
A General Pluggable Type Inference
Framework and its use for Data-flow

Analysis

by

Jianchu Li

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2017

c© Jianchu Li 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Java’s pluggable type systems provide valuable compile-time guarantees, but annotating
the program with pluggable types can be a significant burden on programmers. Checker
Framework Inference, a framework that aims to provide a constraint-based type inference
for pluggable types, can generate type constraints over the occurrence of type qualifier of
expressions according to type rules. However, there is no efficient approach to solve type
constraints generated by Checker Framework Inference.

This thesis presents a system called Type Constraint Solver that can solve the type
constraint by encoding the constraint as a Max-SAT problem and in the LogiQL lan-
guage. The system takes advantage of existing Max-SAT solvers and LogicBlox to solve
the corresponding forms, and gets the concrete pluggable type qualifiers for program ex-
pressions. Type Constraint Solver provides options to separate constraints into groups and
solve them in parallel. It also has extendability that can be easily extended with custom
encoding logic. We developed a pluggable type system called Dataflow Type System on
top of Checker Framework Inference to verify the functionality of Type Constraint Solver.
The type system and its inference can perform data-flow analysis by inferring all possible
run-time Java types of return types, parameters, fields, and variables at compile time.
We applied Checker Framework Inference to six real-world applications of up to 39kLOC
with Dataflow Type System and OsTrusted Type system resulting approximately 58,000
type constraints. We used our tool to solve these type constraints and analyzed the ex-
perimentation statistics. We manually examined the inference result and found that Type
Constraint Solver is able to automatically infer the expected type qualifiers for benchmarks.
Inferring the largest application with fastest inference options took about 10 seconds on
average, and approximately 23,000 type qualifiers were inferred. These results suggest that
our system can efficiently give correct solution for type constraints.

iii

Acknowledgements

I would like to thank my supervisor Professor Werner M. Dietl for his support and
guidance. I thank Jeff Luo for his very useful feedbacks on my thesis. I would also like to
thank my readers, Professor Ondřej Lhoták and Professor Derek Rayside for their time,
feedback, and questions. I am thankful for all the members of Professor Dietl’s research
group who made the work environment friendly and encouraging.

iv

Dedication

This is dedicated to my parents who have always been there for me.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . 4

1.2 Approach . 4

1.3 Thesis Contributions . 5

1.4 Thesis Organization . 5

1.5 Funding . 6

2 Background and Related Work 7

2.1 Background on Checker Framework Inference 7

2.1.1 Checker Framework Inference . 7

2.1.2 OsTrusted Type System . 11

2.2 Background on Max-SAT . 12

2.3 Background on LogiQL . 13

2.4 Related Work . 17

3 Type Constraint Solver 20

3.1 Type Constraint Solver Structure . 20

vi

3.1.1 Front End . 22

3.1.2 Constraint Graph . 24

3.1.3 Serializer . 29

3.1.4 Back End . 30

3.2 Max-SAT Back End . 31

3.2.1 Max-SAT Encoding . 31

3.2.2 Max-SAT Solver . 40

3.2.3 Max-SAT Decoding . 41

3.3 LogiQL Back End . 42

3.3.1 LogiQL Encoding . 42

3.3.2 LogiQL Solver . 55

3.3.3 LogiQL Decoding . 55

4 Dataflow Type System 56

4.1 Introduction on Dataflow . 56

4.2 Type Simplification . 58

4.3 Dataflow Type Hierarchy . 59

4.4 Type Inference for Dataflow . 61

4.4.1 Annotate Base Cases . 61

4.4.2 Constraint Generation . 61

4.4.3 Constraint Separation . 62

4.4.4 Constraint Solving . 64

4.4.5 Solution Merge . 66

5 Implementation and Experimentation 67

5.1 Implementation . 67

5.2 Experimentation . 68

vii

6 Future Work 84

6.1 Future Work on Type Constraint Solver 84

6.2 Future Work on Dataflow Type System . 85

7 Conclusion 86

References 87

viii

List of Tables

5.1 Size of Projects with Dataflow Type System Inference 69

5.2 Size of Projects with OsTrusted Type System Inference 70

5.3 Timing Result of Inferring Benchmarks with Dataflow Type System by Max-
SAT Back End . 72

5.4 Timing Result of Inferring Benchmarks with Dataflow Type System by
LogiQL Back End . 74

5.5 Timing Result of Inferring Benchmarks with OsTrusted Type System by
Max-SAT Back End with Constraint Separation 76

5.6 Timing Result of Inferring Benchmarks with OsTrusted Type System by
Max-SAT Back End without Constraint Separation 78

5.7 Timing Result of Inferring Benchmarks with OsTrusted Type System by
LogiQL Back End with Constraint Separation 78

5.8 Timing Result of Inferring Benchmarks with OsTrusted Type System by
LogiQL Back End without Constraint Separation 82

ix

List of Figures

2.1 Constraint Generation Rules for Method Declaration introduced in [18] . . 9

2.2 Partial Subtype Constraint Generation Rules introduced in [18] 10

2.3 Type Hierarchy of OsTrusted Type System 12

3.1 Overview of Type Constraint Solver Structure 21

3.2 Detailed Structure of Type Constraint Solver 23

3.3 Constraint Graph for a Single Subtype Constraint u1 <: u2 25

3.4 Constraint Graph for a Single Adaptation Constraint u1 . u2 = α3 26

3.5 An Example of Constraint Graph . 26

3.6 Relationship among Back End, ConstraintSerializer, and Real Serializer . . 29

3.7 Phases in Back End . 31

3.8 Type Hierarchy of Type System T . 34

3.9 Mapping Table (from slot Id to integer values) for Type System T 34

4.1 Type Hierarchy of Dataflow Type System 60

4.2 Constraint Graph for Example Code . 64

5.1 Relationship between Size of Constraint and Solving Time in Table 5.3 . . 73

5.2 Relationship between Size of Constraint and Solving Time in Table 5.4 . . 75

5.3 Relationship between Size of Constraint and Solving Time in Table 5.5 . . 77

5.4 Relationship between Size of Constraint and Solving Time in Table 5.6 . . 79

5.5 Relationship between Size of Constraint and Solving Time in Table 5.7 . . 80

5.6 Relationship between Size of Constraint and Solving Time in Table 5.8 . . 81

x

Chapter 1

Introduction

Software reliability is an important facet of software quality. In order to make software
more reliable, many elaborate and expressive approaches have been come up with and
implemented. Meanwhile, as one of the most popular programming languages in the world,
Java has been widely used in many places. From Android applications to web applications,
from scientific applications to financial applications like electronic trading systems, from
games like Minecraft to desktop applications like Eclipse and IntelliJ etc.[10], Java is almost
everywhere in the real world. Because of the popularity of Java, the reliability of Java
software has been becoming more and more important.

People put lots of effort in developing different approaches and techniques in order to
make Java programs reliable. We want to have approaches that have both high practicality
and also can make the guarantees as much as possible. However, in many cases they cannot
be both achieved, and they are even in a negative correlation sometimes. For example,
code reviews is a very common way to improve code quality and find potential bugs. An
experienced senior programmer can always give us wise suggestions, but reading all of the
codes line by line, compiling and running them in the mind would not be very practical, and
lots of run time errors are unreadable to programmers. Compare to code review, software
testing is more practical. There are different kinds of testing method, for example, static
and dynamic testing, white and black box testing etc. Software testing can be performed in
different levels, and also lots of testing techniques has been developed. Software testing is
practical and it can make sure the code works the way that it’s supposed to work, however,
in some cases it cannot provide enough guarantees that let people trust the software. For
example, if we write a program that counts from 0 to an arbitrarily large natural number
n, and we want to test the program. The normal way is we come up with some sufficiently
large integer numbers, and run the program with the numbers, for instance, 1000, and

1

we look to see whether the program can list 1, 2, 3...1000. If it shows those results, the
test passes, otherwise, it fails. Since we cannot enumerate all possible integer numbers, so
we cannot make sure that the program would still work when the integer n is larger than
the largest number we have tested. There is another technique called formal verification,
which allows you to prove mathematically that the underlying algorithm is correct, and
offers much more guarantees to programmers. For above case, we can prove the theorem, for
any arbitrarily large natural number n, it is possible to count from 0 to n by induction, so
that make sure our algorithm is correct. But if the logic of the program is too complicated,
proving theorems would be a huge workload for programmers.

Type system is another way to prevent the occurrence of execution errors. Type system
defines interfaces between different parts of a computer program, and then checks that the
parts have been connected in a consistent way. If the program passes type checking, the
properties that defined by type rules can be hold. If the type system is properly developed
and formalized, in other word, as long as we prove the type system is sound, it can provide
mathematical guarantees. Type system can also be practical, since the implementation of
type system is in language level and not program specific.

The Java programming language has a strong type system that can be used to enforce
useful program properties. The basic Java type check can prevent many errors. For
example,

1 int i = "Hello";

we will get an incompatible types compile time error if we compile the above code. However,
Java built-in type system cannot express enough properties in compile time. For example:

1 int getCounter(Input input) {

2 return input.getCounter ();

3 }

4

5 int counter = getCounter(null);

In above case, we will get a null pointer exception in run time, however the Java compiler
cannot catch it in compile time. Many important properties just like nullness of object can
be hard to encode as standard types, and it may be difficult to incorporate new properties
into the type hierarchy of an existing program.

2

To address this problem, Checker Framework [7, 27] has been presented. Checker
Framework is a tool that can support adding pluggable type systems to the Java language,
and let programmers run an additional type-checker as a plug-in to the javac compiler. A
type system designer can use the Checker Framework to create a type checker by defin-
ing type qualifiers and their semantics, and then enforce the semantics at compile time.
Programmers can write the type qualifiers in their programs and use the type checker to
detect or prevent errors[7].

For example, we can use Nullness Checker to find the null pointer problem in above
code. We first annotate the parameter of method getCounter() with @NonNull annotation
to indicate that the parameter cannot be null:

1 int getCounter(@NonNull Input input) {

2 return input.getCounter ();

3 }

4

5 int counter = getCounter(null);

Then if we compile the program with NullNess Checker, we will get following error:

1 e r r o r : [argument . type . incompat ib le] incompat ib le types in argument
2 i n t counter = getCounter (n u l l) ;
3 found : n u l l
4 r equ i r ed : @NonNull Input

Checker Framework not only is an expressive tool allows type system designer to plug their
own type systems into Java language, but also introduces a set of checkers that can provide
valuable compile-time guarantees. However, programmers must annotate the program with
the pluggable types, and that can be a significant burden. Because of the vast quantity of
legacy code, programmers need to spend a long time on studying the legacy code before
he or she understands the code well and annotates it.

Type inference is an approach that can automatically determine the types for programs
such that reduces the burden for programmers. To infer pluggable types that defines on
top on Checker Framework, Checker Framework Inference, a type inference framework for
Checker Framework, has been presented [1].

Checker Framework Inference is based on static analysis, implementing a constraint-
based type inference approach. It can generate different kinds of type constraint over

3

program locations according to the type rules to express the relationship among the type
qualifiers that should be annotated in these locations. If we can find a set of type qual-
ifier that can satisfy the type constraints, we will determine the type qualifiers for those
locations. The details about Checker Framework Inference are introduced in Section 2.1.

1.1 Motivation

Inferring pluggable type qualifiers would help programmers to reduce their workload and
make it easier to use type checkers. Checker Framework Inference implements a constraint-
based type inference, which works by constructing a system of constraints that express
relationships between the pluggable types over different parts of the program. However,
there isn’t an effective way to solve the constrains from any pluggable type system and get
concrete type qualifiers. The inference framework only introduces a few constraint solvers
for some specific type systems, but we would like to have a general approach to solve type
constraint from arbitrary type systems.

In this research, we wanted to find a solution for solving the constraints by encoding
the constraint to some other forms, then solves the new form through its corresponding
solver, decoding the result, and getting the solution of the constraints. In practice, we not
only looked for a constraint encoding strategy, but also tried building a constraint solving
system that can be easily extended by adding new encoding approaches. In order to verify
the correctness of our constraint solving system, we also wanted to build an inferable type
system, run the inference tool on it, and check the inferred results.

1.2 Approach

In this research, we propose two different encoding strategies for type constraints gen-
erated by Checker Framework Inference: Max-SAT and LogiQL. The former one encodes
the constraint as a weighted Max-SAT problem such that each constraint would become
to a set of Boolean clauses, and uses an existing solver to solve the Boolean formula. The
latter one converts the constraint into statements of a Datalog based language LogiQL,
and processes the statements by LogicBlox, a database running with LogiQL.

We built an infrastructure level system, which integrates above two encodings in Java
with proper usage of object oriented programming concepts, design patterns, and graph
related algorithms. The system can solve type constraints from arbitrary type system and
get the concrete type qualifier for each location.

4

In order to validate the correctness of the inference tool, we built a pluggable type
system Dataflow Type System on the top of Checker Framework and Checker Framework
Inference. Dataflow Type System and its inference can infer all possible run-time Java
types of return types, parameters, fields, and variables at compile time.

For case studies, we ran our tools on open source software projects with different sizes.
We collected different aspects of performance related statistics to demonstrate the perfor-
mance of our tools.

1.3 Thesis Contributions

The contribution points of this thesis are as follows:

First, a type constraint encoding approach based on Max-SAT problem, which can
convert the constraint into boolean formula and be solved by Max-SAT solver.

Second, another LogicBlox based type constraint encoding. It encodes constraints as
LogiQL language and solves them through LogicBlox database.

Third, designs and implements Type Constraint Solver system that can solve type
constraint generated from arbitrary type systems, and integrates above two encodings into
the system. We made the infrastructure of Type Constraint Solver can be easily extended
with new encoding strategies or custom constraint solver for particular type systems with
special requirement.

Fourth, designs and implements inferable Dataflow type system. The type system and
its inference can perform data-flow analysis1 for Java, and also help to validate the cor-
rectness of the type constraint solver system.

Fifth, it evaluates the performance of proposed type constraint solver system by infer-
ring Java projects in different sizes.

1.4 Thesis Organization

Chapter 2 discusses the background knowledge of Checker Framework Inference, Max-
SAT problem and LogicBlox, and also presents other type inference approaches that related

1Data-flow analysis that the type system focuses on is the type of each allocation in Java, see Chapter 4
for more details.

5

to this thesis. Chapter 3 introduces Type Constraint Solver in detail including the struc-
ture of the system and different constraint encodings. Chapter 4 presents the logic of
Dataflow Type System. Chapter 5 describes our implementation and our experience with
the tools. Chapter 6 discusses the possible future works. Finally, a summary of the work
and conclusion are give in Chapter 7.

1.5 Funding

This work was partially supported by the Natural Sciences and Engineering Research
Council of Canada. This material is based upon work supported by the United States Air
Force under Contract No. FA8750-15-C-0010. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessar-
ily reflect the views of the United States Air Force and the Defense Advanced Research
Projects Agency (DARPA).

6

Chapter 2

Background and Related Work

This Chapter explains the background knowledge that is referred by and used in this
research. Section 2.1 introduces the basic logic in Check Framework Inference including
the construction of constraint variables and constraints over the variables. Section 2.2 and
Section 2.3 talks about the Max-SAT problem and LogiQL languages respectively. Prior
works are discussed in Section 2.4.

2.1 Background on Checker Framework Inference

This section introduces the basics about Checker Framework Inference and an existing
inferable type system called OsTrusted Type System.

2.1.1 Checker Framework Inference

Checker Framework Inference is a framework that can perform type constraint genera-
tion for the pluggable type system defined in Checker Framework. Since Java SE 8 release,
Java annotations can be used as pluggable types, and Checker Framework is a pluggable
type checking framework that allows developers to define their own type system and plug
it into the normal Java language to perform some additional compile time check [7, 27]. It
uses the annotation in Java language to represent the type qualifier [8]. One example is
Nullness Checker, users can annotate the program with Nullness type system qualifier to
enforce some objects be non-null in order to avoid a NullPointerException in run time.

7

1 @NonNull Object obj; // obj can never be null

If we assign a null literal to obj, and compile the code, Checker Framework will report an
error says the null type is incompatible with the type of obj.

As we mentioned in Chapter 1, the pluggable type systems provide valuable compile-
time guarantees, but it also brings overhead: the programmer must annotate the program
with the pluggable type qualifiers. Annotating new code would cost much time for pro-
grammers, and annotating legacy code would be a significant burden on programmers
because they have to spend a long time on studying the legacy code before they can know
how to annotate the program.

The motivation of Check Framework Inference is helping programmer to reduce the
burden of annotating the program by automatically determining types for some or all
parts of the program.

The strategy that Check Framework Inference uses is constraint-based global type in-
ference. It takes a program as input, and creates a set of type variables and type constrains.

Tunable Static Inference for Generic Universe Types [18] describes the generation of
type variables and type constraints in detail. The rest of this section summarizes the
approach and explain the connection between Check Framework Inference and our work.

For a given program, we would like to infer pluggable type qualifiers for different lo-
cations. A constraint variable represents the pluggable type qualifier for the occurrence
of a particular expression, and we use it as a placeholder for the type qualifier. In Check
Framework Inference implementation, it uses the word slot to refer constraint variable.
For each position where a pluggable type qualifier may occur, Check Framework Inference
introduces a constraint variable for the type qualifier annotated in that location. And our
eventually goal is to decide the concrete type qualifiers for these slots.

With constraint variable generated, the system generates a set of type constraint. type
constraint is a judgment over class, class members, and expressions according to type and
constraint generation rules.

Below is the list of the five kinds of type constraint.

• Subtype constraint (u1 <: u2): A subtype constraint enforces that u1 will be assigned
an type qualifier that is a subtype of the type qualifier assigned to u2.

• Adaptation constraint (u1 . u2 = α3): An adaptation constraint ensures that the
viewpoint adaptation of variable u2 from the viewpoint expressed by u1 results in α3.
α3 is a constant type qualifier in pluggable type system.

8

• Equality constraint (u1 = u2): An equality constraint ensures that two qualifiers are
the same.

• Inequality constraint (u1 6= u2): An equality constraint ensures that two qualifiers
differ.

