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Abstract 

Autonomous driving is on the horizon. Partially automated vehicles recently started to emerge in the 

market, and companies are dedicated to bringing more automated driving capabilities to the vehicles 

in the near future. Over the past twenty years, human factors research has increased our understanding 

of driver behavior and human-vehicle interaction, as well as human-automation interaction 

considerably. However, as the technological developments accelerate, there is an urgent need to 

conduct research to understand the challenges of driving a semi-automated vehicle, the role of 

cognitive and social factors and driver characteristics, and how interactive technology can be used to 

increase driving safety in this context. This thesis was an attempt to address some of these challenges. 

In this work, we present two studies on human factors of automated driving. In the first study, we 

present the results of a survey conducted with Tesla drivers who have been using partially automated 

driving features of Tesla cars. Our results revealed that current users of this technology are early 

adopters. Automation failures were common, but drivers were comfortable in dealing with these 

situations. Additionally, Tesla drivers have high levels of trust in the automated driving capability of 

their vehicles, and their trust increases as they experience these features more. The results also 

revealed that drivers don’t use owner manuals, and seek out information about their cars by using 

online sources. The majority of Tesla drivers check multiple information sources when their car 

software receives an update. Overall these findings show that driver needs are changing as the 

vehicles become smarter and connected. In the second study, we focused on a future technology, 

augmented reality head-up displays, and explored how this technology can fit into the smart, 

connected and autonomous vehicle context. Specifically, we conducted an experiment looking into 

how these displays can be used to monitor the status of automation in automated driving. Participants 

watched driving videos enhanced with augmented reality cues. Results showed that drivers adjust 

their trust in the automated vehicle better when information about the vehicle’s sensing capabilities 

are presented using augmented reality cues, and they have positive attitudes towards these systems. 

However, there were no major safety-related benefits associated with using these displays. Overall, 

this work provides several contributions to the knowledge about human-automation interaction in 

automated driving. 
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Chapter 1 
Introduction 

Vehicles with advanced automation systems have started to emerge in the market. Currently, more 

than 30 companies are involved in building advanced driving automation systems and self-driving 

cars (CB Insights, 2016). As these technologies develop, the nature of driving starts to change 

fundamentally. With more vehicles becoming smarter and automated, the role of the driver will shift 

from an active driver to a passive driver and eventually to a passenger. Vehicle automation has been 

around for some time; however, these technologies were mostly used and tested for research purposes 

and prototype forms. Over time the technology matured, and recently, commercial systems started 

appearing in the market (advanced driver assistance systems), ranging from navigational aids to 

adaptive cruise control with the goal of improving driving experience, and making driving easier and 

safer. The next step in this evolution is to make the vehicles automated, and eventually replace the 

driver. 

With the advances in automation, human factors research has naturally started examining and 

evaluating human-automation interaction, the unique challenges automation brings, and opportunities 

to reduce human error and increase human performance when working with automated systems. 

Although there has been considerable research on human-automation interaction and driver behavior 

in automated vehicles, investigation of real world usage of these systems was limited. Additionally, 

the challenges identified in the past have not been fully addressed yet. Given the rapid advancements 

in automated driving technology, there is a need to increase these efforts and address human factors 

challenges of automated driving before these technologies become widely available, to ensure that 

adoption and use of these systems will be safe and enjoyable. 

This thesis attempts to fill this gap and extend our current understanding of driver-automation 

interaction by presenting two studies we conducted, one survey and one laboratory experiment, to 

understand how automated driving systems are used in real world and how we can support drivers in 

this context. 

1.1 Motivation 

This work was motivated by recent developments in the automotive industry and automated vehicle 

technology as cars with autonomous driving capabilities started to emerge in the market. While 

advanced driver assistance systems such as adaptive cruise control, lane keeping assistant, and blind 
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spot monitors have been available for some time (Brookhuis, De Waard, & Janssen, 2001), recently, 

the combination of these technologies, primarily adaptive cruise control and lane keeping systems 

allowed the initial step towards autonomous vehicles. Technology is developing rapidly, and 

manufacturers are adding new features and capabilities to their vehicles. For example, Tesla, in 

addition to the combination of adaptive cruise control and steering assistance automation that allows 

hands-free driving, introduced a lane change assistance which allows the car to move to another lane 

upon the request of the driver. It handles the monitoring task (i.e. whether the lane is available) and 

speed adjustments along with steering. This and other developments (e.g. automatic overtaking; 

Milanés et al., 2012) will gradually bring the vehicles closer and closer to become fully automated. 

During this transition period, a critical question remains. What will happen to the human driver? 

How will the human driver deal with the demands of partially automated vehicles and how will they 

adapt? Although there have been research efforts to understand and deal with problems in automated 

driving, the use of these technologies beyond laboratories, especially in partially automated vehicles 

(i.e. level 2 automation, SAE International, 2014) just recently started to emerge. Therefore, our aim 

was to (1) identify challenges of automated driving in real world, (2) explore ways to support drivers 

through design to adapt to this new situation. To this end, we had several goals in this work: 

• Investigate how automated driving is used in the real world 

• Identify challenges and opportunities 

• Design and test technology to address these challenges 

In this research, we first conducted a survey with drivers who are using automated driving features. 

This work revealed several challenges and opportunities. Next, we conducted an experimental study 

to test an automation display to address the challenges identified in the survey. 

1.2 Structure of the Thesis 

This thesis is structured as follows: 

In Chapter 1 - Introduction, we present an introduction to the thesis, discuss the motivation behind 

this work, and provide background information about vehicle automation. 

In Chapter 2 – Autonomous Driving in the Real World, we present our first study, a survey 

conducted with Tesla drivers about their experiences with an automated driving system. This chapter 
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is organized in three subsections, with each subsection containing a thematically different analysis. 

This chapter also features a published paper (section 2.2). 

In Chapter 3 – Augmented Reality Displays in Semi-Autonomous Vehicles, we present our second 

study, a laboratory experiment examining augmented reality head-up displays in automated driving 

context. 

In Chapter 4 - Conclusion, we discuss implications of this work and provide future directions. 

Chapters 2 and 3 are self-contained such that relevant background information is presented within the 

chapters. 

1.3 Background on Autonomous Vehicles 

1.3.1 The concept of Autonomy 

Automation is defined as a system that handles tasks that were previously carried out by humans 

(Parasuraman & Riley, 1997). Automation is being used in virtually all areas of life, and has many 

advantages such as handling tasks that are very difficult for humans, and increase safety and 

efficiency. Vehicle automation, likewise, has potential in increasing road safety, decreasing accidents 

and overall improve driver conditions (Stanton & Marsden, 1996). Many vehicle automation systems 

have been developed in the past such as cruise control, adaptive cruise control, lane departure 

warnings, blind spot monitors, and navigational aids. Stanton and Young (1998) differentiate between 

two types of vehicle automation: systems that support the driver and systems that replace the driver. 

Examples of the former type are parking sensors, traffic guidance and blind spot monitors. This type 

of automation enhances drivers’ sensing and decision-making capabilities while not affecting the 

driving task in significant ways. The latter category includes systems that fundamentally change the 

driving task. Examples of these systems are cruise control, adaptive cruise control and steering 

assistance systems. These systems execute some of the primary aspects of driving task such as speed 

adjustments and steering, and drastically change driver behavior (Young & Stanton, 2007). 

Recently, the combination of steering automation and adaptive cruise control allowed vehicles to 

handle both speed (longitudinal) and steering (lateral) related tasks. Using these systems, the vehicle 

can stay in the lane, and adjust its speed based on the vehicles in front. This allows hands-free driving 

under certain circumstances (e.g. highway). However, this is just the beginning of the progress 

towards fully automated vehicles. Vehicle automation will improve significantly in the near future 
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through advancements such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

communications, and developments in sensors and artificial intelligence. These developments will 

allow the cars to sense the environment more accurately and make better decisions, which are 

essential for safe driving. Gradually, more driving functions will be automated that were previously 

handled by human drivers. 

The technology that allows automated driving such as connectivity and artificial intelligence will at 

the same time make the cars smarter. Vehicles of the future will not only feature more autonomous 

capabilities, but they will become personal companions who understand and support drivers in a 

number of ways such as communicating with home automation, integrating with personal devices 

such as smartphones, and providing a smooth and personalized driving experience. 

1.3.2 Levels of Autonomy 

A key concept when discussing automation is the level of autonomy and the degree of automation. 

The primary reason behind thinking of automation in terms of levels is that the demands, 

expectations, and needs for humans and automated systems can drastically differ between different 

levels of autonomy. 

Several taxonomies and levels of automation have been proposed in the past (Endsley, 1999; 

Parasuraman, Sheridan, & Wickens 2000). The levels usually start with no automation, i.e. human 

handles all tasks, and end with full automation, i.e. automation handles all tasks without the need for 

humans. In-between levels allocate functions to humans and automation, with increasingly to 

automation as the levels increase. For example, Parasuraman et al. (2000), in their 10 levels of 

automation, describe function allocation in lower levels of automation as: the automation presents 

action choices (level 2), narrow the set of options (level 3), recommend one action (level4) while in 

higher levels, the automation executes action and informs the human (level 7), informs the human 

only upon request (level 8), decides whether or not to inform the human (level 9) and simply ignoring 

human (level 10). The different levels of automation have varying effects on human performance 

(Onnasch, Wickens, Li, & Manzey, 2014). 

In vehicle automation, the most commonly used taxonomy is developed by Society for Automotive 

Engineers (SAE) which features six levels of vehicle automation (SAE International, 2014), as shown 

in Figure 1. These standards have also been adopted by U.S. Department of Transportation (National 

Highway Traffic Safety Administration, 2016). Given these levels, adaptive cruise control would be 
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considered as level 1, while the combination of adaptive cruise control and lane keeping assistance 

would be considered as level 2. A key difference between levels 0-2 and levels 3-5 is the agent 

responsible for monitoring the environment. As the level of automation increases, the monitoring task 

shifts from human (levels 0,1 and 2) to the system (levels 3,4 and 5). Currently, most advanced 

vehicles in the market are at level 2, combining multiple functions yet still requiring constant human 

monitoring. The change from level 2 (partial automation) to level 3 (conditional automation) will 

require substantial capability from the automation as the sensing systems should be very accurate. 

Also, as shown in Figure 1, humans will be responsible for fallback performance until level 4 

automation. However, we should note that while level 4 eliminates the need for human control, we 

cannot assume that drivers will be able to stay in level 4 at all times. For example, while level 4 

automation might be suitable for most environments, drivers may still need to switch to lower levels 

of automation under circumstances where level 4 will not be available. In short, until the vehicle 

automation reaches level 5 (i.e. human performance is not needed under any circumstance), there will 

be a need for human driver’s capabilities. 
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SAE 
level 

 
Name 

 
Narrative Definition 

Execution of 
Steering and 
Acceleration/ 
Deceleration 

Monitoring 
of Driving 

Environment 

Fallback 
Performance of 

Dynamic 
Driving Task 

System 
Capability 
(Driving 
Modes) 

Human driver monitors the driving environment  

0 No 
Automation 

the full-time performance by 
the human driver of all aspects 
of the dynamic driving task, even 
when enhanced by warning or 
intervention systems 

 
Human driver 

 
Human driver 

 
Human driver 

 
n/a 

1 
 

Driver 
Assistance 

the driving mode-specific 
execution by a driver assistance 
system of either steering or 
acceleration/deceleration using 
information about the driving 
environment and with the 
expectation that the human driver 
perform all remaining aspects of 
the dynamic driving task 

 

Human driver 
and system 

 
 

Human driver 

 
 

Human driver 

 

Some driving 
modes 

2 

 

Partial 
Automation 

the driving mode-specific 
execution by one or more driver 
assistance systems of both 
steering and acceleration/ 
deceleration using information 
about the driving environment 
and with the expectation that 
the human driver perform all 
remaining aspects of the 
dynamic driving task 

 
 

System 

 
 

Human driver 

 
 

Human driver 

 
 

Some driving 
modes 

Automated driving system (“system”) monitors the 
driving environment 

  

3 
 

Conditional 
Automation 

the driving mode-specific 
performance by an automated 
driving system of all aspects of 
the dynamic driving task with 
the expectation that the 
human driver will respond 
appropriately to a request to 
intervene 

 

System 

 
System 

 

Human driver 

 
Some driving 

modes 
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1.3.3 Challenges of Autonomy 

One of the main challenges of level 2 automation is that the role of the driver will shift from an active 

driver to a passive one. Previously, drivers assumed the role of the active driver, handling all driving-

related tasks manually. With the introduction of vehicle automation, increasingly more of these tasks 

will be allocated to the vehicle. The driver, free from the manual driving task, needs to monitor the 

vehicle and the roadway to make sure that the automation handles these tasks well. If the automation 

fails, the driver needs to take control timely and revert to manual driving mode. This situation makes 

the driver “part driver and part passenger” (Casner, Hutchins, & Norman, 2016, p .71). The challenge 

is whether the drivers will be able to assume this new role properly and timely respond to automation 

failures. Currently, due to the high failure rates (Dikmen & Burns, 2016; Larsson, 2012), drivers are 

mostly engaged with the driving task as frequent automation failures are likely keeping the drivers 

alert and in-the-loop by frequently requesting them to take back the control of the vehicle. The 

problem starts when the vehicle automation becomes increasingly reliable to the point at which that 

drivers completely trust and rely on them, leading to automation complacency (Parasuraman & 

Manzey, 2010). With the comfort of reliable vehicle automation, people will eventually start 

engaging in a range of activities on a ride such as texting and reading using mobile and wearable 

technology (De Winter, Happee, Martens, & Stanton, 2014). These activities are detrimental in 

manual driving and have a direct impact on driving performance (Regan, Lee, & Young, 2008). In 

automated vehicles, the effects of distractors will be indirect by reducing attention and awareness of 

 

4 
 

High 
Automation 

the driving mode-specific 
performance by an automated 
driving system of all aspects of 
the dynamic driving task, even if a 
human driver does not respond 
appropriately to a request to  
intervene 

 

System 

 

System 

 
System 

 
Some driving 

modes 

5 
 

Full 
Automation 

the full-time performance by an 
automated driving system of all 
aspects of the dynamic driving 
task under all roadway and 
environmental conditions that can 
be managed by a human  driver 

 

System 

 

System 

 

System 

 
All driving 

modes 

Figure 1. Six levels of driving automation (SAE International, 2014). 
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the environment, known as the out-of-the-loop situation (Endsley & Kiris, 1995). This may not be an 

issue so long as the automation is reliable. However, failures will happen. If such situations occur, the 

driver, who is completely out-of-the-loop, may not be able to handle take-over requests appropriately. 

