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Abstract

Vehicles’ active safety systems use different sensors, vehicle states, and actuators, along

with an advanced control algorithm, to assist drivers and to maintain the dynamics of

a vehicle within a desired safe range in case of instability in vehicle motion. Therefore,

recent developments in such vehicle stability control and autonomous driving systems have

led to substantial interest in reliable road angle and vehicle states (tire forces and vehicle

velocities) estimation. Advances in applications of sensor technologies, sensor fusion, and

cooperative estimation in intelligent transportation systems facilitate reliable and robust

estimation of vehicle states and road angles. In this direction, developing a flexible and

reliable estimation structure at a reasonable cost to operate the available sensor data for the

proper functioning of active safety systems in current vehicles is a preeminent objective of

the car manufacturers in dealing with the technological changes in the automotive industry.

This thesis presents a novel generic integrated tire force and velocity estimation system

at each corner to monitor tire capacities and slip condition individually and to address road

uncertainty issues in the current model-based vehicle state estimators. Tire force estimators

are developed using computationally efficient nonlinear and Kalman-based observers and

common measurements in production vehicles. The stability and performance of the time-

varying estimators are explored and it is shown that the developed integrated structure

is robust to model uncertainties including tire properties, inflation pressure, and effective

rolling radius, does not need tire parameters and road friction information, and can transfer

from one car to another.

The main challenges for velocity estimation are the lack of knowledge of road friction in

the model-based methods and accumulated error in kinematic-based approaches. To tackle

these issues, the lumped LuGre tire model is integrated with the vehicle kinematics in this

research. It is shown that the proposed generic corner-based estimator reduces the number

of required tire parameters significantly and does not require knowledge of the road friction.

The stability and performance of the time-varying velocity estimators are studied and the

sensitivity of the observers’ stability to the model parameter changes is discussed. The

proposed velocity estimators are validated in simulations and road experiments with two

vehicles in several maneuvers with various driveline configurations on roads with different

friction conditions. The simulation and experimental results substantiate the accuracy
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and robustness of the state estimators for even harsh maneuvers on surfaces with varying

friction.

A corner-based lateral state estimation is also developed for conventional cars appli-

cation independent of the wheel torques. This approach utilizes variable weighted axles’

estimates and high slip detection modules to deal with uncertainties associated with lon-

gitudinal forces in large steering. Therefore, the output of the lateral estimator is not

altered by the longitudinal force effect and its performance is not compromised. A method

for road classification is also investigated utilizing the vehicle lateral response in diverse

maneuvers.

Moreover, the designed estimation structure is shown to work with various driveline

configurations such as front, rear, or all-wheel drive and can be easily reconfigured to

operate with different vehicles and control systems’ actuator configurations such as differ-

ential braking, torque vectoring, or their combinations on the front or rear axles. This

research has resulted in two US pending patents on vehicle speed estimation and sensor

fault diagnosis and successful transfer of these patents to industry.
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Chapter 1

Introduction

1.1 Motivation

Cars will become vastly safer and more intelligent through the availability of new tech-

nologies in sensors, actuators, vehicle dynamic control, and autonomous systems. Studies

show that utilizing safety systems such as active Vehicle Dynamics Control (VDC) and

Traction Control System (TCS) plays an essential role in stability of vehicles on various

road conditions with different speed (for example [1–5]), thus reducing the severity of ve-

hicle accidents. In 2014 the National Highway and Traffic Safety Administration in U.S.

estimated VDC (so called Electronic Stability Control, ESC) has saved close to 4000 lives

during the 5-year period 2008 to 2012 and would prevent 156000 to 238000 injuries for

the period in all types of crashes [6]. The United States Insurance Institute for Highway

concluded that vehicles’ active safety systems reduce the likelihood of deadly single-vehicle

crashes by 58% and single-vehicle rollovers by 79%. Transport Canada has also introduced

the new Canada Motor Vehicle Safety Standard 126 which requires a VDC (or ESC) sys-

tem on all passenger vehicles with a gross weight of 4536 kg or less, and manufactured on

or after September 1st, 2011.

Examples of VDC systems already present in passenger vehicles include: anti-lock

braking systems, traction control, differential braking, torque vectoring, and active steering.

These systems require vehicle states (sideslip angle and speed) and individual tire states
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(slip ratio, slip angle, and forces) for robust stability of a vehicle. This need is even more

pronounced in a fully autonomous driving system where a human driver is completely out

of the vehicle control loop.

Tire forces affect the vehicle’s capacity to perform requested maneuvers and can be

measured directly with wheel hub sensors; however, such sensors cost tens of thousands

of dollars, which prohibits their use in production vehicles. On the other hand, force

calculation at each corner (wheel) based on a tire model requires road friction information.

Thereby, even accurate slip ratio/angle information from a high precision GPS does not

result in forces at each tire. Estimation of longitudinal and lateral tire forces is therefore

required. In the literature, these have been estimated using Kalman-based, nonlinear,

sliding mode, and unknown input observers. Force estimators are then assimilated with

velocity observers to provide inputs to active safety systems of traditional and autonomous

vehicles.

Information about longitudinal and lateral velocities is significant contributor in trac-

tion and stability control systems. They can be measured with GPS, however, poor accu-

racy and low bandwidth of available commercial GPSs, particularly for measuring velocity

in the lateral direction, and loss of reception and reliability in road tunnels or in urban

canyons are primary impediments to their use for active vehicle safety systems. Therefore,

reliable velocity estimation that is robust to changing road and environmental conditions,

and variations in model parameters have been a major focus in recent research on vehicle

stability control and autonomous driving systems.

Figure 1.1 illustrates motivation for having vehicle states in a structure of the integrated

holistic vehicle control (HVC)-Estimator.

Two major approaches have been adopted in the literature to tackle velocity estima-

tion problems. One is the modified kinematic-based approach, which implements stochastic

estimators or nonlinear observers using acceleration/yaw rate measurements from the In-

ertial Measurement Unit (IMU). This method does not need tire model information, but

instead sensor bias and noise need to be identified precisely to obtain reliable outcomes.

Moreover, this approach requires a method to cope with low-excitation cases, which bring

about erroneous estimations. To improve estimation results and address low excitation

scenarios, kinematic-based methods could benefit from GPS measurements if reliable data

is available.
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Figure 1.1: Vehicle state estimator and HVC controller

The other velocity estimation practice is model-based and utilizes IMU data (acceler-

ation/yaw rate measurements) and corrects the estimation with tire forces using sliding

mode, nonlinear, and stochastic observers. Although this approach seems promising, it

requires accurate tire parameters and a good perception of road friction, especially for the

tires saturation region, which is not practically feasible. Therefore, developing a holistic

corner-based vehicle state estimator using conventional sensor measurement robust to the

road friction changes and model uncertainties is desirable and is addressed in this research

by designing observers for the consequent time-varying models.

Road grade and bank angles considerably affect the vehicle dynamics and measured

accelerations, thus play a key role in the vehicle state estimation and stability. Thereby,

road angle estimation is an inherent part of state of the art vehicle state estimators and is

tackled in this thesis by implementing unknown input observers on vehicle pitch and roll

dynamics.

1.2 Objectives

The main objective of this thesis is to develop a generic corner-based estimation of the

vehicle states and road angles robust to the road friction conditions regardless of the

vehicles driveline configuration (FWD, RWD, AWD). The following are detailed objectives

of this thesis to provide vehicle states and road angles for VDC systems:
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The first objective of this thesis is real-time estimation of the road and vehicle angles

without using road friction and tire force information. Road and vehicle angles are crucial

in accurate estimation of tire forces, vehicle speeds, and hence in longitudinal and lateral

slip calculations. The road-body kinematics should be employed to relate the vehicle’s

frame, body, and road angles and to increase the accuracy. An Unknown input observer

module is introduced in this thesis which uses estimated vehicle angles and their rates for

the bank/grade estimation.

The second objective of this thesis is to estimate tire forces without having road fric-

tion information for active safety systems in the newly developed Holistic Vehicle Control

(HVC) paradigm. Kalman-based observers are employed on the longitudinal/lateral vehicle

dynamics and wheel dynamics to estimate tire forces in real-time without any road friction

data or any limiting assumption on vertical load distribution. This independent corner-

based estimation structure meets the requirements of the traction and stability control

systems, enhances vehicle safety, and can be transferred from one vehicle to another.

The third objective is to develop reliable real-time holistic velocity estimators at each

corner robust to surface friction changes independent of the powertrain configuration in dif-

ferent driving scenarios, especially for combined-slip and low-excitation maneuvers, which

are arduous for the current vehicle state estimators. The newly proposed velocity estima-

tor in this research combines both kinematic and dynamic-based methods and incorporates

tire deflection states to form a linear parameter-varying (LPV) system in which the road

friction and sensor noises are considered to be uncertainties. Road tests confirm the valid-

ity of the algorithm on slippery roads as well as normal conditions. The current findings

of the friction-independent velocity estimator have important implications on a joint road

friction classification and state estimation scheme. A wheel torque-free lateral velocity

estimator is also required for conventional vehicle applications and is an objective for the

proposed estimators. Moreover, a road friction classifier, which performs in low-excitation

regions as well as near-saturation and nonlinear regions, is another objective of this thesis.

This road classifier can introduce new bounds on model uncertainties, which results in

more accurate and less conservative observers for parameter-varying velocity estimators.

4



1.3 Thesis Outline

The background and literature review of road angle estimation, tire force estimation, and

vehicle velocity estimation is presented in the second chapter of this thesis. The literature

on vehicle state estimation is reviewed considering the fact that surface friction information

is unavailable in the model-based approaches. The literature review on road condition

estimation is also provided in the second chapter.

In the third chapter, a structure is provided for estimation of the road angles. The

body angles are estimated using corners’ displacements measured by the suspension height

sensors installed at four corners. An unknown input observer robust to acceleration noises

and road uncertainties is then developed on the roll and pitch dynamics of the vehicle

to estimate the road bank and grade using body angles. Knowledge of tire parameters

and road friction is not required in the proposed structure. The correlation between the

road angle rates and the pitch/roll rates of the vehicle are also investigated to increase the

accuracy. Performance of the proposed approach in reliable estimation of the road angles

is experimentally demonstrated through vehicle road tests.

In the fourth chapter, a generic corner-based force estimation method to monitor tire

capacities is presented. This is entailed for more advanced vehicle stability systems in

harsh maneuvers. A nonlinear and a Kalman observer is utilized for estimation of the

longitudinal and lateral friction forces. The stability and performance of the time-varying

estimators are explored and it is shown that the developed integrated structure is robust to

model uncertainties, does not require knowledge of the road friction, and can be transferred

from one car to another. Software co-simulations are utilized to test the proposed force

estimation method using MATLAB/Simulink and CarSim packages. Road experiments are

also conducted on different road surface conditions. The simulations and road experiments

demonstrate the effectiveness of the estimation approach in diverse driving conditions.

Chapter five presents a vehicle velocity estimator by integrating the lumped LuGre tire

model and the vehicle kinematics to deal with model-based and kinematic-based velocity

estimation issues. It is shown that the proposed corner-based estimator does not require

knowledge of the road friction, is robust to model uncertainties such as tire parameters

and inflation pressure, and can be easily reconfigured to operate with different vehicles.

The stability of the time-varying longitudinal and lateral velocity estimators is explored.
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An integrated lateral velocity estimator is also developed that is independent of the wheel

torques and utilizes wheel speed, accelerations, yaw rate, and steering angle which are com-

mon in production vehicles. Moreover, a road friction classification approach is discussed

and experimentally verified in low-excitation as well as nonlinear regions in this chapter. A

generic joint estimation algorithm is introduced to classify the road friction condition and

define tire capacities based on matching vehicle lateral responses to the expected responses

on dry and slippery surfaces using pure and combined-slip friction models. The proposed

methods are experimentally validated in several maneuvers with low and high levels of

excitation and various driveline configurations on dry and slippery surfaces. The results

exhibit promising performance of the velocity estimators and road classifier in different

test conditions for both electric and conventional vehicles.
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Chapter 2

Literature Review and Background

This chapter focuses on different approaches of vehicle state estimation, including kinematic-

based and model-based. Tire models and their significance on estimation methods are also

provided. Finally, literature review on road angle and condition estimation is presented.

2.1 Tire Forces

Tire-road forces have played a vital role in state of the art developments in the field of

vehicle state estimation and control. They are incorporated into the lateral dynamics to

estimate vehicle states and analyze the vehicle stability on different roads. Tire curves are

represented by three regions including linear, transient, and nonlinear defined by road fric-

tion coefficient, normal forces, and cornering stiffness. The generated longitudinal/lateral

forces at each tire’s patch during traction, braking, and cornering maneuvers are realized

to depend on the road condition, slip ratio, slip angle, and normal forces which represent

a one-to-one mapping between forces and slip values.

The most widely used static tire model, known as the Magic Formula, was proposed by

Pacejka et al. [7], [8], and Uil [9], and provides a semi-experimental approach for tire force

calculation. This suggested friction expression is derived heuristically from experimental

tests and is generated using specific experimental data that allow independent linear and

angular velocity modulation in the steady-state condition. One advantage of this model
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is that it does not have differential equations in each form of partial or ordinary, making

it an appropriate choice for real-time simulations. This model focuses on the steady-state

response of the tires versus slip and is generated based on empirical data. The Magic

Formula can be described as Y = D sin [C tan−1(Bφ)] + Sy with φ = (1 − E)(X + Sh) +(
E
B

)
tan−1 [B(X + Sh)] where Y could be longitudinal/lateral forces or the self-aligning

moment, Sh, Sy are horizontal and vertical shifts respectively, B is the stiffness factor, C

is the shape factor, D is the peak factor, E is the curvature factor, and Slip ratio/angle

are the input to these equations and are denoted by X.

Steady-state assumption in the aforementioned model will not lead to precise outcomes

during transient acceleration/barking maneuvers. Therefore, dynamic models seem more

reliable for considering the transient phases as examined in [10–12]. Canudas-de-Wit et

al. proposed a dynamic tire-road friction model, known as the LuGre, in [13–15], and

introduced tire deflection as a state. Pre-sliding and hysteresis loops as well as combined

friction characteristics are considered in their model [16].

Compared to other conventional approaches, e.g. Pacejka, the LuGre model utilizes

relative velocities vrx = Reω − vxt and vry = −vyt rather than slip ratio λ = vrx
max{Reω,vxt}

and slip angle α = tan−1 vyt
vxt

where ω is the wheel speed and Re is the tire’s effective rolling

radius. Longitudinal and lateral velocities in the tire coordinates are denoted by vxt and vyt.

The passivity of the transient LuGre makes it a bounded and stable model and prohibits

the divergence of both internal tire states and consequent forces [17]. Accurate force

results will be obtained by considering normal force distributions over the contact patch

and multiple bristle contact points. The average lumped LuGre model [18] symbolizes the

distributed force over the patch line with some simplifications of normal force distribution;

representing average deflection of the bristles, the tire internal lateral state z̄q for each

direction q ∈ {x, y} in the average lumped LuGre model relates the relative lateral velocity

vrq and tire parameters as:

˙̄zq = vrq − (κqRe|ω|+
σ0q|vrq|
θg(vrq)

)z̄q, (2.1a)

µq = σ0qz̄q + σ1q ˙̄zq + σ2qvrq, (2.1b)

in which σ0q, σ1q, σ2q are the rubber stiffness, damping, and relative viscous damping in

longitudinal/lateral directions, respectively. The normalized force of the averaged lumped
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pure-slip LuGre model for each direction is denoted by µq. The force distribution along

the patch line is represented by parameter κq in the average lumped model and can be

a function of time, a constant, or may be approximated by an asymmetric trapezoidal

scheme. The suggested value for κq in [18] is κq = 7
6Lt

, where Lt is the tire patch length.

The function, g(vrq) in the pure-slip model is defined for the longitudinal and lateral

directions as g(vrq) = µcq+(µsq−µcq)e−|
vrq
Vs
|ᾱ , in which µcq, µsq are the normalized Coulomb

friction and static friction, respectively. The Stribeck velocity Vs shows the transition

between these two friction states and the tire parameter ᾱ = 0.5 is assumed for this

study. In the current study, identification of the LuGre tire parameters was done using

the experimental curves of the Chevrolet Equinox standard tires and by utilizing an error

cost function and the nonlinear least square method. The tire curve resulting from the

parameters identified in the lateral direction is compared with the experimental one in

Fig. A.1 in the Appendix. The relative velocities vrx, vry at the tire coordinates of the LuGre

model represent the slip ratio λ and slip angle α in the mostly used tire models such as

Burckhardt [19] and Pacejka [8] models. The level of tire and road adhesion is represented

by introducing the road classification factor θ which may vary between 0 < θ ≤ 1 according

to dry, wet, and icy conditions. Chen and Wang [20] suggested a recursive least square

(RLS) estimator and an adaptive control law with a parameter projection approach for

identification of this road classification parameter. Identification of this factor is also

addressed in [21] by a sliding mode observer for estimation of the maximum transmissible

torque and wheel slip. Steady-state normalized longitudinal and lateral pure-slip LuGre

tire forces are shown in Fig. 2.1 for a traction maneuver on roads with different classification

numbers 0.2 < θ < 0.97, effective radius Re = 0.35 [m], parameters Vs = 6.2, ᾱ = 0.5, tire

stiffness σ0x = 630, σ0y = 182 [1/m], rubber damping σ1x = 0.77, σ1y = 0.80 [s/m], relative

viscous damping σ2x = 0.0014, σ2y = 0.001 [s/m], load distribution factor κx = 8.3, κy =

12.9, normalized Coulomb friction µcx = 1.4, µcy = 1.2, and normalized static friction

µsx = 0.8, µsy = 0.9.

Equations (2.1a), (2.1b) are developed based on the pure-slip condition, which cannot

address the issue of decreasing lateral (or longitudinal) tire capacities due to the longitu-

dinal (or lateral) slip. The combined-slip, i.e. direct correlation between the lateral and

longitudinal slips, LuGre model is proposed by Velenis [16], in which the internal state z̄q

9
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Figure 2.1: Pure-slip LuGre tire model, normalized forces (a) longitudinal (b) lateral

for each direction is described as:

˙̄zq = vrq − C0qz̄q − κRe|ω|z̄q, (2.2)

where C0j = ||M2
c vr||σ0q

g(vr)µ2
cq

and Mc = [µcx 0; 0 µcy]. The transient function g(vr) between

the Columb and static friction in the combined-slip tire model is introduced as:

g(vr) =
||M2

c vr||
||Mcvr||

+

(
||M2

svr||
||Msvr||

− ||M
2
c vr||

||Mcvr||

)
e−|

||vr||
Vs
|0.5 , (2.3)

where Ms = [µsx 0; 0 µsy] and vr = [vrx vry]
T . The final form of the normalized friction

force
(
µj =

Fj
Fzj

)
of the averaged lumped LuGre model with z̄ = [z̄y z̄x]

T yields [16]

µ = σ0z̄ + σ1 ˙̄z + σ2vr, (2.4)

in which µ, z̄,vr ∈ R2 and can be described both in longitudinal and lateral directions in

the combined or unidirectional-slip models. The longitudinal relative velocity is defined

by vrx = λReω and vrx = λvxt for the traction and brake cases, respectively. In addition,

the rubber stiffness is σ0 = [σ0x 0; 0 σ0y], the rubber damping is σ1 = [σ1x 0; 0 σ1y],

and the relative viscous damping is defined by σ2 = [σ2x 0; 0 σ2y], in which σ0q, σ1q

and σ2q, are the rubber stiffness, damping, and relative viscous damping in each direction,

q ∈ {x, y}. Figure 2.2 illustrates the effect of slip angle on the normalized longitudinal
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forces and the effect of longitudinal slip on the normalized lateral forces. It corroborates

the decreased tire capacity especially for the lateral direction in case of employing the

combined-slip model which is close to real behavior of the tire.
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Figure 2.2: Combined-slip LuGre model, normalized tire forces (a) longitudinal (b) lateral

These pure and combined-slip models can be used in road-independent state estimation

approaches [22,23] or incorporated in the lateral dynamics for road classification as will be

described in Chapter 5.

2.2 Tire Force Estimation

Tire forces can be measured at each corner with sensors mounted on the wheel hub, but

their significant cost, required space, and calibration and maintenance make them com-

pletely unfeasible for mass production vehicles. Provided that the tire force calculation

needs road friction, even accurate slip ratio/angle information from the GPS will not en-

gender forces at each corner. Hence, estimation of the longitudinal and lateral tire forces

would be a remedy.

Several studies first have focused on road friction estimation and identification of tire

parameters, in order to estimate longitudinal and lateral tire forces. Alvarez et al. [24]

used a parameter adaptation law, a Lyapunov-based state estimator, and the dynamic
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LuGre model [18] to estimate the road friction and longitudinal forces during an emergency

brake condition. Employing the equivalent output error injection approach, Patel et al.

proposed a second-order and third-order sliding mode observers in [25] to estimate the

friction coefficient and consequently tire forces during brake on the pseudostatic LuGre

[14], dynamic LuGre, and parameter-based friction [26] models. Ghandour et al. [27]

developed a force and road friction estimation structure based on an iterative quadratic

minimization of the error between the developed lateral force estimator and the Dugoff

tire/road interaction model. Rajamani et al. [28] suggested a recursive least square for

road identification and a nonlinear observer for longitudinal force estimation having wheel

torques and accurate slip-ratio data from GPS. These methods rely on simultaneous road

condition identification, which may impose undesirable estimation error produced by the

time-varying model parameters.

Estimation of longitudinal and lateral tire forces independent from the road condition

may be classified on the basis of wheel dynamics and planar kinetics into the nonlinear,

sliding mode, Kalman-based, and unknown input observers. A force estimation method

based on the steering torque measurement is introduced in [29,30], which requires additional

measurements. Hsu et al. provided a nonlinear observer to estimate tire slip angles as well

as the road friction condition in [31] with steering torque measurement.

A high gain observer with inputoutput linearization is proposed by Gao et al. [32]

to estimate the lateral states. An extended Kalman filter (EKF) is employed in [33] to

estimate tire forces and road friction condition simultaneously, which should handle the

low excitation conditions. Baffet et al. [34] proposed a cascaded structure for estimation of

the tire forces and vehicle side-slip angle with a sliding mode observer and EKF. Doumiati

et al. [35] estimated tire forces with planar kinetics, EKF, and unscented Kalman filter

(UKF) [36]. In their approach, longitudinal and lateral force evolution is modelled with

a random walk model. They assume that tire forces and force sums on each track are

associated according to the dispersion of vertical forces.

Cho et al. [37] estimated lateral tire forces using the vehicle’s planar kinetics and a

random-walk Kalman filter. A Kalman-based unknown input observer (UIO) is developed

by Wang et al. [38, 39] for longitudinal and lateral force estimation with the wheel dy-

namics, vehicle’s planar kinetics, measured wheel speeds, wheel torques, and the yaw rate.

Using UKF and the wheel dynamics, Hashemi et al. [22,40] developed a longitudinal force
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estimator robust to road friction changes and uncertainties in the model such as effective

rolling radius, tire inflation pressure, measured wheel speed and torques. Similarly, em-

ploying UKF for an antilock braking control system, Sun et al. [41] proposed a nonlinear

observer robust to the road friction for the slip ratio and longitudinal force estimation.

Their approach is tested during brake maneuvers on different road conditions.

2.3 Vehicle Velocity Estimation

Advanced vehicle active safety systems require dependable vehicle states, which may not

be accessible by measurements, thus needing to be estimated. One major practical issues

that have dominated the vehicle state estimation field is velocity estimation robust to the

road friction changes to have slip ratio, slip angles, and vehicle side slip angle for the active

safety systems. Longitudinal and lateral velocities make major contributions to traction

and stability control systems, respectively and can be measured with GPS, but the poor

accuracy of the mostly practiced conventional GPSs and the loss of reception in some areas

are primary drawbacks.

