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Abstract 
 

In the study of crime and geography, many studies have investigated the spatial 

relationship between crime and the built and natural environment.  However, these studies 

usually focus on specific environmental characteristics, such as alcohol serving businesses or the 

presence of vegetation. This study conducts a comprehensive analysis of the spatial relationship 

between crime and features of the built and natural environment in the sister cities of Kitchener 

and Waterloo, Ontario, taking into account many factors that may potentially affect crime and 

reported incidents. This includes built environment features, such as residential buildings, 

commercial buildings, drinking establishments, and bus stops. Natural environment features, 

such as parks and the presence of green vegetation were also considered. The measure of crime 

in this study was a geospatial record (aggregated to the nearest street intersection) of crime and 

reported incidents where police were called (e.g., emergency call and response) recorded by the 

Waterloo Regional Police Service (WRPS). Relationships between built and natural environment 

characteristics with crime and reported incidents were studied using linear regression and logistic 

regression modelling techniques based on three datasets. The first dataset involved creating a 

buffer around each street intersection and deriving the proportion of each building type and count 

of bus stops, streetlights, and alcohol licenses within a static or adaptive radius, which was 

subsequently compared with the number or presence of crime and reported incidents at each 

intersection. The second involved developing Adaptive Kernel Density Estimation (AKDE) 

rasters of each environmental feature and then conducting a regression analysis by comparing the 

number or presence of crime and reported incidents at each street intersection to its 

corresponding pixel values. The third involved using buffers to summarize the levels of 

vegetation cover detected from remote sensing imagery surrounding each street intersection, 



iv 

 

which was subsequently compared with the number of crime and reported incidents at each 

intersection. The results of this study identified overall low r-squared values for tested regression 

models, which suggests that important variables may be missing, such as socio-economic 

variables that may have a significant role in predicting crime incidents. The model also found 

that bus stops and alcohol licences were the most important urban environment factors in 

predicting crime and reported incidents in Kitchener-Waterloo.  



v 

 

Acknowledgements 
 

First and foremost, I would like to thank my master’s supervisor Dr. Su-Yin Tan whom I 

could not have completed this thesis without. I must thank her for her guidance, support, and 

patience throughout the writing of this thesis. I am thankful for her willingness to take me on as a 

master’s student and for her direction throughout the creation of this thesis. 

Second, I would like to thank my committee members Dr. Jean Andrey, Dr. Ian 

McKenzie, and Dr. Weizhen Dong their willingness to take time out of their busy schedules to 

participate in my thesis defense as well as for their suggestions and recommendations. 

Third, I would like to thank those at the University of Waterloo Writing and 

Communication Centre for their assistance in assuring that this thesis would be both readable and 

grammatically sound. 

Fourth, I would like to thank Mom, Dad, and my sister Stephanie for their love and 

support throughout the many months it has taken to write this thesis and without which I could 

not have completed this thesis. I would like to especially thank my father for his assistance in 

ensure my thesis was grammatically sound. 

Lastly, I would like to thank my many friends that I have had with me throughout my 

master’s including Jeffery Barrett, Ian Evans, Sara Harrison, Vincent Terpstra, Shaarif Anwar, 

and Sasha Graham. As well, I would like to thank the many friends I still have from my 

undergraduate days including Jamie Dawson, Jonathan Rovers, Phillip Kitchen, and Dickson 

Chow. I would also like to thank my many friends and colleagues in the Applied Geomatics 

Research Laboratory and the Geospatial Innovation Lab. You all have made my days as a 

master’s student immeasurably more enjoyable. 

 
  



vi 

 

Table of Contents 
 

Author's declaration ........................................................................................................................ ii 

Abstract .......................................................................................................................................... iii 

Acknowledgements ......................................................................................................................... v 

List of Figures .............................................................................................................................. viii 

List of Tables ................................................................................................................................. xi 

1.0 Introduction ............................................................................................................................... 1 

1.1 Problem Statement ................................................................................................................ 2 

1.2 Thesis Structure .................................................................................................................... 3 

2.0 Literature Review...................................................................................................................... 5 

2.1 Crime in Proximity to Single Characteristics of the Built Environment .............................. 8 

2.2 Crime in Relation to Multiple Characteristics of the Built Environment ........................... 12 

2.3 Crime and the Natural Environment ................................................................................... 15 

3.0 Conceptual Framework ........................................................................................................... 19 

4.0 Study Area .............................................................................................................................. 23 

5.0 Data ......................................................................................................................................... 28 

6.0 Method .................................................................................................................................... 36 

6.1 Buffer Methodology............................................................................................................ 37 

6.2 Adaptive Kernel Density Estimation Methodology ............................................................ 43 

6.3 NDVI Methodology ............................................................................................................ 49 

6.4 Natural and Built Environment Variables ........................................................................... 51 

6.4.1 Independent Variables – Buffer Analysis ..................................................................... 51 

6.4.2 Independent Variables – AKDE Analysis .................................................................... 53 

6.5 Crime and Reported Incident Variables and Statistical Analysis ....................................... 54 

7.0 Results ..................................................................................................................................... 58 

7.1 Visual Analysis ................................................................................................................... 58 

7.2 OLS Buffer Results ............................................................................................................. 59 

7.2.1 OLS Buffer Results – Model Results ........................................................................... 61 

7.2.2 OLS Buffer Results – Independent Variable Results ................................................... 66 

7.2.3 OLS Buffer Results – Summary of Key Findings ........................................................ 69 

7.3 OLS Adaptive Kernel Density Estimation (AKDE) Results .............................................. 71 

7.3.1 OLS AKDE Results – Model Results........................................................................... 71 

7.3.2 OLS AKDE Results – Independent Variables Results ................................................. 75 



vii 

 

7.3.3 OLS AKDE Results – Summary of Key Findings ....................................................... 78 

7.4 Logistic Buffer Regression Results .................................................................................... 79 

7.4.1 Logistic Buffer-based Regression – Model Results ..................................................... 80 

7.4.2 Logistic Buffer-based Regression – Independent Variable Results ............................. 88 

7.4.3 Logistic Buffer-based Regression Results – Summary of Key Findings ..................... 93 

7.5 Logistic AKDE Regression Results .................................................................................... 94 

7.5.1 Logistic AKDE Regression – Model Results ............................................................... 94 

7.5.2 Logistic AKDE Regression – Independent Variable Results ..................................... 100 

7.5.3 Logistic AKDE Regression Results – Summary of Key Findings ............................. 103 

7.6 NDVI Analysis Results ..................................................................................................... 104 

8.0 Discussion ............................................................................................................................. 109 

8.1 Buffer and AKDE Methods .............................................................................................. 110 

8.2 Data Constraints ................................................................................................................ 114 

8.3 Comparison to Previous Research .................................................................................... 116 

8.4 Significance of Research Findings.................................................................................... 118 

9.0 Conclusions ........................................................................................................................... 120 

Bibliography ............................................................................................................................... 122 

Appendix ..................................................................................................................................... 129 

 

 

 

 

 

 

 

  



viii 

 

List of Figures 
 

Figure 1. A Venn diagram of Cohen and Felson’s (1979) Routine Activity Theory showing 

crime and delinquency as a product of the intersection of motivated offenders, lack of capable 

guardians, and suitable targets. Adapted from Siegel and Worrall (2015). .................................... 6 

Figure 2. A map showing alcohol services (the large dots) and crime locations (the small dots) in 

Savannah, Georgia in 2000 from Kumar and Waylor (2003). ...................................................... 10 

Figure 3. Kernel density maps of violent trauma and graffiti in Vancouver, British Columbia.  

Residuals of a regression analysis are shown, along with urban deprivation scores by census 

dissemination area (Walker & Schuurman, 2014, p. 7). ............................................................... 11 

Figure 4. The kaleidoscope of urban features described by Barnum, et al., (2017). “A confluence 

of certain features” altogether can “create conditions conducive to offending” (p. 205). ............ 14 

Figure 5. Maps of census tracts in Philadelphia showing mean NDVI and Aggravated Assault 

per 1,000 people. Fewer aggravated assaults were observed in places with higher NDVI values 

(Wolfe & Mennis, 2012, p. 116-117). .......................................................................................... 17 

Figure 6. Conceptual diagram of the study’s research framework. Positive and negative effects 

of built or natural environment features on crime and reported incidents are identified in this 

diagram. These are hypothesised relationships within a theoretical framework and not based on 

actual results of this study. ............................................................................................................ 19 

Figure 7. Map of cities and townships of the Region of Waterloo, Ontario, Canada. Kitchener 

and Waterloo are highlighted in yellow (Dodsworth, 2013). ....................................................... 24 

Figure 8. A subset of a 2013 Landsat 8 satellite image showing the study area of the sister cities 

of Kitchener and Waterloo, Ontario.............................................................................................. 25 

Figure 9. A map of Waterloo and Kitchener, Ontario with important landmarks highlighted, 

including each city’s downtown cores, major roads, major malls, and universities and colleges. 

As previously shown in Figure 7, Waterloo is the northern city, while Kitchener is the southern 

city................................................................................................................................................. 26 

Figure 10. Overall crime rates (except traffic violations) reported in the Region of Waterloo, 

Ontario compared to national crime rates in Canada from 2003 to 2013. Adopted from the 2013 

WRPS annual report (WRPS, n.d.b). ............................................................................................ 27 

Figure 11. A diagram demonstrating that for crime and reported incidents data collected by the 

Waterloo Regional Police Service (WRPS), crime and reported incident points are moved from 



ix 

 

their original location (“address point” within the diagram) to the closest intersection node. Note 

that in this example, the closest street intersection is chosen despite the fact that it is not actually 

located on the street on which the address point is located. (Gloade, 2016; Brinon, 2016) ......... 31 

Figure 12. A histogram of the distance between street intersections in Kitchener. Note that the x-

axis has been cut off at a maximum of 200 m. ............................................................................. 38 

Figure 13. A diagram demonstrating the procedure of creating the 90 m and adaptive buffers. . 38 

Figure 14. The buffers created using a 90 m radius (left) and adaptive method (right). Note that 

buffers located partially outside the boundaries of Kitchener were not included in the study. .... 39 

Figure 15. A simplified diagram showing the overall operation of the “Proportion Buffer Cutter”

....................................................................................................................................................... 40 

Figure 16. The intersection of Highland Road and Patricia Avenue with its 90 m buffer (Buffer 

ID 1730) and the various built environment features that comprise the independent variables 

(expressed as percentages of each building type within the radius, as well as the number of 

alcohol licenses, bus stops, and streetlights within the radius). .................................................... 42 

Figure 17. A two dimensional demonstration of the KDE operation. The “x” marks on the x-axis 

represent individual sample points, the curves above the points represent the curves applied on 

top of each point, and the bolder line on top represents the surface of the KDE. Note how the 

surface increases as the points get denser and as the surface gets closer to the centre of the points 

in the clusters (Silverman, 2016, p. 14). ....................................................................................... 44 

Figure 18. A histogram of the number of street intersections within each grid square within the 

450 m by 450 m grid in Kitchener-Waterloo. Note that the x-axis does not include zero, by far 

the most frequent value (328), in order to aid the interpretability of the rest of the histogram. ... 45 

Figure 19. Steps involved with creating a 450m by 450m grid that assigned bandwidth values for 

creating AKDE rasters. First, the number of number of intersections per zone was calculated, as 

shown in the left map. Second, the number of intersections per kilometer was calculated, as 

shown in the centre map. Third, the bandwidths for the zones were assigned based on the 

intersections per kilometer in each, as shown in the right map. ................................................... 46 

Figure 20. A diagram of the process involved in creating the AKDE rasters and extracting the 

values using intersection points. ................................................................................................... 47 

Figure 21. Examples of AKDE maps of GRT Bus Stops (left) and Alcohol Licensed Restaurants 

(right).  Major roads are indicated. ............................................................................................... 49 



x 

 

Figure 22. A diagram illustrating the process of preparing NDVI datasets from remote sensing 

imagery. ........................................................................................................................................ 50 

Figure 23. Maps showing street intersections in Kitchener with the percentage of building space 

within 90 m buffers that is classified to be commercial (left) and residential (right). .................. 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xi 

 

List of Tables 

 
Table 1. Primary study datasets and data sources for Kitchener-Waterloo ................................. 29 

Table 2. A summary table of built and natural environment independent variables applied based 

on buffer methodology, including how each variable was measured and areal coverage within the 

City of Kitchener........................................................................................................................... 52 

Table 3. A summary table of built and natural environment independent variables applied based 

on buffer methodology, including how each variable was measured and the number of 

occurrences within Kitchener-Waterloo. ...................................................................................... 54 

Table 4. All independent variables included in OLS and logistic regression models of crime 

reported incidents based on the 90 m and adaptive buffers, and the AKDE method. .................. 56 

Table 5. Results of eight regression models tested in the analysis of NDVI and crime/reported 

incidents. “***” represents a p-value below 0.001, “**” represents a p-value below 0.01 but 

above 0.001, and “*” represents a p-value below 0.05 but above 0.01. ..................................... 105 
 

Table A1. The results of the 90 m buffer OLS regression analysis in Kitchener. ..................... 130 

Table A2. The results of the adaptive buffer OLS regression analysis in Kitchener. ................ 131 

Table A3. The results of the 90 m buffer logistic regression analysis in Kitchener. ................. 132 

Table A4. The results of the adaptive buffer logistic regression analysis in Kitchener. ............ 133 

Table A5. The results of the AKDE OLS regression analysis in Kitchener-Waterloo. ............. 134 

Table A6. The results of the AKDE logistic regression analysis in Kitchener-Waterloo. ......... 135 

 

 

 



1 

 

1.0 Introduction 
 

 In the study of geographical patterns of crime, the relationship between crime and the 

built and natural environment has often been explored (Kumar & Waylor, 2003; Wolfe & 

Mennis, 2012; Barnum et al., 2017). These studies usually focus on one specific characteristic of 

the built or natural environment. Some studies examine built characteristics, such as alcohol 

sales establishments or streetlights, and exploring their positive or negative effects on crime (Day 

et al., 2012; Pain et al., 2006). There is also interest in studying the spatial relationship between 

patterns of crime and the natural environment (Kuo & Sullivan, 2001b; Wolfe & Mennis, 2012). 

There has been considerable debate about whether relationships between the natural environment 

and crime rates are positive or negative. However, studies rarely take into account multiple 

relationships between characteristics of the built and natural environment.  This study attempts to 

conduct a comprehensive assessment of the relationship between crime/reported incidents and 

the built and natural environment by adopting a geospatial approach, which includes multiple 

variables and datasets. 

 This study is conducted on the sister cities of Kitchener and Waterloo, Ontario. The focus 

is on crime and reported incidents from the year 2013, with the locations of the crimes and 

reported incidents aggregated to the nearest intersection due to privacy concerns. The study 

examined 18 types of crime and reported incidents ranging from “assault” to “theft under 

$5,000”. Built environment features taken into account include various building types (e.g. 

residential buildings and commercial building), alcohol licensed establishments, and bus stops, 

as well as more specific building types, such as churches and police stations. Natural 

environment features were represented by parks or open space, as well as considering remote 

sensing observations based on the Normalized Difference Vegetation Index (NDVI).  
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There were two main methods used to investigate the relationship between 

crime/reported incidents and the built and natural environment. The first involved examining 

crime and reported incidents in the city of Kitchener. Using ArcGIS and Python codes developed 

for this study, circular buffers were specified around each street intersection in which built and 

natural environment classes were identified.  An OLS and logistic regression were conducted to 

assess the strength of relationships between the built and natural environment and police 

recorded crime and incidents using R programming. The second analysis involved creating 

adaptive kernel density rasters (AKDE) of various built environment features in both Kitchener 

and Waterloo. The intersections were then used to extract the values from the AKDE rasters that 

intersected each intersection point. The relationship between the reported crime/reported 

incidents and AKDE values at each intersection was then investigated, again using OLS and 

logistic regression in R. An additional analysis used buffers to investigate the relationship 

between NDVI values around each intersection and the crime and reported incidents at each 

intersection. The goal of this study was to gain a better understanding of the relationship between 

the built and natural environment and to contribute to existing literature on this topic. This study 

adopted an inductive approach when exploring relationships between the built and natural 

environment and crime, since some hypothesised effects were deduced from existing literature, 

while other relationships between crime and environmental features were theorized based on this 

study’s findings. 

 

1.1 Problem Statement 
 

The goal of this study is to explore the relationship between features of the built and 

natural environment and crime/reported incidents in the cities of Kitchener and Waterloo, 
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Ontario. The first objective of this study is to investigate the link between the level of 

crime/reported incidents and the built environment in the Kitchener-Waterloo area using GIS 

datasets. The intention is to build upon the studies such as those conducted by Kumar and 

Waylor (2003) and Day et al. (2012), which found a strong relationship between liquor stores 

and alcohol serving establishments and crime rates, as well as studies such as those by Barnum et 

al. (2017) and Sohn (2016) who investigated the built environment/crime relationship in a more 

comprehensive manner. By adopting a holistic and comprehensive approach in this study, other 

built features were included in the analysis and statistical methods were adopted for identifying 

significant relationships with criminal activity.  

The second objective of this study is to investigate the link between levels of 

crime/reported incidents and the natural environment in Kitchener-Waterloo using GIS and 

remote sensing data. Findings are then compared with previous studies such as those by Wolfe 

and Mennis (2012) and Chen, et al., (2005), which both found a strong negative relationship 

between crime and vegetation cover. Finally, the third objective of this study is to identify which 

built and natural environment features have the strongest relationships with different crime and 

reported incident types in the Kitchener-Waterloo region by adopting an exploratory spatial data 

analysis approach.  

 

1.2 Thesis Structure 

The thesis is composed of nine sections:  

Chapter 1 – Introduction: Establishes the topic of the thesis, while also explaining the basics of 

the thesis’ methodological setup.  
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Chapter 2 –Literature Review: Outlines the popular theories that are commonly discussed in 

previous studies of the relationship between the built and natural environment. It also discusses 

the methods and conclusions of previous studies on this topic.  

Chapter 3 – Conceptual Framework: Establishes the concept structure that the ideas of thesis 

are based upon. It also discusses the literature contained similar concepts, many of which were 

sources of inspiration for this study’s conceptual framework.  

Chapter 4 – Study Area: Discusses the region in which this study was performed, including 

relevant statistics and characteristics. 

Chapter 5 – Data: Discusses the many datasets used in this study, while also discussing any 

data processing needed to improve these dataset. 

Chapter 6 – Method: Outlines in detail the methodologies implemented in this study and 

outlines the statistics and datasets used with each. 

Chapter 7 – Results: Analyses the results of each model estimated for the study, while also 

examining the independent variables tested in each. 

Chapter 8 – Discussion: Discusses overarching findings of the study, while also discussing its 

weaknesses and comparing those findings to the literature reviewed earlier.  

Chapter 9 – Conclusions: Concludes the findings of the study while discussing its implications 

on future work. 
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2.0 Literature Review 
 

 Crime can be linked to the location at which it occurs. According to Routine Activity 

Theory (Cohen & Felson, 1979), crime rates in a particular time and space can be influenced by 

three factors: motivated offenders, suitable targets, and the lack of capable guardians (Figure 1). 

The theory argues that the convergence of suitable targets and the lack of guardianship at a 

particular time and space will increase crime rates at that particular time and space. In later 

writings, Felson (1987) discussed how various “facilities”, such as shopping centres, 

condominium complexes, office buildings, and schools, make up an urban framework, which he 

called the “metroquilt”. Felson states that there is an imbalance in crime risk with some areas of 

this “metroquilt” having a greater risk of crime than others due to such facilities. He exemplified 

this by demonstrating that residential and retail facilities account for 22% and 19% of property 

crime, respectively, in Chicago during 1984. 

Brantingham and Brantingham’s 1995 study entitled, “Criminality of place: Crime 

generators and crime attractors” is often cited in environmental criminology literature, which 

puts forward the concepts of “crime generators” and “crime attractors”. “Crime generators” are 

places where many people congregate, such as a shopping mall, which presents criminal 

opportunities for a potential offender who might not have otherwise committed a crime. “Crime 

attractors” are places that present criminal opportunities for offenders with the intent to commit a 

specific crime. According to the authors, a city’s environment “urban backcloth” can have a 

great influence on the quantity and types of crimes committed, as well as the time at which they 

are committed. 
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Figure 1. A Venn diagram of Cohen and Felson’s (1979) Routine Activity Theory showing 

crime and delinquency as a product of the intersection of motivated offenders, lack of capable 

guardians, and suitable targets. Adapted from Siegel and Worrall (2015). 

 

 Previous research has also supported a relationship between crime and surrounding 

vegetation cover (Wolfe & Mennis, 2012; Chen, et al., 2005; DeMotto & Davies, 2006), 

although the direction of this relationship is debated. Some studies suggest that vegetation cover 

increases the incidence of crime, but these studies often tend to focus on the fear of crime as 

opposed to actual crime (e.g. people fearing that trees and other large plants could be used as 

hiding places for people intent on committing crimes against them) or base their findings on 

accounts of offenders using vegetation in hiding their criminal activities (Nasar & Fisher, 1993; 

Michael, et al., 2001). The idea of unkempt and overgrown vegetation increasing the level of 
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crime is consistent with the “broken window theory” proposed by Kelling and Wilson (1982), 

which states that disorder in the physical environment can make a location prone to criminal 

invasion. Others have suggested that vegetation decreases levels of crime or that a lack of 

vegetation tends to increase crime levels (Wolfe & Mennis, 2012; Chen, et al., 2005).  

Two main reasons have been put forward to explain why vegetation may have a negative 

effect on criminal activity. First higher surveillance may result from more individuals using 

greenspace areas (Kuo and Sullivan, 2001b), thus deterring criminal activity. Second, the 

presence of vegetation may result in positive psychological effects by alleviating mental fatigue 

and reducing deviant behaviour (Kaplan, 1987). Increased surveillance due to people using 

greenspaces and associated reduction in crime is consistent with the ideas presented by Jacobs 

(1961) in her publication, “The Death and Life of Great American Cities” where she states that 

more “eyes upon the street” help to increase surveillance and therefore keep the streets safe (she 

also noted, however, that greenspaces must have a “diversity of uses and users” to enliven a 

neighbourhood or it might simply further depress an area) (p. 35, 111). This is further supported 

by Kuo and Sullivan (2001b), who found that both property and violent crime were lower in 

apartment complexes located in close proximity to open and vegetated spaces than those that 

were not. The authors partially attributed this to increased surveillance (i.e. recreational uses, 

passersby) due to vegetation and greenspaces. A decrease in mental fatigue due to vegetation is 

supported by Kaplan (1987), who stated that mental fatigue can increase violent behaviour in 

individuals. He defines mental fatigue as “a state of discomfort and reduced effectiveness that 

usually follows intense mental effort” (p. 56). Kaplan (1987) suggested that parks and gardens 

can help alleviate mental fatigue in an urban setting. This theory is supported by Kuo and 

Sullivan (2001a), who found that residents in public housing reported fewer incidents of violence 



8 

 

and/or aggression in building complexes with higher amounts of vegetation than at building 

complexes with a lower presence of vegetation. 

 An environmental approach is often adopted only as a partial explanation for the locality 

of crime. This approach tends to explain or at least partially explain the geographic distribution 

of crime according to socioeconomic factors, such as household income, employment and 

demographics (Ackerman & Murray, 2004; Ceccato & Dolmen, 2011). Some studies account for 

socio-economic factors in their analyses as a control variable (Wolfe & Mennis, 2012; Sohn, 

2016). However, other studies do not account for socio-economic factors and instead focus on 

the direct link between crime and the environment, both built and natural (Kumar & Waylor, 

2003; Piza et al., 2013; Barnum et al., 2017).  

   

2.1 Crime in Proximity to Single Characteristics of the Built Environment 
 

 The relationships between single characteristics of the built environment and crime were 

often examined using similar methods (Pain et al., 2006; Kumar & Waylor, 2003; Suresh & 

Vito, 2009). The most common environment features studied within the literature were the 

presence of bars, liquor stores, and other sources of alcohol sale (Day et al., 2012; Kumar & 

Walyor, 2003). Many other built environment features and their relationship with crime have 

been an object of study, ranging from government subsidized housing to streetlights (Suresh & 

Vito, 2009; Pain, et al., 2006). Common methods applied in these studies are regression 

techniques (Day, et al., 2012; Kumar & Walyor, 2003; Suresh & Vito, 2009; Walker & 

Schuurman, 2015) and Moran’s I test statistics for spatial autocorrelation (Suresh & Vito, 2009; 

Walker & Schuurman, 2015). Results from these studies have supported strong relationships 

existing between crime and various features of the built environment. 
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Day, et al. (2012) examined how crime is affected by the accessibility of alcohol outlets 

in different regions of New Zealand. This study assessed the median distance to alcohol outlets 

in police station areas, which involved using census mess-blocks and comparing corresponding 

violent crime rates in the police station area, while controlling for demographic variables (2012). 

Statistical analysis was based on a negative binomial regression. The results suggested that 

geographic access to alcohol establishments can serve as a significant predictor when studying 

violent crime, and the two form a negative relationship where violent crime increases as median 

distance to alcohol outlets decreases. Kumar and Waylor (2003) also examined the proximity of 

crime incidents to alcohol facilities in Savannah, Georgia. A logistic regression model was used 

to assess the probability of crime at various intervals of proximity to places of alcohol services. 

A map of Savannah showing crimes and alcohol services in 2000 is shown in Figure 2. In 

contrast to Day, et al. (2012), Kumar and Waylor (2003) did not control for demographic 

variables. However, both studies arrived at similar findings, identifying higher crime density in 

areas in close proximity to alcohol establishments.  

Similar studies include Pain, et al., (2006) who assessed streetlighting and its relation to 

crime and fear of crime in several towns in Northumberland, England. This study involved a two 

pronged analysis. First, a GIS approach was adopted to compare crime hotspots and streetlight 

coverage to identify areas that experienced high incidents of crime and low streetlight coverage. 