A recent fatal Tesla crash provides evidence for these concerns (Golson, 2017). In this accident, the 

Tesla car was on Autopilot (automated driving mode) and the driver had seven seconds to react to a 

tractor trailer driving across the highway, yet both the vehicle and the driver failed to react 

appropriately. This example is considered as the first fatal autonomous car accident, and certainly will 

not be the last. 

Deskilling is another concern in the context of vehicle automation (Stanton, & Marsden, 1997). 

While little is known about how driving automation will influence driving skills, it is likely that 

continuous use of automated vehicles may result in degradations in manual driving skills such as 

reduced reaction speed to hazards. Interestingly, a recent survey found no support for deskilling in 

driving (Trösterer et al., 2016). The authors concluded that the skilling (i.e. initial training), is more 

critical than deskilling. We should note that the context of this survey was not specifically automated 

driving. Regardless, if the initial driving training matters more, this still poses a challenge in 

automated driving. As the automated driving becomes widely available, novice drivers may rely on 

these technologies significantly, which in return may hinder proper skill development in manual 

driving. 

To sum up, while vehicle automation has many advantages, it poses some challenges which should 

be addressed in a timely manner. During the transition from semi-autonomous vehicles to full 

autonomous vehicles, driver disengagement, loss of awareness, and possibly deskilling are issues that 

needs to be well understood, and systems should be developed to solve these issues. Although there 

have been efforts in achieving this goal, given the rapid evolution of technology, researchers, 

automotive industry, and regulators need to address the unsolved problems and new challenges that 

emerge in autonomous transportation. We hope this work will contribute to achieving this goal.  
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Chapter 2 
Autonomous Driving in the Real World 

2.1 Chapter Introduction 

In this chapter, we will present the results of a survey conducted with Tesla drivers about their 

experiences with an automated driving system (Autopilot) and an automated parking system 

(Summon). We present the results in three sections to facilitate reader understanding. First, in section 

2.2, we will present our findings on the frequency of use, attitudes towards these technologies, and 

surprises and unexpected situations drivers experienced when using these features. Then, in section 

2.3, we will present the results on the use of information sources. Next, we will discuss the findings 

on trust in Autopilot and Summon in section 2.4. Survey questions we refer to in the following 

sections can be found in Appendix A. 

2.2 Autonomous Driving in the Real World: Experiences with Tesla Autopilot 
and Summon 

2.2.1 Study Overview 

As autonomous driving emerges, it is important to understand drivers’ experiences with autonomous 

cars. We report the results of an online survey with Tesla owners using two autonomous driving 

features, Autopilot and Summon. We found that current users of these features have significant 

driving experience, high self-rated computer expertise and care about how automation works. 

Surprisingly, although automation failures are extremely common they were not perceived as risky. 

The most commonly occurring failures included the failure to detect lanes and uncomfortable speed 

changes of the vehicle. Additionally, a majority of the drivers emphasized the importance of being 

alert while driving with autonomous features and aware of the limitations of the current technology. 

Our main contribution is to provide a picture of attitudes and experiences towards semi-autonomous 

driving, revealing that some drivers adopting these features may not perceive autonomous driving as 

risky, even in an environment with regular automation failures. 

2.2.2 Study Introduction 

Autonomous driving is on the horizon and, in some cases, semi-autonomous features are now 

available on some models and types of vehicles. As an example of some of the most advanced 
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features currently available, Tesla released its Autopilot and Summon features in October 2015 and 

January 2016, respectively. Autopilot is a system which provides lateral and longitudinal control and 

allows hands-free driving, in addition to other functionality such as automatic lane changing. 

Summon is a parking assistance system which allows drivers to park their cars from outside the 

vehicle (Tesla Motors, 2016). 

The release of these features allow for real world discussions of how people interact with these 

early autonomous features and how they are influencing driver perceptions and attitudes. Research 

has raised concerns regarding automated driving such as overreliance (de Waard, van der Hulst, 

Hoedemaeker, & Brookhuis, 1999), reduced situational awareness (Stanton & Young, 2005; De 

Winter, Happee, Martens, & Stanton, 2014) and increased engagement with secondary tasks, 

diverting attention away from the road (Carsten, Lai, Barnard, Jamson, & Merat, 2012; Llaneras, 

Salinger, & Green, 2013). Given these concerns are largely from laboratory research, it is important 

to understand whether such concerns are reflected in real world autonomous driving. 

2.2.3 Related Work 

Many surveys have been conducted in the past to understand people’s attitudes towards autonomous 

cars. Previous work showed that people are attracted to safety and convenience of self-driving cars 

but were concerned with the lack of control, liability, and cost (Howard & Dai, 2014). The majority 

of people also have a priori acceptance of autonomous cars (Payre, Cestac, & Delhomme, 2014), yet 

opinions can be split (Bazilinskyy, Kyriakidis & de Winter, 2015). A recent survey found that 

majority of people had positive attitudes towards autonomous cars but were concerned with aspects 

such as security and legal issues (Kyriakidis, Happee, de Winter, 2015). Similarly, another study 

found that most people had positive opinions about autonomous vehicles while expressing concerns 

regarding safety (Schoettle & Sivak, 2014). A weakness of these studies, however, is that they were 

unable to study the attitudes of people who had real world experience with autonomous driving. 

In one study of real-life use of autonomous vehicles, Larsson (2012) reported that adaptive cruise 

control (ACC) users experience frequent limitations of the system and the more they drive with ACC 

the more they become aware of the system limitations. The same survey also revealed that drivers 

experience mode errors and concludes that imperfect ACC may be better for driving safety because it 

keeps the drivers in the loop. 



 

 11 

Our research extends these findings by looking at experiences with the next generation of semi-

autonomous driving features which combine ACC with steering assistance. We wanted to understand 

how often drivers use these features, how often do they experience failures, and how does experience 

with these automation failures influence their attitudes towards the automation. 

2.2.4 Method 

We conducted an online survey with 162 Tesla Owners. The survey was distributed through online 

forums and social media during April-May 2016. The survey asked questions about drivers’ attitudes 

towards and experiences with two functionalities built into Tesla Model S cars: Autopilot and 

Summon. Questions covered frequency of use, satisfaction, ease of learning and knowledge related to 

Autopilot and Summon. Additionally, we asked participants to report unusual or unexpected 

behaviors they experienced while using these systems and what they consider a key aspect of safety. 

The average time to complete the survey was 9.6 minutes. 

2.2.5 Results 

A total of 121 participants completed the survey fully. The demographics of the sample is 

summarized in Table 1. The sample was 94.2% male, and had significant driving experience with 

89.3% reporting driving experience beyond 10 years. These drivers drive frequently with 79.3% 

reporting that they drive daily. Participants identified themselves mostly as above average or expert 

computer users. All means reported in the subsequent analysis correspond to 5-point Likert scales 

where 5 is high and 1 is low. 

Participants reported very high levels of satisfaction with their cars (M = 4.91, SD = .43). Means 

and standard deviations for self-rated knowledge, ease of learning and importance of knowing how 

automation makes decisions are shown in Table 2. To summarize, participants reported that it is easy 

to learn the automated systems, they rated their knowledge level as above average, and importance of 

knowing how automation makes decisions as above average. In addition, the Autopilot display, the 

display on the dashboard showing information about the current state of Autopilot such as the 

detected vehicles on the roadway, was perceived as useful. 

Age % (N = 121) 

16 - 20 3.3 
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Age % (N = 121) 

21 - 24 2.5 

25 - 34 18.2 

35 - 44 25.6 

45 - 54 23.1 

55 - 64 14.0 

65 or older 13.2 

Computer Expertise % (N = 121) 

Novice .8 

Average 5.0 

Above average 38.8 

Expert 55.4 

Table 1. The demographics of the sample. 

 

90.1% of the participants reported that they actively use Autopilot or have used it in the past. 

Likewise, 85.2% of the participants reported that they actively use the Summon feature or have used 

it in the past. 

Participants use Autopilot quite frequently with 31.2% saying they use it “always” and 57.8% 

saying they use it “often”. Participants use Summon less frequently with 49% saying they use it 

“rarely” and 22% saying “sometimes”. 

 Autopilot Summon 

 Mean SD Mean SD 

Knowledge 3.79 .82 3.54 .92 

Ease of Learning 4.27 .72 3.97 .84 

Importance 3.51 1.08 3.13 1.15 
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 Autopilot Summon 

Usefulness of 

Autopilot Display 
4.04 .71 - - 

Table 2. Descriptive statistics for self-rated knowledge, perceived ease of learning, importance 

of knowing how the system makes decisions, and usefulness of Autopilot display. 

2.2.5.1 Automation Limitations and Failures 

Of the Autopilot users, 62.4% reported that they have experienced at least one unexpected or unusual 

behavior from the car while in autonomous driving mode. Further, 13.8% reported that they have 

experienced at least two unexpected or unusual behaviors from the car. In total, participants reported 

91 cases of automation events. Of the Summon users, 21.2% reported that they have experienced at 

least one unexpected or unusual behavior from the car while using the system. In total, participants 

reported 27 cases. Perceived risk involved in these events are shown in Figure 2 for Autopilot and 

Figure 3 for Summon. 

 

Figure 2. Perceived risk after experiencing an Autopilot failure. 
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Figure 3. Perceived risk after experiencing a Summon failure. 

2.2.5.2 Cases of Unexpected Automation Behaviors 

Next, we analyzed the reported cases of unexpected automation behavior. For Autopilot, of the 91 

cases analyzed, two major categories of limitations emerged. The first category involved issues with 

lane detection (74.4% of the cases). These problems included the car trying to take an exit ramp, 

swerving and veering due to failure to detect the lane, and trying to cross lanes for no apparent 

reason, sometimes even towards lanes where traffic flowed in the opposite direction. The second 

category involved problems with speed changes and the adaptive cruise control system. This category 

includes issues such as sudden braking or uncomfortable acceleration and deceleration (15.6% of the 

cases). Participants reported that speed related problems mostly occurred in the heavy traffic 

conditions. Almost all users reported that they took manual control over after the incident and most 

reported that they re-initiated autonomous driving once the situation that caused automation failure 

was over. In the majority of the 27 Summon cases, participants reported technical problems such as 

connection failures between the vehicle and the phone. 
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2.2.5.3 Statistical Results 

There were no differences between age groups in the measured variables, indicated by non-significant 

ANOVAs. There were also no differences between those who had an Autopilot failure (N=68) and 

those who did not (N=45) in measured variables, indicated by non-significant t-tests. 

Perceived usefulness of Autopilot display was significantly correlated with satisfaction with the 

car, r = .22, p = .019, and the ease of learning, r = .23, p = .017, hinting at the possible contribution of 

the visual display to the learning process of Autopilot. It was also correlated with importance of 

knowing how Autopilot makes decisions, r = .21, p = .031. As expected, the Autopilot display can be 

used as a means to understand the decision-making process of the car and to obtain situation 

awareness. 

For those who had an Autopilot failure (N=68), perceived risk of the situation was correlated only 

with importance of knowing how Autopilot makes decisions, r = .24, p = .053. 

2.2.5.4 Safe Driving 

Participants emphasized being alert at all times, paying attention to the road environment and keeping 

hands on the wheel while in autonomous driving mode. They also emphasized the importance of 

learning the limitations of the technology such as under which conditions the automation can fail. A 

critical question here is how drivers can learn the specific conditions in which automation is more 

likely to fail without trial and error? Or should trial and error be part of the learning process, as some 

participants suggested? We believe addressing this issue requires further research. 

2.2.6 Discussion 

Based on the results, at first glance, the situation of semi-autonomous driving seems generally 

positive. Drivers seem to enjoy these technologies, and are aware of the limitations of Autopilot and 

Summon. In the comments, we observed that drivers were highly motivated to use these technologies 

safely and have not seen indications of the concerns raised in the past such as engaging with 

secondary tasks while using Autopilot. 

Despite the relatively high frequencies of automation events, these drivers did not consider the 

automation to be particularly risky. We believe three factors might have contributed to this. First, 

even though the situations were unexpected, these users were aware that these are new technologies 

in early release, so they were quite accepting of events with the technology.  Second, Tesla owners 
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are unlikely to be representative of general drivers.  Tesla drivers are early adopters with high comfort 

with technology, and are unusually devoted to the development of their vehicles.  Third, none of the 

incidents reported involved a negative outcome, which may also be influencing their perception of 

risk. Relatively frequent exposure to small events may also be teaching these drivers to stay “in the 

loop” with the automation. 