Literature has adopted three major approaches for longitudinal/lateral velocity estima-

tion. One is the modified kinematic-based approach, which uses acceleration and the yaw

rate measurements from an inertial measurement unit (IMU) and estimates the vehicle

velocities employing Kalman-based [42,43], or nonlinear [44] observers. This method does

not employ a tire model, but instead the sensors bias and noise should be identified pre-

cisely to have a reliable estimation. In addition, low-excitation cases that lead to erroneous

estimation should be handled with this method.

To increase the accuracy of the estimated heading and position, Farrell et al. [45] used

the carrier-phase differential GPS, which requires a base tower and increases the cost signif-

icantly. To remove noises and address the low excitation scenarios, some kinematic-based

methodologies [46, 47] employs accurate GPS, which may be lost and imposes additional

costs on commercial vehicles. Yoon and Peng [48] utilizes two low-cost GPS receivers for

the lateral velocity estimation and compensates the low update rate issue of conventional

GPS receivers by combining the IMU and GPS data using an EKF. They also proposed

a vehicle state estimator by combining data of magnetometer, GPS, and IMU in [49] and
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utilizing a stochastic filter integrated on the Kalman filter to reject disturbances in the

magnetometer.

The other velocity estimation method integrates measured longitudinal/lateral acceler-

ations and uses an observer on tire forces to correct the estimation. This approach requires

a good perception of the road friction and a precise tire model. To deal with the varying

tire parameters and model uncertainties, model scheduling is introduced in [50, 51] using

tire slips. A nonlinear observer is also provided in [52] with simultaneous bank angle esti-

mation to address the unknown tire parameters. An EKF is employed for both longitudinal

and lateral vehicle velocity estimation in [53, 54]. EKF has been used in [55] along with

the Burckhardt model [19] to estimate the vehicle states and tire model parameters; an

EKF with smooth variable structure is also utilized in [56] to estimate tire slip and sideslip

angles. Computational complexities of the EKF justify using a reliable approach such as

UKF without any need for linearization in system dynamics. Antonov et al. employed a

UKF for vehicle state estimation in [57] and provided longitudinal/lateral velocity estima-

tors at each corner. They utilized wheel torques, wheel speeds, and a simplified empirical

Magic formula [8] as the tire model, which requires known tire parameters and road friction.

Similarly, employing UKF and knowledge of the road condition, Wielitzka et al. [58] and

Sun et al. [41] proposed different methods for estimation of the lateral and longitudinal

velocities using Magic formula and LuGre [13] tire models respectively.

Zhang et al. propose a sliding-mode observer in [59] to estimate velocities using wheel

speed sensors, braking torque and longitudinal/lateral acceleration measurements. Their

approach utilizes a sliding-mode observer for the velocity estimation and an EKF for es-

timation of the Burckhardt tire model’s friction parameter. However, this method needs

accurate tire parameters in presence of tire wear, inflation pressure, and road uncertain-

ties. A switched nonlinear observer based on a simplified Pacejka tire model is introduced

by Sun et al. [60] to provide estimates of longitudinal and lateral vehicle velocities and

the tire-road friction coefficient during anti-lock braking. Their approach benefits from

switching in specific cases because of unreliability of the measurements, but it relies on a

predefined zero slip ratio for the longitudinal velocity measurement.

Other studies focus on the velocity estimation robust to the road condition, but im-

plements additional measurements which are not common for conventional cars or require

identification of tire parameters. Hsu et al. proposed a method in [29] and [31] to esti-
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mate the road friction condition and sideslip angle using the steering torque sensor, which

may not be applicable for all production vehicles. Nam et al. [61] presented a sideslip

angle estimation method with a recursive least squares algorithm to improve stability of

in-wheel-motor-driven electric vehicles, but their approach uses force measurements from

the multisensing hub units, which are not available for all electric and conventional cars.

A model-based vehicle lateral state estimator is developed in [62] using a a yaw rate gy-

roscope, a forward-looking monocular camera, an a priori map of road superelevation and

temporally previewed lane geometry. Gadola et al. investigate a Kalman-based lateral

vehicle estimation on a single-track car model in [63] with the Magic formula tire model.

The derivatives of the lateral forces in their approach, however, may amplify noise effects

in the lateral/longitudinal state estimates.

Therefore, developing a holistic vehicle state estimator using conventional sensor mea-

surement (wheel speed, steering angle, and IMU) without using road friction information

is desirable and provided in this thesis.

2.4 Road Angles and Condition Estimation

Several studies investigating the vehicle stability control and state estimation have been

carried out based on known road angles [57,64,65]. Direct measurement of these angles in

real-time is not practical for commercial vehicles due to costs. Therefore, recent develop-

ment in vehicle’s active safety systems have underlined the need for real-time estimation

of the road bank and grade angles as addressed by many recent studies.

Several studies focus on estimation of road inclinations while assuming the road friction

condition is known. A method for dynamic estimation of the road bank angle is discussed

in [66], in which the roll and lateral dynamics are used to develop the bank angle estimator.

The steady-state approximation of the bank angle is used as a reference to calculate the

estimation error and design the observer. This steady-state approximation is obtained using

a linear vehicle model by implementing road friction information and tire characteristics.

To reduce the effects of inaccuracies in transient conditions, a dynamic factor based on the

understeer coefficient in high-friction scenarios is integrated with the observer. Practical

problems in terms of stability control associated with estimation stability due to switching
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between the steady-state and transient conditions should be investigated. A disturbance

observer is developed in [67] to estimate the vehicle roll and bank angle having the tires’

cornering stiffness and the vehicle yaw angle. Zhao et al. introduced a sliding mode

observer in [68] for the velocity estimation with the road angle adaptation. Their method

employs a tire model that requires the road friction and tire parameters. Menhour et al.

suggest an unknown input sliding-mode observer in [69] to estimate the road bank angle.

Their method employs a linear bicycle handling model for the vehicle, which needs tires’

cornering stiffness and road friction information subsequently.

Alternatively, to address the road friction uncertainties, some studies identify the road

friction conditions simultaneously, which may be challenging in itself because of the issues

arising from lack of excitations, tire models, etc. Grip et al. suggest a nonlinear vehicle

sideslip observer in [70] that incorporates time-varying gains and road friction parameters

to estimate the longitudinal/lateral velocities and road angles using a tire model. Their

method suggests concurrent estimation of the vehicle states, road angles, and the road

condition. A time-varying observer is utilized in [71] by Grip et al. for the concurrent

estimation of the road bank and the road-tire friction characteristics. They also modulate

the observer gains based on a set of practical driving scenarios to improve the performance

on low-friction surfaces.

Some approaches do not implement knowledge of the road friction, but do not isolate the

vehicle roll/pitch dynamics from the road inclinations. A road angle estimation is proposed

by Hahn et al. in [72]. The vehicle pitch/roll induced by the suspension deflection is not

separated from the road grade/bank angles. Imsland et al. suggest a nonlinear observer for

the bank angle estimation in [52] to accommodate various road conditions and compared

their method with an extended Kalman filter from the view point of numerical complexity.

An unknown input observer is also proposed in [73] to estimate the lateral states of the

vehicle as well as the bank angle. In their study, the road bank angle is assumed to be

constant and its time-varying characteristics have not been taken into account in the error

dynamics. A proportional integral H∞ filter is proposed by Kim et al. in [74]. They

modified a bicycle model and made the estimation algorithm more robust against model

and measurement uncertainties. In their model, the vehicle roll is not separated from the

road bank.

Other literature has offered methods independent from the road friction and has in-
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cluded roll/pitch dynamics with additional measurements. Utilizing a tire model and

steering torque measurement, Carlson et al. offer a methodology for the separation of the

road angles from the induced vehicle angles in [75] to avoid vehicle rollover. Ryu et al. used

two-antenna GPS receivers to estimate the road bank and compensate the corresponding

roll effect on the vehicle state estimator in [76]. Roll dynamic parameters are also identi-

fied in their method. Hsu and Chen in [77] provide a model-based estimation approach for

the road angles. Their method combines multiple roll and pitch models and a switching

observer scheme. However, knowledge of the vehicle yaw angle, which is not accessible in

commercial vehicles is required in their proposed observer.

Some literature attempted to identify the road condition and estimated vehicle states

simultaneously. Grip et al. suggest a nonlinear sideslip angle observer in [70, 78] that

incorporates time-varying gains and estimates the vehicle states as well as the surface

friction using a tire model. Their method should cope with the noises and uncertainties

imposed by road identification errors due to the lack of excitation. You et al. [79] intro-

duces an adaptive least square approach to jointly estimate the lateral velocities and tires’

cornering stiffness (road friction terms). The road bank angle is also identified in their

approach. However, lateral acceleration measurement noises have not been addressed. A

sliding-mode observer is provided by Magallan et al. in [21] based on the LuGre tire model

[13] to estimate the longitudinal velocity and the surface friction.

To summarize, three main challenges exist in the current studies on the road angle and

condition estimation: a) unknown tire parameters and road friction conditions; b) incor-

porating effects of the vehicle roll and pitch angles; c) using available sensors and available

measurements. Therefore, an estimation approach which tackles these challenges will be

promising. The proposed road angle estimation approach in this thesis is independent of

the road friction, investigates the road-body kinematics to relate the measured angle rates

and the rate of change of the road angles, and is experimentally tested in different driving

scenarios. In addition, the proposed generic road classifier compares the vehicle’s lateral

response with the predicted responses on various road frictions both in low-excitation and

nonlinear regions and is not sensitive to tire parameters.
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Chapter 3

Estimation of the Road Angles

This chapter proposes road bank and grade angle estimators independent of the road fric-

tion without limiting assumptions. The proposed estimation scheme operates in different

driving scenarios as verified by road test experiments. This chapter is structured as fol-

lows. First, estimation of the vehicle body’s angles, observer development on the roll/pitch

dynamics, and the road-vehicle kinematics are provided. Next, an unknown input observer

is proposed for estimation of the road bank and grade angles. Later, the road experiments

to verify the approach in various maneuvers and driving conditions are presented.

3.1 Introduction

The proposed estimation structure is depicted in Fig. 3.1. An unknown input observer is

developed to estimate the road bank and grade angles. The Sprung mass kinematic model

provides vehicle body angles φ̄v, θ̄v for the unknown input estimator.

The body angles are estimated using corners’ displacements measured by the suspension

height sensors installed at corners. The Road-body kinematics module is employed to relate

the vehicle’s frame, body, and road angles. This module relates the road angle rates and

the measured angles rates by the sensors attached to the vehicle body, and provides time

derivatives ˙̄φv−ij ,
˙̄θv−ij of the vehicle body angles. The Unknown input observer module
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Figure 3.1: The proposed structure for the road angle estimation

uses estimated vehicle angles and their rates for the road bank/grade estimation. Details

for each block are presented in the following subsections.

3.2 Sprung Mass Kinematics

The sprung mass kinematics is used to estimate the vehicle’s body roll and pitch angles

φv, θv using corners’ displacements zij. These displacements are measured by the suspension

height sensors installed at corners. A schematic of the sprung mass model and the positions

of the suspension height sensors are depicted in Fig. 3.2

The auxiliary coordinates (xa, ya, za) is a right-handed orthogonal axis system obtained

by rotating the Global coordinates about the zG axis by the vehicle yaw angle ψ. The

intermediate axis system (xi, yi, zi) is given by pitch rotation θ about the ya axis (from

the auxiliary coordinates) [80]. The vehicle frame coordinates (xf , yf , zf ) is also a right-

handed orthogonal axis system located at the center of the frame on undeformed body.

Thus, it is parallel to the plane of the road. The subscript b represents the coordinates

attached to the vehicle body as can be seen from Fig. 3.2. The sensor position vectors in

the frame coordinate system (xf , yf , zf ) are described as follows with i ∈ {f, r} (front and
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Figure 3.2: Height sensors and sprung mass kinematics

rear tracks):

PiL = [di Tri/2 ziL]T , PiR = [di − Tri/2 ziR]T , (3.1)

where df and dr are the longitudinal distances between the origin Of and the front and

rear axles, respectively. The front and rear track widths are denoted by Trf and Trr,

respectively. Relative position vectors ρij,mn between two corners can be obtained by:

ρij,mn = Pmn − Pij, (3.2)

The normal vector for the sprung mass plane is then expressed as the cross product of any

two relative position vectors:

N = ρij,mn × ρij,pq, (3.3)

in which the subscripts ij,mn, pq ∈ {fL, fR, rL, rR} represent front-left (fL), front-right

(fR), rear-left (rL), and rear-right (rR) corners. Therefore, by using any three suspension

height sensor data and corner positions, the respective normal vectors can be written as

N−fL = ρrL,rR × ρrR,fR, N−fR = ρfL,rL × ρrL,rR, N−rL = ρrR,fR × ρfR,fL, and N−rR =

ρfL,rL×ρfL,fR where the subscript −ij represents a scenario in which the suspension height

provided by sensor ij is not used. Subsequently, components N−ij = [N x
−ij N

y
−ij N z

−ij]
T

are used to estimate the vehicle angles. The roll and pitch angles φ̄v−ij , θ̄v−ij can be written

as follows with incorporation of the corresponding normal vector N−ij:

φ̄v−ij = cos−1
N y
−ij

||N−ij||
, θ̄v−ij = cos−1

N x
−ij

||N−ij||
. (3.4)
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Four estimates for the vehicle roll angle, and four estimates for the vehicle pitch angle,

can be obtained using different combinations of the suspension sensors, then a weighted

average will be used as follows to have reliable estimates in case of existing outlier data

due to uneven surfaces at each corner.

The four estimated vehicle’s roll and pitch angles from (3.4) (four combinations of set

of three corners) are examined to check the possibility of being an outlier because of road

disturbances such as bumps and uneven surfaces at each corner. Validity of the vehicle’s

roll/pitch angles is checked at two stages. First, all four angles φ̄v−ij , θ̄v−ij are compared to

each other with variance checking scheme to eliminate the one with the largest deviation.

Second, for each corner, the residuals of the vehicle angle rates are defined as the difference

between the time derivatives of the estimated angles ˙̄φv−ij ,
˙̄θv−ij at 200[Hz]and the measured

vehicle’s angle rates φ̇s, θ̇s:

R ˙̄φ−ij
= |φ̇s − ˙̄φv−ij |, R ˙̄θ−ij

= |θ̇s − ˙̄θv−ij |. (3.5)

When there is no disturbance at each corner, all corners’ residuals R ˙̄φ−ij
, R ˙̄θ−ij

fall below

a certain threshold Tq = Tsq + Teq(|ax|+ |ay|) where q ∈ {φ, θ}. The static minimum value

for the threshold is denoted by Tsq, and Teq introduces the effect of longitudinal/lateral

excitations to the threshold. Low-pass filters can also be utilized to smooth the time

derivatives of the estimated angles. After isolation of the outliers by the mentioned two

tests, weighted vehicle angles φ̄v−ij , θ̄v−ij from each combination of the three corner sensors

are employed in the estimation of the vehicle’s roll/pitch angles as follows [81]:

φ̄v =
∑
ij

γ−ijφ̄v−ij , θ̄v =
∑
ij

γ−ij θ̄v−ij , (3.6)

where the weight of each three sensor combination is denoted by γ−ij and is set to 0.25

(average of the calculated angles) for the case in which there is no outlier. Whenever a

disturbance or an outlier is detected in the suspension height sensor measurement at a

corner, three weights will be zero since the subsequent three estimated body angles by

such an outlier is not reliable. For instance, when there is a disturbance at the front-right

suspension height sensor, its residuals exceed the thresholds Tφ, Tθ, thus the only non-

zero weight will be γ−fR and all other three weights will be zero. When more than one

outlier is identified, the estimated vehicle roll/pitch angles are not valid and the algorithm
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incorporates the previously estimated valid body angles. The estimated vehicle angles

(3.6) are employed for the unknown input observer to estimate the road angles as will be

discussed in the following subsection.

3.3 Unknown Input Observer for Road Angle Estima-

tion

This section presents a methodology to estimate the road angles using unknown input

observers (UIO). The problem of constructing an observer for systems with unknown inputs

(epitomizing disturbances, faults, and uncertainties) has been widely tackled in literature

with realizing full and reduced-order observers [82–85] and turns out to be considerably

useful in diagnosing system faults [86–88]. A general form of the UIO is utilized in this

section to estimate the unknowns (terms representing the road angles) with implementation

of the vehicle body angles and their rates as the outputs. Roll and pitch dynamic models in

the ISO coordinates are used for the proposed UIO and graphically illustrated in Fig. 3.3.

The road bank and grade angles are denoted by φr and θr respectively.

Figure 3.3: Roll and pitch models with the road angles

Employing vehicle kinematics, the roll and pitch dynamics can be expressed as ẋφ =

Aφxφ + Bφuφ and ẋθ = Aθxθ + Bθuθ where the states are xφ = [φv φ̇v]
T , xθ = [θv θ̇v]

T

[89], and the roll and pitch angles of the sprung mass are denoted by φv, θv. The roll and
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pitch dynamics yield:

ẋφ =

 0 1
−Kφ

Ix+msh2
rc

−Cφ
Ix+msh2

rc

xφ +

[
0

mshrc
Ix+msh2

rc

]
uφ, (3.7)

ẋθ =

 0 1

−Kθ
Iy+msh2

pc

−Cθ
Iy+msh2

pc

xθ +

[
0

mshpc
Iy+msh2

pc

]
uθ, (3.8)

in which road bank and grade angles φr, θr appear in unknown inputs uφ, uθ. In (3.7) and

(3.8), the distances between the roll/pitch axes and the center of gravity are denoted by

hrc and hpc. The moments of inertia about the roll and pitch axes parallel to the frame

coordinate system are shown by Ix, Iy. Roll/pitch stiffness Kφ, Kθ and damping Cφ, Cθ are

used for derivation of the roll and pitch dynamics. The unknown longitudinal and lateral

inputs are denoted by:

uφ = V̇y + rVx + g sin(φ̄v + φr),

uθ = −V̇x + rVy + g sin(θ̄v + θr), (3.9)

in which φr and θr show the road bank and grade respectively. The vehicle’s yaw rate r is

measured by the available stock inertial measurement unit (IMU) sensor. The longitudinal

and lateral velocities Vx, Vy can be measured by a GPS or can be estimated using linear,

nonlinear, or Kalman-based observers provided in literature [22, 23,33,41,57,64,90,91]

Therefore, systems (3.7), (3.8) can be rewritten as ẋq = Aqxq + Bquq and yq = Cqxq +

Dquq with q ∈ {φ, θ} and the state vectors xq ∈ R2, unknown input vector uq ∈ R, output

y ∈ R2, and system matrices Aq, Bq, Cq, Dq of appropriate dimensions where [Bq Dq]
T is

full column rank and . The road angles also appear as unknown parameters in roll/pitch

dynamics (3.7), (3.8). An unknown input observer [84, 87] is designed to estimate the

road bank φr and road grade θr (unknown inputs uq) using vehicle body’s roll/pitch angles

φ̄v, θ̄v and their rates ˙̄φv,
˙̄θv as measurements. Derivation of the vehicle roll/pitch rates are

discussed at the end of the next subsection Road-body kinematics.

To develop the observer for practical application, discretization of the systems (3.7),

(3.8) is performed by the Step-Invariance method.
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Remark 1. In general, discretization of the continuous-time system ẋ = Ax+Bu with the

output y = Cx+Du is done by the zero-order hold (step-invariance) method [92], because

of its precision and response characteristics. Input to the continuous-time system is the

hold signal uk = u(tk) for a period between tk ≤ t < tk+1 with the sample time Ts. Then,

the discrete-time system has the output matrices C̄ = C, D̄ = D and state/input matrices

Ā = eA(t)Ts , B̄ =
∫ Ts

0
eA(t)τB(t)dτ

Thus, the discrete-time form of the roll and pitch dynamics yields:

xqk+1
= Āqxqk + B̄quqk

yqk = C̄qxqk + D̄quqk , (3.10)

The system (3.10) have an L-delay inverse if it is feasible to uniquely recover the unknown

input uqk from the initial state x0 and outputs up to time step k+L for a positive integer

L; the least integer L which leads to L-delay inverse is the inherent delay of the system.

The upper bound on the inherent delay is defined as L , n − Null(D̄q) + 1 in [93]. The

output equation from (3.10) can be accumulated for L time steps:

yq0

yq1

yq2
...

yqL


=



C̄q

C̄qĀq

C̄qĀ
2
q

...

C̄qĀ
L
q


x0 +



D̄q 0 0 · · · 0

C̄qB̄q D̄q 0 · · · 0

C̄qĀqB̄q C̄qB̄q D̄q · · · 0

...
...

...
. . .

...

C̄qĀ
L−1
q B̄q C̄qĀ

L−2
q B̄q C̄qĀ

L−3
q B̄q D̄q





uq0

uq1

uq2
...

uqL


(3.11)

which can be expressed as:

yq0:L
= OLqx0 + JLquq0:L

, (3.12)

where JLq is the invertibility matrix of the system (3.10), L is required for recovery of xq0
from the output yq0:L

, and OLq is the observability matrix for the pair Āq, C̄q. Observability

and invertibility matrices are provided in the Appendix. When the start point is the sample

time k, (3.12) yields yqk:k+L
= OLqxk + JLquqk:k+L

.

Without loss of generality, the matrix
[
B̄q
D̄q

]
is assumed to be full rank [87] (this can be

enforced by a proper transformation on the unknown inputs). Thus, there exists a matrix
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S̄ such that S̄
[
B̄q
D̄q

]
= Ip. The unknown input observer for a positive arbitrary L results

in the following estimator, which provides the states x̂φk , x̂θk as well as unknown inputs

ûφk , ûθk :

x̂qk+1
= Eqx̂qk + Fqyqk:k+L

, (3.13)

ûqk = S̄

[
x̂qk+1

− Āqx̂qk
yqk − C̄qx̂qk

]
, (3.14)

where Eq and Fq are observer gain matrices obtained by pole placement as will be described

in the following. The general form of the discrete-time system (3.10) with state vector

xq ∈ Rn, output yq ∈ Rm, and unknown input vector uq ∈ Rp has the observability and

invertibility matrices OLq ∈ Rm(L+1)×n,JLq ∈ Rm(L+1)×p(L+1) and observer gain matrices

Eq ∈ Rn×n, Fq ∈ Rn×m(L+1) respectively. Thereby, for the discretized form of the systems

(3.7), (3.8), the observability matrix, invertibility matrix, and observer gain matrices are

OLq ∈ R2(L+1)×2,JLq ∈ R2(L+1)×(L+1) and Eq ∈ R2×2, Fq ∈ R2×2(L+1) when the vehicle

body’s roll/pitch angles and their rates φ̇v, θ̇v are utilized as measurements.

The discrete-time estimation error for the pitch and roll dynamics can be expressed as

follows using (3.10), (3.12), and the unknown input observer (3.13):

eqk+1
= x̂qk+1

− xqk+1

= Eqx̂qk + Fqyqk:k+L
− Āqxqk − B̄quqk

= Eqeqk + FqJLquqk:k+L
+ (Eq − Āq + FqOLq)xqk − B̄quqk (3.15)

where the smallest Lq with upper bound Lq < n − Null(D̄q) + 1 should be determined

such that rank(JLq+1)− rank(JLq) = p. In order to have asymptotic stability on the error

dynamics (3.15) regardless of xqk and inputs, Eq should be stable, i.e. |λi(Eq)| < 1, ∀i ∈
{1, ..n}, and Fq should simultaneously satisfy the following [87]:

FqJLq = [B̄q 0...0], (3.16)

FqOLq + Eq − Āq = 0. (3.17)
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The matrix Fq is obtained from Fq = MqV where V = [0 0; Ip 0] and Mq = [M̄q B̄q].

The matrix M̄q is chosen by a pole placement such that matrix Eq = Āq − B̄qW̆q − M̄qW̄q

is stable. The matrix Wq = [W̄q W̆q]
T is defined as Wq , VOLq in which W̆q has p rows.