• Comparable constraint (u1 <:> u2): A comparable constraint express that two qual-
ifiers are not incompatible, that is, one could be subtype of the other.

• Preference constraint (u1 ≈ u2): An equality constraint indicates that we prefer the
two qualifiers equal to each other.

By default, Checker Framework Inference generates subtype constraint and equality
constraint for any type systems, and it can generate other kinds of constraint over the
constraint variables according to the constraint generation rules defined in the particular
type system. One scenario of equality constraint generation is when method overriding
happens. If method m1 overrides the method m2 in a superclass, the parameters of these
two methods should be consistent. So in that case, one or a set of equality constraint will
be generated between the parameters in m1 and m2. Figure 2.1, constraint generation rules
for method declaration, is cited from [18], and the set Σ2 defines the equality constraint
we mentioned above.

env(Γ , TP , T pid) = Γ ′ Γ ′ ` T pid : Σ0

Γ ′ ` e : T,Σ1 overriding(Γ ′,m) = Σ2

Γ ′ ` bounds(TP), Tr OK : Σ3

Γ ′ `<: Tr : Σ4

Γ ` p〈TP 〉Tr m(T pid) e : ∪i=0
i=4Σi

Figure 2.1: Constraint Generation Rules for Method Declaration introduced in [18]

A more common example is subtype constraint, and the constraint will be generated
when subtype relationship is present in program. Figure 2.2 shows some subtype constraint
generation rules from [18]. For the first rule, if type qualifier u is the subtype of another
qualifier u′, and the parameters for class C are same, then a subtype constraint Σ will be
generated over the subtype relation uC〈T 〉 <: u′C〈T ′〉.

Users can build their own type systems and define the type rules and constraint gen-
eration rules by creating a new inferable type checker on the top of Checker Framework

9

Σ =
{
u <: u′, T = T ′

}
Γ ` uC〈T 〉 <: u′C〈T ′〉 : Σ

Γ ` T <: T1 : Σ1

Γ ` T1 <: T ′ : Σ2

Γ ` T <: T ′ : Σ1 ∪ Σ2

Figure 2.2: Partial Subtype Constraint Generation Rules introduced in [18]

Inference. Generic Universe Types [18] is a good example to illustrate how viewpoint
constraint and comparable constraint are generated. Another example is Dataflow type
system, which will be introduced in Chapter 4.

Checker Framework Inference implements these rules, by creating type constraints dur-
ing the visitation of abstract syntax tree. When framework traverses AST of the given
program, if the location needs to be annotated, the framework will generate a constraint
variable for the location, and then do a deep traversal. The constraint variable would
be set to a constant of a certain type qualifier if the programmer has already manually
annotated the location, or it can be forcibly set to a particular qualifier by type rules.
In traversal process, if the system finds a scenario that satisfies the constraint generation
rules, a corresponding type constraint will be generated.

Here is an example:

1 Object foo() {

2

3 if (...) {

4

5 return new Object ()

;

6 } else {

7

8 return 3;

9 }

10 }

In above snippet of code, the return type of method foo is Object, and the two branches
return new object and integer literal respectively. There will be three newly generated type
variables: v1 for the method type, and v2 and v3 for the expressions in return statement.
And two subtype constraints will be generated:

10

v2 <: v1

v3 <: v1

The expected solution for above constraints depends on the underlying type system. For
Dataflow type system, the concrete type qualifiers for v1, v2, and v3 should be:

v1 = @DataFlow(typeNames=”Object”, ”Integer”)

v2 = @DataFlow(typeNames=”Object”)

v3 = @DataFlow(typeNames=”Integer”)

Chapter 4 will discusses the above example in detail.

Once Checker Framework Inference generates a set of type constraint according to
constraint generation rules, we need to solve them in order to get the concrete pluggable
type qualifiers for the type variables. Although there are few type constraint solvers that
can solve constraints from some particular type systems, the usability of the solvers are
limited, since those target type systems are less sophisticated. So we would like to have a
general solution that can solve constrains from arbitrary type systems.

Chapter 3 introduces a general type constraint solving system that can take the type
constrains as input, solve the constraints, and return the type qualifier for each type
variable. The system solves the constraints by encoding the type constraints into Max-
SAT problem or statements of LogiQL language.

2.1.2 OsTrusted Type System

OsTrusted Type System is a simple inferable type system developed by Checker Frame-
work Inference team. The type system has a two-qualifier hierarchy: OsTrusted and
OsUnTrusted, and a polymorphic qualifier for PolymorphicQualifier. OsUnTrusted
is supertype of OsTrusted, Figure 2.3 shows the hierachy :

OsTrusted type qualifier indicates that the annotated string is trusted by operating sys-
tem, and operating system doesn’t trust all other strings. The only type rule in OsTrusted
Type System is in string concatenation: only the concatenation with two OsTrusted strings
can result a OsTrusted string, and any other concatenation results in OsUnTrusted.

OsTrusted type system is used for making string operation more safe. Programmers can
annotated the OsTrusted type qualifier for the string they trust. If some system execution

11

OsUnTrusted

OsTrusted

Figure 2.3: Type Hierarchy of OsTrusted Type System

calls are invoked with the string without OsTrusted type qualifier, then we can stop the
invocation so that some attacks like SQL injection can be prevented.

In this thesis, we tested the type constraint solver introduced in Chapter 3 on both
OsTrusted Type System and Dataflow Type System that will be discussed in Chapter 4.
The statistics of the experimentation result is showed in Chapter 5.

2.2 Background on Max-SAT

Maximum satisfiability problem (Max-SAT) [6] is a generalization of the Boolean satis-
fiability problem (SAT). It is the problem of determining the maximum number of clauses,
of a given Boolean formula in conjunctive normal form, that can be made true by an
assignment of truth values to the variables of the formula.

For example, given two Boolean variables x, y and following formula:

(x ∨ y) ∧ (¬x ∨ ¬y)

we know that for any truth assignment that can make the exclusive or of x and y be true,
the assignment can also make the given formula be true.

But for the formula:

(x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

no matter which truth values are assigned to the two variables, at least one of the four
clauses will be false. So for normal SAT problem, the above predicate is unsolvable.
However, three clauses of the formula can be true with any truth assignment. Then the
Max-SAT solution for the above clause would be any truth assignment for x and y, and
the maximum number of clauses that can be made true is three.

12

According to computational complexity theory, the Max-SAT problem is a NP-hard
problem[25].

Many solvers for Max-SAT have been developed during recent years. In our research,
we use two of them: sat4j [15] and lingeling [5].

sat4j is a Java library for solving SAT and Max-SAT problems. Every clause is rep-
resented by an integer vector, and the variables is represented by integer values starting
from 1. Negation of a variable is a negative number. The output is an array of integer.
The sign of integer values indicates whether we should assign true or false to the variable.

lingeling is a modern SAT solver written in C. The input of it is a file in CNF format.
For example, the clause for above formula is written in the format:

p cn f 2 4
1 2 0
1 −2 0
−1 2 0
−1 −2 0

First line is problem line. It begins with a lower case ”p” followed by a space, followed
by the problem type, which for CNF files is ”cnf”, followed by the number of variables
followed by the number of clauses. Starting from line 2, each line is a clause, and each
variable is represented by a integer value. We use 1 and 2 to represent x and y respectively.
Number 0 is the termination symbol of each clause[2]. The content of the output is same
to sat4j ’s, and the tool would just print the result out.

2.3 Background on LogiQL

LogiQL is a declarative logic programming language developed by LogicBlox, Inc, to
harness the power of first-order logic to support access to databases. It has been influenced
by two other logic languages, Prolog and Datalog[23].

LogiQL is a powerful language, and we used the three most significant features in
LogiQL: entity, functional predicate, and declaring derivation rules. The rest of this section
will introduce these three features in detail.

The definition of Entity is a predicate that asserts the existence of a set of elements
in the problem domain that the program is modeling. Roughly speaking, entity is very

13

similar to the concept class in object oriented programming language. It is a abstract
concept, which you describe with one or more values. For example, if we want to construct
a ”people” entity in LogiQL, we can use following syntax:

People(p) -> .

The above statements declares a ”people” entity. A declaration consists of two parts,
separated by a right arrow. On the left is a predicate name, giving the name of entity type,
People. A predicate denotes a named collection of facts. In this case, the facts indicate the
people we refer to in our program[23]. On the right is just a single period, which means
there is no information about how people entity is represented in the computer. So in that
case the system would just create some internal representation automatically. So if you
want to provide some ways for people entity to identify the people instead of using the
default identifier, you can define a key together with the entity:

People(p), hasPeopleName(p:s) -> string(s).

The comma in the left denoting the logical and operator. The hasPeopleName is a
refmode predicate that indicate for each people p, it has a key s for it. And the right of
the arrow, string(s) indicates the key s is represented in the computer as a string.

Now that we have the People entity, and we can add some People facts to the system.
We can do that by following syntax:

+People(p), +hasPeopleName(p:"Jason ").

In above statement, the plus sign before the entity name is called a delta modifier. And
this modifier indicates that the denoted fact should be added to the set of asserted fasts,
and the key for this new People fact is a string ”Jason”.

Let’s talk about functional predicate next. A functional predicate can express the
relationship among entities. For example, besides People entity, we also have an entity
called Address :

Address(a), hasAddressName(a:s) -> string(s).

Assume that each people have one address to live, and this association between people
and their address is said to be functional, because address can be determined from the
people. We can use following syntax to define a functional predicate, which would indicate
the relationship between entities People and Address.

14

addressOf[p] = a -> People(p), Address(a).

The above statement can be read as ”If the address of p is a, then p is a people and a
is an address.” The square brackets in the above declaration indicate the functional nature
of the relationship between a people and his/her address.

Similar to how we add the facts to entities, we can assert facts for functional predicates.
For example, if Jason’s address is ”XYZ123”, then we can indicate that fact as follows:

+addressOf ["Jason "] = "XYZ123 ".

The address fact ”XYZ123” has to be in the Address entity:

+Address(a), +hasAddressName(a:" XYZ123 ").

We can also use a unary form of functional predicate to represent same concept:

isOfAddress(p, a) -> People(p), Address(a).

The above statement can be read as ”If p is of address a, then p is a people and a is
an address”.

Some facts are simply asserted to be true, using the delta modifiers, while other facts
are computed by applying a derivation rules to the facts that are already known. For
example, if we know the length and width of a rectangle, we can calculate the area of it
by multiplying its length by its width.

For example, if we want to express the relationship like parenthood and sibling rela-
tionship among different people, we first can define a predicate:

parentOf[p1] = p2 -> People(p1), People(p2).

Now consider a rule to derive the sibling relationship. Two different people are siblings
of each other if they share a parent. We define a unary predicate isSiblingOf:

isSiblingOf(p1, p2) -> People(p1), People(p2).

With parentOf and isSiblingOf we can define our first derivation rule:

15

isSiblingOf(p1, p2) <- parentOf[p1] = p3, parentOf[p2] = p3, p1 ! = p2.

We can read this rule as ”p1 is a sibling of p2 if there is some p3 such that p1 and p2
have p3 as a parent, and p1 is not the same as p2.”

The inequality is expressed using the not-equals operator ”!=”, and comma is still
means and operator. Note that the direction of the arrow in rules is from right to left. We
can see that an arrow directed to the right is used in constraints, and if the formula that
comes after the arrow is true, then the formula before the arrow will also be true.

With the basic knowledge of entity, functional predicate, and declaring derivation rules
we can infer some facts based on what we have already known.

For example, consider we have People entity, parentOf functional predicate, and isSi-
blingOf derivation rule, and we add following facts to the database system:

+People(p), +hasPeopleName(p:"Allen ").

+People(p), +hasPeopleName(p:"Bill").

+People(p), +hasPeopleName(p:"Clare ").

+parentOf ["Allen "] = "Bill".

+parentOf ["Clare "] = "Bill".

Based on the above information, and the isSiblingOf derivation rule:

isSiblingOf(p1, p2) <- parentOf[p1] = p3, parentOf[p2] = p3, p1 ! = p2.

The system will automatically infers the fact

isSiblingOf ("Allen", "Clare ")

In this research, we encode the type constraint system into a set of entity, functional
predicate, and declaring derivation rules. And according to the facts we have already
known, the system would automatically infer the rest of facts for us. The details of the
LogiQL encoding is explained in Section 3.3.

16

2.4 Related Work

Checker Framework [7, 27] includes many pluggable type systems that express and
enforce compile-time properties. Nullness type system for example is a type system that
prevent null pointer exception in compile time. The corresponding checker checks possibly
dereference of null expression, iteration over possibly-null collections in enhanced for loop,
and accessing a possibly-null array. Another example is Interning checker, which checks
the reference quantity tests to prevent the misuse of the equal operator ”==”.

Generic Universe Types [17] is another type system implemented on the top of Checker
Framework. It’s an ownership type system that organizes the heap hierarchically and
groups objects by owner. The ownership encapsulation can make sure that the modifica-
tions for object wouldn’t across the owner’s boundaries. Programmer can annotate the
program with GUT type qualifiers, and the program will need to obey the ownership rules
described by the qualifiers.

Outside of Checker Framework, there are other type systems have been proposed.
Flanagan and Freund [20] for example presented a type checker called rccjava, which con-
tains a type system that ensures that a Java program doesn’t contain any race conditions.
Boyapati and Rinard [16] took advantage of rccjava and made modifications such that
programmers can write generic code to implement a class, then the different objects of the
same class can have different protection mechanisms. Programmers can specify the mech-
anism for the object when then define the type of the variables. The resulting language is
called Parameterized Race Free Java.

Besides Checker Framework, there are some other tools that can also allows users to add
user-defined type qualifiers to Java. JavaCOP [14] is such tool that defines a declarative,
rule-based language that can express rules as constraints on AST nodes. It can process the
information from both annotated additional types and Java’s own type system. JQual [22]
can adds pluggable type qualifiers to Java, and also performs type inference for pluggable
user-defined type qualifiers. The tool traverses the method bodies in the program and
generates subtyping constraints, and then resolve the constraints. Ekman and Hedin [19]
presents an extensible Java Complier including a component that can check and infer
non-null types through a non-nil type system.

There are various of type inference approaches has been proposed for pluggable type
systems.

Tunable Static Inference for Generic Universe Types [18] presents a type inference ap-
proach for Generic Universe Types, and it also provides the theory foundation for Checker

17

Framework Inference and this work. The paper introduces a constraint-based type infer-
ence approach, which is also implemented by Checker Framework Inference. It proposes a
way to encode the constraints of Generic Universe Types as a Boolean satisfiability prob-
lem, which inspires the Max-SAT encoding in Section 3.2.1. The main difference to our
Max-SAT encoding is that the Max-SAT encoding in [18] is only for GUT type system,
but in our work, we generalized the approach, and make it usable for any pluggable type
systems.

For rccjava, Flanagan and Freund later proposed a constraint-based type inference
approach [21]. In their work, constraints system are reduced to SAT problem, and they
use SAT solver to find the solutions. But the solver may provide any valid inference
solution, and sometimes it makes the solution trivial.

Besides constraint-based type inference, Agarwal and Stoller [11] presents a run-time
approach to type inference for Parameterized Race Free Java. The approach monitors some
executions of the program and infer possible types according to the observed behavior.
However the downside of run-time inference is that the result may be unsound, since the
observed behavior may not express all possible behaviors of the program.

The Constraint Graph Generator described in Section 3.1.2 converts type constraints
into a graph representation, and performs graph traversal algorithms to separate the graph.
Kodumal and Aiken [24] described a way that uses graph reachability problem to solve set
constraint problem. The approach treats the constraint system as a directed graph. The
nodes of the graph are set expressions, and the edges are constraints. The edge could
either be successor edge or predecessor edge. Then the constraint system can be solved by
applying the algorithm described in [12]. Kodumal and Aiken’s approach is overqualified for
our problem, since in our situation we would like to either identify independent components
in constraint system or find out the all reachable nodes from certain a node, and both of
them can be simply achieved through Breadth-first Search algorithm.

In this thesis, we built a Dataflow Type System to infer all possible Java types of method
and variable. Soot, an analysis and optimization framework for Java, provides SPARK
framework [26] that can perform similar analysis. SPARK is a points-to analysis tool
that can perform equality- and subset-based analyses, and return a set of possible targets
for given variable. Soot takes Java bytecode as input, and converts it to intermediate
representations for example, JimpleBody, ShimpleBody, etc. Then it applies some analyses
and optimization, and converts the result back to bytecode. SPARK uses the JimpleBody
intermediate representations as the input, generates pointer assignment graph, and then
calculate the points-to set for a veriable according to the graph. We can retrieve all possible
types from the points-to set.

18

WALA is another static analysis tool that can perform points-to analysis [28]. The tool
implements an Andersen’s-style analysis [13] by constructing a flow graph representing the
pointer flow for a program and computes a points-to set for each variable. In points-to set,
we can get all possible types for given variable.

In Checker Framework, it provides a Constant Value Checker [4], which can determine
whether variables’ value can be known at compile time. The checker can infer the type
qualifiers for variables but not for fields and method signatures, and like Dataflow Type
System, the type qualifiers in Constant Value Checker can take an argument as a set of
values. The checker can determine values with type boolean, double, integer and string.
The difference between Constant Value Checker and Dataflow Type System is the checker
can determine both type and value, and Dataflow Type System only focuses on type.
However, besides the four types that the checker can infer, Dataflow Type System can
infer all primitive types, reference types, and array types, and it also can infer the type
qualifiers for fields and method signatures.

19

Chapter 3

Type Constraint Solver

This chapter discusses a system called Type Constraint Solver that solves the type
constraints generated by Checker Framework Inference, such that we can get the concrete
type qualifier for each slot. Type Constraint Solver independents to specific type systems,
which means it has a general constraint solving mechanism that deal with the constraints
generated from arbitrary type systems. Some type systems, for example Dataflow Type
System in Chapter 4, has it’s own requirement for constraint solving. Type Constraint
Solver can also be easily extended with custom solvers. The system provides two kinds of
encoding strategy that can solve the Section 3.1 presents the whole structure of the solver.
The solver consists of a front end, constraint graph generator, serializers, and different
back ends performing constraints solving. Section 3.2 shows one of the back ends: Max-
SAT back end. It encodes all types of constraint as a weighted SAT problem, solves the
problem by calling existing SAT solver, and decodes the output from SAT solver to a set of
concrete result for the program. Section 3.3 describes another back end: logiQL back end.
The section explains how to reduce the type constraints to statements of logiQL language,
and transform the result from LogicBlox.