However, failure rates will decrease eventually and this may trigger different observations of driver 

performance. In almost all cases covered in the survey, participants reported that they successfully 

took control and drove manually until in a safe situation again. However, this may not happen always 

as studies show possible decrements in situational awareness during autonomous driving (Stanton & 

Young, 1998; 2005). While the argument can be made that imperfect automation will keep the drivers 

in the loop (Larsson, 2012), it is unreasonable to think that automation will deliberately remain 

imperfect. Over time, autonomous features will increase in reliability and functionality and this, 

unfortunately, does present a risk for a lack of situation awareness by drivers who are increasingly 

“out of the loop”. Further, the drivers in this study were well experienced and very comfortable with 

technology and may have responded more confidently when experiencing these failures. 

Based on the incidents reported, currently, lane keeping is an important issue, especially in 

situations where lane markings are missing, or the car cannot correctly identify obstacles on the road 

environment. For the parking system, Summon, the most commonly experienced problem was the 

operation stopping due to a technical failure such as a connection problem between the phone and the 

vehicle. An interesting point is that with the rise of semi-autonomous driving, the role of the driver 

shifts from the active driver to a supervisory role (Banks & Stanton, 2014). This new role can place 

demands of different nature on the driver. For example, in addition to monitoring the road 

environment similar to manual driving, the driver also has to monitor whether lane markings are clear 

or not, or more importantly, whether the car can correctly identify the lane. This and other limitations 

of the automation might not be always obvious; therefore the communication between automation and 

the driver becomes crucial in order to maintain situation awareness. The correlations between 

perceived usefulness of the Autopilot display and ease of learning and importance of knowing how 

Autopilot makes decisions also indicate the importance of driver-vehicle communication in the 

autonomous driving context. Further research should address these issues by studying the role of 

automation displays in obtaining situation awareness in autonomous vehicles. 
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A limitation of the current study is that our sample is not representative of the general driver 

population. Considering the computer expertise and knowledge level about autonomous driving 

functionality, our participants are likely early adopters. Therefore, we must be cautious generalizing 

our findings. While the focus of this study was on two particular systems, Tesla Autopilot and 

Summon, we believe the results obtained and issues revealed are applicable to other systems as well. 

2.2.7 Conclusion 

In this study, we examined the current state of semi-autonomous driving in the real world. Our survey 

data showed that current users of autonomous driving features of Tesla cars use Autopilot frequently, 

they are knowledgeable about automation and they find it easy to learn. The frequency of automation 

failure rate was high; however, most participants did not perceive these incidents as posing a 

significant risk. Our main contribution is to provide insights into the real world phenomenon of 

autonomous driving in its early stages, as first generation technology becomes available in the 

market. 

2.3 Use of Information Sources 

2.3.1 Overview 

Tesla can deliver software updates to the cars over-the-air (Software Updates, 2016) and these 

updates can have varying degrees of impact on vehicle functionality. They can range from minor 

small user interface modifications (e.g. changing the color of an object on the in-vehicle display) to 

major functionality changes, such as enabling automated driving. 

In this section, we will present additional findings from the survey we introduced in the previous 

section (2.2). Specifically, we will present findings on how Tesla owners and non-owners use 

information sources when they want to learn about the features of their cars, how they access the 

owner’s manual when they need it, and how Tesla drivers learn about the new features of their cars 

after a software update. We will first discuss why such an analysis is relevant, and then present 

findings from the survey. 

2.3.2 Background 

As the vehicles become smarter, connected, and automated, driving experience also evolves 

significantly. Technologies such as vehicle-to-vehicle communication, vehicle-to-cloud 

communication and artificial intelligence not only enable autonomous driving capabilities (Koehler, 
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Appel, & Beck, 2016), but also transform the vehicles from static mechanical products to constantly 

evolving digital products. Companies are already offering connected vehicle services such as 

streaming services, smartphone connectivity, and smart home integration (Viereckl, Koster, Hirsh, 

Ahlemann, 2016).  

A critical part of this concept is the over-the-air updates: software updates delivered to the vehicle 

over the internet. These updates not only keep vehicle software secure and up to date, but also allow 

manufacturers to add new features and functionality to the car. These features can be safety-related 

(e.g. Tesla Autopilot), or utility and entertainment related (e.g. smartphone-like apps). An important 

consideration for the success of this upgradeable car concept is to identify user needs, habits, and 

expectations regarding this new vehicle experience. The following analysis is a first step towards 

achieving this goal. 

While updating software on personal computers, smartphones and consumer devices is a common 

activity, updating a car is not. There are a few issues associated with upgradeable cars that raise 

concerns. First, installing new software into the car can result in software malfunctions that can lead 

to potentially dangerous situations, if these malfunctions occur in safety-critical systems of the 

vehicle. Second, connectivity raises concerns about security (Greenberg, 2015; Hubaux, Capkun, & 

Luo, 2004). Third, installing new features and applications can lead to changes in driving behavior as 

drivers adapt. For example, if the visual layout of the dashboard changes, drivers may need to spend 

more time when they want to look up information until they are comfortable with the new layout. 

This can lead to distracted driving (Young, Lee, & Regan, 2008) which is a major concern for driving 

safety (National Center for Statistics and Analysis, 2016).  

When updating software, several factors influence users’ decision-making process (Mathur, 2016) 

such as the type of update (e.g. security vs. new functionality), change logs and trust in the company. 

Additionally, users go through several stages during an update process such as awareness, deciding, 

preparation, installation, troubleshooting and post-state (Vaniea, & Rashidi, 2016). Hesitation to 

apply the updates is common, which results in users researching the features of the update and how 

their systems will be affected to overcome this hesitation, especially when don’t know what the 

updates will do (Fagan, Khan, & Buck, 2015). Therefore, it is important for users to obtain accurate 

and useful information to understand the features of the update and form correct mental models, as 

this will reduce confusion and annoyance regarding the update process (Fagan, Khan, & Nguyen, 

2015). 
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An important issue is how to deliver necessary information to the users regarding vehicle updates. 

To understand this issue, the following analysis presents information sources used by drivers both in 

the context of updating car software and the use of information sources in general, including 

accessing the owner’s manual. 

2.3.3 Method 

We used the same method as described in 2.2.4. In addition to 162 Tesla drivers, the following 

analysis also presents data from 116 drivers who don’t own a Tesla car but participated in the survey. 

This allowed us to compare Tesla owners with non-owners to better understand how driving an 

upgradeable vehicle affects drivers’ information seeking behavior. In the survey, we asked 

participants questions about which information sources they use to learn about the features of their 

cars and how they access owner’s manual when they need it. Additionally, we asked Tesla drivers 

about how they get information about the features of Autopilot and Summon updates.  

2.3.4 Results 

121 Tesla owners and 101 non-owners completed the survey fully. 96.4% of the participants were 

male. 49.6% of Tesla owners and 86.1% of non-owners were 34 years or younger. In terms of driving 

experience, 89.3% of Tesla owners and 42.6% of non-owners reported having more than 10 years of 

experience. Overall, Tesla owners were older and had more driving experience than non-owners. In 

the following analysis, for information sources used to learn about the feature of the car and accessing 

the car manual, we present data from both Tesla owners and non-owners. For information sources 

regarding the updates, we present data only from Tesla owners. 

2.3.4.1 Use of Information Sources to Learn about the Features of the Car 

We asked participants about how frequently they consult owner’s manual, friends/colleagues, and 

online resources when they need information about the features of their cars, on a 5-point scale 

ranging from never to always. Figure 4 shows the mean scores for Tesla owners (N =121) and non-

owners (N = 100). The trend was similar for Tesla owners and non-owners. A 2 (ownership) x 3 

(source type) repeated-measures ANOVA revealed a main effect of ownership, F(1, 218) = 20.90, p < 

001, partial η2 = .09, a main effect of source type, F(2, 436) = 318.34, p < .001, partial η2 = .59, and a 

significant interaction between ownership and source type, F(2, 436) = 4.95, p = .007, partial η2 = .02. 

As shown in Figure 4, Tesla owners consult information sources less frequently than non-owners. 

Analysis of simple effects revealed that Tesla owners use online sources significantly more than 
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friends or colleagues as sources (p < .001) and the owner’s manual (p < .001). They also consult their 

owner’s manual more than friends or colleagues as a source, p < .001. Non-owners also use online 

sources more than the owner’s manual (p < .001) and friends or colleagues as sources (p < .001). 

However, there was no difference between consulting the owner’s manual and friends and colleagues, 

p = .389. Additionally, non-owners consult friends / colleagues and online sources more than Tesla 

owners (both p’s < .001) but there was no difference in consulting the owner’s manual between Tesla 

drivers and non-owners (p = .445). 

 

Figure 4. Frequency of using information sources to learn about the features of the car. Error bars 

represent 95% confidence intervals. 

 

2.3.4.2 Accessing Owner’s Manual 

Next, we analyzed how drivers access their owner’s manual when they need it. Table 3 shows 

percentages of the various media used to access owner’s manuals among Tesla owners and non-

owners. Questions for Tesla owners included an additional item, in-vehicle display. Tesla Model S 

vehicles have a 17” touchscreen display which allows controlling vehicle functions such as A/C but 
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also features multimedia controls, including a web browser. This touchscreen display was one of the 

iconic features of Tesla cars at the time this study was conducted. 

As shown in Table 3, there are considerable differences in accessing owner’s manuals between 

Tesla drivers and non-owners. First, the rates of using personal computers to access the manual were 

similar between the two groups. A significant shift can be seen in mobile device use, smartphones and 

tablets, between Tesla owners and non-owners. Smartphone use is three times higher for non-owners 

than Tesla owners in accessing the manual. Likewise, tablet use is 1.5 times higher. The primary 

difference however was the use of in-vehicle display and physical manuals. About 80% of Tesla 

owners access the manual using the in-vehicle display, and 76.2% of non-owners access the manual 

in physical form. We should note that some Tesla models don’t come with a physical manual; a 

digital version is provided to the driver. 

Table 3. Media used to access owner's manual for Tesla owners and non-owners. 

Media to Access Owner’s Manual 
Tesla Owners 

% (N = 121) 

Non-owners 

% (N = 101) 

Computer 52.1 56.4 

Smartphone 14 42.6 

Tablet 9.9 14.9 

In-Vehicle Display 80.2 N/A 

Physical Manual 5.8 76.2 

Other .8 2 

 

When combined (Table 4), we can see that most drivers use two or fewer different media to access 

owner’s manuals, while the number of media used by non-owners is slightly higher than Tesla 

owners. 
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Table 4. Number of media used to access owner's manual for Tesla owners and non-owners. 

Number of Media Used to Access Manual 
Tesla Owners 

% (N = 121) 

Non-owners 

% (N = 101) 

1 48.3 43.6 

2 39 29.7 

3 11 15.8 

4 or more 1.7 9.9 

2.3.4.3 Use of Information Sources to Understand Software Updates 

Table 5 presents the information sources Tesla drivers used to learn more about the features of the 

Autopilot and Summon updates. Most participants read the release notes and used online forums to 

learn about the features that came with the Autopilot update. Only a few people consulted friends, 

company representatives, and about 30% used websites. We observed a similar pattern for the 

Summon update. A majority of the participants read release notes, used online forums, and websites. 

“Other” option included responses such as asking family members or watching videos. 

 

Table 5. Information sources used to learn more about Autopilot and Summon updates. 

Information Sources 
Autopilot 

% (N = 109) 

Summon 

% (N = 99) 

Reading Release Notes 78.9 81.8 

Asking Friends 3.7 7.1 

Asking Company Representatives 7.3 5.1 

Using Online Forums 74.3 71.7 

Using Websites 29.4 28.3 

Other 8.3 4 
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When combined (Table 6), we see that most participants used at least two information sources to 

learn about the new features of these software updates, with 70.1% for Autopilot and 72.4% for 

Summon updates. 

 

 

 

Table 6. Number of information sources used to learn more about Autopilot and Summon updates. 

Number of Information Sources 
Autopilot 

% (N = 109) 

Summon 

% (N = 99) 

1 29.9 27.6 

2 42.1 48 

3 23.4 22.4 

4 or more 4.6 2 

 

2.3.5 Discussion 

In this analysis, our goal was to describe how drivers use information sources when they want to learn 

more about the features of their cars, and in the Tesla case, about updates. We believe these results 

complement the findings we reported in section 2.2. By comparing Tesla owners to non-owners, we 

wanted to identify whether driving an upgradable vehicle with autonomous driving capabilities is 

different than traditional driving. Results from both Tesla owners and non-owners should provide 

useful guidance for designers and engineers in understanding driver behavior in information seeking 

activities, especially in the context of connected and upgradeable cars. 

The first important finding was that drivers consult online sources significantly more than reading 

the owner’s manual or asking friends. This might seem a sampling issue, as the surveys were 

distributed over social media and driving related websites. However, people don’t read manuals, and 

less so when they are printed (Novick & Ward, 2006). Note that ratings for reading owner’s manuals 

were 2.24 and 2.33, for Tesla owners and non-owners respectively. These means are just slightly 
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above “rarely”, indicating that the drivers don’t prefer the owner’s manual when they need to access 

information. An implication of these findings for automotive industry is to reconsider how to provide 

and deliver useful information to drivers, rather than relying on traditional manuals. For example, 

interactive voice interfaces show promise in creating a more engaging user help experience (Alvarez 

et al., 2010; Alvarez, López-de-Ipiña, & Gilbert, 2012). 

