
The Programming Historian
About
· Lessons
· Contribute
· Project Team
· Research
· Blog
· Español

2012-06-27

Automated Downloading with Wget

By Ian Milligan

Reviewed by Aurélien Berra and Adam Crymble

Recommended for Beginning
Users

Editor’s Note

This lesson requires you to use the command line. If you have no
previous experience using the command line you may find it helpful to
work through the Programming Historian’s Introduction to the Bash
Programming Language.

Lesson Goals

This is a lesson designed for intermediate users, although beginner
users should be able to follow along.

Wget is a useful program, run through your computer’s command
line, for
retrieving online material.

http://programminghistorian.org/
http://programminghistorian.org/
http://programminghistorian.org/lessons
http://programminghistorian.org/contribute
http://programminghistorian.org/project-team
http://programminghistorian.org/research
http://programminghistorian.org/blog
http://programminghistorian.org/es
http://programminghistorian.org/lessons/intro-to-bash
http://programminghistorian.org/lessons/intro-to-bash

The Mac Command Line, Terminal

It can be useful in the following situations:

Retrieving or mirroring (creating an exact copy of) an entire
website. This website might contain historical documents, or it may
simply be your own personal website that you want to back up. One
command can download the entire site onto your computer.

Downloading specific files in a website’s hierarchy (all websites
within a certain part of a website, such as every page that is
contained within the /papers/ directory of a website).

In this lesson, we will work through three quick examples of how you
might use wget in your own work. At the end of the lesson, you will be
able to quickly download large amounts of information from the Internet
in an automated fashion. If you find a repository of online historical
information, instead of right-clicking on every file and saving it to
build
your dataset, you will have the skills to craft a single command
to do so.

http://programminghistorian.org/images/automated-downloading-with-wget/Terminal-on-mac2.png

First, a caution is in order. You need to be careful about how you use
wget. If you consult the manual when in doubt, and work through the
lessons here, you should be okay. You should always build a delay into
your commands so that you do not overload the servers, and should
also
always put a limit on the speed to which you download. This is all
part
of being a good Internet citizen, and can be seen as analogous to
sipping from a firehose rather than turning it on all at once (it’s not
good
for you, or the water company).

Be as specific as possible when formulating your download. One joke
suggests that you can accidentally download the entire Internet with
wget. While that’s a bit of an exaggeration, it isn’t too far off!

Let’s begin.

Step One: Installation

Linux Instructions

If you are using a Linux system, you should already have wget installed.
To check if you have it, open up your command line. Type 'wget' and
press enter. If you have wget installed the system will respond with:

-> Missing URL.

If you do not have wget installed, it will respond with

-> command not found.

If you are on OS X or Windows, you will need to download the program.
If
on Linux, you receive the error message indicating that you do not
have
wget installed, follow the OS X instructions below.

OS X Instructions

OS X Option One: The Preferred Method
On OS X, there are two ways to get wget and install it. The easiest is
to
install a package manager and use it to automatically install wget.
There
is a second method, discussed below, that involves compiling it.

Both, however, require that you install Apple’s ‘Command Line Tools’ to
use properly. You will need to download this from Apple, using your
Apple ID and password (which you probably use throughout your Mac).
Visit
http://developer.apple.com/downloads/index.action, log in with
your credentials, and search for “Command Line Tools” in the search bar
in the upper left.

Find the package appropriate to your version of Mac OS X. If you are
unsure of
your XCode verison, just download the most recent one. Once
you download the
file, open it up and double-click on the installation
package. Follow the prompts and once you are finished, you are now
ready to install a package mangaer.

The easiest package manager to install is Homebrew. Go to
http://mxcl.github.io/homebrew/ and review the instructions. There are
many important commands, like wget, that are not included by default
in
OS X. This program facilitates the downloading and installation of all
required files.