3.1 Type Constraint Solver Structure

The system is designed for solving constraints from arbitrary type system through
different encoding strategies. Type Constraint Solver provides multiple back ends that
can solve the constraints, and each back end corresponds to one kind of encoding for the
constraints. The structure also supports adding new back ends easily. Figure 3.1 overviews
the whole structure.

20

Checker
Framework
Inference

Front End

Constraint
Graph

Generator

Back End

Serializer

External
Solver

Type Constraint Solver

Constraints

Slot Id →
Type Qualifier

Constraint
Separation

Sets of
Constraints

Slot Id →
Type Qualifier

EncodingConstraints

Encoding

Solution

Figure 3.1: Overview of Type Constraint Solver Structure

Front end takes the output (type constraint) from Checker Framework Inference and
performs some initialization steps. Then we have an option to use Constraint Graph
Generator to separate constraints into different groups, which could be solved separately.
After the separation, Front End would send sets of constraint to one type of the back
ends. Back end would invoke Serializer first. Serializer is the tool that can convert
different types of constraint into another form which can be solved by external solvers.
The encoding process happens in Serializer. Then Back end takes the encoding from
Serializer and sends it to an external solver. After external solver gives the solution back
to Back end, it decodes the solution and passes the decoded solution to Front End. Front
End then returns the solution to Checker Framework Inference. Sections 3.1.1 to 3.1.4
explain every components in Figure 3.1 in detail.

In the whole process, Constraint Graph Generator is an optional tool to choose. So if we
don’t separate the constraint into different sets, Front End will pass all of the constraints
to Back End directly. The details of Constraint Graph Generator will be discussed in
Section 3.1.2. The solution from external solver will be decoded by Back End, and the
decoded form is a map between slot Id and the type qualifier that would be annotated to
this slot. Currently, we have two back ends can use, Max-SAT back end and LogiQL back
end. Figure 3.2 shows a more detailed structure of Type Constraint Solver with the two
back ends. Max-SAT serializer converts constraints to CNF formulas, and the formulas
are solved by existing Max-SAT solvers. LogiQL serializer converts constraints to LogiQL

21

language, and LogicBlox can process the language and generate the result. Section 3.2 and
3.3 will discuss Max-SAT back end and LogiQL back end in detail.

Note that the relationship between back end and serializer is simplified in Figure 3.2.
The back end doesn’t directly connect to the corresponding serializer, instead, there is
a deliverer between the back end and serializer. The details about the deliverer will be
discussed in Section 3.1.3.

3.1.1 Front End

The front end implements the interface InferenceSolver in Checker Framework Infer-
ence. As we introduced in Section 2.1, Checker Framework Inference provides constraints,
slots, command line configurations, and all other necessary information to solver through
this interface.

The motivation of the front end is that we want a way that can control different back
ends easily. Before the front end is adapted, different back ends and serializers are devel-
oped independently. There are some disadvantages of independent development: although
the main implementation of different back ends are different, there are still some common
logic shared among each other. So developing them independently would produce some
duplicate and unreusable code for example, some configurations only need to be set once,
instead of multiple times in different back ends. Moreover, we wanted new back ends can be
easily plugged in to the system, so front end provides all the necessary APIs to be extended
and overridden such that the developers don’t need to build everything from scratch.

The main responsibilities of front end are recognizing the command line arguments
provided by users, making a series of configurations, creating the right serializer and back
end that are indicated by user, invoking back end, and returning the output of back end
to Checker Framework Inference. At the moment, the possible command line arguments
are: the kind of back end and serializer, whether use constraint graph to separate the
constraints, and if the constraints are separated, solve them in parallel or sequential.

For the creation of back end, we took advantage of Java Reflection API. Users indicate
the type of back end in command line, and the corresponding back end is created in run
time reflectively. Instead of hard coding the creation of different back ends, reflective cre-
ation gives the user flexibility to choose different back end. Constraints and Serializer are
two necessary components for back end creation. Constraints are generated by Checker
Framework Inference, and serializer is also reflectively created. Note that at the moment,
each back end only corresponds to one serializer, so the back end type indicated by user
in command line is also the type of the serializer. More details about serializer will be

22

Checker
Framework
Inference

Front End

Constraint
Graph

Generator

Max-SAT
Back End

Max-SAT
Serializer

Max-SAT
Solver

LogiQL
Back End

LogiQL
Serializer

LogicBlox

Type Constraint Solver

Constraints

Slot Id →
Type Qualifier

Constraint
Separation

Set of
Constraints

Set of
Constraints

CNF
Formula

Constraints

LogiQLConstraints

CNF
Formula

Truth
Assignment

LogiQL

Predicate
Values

Slot Id →
Type Qualifier

Slot Id →
Type Qualifier

Figure 3.2: Detailed Structure of Type Constraint Solver

23

discussed in Section 3.1.3. If users don’t provide any arguments, then the default config-
uration will be set: Max-SAT back end and serializer, perform the constraint separation,
and solving the sets of constraint in parallel.

Constraint Graph is a graph representation for constraints. Constraints can be sepa-
rated into different sets through graph manipulation, and then we can solve them indepen-
dently. After this separation, we have options to solve the sets of constraints in parallel or
sequential. For both cases, we create a list of back ends with different sets of constraint. If
we decide to solve them in sequential, then each back end will be invoked one by one. Sets
of constraint can also be solved in parallel: we used a thread pool and put back ends in dif-
ferent threads through a Callable object, so the back ends can solve the constraints at same
time. We took advantage of Future class in Java, such that we can get the calculated result
from each each back from a list of Future object. After the solving processes finished, the
results from different back ends are going to be merged. The details of Constraint Graph
will be discussed in Section 3.1.2.

Once the back end finished solving the constraints, it returns a result, which is a map
from slot Ids to the type qualifier for that id, to front end. Then front end can print the
result out on screen or write it into a file, and return it to Checker Framework Inference.

3.1.2 Constraint Graph

After Checker Framework Inference generates a set of type constraint, instead of send-
ing constraints to a back end directly, we have an option to separate the constraints into
different groups. The separation option is designed for two reasons: first, for some special
type systems like Dataflow system, which will be introduced in later section in detail, this
separation analysis is necessary. Second, solving different groups of constraints separately
is good for performance, for example, the time complexity for SAT solver is exponen-
tial, so it’s good for performance if we can divide the input for SAT solver into different
independent groups and solve them separately.

We convert the constraints to a directed graph, and we simply call it Constraint Graph.
Each slot in constraints will be represented by a vertex in the graph, and each constraint
will be represented by one or more edges in the graph. The relationship among slots and
constraints can be represented by the relationship among these vertices and edges.

We use a graph representation for two reasons. First, in the original constraint repre-
sentation, there is no way to know the reachability among all of the slots. Type qualifier
for one slot could influence others if these slots are connected by some constraints, so we
want to know the reachable slots from the given slot. In graphs, one node is reachable

24

u1 u2

Figure 3.3: Constraint Graph for a Single Subtype Constraint u1 <: u2

from another, if there is a path between them. Second, we can perform lots of graph
related algorithms easily if we convert the constraints to a graph. Currently we have two
constraint separation strategies, which will be discussed later, and they are all based on
breadth-first search.

We use instances of Java class Edge and Vertex to construct the graph. Each edge
has the reference to the ”from” and ”to” vertexes and the corresponding constraint. Each
vertex has the reference to all edges that are incident to it and the corresponding slot.
A vertex is a constant vertex if it refers to a constant slot. For subtype constraint, the
direction of the edge is from subtype slot to supertype slot. Figure 3.3 shows the graph
for one subtype constraint: u1 <: u2. For adaptation constraint, there are three nodes
in total, so we connect them together by four edges. Figure 3.4 shows the graph for one
adaptation constraint: u1 . u2 = α3. For all other kinds of constraints, the constraint and
two slots can consist two nodes and two edges in both directions.

There are two separation strategies:

Strategy one: separating the constraint graph by constant. We start at each constant
vertex, run breadth-first search, and collect all the edges that can be found. This separation
strategy can give us the information that which constrains can be reached from each
constant slot.

Strategy two: finding all of the weakly connected components, and put the edges in
different components into different groups. ”Weakly connected” here means replacing all
of directed edges with undirected edges produces a connected (undirected) graph[3]. Every
slots and constraints in one component have no relation with the slots or constraints outside
of the component, so the solution for one component is independent to others.

Figure 3.5 shows a complete constraint graph. Label c and v stands for constant slot
and variable slot separately in the graph.

After constructing the graph, we traverse it and group the edges by different separation
strategies.

For strategy one, in Figure 3.5, there are two constant vertices c1 and c2. Starting from
c1, we can find v4, v5 and the edges among those vertices. Starting from c2, we can find v9,

25

u1

u2 α3

Figure 3.4: Constraint Graph for a Single Adaptation Constraint u1 . u2 = α3

v1

v2 v3

v4v5

c1 v7 v8

v9c2

v11 v12

Figure 3.5: An Example of Constraint Graph

v11, v12, and the edges incident to them. The algorithm for finding these paths is based on
breadth-first search, and it listed in Algorithm 1.

After running the algorithm, we map every constant vertex to a set of edge.

For strategy two, in Figure 3.5, there are three weakly connected components. And the
algorithm for finding these components is Algorithm 2

If there are total n constraints, m slots, and k constant slots. The time complexity
of Algorithm 1 is O

(
k × (m + n)

)
, and the time complexity of Algorithm 2 is O(m + n).

During the constraint graph construction, the system iterates all constraints and creates
corresponding edge and vertices for each constraint. Since the number of slots in each
constraint is no larger than 3, the time complexity of graph construction is O(n). So the
time complexity of whole constraint graph generator is O

(
k × (m+ n)

)
.

One thing need to be mentioned here is that, strategy one can only be used for Dataflow
type system at the moment, and after solving the sets of constraint separately, the way
that we merge the solutions together is special and contains Dataflow Type System specific
implementation, which will be discussed in Dataflow Chapter. However, for strategy two,
method for merging different solutions are straight forward: just simply combining different

26

Algorithm 1 Algorithm for separating the constraint graph by constant

let independentPath be a map between constant vertex and a constraint set.
for Every constant vertex v in constraint graph g do

let independentConstraints be an empty set
let Q be an empty queue
let visited be an empty set
Q.enqueue(v)
while Q is not empty do

current = Q.dequeue()
visited.add(current)
for each vertex u that is adjacent to current,
and edge e between u and current do

independentConstraints.add(e)
if u is not in visited then

Q.enqueue(u)
end if

end for
end while
independentPath.put(v, independentConstraints)

end for

27

solutions together. We can do this combination because different sets of constraint are
completely independent, so the solutions for different sets doesn’t affect each other.

Algorithm 2 Algorithm for finding weakly connected components

let visited be an empty set
let result be an empty list
for Every vertex v in constraint graph g do

if v is not in visited then
let independentPath be an empty set
let Q be an empty queue
Q.enqueue(v)
while Q is not empty do

current = Q.dequeue()
visited.add(current)
for each vertex u that is adjacent to current,
and edge e between u and current do

independentPath.add(e)
if u is not in visited then

Q.enqueue(u)
end if

end for
end while
result.add(independentPath)

end if
end for

For the components that don’t contain any constant slot, how we would annotate the
variable slots depends on the type system. For Dataflow type system, every slot in such
component should not be annotated any type qualifier, so we just ignore it. For some other
type systems, we can annotate slots with the default type qualifiers.

In summary, Algorithm 1 can only be used in the inference for Dataflow type system for
now, and it’s a necessary step for the inference. For Algorithm 2, it’s a general constraint
separation strategy, which can be used for systems without any special requirements, like
OsTrusted type system. However, for a new type system that is defined on Checker Frame-
work Inference, neither of Algorithm 1 nor Algorithm 2 may be suitable for it. In that
case, if constraint separation is mandatory, a new constraint separation approach needs to
be come up with.

28

Back End
Constraint
Serializer

Real
SerializerResults from

Real Serializer

Constraints

Results
(CNF/LogiQL)

Constraints

Figure 3.6: Relationship among Back End, ConstraintSerializer, and Real Serializer

3.1.3 Serializer

Serializer is the tool that encodes constraint into other forms for example, Max-SAT
problem or statements of LogiQL language. It can automatically transform constraints
into corresponding form of encodings, either statements of LogiQL language or Boolean
formulas, and external solvers are able to solve them. The two current encodings, Max-SAT
encoding and LogiQL encoding, calculate the encoding according to the type of constraints,
slot Ids in constraints, and qualifier hierarchy in the underlying type system. In Max-SAT
encoding, for each slot Id and type qualifier, we generate a unique integer value for that
Id and qualifier. In LogiQL encoding, we have an entity to store all slot Ids. For each
type qualifier, we used the qualifier’s as a part of the predicate’s name, and use declaring
derivation rules to connect and calculate values in different predicates.

The details of Max-SAT and LogiQL encoding will be discussed in Section 3.2.1 and
Section 3.3.1.

Encoding constraints is the core part of constraint solving. Constraints themselves
defines judgments over class, field, and method declarations as well as over expressions[18],
but it’s not very straightforwards to express the exact type qualifier for each location. So
we reduce the constraint system to other problems, and by solving those problems and
decoding the results, we can get the type qualifier for each location with satisfaction of
constraint.

As we mentioned in the beginning of this chapter, there is a deliverer between back end
and serializer, in the real implementation, we call it ConstraintSerializer. ConstraintSe-
rializer warps up the real serializer, and for each kind of constraint, instead of serializing
it, ConstraintSerializer delivers the constraint to the real serializer and returns what the
real serializer returns. The relationship among back end, ConstraintSerializer, and real
serializer is showed in Figure 3.6.

ConstraintSerializer is designed for the scalability of the whole system. For most types
of constraint, the logic for serializing them is fixed and already has been implemented in

29

real serializers because the logic doesn’t depend on the type system. However sometimes
it cannot handle all of the situations without any type system related implementation.
Adaptation constraint is special: the encoding for adaptation constraint depends on the
underlying type system. So if someone wants to develop a constraint solver for the type
system with viewpoint adaptation like Generic Universe Type System[18], he or she needs
to implement the Generic Universe Type System specific encoding, and incorporating with
the ConstraintSerializer would make the implementation easier. The developers only need
to make a subclass of ConstraintSerializer, and override the serialize method for adaptation
constraint with the type system specific logic. For other kinds of constraint, they will be
serialized as usual.

In Section 3.1.1, we mentioned that real serializer is reflectively created according to
the command line arguments provided by users. Once it receives the constraint from the
deliverer, serializer will serialize the constraint according to its kind.

3.1.4 Back End

Back end calls serializer converting constraints into other forms, once conversion is
finished, back end uses corresponding solver to solve those forms, decode solutions from
the solver, and return the decoded result to front end. Figure 3.7 shows the different phases
in back end.

Back end is meant to be fixed and non-extendable in terms of usage, which means
if people want to use the system, they don’t need to change any lines of code in back
end, and don’t need to make any subclass of back end because the system is designed
for dealing with constraints from arbitrary type systems. (Although we may change the
implementation of back ends in order to enhance it’s functionality in the future) As we
discussed in Section 3.1.3, when we deal with some complicated type systems like Generic
Universe Type System[18], we only need to extend ConstraintSerializer and put the type
system specific logic in there without touching anything in back end.

Currently the system supports two back ends: Max-SAT back end and LogiQL back
end. Constraints are encoded as CNF formulas and statements of LogiQL language in
Max-SAT back end and LogiQL back end respectively. The details of encoding will be
introduced in Section 3.2.1 and Section 3.3.1. For the solver, the middle part in Figure 3.7,
it might be a separate non-Java project. For LogiQL back end, the solver is LogicBlox
which is a logic database running with LogiQL language. And for Max-SAT back end,
the solver is existing SAT solvers. We use two SAT solvers: sat4j [15] and lingeling [5].

30

Serializer
External
Solver

Decoder
Constraints

Encoding
(CNF/LogiQL) Solutions

Map
(ID → Qualifier)

Figure 3.7: Phases in Back End

Section 3.3.2 and Section 3.2.2 discuss the solvers that we are using. The implementation of
decoder depends on the encoding, and it will be explained in Section 3.2.3 and Section 3.3.3.

Whether the solutions given by different back ends are identical to each other depends
on the underlying type system. For example, for OsTrusted type system discussed in
Section 2.1.2, if a variable slot is subtype of OsUnTrusted type, then the type qualifier for
that slot could be either OsUnTrusted or OsTrusted. In this case, as long as the solutions
from different back ends satisfy the type constraint, then the solutions may not be unique.
However, for Dataflow type system in Chapter 4, even if there could be multiple solutions,
since the possible run-time types of each location are set once the program had been
written, there should always be a unique best solution. See Chapter 4 for more details.

3.2 Max-SAT Back End

This section discusses all components in Max-SAT back end. Section 3.2.1 shows how
to encode all kinds of constraint as a SAT problem. Section 3.2.2 discusses the SAT solvers
that are used in the back end. Section 3.2.3 describes how to transform the output of SAT
solver to the type qualifier for each slot in the program.

3.2.1 Max-SAT Encoding

This section explains how to encode the constraints as Boolean formulas. This conver-
sion is done by Max-SAT serializer.

Max-SAT is the abbreviation of maximum satisfiability problem, which is the problem
of determining the maximum number of clauses, of a given Boolean formula in conjunctive
normal form, that can be made true by an assignment of truth values to the variables of
the formula.

31

The reasons that we encoded constraints to Max-SAT are: first, for each constraint
variable and one type qualifier, the qualifier could be either annotated for that variable or
not, and this is easily to be expressed as a Boolean value. Second, for some type systems,
like Generic Universe Type System, the weights are attached to some constraints, so in
that type system, each constraint variable, the type system uses the position of variable in
AST to encode a preference[18]. And SAT solver allows us to add weights to some clauses
that would make the encoding much easier.