The stability of the state estimation error dynamics (3.15), system equations (3.10) and

the estimated unknown input (3.14) guarantees that ûqk → uqk as k →∞

Remark 2. An unknown input observer with delay Lq can be designed for the system (3.10)

if and only if the system is strongly detectable [84]. This is equivalent to the following

conditions:

rank(JLq)− rank(JLq−1) = p, (3.18)

rank

([
Aq − zIn Bq

Cq Dq

])
= p+ n ∀z ∈ C, |z| ≥ 1. (3.19)

Remark 3. The systems (3.7) and (3.8) with the discretized form (3.10) and two mea-

surements (roll/pitch and their rates) is strongly detectable. Thus, a UIO can be designed

for this system.

The road bank angle φ̂r is obtained as follows employing the estimated unknown input

ûφ from (3.14), the roll input definition (3.9) and the vehicle’s roll angle from (3.6):

φ̂rk = sin−1 ûφk − V̇yk − rkVxk
g

− φ̄vk . (3.20)

Similarly, the unknown input observer (3.14) is employed for estimation of the road grade

θ̂r, which appears as an unknown input to the pitch dynamics (3.8). Given the vehicle’s

pitch angle from (3.6), the pitch input definition (3.9) and the estimated unknown input

ûθ from (3.14), the road grade is estimated as:

θ̂rk = sin−1 ûθk + V̇xk − rkVyk
g

− θ̄vk . (3.21)

The two measurements: roll/pitch angles from the suspension height sensors and their

rates are used for the road grade and bank angle estimation employing the unknown input
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observer (3.14) and equations (3.20), (3.21). To calculate the roll/pitch angle rates, taking

time derivatives of the vehicle angles (3.6) is not a proper choice since it generates oscilla-

tions due to measurement noises. Filtering such noises usually imposes undesirable delays.

Thus, implementing available measurements (roll/pitch rates) from the IMU seems more

promising. In order to use the measured roll/pitch rates from the sensor attached to the

sprung mass, transformation between the vehicle’s frame coordinate and the body coordi-

nate should be investigated. The following section focuses on the road-vehicle kinematics

in order to relate the measured angle rates, vehicle body motion, and the rate of change

of the road bank and grade angles.

3.4 Road-Body Kinematics

Euler angles ψ, θ, φ are utilized in this section to transform from the global coordinates

(xG, yG, zG) to the vehicle frame axis system shown in Fig. 3.2. These angles are successive

rotations about zG, ya and xf respectively. Using the rotation matrices, the angular velocity

of the frame relative to the global axis system can be described by Γ̇f = RG
f Γ̇ where

Γ̇f = [φ̇f θ̇f ψ̇f ]
T is the rotation rate of the frame relative to the global coordinates

defined in the vehicle frame-fixed coordinates, and Γ̇ = [φ̇ θ̇ ψ̇]T represents the rate of

Euler angles. Defining Φ̇ = [φ̇, 0, 0]T , Θ̇ = [0, θ̇, 0]T , and Ψ̇ = [0, 0, ψ̇]T , one can write the

rotation matrix RG
f as:

RG
f = Rxf ,φΦ̇ +Rxf ,φRya,θΘ̇ +Rxf ,φRya,θRzG,ψΨ̇, (3.22)

in which Rxf ,φ shows the third rotation by an angle φ about the xf axis, Rya,θ is the second

rotation by an angle θ about the ya axis, and RzG,ψ represents the first rotation by an angle

ψ about the zG axis. Substituting rotation matrices in (3.22) yields:

RG
f =


1 0 −Sθ
0 Cφ SφCθ

0 −Sφ CφCθ

 (3.23)

in which C∗ = cos(∗) and S∗ = sin(∗). Road angles are defined between the vehicle frame

and the auxiliary axis system (xa, ya, za) [80]. Therefore, the angular velocity of the vehicle
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frame relative to the auxiliary coordinates represents the rate of change of the road angles

Γ̇r = [φ̇r θ̇r ψ̇r]
T . Transformation (Rya,θ)

T from the intermediate coordinates (xi, yi, zi)

to the auxiliary one is used as follows to relate the road and Euler angle rates:

Γ̇r = (Rya,θ)
T Φ̇ + Θ̇ =


Cθ 0 0

0 1 0

−Sθ 0 0

 Γ̇ (3.24)

Substituting Γ̇ = (RG
f )−1Γ̇f into (3.24) results in:

Γ̇r =


Cθ SφSθ CφSθ

0 Cφ −Sφ
−Sθ −SφSθ tan θ −CφSθ tan θ

 Γ̇f

= Rf
r Γ̇f , (3.25)

in which the rotation matrix Rf
r represents the transformation between the road and frame

angles. The third component ψ̇r can be neglected since the yaw rate of the road is not the

concern for this study. Therefore, (3.25) is reduced to:

Γ̇r =

[
Cθ SφSθ CφSθ

0 Cφ −Sφ

]
Γ̇f = χfr Γ̇f , (3.26)

where Γ̇r = [φ̇r θ̇r]
T shows the rate of the change of the road grade and bank angles.

Afterward, employing the pseudo inverse (χfr )
−1, one can express the frame rotation rates

as Γ̇f = (χfr )
−1Γ̇r from (3.26). The pitch and roll rate sensors are mounted on the body

sprung mass which has an orthogonal axis system (xb, yb, zb). This body-fixed coordinate

system is obtained by consecutive rotations of φv, θv around the xf and yf axes of the vehicle

frame coordinates, respectively. The measured rotation rate signal, Γ̇s = [φ̇s θ̇s ψ̇s]
T is

affected by the rotation rates of the body-fixed coordinate Γ̇v = [φ̇v θ̇v ψ̇v]
T , and the

frame rotation rate as Γ̇s = Γ̇v + Rf
b Γ̇f . Rotation matrix Rf

b is from the frame-fixed axes

to the body-fixed axes and is a function of the vehicle roll/pitch angles φv, θv about the

frame-fixed x axis:

Rf
b =


Cθv SφvSθv −CφvSθv

0 Cφv Sφv

Sθv −CθvSφv CφvCθv

 (3.27)
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The relationship between the pitch/roll rate sensor measurements, vehicle pitch/roll rate,

and road angle rates can be described using (3.26) as:

Γ̇s = Γ̇v +RbrΓ̇r (3.28)

where the rotation between the road and the body-fixed axes is denoted by the rotation

matrix Rbr = Rf
b (χfr )

−1. An implication of (3.28) is that the road angle rates should be

taken into account for estimation of the vehicle angle rates Γ̇v.

Conclusively, replacing φv, θv with the calculated vehicle roll/pitch angles φ̄v, θ̄v from

(3.6), one can summarize the relation between the estimated vehicle angle rates
˙̂
Γv−ij ,

estimated road angle rates
˙̂
Γr−ij , and the sensor measurement

˙̂
Γs−ij , in a scenario without

using the suspension height sensor ij as:

˙̄φv−ij = φ̇s −R1(φ̄v−ij , θ̄v−ij)
˙̂
φr−ij

˙̄θv−ij = θ̇s −R2(φ̄v−ij , θ̄v−ij)
˙̂
θr−ij (3.29)

where R1, R2 are components of Rbr = [R1 R2]T . The estimation on the roads with the

combined bank and grade angles can be achieved with (3.29) which presents the relation

between the frame, body, and road angles. Equation (3.29) implies that the time derivatives

of the vehicle angle rates ˙̄φv−ij ,
˙̄θv−ij can be calculated with the measured vehicle angle

rates φ̇s, θ̇s and the rate of change of the road angles. Assuming the road angles change

smoothly, the road angle rates are obtained by the time derivative of the estimated ones

φ̄r−ij [k − l], θ̄r−ij [k − l] over l previous time steps. This is shown in Fig. 3.1, in which

the estimated road angles over l previous time steps and measured body’s angle rates are

utilized in the Road-body kinematics to estimate the vehicle angle rates. Substituting the

rates (3.29) and allocating the weights γ−ij, the roll/pitch rates of the vehicle is expressed

as follows:

˙̄φv =
∑
ij

γ−ij
˙̄φv−ij ,

˙̄θv =
∑
ij

γ−ij
˙̄θv−ij . (3.30)

The average weight (γ−ij = 0.25) is used when there is no outlier. Whenever, a distur-

bance exist at the corner mn, the residuals (3.5) exceed the thresholds Tq and an outlier

is detected. Therefore, three weights related to that corner are set to zero and the only
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non-zero weight will be γ−mn. Consequently, the vehicle roll/pitch rates (3.30) are utilized

as measurements for the unknown input observers (3.13) and (3.14) described in the pre-

vious subsection. The unknown input observer and sprung-mass kinematics proposed and

experimentally in this thesis is utilized to develop a fault diagnosis approach for suspension

height sensors in [94].

The next section includes road tests to validate the proposed UIO (3.14) with measure-

ments (3.6) and (3.30) on different roads with separate or combined bank/grade angles.

3.5 Experimental Results

Several experiments have been carried out on an electrified Chevrolet Equinox sport utility

vehicle (SUV) with all-wheel-independent-drive configuration (AWD) and the specifications

listed in Table 3.1 to verify the proposed estimation scheme. In addition to this AWD vehi-

cle, specifications of another rear-wheel-drive test vehicle which will be used for validation

of the velocity and force estimators in the next chapters are listed in the same table.

Table 3.1: Parameters of the Test Vehicles for Experiments

Parameter Unit AWD Vehicle RWD Vehicle Description

m,ms [kg] 2260, 1989 2043, 1810 Total & sprung mass

Ix, Iy, Iz [kg.m2] 967, 2710, 4650 710, 2644, 4160 Vehicle moments of inertia

Iw [kg.m2] 1.68 1.7 Wheel moment of inertia

df , dr [m] 1.41, 1.43 1.40, 1.44 Front/rear axles to CG

Re [m] 0.34 0.33 Effective radius

hrc, hpc [m] 0.54, 0.54 0.55, 0.55 Roll/pitch axis height

Kφ, Kθ [N/m] (1.51, 2.08)× 105 the same Roll/pitch stiffness

Cφ, Cθ [N.s/m] (0.63, 2.52)× 104 the same Roll/pitch damping

Trf , T rr [m] 1.62, 1.56 1.60, 1.58 Front/rear track width

The AWD vehicle’s roll, pitch, and yaw rates as well as the longitudinal and lateral

acceleration are measured with a 6-axis IMU (and GPS) system RT2000. The Road Angle
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Estimator module requires longitudinal and lateral velocities, which can be measured us-

ing the GPS or estimated by the Velocity Estimator module as shown in Fig. 3.4-a. Four

suspension height measurement sensors (from Delphi Co.) are installed at four wheel posi-

tions to measure vertical displacements of each corner and estimate vehicle body’s angles

of the electrified Chevrolet Equinox test vehicle shown in Fig. 3.4-b. Measured signals are

communicated using a CAN-bus. Real-time acquisition and processing of sensory informa-

tion and the developed algorithm is realized using the dSPACE R© MicroAutobox. The

dSPACE compiles measurements for MATLAB/Simulink, and the controller provides con-

trol signals for the dSPACE as well. Visualization of the experiment results is performed

through the ControlDesk and MATLAB/Simulink. The sampling frequency for the exper-

iment is set to be 200 [Hz]. Most of the tests are performed with two passengers in the car,

but the nominal vehicle mass, from Table 3.1, is used for verification of the developed es-

timators in this thesis; there are cases with four passengers that has been specified clearly.

CAN BUS

dSpace
Micro-

AutoBox II

Velocity
Estimator

Road 
Angle 

Estimator

Height 
sensors

Visualization
(MATLAB/Simulink)

RT2500 
6-axis 
IMU/ 
GPS

Controller

Vehicle

(a) (b)

Figure 3.4: Experimental setup (a) the I/O and hardware layout (b) AWD test vehicle

Performance of the estimator is experimentally examined in three cases on roads with

different bank and grade conditions; the inherent delay for both roll and pitch dynamics

in the observer is Lq = 1, the static thresholds Tsφ = 0.02, Tsθ = 0.04 and excitation
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thresholds Teφ = 0.0015, Teθ = 0.0019 are also used for the road experiments.

Case 1: Acceleration/brake on the graded road

Real-time performance the estimator in a maneuver with minor steering and successive

acceleration and brake on a graded road is investigated in this section. Longitudinal and

lateral accelerations for this maneuver are depicted in Fig. 3.5 which shows excitations in

the longitudinal direction.
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Figure 3.5: Acceleration and suspension height measurements on the graded road.

Suspension height sensor measurements are also shown in Fig. 3.5 that confirms several

body pitch excitations due to the successive acceleration and brake.

Estimated vehicle body angles φ̄v, θ̄v are illustrated in Fig. 3.6-a. There is no distur-

bance/outlier and the averaging method is used by the algorithm for the vehicle pitch/roll

angle estimation. The estimated road grade in the ISO coordinate system is shown in

Fig. 3.6-b, which exhibits correspondence with the measured actual grade in spite of harsh

excitations on the vehicle body angles observed in Fig. 3.6-a.

This substantiates that the suggested unknown input observer can accurately estimate

the road grade regardless of the longitudinal (body pitch) excitations.
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Figure 3.6: Estimation results for Case1, (a) vehicle angles (b) road grade.

Case 2: Normal driving on a banked road

To distinguish between the estimated bank and grade on different roads and check the

performance of the suggested estimator, a normal driving scenario with steering and lateral

excitation is performed on a banked road. Figure 3.7 illustrates the longitudinal/lateral

accelerations and the displacements of each corner for this maneuver.
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Figure 3.7: Acceleration and suspension height measurements on the banked road.

Variations in the lateral acceleration after t = 50 [s] are caused by the road bank angle

and the lateral excitation. Such a coupling makes the task of accurate real-time bank

estimation more challenging. The suspension height displacement measurements depicted
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in Fig. 3.7 have large fluctuations, but the suggested vehicle angle estimators (3.6) reject

outliers and provide smooth vehicle roll and pitch angles as demonstrated in Fig. 3.8-a.

Finally, the proposed estimator detects the road bank around the region of t = 50 [s] as

illustrated in Fig. 3.8-b.
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Figure 3.8: Estimation results for Case2, (a) vehicle angles (b) bank angle

The estimation results shown in Fig. 3.8-b confirms that even with the presence of the

vehicle body angles around t = 5 and t = 20 [s], the developed estimator can successfully

differentiate between the road and the body angles generated by lateral excitations and does

not provide any road bank. The observed deviations around t = 65 [s] may be contributed

to improper selection of Eq, Fq matrices and estimated vehicle velocities.

Case 3: Steering on a combined grade/bank

Performance of the unknown input observer on the roads with combined bank and grade

angles is investigated in this case study. The maneuver includes driving on a graded road,

lateral excitations by steering, and steering on a road with combined bank and grade.

Estimating the road angles in this maneuver is challenging since the lateral excitations

by the driver is performed on the combined banked/graded road. Figure 3.9 illustrates

suspension height displacements and lateral/longitudinal excitations of the vehicle between

t = 35 and t = 92 [s], which includes both the driver and road excitations.

Measured suspension height displacements in Fig. 3.9 depicts lateral and longitudinal

excitations and no outlier is detected. Successive excitations between t = 60 and t = 70 [s]
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Figure 3.9: Acceleration and suspension height measurements on combined grade/bank

are because of the sine steering on the graded road. The results of the calculated vehicle

angles φ̄v, θ̄v are shown in Fig. 3.10-a.
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Figure 3.10: Road experiments, (a) estimated vehicle angles on combined grade/bank (b)

estimated road angles

Despite the fact that the lateral excitations happened on the road with inclinations,

the proposed unknown input observer can detect the road angles and distinguish between

the body and road angles as depicted in Fig. 3.10-b. In spite of several pitch excitation

(acceleration and brake) for t ≤ 60 [s], the proposed UIO distinguishes between the road

grade and vehicle body pitch angles and detect the road grade. Thus, the body pitch/roll

does not affect this method significantly and are implemented as inputs in (3.20) and (3.21)
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to identify the road angles.

The experiments on various roads and with different drivers’ inputs demonstrates that

the proposed UIO can reject the outliers due to uneven road conditions at each corner and

estimate the road angles. However, there are some errors for the combined bank and grade

cases which may be due to errors in estimated vehicle velocities and inappropriate selection

of the UIO gain matrices for the coupled roll and pitch dynamics that can be addressed in

future.

3.6 Summary

In this chapter, a method for estimation of the road angles was proposed and the developed

real-time estimation structure was experimentally tested for estimation of road bank and

grade angles. The suggested algorithm does not require any information about the road

friction, tire forces, and tire parameters. It includes an unknown input observer on the roll

and pitch dynamics of the vehicle. Observer gain matrices were designed to guarantee a

fast convergence rate and satisfy (3.16) and (3.17). Road disturbances and outliers were

isolated in the provided method using a dynamic threshold based on the longitudinal and

lateral excitations of the vehicle.

Incorporating road-body kinematics helped to increase the accuracy by defining the

correlation between the road angle rates and the pitch/roll rates of the vehicle and the

developed correlated kinematics can be used in any vehicle. Road angle estimation in

maneuvers with high excitation on banked/graded roads, fast convergence and robustness

against harsh excitations, road disturbances, and outliers are among the advantages of the

proposed methodology. The road experiments confirmed that the proposed algorithm can

estimate separate and combined bank/grade road angles in various driving conditions.
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Chapter 4

Tire Force Estimation

Tire forces exhibit the vehicle’s capacity to perform requested maneuvers and provide

information about the stability of the vehicle. Tire forces can be measured at each corner

using wheel force/moment sensors, but their cost impact and maintenance are their major

drawbacks to be used for production vehicles. Therefore, estimation of the longitudinal,

lateral, and vertical tire forces using measurements available on current production vehicles,

yet robust to different road conditions has been the main focus of related literature in

recent years, and the topic of this chapter. In the following, corner-based longitudinal

force estimation methodologies and their stability are first discussed using a nonlinear and

a Kalman observer on the wheel dynamics. The lateral force estimator on the vehicle

planar kinetics is then introduced by employing an unscented Kalman filter. Vertical

force estimation at each corner are estimated employing the roll and pitch effects of the

vehicle sprung mass. Road experiments and co-simulation between MATLAB/Simulink

and CarSim packages are performed to check the performance of the approach in diverse

driving and on different road conditions.

4.1 Introduction

Developing longitudinal, lateral, and vertical tire force estimators using conventional sen-

sor measurement (wheel speed, accelerations, steering angle, and wheel torques) robust to
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the road friction changes is desirable. Such estimation structures are presented and exper-

imentally verified in this section. Longitudinal and lateral force estimation significantly

contributes to dynamic-based velocity estimators ([22,57,58]) and stability control systems

([61, 95, 96]). Neglecting the bearing’s viscous damping, one can write the wheel dynamic

equation as follows with i ∈ {f, r} (front and rear axles) and j ∈ {L,R} (left and right

tires):

Fxij =
1

Re

(Ttij − Iwω̇ij) + wx, (4.1)

where Re is the wheel effective rolling radius, Tt represents the total effective torque on

the wheel, Fx is the longitudinal tire force, ω̇ is the wheel acceleration, Iw is the wheel’s

moment of inertia and wx represents uncertainties in the model including the effective

radius, torque, etc.

Model-based stability control systems and lateral velocity estimators use lateral forces

at each corner. The sum of longitudinal/lateral forces at each axle i.e. Fxi =
∑
j

Fxij and

Fyi =
∑
j

Fyij are utilized for the longitudinal and lateral dynamics:

mǎx = Fxf cos δ − Fyf sin δ + Fxr + wfx

mǎy = Fyf cos δ + Fxf sin δ + Fyr + wfy (4.2)

in which δ is the steering angle (with parallel steering in front wheels) and wfx ,wfy repre-

sent longitudinal and lateral uncertainties due to the acceleration measurement, geometry,

and forces. The measured longitudinal and lateral accelerations include the kinematics of

the vehicle’s CG Vx, Vy, vehicle’s body pitch/roll angles θv, φv, and road grade/bank angles

θr, φr. Therefore, acceleration measurements ax, ay are corrected with the road and body’s

roll/pitch angles as

ǎx = ax − g sin θt, ǎy = ay − g sinφt (4.3)

where θt = θv + θr and φt = φv + φr.

The derivative of the yaw rate r is also related to the sum of forces at each axles as:

Iz ṙ = (Fyf cos δ + Fxf sin δ)df

+ (F̄xf cos δ − F̄yf sin δ)
Trf
2
− Fyrdr + F̄xr

Trr
2

+ wr, (4.4)

38



in which Trf , Trr are the length of front and rear tracks respectively as shown in Fig. 4.1-

a. Forces and relative velocities in the tire coordinates are also depicted in Fig. 4.1-b.

The distances from the front and rear axles’ to CG are denoted by df , dr, uncertainties

due to the CG location, yaw rate measurement, and forces are represented by wr, and

F̄xi = FxiR − FxiL , F̄yi = FyiR − FyiL .

Used for Thesis

 

 
 

(a) (b)

Figure 4.1: Forces and velocities in (a) planar vehicle model (b) tire coordinates.

The corner-based state estimation structure is illustrated in Fig. 4.2, in which the

estimated vehicle angles from the Roll/Pitch Est. module are fed to the Vertical Force Est.

block. The Longitudinal/Lateral Force Est. module incorporates torques and the wheel

speeds at each corner for the longitudinal force estimation. It uses longitudinal/lateral

accelerations as well as the yaw rate for the lateral force estimation and does not require

the road condition. Measured accelerations by IMU attached to the sprung mass are

corrected with the vehicle’s body pitch and roll angles from Pitch/Roll Angle Est. to

include only the kinematics of the motion. These corrected values are then used for the

vertical and lateral force estimators.

The developed force estimation structure are experimentally tested and the results

confirm good performance such that it can be utilized in vehicle’s active safety systems or

model-based velocity estimators.
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Figure 4.2: Corner-based force estimation structure

4.2 Longitudinal Force Estimation

Provided that the longitudinal tire force calculation needs road friction, even accurate slip

ratio information from the GPS will not provide forces at each corner. Hence, estimation of

tire forces independent of road conditions would be a remedy. Longitudinal force estimation

independent of the road friction may be classified on the basis of wheel dynamics into

the nonlinear and sliding mode observers [25, 34, 89], Kalman-based estimation [35, 40],

and unknown input observers [38, 97]. This section provides two computationally efficient

nonlinear observers for the longitudinal force estimation on various road friction conditions.

4.2.1 Observer-based force estimation

The corner-based estimation approach proposed in this subsection for the longitudinal force

estimation, uses a PID state observer [98,99] that has also been used in other applications.
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The longitudinal force estimate is expressed as:

F̂xij =
Ttij − Iwω̇ij

Re

− k1ω̃ij + k3

∫
F̃xijdt (4.5)

where k1, k3 are design parameters. The estimated wheel speed ω̂ at each corner ij is

described as:

˙̂ωij =
1

Iw
(Ttij −ReF̂xij + k2

∫
ω̃ijdt+Rek3

∫
F̃xijdt) (4.6)

in which k2 is a design parameter, ω̃ij = ωij− ω̂ij, and F̃xij = Fxij − F̂xij is the longitudinal

force estimation error.

Theorem 1. The error dynamics for the longitudinal estimator (4.5) on the wheel dynam-

ics with time-varying parameter ωij is asymptotically bounded by supt≥0
|ẇx|
k3

.