The second part of the study involved conducting interviews in the ten most problematic areas of 

the city, as a means of qualitative rapid community appraisal.  The results noted that crime 

hotspots and the residents’ views of high crime locations did not necessarily match, partly due to 

unreported crime. Overall, most surveyed residents did not believe that improvements in 



10 

 

streetlighting in their area would have a significant impact on levels of crime, although improved 

streetlighting could potentially reduce the overall fear of crime.  

 

 
Figure 2. A map showing alcohol services (the large dots) and crime locations (the small dots) in 

Savannah, Georgia in 2000 from Kumar and Waylor (2003). 

 

Suresh and Vito (2009) evaluated the relationship between public housing and homicide 

in Louisville, Kentucky. This study involved creating 1,000 foot buffers around public housing 

projects in the city and then using buffers to assess the distribution of crime in the city. A spatial 

regression was then conducted on homicides in the city between 1989 and 2007. The results 
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showed that public housing had a significant effect on the spatial distribution of homicides in 

Louisville. When new public housing arose in mixed-income communities, the homicide clusters 

appeared to be displaced to other low-income areas. A spatial regression analysis determined that 

both median income of residents and vacant housing were both significant predictors of 

homicide.  

 

 
Figure 3. Kernel density maps of violent trauma and graffiti in Vancouver, British Columbia.  

Residuals of a regression analysis are shown, along with urban deprivation scores by census 

dissemination area (Walker & Schuurman, 2014, p. 7).  
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Walker and Schuurman (2015) assessed incidents of graffiti, which they considered to be 

an indicator of urban depravity (which was defined as low scores according to several socio-

economic metrics in this study), and their relationship with violent injury in the city of 

Vancouver, British Columbia. Kernel density maps of incidences of graffiti and violent injury 

were developed and a regression analysis on the two kernel density maps was conducted by 

pairing overlapping pixels. Search radiuses of 500 metres were chosen based on the approximate 

average size of a neighbourhood. Moran’s I test statistics were used to test for spatial 

autocorrelation of the residuals. Finally, a social deprivation metric, VANDIX was developed for 

each of the city’s census dissemination areas. The results identified a strong and highly 

significant correlation between violence and graffiti, with the Moran’s I test statistic showing 

significant positive spatial autocorrelation in regression model residuals. Walker and 

Schuurman’s VANDIX metric showed both high and low socio-economic levels of deprivation 

in areas where graffiti and violent crime were prevalent. Figure 3 shows an example of resulting 

maps from this analysis, including the distribution of violence and graffiti, which also appeared 

to have a significant relationship. The regression analysis’ residuals and VANDIX deprivation 

scores are also shown in Figure 3. 

 

2.2 Crime in Relation to Multiple Characteristics of the Built Environment 
 

Studies that have considered multiple characteristics of the built environment and their 

relationship with crime have adopted various methodological approaches. Examples of features 

of the urban landscape that have been studied, include bus stops and schools (Sohn, 2016), and 

features that are more directly linked to crime, such as the dwellings of known gang members 

(Caplan, et al. 2011). The most common statistical method applied in such studies are multiple 
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regression modelling (Sohn, 2016; Piza, et al., 2014). Barnum et al. (2017) and Caplan et al. 

(2011) and a technique called risk terrain modelling (RTM). 

Caplan et al. (2011) examined crime hotspots in Irvington, New Jersey using RTM as a 

place-based forecasting method. They used RTM to create raster maps that demonstrated risk 

level using three variables considered to be predictors of shootings, namely dwellings of known 

gang members, drug arrest locations, and retail business locations, and tested these maps against 

other types of crimes. Sohn (2016) tested the practicality of ‘crime prevention through 

environmental design’ in Seattle by analysing crime and various built environment features. This 

study used residential crime density in neighbourhoods defined by 500 m buffers, which was 

included in a regression analysis, along with population density, building height, road density, 

ratio of commercial buildings to residential buildings, bus stop density, intersection density, and 

ratio of park area to residential area.  

Barnum et al. (2017) compared a diverse group of built environment features, ranging 

from foreclosed homes to schools to bus stops to bars whose arrangement they described as a 

“kaleidoscope” of urban features (see Figure 4). This study used RTM to compare effects of 

various urban features on risk of robbery in Chicago, Kansas City, and Newark. Piza et al. 

(2014) attempted to assess which CCTV camera locations yielded a reduction in crime, and tried 

to explain the varying effects of CCTV cameras on spatial patterns of crime. These assessments 

focused on how crime at locations with cameras (before and after they were installed) were 

associated with, (a) environmental features such as bars and transit stops, (b) line of sight 

variables such as percentage of foliage obstruction, (c) enforcement variables such as crime 

detections from the CCTV cameras, and (d) a variable indicating the type of CCTV camera in 

use. 
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Figure 4. The kaleidoscope of urban features described by Barnum, et al., (2017). “A confluence 

of certain features” altogether can “create conditions conducive to offending” (p. 205). 

 

 Conflicting findings are often reported on the effect of built environment features (e.g., 

bus stops) on levels of crime in urban environments (Sohn, 2016; Barnum et al., 2017). Barnum 

et al. (2017) also emphasized that the effect on crime by place features can vary greatly from city 

to city. Caplan et al. (2011) found that RTM was more accurate in predicting future shootings 

than retrospective hotspot mapping. Sohn (2016) found that the variables they considered, except 

for average building high and population density, had a negative effect on crime. Notably, bus 

stops were determined to have a negative relationship with crime. Barnum et al. (2017) found 

that foreclosed homes, gas stations, bus stops, grocery stores, liquor stores, and drug markets 

were all consistent risk factors for robbery in all three cities that were included in their study. 

However, other factors, such as parks, bars, and schools were not risk factors in all of the cities. 

Piza et al. (2014) found that decreases in overall crime, violent crime, and theft from autos were 

significantly associated with camera enforcement.  Decreases in violent crime and robbery were 
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significantly associated with viewsheds containing bars. Violent crime, robbery, and theft from 

automobiles were lower where percentage coverage of camera image by immovable objects was 

high.  

  

2.3 Crime and the Natural Environment 
 

Many studies have examined the relationship between the natural environment and crime 

using different data sources and methodologies. Remote sensing has been applied, making use of 

the technique’s ability to measure an entire study area, although their methods of using the 

imagery varied widely (Chen, et al., 2005; Patino, et al., 2014; Wolfe & Mennis, 2012). Other 

studies have focused on parkland and other vegetation covered areas (DeMotto & Davies, 2006; 

Sohn, 2016; Barnum, et al., 2017). Some research has focused on comparing the relationship 

between vegetated areas and crime rates versus that of non-vegetated areas (Chen, et al., 2005; 

Wolfe & Mennis, 2012). Some studies have examined vegetation alone in its relationship with 

crime (DeMotto & Davies, 2006; Wolfe & Mennis, 2012), while others have considered 

confounding effects of other urban environment features such as bus stops and foreclosed homes 

(Patino, et al., 2014; Sohn, 2016; Barnum, et al., 2017). 

Chen, et al., (2005) used both remote sensing and GIS to study the relationship between 

crime and vegetation in Carlsbad, California. This study obtained high resolution PAN images 

taken from SPOT, and images were classified using the ISODATA clustering method and a 300 

m grid, which identified two classes (vegetation and non-vegetation). The study involved three 

steps of analysis, including spatial clustering of crime and assessing where those clusters 

occurred, a traditional regression analysis that attempted to explain crime according to variables 

of propensity and opportunity, and a spatial filtered regression analysis to study spatial clustering 
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as a predictor of crime. Patino, et al., (2014) used remote sensing imagery from the Quickbird 

satellite to study crime and urban layout in Medellin, Columbia. The images were classified 

based on maximum likelihood to calculate the percentage of the city that was covered by 

vegetation, impervious surfaces, clay roofs, and soil.  Classification results were then combined 

with socio-economic and crime variables in an Ordinary Least Squared Regression model. The 

texture of the images and the relationship to crime was also assessed using FETEX 2.0. It is 

interesting to note that both Patino, et al. (2014), and Chen, et al. (2005) excluded the near 

infrared band from their analysis, which could have been included due to the high sensitivity of 

infrared wavelengths to vegetation and could potentially improve the results of both studies.  

Wolfe and Mennis (2012) focused on remotely sensed vegetation indices that included 

red and infrared wavelengths and relating them to crime levels in Philadelphia. The study used a 

Landsat 7 image from which average Normalized Difference Vegetation Index (NDVI) values 

were calculated for each census tract. Vegetation indices, of which NVDI is the most common, 

are statistics that describe density and health of vegetation in satellite imagery (USGS, n.d.). 

Multivariate ordinary least square (OLS) regression was applied to each census tract with 

vegetation and socio-economic data as independent variables and different crime types as the 

dependent variable. DeMotto and Davies (2006) assessed the proximity of crime to parks in 

Kansas City, Kansas. The study used a buffer analysis with buffers identified at intervals at 

progressive distances extending from the parks for studying surrounding crime using regression 

and Moran’s I test statistics with the hypothesis that crime would decrease as one moves further 

away from parks. This buffer system was potentially flawed, since once a crime was associated 

with a buffer, the crime was then assigned the buffer’s distance interval as its distance from the 

park, rather than its actual distance from the park. 



17 

 

 

 
Figure 5. Maps of census tracts in Philadelphia showing mean NDVI and Aggravated Assault 

per 1,000 people. Fewer aggravated assaults were observed in places with higher NDVI values 

(Wolfe & Mennis, 2012, p. 116-117). 

 

The relationship between vegetation and crime has conflicting results in the literature. 

While many studies have identified lower crime rates in the presence of vegetation (or lack of 

vegetation increasing levels of crime) (e.g., Wolfe & Mennis, 2012; Chen, et al., 2005), other 

research have associated higher crime levels with vegetation cover (e.g., DeMotto & Davies, 

2006), while some failed to find any significant relationship between the two variables (e.g., 

Patino, et al., 2014). In particular, Chen, et al., (2005) found that areas of highest crime rates 

were associated with shopping centres and commercial areas. A cluster analysis revealed that 

burglaries and assault were most associated with non-vegetated grid cells. The authors concluded 

that the classification of satellite imagery into a non-vegetation index was successfully applied 

for predicting where burglary hotspots were geographically located. Patino, et al., (2014) found 

that the best performing remotely sensed variable was percentage of other impervious surfaces 
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(i.e., impervious surfaces that are not clay roofs), where average homicide rates tended to be 

higher where more impervious surfaces were present. Unlike findings from other studies, the 

authors found percentage of vegetation to be an insignificant predictor. Wolfe and Mennis (2012) 

found that almost all types of crime were both negatively and significantly associated with 

vegetation, meaning that crime decreased as the amount of vegetation increased. This 

relationship between crime and vegetation was independent of the socio-economic status of 

neighbourhoods. Figure 5 shows maps of average NDVI values and aggravated assault per 1,000 

persons in each Philadelphia census tract, where the relationship between both variables was 

significant. In contrast, DeMotto and Davies (2006) determined that levels of crime tended to 

increase as distance to parkland decreased.   

Such conflicting findings between research studies on the links between crime and 

features of the built and natural environment highlight that such relationships are complex and 

likely differ based on their geographical, demographic, and socioeconomic context.  This 

suggests that further research is required, especially adopting a more holistic and comprehensive 

approach exploring links between multiple characteristics of the built and natural environment 

and crime, rather than single attributes at a time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

 

3.0 Conceptual Framework 
 

 

 
Figure 6. Conceptual diagram of the study’s research framework. Positive and negative effects 

of built or natural environment features on crime and reported incidents are identified in this 

diagram. These are hypothesised relationships within a theoretical framework and not based on 

actual results of this study. 

 

 The conceptual framework of this study is based on the hypothesis that features of the 

built and natural environment affect the location of where incidents of crime may be reported. In 

turn, these reports of crime affect the location of police activity. The built environment refers to 

man-made physical features of the urban environment being studied, such as shopping centres, 

bus stops, or houses, with the function of each building or object being important to its 

classification. The natural environment consists of features within the urban environment studied 

that are natural, such as occurrence of vegetation and water bodies. The natural environment can 
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also refer to natural features that are planned, such as parks and ponds. Figure 6 shows the 

relationship between these features and their potential effects on crime and reported incidents. 

The influences shown in the diagram can work in multiple pathways and directions depending on 

the type of crime committed. In some situations, a criminal might commit a crime in a certain 

area due to the characteristics of its environment. For example, a thief may target a bus stop, 

since it is a place where people often congregate outdoors, thus creating an opportunity for theft, 

according to Routine Activity Theory (Cohen & Felson, 1979). Other crimes may occur due to a 

location influencing the actions of the criminal and may be a partial cause for committing the 

crime. Examples may include public intoxication or assault near a bar. While the person likely 

did not go to a bar intending to commit a crime, the environment may influence the individual to 

commit a crime, namely due to intoxication from consuming alcohol at the bar.  

Consequently, an environmental setting can both influence where a criminal commits a 

crime and influence an individual to commit a crime. This is consistent with Brantingham and 

Brantingham’s 1995 paper, which described the concept of “crime attractors” and “crime 

generators”. “Crime generators” create opportunities to commit crime due to the large 

concentration of people at a location that potential criminals might exploit. “Crime attractors” 

tend to attract people with the intent of committing a particular crime given the opportunities 

presented at that location (Brantingham and Brantingham, 1995).  

In addition to creating opportunity and influencing criminals to commit crime, 

environmental features also have the potential to serve as crime deterrents. For example, a 

criminal may not want to commit a crime near a streetlight during night time due to the greater 

likelihood of being seen. Another example from the literature is Piza, et al. (2014), who 
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concluded that a CCTV camera can have a deterrent effect when installed in a proper manner and 

setting. 

 In the case of crime attractors, influences or deterrents to crime included in this study 

comprised of three categories of the built environment, including types of buildings, bus stops, 

and streetlights. Within the built environment, as previously discussed and in accordance with 

Routine Activity Theory, bus stops were hypothesised to have a positive effect on crime within 

their vicinity, meaning that high levels of crime within their vicinity would be expected. 

Streetlights were expected to have a negative effect on crime, resulting in lower levels of crime 

relative to other unlit or dark areas during night hours.  

The building types considered in this study included residential, educational, religious, 

commercial, recreational, institutional, agricultural, industrial, and alcohol serving or sales 

establishments. Alcohol serving/selling establishments were expected to have a positive effect on 

crime, since the consumption of alcohol can often promote irrational or deviant behaviour that 

may result in criminal offences (Day, et al. 2012; Livingston, 2007; Kumar & Waylor, 2003). 

Other buildings, such as educational and religious facilities were expected to have a negative 

effect on crime due to the concentrated presence and congregation of children and the elderly, 

who were expected to behave as crime deterrents. Other buildings, such as industrial buildings, 

did not have a hypothesised effect on crime as they were not addressed in the reviewed literature. 

In this way, this study adopts an inductive approach to the research. 

All natural environmental factors, including the presence of parks and general vegetation 

cover, were expected to have a negative effect on crime. As previously discussed, there is 

frequent debate within the literature as to whether the presence of vegetation cover has a positive 

or negative effect on crime. Some studies support the notion that increased vegetation cover 
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results in a rise in criminal activity by increasing the number of potential hiding spots for 

criminals and their criminal activities (Michael, et al., 2001). Others suggest that increased 

vegetation cover results in a negative effect on crime, since it causes more people to be present 

outdoors, allowing for increased surveillance and also because vegetation promotes 

“psychological softening” and alleviates stress (Wolfe & Mennis, 2012). This research adopts the 

hypothesis of more recent studies, including Wolfe and Mennis (2012) and Chen, et al. (2005), 

which suggest that less crime results in areas with higher vegetation cover and more crime 

occurs in areas of scarce vegetation cover. 
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4.0 Study Area 
 

 The study area includes the cities of Kitchener and Waterloo in Ontario, Canada with a 

map shown in Figure 7 and a satellite photo shown in Figure 8. The two cities are also shown in 

Figure 9, which displays major landmarks and roads. The cities are located in Southwest Ontario 

and are located in the larger Region of Waterloo (Region of Waterloo, 2011). The Region of 

Waterloo is policed by the Waterloo Regional Police Service (WRPS). Both cities contain mostly 

urban land, although there is some rural area included within each city’s boundary. The city of 

Waterloo has a population of 98,780 according to the 2011 census and is the 52nd largest 

municipality in Canada (Statistics Canada, 2016b). It is known as a university town, being home 

to the University of Waterloo and Wilfred Laurier University, as well as a satellite campus of 

Kitchener’s Conestoga College. It is also known as a high tech centre and is home to companies 

such as Blackberry (English, 2011). The city of Kitchener is located directly south of the city of 

Waterloo. It is the largest city in the Waterloo Region with a population of 219,153 in the 2011 

census and is the 22nd largest municipality in Canada (Statistics Canada, 2016b). Kitchener’s 

economy is considered to be more “blue-collar” than that of Waterloo and the city has 

experienced the type of urban decline that is often associated with North American industrial 

centres in the past 50 years (English, 2011). However, the city has experienced much urban 

redevelopment in the past two decades and has more recently become host to a number of high-

tech companies (English, 2011). Together, along with Cambridge, Woolwich, and North 

Dumfries, the two cities help form a Census Metropolitan Area (CMA) called “Kitchener - 

Cambridge - Waterloo, Ontario”, which is the 4th largest in Ontario and the 10th largest in Canada 

(Statistics Canada, 2016a).  
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Figure 7. Map of cities and townships of the Region of Waterloo, Ontario, Canada. Kitchener 

and Waterloo are highlighted in yellow (Dodsworth, 2013). 

 

The Region of Waterloo is a relatively safe place in terms of criminal activity and crime 

rates. In a ranking of the most dangerous cities in Canada by Maclean’s magazine in 2010, 

Kitchener ranked as the 65th most dangerous city in Canada with a crime score that was 15.88% 

lower than the country’s overall crime score (Maclean’s, 2010). As shown in Figure 10 from the 

WRPS 2013 annual report, the overall crime rate has been on a decreasing trend in the Region of 

Waterloo over the decade leading up to 2013, which is the year of crime and reported incident 

data used in this study. The violent crimes rate (not shown in Figure 10) had previously been on 

an increasing trend from 2003 to 2010, but the rate decreased between 2010 and 2013 (WRPS, 

n.d.b). The overall crime rate for the Region of Waterloo was well below Canada’s overall crime 

rate from 2003 to 2013, but was somewhat higher than Ontario’s overall crime rate from 2009 to 

2013 (WRPS, n.d.b). 
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Figure 8. A subset of a 2013 Landsat 8 satellite image showing the study area of the sister cities 

of Kitchener and Waterloo, Ontario. 

 

Despite Kitchener-Waterloo being classified as a relatively safe city, it was still 

nevertheless chosen as the study area for this thesis for several reasons. The first reason being 

that this study was conducted at the University of Waterloo, resulting in inherent interest in 

studying the local region, ease of access to the study area for ground truth and data verification, 

and potential contacts with the WRPS and local experts. This also allowed for greater user 

familiarity with the study area and application of local knowledge during both development and 

analysis phases of the study. There may also be wider relevance and potential application of 

study results compared to conducting the study elsewhere on an arbitrarily selected or less 

familiar locality. The second reason was that a smaller study area may allow for a more 

manageable and definable study, resulting in more focus on the urban environment and crime 
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relationship with fewer confounding factors, which may be more prominent in larger 

metropolitan areas. The third and perhaps most significant reason for selecting Kitchener-

Waterloo as the study area was the availability of high quality crime and reported incident data, 

which was available as point dataset for the region. 

 

 
Figure 9. A map of Waterloo and Kitchener, Ontario with important landmarks highlighted, 

including each city’s downtown cores, major roads, major malls, and universities and colleges. 

As previously shown in Figure 7, Waterloo is the northern city, while Kitchener is the southern 

city. 
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Figure 10. Overall crime rates (except traffic violations) reported in the Region of Waterloo, 

Ontario compared to national crime rates in Canada from 2003 to 2013. Adopted from the 2013 

WRPS annual report (WRPS, n.d.b). 
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5.0 Data 
 

Several geospatial datasets were used for this study, which were acquired from a variety 

of sources, mainly from official government agencies. Formats include vector data, satellite 

imagery, and simple spreadsheets, which often required significant processing prior to analysis. 

For example, spreadsheet datasets were converted into vector point datasets and geocoded. A 

summary of all datasets used in this study is provided in Table 1. 

The principal dataset used in this study was crime and reported incident data collected by 

the Waterloo Regional Police Service (WRPS). The available dataset contains points 

corresponding to what the WRPS refers to as “occurrences”, which denotes a record of each time 

police services were called (WRPS, 2015a). Therefore, these calls to service “do not represent 

actual criminal activity”, since not all police calls involve crime (WRPS, 2015a, p. 2). 

Occurrences considered to be criminal in nature are considered to be “police-reported crime” as 

opposed to actual crime which requires a criminal conviction (WRPS, 2015a). Actual geographic 

criminal conviction data would be difficult to obtain given the often lengthy processes of the 

court system and confidentiality issues. Therefore, police-reported crimes within the dataset can 

be considered to be a pseudo representation of criminal activity. Within this thesis, such 

occurrences are referred to as “crime and reported incidents” or “crime/reported incidents”.  
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Table 1. Primary study datasets and data sources for Kitchener-Waterloo 
Subject Dataset Name Date 

Created 

Notes Source 

Crime and 

Reported 

Incidents 

WRPS Occurrence 

Data  

 

2013  All crime and reported incidents in the Waterloo Region in 
the year 2013. Also available for 2011 to  2015 

 Contains coordinates. Each point is located at the nearest 

intersection 

 Contains both the purpose of the original call and what the 
crime (or other incident) was determined to have occurred 

after the call was resolved 

Waterloo Regional 

Police Service 

Building 

Footprints 

City of Kitchener 

Buildings 

Updated 

regularly 
 Contains the building footprints for all buildings in the city 

of Kitchener 

 Also has a category to classify each buildings’ type 

City of Kitchener 

Bus Stops Transit - GRT Stops Updated 
regularly 

 Contains locations of all bus stops in the Waterloo Region 
used by Grand River Transit (GRT) 

Region of Waterloo 

Satellite 

Imagery 

Landsat 8 Satellite 

Data 

Sept. 17, 

2013 
 Obtained from the USGS Global Visualization Viewer 

website 

 Landsat 8 data 

 Covers entire Region of Waterloo 

USGS 

Roads Ontario Road 

Network: Road Net 

Element 

2015  Contains all roads in Ontario 

 Used in this study to create street intersection data  

Government of 

Ontario 

Police Stations Police Stations in 

the Region of 

Waterloo 

2015  Waterloo Regional Police Service (WRPS) station 

 Locations obtained from police department website 

 Both Kitchener and Waterloo included 

Waterloo Regional 

Police Service 

website 

Liquor 

Servicing 

Establishments 

Licensed 

Restaurants 

2014  A combination of information from Alcohol and Gaming 
Commission of Ontario and the City of Kitchener 

 Added to the footprint data 

 While City of Kitchener data only has the licensed 
restaurants in Kitchener, the Alcohol and Gaming 

Commission of Ontario contains information for both 

Kitchener and Waterloo 

Alcohol and Gaming 

Commission of 

Ontario and City of 

Kitchener 

Municipal 

Boundaries 

City Town Village 

Boundaries 

  Used for the boundaries of Kitchener and Waterloo for data 
clipping and various processes  

Region of Waterloo 

Streetlights Streetlight in the 

City of Kitchener 

  Streetlights only for Kitchener City of Kitchener via 

the UW Geospatial 

Centre 

Parks City of Kitchener 

Parks 

Updated 

regularly 
 Combined with golf courses to create greenspace data City of Kitchener 

Golf Courses City of Kitchener 

Golf Courses 

Updated 

regularly 
 Combined with parks to create greenspace data City of Kitchener 

Liquor Stores LCBO and Beer 

Store in Kitchener 
and Waterloo 

2015  Address of each LCBO and Beer Store in Kitchener and 
Waterloo were added 

LCBO and Beer 

Store website 

Elementary 

Schools 

Elementary schools 

in Kitchener and 

Waterloo 

Updated 

regularly 
 A combination of select data (only elementary schools) 

from two datasets, from the City of Kitchener and the City 

of Waterloo 

City of Kitchener and 

City of Waterloo 

Secondary 

Schools 

Secondary Schools 

in Kitchener and 
Waterloo 

Updated 

regularly 
 A combination of select data (only secondary schools) 

from two datasets, from the City of Kitchener and the City 

of Waterloo 

City of Kitchener and 

City of Waterloo 

Universities Universities and 

Colleges in 

Kitchener and 

Waterloo 

Updated 

regularly 
 A combination of select data (only post-secondary 

institutions) from two datasets, from the City of Kitchener 

and the City of Waterloo 

 Included colleges but not carrier colleges 

 Satellite campuses that occupied the same building were 

counted as one campus 

City of Kitchener and 

the City of Waterloo 

Hospitals Hospitals in 

Kitchener and 

Waterloo 

Updated 

regularly 
 Since no hospitals are located in Waterloo, only the 

Kitchener dataset was required 

City of Kitchener 

Places of 
Worship 

Places of Worship 
in Kitchener and 

Waterloo 

Updated 
regularly 

 Combined datasets from Waterloo and Kitchener City of Waterloo and 
City of Kitchener 

Libraries Libraries in 

Kitchener and 

Waterloo 

Updated 

regularly 
 Combination of a shapefile dataset from City of Kitchener 

and a shapefile created from address data from City of 

Waterloo websites 

City of Waterloo and 

City of Kitchener 

Community 
Centres 

Community Centres 
in Kitchener and 

Waterloo 

Updated 
regularly 

 Combination of a shapefile dataset from City of Kitchener 
and a shapefile created from address data from City of 

Waterloo websites 

City of Waterloo and 
City of Kitchener 

Arenas Arenas in Kitchener 

Waterloo 

Updated 

regularly 
 Combination of a shapefile dataset from City of Kitchener 

and a shapefile created from address data from City of 

Waterloo websites 

City of Waterloo and 

City of Kitchener 



30 

 

  

The dataset used for this study contains crime and reported incident records for the year 

2013 (WRPS, 2015b). Each record contains several types of information, such as the reported 

date and time, the priority level of the call, and the total time it took to resolve the situation 

(WRPS, 2015a). The information considered to be most important for this study were the 

“Geographic Location” and the “Final Call Type Description” (WRPS, 2015a). The “Geographic 

Location” data column contains the x and y coordinate of the nearest intersection to each crime 

and reported incident in the NAD1983 UTM Zone 17N Transverse Mercator projection 

coordinate system (WRPS, 2015a). The reason for the location of each crime and reported 

incident to be moved to the nearest street intersection is for protecting the privacy of callers and 

victims involved (WRPS, 2015a). The diagram in Figure 11 demonstrates how crime and 

reported incidents are assigned to the nearest street intersection. As shown in the diagram, the 

nearest intersection is always chosen regardless of whether or not the intersection is located on 

the same street as the crime or reported incident. “Final Call Type Description” denotes the 

crime type attributed to each crime or reported incident after the call has been resolved (WRPS, 

2015a). The data is provided in a spreadsheet format and therefore must be imported into 

ArcCatalog as a Feature Class before it can be analysed spatially and statistically. All crime and 

reported incidents missing geographic location or final call type information were eliminated 

from the dataset. Also sourced from the WRPS website were the locations of police stations 

(WRPS, n.d.a). A dataset was created using the address information of the police stations based 

on Google Earth. 
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Figure 11. A diagram demonstrating that for crime and reported incidents data collected by the 

Waterloo Regional Police Service (WRPS), crime and reported incident points are moved from 

their original location (“address point” within the diagram) to the closest intersection node. Note 

that in this example, the closest street intersection is chosen despite the fact that it is not actually 

located on the street on which the address point is located. (Gloade, 2016; Brinon, 2016) 

  

 Several datasets were collected from the City of Kitchener’s open data catalogue. A key 

dataset for this study was building footprints within the city, which were created using building 

surveys, site plans, or aerial imagery (City of Kitchener, n.d.a). The building type in this study 

was determined using the “CATEGORY” column of the dataset, which included: 

“RESIDENTIAL”, “RECREATIONAL”, “INSTITUTIONAL”, “COMMERCIAL”, 

“INDUSTRIAL”, “UTILITY”, “AGRICULTURAL”, and “COMMERCIAL RESIDENTIAL” 

(City of Kitchener, n.d.a). All sheds, a classification within the column “SUBCATEGORY”, 

were eliminated from the dataset due to inconsistencies in their classification (e.g., backyard 

shed could be classified as either “RESIDENTIAL” or “RECREATIONAL”). The study also 

used the geographic boundaries of all parks and golf courses in Kitchener from the city’s open 

data catalogue (City of Kitchener, n.d.a). Both datasets were combined into a single dataset to 
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represent the city’s greenspace. The new greenspace dataset was then combined with the 

building dataset (giving the priority to buildings when overlap occurred), creating a 

building/greenspace dataset with the parks and golf courses classified as “GREENSPACE” 

within the “CATEGORY” column. The hospitals dataset, containing the point locations of all 

hospitals in Kitchener, was sourced from the City of Kitchener open data catalogue (City of 

Kitchener, n.d.a). Since no hospitals are located in Waterloo, only the Kitchener dataset was 

required. The streetlight data was only available for Kitchener and also sourced from the City of 

Kitchener and obtained through the Geospatial Centre at the University of Waterloo’s Dana 

Porter Library (City of Kitchener, n.d.b). 