For any type system, the Max-SAT encoding for Subtype Constraint, Equality Con-
straint, Inequality Constraint, Comparable Constraint, and Preference Constraint can be
generated automatically according to the type hierarchy, but for Adaptation Constraint,
the encoding for it can only be generated manually because the viewpoint adaptation rules
depend on the type rules of the underling type system. As we mentioned before, the
encoding for Adaptation Constraint is easy to be added. What the user need to do is over-
riding the serialize method for Adaptation Constraint in ConstraintSerializer, and adding
the right behaviors according to the typing rules. The following part explains automatic
encoding for other constraints.

The first step of the encoding is we map every slot id to some integer values, and
an integer value will be a Boolean literal in CNF formula. For every type qualifier in
the pluggable type system, we use a constant integer value to represent it. The constant
integer value starts from 0 to the number of type qualifier k in the underlying type system.
If we consider type system T , the hierarchy of T is shown in Figure 3.8, there are four
type qualifiers τ1, τ2, τ3, τ4, then we use 0 to represent τ1, 1 for τ2, 2 for τ3, and 3 for
τ4. The order for different qualifiers doesn’t matter, and the integer values are randomly
assigned. Algorithm 3 shows that how this mapping procedure works. With these constant
integer, the mapping rule is: we add the constant value to the number of type qualifier in
underlying type system times the difference of slot’s id minus 1, and the result represents
the annotated status of the slot with the corresponding type qualifier, and we use that
integer in Max-SAT formula. Algorithm 4 GETSATID shows how to perform the above
calculation. So if there are m type qualifiers in the type system, for any slot id n, the
integer values are from

(n− 1)×m

to

(n− 1)×m+ (m− 1)

They represent all the type qualifiers for that slot. Figure 3.9 shows the mapping table
for type system T .

32

Algorithm 3 Map from type qualifiers to integer values

Function: MAP QUAL INT(t̄)
Input: All type qualifiers in underling type system t.
Output: A map that maps from each type qualifier to an integer value.

1: Let integer i with initial value 0
2: Let map be an empty map
3: for each type qualifier t in t̄ do
4: Put (t, i) in map
5: i← i+ 1
6: end for
7: return map

Algorithm 4 Map from Slot Id and type qualifier to an integer Id in Max-SAT formula

Function: GETSATID(n, m, t)
Input: Slot Id n, number of type qualifiers in underlying type system m, type qualifier t.
Output: Integer Id in Max-SAT formula for n and t.

1: For type qualifier t, get it’s corresponding integer representation k from the map gen-
erated by Algorithm 3.

2: return (n− 1)×m+ k

33

τ1

τ2 τ3

τ4

Figure 3.8: Type Hierarchy of Type System T

XXXXXXXXXXXXslot id
qualifiers

τ1 τ2 τ3 τ4

1 0 1 2 3
2 4 5 6 7
3 8 9 10 11
...
n (n− 1)× 4 (n− 1)× 4 + 1 (n− 1)× 4 + 2 (n− 1)× 4 + 3

Figure 3.9: Mapping Table (from slot Id to integer values) for Type System T

The second step is going through all the type constraints, and generating the Boolean
formula encoding for each one. The approach for encoding different constraints are listed
below (The type qualifiers used in following content are all from type system T):

• Encoding for Equality Constraint

For given equality constraint, if the constraint is between a variable slot v and a
constant slot τ , v = τ , then it means the annotation of the variable slot v has to be
τ . We will first look at the mapping table, and calculate the corresponding mapping
integer of v and τ . We use βτv to represent the integer value. Then, we use a single
clause to encode equality constraint v = τ :

(βτv)

For example, in type system T , if the constraint is n = τ1, the encoded clause would

34

be:

GETSATID(n, 4, τ1)

If the equality constraint is between two variable slots v1 and v2, then we will use
logic

(¬v1 ∨ v2) ∧ (v1 ∨ ¬v2)

to express that v1 equals to v2. We need to go through each type qualifier τi one by
one in type system, and generate the clauses for each of them. The general form of
the clauses is

(¬βτiv1 ∨ β
τi
v2

) ∧ (βτiv1 ∨ ¬β
τi
v2

)

For example, If the Equality Constraint between n1 and n2 is generated based on
type system T in Figure 3.9, then the encoding would be:

(
¬GETSATID(n1, 4, τ1) ∨GETSATID(n2, 4, τ1)

)
∧
(
¬GETSATID(n2, 4, τ1) ∨GETSATID(n1, 4, τ1)

)
∧
(
¬GETSATID(n1, 4, τ2) ∨GETSATID(n2, 4, τ2)

)
∧
(
¬GETSATID(n2, 4, τ2) ∨GETSATID(n1, 4, τ2)

)
∧
(
¬GETSATID(n1, 4, τ3) ∨GETSATID(n2, 4, τ3)

)
∧
(
¬GETSATID(n2, 4, τ3) ∨GETSATID(n1, 4, τ3)

)
∧
(
¬GETSATID(n1, 4, τ4) ∨GETSATID(n2, 4, τ4)

)
∧
(
¬GETSATID(n2, 4, τ4) ∨GETSATID(n1, 4, τ4)

)

• Encoding for Inequality Constraint

For inequality constraint, if the constraint is between a variable v and constant τ ,
similar to equality constraint, we use a single integer as a clause, but we need to use
negated integer to express the type of v must not be τ :

(¬βτv)

35

In type system T , the encoding for inequality constraint n 6= τ1 is

¬GETSATID(n, 4, τ1)

If the inequality constraint is between two variable slots v1 and v2, we can use clauses

(¬v1 ∨ ¬v2) ∧ (v1 ∨ v2)

to express that v1 doesn’t equal to v2. Similar to equality constraint, we will need to
go through each of the type qualifier τi, and generate encoding for all of them in the
form:

(¬βτiv1 ∨ ¬β
τi
v2

) ∧ (βτiv1 ∨ β
τi
v2

)

For example, the encoding for an inequality constraint between n1 and n2 in type
system T would be:(

¬GETSATID(n1, 4, τ1) ∨ ¬GETSATID(n2, 4, τ1)
)

∧
(
GETSATID(n2, 4, τ1) ∨GETSATID(n1, 4, τ1)

)
∧
(
¬GETSATID(n1, 4, τ2) ∨ ¬GETSATID(n2, 4, τ2)

)
∧
(
GETSATID(n2, 4, τ2) ∨GETSATID(n1, 4, τ2)

)
∧
(
¬GETSATID(n1, 4, τ3) ∨ ¬GETSATID(n2, 4, τ3)

)
∧
(
GETSATID(n2, 4, τ3) ∨GETSATID(n1, 4, τ3)

)
∧
(
¬GETSATID(n1, 4, τ4) ∨ ¬GETSATID(n2, 4, τ4)

)
∧
(
GETSATID(n2, 4, τ4) ∨GETSATID(n1, 4, τ4)

)

• Encoding for Comparable Constraint

Encoding for comparable constraint is very similar to inequality constraint, but the
difference is if v1 is comparable to v2, then v2 doesn’t equal to the types that v1 is
incomparable with.

If we have comparable constraint (v <:> τ), a variable slot v between a constant τ ,
we will encode the constraint as:

(¬βκv)

36

In the underlying type system, κ and τ are incomparable to each other.

If the comparable constraint is between two variable slots v1 and v2, (v1 <:> v2), we
will use the logic

(¬v1 ∨ ¬v3) ∧ (v1 ∨ v3)

to express v1 is not equal to v3. In the underlying type system, v2 is incomparable
to v3.

We still need to go through each type qualifier τi in the underlying type system, find
the all incomparable type qualifier τj of τi, and use the following form as the encoded
clauses.

(¬βτiv1 ∨ ¬β
τj
v2

) ∧ (βτiv1 ∨ β
τj
v2

)

In type system T , τ1 is direct supertype of τ2 and τ3, τ4 is direct subtype of τ2 and τ3.
τ2 and τ3 are incomparable to each other, so if the constraint is between a variable n
and constant τ2, we treat it same as the inequality constraint between n and τ3:

¬GETSATID(n, 4, τ3)

If the constraint is between two variable slots n1 and n2, the encoding would be:(
¬GETSATID(n1, 4, τ2) ∨ ¬GETSATID(n2, 4, τ3)

)
∧
(
GETSATID(n2, 4, τ3) ∨GETSATID(n1, 4, τ2)

)
∧
(
¬GETSATID(n1, 4, τ3) ∨ ¬GETSATID(n2, 4, τ2)

)
∧
(
GETSATID(n2, 4, τ2) ∨GETSATID(n1, 4, τ3)

)
Above clauses indicate the facts that n1 annotated by τ2 and n2 annotated by τ3,
and n1 annotated by τ3 and n2 annotated by τ2 cannot be true.

• Encoding for Subtype Constraint

Encoding for subtype constraint is more complicated than others, there are following
situations:

– Case one (v <: τ):

If a variable v is subtype of a constant τ , v <: τ , then we first check whether
τ is the bottom type in the underlying type system, if it is, then v has to be

37

τ . And we can use the exact same logic in equality constraint to encode the
subtype constraint:

(βτv)

In type system T , τ4 is the bottom type, so the encoding of subtype constraint
(n <: τ4) would be:

GETSATID(n, 4, τ4)

If τ is not the bottom type, then v cannot be strict supertype of τ . Then for
each τ ’s strict supertype ρ, we generate a single clause

(¬βρv)

to express the subtype constraint.

For example, for subtype constraint n <: τ , if τ is τ2 in type T , the encoding
would be:

¬GETSATID(n, 4, τ1)

– Case two (τ <: v):

If a constant τ is subtype of a variable v, τ <: v, then we still need to check the
position of τ in hierarchy of the underlying type system. If it’s the top type,
then then v has to be τ . In this case, we will encode it as the following clause:

(βτv)

For example, if τ is τ1, the top type in T , the encoding is a single clause:

GETSATID(n, 4, τ1)

For other cases, v cannot be strict subtype of τ . So for each τ ’s strict subtype
σ, we generate a single clause

(¬βσv)

to express the subtype constraint.

For example, if τ is τ2 in type T , the encoding would be:

¬GETSATID(n, 4, τ4)

38

– Case three (v1 <: v2):

If a variable v1 is subtype of another variable v2, then we need to go through all
the type qualifiers in the underlying type system, enumerate all the possibilities,
and generate the clauses for each of them.

For each type qualifier τi, if it’s the type qualifier for v1, then v2 cannot be
annotated by any τi’s strict subtype τj. So for each type qualifier τi, and each
τi’s strict subtype τj, we generate following clauses for them:

(¬βτiv1 ∨ ¬β
τj
v2

) ∧ (βτiv1 ∨ β
τj
v2

)

For example, in type system T , for subtype constraint n1 <: n2 since n1 is
subtype of n2, if n1 is τ1, n2 cannot be τ2, τ3, or τ4; if n1 is τ2, n2 cannot be τ3
or τ4; if n1 is τ3, n2 cannot be τ2 or τ4; if n1 is τ4, n2 might be any qualifiers in
T . So the encoding for subtype constraint n1 <: n2 would be:(

¬GETSATID(n1, 4, τ1) ∨ ¬GETSATID(n2, 4, τ2)
)

∧
(
GETSATID(n2, 4, τ2) ∨GETSATID(n1, 4, τ1)

)
∧
(
¬GETSATID(n1, 4, τ1) ∨ ¬GETSATID(n2, 4, τ3)

)
∧
(
GETSATID(n2, 4, τ3) ∨GETSATID(n1, 4, τ1)

)
∧
(
¬GETSATID(n1, 4, τ1) ∨ ¬GETSATID(n2, 4, τ4)

)
∧
(
GETSATID(n2, 4, τ4) ∨

(
GETSATID(n1, 4, τ1)

)
∧
(
¬GETSATID(n1, 4, τ2) ∨ ¬GETSATID(n2, 4, τ3)

)
∧
(
GETSATID(n2, 4, τ3) ∨GETSATID(n1, 4, τ2)

)
∧
(
¬GETSATID(n1, 4, τ2) ∨ ¬GETSATID(n2, 4, τ4)

)
∧
(
GETSATID(n2, 4, τ4) ∨GETSATID(n1, 4, τ2)

)
∧
(
¬GETSATID(n1, 4, τ3)

)
∨
(
¬GETSATID(n2, 4, τ2)

)
∧
(
GETSATID(n2, 4, τ3) ∨GETSATID(n1, 4, τ2)

)
∧
(
¬GETSATID(n1, 4, τ3) ∨ ¬GETSATID(n2, 4, τ4)

)
∧
(
GETSATID(n2, 4, τ4) ∨GETSATID(n1, 4, τ3)

)
• Encoding for Preference Constraint

Preference constraint is always between a variable and a constant, so we simply treat
it as an equality constraint, and add the weight when we put the clause to SAT
solver. The preference constraint is a soft constraint, so the SAT solver will try to

39

satisfy the clauses for preference constraint, if there is no satisfiable solution for all
of the clauses, clauses for preference constraint is not required to be satisfied, and all
other clauses have to be satisfied.

• One-hot Encoding

For each slot, we have to make sure that exactly one of the type qualifiers can be
annotated to the slot. The serializer also generates one-hot encodings to ensure the
condition.

For example, for slot Id n and type system T , Max-SAT solver generates following
one-hot encodings. (

GETSATID(n, 4, τ1) ∨GETSATID(n, 4, τ2)

∨GETSATID(n, 4, τ3) ∨GETSATID(n, 4, τ4)
)

∧¬
(
GETSATID(n, 4, τ1) ∨GETSATID(n, 4, τ2)

)
∧¬

(
GETSATID(n, 4, τ1) ∨GETSATID(n, 4, τ3)

)
∧¬

(
GETSATID(n, 4, τ1) ∨GETSATID(n, 4, τ4)

)
∧¬

(
GETSATID(n, 4, τ2) ∨GETSATID(n, 4, τ3)

)
∧¬

(
GETSATID(n, 4, τ2) ∨GETSATID(n, 4, τ4)

)
∧¬

(
GETSATID(n, 4, τ3) ∨GETSATID(n, 4, τ4)

)

In Max-SAT serializer, all of the constraints are serialized to CNF formulas according to
above rules.

Once all of the clauses are generated, they will be put into a SAT solver, and the SAT
solver returns a truth assignment for each Boolean variable in the clauses.

3.2.2 Max-SAT Solver

Max-SAT Solver is the solver that can solve Max-SAT problem. The input for SAT
Solver is a Boolean formula, and the output is a truth assignment that can make the
maximum number of clauses be true. Once the formula is generated, we can use existing
solvers to solve it. The solvers sat4j [15] and lingeling [5] are usually used in the Max-SAT
back end.

40

Normally, the integer value ”0” in SAT solver means the end of clause, and we cannot
use ”0” as the input value. So before putting the clauses into SAT solver, all of the
numbers in clauses are incremented by 1. And when we decode the result from SAT solver,
we decrement all the numbers by 1.

sat4j is chosen because it’s written in Java, such that we can use its API in the code
of back end directly, and it’s very convenient to run multiple solvers in different threads at
same time. As we mentioned in Section 3.1.1 and Section 3.1.2, sometimes we separate the
constraints in to different groups, and it’s very important to performance if we can solve
those groups of constraint in parallel.

lingeling is written in C, so if we need to run multiple lingeling back ends in parallel,
we will need to create a process for each lingeling instance.

For performance, for relatively large input, lingeling is faster than sat4j, however for
smaller target program, we prefer sat4j, since it can run in the same JVM as the whole
system.

The output of SAT solver is a list of signed integer. The positive and negative integers
indicate the value should be assigned to true and false respectively. Then the result is sent
to the decoder, and the decoder will figure out what does these signed integer represent.

3.2.3 Max-SAT Decoding

Decoder looks through all of signed integers from SAT solver. For the negative numbers,
we just skip them because negative integer indicates the corresponding slot id cannot be
annotated by some qualifiers, in which we are not interested, and for the positive numbers,
following steps are performed:

First, as we mentioned in Section 3.2.2, all of the numbers in CNF formula are incre-
mented by 1, so the first step is decrementing the numbers by 1.

Second step is dividing the positive number by the number of type qualifiers in type
system. For type system T in Figure 3.8, the divisor is 4. The result of division are a
quotient q and a remainder r. q + 1 is the corresponding slot id n, and r corresponds to
one type qualifier τ , which can be found in the mapping table (Figure 3.9). Then we know
that the slot n should be annotated by the qualifier τ .

After iterating all of the signed integers, we can map every slot id to a type qualifier,
which should be the final inference result and returned to front end.

41

3.3 LogiQL Back End

This section explains LogiQL back end in detail. In Section 3.1.1 and 3.1.4 we men-
tioned that the infrastructure of Type Constraint Solver has extendability that can be
extended by other back ends. LogiQL back end described in this section will show how
we implement another back end in the Type Constraint Solver. LogiQL encoding is an
attempt to encode type constraint in LogiQL language. The LogiQL encoding is inspired
by Max-SAT encoding. For each constraint we enumerate all the possible situations for
type variables in underlying type system, and let LogicBlox calculate the corresponding
type qualifier.

Section 3.3.1 shows how to encode all kinds of constraint as statements of LogiQL
language. Section 3.3.2 discusses how the back end interacts with LogicBlox database.
Section 3.3.3 describes how to transform the output from LogicBlox to the type qualifier
for each slot.

3.3.1 LogiQL Encoding

This section discusses how to encode constraints as LogiQL language. This transfor-
mation is done by LogiQL serializer.

LogiQL is a declarative logic programming language developed by LogicBlox, Inc. to
harness the power of first-order logic to support access to databases. It has been influenced
by two other logic languages, Prolog and Datalog[23].

We encode constraints as LogiQL for two reasons. First, the concept of slots can be
easily represented by the entity type in LogiQL. In LogiQL, an entity is a concrete object
or abstract concept, which can be described with one or more values[23]. In Checker
Framework Inference system, every slot corresponds to a unique integer ID, which could
be used as the key for the slot entity. The declaration of slot entity in LogiQL would be:

Variable(v), hasVariableName(v:i) -> int(i).

