was done using the fifth order (L=5) Gauss quadrature and considering six input 

random variables (n=6).  An input grid is generated to evaluate the response (Table 5.2). The Gauss 

Hermite and Gauss Laguerre formulas are adopted since 5 random variables follow 

Normal/Lognormal distribution and the other follows Weibull distribution. In total there are 

(6 × 5) + 1 = 31 response evaluations. For each evaluation point, the other random variable is 

fixed to its mean value.  
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Table 5.2. Input Grid for the response evaluation. 

Random 

Variable 

Trial 𝒛𝒋 𝑮𝒌 𝑸𝒌 𝒇𝒚 𝒅𝒊 𝝆𝒊 𝒌𝒊 𝒕𝒕𝒐𝒕𝒂𝒍 

 1 -2.857 3.862577 0.876 380000 0.0127 300 0.12 85.95088857 

 2 -1.3556 4.674459 0.876 380000 0.0127 300 0.12 84.78017668 

𝑮𝒌 3 0 5.4075 0.876 380000 0.0127 300 0.12 83.72315187 

 4 1.3556 6.140541 0.876 380000 0.0127 300 0.12 82.66612707 

 5 2.857 6.952423 0.876 380000 0.0127 300 0.12 81.49541517 

 6 0.26356 5.4075 0.451933 380000 0.0127 300 0.12 83.96774938 

 7 1.4134 5.4075 1.201751 380000 0.0127 300 0.12 83.53526231 

𝑸𝒌 8 3.5964 5.4075 2.070179 380000 0.0127 300 0.12 83.03436236 

 9 7.0858 5.4075 3.072666 380000 0.0127 300 0.12 82.45613882 

 10 12.641 5.4075 4.304354 380000 0.0127 300 0.12 81.74571455 

 11 -2.857 5.4075 0.876 293147.2 0.0127 300 0.12 81.26324151 

 12 -1.3556 5.4075 0.876 338789.8 0.0127 300 0.12 82.7132107 

𝒇𝒚 13 0 5.4075 0.876 380000 0.0127 300 0.12 83.72315187 

 14 1.3556 5.4075 0.876 421210.2 0.0127 300 0.12 84.53547241 

 15 2.857 5.4075 0.876 466852.8 0.0127 300 0.12 85.267784 

 16 -2.857 5.4075 0.876 380000 0.0070723 300 0.12 52.94749539 

 17 -1.3556 5.4075 0.876 380000 0.00952125 300 0.12 66.77819314 

𝒅𝒊 18 0 5.4075 0.876 380000 0.01245337 300 0.12 82.44003426 

 19 1.3556 5.4075 0.876 380000 0.01628847 300 0.12 101.930905 

 20 2.857 5.4075 0.876 380000 0.02192874 300 0.12 129.2606009 

 21 -2.857 5.4075 0.876 380000 0.0127 51.441 0.12 82.72089984 

 22 -1.3556 5.4075 0.876 380000 0.0127 182.0628 0.12 83.2475996 

𝝆𝒊 23 0 5.4075 0.876 380000 0.0127 300 0.12 83.72315187 

 24 1.3556 5.4075 0.876 380000 0.0127 417.9372 0.12 84.19870415 

 25 2.857 5.4075 0.876 380000 0.0127 548.559 0.12 84.7254039 

 26 -2.857 5.4075 0.876 380000 0.0127 300 0.059346184 144.3458713 
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 27 -1.3556 5.4075 0.876 380000 0.0127 300 0.084664032 109.6505375 

𝒌𝒊 28 0 5.4075 0.876 380000 0.0127 300 0.116686476 85.55588052 

 29 1.3556 5.4075 0.876 380000 0.0127 300 0.160820756 66.76100387 

 30 2.857 5.4075 0.876 380000 0.0127 300 0.229428966 50.72781116 

Fixed mean 

values 

31  5.4075 0.876 380000 0.0127 300 0.12 83.72315187 

Note: zj denotes the Gauss Laguerre and Gauss Hermite points. 
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The next step is to calculate the mean (𝜌𝑖) and the mean square (𝜃𝑖) of an 𝑖𝑡ℎ cut function is 

approximated as a weighted sum (Table 5.3). Then the MDRM approximation is used to calculate 

the statistical moment of the response function (Table 5.4). This table also shows the relative errors 

between the statistical moments obtained by MDRM and MCS which are very low showing a good 

agreement between the two methods. 

Table 5.3. Output Grid for each cut function evaluation. 

Random 

Variable 

Trial 𝒘𝒋 𝒕𝒕𝒐𝒕𝒂𝒍 𝒘𝒋

× 𝒕𝒕𝒐𝒕𝒂𝒍 

𝝆𝒊 𝒘𝒋

× 𝒕𝒕𝒐𝒕𝒂𝒍
𝟐 

𝜽𝒊 

 1 1.13E-02 85.95089 0.97  83.48  

 2 0.22208 84.78018 18.83  1596.24  

𝑮𝒌 3 0.53333 83.72315 44.65 83.73 3738.41 7010.81 

 4 0.22208 82.66613 18.36  1517.63  

 5 1.13E-02 81.49542 0.92  75.05  

 6 0.52176 83.96775 43.81  3678.71  

 7 0.39867 83.53526 33.30  2781.98  

𝑸𝒌 8 7.59E-02 83.03436 6.30 83.72 523.31 7008.70 

 9 3.61E-03 82.45614 0.30  24.54  

 10 2.34E-05 81.74571 0.00  0.16  

 11 1.13E-02 81.26324 0.92  74.62  

 12 0.22208 82.71321 18.37  1519.35  

𝒇𝒚 13 0.53333 83.72315 44.65 83.68 3738.41 7001.58 

 14 0.22208 84.53547 18.77  1587.04  

 15 1.13E-02 85.26778 0.96  82.16  

 16 1.13E-02 52.9475 0.60  31.68  

 17 0.22208 66.77819 14.83  990.33  

𝒅𝒊 18 0.53333 82.44003 43.97 83.49 3624.70 7142.90 

 19 0.22208 101.9309 22.64  2307.39  

 20 1.13E-02 129.2606 1.46  188.80  

 21 1.13E-02 82.7209 0.93  77.32  

 22 0.22208 83.2476 18.49  1539.05  

𝝆𝒊 23 0.53333 83.72315 44.65 83.73 3738.41 7010.32 

 24 0.22208 84.1987 18.70  1574.42  

 25 1.13E-02 84.7254 0.96  81.12  

 26 1.13E-02 144.3459 1.63  235.44  

 27 0.22208 109.6505 24.35  2670.12  

𝒌𝒊 28 0.53333 85.55588 45.63 87.01 3903.87 7828.33 
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 29 0.22208 66.761 14.83  989.82  

 30 1.13E-02 50.72781 0.57  29.08  

Fixed 

mean 

value 

31  83.72315     

Note: wj denotes the Gauss Laguerre and Gauss Hermite weights. 

Table 5.4. Statistical Moments of the response. 

𝒕𝒕𝒐𝒕𝒂𝒍 MDRM (31 Trials) MCS (106 Simulations) Relative Error 

(%) 

First Moment 86.7324 86.7014 0.0358 

Second Moment 7969.4401 7942.0331 0.345 

Standard Deviation 21.1404 20.6131 2.558 

COV 0.2437 0.2377 2.524 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 5.5 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4. The estimated probability distribution of the fire resistance is compared to the MCS 

(Figure 5.2). The probability distribution functions (PDF) match up accurately. 

Then the probability of failure is estimated by plotting the probability of exceedance (POE). When 

two fractional moments (m=2) are used, the POE does not match up that well but as the number 

of fractional moments increase the POE converges and shows that MDRM provides very accurate 

approximation for almost the entire range of the output response distribution, which can be seen 

in Figure 5.3 below. 
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Table 5.5. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 705.9991 2328.6595 -2761.634   

m=2 4.1396 𝛼𝑖  -0.2072 -0.1187   

  𝑀𝑋
𝛼𝑖   1.8676 0.7455   

  𝜆𝑖 705.9865 -1168.1429 62.4452 585.2371  

m=3 4.1391 𝛼𝑖  -0.01267 0.2164 -0.2017  

  𝑀𝑋
𝛼𝑖   2.8492 1.6988 0.3411  

  𝜆𝑖 705.9864 712.1589 -3108.974 1586.1246 280.1337 

m=4 4.1391 𝛼𝑖  0.08442 -0.00833 -0.08365 -0.1205 

  𝑀𝑋
𝛼𝑖   0.7868 1.1397 1.6746 1.2813 

 

The probabilities of failure, meaning the probability that this beam will last less than 60 minutes 

during a fire, from both MCS and MDRM can be seen in Table 5.6 below.  

Table 5.6. Probability of failure; probability that the steel beam will fail before 60 minutes. 

𝒕𝒕𝒐𝒕𝒂𝒍 MDRM (%) MCS (%) Relative Error 

(%) 

Probability of 

Failure 

7.9654 7.2774 9.4541 

 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 
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Figure 5.3. Probability Distribution of the response.

 

Figure 5.4. Probability of Exceedance (POE) of the response.  
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5.4 Conclusion 
 

In this example MDRM only needs 31 trials compared to the 1,000,000 trials used for MCS. Even 

though only 31 trials were needed the accuracy did not suffer. For MDRM the mean and standard 

deviation are 86.7324 and 21.1404 respectively, and for MCS the mean and standard deviation are 

86.7014 and 20.6131. Which give a relative error of 0.0358 and 2.558 for mean and standard 

deviation respectively which are very low numbers that show agreeability between the two 

methods. 

The probability distribution function (PDF) graphs and the probability of exceedance (POE) 

graphs (Figure 5.2 and 5.3) also show a good agreement between the two methods. The PDF graphs 

match up very accurately The POE graphs provide a very accurate approximation for almost the 

entire range of the output response distribution as the number of fractional moments increase. 

When only two fractional moments are used there is not a good agreement between MCS and 

MDRM but as the number of fractional moments increase the graphs converge and show good 

agreement between MCS and MDRM. 

The suitability of MDRM was determined by considering an application of a protected steel beam 

under natural fire. The 1-h rated beam was found to have a probability of failure of 7.9654% under 

natural fire exposure which indicates that the beam is likely to survive a fire for 1-h. However, 

discussion is needed amongst the fire safety engineering community to determine what an 

acceptable percentage for the probability of failure is so engineers can do reliability studies based 

on that number.  

In summary, this study shows the importance of applying a reliability analysis of structural fire 

resistance which provides an enhanced understanding of the factors affecting the resistance of 



68 
 

structures to fire and offers a means for improving the design to meet performance objectives. 

Which in this case is done by using the Multiplicative Dimensional Reduction Method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

6 MDRM for Geomechanics Problems 

6.1 Introduction 

6.1.1 Reliability Analysis for Geomechanics 

Engineering design with a consideration of soil is a difficult task because there are many important 

sources of uncertainty that could lead to over- or under-designing. Measurements of soil properties 

along with detailed observation suggest considerable variability in soil properties, not only from 

site to site but even within samples at a single site (Christian & Baecher, 2003).  

There are multiple different ways to apply a reliability analysis such as First-Order Reliability 

Method (FORM), Second Order Reliability Method (SORM), First Order Second Moment 

(FOSM), or Monte Carlo Simulation (MCS). MCS is perhaps the most well-known and easiest to 

implement. When the complete output distribution is of interest, MCS is the generic approach to 

solve the problem (Zhang, 2013).  