Two alcohol-related datasets, namely alcohol serving establishments and LCBOs and 

Beer Stores, were created separately. Due to Ontario’s strict liquor laws, alcohol sales are not 

permitted at grocery and corner stores. Although these laws have been partially relaxed in recent 

years (after the crime and reported incident data was collected in 2013), alcohol sales outside of 

restaurants are virtually restricted to the duopoly of the LCBO and Beer Stores. Therefore, by 

creating a dataset of LCBO and Beer Store locations, virtually all alcohol sales outside of 

restaurants could be encapsulated within one dataset. A dataset containing all LCBO and Beer 

Store locations in Kitchener and Waterloo was created using the websites of the two respective 

companies and searching for branch addresses (LCBO, n.d.; The Beer Store, n.d.).  

The licensed restaurants dataset was a combination of two datasets provided by the City 

of Kitchener and the Alcohol and Gaming Commission of Ontario (AGCO). The City of 

Kitchener dataset was obtained after a data request was made to the City of Kitchener’s GIS staff 

(Adams, 2015). The AGCO dataset was obtained through a Freedom of Information (FOI) 

request for addresses of all alcohol license holders in the Region of Waterloo (AGCO, n.d.). 
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While the Kitchener dataset was geocoded (locations were adjusted if the points were not within 

the boundaries of the proper buildings), the AGCO dataset only included each establishment’s 

address and were therefore geo-located using Google Earth. Only “sale licences” were included 

from the AGCO dataset, since the other classifications (e.g. breweries and distributors) were 

considered to be irrelevant. Finally, the AGCO and City of Kitchener datasets were combined 

into a single alcohol-licensed restaurant dataset. Although the vast majority of Kitchener alcohol 

licensed restaurants were included in both datasets, several were not. Both the complete licensed 

restaurants dataset and the LCBO and Beer Store dataset were used to create a new column in the 

building/greenspace dataset, which included a count of the number of businesses that sold 

alcohol within each building in the dataset. 

Roads for the purpose of creating intersections were sourced from the Ontario 

government (Natural Resources and Forestry, 2015). Street data were clipped to the boundaries 

of Kitchener and Waterloo and the “Intersect” tool was performed on the clipped roads to create 

intersections. Each intersection point was processed to ensure that it was in line with the 2013 

crime and reported incident data. For example, most cul-de-sacs and private road intersections 

were removed since crime and reported incidents were rarely observed there. Underpasses and 

overpasses were also removed for the same reason. Another edit pertained to lanes of traffic 

divided by a median. The road data considered this to be two roads, and therefore two 

intersections were created for each intersection. As the crime and reported incident data very 

rarely included these instances as two intersections, the two were effectively ‘merged’ into a 

single intersection. Some intersections were moved to locate them closer to where the crime and 

reported incident data placed the intersection. 
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The municipal boundary and bus stops data were both sourced from the Region of 

Waterloo’s Open Data Catalogue (Region of Waterloo, 2013; Region of Waterloo, 2016b). The 

municipal boundaries data included the boundaries of all cities, towns, and villages in the 

Waterloo Region, but only the borders of Kitchener and Waterloo were used. These boundaries 

were typically used for clipping datasets and other preprocessing steps. The bus stops data layer 

included locations throughout the Region of Waterloo, but it was clipped to only include stops 

within Kitchener and Waterloo. 

 NDVI was derived from satellite imagery obtained from Landsat 8. Launched in 

February 2013, Landsat 8 was selected for this study due to its easy accessibility and for its 

improved sensor characteristics compared to previous Landsat series satellites, including 

improved data quality and radiometric resolution (12 bit vs. 8 bit) (NASA, n.d.; USGS, 2016). 

The image (“LC80180302013260LGN00”) used in this study was acquired on September 17, 

2013 (USGS, 2013). This scene was selected due to its same year as the WRPS crime and 

reported incidents dataset, as well as timing prior to the onset of senescence and fall colours and 

cloudless quality of the scene over the Waterloo Region.  

 Several datasets, particularly those used in the AKDE section of the study, were sourced 

from both the City of Kitchener and the City of Waterloo. The dataset used in the study 

pertaining to secondary schools, elementary schools, universities, and places of worship were 

collected from the open data catalogues of Kitchener and Waterloo (City of Kitchener, n.d.a; 

City of Waterloo, n.d.a). While both universities and colleges were included within the final 

dataset, career colleges were not. While satellite campuses were included, if more than one 

occupied a single building, they were considered to be a single satellite campus. For the dataset 

of libraries, community centres, and arenas, the Kitchener locations were sourced from datasets 
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within the City of Kitchener’s open data portal (City of Kitchener, n.d.). The Waterloo locations 

were sourced via street address from the City of Waterloo website and the Waterloo Public 

Library website (City of Waterloo, n.d.b; Waterloo Public Library, n.d.). These three building 

types were combined into one dataset, since they are often located within the same building (e.g., 

Albert McCormick Community Centre has all three building uses and functions combined). All 

point datasets sourced from the City of Kitchener and the City of Waterloo were manually 

verified and adjusted if any points were not properly or accurately located. 
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6.0 Method 
 

 A two-part methodological approach was adopted for this study. The first part involved 

creating buffers around each street intersection in order to identify built and natural environment 

features within their vicinity. These buffer regions of sampled features were then compared to 

crime and reported incident statistics associated with each intersection. The second part of the 

methodology involved using a form of Adaptive Kernel Density Estimation (AKDE) to create 

rasters based on various built environment features. The AKDE values intersecting with each 

street intersection were extracted and those values were compared to crime and reported 

incidents at each intersection. Both methodologies were executed using Python codes that were 

developed for each procedure. Ordinary Least Squares (OLS) and logistic regression modelling 

were applied to test for strength of statistical association for each approach. The strength and/or 

fit of all models and independent variables were assessed and compared. Finally, an additional 

analysis was conducted to assess the relationship between crime/reported incidents and 

vegetation cover by comparing reported crime/reported incident statistics to remotely sensed 

NDVI values around each intersection based on the buffer regions created from the first part of 

the analysis.  The following sub-sections describe the rationale and each step of the methodology 

in more detail. 

The geographic scale of this study was to collect observations of crime/reported incidents 

and the urban environment at each street intersection. This scale was chosen over a smaller scale, 

such as the neighbourhood level, due to the belief that there could be too much variation in the 

built and natural environment across a neighbourhood for it to be properly compared to 

crime/reported incident levels within the same neighbourhood. 
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6.1 Buffer Methodology 
 

 The buffer analysis section of the study was based on a study conducted by Michal 

Czepkiewicz entitled, “Self-rated Health and Distribution of Green Areas in Poznan, Poland: 

Results of a Project and Discussion of Selected Methodology Issues” presented at the 2016 

Annual Meeting of the American Association of Geographers. The study compared the 

participant’s quality of life to the amount of greenspace located within 150 m of the participant’s 

home (Czepkiewicz, 2016). The findings of the study suggested that quality of life improved 

with greater presence of greenspace (Czepkiewicz, 2016). A similar approach based on buffer 

analysis around street intersections is adopted here. 

Circular buffers were used to extract or sample information about built environment 

features occurring around each street intersection. Two types of buffers were employed, 

including static buffers with a radius of 90 m and adaptive buffers with specified radius distances 

varying between street intersections. A buffer radius of 90 m was selected, since the average 

distance between street intersections within Kitchener was determined to be 88.5 m. Figure 12 

shows a histogram of distances between all street intersections and their nearest neighbouring 

intersection within the city of Kitchener. The histogram has a fairly normal distribution and its 

frequency peaks at 90 m.  

Each adaptive buffer adopted a unique radius that was identified using R. For each 

intersection, the distances to the closest four intersections were calculated using the “nndist” tool 

within the “spatstat” library (Baddeley, 2016), which calculated the average of the four nearest 

neighbour distances and adopted a radius of this average length as the adaptive buffer radius. The 

rationale for this method was to create buffers that are representative of the area between a street 

intersection and its neighbouring intersections. Since intersections are normally directly 
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connected by road segments in four directions, this average distance would represent the relative 

distance between the street intersection and its neighbouring intersections. Figure 13 illustrates 

the process involved in creating both the 90 m and adaptive buffers. The map in Figure 14 shows 

both the 90 m buffers and the adaptive buffers used in the analysis. While the 90 m buffers 

always maintain the same radius, the adaptive buffers change according with the length of roads 

extending out from each intersection, which naturally tend to be smaller within densely 

populated urban core areas and larger in sparsely populated rural areas. 

 

 
Figure 12. A histogram of the distance between street intersections in Kitchener. Note that the x-

axis has been cut off at a maximum of 200 m. 

  

  

Figure 13. A diagram demonstrating the procedure of creating the 90 m and adaptive buffers. 
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Figure 14. The buffers created using a 90 m radius (left) and adaptive method (right). Note that 

buffers located partially outside the boundaries of Kitchener were not included in the study. 

 

After the buffers were selected, data on built and natural environment features were 

collected from the radius specified around each intersection. The first of these were features 

associated with building/greenspace footprints, which were represented as percentages of the 

total footprint space within each buffer. The percentage was preferred over total area covered by 

each category, since the coefficients created for each building/greenspace variable were too 

small for analysis when total area units were used. The collection of this percentage footprint 

information was achieved using a Python code developed in ArcGIS for this study, which is 

referred to as the “Proportion Buffer Cutter”. This code created two buffer sets based on a radius 

of 90 m or radii calculated for the adaptive buffers, thus creating two buffer sets. The code then 

divided the building/environment polygon feature into separate feature datasets based on the 



40 

 

attribute categories (e.g. “RESIDENTIAL”, “COMMERCIAL”, “GREENSPACE”). All buffers 

located partially outside of the boundaries of the city of Kitchener were excluded from this study, 

since these could be potentially influenced by built environment features located outside of the 

city and external to the collected dataset. The buffers clipped each building/greenspace feature 

category one by one and also calculated the area (in square metres) of each feature created by the 

clipping process. Since each buffer was individually processed, the buffers factored in any 

feature falling within its radius, regardless of overlap with adjacent buffers. Once all buffers 

were processed, the total footprint area within the radius of each buffer was calculated within a 

new column in the feature’s attribute table. New columns were then created for each category 

and the percentage of the total footprint area represented by each category was calculated and 

input into the attribute table. If no buildings were located within the radius of a buffer, the code 

assigned each percentage column a zero value. Figure 15 shows a simplified diagram of the 

operation of this code. 

 

 

Figure 15. A simplified diagram showing the overall operation of the “Proportion Buffer Cutter” 

 

 The second step of the methodology involved collecting information related to alcohol 

licenses within the identified buffer regions. This variable represents the number of alcohol 
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servicing establishments and liquor stores located within the buffer radius of street intersections. 

As previously mentioned, the licensed restaurants and information about LCBO and Beer Store 

outlets were merged with the building data, creating a metric indicating the number of licensed 

restaurants and/or liquor stores per building location. Therefore, the alcohol licenses within the 

radius variable represents the total number of licensed restaurants and/or liquor stores in 

buildings whose footprints were fully or partially located within a buffer region. This was 

developed using a Python code in ArcGIS that was created entitled the “Alcohol Counter”. This 

code first created buffers based on the same approach as the “Proportion Buffer Cutter” Python 

code. The number of licensed restaurants and/or liquor stores within selected buildings within a 

buffer was totaled. These values were then added to a new column that would represent the 

number of alcohol licenses within the radius of each buffer. 

 The final step for this section of the analysis was processing streetlight and bus stop 

variables. The bus stop dataset represents the number of GRT bus stop points within the radius of 

each street intersection buffer, while the streetlight variable represents the number of streetlight 

points within the radius of each buffer. The “Spatial Join” tool in ArcGIS was used to calculate 

both variables based on the streetlight and bus stop features coinciding within each buffer region. 

Two columns of attribute data were created, one consisting of the number of bus stops within 

each buffer radius and the second featuring the number of streetlights within the radius of each 

street intersection buffer. 

 Figure 16 illustrates how each independent variable of the model was derived. The 

diagram shows the 90 m buffer ID 1730, representing the intersection of Highland Road and 

Patricia Avenue. If a building footprint was only partially within the radius of the buffer, only the 

portion of the building inside the buffer was counted towards the building’s type’s percentage 
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value for that intersection. For example, in the case of two institutional buildings in Figure 16 

(J.F. Carmichael Public School and Highland Baptist Church), only their footprint areas falling 

within the boundaries of the buffer were included. In this example, the buildings within the 

buffer are mostly residential, which is shown as percentage values (68.53% residential, 26.30% 

institutional, and 5.17% commercial). Only one building with a licensed restaurant or liquor store 

is located within the buffer radius (the commercial building located in the northwest) and it is 

included despite the fact that the building is located only partially within the buffer radius. In 

summary, Buffer ID 1730 therefore would have one alcohol license, two bus stops, and twelve 

streetlights located within the radius of its buffer. 

 

 
Figure 16. The intersection of Highland Road and Patricia Avenue with its 90 m buffer (Buffer 

ID 1730) and the various built environment features that comprise the independent variables 

(expressed as percentages of each building type within the radius, as well as the number of 

alcohol licenses, bus stops, and streetlights within the radius). 
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6.2 Adaptive Kernel Density Estimation Methodology 
 

 The second method used in this study, adaptive kernel density estimation (AKDE), was 

modified from a study by Walker and Schuurman (2015) entitled, “The Pen or the Sword: A 

Situated Spatial Analysis of Graffiti and Violent Injury in Vancouver, British Columbia”. The 

study developed kernel density maps of both violent injury and graffiti in Vancouver, paired up 

pixel values that occupied the same space, and a regression analysis was conducted on those 

paired pixel values in order to investigate links between the two variables (Walker & 

Schuurman, 2015). The regression results showed a strong and highly significant correlation 

between violent injury and graffiti (R2 = 0.53). However, this methodology was modified 

significantly when adopted for this thesis due to an initial trial, where density rasters of crime 

and reported incident data were applied as the dependent variable, while density rasters of the 

built environment were considered as the independent variables. The results showed that nearly 

all independent variables in the model tested to be highly significant. These results were 

considered to be over-estimated and likely due to a large number of zero value pixels included in 

both built environment feature and crime/reported incidents datasets, thus resulting in an almost 

perfect model goodness of fit. As a result, an adjustment was made to the Walker and Schuurman 

(2015) method, where the counts of crime/reported incidents at intersection points were 

considered as the dependent variables and density rasters of the built environment features were 

the independent variables. Instead of using raster pixel pairs in the multiple regression analysis, 

the intersection points were paired with the density raster values of the pixels on which they were 

located. The regression model was then re-estimated with crime and reported incident counts and 

the corresponding built environment raster values at each street intersection. 
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 This study differed from Walker and Schuurman (2015) by applying adaptive kernel 

density estimation (AKDE) rasters instead of kernel density estimation (KDE) rasters. Kernel 

density estimation analysis works by fitting a curved surface to each point in the inputted point 

feature whose peak is directly above the inputted point (ESRI, n.d.; Silverman, 1986). The height 

of these curved surfaces uniformly diminish until they reach a distance from the point equal to 

the radius of the window (also called the search radius or the bandwidth), creating a shape over 

each point similar to a three dimensional bell curve, all of which are the same size (ESRI, n.d.; 

Silverman, 1986). At each pixel, the heights of all bell curves at the centre of the pixel are 

totalled to find the value of each pixel (ESRI, n.d.; Silverman, 1986). This helps to create a 

smoother density surface than compared to other methods (Silverman, 1986). A two dimensional 

example of this procedure is displayed in Figure 17. 

 

 
Figure 17. A two dimensional demonstration of the KDE operation. The “x” marks on the x-axis 

represent individual sample points, the curves above the points represent the curves applied on 

top of each point, and the bolder line on top represents the surface of the KDE. Note how the 

surface increases as the points get denser and as the surface gets closer to the centre of the points 

in the clusters (Silverman, 2016, p. 14). 

 

The radius of a KDE window does not change, but it is permitted to vary with Adaptive 

Kernal Density Estimation (AKDE) methodology. While KDE assumes a homogeneous 
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background, AKDE adapts to local situations (Shi, 2010). In this study, recorded street 

intersections are not uniform, since the distance between intersections and their general 

arrangement will differ according to the relative location within the city (e.g., downtown versus 

suburb). AKDE was applied in this study to better represent the spatial distribution and 

variability of street intersections within the region.  

   

  
Figure 18. A histogram of the number of street intersections within each grid square within the 

450 m by 450 m grid in Kitchener-Waterloo. Note that the x-axis does not include zero, by far 

the most frequent value (328), in order to aid the interpretability of the rest of the histogram. 

 

Since no built-in ArcGIS tool exists for conducting AKDE processing, a Python code 

using ArcGIS functions was developed to implement this procedure. Technically, AKDE 

incorporates a different bandwidth for each pixel, but this procedure would require significant 

processing time for the entire dataset. As a result, a gridded zone system was developed, where 

each zone has an individual bandwidth identified based on the number of intersections located 

within each grid square. First, gridded squares were developed for the region with a resolution of 

450 m x 450 m. This grid square size was selected due to several reasons. First, grids of various 
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sizes were tested and intersection counts within each grid were graphed in a frequency histogram 

shown in Figure 18, whichwas evenly distributed. Second, the number of grid squares within the 

450 m grid was considered to be large enough to be processed within a reasonable amount of 

time, while still being small enough to represent spatial variations across the city. The 450 m grid 

also included a fairly high mean number of intersections within each grid square, again 

indicating well distributed values, which allowed for more variation between the zones than a 

lower mean would have. Once the 450 m grid was developed and clipped to the region, the 

number of intersections per square km was calculated for each grid square (including those 

partially cut off by the clipping process). Fewer intersections within a grid cell would signify 

intersections and built features being located further apart, as is often the case in suburban areas 

compared to the downtown core. Therefore, grids with fewer intersections per square km were 

assigned higher bandwidth values than those with a higher number of intersections. 

 

  
Figure 19. Steps involved with creating a 450m by 450m grid that assigned bandwidth values for 

creating AKDE rasters. First, the number of number of intersections per zone was calculated, as 

shown in the left map. Second, the number of intersections per kilometer was calculated, as 

shown in the centre map. Third, the bandwidths for the zones were assigned based on the 

intersections per kilometer in each, as shown in the right map. 
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A formula was applied to the intersections per square km values that assigned each grid 

square a bandwidth between 300 m and 600 m. This adjustment was necessary in order for the 

AKDE raster method to be able to “adapt” each zone’s bandwidth to different intersection 

densities for the resulting AKDE rasters. Various ranges of bandwidth values were attempted and 

visually inspected. However, the 300 to 600 m range provided a good compromise between 

variations in bandwidth from grid box to grid box, while also allowing for a relatively smooth 

visual transition between grid boundaries in the final AKDE raster. Grids with zero intersections 

per km were assigned a bandwidth of 600 m. The bandwidth decreased at a constant rate as the 

intersections per km value increased, until the intersection per km value reached 65, at which 

point the bandwidth assigned was 300 m. Any grid square with an intersection per square km 

value above 65 was also assigned a 300 m bandwidth. Upon visual inspection, it was determined 

that all intersections per square km values above 65 were outliers (grid squares containing an 

abnormal number of intersection per square km)  and were all assigned a bandwidth of 300 m. 

The procedure of developing this grid and assigning bandwidth values is summarized in Figure 

19. 

 

 
Figure 20. A diagram of the process involved in creating the AKDE rasters and extracting the 

values using intersection points. 
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 The built environment AKDE raster was created using a Python code developed for this 

study called “Adaptive Kernel Density Estimation (Multiple) – Polygon Based”. The code takes 

in both the geographic points representing the environment features and the 450 m by 450 m 

grid, both in ArcGIS formats. The code then performed KDE within the bounds of each grid 

square using the bandwidth that each of the grid squares was assigned. The code then combined 

these rasters to produce the final AKDE raster. Since each preliminary raster is confined to its 

own grid square, no overlap or gaps result between the preliminary rasters constructed for each 

grid. The point features for elementary schools, GRT bus stops, hospitals, liquor stores (LCBO 

and Beer Stores), licensed restaurants, places of worship, secondary schools, universities WRPS 

police stations, and the combined point feature of libraries, community centres, and arenas were 

all processed using this developed Python code along with the 450 m by 450 m grid to produce 

AKDE rasters for each building type. 

Figure 21 shows two examples of the AKDE maps, specifically for licensed restaurants 

and bus stops. Note the change in bandwidth between different grid zones. After the AKDE 

rasters were created, the values were extracted using the intersection points with the “Extract 

Multi Values to Points” tool in ArcGIS. Statistical analysis was performed with these extracted 

values, which are further descripted in Section 6.4. A simplified diagram of the entire AKDE 

process is shown in Figure 20. 
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Figure 21. Examples of AKDE maps of GRT Bus Stops (left) and Alcohol Licensed Restaurants 

(right).  Major roads are indicated. 

 

6.3 NDVI Methodology 
 

The buffer analyses conducted in this study addressed characteristics of the natural 

environment indirectly by considering a percentage greenspace variable within its landcover 

categories.  A follow-up analysis was conducted to specifically assess the relationship between 

vegetation indices (NDVI) values and crime/reported incidents at each street intersection within 

Kitchener-Waterloo. 
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 A Normalized Difference Vegetation Index (NDVI) is a raster image derived from 

remote sensing imagery that indicates the density and health of vegetation (USGS, n.d.). Their 

pixel values range from 1 to -1, with values closer to 1 indicating healthier and/or denser 

vegetation (USGS, n.d.). This analysis involved first deriving an NDVI image of the region from 

a Landsat 8 image scene “LC80180302013260LGN00”, which was acquired on September 17, 

2013. NDVI values were computed using the “Raster Calculator” tool in ArcGIS using the 

following formula: 

 

NDVI = (𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑 𝐵𝑎𝑛𝑑 − 𝑅𝑒𝑑 𝐵𝑎𝑛𝑑)/(𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑 𝐵𝑎𝑛𝑑 + 𝑅𝑒𝑑 𝐵𝑎𝑛𝑑) 

 

Bands 4 and 5 from the Landsat 8 image were used, corresponding to red and near infrared 

wavebands, respectively (Pirotti, et al., 2014; USGS, 2016). 

  

 
Figure 22. A diagram illustrating the process of preparing NDVI datasets from remote sensing 

imagery. 