Then we can apply delta modifier ”+” to insert variables in the entity:

+Variable(v), +hasVariableName[v] = 20.

Note that we use the name ”Variable” here as the entity’s name because this entity only
stores variable slot, and we use another entity ”Constant” to store constant slot :

42

Constant(c), hasConstantName(c:s) -> string(s).

The usage of these two entities will be explained later.

Second, the constraint system, which represents the relationship between slots can be
expressed by functional predicates and declaring derivation rules in LogiQL. In LogiQL,
functional predicates can express the association between different entities. For example:

equalityConstraint(v1, v2) -> Variable(v1), Variable(v2).

The above functional predicates means there is an equality constraint between variable slot
v1 and v2. Similar to the variable entity, we can also use delta modifier to insert a new
equality constraint in the predicate:

+equalityConstraint(v1, v2),

+Variable(v1), +hasVariableName[v1] = 15,

+Variable(v2), +hasVariableName[v2] = 20.

In LogiQL, some facts are simply asserted to be true, while other facts are computed
by applying a declaring derivation rule to facts are already known. And in our LogiQL
encoding, we use different declaring derivation rules to compute the type modifier for each
slot. For example, if we still consider about the type hierarchy of type T in Figure 3.8, we
will have one following declaring derivation rule:

isT1[v2] = true <- equalityConstraint(v1 , v2), isT1[v1] = true.

which means if there is a an equality constraint between v1 and v2, and the type qualifier
of v1 is τ1, then the type qualifier of v2 is also τ1. The declaration of functional predicates
”isT1” is:

isT1[v] = i -> Variable(v), boolean(i).

For each type qualifier in type system, we have above predicate for it, and the boolean
value indicates whether that variable slot should be annotated by the corresponding type
type qualifier. All of these entities, predicates and derivation rules will be explained later
in detail.

The logic of current logiQL encoding is very similar to the logic of Max-SAT encoding,
and Boolean clauses are expressed by LogiQL predicates and derivation rules. Current

43

LogiQL encoding uses LogicBlox in a low level, and doesn’t harness the full power of
LogicBlox. In Chapter 5 we will show the performance of LogiQL back end. Compare to
Max-SAT back end, it takes much more time than Max-SAT back end. In the future, we
would like to explore more power of LogiQL language so that for very large programs, the
performance of LogiQL encoding can be more competitive.

Similar to the Max-SAT encoding, the LogiQL encoding for Subtype Constraint, Equal-
ity Constraint, Inequality Constraint, Comparable Constraint, and Preference Constraint
can be generated automatically according to the type hierarchy, but for Adaptation Con-
straint, the encoding has to be made by overriding the serialize method for Adaptation
Constraint in ConstraintSerializer manually.

The rest of this section explains the LogiQL encoding in detail, and we will use the
type hierarchy of type T in Figure 3.8 as an example.

• Basic Encoding

Basic encoding contains the basic entity types, functional predicates and declaring
derivation rules, which are not related to constraints. As we mentioned before, we
used two entities to store all of the variables and constants:

Variable(v), hasVariableName(v:i) -> int(i).

Constant(c), hasConstantName(c:s) -> string(s).

All of the constants will be added into Constant entity by delta modifier ”+” at the
very beginning (”t” could represent any constant):

+Constant(c), +hasConstantName[c] = "t".

In type system T , there are four constants: τ1, τ2, τ3, and τ4, so we have four following
delta predicate:

+Constant(c), +hasConstantName[c] = "t1".

+Constant(c), +hasConstantName[c] = "t2".

+Constant(c), +hasConstantName[c] = "t3".

+Constant(c), +hasConstantName[c] = "t4".

Normally variables are added to the entity together with constraint.

We will need the following functional predicate, which indicates the annotation(type
modifier) for each variable, and the final calculated result will be store in this predi-
cate.

annotationOf[v] = s -> Variable(v), string(s).

44

For each type qualifier, we have one functional predicate that indicates whether a
variable should be annotated by the corresponding type modifier. All the predicates
are in form:

isT[v] = b -> Variable(v), boolean(b).

In type system T , there are four functional predicates for all the type qualifiers:

isT1[v] = b -> Variable(v), boolean(b).

isT2[v] = b -> Variable(v), boolean(b).

isT3[v] = b -> Variable(v), boolean(b).

isT4[v] = b -> Variable(v), boolean(b).

For the boolean value for a variable in ”isT[v]” predicate, if the value is true, then
the annotation for that variable should be ”T”. We use following declaring derivation
rule to ensure the above condition:

annotationOf[v] = "t" <- isT[v] = true.

For type system T , the rules are written below.

annotationOf[v] = "t1" <- isT1[v] = true.

annotationOf[v] = "t2" <- isT2[v] = true.

annotationOf[v] = "t3" <- isT3[v] = true.

annotationOf[v] = "t4" <- isT4[v] = true.

The first rule can be read as ”in isT1 predicate, if v corresponds to a boolean value
true, then in annotationOf predicate, v will correspond to string ”t1””, and same for
other predicates. The annotationOf predicate is designed for making the decoding
process easier. Instead of going through all the truth values in predicates ”isT[v]”,
the ”annotationOf” predicate collects all the result from those ”isT[v]” predicates.

Besides above predicates, we need to make sure that only one of type qualifiers can
be annotated to each slot. In logiQL encoding, we use following declaring derivation
rules to ensure that condition:

isT2[v] = false <- isT1[v] = true.

isT3[v] = false <- isT1[v] = true.

isT4[v] = false <- isT1[v] = true.

isT1[v] = false <- isT2[v] = true.

isT3[v] = false <- isT2[v] = true.

isT4[v] = false <- isT2[v] = true.

isT1[v] = false <- isT3[v] = true.

isT2[v] = false <- isT3[v] = true.

isT4[v] = false <- isT3[v] = true.

isT1[v] = false <- isT4[v] = true.

45

isT2[v] = false <- isT4[v] = true.

isT3[v] = false <- isT4[v] = true.

That’s all for basic encoding, these predicates and entities provide basic knowledge
of constraints and type modifiers, and will be used in the encoding kinds of.

• Encoding for Equality Constraint

The two basic predicates for equality constraint are:

equalityConstraint(v1,v2) ->

Variable(v1), Variable(v2).

equalityConstraintContainsConstant(c,v) ->

Constant(c), Variable(v).

The first predicate expresses that there is an equality constraint between variable v1
and variable v2. The second predicate express the equality constraint is between a
constant and a variable.

For each type qualifier in the type system, we use two rules for equality constraint
related calculation:

isT[v2] = true <-

equalityConstraint(v1, v2), isT[v1] = true.

isT[v1] = true <-

equalityConstraint(v1, v2), isT[v2] = true.

isT[v2] = false <-

equalityConstraint(v1, v2), isT[v1] = false.

isT[v1] = false <-

equalityConstraint(v1, v2), isT[v2] = false.

isT[v] = true <-

equalityConstraintContainsConstant(c, v),

hasConstantName(c:"t").

The first rule can be read as ”if there is an equality constraint between v1 and v2,
and the type qualifier for v1 is τ , then the type qualifier for v2 is τ”. The second rule
can be read as ”if there is an equality constraint between constant τ and variable v,
then the type qualifier for v is τ”. So for equality constraint, the number of rules is
twice as much as the number of type qualifiers.

For type system T , we generate following rules for equality constraint:

isT1[v2] = true <-

equalityConstraint(v1, v2), isT1[v1] = true.

isT1[v1] = true <-

equalityConstraint(v1, v2), isT1[v2] = true.

46

isT1[v2] = false <-

equalityConstraint(v1, v2), isT1[v1] = false.

isT1[v1] = false <-

equalityConstraint(v1, v2), isT1[v2] = false.

isT1[v] = true <-

equalityConstraintContainsConstant(c, v),

hasConstantName(c:"t1").

isT2[v2] = true <-

equalityConstraint(v1, v2), isT2[v1] = true.

isT2[v1] = true <-

equalityConstraint(v1, v2), isT2[v2] = true.

isT2[v2] = false <-

equalityConstraint(v1, v2), isT2[v1] = false.

isT2[v1] = false <-

equalityConstraint(v1, v2), isT2[v2] = false.

isT2[v] = true <-

equalityConstraintContainsConstant(c, v),

hasConstantName(c:"t2").

isT3[v2] = true <-

equalityConstraint(v1, v2), isT3[v1] = true.

isT3[v1] = true <-

equalityConstraint(v1, v2), isT3[v2] = true.

isT3[v2] = false <-

equalityConstraint(v1, v2), isT3[v1] = false.

isT3[v1] = false <-

equalityConstraint(v1, v2), isT3[v2] = false.

isT3[v] = true <-

equalityConstraintContainsConstant(c, v),

hasConstantName(c:"t3").

isT4[v2] = true <-

equalityConstraint(v1, v2), isT4[v1] = true.

isT4[v1] = true <-

equalityConstraint(v1, v2), isT4[v2] = true.

isT4[v2] = false <-

equalityConstraint(v1, v2), isT4[v1] = false.

isT4[v1] = false <-

equalityConstraint(v1, v2), isT4[v2] = false.

isT4[v] = true <-

equalityConstraintContainsConstant(c, v),

hasConstantName(c:"t4").

The meaning of rules are same as the first two rules except for applying on dif-
ferent constant. These rules and predicates interpret equality constraint in a very
straightforward way. For example, if we have two following equality constraints (The
numbers in parenthesis are slot ids):

47

v1(1) = v2(2)

v2(2) = τ1

Then we will add following facts to the entities:

+equalityConstraint(v1, v2),

+Variable(v1), +hasVariableName[v1] = 1,

+Variable(v2), +hasVariableName[v2] = 2.

+equalityConstraintContainsConstant(c, v),

+Constant(c), +hasConstantName[c] = "t1",

+Variable(v), +hasVariableName[v] = 2.

The calculation starts from the fact:

+equalityConstraintContainsConstant(c, v),

+Constant(c), +hasConstantName[c] = "t1",

+Variable(v), +hasVariableName[v] = 2.

Then according to the rule:

isT1[v] = true <-

equalityConstraintContainsConstant(c, v),

hasConstantName(c:"t1").

we can get:

isT1 [1] = true

The annotation for v2 will be calculated in similar way, and after the calculation, we
will get the expected result:

isT1 [1] = true

isT1 [2] = true

• Encoding for Inequality Constraint

Similar to the encoding for equality constraint, we have following two basic predicates
for inequality constraint:

inequalityConstraint(v1 ,v2) ->

Variable(v1), Variable(v2).

inequalityConstraintContainsConstant(c,v) ->

Constant(c), variable(v).

48

They express the inequality constraint between variable and variable, and constant
and variable respectively.

In general, we have two following rules for each type qualifier:

isT[v2] = false <-

inequalityConstraint(v1 , v2), isT[v1] = true.

isT[v1] = false <-

inequalityConstraint(v1 , v2), isT[v2] = true.

isT[v] = false <-

inequalityConstraintContainsConstant(c, v),

hasConstantName(c:"t").

Still similar to equality constraint, the first rule can be read as ”if there is an in-
equality constraint between v1 and v2, and the type qualifier for v1 is τ , then the type
qualifier for v2 is not τ”. The second rule can be read as ”if there is an inequality
constraint between constant τ and variable v, then the type qualifier for v is not τ”.
The number of rules is also twice as much as the number of type qualifier.

We have following declaring derivation rules for type system T :

isT1[v2] = false <-

inequalityConstraint(v1 , v2), isT1[v1] = true.

isT1[v1] = false <-

inequalityConstraint(v1 , v2), isT1[v2] = true.

isT1[v] = false <-

inequalityConstraintContainsConstant(c, v),

hasConstantName(c:"t1").

isT2[v2] = false <-

inequalityConstraint(v1 , v2), isT2[v1] = true.

isT2[v1] = false <-

inequalityConstraint(v1 , v2), isT2[v2] = true.

isT2[v] = false <-

inequalityConstraintContainsConstant(c, v),

hasConstantName(c:"t2").

isT3[v2] = false <-

inequalityConstraint(v1 , v2), isT3[v1] = true.

isT3[v1] = false <-

inequalityConstraint(v1 , v2), isT3[v2] = true.

isT3[v] = false <-

inequalityConstraintContainsConstant(c, v),

hasConstantName(c:"t3").

isT4[v2] = false <-

inequalityConstraint(v1 , v2), isT4[v1] = true.

isT4[v1] = false <-

inequalityConstraint(v1 , v2), isT4[v2] = true.

49

isT4[v] = false <-

inequalityConstraintContainsConstant(c, v),

hasConstantName(c:"t4").

So for inequality constraints

v1(1) 6= τ1

following facts will be added to entities:

+inequalityConstraintContainsConstant(c, v),

+Constant(c), +hasConstantName[c] = "t1",

+Variable(v), +hasVariableName[v] = 1.

After the calculation, we can get the result:

isT1 [1] = false

• Encoding for Comparable Constraint

For comparable constraint, we have these two entities as well:

comparableConstraint(v1 , v2) ->

Variable(v1), Variable(v2).

comparableConstraintContainsConstant(c, v) ->

Constant(c), Variable(v).

The declaring derivation rules for comparable constraint depends on the type system,
so for the type system that every type qualifier is comparable to each other, for
example, remove one of τ2 and τ3 in T , then every comparable constraint should be
satisfied, and we don’t need to generate any declaring derivation rules for that case.
However if there are incomparable types in the type system like T , then we will have
following rules (τx and τy are incomparable):

isTX[v2] = false <-

comparableConstraint(v1 , v2), isTY[v1] = true.

isTX[v1] = false <-

comparableConstraint(v1 , v2), isTY[v2] = true.

isTX[v] = false <-

comparableConstraintContainsConstant(c, v),

hasConstantName(c:"ty").

The meaning of these rules are straightforward: if there is a comparable constraint
between two variables or a variable and a constant, then τx and τy cannot be both
annotated. For a type system, if there are n pairs of incomparable type qualifiers,
then the number of rules is twice of that number.

For type system T the following rules are generated:

50

isT3[v2] = false <-

comparableConstraint(v1 , v2), isT2[v1] = true.

isT3[v1] = false <-

comparableConstraint(v1 , v2), isT2[v2] = true.

isT3[v] = false <-

comparableConstraintContainsConstant(c, v),

hasConstantName(c:"t2").

isT2[v2] = false <-

comparableConstraint(v1 , v2), isT3[v1] = true.

isT2[v1] = false <-

comparableConstraint(v1 , v2), isT3[v2] = true.

isT2[v] = false <-

comparableConstraintContainsConstant(c, v),

hasConstantName(c:"t3").

For comparable constraints

v1(1) <:> τ2

we add following facts to entities:

+comparableConstraintContainsConstant(c, v),

+Constant(c), +hasConstantName[c] = "t2",

+Variable(v), +hasVariableName[v] = 1.

And according to the facts and rules, we can get the fact

isT3 [1] = false

• Encoding for Subtype Constraint

The encoding for subtype constraint is more complicated than others because the
positions of two slots in subtype constraint are unchangeable. For example v1 <: τ1 is
not equivalent to τ1 <: v1, so we need one more entity to store the subtype constraint
between variable and constant. The entities for subtype constraint are:

subtypeConstraint(v1, v2) ->

Variable(v1), Variable(v2).

subtypeConstraintLeftConstant(c, v) ->

Constant(c), Variable(v).

subtypeConstraintRightConstant(v, c) ->

Variable(v), Constant(c).

We will use subtypeConstraintLeftConstant entity to store the subtype constraint
where the subtype type is constant, and use subtypeConstraintRightConstant if the
constant is supertype.

51

In subtype constraint, there are two special cases. One is the supertype is the bottom
type in type hierarchy, and another is the subtype is the top type in type hierarchy.
For the former case, the subtype has to be the bottom type, and for the latter case,
the super type has to be the top type. In logiQL encoding, we use following rules to
handle the two cases (τtop and τbottom are top and bottom qualifier separately).

isTTOP[v2] = true <-

subtypeConstraint(v1, v2), isTTop[v1] = true.

isTTOP[v] = true <-

subtypeConstraintLeftConstant(c, v),

hasconstantName(c:"ttop").

isTBOTTOM[v1] = true <-

subtypeConstraint(v1, v2), isTBOTTOM[v2] = true.

isTBOTTOM[v] = true <-

subtypeConstraintRightConstant(v, c),

hasconstantName(c:" tbottom ").

For type system T , τ1 and τ4 are top and bottom qualifier:

isT1[v2] = true <-

subtypeConstraint(v1, v2), isT1[v1] = true.

isT1[v] = true <-

subtypeConstraintLeftConstant(c, v),

hasconstantName(c:"t1").

isT4[v1] = true <-

subtypeConstraint(v1, v2), isT4[v2] = true.

isT4[v] = true <-

subtypeConstraintRightConstant(v, c),

hasconstantName(c:"t4").

For example, for the subtype constraint

τ1 <: v1(1)

We will add fact

+subtypeConstraintLeftConstant(c, v),

+Constant(c), +hasConstantName[c] = "t1",

+Variable(v), +hasVariableName[v] = 1.

to entities. And according to rule

isT1[v] = true <-

subtypeConstraintLeftConstant(c, v),

hasconstantName(c:"t1").

we can get

52

isT1 [1] = true

For other cases, we use the similar logic in Max-SAT encoding to convert subtype
constraint to LogiQL. For a subtype constraint (n1 and n2 could be either constant
or variable)

n1(1) <: n2(2)

we go through all the type qualifiers in type system and generate the rules for each
of them. Since n1 is the subtype of n2, which means they are comparable, so if τx
and τy are incomparable, we will have:

isTX[v2] = false <-

subtypeConstraint(v1, v2), isTY[v1] = true.

isTX[v] = false <-

subtypeConstraintLeftConstant(c, v),

hasConstantName(c:"ty").

isTX[v] = false <-

subtypeConstraintRightConstant(v, c),

hasConstantName(c:"ty").