However as discussed previously the fact that most reliability analysis methods are 

computationally expensive is the reason why there are not a lot of risk and reliability analyses done 

in the field of geomechanics. Thus, the main motivation behind this research is to use the 

Multiplicative Dimensional Reduction Method which is a computationally efficient, robust, and 

easy to implement method that can be compared to the accuracy of MCS. Using this method for 

geomechanics problems will provide evidence to support the claims of accuracy and computational 

efficiency and hopefully make it so more engineers do a reliability analysis instead of a 

deterministic one. 
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6.1.2 Objective 

The work in this section includes 4 problems. These problems are based on solving equations and 

finite element analyses. The first two problems are equation based which require substituting 

random variables into the equation and the second two problems are finite element analyses which 

require substituting random variables into finite element models. These problems show the 

accuracy and computational efficiency of MDRM compared to MCS. MCS is overwhelmingly 

expensive for calculating failure probabilities that are relatively small (Madsen et al., 2006), and 

therefore researchers tend to be less inclined to using this method. This research demonstrates that 

the MDRM is a ‘better’ method (versus MCS) to use in terms of computational effort. It also 

demonstrates the importance of a reliability analysis. The importance is that a reliability-based 

analysis of soil integrity provides data that enables risk-informed decision making. 

6.1.3 Organization 

The organization of this chapter is as follows. Section 6.2 presents a step by step detailed 

calculation of MDRM for a 1D consolidation problem (settlement of foundation). This was 

compared to MCS. Section 6.3 presents a simple 1D consolidation problem (determining degree 

of consolidation) was is done using MDRM and MCS, and the results are compared. These first 

two sections deal with equation based problems. Section 6.4 presents a vertical drain problem. 

This problem was done using finite element analysis. The area of influence is modeled in 

ABAQUS and meshed. The mesh is then output into a FORTRAN program provided by Dipanjan 

Basu. This is done using MDRM and MCS and the results and computational effort are compared. 

Section 6.5 presents a concrete infinite beam on an elastic foundation problem. This problem is 

also done using a finite element analysis. The foundation is modeled using two different models, 

the two parameter Pasternak Model and Modified Vlasov Model. Each foundation model is done 
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twice for a static and dynamic load. This is done using MDRM and MCS and the results and 

computational effort are compared. Finally, Section 6.6 discusses the conclusions that were made. 

6.2 Detailed Calculation Steps of MDRM 

To show a step by step detailed calculation using MDRM a simple 1D consolidation problem will 

be solved in which the settlement of the foundation will be determined. This problem will also 

compare the accuracy of MDRM to MCS. Computational efficiency will not be looked at in this 

example since only equations are used to solve the problem and not a finite element analysis. The 

problem is to determine the settlement of a flexible, circular foundation of diameter 2.0 m. The 

axial load is 1200 kN. The soil properties are taken as random variables which are defined in Table 

6.1 below. The equations that will be used to solve this problem are: 

𝑞𝑏 =
𝑄

𝜋 (
𝐵
2)

2 
                                                                                      

(6.1) 

𝑞𝑏 =
1200

𝜋 (
2
2)

2 
                                                                                       

𝑞𝑏 = 382 𝑘𝑃𝑎                                                                                        

and 

𝑤 =
𝑞𝑏𝐵(1 − 𝜇

2)

𝐸
 

                                                                                      

(6.2) 

Where Q is the axial load, B is the diameter of the foundation, 𝑞𝑏 is a distributed load, 𝜇 is the 

Poisson’s ratio and 𝐸 is the elastic modulus of soil. 

Table 6.1. Variables  

Variable Type of Distribution  Parameters of Distribution 

𝑬 Lognormal (10500 kPa, 30%) – (mean, coefficient of variance) 

𝝁 Lognormal (0.45, 7%) – (mean, coefficient of variance) 
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This problem was solved using Monte Carlo Simulation (MCS), and the Multiplicative 

Dimensional Reduction Method (MDRM). 

Using MCS, 10000 simulations were done for each random variable and each settlement of the 

foundation was determined. The 10000 MCS values determined for E and 𝜇 were substituted into 

the settlement equation to solve for the statistical moments and the probability density function. 

Figure 6.1 shows the cumulative distribution of the settlement of the foundation. The mean and 

standard deviation were calculated as 0.06306 and 0.01905 respectively.  

 

Figure 6.1. Cumulative distribution function of settlement of the foundation obtained by 

simulations 

To use MDRM, the input grid must first be assembled. The first step to assembling the input grid 

is determining the gauss quadrature that will be used for each random variable according to the 

type of distribution. In this case both random variables are lognormal therefore the Probabilists' 

Gauss-Hermite integration formula, weights, and points will be used. Since random variables are 
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of lognormal distribution the shape and scale parameters must be solved for using the following 

equations: 

𝜁 =  √ln (1 +
𝜎2

𝜇2
)  (shape parameter) and 𝜆 = ln(𝜇) −

1

2
𝜁2(scale parameter) 

In this case the shape and scale factors are 𝜁 = 0.06991 and 𝜆 = −0.8009 for poisons ratio and 𝜁 =

0.29356 and 𝜆 = 9.216042 for the elastic modulus of soil. For this example the MDRM was done 

using the fifth order (L=5) Gauss quadrature, therefore 5 values of 𝑥𝑗 were found for each random 

variable using the following equation from Table 2.1: 

𝑥𝑗 = exp (𝜆 + 𝜁𝑧𝑗) 

Trial 1 for elastic modulus of soil for example will be done as follows: 

𝑥1 = exp(𝜆 + 𝜁𝑧1) 

𝑥1 = exp(9.216042 + 0.29356 (−2.85697)) 

𝑥1 = 4347.4279 

Trial 4 for poisons ratio for example will be done as follows: 

𝑥4 = exp(𝜆 + 𝜁𝑧4) 

𝑥4 = exp(−0.8009 + 0.06991 (1.35563)) 

𝑥4 = 0.4935 

This step will be done a total of 5 times for each random variable which will result in 10 trials plus 

one more trial at which the random variables will both be kept at their mean. In total, there are 

(2 × 5) + 1 = 11 response evaluations. For each evaluation point, the other random variable is 

fixed to its mean value. The corresponding values of each trial will then be substituted back into 
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the equation that is being solved to determine the response values of each trial. An example of this 

step is shown below and the input grid is shown in Table 6.2: 

𝑤 =
𝑞𝑏𝐵(1 − 𝜇1

2)

𝐸1
 

𝑤 =
383 × 2(1 − 0.452)

4347.4279
 

𝑤 = 0.1401 m 

Table 6.2. Input Grid for the response evaluation. 

Random 

Variable 

Trial 𝑬 𝝁 Settlement of 

Foundation (m) 

 1 4347.427999 0.45 0.140149532 

 2 6755.357941 0.45 0.090193592 

𝑬 3 10057.17599 0.45 0.060582613 

 4 14972.82452 0.45 0.040693057 

 5 23265.8917 0.45 0.026188122 

 6 10500 0.36762298 0.062928377 

 7 10500 0.40831033 0.060631235 

𝝁 8 10500 0.44890154 0.058099465 

 9 10500 0.49352802 0.055039295 

 10 10500 0.54815014 0.050899239 

Fixed mean 

value 

11 10500 

 

0.45 0.058027619 

 

Note: zj denotes the Gauss Hermite points. 

The next step is to calculate the mean (𝜌𝑖) and the mean square (𝜃𝑖) of an 𝑖𝑡ℎ cut function which 

is approximated as a weighted sum. To do this the response values must first be multiplied by the 

corresponding Gaussian weights and the response values squared must also be multiplied by the 

Gauussian weights which are shown in Table 6.3. Using these values the first moment and second 

moments for each variable can be calculated. The first moment of the modulus of elasticity of soil 

can be calculated as follows using equation 2.12: 
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𝜌𝐸 =∑𝑤𝑗

5

𝑗=1

ℎ(𝐸𝑗 , 𝜇0) 

𝜌𝐸 = 0.00157766 + 0.02003019 + 0.03231052 + 0.00903711 + 0.0002948  

𝜌𝐸 = 0.063250295 

Similarly, the second moment of the poisons ratio can be calculated as follows using equation 

2.13:  

𝜃𝜇 =∑𝑤𝑗

5

𝑗=1

[ℎ(𝐸0, 𝜇𝑗)]
2 

𝜃𝜇 = (4.45775E − 05)+ 0.000816399 + 0.001800281 + 0.000672752 + (2.91639E − 05) 

𝜃𝜇 = 0.003363173 

These values as well as all the other moments can be found in Table 6.3.
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Table 6.3. Output Grid for each cut function evaluation. 

Random 

Variable 

Trial 𝒘𝒋 Settlement 

(𝒘) 
𝒘𝒋 ×𝒘 𝝆𝒊 𝒘𝒋 ×𝒘

𝟐 𝜽𝒊 

 1 1.13E-02 0.140149532 0.00157766  0.000221109  

 2 0.22208 0.090193592 0.02003019  0.001806595  

𝑬 3 0.53333 0.060582613 0.03231052 0.063250295 0.001957456 0.004360628 

 4 0.22208 0.040693057 0.00903711  0.000367748  

 5 1.13E-02 0.026188122 0.0002948  7.72025E-06  

 6 1.13E-02 0.062928377 0.00070838  4.45775E-05  

 7 0.22208 0.060631235 0.01346498  0.000816399  

𝝁 8 0.53333 0.058099465 0.03098619 0.057955656 0.001800281 0.003363173 

 9 0.22208 0.055039295 0.01222313  0.000672752  

 10 1.13E-02 0.050899239 0.00057297  2.91639E-05  

Fixed Mean 

Value 

11  0.058027619 

 

    

Note: wj denotes the Gauss Hermite weights. 
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Then the MDRM approximation is used to calculate the statistical moments of the response 

function. The mean of the response is calculated as follows using equation 2.14: 

𝜇𝑌 = 𝐸[𝑌] ≈  ℎ0
(1−𝑛) ×∏𝜌𝑖

𝑛

𝑖=1

 

𝜇𝑌 = 0.058027619
(1−2) × 0.063250295 × 0.057955656 

𝜇𝑌 = 0.063171855 

The mean square of the response is calculated as follows using equation 2.15: 

𝜇2𝑌 = 𝐸[𝑌
2] ≈  ℎ0

(2−2𝑛) ×∏𝜃𝑖

𝑛

𝑖=1

 

𝜇2𝑌 =  0.058027619
(2−2(2)) × 0.004360628 × 0.003363173 

𝜇2𝑌 = 0.004355407 

Using the mean and mean square the variance can then be calculated using equation 2.16: 

𝑉𝑌 = 𝜇2𝑌 − (𝜇𝑌)
2 

𝑉𝑌 = 0.004355407 − (0.063171855)2 

𝑉𝑌 = 0.000364724 

The standard deviation can then be calculated by taking the square root of the variance. Table 6.4 

shows all the statistical moments of the response from both MDRM and MCS. This table also 

shows the relative errors between the two methods which are very low showing a good agreement 

between the two methods. 
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Table 6.4. Statistical Moments of the response. 