 

After the NDVI image was developed, a method was required to extract NDVI values 

representative of each street intersection. The selected method involved using the buffers 
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previously created from the previous buffer analysis (from both 90 m and adaptive methods) to 

detect the maximum and average NDVI values occurring at each street intersection. A Python 

code entitled “Zonal Statistics as Table for Overlapping Polygons” was designed for this analysis 

to collect maximum and average NDVI values for each buffer in the analysis. A diagram of this 

procedure is shown in Figure 22. Like the buffer methodology, the NDVI methodology was only 

performed in Kitchener. 

 

6.4 Natural and Built Environment Variables 
 

 The regression analysis of urban environment characteristics and crime incidents 

involved an inductive approach, which included 12 independent variables derived from the static 

buffer method of analysis and 10 independent variables from the AKDE method of analysis. 

6.4.1 Independent Variables – Buffer Analysis 

All independent variables used in the buffer methodology are shown in Table 2. Each of 

the nine dependent variables derived from the building/greenspace footprint dataset represented 

percentage of the total building/greenspace footprint area within the radius of either a 90 m or 

adaptive buffer, around each intersection that was classified as that building type or as 

greenspace. The three remaining independent variables used in the buffer methodology were 

those concerning alcohol licenses, bus stops and streetlights. These variables were measured as 

counts within the radius of the two sets of buffers around each intersection. 

The independent variables shown in Table 2 were selected for this study for a variety of 

reasons. Some variables had been assessed as important factors in the spatial patterns of crime by 

previous studies. Percentage greenspace was included as an independent variable in order to 

address conflicting theories in the literature on whether vegetation is negatively or positively 
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related to crime (Wolfe & Mennis, 2012; Michael et al., 2001). Alcohol licensed businesses were 

cited as an important variable in previous studies with the vast majority supporting a positive 

spatial relationship between crime and alcohol (Livingston, 2007; Kumar & Waylor, 2003; Day 

et al., 2012). Bus stops were assessed in previous studies, which found a positive relationship 

with crime (Barnum et al., 2017), while other studies found a negative relationship (Sohn, 2016).  

In the case of Streetlights within the radius, previous research showed that residents in other 

cities often question whether lighting is useful in mitigating crime (Pain et al., 2006). 

Relationships between crime and the remaining independent variables, however, were not 

documented in previous literature. These urban environment features were included in the set of 

independent variables tested in linear and regression models as part of an inductive approach of 

comprehensively capturing characteristics of the built and natural environment. 

 

Table 2. A summary table of built and natural environment independent variables applied based 

on buffer methodology, including how each variable was measured and areal coverage within the 

City of Kitchener. 

 

Built or Natural 

Environment 

Independent Variable 

Measure Number of 

Points or 

Polygons 

Coverage 

Area (m2) 

Percentage residential Percentage (between 0% and 100%) 63,621 8,733,781 

Percentage recreational Percentage (between 0% and 100%) 328 96,544 

Percentage institutional Percentage (between 0% and 100%) 800 820,019 

Percentages commercial Percentage (between 0% and 100%) 1176 1,205,790 

Percentage industrial Percentage (between 0% and 100%) 974 1,912,635 

Percentage utility Percentage (between 0% and 100%) 41 19,489 

Percentage agricultural Percentage (between 0% and 100%) 76 16,788 

Percentage commercial 

residential 

Percentage (between 0% and 100%) 323 62,817 

Percentage greenspace Percentage (between 0% and 100%) 458 21,314,746 

Alcohol licenses within 

the radius 

Count 231 N/A 

GRT bus stops within 

the radius 

Count 1,258 N/A 

Streetlights within the 

radius 

Count 21,341 N/A 
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6.4.2 Independent Variables – AKDE Analysis 

In the regression analysis of AKDE results, built and natural environment characteristics 

were represented as pixels of AKDE rasters derived for each environmental feature, specifically 

pixels that were overlaid at street intersections. These independent variables are summarized in 

Table 3. Each variable was measured as “magnitude-per-unit area” value representing the density 

of the inputted urban feature around each pixel (ESRI, n.d.). LCBO and Beer Stores and licensed 

restaurants were considered in this analysis due to positive relationships between alcohol 

establishments and crime incidents reported by previous studies (Livingston, 2007; Kumar & 

Waylor, 2003; Day et al., 2012).  Bus stops were considered in this research similar to previous 

crime studies (Barnum et al., 2017; Sohn, 2016), since they are places where large numbers of 

people congregate outdoors and thus create criminal opportunities. In the case of elementary and 

secondary schools, Barnum et al. (2017) found that schools in two cities increased crime risk. 

Therefore, it would be interesting to examine the same relationship in Kitchener-Waterloo. 

Although the relationship between universities and crime incidents was not documented in 

existing literature, this association was explored in this study given the prominence of university 

institutions in the City of Waterloo, where universities are an important influence on the 

character of the city. Other independent variables tested in regression models were included 

based on an inductive approach, where a comprehensive set of built and natural environment 

characteristics were considered. 
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Table 3. A summary table of built and natural environment independent variables applied based 

on buffer methodology, including how each variable was measured and the number of 

occurrences within Kitchener-Waterloo. 

 

Built and Natural Environment Independent Variable Measure Number 

of Points  

AKDE values of elementary schools Magnitude-per-unit area 95 

AKDE values of hospitals Magnitude-per-unit area 3 

AKDE values of LCBO and Beer Stores Magnitude-per-unit area 18 

AKDE values for libraries, community centres and arena Magnitude-per-unit area 31 

AKDE values for GRT bus stops Magnitude-per-unit area 1,844 

AKDE values for licensed restaurants Magnitude-per-unit area 404 

AKDE values for places of worship Magnitude-per-unit area 192 

AKDE values for secondary schools Magnitude-per-unit area 14 

AKDE values for universities Magnitude-per-unit area 7 

AKDE values for WRPS police stations Magnitude-per-unit area 3 

6.5 Crime and Reported Incident Variables and Statistical Analysis 
 

 In order to study crime and reported incident variables in this analysis, the crime and 

reported incidents data was first categorized into various types of crime. As previously 

mentioned, the type of crime and reported incidents was based on the “Final Call Type 

Description”, which is the crime type that each crime and reported incidents is identified as once 

the event has been resolved (WRPS, 2015a). Eighteen crime types were selected, which 

represented the eighteen dependent variables used in the study. They were:  

 assault 

 break and enter 

 dispute 

 disturbance 

 domestic dispute 

 drugs 

 homicide 

 impaired driver 

 intoxicated person 

 motor vehicle collision (often abbreviated as “MVC”) 

 property damage 

 prostitution 

 robbery 
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 sex offence/indecent act (a combination of crime types “sex offense” and “indecent act”) 

 suspicious person or vehicle (a combination of crime types “suspicious person” and 

“suspicious vehicle”) 

 theft motor vehicle 

 theft under $5,000 

 unwanted person  

 

 

New point features were created for each crime type, representing all crime and reported 

incidents of the particular type of crime in 2013. Each point feature was processed with an 

ArcGIS Python code developed, called “Dissolve and Stack”. The code essentially merges crime 

and reported incidents points located at the same street intersection into a single point. Points 

within the new dataset created by this code feature a count of how many crime and reported 

incidents of the crime type occurred closest to each intersection (although only at intersections 

where these crime and reported incidents were present). This information was added to the 

intersection datasets which contained the independent variable data. New columns for the 

binomial equivalent were added to the intersection data, which were completed using the ArcGIS 

field calculator based on a Python code that assigned the new binomial column a value of one if 

the corresponding crime and reported incident count value was one or above, and a value of zero 

if the corresponding crime and reported incident count value was zero. This process generated 

presence/absence columns for each crime and reported incident type that could be subsequently 

used in logistic regression analysis. 

 These intersection datasets were then imported into the software R for statistical analysis. 

OLS and logistic regression models were estimated based on the street intersection data for the 

90 m buffer method, the adaptive buffer method, and the AKDE method. The independent 

variables applied in each method are summarized in Table 4. 
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Table 4. All independent variables included in OLS and logistic regression models of crime 

reported incidents based on the 90 m and adaptive buffers, and the AKDE method. 

 90 m and Adaptive Buffer Method AKDE Method 

Independent 

variables 
 Percentage building/greenspace 

footprint variables 

o Percentage residential 

o Percentage recreational 

o Percentage institutional 

o Percentage commercial 

o Percentage industrial 

o Percentage utility 

o Percentage agricultural 

o Percentage commercial residential 

o Percentage greenspace 

 Alcohol licenses within radius 

 GRT bus stops within radius 

 Streetlights within radius 

 AKDE Values 

o Elementary schools 

o GRT bus stops 

o Hospitals 

o LCBO and Beer Stores 

o Libraries, community 

centres, and arenas 

o Licensed restaurants 

o Places of worship 

o Secondary schools 

o Universities 

o WRPS police stations 

 

  Each method was applied to each of the 18 crime/reported incident variable pairs (the 

crime/reported incident count and the crime/reported incident presence/absence columns) in both 

OLS regression, using the “lm()” tool from the R “stats” package, and logistic regression, using 

the “glm()” tool. A total of 108 regression models were tested, while Chi-square values were 

produced using SPSS software. Each regression model was assessed for its overall goodness of 

fit (r2) and significance value. 

 NDVI buffer values were used to assess which type of crime and incident reports was 

most associated with high or low vegetation levels. NDVI was modelled as the dependent 

variable and crime and incident reports as the independent variable (all crime types within each 

model). Although this variable arrangement was unusual, since this would imply that crime is 

linked to the presence or absence of vegetation, the intention was to determine which crime types 

were most strongly associated with levels of vegetation cover. Eight models were tested based on 

different combinations of 90 m or adaptive buffers, number of or presence/absence of crime and 
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reported incidents, and mean NDVI values or maximum NDVI values within the buffer. OLS 

regression was conducted using the “lm()” function in R. 
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7.0 Results 

 
The results are divided into several sections. The first section includes a brief summary of 

the visual analysis of the data, followed by OLS and logistic regression results for the ordinary 

buffer and AKDE methods. Finally, the results of the NDVI analysis are evaluated. Tables 

displaying the raw data output of these methodologies can be found in the Appendix section. 

Prior to the analysis of the results, the assumption tests for linearity, homoscedasticity, 

normality, multicollinearity and independence of errors were performed for all OLS models, as 

well as the independence of errors test for logistic regression. The tests identified no significant 

violations of any of these statistical assumptions. 

 

7.1 Visual Analysis 
 

 The variation in the spatial distribution of both crime/reported incidents and built and 

natural environment variables in the Kitchener-Waterloo area was visually apparent. Some 

crime/reported incident types and environmental variables were highly concentrated in 

downtown areas (e.g. drugs and alcohol licenses), while others were more evenly distributed 

(e.g. break and enter, percentage residential, and elementary school). An example is illustrated 

in Figure 23, which shows the intersections of Kitchener with their corresponding percentage 

values of commercial and residential land uses. For commercial building space, the intersection 

points with high percentage values were mostly located in the downtown area with a small 

number of commercial centres scattered throughout the city. For residential building space, the 

intersection points with high percentage values were much more dispersed, with the exception of 

the downtown area, where percentages were lower. Another notable observation is that several of 
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the variables, both dependent and independent, were less common than others (i.e. percentage 

utility and homicide).  

 

 
Figure 23. Maps showing street intersections in Kitchener with the percentage of building space 

within 90 m buffers that is classified to be commercial (left) and residential (right). 

 

 

7.2 OLS Buffer Results 
 

The OLS buffer models, which used 90m static or adaptive buffers to sample the land use 

around each intersection, were overall quite weak. The results of each OLS buffer model are 

shown in Table A1 for the 90 m buffer results, and Table A2 for the adaptive buffer results in the 

appendix section. Diagnostics for overall goodness of fit were all relatively low, despite the fact 

that models tested to be highly significant (p < 0.001) according to reported p-values. The only 
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exception to this was models with the dependent variable homicide (p=0.425 and p=0.007 with 

the adaptive and 90 m model, respectively). The strongest model for intoxicated persons as the 

dependent variable resulted in an r-squared value of 0.227. However, the OLS regression models 

based on both the 90 m and adaptive buffer methods tested to be stronger than the OLS results 

for the AKDE method, which can be found in Table A5 of the appendix. The adaptive buffer 

models had a larger r-squared value than the AKDE models when using the same dependent 

variable in all but one case (homicide). The AKDE model did, however, have a larger r-squared 

value than the 90 m buffer model in four cases when using the same dependent variable, namely 

disturbance, domestic dispute, property damage and theft motor vehicle. However, the 90 m 

buffer method resulted in higher r-squared values in the other fourteen cases. Despite this, all the 

AKDE models were highly significant (p<0.001). It is believed that the buffer model’s superior 

performance lies in its more comprehensive representation of the environment by the 

independent variables.  

 When addressing the buffer methods used in this study, the adaptive buffers appeared to 

out-perform the 90 m static buffers. Of the eighteen dependent variables used, only two, 

homicide and prostitution, resulted in stronger r-squared values or goodness of fit using the 90 m 

static buffer compared to the adaptive buffer method. Otherwise, the adaptive buffer method’s r-

squared values were larger to varying degrees. Both buffer methods, however, created highly 

significant models. Each model tested using 90 m and adaptive buffer was highly significant, 

with the exception of homicide for both buffer types. 
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7.2.1 OLS Buffer Results – Model Results 

 

The dependent variable intoxicated person had the strongest models for both the 90 m 

buffer and adaptive buffer methods, the results of which again, like all those of the buffer 

method, can be found in Tables A1 and A2 within the appendix. Intoxicated person was the only 

dependent variable in both methods to have an r-squared value above 0.2, with values of 0.206 

and 0.227 for the 90 m and adaptive methods, respectively. This is likely attributable to the 

strength of alcohol licenses within the radius in predicting this dependent variable. In both 

models, alcohol licenses was highly significant. This variable also resulted in the largest 

coefficient in both models, and one of the largest coefficients in all the 90 m and adaptive OLS 

regression models (β = 0.532 and β = 0.632, respectively). More alcohol will lead to more 

intoxicated people and therefore more reports of intoxicated persons to the police, making an 

expected link between both dependent and independent variables. In addition to alcohol licenses, 

the models’ other highly significant (p<0.001) variables were GRT bus stops (90 m: β = 0.189, 

adaptive: β = 0.096) in both models and percentage commercial residential (β = 0.045) in the 

adaptive model.  

  Other than intoxicated persons, four other dependent variables resulted in r-squared 

values above 0.1 in both the 90 m and adaptive models. These were assault, disturbance, motor 

vehicle collision (MVC), unwanted person, and drugs, although the latter dependent variable 

resulted in an r-squared value slightly below 0.1 in the 90 m method. The models of MVC 

performed the best with r-squared values of 0.169 and 0.186 for the 90 m buffers and the 

adaptive buffers, respectively. These results were unexpected, since MVC was the only 

dependent variable included that is not necessarily associated with an act with criminal intent. 

This is perhaps due to the correlation between the location of car activity and features such as 
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bus stops (90 m: β = 0.640, adaptive: β = 0.593) and streetlights (90 m: β = 0.155, adaptive β = 

0.109), which were both highly significant (p<0.001) for each buffer method.  

Models with unwanted person as the dependent variable resulted in r-squared values of 

0.144 and 0.146 for the 90 m static buffer method and the adaptive buffer method, respectively. 

In each of the 90 m and adaptive model, the independent variables, percentage commercial 

residential (β = 0.094, β = 0.146, respectively), alcohol licenses within the radius (β = 1.222, β 

= 1.458, respectively), and GRT bus stops within the radius (β = 0.302, β = 0.193, respectively) 

were significant (p<0.01). With both methods, alcohol licenses within the radius resulted in the 

largest coefficients out of all the regression models, not including intercepts. This perhaps shows 

a link between alcohol sales and unwanted persons.  

OLS models with disturbance as the dependent variable resulted in r-squared values of 

0.121 and 0.145 for the 90 m and adaptive buffer methods, respectively. Again, alcohol licenses 

within the radius was a crucial variable, resulting in the largest coefficient with both the 90 m 

and adaptive method (β = 0.380, β = 0.434, respectively) and being the only variable that was 

highly significant (p<0.001) with both methods. As with unwanted person, GRT bus stops within 

the radius (90 m: β = 0.076, adaptive: β = 0.099) also proved to be a significant variable 

(p<0.01). The similarity between the results for the unwanted person and disturbance dependent 

variables can likely be attributed to similarities between these crime types, since both involve 

unwanted actions of individuals or small groups of people.  

The models of assault had r-squared values of 0.110 and 0.132 for the 90 m and adaptive 

buffers, respectively. Models of drugs model had r-squared values of 0.104 and 0.093 for the 90 

m and adaptive buffers, respectively. In both sets of models, GRT bus stops within the radius, 

percentage institutional, and alcohol licenses within the radius were significant (p<0.05) 
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independent variables for most if not all of the models.  Other models of specific types of 

crime/reported incidents yielded interesting results. Notably, models of break and enter were 

rather weak. Only GRT bus stops within the radius (90 m: β = 0.054, adaptive: β = 0.065) was 

highly significant (p<0.001), perhaps due to the well-distributed nature of both dependent and 

independent variables. Dispute also resulted in a relatively weak models (90 m: r2 = 0.028, 

adaptive: r2 = 0.061), as well as domestic dispute (90 m: r2 = values of 0.032, adaptive: r2 = 

0.068). The r-squared values and significant independent variables for the domestic dispute 

models were similar to those for the dispute models, possibly showing comparable spatial factors 

in their crime types.  

Homicide resulted in the weakest OLS model when both 90 m and adaptive buffer 

methods were used, with r-squared values of 0.007 and 0.004, respectively. The full statistical 

results can be viewed in Table A1 (90 m buffer method) and A2 (adaptive buffer method) in the 

Appendix section. This may be attributed to the rare nature of homicide cases, since only seven 

occurrences of this crime type were recorded in Kitchener during 2013, whereas other crime 

types had hundreds or thousands of incidents recorded in the same year. Percentage commercial 

residential (90 m: β = 0.001, adaptive: β = 0.001) was the only significant (p<0.05) variable in 

either model. Impaired driving had r-squared values of 0.059 and 0.085 for the 90 m and 

adaptive method, respectively. Interestingly, percentage commercial residential had a negative 

coefficient (β = -0.003) in the impaired driving model when a 90 m static buffer was applied, 

making it the only negative coefficient to be highly significant (p<0.001) in either the 90 m or 

adaptive models. Property damage had an r-squared value of 0.044 with the 90 m buffer method 

and 0.065 with the adaptive buffer method. Both models identified percentage institutional (90 

m: β = 0.018, adaptive: β = 0.020) and GRT bus stops within the radius (90 m: β = 0.085, 
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adaptive: β = 0.088) as highly significant (p<0.001) independent variables. The model based on 

adaptive buffers also identified alcohol licenses (β = 0.146) and streetlights within the radius (β 

= 0.012) as highly significant (p<0.001). The impaired driver and property damage models are 

both good examples of how three “within the radius” variables were more significant when 

adaptive buffers were applied for capturing surrounding urban environment characteristics. 

Models with prostitution as the dependent variable tested for r-squared values of 0.036 

and 0.033 for the 90 m buffer method and the adaptive buffer method, respectively. These 

models differed from other results, since the “within the radius” variables performed better in the 

models based on 90 m buffers rather than when adaptive buffers were used. When adaptive 

buffers were used, percentage commercial residential (β = 0.020) was the only highly significant 

(p < 0.001) variable, while when 90 m static buffers were applied, percentage commercial 

residential (β = 0.025), alcohol licenses (β = -0.095) and streetlights within the radius (β = 

0.017) tested to be highly significant (p < 0.001) independent variables. The weak overall model 

performance for predicting prostitution is likely attributed to the small number of recorded 

occurrences of this crime type in 2013 and the likelihood that locations of such criminal 

activities are covert and consistently change. Therefore, the actual location of where the crime or 

incident is recorded to have happened may not be an important factor in studying prostitution 

when compared to other crime/incident report types. Models of robbery resulted in r-squared 

values of 0.036 for the 90 m buffer method and 0.037 for the adaptive buffer method. In the 90 m 

model, only percentage commercial (β = 0.002) was highly significant (p < 0.001), but proved to 

be insignificant in the adaptive model, although alcohol licenses (β = 0.017) and streetlights 

within the radius (β = 0.001) were significant (p < 0.01). Similar to prostitution, these anomalous 
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observations are likely due to the relatively low number of recorded occurrences of this crime 

type (110 records in 2013).  

Sex offence/indecent act resulted in weak OLS models with r-squared values of 0.021 and 

0.039 for the 90 m and adaptive buffer methods, respectively. GRT bus stops within the radius 

(90 m: β = 0.025, adaptive: β = 0.024) was the only independent variable that was highly 

significant in both models. Percentage institution (β = 0.004) was highly significant (p < 0.001) 

when 90 m buffers were applied and streetlights within the radius (β = 0.005) was highly 

significant (p < 0.001) when adaptive buffers were used. This result is expected, since a diversity 

of crimes and behaviours may be classified in the sex offence/indecent act category, and thus it 

was not expected that this dependent variable would follow a distinct spatial pattern. Suspicious 

person or vehicle had r-squared values of 0.055 and 0.088 with the 90 m and adaptive buffer 

methods, respectively. While percentage institutional (β = 0.007) and GRT bus stops within the 

radius (β = 0.097) tested to be highly significant variables (p < 0.001) when 90 m buffers were 

used, alcohol licenses (β = 0.133), GRT bus stops (β = 0.097), and streetlights within the radius 

(β = 0.012) were highly significant (p < 0.001) when adaptive buffers were applied. Regression 

models of theft motor vehicle were very weak with r-squared values of 0.018 and 0.022 for the 

90 m and adaptive buffer methods, respectively. The model based on 90 m static buffers resulted 

in only percentage commercial (β = 0.006) and percentage industrial (β = 0.006) as significant 

variables (p < 0.05). The adaptive buffer model results showed streetlights within the radius (β = 

0.009) and percentage industrial (β = 0.009) as significant variables (p < 0.05). The overall 

weakness of theft motor vehicle OLS models might be attributed to car thieves not wanting to 

appear to be predictable to police and therefore, spatial patterns of such criminal activities may 

appear randomly distributed throughout the study area.  
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Models of theft under $5,000 resulted in r-squared values of 0.089 with 90 m static 

buffers and 0.094 with adaptive buffers. While only the adaptive buffer model identified alcohol 

licenses (β = 0.851) and bus stops within the radius (β = 0.440) as highly significant (p < 0.001), 

both models tested percentage commercial (90 m: β = 0.083, adaptive: β = 0.056) as a highly 

significant variable (p < 0.001). This is notable, since this was one of only two dependent 

variables for which percentage commercial tested to be significant using the adaptive buffer 

method. This result is expected, since businesses such as retail stores can be desirable targets for 

thieves, and would be more likely to report theft as it impacts their livelihood. Conversely, a 

resident might be less likely to report theft of personal property given the time it takes to make a 

report, and the low probability that it would result in their property being recovered. 

7.2.2 OLS Buffer Results – Independent Variable Results 

 

 The full results of OLS Buffer regression models can be found in Table A1 (90 m) and 

A2 (adaptive) in the Appendix section. Percentage residential proved to be one of the weakest 

independent variables in the tested models. In the 90 m static buffer method, the variable was 

only considered significant (p < 0.05) in three models (domestic dispute, as was expected, 

dispute, and motor vehicle collision). It was not significant when the adaptive buffer method was 

considered. It was originally hypothesised that this variable would be typically negatively related 

to crime/reported incidents, since it is generally expected that most crime would happen in the 

city centre away from the residential heavy suburbs. This appeared to be confirmed by initial 

maps created with the data, such as Figure 23, which shows lower levels of residential buildings 

occurring in downtown areas.  However, in the three models where percentage residential was a 

significant variable, it was a negative coefficient only once. Percentage recreation also proved to 

be a weak variable in the estimated models. Like residential buildings, recreational buildings 
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were generally hypothesised to negatively affect crime report levels. Unlike residential buildings, 

however, in both the 90 m and adaptive buffer methods, thirteen of the eighteen estimated 

models were negative.  

Percentage institutional proved to be significant in most of the estimated models. It 

tested to be significant (p < 0.05) in most of the 90 m buffer models and in half of the adaptive 

buffer models. The coefficient was almost always positive. The fact that percentage institutional 

was typically a significant and positive variable may not be due to the institutional buildings 

themselves, but rather because of the large concentration of such buildings within the downtown 

core and thus matching the spatial pattern of much of the crime/incident report variables. 

Percentage commercial performed better in the 90 m method than the adaptive method, as it was 

significant (p < 0.05) in most 90 m models but only in two of the adaptive models. It also tested 

to be a positive coefficient in all models.  

Percentage industrial was rarely a significant variable, although it was significant in both 

theft motor vehicle models and was significant in the break and enter and dispute models based 

on 90 m static buffers (p < 0.05). It is possible that crime is an atypical occurrence in industrial 

park areas. It mostly tested to be a positive variable in the OLS models (fifteen of eighteen 

models) based on 90 m buffers, but it tended to be a negative variable when adaptive buffers 

were used (ten of eighteen models). Percentage utility was also rarely significant (p < 0.05) and 

negative in all but four of the 36 models.  Percentage agricultural was also an insignificant 

independent variable with crime/reported incidents and mainly negatively related when 90 m 

buffers were considered, but tested to be generally positive when adaptive buffers were applied. 

Percentage utility and percentage agricultural are both likely insignificant factors due to the 

very few occurrences of these land uses within Kitchener.  
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Percentage commercial residential was significant (p < 0.05) in six of the eighteen 

models using the 90 m buffer method and in eight of the eighteen models using the adaptive 

buffer method. The full statistical are shown in Tables A1 (90 m) and A2 (adaptive) of Appendix 

sections. It was mostly a positive relationship, but tested to be negative and significant (p < 0.01) 

in the models of impaired driver (β = -0.003) using the 90 m buffer method and motor vehicle 

collision (β = -0.083) based on the adaptive buffer method. Similar to percentage institutional, it 

is possible that this variable was generally significantly related to crime/reported incidents, since 

buildings of both commercial and residential land uses tend to be located in the downtown area. 