Proof. : Subtracting the longitudinal force (4.1) from the estimated longitudinal force

(4.5) leads to the estimation error F̃xij . This force estimation error can be described

as F̃xij = −k3

∫
F̃xijdt + k1ω̃ij + wx. The time derivative of the error dynamic yields

˙̃Fxij = AxF̃xij + Bx ˙̃ωij + ẇx with Ax = −k3 and Bx = k1. The discretized form of the

longitudinal force error dynamics is:

˙̃Fxijk+1
= ĀxF̃xijk + B̄x ˙̃ωijk + ẇxk (4.7)

where Āx, B̄x are the discretized state and input matrices obtained by step-invariance

discretization method described in section 3.3 for real-time implementation. Substituting

F̂xij from (4.5) in (4.6), one can rewrite:

˙̂ωij = ω̇ij +
1

Iw
(Rek1ω̃ij + k2

∫
ω̃ijdt). (4.8)

The deviation of the estimated wheel speed from the measured one is denoted by ω̃ and

incorporated for the force estimation as in (4.5). Subtracting the estimated wheel speed

(4.8) from the wheel speed by the wheel dynamics (4.1) results in Iw ˙̃ωij = −ReF̃xij +

Rewx − k2

∫
ω̃ij − Rek3

∫
F̃xijdt. Taking time derivative and replacing the error dynamics

˙̃Fxij = −k3F̃xij +k1
˙̃ωij + ẇx leads to Iw ¨̃ωij +Rek1

˙̃ωij +k2ω̃ij = 0 which is in the discretized

state space form:

xωk+1
= Āωxωk , (4.9)
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with states xω = [ω̃ ˙̃ω]T . The discretized state matrix is Āω = eAωTs where:

Aω =

 0 1

−k2

Iw
−Rek1

Iw

 . (4.10)

The matrix Aω is Hurwitz and (4.10) is exponentially stable given k1, k2 > 0, therefore,

xω → 0 (i.e. ω̃ij → 0 and ˙̃ωij → 0). Thus, the estimation error dynamics (4.7) asymptoti-

cally turns to

F̃xijk+1
= ĀxF̃xijk + ẇxk , (4.11)

that is an exponentially stable dynamic for ∀k3 > 0. Moreover, since ω̃ij asymptotically

converges to zero, by solving (4.11) one can get F̃xij(t) = e−k3tF̃xij(0)+ ẇx
k3

. As e−k3tF̃xij(0)

exponentially converges to zero, F̃xij(t) will be asymptotically bounded by supt≥0
|ẇx|
k3

.

4.2.2 Kalman-based force estimation

This section utilizes UKF for longitudinal force estimation. Estimation problems can be ad-

dressed by UKF for the discrete-time nonlinear system of the form xk+1 = F(xk, uk, f, npk),

yk = H(xk, f, nmk). Parameters f and system states xk can be estimated recursively from

the noisy output yk. Uncertainties in the process and measurements are incorporated into

the nonlinear system definition as npk, nmk. Proper capturing of nonlinearities contributes

to the unscented transformation that defines the Sigma vectors X ∈ RN×2N+1, (N is the

length of the state vector), which are supposed to propagate through the nonlinear system.

With some minor changes, UKF can also be employed for parameter estimation instead of

state estimation for the vehicle parameter identification [100,101] and for the longitudinal

force estimation [40]. For the force estimation with UKF, the effective torque Tt provides

input uk; the wheel speed is assumed to be the state xk, and the estimated longitudinal

force F̂x is denoted by the estimated parameter f̂ . The discrete-time parameter estimation

problem can be expressed as fk+1 = fk + %k and zk = G(xk, fk) + νk, where zk corresponds

to nonlinear observation on fk and %k, νk represent process and observation noises respec-

tively. In a parameter estimation problem, the estimated mean is updated as f̂mk = f̂k−1

and initialized by f̂0 = E[f ]. The moving sample points i.e. sigma vector Fk|k−1 are gen-

erated around the estimated mean f̂mk with the conventional unscented transformation
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pattern Fk|k−1 =
[
f̂mk f̂mk + τ̄

√
P̄fk f̂mk − τ̄

√
P̄fk

]
, where square root factorization of

the covariance matrix P̄fk is obtained by Cholesky decomposition at each time step k.

The error covariance matrix of the estimated parameter is initialized with Pf0 =

E
[
(f − f̂0)(f − f̂0)T

]
and updated by P̄fk = Pfk−1

+ Qk−1 with incorporation of the pro-

cess noise covariance Qk−1. Furthermore, τ̄ is a scalar and represents the spread of the

sample points far from the mean values of random variables (states). It is defined in [102]

as τ̄ =
√
N + η̄, where η̄ is the compound scaling parameter η̄ = ε̄2N −N . Spread of the

sample points around f̂mk is denoted by ε̄ =
√

3/N . Afterward, β̄ = 2 is introduced to

employ the prior information on the Gaussian distribution of x. Sample points are sup-

posed to be propagated within the system (wheel dynamics) as Zk|k−1 = G(xk, Fk|k−1), and

the estimated function output ẑk is achievable from ẑk =
∑2N

i=0 W
m
i Zi,k|k−1. The weighting

parameters are also defined by W c
i = Wm

i = 1
2
(N + η̄) for all sets i ∈ {1, 2, . . . , 2N}. These

parameters are W c
0 = η̄

N+η̄
+ 1− ε̄2 + β̄ and Wm

0 = η̄
N+η̄

for i = 0. The updated covariance

matrices are given in (4.12) using the measurement noise covariance Rk:

Pzkzk =
2N∑
i=0

W c
i (Zi,k|k−1 − ẑk)(Zi,k|k−1 − ẑk)T +Rk,

Pfkzk =
2N∑
i=0

W c
i (Fi,k|k−1 − f̂mk)(Zi,k|k−1 − ẑk)T . (4.12)

The Kalman gain is achievable, by implementing these covariance matrices as Kk =

PfkzkP
−1
zkzk

. As a result, the updated parameter and error covariance matrices can be

obtained as follows [102]:

Pfk = P̄fk −KkPzkzkK
T
k ,

f̂k = f̂mk +Kk(zk − ẑk), (4.13)

where f̂k is the updated longitudinal force estimate F̂xij at each corner. The UKF moving

sigma points through the wheel dynamics reduce the estimation fluctuations, even with the

presence of major uncertainties such as the road friction and changes in the effective radius.

Outcomes of the UIO and UKF approaches are compared in Section 4.5. Longitudinal force

estimation with the observer-based scheme (4.5) is selected and utilized for the lateral force

estimation in the next section and velocity estimation in the next Chapter.

43



4.3 Lateral Force Estimation

Longitudinal forces at each corner i.e. Fxij are assumed to be available from (4.5) in

the previous subsection. Set of equations (4.4) together with the longitudinal and lateral

dynamics can be solved for the lateral forces Fyij at each corner with the assumption of

lateral force distribution based on the normal forces, but this may not address maneuvers

in which road friction under each tire is different. To resolve this, a method for the lateral

force estimation is proposed in this section that uses longitudinal forces and accelerations

ax, ay and the yaw rate r measurements from a 3-axis IMU.

The set of equations (4.4) can be rewritten in the following lateral force estimator with

states xf = [Fyf Fyr F̄yf ]
T and output (measurement) yf = [ǎx ǎy r]T where ǎx, ǎy

are the corrected values from (4.3):

ẋf = Afxf + wf ,

yf = Cf (δ)xf + uf + vf (4.14)

where Af = 03×3 and uncertainties in the process and measurements are denoted by wf

and vf . The output matrix Cf (δ) and uf are defined as:

Cf (δ) =


− 1
m

sin δ 0 0

1
m

cos δ 1
m

0

1
Iz

cos δdf − 1
Iz
dr

1
2Iz

sin δTrf

 ,

uf =


1
m

(Fxf cos δ + Fxr)

1
m
Fxf sin δ

1
Iz

(Fxf sin δdf + F̄xf cos δ
Trf

2
+ F̄xr

Trr
2

)

 , (4.15)

The matrix Cf (δ) is time-varying and physically bounded (because of the steering angle

and its derivative). The observability matrix for the time-varying system (4.14) can be

written as [103,104]:

On = [τ1 τ2... τn]T

τ1 = Cf , τi+1 = τiAf (t) + τ̇i, (4.16)
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Observability of the system (4.14) is confirmed by holding the full rank condition rank(O3) =

3 for the operating regions of the steering angle and its time derivatives except for the case

where δ = 0, kπ for integer values of k. For the case where δ = 0 we have rank(Cf ) = 2.

However, in this case there is no lateral force applied to the tire. Moreover, situations

δ = kπ do not take place, due to the fact that the maximum value of the steering angle is

much less than π/2.

Stability of the estimator: Observability is a sufficient condition for implementation

of an optimal variance filter (such as a Kalman estimator). Therefore, a Kalman-based

observer can be employed on system (4.14) with the discretized form of:

xfk+1
= Āfkxfk + wfk

yfk = C̄fkxfk + ufk + vfk , (4.17)

which have the noise covariances Qfk = E[wfk ,wfk
T ], Rfk = E[vfk ,vfk

T ] for the model

and measurements, respectively. The discretized forms of state and output matrices are

denoted by Āfk , C̄fk . Process and measurement noises are assumed to be uncorrelated

E[wfk ,vfk
T ] = 0 and have zero mean E[wfk ] = E[vfk ] = 0; ∀k ∈ N.

The discrete-time Kalman observer suggests the following prediction with correction to

estimate the states defined by x̂fk+1|j , E[xfk |yfj ] using a sequence of measurements yj:

x̂fk+1|k = Āfk x̂fk|k−1
+Kk(yfk − C̄fk x̂fk|k−1

), (4.18)

where the optimal Kalman gain is Kk = ĀfkPk|k−1C̄Tfk(C̄fkPk|k−1C̄Tfk + Rfk)
−1 and error

covariance Pk+1|k , cov(x̂fk+1
− x̂fk+1|k) forms a discrete time-varying Riccati equation

(4.19) for both zero and non-zero state initialization x̂f0|−1
= E[xf0 ]:

Pk+1|k = ĀfkPk|k−1ĀTfk +Qfk −KkC̄fkPk|k−1ĀTfk , (4.19)

where the state covariance is initialized as P0|−1 , cov(xf0) = E
[
(xf0 − x̂f0|−1

)(xf0 − x̂f0|−1
)T
]
.

The estimation error is defined by efk+1|j , xfk+1
− x̂fk+1|j , which yields:

efk+1|k = (Āfk −KkC̄fk)efk|k−1
−Kkwfk + vfk . (4.20)

The observability of the system (4.14) results in stability of the presented model-based

estimation and consequently the error dynamics (4.20); thus, errors of the state mean have

bounded variance.
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The unscented Kalman filter (UKF) [36, 105] is utilized on the discretized from of

(4.17) for the lateral force estimation at each corner to include non-Gaussian noises and to

have more smooth estimation because of having mean values for propagated sample points

within the system. The UKF employs a transformation to include nonlinear characteristics

of the system xfk+1
= F(xfk ,ufk,wfk) and yfk = G(xfk ,vfk) with process and measure-

ment uncertainties wfk ,vfk and the covariance matrices Qfk , Rfk in a recursive estimation

procedure.

The Procedure 1 illustrates the lateral force estimation with UKF in which the proper

capturing of nonlinearities contributed to the unscented transformation that defines Sigma

vectors Σ ∈ RN×2N+1 (N is the length of the state vectors) around xk. This propagation

yields nonlinear stochastic characteristics of the random variables and results in getting the

posterior mean and covariance up to second-order approximation [102, 106]. The square

root factorization of the covariance matrix Pk−1 is obtained by Cholesky decomposition

at each time step k. Spread of the sigma points far from the mean values of random

variables (states) are shown by the scalar τ̄ . Scalars τ̄ , η̄, ε̄ and weights W c
i ,W

m
i for i ∈

{0, 1, 2, . . . , 2N} are defined in Section 4.2. The parameter β̄ = 2 is also introduced to

employ the prior information on the distribution of states xf . Optimality and convergence

of the UKF state estimation method is also discussed in [105].

4.4 Vertical Force Estimation

Vertical forces are required for the stability control and roll-over prevention systems. Es-

timation of the vertical forces at each corner is addressed in this subsection using lateral

and longitudinal vehicle dynamics and the sprung mass angles. The effects of the vehicle

body’s vertical motion and the roll/pitch angles are not commonly considered in the ex-

isting vertical force estimation methods [35, 37]. To address this issue, the vertical force

estimator module is developed in this section using lateral and longitudinal vehicle dy-

namics and incorporation of the vehicle angles φv, θv from [107]. The sprung mass roll and

pitch angles φv, θv are not achievable by integration over the roll and pitch rate signals

φ̇m, θ̇m because of sensor noises and accumulate error problem. Rehm provided a linear

observer with low-pass filtering in [107] to estimate the vehicle body’s roll/pitch angles

46



Procedure 1: Lateral force estimation by UKF

// Systems: (The discretized estimator (4.17))

xfk+1
= F(xfk ,ufk,wfk) = Āfkxfk + wfk

yfk = G(xfk ,vfk) = C̄fkxfk + ufk + vfk
// Sample points in system dynamics:

Σk−1 = [x̂fk−1
x̂fk−1

+ τ̄
√

Pk−1 x̂fk−1
− τ̄
√

Pk−1]

Σk|k−1 = F(Σk−1,ufk−1
)

Λk|k−1 = G(Σk|k−1,Σk−1)

// Optimal prediction of the mean, output, and covariance:

x̂mk =
∑2N

i=0 W
m
i Σi,k|k−1, ŷmk =

∑2N
i=0 W

m
i Λi,k|k−1

Pmk =
∑2N

i=0W
c
i (Σi,k|k−1 − x̂mk)(Σi,k|k−1 − x̂mk)

T +Qfk

// Modified covariance matrices:

Px̃fk ỹfk
=
∑2N

i=0 W
c
i (Σi,k|k−1 − x̂mk)(Λi,k|k−1 − ŷmk)

T

Pỹfk ỹfk
=
∑2N

i=0 W
c
i (Λi,k|k−1 − ŷmk)(Λi,k|k−1 − ŷmk)

T +Rfk

// State and covariance update:

Kk = Px̃fk ỹfk
P−1

ỹfk ỹfk
x̂fk = x̂mk +Kk(yfk − ŷmk)

Pk = Pmk −KkPỹfk ỹfk
KT
k

as
˙̂
φv = φ̇m + Lφeφ,

˙̂
θv = θ̇m + Lθeθ by compensation over the error between the filtered

estimates and the stationary roll/pitch values i.e. eφ, eθ and the observer gains Lφ, Lθ

Normal forces at each axle/tire and the longitudinal, lateral, and vertical components

of the accelerations in SAE vehicle chassis coordinates i.e aθx, aθz and aφy, aφz are schemat-

ically illustrated in Fig. 4.3.

The longitudinal and vertical acceleration components of the longitudinal dynamics are

defined as

aθx = ax cos θv + az sin θv

aθz = az cos θv − ax sin θv, (4.21)

The measured longitudinal and vertical accelerations ax, az by an IMU attached to the

sprung mass are affected by the vehicle pitch angle θv, and the road grade angle θr. Normal
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Figure 4.3: (a) pitch model (b) roll model

forces at front and rear axles, thus can be calculated by:

Fzf = − m

df + dr
(hCGãθx − draθz)

Fzr =
m

df + dr
(hCGãθx + dfaθz), (4.22)

in which the height of the vehicle’s center of gravity is hCG. Similarly, the lateral and

vertical acceleration components of the lateral dynamics are defined by:

aφy = ay cosφv + az sinφv

aφz = az cosφv − ay sinφv, (4.23)

The measured lateral acceleration ay contains the vehicle roll φv angle and the road bank

angle φr. Defining equivalent masses at each axle mi =
Fzi
g
, i ∈ {f, r} with Fzf , Fzr from

(4.22), one can express normal forces in the left and right sides of the vehicle as:

FziL =
mi

Tri

[
aφz(

Tri
2
− hrc sinφv)− aφyhCG

]
FziR =

mi

Tri

[
aφz(

Tri
2

+ hrc sinφv) + aφyhCG

]
, (4.24)

in which hrc is the height of the roll center. The velocity estimator in the next chapter

requires normalization of the longitudinal/lateral forces. Thus, estimated forces should be

48



normalized as (4.25)

µxij = Fxij/Fzij µyij = Fyij/Fzij , (4.25)

at each corner ij using calculated vertical forces in the vehicle coordinate frame. Finally,

the proposed force estimation approaches are verified in simulations and experimentally

validated on various road conditions using a full-size test vehicle with AWD and FWD

powertrain configurations.

4.5 Simulation and Experimental Results

Experimental and simulation results are presented in this section to validate the proposed

force estimators on the AWD instrumented SUV with the specifications given in Table 3.1.

The Controller & Estimator module requires longitudinal and lateral accelerations, yaw

rate, wheel speed as well as the wheel torques, which are measured by CAN-bus communi-

cation using an IMU, regular ABS wheel speed sensors, and electric actuators (Fig. 4.4-a)

respectively. The sampling time for the experiment is set to be 0.005 [s].

(a) (b)

Figure 4.4: (a) Electric motors (b) wheel hub sensors for force/moment measurement.

To validate the estimated forces, this vehicle is equipped with additional sensors for

direct measurement of tire forces and moments at each corner as shown in as shown in
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Fig. 4.4-b. Different driveline configurations are used to verify the force estimators. The

AWD test vehicle has the capability of being used as a front-wheel-drive and its powertrain

can be set to the FWD for some tests with high-slip conditions.

4.5.1 Longitudinal force estimator

In Fig. 4.5-a forces estimated by both the UKF and the unknown input observer (UIO) are

compared with the CarSim tire forces on a slippery road for a maneuver with successive

accelerator and brake pedal requests. The simulation occurs on a slippery road with

µ = 0.3, and the initial longitudinal velocity of the vehicle is Vx0 = 30 [kph].

The proposed force estimation methods are independent of the road condition exhibit

and smooth performance for such maneuver with successive sign changes of the slip-ratio.

An acceleration-in-turn (AiT) maneuver on dry and slippery roads is simulated in the

CarSim and results are graphically illustrated in Fig. 4.5-b. For the AiT driving scenario,

the accelerator is applied to 100% at t = 2 [s] and continues till t = 4 [s]. It is released

between 4 and 6 [s] and pushed up to 100% again as a step signal till t = 11 [s], then it is

linearly reduced to zero at t = 15 [s]. A steering angle δsw = 1 [rad] is imposed between

t = 2− 12 [s] as well and the steering ratio is rδ = 16.7. The performed combined-slip AiT

maneuver is harsh, but the developed UKF by weighted averaging of the sigma points’ and

the suggested UIO handle the oscillations in the transient regions resulted from imposing

and releasing torques on wheels. The fluctuations observed in the CarSim’s force profile

curves are attributed to the requested acceleration with high magnitude.

Several road experiments such as lane change with brake, double lane change, and brake-

in-turn scenarios are conducted on dry and slippery surfaces to show the performance of

the force estimators. The selected gains for these road experiments are k1 = 1.78, k2 = 11.4

and k3 = 50.6 and the experimental results are presented in the following.

In order to assess the proposed approach in road experiments with combined-slip con-

ditions, in which the tire capacities are reduced due to high slip ratio as well the high slip

angles in each longitudinal/lateral direction, a lane change (LC) maneuver with brake at

the end is performed by the AWD vehicle with torque vectoring as the control scheme on

a wet surface with µ ≈ 0.45. Experimental results of the force estimation at the rear-left

wheel in this maneuver are demonstrated in Fig. 4.6 and compared with the measurement.
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Figure 4.5: Simulation results, estimated forces in CarSim (a) acceleration/brake on a road

with µ = 0.3 (b) AiT on a slippery road with µ = 0.25 (c) AiT on dry asphalt.

The Effective torque Ttrj and the wheel speed ωrj of the rear wheels are also depicted in

Fig. 4.6.

The outcomes show that the developed longitudinal observer can address oscillations

due to slippery surfaces in the transient regions. The vehicle speed in this LC with brake

on wet road (i.e. Fig. 4.6) changed from 10.9 to 9.6 [m/s] at t = 11.3 [s] then decreased to

Vx = 7.3 [m/s] at the end.

Another test, a double lane change (DLC) maneuver, with high slip and lateral exci-

tation is conducted on a snowy surface with the AWD test vehicle and force estimation

results of UIO and the proposed UKF approach are compared in Fig. 4.7 for the rear left
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Figure 4.6: Lane change with brake on wet, AWD vehicle (a) estimated F̂x at rL (b) wheel

torques (c) wheel speeds (d) steering wheel angle, δsw.

wheel. The force peak values in the DLC maneuver (Fig. 4.7) on snow is higher than the

wet surface (Fig. 4.6), which shows that the driving on the wet road was not very severe.
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Figure 4.7: DLC on snow with AWD test vehicle (a) estimated F̂x at rL (b) rear wheel

torques (c) rear wheel speeds (d) steering wheel angle.
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There is a certain level of correspondence between the outcomes of the two estimation

methods and the measurements, even with presence of high slips.

A brake-in-turn (BiT) maneuver accompanied by hard acceleration on the packed snow

(with µ ≈ 0.3) is also done with winter tires and the UIO force estimation approach

is validated by the filtered measurements in Fig. 4.8 at the front-right wheel. For this

maneuver the driveline configuration is FWD, tires changed to winter-type with effective

rolling radius Re = 0.352[m], and the vehicle started from Vx = 8.4 [m/s] and stopped at

t = 10.5 [s], then accelerated to 3.1 [m/s] at the end of the experiment.

(a)

Short version used for VxVy, complete for FxFy

Fx, 20140820 test 056, Basalt till 11.7, BiT and Accel. on snow
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Figure 4.8: BiT and acceleration on snow for FWD case (a) estimated forces at fR with

UIO (b) front wheel torques (c) rear wheel speeds (d) steering wheel angle.

The fluctuations observed in the filtered force profile measurement are attributed to

the low-stick characteristics of the packed snow. Uncertainties in the effective radius and

wheel speed derivative are tackled by tuning the observer gains k1, k3 and the observer

provides smooth outcomes. The suggested longitudinal observers (4.5) exhibits consistent

results for other road experiments on various road frictions as can be seen in Table 4.1.
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4.5.2 Lateral and vertical force estimators

Performance of the lateral and vertical force estimators on dry and slippery surfaces is

examined in several road experiments with the process and measurement noise covariance

matrices Qf = 0.132 I3×3, Rf = 0.0122 I3×3 for the lateral case. Results of the proposed

force estimator in a lane change on the dry road for the AWD case is presented in Fig. 4.9

and compared with the measurement. The measured accelerations and yaw rate are also

provided to show the the test conditions. The vehicle speed is Vx = 12[m/s] at the

beginning of the maneuver.4WD, LC on dry_20140807_test012, FL wheel
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Figure 4.9: Lateral and vertical force estimation, LC for AWD on a dry surface.

This test has been done with four passengers in the car, but the nominal vehicle total

and sprung masses from Table 3.1 is used for the force estimators; experimental results from

Fig. 4.9 confirm that the designed force estimator (by tuning the process and measurement

covariance matrices in the UKF approach) is robust to reasonable changes in the mass

(up to four passengers). To check the outcomes of the lateral and vertical force estimators
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in laterally excited maneuvers, a harsh steering on an icy road is done for the AWD test

vehicle and the results of the front-left corner are illustrated for in Fig. 4.10. The maneuver

ended up on a surface with packed snow which is highly slippery itself with µ ≈ 0.3. The

vehicle longitudinal velocity is 6.1 ≤ Vx ≤ 7.7 [m/s] for this test.
4WD, harsh steering on ice (ߤ ൎ 0.2) then packed snow_20140820_test041, FL Wheel
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Figure 4.10: Lateral and vertical force estimates, steering on ice then packed snow.