And we have to make sure n2 cannot be the subtype of n1(τp represents any qualifier
and τq represents any subtype of each τp):

isTQ[v2] = false <-

subtypeConstraint(v1, v2), isTP[v1] = true.

isTQ[v] = false <-

subtypeConstraintLeftConstant(c, v),

hasconstantName(c:"tp").

isTP[v] = false <-

subtypeConstraintRightConstant(v, c),

hasconstantName(c:"tq").

We use following rules to handle all of these situations for type system T .

isT4[v2] = false <-

subtypeConstraint(v1, v2), isT2[v1] = true.

isT4[v] = false <-

subtypeConstraintLeftConstant(c, v),

hasconstantName(c:"t2").

isT4[v2] = false <-

subtypeConstraint(v1, v2), isT3[v1] = true.

isT4[v] = false <-

subtypeConstraintLeftConstant(c, v),

hasconstantName(c:"t3").

53

isT3[v2] = false <-

subtypeConstraint(v1, v2), isT2[v1] = true.

isT3[v] = false <-

subtypeConstraintLeftConstant(c, v),

hasconstantName(c:"t2").

isT2[v2] = false <-

subtypeConstraint(v1, v2), isT3[v1] = true.

isT2[v] = false <-

subtypeConstraintLeftConstant(c, v),

hasconstantName(c:"t3").

isT3[v1] = false <-

subtypeConstraint(v1, v2), isT2[v2] = true.

isT3[v] = false <-

subtypeConstraintRightConstant(v, c),

hasconstantName(c:"t2").

isT1[v1] = false <-

subtypeConstraint(v1, v2), isT2[v2] = true.

isT1[v] = false <-

subtypeConstraintRightConstant(v, c),

hasconstantName(c:"t2").

isT2[v1] = false <-

subtypeConstraint(v1, v2), isT3[v2] = true.

isT2[v] = false <-

subtypeConstraintRightConstant(v, c),

hasconstantName(c:"t3").

isT1[v1] = false <-

subtypeConstraint(v1, v2), isT3[v2] = true.

isT1[v] = false <-

subtypeConstraintRightConstant(v, c),

hasconstantName(c:"t3").

• Encoding for Preference Constraint

At the moment, we don’t have an effective way to encode preference constraint,
but we have an option to treat preference as equality constraint. In that case, for
preference constraint

v1 ∼= c1

c1 will be the type qualifier for v1. Finding a effective LogiQL encoding for preference
constraint is a future work to enhance the functionality of LogiQL back end.

All of entities, functional predicates, and declaring derivation rules are generated ac-
cording to the type hierarchy of the type system. And all of the facts that applying ”+”

54

delta modifier are generated according to constraints. Once entities, predicates, rules, and
facts are generated, logiQL back end puts them into LogicBlox in a separate process.

3.3.2 LogiQL Solver

In LogiQL back end, the solver is LogicBlox, which calculates the results for different
predicates according to facts in entities and rules. The back end calls LogicBlox by creating
a new process. LogicBlox is invoked by command ”lb”, and normally following commands
are executed:

1 lb create myworkspace

2 lb addblock myworkspace -f tables.logic

3 lb exec myworkspace -f facts.logic

4 lb print myworkspace annotationOf

5 lb delete myworkspace

First and fifth commands creates and deletes the workspace respectively. Second command
adds all necessary entities, predicates, rules in LogicBlox, and third one put all facts in
logicBlox. Forth command prints the results in annotationOf. Then the back end reads
the output, and send it to the decoder. File ”tables.logic” and ”facts.logic” are the logiQL
encoding generated from logiQL serializer.

3.3.3 LogiQL Decoding

As we mentioned in Section 3.3.2, we use the data in predicates annotationOf as result.

The output from ”print” command of LogicBlox is in form:

3 ”t1”

5 ”t3”

which means the calculated type qualifier for slot 3 is τ1, and the qualifier for slot 5 is τ3.
The decoder reads this output line by line, the number before the middle space is slot id,
and the string after the space is the name of type qualifier.

After reading all of the output, we can construct a map between each slot id and a type
qualifier, then send the map back to front end.

55

Chapter 4

Dataflow Type System

This chapter discusses an inferable type system called Dataflow. Dataflow type system
and its inference is used for data-flow analysis. We use Dataflow as an example type
system to validate the correctnesses of our type inference tool. Note that the data-flow
analysis that the type system performs only focuses on the type of each allocation rather
than the data values or the sites of allocations. Section 4.1 provides a basic overview of
Dataflow type system. Section 4.2 discusses the simplification process for Dataflow type
qualifier, which is a key process for type inference. Section 4.3 explains the type hierarchy
of Dataflow type system. Section 4.4 explains the type inference approach for Dataflow,
and how to integrate the approach into the back end structure.

4.1 Introduction on Dataflow

In Java, the type of fields, methods, parameters, and local variables in run time some-
times is not exact same as the declared type because of the polymorphism concept. For
example:

1 Object foo(boolean bool) {

2 if(bool) {

3 return "str";

4 }

5 return new Date();

6 }

56

The declared return type of method foo is ”Object”, but at run time, the real return
type would be either ”String” or ”Date”. In static analysis, sometimes we are interested
in comparing the similarity between two pieces of code. One of similarity aspects is the
type of input and output, and for methods, they are the type of parameters and return
type respectively. However, the declared return type in method head, like ”Object” in foo,
cannot provide enough information to us. Knowing more details of those types would be
helpful for static analysis. We introduce Dataflow type system that can help us to know
run-time types of fields, methods, parameters, and local variables in detail.

We use a single Java annotation @Dataflow with two arguments typeNames and type-
NameRoots to represent all of the Dataflow type qualifiers. Value in argument type-
Names and typeNameRoots is a sequence of fully qualified Java type names. For example,
”java.lang.String, java.lang.Integer”.

• typeNames

Values in typeNames indicate that all possible Java run-time types that may be
returned by the annotated method, or be assigned to the annotated variable, param-
eters, and fields.

• typeNameRoots

Values in typeNameRoots indicate all possible upper bounds of run-time types of
method return types rather than exact Java types. The value of typeNameRoots will
be set if a method from byte code is called.

Both arguments typeNames or typeNameRoots could be empty, in that case, the Dataflow
qualifier indicates that we don’t have any knowledge about the type. A Dataflow type will
be generated with typeNames value for the expressions that create new types, like Class
Instance Creation Expression , Array Creation Expression and Literals. For example:

1 int x = 0;

2 new Object ();

3 new int [1];

The qualifier for right hand side of first statement would be @DataFlow(typeNames=”int”),
and the qualifier for the second and third statement would be
@DataFlow(typeNames=”java.lang.Object”) and @DataFlow(typeNames=”int[]”).

If a method from byte code is invoked, then the Dataflow type with typeNameRoots
value will be generated for that MethodInvocation expression. For example:

57

1 (new StringBuilder("a")).toString ();

For the above statement, the Dataflow type for it would be
@DataFlow(typeNameRoots=”java.lang.String”). We need typeNameRoots values
because we cannot see the method body if the method is pre-compiled, and the declared
type in method head is the only knowledge about the method’s return type. However, in
run time there still may be multiple possibilities for the return type. So the word ”root”
indicates that the type is the upper bound of real return types.

For now, the only use of TypeNameRoots is in method invocation from Java byte code,
however, this arguments can also be used when we read a field from Java bytecode. But in
current implementation, the system won’t annotate the case that accesses to fields declared
in bytecode.

A Dataflow type qualifier is supposed to contain all possible run-time types for the
annotated location, however, the current inference approach for Dataflow type system is
limited for some situations, for example, if a method from bytecode accesses a field, the
inferred result would be very conservative. This will be explained in Section 4.4 in detail.

4.2 Type Simplification

In @Dataflow qualifier, values in typeNames represents a precise Java type, and the
typeNameRoots represents the upper bound of Java types. Therefore, some dataflow types
can be simplified according to the relationship among the Java types included in typeNames
and typeNameRoots.

The basic idea of simplification is we don’t want any overlaps among the values in
typeNameRoots and typeNames. If there are some overlaps, the most general one will be
kept.

For example, for a Dataflow type, if the values of typeNameRoots are ”java.lang.String”,
”java.lang.Number”, and ”java.lang.Short” the values of typeNames are ”java.lang.Byte”
and ”java.lang.Object”, then since Byte and Short are both subtype of Number, and
they can be upper bounded by Number, so after the simplification, the typeNameRoots
result would be ”java.lang.String” and ”java.lang.Number”, typeNames result would be
”java.lang.Object”.

The algorithm for simplification dataflow type is listed in Algorithm 5. The ”compa-
rable” in Algorithm 5 means for the two compared types, one could be a subtype of the

58

other. After simplification, the new qualifier is equivalent to the original one. All values
in typeNameRoots and typeNames are alphabetically sorted.

Algorithm 5 Algorithm for type simplification

let typeNamesList contains all values in typeNames
let typeNameRootsList constains all values in typeNameRoots
let typeNamesResult and typeNameRootsResult be empty sets
while typeNameRootsList is not empty do

compare the first element ele0 with all following elements eles
if ele0 is comparable with one of eles then

remove the subtype from typeNameRootsList
else

remove ele0 from typeNameRootsList
add ele0 to typeNameRootsResult

end if
end while
for every element ele in typeNamesList do

if ele is subtype of one of element in typeNameRootsResult then
continue

else
add ele to typeNamesResult

end if
end for
return typeNamesResult, typeNameRootsResult

4.3 Dataflow Type Hierarchy

Normally, one Java annotation represents only one type qualifier. But @Dataflow can
take arguments, and each @Dataflow with a specific group of arguments is one type qual-
ifier, such that all qualifiers are expressed by a single Java annotation @Dataflow.

The basic idea of subtype relationship in Dataflow type system is: Dataflow type τ1
is subtype of Dataflow type τ2, if values in typeNames and typeNameRoots of τ1 can be
bounded by the values in τ2. In Java, Object is the super type of all other reference type,
so @DataFlow(typeNameRoots=”Object”) is the top type of Dataflow type system, and the
bottom type is the qualifier with empty value meaning we don’t have any knowledge about
typeNames and typeNameRoots.

59

For example, @DataFlow(typeNameRoots=”String”, ”Number”, typeNames=”Object”)
is the super type of @DataFlow(typeNameRoots=”String”, typeNames=”Byte”). Figure 4.1
shows the relationship among different types. Note that the dashed arrow is used in
Figure 4.1 because the relationship between each pair of qualifier is not strict subtype.

typeNameRoots=”Object”

typeNameRoots=”String”, ”Number”
typeNames=”Object”

typeNameRoots=”String”
typeNames=”Byte”

typeNameRoots=””
typeNames=””

Figure 4.1: Type Hierarchy of Dataflow Type System

The calculation of subtype relationship in Dataflow type system is based on the type
simplification. The approach for deciding whether τ1 is subtype of τ2 is: we concatenate
the values in typeNames of two qualifiers together, and do same thing for typeNameRoots,
then call the simplification algorithm for the two concatenated lists. If the simplified result
is identical with the values in τ2, then τ1 is subtype of τ2.

For the types that have both primitive and reference type representation, like int and
java.lang.Integer, the name we are going to choose depends on whether the type is au-
toboxed or unboxed. If autoboxing or unboxing process is called, we will choose the name
after autoboxing and unboxing.

Since @DataFlow(typeNameRoots=”Object”) is the top type of Dataflow Type
System, according to the type hierarchy, every location can be annotated by
@DataFlow(typeNameRoots=”Object”) without breaking type rules, however, we would
like to know all concrete possible run-time types for a given location. Since the possible
run-time types of each location are set once the program had been written, there should

60

always be a unique best Dataflow type qualifier for the location. The details of inferring
the best solution will be discussed in Section 4.4.

4.4 Type Inference for Dataflow

This section describes the type inference approach for Dataflow type system. First
we introduce the basic idea of inference approach, then we describe how to integrate the
approach with the Type Constraint Solver structure.

The ultimate goal for Dataflow type system is inferring all possible run-time types
for return types, parameters, fields, and variables at compile time, however the current
inference approach is too conservative for some cases. For example, if a method from Java
type code writes values to a field in source code, then current implementation will infer a
TypeNameRoot for it. In this case, we may lose lot of information about the field. So the
limitation of current approach is we can only infer the run-time types we can observe.

4.4.1 Annotate Base Cases

The Dataflow annotation for variables and methods represents all the possible Java
types for them. In order to determine the Dataflow annotations, we first look at all the
places that the ”base case” is created. Base case are the Java expressions that we can know
the Java types of them directly. As we mentioned in the beginning of this chapter, base
cases are: Literals, Class Instance Creation Expression, Array Creation Expression, and
Method Invocation Expression for the method from byte code. We look through all these
base cases, and create Dataflow annotations for them as start points of inference process.
In Checker Framework Inference system, each tree node corresponds to a slot, and since
the annotations for these base cases are fixed, we create constant slots with the Dataflow
annotations for these cases.

4.4.2 Constraint Generation

This step is described in [18] in detail. For given program, Checker Framework Inference
system creates a set of constraints, and the slots for base cases are annotated by Dataflow
annotations.

61

Besides annotating base cases, another dataflow specific implementation in this step is
that we handled autoboxing and unboxing for primitive types. For example, if we have
following variable declaration:

1 Integer int1 = 1;

2 int int2 = new Integer (1);

We want the integer literal 1 in line 1 to be annotated by
@DataFlow(typeNames=”java.lang.Integer”), because the Java compiler runs auto-
boxing mechanism on it, so that it should be used as a reference type Integer. The
annotation for new Integer(1) in line 2 is @DataFlow(typeNames=”int”) for same reason.
The system checks all the places that autoboxing and unboxing happens, and creates
corresponding Dataflow annotations for those places.

4.4.3 Constraint Separation

Once the constraint set is generated, we need to solve them and then get the concrete
annotations for all slots. There is a significant property in Dataflow type system: the
presence of one Java type in Dataflow annotation is independent with other types. For
example, an object is assigned with a new String doesn’t affect we assign a new HashMap
to it later. This property allows us to group the constraints by different types, solve them
independently, and merge them in the end. Note that grouping the constraints by different
types before solving them is a necessary step, otherwise, the solver may provide some
unexpected results. The reason of why constraint separation is a necessary step will be
explained in Section 4.4.4.

A correct separation is important, for each base case, we want to see the case could
have an influence on which slots, so we take advantage of Constraint Graph at this step.
In Constraint Graph, we have an option to get the different sets of constraints grouped by
constant slot. For example, if we have following code:

1 Integer i = new Integer (1);

2 String str = "s";

3 Object obj1 = i;

4 obj1 = s;

5 Object obj2 = obj1;

62

Then the string literal ”s” and the new Integer(1); are bases cases, we create
two constant slots with the value @DataFlow(typeNames=”java.lang.Integer”) and
@DataFlow(typeNames=”java.lang.String”) respectively. And we would get at least five
subtype constraints for the five statements:

1 @DataFlow(typeNames ={"java.lang.Integer"}) <: i

2 @DataFlow(typeNames ={"java.lang.String"}) <: str

3 i <: obj1

4 s <: obj1

5 obj1 <: obj2

In above constraints, we use variable’s name instead of slot id for the sake of convenience.
Figure 4.2 shows the constraint graph for example code. From the graph, we know that
base case @DataFlow(typeNames=”java.lang.Integer”) has influence on variable i, obj1 and
obj2. @DataFlow(typeNames=”java.lang.String”) has influence on variable str, obj1 and
obj2. So we group the constraints into two sets by the two Java type:

java . lang . I n t e g e r :

1 @DataFlow(typeNames ={"java.lang.Integer"}) <: i

2 i <: obj1

3 obj1 <: obj2

java . lang . S t r ing :

1 @DataFlow(typeNames ={"java.lang.String"}) <: str

2 s <: obj1

3 obj1 <: obj2

In next step, we will solve them independently.

63

obj2obj1

i

str

@DF{I}

@DF{S}

Figure 4.2: Constraint Graph for Example Code

4.4.4 Constraint Solving

After the above step, each Java type corresponds to a group of constraint, and the
question is for the slots in each group of constraint, whether the corresponding Java type
should be present in them or not. The solution for the problem is when we solve each
group of constraints, instead of Dataflow itself, we treat the underlying type system as a
two qualifiers type system that only contains top and bottom qualifiers. The top qualifier
is @DataFlow, and the value is the corresponding Java type for current group of constraint
like @DataFlow(typeNames=”int”), and the bottom qualifier is @DataFlow without any
values. For example, for the constraints showed in section 4.4.3, the five subtype constraints
will be solved twice, once for Integer and once for String. When we solve for type Integer, we
only look at constraint 1, 3 and 5, and the two qualifiers type system is used. Top qualifier
is @DataFlow(typeNames=”java.lang.Integer”), and bottom qualifier @DataFlow(). After
the back end solves constraints and gives the solution, we only keep tracking the slots that
are annotated by the top qualifier. Note that @DataFlow(typeNames=”java.lang.Integer”)
and @DataFlow(typeNameRoots=”java.lang.Integer”) are two different annotations so that
”java.lang.Integer” has different meanings. So if the DataFlow annotation with typeName-
Roots value shows in the constraint, it will be a constant as well, and corresponds to some
constraints.

The reason why this approach works is, first, as we mentioned before, the presence of
different Java types are independent with each other, so for a group of constraint, we can
only care about the presence of the corresponding type. Second, Dataflow’s type hierarchy
defines that if a certain Java type is present in one Dataflow type qualifier, then the Java

64

type has to be able to be bounded by it’s super type. That’s why we put the annotation
that we care about in top: the supertype of the top qualifier has to be the top qualifier
as well, which means the Java type presenting in top qualifier has to be ”present” in the
supertype of top qualifier. The ”present” here has two cases: one case is the Java type is
present in the super type physically, and another is it’s bound by one of the typeNameRoots
in super type. No matter which situation happens, there is no problem of doing this at
this step, because we will run simplification algorithm when we merge the solution. So
if second situation happens, the Java type that we put in the Dataflow qualifier at this
step will be removed eventually. The merge approach will be explained in section 4.4.5 in
detail.