Since the downtown area is more heavily developed, it is more common to find residential space 

and businesses in the same buildings, which result in more multi-use and access by people 

throughout different times of the day.  

Percentage greenspace was only significant (p < 0.05) in one model of motor vehicle 

collision based on 90 m buffers (β = -0.018). Although the independent variable tested to be 

mostly positive when the 90 m buffer method was used, it was a mostly negative coefficient 

when the adaptive buffer method was applied. It would seem that in Kitchener, parks do not 

function as crime attractors or criminal marketplaces that some studies, such as DeMotto and 

Davies (2006), have suggested them to be. 

The alcohol licenses within the radius was one of the best fitting independent variables, 

especially when adaptive buffers were applied. The variable was significant in most models 

based on 90 m buffers and was highly significant (p < 0.001) in almost all models where 

adaptive buffers were used. It tested to be a positive coefficient for most OLS models. Alcohol 

licenses was originally expected to be a well-fitting variable, since previous studies have linked 

alcohol sales to increases in crime (Day et al., 2012; Kumar & Walyor, 2003).  
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GRT bus stops within the radius tested to be the most significant independent variable of 

crime/reported incidents when both buffer methods were applied. It was significant (p < 0.05) in 

fourteen of the 90 m buffer models and sixteen of the adaptive buffer models. It was also highly 

significant (p < 0.001) in eleven of the 90 m buffer models and thirteen of the adaptive buffer 

models. It was positive in all but one model in both methods. Bus stops within the radius was 

expected to be a crime attractor, since these are locations where people tend to congregate 

outdoors, which may create opportunities for criminals.  

Streetlights within the radius was also a significant predictor of crime/reported incidents. 

It was significant (p < 0.05) in half of the 90 m models and in all but two of the adaptive models. 

It was a positive coefficient in all but three models, all of which were 90 m models where it was 

not a significant variable. These findings are interesting when considering the original 

expectation that streetlights would help reduce crime, since increase lighting may potentially 

deter criminal activity. It is possible that streetlights actually attract crime, because they can 

make potential criminal targets more visible and highlight opportunities for criminal activity. 

7.2.3 OLS Buffer Results – Summary of Key Findings  
 

 Overall the models estimated with the OLS Buffer methodology (both 90 m and 

adaptive) were quite weak with the largest r-squared value as 0.227. This suggests that a weak 

relationship between crime and the urban environment exists in the Waterloo Region. This result 

may be due to missing predictor variables, such as socio-economic variables, which may affect 

the probability of a crime incident occurring. 

Of the eighteen crime/reported incident types used in the OLS buffer methodology, many 

were associated with the largest r-squared values were linked to alcohol consumption, either 

directly (such as intoxicated person, which resulted in the strongest model in both the 90 m and 
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adaptive models), or indirectly (such as in the case of disturbance and assault). This suggests 

that alcohol licenses was a strong predictor in crime/reported incidents since this independent 

variable was highly significant within these models. The strength of alcohol licenses as a 

predictor is further evidenced by its large coefficient values particularly within these stronger 

models whose dependent variable is directly or indirectly linked to alcohol. Bus stops tested to be 

consistently significant based on OLS buffer methodology. According to Routine Activity 

Theory, it is theorized that this is due to bus stops being places were people congregate outdoors 

and thus creating opportunities for criminals (Cohen & Felson, 1979). Streetlights also 

consistently tested to be a significant variable, but more so with adaptive models than the 90 m 

buffer models. Although streetlights was hypothesised to have a negative relationship with 

crime/reported incidents, its relationship was positive in all models where streetlights tested to be 

significant. It is believed that the relationship was positive due to individuals wanting to stay 

within lit areas at night, creating criminal opportunities for offenders. Overall, alcohol licenses, 

bus stops, and streetlights were strong predictors of crime/reported incidents, which may 

potentially be attributed to the fact that they are also indicators of presence of human activity, 

especially in the case of bus stops and streetlights.  

Percentage institutional, commercial, and commercial residential were the building 

footprint variables that most frequently tested to be significant, though percentage commercial 

was far less frequently significant when the adaptive buffer was used. It is likely that the 

frequently significant relationship between percentage commercial residential and institutional 

and crime/reported incidents is attributed to their concentrated spatial distribution in downtown 

areas, rather than actual strong relationships between reported crime incidents and these 

predictor variables. 
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7.3 OLS Adaptive Kernel Density Estimation (AKDE) Results 
  

Overall, the OLS models based on AKDE data input tested to be weaker than the OLS 

models using both static and adaptive buffers. Only three models, those with the dependent 

variables disturbance, intoxicated person, and unwanted person, resulted in r-squared values 

above 0.1. It is possible that these crime/reported incidents performed better, since these crime 

types are more likely to be committed by people who are travelling on foot, playing to the 

strength of the AKDE models of detecting the spatial influence around a facility. However, since 

these dependent variables were among the strongest in the buffer method, it is more likely that 

this is a result of similar dependent variables performing comparably with the same independent 

variables. All AKDE models were highly significant with the exception of the homicide model. 

The full results of the OLS AKDE models are shown in Table A5 in the Appendix. 

7.3.1 OLS AKDE Results – Model Results 

 

As previously discussed, the AKDE models (when using OLS regression) with the three 

strongest r-squared values were those with the dependent variables disturbance, intoxicated 

person, and unwanted person. Disturbance was the strongest of these models with an r-squared 

value of 0.128. The AKDE value of licensed restaurants (β = 0.030), secondary schools (β = 

0.206), and universities (β = 0.282) were all highly significant (p < 0.001) in this model. This is 

particularly interesting since the AKDE values for universities were only highly significant (p < 

0.001) in two of the eighteen AKDE OLS regression models. This is consistent with 

expectations, since alcohol provided by licensed restaurants could result in intoxicated people, 

who may cause disturbances. Also, the students of high schools and post-secondary institutions 

are often associated with age groups that are typically associated with causing disturbances. 

Similar to both the 90 m and adaptive buffer models, intoxicated person resulted in one of the 
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strongest tested models with an r-squared value of 0.123 when the AKDE method was applied. 

This perhaps shows that the dependent variable has a strong spatial relationship with its 

surrounding urban environment. The AKDE value for GRT bus stops (β = 0.009), licensed 

restaurants (β = 0.027), and universities (β = 0.286) were highly significant (p < 0.001) variables 

in this model. Similar to the disturbance model, it is believed that licensed restaurants played a 

key role, since such restaurant establishments provide alcohol, which may in turn increase 

chances of intoxication and associated behaviours. Similar to the disturbance model, it is 

believed that universities were a significant independent variable in this model, since students of 

post-secondary education institutions are perceived to drink more heavily. On the other hand, 

unlike the model of disturbance, secondary school AKDE values were not significant in the 

intoxicated person model, likely due to the minimum drinking age preventing high school 

students to drink excessively or having access to alcohol. This perhaps indicates that drinking 

age laws are an effective deterrent or at least deters these students from drinking near their high 

school. The OLS model of unwanted person had an r-squared value of 0.113. GRT bus stops (β = 

0.023), licensed restaurants (β = 0.057), and places of worship (β = 0.073) were all highly 

significant (p < 0.001) independent variables based on AKDE models. The variable places of 

worship unexpectedly resulted in a positive coefficient. 

The assault model had an r-squared value of 0.084. The AKDE values for GRT bus stops 

(β = 0.005), licensed restaurants (β = 0.012), secondary schools (β = 0.098) and WRPS police 

stations (β = 0.281) were all highly significant (p < 0.001) in this model. The result of licensed 

restaurants as a significant predictor of assault was expected. However, the police stations 

variable was quite unexpected, especially considering that it was a positive variable. The OLS 

model of drugs had an r-squared value of 0.068, identifying the same highly significant (p < 
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0.001) variables as the assault model. In this case, it is believed that some of these variables, 

such as police stations (β = 0.366) and licensed restaurants (β = 0.007) were more likely 

indicators of the downtown area, where drugs might be sold. Motor vehicle collision had an r-

squared value of 0.058. Similar to the OLS model of motor vehicle collision based on static and 

adaptive buffers, it was not expected that this dependent variable would have a strong model, 

since it is not considered to be an intentional crime. GRT bus stops (β = 0.052) and LCBO and 

Beer Store locations (β = 0.797) were the only two highly significant (p < 0.001) variables in this 

model. These independent variables are likely indicators of vehicle mobility. Similarly, LCBO 

and Beer Store locations are generally built at locations that are convenient for drivers to access. 

The model of property damage as the dependent variable had an r-squared value of 0.057. 

Licensed restaurants (β = 0.010) and WRPS police stations (β = 1.217) were the only two highly 

significant (p < 0.001) independent variables. 

The domestic dispute model had an r-squared value of 0.034. The AKDE value for GRT 

bus stops (β = 0.022) was the only highly significant (p < 0.001) variable in this model, possibly 

due to the more widely distributed and residential nature of this crime/reported incident type, 

which matches the distribution of bus routes and stops. Impaired driver and suspicious person or 

vehicle both resulted in an r-squared value of 0.030. Whereas GRT bus stops (β = 0.010) was the 

only highly significant (p < 0.001) independent variable in the models of suspicious person or 

vehicle, while LCBO and Beer Stores (β = 0.048), licensed restaurants (β = 0.003) and 

universities (β = -0.049) were significant (p < 0.01) in the model of impaired driver. It is 

interesting to note that licensed restaurants was not significant in the 90 m buffer OLS model for 

impaired driver (though it was significant in the adaptive buffer OLS model). This perhaps 

reflects the AKDE raster’s ability to show the slowly dissipating influence of the licensed 
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restaurants. While the 90 m and adaptive buffer methods only detect the environment features 

within an area approximately between each intersection and its neighbouring intersections, the 

AKDE method is able to detect the influence of environment features between 300 and 600 m 

away, depending on the assigned bandwidth. As impaired drivers will typically drive more than a 

block away from the licensed restaurant where they became impaired before being caught, only 

the AKDE method would be able to detect the influence of the restaurant at the intersection 

where the arrest was made. The model of theft under $5,000 had an r-squared value of 0.028. 

The AKDE value for GRT bus stops (β = 0.050) and LCBO and Beer Store locations (β = 0.829) 

were both highly significant (p < 0.001). The significance of GRT bus stops on theft makes 

sense, since thieves may target transit areas and encounter more opportunities to steal items left 

unattended by bus passengers. Universities were expected to be significant for similar reasons as 

bus stops, since students leaving electronics and other valuables unattended may increase the 

potential for theft. It is common to see police bulletins warning students to guard their valuables 

while on campus. However, this was not tested to be a significant variable in this model 

estimation. The dispute model weak with an r-squared value of 0.025. GRT bus stops (β = 0.012) 

was the only highly significant (p < 0.001) independent variable in this model. 

The robbery model had an r-squared value of 0.023. This low r-squared value is likely 

partially due to this crime/reported incident type’s rare occurrence. GRT bus stops (β = 0.001) 

and secondary school (β = 0.026) tested to be highly significant (β = 0.001) independent 

variables. As previously mentioned, bus stops represent locations where opportunities may exist 

for robbery, especially where people may wait alone or in small numbers outdoors at various 

times of day and night. Models of prostitution and theft motor vehicle had r-squared values of 

0.022. Only places of worship (β = 0.020) was tested as a significant (p < 0.001) predictor of 
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prostitution, while WRPS police stations (β = 0.358) was a significant (p < 0.001) predictor of 

theft of motor vehicle. Such significant relationships were puzzlingly and unexpected, which may 

be more of an artifact of how the data was collected and recorded, or confounded by other factors 

not considered in the model.  

Sex offence/indecent act resulted in one of the weakest OLS models with an r-squared 

value of 0.015. The AKDE values of secondary school and GRT bus stops were highly 

significant independent variables. As noted in the previous regression analyses with buffer 

methods, the low r-squared value reflects the lack of spatial patterns for such crime/reported 

incident types. The model of break and enter also resulted in a weak r-squared value of 0.014. 

Only GRT bus stops was highly significant within the model. This may reflect the similar spatial 

distribution of this built environment feature with the spatial patterns of this type of 

crime/reported incident, especially in residential areas. Homicide showed the lowest r-squared 

value, likely due to the rare number of cases recorded in the WRPS dataset, making this type of 

crime/report incident difficult to model. Similar to the prostitution model, the only significant 

independent variable for modelling homicide was places of worship, which was again 

unexpectedly a positive relationship. 

7.3.2 OLS AKDE Results – Independent Variables Results 

 

Characteristics of the built and natural environment as independent variables tested to 

have varying degrees of significance within the AKDE models. Although most variable 

coefficients were positive, several variables were negatively related and significant within a 

small number of tested OLS regression models. Similar to previous sections, the full statistical 

results of the AKDE OLS regression models are shown in Table A5. 
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Elementary schools proved to be a weak predictor of crime/reported incidents. It tested to 

have a significant (p < 0.05), negative relationship with motor vehicle collision (β = -0.124), 

suggesting that fewer collisions occur close to schools. Although a negative relationship between 

schools and crime/reported incidents was expected in this study, since committing crimes near 

schools are often considered to be taboo, the variable was only negative in half of the tested 

models. This is perhaps associated with the relatively even distribution of elementary schools 

throughout Kitchener-Waterloo with pre-planned locations.  

GRT bus stops tended to be highly significant (p < 0.001) and positively related with 

crime/reported incidents in most tested models. This is consistent with previous results from the 

OLS models based on buffer analysis, which suggests that bus stops represent locations where 

people wait alone or in small numbers outdoors, thus creating opportunities for someone to 

commit a crime. However, bus stops may also simply be an indicator of human activity.  

LCBO and Beer Store locations were significantly (p < 0.05) related to crime/reported 

incidents in five tested regression models. Interestingly, this variable’s values were not 

significant in the model of intoxicated person, which was expected to have a strong relationship. 

This is despite the fact that licensed restaurants values were highly significant in the model of 

intoxicated person. This is perhaps due to the fact that people who purchase alcohol from a store 

will likely take it elsewhere before they consume it, making it more difficult to estimate the 

spatial effect that stores may have on intoxication. Conversely, when people purchase alcohol at 

a restaurant or bar, they would likely consume it on-site and observable effects of intoxication 

would likely occur on the premises. This enables spatial effects of licensed restaurants on 

crime/reported incidents to be more easily identified and modelled.  
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The AKDE values for libraries, community centres and arenas was only significant (p < 

0.05) in three models and positively related to most crime/reported incidents.  This was not 

expected to be a significant predictor variable as it had moderately few locations recorded in the 

dataset.  

Licensed restaurants was the second best fitting variable and was expected to perform 

well. It tested to be a significant (p < 0.05) predictor in most models, including crime/reported 

incidents related to alcohol, such as intoxicated person and impaired driver, as well as 

disturbance and assault, which could be associated with alcohol consumption.  

Places of worship performed oddly well in tested models, being significant (p < 0.05) in 

five and highly significant (p < 0.001) in three. It was also unexpectedly positive in all but four 

models. These anomalies might be due to the fact that many older churches are located in the 

downtown area. It should be noted that places of worship was typically significant in models 

with very low r-squared values and thus, not deemed to be a significant predictor of 

crime/reported incidents.  

Secondary schools proved to be a well-fitting independent variables. It was significant (p 

< 0.05) in half of the models, highly significant (p < 0.001) in five of the models, and positive in 

all but two of the models. Some relationships were expected, such as with disturbance, while 

others, such as robbery, unexpectedly performed well with secondary schools. 

Hospitals, of which there were only three in the region, was the weakest of all the 

independent variables. It was not significant in any of the tested models. Similar to the libraries, 

community centres and arenas variable, this variable was included to add to the overall 

completeness of the tested set of variables, and it was not expected to be a good predictor of 

crime/reported incident locations.  



78 

 

Universities performed better than expected given the low number of such features in the 

dataset, being significant (p < 0.05) in six models and highly significant (p < 0.001) in two. As 

expected, it performed well with alcohol-related models, but as previously mentioned, it 

performed unexpectedly poorly in theft under $5,000 as it was believed that theft, particularly of 

personal electronics and bicycles, was common on university campuses. It was also negative and 

significant in the models for impaired driving and robbery. This would make sense in the former 

case, since universities are well connected to public transportation and university students are 

less likely to own a motor vehicle and may be more conscious about the dangers of drunk 

driving. It is interesting to note that only two models resulted in the university variable being 

identified as highly significant and also resulted in the largest r-squared values tested among the 

OLS AKDE models.  

WRPS police stations also performed surprisingly well in the tested models. It was 

significant (p < 0.05) in eight of the models and highly significant (p < 0.001) in four. 

Unexpectedly, it was positive in almost all models. This might be due to the fact that police 

stations are located in areas of high human activity where crimes are more frequently committed, 

because they are evenly distributed across the region, or because crimes are easier to report and 

are more easier to respond to if they are near a police station. This could also be due to elevated 

monitoring around police stations as they are the locations where police officers are based, 

ensuring more crime will be addressed and recorded in these areas.  

7.3.3 OLS AKDE Results – Summary of Key Findings 
 

The OLS AKDE regression models yielded weaker results than the OLS buffer 

methodology (both 90 m and adaptive buffer approaches) as evidenced by weaker r-squared 

values. The weak relationship observed between crime and urban environment characteristics 
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may be attributed to missing socio-economic variables or other factors that may be important to 

predicting the location of crime incidents, as well as other missing built or natural environmental 

characteristics that were not considered in estimated AKDE regression models. 

The crime/reported incident types that were most strongly associated with urban 

environmental characteristics tended to be based on OLS buffer methodology. Licensed 

restaurants was a highly significant variable, although liquor stores alone were rarely significant. 

Bus stops were again identified as a significant variable. This is likely due to the nature of people 

gathering in or transiting through such spaces and thus creating opportunities for criminals, as 

well as being an indicator of human activity. 

Secondary schools, universities and police stations also proved to be significant, although 

in fewer of the regression models. Universities was highly significant amongst all tested models. 

Police stations resulted in an unexpectedly positive relationship with crime/reported incidents, 

although this is likely due to the downtown location of most police stations. Overall, the 

statistically significant relationships of hospitals, universities, and police stations with crime 

incidents were questionable given the fact that there were a limited number of samples of each 

type of built environment feature. 

 

7.4 Logistic Buffer Regression Results 
 

 Theoretically, it is difficult to compare the strength of logistic regression models to each 

other and to the strength of OLS regression models. Nevertheless, the results from OLS 

regression and logistic regression results based on static and adaptive buffer analysis exhibited 

some similarities. For example, all OLS and logistic regression models except for models of 

homicide resulted in overall p-values that were highly significant (p < 0.001). When the logistic 
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regression models had a relatively high chi-squared value, the corresponding OLS regression 

model typically had a relatively large r-squared value. In both the 90 m and adaptive buffer 

methods, when the logistic regression models resulted in a low chi-squared value, the 

corresponding OLS regression model typically had a small r-squared value. The logistic 

regression models did, however, differ from the OLS regression models in many ways. In some 

cases, this might suggest that different relationships exist between the individual crime/reported 

incident types and environment features. The significance levels that were achieved by the 

independent variables in both types of regression models would often vary, particularly in the 

case of variables spatially concentrated in downtown areas. It was also noted that the models 

with the largest numbers of significant variables were often those whose dependent variables 

were present at the most intersections. The following sections will explore these differences. The 

full statistical results are shown in Table A3 for the 90 m buffer logistic regression models and 

Table A4 for the adaptive buffer logistic regression models, both in the Appendix section. 

7.4.1 Logistic Buffer-based Regression – Model Results 

 

  The 90 metre buffer logistic regression model that used the dependent variable assault 

was similar to the 90 metre OLS assault model that used the same dependent variable. GRT bus 

stops (β = 0.151 in logistic regression) were highly significant (p < 0.001) in both models. The 

adaptive logistic regression model for assault followed a similar pattern. GRT bus stops (β = 

0.211 in logistic regression) and streetlights within the radius (β = 0.032 in logistic regression) 

again were both highly significant (p < 0.001) in the logistic and OLS regression models.  

With break and enter as the dependent variable, the model based on 90 m buffers tested 

in percentage institutional (β = 0.020 in logistic regression) and industrial (β = 0.018 in logistic 

regression) at the same level of significance (p < 0.01) for both the logistic and OLS regression 
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approaches, whereas bus stops (β = 0.096 in logistic regression) was less significant (p < 0.05) 

and alcohol licenses (β = 0.197 in logistic regression)  was more significant (p < 0.01) in logistic 

regression. For the adaptive models, however, only bus stops (β = 0.211 in logistic regression) 

maintained the same significance level (p < 0.001) between OLS and logistic regression, while 

percentage institutional (β = 0.024) and industrial (β = 0.021), alcohol licenses (β = 0.164), and 

streetlights (β = 0.032) tested to be significant (p < 0.05) in the logistic regression model.  

In the regression models estimated for dispute cases, more significant independent 

variables were identified in the OLS regression models, particularly in the case of the models 

based on 90 m static buffers. Although bus stops was the only significant variable in the logistic 

regression model based on 90 m buffers (β = 0.183, p < 0.001), percentage residential, 

commercial, and industrial were also significant in the OLS model. The adaptive OLS model, 

however, identified only slightly more significant independent variables than the adaptive 

logistic regression model as bus stops (β = 0.220 in logistic regression) and streetlights (β = 

0.036 in logistic regression) were highly significant (p < 0.001) in both models, but alcohol 

licenses was only significant in the OLS model. This advantage might be due to deviant 

individuals getting into multiple disputes over time in the same general area, which would be 

more amenable to being estimated by the OLS regression model, which takes into account 

multiple events at the same intersection. Disturbance followed a similar pattern to the dispute 

models, since the OLS models’ independent variables were more significant than in the logistic 

regression models, again especially in the case of the 90 m models. In the 90 m buffer models, 

while only bus stops (β = 0.220 in logistic regression) and streetlights (β = 0.220 in logistic 

regression) were significant (p < 0.01) in both the OLS and logistic regression models, alcohol 

licenses and percentage institutional, utility, and commercial residential were also significant in 
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the OLS models. A similar result occurred for the adaptive models, where both the OLS and 

logistic regression model identified alcohol licenses (β = 0.255 in logistic regression), bus stops 

(β = 0.256 in logistic regression), and streetlights (β = 0.030 in logistic regression) as significant, 

but the OLS model also identified percentage commercial residential and institutional as 

significant variables (p < 0.05).  

Although domestic dispute had similar results as dispute in the OLS analysis, this was not 

the case in the logistic regression model. The logistic regression model based on 90 m buffers 

resulted in more significant variables than the corresponding OLS model. Whereas both 90 m 

domestic dispute models had percentage residential (β = 0.032 in logistic regression), 

institutional (β = 0.030 in logistic regression), and commercial (β = 0.029 in logistic regression) 

and GRT bus stops (β = 0.103 in logistic regression) and streetlights within the radius (β = 0.034 

in logistic regression) as significant (p < 0.05), alcohol licenses within the radius was only 

significant (p < 0.05) in OLS regression and percentage recreational (β = 0.034), industrial (β = 

0.023), commercial residential (β = 0.035), greenspace (β = 0.025) were only significant (p < 

0.05) in the logistic regression model. There were also substantially higher numbers of 

significant variables in the 90 m domestic dispute logistic regression model than there was in the 

corresponding 90 m dispute logistic regression model, as the domestic dispute model had nine 

significant variables compared to the one for the dispute model. It is possible that the more 

residential nature of domestic dispute lends itself better to logistic regression modelling, since it 

allows for more dispersed distribution of crime/reported incidents and less likelihood of 

overlapping cases compared to downtown areas. The two adaptive domestic dispute models were 

similar, since alcohol licenses (β = 0.188), bus stops (β = 0.157), and streetlights (β = 0.038) 

tested to be significant (p < 0.01). 
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The OLS model based on 90 m static buffers for drugs identified more significant 

independent variables than the logistic regression model. This may be due to the fact that the 

drugs variable has a large concentration of occurrences in downtown areas. These multiple 

occurrences at the same street intersections are not present as binomial occurrences in the logistic 

regression modelling technique. The adaptive model results were rather similar between OLS 

and logistic regression, with logistic regression identifying one additional significant variable 

(percentage commercial residential, β = 0.043, p < 0.01).  

The homicide models in logistic regression had, similar to the OLS regression models, by 

far the lowest overall significance values, and were the only models in the logistic regression not 

considered to be significant. These models also resulted in the lowest chi-squared values (90 m:  

χ2 = 13.495, adaptive: χ2 = 6.944. No logistic regression models of homicide identified 

significant independent variables, while both OLS models identified percentage commercial 

residential as significant.  

With the impaired driver models, the performance of the independent variables was quite 

different in the 90 m buffer-based logistic regression model compared to the corresponding OLS 

model. Although bus stops (β = 0.178 in logistic regression) were significant (p < 0.01) in both 

models, only the OLS model identified percentage commercial residential as highly significant 

(p < 0.001), and only the logistic regression model identified percentage residential (β = -0.017) 

and streetlights (β = 0.042) as significant (p < 0.01). The impaired driver’s adaptive buffer 

logistic regression models were more similar to the corresponding OLS models than the 90 m 

static buffer method. Both models identified bus stops (β = 0.180 in logistic regression) and 

streetlights (β = 0.035 in logistic regression) as highly significant (p < 0.001). However, in OLS 



84 

 

regression, the alcohol licenses variable was highly significant (p < 0.001), and in the logistic 

regression model, percentage residential (β = -0.019) was moderately significant (p < 0.05).  