Accuracy of the force estimators are evaluated in different maneuvers with the nor-

malized root mean square of the error, NRMS, defined by ς̄ =

√∑Np
i=1(p̂i−pi)2/Np

pm
where the

measured and estimated signals are denoted by p and p̂ respectively, Np is the number of col-

lected signal samples during a driving scenario (DLC, AiT, BiT, etc.), and pm = max
i=1...Np

|pi|
shows the maximum value of the measured signal. The normalized root mean square of

the error of the longitudinal force estimators, ς̄x1, ς̄x2 (for UIO and UKF), lateral force

estimator, ς̄y, and vertical force estimator, ς̄z, in different driving scenarios and on various

road frictions are listed in Table 4.1; the maneuvers with four passengers in the car are

marked by ∗ in Table 4.1.
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Table 4.1: Force Estimators’ Error NRMS

Estimated

forces

LC on wet/dry ∗ DLC on dry BiT/Accel on snow

ς̄x1[%] ς̄x2[%] ς̄x1[%] ς̄x2[%] ς̄x1[%] ς̄x2[%]

FxfL 4.05 3.85 5.76 6.10 4.77 5.01

FxfR 3.91 4.02 5.18 5.32 6.28 6.23

FxrL 4.17 4.53 5.24 4.97 6.04 6.41

FxrR 4.30 5.11 5.47 5.25 6.36 7.19

ς̄y[%] pm[kN] ς̄y[%] pm[kN] ς̄y[%] pm[kN]

FyfL 6.03 6.38 2.94 10.13 5.56 3.18

FyfR 5.11 6.54 3.19 9.98 6.82 1.19

FyrL 5.24 4.08 3.86 9.20 6.17 2.74

FyrR 4.65 4.18 2.73 8.53 7.08 1.42

ς̄z[%] pm[kN] ς̄z[%] pm[kN] ς̄z[%] pm[kN]

FzfL 3.34 12.77 2.06 12.90 3.88 9.10

FzfR 2.72 12.41 3.44 12.36 3.03 7.06

FzrL 2.15 10.02 1.91 10.75 3.54 7.19

FzrR 1.93 10.14 2.24 10.62 2.92 6.82

Table 4.1 shows that the NRMS of the estimated longitudinal forces by UIO is better

than the UKF and it is less than 6.37% for the performed maneuvers on dry, wet, and

snowy roads. Therefore, the UIO approach is selected as the longitudinal force estimator

for the velocity estimation in Section 5.2 because of its superior performance even in

the presence of uncertainties such as in road conditions, which may vary from icy to

dry (i.e. 0.1 ≤ θ ≤ 0.97) in the tire model, effective radii with ±5% variation, and

corrupted measurements of wheel speed and torque with variance Rω = 0.18 and RTt = 32

respectively.

Table 4.1 also substantiates that the NRMS of the estimated longitudinal forces is less

than 7.2% for the performed maneuvers on dry, wet, and snowy roads. This normalized

error is ς̄y ≤ 6.9% for the lateral forces and ς̄z ≤ 3.9% for the vertical forces respectively.

These values confirm effectiveness of the algorithm for the corner-based force estimation

on dry and slippery roads. Observed errors between the measured and estimated forces in
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Table 4.1 for the force estimators may have several sources such as camber angle, which has

not been modeled in the estimation algorithm. Moreover, inaccurate inertial parameters

and uncertainties in the CG location contribute to such errors.

4.6 Summary

In this chapter, longitudinal, lateral, and vertical tire-free force estimators were developed

using robust nonlinear and Kalman-based observers and common measurements without

any limiting assumption on the lateral force distribution proportional to the vertical loads

on a track.

The longitudinal force estimators uses total torques and wheel speeds at each corner.

The UKF-based lateral force estimator employs vehicle lateral dynamics, acceleration mea-

surements, steering, and the yaw rate. Vertical forces at each corner from are obtained by

load transfer, vehicle angles and accelerations; vertical forces are employed for normaliza-

tion of the longitudinal and lateral forces for the velocity estimators in the next Chapter.

These estimators were experimentally tested on two vehicles in different driving scenarios

and on roads with various friction conditions.

The holistic corner-based structure of the longitudinal/lateral force estimators advanta-

geously suits requirements of the stability and traction control systems and can be utilized

in such systems and with a cascaded structure for any model-based velocity estimators.
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Chapter 5

Vehicle Velocity Estimation

Longitudinal and lateral velocities make major contributions to traction (wheel slip) control

and stability (vehicle yaw rates, and side slip angles) control systems, respectively. They

can be measured with GPS, but the poor accuracy of the mostly practiced conventional

GPSs and the loss of reception in some areas are primary drawbacks that highlight the

importance of the vehicle velocity estimation. This chapter presents a method for velocity

estimation at each corner on various road friction conditions. This is entailed for more

demanding advanced vehicle active safety systems and especially in full autonomous driving

in harsh maneuvers.

A novel parameter-varying observer for the velocity estimation, robust to road friction

and tire parameter changes, is introduced which treats acceleration measurement noises and

the road condition as uncertainties. The combined kinematic and model-based algorithm

for estimation of the velocities (sideslip angles and slip ratios) has a modular structure

which can employ any force estimation module.

A lateral velocity estimator is developed in this chapter for conventional vehicles with-

out wheel torque information by an integrated tire-kinematic scheme. This algorithm also

utilizes adaptive weighted axle estimates and high slip angle detection to cope with high-

slip conditions during large steering. Moreover, the newly introduced velocity estimator

can be utilized in many road identification approaches [28, 33, 108, 109]. However, those

references usually employ the slip ratio/angle measurement from accurate GPS data, that

is not available for production vehicles. An approach for road classification using vehicle
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lateral responses on different roads based on pure and combined-slip models is investigated

in this chapter.

The suggested longitudinal and lateral state estimators are provided in sections 5.2

and 5.3. The stability, performance, and robustness of the linear parameter-varying es-

timators’ error dynamics is also explored in these sections. Lateral state estimation for

conventional vehicles is discussed in Section 5.3. Road classification based on the vehicle

lateral response and vehicle speed is discussed in Section 5.4. Section 5.5 presents simu-

lation and experimental results used to verify the approach on different road conditions,

with varied tire type and inflation pressure, and in various maneuvers with high and low

longitudinal/lateral excitations. Finally, summary is provided.

5.1 Introduction

As conferred in section 2.3, because of difficulties in dealing with time-varying tire pa-

rameters and unknown road conditions, conventional kinematic-based velocity estimators

employ acceleration measurement and rely on GPS data intermittently. Linear, Kalman-

based, or nonlinear observers are used in such kinematic methods [43,44,47] without using

a tire model. Solving the longitudinal V̇x = ax + rVy + ϑx and lateral V̇y = ay − rVx + ϑy
kinematics with removing bias and noises ϑx, ϑy by using GPS, the kinematic methods

estimate the longitudinal and lateral velocities Vx, Vy. However, using an accurate GPS

device and unavailability of reliable signals in many circumstances imposes extra costs and

uncertainties for production vehicles. On the other hand, the performance of the velocity

estimators based on tire forces is practically limited because of uncertain road friction and

tire parameters, especially for saturation regions. Consequently, the kinematic approach

is combined with the LuGre model’s internal states at each corner in this section to tackle

these issues.

The corner-based state estimation structure is illustrated in Fig. 5.1, in which the

estimations from Longitudinal Force Est and Lateral Force Est modules are fed to the

observer-based velocity estimators. Longitudinal, lateral, and vertical force estimators,

discussed in Chapter 4, are developed using nonlinear and Kalman-based observers. In the

newly proposed Longitudinal Velocity Est and Lateral Velocity Est modules, kinematic-
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based approach is combined with the internal tire states considering road friction and

measurement noises as uncertainties. The longitudinal and lateral velocity estimators use

accelerations, yaw rate, steering angle, roll dynamics, estimated tire forces, and provide

slip angle/ratio at each tire. Measured accelerations by IMU attached to the sprung mass

are corrected with the vehicle’s body pitch and roll angles from Pitch/Roll Angle Est to

include only the kinematics of the motion. These corrected values are then used for the

normal force and velocity estimators.

Vehicle

‐Wheel speed
‐ IMU
‐ Steering 
wheel angle
‐ Traction & 
brake torque
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Figure 5.1: Corner-based state estimation structure

The proposed approach is experimentally validated on various road conditions using

full-size test vehicles with different driveline configurations and control actuation.

5.2 Longitudinal Velocity Estimation

The average lumped LuGre model [18] is utilized in this study to estimate velocities because

of its accuracy and the dynamics on its internal states. The internal state ˙̄zq = vrq −
(κqRe|ω| + σ0q |vrq |

θg(vrq)
)z̄q for each direction q ∈ {x, y} in the pure-slip model is utilized in

60



this section; the unknown road friction term σ0q |vrq |
θg(vrq)

z̄q and changes in the rolling radius

are unknown, considered as uncertainty terms. The LuGre model’s internal states (2.1a)

can be written in the presence of uncertainty Ωz(t) as follows at each corner (tire) for the

longitudinal direction:

˙̄zx = vrx − κxRe|ω|z̄x + Ωzx. (5.1)

Uncertainty Ωzx is replaced with the road friction term σ0x|vrx|
θg(vrx)

z̄x and is bounded. Moreover,

the derivative of the relative velocity is also corrupted due to the sensor noise and bias

[110]:

v̇rx = Reω̇ − v̇xt + Ωax, (5.2)

in which ω̇ is the wheel’s rotational acceleration and v̇xt represents the longitudinal ac-

celeration in the tire coordinate system. v̇xt is obtained from first, transformation of the

corrected acceleration ǎx + rVy from CG to corners where ǎx from (4.3) only contains the

kinematic part, then, projection of the corner’s acceleration into the tire coordinates. The

term Ωax shows the deviation of the measured relative acceleration Reω̇ − v̇xt from v̇rx
because of the sensor noises. Establishing these equations allow the development of an

observer to incorporate both tire deflections (5.1) and relative velocities (5.2) concurrently

[91]. The general form of the system dynamics is given as follows: ˙̄zx

v̇rx

 =

−κxReω 1

0 0

 z̄x
vrx

+

0

1

 (Reω̇ − v̇xt) + Ωx

= Ax(ω)x +Bxux + Ωx, (5.3)

in which Ωx = [Ωzx Ωax]
T and states are x = [z̄x vrx]

T . Substituting ˙̄zx from (5.1) into

the normalized longitudinal force equation of the pure-slip LuGre model (2.1b), one can

rewrite the output equation as:

µx = [(σ0x − σ1xκxReω) (σ1x + σ2x)]x + σ1xΩzx

= Cx(ω)x + σ1xΩzx. (5.4)

Thereby, the estimated output can be written as µ̂x = Cx(ω)x̂. Using the modified longi-

tudinal kinematics (5.3) the following observer is proposed for the velocity estimation:

˙̂x = Ax(ω)x̂ +Bxux + Lx(µx − µ̂x), (5.5)
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where Lx = [L1x L2x]
T is the observer gain matrix and µx represents the normalized

longitudinal forces discussed in Chapter 4. Taking into account that the systems dynamic

is time-varying with respect to the wheel speed, the suggested estimation method must be

designed for the corresponding uncertain LPV system.

The bounded time-varying parameter is the wheel speed ω : R≥0 → Sp where Sp is the

set of vertices of the parameter interval [ωl, ωu] and the parameter varying state transition

matrix is Ax(ω) ∈ R2×2. The error dynamics ėx = ẋ− ˙̂x from (5.3) and (5.5) yields:

ėx = (Ax(ω)− LxCx)ex − Lxσ1xΩzx + Ωx

= Aex(ω)ex +

1− L1xσ1x 0

−L2xσ1x 1


︸ ︷︷ ︸

Bex

Ωx, (5.6)

Estimator’s stability analysis

The objective of this subsection is to show that the error dynamics (5.6) is affinely quadrat-

ically stable over all possible trajectories of ω. The state matrix Aex(ω) is said to be affinely

dependent on the parameter ω when known and fixed matrices A0x and A1x exist such that

Aex(ω) = A0x+ωA1x. The error dynamic matrix for both lateral and longitudinal directions

q ∈ {x, y} is introduced as:

Aeq =

[
−L1qσ0q −L1qp1q

−L2qσ0q −L2qp1q

]
+ ω

[
κqRep2q 0

κqReL2qσ1q 0

]
= A0q + ωA1q (5.7)

where p1q = σ1q + σ2q and p2q = L1qσ1q − 1. The bounded time-varying parameter and its

time derivatives are in the sets ωp ∈ [ωl, ωu] and ω̇p ∈ [ω̇l, ω̇u], respectively.

A linear system like (5.6) is affinely quadratically stable over all possible trajectories

of the parameter vector ω(t) if Aex(ωm) is stable (ωm is the average value of ω over the

parameter span) and there exists an affine positive definite Lyapunov function

V (ex, ω) = eTxP (ω)ex, (5.8)
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with P (ω) = P0 + ωP1 > 0 such that dV (ω, ω̇)/dt < 0 for all initial conditions x0 and the

additional multi-convexity constraint AT1xP1 +P1A1x ≥ 0 holds [111]. The condition V̇ < 0

resembles ATex(ωp)P (ωp) + P (ωp)Aex(ωp) + dP (ωp)

dt
< 0 that yields

ATex(ωp)P (ωp) + P (ωp)Aex(ωp) + P (ω̇p)− P0 < 0, (5.9)

for all (ω, ω̇) ∈ Sp × Sr where Sr is the set of corners of the rate in [ω̇l, ω̇u]. This is

because dP (ωp)

dt
= P (ω̇p) − P0 from P (ωp) = P0 + ωpP1. The affine quadratic stability

condition implements the variation rate ω̇(t), which makes it less conservative than the

quadratic stability criteria. The error dynamics is affinely quadratically stable for the

two sets of observer gains L1x ∈ [0.5, 0.9], L2x ∈ [60, 210], obtained by several simulations

and experimental tests on different road conditions and the vehicle parameters listed in

Table 3.1. Stability of the system (5.6) will be guaranteed with the substitution of the

operating regions |ω| ≤ 180[rad/s] and |ω̇| ≤ 800[rad/s2], which is practical for this case

according to the sampling frequency 200[Hz] i.e. Ts = 0.005[s] and measurement errors

in the wheel speed. Given the vehicle parameters listed in Table 3.1, the tire rubber

stiffness σ0x = 632.1[1/m], rubber damping σ1x = 0.76[s/m], relative viscous damping

σ2x = 0.0016[s/m], load distribution factor κx = 8.32, observer gains L1x = 0.68, L2x =

183.1 and the affinely dependent form of (5.7), considering a polytope with bounds on ω̇

to solve (5.9) yields the following numeric values for the symmetric matrix P (ω):

P (ω) =

[
1.2176− 0.0011ω 115.35− 0.2227ω

115.35− 0.2227ω 80379.0− 67.969ω

]
. (5.10)

Estimator’s performance analysis

The objective is to find the observer gains such that the ratio of the estimation error to

the disturbance energy is minimized considering the fact that the process disturbance Ωzx

and the measurement disturbance Ωax are bounded. Given a compact set ω ∈ [ωl, ωu]

and a bounded rate of variation of |ω̇| < ζω, for some ζω > 0 the system (5.6) is robustly

exponentially stable if there exist a continuously differentiable positive definite matrix P (ω)
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and a matrix χ(ω) such that the following LMI holds:
ϕ(ω) P (ω) + χ(ω)Be1 CT

e

∗ −γI 0

∗ ∗ −γI

 < 0, (5.11)

where the symmetric terms are denoted by ∗ and ϕ is:

ϕ(ω) = [ATx (ω)− CT
x (ω)LT

x ]P (ω) + P (ω)[Ax(ω)− LxCx(ω)] +
∂P

∂ω
ω̇. (5.12)

In order to isolate the observer gain effect, Bex can be written as Bex = I2×2 + LxBe1, in

which Be1 = [σ1x 0]. The induced L2 norm from the input disturbance to the output error

is less than the performance level γ > 0. The LMI (5.11) is obtained by taking derivative

of the Lyapunov function V (ex, ω) = eTxP (ω)ex, imposing the condition ϕ(ω) < 0, and

using the Bounded Real Lemma. Employing χ(ω) = P (ω)Lx, one can rewrite:

ϕ(ω) = ATxP + PAx − χCx − CT
x χ

T +
∂P

∂ω
ω̇ (5.13)

The LMI (5.11) guarantees that V̇ + eTxex − γ2ΩT
xΩx < 0. The set of gains will be

calculated by Lx = P (ω)−1χ(ω). The infinite dimensional parameter-varying LMI (5.11)

with ϕ(ω) from (5.13) can explicitly be expressed in a finite dimensional problem with the

parametric matrices and using appropriate basis functions. The positive definite matrix P

and matrix ϕ are defined as P (ω) :=
∑f

i=0 Piω
i and ϕ(ω) :=

∑f
i=0 ϕiω

i respectively and the

set ω = [0 140] is gridded to Ngr = 140 points. The time-varying observer gains L1, L2

form solved LMIs by YALMIP package [112] are depicted in Fig. 5.2-a for the longitudinal

observer and the vehicle parameters provided in Table 3.1.

The condition for getting the H∞ performance can be checked graphically by plotting

||H(jω)|| for different values of the vehicle wheel speed. The corresponding frequency

responses of the LPV system with time-varying observer gains are illustrated in Fig. 5.3

for different wheel speeds.

Figure 5.3 shows non-expansive characteristics of the error dynamics (5.6) (with worst-

case gain γwc < 1) and demonstrates diminishing uncertainties with the allocated time-

varying gains in all channels even for measurement noise rejection in the second channel

of the observer at low frequencies (γwc = 0.998).
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Figure 5.2: Time-varying observer gains for velocity estimators.

Figure 5.3: Response of the observer with time-varying gains.

The estimated relative longitudinal velocities v̂rxij at each corner from (5.5) are used

for the longitudinal velocity estimation at the tire coordinates as v̂xtij = Reωij − v̂rxij .

Afterward, each corner’s longitudinal velocity in the vehicle coordinates v̂xij yields:

v̂xij = v̂xtij cos δ − v̂ytij sin δ (5.14)
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in which δ is the steering angle at corners and the estimated lateral velocity at each corner’s

tire coordinates is denoted by v̂ytij . In order to increase the accuracy of the corners’ velocity

estimates, suspension compliance can be considered as investigated in [113]. The corner-

based lateral velocity estimation will be described in the next subsection.

To tackle the high slip conditions and provide a smooth estimation with removing out-

liers, weighted estimated longitudinal velocities at each corner are used for the estimation

of the vehicle speed, V̂x. Specifically, each axles’ longitudinal velocities are defined by v̂xf
and v̂xr that are the mean values between v̂xfL , v̂xfR for the front axle and v̂xrL , v̂xrR for the

rear axle respectively. Then, the longitudinal velocity of the vehicle V̂x at CG is achiev-

able by adaptive weighted velocity mapping method, which is allocating adaptive weights

Wf
x ,Wr

x to each axle as V̂x = Wf v̂xf +Wrv̂xr . Adaptive weights are defined with respect

to the maximum slip ratio of each axle as functions:

W i
x =Wsx + W̄x tan−1[ρwx(λam − λwth)], (5.15)

and W−ix = 1−W i
x where i ∈ {f, r} and −i represents another axle i.e. −i ∈ {r, f}. The

weight range coefficient is W̄x = (W̄ux − W̄lx)/π where upper and lower bounds on the

allocated weights are expressed by W̄ux , W̄lx . The slip ratio threshold at which the weight

of each axle are the same is denoted by λwth . The maximum slip ratio of axles are used to

allocate a smaller weight to an axle with higher slip ratio; it is achievable by

λam = max{Σx
i ,Σ

x
−i}, (5.16)

where Σx
i = |λiL| + |λiR| is defined for an axle and Σx

−i = |λ−iL| + |λ−iR| is written for

another axle. The shape of the axle’s weight function can change with the parameters

ρwx and the static weight Wsx . Afterward, the calculated velocity at CG is remapped

again to each corner to have slip ratios for the stability and traction control systems. The

combined kinematics-tire approach for velocity estimation and the adaptively weighted

track estimates are employed to develop a longitudinal velocity estimator in [114], which

can be used for various driveline configurations independent from the wheel torques.
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5.3 Lateral Velocity Estimation

The LuGre output equation for the lateral direction can be described as follows with states

xl = [z̄y vry]
T :

µy = [(σ0y − σ1yκyReω) (σ1y + σ2y)]xl + σ1yΩzy

= Cy(ω)xl + σ1yΩzy. (5.17)

Employing the lateral LuGre internal state from (2.1a) and the relative lateral acceleration

v̇ry = −v̇yt + Ωay with the projected lateral acceleration v̇yt in the tire coordinate system,

the newly proposed lateral dynamics can be developed. v̇yt is obtained from first, trans-

formation of the corrected acceleration ǎy − rVx from CG to corners where ǎy from (4.3)

only includes the kinematic part, then, projection of the corner’s acceleration into the tire

coordinates. Therefore, (5.3) can be rewritten for the lateral direction as:

ẋl = Ay(ω)xl +Byuy + Ωy. (5.18)

using state and input matrices similar to the longitudinal caseAy = [−κyReω 1; 0 0], By =

Bx and uy = −v̇yt. Uncertainties in the lateral states are denoted by Ωy = [Ωzy Ωay]
T .

The state estimator can be expressed as follows for the lateral direction:

˙̂xl = Ay(ω)x̂l +Byuy + Ly(µy − µ̂y), (5.19)

in which Ly = [L1y L2y]
T . The error dynamics is then developed as:

ėy = Aey(ω)ey +

1− L1yσ1y 0

−L2yσ1y 1


︸ ︷︷ ︸

Bey

Ωy, (5.20)

where Aey = (Ay − LyCy). The error dynamics (5.20) for the proposed lateral velocity

estimator represents a linear parameter-varying system and its stability can be investigated

using the affine quadratic stability criteria discussed in the previous subsection.

Stability and performance of the Lateral estimator

The error dynamics (5.20) is affinely quadratically stable over all possible trajectories of

ω. Analogous to the longitudinal case, the state matrix Aey(ω) can be written in the affine
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form Aey(ω) = A0y + ωAly with the fixed matrices A0y and A1y from (5.7). Aey(ωm) is

stable and there exists an affine positive definite Lyapunov function V (ey, ω) = eTy P (ω)ey
with P (ω) = P0 + ωP1 > 0 such that dV (ω, ω̇)/dt < 0 for all initial conditions xl0 and

the additional multi-convexity constraint AT1yP1 + P1A1y ≥ 0 holds. The condition V̇ < 0

resembles

ATey(ωp)P (ωp) + P (ωp)Aey(ωp) + P (ω̇p)− P0 < 0 (5.21)

The error dynamics is affinely quadratically stable for the two sets of observer gains L1y ∈
[0.8, 1.3], L2y ∈ [6, 19], obtained by several road experiments. Given the tire specifications

σ0y = 181.5[1/m], σ1y = 0.81[s/m], σ2y = 0.001[s/m], κy = 12.84, observer gains L1y =

1.11, L2y = 16.7, the vehicle parameters in Table 3.1, and the affinely dependent form of

(5.7), solving (5.21) with considering a polytope and bounded wheel acceleration |ω̇| ≤
800[rad/s2] yields:

P (ω) =

[
4.7718− 0.0070ω 154.87 + 0.0038ω

154.87 + 0.0038ω 75627.0− 0.0013ω

]
. (5.22)

Similar to the longitudinal case, parameter-varying observer gains are obtained using

LMI (5.11) for the lateral direction and the outcomes are illustrated in Fig. 5.2-b.

Furthermore, a similarity transformation is used in the following proposition to in-

vestigate the boundedness of the estimation error of the longitudinal and lateral velocity

estimators with error dynamics matrix Aeq where q ∈ {x, y}.

Proposition 1. Estimation errors in linear time varying error dynamics (5.6) and (5.20)

are bounded.