Settlement of 

Foundation (m) 

MDRM (11 Trials) MCS (10000 

Simulations) 

Relative Error 

(%) 

First Moment 0.063171855 0.063069361 0.16251105 

Second Moment 0.004355407 0.004340762 0.337377552 

Standard Deviation 0.019097745 0.019053035 0.234658499 

COV 0.302314138 0.302096537 0.072030391 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. The 

MaxEnt code must be used here to solve for the Lagrange multipliers (𝜆𝑖) and the fractional 

exponents (𝛼𝑖). The program should be ran about 100 times or more, in this example the program 

was ran 100 times. Each time the fractional exponent must be randomized to find the minimum 

function evaluation. The fractional exponents and Lagrange multipliers for the lowest function 

evaluation must then be saved. Using these fractional exponents and Lagrange multipliers the 

fractional moments, 𝜆0, and estimated PDF can be calculated. The fractional moment for m=2 and 

i=1 can be calculated as follows using equation 2.20: 

𝑀𝑌
𝛼1 = 𝐸[𝑌𝛼1] ≈ ℎ0

𝛼1(1−𝑛)∏∑𝑤𝑗

𝐿

𝑗=1

[ℎ𝑖(𝑥𝑗)]
𝛼1

𝑛

𝑖=1
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𝑀𝑌
𝛼1 = 0.058027619−1.3151(1−2)

× [1.13E − 02(0.140149532)−1.3151 + 0.22208(0.090193592)−1.3151

+ 0.53333(0.060582613)−1.3151 + 0.22208(0.040693057)−1.3151 + 1.13E

− 02(0.026188122)−1.3151]

× [1.13E − 02(0.062928377)−1.3151 + 0.22208(0.060631235)−1.3151

+ 0.53333(0.058099465)−1.3151 + 0.22208(0.055039295)−1.3151 + 1.13E

− 02(0.050899239)−1.3151] 

𝑀𝑌
𝛼1 = 0.0002096 

𝜆0 can then be solved substituting the fractional exponents and Lagrange multipliers and then 

performing the following integral using equation 2.22: 

𝜆0 = ln [ ∫ exp(−∑𝜆𝑖

𝑚

𝑖=1

∞

0

𝑦𝛼𝑖)𝑑𝑦] 

Using the fractional exponents, Lagrange multipliers and 𝜆0 the estimated PDF can be obtained by 

expanding the following equation and substituting a range of values, y, so a graph can be plotted 

using equation 2.23: 

𝑓𝑌(𝑦) = exp(−∑𝜆𝑖

𝑚

𝑖=0

𝑦𝛼𝑖) 

Table 6.5 provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used 

to estimate the probability distribution of the response. The number of fractional moments used 

are m=2, m=3, and m=4.  
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Table 6.5. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 -9.5702 6.98E-02 125.1533   

m=2 -2.6043 𝛼𝑖  -1.3151 1.2561   

  𝑀𝑋
𝛼𝑖  2.10E-04 3.74E-04   

  𝜆𝑖 81.23629 279.8922 -289.151 1.07E-04  

m=3 -2.6051 𝛼𝑖  0.4681 0.2113 -2.6841  

  𝑀𝑋
𝛼𝑖  1.43E-04 1.20E+03 4.38E-02  

  𝜆𝑖 -13.1159 2723.707 6.86E-01 -1593.96 229.9049 

m=4 -2.6032 𝛼𝑖  5.3209 -0.7794 3.5828 1.4461 

  𝑀𝑋
𝛼𝑖  2.18E+02 1.34E-04 3.80E-01 1.41E-05 

 

The estimated probability distribution of the settlement of the foundation is compared to the MCS 

(Figure 6.2). The probability distribution functions (PDF) match up spot on and there are no 

differences in the PDF plots between the two methods. 

Then the probability of failure is estimated by plotting the probability of exceedance (POE) (Figure 

6.3). The POE matches up very well. The MDRM plots converge to the MCS plot, this can be seen 

as the fractional moment increase it gets closer to the MCS plot. 

In conclusion it can be seen that MDRM provides the same accuracy of MCS in a lesser amount 

of trials/simulations. 
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Figure 6.2. Probability Density Function of the response. 

 

Figure 6.3. Probability of Exceedance (POE) of the response.  
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6.3 Simple 1D Consolidation Problem 

Another equation based example is done to provide further evidence that the Multiplicative 

Dimensional Reduction Method provides similar accuracy to that of Monte Carlo Simulation. This 

example is a simple 1D consolidation problem will be solved in which the consolidation of soil 

after 2 years will be determined. Computational efficiency will not be looked at in this example 

since only equations are used to solve the problem and not a finite element analysis. The problem 

will be solved based on the following Fourier series solution: 

𝑢(𝑧, 𝑡) = ∑
2𝑢𝑖
𝑛𝜋

∞

𝑛=1

(1 − cos 𝑛𝜋) sin (
𝑛𝜋𝑧

2𝐻𝑑𝑟
) exp(

−𝑛2𝜋2𝑐𝑣𝑡

4𝐻𝑑𝑟
2 ) 

                                                                                      

(6.3) 

From this Fourier series solution, the following equation for time factor can be derived, which will 

be used in calculations: 

𝑇 =
𝑐𝑣𝑡

𝐻𝑑𝑟
2 

                                                                                      

(6.4) 

The equation used for degree of consolidation can be derived from the following equation: 

𝑈(𝑇) = 1 −
∫ 𝑢(𝑧, 𝑡)
𝐻𝑑𝑟
0

𝑑𝑧

𝐻𝑑𝑟𝑢𝑖
 

                                                                                      

(6.5) 

The equation for degree of consolidation is: 

𝑈 = √
4𝑇

𝜋
 

                                                                                      

(6.6) 

Where T is the time factor, 𝑐𝑣 is the coefficient of consolidation in m2/years, t is the time in years, 

𝐻𝑑𝑟 is the maximum vertical distance the water has to travel in m, and U is the degree of 

consolidation. 
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For this problem two random variables were taken which are 𝑐𝑣 and the height of the soil layer, H. 

These random variables along with the constants are defined in Table 6.6. 

Table 6.6. Variables 

Variable Type of Distribution  Parameters of Distribution 

𝑯 Normal (3, 0.15306) – (mean, standard deviation) 

𝒄𝒗 Lognormal (0.2, 0.1) – (mean, standard deviation) 

𝒕 Constant 2 years 

 

This problem was solved using Monte Carlo Simulation (MCS), and the Multiplicative 

Dimensional Reduction Method (MDRM). 

Using MCS, 10000 simulations were done for each random variable and each degree of 

consolidation after 2 years was determined. The 10000 MCS values determined for H and 

𝑐𝑣, substituted into the time factor and degree of consolidation equations to determine the 

moments, and the probability density function. Figure 6.4 shows the cumulative distribution of the 

degree of consolidation after 2 years. The mean and standard deviation were calculated as 0.4626 

and 0.1143 respectively.  
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Figure 6.4. Cumulative distribution function of degree of consolidation after 2 years. 

The MDRM was done using the fifth order (L=5) Gauss quadrature and considering two input 

random variables (n=2).  An input grid is generated to evaluate the response (Table 4). The Gauss 

Hermite formulas are adopted since the random variables follow normal and lognormal 

distribution. In total there are (2 × 5) + 1 = 11 response evaluations. For each evaluation point, 

the other random variable is fixed to its mean value. The values for H and 𝑐𝑣 shown below in Table 

6.7 are then taken and substituted into the time factor and degree of consolidation equations to 

determine the results. 

Table 6.7. Input Grid for the response evaluation. 

Random 

Variable 

Trial 𝒄𝒗 𝑯 Degree of Consolidation 

after 2 yrs 

 1 0.046393244 3 0.22914278 

 2 0.09429105 3 0.3266736 

𝒄𝒗 3 0.178885438 3 0.44995211 

 4 0.339374733 3 0.61975288 
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 5 0.689755597 3 0.8835404 

 6 0.2 2.56269605 0.55695224 

 7 0.2 2.79250639 0.51111765 

𝑯 8 0.2 3 0.47576643 

 9 0.2 3.20749361 0.44498897 

 10 0.2 3.43730395 0.41523802 

Fixed mean 

value 

11 0.2 3 0.47576643 

Note: zj denotes the Gauss Hermite points. 

The next step is to calculate the mean (𝜌𝑖) and the mean square (𝜃𝑖) of an 𝑖𝑡ℎ cut function is 

approximated as a weighted sum (Table 6.8). Then the MDRM approximation is used to calculate 

the statistical moment of the response function (Table 6.9). This table also shows the relative errors 

between the statistical moments obtained by MDRM and MCS which are very low showing a good 

agreement between the two methods. 
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Table 6.8. Output Grid for each cut function evaluation. 

Random 

Variable 

Trial 𝒘𝒋 U after 2 

years 

𝒘𝒋 × 𝑼 𝝆𝒊 𝒘𝒋 ×𝑼
𝟐 𝜽𝒊 

 1 1.13E-02 0.22914278 2.58E-03  5.91E-04  

 2 0.22208 0.3266736 7.25E-02  2.37E-02  

𝒄𝒗 3 0.53333 0.44995211 2.40E-01 0.462680824 1.08E-01 0.226354031 

 4 0.22208 0.61975288 1.38E-01  8.53E-02  

 5 1.13E-02 0.8835404 9.95E-03  8.79E-03  

 6 1.13E-02 0.55695224 6.27E-03  3.49E-03  

 7 0.22208 0.51111765 1.14E-01  5.80E-02  

𝑯 8 0.53333 0.47576643 2.54E-01 0.477016615 1.21E-01 0.228145722 

 9 0.22208 0.44498897 9.88E-02  4.40E-02  

 10 1.13E-02 0.41523802 4.67E-03  1.94E-03  

Fixed Mean 

Value 

11  0.47576643     

Note: wj denotes the Gauss Hermite weights. 
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Table 6.9. Statistical Moments of the response. 

Degree of Consolidation 

after 2 yrs 

MDRM (11 Trials) MCS (10000 

Simulations) 

Relative 

Error (%) 

First Moment 0.463897 0.462612 0.277595071 

Second Moment 0.228146 0.227083 0.46794171 

Standard Deviation 0.11378 0.114338 0.487661837 

COV 0.245271 0.247157 0.763138473 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 6.10 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4.  

Table 6.10. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 -11.2039 1.5641 14.8481   

m=2 -0.7982 𝛼𝑖  -1.3151 1.2561   

  𝑀𝑋
𝛼𝑖  0.106699958 0.122852389   

  𝜆𝑖 128.3307 165.6812 -288.819 0.03882  

m=3 -0.7993 𝛼𝑖  0.4681 0.2113 -2.6841  

  𝑀𝑋
𝛼𝑖  0.09723 8.2904 0.4202  

  𝜆𝑖 -7.5808 1.6903 12.3769 -7.9791 6.526 

m=4 -0.7984 𝛼𝑖  -3.9118 1.3176 -3.735 -3.6569 

  𝑀𝑋
𝛼𝑖  0.636994 4.899731 19.81892 0.393433 

 

The estimated probability distribution of the degree of consolidation after 2 years is compared to 

the MCS (Figure 6.5). The probability distribution functions (PDF) match up spot on and there are 

no differences in the PDF plots between the two methods. 
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Then the probability of failure is estimated by plotting the probability of exceedance (POE) (Figure 

6.6). The POE matches up very well. The MDRM plots converge to the MCS plot, this can be seen 

as the fractional moment increase it gets closer to the MCS plot. 

In conclusion it can be seen that MDRM provides the same accuracy of MCS in a lesser amount 

of trials/simulations. 