With intoxicated person, both 90 m static buffer models identified bus stops (β = 0.313 in 

logistic regression) and streetlights (β = 0.069) as significant (p < 0.01), but only the OLS model 

identified alcohol licenses as highly significant (p < 0.001). Although the logistic regression 

models tend to be less influenced by the independent variables concentrated in the downtown 

area, the lack of significance in logistic regression of alcohol licenses, a variable so directly 

linked to the dependent variable, suggests weakness in the 90 m logistic models. Conversely, the 

adaptive logistic regression model identified alcohol licenses (β = 0.344 in logistic regression) as 

highly significant (p < 0.001), as was the case in the corresponding OLS model. Both adaptive 

models also identified bus stops (β = 0.292 in logistic regression) as highly significant (p < 

0.001).  

The motor vehicle collision logistic regression models had in the largest chi-square values 

with both the 90 m buffer (χ2 = 347.16) and the adaptive buffer (χ2 = 421.15). The full statistical 

results of the logistic regression buffer models are shown in Tables A3 (90 m) and A4 (adaptive) 

in the Appendix. The performance of the significant variables in the 90 m models was quite 

different to how they performed in the OLS models, perhaps suggesting different relationships 

exist between this type of crime/reported incidents and the environment than was identified by 

OLS regression. While both models identified percentage commercial (β = 0.012 in logistic 

regression), bus stops (β = 0.346 in logistic regression) and streetlights (β = 0.055 in logistic 

regression) as being significant (p < 0.01), only the OLS model identified percentage greenspace 

and residential as significant, and only the logistic regression model tested percentage 

institutional (β = 0.016) and industrial (β = 0.012) to be significant (p < 0.01). In the case of the 
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adaptive models, both identified percentage commercial residential (β = 0.032 in logistic 

regression), alcohol licenses (β = 0.170 in logistic regression), bus stops (β = 0.275 in logistic 

regression) and streetlights (β = 0.036 in logistic regression) as significant (p < 0.05), whereas 

only the OLS model identified percentage commercial as significant (p < 0.001). Only the 

logistic regression model tested percentage institutional (β = 0.018) and recreational (β = 0.031) 

to be significant (p < 0.05). This difference could be accounted for by the fact that, as mentioned 

before, motor vehicle collision is not necessarily an intentional crime, and therefore might 

behave quite differently than other dependent variables in OLS regression versus logistic 

regression. 

The property damage models exemplified the difference between the OLS and logistic 

regression results. In the 90m logistic regression model, five variables were significant (p < 

0.01), whereas the corresponding OLS model identified three significant variables (p < 0.01). 

This is an example of how logistic regression tended to be a better fitting model for dependent 

variables that were less centrally concentrated, such as property damage. The adaptive models 

were similar in results with the main difference being percentage institutional identified as being 

highly significant (p < 0.001) in the OLS model, but not significant in the logistic regression 

model.  

Prostitution resulted in weaker logistic regression models than the OLS regression 

models. While the 90 m buffer-based OLS model identified four significant variables (p < 0.05), 

including three of which were highly significant (p < 0.001), the 90 m buffer-based logistic 

regression identified only one significant (p < 0.01) variable, streetlights (β = 0.075). Fewer 

differences were observed between the two adaptive buffer-based models: the OLS model 

resulted in three significant variables (p < 0.05), whereas the logistic regression model identified 
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two significant variables (p < 0.05). Both OLS and logistic regression models of prostitution 

were very weak. Likewise, the OLS and logistic regression models for robbery were weak in 

terms of goodness of fit. The poor regression model results for lack of fit of prostitution and 

robbery is likely due to the low number of street intersections included in the dataset at which 

this crime/reported incident type occurred. In the case of robbery, it is likely that a criminal 

would choose different locations to commit robbery so that his or her actions do not follow an 

expected pattern, thus making their crimes more difficult to model or predict. The models of sex 

offence/indecent act also had weak results with few significant variables identified in both OLS 

and logistic regression models. The 90 metre buffer-based OLS model for sex offence/indecent 

act resulted in three significant variables, while the logistic regression model identified only one 

significant variable. Similar results were observed in both adaptive buffer-based regression 

results. The models for sex offence/indecent act resulted in a weak logistic regression model.  

Models of suspicious person or vehicles resulted in more significant variables identified 

in logistic regression models than with OLS regression for the 90 m buffer method. Whereas the 

percentage intuitional (β = 0.024 in logistic regression) and commercial (β = 0.014 in logistic 

regression), bus stops (β = 0.113 in logistic regression) and streetlights (β = 0.024 in logistic 

regression) were significant (p < 0.05) in both models, the logistic model also identified 

percentage residential (β = 0.010), percentage industrial (β = 0.012), and percentage greenspace 

(β = 0.010) as significant variables (p < 0.05). These results are likely due to the high presence 

count and the widely distributed nature of this crime/reported incident type. Estimated regression 

models based on the adaptive buffer method resulted in similar findings.  

The logistic regression for theft motor vehicle was one of the weakest models tested, 

similar to the OLS regression results. Percentage industrial (β = 0.020 in logistic regression) and 
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commercial (β = 0.016 in logistic regression) were significant variables (p < 0.05) in both 90 m 

OLS and logistic regression and bus stops (β = 0.116) were also significant (p < 0.01) in the 

logistic regression model. However, regression models differed when the adaptive buffer method 

was applied. The corresponding OLS model identified two significant variables, namely 

streetlights and percentage industrial (p < 0.05). The logistic regression tested to be a stronger 

model with bus stops, streetlights, and alcohol licenses being significant (p < 0.01). It is unclear 

why such differences exist, however, it is notable that theft motor vehicle is one of the few cases 

where the adaptive buffer-based logistic model was better fitting than the corresponding OLS 

regression model. It is interesting to note that percentage industrial, an urban environmental 

characteristic that rarely tested to be significant, was generally associated with cases of theft 

motor vehicle, as was the case in the OLS models, suggesting a relationship between the two 

variables.  

Theft under $5,000 estimated models were quite different between OLS and logistic 

regression methods when using 90 metre static buffer input data. In the OLS model, percentage 

commercial and institutional were significant (p < 0.05) variables. The logistic regression model 

yielded a better goodness of fit with more significant (p < 0.01) variables, including percentage 

residential (β = 0.025), percentage recreational (β = 0.041), percentage institutional (β = 0.034), 

percentage commercial (β = 0.029), percentage industrial (β = 0.029), percentage greenspace (β 

= 0.021), bus stops (β = 0.099), and streetlights (β = 0.028). The fact that many variables tested 

to be significant in the logistic regression analysis is likely due to the fact that theft under $5,000 

likely occurs in more locations dispersed within the city. Results of the adaptive buffer-based 

regression models were similar. While both regression models identified alcohol licenses (β = 

0.202 in logistic regression), bus stops (β = 0.126 in logistic regression), and streetlights (β = 
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0.042 in logistic regression) as significant (p < 0.05) variables, the OLS regression model also 

identified percentage commercial as highly significant (p < 0.001).  

Finally, unwanted person was modelled based on both 90 m and adaptive buffer methods 

of data input. Notably, many variables tested to be significant in both of the 90 m buffer-based 

models (i.e., percentage institutional, percentage commercial, percentage commercial 

residential, bus stops, and streetlights), although to differing levels of significance. Also, 

percentage utility and alcohol licenses were only significant within the OLS regression model 

and percentage industrial (β = 0.016) was only significant (p < 0.01) in the logistic regression 

model. In the case of the adaptive buffers, both OLS and logistic regression models identified 

alcohol licenses (β = 0.294 in logistic regression) and bus stops (β = 0.194 in logistic regression) 

as significant (p < 0.01) variables, but only the OLS regression model identified percentage 

institutional and percentage commercial residential as significant (p < 0.01), while streetlights 

(β = 0.029) was only significant (p < 0.001) in logistic regression. 

In general, the 90 m static buffer OLS models identified more variables as significant and 

at higher levels of significance than their corresponding logistic regression models. The 

exception were namely crime/reported incident types that were more geographically dispersed or 

less concentrated in the downtown area. The adaptive buffer-based models, however, exhibited 

few differences between logistic and OLS regression models, with only a few exceptions. 

7.4.2 Logistic Buffer-based Regression – Independent Variable Results 

 

 In general, percentage residential tested to be more significant when logistic regression 

models were applied, rather than OLS regression models. When 90 m static buffer data were 

used, percentage residential was significant (p < 0.05) in only three of the OLS models, whereas 

it was significant (p < 0.05) in five of the logistic regression models. Furthermore, in the 90 m 
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buffer-based models, percentage residential was highly significant (p < 0.001) in two of the 

logistic regression models (impaired driver and theft under $5,000), but was not highly 

significant in any OLS models. Notably, this relationship was negative and highly significant (p 

< 0.001) in the 90 m buffer logistic regression model of impaired driver cases, but was positive 

in all other 90 m buffer logistic regression models that were tested. This is perhaps due to the 

lack of multiple occurrences of impaired driver at downtown intersections where RIDE 

programs may be set up, resulting in areas outside the downtown core with more residential 

buildings, which tested to be more significant.  

Regression results for percentage recreation did not differ significantly between logistic 

regression and OLS regression specifications, and resulted in poor overall results. In the 90 m 

buffer models, the variable was significant (p < 0.05) twice in the logistic regression models and 

once in the OLS models and in the adaptive models, it was significant (p < 0.05) once in the 

logistic regression models and never in the OLS models. Interestingly, the variable was highly 

significant (p < 0.001) in the theft under $5,000 logistic regression model with 90 m buffer data. 

Percentage recreation was found to be mostly positively related to crime/reported incidents in 

logistic regression models.  

Percentage institutional was also quite similar between the logistic regression and OLS 

regression results based on the 90 m buffer method, but not in the adaptive buffer models. In the 

adaptive models, percentage institutional was significant (p < 0.05) in eight as opposed to five 

models between the OLS and logistic regression results, respectively. It was also highly 

significant (p < 0.001) in three of the eight adaptive buffer-based OLS models where it was 

significant (p < 0.05), but not in the logistic regression models. Such differences may be due to 

the OLS models allowing for multiple crime/reported incidents to be counted at street 
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intersections. Since most crime/reported incident types and percentage institutional are spatially 

concentrated downtown, it allows for a spatial relationship to be more easily identified between 

crime/reported incidents and this building type in an OLS regression model specification.  

Percentage commercial was more significant within the OLS regression models. This 

was particularly the case when 90 m buffer data were used. Differences were less pronounced in 

the adaptive buffer models, where percentage commercial was only significant in two the OLS 

models (highly significant (p < 0.001) both times), and it was not significant in the logistic 

regression models. This may again be due to the fact that independent variables typically 

representative of downtown areas, such as percentage commercial, tested to be more significant 

in OLS regression models with crime/reported incident types that are more concentrated in the 

downtown area. 

Percentage industrial was a more significant variable in logistic regression than in OLS 

regression based on 90 m buffers. It was significant (p < 0.05) in eight of the logistic regression 

models tested, but only three of the OLS models. Similar to percentage residential, a possible 

explanation for this is that logistic regression only examines presence/absence of the dependent 

variable. Industrial parks, where this building type is most common and which are located further 

away from the downtown core in Kitchener, may perform better in logistic regression models, 

since this regression method does not take into account multiple crime/reported incidents at 

downtown intersections. Conversely, the results for the adaptive models for this variable were 

similar. Percentage industrial was significant (p < 0.05) in only one model for each of the two 

regression methods, and thus it was not an important variable regardless of the regression model 

used.  
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Percentage utility and percentage agriculture were not significant in the logistic 

regression models. This is similar to the OLS regression models, as there were only two models 

where these variables were significant (p < 0.05). It is clear that OLS and logistic regression 

models performed similarly with these variables in assessing their importance in predicting 

crime/reported incidents. Similar to the OLS regression, this is likely due to the low incidences 

of utility and agricultural buildings in Kitchener.  

The overall goodness of fit of percentage commercial residential was poorer in logistic 

regression models compared to OLS regression models for both the 90 m and adaptive buffer 

methods. When 90 m buffers were applied, this variable was only significant (p < 0.05) twice in 

the logistic regression models despite being significant (p < 0.05) in six of the models that used 

OLS regression. In the adaptive method, while this variable was significant (p < 0.05) in eight 

OLS regression models, it was only significant (p < 0.05) in two of the logistic regression 

models. This is consistent with the observation that many of the independent variables were 

commonly found in the downtown area.  

Percentage greenspace performed slightly better in the logistic regression model, but 

only when the 90 m buffers were applied. Percentage greenspace was significant (p < 0.05) 

three times when logistic regression models were applied, but tested significant (p < 0.05) only 

once in the 90 m OLS regression models. This perhaps suggests that greenspace is a greater 

factor in crime/reported incidents than the OLS model suggested. However, neither the OLS nor 

logistic regression results for the adaptive method identified greenspace as a significant variable. 

Interestingly, the effect of percentage greenspace when the adaptive buffer method was applied 

was mostly identified to be negative in the OLS regression models, but mostly positive in the 

logistic regression models. 
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The effect of alcohol licenses within the radius on crime/reported incidents differed 

between logistic regression and OLS regression methods when a 90 m buffer was applied. This 

variable tested to be significant (p < 0.05) in nine of the 90 metre buffer-based OLS regression 

models, while it was only significant (p < 0.01) twice in the corresponding logistic regression 

models. This difference was far less pronounced when adaptive buffers were applied, since 

alcohol licenses within the radius was significant (p < 0.05) in twelve models using logistic 

regression, compared to fourteen OLS regression models. As previously discussed, independent 

variables that were considered, such as alcohol licenses within the radius, may have been less 

significant in logistic regression models due to its nature to be largely concentrated downtown 

and associated with commercial land uses. 

The effect of two remaining independent variables, GRT bus stops and streetlights within 

the radius, on crime/reported incident did not differ significantly between OLS and logistic 

regression modelling methods. When 90 metre buffers were applied, GRT bus stops within the 

radius was significant (p < 0.05) fourteen times in OLS regression, and fifteen times in logistic 

regression. When the adaptive buffer method was applied, GRT bus stops was significant (p < 

0.05) in all but two OLS regression models, and it was significant in all but one logistic 

regression model. Overall, the GRT bus stops was most significantly related to crime/reported 

incidents when compared to other independent variables in this study. Streetlights within the 

radius was also relatively significant in predicting crime/reported incidents.  When the 90 m 

buffer method was applied, the variable was significant (p < 0.05) in eight and ten models, while 

when the adaptive buffer method was applied, the variable was significant (p < 0.05) in sixteen 

and seventeen models using OLS and logistic regression, respectively. It is possible that bus 

stops unintentionally matched the pattern of many crime/reported incidents binomial variables, 
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since bus stops are widely distributed in the downtown area, but usually occur the same number 

of times at each street intersection (e.g., one for each side of the street). Overall, these two 

variables may be more indicative of human activity, rather than being a significant predictor or 

causal factor of crime. However, this is consistent with several crime theories. For example, 

Routine Activity Theory states that crime occurs where there are potential offenders, suitable 

targets, and a lack of guardianship (Cohen & Felson, 1979). Since more suitable targets would be 

more available at environmental features that attract human activity, such environmental features 

would therefore have more crime occurring within their vicinity.  

7.4.3 Logistic Buffer-based Regression Results – Summary of Key Findings 
 

Results of the logistic regression buffer methodology showed that the independent 

variables typically concentrated downtown, such as percentage institutional, percentage 

commercial, alcohol licenses within the radius, and particularly percentage commercial 

residential  tended to perform better in OLS regression models than when the logistic regression 

method was applied. As previously mentioned, this is likely due to multiple crime/reported 

incident events often associated with street intersections located downtown. The importance of 

such variables is not necessarily captured by logistic regression models, which only consider the 

presence and absence of a particular type of crime/reported incident, and not how many times a 

type of crime/reported incident was committed at that location. Alcohol licenses, however, was 

significant in most models where the adaptive buffer method was applied. The adaptive buffer 

logistic regression model tended to identify alcohol licenses, bus stops, and streetlights within 

the radius as significant independent variables.  
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It was also noted that when the 90 m buffer method was applied, crimes/reported incident 

types that were present at more intersections throughout Kitchener tended to have more 

statistically significant independent variables.  

  

7.5 Logistic AKDE Regression Results 
 

 Logistic regression models were created for each of the crime/reported incident 

dependent variables using the AKDE-generated built and natural environment independent 

variables. The significant independent variables in the logistic regression models were typically 

limited to a small number of variables, such as places of worship or bus stops, whereas a wider 

range of independent variables were considered for the OLS models. All of the logistic 

regression models had overall p-values that were highly significant, with the exception of 

homicide. All statistical results of the AKDE logistic regression analysis are shown in Table A6 

in the Appendix. 

7.5.1 Logistic AKDE Regression – Model Results 

 

 The models with the dependent variable assault showed considerable variation between 

OLS and logistic regression. Whereas the OLS model’s highly independent (p < 0.001) 

significant variables were the AKDE values for bus stops, licensed restaurants, secondary 

schools, and WRPS police stations, the logistic model’s highly significant (p < 0.001) variables 

were the AKDE values for elementary school (β = 0.122), bus stops (β = 0.016), and places of 

worship (β = 0.034). The positive relationship between elementary schools and places of worship 

amongst with crime/reported incidents was unexpected. It is believed that logistic regression 

models may potentially inflate the importance of variables that are spatially distributed within 

the city, such as elementary school and places of worship variables, since multiple events at 
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single intersections were not taken into account. Since logistic regression models only consider 

presence or absence of assault occurrences, more spatially distributed independent variables tend 

to be more significant than those that are clustered in particular areas of town.  

Both the OLS and logistic regression models for break and enter identified bus stops (β = 

0.011 in logistic regression) as highly significant (p < 0.001), and WRPS police stations (β = 

0.206 in logistic regression) as moderately significant (p < 0.05). Places of worship (β = 0.033) 

was highly significant (p < 0.001) and positively related to crime/reported incidents, but this is 

likely due to lack of multiple crime/reported incident events occurring at single intersections. 

This may also be due to more widespread occurrences of break and enter throughout the city 

compared to other types of crime/reported incidents, which may result in a more significant 

relationship with the distribution of churches. The dispute logistic regression model proved to be 

quite similar to the break and enter logistic regression model results with similar chi-squared 

values (87.309 for break and enter and 118.739 for dispute), and both identified only bus stops 

(β = 0.016) and places of worship (β = 0.023) as significant (p < 0.01) independent variables. It 

is unlikely that these two variables are highly related to each other and similar relationships are 

likely due to similar spatial distributions when represented by a binomial variable in logistic 

regression models.  

The disturbance logistic regression model results were similar to the OLS model, 

although places of worship (β = 0.037) was identified as highly significant (p < 0.001) and 

positively related, while the OLS model identified universities as a highly significant (p < 0.001) 

independent variable. This finding was unexpected, since one would tend to associate 

universities with disturbances compared to religious institutions.  
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The logistic regression model for domestic disturbance appeared to be better fitting than 

the corresponding OLS model. The OLS model identified bus stop (β = 0.014 in logistic 

regression) as a highly significant independent variable. The logistic regression model, however, 

also identified places of worship (β = 0.039) and the two school type variables (elementary 

schools (β = 0.058) and secondary schools (β = 0.17)) as significant (p < 0.01). It is likely that 

the more residential nature and broad spatial distribution of this crime/reported incident type 

lends itself to logistic regression analysis. 

 The drugs logistic regression model was similar to its corresponding OLS model, as both 

identified secondary school (β = 0.218 in logistic regression), licensed restaurants (β = 0.008 in 

logistic regression), and GRT bus stops (β = 0.021 in logistic regression) as significant (p < 

0.01). However, only the OLS model tested police stations to be highly significant (p < 0.001), 

and only the logistic model identified places of worship (β = 0.036) as highly significant (p < 

0.001). The positive and highly significant nature of these relationships was unexpected and as in 

the case of many of the AKDE logistic regression models.  

The logistic regression model based on AKDE buffers was the weakest for homicide. It 

was the only model that was not highly significant overall, resulting in the smallest chi-squared 

value (χ2 = 20.185). This is likely due to the fact that only nine homicides were recorded in 

Kitchener-Waterloo during the study year. Unlike the OLS regression model of homicide, the 

logistic regression model identified places of worship (β = 0.120) as a highly significant (p < 

0.001) independent variable. This is an unexpected result, since one would not normally 

associate homicide with places of worship, thus the statistical relationship was likely due to the 

spatial distribution of a small recorded number of homicide cases.  
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The logistic regression model of impaired driver as the dependent variable was similar to 

the corresponding OLS model, with both identifying licensed restaurants (β = 0.010 in logistic 

regression) and LCBO and Beer Store locations (β = 0.206 in logistic regression) as highly 

significant (p < 0.001) independent variables. Since both are alcohol-related independent 

variables, this significant relationship was expected. The main difference between both models 

was that only the OLS model tested universities as being a significant (p < 0.01) independent 

variable, whereas only the logistic regression model tested bus stops (β = 0.009) as significant (p 

< 0.01). The wide spatial distribution of bus stops in Kitchener-Waterloo likely contributed to the 

significant logistic regression model.  

Intoxicated person resulted in the largest chi-squared value of all tested logistic 

regression models based on the AKDE buffer method (χ2 = 422.680). Both logistic and OLS 

regression models considered bus stops (β = 0.026 in logistic regression) and licensed 

restaurants (β = 0.011 in logistic regression) as highly significant (p < 0.001) independent 

variables. Interestingly, LCBO and Beer Store locations (β = 0.206) was highly significant (p < 

0.001) in the logistic regression model, as was expected due to the natural association between 

alcohol sales and intoxication, despite not testing to be significant in the OLS model. Moreover, 

unlike the OLS model, the logistic regression model did not identify universities or police 

stations as significant independent variables, but places of worship tested to be significant (p < 

0.01). Any crime/reported incident associated with the universities occurred at a small number of 

intersections, likely accounting for the weaker relationship of this variable in logistic regression 

model. The significant variables for the motor vehicle collision logistic regression model were 

different than for the corresponding OLS regression model. However, bus stops (β = 0.019 in 

logistic regression), licensed restaurants (β = 0.014 in logistic regression), places of worship (β 
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= 0.025 in logistic regression), and secondary schools (β = 0.157 in logistic regression) were 

significant (p < 0.05) in both models. 

More significant independent variables were identified in the logistic regression model of 

property damage than in the OLS regression model. The OLS model tested police stations (β = 

0.185 in logistic regression), licensed restaurants (β = 0.006 in logistic regression), and bus stops 

(β = 0.013 in logistic regression) as significant variables (p < 0.05), but the logistic regression 

model also identified elementary schools (β = 0.077), bus stops (β = 0.013), and secondary 

schools (β = 0.192) as highly significant (p < 0.001) and places of worship  (β = 0.018) as 

moderately significant (p < 0.05) variables. It is likely that the well-distributed nature of this 

crime/reported incident type contributed to the increased number of significant variables in the 

logistic regression model, for reasons previously discussed.  

The logistic regression model proved to be a better fit for prostitution compared to the 

OLS regression model. Both identified places of worship (β = 0.124, in logistic regression) as 

highly significant (p < 0.001) and the logistic regression model identified bus stops (β = 0.011) 

and police stations (β = 0.352) as moderately significant (p < 0.05). Again, this dependent 

variable had a low recorded number of occurrences of this crime/reported incident type, which 

likely contributed to the model’s poor goodness of fit. Also, as previously discussed, prostitution 

might be difficult to model, due to the fact that more than one location could potentially be 

linked to an individual crime/reported incident. Robbery, a dependent variable with a similarly 

low number of occurrences of this crime/reported incident type, was better fitting in the OLS 

regression model compared to the logistic regression model. Both identified secondary school (β 

= 0.319, in logistic regression) and bus stops (β = 0.015, in logistic regression) as highly 

significant (p < 0.001), but the OLS model also identified LCBO and Beer Store locations, 
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licensed restaurants, and universities as significant (p < 0.05) variables. Since robbery is more 

concentrated in downtown locations, it was expected that OLS regression would yield a superior 

model in comparison to a logistic regression model specification.  

Both OLS and logistic regression models of sex offence/indecent act identified bus stops 

(β = 0.016, in logistic regression) and secondary school (β = 0.229, in logistic regression) as 

significant (p < 0.01) independent variables. Similarly, few variables were identified as 

significant in regression models of suspicious person or vehicle. Both identified places of 

worship (β = 0.044, in logistic regression) and bus stops (β = 0.012, in logistic regression) as 

significant (p < 0.01), although the logistic regression model also yielded elementary school (β = 

0.067) as a significant (p < 0.01) independent variable. This is likely due to the wide spatial 

distribution of this variable. Theft motor vehicle also resulted in weak regression models with bus 

stops (β = 0.012) and police stations identified as the only highly significant (p < 0.001) 

variables in the logistic and OLS regression models, respectively. The lack of fit for both models 

may be due to the fact that criminals who steal cars may be distributed throughout the city or else 

criminals themselves may pick random targets.  

The logistic regression model for theft under $5,000 yielded more significant variables 

than the corresponding OLS regression model. While the OLS model only identified three 

significant (p < 0.05) variables, the logistic regression model resulted in seven significant 

variables, likely due to the large number of this crime/reported incident type in Kitchener-

Waterloo. Also, theft under $5,000 occurred at many street intersections throughout the city. 

Again, universities, where thefts were generally known to occur, was not a significant 

independent variable.  
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The two unwanted person models yielded similar results with bus stops (β = 0.020, in 

logistic regression), licensed restaurants (β = 0.013, in logistic regression), and places of 

worship (β = 0.057, in logistic regression) as highly significant (p < 0.001), and secondary 

school (β = 0.132, in logistic regression) and universities (β = 0.304, in logistic regression) as 

moderately significant (p < 0.05). Some independent variables were moderately significant in 

one model but not the other, while LCBO and Beer Store (β = 0.134) locations tested to be 

significant (p < 0.01) in the logistic regression model. 