Proof. A similarity transformation in the form of ēq(t) = Teq(t) is employed on the lon-

gitudinal/lateral estimation error states (5.6) and (5.20), which results in Āeq = TAeqT
−1

and B̄eq = TBeq . Choosing T = diag{γe, 1} with a design parameter γe > 0, leads to Āeq
whose stability margin, SMq , max

i
λi(Āeq), is close to the stability margin of its symmet-

ric part. Moreover, due to the fact that ||T || and ||T−1|| are bounded, the transformation

matrix T preserves the exponential stability and the rate of the convergence [115,116]. The

Lyapunov candidate V(ēq(t)) = 1
2
ēq(t)

T ēq(t) is then introduced to investigate the stability
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of the velocity estimators’ error dynamics. The time derivative of the Lyapunov function

along the state trajectories leads to

V̇ =
1

2
˙̄eq(t)

T ēq(t) +
1

2
ēTq (t) ˙̄eq(t)

= ēTq (t)

(
1

2

(
ĀTeq + Āeq

))
︸ ︷︷ ︸

Ās

ēq(t) +
1

2

(
ΩT
q B̄

T
eq ēq(t) + ēTq (t)B̄eqΩq

)

≤ λmax(Ās)||ēq(t)||2 +
1

2

(
1

2ε
ΩT
q B̄

T
eqB̄eqΩq +

ε

2
||ēq(t)||2

)
≤
(
λmax(Ās) +

ε

4

)
||ēq(t)||2 + λmax(B̄T

eqB̄eq)||Ωq||2

= 2
(
λmax(Ās) +

ε

4

)
V + λmax(B̄T

eqB̄eq)||Ωq||2

≤ ηe1V + ηe2 , (5.23)

for some ηe1 < 0 and ηe2 > 0. Here V represents V(ēq(t)) and ε is chosen such that

0 < ε � |λmax(Ās)| to have λmax(Ās) + ε
4
< 0; thus, ηe1 < 0. The third line is due to

the Young’s inequality and the fourth row is due to the fact that B̄T
eqB̄eq is a symmetric

matrix. Introducing U(ēq(t)) = V(ēq(t)) +
ηe2
ηe1

, based on (5.23) and the Bellman-Gronwall

lemma [117], we have U(ēq(t)) ≤ eηe1 tU(ēq(0)), which yields:

0 ≤ V(ēq(t)) ≤ eηe1 t
(

V(ēq(0)) +
ηe2
ηe1

)
− ηe2
ηe1

, (5.24)

which results in

0 ≤ ||ēq(t)||2 ≤ eηe1 t
(
||ēq(0)||2 +

2ηe2
ηe1

)
− 2ηe2

ηe1
. (5.25)

ηe2
ηe1

< 0 proves the exponential stability of the nominal part of the error dynamics (5.6)

and (5.20) (without term Ωq) and the boundedness of the estimation error eq(t).

As mentioned in Proposition 1, the transformation matrix T yields a less conserva-

tive stability condition for the symmetric part of Āeq compared to the symmetric part of

Aeq . Proposition 1 shows the boundedness of the estimation errors. However, in order

to have tighter bounds, system H∞ norms, defined as H∞ , sup
ω∈R
||G(jω)||∞ is studied
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for longitudinal/lateral error dynamics. This norm for both longitudinal and lateral ve-

locity estimators is calculated and is H∞ ≤ 0.99 for the wheel speed operating region

0 < ω ≤ 180[rad/s] and observer gains Lx = [0.7 184]T ,Ly = [1.1 16.8]T . It should be

mentioned that the H∞ norm is a conservative system norm and the calculations reveal

that even such conservative norms of the error dynamics are non-expansive (H∞ ≤ 1) for

the proposed observers.

The sensitivity of the error dynamics stability margin SMq to model parameter uncer-

tainties is also investigated in the following for the same set of observer gains. Figs. 5.4,

5.5, and 5.6 show deviation of the stability margins and H∞ norms of the error dynamics

(5.6) and (5.20) from their nominal values due to model parameter deviation of up to

±20%.
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These figures confirm that the performance of the developed observers is not very

sensitive to the tire parameter variations.
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Figure 5.6: Sensitivity of H∞ of the Long. and Lat. error dynamics to model parameters.

Analogous to the longitudinal case, each corner’s lateral velocity v̂yij in the body-fixed

vehicle coordinates is achievable from:

v̂yij = v̂xtij sin δ + v̂ytij cos δ, (5.26)

where v̂ytij and v̂xtij are the estimated lateral and longitudinal velocities at the tire coordi-

nates. The lateral velocity in the tire coordinates is v̂ytij = −v̂ryij and the relative velocity

v̂ryij is obtained from (5.19) at each corner.

5.3.1 Lateral state estimation for conventional cars

A new algorithm is developed and experimentally tested in this section for the lateral ve-

locity estimation without wheel torques information. This algorithm implements common

sensors (IMU, wheel speed, and steering) and addresses uncertainties due to large steering

in high traction (or brake) with adaptive covariance matrices and variable weighted track

estimates. Therefore, it can be employed for conventional cars and will have a noticeable

impact on stability control and autonomous systems.

The effect of longitudinal forces in the planar kinetics (4.2) and (4.4) can be ignored

for lateral forces used for lateral velocity estimation in conventional vehicles. Thereby,

planar equations become mǎx = −Fyf sin δ + wfx , mǎy = Fyf cos δ + Fyr + wfy , and

Iz ṙ = Fyf cos δdf − F̄yf sin δ
Trf

2
− Fyrdr + wr. Uncertainties in the new dynamics can

71



be handled by modified covariance matrices for the lateral force estimation and modified

observer gains of the lateral velocity estimator. An unscented Kalman filter is employed

on a new system dynamics to estimate lateral velocities and internal tire states.

Employing internal tire states (2.1a) in the lateral direction, z̄y, and the lateral relative

velocity v̇ry = −v̇yt + Ωay a Kalman-based observer is developed. The general form of the

estimator at each corner ij, which can be addressed by the KF, with ω > 0 is given as

follows in which the states are xn = [z̄y vry ˙̄zy]
T and Ωn = [Ωzy Ωay Ωży]

T :

ẋn = An(ω)xn +Bnuy + Ωn

= M−1


−κyReω 1 0

0 0 0

−κyReω̇ 0 −κyReω



z̄y

vry

˙̄zy

+M−1


0

1

0

 (−v̇yt) + Ωn,

yn = Cnxn + Γn = σ0yz̄y + σ2yvry + σ1y ˙̄zy + Γn, (5.27)

and M = [1 0 0; 0 1 0; 0 − 1 1]. Process and measurement noises are denoted

by Ωn,Γn respectively. The linear time-varying system (5.27) uses a reduced number of

tire parameters: normal force distribution factor κy, rubber stiffness σ0y, rubber damping

σ1y, and relative viscous damping σ2y. These tire parameters are not related to the road

condition and friction parameters. The bounded error covariance and stability of linear

time-varying Kalman estimators for both known zero and nonzero initial error covariance

were explored in [118, 119]. Observability is a sufficient condition for implementation of

an optimal variance filter (such as a Kalman estimator). The discretized from of system

(5.27) is:

xnk+1
= Ānkxnk + B̄nkuyk + Ωnk ,

yk = C̄nkxnk + Γnk , (5.28)

in which the discretized system matrices Ān, B̄n, C̄n are obtained by step-invariance method

and noise covariance matrices are denoted by Qnk = E[Ωnk ,Ωnk
T ] and Rnk = E[Γnk ,Γnk

T ].

Process and measurement noises are assumed to be uncorrelated and have zero mean.
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Stability of the estimator

Stability of the error dynamics of the Kalman-based observer on system (5.27) is studied

in this section with known and uncertain initial conditions. The detectability and stabiliz-

ability definitions in (A1) and (A2) are required for the stability analysis of the suggested

discrete-time estimators. Uniform detectability leads to bounded error covariance. In

addition, stabilizability of the paired state transition matrix and process noise results in

exponential stability of the estimator, as proved in [120,121]. The stochastic observability,

stability and convergence of the state mean, and bounds on error covariance of the Kalman

estimator for linear time-varying (LTV) systems, such as that in (4.18), were studied in

[120,122]. These studies were focused on systems with deterministic parameters and known

initial state vectors and done in terms of uniform complete observability and controllability

grammians. On the other hand, the bounded error covariance and stability of the Kalman

estimator for systems with completely uncertain initial covariance/states is investigated in

[123]. Uniform detectability and stabilizability conditions are investigated in this section to

check the stability and error covariance boundedness of the proposed velocity estimator for

two cases: a) known zero/nonzero initial states b) complete uncertainty of the initial-state

statistics.

Proposition 2. There exists a state estimator such as Kalman having bounded error co-

variance for time-variant system (5.28) with deterministic time-varying parameters and

known initial state/covariance.

Proof. For the system xnk+1
= Ānkxnk +Ωnk , yk = C̄nkxnk +Γnk with uniform detectability

of [Ānk , C̄nk ], the known initial state/covariance, and the process and measurement noise

covariances Qnk , Rnk , there exists a state estimator such as the Kalman having bounded

error covariance [120]. Furthermore, stabilizability of the pair [Ānk , Gk] leads to exponential

stability of the KF, where Gk is an appropriate matrix obtained by Qnk = GkG
T
k . Proof is

provided in [120]. Therefore, the detectability condition (A1) should be examined for the

proposed velocity estimator (5.27). This is experimentally checked for the deterministic

time-varying wheel speed of the discrete-time system’s matrix Ānk . The rank of V(0, N)

on several road experiments is 3. It confirms that the suggested estimator has full rank on

the observability grammian (A1) for all performed maneuvers, showing the observability

of the system for known initial covariances. The stabilizability condition is also required
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since states should be affected by the noise such that the optimal Kalman estimator is

forced to utilize measurements. This condition is also satisfied and the grammian (A2) has

full rank.

Additionally, since the system matrix An(ω) in (5.27) is physically bounded (because

of the wheel speed and its derivative characteristics), the conventional observability test

(4.16) for time-variant systems is performed here and it is confirmed by holding the full rank

condition rank(O3) = 3 at each fixed time span for operating regions of the wheel speed

and its time derivatives. Thus, the suggested parameter-varying lateral state estimator

(5.27) is observable.

In the case of complete uncertainty on the initial state/covariance, the estimated covari-

ance matrices can be unbounded even if the LTV system satisfies the observability criteria

(A1). The bounded error covariance and stability of the Kalman filter for the proposed

lateral velocity estimator for conventional vehicles applications with completely uncertain

initial state/covariance is investigated here in the following.

Proposition 3. The corner’s lateral states z̄y, vry of the time-varying system (5.27) can

be recovered using measurements µyij and a Kalman estimator with stochastic initial co-

variance/states.

Proof. By definition, the system (5.28) is stochastically observable if there exists a finite

time tf , such that the state covariance matrix Pk is bounded [123]:

λmax(Pk) < λb, tk ≥ tf , (5.29)

where λmax(Pk) shows the largest singular value of the matrix Pk and λb is a predefined

scalar bound. Assuming initial state covariance matrix P0|−1 = ψI, ψ ∈ R, ψ > 0, one can

rewrite the time-varying Riccati equation (4.19) as [123]:

Pk+1|k = ψMk+1 +Nk+1 + Sk+1, (5.30)

whereNk+1 = Nk+1(Mk,Nk, φk, C̄nk , Qnk , Rnk), Sk+1 = Sk+1(ψ,Sk,Nk, φk,Mk, C̄nk , Qnk , Rnk),

and Mk+1 , φk,0X0,kX
T
0,kφ

T
k,0. The procedure for obtaining X0,k is provided in the Ap-

pendix and φi,j = φi,i−1φi−1,j are the state transition matrices for i ≥ j with φi+1,i = Āni .

In summary, the following Lemma presents two tests for observability of the velocity esti-

mator with stochastic initial conditions.
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Lemma 1. [123] A Kalman estimator on the system (5.28) with an error covariance matrix

Pk+1|k and stochastic initial state P0|−1 = ψI, ψ ∈ R+ is stochastically observable if the

condition λmax(Mf ) = 0 (test 1) holds for a finite time tf and λmax(Nk+1) < λb for tk ≥ tf
(test 2) with a predefined bound λb, where Mk+1 is obtained from the modified Riccati

equation (5.30) and the procedure provided in (A6), (A7) in the Appendix. Employing the

condition λmax(Mf ) = 0 for a finite time tf < ∞, the modified Riccati equation (5.30)

changes to Pk+1|k = Nk+1 + Sk+1 which leads to a simplified form of Nk+1 as in:

Nk+1 = ĀnkNkĀTnk +Qnk − ĀnkNkC̄T
nk

Ξ−1
k Ξ−Tk C̄nkNkĀTnk , (5.31)

where Ξk is expressed in (A7).

Whenever the two criteria on Mf ,Nk+1 in Lemma 1 (so called test1 and test2 ) are

met, employed the Kalman observer is stable even if the scalar ψ has infinite values.

These two tests and road experiments have been performed on the proposed observer with

Qn = 2.9e − 3 and Rn = 7.5e − 4 and results are depicted as follows. Figure 5.7 exhibits

λmax(Mf ), whereMf is obtained from (5.30) and the procedure provided in the Appendix.

Different experiments such as DLC, brake-in-turn (BiT), sharp turn, and steering on dry

and slippery (snow/ice) roads have been performed and results are illustrated in Fig. 5.7.
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Figure 5.7: Test1 for various road tests, experimental results

From the plots in Fig. 5.7, it is apparent that the largest singular value ofMf converges

to zero after tf = 0.03 sec. for different experiments. The values of λmax(Nk+1) with Nk+1

from (5.31) are plotted in Fig. 5.8.
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Figure 5.8: Test2 for different driving scenarios and roads, experimental results

The results on different road conditions and pure/combined slip maneuvers, as shown

in Fig. 5.8, indicate that the maximum singular value of Nk+1 remains bounded. Thus,

the both criteria (test1 and test2 ) are met and the discretized form of system (5.27) with

a KF estimator is stochastically observable.

Consequently, the presented lateral estimator is stable, and errors of the state mean

have bounded variance for both known and stochastic initial covariance.

A high-slip detection algorithm is used to deal with uncertainties associated with ig-

noring longitudinal forces effect and noises due to high steering and large slip angle con-

ditions. Noise covariance matrices change appropriately upon detection of a high steering

or high-slip cases to incorporate changing in the level of reliance on the vehicle kinematics

(process) and lateral forces (measurement). Covariance matrices Qn, Rn change adaptively

to avoid errors (caused by nonlinearities/uncertainties) during harsh maneuvers on slippery

surfaces.

This algorithm needs a slip angle threshold αth after which the process and measurement

covariance matrices change to Qn = 3.05e−4 and Rn = 2.7e−1 respectively. Sudden changes

in the slip angle (vehicles response) will not be detected in case of large constant high-slip

threshold. This leads to more required time for the estimated slip angle to satisfy the

threshold (i.e. it requires larger excitations). On the other hand, small constant threshold

results in unnecessary detection of the large slip cases. Thus, in the developed high-slip

detection module, the threshold changes between the predefined upper and lower bounds
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αu, αl according to the driving conditions as:

αth = αu −
1

ϕe
√

2π
e
−βeσe

2ϕ2
e , (5.32)

where ϕe = 1√
2π

(αu − αl) and σe represents variance of the vehicle’s acceleration ak over a

moving window with size Na i.e. σe = var{||ak||2 : m−Na ≤ k ≤ m},∀m ∈ N,m ≥ Na, in

which ||ak||2 =
√
a2
xk

+ a2
yk

and axk , ayk are measured longitudinal and lateral accelerations.

The rate of transition between the predefined upper and lower thresholds αu, αl is denoted

by βe. Thus, for |α| ≥ αth the covariance matrices Qn, Rn change to the new values. Finally,

the covariance matrices change when each of the slip-based or steering-based criteria at

each corner ij are met i.e. {|α| ≥ αth ∨ |δ| ≥ δth}. This leads to the prompt detection and

consequently proper covariance matrix allocation.

In addition to the variable covariance matrices for large steering and high slip condi-

tions, a weighted estimated axle’s scheme is incorporated. This is to deal with errors caused

by ignoring the effect of longitudinal forces in the planar kinetic model for conventional ve-

hicle’s state estimation. The lateral velocities at each corner v̂yij are utilized for definition of

the front and rear axle’s lateral velocities v̂yf , v̂yr respectively. Each axle’s lateral velocities

are obtained by v̂yf = −rdf+(v̂yfL+v̂yfR)/2 for the front axle and v̂yr = rdr+(v̂yrL+v̂yrR)/2

for the rear axle. Similar to the longitudinal case, using weighted estimated axles’ lateral

velocities, the vehicle lateral velocity V̂y at the CG is expressed as follows:

V̂y =Wf
y v̂yf +Wr

y v̂yr , (5.33)

where Wf
y and Wr

y are adaptive weights for each axle and are defined similar to the longi-

tudinal case (5.15), but with respect to the maximum slip angle at each axle as in

W i
y =Wsy + W̄y tan−1[ρwy(αam − αwth)]. (5.34)

with the slip angles threshold αwth . The weight range coefficient for the lateral direction is

denoted by W̄y = (W̄uy − W̄ly)/π with the upper and lower bounds W̄uy , W̄ly . Parameters

ρwy and Wsy are introduced to change the shape of the lateral axle’s weight function. To

address the high slip angle scenarios and provide smooth estimation, the maximum slip

angle of axles αam = max{Σy
i ,Σ

y
−i} are utilized to allocate a smaller weight to an axle with

higher slip angle. Each axle’s slip angle is defined by

Σy
i = |αiL|+ |αiR|, Σy

−i = |α−iL|+ |α−iR|. (5.35)
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An opinion dynamic-based distributed estimation [124], which uses level of reliability

to each axles based on the slip ratio/angle, can be used instead of the weighted scheme

described here. Provided that the current generalized estimation structure can be used

for other vehicles with changing the vehicle parameters, the established framework will be

evaluated in conventional cars. These estimators has been experimentally tested with ag-

gressive maneuvers such as increasing the longitudinal speed during cornering, acceleration-

in-turn, harsh steering, and launch on high and low-friction surfaces. Simulation and ex-

perimental results in Section 5.5 confirm the validity of the algorithms on different roads

and with various driveline and actuator configurations.

Remark : Reliability analysis of the state estimators is performed by implementing the

proposed weighted axle scheme, mapping the estimated corner velocities to the Vehicle’s

CG to define ū := V̂x, v̄ := V̂y, and combining the vehicle planar kinematic equations

ax = ˙̄u− rv̄ and ay = ˙̄v + rū as:âx
ây

 =

0 −r
r 0

ū
v̄

+

 ˙̄u

˙̄v

 (5.36)

in which the estimated longitudinal and lateral velocities are correlated to check the re-

liability. The estimated accelerations, âx, ây, from (5.36) are compared by the measured

ones to generate the residuals r̃x = |ax− âx|, r̃y = |ay − ây| within a variable time window,

which is adaptive based on the vehicle excitation level. A persistence criteria is also used

to check repeated large residuals, i.e., r̃x ≥ r̃xth , r̃y ≥ r̃yth within a certain time window.

The reliability measure in each longitudinal and lateral direction is provided based on the

value of the residuals.

Since the estimated acceleration produced by the derivatives of the longitudinal and

lateral velocities are compared with the measured accelerations, the correlated kinematics

(5.36) can be used to detect the drift-type failures/discrepancies (due to differences in

slopes), thus to measure the reliability of the estimators. Although the values of velocities,

ū, v̄ appear in (5.36) and the approach is expected to provide the reliability of the estimates

(not their derivatives), road experiments confirm that only the large bias in the order

of derivatives of the velocities can result in high acceleration residuals. This is due to

uncertainties in the model and the fact that the states and their derivatives in the correlated

characteristics (5.36) may cancel out each other, that leads to inaccurate reliability measure
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(or false failure detection). Therefore, failures and deviated estimates, which has bias

(specially minor bias), can not be detected by this approach; the author is working on

a new failure detection and reliability measure to address the bias-type deviations using

additional measurements or dynamics.

5.4 Road Classification based on Lateral Dynamics

In this section the pure and combined-slip LuGre model are incorporated into the vehicle

lateral dynamics (4.2), (4.4) and formulae are derived for the linear part of the curves and

the saturation/nonlinear regions to check the vehicle response for road classification.

Lateral dynamics with the pure-slip model

Assuming steady state LuGre lateral model ( ˙̄zy = 0), substituting z̄y from (2.1a) into the

normalized force (2.1b), and defining new variables ρ = θg(vry) and γ = κReω/σ0y, one can

write the normalized lateral force of the pure-slip model as follows with the longitudinal

speed in tire coordinates vxt and slip angle α at each tire ij:

µy =

(
ρ

vxt|α|+ γρ
+ σ2y

)
vxtα. (5.37)

To be able to write the state-space form of the lateral dynamics based on the LuGre model,

we need to analyze the effect of the slip angle as discussed in the following sections. For the

case where |α| � γρ/vxt, the normalized lateral force (5.37) will be µylin = θ
(

1
γ

+ σ2y

)
vxtα

where θ is employed with direct multiplication as an implication of the effect of road

conditions. It helps in making the suggested pure-slip formulation compatible with the

real tire model since the slope of the linear region of the force-slip curve is a function

of the road condition as studied in the slip-slope method [28, 125] for road identification.

Normalized lateral forces of the pure-slip LuGre model and the linear part (that resembles

|α| � γρ/vxt) are depicted in Fig. 5.9 for various road conditions.

To consider the nonlinear part, disregarding the |α| � γρ/vxt condition, one can rewrite
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Figure 5.9: Pure-slip LuGre lateral tire model

the normalized lateral force (5.37) at each corner

µy = kvxtα−
1

γ
(

1 + γρ
vxt|α|

)vxtα, (5.38)

where k = θ
(

1
γ

+ σ2

)
, vxt is the longitudinal speed in the tire coordinates that is obtained

by vehicle speed, and α is the slip angle at each corner. The term kvxtα represents the

linear part, and the second term shows nonlinear behavior of the lateral force with respect

to the slip angle. Different stability criteria for the derived lateral dynamics are explored,

compared with that of the bicycle model, and speed limit criteria are suggested for the

pure and combined-slip cases in [126].

Combined-slip model for the lateral dynamics

The studies in [126] show that the steady-state model provides reasonable accuracy for

several lateral tests. This makes it a sound choice for implementation in the derivation

of the lateral dynamics based on combined-slip friction model for the road classification

with a lateral response checking scheme. Subsequently, the tire-vehicle lateral dynamics

with the steady-state combined-slip LuGre model is developed in this section. A practical,
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closed form lateral vehicle-tire model that includes combined friction characteristics and

consideration of slip ratio on each wheel is also presented as a remark. This is an advantage

of the current formulation over conventional lateral vehicle-tire approaches that assume

pure-slip and work with tracks’ (axles’) forces instead of tire forces at each corner.

A general vehicle model, shown in Fig. 4.1, with two conventional degrees of freedom

Vy, r along with the longitudinal slip ratio λ at each corner, is utilized in this section and

shown in Fig. 4.1. The combined-slip scheme incorporates the effect of the slip ratio, λ, and

slip angle, α, simultaneously at each corner, which provides a more practical tire model.

The steady-state combined-slip LuGre model with ω > 0 yields

z̄y =
vry

κReω + ||M2
c vr||σ0y

θg(vr)µ2
cy

. (5.39)

Substituting the longitudinal relative velocity vrx = Reω− vxt and lateral relative velocity

vry = vxtα in (5.39) and using (2.4), one can obtain the following normalized lateral force

of the combined-slip LuGre model:

µy =

 σ0y

κReω + σ0y
√
ψ

θg(vr)

+ σ2y

 vxtα, (5.40)

where ψ = v2
xtα

2
[
1 + (ηλReω/vxtα)2] and η = (µcx/µcy)

2. One can define a metric to

measure how far the system is from the pure slip condition. This metric is in terms of

the ratio between the slip ratio and slip angle. More specifically, based on (5.40), we

introduce λReω/vxtα as a metric that can be used to identify this distance. For pure-slip,

i.e., λReω/vxtα � 1, equation (5.40) changes to (5.37), which was investigated in the

previous subsection. On the other hand, when λReω/vxtα � 1, (5.40) can be written as

µyh =
(

ρ
ε|λ|+γρ + σ2y

)
vxtα = Kvxtα, in which ε = ηReω and µyh represents normalized

lateral forces for high ratios of λReω/vxt in the combined-slip model. This represents a

linear force-slip angle relationship for the large slip ratios, as illustrated in Fig. 5.10-a by

dashed lines and also substantiates the linear characteristics of all combined-slip tire curves

for small slip angles α.

The general form of the lateral LuGre tire forces in (5.40) with the combined-slip
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condition, can be rewritten as (5.41) for each corner ij

µy =

(
ρ√

v2
xtα

2 + λ2ε2 + γρ
+ σ2y

)
vxtα (5.41)

The linear and nonlinear parts in (5.38) and (5.41) are useful to develop the vehicle lateral

dynamics with the yaw rate and lateral velocity as states and will be discussed in at the

end of this subsection as concluding remarks. Multiplying the normalized corners’ lateral

forces (5.38) and (5.41) by calculated vertical forces at each corner Fzfl , Fzfr , Fzrl , Fzrr from

(4.24), one can get the lateral forces to be used for the vehicle lateral dynamics.