To install Homebrew, open up your terminal window and type the
following:

ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

This uses the ruby programming language, built into OS X, to install
Homebrew. To see if the installation worked, type the following into
your
terminal window:

brew

http://developer.apple.com/downloads/index.action
http://mxcl.github.io/homebrew/

A list of documentation options should appear if it has been installed.
We have one more command to run to make sure everything is working,
which is:

brew doctor

With Homebrew installed, we now have to install wget. This is now an
easy step.

brew install wget

It will proceed to download the most recent version of wget, which is
wget 1.14. After the script stops running, and you are back to your main
window, enter the following command into the terminal:

wget

If you have installed it, you will see:

-> Missing URL.

If not, you will see:

-> command not found.

At this point, you should have installed wget successfully. We are now
ready to keep going!

OS X Option Two
If for some reason you do not want to install a package manager, you
are
able to simply download wget alone. This will be applicable if you are
using a different packet manager (such as Mac Ports) or if you want to
keep your infrastructure to a minimum. Follow the same instructions
again to install xcode and the Command Line Tools set.

Then you can subsequently download an uncompiled version of wget
from
the GNU website (I chose to download the file ‘wget-1.13.tar.gz’,
which you can find by following the link to either the HTTP or
FTP
download pages), unzip it (by double-clicking on it) into your
home
directory (on a Mac, this will be your /user/ directory – for
example, my
user name is ianmilligan and it appears next to a house icon
in my
Finder), and then open up Terminal. For this tutorial, we have
downloaded wget-1.13 .

First, we will need to navigate to the directory that the wget files are
in.
At the terminal, type:

cd wget-1.13

Note that if you have downloaded a different version of wget, the
following steps will work but you may have to replace the above version
number (i.e. 1.13) with your own.

We now need to generate the instructions, or makefile, for the file.
This
is sort of a blueprint for what the final file is going to look
like.
Accordingly, type:

./configure –with-ssl=openssl

Now that we have the blueprints, let\’s tell our computer to follow
them.
Type:

make

Then, you need to make the final file. By pre-pending the command
sudo,
you are running the command with highest security privileges.
This lets
you actually install the file into your system.

sudo make install

At this point, you will be prompted for your computer’s password. Type

http://www.gnu.org/software/wget/
http://ftp.gnu.org/gnu/wget/
ftp://ftp.gnu.org/gnu/wget/

it.

You should now have wget installed.

Windows Instructions

The easiest way is to download a working version. To do so, visit
this
website and, download wget.exe
(as of writing it is version 1.17.1, and
you should download the 32-bit
binary). The file is the second link in the
32-bit binary column, entitled just wget.exe .

If you place wget.exe in
your C:\Windows directory, you can then use
wget from anywhere on your
computer. This will make your life easier
as you will not have to worry
about always running wget from only one
place on your system. If it is
in this directory, Windows will know that
the command can be used
anywhere in your terminal window.

Step Two: Learning about the Structure of Wget –
Downloading a Specific Set of Files

At this point, users of all three platforms should be on the same page.
We use wget through our operating system’s command line interface
(introduced previously as Terminal for Mac and Linux users, where you
have been playing around with some Python commands). You need to
use
your command line, instead of the Komodo Edit client you may have
used
in other lessons.

The comprehensive documentation for wget can be found on the GNU
wget
manual page.

Let’s take an example dataset. Say you wanted to download all of the
papers hosted on the website ActiveHistory.ca. They are all located at:
http://activehistory.ca/papers/; in the sense that they are all
contained
within the /papers/ directory: for example, the 9th paper
published on
the website
is http://activehistory.ca/papers/historypaper-9/. Think of

https://eternallybored.org/misc/wget/
https://eternallybored.org/misc/wget/
http://www.gnu.org/software/wget/manual/wget.html
http://www.gnu.org/software/wget/manual/wget.html
http://activehistory.ca/papers/
http://activehistory.ca/papers/historypaper-9/

this
structure in the same way as directories on your own computer: if
you
have a folder labeled /History/ , it likely contains several files
within
it. The same structure holds true for websites, and we are using
this
logic to tell our computer what files we want to download.

If you wanted to download them all manually, you would either need to
write a custom program, or right-click every single paper to do so. If
the
files are organized in a way that fits your research needs, wget is
the
quickest approach.