7.5.2 Logistic AKDE Regression – Independent Variable Results 

 

 The results of the logistic regression ADKE models are shown in Table A6 of the 

Appendix. The elementary school AKDE value was a well-fitting independent variable in the 

logistic regression model. Elementary schools was also an unexpectedly positive coefficient in 

all logistic regression models where it was significant (p < 0.05). As with other variables 

associated with residential areas, the greater significance of elementary schools in the logistic 

regression model was likely due to the use of binomial dependent variables, which eliminated 

multiple events at street intersections and aggregated observations into presence and absence 

indicators. As previously noted, this reduced the influence of the higher number of 

crime/reported incidents at downtown intersections, which potentially inflates the importance of 

independent variables that are not concentrated in the downtown core.  

The bus stops AKDE value was the best fitting variable in both logistic and OLS 

regression results and it was significant (p < 0.05) in all but one logistic regression model, and all 

but four OLS regression models. Bus stops was also a highly significant (p < 0.001) predictor for 

fifteen types of crime/reported incidents, while it tested significant for twelve crime/reported 

incident types when OLS regression models were used. As previously mentioned, this was 
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expected to be a strong variable, since bus stops provide an outdoor location where individuals 

wait alone or in small numbers, and could make them more susceptible to crime, in accordance 

with Routine Activity Theory (Cohen & Felson, 1979). However, it is also believed that the wide 

spatial distribution of bus stops could contribute to inflating the importance of this variable in 

logistic regression models. A large number of bus stops are located downtown, while fewer are 

located in suburban areas and throughout the rest of the city. There are also typically two bus 

stop locations at each intersection when they are present (one on each side of the street).  For 

these reasons, it is possible that the bus stop AKDE value’s statistical correlation was inflated 

due to its spatial distribution, or lack of spatial concentration of the binomial crime/reported 

incident dependent variables in downtown areas. 

   Hospitals was one of the weakest fitting independent variables in both the logistic and 

OLS regression models. It was only significant (p < 0.05) for one crime/reported incident type 

(drugs) when logistic regression models were estimated and did not test to be significant in OLS 

regression models. As previously mentioned, this finding was expected, since there are very few 

hospitals located in the region. The LCBO and Beer Store AKDE values were similarly weak in 

significance when both logistic and OLS regression models were tested. The variable was 

significant (p <0.05) in six and five of the logistic and OLS regression models respectively, 

although it was more significant amongst the OLS regression models tested. As previously 

mentioned, this is likely due to the wider distribution of this variable, since both organizations 

have stores fairly evenly distributed throughout the study area to increase accessibility to 

residents and potential customers. As expected, this variable tested to be highly significant (p < 

0.001) in the intoxicated person logistic regression model due to the link between alcohol and 

intoxication, although interestingly, it did not test to be significant in the OLS regression model.  
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Similar to the previous two independent variables, the ADKE values of libraries, 

community centre, and arenas tested to be weak in both logistic and OLS regression models. It 

was only moderately significant (p < 0.05) in two logistic regression models and in three OLS 

models. Similar to the hospitals variables, libraries, community centre, and arenas was not 

expected to be a well-fitting variable. It demonstrated a positive relationship with crime/reported 

incident types in both regression methods. 

 The licensed restaurants AKDE values tested to be slightly more significant in OLS 

regression when compared to logistic regression results. In logistic regression, the variable was 

significant (p < 0.05) in nine models and highly significant in six, whereas in OLS regression, it 

was significant in eleven models and highly significant (p < 0.001) in seven. The AKDE values 

were significant with many of the same dependent variables, including many of those thought to 

be associated with alcohol consumption. Both regression models showed that licensed 

restaurants was consistently a good predictor of crime/reported incidents.  

The places of worship AKDE values tended to be more significant predictors in logistic 

regression model results. Although the variable was only significant (p < 0.05) in five of the 

OLS regression models, it tested to be significant (p < 0.05) in fifteen of the logistic regression 

models. It was also a positive coefficient in every logistic regression model. As previously noted, 

the significance of the places of worship variable is believed to be due to the broad spatial 

distribution of churches throughout Kitchener-Waterloo, with a number of older churches 

concentrated in the downtown core, and many other churches scattered throughout the city.  This 

spatial distribution is similar to the spatial pattern of the binomial data for many crime/reported 

incident types, which might lead to the false notion of churches being a key factor in the 

presence or absence of crime.  
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The secondary schools AKDE values had a similar significance in both logistic and OLS 

regression models. The fit of the ADKE values for universities in logistic regression was poor in 

comparison to the OLS regression results. The variable was only significant (p < 0.05) once in 

the logistic regression models, compared to six models where it was significant (p < 0.05) in 

OLS regression results. This is likely because many of the crime/reported incidents on each 

university campus were relocated to a small number of intersections adjacent to the institutions, 

which are represented as single events by the binomial variables. This also appears to be the case 

with the AKDE values for WRPS police stations in the logistic regression model. Although the 

variable was significant in five models in logistic regression analysis, it tested to be only 

moderately significant (p < 0.05). Again, this is likely due to most crime/reported incidents in 

and around police stations being tagged to a small number of surrounding street intersections, 

which would be treated like single events in the logistic regression analysis. 

7.5.3 Logistic AKDE Regression Results – Summary of Key Findings 
 

 The results of AKDE logistic regression models identified bus stops and alcohol licenses 

as significant independent variables. However, places of worship unexpectedly tested to be 

significant in all but three logistic regression models and always had a positive coefficient. This 

was likely a misleading result caused by the spatial pattern and clustering of churches (e.g., a 

concentration of older churches downtown with others scattered throughout suburban residential 

areas) coincidentally matching the pattern of many presence/absence crime/reported incident 

variables. While secondary schools also tested to be a significant predictor of crime incidents, 

universities and police stations were rarely significant in tested logistic regression models. In the 

case of universities, the lack of significance is likely due to the fact that crime/reported incidents 
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committed at universities were usually aggregated at the closest intersections, thus obscuring 

potential statistical relationships. 

 

7.6 NDVI Analysis Results 
 

 The intent of this section is to evaluate which crime types are most strongly associated 

with levels of vegetation cover, while recognizing that this relationship may be directly or 

indirectly linked with the presence or absence of vegetation.  As noted in Section 6.3, regression 

models were tested where NDVI was considered as the dependent variable, and crime/reported 

incidents were the independent variables, simply to assess the strength of relationships between 

the sets of variables. 

Results of this analysis provided further evidence of statistical relationships between 

crime and its surrounding environment. When the crime/reported incident variables were 

significant, these relationships were most often negatively related to vegetation. This is 

consistent with the findings of Wolfe and Mennis (2012) which indicated that abundant 

vegetation was associated with decreased rates of various crime types. This likely indicates that 

crime/reported incidents are more common in areas of low vegetation where concrete and asphalt 

landcover and building roofs are more common, such as downtown areas. Independent variables 

that tested to be highly significant include motor vehicle collision and intoxicated person. Other 

variables, including break and enter and homicide were rarely or never significant within the 

tested models. Results of the eight NDVI models are provided in Table 5, which shows the 

significance levels and coefficients for each crime/reported incident type in each of the models 

tested. 
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Table 5. Results of eight regression models tested in the analysis of NDVI and crime/reported 

incidents. “***” represents a p-value below 0.001, “**” represents a p-value below 0.01 but 

above 0.001, and “*” represents a p-value below 0.05 but above 0.01. 

 Number of Crime/Reported Incidents Crime/Reported Incidents Presence/Absence 

 90 m Adaptive 90 m Adaptive 

 Mean Maximum Mean Maximum Mean Maximum Mean Maximum 

Intercept 0.232 *** 0.392 *** 0.228 *** 0.365 *** 0.237 *** 0.391 *** 0.235 *** 0.371 *** 

Assault 0.000   0.000   0.000   0.001   -0.002   0.004   -0.002   -0.002   

Break and 

enter -0.003 * 0.001   -0.002   -0.001   0.003   0.010 * 0.003   0.004   

Dispute 0.001  0.001   0.001   0.000   0.002   0.005   0.002   -0.002   

Disturbance -0.002 * -0.004 ** -0.002  -0.004 ** -0.010 ** -0.016 ** -0.011 ** -0.014 ** 

Domestic 

dispute 0.001   0.002 ** 0.000   0.000   0.003   0.004   0.002   -0.002   

Drugs -0.002  -0.001   -0.001   0.000   -0.013 *** -0.014 ** -0.012 *** -0.011 * 

Homicide -0.025   -0.048   -0.021   -0.041   -0.013   -0.043   -0.009   -0.034   

Impaired 

driver -0.001   0.009 * -0.004   0.001   -0.005   0.016 * -0.007   0.004   

Intoxicated 

person -0.002 * -0.006 *** -0.003 * -0.004 * -0.018 *** -0.024 *** -0.018 *** -0.018 *** 

MVC -0.001 *** 0.000   -0.002 *** -0.001 ** -0.013 *** -0.001   -0.014 *** -0.007 * 

Property 

damage -0.001   0.001   -0.001   -0.001   0.001   0.009 * -0.002   -0.002   

Prostitution -0.004 ** -0.003   -0.004 ** -0.002   -0.032 *** -0.047 *** -0.026 *** -0.011   

Robbery -0.005   -0.009   -0.002   -0.005   -0.012 * -0.018  -0.010  -0.011   

Sex offence 

indecent act 0.003   0.010 * 0.000   0.003   0.004   0.008   0.000   0.005   

Suspicious 

person or 

vehicle 0.003 ** 0.006 ** 0.002  0.004 * 0.008 *** 0.011 **  0.006 * 0.006 * 

Theft motor 

vehicle -0.001   0.000   -0.001  -0.002 * -0.002   0.005   -0.004   0.000   

Theft under 

$5,000 

dollars -0.001 *** -0.001 ** -0.001 *** -0.001 *** 0.003   0.006  0.003   0.001   

Unwanted 

person -0.001 *** -0.002 *** -0.001 *** -0.001 ** -0.017 *** -0.017 *** -0.017 *** -0.017 *** 

 

 Assault and dispute resulted in some of the smallest coefficients observed in the NDVI 

models that were tested. Moreover, both crime/reported incident types had the least significant 

relationships with vegetation, not testing to be significant in any of the eight models considered. 
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Homicide was also not significantly associated with NDVI. However, this is likely due to the 

very low number of homicide events reported. Break and enter also tested to be not significantly 

related to NDVI, being only moderately significant in two of the models tested. It is possible that 

break and enter occurrences were more well distributed throughout the city and thus, randomly 

associated with vegetation cover. 

 Disturbance tested to be significantly related with NDVI in all but one regression model 

and was negatively related to vegetation. Domestic disturbance was only significant in one of the 

tested models for NDVI. It is possible that domestic disturbance is similar to break and enter, 

since its occurrences are well distributed geographically and therefore associating randomly with 

vegetation levels. 

 The relationship between drugs and vegetation was quite unusual. It tested to be 

significant and negative in four models where the presence/absence crime/reported incident 

variables were tested, but was not significant in four models where count crime/reported incident 

variables were tested. Homicide was one of the least significant independent variables tested in 

the NDVI analysis. As previously mentioned, this is likely due to the low number of homicides 

reported in Kitchener-Waterloo. Impaired driver was also identified as not significant. This is 

likely that the locations where persons are stopped for impaired driving are well distributed, 

because the offenders are in automobiles and highly mobile, which reduces the potential for a 

strong spatial relationship with vegetation cover. 

  Intoxicated person was one of the most significant variables tested in eight models of 

NDVI as the dependent variable.  The relationship tested to be negative, suggesting that alcohol-

licensed establishments are usually located in low vegetation covered areas, such as downtown 

or in suburban commercial centres where concrete and asphalt cover are abundant. It is also 
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interesting to note that four of the five models in which this variable tested to be highly 

significant were models where presence/absence crime/reported incident variables were used. 

The coefficients for intoxicated person were negative and larger when presence/absence 

crime/reported incident variables were used. This might be due to the fact that presence/absence 

of a crime/reported incident type correlates better with vegetation than with counts for the 

crime/reported incident type, as presence/absence variables better match the limited variation of 

NDVI values. Motor vehicle collision was also one of the more significant variables tested in the 

eight models shown in Table 5. It was significant in six of the eight models, and highly 

significant in four. Also notable is that motor vehicle collision resulted in a negative coefficient 

in all models, verifying that areas where vehicle collisions occur will be on roads and high 

asphalt covered areas, corresponding to low NDVI valued. Busier roads are also larger and tend 

to be associated with more accidents. 

 Property damage was not significant in NDVI models. This is likely due to the well 

distributed nature of this crime/reported incident type, resulting in its occurrence at a number of 

intersections with diverse vegetation cover, being widely spread geographically. Unexpectedly, 

prostitution was identified as a significant variable and negatively related to NDVI. This 

indicates that if vegetation cover had been included as an additional variable in the buffer and 

AKDE models predicting crime/reported incidents, model fit could have potentially improved. 

 Robbery and sex offence/indecent act tested to be significant in only one model likely due 

to the low number of cases reported in the city. Suspicious person or vehicle tested to be 

significant in seven of the eight models of NDVI and one of the only relationships that was 

positive. It is possible that this positive relationship is due to a tendency for suspicious people to 

hide near vegetation cover. Contrary to other results of this analysis, these results may support 
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the theory put forward by some studies that vegetation aids criminals, as it may be used to hide 

their activities (Nasar & Fisher, 1993; Michael, et al., 2001). 

 Theft motor vehicle was not significantly related to NDVI, likely due to its moderately 

small count of reported events. Results of theft under $5,000 were similar but negatively related 

to NDVI. However, a significant relationship was not detected when presence/absence 

crime/reported incident variables were. 

  Unwanted person consistently tested as being significantly related to NDVI or vegetation 

cover and was identified as a significant variable in all eight models. In models tested in previous 

sections and also with NDVI, the results of unwanted person were consistently similar to 

reported cases of intoxicated person. In summary, all crime/reported incidents involving 

undesirable people or behaviour (e.g., intoxicated person, suspicious person or vehicle, and 

unwanted person) tested to be significantly related to NDVI, whether those relationships were 

positive or negative. This suggests that vegetation cover may play a role in where deviant 

behaviour occurs or persists spatially within Kitchener-Waterloo. 
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8.0 Discussion  

The primary goal of this study was to explore the relationship between crime/reported 

incidents and the built and natural environment in the cities of Kitchener and Waterloo, Ontario. 

The models tested to study this relationship, using multiple methods and datasets, proved to be 

weak with low r-squared values. This would suggest the relationship between the built and 

natural environment is also weak. The secondary goal was to determine which built and natural 

environment features had the strongest relationships with each type of crime/reported incident. 

Bus stops were found to have the most significant relationship with crime/reported incidents, 

being identified as significant with the majority of crime/reported incident types. Since bus stops 

attract large numbers of individuals, this likely creates opportunities for potential criminal 

activity. Alcohol licensed facilities also resulted in a significant relationship with crime/reported 

incidents. Certain types of crime/reported incidents, such as intoxicated person or assault may be 

directly or indirectly related to alcohol. Streetlighting was significant in some models but its 

positive relationship with crime/reported incidents was unexpected as it was expected to be 

crime deterrent. It was likely that, similar to bus stops, streetlighting attracts individuals during 

night time hours who wish to travel in a lit area, thus creating criminal opportunity. Commercial 

buildings, secondary schools, and universities all showed significance with several 

crime/reported incident types, particularly crime types that are often associated with the three 

buildings types (e.g. theft with commercial buildings, disturbances with both universities and 

secondary schools). Commercial residential buildings and institutional buildings both were also 

significant with several crime/reported incident types, though this was likely because of their 

spatial concentration downtown rather than any relationship those building types had with crime. 

The relationship between crime/reported incidents and the natural environment also appeared 
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weak from initial tests. However, a negative relationship did appear to exist between several 

crime/reported incident types and NDVI values, as well as a positive relationship between 

suspicious person or vehicle and NDVI values. 

   

8.1 Buffer and AKDE Methods  

 Overall, neither the static and adaptive buffer nor AKDE methodologies produced very 

strong OLS regression models of built/natural environmental predictors of crime/reported 

incidents, with the largest r-squared value being 0.227. Several models resulted in r-squared 

values above 0.1, but most models were weak with r-squared values below 0.1. These findings 

imply a weak relationship of built/natural environmental features with crime/reported incidents, 

which could be due to several possible reasons. A likely reason is missing variables, such as 

socio-economic factors that were not considered in the regression models in this study. It was 

initially believed that since Kitchener-Waterloo is a moderately-sized urban area, the relatively 

consistent socio-economic status of neighbourhoods within the city would not have a significant 

effect on crime. This assumption was partly due to short distances between neighbourhoods of 

varying socio-economic status, allowing for easy travel and greater connectivity, unlike in larger 

cities. Moreover, it was difficult to compare socio-economic data and crime/reported incidents in 

this study, since socio-economic data are recorded at aggregate units of different sizes and 

shapes, such as census tracts or dissemination areas, which would be challenging to compare 

with street intersection points to which crime/reported incidents were assigned, without 

committing an ecological fallacy (Tranmer & Steel, 1998). If socio-economic data for census 

polygons were assigned to street intersections at which crime/reported incidents were identified, 

it is likely that many intersections located close together would have been assigned with the 
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same socioeconomic characteristics. Nevertheless, comparison of socio-economic variables and 

including them in the regression models may form an additional dimension to this work and 

potentially improve the model fit by including additional variables.  

 Furthermore, it is possible that some statistically significant relationships between 

built/natural environment variables and crime/reported incidents could have been an artifact of 

the data that were collected and considered to be indicators representative of human activity, 

rather than being factors in determining the locations of crime. This is particularly the case with 

bus stops, which was identified as a highly significant variable in this study for predicting 

crime/reported incidents. It is known that bus stops tend to be associated with areas of high 

activity, transit, and gathering of people, associated with demands for public transportation. This 

observation is consistent with the concept of ‘crime generators’ proposed by Brantingham and 

Brantingham (1995), which states that places that attract large numbers of people can become 

generators of crime. Brantingham and Brantingham (1995) specifically mention that “bus 

interchanges, transit system stops, [and] massive park and ride parking lots can all become crime 

generators because of the volumes of people that pass through them” (p. 7). Therefore, although 

built environment features such as bus stops might be more related to human activity than crime 

itself, crime in many respects is tied to human activity, and bus stops represent congregation 

points for people. These observations are also consistent with Cohen and Felson’s (1979) 

Routine Activity Theory. This theory states that crime occurs when motivated offenders, suitable 

targets, and a lack of guardianship converge in a particular time and space. As bus stops attract 

large numbers of people intent on using transit, this provides motivated offenders with numerous 

suitable targets for their criminal activity.  
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Another weakness identified in this study was that building and land uses are not 

randomly distributed in Kitchener-Waterloo. Certain built environment features and factors, such 

as percentage institutional, had high concentration of facilities located in downtown areas and 

such spatial patterns are not necessarily related to crime, but attributed to economics and other 

human-related activities and processes. It is believed that although the corresponding regression 

models may have been significant, such relationships are likely inflated in significance due to 

spatial patterns, population, and other factors that are not related to crime.  Future research may 

explore how to adjust for spatial effects and spatial autocorrelation in the datasets and to isolate 

urban/built environment effects on crime.  

When the performance of the buffer method and the AKDE method were compared, the 

buffer method was the preferred overall methodology. The buffer method resulted in higher r-

squared values with the majority of dependent crime/reported incident variables. The buffer 

method’s better performance may have been due to its independent variables being generally 

superior to those tested in the AKDE method. The AKDE analysis required point data for built 

environment features in order to create the necessary AKDE rasters. However, available datasets 

of building use types were quite limited in point form, since only specific datasets were provided 

mainly by government sources and developed for specific applications. This also entailed that an 

excessive number of government facilities were often represented as independent variables in the 

AKDE models. Although some business registry datasets were available, these were difficult to 

classify and other flaws or errors were often apparent (e.g., lack of chain stores and restaurants, 

containing home businesses). Inclusion of business registry points as rasters within the AKDE 

models, even if unclassified, could potentially improve overall model performance. Nevertheless, 

the buffer methodology applied in this study was able to utilize the building footprint dataset, 
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which provided a classification of each building within the city. Although this classification 

could be further divided into more sub classes, this methodology still enabled representation of 

the built environment to be captured within the dataset of Kitchener’s building footprints. 

 The adaptive buffer method was determined to have superior performance to the 90 m 

static buffer method in this study. Regression models based on adaptive buffers resulted in 

overall higher r-squared values when considering the same set of dependent variables. Basing the 

buffer radius on the distance to the four nearest intersections appeared to better represent the 

individual built and natural environment at each street intersection, therefore making it the 

superior methodology than a static buffer representing all street intersections of the study area 

with the same radius. 

 When logistic and OLS regression methods were compared, the OLS regression model 

was considered to be the best in terms of goodness of fit and more statistically significant 

independent variables. The AKDE logistic regression analysis also indicated places of worship 

as a significant variable and positively related to crime/reported incidents, which ran counter to 

expectations.  Such significant relationships tested from logistic regression models was likely 

due to the similar spatial distribution of churches (e.g., a small cluster of churches located 

downtown with other churches distributed throughout the study area) with the spatial distribution 

of crime/reported incident dependent variables, which only considered presence/absence rather 

than the number of incidents.  This demonstrated the tendency of AKDE logistic regression 

models to result in false positive conclusions by not accounting for crime/reported incident 

counts and focusing only on presence/absence of cases.  The OLS regression methodology was 

judged to be superior for this analysis, since it resulted in identifying fewer false positives.  
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 This study’s methodologies are applicable in other cities where the crime records have 

been spatially aggregated to other locations as was the case in the Kitchener-Waterloo. The 

Waterloo Regional Police Service (WRPS) recorded each crime/reported incident’s geographic 

location as the nearest street intersection to the actual location where the incident was observed. 

Both the AKDE and buffer methods were applied to capture the specific nature and 

characteristics of the built and natural environment features despite this inherent constraint in the 

crime/reported incidents dataset of Kitchener-Waterloo. The buffer method was applied in this 

study to capture the influence of street block characteristics surrounding the street intersections 

at which a crime/reported incident was reported. The AKDE methodology was developed to 

capture characteristics of the built environment within regions surrounding street intersections 

rather than only at specific points of interest, thus allowing for more representation of built and 

natural environment features to be captured at each street intersection. An AKDE method was 

applied instead of a standard KDE procedure to compensate for and to represent the variable 

distances between street intersections within the study area. Therefore, these methodologies are 

best suited for cities where law enforcement authorities record crime locations to the nearest 

street intersection rather than the actual location of the crime. 

  

8.2 Data Constraints 
 

There were several weaknesses of the datasets used in this analysis, including inherent 

inaccuracies that could not be reconciled, but should be recognized as contributing to the overall 

uncertainty of this study. In particular, a significant weakness of the WRPS crime/reported 

incident data was that each crime/reported incident was aggregated to the nearest street 

intersection for reasons of privacy and confidentiality. This aggregation inherent in the dataset 



115 

 

results in uncertainty in the exact location of crime/reported incidents represented in this study, 

especially for areas with longer street segments or wide spaced street intersections, such as rural 

or suburban regions.  Moreover, a substantial number of crime/reported incent records did not 

have geographic location information available and were not possible to geocode in the study’s 

dataset, which were ultimately eliminated from the dataset and thus excluded from the analysis. 

It is possible that a number of notable, actual crimes were excluded from this study due to the 

lack of spatial information attached to them.  However, it was not known why locational 

information was missing for certain incidents and this could very well be reflective of incidents 

that the WRPS did not consider worthwhile to further investigate or did not have sufficient 

information to record in the database. 

  Errors were also occasionally identified within the crime/reported incidents dataset. 

While some built feature datasets, such as alcohol establishment data, where inspected in detail 

by the author on a record-by-record basis for accuracy, the WRPS crime/reported incident 

dataset was very large and it was not possible to verify whether all of the information related to 

each crime/reported incident was correct. Based on the results reported from this study, 

significant errors were not apparent and model analysis results could either be explained or were 

within expectations.  Therefore, significant errors were not immediately apparent despite the 

inherent uncertainty related to the datasets used in this study. 

 Another weakness of this study was the temporal misalignment of datasets used in this 

analysis. For example, both the crime/reported incident dataset and Landsat 8 image were from 

2013, but the alcohol license dataset was obtained for 2014. The weakness of temporal 

misalignment was not considered to have significantly negative effect on the results of this study, 



116 

 

since the vast majority of built environment features in Kitchener-Waterloo would not change 

drastically from year to year. 

 There was also the potential for differences or inconsistencies between the street 

intersection dataset acquired and used in this study, and the maps and approaches used by 

individual WRPS police officers to register monitored crime/reported incidents to the closest 

street intersections. As previously discussed, each intersection was created in this study using the 

“Intersect” tool in ArcGIS on a roads layer sourced from the Ontario government. Each 

intersection created by this process was individually inspected by the author and. intersections 

were eliminated if they were not included in the WRPS crime/reported incident dataset. 

Eliminated road segments included cul-de-sacs, underpasses, duplicate intersection on roads with 

medians, and new housing developments that lacked criminal activity. Despite detailed 

inspection of this dataset by the author, it is still nevertheless likely that inconsistencies may still 

exist and that both datasets do not match exactly. For example, it is possible that some street 

intersections in new housing developments were excluded, which the WRPS might have 

considered to be active intersections. 

 

8.3 Comparison to Previous Research 
 

 This study found that alcohol facilities were significantly and positively associated with 

crime/reported incidents, with the exception of the logistic regression model based on 90 m 

buffers. This finding is consistent with existing literature (e.g., Day et al., 2012; Kumar & 

Walyor, 2003), which found that alcohol establishments are a significant factor in the spatial 

distribution of crime within urban areas. Moreover, many of the models tested in this study 

resulted in high r-squared values when linked to alcohol, including intoxicated person and 
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disturbance. However, when liquor stores were examined on their own, minor effects were 

observed.  

 There are conflicting findings concerning the relationship between transit stops and crime 

in the literature. For example, Barnum et al. (2017) identified a positive relationship between 

transit stops and crime incidents in all three cities that were studied, while Sohn (2016) found a 

negative relationship. The results from this study support those by Barnum et al. (2017), 

suggesting that more crime tends to occur around bus transit stops within a city. 