The vehicle yaw rate r and lateral velocity Vy are attainable by the following vehicle

lateral dynamics with the track widths Trf , T rr, vehicle mass m, steering angle δ on the

front wheels, and vehicle moment of inertia Iz:

m(V̇y + rVx) = Fyf cos δ + Fxf sin δ + Fyr ,

Iz ṙ = (Fyf cos δ + Fxf sin δ)df + (F̄xf cos δ − F̄yf sin δ)
Trf
2

− Fyrdr + F̄xr
Trr
2
, (5.42)
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in which, df , dr represents axles’ distances to CG and the sum of longitudinal/lateral forces

at each axle are denoted by Fxi =
∑

j Fxij and Fyi =
∑

j Fyij where Fyij = µyijFzij are

obtained from the pure/combined-slip tire models (5.38) and (5.41) at each corner. As

an additional note, the 2DOF bicycle model, a well-known vehicle lateral model, provides

vehicle lateral velocity and yaw rate based on axles’ longitudinal and lateral forces. The

lateral dynamic (5.42) changes to the following form for such bicycle model:

m(V̇y + rVx) = Fxfsinδ + Fyfcosδ + Fyr

Iz ṙ = df (Fxfsinδ + Fyfcosδ)− drFyr, (5.43)

where Vx is the speed and subscripts f, r symbolize front and rear axles.

The proposed algorithm for road classification solves lateral dynamics (5.42) or (5.43)

in discrete-time with known longitudinal speed Vx (and consequently vxt at each corners’

tire coordinates) for three various surface friction conditions: dry asphalt (θd = 1), wet

sealed asphalt (θw ≈ 0.45), and packed snow (θs ≈ 0.25) to get the expected vehicle lateral

states Vyp , rp, then ayp = V̇yp + rpVx where p represents dry, wet, or snow conditions. The

measured vehicle responses r and ay are then checked with the expected values to define

the region (road classification) based on minimum response error within a time window.

This time window has also variable threshold based on the level of excitation. Majority

voting or consensus can then be employed to classify the road friction condition based

on the integration of the expected response error. The structure of the road classifier in

illustrated in Fig. 5.11 to show interfaces between the estimation modules.

Remark : The lateral dynamics (5.43) with the tire model can be expressed as m(V̇y +

rVx) = µyfFzf + µyrFzr and Iz ṙ = dfµyfFzf − drµyrFzr after utilizing the tire forces

of each track Fyi = µyiFzi and ignoring the longitudinal force effect. This leads to a

state space notion of the vehicle lateral dynamics which is described in the following.

Calculated normal forces on the front and rear axles Fzf and Fzr from (4.24) and the

general normalized lateral forces (5.38) can be employed to form the following dynamics

with states x = [Vy(t) r(t)]T for the front steering case:

ẋ = An(t)x+Bn(t)δf +Hn(t), (5.44)
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where Bn(t) = [
Fzf
m
kfvxt

dfFzf
Iz

kfvxt]
T and An(t) is defined by

An(t) =

−(
Fzf
m
kf + Fzr

m
kr)

drFzr
m

kr − dfFzf
m

kf − vxt
drFzr
Iz

kr − dfFzf
Iz

kf −(d
2
rFzr
Iz

kr +
d2
fFzf

Iz
kf )

 (5.45)

Equation (5.45) is based on the LuGre linearized model for small slip angles and is

parameter-varying due to the varying wheel speed ω(t) in γf , γr and in kf , kr consequently.

The nonlinear part can be written as:

Hn(t) =

 vxt
m

(Fzfφfαf + Fzrφrαr)

vxt
Iz

(dfFzfφfαf − drFzrφrαr)

 , (5.46)

in which φi =
(

ρi
vxt|αi|+γiρi −

θ
γi

)
with i ∈ {f, r} and is defined for the front and rear tires,

respectively. The linear part, A(t), of system (5.44) is parameter-varying due to the varying

wheel speed ω(t) in γf , γr and in kf , kr consequently. The quadratic stability (QS) of the

linear parts of the time-varying pure/combined-slip lateral dynamics are investigated in

[126]. The affine quadratic stability (AQS) is also studied in [126] to find a less conservative

condition than the QS and concluded that the AQS suggests more practical speed limits

guaranteeing the quadratic stability of the proposed tire-vehicle lateral model.
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For the combined-slip case, utilizing normal forces, the vehicle lateral dynamics can be

expressed as:

ẋ = A′n(t)x+B′n(t)δf + Ln(t), (5.47)

where B′n(t) = [vxt
m
Pfn avxt

Iz
Pfn]T and A′n(t) is described as follows

A′n(t) =

 −1
m

(Pfn + Prn) −( a
m
Pfn − b

m
Prn + vxt)

1
Iz

(drPrn − dfPfn) − 1
Iz

(d2
fPfn + d2

rPrn)

 , (5.48)

in which Pfn = FzfLk
′
fL + FzfRk

′
fR, Prn = FzrLk

′
rL + FzrRk

′
rR. The parameters k

′
is are

defined at each corner ij ∈ {fL, fR, rL, rR} independently:

k
′

i =
σ2yi + ρi

εi|λi|+ γiρi
. (5.49)

Subsequently, the nonlinear term Ln(t) changes to:

Ln(t) =

 vxtαf
m
Qfn + vxtαr

m
Qrn

dfvxtαf
Iz
Qfn − drvxtαr

Iz
Qrn

 , (5.50)

where Qfn = FzflMfl+FzfrMfr and Qrn = FzrlMrl+FzrrMrr for the front and rear axles.

M is defined as M = 1
N
− k′ + σ2y for each corner ij separately, where N =

√
v2
xtα

2+ε2λ2

ρ+γ
.

one significant advantage of the suggested model is that it can be used whenever normal

forces at each corner are available.

The expected vehicle’s response from the linear part of the combined-slip model ẋp =

A′n(t)xp + B′n(t)u(t) to the steering input u(t) := δf , with three known road conditions

θp, p ∈ {d, w, s} is xp(t) = Φ(t, 0)xp(0)+
∫ t

0
Φ(t, τ)B′n(τ)u(τ)dτ with state transition matrix

Φ(t, 0) = eA
′
nt. This results in three sets of responses xp (for dry, wet, and snowy roads),

which is used to generate road classifier errors. Comparing with the measured vehicle yaw

rate r, one can write the road classifier yaw rate error as

erp(t) = r(t)− [0 1]

(
Φ(t, 0)xp(0) +

∫ t

0

Φ(t, τ)B′n(τ)u(τ)dτ

)
. (5.51)
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Similarly, by taking time derivatives of the expected lateral velocity response Vyp(t) =

[1 0]
(

Φ(t, 0)xp(0) +
∫ t

0
Φ(t, τ)B′n(τ)u(τ)dτ

)
on three different roads, the expected accel-

eration ayp = V̇yp + rpVx is compared with the actual measured lateral acceleration to

calculate the road classifier acceleration error eap(t) = ay(t) − ayp(t). Then the classified

road opinions θr, θa, to be used for the consensus or majority voting, is calculated based

on the minimum error of three models over a time window (with variable size τ) as

θr = arg min
θp

Erp , θa = arg min
θp

Eap , (5.52)

where Erp = |
∫ t+τ
t

erp(t)dt| and Eap = |
∫ t+τ
t

eap(t)dt|. Majority voting or consensus on

opinions θr, θa can then be implemented to classify the road friction condition based on

the minimum error.

Finally, the general structure of the developed corner-based vehicle state estimator, road

angle estimator, and road condition classifier is illustrated in Fig. 5.12 to show interfaces

between the estimation modules.

Fig. 8: Structure of the generalized state estimator with reliability
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Figure 5.12: The general structure of the vehicle state and road angle/condition estimation
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5.5 Simulation and Experimental Results

This section includes simulation and experimental tests for validation of the longitudinal

and lateral velocity estimators on the SUV test vehicle shown in Fig 3.4-b with different

driveline (AWD and FWD) configurations and the parameters given in in Table 3.1. In

addition to this AWD test platform (with the capability of being used as a FWD vehicle),

another test vehicle (Fig. 5.13-b) with RWD configuration, differential braking on front

wheels as the stability control actuation, and specification in Table 3.1 is used to verify

the proposed velocity estimators.

RT2500 6-axis 
GPS/IMU

(for 
Validation)

Tire 
Force/Moment 
Measurement

(for Validation)

Wheel sensor 
interfaceCAN 

BUS

Controller & Estimator 
(MATLAB/ SIMULINK)

dSpace
Micro-

AutoBox II

Wheel Speed, 3-axis 
IMU, Steering, Wheel 

Torques

Used for VxVy

(a) (b)

Figure 5.13: Experimental setup (a) hardware layout (b) RWD test vehicle

In the following, several driving scenarios such as launch on ice, lane change (LC) with

harsh steering, double lane change (DLC), acceleration-in-turn (AiT), brake-in-turn (BiT),

full turn with low excitation (FT), and acceleration with large left turn (TL) are examined

on various roads and simulation/experimental results of the proposed velocity estimators

(5.5), (5.19), and (5.27) are presented. For the road experiments, all season tires with

the following approximate values identified by nonlinear least square, are used for both

test vehicles. The rubber stiffness for the longitudinal and lateral directions are σ0x =

632.1, σ0y = 181.5 [1/m], the rubber damping is assumed as σ1x = 0.76, σ1y = 0.81 [s/m],

relative viscous damping is σ2x = 0.0016, σ2y = 0.001 [s/m], and load distribution factor is
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κx = 8.32, κy = 12.84 for the velocity estimators. It should be mentioned that non of these

tire parameters is changed during road experiments on diverse road conditions, which have

different excitation levels, minor tire pressure changes, tire stiffness variation, and changes

in the load distribution factor.

5.5.1 Longitudinal and lateral velocity estimators

To verify the proposed velocity estimator, a step steer (SS) scenario is simulated in CarSim

with the initial speed Vx0 = 60 [kph]. Fig. 5.14 illustrates longitudinal velocity estimates for

this SS case on dry road with steering wheel angle δsw = 2 [rad] at t = 2 [s]. The simulation

confirms that the newly proposed corner-based velocity estimator provides accurate results

in maneuvers with both longitudinal and lateral slips on dry road conditions.
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Figure 5.14: Estimated Long. velocity in SS and AiT on dry/slippery roads, CarSim.

The second set of analysis on the velocity estimator examines the suggested approach

in co-simulation with MATLAB/Simulink and CarSim packages for an acceleration-in-

turn (AiT) maneuver. Figure 5.14 demonstrates an AiT test with the initial velocity of

Vx0 = 30 [kph] and maximum steering wheel angle δsw = 1 [rad] at t = 2 [s] on dry and

slippery (µ = 0.3) roads. Accelerator is applied to 100% at t = 5 [s] and continues till

t = 10 [s]. Simulation results reveal that the proposed estimator performs well on various

road conditions for maneuvers with both longitudinal and lateral excitations.
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Outcomes of the road experiments on the fully electrified SUVs (shown in Fig. 3.4-b

and 5.13-b) are presented in the followings under three types of main maneuvers on various

roads and with different driveline configurations.

Longitudinal Maneuvers

One of the main objectives of state estimators is to provide reliable longitudinal velocity v̂xij
at each corner for traction control systems during launch (or hard acceleration) on slippery

roads. The proposed longitudinal velocity estimator is examined in a severe launch on a

split-µ surface, which have different friction conditions on the left and right sides and the

results are illustrated in Fig. 5.15. The right wheels are on ice with µ ≈ 0.2, the left wheels

are on dry asphalt, and the powertrain configuration is AWD.Split  , AWD,  20140818_010 
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Figure 5.15: Estimated velocities and wheel speeds for AWD, split-µ on ice and dry.

Figure 5.15 demonstrates good performance of the estimator validated by the measure-

ment from an accurate GPS at the vehicle’s CG. It also shows wheel speeds on dry and

icy roads. Proper time-varying observer gains lead to the observed smooth and accurate

velocity estimation at corners for such high-slip conditions.

Another launch test with AWD configuration and torque vectoring (as the stability

control method) is performed on a wet topped sealed asphalt with the friction coefficient
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µ ≈ 0.45. The longitudinal velocity estimation results are provided in Fig. 5.16 and

several wheel speed jumps due to high-slip cases are observed at each corner, but the

suggested method with the incorporated weighted axles’ estimation scheme (5.15) exhibit

good performance.
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Figure 5.16: Estimated velocities and wheel speeds for AWD, launch on a wet sealer.

Furthermore, the developed longitudinal velocity estimator is examined in a harsh lane

change (LC) scenario on snow with AWD configuration and acceleration/deceleration. The

estimation results are compared to the measured wheel speeds and wheel center velocities

in Fig. 5.17.

Figure 5.17 shows high-slip conditions at all tires, but the developed longitudinal

velocity estimator provides reliable and accurate outcomes.

Steering on Dry and Slippery Roads

Steering on dry and slippery roads are conducted to examine the performance of the velocity

estimators and the results are provided in this subsection. Fig. 5.18 demonstrates velocity

estimation results in an LC on packed snow and ice with µ ≈ 0.3 for the AWD configuration.
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Used for Thesis

AWD, Vx_20140820_test032_LC_Steer_Snow
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Figure 5.17: Longitudinal velocity estimates for the AWD case, LC and steering on snow.
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Figure 5.18: Velocity estimates for LC on snow/ice, for AWD configuration.

Fluctuations of the measured lateral acceleration and sudden changes of the vehicle yaw

rate in Fig. 5.18 substantiates arduous characteristics of the driving scenario. Although the

nominal vehicle total and sprung mass is used in the estimators, this test has been done
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with four passengers in the vehicle and longitudinal/lateral velocity estimators’ results

show correspondence with the measured GPS data for such severe maneuver on a slippery

surface.

The proposed estimator can also be utilized on vehicles with different driving axle

configurations i.e. rear and front-wheel-drive (RWD, FWD). In order to evaluate the

outcomes of the velocity estimator for a RWD configuration with torque vectoring for rear

wheels and differential breaking for front wheel, a maneuver on a dry road with an oval

shape has been performed on the RWD test vehicle with specifications in Table 3.1. The

velocity estimation results are then validated with the measured GPS data in Fig. 5.19
RWD, Oval driving on dry_20150824_024 
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Figure 5.19: Velocity estimates for oval steering with pulsive traction on dry, RWD.

The measured accelerations and yaw rate in Fig. 5.19 resemble a harsh combined-slip

maneuver with several oval steering and acceleration/deceleration, however the estimation

outcome is accurate. Moreover, for this test, all tires’ inflation pressure reduced 4psi

intentionally to check the effect of tire properties and effective radius on the developed

algorithm; the results confirm that the method is not sensitive to such reasonable changes

in the tire inflation pressure. A harsh lane change on a surface with combined dry and wet

conditions is performed on the RWD test vehicle with differential braking on front tires
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as the stability control system and the results are presented in Fig. 5.20. The maneuver

includes passing through wet to dry surfaces which leads to fluctuations in the accelerations

and quick changes of the vehicle yaw rate as shown in Fig. 5.20, but the developed lateral

velocity estimator exhibit good performance in presence of such disturbances.

AWD, LC_snow_20150120_test006

Used for Thesis, Conventional Cars

0 5 10 15
-6

-4

-2

0

2

La
te

ra
l V

el
. [

m
/s

]

time [s]

 

 

0 5 10 15
-10

-5

0

5

10

A
cc

el
er

at
io

ns
 [m

/s
2 ]

time [s]

 

 

0 5 10 15
-2

-1

0

1

Y
aw

 ra
te

, r
 [r

ad
/s

]

time [s]

Vy,Meas.,LC dry/wet

Vy,Est.,LC dry/wet

Long.  ax

Lat.  ay

Figure 5.20: Lateral velocity estimates for RWD test vehicle, LC on combined dry/wet.

Acceleration and Brake-in-Turn on Dry and Slippery Roads

To study the velocity estimators’ performance in combined-slip conditions, an acceleration-

in-turn (AiT) scenario with AWD driveline configuration and torque vectoring on all wheels

is done on dry asphalt with four passengers in the vehicle and results of the lateral velocity

estimator are provided in Fig. 5.21

As can be seen from Fig. 5.21, high oscillations exist both in the lateral and longitudinal

accelerations because of large requested toque by the driver in such severe maneuver,

load transfer, and consequent high-slip regions which reduce the lateral tire capacities

significantly.

The wheel speed at each corner is shown in Fig. 5.22 for this AiT on dry asphalt

to demonstrate the slip condition during load transfer with additional requested torque

from the driver. The wheel speed and consequently the slip ratio increases significantly
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4WD, AiT on dry_20140417_test011 
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Figure 5.21: Lateral velocity estimates for AiT on dry asphalt, AWD configuration.
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Figure 5.22: Wheel speed and estimated/measured velocities at wheel centers, AiT on dry.

between t = 5 and t = 7 [s], but the proposed state estimation methodology handles these

situations and exhibit smooth and accurate outcomes even with uncertainties and changes
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in the vehicle total and sprung mass.

Fig. 5.23 shows performance of the proposed longitudinal velocity estimator for the

FWD case with torque vectoring in an AiT maneuver on a combined wet/dry surface with

µ ≈ 0.5 which ended on a dry surface with a break. Moreover, a launch with a break on a

highly slippery wet topped sealed asphalt with µ ≈ 0.4 was performed and the estimation

results are provided in the same Fig. 5.23.
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Figure 5.23: Launch and AiT on wet sealer and wet asphalt with transition to dry for

FWD (a) estimated speed (b) accelerations (c) yaw rate.

The input torque from the driver for these launch and AiT scenarios on such slippery

surfaces brings the tire up to their longitudinal capacity. The measured longitudinal ac-

celeration shown in Fig. 5.23-b for the launch is bellow 3.7 [m/s2] which confirms slippery

conditions based on the required accelerator pedal by the driver up to the tires’ limits. For

both tests, the stability (torque vectoring) and traction control systems were activated,

but intentionally set to have a poor performance, which leads to sudden increase in the

wheel speed and subsequently slip ratio increase at each corner.

At the beginning of these launch and AiT maneuvers, front tires loose grip due to the
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drop in the vertical force on the front track by the load transfer. Therefore, high slip

ratio for the front tires is a concern for traction control systems in such maneuvers. To

confirm the high-slip condition on front tires, wheel speed for the front tires (fL, fR) are

shown in Fig. 5.24 for these launch and AiT scenarios and compared with the estimated

and measured velocities.
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Figure 5.24: Wheel speed and estimated/measured velocities at wheel centers (Wheel C.)

for (a) launch on wet sealer then dry (b) AiT on wet/dry, FWD.

The next test is an acceleration during a large left steering with RWD configuration

from a wet and slippery surface with µ ≈ 0.45 to dry asphalt. This test is done to explore

the performance of the longitudinal and lateral velocity estimators with incorporation of

weighted axles’ estimates schemes (5.15), (5.34) on a combined dry/wet surface. Validated

estimation results with the GPS data, measured accelerations, and yaw rate are shown in

Fig. 5.25.

The maneuver is demanding because of the reducing effect of the longitudinal slip on

the tire lateral capacity and the transition between the dry and slippery surfaces, but the

longitudinal and lateral estimators provide smooth results because of time-varying observer

gains and the weighted estimated axles’ velocities.

In order to evaluate the proposed approach in road experiments with combined-slip

characteristics during break (with negative longitudinal slip), a brake-in-turn (BiT) ac-
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RWD, Michigan left (large left steering with accel.) from dry to wet_20150824_test022
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Figure 5.25: Large left turn (TL) with acceleration in RWD configuration on wet/dry.

companied by quick acceleration on packed snow (with µ ≈ 0.35) is done and the esti-

mated longitudinal speed results for the AWD configuration are illustrated in Fig. 5.26.

Another experiment with harsh steering on ice covered by packed snow (with µ ≈ 0.25)

was executed and the outcomes are also demonstrated in Fig. 5.26.

Measured accelerations and the yaw rate for these BiT and harsh steering scenarios

are also provided in Fig. 5.26 that shows the weak grip condition for both tests. As can

be seen from Fig. 5.26-a, the developed algorithm with the high-slip detection module

provides accurate velocity estimates in maneuvers with combined-slip characteristics on

highly slippery surfaces. Wheel speed and estimated/measured wheel center’s speed of

the front tires for these BiT and steering maneuvers are illustrated in Fig. 5.27. The

longitudinal velocity estimates by the proposed corner-based approach have correspondence

with the measurement in spite of the large-slip cases around t = 6 [s] and after t = 11 [s]

for the harsh steer on packed snow/ice and in 4 ≤ t ≤ 7.8 [s] for BiT on snow.

Results of such arduous maneuvers corroborates that even with presence of high slips,

the proposed estimator provides accurate and reliable longitudinal and lateral velocity

estimates v̂xtij , v̂ytij at each tire (wheel center) and subsequently at the vehicle CG i.e.
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Figure 5.26: Velocity estimates for AWD, BiT on snow and steering on packed snow/ice.
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5.5.2 Lateral velocity estimator for conventional vehicles

In order to assess the proposed torque-independent lateral velocity estimation approach

for conventional vehicle applications, several driving scenarios are conducted and results of

three main tests are provided in this subsection. The high-slip detection module changes

the covariance matrices of the Kalman-based estimator (5.27) based on the methodology

and threshold discussed in (5.32) or large steering cases. This significantly improves the

outcomes by defining the level of reliance on the forces for the lateral velocity estimation

correction.

To check the performance of the lateral velocity estimator with different tire properties

and effective radius, a severe lane change maneuver with AWD configuration and several

acceleration on packed snow and ice (µ ≈ 0.2) is performed. Winter tires are used in this

test and the controller is set to torque vectoring scheme on all wheels. The experimental

results of the new lateral velocity estimator as well as the measured accelerations and the

yaw rate are depicted in Fig. 5.28 for this lane change scenario.
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Figure 5.28: Lateral velocity estimates for AWD in an LC on packed snow and ice.

Fluctuations of the measured lateral acceleration and sudden changes of the vehicle

yaw rate in Fig. 5.28 substantiate the arduous characteristics of the driving scenario. The
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developed algorithm for lateral velocity estimation, without using wheel torques (and lon-

gitudinal forces), performs well by using high-slip detection modules even with different

tire properties (winter-type) and effective radius (Re = 0.352 [m]).

The performance of the new torque-independent approach in low excitation maneuvers

is evaluated in a full turn maneuver on a surface with varying friction type from dry to wet

and the results are depicted in Fig. 5.29. The powertrain is set to RWD with differential

braking on front wheels.

RWD, Full turn on dry and dry/wet_20141104_test019, white  Eq.
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Figure 5.29: Lateral velocity estimates for FT on dry/wet, RWD

In spite of low excitation, which is challenging for current lateral state estimators in

production vehicles, and the observed oscillations in the measured lateral acceleration

due to several passing through dry and wet surfaces, the new algorithm exhibits accurate

estimates that is promising.

A double lane change scenario is also done on snow with µ ≈ 0.45 for the AWD case

with four passengers, torque vectoring as the stability control scheme, and all-season tires;

results are shown in Fig. 5.30 that confirm accuracy of the lateral state estimator.

The covariance matrix changes in high slip/steering cases and weighted track’s estimates

lead to the observed smooth and accurate lateral velocities at the vehicle CG and corners
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AWD, LC_snow_20150120_test006
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Figure 5.30: Lateral velocity estimates for DLC on snow, AWD

for conventional vehicle applications without having the wheel torques and accurate vehicle

mass even in maneuvers with high-slip conditions.

Accuracy of the developed estimators are evaluated in different maneuvers with the

normalized root mean square of the error, NRMS, defined by ς =

√∑Np
i=1(p̂i−pi)2/Ns

pm
similar

to the criteria for the force estimators. Over 170 and 140 road tests have been done for the

electric AWD and RWD vehicles, respectively. The lateral state estimator for conventional

cars has been experimentally tested with AWD and RWD configurations over 120 times

to check the accuracy and reliability of the algorithm. The number of collected signal

samples during a driving scenario is denoted by Np and the estimated and measured signals

are denoted by p̂ and p respectively. The maximum value of measured signals is pm =

max
i=1...Np

|pi|. Performance of the longitudinal and lateral velocity estimators are investigated

in Table 5.1 for two test vehicles with AWD and RWD powertrain configurations in different

driving conditions (∗ shows tests with four passengers in the car).