 

Figure 6.5. Probability Density Function of the response. 
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Figure 6.6. Probability of Exceedance (POE) of the response.  

6.4 Vertical Drains 

Techniques such as preloading are needed to increase the strength and stiffness of soils due the 

fact that thick deposits of soft, saturated clay have low shear strength, high compressibility and 

low hydraulic conductivity (Prezzi & Basu, 2007). Installation of vertical drains are combined with 

preloading to speed up the consolidation process and hence increase the strength gain rate (Holtz, 

1987; Balasubramaniam, Alfaro and Bergado, 1993). The prefabricated vertical drains (PVDs) are 

installed at regular intervals in a square, rectangular or triangular pattern (Anderson and Bergado, 

1996). The area of influence of PVDs installed in triangular and square patterns is shown below in 

Figure 6.7 (left) and (right).  PVDs are installed using closed-ended mandrels; the installation of 

the PVDs significantly disturbs the surrounding soil which creates a disturbed zone around the 

PVD (Prezzi & Basu, 2007). The disturbed zone consists of two zones: the smear zone and the 

transition zone (Anderson and Bergado, 1996; Miura, Park and Madhav, 1993). Since the mandrel 
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displaces and drags down the surrounding soil during PVD installation, the size of the mandrel 

cross section determines the size of the smear and transition zones (Prezzi & Basu, 2007), this can 

be seen in Figure 6.8. 

 

Figure 6.7. Area of influence of PVD of triangular spacing (left) and square spacing (right). 

 

Figure 6.8. Dimensions of smear and transition zones in terms of mandrel size. 

The degree of disturbance in the smear zone is described in terms of the ratio 𝑘ℎ𝑠 𝑘ℎ𝑜⁄ , where 𝑘ℎ𝑠 

is the hydraulic conductivity in the smear zone for horizontal flow and 𝑘ℎ𝑜 is the in situ hydraulic 

conductivity for the horizontal flow (Madhav, Prezzi and Basu, 2009).  
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A reliability analysis is done to determine the time factor at 90% consolidation using PVDs in 

square and triangular pattern. To solve this problem the method from (Prezzi & Basu, 2007; 

Madhav, Prezzi and Basu, 2009) is used. A quadrant of the total area of influence of a PVD is 

modeled and meshed in ABAQUS (since the total are of influence of a PVD is symmetrical only 

one quadrant has to be modeled). Next the connectivity matrix of the elements and the coordinates 

of all the nodes are output from ABAQUS and then input into the code provided by Dr. Dipanjan 

Basu. The code is ran and the time factor at 90% consolidation is taken as the output. This code 

employs a finite element analysis to solve the problem. Two random variables are assumed those 

being the spacing and the degree of disturbance in the smear zone (𝑘𝑠𝑚𝑒𝑎𝑟𝑟𝑎𝑡𝑖𝑜). All variables used 

for both patterns are shown in the Table 6.11 below. 

Table 6.11. Variables  

Variable Type of Distribution  Parameters of Distribution 

𝑺𝒑𝒂𝒄𝒊𝒏𝒈 Normal (1, 0.10204) – (mean, standard deviation) 

𝒌𝒔𝒎𝒆𝒂𝒓𝒓𝒂𝒕𝒊𝒐 Lognormal (0.35, 0.12755) – (mean, standard deviation) 

 

The PVD size is taken as 100 mm X 4 mm. The mandrel size is taken as 125 mm X 50 mm (a X 

d). The smear zone is therefore taken as 175 mm X 100 mm (𝑙𝑥  ×  𝑙𝑦) where p is 2. The transition 

zone is therefore taken as 525 mm X 450 mm (𝑡𝑥  ×  𝑡𝑦) where p is 9. The boundary condition 

where the drain is located is a dirichlet boundary where u=0. 

6.4.1 Triangular Pattern 

The triangular pattern is modeled in ABAQUS by taking one quadrant of Figure 6.7 (left). 

This problem was solved using Monte Carlo Simulation (MCS), and the Multiplicative 

Dimensional Reduction Method (MDRM). 
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Using MCS, 1000 simulations were done for each random variable and each corresponding time 

factor (TF) at 90% consolidation was determined. One MCS value of spacing and one MCS value 

of 𝑘𝑠𝑚𝑒𝑎𝑟𝑟𝑎𝑡𝑖𝑜 were used in the method explained above 1000 times. Figure 6.9 shows the 

cumulative distribution of the time factor at 90% consolidation. The mean and standard deviation 

were calculated as 1.5964 and 0.4795 respectively.  

 

Figure 6.9. Cumulative distribution function of time factor at 90% consolidation. 

The MDRM was done using the fifth order (L=5) Gauss quadrature and considering two input 

random variables (n=2).  An input grid is generated to evaluate the response (Table 6.12). The 

Gauss Hermite formulas are adopted since the random variables follow normal and lognormal 

distribution. In total there are (2 × 5) + 1 = 11 response evaluations. For each evaluation point, 

the other random variable is fixed to its mean value. These 11 response evaluations are then used 

in the method explained above. 
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Table 6.12. Input Grid for the response evaluation. 

Random 

Variable 

Trial 𝒌𝒔𝒎𝒆𝒂𝒓𝒓𝒂𝒕𝒊𝒐 𝑺𝒑𝒂𝒄𝒊𝒏𝒈 Time Factor @ 

90% Consolidation 

 1 0.119901116 1 3.46623961 

 2 0.20374465 1 2.249047331 

𝒌𝒔𝒎𝒆𝒂𝒓𝒓𝒂𝒕𝒊𝒐 3 0.328842933 1 1.52981011 

 4 0.530750987 1 1.040849378 

 5 0.901890477 1 0.701820931 

 6 0.35 0.70846403 1.320787826 

 7 0.35 0.86167093 1.395962018 

𝑺𝒑𝒂𝒄𝒊𝒏𝒈 8 0.35 1 1.455066313 

 9 0.35 1.13832907 1.499681671 

 10 0.35 1.29153597 1.541008111 

Fixed mean 

value 

11 0.35 1 1.455066313 

Note: zj denotes the Gauss Hermite points. 

The next step is to calculate the mean (𝜌𝑖) and the mean square (𝜃𝑖) of an 𝑖𝑡ℎ cut function is 

approximated as a weighted sum (Table 6.13). Then the MDRM approximation is used to calculate 

the statistical moment of the response function (Table 6.14). This table also shows the relative 

errors between the statistical moments obtained by MDRM and MCS which are very low showing 

a good agreement between the two methods.
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Table 6.13. Output Grid for each cut function evaluation. 

Random 

Variable 

Trial 𝒘𝒋 TF @ 90% 

Consolidation 

𝒘𝒋 × 𝑻𝑭 𝝆𝒊 𝒘𝒋 × 𝑻𝑭
𝟐 𝜽𝒊 

 1 1.13E-02 3.46623961 3.90E-02  0.135250795  

 2 0.22208 2.249047331 0.499468431  1.123328142  

𝒌𝒔𝒎𝒆𝒂𝒓𝒓𝒂𝒕𝒊𝒐 3 0.53333 1.52981011 0.815893626 1.59343374 1.248162318 2.752880158 

 4 0.22208 1.040849378 0.23115183  0.240594238  

 5 1.13E-02 0.701820931 0.007900398  0.005544665  

 6 1.13E-02 1.320787826 0.014868109  0.019637617  

 7 0.22208 1.395962018 0.310015245  0.432769507  

𝑺𝒑𝒂𝒄𝒊𝒏𝒈 8 0.53333 1.455066313 0.776030517 1.4513103 1.129175863 2.107782992 

 9 0.22208 1.499681671 0.333049305  0.499467939  

 10 1.13E-02 1.541008111 0.017347128  0.026732065  

Fixed Mean  

Value 

11  1.455066313     

Note: wj denotes the Gauss Hermite weights. 
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Table 6.14. Statistical Moments of the response. 

Time Factor at 90% 

Consolidation 

MDRM (11 Trials) MCS (1000 

Simulations) 

Relative Error 

(%) 

First Moment 1.589321 1.596464 0.447467824 

Second Moment 2.740612 2.778651 1.368973749 

Standard Deviation 0.463328 0.479535 3.379704986 

COV 0.291526 0.300373 2.945416955 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 6.15 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4.  

Table 6.15. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 -6.9398 5.35E+00 2.3371   

m=2 0.58519 𝛼𝑖  -1.3151 1.2561   

  𝑀𝑋
𝛼𝑖   2.7104 2.2629   

  𝜆𝑖 -12.6714 1.70E-07 7.7814 5.6248  

m=3 0.5850 𝛼𝑖  -2.7381 -1.1538 0.8298  

  𝑀𝑋
𝛼𝑖   1.9074 0.4814 1.1843  

  𝜆𝑖 -6.5882 6.9676 4.08E-01 7.5366 -7.5838 

m=4 0.58486 𝛼𝑖  -1.1669 1.1727 0.7549 0.3005 

  𝑀𝑋
𝛼𝑖   14.1052 0.3257 2.4957 4.6067 

 

The estimated probability distribution of the displacement at midspan is compared to the MCS 

(Figure 6.10). The probability distribution functions (PDF) match up spot on and there are no 

differences between the two methods. 
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Then the probability of failure is estimated by plotting the probability of exceedance (POE) (Figure 

6.11). The POE matches up very well. The MDRM plots converge to the MCS plot, this can be 

seen as the fractional moment increase it gets closer to the MCS plot. 

 

Figure 6.10. Probability Density Function of the response. 
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Figure 6.11. Probability of Exceedance (POE) of the response.  

6.4.1.1 Computational Time 

The difference in computational time is the main advantage of MDRM. For the analysis of time 

factor at 90% consolidation due to vertical drains, simulation of 1000 iterations of this process 

takes 66.7 hours on a personal computer with Intel I5-4690 4th Generation Processor and 8GB of 

RAM. MDRM approximation based on 11 finite element analyses takes 19 minutes and MaxEnt 

method requires 3.3 minutes. Thus the total time taken by MDRM is 22.3 minutes which is only 

0.56% of the time taken by MCS. The reason why it takes so long to do the MCS is that it is 

required to change the FE model each time due to the random variability of the spacing 1000 times 

versus only having to change it 11 times for MDRM. 
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6.4.2 Square Pattern 

The square pattern is modeled in ABAQUS by taking one quadrant of Figure 6.7 (right). 

This problem was solved using Monte Carlo Simulation (MCS), and the Multiplicative 

Dimensional Reduction Method (MDRM). 

Using MCS, 1000 simulations were done for each random variable and each corresponding time 

factor (TF) at 90% consolidation was determined. One MCS value of spacing and one MCS value 

of 𝑘𝑠𝑚𝑒𝑎𝑟𝑟𝑎𝑡𝑖𝑜 were used in the method explained above 1000 times.  Figure 6.12 shows the 

cumulative distribution of the time factor at 90% consolidation. The mean and standard deviation 

were calculated as 1.6878 and 0.5116 respectively.  
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Figure 6.12. Cumulative distribution function of time factor at 90% consolidation. 

The MDRM was done using the fifth order (L=5) Gauss quadrature and considering two input 

random variables (n=2).  An input grid is generated to evaluate the response (Table 6.16). The 

Gauss Hermite formulas are adopted since the random variables follow normal and lognormal 

distribution. In total there are (2 × 5) + 1 = 11 response evaluations. For each evaluation point, 

the other random variable is fixed to its mean value. These 11 response evaluations are then used 

in the method explained above. 