The way drivers access the owner’s manual when needed showed different patterns between Tesla 

owners and non-owners. For non-owners, we observed that while half of the drivers access the 

owner’s manual in a digital format such as personal computers, smartphones or tablets, printed 

manuals are still the preferred way of accessing information. The use of smartphones is interesting 

considering the small screen sizes and number of pages found in most vehicle manuals. As mentioned 

previously, the low preference for printed manuals for Tesla owners was not surprising because most 

Tesla cars don’t come with a printed manual. More importantly however, Tesla owners don’t prefer 

accessing the owner’s manual using mobile devices. Considering that majority of these drivers access 

it using the large in-vehicle display, there is perhaps less need for a mobile device to access the 

manual inside the car. This also shows how drivers adapt and change their behaviors based on the 

available technology as the convenience of a large touchscreen display is easier to read than small 

screen mobile devices. Overall these findings are not surprising, as smartphones and in-vehicle 

information systems are the top two technologies people want to interact with in self-driving cars, 

with touchscreens being the preferred method of input (Pfleging, Rang, & Broy, 2016). These 

findings also indicate that designers of automotive systems should pay attention to in-vehicle 

information systems as more advanced in-vehicle technology and larger displays become available to 

use in the cars. A challenge for future human-machine interface (HMI) design in vehicles should be to 

identify which functions should be allocated to the vehicle HMI, and which functions should be left to 

individual devices such as smartphones. This is relevant to consumers today who expect some of 

these functions from their cars. Functionality such as in-vehicle navigation, entertainment, voice 

control, connectivity and communication systems are indeed the primary problems consumers face 

today (JD Power, 2017). Our results indicate that if the in-vehicle technologies support a more usable, 

contextual, and useful way of accessing information (e.g. large in-vehicle display), drivers will prefer 

and use them. 

The results also revealed that most Tesla drivers checked multiple sources when they receive an 

update. We believe there may be several reasons for this. First, it may be related to the quality of the 
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release notes which are written like user manuals. User manuals are difficult to navigate and usually 

do not offer proper explanation (Novick & Ward, 2006a; 2006b). It is possible that drivers get an 

incomplete picture of what the updates really do after reading the release notes. Consequently, they 

go online, expand their knowledge, or confirm that they understood correctly. The second reason 

might be to understand how these features will affect them in real life by checking other drivers’ 

opinions and experiences with the features. For example, the release notes state that the Autopilot 

may fail to work properly due to various reasons (Tesla Motors, 2016). A driver, who has read this 

statement, might want to see how people experience this limitation in real life. This is also consistent 

with the finding that when people seek expertise, using documents and people as information sources 

are both frequent and they are complementary (Herztum, 2014). A third reason might be to simply 

learn more about the process behind these features. The language used in release notes usually don’t 

describe the technology behind these advanced features in detail, mainly to keep the text simple and 

understandable. It is possible that drivers want to learn more about how the technology works through 

interaction with other people online, where drivers and experts share their knowledge about the 

behind the scenes of this technology. This view is also consistent with earlier findings where people 

would seek simple and objective information using documents and electronic resources (e.g. 

Wikipedia) but for complex information such as processes, opinions, and decision-making, they tend 

to seek other people’s knowledge and expertise (Yuan, Rickard, Xia, & Scherer, 2011). 

A limitation of this analysis is that while we showed that what people use, we still don’t know how 

they use these sources. For example, which piece of information do drivers obtain from owner’s 

manuals, and how do they integrate this information with the information they gain from online 

sources and social media? This is an important research question for future research because 

technology that addresses drivers’ needs will likely incorporate information from multiple sources to 

be relevant for drivers. Likewise, future research should identify factors that influence why people 

access certain information sources using certain devices. For example, why, when and where do 

people prefer using their smartphones to look up information about their vehicles as opposed to using 

a physical manual? Additionally, more research is needed to understand driver’s expectations and 

experiences with upgradability, especially in the context of smartphone-like apps for the car. 

Answering these questions can provide a better picture of driver information needs and reveal 

opportunities for future design of successful user assistance systems, in-vehicle information systems 

and software update processes. 
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2.3.6 Conclusion 

In this analysis, we examined how drivers use information sources to learn about the existing features 

of their cars and the new features enabled by updates. Overall these findings suggest that drivers are 

comfortable in using multiple information sources and technology as part of this process. Moreover, 

drivers look up information about the updates using multiple sources. We expect these trends will be 

more prominent in the future, when connected ecosystems will become available. The design of 

future help systems and in-vehicle technologies for upgradable and connected cars should consider 

how, when and why users demand and access information. 

2.4 Trust in Automation 

2.4.1 Overview 

In this section, we present additional results from the survey we introduced in previous sections 

(sections 2.2 and 2.3). Specifically, we will present findings on Tesla drivers’ trust and confidence in 

Autopilot and Summon.  

Tesla’s Autopilot system, along with other advanced driver assistance systems (ADAS) are far from 

being perfect and failures are common. Given this imperfection, a critical issue is the degree of 

reliance on Autopilot. If drivers completely rely on Autopilot, negative consequences during 

automation failures will be inevitable such as the fatal Tesla crash (Golson, 2017). On the other hand, 

if drivers don’t rely on Autopilot at all, the opportunity to save more lives thanks to automation being 

superior under certain circumstances will be missed. An important concept, trust, can help us in 

understanding how appropriate reliance can occur. Trust in automation has been a key concept in 

understanding the use of automated tools and subsequently human-automation team performance. 

Moreover, trust in technology is an important determinant of user adoption. Understanding how trust 

is shaped and how it relates to actual experience in the context of autonomous cars is key for safe 

driving. To this end, we will first discuss relevant literature regarding trust in automation, and then 

present findings from the survey on Tesla drivers’ trust in Autopilot and Summon. 

2.4.2 Background 

Trust has been a fundamental concept in human-automation interaction (Hoff & Bashir, 2015, Lee & 

See, 2004; Parasuraman & Riley, 1997). Inappropriate calibration of trust in an automated system can 

lead to misuse (overreliance) and disuse (underreliance) of automation (Parasuraman & Riley, 1997), 
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and result in decreased performance and less adoption. There has been considerable research on trust 

in automation (See Hoff & Bashir, 2015, for a review; Schaefer, Chen, Szalma, & Hancock, 2016, for 

a meta-analysis on factors influencing trust). Lee and See (2004) identified three factors that are 

critical in trusting an automated agent: performance, process, and purpose. Performance refers to 

operator’s observation of results, process refers to operator’s assessment of how the system works, 

and purpose refers to the intention of the system. These dimensions should match with each other in 

operator’s mind to establish appropriate levels of trust. For example, if observed performance 

matches the operator’s understanding of the system (process), then appropriate levels of trust can be 

developed. 

Trust and reliance on automation increases as perceived reliability of the automation increases 

(Sanchez, Fisk, & Rogers, 2004; Ross, Szalma, Hancock, Barnett, & Taylor, 2008; Muir, & Moray, 

1996). Trust seems to act as a precursor to reliance and mediate the relationship between beliefs and 

reliance (Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003; Wang, Jamieson, & Hollands, 2009). 

It decreases with automation error (Lee, & Moray, 1992; Bisantz, & Seong, 2001), but providing 

explanations of why the error occurred (observing the process; Lee & See, 2004) can increase trust 

and reliance despite the errors (Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003). Also, trust is 

more resilient when an automation error occurs if the operator has the ability to control and 

compensate for these errors (Muir, & Moray, 1996). In addition, the type of automation error also 

influences trust and reliance differently (Sanchez, Rogers, Fisk, & Rovira, 2014). For example, 

increased false alarm rates result in less reliance on automation while alarms that are accurate but not 

needed by drivers increase trust (Lees, & Lee, 2007). Trust in automation increases over time, 

especially if there are no major failures (Gold, Körber, Hohenberger, Lechner, & Bengler, 2015), and 

regardless of prior exposure to automation errors (Hergeth, Lorenz, & Krems, 2016). It can even 

increase over time without exposure to the automated system (Sauer & Chavaillaz, 2017). 

Age can also effect trust in automation. Older people tend to have higher levels of trust in 

automation (Ho, Wheatley, & Scialfa, 2005; Donmez, Boyle, Lee, & McGehee, 2006; Gold, Körber, 

Hohenberger, Lechner, & Bengler, 2015). Findings regarding how older people calibrate their trust 

and reliance are mixed. While some studies showed that they may use different trust calibration 

strategies (Sanchez, Fisk, & Rogers, 2004; Ezer, Fisk, & Rogers, 2008), others did not (Ho, 

Wheatley, & Scialfa, 2005). 



 

 28 

Taken together, these findings show how important trust is in reliance on automated systems. In the 

next section, we will present how Tesla drivers trust Autopilot and Summon. Based on the literature, 

we expected trust to be related to frequency of use, increase over time, negatively affected by 

experiencing an incident, and increase with age. 

2.4.3 Method 

We asked participants to rate their trust in Autopilot and Summon on two 5-point Likert scale items 

measuring trust and confidence in Autopilot and Summon. We averaged these items and created a 

trust score. Similarly, we asked participants to remember and rate their initial trust and confidence 

when they first used Autopilot and Summon on a 5-point Likert scale. We averaged these items and 

created an initial trust score. The items were taken from “Checklist for Trust between People and 

Automation” scale (Jian, Bisantz, & Drury, 2000) which consists of 12 items to measure trust in 

automation. The questions are presented in Appendix A.  

2.4.4 Results 

In the following analysis, we used data from Autopilot users (N = 109) for trust in Autopilot and data 

from Summon users (N = 99) for trust in Summon. We compared initial and current trust for 

Autopilot and Summon. We also examined the relationship between trust and other factors discussed 

in section 2.2. 

2.4.4.1 Trust in Autopilot 

Overall, participants reported high levels of trust in Autopilot (M = 4.02, SD =.65) and moderate 

levels of initial trust (M = 2.83, SD = .82). As shown in Table 7, trust in Autopilot was positively 

correlated with frequency of Autopilot use, self-rated knowledge about Autopilot, ease of learning, 

and usefulness of Autopilot display. Surprisingly, for those who experienced an Autopilot incident (N 

= 68), trust was not correlated with how risky they perceived the situation. However, perceived risk 

was negatively correlated with frequency of use. 

Table 7. Correlations between trust and other variables. Correlations between perceived risk and other 

variables are computed for those who reported an incident. 

    Mean SD 1 2 3 4 5 6 7 8 9 

1 Initial Trust 2.83 .82          
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2 Current Trust 4.02 .65 .44**         

3 Computer expertise 4.50 .66 .05 .11        

4 Frequency of Use 4.19 .65 .30** .52** .14       

5 Knowledge 3.79 .82 .34** .26** .28** .25**      

6 Ease of learning 4.27 .72 .23* .36** .18 .29** .19*     

7 Importance 3.51 1.08 .15 .06 .31** .08 .38** -.13    

8 Usefulness 4.06 .70 .20* .40** .10 .28** .12 .22* .21*   

9 Perceived risk 2.74 .87 -.15 -.09 .06 -.27* .07 -.13 0.24 -.21   
Note: * p < .05, ** p < .01. Knowledge refers to self-rated knowledge about how Autopilot makes 
decisions. Importance refers to perceived importance of knowing how Autopilot makes decisions. 
Usefulness refers to perceived usefulness of Autopilot display. 

Age was presented as a categorical question in this study, and covered ages from 16 to 65 and 

older. A one-way ANOVA showed a significant age effect on trust, F(6, 102) = 2.63, p = .02, partial 

η2 = .13. A trend analysis using polynomial contrasts was also significant, F(1, 102) = 7.80, p = .006. 

As shown in Figure 5, trust in Autopilot slightly but significantly decreased with age. 

 

Figure 5. Trust in Autopilot by age. Categories 16-20 had 4 participants, 21-24 had 2 participants, 25-

34 had 19 participants, 35-44 had 27 participants, 45-54 had 25 participants, 55-64 had 16 

participants and 65 or older had 16 participants. Error bars represent 95% confidence intervals. 
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Next, we compared Tesla drivers’ initial and current trust on Autopilot and how experiencing an 

incident (Incident group) or not (No Incident group) affects trust. A 2x2 mixed ANOVA with time as 

a within-subjects factor (Initial Trust, Current Trust) and incident as a between-subjects factor 

(Incident, No Incident) showed a main effect of trust, F(1, 107) = 221.05, p < .001, partial η2  = .67, 

and a main effect of incident, F(1, 107) = 9.59, p = .002, partial η2 = .08. The interaction effect was 

not significant, p = .086. As shown in Figure 6, trust in Autopilot was higher than initial trust, and 

those who experienced an Autopilot incident reported lower levels of trust. Surprisingly, they also 

reported lower levels of initial trust in Autopilot. 

 

Figure 6. Means of current and initial trust on Autopilot for Incident and No Incident groups. 

2.4.4.2 Trust in Summon 

Participants (N = 99) reported high levels of trust in Summon (M = 3.80, SD = .93) and moderate 

levels of initial trust (M = 3.11, SD = 1.01), similar to Autopilot. As shown in Table 8, trust in 

Summon was positively correlated with self-rated knowledge about Summon, and ease of learning. 

Current trust was positively correlated with frequency of use, and initial trust was positively 

correlated with computer expertise and negatively correlated with perceived. For those who reported 

a Summon incident (N = 21), initial trust but not current trust was negatively associated with 
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perceived risk of the situation. A one-way ANOVA showed no effects of age on current trust in 

Summon, F(6, 92) = 1.78, p = .108. Trust in Summon did not differ across age groups (p > .05). 