In Section 4.4.3 we mentioned that we have to separate the constraints before solving
them. Thinking about following Java code:

1 Integer i1 = new Integer (1);

2 String str1 = "s";

3 Integer i2 = i1;

4 String str2 = str1;

We would get at least four subtype constraints for the four statements:

1 @DataFlow(typeNames ={"java.lang.Integer"}) <: i1

2 @DataFlow(typeNames ={"java.lang.String"}) <: str1

3 i2 <: i1

4 str2 <: str1

Since there are two constant values: @DataFlow(typeNameRoots=”java.lang.Integer”) and
@DataFlow(typeNameRoots=”java.lang.String”), they will be solved twice. However, if we
solve all of them at same time, when we solve for type Integer, the serializer still generate
the encoding for the constraint str2 <: str1 as well, and any random result given by
the solver will satisfy the constraint because we only focus on type Integer now. In other
words, the solver may randomly make a decision about whether the Dataflow type qualifier
for str2’s type variable should contain typeNames=”java.lang.Integer” or not. But in the
program, str2 is only related to java.lang.String. So the constraint separation step can
successfully make constraint str2 <: str1 unvisitable to serializer when it generates the
encoding for type Integer.

After solving the different group of constraints, we can get a set of solution, and every
solution corresponds to a particular Java type as each group of constraints does. In each

65

solution, we know which slot should contain the corresponding Java type. Now, we are
ready to merge the solutions together.

4.4.5 Solution Merge

In this step, the solutions from different group are going to be merged, and the final
result is generated. The result for one slot may be partially apparent in different solution.
For example, in section 4.4.3, the final Dataflow annotations for variable obj1 and obj2
should contain both java.lang.String and java.lang.Integer, but this knowledge is in the
two solutions. The merge algorithm is straightforward: we go through every solution,
put the results for each slot in different solution together, and then run the simplification
algorithm on each merged annotation. The output from simplification algorithm is the
final result for each slot. If the results for one slot from different solutions only contain the
annotations with typeNames value, then the final result would be the concatenation among
all typeNames values. However, if typeNameRoots is involved, then some typeNames or
typeNameRoots values may be removed after simplification according to the relationship
among those Java types.

66

Chapter 5

Implementation and Experimentation

This Chapter describes the implementation of Type Constraint Solver and Dataflow
Type System (Section 5.1), and experience with them (Section 5.2).

5.1 Implementation

The Type Constraint Solver described in Chapter 3 and Dataflow Type System described
in Chapter 4 are both implemented on top of Checker Framework Inference [1], which has
been introduced in Section 2.1.

Type Constraint Solver and Dataflow Type System consist of about 4400 and 1220 non-
comment, non-blank lines of Java code respectively. Checker Framework Inference provides
an interface called InferenceSolver, it passes slots, constraints, and other useful information
to Type Constraint Solver. Dataflow Type System consists of its own checker, solver, and
other related components. Dataflow solver is built on the top of Type Constraint Solver. As
we discussed in Chapter 3, the infrastructure of Type Constraint Solver is easy to extend
in order to implement the type system specific feature.

Type Constraint Solver supports different solving options, for example, run constraint
separation algorithm or not, solve the set of constraint in parallel or sequential, and the
type of back end.

For Dataflow Type System, we integrated the inference approach into the back end
structure that we introduced previously.

The most significant and necessary step of inferring Dataflow annotations is constraint
separation, unlike the type systems without any arguments, all of the constraints can

67

be solved once, we have to group the constraints by different Java type, and solve them
separately. Fortunately, back end structure supports solving constraints in different groups,
and we also have the option that groups the constraint by different constants in the stage of
constraint graph construction. So we can create a list of BackEnd instances with different
constraints configuration, and solve them separately.

Section 4.4.4 explains that when we solve the different groups of constraint, we treat
the underlying type system as a two qualifiers type system, so the lattice configuration for
different back ends are also different. We made a TwoQualifiersLattice class as a subclass
of Lattice class, it takes two AnnotationMirrors, top and bottom, as type arguments. And
the map between clause integer and AnnotationMirror is inherited. Before we create an
instance of BackEnd class, we create a new instance of TwoQualifiersLattice, set the top
annotation be the corresponding Dataflow annotation as it’s explained in 4.4.4, and use it
as the lattice configuration for the new back end.

For the merge step, instead of using the default merge strategy, which is simply con-
catenating the results from different back ends, we use the approach described in 4.4.5.

We created a new class DataflowConstraintSolver as the subclass of ConstraintSolver,
and implemented the Dataflow specific behavior inside this class.

5.2 Experimentation

We applied Type Constraint Solver with two kinds of type systems, OsTrusted Type
System, and Dataflow Type System, on six real-world open source Java projects devel-
oped by external developers. The six projects are: (1) ant-javacard, a project integrates
JavaCard CAP into Ant built system, (2) jdeb, an Ant task and a Maven plugin to create
Debian packages from Java builds in a truly cross platform manner, (3) JReactPhysics3D,
a 3D physics engine written in Java, (4) jsoup, a Java library for working with HTML,
extracting, and manipulating data, (5) dyn4j, a Java 2D collision detection and physics
engine, and (6) ode4j, a Java 3D Physics Engine. These six projects are in different sizes,
from around 600 lines of code to 40000 lines of code. We choose the projects in different
sizes because we would like to know how the scalability as regards the performance of our
tools.

Table 5.1 and Table 5.2 show the size of open source projects. Since we ran our
tool with different type systems, the size of slot and constraint generated by Checker
Framework Inference may be different. The two tables show the benchmarks’ information
with Dataflow Type System and OsTrusted Type System respectively. SLOC gives the

68

Project Size
Slot Constraint

Benchmark Files Blank Comment SLOC
(Java)

Constant
Slot

Variable
Slot

Subtype
Con-

straint

Equality
Con-

straint
ant-javacard 3 941 95 627 63 425 701 56

jdeb 73 1453 1911 5062 219 3263 5610 442
jReactPhysics3D 85 3252 5579 9466 132 6065 11386 1034

jsoup 87 3036 4518 16426 339 9856 18826 947
dyn4j 209 4164 24975 17845 286 16532 27020 2413
ode4j 234 10792 36662 39402 435 30980 54208 4409

Table 5.1: Size of Projects with Dataflow Type System Inference

number of non-black, non-comment lines as determined by the cloc tool. The constraint
and slot size columns give the number of constraints variables (slot) and constraints in the
program.

We ran our inference tool on those projects with different options and back ends, and
measured the running time information. We executed each run three times and report
the median. We did each run multiple times since we found that the variance of different
executions is at 0.1 to 1 seconds level.

Table 5.3 shows the timing result of inference for Dataflow Type System by Max-SAT
back end. Since the constraint separation step is mandatory for inference of Dataflow Type
System, there is no timing result for solving all constraints as a whole. Table 5.4 is the
timing result of inference on Dataflow Type System with LogiQL back end. For LogiQL
back end, we could not run it in parallel like what we did for Max-SAT back end, since we
only use one machine with LogicBlox installed. We will need to distribute different tasks
to multiple machines in order to perform parallel calculation.

Table 5.5 and Table 5.6 show the timing results of inference for OsTrusted Type System
by Max-SAT back end with and without constraints separation respectively. Table 5.7 is
the inference result for OsTrusted Type System by LogiQL back end and with separation
Algorithm 2 in Section 3.1.2. Table 5.8 is the inference result for OsTrusted Type System
by LogiQL back end without any constraint separation.

We analyzed the statistics in following tables, and the explanation of the timing result
is discussed below.

69

Project Size
Slot Constraint

Benchmark Files Blank Comment SLOC
(Java)

Constant
Slot

Variable
Slot

Subtype
Con-

straint

Equality
Con-

straint
ant-javacard 3 941 95 627 3 435 726 58

jdeb 73 1453 1911 5062 3 3547 5936 454
jReactPhysics3D 85 3252 5579 9466 3 7640 14212 1092

jsoup 87 3036 4518 16426 3 10340 19615 994
dyn4j 209 4164 24975 17845 3 16909 27805 2426
ode4j 234 10792 36662 39402 3 31632 55277 4419

Table 5.2: Size of Projects with OsTrusted Type System Inference

We will first discuses different tables respectively, and then show the comparison among
tables.

• Table 5.3: Inference for Dataflow Type System by Max-SAT back end

We noticed that for both Sat4j and Lingeling solvers, the overall processing time in
sequential is always longer than the time in parallel. Although there is overhead in
creating multiple threads/processes, for the scale of the benchmarks we experienced,
the speed is faster if we process different components simultaneously.

As we mentioned in Section 3.2.2, the Lingeling solver is written in C, and it’s a
fast and modern SAT solver, so no matter we solve the constraint in sequential or in
parallel, lingeling solver is always faster than Sat4j solver.

If we compare the fourth row and fifth row, we can find that for Sat4j, the solving
time not only depends on the size of CNF, but also depends on the graph size. The
CNF size for benchmark jsoup is smaller than dyn4j, however, the situation of graph
size is the other way around, and the solving time for these two projects are very
close.

• Table 5.4: Inference for Dataflow Type System by LogiQL back end

The number of entity, functional predicate, and declaring derivation rules depends
on the type system as we discussed in 3.3.1, for Dataflow Type System, the number
is 41.

70

Similar to the Max-SAT encoding, the more constraint we get, the more logiQL data
will be generated.

• Comparison between Table 5.3 and Table 5.4:

If we compare the overall timing between Max-SAT and LogiQL back end, we noticed
that the Max-SAT back end is faster. The most of the time consumed by LogiQL
back end is when we add new data to the database, the database needs to spend
some time to calculate the values in different entities.

The serialization process for Lingeling solver and LogiQL back end are very similar
to each other, and the serialized result is in string format. So we can notice that the
serialization time for these two are close.

• Table 5.5: Inference for OsTrusted Type System by Max-SAT back end

The pattern of this timing statistics are same as Table 5.3, but since the used graph
separation algorithm is different, the size of the graph is much smaller than Dataflow
Type System, and the corresponding timing data is also smaller than what we have
in Table 5.3.

• Comparison between Table 5.5 and Table 5.6:

From these two tables, we observed that solving the constraints as a whole is
much faster than solving them separately. So in our case the overhead of multi-
threading/process and the graph separation approach is too large. This can also
explain the reason that the solving time depends on both CNF size and graph size,
since the system will create a thread for each component. So from this comparison,
we can have a conclusion that for the type system, for which the constraint separation
is not mandatory, solving the constraint without the constraint separation is better
for the performance.

• Comparison between Table 5.7 and Table 5.8:

We can get the same conclusion that we got from the comparison between Table 5.5
and Table 5.6, the constraint separation has high overhead.

After the experimentation and the analysis, we have the conclusion that the graph sepa-
ration has high overhead. For Dataflow Type System, the graph separation is a mandatory
step for the type inference process, so we will have to do this pre-inference step. However,
for the type system that all constraints can be solved as a whole, it is good for performance
if we don’t separate the constraint into different sets. For LogicBlox and Lingeling, one

71

C
N

F
S
iz

e
T

im
e

(M
il
li
se

co
n
d
)

S
at

4j
L

in
ge

li
n
g

P
ar

al
le

l
S
eq

u
en

ti
al

P
ar

al
le

l
S
eq

u
en

ti
al

B
en

ch
m

ar
k

G
ra

p
h

S
iz

e
V

ar
ia

b
le

C
la

u
se

G
ra

p
h

G
en

er
at

io
n

S
u
m

of
S
er

ia
l-

iz
at

io
n

T
im

e
of

A
ll

T
h
re

ad
s

S
u
m

of
S
ol

v
in

g
T

im
e

of
A

ll
T

h
re

ad
s

O
ve

ra
ll

P
ro

ce
ss

-
in

g
T

im
e

of
A

ll
T

h
re

ad
s

S
er

ia
li
za

ti
on

T
im

e
S
ol

v
in

g
T

im
e

S
u
m

of
S
er

ia
l-

iz
at

io
n

T
im

e
of

A
ll

T
h
re

ad
s

S
u
m

of
S
ol

v
in

g
T

im
e

of
A

ll
T

h
re

ad
s

O
ve

ra
ll

P
ro

ce
ss

-
in

g
T

im
e

of
A

ll
T

h
re

ad
s

S
er

ia
li
za

ti
on

T
im

e
S
ol

v
in

g
T

im
e

an
t-

ja
va

ca
rd

37
55

6
16

76
10

53
18

37
9

10
48

3
18

02
9

17
33

65
19

4
2

15
3

jd
eb

16
0

94
46

8
35

74
15

23
5

21
61

81
23

8
31

55
17

2
79

66
6

11
84

15
55

3
10

50
27

11
38

jR
ea

ct
P

h
y
si

cs
3D

11
3

45
23

84
21

94
43

1
83

3
18

83
7

68
32

1
45

90
13

4
13

74
88

16
79

9
16

73
9

12
41

10
7

24
64

js
ou

p
28

5
45

34
88

24
29

94
2

13
33

21
61

9
13

29
64

63
06

84
23

78
92

26
09

8
24

01
9

17
70

35
40

00
d
y
n
4j

23
5

14
77

55
8

66
76

21
8

33
08

38
27

2
15

54
92

88
54

96
23

51
16

46
98

5
33

46
3

35
29

30
6

74
00

o
d
e4

j
40

2
62

83
42

8
29

23
02

45
13

88
7

50
63

42
50

33
16

52
61

1
92

5
40

33
78

32
11

77
10

51
36

18
61

2
89

3
25

69
4

G
ra

p
h

S
iz

e
is

th
e

n
u

m
b

er
o
f

co
m

p
o
n

en
t

(s
et

o
f

co
n

st
ra

in
t)

a
ft

er
co

n
st

ra
in

t
se

p
ar

at
io

n
.

C
N

F
S

iz
e

g
iv

es
th

e
n
u

m
b

er
o
f

b
o
o
le

a
n

va
ri

a
b

le
s

a
n

d
cl

a
u

se
s

in
th

e
C

N
F

en
co

d
in

g
.

T
im

in
g

co
n

si
st

s
o
f

tw
o

p
a
rt

s:
th

e
ti

m
in

g
o
f

S
a
t4

j
so

lv
er

a
n

d
li

n
ge

li
n

g
so

lv
er

.
In

ea
ch

p
a
rt

,
th

er
e

a
re

ti
m

in
g

re
su

lt
s

w
it

h
b

o
th

p
a
ra

ll
el

a
n

d
se

q
u

en
ti

al
so

lv
in

g
o
p

ti
o
n

s.
F

o
r

so
lv

in
g

in
se

q
u

en
ti

a
l,

S
er

ia
li

za
ti

o
n

T
im

e
a
n

d
S

ol
v
in

g
T

im
e

ar
e

th
e

su
m

o
f

se
ri

a
li
za

ti
o
n

ti
m

e
a
n

d
so

lv
in

g
ti

m
e

(t
h

e
ti

m
e

fo
r

so
lv

in
g

th
e

cl
a
u

se
s

b
y

S
A

T
so

lv
er

)
o
f

ea
ch

co
m

p
o
n

en
t

se
p

a
ra

te
ly

.
F

o
r

so
lv

in
g

in
p

ar
al

le
l,

fo
r

ex
am

p
le

,
in

fo
ll

ow
in

g
a
x
is

,
if

th
er

e
a
re

tw
o

th
re

a
d

s
t 1

a
n

d
t 2

,
S
E

S

an
d

S
E

E
st

an
d

s
fo

r
se

ri
a
li

za
ti

o
n

st
a
rt

s
a
n

d
en

d
s,

a
n

d
S
O

S
a
n

d
S
O

E
st

a
n

d
s

fo
r

so
lv

in
g

st
a
rt

s
a
n

d
en

d
s.

S
u

m
o
f

S
er

ia
li

za
ti

o
n

T
im

e
o
f

A
ll

T
h

re
a
d

w
o
u

ld
b

e
(t

1
S
E

E
−
t 1
S
E

S
)

+
(t

2
S
E

E
−
t 2
S
E

S
).

S
u

m
o
f

S
o
lv

in
g

T
im

e
o
f

A
ll

T
h

re
a
d

s
w

o
u

ld
b

e
(t

1
S
O

E
−
t 1
S
O

S
)
+

(t
2
S
O

E
−
t 2
S
O

S
).

O
ve

ra
ll

P
ro

ce
ss

in
g

T
im

e
o
f

A
ll

T
h

re
a
d

s
w

ou
ld

b
e

(t
1
S
O

E
−
t 1
S
E

S
)

t 1
S
E

S
t 2
S
E

S
t 1
S
E

E
t 1
S
O

S
t 2
S
E

E
t 2
S
O

S
t 2
S
O

E
t 1
S
O

E

T
ab

le
5.