Table 6.16. Input Grid for the response evaluation. 

Random 

Variable 

Trial 𝒌𝒔𝒎𝒆𝒂𝒓𝒓𝒂𝒕𝒊𝒐 𝑺𝒑𝒂𝒄𝒊𝒏𝒈 Time Factor @ 

90% Consolidation 

 1 0.119901116 1 3.675785887 

 2 0.20374465 1 2.379341088 

𝒌𝒔𝒎𝒆𝒂𝒓𝒓𝒂𝒕𝒊𝒐 3 0.328842933 1 1.613944511 

 4 0.530750987 1 1.094331675 

 5 0.901890477 1 0.73277109 

 6 0.35 0.70846403 1.400554796 

 7 0.35 0.86167093 1.480486878 

𝑺𝒑𝒂𝒄𝒊𝒏𝒈 8 0.35 1 1.534455825 

 9 0.35 1.13832907 1.580517773 

 10 0.35 1.29153597 1.618017173 

Fixed Mean 

Value 

11 0.35 1 1.534455825 

Note: zj denotes the Gauss Hermite points. 

The next step is to calculate the mean (𝜌𝑖) and the mean square (𝜃𝑖) of an 𝑖𝑡ℎ cut function is 

approximated as a weighted sum (Table 6.17). Then the MDRM approximation is used to calculate 

the statistical moment of the response function (Table 6.18). This table also shows the relative 

errors between the statistical moments obtained by MDRM and MCS which are very low showing 

a good agreement between the two methods.
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Table 6.17. Output Grid for each cut function evaluation. 

Random 

Variable 

Trial 𝒘𝒋 TF @ 90% 

Consolidation 

𝒘𝒋 × 𝑻𝑭 𝝆𝒊 𝒘𝒋 × 𝑻𝑭
𝟐 𝜽𝒊 

 1 1.13E-02 3.675785887 4.14E-02  0.152097851  

 2 0.22208 2.379341088 0.528404069  1.257253512  

𝒌𝒔𝒎𝒆𝒂𝒓𝒓𝒂𝒕𝒊𝒐 3 0.53333 1.613944511 0.860765026 1.681825399 1.389226989 3.070577365 

 4 0.22208 1.094331675 0.243029178  0.265954528  

 5 1.13E-02 0.73277109 0.008248804  0.006044485  

 6 1.13E-02 1.400554796 0.015766045  0.02208121  

 7 0.22208 1.480486878 0.328786526  0.486764137  

𝑺𝒑𝒂𝒄𝒊𝒏𝒈 8 0.53333 1.534455825 0.818371325 1.532139303 1.255754648 2.348834522 

 9 0.22208 1.580517773 0.351001387  0.554763931  

 10 1.13E-02 1.618017173 0.018214019  0.029470596  

Fixed Mean 

Value 

11  1.534455825     

Note: wj denotes the Gauss Hermite weights. 
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Table 6.18. Statistical Moments of the response. 

Time Factor at 90% 

Consolidation 

MDRM (11 Trials) MCS (1000 

Simulations) 

Relative Error 

(%) 

First Moment 1.679286 1.687858 0.507846486 

Second Moment 3.063118 3.110617 1.526999277 

Standard Deviation 0.493067 0.511617 3.625754186 

COV 0.293617 0.303116 3.133822709 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 6.19 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4.  

Table 6.19. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 -6.7922 2.34E+00 5.472684636   

m=2 0.64701 𝛼𝑖  1.1947 -1.3936   

  𝑀𝑋
𝛼𝑖   8.1071 0.7406   

  𝜆𝑖 91.1141 -123.0873 32.3623 0.6149  

m=3 0.64637 𝛼𝑖  0.1699 0.5669 -3.4351  

  𝑀𝑋
𝛼𝑖   14.0842 1.6025 0.5044  

  𝜆𝑖 -2.7193 3.3673 4.57E-01 0.1385 -0.2073 

m=4 0.64662 𝛼𝑖  -1.7205 3.0296 4.9947 4.8097 

  𝑀𝑋
𝛼𝑖   7.6822 6.5451 1.3302 0.4057 

 

The estimated probability distribution of the displacement at midspan is compared to the MCS 

(Figure 6.13). The probability distribution functions (PDF) match up spot on and there are no 

differences between the two methods. 
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Then the probability of failure is estimated by plotting the probability of exceedance (POE) (Figure 

6.14). The POE matches up very well. The MDRM plots converge to the MCS plot, this can be 

seen as the fractional moment increase it gets closer to the MCS plot. 

 

Figure 6.13. Probability Density Function of the response. 
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Figure 6.14. Probability of Exceedance (POE) of the response.  

6.4.2.1 Computational Time 

The difference in computational time is the main advantage of MDRM. For the analysis of time 

factor at 90% consolidation due to vertical drains, simulation of 1000 iterations of this process 

takes 58.3 hours on a personal computer with Intel I5-4690 4th Generation Processor and 8GB of 

RAM. MDRM approximation based on 11 finite element analyses takes 15 minutes and MaxEnt 

method requires 3.23 minutes. Thus the total time taken by MDRM is 18.23 minutes which is only 

0.52% of the time taken by MCS. The reason why it takes so long to do the MCS is that it is 

required to change the FE model each time due to the random variability of the spacing 1000 times 

versus only having to change it 11 times for MDRM. 

6.5 Concrete Infinite Beam on an Elastic Foundation 

A problem of a concrete infinite beam on an elastic foundation will be solved to provide another 

example of the computational efficiency provided by MDRM. A MATLAB computer program 
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that uses a finite element analysis, developed by a colleague, Hesham Elhuni, was used to solve 

this problem.  

Random variables were inputted into this program and probability density functions and 

probability of exceedance graphs were generated using both Monte Carlo Simulation and 

Multiplicative Dimensional Reduction Method to compare results and computational effort.  

This program solves for the displacement of a concrete infinite beam on an elastic foundation. 

There are two foundation models used, the Modified Vlasov Model (continuum model) and the 

two parameter Pasternak Foundation Model (discrete model which is done by modelling the soil 

using springs). These two models are used twice once as a static problem and once as a dynamic 

problem. 

The differential equation that is solved by this MATLAB computer program by a finite element 

analysis is: 

𝐸𝐼
𝑑4𝑤

𝑑𝑥4
− 2𝑡𝑠

𝑑2𝑤

𝑑𝑥2
+ 𝑘𝑤 + 𝜌

𝑑2𝑤

𝑑𝑡2
+ 𝑐

𝑑𝑤

𝑑𝑡
= 𝑃𝛿(𝑥 − 𝑣𝑡) 

                                                                                      

(6.7) 

Where w is the transverse deflection of beam (m), E is the modulus of elasticity of the beam (N/m2), 

I is the moment of inertia of the beam (m4), 𝜌 is the mass per unit length of the beam-foundation 

system contributing in vibration (kg/m), c is the coefficient of viscous damping of the system per 

unit length of the beam (N-sec/m2), P is the applied force (N). If a dynamic problem is being solved 

(moving load) then the P is the applied moving concentrated force (N) and a dirac delta function 

(𝛿) is added. Where v is the velocity of the moving load (m/sec), x is the horizontal distance 

measured from left side of the beam (m), and t is the time (sec) (Basu & Elhuni, 2017). When 

solving the two parameter Pasternak Model: 
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𝑡𝑠 = 𝑡𝑠 (6.8) 

𝑘 = 𝑘𝑠 (6.9) 

Where 𝑡𝑠 is the shear parameter of soil (N) and 𝑘𝑠 is the Winkler spring constant (N/m2) (Basu & 

Elhuni, 2017). Figure 6.15 shows the two parameter Pasternak Model. When solving using the 

Modified Vlasov Model: 

2𝑡𝑠 = ∫
𝐸𝑠𝑏

2(1 + 𝜇𝑠)

𝐻

0

∅2𝑑𝑧 

                                                                                      

(6.10) 

𝑘 = ∫
𝐸𝑠𝑏(1 − 𝜇𝑠)

(1 + 𝜇𝑠)(1 − 2𝜇𝑠)

𝐻

0

(
𝑑∅

𝑑𝑧
)
2

𝑑𝑧 

                                                                                      

(6.11) 

Where 𝐸𝑠 is the modulus of elasticity of the soil, H and b are the height and width of the soil model 

respectively, 𝜇𝑠  is the Poisson’s ratio of the soil, and ∅(𝑧) is a function assumed by Vlasov for 

the vertical displacement of the soil. Additional simplifications and derivations of the above two 

formulas are found in (Girija Vallabhan and Das, 1991). Figure 6.16 shows the Modified Vlasov 

Model. 

Figure 6.15. Two Parameter Pasternak Model: static load (left) and dynamic load (right) 
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Figure 6.16. Modified Vlasov Model: static load (left) and dynamic load (right) 

6.5.1 Static Continuum Problem 

This problem will be solved considering that the elastic modulus of soil (𝐸𝑠) and the Poisson's 

ratio (𝜇𝑠)  are random variables using a Modified Vlasov Model as seen in Figure 6.16 (left). The 

beam was considered to be 20 m in length, with a 100 kN static load at the midpoint. 20 m of soil 

was considered on both sides of the beam. Table 6.20 defines each random variable used in this 

problem. 

Table 6.20. Variables. 

Variable Type of Distribution  Parameters of Distribution 

𝑬𝒔 Lognormal (40, 30%) – (mean, coefficient of variance) 

𝝁𝒔 Lognormal (0.4, 7%) – (mean, coefficient of variance) 

 

This problem was solved using Monte Carlo Simulation (MCS), and the Multiplicative 

Dimensional Reduction Method (MDRM). 

Using MCS, 1000 simulations were done for each random variable and each corresponding 

midspan displacement was calculated. Figure 6.17 shows the cumulative distribution of the 
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displacement at midspan. The mean and standard deviation were calculated as 0.000753 and 

0.000221 respectively.  

 

Figure 6.17. Cumulative distribution function of displacement at midspan. 

The MDRM was done using the fifth order (L=5) Gauss quadrature and considering two input 

random variables (n=2).  An input grid is generated to evaluate the response (Table 6.21). The 

Gauss Hermite formulas are adopted since the random variables follow lognormal distribution. In 

total there are (2 × 5) + 1 = 11 response evaluations. For each evaluation point, the other random 

variable is fixed to its mean value. Each response evaluation is then substituted into the MATLAB 

computer program to determine the displacement at midspan.  
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Table 6.21. Input Grid for the response evaluation. 

Random 

Variable 

Trial 𝑬𝒔 𝝁𝒔 Displacement at 

Midspan (m) 

 1 16561630.47 0.4 0.00145803 

 2 25734696.92 0.4 0.001023777 

𝑬𝒔 3 38313051.41 0.4 0.000743463 

 4 57039331.49 0.4 0.000540816 

 5 88631968.37 0.4 0.000381271 

 6 40000000 0.32677598 0.00095386 

 7 40000000 0.36294252 0.000852139 

𝝁𝒔 8 40000000 0.39902359 0.000722201 

 9 40000000 0.43869157 0.000533294 

 10 40000000 0.48724457 0.00018069 

Fixed mean 

value 

11 40000000 0.4 0.000718202 

Note: zj denotes the Gauss Hermite points. 