A 2x2 mixed ANOVA with time as a within-subjects factor (Initial Trust, Current Trust) and 

incident as a between-subjects factor (Incident, No Incident) show a main effect of trust, F(1, 97) = 

23.52, p < .001, partial η2 = .20. Current trust in Summon was higher than initial trust. The main 

effect of incident was not significant, F(1, 97) = 1.05, p = .309; the interaction was not significant as 

well, F(1, 97) = 2.74, p = .101. Means are shown in Figure 7.  

Table 8. Correlations between trust in Summon and other variables. Correlations between perceived 

risk and other variables computed for those who reported an incident. 

    Mean SD 1 2 3 4 5 6 7 8 

1 Initial Trust 3.11 1.01         

2 Current Trust 3.80 .93 .49**        

3 Computer 
expertise 4.47 .68 .20* .03       

4 Frequency of Use 2.67 1.08 .19 .22* -.14      

5 Knowledge 3.56 .92 .31** .32** .18 .18     

6 Ease of Learning 3.99 .84 .35** .45** .12 .14 .36**    

7 Importance 3.11 1.17 .10 -.09 .27** .001 .26** -.02   

8 Perceived risk 2.14 1.24 -.49* -.28 -.30 .30 .02 -.19 -.02   
Note: * p < .05, ** p < .01. Knowledge refers to self-rated knowledge about how Summon makes 
decisions. Importance refers to perceived importance of knowing how Summon makes decisions.  
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Figure 7. Means of current and initial trust in Summon for Incident and No Incident groups. 

2.4.5 Discussion 

In this analysis, our goal was to identify how Tesla drivers’ trust in Autopilot and Summon relate to 

attitudes towards these systems, and how experience shapes their trust in these systems. Overall, we 

observed high levels of trust and moderate levels of initial trust. Trust increased over time regardless 

of whether participants experienced an incident. Trust in Autopilot but not Summon decreased as the 

age increased.  

High levels of trust reported for both Autopilot and Summon indicate that the drivers are confident 

in these systems which is in line with previous findings (Dikmen & Burns, 2016). Analysis of 

correlations revealed interesting patterns. Frequency of use of Autopilot was associated with trust. As 

expected, those who have higher levels of trust tend to use the system more often (Dzindolet, 

Peterson, Pomranky, Pierce, & Beck, 2003). The reverse is also true: The more drivers experience 

Autopilot and Summon under different circumstances, the more their trust increases, especially if 

these systems had good performance and reliability in handling different situations. This is also in 

line with previous findings on the relationship between trust and experience (Gold, Körber, 

Hohenberger, Lechner, & Bengler, 2015; Hergeth, Lorenz, & Krems, 2016). Ease of learning was 

also positively correlated with trust for both Autopilot and Summon. The design features of 
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automation such as usability influence trust by altering perceptions of users (Hoff & Bashir, 2015). 

Likewise, easy to learn characteristics of Autopilot and Summon may have created perceptions of 

trustworthiness by making the adaptation smooth. The usefulness of Autopilot display was also 

positively correlated with trust in Autopilot. The main purpose of the Autopilot display is to show the 

sensing capabilities of the system to the user. At any time during the ride with Autopilot, drivers can 

glance at this display and see how Autopilot perceives other vehicles on the roadway and whether 

sensors become active (e.g. ultrasonic sensors). In other words, this display opens the black box of 

automation and enables the users to observe the process (Lee & See, 2004). If this transparency has a 

positive effect on trust, it can be an important part of adoption process for autonomous vehicles. 

However, as Lee and See (2004) notes, having an appropriate level of trust is much more important 

than just higher levels of trust. While providing transparency can result in better trust calibration 

(Seong & Bisantz, 2008), further research is needed to identify how these drivers use the Autopilot 

display. Lastly, self-rated knowledge about how Autopilot or Summon makes decisions was 

positively correlated with trust in Autopilot and Summon, respectively. In general, knowledge about 

how these systems work, including their limitations, should result in appropriate trust calibration. 

However, we don’t know the extent to which “self-rated knowledge” matches the real, objective 

knowledge about how these technologies work. Still, knowledge about how automation makes 

decisions, especially when it fails, can result in higher levels of trust (Dzindolet et al., 2003). 

Similarly, awareness of how Autopilot and Summon handles or fail to handle various situations might 

have resulted in appreciation of these technologies, and subsequently higher levels of trust. However, 

it is also possible that those who have a priori trust in these systems might be more willing to learn 

more about how the technology works behind the scenes, and improve their knowledge about the 

system. Further research is needed to establish how knowledge and mental models, both subjective 

and objective, relate to trust in autonomous vehicles. 

Older people reported slightly lower levels of trust in Autopilot. This finding is contrasts with 

previous research (e.g. Ho, Wheatley, & Scialfa, 2005 on medication management systems) which 

showed that older adults have higher levels of trust in automation. One explanation for current 

findings is that older people tend to have more driving experience than younger drivers and domain 

expertise has been shown to influence trust and reliance in automated decision aids. For example, 

farmers (domain experts) rely less on automated aids than non-farmers (domain novices) (Sanchez, 

Rogers, Fisk, & Rovira, 2014). Another explanation might be the differences in risk perception. 

Younger drivers tend to perceive situations such as curved roads and rural environments less risky 
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than older drivers (Tränkle, Gelau, & Metker, 1990). It is possible that the perceived risk associated 

with automated driving might be different across different age groups. Nevertheless, we echo with 

Schaefer et al. (2016) that there is a need for further research in understanding the relationship 

between age and trust in automation. 

In terms of trust over time, we observed similar results for Autopilot and Summon. Trust increased 

over time for both Autopilot and Summon. This finding is consistent with previous work (Gold et al, 

2015; Hergeth et al., 2016; Sauer & Chavaillaz, 2017). As drivers use these systems more, they likely 

became more comfortable. Over time, drivers may have adapted to this new environment, whereby 

they learned how to cooperate with an automated agent. Failures can be a challenge, but they can also 

provide a learning opportunity.  

For Autopilot, those who experienced an incident reported lower levels of both current trust and 

initial trust. It was surprising to observe the differences between Incident and No Incident groups in 

initial trust in Autopilot. It is possible that those who experienced an Autopilot incident may have 

been subject to cognitive biases such as hindsight bias (Roese & Vohs, 2012) and they may have 

responded based on later negative experiences. However, given other findings, we believe that a more 

likely reason is that these drivers might indeed have lower levels of trust in Autopilot at first, and this 

might have led them to be more sensitive to the capabilities of Autopilot, which may have resulted in 

(a) more likely to consider certain situations as a failure, and (b) motivating drivers to explore the 

limits and capabilities of Autopilot more to calibrate their trust better. They might, for example, have 

used Autopilot under circumstances where it is not designed to function. Throughout the comments, 

we also observed indications of these situations. As one participant pointed out, part of the learning 

process is testing its limitations. Nevertheless, these findings support the idea that the relationship 

between trust and automation failures is a complex one, and many factors can influence this process 

(Hoff & Bashir, 2015). Earlier, we reported that drivers who experienced an incident did not perceive 

these situations particularly risky (section 2.2). We believe current results on trust support these 

findings such that experiencing an Autopilot incident does not necessarily cause significant 

reductions in trust. However, we should note that these ratings don’t necessarily represent drivers’ 

trust right after experiencing an incident. Trust is a dynamic and evolving process (Lee & See, 2004), 

and while it decreases after automation faults, gradually it recovers (Lee & Moray, 1992). 

Trust in Summon was not influenced by whether participants experienced an incident or not. While 

there was a trend towards reduced levels of trust for Incident group, current data failed to support this 
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hypothesis, partly due to sample size. Surprisingly, initial trust in Summon was strongly and 

negatively correlated with perceived risk. This suggests that perhaps failures mostly occurred during 

initial use of Summon which might have influenced initial trust. Nevertheless, we should note that 

Autopilot and Summon are qualitatively different automation systems both in terms of the 

consequences of failures and the level of complexity of the environments where these systems are 

used. Therefore, trust development process might be affected by different factors for these systems. 

This work had several limitations. Unlike laboratory experiments, trust was not assessed 

immediately after the incidents, and the time interval between the last time the drivers experienced an 

incident and the survey varies from person to person. A longitudinal study on how trust develops over 

time with autonomous vehicles would identify both fluctuations in trust and how drivers 

psychologically deal with automation failures. Also, almost all participants in this study were actively 

using Autopilot or Summon. We should note that trust in these systems might be different for users to 

stopped using Tesla cars or these systems due to a major failure or accident. While we observed that 

trust was associated with multiple factors, identifying exact mechanisms require further research such 

as how age, knowledge and mental models influence trust. Trust evolves over time, and while trust 

influences reliance on automation, it is not the only factor (Lee & See, 2004). Future research should 

examine the affective component of trust in autonomous cars. Our observations throughout this work 

have been that there is more than meets the eye when it comes to developing a trust relationship with 

people’s own cars, where factors such as their attitudes towards the designer (i.e. the brand or 

company producing the vehicle), public opinions and social influence might play an important role. 

At the end of the day, a car is more than just a job-related automation such as automated plants or 

aircrafts. A car has potential to become part of one’s identity, life style, and social world. We believe 

that some these concepts are reflected in our work as well such as strong tendency to use online 

forums to connect with other Tesla owners. Therefore, it is critical to develop an understanding of the 

concept of trust in personal automation such as autonomous vehicles and home automation. 

2.4.6 Conclusion 

In this analysis, we examined trust in automation in the context of Autopilot and Summon. Overall 

Tesla drivers who participated in this study have high levels of trust in these technologies. Trust is 

related to several attitudinal and behavioral factors, and experiences shapes the level of trust in these 

technologies. While this work was an initial step towards understanding how trust plays a role in real 

world use of autonomous vehicles, it showed that laboratory findings and concepts developed in the 
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research community are applicable to real world cases as well. We hope these findings will help to 

understand drivers’ trust in autonomous vehicles, as the concept of trust will be fundamental in an 

automated world. 

2.5 Chapter Conclusion 

In this chapter, we presented the results of a survey conducted with Tesla drivers about their 

experiences with two automated systems, Autopilot and Summon. Current users of these technologies 

are highly comfortable and engaged with these technologies, motivated to learn more about these 

systems, and use multiple information sources. Automation failures are common but they are not 

perceived as particularly risky. Users have high levels of trust in Autopilot and Summon, and trust 

increases over time. These findings are first steps to understand how autonomous vehicles are being 

used in the real world. We hope this study complements laboratory findings and naturalistic studies 

on automated driving. 

We identified a few key areas which require further research such as understanding nature of trust 

and how it affects the use of these technologies, how drivers integrate multiple information sources, 

and given the prevalence of automation failures, how to keep the drivers in the loop and make sure 

they have a proper understanding of what is going on under the hood. The next chapter describes a 

study we conducted that addresses some of these questions, particularly the latter one. 
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Chapter 3 
Augmented Reality Head-Up Displays in Automated Driving 

3.1 Chapter Introduction 

In this chapter, we will present the findings of a study we conducted on augmented reality head-up 

displays in a simulated environment.  

In the previous chapter, we identified several issues that needs to be addressed, such as 

understanding trust, information access and drivers’ motivation to understand better how automation 

works. The latter point is the basis for this study. Our purpose was to identify ways to increase 

understanding of how automation works by providing real time information to drivers during 

automated driving. One of the most convenient ways to achieve this goal is through visual and 

auditory displays which provide information about the status of the automation, also known as 

automation displays. The focus of this work was to identify how automation displays influence 

drivers’ attitudes, behavior, and performance in automated driving. For the type of display, we chose 

to explore the concept of augmented reality head-up displays (AR HUD), head-up displays with 

augmented reality graphics which are aligned with real world objects, resulting in a conformal 

display. Our goals and research questions in this study were following: 

1. How does presenting varying amounts of information about the vehicle’s sensing 

capabilities via an augmented reality head-up display affects trust, workload, situation 

awareness, perceived usability, and secondary task engagement? 

2. How does representing automation failures affects trust, workload, situation awareness, 

perceived usability, and secondary task engagement? 

In the following sections, we will present an experiment we conducted to achieve these goals. 

Materials related to this study are presented in Appendix B: Experimental Materials. 

3.2 Overview of the Study 

The race to build self-driving cars is at full speed. Currently, all major automotive companies are 

working towards building autonomous vehicles. Some, like Google, aim to produce fully autonomous 

vehicles that eliminate the driver completely. However, others such as Tesla aim to achieve full 

autonomy gradually by introducing semi-autonomous driving capabilities into the vehicles and 
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gradually developing them into fully autonomous cars. A safe transition to full autonomy in the next 

decade requires proper investigation of driver-automation interaction related issues which such as 

increasing driver situation awareness (Endsley, 2017; Stanton & Young, 2005) and driver distraction 

(Llaneras, Salinger, & Green, 2013) as the vehicles’ automated driving capabilities incrementally 

increase. 

The aim of this research is to identify how automation displays influence driver attitude and 

behavior. Specifically, this study looks at the effects of using augmented reality head-up displays (AR 

HUD) on situation awareness, workload, trust, and distraction in a simulated environment. We 

designed a study in which participants watched driving videos featuring simulated augmented reality 

visualizations highlighting the objects the automated vehicle identified while engaging a secondary 

task, and rated their situation awareness, mental workload, and trust. 

AR HUD systems promise to provide contextual, meaningful, and timely information to drivers, 

which will be very important as the vehicles get smarter and more automated, and as the role of the 

drivers shifts from manual driver to a supervisor, with added cognitive demands resulting from this 

new role. In this study, we examined how opening the black box of automation using AR HUD 

impacts driver performance in automated driving.    