 Likewise, the relationship between vegetation and crime has been debated in existing 

literature, with some studies determining a negative relationship (Wolfe & Mennis, 2012; Chen, 

et al., 2005), while others conclude that the relationship is positive (DeMotto & Davies, 2006). 

The results from this study supports the former opinion. Although the buffer analysis results 

determined that parks and golf courses were an insignificant factor, the analysis of NDVI data 

values suggests that vegetation has a significant and negative relationship with several types of 

crime/reported incidents, such as intoxicated person and prostitution. Therefore, this study tends 

to support the theory that vegetation can act as a crime deterrence and perhaps lead to ‘mental 

softening’ that subsequently decreases crime rates (Kaplan, 1987).  The presence of vegetation 

cover may encourage citizens to provide informal surveillance (Jacobs, 1961) and may be related 

to theories of social capital and collective efficacy. Community members who tend to be active 

outside tend to enjoy vegetation, greenspace, and recreation areas, and would be more likely to 

report suspicious or criminal behaviour than compared to community members who stay indoors 

or are less involved with their local community. Suspicious person or vehicle was the only 

crime/reported incident variable that tested to have a significant and positive relationship with 

NDVI values. This demonstrates that the nature of this crime type might lend itself to a positive 
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relationship with vegetation, since vegetation may provide opportunities for crime perpetrators to 

hide and reduce their visibility. In the case of suspicious persons, hiding behind vegetation may 

be a common reason why these individuals appear suspicious to members of public. 

 In analysing the finding of this study, it is important to remember the findings of Barnum 

et al. (2017), who conducted Risk Terrain Modelling (RTM) analysis on three cities using the 

same variables as this study and determined inconsistencies in the significant relationships of 

urban environment features as predictors of crime. Using the analogy of a kaleidoscope, Barnum 

et al. (2017) suggested that the arrangement of urban features within a city can affect how crime 

is distributed within a city, thus making the crime risk factors associated with urban features 

unique in each city. This analogy would apply to Kitchener-Waterloo, as evidenced by the results 

of this study. It is likely that various factors, including the cities’ size and urban design interact 

and affect relationships between various types of crime/reported incidents and feature of the built 

and natural environment in urban areas. 

 

8.4 Significance of Research Findings 
 

 There are potential real-world applications of this research, particularly in law 

enforcement. Knowing where crimes are more likely to occur can be useful in planning of patrol 

routes and targeting policing efforts. Patrol routes could be designed so areas with a large 

numbers of urban features identified as ‘crime attractors’ and/or ‘crime generators’ (e.g., bus 

stops, streetlights) in this study can be properly patrolled by police cars. Areas with substantial 

concentrations of crime prone environment features could be identified as areas suited for foot 

patrols. These models could further be used to assess potential crime levels at new commercial 

and/or residential developments as part of their site assessment plans. This assessment essentially 
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only requires knowledge of the building development’s use and transportation and general 

infrastructure information in its proximity.  The models tested in this study may be applied to 

assess the level of crime that could potentially be introduced into an area by new development. 

 This study’s results could have potential implications in zoning practices in city planning. 

This is particularly important when considering alcohol selling establishments, which were 

identified in this study as a potential ‘crime attractor’ and an important environmental factor in 

predicting crime and reported incidents. It is important for zoning laws to ensure that ‘crime 

attractor’ building types and uses, such as alcohol selling establishments, are kept separate from 

residential zoned areas. This may help with managing the spatial distribution of crime 

occurrences and containing crimes within certain areas of the city. 

 This study adopted an exploratory approach when assessing the relationship between 

crime and vegetation. Many crime and incident report types were significantly and negatively 

related to vegetation, suggesting that there are lower crime levels in areas with more vegetation 

cover. This suggests that one way of helping to alleviate crime is through the planting of 

vegetation cover. Perhaps if more vegetation were to be planted and maintained in the cities of 

Kitchener and Waterloo, levels of certain crime types could be reduced. 
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9.0 Conclusions 

 In conclusion, the models tested to study the relationship between crime/reported 

incidents and the built and natural environment were quite weak with low r-squared values. 

These results suggest a weak relationship between crime and the built and natural environment. 

This also perhaps stresses the importance of including socio-economic factors and other 

confounding variables when studying the spatial distribution of crime. It was found that bus 

stops and alcohol licensed facilities were the built environment factors that were most associated 

with crime/reported incidents and their spatial distribution within Kitchener-Waterloo, Ontario. 

This positive relationship with crime/reported incidents was consistent among results from both 

the buffer and AKDE methods. In future studies of crime and its relationship with the 

environment, bus stops and alcohol licensed facilities are critical environment features to include 

in such analyses. Bus stops’ positive and significant relationship with crime/reported incidents is 

like due to bus stops being classified as ‘crime generators’, which attract people who could be 

potential targets for offenders. Alcohol licensed facilities’ positive and significant relationship 

with crime/reported incidents is likely due to its direct and indirect link with several crime types, 

such as intoxicated person and assault. Streetlights was also an important factor and positively 

related with crime/reported incidents, likely for similar reasons as bus stops as they attract 

individuals at night who could be potential targets.  

Most types of building uses were weakly associated with crime and reported incidents, 

with some of the more significant being percentage institutional, percentage commercial, 

percentage commercial residential, secondary schools and universities. It is suspected, however, 

that some of these significant relationships of built environment features with crime/reported 

incidents are at least partially explained by their spatial concentration in the downtown core. 
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Among the crime/reported incident variables that resulted in higher r-squared values were 

intoxicated person, disturbance, unwanted person, assault, and drugs. These crime types, 

therefore, may be the most spatially related to surrounding urban environment characteristics. 

Several types of crime/reported incidents resulted in significant and negative relationships with 

NDVI values or vegetation cover, supporting the conclusion that vegetation reduces crime levels. 

Conversely, suspicious person or vehicle had a positive and significant relationship with NDVI 

values. 

 Results of this study indicated that the buffer method was superior to the AKDE method, 

since resulting regression models and more independent variables were significant.  Also, the 

adaptive buffer method was considered to be better than the 90 m static buffer approach and 

produced stronger models in the majority of cases. Therefore, when all of the methodologies 

tested in this study are considered, the adaptive buffer methodology is the recommended 

approach for future studies on crime and built/natural environment relationships. Furthermore, 

OLS regression was preferred over logistic regression analysis, since the OLS models resulted in 

less false positives and better identified the importance of spatial concentrations in crime data. 

Overall, the methodologies implemented in this study were ultimately constrained by available 

crime datasets and the uncertainty associated with aggregating crime occurrences to the nearest 

intersection. The methodologies applied in this study will be useful for conducting similar 

studies in other Canadian cities that also record crime aggregated to the closest street intersection 

and for exploring the relationship between such datasets with characteristics of the built and 

natural environment. 
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Appendix 
 

 The following section includes the results of the buffer and AKDE methodologies and 

both the OLS and logistic regression results.  

When assessing the significance of the models and independent variables, significance 

level was put into four categories: “***”, representing a p-value below 0.001, “**”, representing 

a p-value below 0.01 but above 0.001, and “*”, representing a p-value below 0.05 but above 

0.01. 
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Table A1. The results of the 90 m buffer OLS regression analysis in Kitchener. 
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type  714 1029 1984 1151 3178 1045 7 246 931 5639 1134 173 110 300 1526 505 4457 2706 

  R-squared 0.110 0.021 0.028 0.121 0.032 0.093 0.007 0.059 0.206 0.169 0.044 0.036 0.036 0.021 0.055 0.018 0.089 0.144 
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Significance P-

value < 2.2e-16 9.177e-09 8.496e-13 < 2.2e-16 8.344e-15 < 2.2e-16 0.04247 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 1.125e-08 < 2.2e-16 2.722e-07 < 2.2e-16 < 2.2e-16 
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    *   **        **                 

Percentage 

recreational 

0.002 -0.003 0.004 -0.001 0.010 -0.003 0.000 -0.002 -0.003 -0.018 0.000 -0.001 0.003 0.000 -0.001 -0.001 0.037 -0.008 

                        **           

Percentage 

institutional 

0.012 0.006 0.006 0.012 0.015 0.017 0.000 -0.001 0.008 0.002 0.018 0.000 0.000 0.004 0.007 0.005 0.027 0.026 

*** **   *** * ***     *   ***     *** **   * * 

Percentage 

commercial  

0.004 0.001 0.010 0.005 0.010 0.006 0.000 0.002 0.004 0.065 0.008 0.004 0.002 0.002 0.007 0.006 0.083 0.018 

**   **  * **      *** ** * *** * *** ** *** * 

Percentage 

industrial 

0.001 0.005 0.008 0.003 0.002 0.002 0.000 0.001 -0.001 -0.006 0.003 0.003 0.000 0.001 0.002 0.006 0.007 0.015 

  **  *                        *     

Percentage 

utility  

-0.015 -0.003 0.010 -0.041 -0.015 -0.011 0.000 -0.004 -0.033 -0.091 -0.007 -0.006 -0.001 0.004 -0.014 0.004 -0.053 -0.147 

      *                          ** 

Percentage 

agricultural  
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      **      *** ***       *** *         ** 

Percentage 

greenspace 

0.001 0.000 0.002 0.001 0.003 0.001 0.000 0.000 0.001 -0.018 0.001 0.000 0.000 0.001 0.002 0.000 0.004 -0.003 

                  *                 

  

Alcohol licenses 

within 90m  
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*** *** *** ** *** ***   ** *** *** ***   * *** ***    *** 

Streetlights 

within 90m  
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*     *   **     ** ***   ***    *     ** 
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Table A2. The results of the adaptive buffer OLS regression analysis in Kitchener. 
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Percentage 
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Percentage 
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Percentage 

utility  
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Percentage 
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Percentage 
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Percentage 
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*** *** *** *** *** ***   *** *** *** *** * * *** ***   *** ** 
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within radius 

0.008 0.005 0.022 0.010 0.023 0.008 0.000 0.004 0.006 0.109 0.012 0.006 0.001 0.005 0.012 0.009 0.032 0.016 

*** * *** ** *** **   *** * *** *** ** ** *** *** ** *   
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Table A3. The results of the 90 m buffer logistic regression analysis in Kitchener. 
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Number of 

intersections 

with 

crime/incident 

report type 

present 370 682 753 511 1049 470 7 175 398 1245 628 62 90 219 928 296 1240 641 

  Chi-Square 160.976 57.143 97.427 239.570 109.534 219.945 13.495 130.906 352.242 347.164 129.637 94.650 69.830 63.661 75.375 91.160 120.913 314.478 

  

Chi-Square P-

value 0.000 0.000 0.000 0.000 0.000 0.000 0.334 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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  Intercept 
-3.895 -2.152 -16.662 -16.914 -3.943 -2.415 -25.140 -2.300 -17.250 -1.061 -3.695 -19.279 -17.869 -16.641 -2.141 -3.087 -3.165 -2.882 

*** ***     *** ***   ***   **  ***        *** *** *** *** 
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Percentage 

residential  

0.012 0.010 0.155 0.147 0.032 0.001 0.185 -0.017 0.140 -0.002 0.022 0.138 0.136 0.137 0.010 0.004 0.025 0.008 

       **      ***     *       *    ***   

Percentage 

recreational 

0.012 -0.016 0.156 0.146 0.034 0.004 -44.230 -0.020 0.143 0.022 0.014 0.121 0.162 0.128 0.003 0.004 0.041 0.021 

        *                       ***  

Percentage 

institutional 

0.034 0.020 0.151 0.162 0.030 0.016 0.184 -0.013 0.159 0.016 0.037 0.168 0.139 0.157 0.024 0.016 0.034 0.029 

** **     ** *       ** ***       ***  *** *** 

Percentage 

commercial  

0.025 0.009 0.157 0.156 0.029 0.010 0.187 0.007 0.157 0.012 0.028 0.162 0.157 0.148 0.014 0.016 0.029 0.023 

*      **        ** **         **  * *** *** 

Percentage 

industrial 

0.019 0.018 0.160 0.150 0.023 0.008 0.203 0.002 0.143 0.012 0.030 0.156 0.134 0.143 0.012 0.020 0.029 0.016 

. **     *         ** **       *  * *** * 

Percentage 

utility  

-0.083 0.011 0.183 0.089 0.031 0.009 -17.020 -0.026 0.143 -0.038 -0.011 -0.112 0.130 0.170 -0.030 0.011 0.004 -0.023 

                                    

Percentage 

agricultural  

-1.648 -1.823 -1.898 0.233 -1.937 -1.734 -2.664 -1.668 0.240 2.031 -1.803 -1.614 -1.602 -1.622 -1.881 -1.643 -1.959 -1.778 

                                    

Percentage 

commercial 

residential 

0.029 0.004 0.166 0.175 0.035 0.022 0.242 -0.012 0.167 0.022 0.031 0.179 0.166 0.137 0.019 -0.013 0.023 0.028 

       *                        * 

Percentage 

greenspace 

0.016 0.006 0.148 0.141 0.025 0.001 -203.000 -0.007 0.145 -0.001 0.018 0.138 0.133 0.136 0.010 0.000 0.021 0.005 

        *                   *   **    

  

Alcohol licenses 

within 90m  

0.069 0.197 -0.016 0.074 0.085 0.265 -0.348 -0.121 0.073 -0.095 0.088 -0.196 -0.141 0.009 -0.045 0.073 0.102 0.156 

  **       **                       . 

GRT bus stops 

within 90m  

0.151 0.096 0.183 0.231 0.103 0.209 -0.052 0.178 0.313 0.346 0.202 0.086 0.098 0.126 0.113 0.116 0.099 0.162 

*** * *** *** ** ***   *** *** *** ***      ** ** ** **  *** 

Streetlights 

within 90m  

0.027 -0.012 0.010 0.039 0.034 0.023 0.093 0.042 0.069 0.055 -0.004 0.075 0.040 0.006 0.024 0.017 0.028 0.043 

*      ** ***    **  *** ***   **    *    **  *** 
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Table A4. The results of the adaptive buffer logistic regression analysis in Kitchener. 
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Number of 

intersections 

with 

crime/incident 

report type 

present 370 682 753 511 1049 470 7 175 398 1245 628 62 90 219 928 296 1240 641 

  Chi-Square 226.978 93.187 200.446 314.197 211.213 297.521 6.944 168.609 401.187 421.149 193.186 107.024 79.930 98.444 161.742 152.748 245.486 380.674 

  

Chi-Square P-

value 0.000 0.000 0.000 0.000 0.000 0.000 0.861 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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  Intercept 

-3.269 -3.060 -15.963 -15.961 -14.917 -3.234 -26.810 -2.508 -16.016 -1.427 -15.846 -26.840 -27.010 -15.883 -1.957 -15.879 -14.917 -15.891 

** **       **   ***   **                 

B
u

il
d

in
g
/G

re
e
n

sp
a
c
e
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o
o
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r
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t 
w
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h
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v
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g
e
 

D
is
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n

c
e
 t

o
 N

e
x
t 

4
 I

n
te

r
se

c
ti

o
n

s 

Percentage 

residential  

0.001 0.015 0.142 0.134 0.137 0.005 0.205 -0.019 0.127 -0.001 0.138 0.214 0.224 0.125 0.005 0.128 0.138 0.135 

              *                     

Percentage 

recreational 

0.009 0.006 0.138 0.144 0.145 0.014 -161.000 -0.033 0.138 0.031 0.139 0.184 0.246 0.102 -0.007 0.132 0.158 0.152 

                  *                 

Percentage 

institutional 

0.024 0.024 0.135 0.146 0.134 0.022 0.193 -0.017 0.149 0.018 0.152 0.245 0.224 0.144 0.016 0.135 0.148 0.156 

* *        *        **          *        

Percentage 

commercial  

0.010 0.012 0.140 0.141 0.133 0.012 0.196 0.002 0.138 0.010 0.139 0.235 0.242 0.130 0.005 0.131 0.139 0.149 

                                    

Percentage 

industrial 

0.004 0.021 0.143 0.131 0.122 0.010 0.201 -0.001 0.123 0.010 0.142 0.228 0.220 0.121 0.002 0.141 0.136 0.141 

  *                                  

Percentage 

utility  

-0.200 -0.021 0.120 0.061 0.094 0.005 -618.900 -0.096 0.122 -0.047 0.090 -0.962 0.179 0.141 -0.040 0.081 0.093 0.098 

                                    

Percentage 

agricultural  

0.073 0.026 0.149 0.200 0.095 -3131.000 -2029.000 -1.188 0.222 0.558 0.216 -2453.000 -2808.000 0.104 0.042 0.261 0.086 0.150 

                                    

Percentage 

commercial 

residential 

0.029 0.019 0.156 0.176 0.149 0.043 0.253 -0.003 0.185 0.032 0.155 0.269 0.256 0.121 0.007 0.120 0.148 0.169 

.         **       *                  

Percentage 

greenspace 

0.001 0.011 0.133 0.126 0.129 0.002 0.181 -0.012 0.126 -0.002 0.133 0.205 0.218 0.121 0.004 0.122 0.132 0.131 

                                    

  

Alcohol licenses 

within 90m  

0.170 0.164 0.046 0.255 0.188 0.308 0.199 0.102 0.344 0.170 0.180 0.063 0.049 0.084 0.164 0.221 0.202 0.294 

** **    *** ** ***     *** *  **       ** **  ** *** 

GRT bus stops 

within 90m  

0.211 0.124 0.220 0.256 0.157 0.203 -0.129 0.180 0.292 0.275 0.192 0.169 0.145 0.177 0.164 0.146 0.126 0.194 

*** *** *** *** *** ***   *** *** *** *** ** ** *** *** *** *** *** 

Streetlights 

within 90m  

0.032 0.014 0.036 0.030 0.038 0.028 0.043 0.035 0.032 0.036 0.024 0.034 0.036 0.029 0.027 0.032 0.042 0.029 

*** **  *** *** *** ***   *** *** *** *** ** *** *** *** *** *** *** 
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Table A5. The results of the AKDE OLS regression analysis in Kitchener-Waterloo. 

  
Dependent Variables 
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d
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5
,0

0
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d
o

ll
a

r
s 

U
n

w
a

n
te

d
 p

e
r
so

n
 

 

Number of 

crime/incident 

reports of this type 982 1512 2480 1678 3865 1435 9 383 1351 8389 1818 175 144 415 2172 642 6884 3559 

 R-squared 0.084 0.014 0.025 0.128 0.034 0.068 0.007 0.030 0.123 0.058 0.057 0.022 0.023 0.015 0.030 0.022 0.028 0.113 

 Overall p-value 2.39E-10 2.39E-10 < 2.2E-16 < 2.2E-16 < 2.2E-16 < 2.2E-16 0.00024 < 2.2E-16 < 2.2E-16 < 2.2E-16 < 2.2E-16 < 2.2E-16 < 2.2E-16 2.97E-11 < 2.2E-16 < 2.2E-16 < 2.2E-16 < 2.2e-16 

 
Intercept 

0.034 0.243 0.319 0.108 0.440 0.048 0.002 0.054 0.008 0.947 0.195 -0.009 0.009 0.045 0.271 0.099 0.582 -0.027 

   *** *** **  ***     ***   *** ***    *** *** *** **   

In
d

e
p

e
n

d
e
n

t 
V

a
r
ia

b
le

s 

AKDE values 

Elementary schools 

0.016 0.005 0.005 0.010 0.040 -0.004 -0.001 -0.002 -0.003 -0.124 0.008 -0.009 -0.002 0.002 0.020 -0.008 -0.054 0.008 

                 *                 

AKDE values GRT 

bus stops 

0.005 0.004 0.012 0.005 0.022 0.011 0.000 0.001 0.009 0.052 0.007 0.001 0.001 0.002 0.010 0.002 0.050 0.023 

*** *** *** **  *** ***     *** *** *  *** *** ***   *** *** 

AKDE values 

Hospitals  

0.056 0.005 -0.040 0.013 -0.086 0.069 -0.001 -0.009 0.084 -0.030 -0.005 -0.007 -0.006 0.005 -0.052 0.009 -0.061 0.121 

                                    

AKDE values LCBO 

and Beer Stores 

0.002 0.016 0.027 -0.060 0.006 0.001 0.000 0.048 0.044 0.797 0.002 -0.019 0.010 -0.008 0.052 0.006 0.829 0.198 

             ***   ***     *      *** * 

AKDE values 

Libraries, 

community centres, 

and arenas 

0.022 -0.011 0.063 0.005 0.083 -0.025 0.001 0.006 -0.047 0.066 0.051 -0.020 -0.005 0.009 0.009 0.016 0.135 -0.147 

    
* 

  
* 

      
 

    
 

          
* 

AKDE values 

Licensed restaurants  

0.012 0.001 -0.001 0.030 -0.006 0.007 0.000 0.003 0.027 0.017 0.010 0.000 0.001 -0.001 0.000 0.002 0.022 0.057 

***     *** * ***   *** *** **  ***   **      * *** 

AKDE values Places 

of worship 

0.005 0.004 0.011 0.009 0.011 0.005 0.001 0.001 0.004 -0.048 -0.002 0.020 0.000 0.002 0.017 -0.003 -0.059 0.073 

           ***     *   ***     **    *** 

AKDE values 

Secondary schools  

0.098 0.009 0.006 0.206 0.118 0.438 -0.002 -0.010 0.015 0.334 0.046 0.019 0.026 0.037 -0.021 -0.020 0.354 0.271 

***     *** * ***       *     *** ***       * 

AKDE values 

Universities  

-0.023 0.113 0.098 0.282 0.060 0.005 -0.002 -0.049 0.286 -0.031 -0.004 -0.045 -0.023 -0.006 0.047 0.027 0.121 0.390 

  **   ***       **  ***      **         * 

AKDE values WRPS 

police stations 

0.281 0.080 0.079 0.064 0.197 0.366 -0.001 0.001 0.193 0.561 1.217 0.017 -0.005 0.001 0.003 0.358 0.235 0.092 

*** *     * ***     ** **  ***         ***     
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Table A6. The results of the AKDE logistic regression analysis in Kitchener-Waterloo. 

  
Dependent Variables 
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d
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5
,0

0
0

 

d
o

ll
a

r
s 

U
n

w
a

n
te

d
 p

e
r
so

n
 

 

Number of 

intersections with 

crime/incident report 

type present 491 941 1003 711 1402 615 9 264 553 1819 898 64 117 302 1293 387 1816 879 

 Chi-squared 201.291 87.309 118.739 336.597 158.078 284.098 20.185 83.962 422.680 276.630 156.624 132.455 57.785 68.715 137.801 73.579 221.969 413.065 

 

Chi-squared 

Significant 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Wald Chi-squared 1958.305 1353.782 1252.547 1710.630 639.126 1836.767 348.116 1934.623 1904.837 183.125 1423.527 1140.635 1507.475 1973.793 794.704 2001.764 185.486 1454.101 

 

Wald Chi-squared 

Significant 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 
Intercept 

-2.714 -1.637 -1.634 -2.331 -1.195 -2.499 -6.086 -3.065 -2.792 -0.870 -1.804 -5.204 -4.074 -3.071 -1.282 -2.670 -0.792 -2.087 

 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

In
d

e
p

e
n

d
e
n

t 
V

a
r
ia

b
le

s 

AKDE values 

Elementary schools 

0.122 0.027 0.024 0.042 0.058 0.047 -6093.000 -0.043 0.031 0.024 0.077 0.066 -0.053 0.039 0.067 -0.009 0.068 0.049 

***       **          ***       **   *** * 

AKDE values GRT 

bus stops 

0.016 0.011 0.016 0.022 0.014 0.021 -0.012 0.009 0.026 0.019 0.013 0.011 0.015 0.016 0.012 0.012 0.009 0.020 

*** *** *** *** *** ***   ** *** *** *** * *** *** *** *** *** *** 

AKDE values 

Hospitals  

0.017 0.056 -0.014 -0.017 -0.134 0.152 -26180.000 -0.341 0.059 0.005 0.033 0.230 -0.159 0.018 -0.049 0.012 0.044 0.026 

          *                        

AKDE values LCBO 

and Beer Stores 

0.105 0.050 0.030 0.088 0.051 0.084 0.056 0.206 0.135 0.073 0.077 -0.166 0.127 0.020 0.077 0.111 0.103 0.134 

*           *** **     
    * * ** 

AKDE values 

Libraries, community 

centres, and arenas 

0.095 0.003 0.057 0.035 0.040 0.042 0.280 0.008 0.055 0.071 0.022 -0.159 0.009 0.092 0.041 0.036 0.079 0.043 

*                
            *   

AKDE values 

Licensed restaurants  

0.007 -0.001 0.000 0.009 -0.001 0.008 -0.002 0.010 0.011 0.014 0.006 0.004 0.005 -0.004 -0.003 0.005 0.012 0.013 

**     ***   **   *** *** *** *          *** *** 

AKDE values Places 

of worship 

0.034 0.033 0.023 0.037 0.039 0.036 0.120 0.012 0.048 0.025 0.018 0.124 0.020 0.026 0.044 0.006 0.048 0.057 

*** *** ** *** *** *** ***   *** ** * ***   * ***   *** *** 

AKDE values 

Secondary schools  

0.160 0.083 0.073 0.232 0.171 0.218 -6396.000 -0.035 0.128 0.157 0.192 0.207 0.319 0.229 0.027 -0.067 0.142 0.132 

*     *** ** ***      ** ***   *** **     * * 

AKDE values 

Universities  

-0.099 -0.069 -0.059 0.218214 0.029 -0.036 -3490.000 -0.228 0.218 0.051 0.091 -0.321 -0.380 -0.041 0.064 0.082 -0.077 0.304 

                                * 

AKDE values WRPS 

police stations 

0.086 0.206 0.084 0.144 0.000 0.060 -748.800 0.012 0.127 0.151 0.185 0.352 -0.222 -0.069 0.130 0.199 0.049 0.216 

  *                * *       *   * 

 

 

 