The next step is to calculate the mean (𝜌𝑖) and the mean square (𝜃𝑖) of an 𝑖𝑡ℎ cut function is 

approximated as a weighted sum (Table 6.22). Then the MDRM approximation is used to calculate 

the statistical moment of the response function (Table 6.23). This table also shows the relative 

errors between the statistical moments obtained by MDRM and MCS which are very low showing 

a good agreement between the two methods. 
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Table 6.22. Output Grid for each cut function evaluation. 

Random 

Variable 

Trial 𝒘𝒋 Displacement 

at Midspan 

(m) 

𝒘𝒋 × 𝒅𝒊𝒔𝒑 𝝆𝒊 𝒘𝒋 × 𝒅𝒊𝒔𝒑
𝟐 𝜽𝒊 

 1 1.13E-02 0.00145803 1.64E-05  2.39E-08  

 2 0.22208 0.00102378 0.00022736  2.32766E-07  

𝑬𝒔 3 0.53333 0.00074346 0.000396511 0.00076468 2.94792E-07 6.18079E-07 

 4 0.22208 0.00054082 0.000120104  6.49545E-08  

 5 1.13E-02 0.00038127 4.29196E-06  1.6364E-09  

 6 1.13E-02 0.00095386 1.07376E-05  1.02422E-08  

 7 0.22208 0.00085214 0.000189243  1.61261E-07  

𝝁𝒔 8 0.53333 0.0007222 0.000385171 0.00070562 2.78171E-07 5.13203E-07 

 9 0.22208 0.00053329 0.000118434  6.31602E-08  

 10 1.13E-02 0.00018069 2.03402E-06  3.67528E-10  

Fixed Mean 

Value 

11  0.0007182     

Note: wj denotes the Gauss Hermite weights. 
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Table 6.23. Statistical Moments of the response. 

Displacement at 

Midspan (m) 

MDRM (11 Trials) MCS (1000 

Simulations) 

Relative Error 

(%) 

First Moment 0.000751285 0.00075181 0.069356 

Second Moment 6.14949E-07 6.14951E-07 0.783699 

Standard Deviation 0.000224768 0.00022302 0.000179043 

COV 0.299178516 0.296646203 0.853647282 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 6.24 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4.  

Table 6.24. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 2.5426 535879.33 -

436558.88 

  

m=2 -6.99816 𝛼𝑖  1.0315 0.9987   

  𝑀𝑋
𝛼𝑖  1.94E-05 6.03E-12   

  𝜆𝑖 3.0734 1869471.1 114325.1 -35224.8  

m=3 -6.99807 𝛼𝑖  2.2499 1.0741 0.8836  

  𝑀𝑋
𝛼𝑖  1.32E-12 4.78E+01 1.78E-10  

  𝜆𝑖 13.7829 -2856.51 4.79E+04 176122.4 -139.237 

m=4 -6.99806 𝛼𝑖  0.80006 4.0995 1.36006 0.2556 

  𝑀𝑋
𝛼𝑖  2.84E+10 6.27E-14 2.25E+15 2.44E+08 

 

The estimated probability distribution of the displacement at midspan is compared to the MCS 

(Figure 6.18). The probability distribution functions (PDF) match up very accurately. 
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Then the probability of failure is estimated by plotting the probability of exceedance (POE) (Figure 

6.19). The POE matches up very accurately and as the number of fractional moments increase the 

MDRM (m=4) matches closer to the MCS. 

 

Figure 6.18. Probability Density Function of the response. 

 

Figure 6.19. Probability of Exceedance (POE) of the response.  
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6.5.1.1 Computational Time 

The difference in computational time is the main advantage of MDRM. For the analysis of a 

concrete infinite beam on an elastic foundation, simulation of 1000 iterations of the computer 

program takes 2.75 hours on a personal computer with Intel I5-4690 4th Generation Processor and 

8GB of RAM. MDRM approximation based on 11 finite element analyses takes 1.5 minutes and 

MaxEnt method requires 4.8 minutes. Thus the total time taken by MDRM is 6.3 minutes which 

is only 3.8% of the time taken by MCS. 

6.5.2 Static Discrete Problem 

This problem will be solved considering that the compressive spring constant (𝑘𝑠) and the shear 

parameter (𝑡𝑠) are random variables using a two parameter Pasternak Model as seen in Figure 6.15 

(left). These two variables come up in the Pasternak foundation model (two parameter foundation 

model) which uses springs to model soil. The beam was considered to be 5 m in length, with a 10 

kN static load at the midpoint. Soil was not considered on either side of the beam. Table 6.25 

defines each random variable used in this problem. 

Table 6.25. Variables. 

Variable Type of Distribution  Parameters of Distribution 

𝒌𝒔 Lognormal (1140000, 30%) – (mean, coefficient of variance) 

𝒕𝒔 Lognormal (161993.8, 30%) – (mean, coefficient of variance) 

 

This problem was solved using Monte Carlo Simulation (MCS), and the Multiplicative 

Dimensional Reduction Method (MDRM). 

Using MCS, 1000 simulations were done for each random variable and each corresponding 

midspan displacement was calculated. Figure 6.20 shows the cumulative distribution of the 
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displacement at midspan. The mean and standard deviation were calculated as 0.0005698 and 

2.46754E-05 respectively.  

 

Figure 6.20. Cumulative distribution function of displacement midspan (m). 

The MDRM was done using the fifth order (L=5) Gauss quadrature and considering two input 

random variables (n=2). The Gauss Hermite formulas are adopted since the random variables 

follow lognormal distribution. In total, there are (2 × 5) + 1 = 11 response evaluations.  For each 

evaluation point, the other random variable is fixed to its mean value. Each response evaluation is 

then substituted into the MATLAB computer program to determine the displacement at midspan. 

MDRM approximation is used to calculate the statistical moment of the response function (Table 

6.26). This table also shows the relative errors between the statistical moments obtained by MDRM 

and MCS which are very low showing a good agreement between the two methods. 

Table 6.26. Statistical Moments of the response. 

Displacement at 

Midspan (m) 

MDRM (11 Trials) MCS (1000 

Simulations) 

Relative Error 

(%) 

First Moment 0.000569871 0.0005698 0.012572977 



114 
 

Second Moment 3.25427E-07 3.25281E-07 0.044944468 

Standard Deviation 2.59504E-05 2.46754E-05 5.167169212 

COV 0.045537252 0.043305318 5.15394823 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, to estimate the response probability distribution. Table 6.27 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4.  

Table 6.27. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 19.4899 -9.21E+14 1.29E+17   

m=2 -9.1575 𝛼𝑖  3.9091 4.5929   

  𝑀𝑋
𝛼𝑖  4.99E-11 2.74E-10   

  𝜆𝑖 61.49108 3.646E+12 -2.7E+09 2.27E+12  

m=3 -9.1486 𝛼𝑖  3.1998122 2.183589 4.686493  

  𝑀𝑋
𝛼𝑖  1.60E-11 8.05E+07 2.09E-04  

  𝜆𝑖 561.8688 7833.243 -2.16E+05 1193946 141438.8 

m=4 -9.1360 𝛼𝑖  0.2557 0.5439 0.8657 0.9454 

  𝑀𝑋
𝛼𝑖  4.22E-01 1.62E+01 1.47E+02 0.1603 

 

The estimated probability distribution of the displacement at midspan is compared to the MCS 

(Figure 6.21). The probability distribution functions (PDF) match up very accurately. Then the 

probability of failure is estimated by plotting the probability of exceedance (POE) (Figure 6.22). 

The POE using MDRM and MCS both match up accurately. 
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Figure 6.21. Probability Density Function of the response. 

 

Figure 6.22. Probability of Exceedance (POE) of the response.  
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6.5.2.1 Computational Time 

For the analysis of a concrete infinite beam on an elastic foundation, simulation of 1000 iterations 

of the computer program takes 50 minutes on a personal computer with Intel I5-4690 4th 

Generation Processor and 8GB of RAM. MDRM approximation based on 11 finite element 

analyses takes 0.5 minutes and MaxEnt method requires 5.5 minutes. Thus, the total time taken by 

MDRM is 6 minutes which is only 12% of the time taken by MCS. 

6.5.3 Dynamic Continuum Problem 

This problem will be solved considering that the elastic modulus of soil (𝐸𝑠) and the Poisson's 

ratio (𝜇𝑠)  are random variables using a Modified Vlasov Model as seen in Figure 6.16 (right). 

The beam was considered to be 5 m in length, with a 10 kN dynamic load starting at the left side 

and moving across the beam. 5 m of soil was considered on both sides of the beam. Table 6.28 

defines each random variable used in this problem. 

Table 6.28. Variables. 

Variable Type of Distribution  Parameters of Distribution 

𝑬𝒔 Lognormal (20, 30%) – (mean, coefficient of variance) 

𝝁𝒔 Lognormal (0.25, 7%) – (mean, coefficient of variance) 

 

This problem was solved using Monte Carlo Simulation (MCS), and the Multiplicative 

Dimensional Reduction Method (MDRM). 

Using MCS, 1000 simulations were done for each random variable and each corresponding 

displacement at the second node was calculated. Figure 6.23 shows the cumulative distribution of 

the displacement at the second node. The mean and standard deviation were calculated as 0.001104 

and 4.107E-05 respectively.  
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Figure 6.23. Cumulative distribution function of displacement at second node when load is at 

initial position (m). 

The MDRM was done using the fifth order (L=5) Gauss quadrature and considering two input 

random variables (n=2). The Gauss Hermite formulas are adopted since the random variables 

follow lognormal distribution. In total there are (2 × 5) + 1 = 11 response evaluations. For each 

evaluation point, the other random variable is fixed to its mean value. Each response evaluation is 

then substituted into the MATLAB computer program to determine the displacement at the second 

node. MDRM approximation is used to calculate the statistical moment of the response function 

(Table 6.29). This table also shows the relative errors between the statistical moments obtained by 

MDRM and MCS which are very low showing a good agreement between the two methods. 

Table 6.29. Statistical Moments of the response. 

Displacement at 

Node 2 (m) 

MDRM (11 Trials) MCS (1000 

Simulations) 

Relative Error 

(%) 

First Moment 0.001103477 0.001103781 0.027511876 

Second Moment 1.21934E-06 1.22002E-06 0.055696176 

Standard Deviation 4.09579E-05 4.10703E-05 0.273797569 

COV 0.037117088 0.037208753 0.246353469 
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Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 6.30 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4.  

Table 6.30. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 700.5949 -2.61E+01 0.00050099   

m=2 -8.6941 𝛼𝑖  -0.5321 -1.9365   

  𝑀𝑋
𝛼𝑖  7.68E-12 3.29E-02   

  𝜆𝑖 493.8763 44.4784 -66.7168 1.21E-13  

m=3 -8.6937 𝛼𝑖  0.6882 -0.3061 -4.8809  

  𝑀𝑋
𝛼𝑖  5.14E-07 9.68E-01 7.16E+00  

  𝜆𝑖 700.5962 1010.034 1.81E+03 -2078.56 566.92 

m=4 -8.6933 𝛼𝑖  0.9243 -0.6284 -0.6139 -0.3167 

  𝑀𝑋
𝛼𝑖  3.16E-01 1.87E+01 1.15E-02 67.2909 

 

The estimated probability distribution of the displacement at node 2 is compared to the MCS 

(Figure 6.24). The probability distribution functions (PDF) using MDRM and MCS both matchup 

accurately. 