3.2.1 Related Work 

In-vehicle automation displays are a critical part of automated driving. Previously, the driver, who 

was in charge of the vehicle all the time, had to monitor the environment and control the vehicle 

accordingly. In automated driving, this monitoring task will be extended to include monitoring of the 

state of the automation as well. Automation displays play an important role in assisting this new task 

by providing how the vehicle senses the environment and makes decisions, with the goal of 

increasing situation awareness (SA; Endsley, 1995). They are the primary method for drivers to 

understand the state of the system (Banks & Stanton, 2016), and they can provide critical information 

such as which sensors are activated (e.g. using animation when the blind spot monitor sensor detects 

an object), how the car senses the objects on the road, whether lane markings are appropriate, and 

various indicators such as whether or not automated driving is available, and warnings and alert 

messages (e.g. “please take the control”).  

An in-vehicle display, whether its related to automated driving functionality or is a conventional in-

vehicle display, can be a traditional head-down display, or a head-up display. A more recent 
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technology that started to attract attention is augmented reality head-up displays, a combination of 

head-up displays and augmented reality visualizations to provide spatial, real-time information about 

the environment. Augmented reality head-up displays (AR HUD) can provide two ways of presenting 

information: screen-fixed and world-fixed (Gabbard, Fitch, & Kim, 2014). Screen-fixed displays 

present information on a fixed location of the screen whereas the world-fixed displays present 

information in a location that aligns with an object in the real environment to give the perception of 

“attached graphics”. The advantage of world-fixed displays is that they provide contextual 

information and map it directly onto the real world, minimizing the effort required to attend, perceive, 

and match the display and real world. Additionally, AR HUD cues can be presented on a head-

mounted display, on a dashboard display where the cues are superimposed on real-time camera 

footage, or on windshield display. The projection onto the windshield was found to be more effective 

than others in a number of measures including navigation related errors and object detection (Jose, 

2015).  

AR HUD can effectively convey warnings (Schwarz & Fastenmeier, 2017) and improve the 

psychological being of drivers by relieving stress and tensions (Hwang, Park, & Kim, 2016)).  AR 

HUD has a major advantage over a traditional head-down display in that drivers can keep their eyes 

on the road when using AR HUD. This leads to several advantages over traditional in-vehicle 

displays. Previous work showed that AR HUD results in better navigation performance (Kim & Dey, 

2009; Bolton, Burnett, Large, 2015), earlier recognition of turns (Bark, Tran, Fujimura, & Ng-Thow-

Hing, 2014), faster responses to road hazards without compromising workload (Kim, Wu, Gabbard, 

& Polys, 2013), increase awareness of pedestrians (Phan, , Thouvenin, & Frémont, 2016) and 

smoother breaking when approaching pedestrian crossings (Kim, Miranda Anon, Misu, T., Li, 

Tawari, & Fujimura, 2016). AR HUD visualization have the power of attracting driver attention, 

however this can also be detrimental. For example, drivers tend to look at objects longer when 

highlighted using AR HUD and miss other, possibly important objects compared to not using HUD 

(McDonald, 2016) 

Using augmented reality cues can be an effective way of providing information to the drivers about 

sensing capabilities of the vehicle. Using such displays, the driver can monitor both the road and the 

automation’s view of the world simultaneously, leading to higher awareness of the state of 

automation. This can be critical in situations where the vehicle fails to detect an object and thus 

ignores it, such as failing to notice a parked vehicle. Regarding the use of AR HUD in automated 
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driving, AR cues in the form of highlighting lanes with green (safe) or red (dangerous) resulted in 

similar reaction times compared to no AR in take over scenarios, however they also resulted in safer 

maneuvers such as using the brake more in an emergency lane change (Lorenz, Kerschbaum, & 

Schumann, 2014). Interestingly, these cues also led to checking the side corridors during a lane 

change less often, suggesting that AR cues can have negative effects as well by attract driver attention 

such that they may rely on AR cues rather than checking the environment themselves. In a similar 

study, augmented reality cues in the form of highlighting vehicles on the road, augmented reality cues 

did not increase response speed to take over requests in automated driving, but resulted in smoother 

transitions to manual driving and helped the drivers better anticipate the required maneuvers, 

suggesting an increase in situation awareness (Langlois & Soualmi, 2016). AR HUD can also 

increase driver engagement with the real world in semi-automated driving by attracting drivers’ 

attention through visualizations. One such concept is presenting a game on AR HUD to keep drivers’ 

attention on the road (Schroeter & Steinberger, 2016). 

Despite the efforts to understand and design effective augmented reality head-up displays, there is 

more research needed to have a complete picture of AR HUD. An important consideration is 

identifying what should be represented on an AR HUD, especially in the context of automated 

driving. This experiment therefore sought to identify the effects information type on performance 

such as situation awareness, workload, trust and secondary task engagement, by providing varying 

amounts of information about the vehicle’s sensing capabilities of the environment. Specifically, we 

were interested in how providing AR cues related to lead vehicles on the same lane, vehicles in other 

lanes, and road signs impacts driver attitudes and behavior. 

3.2.2 Overview of the Experiment 

In this experiment, participants watched several driving videos with simulated AR cues that highlight 

objects on the road (Figures 8, 9 and 10). These cues could highlight the vehicle on the same lane, 

other vehicles on the road, and road signs. Additionally, the AR system could be reliable 

(highlighting objects appropriately) or not reliable (failure to highlight certain objects). Participants, 

while watching these videos, were also engaged with a secondary task, a word search game on an 

iPad. The use of a secondary task paradigm is recommended in automated driving studies because 

they can act as a proxy for reliance on the automation (Gibson et al., 2016). After each video, 

participants reported their workload, situation awareness, trust in the vehicle and perceived usability 
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of AR cues, in addition to video-specific questions. We chose to simulate AR HUD using videos 

because we did not have access to a proper AR HUD system. 

We expected, based on previous work, that presenting more information about the sensing 

capabilities of the vehicle (i.e. highlighting both lead vehicles and vehicles in other lanes) would 

result in higher levels of awareness and increased perceived usefulness. Drivers should be able to 

obtain information about the state of the automation quicker if such information is presented in a 

contextual and relevant way. However, a direct consequence of this situation might be increased 

engagement with the secondary task, if drivers believe they can regain awareness quickly if needed.  

3.3 Method 

3.3.1 Participants 

20 participants took part in the study. The minimum age was 18, and the maximum age was 33, with 

a mean of 21.8 (SD = 3.3). 13 participants were male. Average driving experience was 4.9 years, and 

on average, participants were driving 170 km per month. 

3.3.2 Experimental Design 

The experiment was a within-subjects design with 7 levels. Six of them included AR HUD, and the 

other one was a baseline condition which did not have any AR cues. Six levels of AR HUD were 

structured as a 3 (Design: Basic, Advanced, Advanced+) x 2 (Reliability: No Failure, Failure) design. 

These conditions featured AR cues highlighting certain objects on the road. The AR HUD design 

variations used in the study are shown in Figures 7,8 and 9. Basic design only highlighted the 

vehicles on the same lane with a yellow line. Advanced design highlighted the vehicles on the same 

lane with yellow lines as well as vehicles in other lanes with blue. Advanced+ were similar to 

Advanced design, with the addition of projecting a bigger image of road signs such as exits and 

service centre signs onto the screen. To manipulate reliability, we removed the AR cues that are 

supposed to highlight the lead vehicle. Figure 11 shows how a failure scenario was represented in this 

study. These failures, when they happen, happened only once during a video, and could last between 

9.5 and 36.5 seconds (M = 19.6 seconds). 
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Figure 8. Basic Display. In this variation, only the lead vehicles (vehicles on the same lane as the own 

car) are highlighted. 

 

 

Figure 9. Advanced Display. This variation highlights lead vehicles and vehicles in other lanes. 
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Figure 10. Advanced+ Display. This variation highlights lead vehicles, vehicles in other lanes as well 

as projecting larger images of road signs onto the screen. 



 

 44 

3.3.3 Videos and Secondary Task 

The videos were shot on a nearby highway using a dashcam, the car was driven by a human driver, 

and the rides were completely safe. Rarely the vehicle changed lanes. The car was either in the middle 

lane or right lane and was driving within the legal speed limit. Traffic density was similar across 

videos and but could vary within a video. However, there were no slowdowns due to traffic at any 

point. All videos started and ended on highway, and the car did not leave the highway. The 

visualizations are added using a post-processing software. Design of AR cues were inspired by some 

of the concepts introduced by automotive companies. The colors were chosen somewhat arbitrarily, 

however we avoided using green and red colors as these have specific meanings in driving. Each 

video was about three minutes long, and for automation failure conditions, the failure could happen 

anywhere in the video. We used original 6 videos. For each video, we prepared 6 combinations 

(Design x Reliability). Baseline video was fixed. 

Figure 11. AR HUD failures. This is one of the examples where the reliability of AR HUD was 

manipulated. On top two images, the vehicle on the right moves into the middle lane. On the 

bottom left, the vehicle identifies it as a lead vehicle and highlights it. On the bottom right, the 

vehicle “fails” to identify the lead vehicle. Hence, no highlighting occurs. 
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The secondary task was a word search game presented on an iPad. It was a typical word search 

game where participant had to find words and cross them off. 

3.3.4 Procedure 

After filling out demographics questionnaire, participants were briefed about the study, and asked to 

pretend as if they are in the driver seat of this self-driving car, and experienced a short training video 

(about 1 minute). In the training video, they will be told how to engage automated driving, and how 

the word search game works. After the training video, participants watched 7 videos (6 AR videos 

and the baseline). Each video started with participants’ hands on the wheel. They could engage 

automated driving by pressing a button on the steering wheel. We did not force participants to engage 

or disengage automated driving during the videos. Participants, when engaged in automated driving, 

could drive hands free and play the word search game on the iPad if they want. At any time if they 

wanted to take the control back from the car and disengage automated driving, they could do so by 

putting their hands on the wheel. To engage automated driving again, they pressed the same button. 

Engaging or disengaging automated driving did not change the flow of the video. However, when 

they were driving manually (i.e. hands on the wheel) they could not play the iPad game. Instructions 

were given that the vehicle may fail to detect certain objects and it is the participant’s responsibility to 

make sure the ride is safe. After each video, participants filled out questionnaires measuring 

subjective situation awareness, subjective workload, trust, usability of the AR display, and ride-

related questions. We tried to counterbalance the order of videos as best as possible. However, given 

the number of possible combinations of 36 videos, a full counterbalance was not possible. After 7 

videos, participants filled out a post-experiment questionnaire asking questions about each design. All 

experimental stimuli were presented on a 27` IPS LED screen with a resolution of 1920x1080 and a 

refresh rate of 60 hertz. A Logitech G29 steering wheel was used in the experiment. 

3.3.5 Measures 

3.3.5.1 Primary Measures 

After each video, we measured subjective mental workload, subjective situation awareness, trust in 

the automation, and secondary task performance. 

Subjective situation awareness was measured with the Situation Awareness Rating Scale (SART; 

Taylor, 1990). This scale measures three dimensions of situation awareness, supply, demand, and 
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understanding using 10 questions on 7-point Likert scales. Overall situation awareness score is 

obtained by using the following formula: SA = Understanding – (Demand-Supply) (Stanton, Salmon, 

Rafferty, Walker, Baber, & Jenkins, 2013) 

Subjective workload was assessed using the National Aeronautics and Space Administration-Task 

Load Index (NASA-TLX; Hart & Staveland, 1988). This scale measures subjective mental workload 

by using six sub-scales, namely mental demand, physical demand, temporal demand, performance, 

effort and frustration. A score from 0 – 100 is obtained using these dimensions. 

We measured trust in automation similarly as in the survey we reported in Chapter 2. However, in 

the current study, we used several additional items from “Checklist for Trust between People and 

Automation” scale (Jian, Bisantz, & Drury, 2000) which consists of 12 items to measure trust in 

automation. Some of the items were ambiguous in this context, and we used 6 items. Three of these 

items measure negative trust (distrust) and others measure positive trust (See Appendix B). These 

items were asked on a 5-point Likert scale. We then averaged all six items to obtain a trust score.  

To measure secondary task engagement, we recorded the number of words participants have 

crossed off during a video. 

Usability of different designs were measured with System Usability Scale (SUS; Brooke, 1996). 

This scale measures the usability of a system using ten 5-point Likert scale items and provides an 

overall usability score ranging from 0-100. A score of 70 is considered an acceptable level of 

usability, based on an analysis of 2,324 surveys (Bangor, Kortum, & Miller, 2008). 

3.3.5.2 Secondary Measures 

After each video, we asked participants about the number of exits and service centre signs they saw 

in the video and whether or not there was construction work on the road. While these measures may 

not be direct predictors of safe driving performance, they could provide insights about the attention 

participants allocated to monitor the roadway. We also asked about subjective assessments of how 

much they paid attention to the road and the secondary task, as well as understanding of how 

automation works. Additionally, at the end of the experiment, we asked participants to rate each 

interface on several items and open-ended questions about augmented-reality head-up displays. 
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3.4 Results 

For data analysis, we used repeated measure ANOVAs. Only two measures were affected by the 

reliability of AR HUD: trust and usability scores. For these measures, we used two-way repeated 

measures ANOVA. For measures that were not affected by AR HUD failures, we collapsed failure 

and no failure conditions for each display, and ran one-way repeated measures ANOVAs with four 

levels (No AR, Basic display, Advanced display, Advanced+ display) to facilitate reader 

understanding. This also allowed easier comparison of AR designs with the baseline (No AR) 

condition. Greenhouse-Geisser corrections were used when the sphericity assumption was violated. 