3:
T

im
in

g
R

es
u
lt

of
In

fe
rr

in
g

B
en

ch
m

ar
k
s

w
it

h
D

at
afl

ow
T

y
p

e
S
y
st

em
b
y

M
ax

-S
A

T
B

ac
k

E
n
d

72

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

·104

27

28

29

210

211

212

213

214

215

216

217

218

219

Number of Constraints

T
im

e
(M

il
li
se

co
n
d
)

Sat4j-parallel Sat4j-sequential Lingeling-parallel
Lingeling-sequential

Figure 5.1: Relationship between Size of Constraint and Solving Time in Table 5.3

73

LogiQL Size Time (Millisecond)

Benchmark Predicates Data
Graph

Generation
Serialization

Time
Solving
Time

ant-javacard 41 844 10 13 65951

jdeb 41 8014 126 72 312744

jReactPhysics3D 41 19997 200 102 348621

jsoup 41 26348 422 208 550789

dyn4j 41 34555 606 183 606237

ode4j 41 88160 1094 504 1261515

Predicates gives the number of entity, functional predicate, and declaring derivation
rules. As we explained in 3.3.1, for different type systems, the entity encoding are
same, and the encoding for functional predicate and declaring derivation rules also
have very similar logic. Data gives the number of facts that are added to the Log-
icBlox by delta modifier. The time related numbers have same meaning as the se-
quential approach in Table 5.3. For example, if we have two sets of constraint c1
and c2 need to be solved, SES and SEE stands for serialization starts and ends, and
SOS and SOE stands for solving starts and ends. The timeline of processing the sets
of constraint will follow below axis. The Serialization Time is (c1SEE − c1SES) +
(c2SEE − c2SES), and the Solving Time is (c1SOE − c1SOS) + (c2SOE − c2SOS).

c1SES c1SEE c1SOS c1SOE c2SES c2SEE c2SOS c2SOE

Table 5.4: Timing Result of Inferring Benchmarks with Dataflow Type System by LogiQL
Back End

74

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

·104

0

0.2

0.4

0.6

0.8

1

1.2

·106

Number of Constraints

T
im

e
(M

il
li
se

co
n
d
)

Figure 5.2: Relationship between Size of Constraint and Solving Time in Table 5.4

75

C
N

F
S

iz
e

T
im

e
(M

il
li

se
co

n
d

)
S

at
4j

L
in

ge
li

n
g

P
ar

al
le

l
S

eq
u

en
ti

al
P

ar
al

le
l

S
eq

u
en

ti
al

B
en

ch
m

ar
k

G
ra

p
h

S
iz

e
V

ar
ia

b
le

C
la

u
se

G
ra

p
h

G
en

er
at

io
n

S
u

m
of

S
er

ia
l-

iz
at

io
n

T
im

e
of

A
ll

T
h

re
ad

s

S
u

m
of

S
ol

v
in

g
T

im
e

of
A

ll
T

h
re

ad
s

O
ve

ra
ll

P
ro

ce
ss

-
in

g
T

im
e

of
A

ll
T

h
re

ad
s

S
er

ia
li

za
ti

on
T

im
e

S
ol

v
in

g
T

im
e

S
u

m
of

S
er

ia
l-

iz
at

io
n

T
im

e
of

A
ll

T
h

re
ad

s

S
u

m
of

S
ol

v
in

g
T

im
e

of
A

ll
T

h
re

ad
s

O
ve

ra
ll

P
ro

ce
ss

-
in

g
T

im
e

of
A

ll
T

h
re

ad
s

S
er

ia
li

za
ti

on
T

im
e

S
ol

v
in

g
T

im
e

an
t-

ja
va

ca
rd

4
12

09
42

24
32

24
20

04
56

1
10

20
04

13
29

5
94

9
10

5
jd

eb
11

98
79

36
84

5
35

4
90

55
98

65
0

29
55

07
49

16
74

17
3

31
23

5
jR

ea
ct

P
h
y
si

cs
3D

36
21

70
8

86
12

9
69

0
17

1
19

57
5

11
02

63
17

59
6

16
1

10
41

7
56

7
69

52
0

js
ou

p
31

27
56

7
13

00
32

23
10

27
8

17
59

8
10

95
73

15
52

6
15

4
10

70
5

45
3

94
50

7
d

y
n

4j
53

45
97

8
21

42
38

36
14

37
2

35
79

4
16

40
99

26
55

3
17

7
21

30
0

79
4

93
77

1
o
d

e4
j

20
4

92
33

1
43

91
42

75
27

77
0

26
53

15
96

81
22

1
20

13
91

78
0

85
50

7
29

90
18

2
47

00

T
h

e
m

ea
n

in
g

of
ea

ch
co

lu
m

n
is

sa
m

e
a
s

T
a
b

le
5
.3

.

T
ab

le
5.

5:
T

im
in

g
R

es
u
lt

of
In

fe
rr

in
g

B
en

ch
m

ar
k
s

w
it

h
O

sT
ru

st
ed

T
y
p

e
S
y
st

em
b
y

M
ax

-S
A

T
B

ac
k

E
n
d

w
it

h
C

on
st

ra
in

t
S
ep

ar
at

io
n

76

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

·104

26

27

28

29

210

211

212

213

214

215

216

217

218

Number of Constraints

T
im

e
(M

il
li
se

co
n
d
)

Sat4j-parallel Sat4j-sequential Lingeling-parallel
Lingeling-sequential

Figure 5.3: Relationship between Size of Constraint and Solving Time in Table 5.5

77

Time (Millisecond)
Benchmark Sat4j Lingeling

Serialization
Time

Solving
Time

Serialization
Time

Solving
Time

ant-javacard 8 500 11 99

jdeb 35 639 28 286

jReactPhysics3D 65 749 60 689

jsoup 83 832 75 693

dyn4j 121 870 107 568

ode4j 171 1136 254 1351
The meaning of each column is same as Table 5.5, and because in this case we process all
the constraints as a whole, the Serialization Time and Solving Time are the time duration
between the start and the end of the corresponding steps. The CNF data also keeps same
as the previous table.

Table 5.6: Timing Result of Inferring Benchmarks with OsTrusted Type System by Max-
SAT Back End without Constraint Separation

LogiQL Size Time (Millisecond)

Benchmark Predicates Data
Graph

Generation
Serialization

Time
Solving
Time

ant-javacard 57 1119 29 3 14635

jdeb 57 9705 320 14 87422

jReactPhysics3D 57 22732 670 41 218423

jsoup 57 30457 2344 52 300643

dyn4j 57 45470 2376 61 552948

ode4j 57 91057 3349 123 2026301
The meaning of each column is same as Table 5.7. The LogiQL data also keeps same.

Table 5.7: Timing Result of Inferring Benchmarks with OsTrusted Type System by LogiQL
Back End with Constraint Separation

78

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

·104

0

200

400

600

800

1,000

1,200

1,400

Number of Constraints

T
im

e
(M

il
li
se

co
n
d
)

Figure 5.4: Relationship between Size of Constraint and Solving Time in Table 5.6

79

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

·104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
·106

Number of Constraints

T
im

e
(M

il
li
se

co
n
d
)

Figure 5.5: Relationship between Size of Constraint and Solving Time in Table 5.7

80

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

·104

0

1

2

3

4

5

6

7

8

9
·105

Number of Constraints

T
im

e
(M

il
li
se

co
n
d
)

Figure 5.6: Relationship between Size of Constraint and Solving Time in Table 5.8

81

Time (Millisecond)

Benchmark
Serialization

Time
Solving
Time

ant-javacard 4 8398

jdeb 13 66407

jReactPhysics3D 32 174018

jsoup 34 247030

dyn4j 43 397290

ode4j 89 838210
The meaning of each column is same as Table 5.7. The
LogiQL data also keeps same.

Table 5.8: Timing Result of Inferring Benchmarks with OsTrusted Type System by LogiQL
Back End without Constraint Separation

possible overhead is the I/O operation. Our tool will need to generate a textual file and
then call LogicBlox or Lingeling to read it. If there are too many files generated, it’s time
consuming to keep reading these files over and over. Another overhead is when we separate
the constraints, one constraint may be present in multiple sets, for example, in Figure 4.2,
the subtype constraint between obj1 and obj2 will be present in both string component
and integer component. So we will solve that constraint twice in that case, which would
spend more time.

By comparing the timing result of parallel and sequential approach, we found out the
parallelization is good for performance in general. However, during the experimentation,
we ran into GC overhead limit exceeded exception when there are too many (around 5000)
threads. If we choose the sequential approach, the overall time would be very long, but we
got the result eventually. So if we separate the constraint into thousands of components,
we need to consider about the trade off between performance and successful inference.

The relationship between the growth of the overall consumed time and the size of the
project is in positive correlation, which aligns with our expectation. But as I mentioned
above, the overall timing also depends on the size of graph. For Dataflow Type System, the
constraint size of project dyn4j is larger than jsoup by 30%, but there is no much difference
between the overall solving time of these two projects. The reason of this result is that
Jsoup has 50 more components than dyn4j after the graph separation, and according to the
analysis of two previous paragraphs, the more components would use more time process,
so that it slows the overall process down.

82

The used hardware was a remote server with 4 sockets and 8 cores per socket. Each
CPU is GenuineIntel at 3301 MHZ running Ubuntu 14.04 Linux 64 bit and using Oracle
JDK 8. The total free memory is 42 GB, but the Java heap space is limited to 5 GB.

83

Chapter 6

Future Work

6.1 Future Work on Type Constraint Solver

The Type Constraint Solver provides a system that can solve type constraint by SAT
solver or LogicBlox. However, the LogiQL encoding is inspired by Max-SAT encoding, and
both encodings have similar concept of interpretation for type constraint. There are lots
of features in LogiQL language and LogicBlox haven’t been used, so we plan to explore
the full potential of the LogicBlox database, such that we can make more optimizations
and improvements for the LogiQL encoding. One possible improvement is as I mentioned
in Section 3.3.1, we haven’t found a way to encode the preference constraint into the
LogiQL form. So if Checker Framework Inference generates preference constraint for the
given program, it won’t be solved by LogiQL back end. We are going to do more research
on LogicBlox, and we believe there are some ways to encode preference constraint into
LogiQL. If we have multiple ways to encode type constraint in LogiQL, we also would like
to compare the performance among different encodings.

At this moment, we did lots of testing on type systems with two type qualifiers, Dataflow
Type System and OsTrusted Type System, and they both integrated with Type Constraint
Solver well. However, in the encoding process, they are both treated as two type qualifiers
type system. Type Constraint Solver is designed for solving type constraints from any
type systems, so one future work is run Type Constraint Solver with more complex type
systems. One type system we are focusing on is Generic Universe Type System[18]. We
have been working on integrating it into our solver, and then we can compare the inferred
result between Type Constraint Solver and the solver mentioned in the paper.

84

Although in our experimentation, the performance of Max-SAT solver with Lingeling
solver looks good, the largest benchmark ode4j is not large enough to show the system’s
performance. And the current back ends are still not good for interactive usage. We believe
there are more forms that can be used to solve the type constraints. Since Type Constraint
Solver is easliy extended with more back ends, we would love to develop more back ends
into our system.

We would like to make the system scalable enough so that can handle larger bench-
marks. With current Checker Framework and Checker Framework Inference, ode4j is the
largest project that can be successfully inferred. Checker Framework Inference crashed
when we tried bigger projects. We will fix the bugs and optimize both frameworks, and
make the whole system more reliable.

More statistics would provide us more information about Type Constraint Solver’s
performance, so we will try inferring more big projects, and find out the limitation of the
system.

6.2 Future Work on Dataflow Type System

Dataflow Type System provides us all possible run time types for a given location. In
order to verify the correctness of the inferred result, we plan to find some existing tools
that can do similar analysis, and compare the result from existing tools and the Dataflow
Type System.

During our development, we keep running into problems when the test case becomes
complicated. We fixed lots of bugs that can be triggered by some corner cases. For Dataflow
Type System, we will try it on more test cases, fix the occurred bugs, and make the system
robust.

In Section 2.4, we mentioned that Constant Value Checker can infer variable’s value
and type in compile for type boolean, integer, double and string. So we would like to make
Dataflow Type System also infers values. One possible approach is we can let Dataflow
type qualifier take other parameters for values. Then for the literal base case, we let the
checker not only record the type but also fill parameter with the values. Like what we
did for the parameter typeNames, for least upper bound of the value parts of two type
qualifiers, we will merge the values from two qualifiers into one set.

85

Chapter 7

Conclusion

In this thesis, we presented a system, Type Constraint Solver, that can solve the type
constraint generated from Checker Framework Inference for an arbitrary inferable type
system. Type Constraint Solver provides two encoding strategies that can encode the
type constraint into Boolean formulas or LogiQL language form, use existing Max-SAT
solvers and LogicBlox to solve the encoding accordingly, and get the exact type qualifier
for each slot. Type Constraint Solver also provides two constraint separation strategies
that can separate constraints into groups, and the options to solve the groups in parallel or
sequential. The infrastructure of Type Constraint Solver is designed to be easily extended
with custom encoding logic and even new back ends for further development.

We also introduced an inferable type system Dataflow Type System, which is built on the
top of Checker Framework Inference. The type system can infer all possible run time Java
types of method, field, variable, and parameter in compile time. We took the advantage of
the scalability of Type Constraint Solver and built a custom constraint solving approach
for Dataflow Type System on the top of it.

For experimentation, we applied our tools to six real-world, open source Java projects.
We run Type Constraint Solver with Dataflow Type System and OsTrusted Type System
on these projects with different back ends and solving options. Through analysis of the
experimentation statistics, we explained the trade off of the constraint separation and the
benefit of parallelization constraint solving.

86

References

[1] Checker Framework Inference. https://github.com/typetools/

checker-framework-inference. Accessed February 01 2017.

[2] CNF files format. http://www.satcompetition.org/2009/

format-benchmarks2009.html. Accessed January 02 2017.

[3] Connectivity (graph theory). https://en.wikipedia.org/wiki/Connectivity_

%28graph_theory%29. Accessed July 29 2016.

[4] Constant Value Checker. https://checkerframework.org/manual/

#constant-value-checker. Accessed March 01 2017.

[5] Lingeling SAT Solver. http://fmv.jku.at/lingeling/. Accessed July 29 2016.

[6] Maximum Satisfiability problem. https://en.wikipedia.org/wiki/Maximum_

satisfiability_problem/. Accessed May 31 2016.

[7] The Checker Framework. http://types.cs.washington.edu/checker-framework/.
Accessed July 29 2016.

[8] Type Annotations and Pluggable Type Systems. https://docs.oracle.com/

javase/tutorial/java/annotations/type_annotations.html. Accessed July 29
2016.

[9] Type annotations specification (JSR308). https://checkerframework.org/

jsr308/. Accessed February 01 2017.

[10] Where is Java used in Real World? http://javarevisited.blogspot.ca/2014/12/

where-does-java-used-in-real-world.html. Accessed February 01 2017.

[11] Rahul Agarwal and Scott D. Stoller. Type Inference for Parameterized Race-Free Java,
pages 149–160. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

87

https://github.com/typetools/checker-framework-inference
https://github.com/typetools/checker-framework-inference
http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html
https://en.wikipedia.org/wiki/Connectivity_%28graph_theory%29
https://en.wikipedia.org/wiki/Connectivity_%28graph_theory%29
https://checkerframework.org/manual/#constant-value-checker
https://checkerframework.org/manual/#constant-value-checker
http://fmv.jku.at/lingeling/
https://en.wikipedia.org/wiki/Maximum_satisfiability_problem/
https://en.wikipedia.org/wiki/Maximum_satisfiability_problem/
http://types.cs.washington.edu/checker-framework/
https://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
https://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
https://checkerframework.org/jsr308/
https://checkerframework.org/jsr308/
http://javarevisited.blogspot.ca/2014/12/where-does-java-used-in-real-world.html
http://javarevisited.blogspot.ca/2014/12/where-does-java-used-in-real-world.html

[12] A. Aiken and E. L. Wimmers. Solving systems of set constraints. In [1992] Proceedings
of the Seventh Annual IEEE Symposium on Logic in Computer Science, pages 329–
340, Jun 1992.

[13] Lars Ole Andersen. Program analysis and specialization for the c programming lan-
guage. Technical report, 1994.

[14] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A framework
for implementing pluggable type systems. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Ap-
plications, OOPSLA ’06, pages 57–74, New York, NY, USA, 2006. ACM.

[15] Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. JSAT, 7(2-3):59–6,
2010.

[16] Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for race-
free java programs. In Proceedings of the 16th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA ’01, pages
56–69, New York, NY, USA, 2001. ACM.

[17] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In E. Ernst, editor,
European Conference on Object-Oriented Programming (ECOOP), Lecture Notes in
Computer Science, July.

[18] W. Dietl, M. D. Ernst, and P. Müller. Tunable Static Inference for Generic Universe
Types. In European Conference on Object-Oriented Programming (ECOOP), July.

[19] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler. In Proceed-
ings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Programming
Systems and Applications, OOPSLA ’07, pages 1–18, New York, NY, USA, 2007.
ACM.

[20] Cormac Flanagan and Stephen N. Freund. Type-based race detection for java. In Pro-
ceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation, PLDI ’00, pages 219–232, New York, NY, USA, 2000. ACM.

[21] Cormac Flanagan and Stephen N. Freund. Type inference against races. Sci. Comput.
Program., 64(1):140–165, January 2007.

88

[22] David Greenfieldboyce and Jeffrey S. Foster. Type qualifier inference for java. In
Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems and Applications, OOPSLA ’07, pages 321–336, New York, NY,
USA, 2007. ACM.

[23] Terry Halpin and Spencer Rugaber. In LogiQL. CRC Press, Boca Raton, 2015.

[24] John Kodumal and Alex Aiken. The set constraint/cfl reachability connection in
practice. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, PLDI ’04, pages 207–218, New York, NY, USA,
2004. ACM.

[25] M W Krentel. The complexity of optimization problems. In Proceedings of the Eigh-
teenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages 69–76,
New York, NY, USA, 1986. ACM.

[26] Ondřej Lhoták and Laurie Hendren. Scaling Java Points-to Analysis Using Spark,
pages 153–169. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[27] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and
Michael D. Ernst. Practical pluggable types for Java. In ISSTA 2008, Proceedings of
the 2008 International Symposium on Software Testing and Analysis, pages 201–212,
Seattle, WA, USA, July 22–24, 2008.

[28] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav.
Aliasing in object-oriented programming. chapter Alias Analysis for Object-oriented
Programs, pages 196–232. Springer-Verlag, Berlin, Heidelberg, 2013.

89

	List of Tables
	List of Figures
	Introduction
	Motivation
	Approach
	Thesis Contributions
	Thesis Organization
	Funding

	Background and Related Work
	Background on Checker Framework Inference
	Checker Framework Inference
	OsTrusted Type System

	Background on Max-SAT
	Background on LogiQL
	Related Work

	Type Constraint Solver
	Type Constraint Solver Structure
	Front End
	Constraint Graph
	Serializer
	Back End

	Max-SAT Back End
	Max-SAT Encoding
	Max-SAT Solver
	Max-SAT Decoding

	LogiQL Back End
	LogiQL Encoding
	LogiQL Solver
	LogiQL Decoding

	Dataflow Type System
	Introduction on Dataflow
	Type Simplification
	Dataflow Type Hierarchy
	Type Inference for Dataflow
	Annotate Base Cases
	Constraint Generation
	Constraint Separation
	Constraint Solving
	Solution Merge

	Implementation and Experimentation
	Implementation
	Experimentation

	Future Work
	Future Work on Type Constraint Solver
	Future Work on Dataflow Type System

	Conclusion
	References