The velocity estimators for both electric and conventional vehicles exhibit reliable per-

formance in various driveline configurations and stability control schemes for the maneu-

ver with the pure-slip characteristics (i.e. launch, normal driving, lane change, accelera-

tion/deceleration) as well as the combined-slip ones (i.e. acceleration-in-turn and brake-in-
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Table 5.1: Velocity Estimators’ Error NRMS for AWD and RWD Configurations

Maneuvers
Estimated Vx Estimated Vy

ςx[%] pm[m/s] ςy[%] pm[m/s]

AWD

Launch on ice/dry, split µ 2.64 4.14 0.2 0.08

AiT on dry ∗ 4.61 9.1 6.3 0.83

Steering & Accel./Deccel., snow 3.38 9.98 4.11 4.04

LC on snow 1.6 11.86 3.29 2.02

RWD

Oval steering on dry 3.15 8.38 7.6 1.24

Accel. & left turn dry/wet 2.07 9.06 5.91 0.95

Full turn on dry 0.65 9.01 7.15 0.52

Full turn on dry/wet 0.79 7.51 6.21 0.74

Conv. Lateral Estimator
AWD RWD

ςy[%] pm[m/s] ςy[%] pm[m/s]

LC on snow/ice ∗ 4.8 2.86 2.9 3.27

Full turn on dry/wet 5.1 1.01 6.4 1.2

AiT on packed snow 6.9 1.17 7.8 1.32

turn), in which the tire capacities reduces significantly both in the lateral and longitudinal

directions. The simulation and experimental results provided in this section show that the

suggested method can provide longitudinal/lateral state estimates with various controller

schemes, in the absence of road friction details, wheel torques, and uncertainties in the tire

(type, radius, inflation pressure) and vehicle mass.

5.5.3 Road classification based on vehicle lateral response

Several driving scenarios are performed and results are provided in this subsection to verify

the proposed road classifier during maneuvers with high and low excitation levels, which

are challenging for the current road identification approaches.

To show the performance of the road classification approach in low excitation maneu-
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vers, a full turn scenario is done on dry asphalt for the AWD case with torque vectoring

as the stability controller. Results of the errors between the measured and the expected

lateral response of the vehicle with combined-slip model are shown in Fig. 5.31 that confirm

accuracy of the model with dry asphalt parameters. Measured longitudinal/lateral accel-

erations and the vehicle yaw rate are also provided in Fig. 5.31, which shows low excitation

without reaching the lateral limit (i.e. ay = 6 that is significantly less than 10 [m/s2]).

AWD, Full turn on dry 20140417_test009 Pure‐Slip Model Black  Eq.
M: th‐dr = 1, th‐ice = 0.1, th‐wet = 0.3

Used for Thesis, Conventional Cars
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Figure 5.31: Road classifier results and measurements for a full turn on dry asphalt, AWD

The lateral dynamics model (5.47) with the combined-slip effect is utilized for com-

parison between the expected and the measured responses in the road experiments of this

subsection. A harsh acceleration-in-turn maneuver on dry asphalt is conducted and results

are shown in Fig. 5.32 to evaluate the approach in cases with reduced lateral tire capaci-

ties due to the high slip ratio. This scenario is demanding because of fluctuations in the

measured accelerations and high slip ratio.

The wheel speeds for this AiT scenario are illustrated in Fig. 5.22, which shows extreme

slip on the front-right tire due to the load transfer. As can be seen from Fig. 5.32, the

error norm over a time window for the dry road is less than the snow and wet classifiers

and the approach exhibits correct outcomes even in presence of high slip at a corner.

A lane-change with several high slip cases at each corner is done on a surface with
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AWD, AiTon dry 20140417_test011 Pure‐Slip Model Black  Eq.
M: th‐dry = 0.575, th‐ice = 0.02, th‐wet = 0.12; We should consider 
Combined‐Slip because of high slip, but tentatively fixed by reducing theta
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Figure 5.32: AiT with high slip on dry asphalt, road classification for AWD

packed snow and ice and the road classifier results together with the acceleration/yaw rate

measurements are illustrated in Fig. 5.33.

AWD, steering with high slip ratio n snow/ice  20140820_test032 Pure‐Slip 
Model Black  Eq.
M: th‐dry = 1.2, th‐ice = 0.05, th‐wet = 0.28; We should consider Combined‐
Slip because of high slip, but tentatively fixed by reducing theta
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Figure 5.33: Road classification results for AWD case in an LC on packed snow and ice

Fig. 5.17 demonstrates wheel speeds during this maneuver and shows several high slip
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cases from t = 1 to t = 8 [s]. The algorithm shows good performance for such lane change

with high slip ratio episodes. To check the outcome of the proposed approach in maneuvers

on surfaces with varying surface friction, a harsh full turn with pushing the vehicle up to

its lateral tire capacities is performed on a surface with half dry and half wet conditions

and the results are shown in Fig. 5.34.

PERFECT for showing : AWD, steering with high slip ratio on dry/wet  
20150728_test023 Pure‐Slip Model Black  Eq.
th‐dry = 0.9, th‐ice = 0.1, th‐wet = 0.3;
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Figure 5.34: Full turns on dry/wet with the AWD vehicle, road classification results

This driving scenario is arduous because of its low excitation characteristics and chang-

ing surface friction as shown in Fig. 5.35, but the developed estimator works well and can

detect various surface condition. As can be seen from Fig. 5.34, during 3 < t < 8.5 [s],

11 < t < 13 [s], and 15 < t < 17 [s] the detected surface is wet sealer and it has correspon-

dence with the measured lateral acceleration of the vehicle, that is brought to its lateral

stability edge, during the mentioned periods.

One difficult test for evaluation of road classifiers is mild driving on dry surfaces, which

may be interpreted as the low-friction surface. The same has been done during a mild sine

steering on dry asphalt for the AWD test vehicle and results are presented in Fig. 5.36.

The results confirm correct classification of the road friction during such a mild ma-

neuver on dry asphalt.
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Figure 5.35: AWD vehicle in full turns on dry/wet sealer

PERFECT for showing : AWD, MILD sine steering on dry, 20160617_test009, 
Pure‐Slip Model Black  Eq.
M: th‐dry = 0.9, th‐ice = 0.1, th‐wet = 0.3; window size for integ. = 200
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Figure 5.36: Road classification for a mild sine steering on dry asphalt, AWD

5.6 Summary

A method to estimate longitudinal and lateral velocities at vehicle’s CG and each corner

robust to road conditions were provided in this chapter. The developed structure can

be integrated with road angle estimators and active safety systems, to ensure reliable

performance of such systems in presence of model uncertainties (such as vehicle mass), tire
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parameter changes (type and radius), and road friction changes.

To tackle the limitations of the kinematic and dynamic-based velocity estimation ap-

proaches, the average Lumped LuGre model and the kinematics were coupled at each

corner to estimate the longitudinal and lateral velocities using a linear parameter-varying

model with the road friction as uncertainties. The stability and robustness of the velocity

estimators’ error dynamics was investigated with the affine quadratic stability approach.

A lateral observer was also designed with variable weighted axles’ estimates for large

steering and high slip cases for conventional vehicle applications. The developed estimator

was tested in different maneuvers and driveline configurations and can be transferred from

one vehicle to another.

Furthermore, the pure and combined-slip models, which consider reduction in the tire

capacities due to slip ratio/angle, are incorporated into the vehicle lateral dynamics to

monitor the vehicle response for road classification. A road friction classifier, which employs

the vehicle lateral response with pure and combined-slip friction models, is developed in this

chapter. The proposed method calculates expected vehicle’s lateral response for various

surface frictions and compares the expected values with the measured ones to define the

region based on minimum response error. The algorithm was validated in low-excitation,

near-saturation, and nonlinear regions of tire forces.

Several road experiments with normal and harsh driving conditions were conducted

on dry and slippery roads to validate the approach. The results of the road experiments

substantiate that the vehicle state estimation and road classification algorithms can handle

various friction conditions with AWD, FWD, and RWD powertrain configurations and

with different tire properties such as type (winter/all-season), effective radius and inflation

pressure.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Summary

In this thesis, a holistic corner-based estimation of the vehicle states robust to road friction

conditions regardless of the vehicles driveline configuration was proposed. Two observers

were also designed for road angles and road friction conditions.

The first objective of this thesis is met and an unknown input observer was developed

in this thesis on the roll and pitch dynamics of the vehicle and experimentally validated in

real-time to estimate the road bank and grade angles. The proposed road angle estimation

algorithm worked for different types of separate and combined banked/graded roads in

various driving conditions. The approach does not require any information about the road

friction, tire forces, and tire parameters. This enables the algorithm to perform reliably on

different road conditions without any sensitivity to the tire and friction parameters. Road

disturbances and outliers are isolated in the provided method using a variable threshold

based on the longitudinal and lateral excitations of the vehicle.

Incorporating road-body kinematics helped to achieve more accurate vehicle angle mea-

surements. Road angle estimation in maneuvers with high excitation on banked/graded

roads, fast convergence, and robustness against road disturbances and outliers are main

advantages of the proposed methodology. The current vehicle state estimators on the in-

strumented test platform is robust to errors in the road angle estimation up to 2 [deg]
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and the developed UIO exhibits errors less than this value. Moreover, the proposed al-

gorithm can be integrated with various vehicle state estimators and active safety systems

(e.g. stability control and roll-over prevention systems) to enhance the performance of such

systems in the presence of accelerations, roll rate and pitch rate measurements affected by

road inclinations.

This thesis presented a novel integrated force estimation method to monitor tire ca-

pacities required for the traction and stability control systems. This is essential for more

advanced vehicle stability control systems in autonomous vehicles during harsh maneu-

vers on slippery surfaces. The longitudinal, lateral, and vertical force estimators require

available measurements on production vehicles (acceleration, wheel speeds, yaw rate, and

steering angle), were experimentally tested in several maneuvers on different roads, and

the results confirmed the accuracy and robustness of the method. A Kalman filter and a

nonlinear observer were utilized for estimation of the lateral and longitudinal tire forces

without road friction information. The lateral force estimator can address the cases in

which tires are on surfaces with various road friction since the UKF-based lateral force

estimator is developed without any assumption on the lateral force distribution and tire

parameters. The presented corner-based tire force estimation has the advantage over meth-

ods using double track models because it can exhibit saturation and capacity conditions of

all tires. In addition, it uses conventional measurements in production vehicles, does not

implement any tire model, can be transferred from one vehicle to another, and is indepen-

dent from changes in the road friction or tire parameters due to wear, inflation pressure,

temperature, etc., thus, the second objective of this thesis is met. The proposed Kalman

filter with adaptive covariance matrices based on the wheel’s rotational acceleration can

handle dry and slippery roads with the normalized RMS less than 7.1% for the lateral

forces in demanding maneuvers. Moreover, the longitudinal force estimator deals with the

model uncertainties using robust observer design, which leads to normalized RMS less than

6.4%. The stability and performance of the estimators are also studied and it is shown

that the proposed integrated structure is robust to model uncertainties.

A generic velocity estimation method using the average Lumped LuGre model at each

corner was proposed in this thesis, and its performance was studied. To address the lim-

itations of the dynamic and kinematic-based velocity estimators, the LuGre tire model

and the vehicle kinematics were combined at each corner to estimate the longitudinal and
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lateral velocities. Utilizing the dynamics of the LuGre’s internal deflection states, the ve-

locity estimators form a linear parameter-varying model with the road friction conditions

under each tire as uncertainties. In addition, an unscented Kalman filter was proposed

and experimentally verified for estimation of lateral velocities and tire slip angles in con-

ventional vehicles. Stochastic observability of the developed lateral velocity estimator for

conventional vehicles was also investigated. The developed longitudinal and lateral velocity

estimators require conventional measurement in production vehicles and can be transferred

from one vehicle to another.

The velocity estimation algorithm detects large slip ratio cases with an adaptive high-

slip threshold, based on the excitation level. This is to use the weighted estimated velocities

at each corner for the LPV approach or to allocate adaptive covariance matrices and

tackle the noises associated with harsh maneuvers in the Kalman-based state estimator for

conventional vehicles.

One significant advantage of the suggested velocity estimator is that a unidirectional

lumped LuGre model could be used instead of the combined one since the term containing

the combined friction model, i.e. σ0q |Vrq |
θg(Vrq)

z̄q, was considered as uncertainty.

The velocity estimator can be integrated with road angle estimators, stability control

systems, traction control systems, and roll over prevention, to ensure reliable performance

of such systems with model uncertainties and road friction changes. In addition, while

preserving the overall structure of the estimation, one can replace or modify velocity esti-

mators independently because of the modularity of the developed structure.

The proposed algorithm for road classification calculates vehicle lateral response in

discrete-time with known longitudinal speed for three various surface friction conditions:

dry asphalt, wet sealed asphalt, and packed snow to get the expected vehicle lateral states

and lateral acceleration. The measured yaw rate and lateral acceleration are then checked

with the expected values to define the region (road classification) based on minimum re-

sponse error within a time window. This time window has also variable threshold based

on the level of excitation. Sensitivity of the model-based classification to the tire model

parameters, inflation pressure, and effective rolling radius is not an issue in this approach

since the expected lateral response is calculated for all three surface frictions with the same

model parameters.
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Software co-simulations were utilized to test the proposed state estimation methods

using MATLAB/Simulink and high-fidelity models of the available electric SUVs in the

CarSim packages. The performance of the tire force and velocity estimators were evaluated

on various road conditions such as dry, wet, and snowy and in different scenarios such as

launch and brake, acceleration-in-turn, and step steer. The simulations demonstrate the

effectiveness of the estimation approach on several roads and in diverse driving scenarios

with pure and combined-slip conditions.

Road experiments were also conducted with different vehicles, driving conditions, vehi-

cle powertrain configurations, and tire types/properties. The proposed velocity, tire force,

and road condition estimation schemes were implemented in real-time on dSPACE R© Mi-

croAutobox and tested on two electric vehicles with AWD, RWD, and FWD cases. Various

surface friction conditions such as dry asphalt, wet top-sealed asphalt, packed snow, and

ice were also used to examine the robustness of the estimators. The vehicle state and road

condition estimators were observed to provide reliable outcomes in various driving scenarios

with two types of tires for the available stability control systems. This preeminence of the

algorithm makes it appropriate for a wide range of vehicles’ traction configurations. The

simulation and experimental results confirm robustness and accuracy of the designed LPV

observers, thus the third objective of the thesis is met. The real-time pure and combined-

slip road classification algorithm based on the vehicle lateral dynamics also exhibits good

accuracy for high and low-excitation maneuvers.

6.2 Future Work

A few suggestions are made in this section for future works to enhance the accuracy of the

developed vehicle state and road angle estimators, and to continue the work done in this

thesis.

• Improve the model of the unknown input observer for combined bank and grade cases:

Road-body kinematics has been investigated in this thesis to increase the accuracy

of the measurement in the road angle estimator by defining the correlation between

the road angle rates and the pitch/roll rates of the vehicle. However, there are some

errors for the combined bank and grade cases which stems from separated vehicle
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roll and pitch dynamics in the observer model. Therefore, considering the coupled

roll and pitch dynamics in the unknown input observer structure can improve the

accuracy of the estimator.

• Using road friction information for the road angle estimator: Tire forces and the

vehicle lateral (or longitudinal) dynamics have not been integrated into the roll (or

pitch) dynamics for the bank (or grade) angle estimation because of unavailability

of road friction information. Employing road classification data in the tire forces

and the expected vehicle responses (from the predefined tire curves) facilitates esti-

mation of the road angles. This is because of distinguishing between the measured

accelerations due to road angles and the ones due to the vehicle kinematics in vari-

ous maneuvers. Consequently, by including tire forces, which are obtained from road

friction information, the road angles can be estimated more accurately.

• Considering camber angle: In order to design a reliable tire force estimator to ad-

dress demanding cases with combined longitudinal and lateral excitations, a precise

vehicle model is needed. The imprecision of the vehicle dynamics can be rooted in

an inaccurate tire forces due to not considering the camber angle at each corner.

The current corner-based force estimation does not include the camber angle effect,

but the tire forces and consequently the vehicle’s planar and roll dynamics are af-

fected by this angle at each corner. Hence, incorporation of the tires’ camber angles

into the vehicle planar kinetics can result in better performance of the current force

estimators.

• Designing an integrated state estimation: The accuracy of the proposed corner-based

velocity estimation approach can be enhanced by employing a general chassis model.

The main purpose of such model is to estimate corner velocities more accurately

with implementation of an integrated force/velocity observer to overcome estimation

errors due to uncertainties in the road friction. The mentioned methodology provides

kinematic estimates of all tires simultaneously and incorporates other corners longi-

tudinal/lateral forces in the estimates of each corner states (relative velocities) using

an additional observer on the measured accelerations and yaw rate. However, this

will increase the computational load of the state estimators. Moreover, the author is

working on a new failure detection and reliability measure to address the bias-type as
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well as slope-type failures (discrepancies) of the estimated velocities using additional

measurements or dynamics

• Estimation of wheel torques for conventional vehicles: By implementing slip ratio

from GPS (or a torque-independent longitudinal velocity estimation [114]) and slip

angle from GPS (or the lateral velocity estimator discussed in Section 5.3.1) into

the vehicle and wheel dynamics, the proposed integrated force estimation equations

can be rewritten in terms of wheel torques. Nonlinear or Kalman observers then

can be used to estimate the wheel torques at each corner. The same approach can

be used for vehicles with electronic limited slip differential (eLSD). Therefore, the

integrated force estimation structure proposed in this thesis can be used to esti-

mate wheel torques by including eLSD dynamics and total torque data from the

engine/powertrain.

• Road classification in the longitudinal direction: The road classification method in

this thesis is designed to classify the road friction condition based on the lateral

response of the vehicle. An avenue for future work in this direction is to use the vehi-

cle’s longitudinal response and stability of each wheel based on the wheel acceleration

and slip ratio to develop an algorithm, which classifies road friction conditions during

maneuver with longitudinal excitations. Therefore, the velocity estimates from the

proposed methods in this thesis together with wheel speed measurement and IMU

data can be employed to design an accurate observer for road classification in the

longitudinal direction.

• The closed-form lateral dynamics with combined-slip model for the stability con-

trollers: The suggested general forms of the tire-vehicle lateral models in Section

5.4 provide a framework to achieve analytical solutions for vehicle’s optimal stability

control problems. This has a significant advantage over the cascaded methods that

need slip ratio/angles to calculate forces (in a tire model) and then to calculate ve-

hicle states by solving lateral dynamics and tire forces. This is more pronounced for

designing stability controllers in performance cars because of severity of maneuvers,

over-steering characteristics of the vehicle, and several high-slip cases.
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Appendix A

Parameter Identification and Proofs

LuGre parameter identification

The LuGre tire parameters are obtained by fitting to the experimental tire curves with the

Nonlinear Least Square method and the result is shown in Fig. A.1 for the normal force of

Fz = 4.5[kN ] on a dry road. Identified parameters are also listed in Section 5.5
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Figure A.1: Tuned lateral LuGre tire curve based on tire data from CarSim
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Detectability and stabilizability

Definition 1. The pair [Ak, Ck] in the linear time-varying discrete-time system with state

update xk+1 = Akxk + Bkuk and output equation yk = Ckxk is uniformly detectable if

∃0 ≤ c1 ≤ 1, c2 ∈ R+ and q, k2 ≥ 0, such that in case ||φk1+q,k1ϑ|| ≥ c1||ϑ|| for some ϑ, k1,

then ϑTV(k1, k2)ϑ ≥ c2ϑ
Tϑ, which necessitates the observability grammian V(k1, k2) to be

V(k1, k2) ≥ d1I > 0 for some d1 [120]:

V(k1, k2) =

k2∑
k=k1

φTk,k1
CT
k Ckφk,k1 , (A1)

where φi,j = φi,i−1φi−1,j and φi+1,i = Ai as the state transition matrices for i ≥ j. In

addition, the pair [Ak, Bk] in the linear time-varying discrete-time system (4.17) without

process and measurement noise effect is stabilizable if ∃0 ≤ c1 ≤ 1, c2 ∈ R+ and q, k2 ≥ 0,

such that in case ||φk2,k2−qϑ|| ≥ c1||ϑ|| for some ϑ, then ϑTW(k1, k2 − 1)ϑ ≥ c2ϑ
Tϑ, which

necessitates the controllability grammian W(k1, k2 − 1) to be full rank

W(k1, k2 − 1) =

k2−1∑
k=k1

φk2,k+1BkB
T
k φ

T
k2,k+1, (A2)

Bounded error covariance for the Kalman filter:

This characteristic for the time-invariant KF has been proved before, but provided here

for convenience. Detectability condition on (A,C) leads to a linear estimator with matrix

K∗:

x∗k+1|k = Ax∗k|k−1 +K∗(yk − Cx∗k|k−1), (A3)

where (A−K∗C) is stable. Thus, the error covariance matrix for such estimator is defined

by P̄ ∗k+1|k , E
[
(xk+1 − x̂∗k+1|k)(xk+1 − x̂∗k+1|k)

T
]

that yields::

P̄ ∗k+1|k = (A−K∗C)P̄ ∗k (A−K∗C)T +K∗RK∗T , (A4)
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which can be written as:

P̄ ∗k+1|k = (A−K∗C)k+1P̄ ∗0|−1

(
(A−K∗C)k+1

)T
+

k∑
i=0

(A−K∗C)i(K∗RK∗T +Q)
(
(A−K∗C)i

)T
(A5)

The first term vanishes and the second term is also bounded because of the stability of

(A−K∗C). Therefore, the error covariance P̄ ∗k+1|k of such linear estimator is bounded. This

results in bounded error covariance P̄k for the Kalman estimator because of the optimality

of the KF.

DefiningMk+1 and Nk+1 for completely uncertain initial covariance/states [123]:

The initialM1,N1 are attainable by the initial measurement error covariance R0 as ΞT
0 Ξ0 =

R̄0, which yields the projector Φ of a vector onto the orthogonal complement of the range

space Σ :

Σ0 = CT
0 Ξ−1

0

Φ0 = I − Σ0(ΣT
0 Σ0)∗ΣT

0

X0X
T
0 = Φ0

M1 = A0X0X
T
0 A

T
0

N1 = Q̄0 + A0Σ0((ΣT
0 Σ0)∗)2ΣT

0A
T
0 , (A6)

where (.)∗ represents pseudo inverse of the matrix (.) and full rank factorization of Φ0 is

denoted by X0. The matrixMk+1 is then defined using the fresh Ck and the measurement

noise Rk as the following procedure:

ΞT
kΞk = R̄k + CkNCT

k

Σk = XT
0,k−1φ

T
k,0C

T
k Ξ−1

k

Φk = I − Σk(Σ
T
kΣk)

∗ΣT
K

XkX
T
k = Φk

Mk+1 = φk,0X0,kX
T
0,kφ

T
k,0 (A7)
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in which Xk is the full rank factorization of Φk and X0,k , X0X1...Xk. Employing the

condition λmax(Mf ) = 0 for a finite time, Nk+1 is related to Nk as in (5.31). In addition,

the Sk+1 matrix in the simplified Riccati equation P̄k+1|k = Nk+1 +Sk+1 can be written as:

Sk+1 = AkSkATk − AkNkCT
k Ξ−1

k

(
Tk,1
ψ

+ ...

)
Ξ−Tk CkNkATk

− AkNkCT
k Ξ−1

K

(
I − Tk,1

ψ
+ ...

)
Ξ−Tk CkSkATk

− AkSkCT
k Ξ−1

K

(
I − Tk,1

ψ
+ ...

)
Ξ−Tk CkNkATk

− AkSkCT
k Ξ−1

K

(
I − Tk,1

ψ
+ ...

)
Ξ−Tk CkSkATk (A8)
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