3.4.1 General Results 

Median time to engage automated driving was 4.5 seconds and it did not differ between conditions 

according to a Friedman’s test, χ2(3) = 1.62, p = .655. Only a few participants used the take-over 

feature (putting hands on the wheel and disengaging from the secondary task), and only a few times 

during the study, therefore there is not enough data for a rich analysis. We believe having no real 

control over the vehicle played a role here. There were no significant differences in perceived risk of 

the ride between the videos used in the experiment, p > .05. Perceived risk ranged from 2.40 (SD = 

.99) to 2.75 (SD = .97) on a 5-point Likert scale. Participants perceived the videos low to medium 

risky.  

3.4.2 Situation Awareness 

A repeated measures ANOVA with Greenhouse-Geisser corrections showed no differences between 

SART scores, F(2.06, 39.12) = .46, p = .64. Participants reported similar levels of subjective situation 

awareness across conditions. 

3.4.3 Mental Workload 

A repeated measures ANOVA with Greenhouse-Geisser corrections showed no differences between 

subjective mental workload between conditions, F(1.89, 35.97) = .36, p = .69. Participants reported 

similar levels of mental workload under each condition. There were also no differences in subscales, 

all p’s > .05. Overall workload ranged from 21.13 to 24.42 across conditions. 

3.4.4 Secondary Task Performance 

A repeated measures ANOVA showed no differences in secondary task performance, F(3, 57) = .69, 

p = .56. Participants crossed similar numbers of words in each condition, although the mean scores 
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were slightly higher in AR HUD conditions. Average scores were 5.7, 6.95, 6.9 and 6.8 for No AR, 

Basic, Advanced and Advanced+ displays, respectively. 

3.4.5 Trust 

A 3 (Display: Basic, Advanced, Advanced+) x 2 (Reliability: No Failure, Failure) repeated measures 

ANOVA showed no main effect of display, F(2, 30) = .79, p = .46, no main effect of reliability, F(1, 

30) = 3.52, p = .08, and no interaction effect, F(2, 30) = .15, p = .44 on trust in the automated vehicle. 

Further inspection revealed that two items related to negative trust (being suspicious of the intentions, 

and being wary of the system) were affected by the reliability of AR cues. Participants were more 

wary of the system when AR HUD failed (M = 2.75, SD = .72) than when the AR HUD was reliable 

(M = 2.54, SD = .53), F(1, 30) = 5.82, p = .036. They also reported higher levels of suspicion about 

the system’s actions when AR HUD failed (M = 2.42, SD = .69) than when it was reliable (M = 2.15, 

SD = .54), but this different was not significant F(1, 30) = 4.35, p = .055. 

To understand how driving with or without AR cues affect trust in automation, we compared reliable 

AR HUD conditions with No AR condition in trust in the automated vehicle. We chose only the 

reliable AR HUD conditions as these were similar to No AR where there was indication of failure. A 

repeated measures ANOVA with four levels (No AR, Basic, Advanced, Advanced+) showed a 

significant effect of AR HUD, F(3, 54) = 3.16, p = .032, partial η2 = .15. As shown in Figure 12, 

Advanced+ design led to higher levels of trust than No AR, p = .01. Trust was also higher for Basic 

and Advanced design than the No AR, but these differences did not reach significance, p = .061 for 

Basic vs. No AR, and p = .07 for Advanced vs. No AR. 
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Figure 12. Trust in Automated Vehicle. Error bars represent 95% CI. 

3.4.6 Usability 

A 3 (Design: Basic, Advanced, Advanced+) x 2 (Reliability: No Failure, Failure) repeated measures 

ANOVA showed a main effect of reliability on SUS scores, F(1, 34) = 4.69, p = .045, partial η2 = .22. 

The main effect of design and interaction effect were not significant, p > .05. Participants rated the 

usability of the design less when the system failed (M= 71.02, SD = 12.12) than when the system was 

reliable (M = 75.05, SD = 10.95). However, all designs were rated over 70. This indicates that AR 

HUD designs had an acceptable level of usability (Bangor, Kortum, & Miller, 2008).  

3.4.7 Attention to the Road and Secondary Task 

Subjective assessments of how much participants were able to attend to the road did not differ 

between four conditions, F(3, 57) = .26, p = .85. Participants also reported similar levels of attention 

to the secondary task in each condition, F(3, 57) = .38, p = .77. 

3.4.8 Understanding of How the Automation Works 

Subjective assessments of how well participants understood how the automated driving system works 

was different between conditions, F(3, 57) = 5.49, p = .002, partial η2 = .22. Post-hoc LSD tests 

showed that participants reported higher levels of understanding when provided with Advanced+ 

display than Basic display, p = .028, and No AR, p = .012. They also reported high levels of 
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understanding in Advanced display conditions than Basic display condition, p = .032 and No AR, p = 

.013. Overall Advanced and Advanced+ designs led to higher levels of subjective understanding than 

Basic and No AR conditions. 

3.4.9 Design Preference 

3.4.9.1 User perception 

Participants rated the colors and visual of AR cues as appropriate. On a 5-point Likert scale, 

participant rated the lead vehicle cues and other vehicle cues as 4.35 (SD = .59), and road sign 

visualizations as 4.1 (SD = .98). 

In terms of design comparisons, there were no differences between displays in reported awareness of 

the traffic, F(2, 38) = 1.33, p = .275. Participants did not think that any of these displays will increase 

driving safety more than others, Greenhouse-Geisser corrected F (1.23, 23.28) = 1.87, p = .18, and 

rated these designs similarly in terms of potential risk during take-over requests. Designs were 

perceived as equally capable of providing necessary information, Greenhouse-Geisser corrected 

F(1.49. 27.90) = 1.68, p = .208. There were significant differences between designs in how much 

distracting they were, Greenhouse-Geisser corrected F(1.32, 25.22) = 7.75, p = .002, partial η2 = .29. 

Post-hoc LSD tests revealed that Advanced+ display (M = 2.45, SD = 1.15) was perceived as more 

distracting than Advanced (M = 1.95, SD = .68, p = .008) and Basic display (M = 1.8, SD = .70, p = 

.008. Basic and Advanced displays were perceived equally distracting, p = .186. Finally, participants 

expressed that they would use these systems equally likely, Greenhouse-Geisser corrected F(1.13, 

25.45) = .26, p = .69. 

3.4.9.2 Interface Preference 

The majority of the participants preferred Advanced+ design (13 participants). 5 participants 

preferred Advanced design, one participant preferred Basic design and one participant preferred No 

AR. Open-ended follow-up questions revealed that participants who preferred Advanced and 

Advanced+ displays found the information provided very useful and appropriate in understanding the 

surrounding traffic. Some participants who preferred the Advanced display also complained about the 

distracting nature of highlighting road signs in Advanced+ display. 
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3.4.9.3 User Needs 

Participants provided several recommendations for future design of AR HUD systems. 7 participants 

requested warnings, alerts, and notifications such as the distance of other cars from own car, collision 

alerts, possible dangerous situations (e.g. weather conditions). 6 participants wanted to see the cars 

behind the own car and blind-spot information. 5 participants wanted to see speed related information 

(both own-car speed and other cars’ speed), and 5 participants wanted to see secondary information 

such as navigation and upcoming traffic. 

3.5 Discussion 

In this study, we examined augmented reality head-up displays in automated driving context. Overall, 

participants were positive towards AR HUD visualizations, but AR cues did not seem to provide 

major safety-related benefits in the context of this experiment. The AR cues led to higher levels of 

trust in the vehicle and better self-rated understanding of automated driving. In terms of design 

features, using only safety-related visualizations seem to be superior than adding secondary 

information such as road signs. 

Adding a layer of information in the form of augmented reality cues did not result in a change in 

situation awareness, mental workload, and secondary task performance. It looks like participants were 

appropriately engaged with monitoring task regardless of this additional layer of information. One 

reason for this might be that the task was relatively short, easy, and safe. It is likely that the 

advantages of AR HUD might be more salient under circumstances where the level of risk is high, 

when there is not enough information (e.g. nighttime driving; Stanton, & Pinto, 2000), or when the 

situation is relatively complex (e.g. overtaking). In the current study, the car rarely changed lanes, and 

there were no road hazards. Still, participants commented that they tried to stay more alert when there 

were no AR cues. The lack of a difference in subjective mental workload was observed in earlier 

research as well (Kim, Wu, Gabbard, & Polys, 2013). Overall, participants experienced low mental 

workload. It seems like AR cues might help in reducing workload if the task requires substantial 

cognitive demands, such as navigation (Bolton, Burnett, & Large, 2015).   

Trust was higher in AR HUD rides, despite the reliability of the automation was the same in each 

video. It is possible that participants perceive the vehicle as more capable when the sensor 

information is shown using AR cues. Design features impact trust in the automated system by altering 

user perception of these systems (Hoff & Bashir, 2015). Making the sensing capabilities more salient 
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might likewise increase perceived trustworthiness of the system. Another explanation might be that 

the more participants see how automation operates (observing the process, Lee and See, 2004) in a 

reliable fashion, the higher they trust in the system. Nevertheless, these findings show that using AR 

HUD to provide information about the state of automation (in this case, the sensing capabilities) can 

increase trust, and facilitate user adoption, especially for those who are concerned about not knowing 

why the automation is doing what it is doing. 

Trust seem to be affected by automation failures represented in AR HUD. While overall trust was 

not affected, participants reported higher levels of distrust in the automated vehicle when AR HUD 

indicated a sensor failure. These results show that participants were sensitive to the failures, and they 

adjusted their trust accordingly, which supports earlier research on trust calibration when interacting 

with automation (e.g. Seong & Bisantz, 2008; Wang, Jamieson, & Hollands, 2009). Appropriate trust 

calibration is critical in automation reliance (Lee & See, 2004), and providing real-time information 

about automation seem to help in this process. AR cues provide immediate and contextual 

information about the mapping between real world and automation, and makes automation error more 

salient, which is especially important in a dynamic driving environment. While providing such salient 

information about an unreliable system might lead to concerns on the user side, it may play a critical 

role in developing an appropriate level of trust in autonomous vehicles. Additionally, information 

about failures would help drivers to align their mental models with mental model of the vehicle, 

which is critical for achieving safe performance in human-automation interaction (Endsley, 1996; 

Sarter, Woods, & Billings, 1997) 

Usability ratings did not differ between designs, but were affected by reliability, which is consistent 

with findings on trust. Overall the usability scores were acceptable, and participants liked the 

visualizations used in the study, as we observed during discussions with participants after the 

experiment. Taken together with findings on trust, AR HUD can be a positive factor in user adoption 

of automated vehicles in the future. We should note that a traditional automation display (e.g. 

dashboard display) can also provide similar benefits. However, based on previous work on AR HUD 

vs. traditional displays, we believe that the benefits will be more noticeable in AR HUD. 

Subjective ratings revealed positive attitudes towards the display as the amount of information 

presented on the interface increases. However, overall the differences between three displays were 

negligible. Participants noted that as the amount of information presented increases, so was the 

potential for distraction. Similar findings were reported by Haeuslschmid, et al. (2015). This can be 



 

 53 

an important disadvantage, especially during take-over requests or at times when drivers become 

distracted and need to get back to the monitoring task (situation awareness recovery; Gartenberg, 

Breslow, McCurry, & Trafton, 2014). While information such as navigation often seen in commercial 

head-up displays can be perceived positively by drivers, they can become distractions during 

supervisory control. In terms of design preference, most participants preferred Advanced+ design 

over other designs, and welcomed the additional information this display provided. An implication of 

these findings is that the design of AR HUD should consider a possible information - distraction 

trade-off. Understanding how much information is too much requires more research, but it seems like 

providing additional information on AR HUD can be preferred by drivers, if such an option is 

available. 

A distinction between this study and earlier studies is that AR HUD systems used in the past were 

more task oriented, e.g. noticing pedestrians (Kim, Miranda Anon, Misu, T., Li, Tawari, & Fujimura, 

2016). In the current study, we tried to simulate a general monitoring task during an automated ride. 

Another difference was that previous work mostly considered manual driving while we used a highly 

automated driving context. Overall, the findings indicated several benefits of using AR HUD such as 

higher levels of trust, and better understanding of vehicle behavior. However, how these benefits 

translate into driver behavior during the safety-critical phases of automated driving such as handling 

unexpected situations and take-over requests, requires more research. 

3.6 Limitations and Future Research 

Current study had several limitations. The videos used in this study were completely safe driving 

footage. While this might be representative of real-world autonomous driving (i.e. the ride will be 

safe most of the time), it may have failed to capture the real usefulness of augmented-reality head-up 

displays, which is to provide the required levels of awareness in safety-critical situations, or when the 

driver can’t otherwise access the necessary information. It looks like the participants were not 

reactive to AR HUD cues but rather to the behavior of the car which was safe all the time. Another 

limitation was that participants had no real control over the car due to the nature of using videos. 

While trust ratings might serve as a proxy for reliance in automation, being able to respond to take-

over requests transition from automated to manual and vice versa could reveal more information 

about how AR HUD cues will be used. 
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Future research should examine the usefulness of AR HUD cues in more realistic scenarios, and 

especially challenging situations where the AR HUD cues might have real safety benefits. It should 

also consider (1) proactive behavior, i.e. taking the control over in anticipation of an automation 

failure, and (2) possible negative effects of AR HUD such as complacency and disengagement from 

monitoring task during longer exposures. 

3.7 Conclusion 

In this chapter, we presented an experiment that investigated how augmented reality displays can be 

used in automated driving. Previous research revealed how AR HUD systems perform similarly or 

different from traditional in-vehicle displays, however the use of AR HUD in automated driving 

context was relatively understudied.  