To make sure wget is working, try the following.

In your working directory, make a new directory. Let’s call it
 wget-

activehistory . You can make this using your Finder/Windows, or if
you
are at a Terminal window at that path, you can type:

mkdir wget-activehistory

Either way, you now have a directory that we will be working in. Now
open up your command line interface and navigate to
the wget-

activehistory directory. As a reminder, you can type:

cd [directory]

to navigate to a given directory. If you’ve made this directory in your
home directory, you should be able to type cd wget-activehistory to
move to your new directory.

Enter the following command:

wget http://activehistory.ca/papers/

After some initial messages, you should see the following (figures,
dates
and some details will be different, however):

Saving to: `index.html.1'

[] 37,668 --.-K/s in 0.1s

2012-05-15 15:50:26 (374 KB/s) - `index.html.1' saved [37668]

What you have done is downloaded just the first page of
http://activehistory.ca/papers/, the index page for the papers to your
new directory. If you open it, you’ll see the main text on the home page
of ActiveHistory.ca. So at a glance, we have already quickly downloaded
something.

What we want to do now, however, is to download every paper. So we
need
to add a few commands to wget.

Wget operates on the following general basis:

wget [options] [URL]

We have just learned about the [URL] component in the previous
example,
as it tells the program where to go. Options, however, give the
program
a bit more information about what exactly we want to do. The
program
knows that an option is an option by the presence of a dash
before the
variable. This lets it know the difference between the URL
and the
options. So let’s learn a few commands now:

-r

Recursive retrieval is the most important part of wget. What this means
is that the program begins following links from the website and
downloading them too. So for example, the
http://activehistory.ca/papers/ has a link to
http://activehistory.ca/papers/historypaper-9/, so it will download
that
too if we use recursive retrieval. However, it will also follow any
other
links: if there was a link to http://uwo.ca somewhere on that
page, it
would follow that and download it as well. By default, -r sends
wget to a
depth of five sites after the first one. This is following
links, to a limit of
five clicks after the first website. At this point,
it will be quite
indiscriminate. So we need more commands:

http://activehistory.ca/papers/
http://activehistory.ca/papers/
http://activehistory.ca/papers/historypaper-9/
http://uwo.ca/

--no-parent

(The double-dash indicates the full-text of a command. All commands
also
have a short version, this could be initiated using -np).

This is an important one. What this means is that wget should follow
links, but not beyond the last parent directory. In our case, that means
that it won’t go anywhere that is not part of the
http://activehistory.ca/papers/ hierarchy. If it was a long path such as
http://niche-canada.org/projects/events/new-events/not-yet-happened-
events/,
it would only find files in the /not-yet-happened-events/ folder. It
is a critical command for delineating your search.

Here is a graphical representation:

A graphical representation of how ‘no-parent’ works with wget

Finally, if you do want to go outside of a hierarchy, it is best to be
specific about how far you want to go. The default is to follow each
link
and carry on to a limit of five pages away from the first page you
provide. However, perhaps you just want to follow one link and stop

http://programminghistorian.org/images/automated-downloading-with-wget/active-history-chart_edited-1.jpg

there? In that case, you could input -l 2 , which takes us to a depth
of
two web-pages. Note this is a lower-case ‘L’, not a number 1.

-l 2

If these commands help direct wget, we also need to add a few more to
be
nice to servers and to stop any automated countermeasures from
thinking
the server is under attack! To that end, we have two additional
essential commands:

-w 10

It is not polite to ask for too much at once from a web server. There
are
other people waiting for information, too, and it is thus important
to
share the load. The command - w 10 , then, adds a ten second wait in
between server requests. You can shorten this, as ten seconds is quite
long. In my own searches, I often use a 2 second wait. On rare
occasions, you may come across a site that blocks automated
downloading
altogether. The website’s terms of service, which you
should consult,
may not mention a policy on automated downloading,
but steps to prohibit
it may be built into their website’s
architecture nonetheless. In such
rare cases, you can use the command
––random-wait which will vary the
wait by 0.5 and 1.5 times the value

you provide here.