Then the probability of failure is estimated by plotting the probability of exceedance (POE) (Figure 

6.25). The POE matches up very accurately. As the number of fractional moments increased, the 

POE converged better and better to the MCS POE.  
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Figure 6.24. Probability Density Function of the response. 

 

Figure 6.25. Probability of Exceedance (POE) of the response.  
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6.5.3.1 Computational Time 

For the analysis of a concrete infinite beam on an elastic foundation, simulation of 1000 iterations 

of the computer program takes 21 hours on a personal computer with Intel I5-4690 4th Generation 

Processor and 8GB of RAM. MDRM approximation based on 11 finite element analyses takes 

11.6 minutes and MaxEnt method requires 5.7 minutes. Thus the total time taken by MDRM is 

17.5 minutes which is only 1.4% of the time taken by MCS. 

6.5.4 Dynamic Discrete Problem 

This problem will be solved considering that the compressive spring constant (𝑘𝑠) and the shear 

parameter (𝑡𝑠)  are random variables using a two parameter Pasternak Model as seen in Figure 

6.15 (right). The beam was considered to be 10 m in length, with a 100 kN dynamic load starting 

at the left side and moving across the beam. Soil was not considered on either side of the beam. 

Table 6.31 defines each random variable used in this problem. 

Table 6.31. Variables. 

Variable Type of Distribution  Parameters of Distribution 

𝒌𝒔 Lognormal (1140000, 80%) – (mean, coefficient of variance) 

𝒕𝒔 Lognormal (161993.8, 30%) – (mean, coefficient of variance) 

 

The coefficient of variance (COV) of 𝑘𝑠 was increased significantly for this problem because when 

a lower value of COV was used the program did not give final displacements that varied which in 

turn did not give good results.  

This problem was solved using Monte Carlo Simulation (MCS), and the Multiplicative 

Dimensional Reduction Method (MDRM). 

Using MCS, 1000 simulations were done for each random variable and each corresponding 

midspan displacement was calculated when the load is at midspan. Figure 6.26 shows the 
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cumulative distribution of the displacement at midspan. The mean and standard deviation were 

calculated as 0.003308 and 0.000222856 respectively.  

 

Figure 6.26. Cumulative distribution function of displacement at midspan when load is at 

midspan (m). 

The MDRM was done using the tenth order (L=10) Gauss quadrature and considering two input 

random variables (n=2). A tenth order Gauss quadrature was used in this case because 5 quadrature 

points did not show the full range of values that could occur with the random variables used. The 

variance of the results using MDRM was used as a guideline to determine that a tenth order Gauss 

quadrature was needed. The Gauss Hermite formulas are adopted since the random variables 

follow lognormal distribution. In total there are (2 × 10) + 1 = 21 response evaluations. For each 

evaluation point, the other random variable is fixed to its mean value. MDRM approximation is 

used to calculate the statistical moment of the response function (Table 6.32). This table also shows 
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the relative errors between the statistical moments obtained by MDRM and MCS which are very 

low showing a good agreement between the two methods. 

Table 6.32. Statistical Moments of the response. 

Displacement at 

Midspan (m) 

MDRM (21 Trials) MCS (1000 

Simulations) 

Relative Error 

(%) 

First Moment 0.003317 0.003308 0.26254 

Second Moment 1.10454E-05 1.0995E-05 0.458412477 

Standard Deviation 0.000206204 0.000222856 7.472123149 

COV 0.062164528 0.067361034 7.714409506 

Note: Relative Error (%) =  
|𝑀𝐶𝑆−𝑀𝐷𝑅𝑀|

𝑀𝐶𝑆
×  100 

The output responses obtained using MDRM are combined with the MaxEnt principle with 

fractional moment constraints, in order to estimate the response probability distribution. Table 6.33 

provides the Lagrange multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) which are used to estimate 

the probability distribution of the response. The number of fractional moments used are m=2, m=3, 

and m=4.  

Table 6.33. MaxEnt parameters for failure pressure. 

Fractional 

Moments 

Entropy i 0 1 2 3 4 

  𝜆𝑖 11.8013 -2.61E+14 3.91E+14   

m=2 -7.2671 𝛼𝑖  4.575 4.6488   

  𝑀𝑋
𝛼𝑖  1.35E-08 4.95E-08   

  𝜆𝑖 16.2638 -1.10E+11 5.25E+12 1.47E+13  

m=3 -7.2374 𝛼𝑖  3.6044 4.344 4.8439  

  𝑀𝑋
𝛼𝑖  1.10E-12 2.68E+02 1.02E-03  

  𝜆𝑖 111.9253 -7069.74 3.90E+09 8.48E+09 9.43E+09 

m=4 -7.1064 𝛼𝑖  0.6768 3.8786 3.4294 3.9879 

  𝑀𝑋
𝛼𝑖  2.10E-02 2.46E-10 3.19E-09 1.32E-10 

 

The estimated probability distribution of the displacement at midspan is compared to the MCS 

(Figure 6.27).  
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The probability distribution functions (PDF) do not match up that well. The MCS and MDRM 

graphs start of the same but then due to the fact that 𝑘𝑠 does not affect the results as intended. In 

fact this variable does not really affect the results at all which results in the poor results that were 

achieved. Then the probability of failure is estimated by plotting the probability of exceedance 

(POE) (Figure 6.28) which also shows a poor match between the two methods due to the same 

reasoning as why the PDF plots did not match. 

 

Figure 6.27. Probability Density Function of the response. 
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Figure 6.28. Probability of Exceedance (POE) of the response.  

6.5.4.1 Computational Time 

For the analysis of a concrete infinite beam on an elastic foundation, simulation of 1000 iterations 

of the computer program takes 6.2 hours on a personal computer with Intel I5-4690 4th Generation 

Processor and 8GB of RAM. MDRM approximation based on 21 finite element analyses takes 6.3 

minutes and MaxEnt method requires 4.2 minutes. Thus the total time taken by MDRM is 10.5 

minutes which is only 2.8% of the time taken by MCS. 

6.6 Conclusions 

Traditional reliability methods are very time consuming and often times make engineers not likely 

to use them. This chapter studies the Multiplicative Dimensional Reduction Method in order show 

that a reliability method exists that has the same accuracy of traditional methods while providing 

much greater computational efficiency.  
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Through the last two examples in this paper the computationally efficiency of MDRM is on full 

display. Without any drop in accuracy MDRM gives results much quicker (0.5% to 12% of time 

taken to complete the problem using MCS) depending on the type of problem. The first two 

examples showed that using MDRM with equations does not help. Instead MCS is more 

computationally efficient when solving an equation based analysis, however the results between 

MCS and MDRM are the same and the number of response evaluations using MDRM are 

significantly less which helps when employing a finite element analysis. MDRM is especially 

useful in the field of geomechanics as a lot of uncertainties exist. With most of the focus being on 

finite element modelling and analyses, pairing it up with a reliability analysis using MDRM offers 

great insight to engineers looking to design with the utmost respect to safety in mind. 
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7 Conclusions and Recommendations 

7.1 Summary 

Chapter 3 presented a model verification to ensure that the code developed to use the multiplicative 

dimensional reduction method was implemented correctly. A simple example was done to compare 

the results of MDRM, MCS and Cubature methods. 

Chapter 4 presented two problems. The first problem was done considering all random variables 

were not designated to be epistemic or aleatory. This problem was done using MDRM, Cubature 

and MCS methods. It was determined that Cubature methods are not as accurate and required more 

trials than MDRM therefore Cubature method was not used after this. The second problem was 

done considering one random variable was epistemic and another was aleatory. This problem was 

done using MDRM and MCS and the results were compared. 

Chapter 5 presented a fire resistance problem. A performance based approach was explained and 

used. This problem was done using MDRM and MCS and the results were compared. 

Chapter 6 presented four geomechanics problems. The first set two problems were equation based 

1D consolidation problems. The first problem was done to show a step by step method of how to 

use MDRM. The results of MDRM were compared to MCS. The second problem was also done 

using both MDRM and MCS and the results were compared. The second set of two problems were 

finite element analyses. The first problem was of vertical drains. For this problem a finite element 

model was created in ABAQUS and meshed. This mesh was then output into a FORTRAN code 

provided by Dipanjan Basu. This problem was done using MDRM and MCS and the results were 

compared. The second problem was of a concrete infinite beam on an elastic foundation. Two 
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foundation models were used (two parameter Pasternak Model and Modified Vlasov Model). Each 

foundation model was done twice once for a static load and once for a dynamic load. 

7.2 Conclusions 

The main conclusion drawn from this research is that MDRM is efficient and it achieves accurate 

results (compared to MCS) in a considerably less number of trials/simulations. In terms of equation 

based problems MDRM is not worth implementing as MCS can be used and will lead to quicker 

results. However, most analysis done in engineering is finite element analyses. This is when 

MDRM provides considerable computational efficiency. Methods such as Cubature formulae were 

also compared but did not offer the same amount of accuracy and efficiency as MDRM did.  

Even when solving an equation based problem an incentive of using MDRM over MCS is that 

MDRM provides the statistical moments, probability distribution, and if needed, the sensitivity 

coefficients, which are related to the response of interest. MDRM paired with the maximum 

entropy principle provides the probability distribution, therefore the probability of failure can be 

calculated from that. Lastly, MDRM is very easy to be implemented but maybe not as easy for the 

code to be developed. However, if a finite element analysis is to be done using a reliability method, 

the time taken to develop a MDRM code is well worth it in order to get quick and precise answers 

that cannot be had using other reliability methods. 

7.3 Recommendations for Future Research 

Future research can be extended more into the field of geomechanics and fire resistant design of 

structures, considering a finite element analysis is done. Both these areas lack the use of reliability 

analysis due to the high number of random variables and the stigma around traditional reliability 

methods that tend to be computationally expensive. More problems done in these fields using 
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MDRM can lead to further use of reliability methods in these fields. Future research can also be 

done for uncertainty problems with an epistemic variable. This paper covered an equation based 

problem but a finite element analysis could be researched and that might make MDRM more useful 

for an uncertainty problem with an epistemic variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

References 

Anderson, L. and Bergado, D. (1996). Soft ground improvement: In lowland and other 

environments. New York, NY: American Society of Civil Engineers. 

Bailey, C. (2006). Advances in fire engineering design of steel structures. Proceedings of the 

Institution of Civil Engineers - Structures and Buildings, 159(1), pp.21-35. 

Balasubramaniam, A., Alfaro, M. and Bergado, D. (1993). Improvement of soft Bangkok clay 

using vertical drains. Geotextiles and Geomembranes, 12(7), pp.615-663. 

Balomenos, G. (2015). Probabilistic Finite Element Analysis of Structures using the 

Multiplicative Dimensional Reduction Method. PhD Thesis: University of Waterloo. 

Basu, D. and Elhuni, H. (2017). Analytical Study for the Dynamic Response of Beams on 

Pasternak Foundation. Proceedings of the 19th International Conference on Soil Mechanics and 

Geotechnical Engineering, Seoul 2017. 

Botev, Z., Taimre, T. and Kroese, D. (2011). Handbook of Monte Carlo methods. United States: 

Wiley-Blackwell. 

Christian, J. and Baecher, G. (2003). Reliability and statistics in Geotechnical engineering. New 

York, NY, United States: John Wiley & Sons. 