Another critical comment is to limit the bandwidth you will be using in
the download:

--limit-rate=20k

This is another important, polite command. You don’t want to use up too
much of the servers’ bandwidth. So this command will limit the
maximum
download speed to 20kb/s. Opinion varies on what a good
limit rate is,
but you are probably good up to about 200kb/s for small
files – however,
not to tax the server, let us keep it at 20k. This will also
keep us at
 ActiveHistory.ca happy!

Step Three: Mirror an Entire Website

Ok, with all of this, let’s finally download all of the ActiveHistory.ca
papers. Note that the trailing slash on the URL is critical – if you
omit it,
wget will think that papers is a file rather than a directory.
Directories
end in slashes. Files do not. The command will then download
the entire
ActiveHistory.ca page. The order of the options does not
matter.

wget -r --no-parent -w 2 --limit-rate=20k http://activehistory.ca/papers/

It will be slower than before, but your terminal will begin downloading
all of the ActiveHistory.ca papers. When it is done, you should have a
directory labeled ActiveHistory.ca that contains the /papers/
sub-
directory – perfectly mirrored on your system. This directory will
appear
in the location that you ran the command from in your command
line, so
likely is in your USER directory. Links will be replaced with
internal links
to the other pages you’ve downloaded, so you can actually
have a fully
working ActiveHistory.ca site on your computer. This lets
you start to
play with it without worrying about your internet speed.

To see if the download was a success, you will also have a log in your
command screen. Take a look over it to make sure that all files were
downloaded successfully. If it did not download, it will let you know
that
it failed.

If you want to mirror an entire website, there is a built-in command to
wget.

-m

This command means ‘mirror,’ and is especially useful for backing up an
entire website. It introduces the following set of commands:
time-
stamping, which looks at the date of the site and doesn’t replace
it if
you already have that version on your system (useful for repeated
downloads), as well as infinite recursion (it will go as many layers
into
the site as necessary). The command for mirroring ActiveHistory.ca

would be:

wget -m -w 2 --limit-rate=20k http://activehistory.ca

A Flexible Tool for Downloading Internet Sources

As you become increasingly comfortable with the command line, you’ll
find wget a helpful addition to your digital toolkit. If there is an
entire
set of archival documents that you want to download for text
mining, if
they’re arranged in a directory and are all together (which
is not as
common as one might think), a quick wget command will be
quicker
than scraping the links with Python. Similarly, you can then
begin
downloading things directly from your command line: programs,
files,
backups, etc.

Further Reading

I’ve only given a snapshot of some of wget’s functionalities. For more,
please visit the wget manual.

Note: You are now prepared to move on to the next lesson
in this series.

About the author

Ian Milligan is an assistant professor of history at the
University
of Waterloo.

Suggested Citation

Ian Milligan
, "Automated Downloading with Wget,"
Programming Historian, (2012-06-27),
http://programminghistorian.org/lessons/automated-

http://www.gnu.org/software/wget/manual/wget.html
http://programminghistorian.org/lessons/applied-archival-downloading-with-wget

downloading-with-wget

About
· Lessons
· Contribute
· Project Team
· Research
· Blog
· Español

The Programming Historian ISSN 2397-2068, is released under the CC-BY
license.

The project is published by the Editorial Board of the Programming Historian, and
first appeared in July 2012. It was last updated on 25 April 2017.

Hosted on GitHub Previous Versions ·
Give

Feedback

http://programminghistorian.org/
http://programminghistorian.org/lessons
http://programminghistorian.org/contribute
http://programminghistorian.org/project-team
http://programminghistorian.org/research
http://programminghistorian.org/blog
http://programminghistorian.org/es
http://creativecommons.org/licenses/by/2.0/
https://github.com/programminghistorian/jekyll
https://github.com/programminghistorian/jekyll
https://github.com/programminghistorian/jekyll/commits/gh-pages/lessons/automated-downloading-with-wget.md
http://programminghistorian.org/feedback
http://programminghistorian.org/feedback

	programminghistorian.org
	Automated Downloading with Wget | Programming Historian