Cornell, A. and Benjamin, J. (1970). Probability, statistics and decisions for civil engineers. 7th 

ed. New York: McGraw-Hill Inc.,US. 

Ditlevsen, O. and Kiureghian, A. (2009). Aleatory or epistemic? Does it matter?. Structural 

Safety, 31(2), pp.105-112. 

Duan, X., Wang, M. and Kozluk, M. (2015). Acceptance criterion for probabilistic structural 

integrity assessment: Prediction of the failure pressure of steam generator tubing with fretting 

flaws. Nuclear Engineering and Design, 281, pp.154-162. 

Ellingwood, B. (2005). Load combination requirements for fire-resistant structural design. 

Journal of Fire Protection Engineering, 15(1), pp.43-61. 

Girija Vallabhan, C. and Das, Y. (1991). Modified Vlasov Model for Beams on Elastic 

Foundations. Journal of Geotechnical Engineering, 117(6), pp.956-966. 

Guo, Q. and Jeffers, A. (2015). Finite-element reliability analysis of structures subjected to fire. 

Journal of Structural Engineering, 141(4), p. 

Hietaniemi, J. (2007). Probabilistic simulation of fire endurance of a wooden beam. Structural 

Safety, 29(4), pp.322-336. 



130 
 

Holtz, R. (1987). Preloading with prefabricated vertical strip drains. Geotextiles and 

Geomembranes, 6(1-3), pp.109-131. 

Huang, P. and Delichatsios, M. (2010). Quantitative risk analysis for the response of steel beams 

in fires. Journal of Structural Fire Engineering, 1(4), pp.231-241. 

Iqbal, S. and Harichandran, R. (2010). Capacity reduction and fire load factors for design of steel 

members exposed to fire. Journal of Structural Engineering, 136(12), pp.1554-1562. 

Iqbal, S. and Harichandran, R. (2011). Capacity reduction and fire load factors for LRFD of steel 

columns exposed to fire. Fire Safety Journal, 46(5), pp.234-242. 

Isukapalli, S. (1999). Uncertainty Analysis of Transport-Transformation Models. PhD Thesis: 

New Brunswick Rutgers, The State University of New Jersey. 

Jaynes, E. (1957). Information theory and statistical mechanics. II. Physical Review, 108(2), 

pp.171-190. 

Jeffers, A., Jia, Z., Shi, K. and Guo, Q. (2012). Probabilistic evaluation of structural fire 

resistance. Fire Technology, 49(3), pp.793-811. 

Jensen, E., Van Horn, J. and Eamon, C. (2010). Variability of fire and concrete temperatures and 

the associated uncertainty in structural behavior. Structures in Fire - Proceedings of the Sixth 

International Conference, pp.959-966. 

Jyrkama, M. and Pandey, M. (2016). On the separation of aleatory and epistemic uncertainties in 

probabilistic assessments. Nuclear Engineering and Design, 303, pp.68-74. 

Kozluk, M., Mills, B. and Pagan, S. (2006). Darlington steam generator tube fretting fitness-for-

service: operating experience and structural and leak-rate tests. Proceedings of the 5th CNS 

International Steam Generator Conference. 

Lange, D., Usmani, A. and Torero, j. (2008). The Reliability of Structures in Fire. Structures in 

Fire - Proceedings of the Fifth International Conference, pp.760-770. 

Lennox, W. and Kennedy, C. (2001). Moment operations on random variables, with applications 

for probabilistic analysis. Probabilistic Engineering Mechanics, 16(3), pp.253-259. 

Lind, N. and Hasofer, A. (1974). Exact and Invariant Second Moment Code Format. ASCE 

Journal of the Engineering Mechanics Division, pp.111-121. 

Lind, N., Krenk, S. and Madsen, H. (2006). Methods of structural safety. United States: Dover 

Publications. 

Loucks, D., Beek, E. and Stedinger, J. (2005). Water resources systems planning and 

management. 1st ed. Paris: UNESCO. 



131 
 

Lu, J. and Darmofal, D. (2004). Higher-Dimensional Integration with Gaussian Weight for 

Applications in Probabilistic Design. SIAM Journal on Scientific Computing, 26(2), pp.613-624. 

Madhav, M., Prezzi, M. and Basu, D. (2009). Effect of soil disturbance on consolidation by 

prefabricated vertical drains installed in a rectangular pattern. Geotechnical and Geological 

Engineering, 28(1), pp.61-77. 

Madsen, H. and Ditlevsen, O. (1996). Structural reliability methods. Chichester, United 

Kingdom: Wiley, John & Sons. 

Magnusson, S. and Pettersson, O. (1981). Rational design methodology for fire exposed load 

bearing structures. Fire Safety Journal, 3(4), pp.227-241. 

McNamee, J. and Stenger, F. (1967). Construction of fully symmetric numerical integration 

formulas of fully symmetric numerical integration formulas. Numerische Mathematik, 10(4), 

pp.327-344. 

Melchers, R. (1987). Structural reliability: Analysis and prediction (Ellis Horwood series in civil 

engineering). United Kingdom: Ellis Horwood Ltd , Publisher. 

MIURA, N., PARK, Y. and MADHAV, M. (1993). Modelling and study of smear zones around 

band shaped drains. SOILS AND FOUNDATIONS, 33(4), pp.135-147. 

Mysovskikh, I. (1980). THE APPROXIMATION OF MULTIPLE INTEGRALS BY USING 

INTERPOLATORY CUBATURE FORMULAE. Quantitative Approximation, pp.217-243. 

Ono, T. and Zhao, Y. (2001). Moment methods for structural reliability. Structural Safety, 23(1), 

pp.47-75. 

Pandey, M., Walbridge, S. and Raimbault, J. (2015). Application of the Multiplicative 

Dimensional Reduction Method (M-DRM) to a Probabilistic Fracture Mechanics Problem. 12th 

International Conference on Applications of Statistics and Probability in Civil Engineering. 

Phillips, G. (1980). A survey of one-dimensional and multidimensional numerical integration. 

Computer Physics Communications, 20(1), pp.17-27. 

Prezzi, M. and Basu, D. (2007). Effect of the smear and transition zones around prefabricated 

vertical drains installed in a triangular pattern on the rate of soil consolidation. International 

Journal of Geomechanics, 7(1), pp.34-43. 

Rabitz, H., Rosenthal, C. and Li, G. (2001). High dimensional model representations. The 

Journal of Physical Chemistry A, 105(33), pp.7765-7777. 

Rahman, S. and Xu, H. (2004). A generalized dimension-reduction method for multidimensional 

integration in stochastic mechanics. International Journal for Numerical Methods in 

Engineering, 61(12), pp.1992-2019. 



132 
 

Rosenblueth, E. (1981). Two-point estimates in probabilities. Applied Mathematical Modelling, 

5(5), pp.329-335. 

Ryder, N., Wolin, S. and Milke, J. (2002). An investigation of the reduction in fire resistance of 

steel columns caused by loss of spray-applied fire protection. Journal of Fire Protection 

Engineering, 12(1), pp.31-44. 

Sakji, S., Soize, C. and Heck, J. (2008). Probabilistic uncertainty modeling for 

Thermomechanical analysis of Plasterboard submitted to fire load. Journal of Structural 

Engineering, 134(10), pp.1611-1618. 

Saouma, V. and Puatatsananon, W. (2006). Reliability analysis in fracture mechanics using the 

first-order reliability method and Monte Carlo simulation. Fatigue Fracture of Engineering 

Materials and Structures, 29(11), pp.959-975. 

Schaferkotter, M. and Kythe, P. (2004). Handbook of computational methods for integration. 

Boca Raton: Chapman & Hall/CRC. 

Sobol, I. (1994). A Primer for the Monte Carlo method. Boca Raton, FL, United States: CRC 

Press. 

Stroud, A. (1966). Some Fifth Degree Integration Formulas for Symmetric Regions. 

Mathematics of Computation, 20(93), p.90. 

Stroud, A. and Secrest, D. (1963). Approximate Integration Formulas for Certain Spherically 

Symmetric Regions. Mathematics of Computation, 17(82), p.105. 

Sullivan, T. (2015). Introduction to uncertainty quantification: 2015. Switzerland: Springer 

International Publishing AG. 

Tagliani, A. and Novi Inverardi, P. (2003). Maximum entropy density estimation from fractional 

moments. Communications in Statistics - Theory and Methods, 32(2), pp.327-345. 

Taguchi, G. (1978). Performance analysis design. International Journal of Production Research, 

16(6), pp.521-530. 

Tang, W. and Ang, A. (1984). Probability: Concepts in engineering, planning and design: V. 2: 

Decision, risk and reliability. New York: John Wiley and Sons (WIE). 

Tang, W. and Ang, A. (2006). Probability concepts in engineering: Emphasis on applications to 

civil and environmental engineering, Vol. 1. 2nd ed. New York, NY, United States: Wiley, John 

& Sons. 

Vaidogas, E. and Juocevičius, V. (2008). Reliability of a timber structure exposed to fire: 

estimation using fragility function. Mechanika, 73, pp.35-42. 



133 
 

Van Coile, R., Annerel, E., Caspeele, R. and Taerwe, L. (2013). Full-probabilistic analysis of 

concrete beams during fire. Journal of Structural Fire Engineering, 4(3), pp.165-174. 

Victoir, N. (2004). Asymmetric Cubature Formulae with Few Points in High Dimension for 

Symmetric Measures. SIAM Journal on Numerical Analysis, 42(1), pp.209-227. 

Villanueva, D., Feijóo, A. and Pazos, J. (2013). Multivariate Weibull Distribution for Wind 

Speed and Wind Power Behavior Assessment. Resources, 2(3), pp.370-384. 

Wei, D., Cui, Z. and Chen, J. (2008). Uncertainty quantification using polynomial chaos 

expansion with points of monomial cubature rules. Computers & Structures, 86(23-24), pp.2102-

2108. 

Witteveen, J. and Twilt, L. (1981). A critical view on the results of standard fire resistance tests 

on steel columns. Fire Safety Journal, 4(4), pp.259-270. 

Wright, P., Wright, M., Reeds, J. and Lagarias, J. (1998). Convergence properties of the Nelder--

Mead Simplex method in low dimensions. SIAM Journal on Optimization, 9(1), pp.112-147. 

Xu, H. and Rahman, S. (2004). A univariate dimension-reduction method for multi-dimensional 

integration in stochastic mechanics. Probabilistic Engineering Mechanics, 19(4), pp.393-408. 

Xu, J. and Lu, Z. (2017). Evaluation of Moments of Performance Functions Based on Efficient 

Cubature Formulation. Journal of Engineering Mechanics, p.06017007. 

Xu, J., Chen, J. and Li, J. (2012). Probability density evolution analysis of engineering structures 

via cubature points. Computational Mechanics, 50(1), pp.135-156. 

Zhang, K. and Li, G. (2010). A combined reliability analysis approach with dimension reduction 

method and maximum entropy method. Structural and Multidisciplinary Optimization, 43(1), 

pp.121-134. 

Zhang, X. (2013). Efficient Computational Methods for Structural Reliability and Global 

Sensitivity Analyses. PhD Thesis: University of Waterloo. 

Zhang, X. and Pandey, M. (2013). Structural reliability analysis based on the concepts of 

entropy, fractional moment and dimensional reduction method. Structural Safety, 43, pp.28-40. 

 

 

 

 

 