In the experiment, we examined how AR HUD may influence driver behavior in automated driving 

in a simulated environment. Performance measures did not show a benefit of AR cues in this context. 

However, AR HUD resulted in higher levels of trust in automation, increased perceived 

understanding of the car behavior, and were rated positively. Failures represented in AR HUD 

visualizations led to lower levels of trust in the automated system, which implies that using such 

displays can be an effective method to help drivers adjust their trust appropriately. We hope this work 

contributes to increase our knowledge on augmented reality displays in autonomous vehicles. 
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Chapter 4 
Conclusion 

In this thesis, our goal was to identify emerging issues related to automated driving, and address 

challenges previous research identified. While there has been considerable research in the past, rapid 

advancements in automotive industry in recent years require even more attention to addressing both 

existing and recently emerging challenges of human-automation interaction in this context automated 

driving. This work was an attempt to understand these challenges better and address them 

appropriately 

In the study we presented in Chapter 2, we described the current situation of real-world 

autonomous driving, how early adopters experience these features, and identified challenges and 

opportunities related to the real-world usage of autonomous vehicles. Specifically, we identified that 

the automation failures were common, but drivers try to adapt to this new situation by engaging and 

learning. We also showed how drivers’ trust changes over time, and its relationship to experience and 

driver characteristics. Also, we identified that drivers demand information in new ways, adjust their 

behavior based on the technology available, and that they are motivated to seek out knowledge about 

their vehicles, but not in the traditional manner such as reading manuals.  

In the experiment, we presented in Chapter 3, we examined a future interface concept, augmented 

reality displays, and how it can influence driver behavior during automated driving. Our findings 

showed that there are possible benefits of using this technology in the automated driving context such 

as increased levels of trust. Regarding safety-related metrics, AR HUD did not provide a major 

advantage. There is more research is needed to understand a wider scope of advantages and 

disadvantages of using such displays. Nevertheless, we showed that AR HUD can play a role in 

affecting people’s trust in the autonomous vehicle, and mapping sensor failures to AR cues can help 

drivers to become aware of the reliability of the automated vehicle.  

4.1 Implications for Research 

This work has several implications for future research autonomous driving. First, the survey showed 

that the driver behavior regarding the use of technology will change as the vehicles become smarter 

and connected. The concept of upgradeable car will create substantial changes in user needs and 

demands. Therefore, it is important to study driver needs in this new environment. Previously, driving 
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was mostly considered as a safety-critical only activity, but given the smart and advanced technology 

equipped in the next generation vehicles, driving will likely evolve into being an integral part of 

people’s digital ecosystems. Another implication is that our findings highlight the importance of 

studying driver behavior in the real world. Unlike previous research that raised serious concerns 

regarding the use of autonomous vehicles, our findings showed a more positive picture of the current 

situation of automated driving. While simulator studies have been extremely useful in understanding 

driver behavior, which our findings mostly supported, understanding the actual impact of laboratory 

findings requires research in the real world. Regarding the role of technology, our findings on 

augmented reality displays showed that this technology can be useful in addressing some of the 

challenges of automated driving. It also revealed that there is more research needed to fully 

understand the impact of AR HUD systems in autonomous vehicles. 

4.2 Implications for Design 

This work provides several implications for design of future automotive HMIs. Our findings revealed 

that there is opportunity for automotive HMIs to take over some of the functions of one’s digital life. 

Designers should seek opportunities in aligning HMIs with what the drivers expect. For example, the 

design of vehicle manuals should be reconsidered for connected and upgradeable cars. Our 

experiment on augmented reality head-up displays showed that providing information about the 

vehicle automation can be important in facilitating user adoption. However, designers should be 

careful of potential risks associated with such displays. For example, providing non-task related 

information can be preferred by users but it may be detrimental regarding safety. Design features 

should be carefully studied to make a positive impact in driver well-being. 

4.3 Future Research 

Future research should focus on identifying factors that influence critical aspects of safe human-

vehicle interaction in the context of automated driving, such as trust and situation awareness. With the 

partially automated vehicles becoming available in the market, more research should be conducted in 

the real world to identify new challenges of using such vehicle in real world environments. In-vehicle 

information displays, likewise should be further studied in the context of connected and autonomous 

vehicles. Efforts should be made to study and design interactive systems that better fits the new role 

of the drivers. Finally, given the acceleration of developments in the automotive industry, researchers 

and designers should start considering the next steps in this evolution. One step ahead of partially 
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automated driving, level 4 and level 5 driving, will completely change the user demands. In a world 

with no steering wheels, there will be many questions to answer and opportunities to explore, as the 

vehicles evolve from tools to companions. 

4.3.1 Chapter Conclusion 

This work was aimed at increasing our understanding of driver behavior in autonomous vehicles by 

sampling a glimpse of what the future of transportation might look like. Information gained from 

early adopters, as well as investigation of future technologies that might become part of this 

evolution, should provide useful directions for researchers and designers. We hope this work 

facilitates further discussions, provide new perspectives, and ultimately contribute to the effort of 

creating safer and better technology for the future of driving. 
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Survey Questions 

In this Appendix, we present the questions used in the survey. Duplicate questions were omitted. 

 

Driving Experience 

 

2) What is your age? 

[ ] 16 - 20 

[ ] 21 - 24 

[ ] 25 - 34 

[ ] 35 - 44 

[ ] 45 - 54 

[ ] 55 - 64 

[ ] 65 or older 

 

3) What is your gender? 

[ ] Female 

[ ] Male 

[ ] Other: 

 

4) How would you rate yourself as a computer user? (Your general knowledge of using computers) 

 

[ ] Novice user 

[ ] Below average user 
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[ ] Average user 

[ ] Above average user 

[ ] Expert user 

 

5) How many years of driving experience do you have? 

[ ] Less than 1 year 

[ ] 1 - 3 years 

[ ] 3 - 5 years 

[ ] 5 - 10 years 

[ ] More than 10 years 

 

6) How often do you drive? 

[ ] Every day 

[ ] A few days a week 

[ ] A few days a month 

[ ] A few days a year 

 

7) Do you currently own a Tesla Model S? 

[ ] Yes 

[ ] No 

 

Your Experience with Model S 

 

8) When did you first own a Tesla Model S? 
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[ ] 2016 

[ ] 2015 

[ ] 2014 

[ ] 2013 

[ ] 2012 

[ ] 2011 

[ ] 2010 

[ ] 2009 

[ ] 2008 

 

9) Which year and model are you currently using? 

 

10) Which version of the Tesla software are you currently using on your car? 

[ ] I don't know 

[ ] 7.1 

[ ] 7.0 

[ ] 6.2 

[ ] 6.1 

[ ] 6.0 

[ ] 5.14 

[ ] 5.12 

[ ] 5.11 

[ ] 5.9 

[ ] 5.8.10 
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[ ] 5.8.8 

[ ] 5.8.7 

[ ] 5.8.4 

[ ] 5.8 

[ ] 5.6 

[ ] 5.0 

[ ] 5.5 

[ ] 4.5 

[ ] 4.4 

[ ] 4.3 

[ ] 4.2 

[ ] 4.1 

[ ] 4.0 

[ ] Other 

 

11) Overall, how would you rate your experience with your car? 

[ ] Very dissatisfied 

[ ] Somewhat dissatisfied 

[ ] Neither satisfied nor dissatisfied 

[ ] Somewhat satisfied 

[ ] Very satisfied 

 

12) In general, how often do you consult owner’s manual when you want to look up information 

about the features of your car? 

[ ] Never 
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[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

13) In general, how often do you consult friends/colleagues when you want to look up information 

about the features of your car? 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

14) In general, how often do you consult online sources (for example, forums and websites) when 

you want to look up information about the features of your car? 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

15) Are there other sources you use to learn about the features of your car? 

(Please describe the sources) 
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16) How would you rate the usefulness of the owner’s manual in teaching you about the features of 

the car? 

[ ] Not at all useful 

[ ] Not very useful 

[ ] Somewhat useful 

[ ] Very useful 

[ ] Extremely useful 

 

17) How do you access the owner’s manual when you need it? 

Check all that apply. 

[ ] Read on my computer 

[ ] Read on my smartphone 

[ ] Read on my tablet 

[ ] Read on the display in the car 

[ ] Read printed manual 

[ ] Other: 

 

18) How useful would it be to receive videos explaining new features after an update? 

[ ] Not at all useful 

[ ] Not very useful 

[ ] Somewhat useful 

[ ] Very useful 

[ ] Extremely useful 
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19) How useful would it be to have the opportunity to test new features before using them during 

actual driving? (For example, using a simulator-like system) 

[ ] Not at all useful 

[ ] Not very useful 

[ ] Somewhat useful 

[ ] Very useful 

[ ] Extremely useful 

 

20) Which of the following applies to you about Autopilot feature? 

[ ] I am currently using Autopilot feature or have used it in the past. 

[ ] My car does not support Autopilot feature. 

[ ] My car supports Autopilot feature but I have not installed the update. 

[ ] I don't know what Autopilot is. 

 

Your Experience with Autopilot 

 

21) How often do you use Autopilot? 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

22) When did you update your car after the Autopilot update became available? 

[ ] Within a week 
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[ ] Within a month 

[ ] Within two months 

[ ] Later than two months 

 

23) How did you learn about the new features of the car after the Autopilot update? 

Please check all that apply. 

[ ] Read the manual / release notes 

[ ] Asked friends/colleagues 

[ ] Asked company representatives 

[ ] Used online forums 

[ ] Used websites 

[ ] Other: 

 

24) How confident were you when using Autopilot for the first time? 

[ ] Not at all confident 

[ ] Not very confident 

[ ] Moderately confident 

[ ] Very confident 

[ ] Extremely confident 

 

25) How much did you trust Autopilot during your initial experience? 

[ ] 1 - Didn't trust at all 

[ ] 2 

[ ] 3 
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[ ] 4 

[ ] 5 - Completely trusted 

 

26) How useful is the Autopilot display? 

[ ] Not at all useful 

[ ] Not very useful 

[ ] Somewhat useful 

[ ] Very useful 

[ ] Extremely useful 

 

27) While driving with Autopilot, have you experienced any unexpected or unusual behavior from 

the car? 

[ ] Yes 

[ ] No 

 

28) Can you elaborate on this unexpected situation? 

What were the road conditions? 

___ 

What were you doing? 

___ 

What did the car do? 

___ 

Why did you think the car behaved in such a way? 

___ 

What did you do afterwards? 
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___ 

 

29) How would you rate this situation in terms of the risks involved? 

[ ] Not at all risky 

[ ] Not too risky 

[ ] Somewhat risky 

[ ] Very risky 

[ ] Extremely risky 

 

36) If you would like to introduce Autopilot to a friend/colleague, what would you recommend / 

emphasize for safe driving? 

 

37) What kind of features and capabilities do you expect from Autopilot in the future? 

 

38) Overall, how would you rate your knowledge about how the car makes decisions when 

Autopilot is turned on? 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

39) Overall, how would you rate the difficulty of learning how to drive with Autopilot? 

[ ] Very difficult 

[ ] Difficult 
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[ ] Moderate 

[ ] Easy 

[ ] Very Easy 

 

40) For you, how important it is to know how Autopilot makes decisions? 

[ ] Not important 

[ ] Slightly important 

[ ] Moderately important 

[ ] Very important 

[ ] Extremely important 

 

41) Please indicate the extent to which you agree with the following statements about Autopilot 

System here refers to Autopilot 

 

I am suspicious of the system's intent, action, or outputs 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

I am wary of the system 

[ ] Strongly disagree 

[ ] Disagree 
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[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

The system's actions will have a harmful or injurious outcome 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

I am confident in the system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

The system is reliable 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 
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I can trust the system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

I think that I would need the support of a technical person to be able to use this system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

I needed to learn a lot of things before I could get going with this system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

Autopilot Update 
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42) Do you plan to update your software in the near future? 

[ ] Yes 

[ ] No 

 

43) Can you elaborate on reasons for not updating your car software in the near future? 

 

Summon 

 

47) Which of the following applies to you about the Summon feature? 

[ ] I am currently using Summon or have used it in the past 

[ ] My car does not support Summon. 

[ ] My car supports Summon but I have not installed the update. 

[ ] I don't know what Summon is. 

 

Your Experience with Summon 

 

48) How often do you use Summon? 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

49) When did you update your car after the Summon update became available? 
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[ ] Within a week 

[ ] Within a month 

[ ] Within two months 

[ ] Later than two months 

 

50) How did you learn about the new features of the car after the Summon update? 

Please check all that apply. 

[ ] Read the manual / release notes 

[ ] Asked friends/colleagues 

[ ] Asked company representatives 

[ ] Used online forums 

[ ] Used websites 

[ ] Other: 

 

51) How confident were you when using the Summon feature for the first time? 

[ ] Not at all confident 

[ ] Not very confident 

[ ] Moderately confident 

[ ] Very confident 

[ ] Extremely confident 

 

52) How much did you trust Summon during your initial experience? 

[ ] 1 - Didn't trust at all 

[ ] 2 
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[ ] 3 

[ ] 4 

[ ] 5 - Completely trusted 

 

53) While using Summon, have you experienced any unexpected or unusual behavior from the car? 

[ ] Yes 

[ ] No 

 

54) Can you elaborate on this unexpected situation? 

 

What were the environment conditions? 

___ 

What were you doing? 

___ 

What did the car do? 

___ 

Why did you think the car behaved in such a way? 

___ 

What did you do afterwards? 

___ 

 

55) How would you rate this situation in terms of the risks involved? 

[ ] Not at all risky 

[ ] Not too risky 
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[ ] Somewhat risky 

[ ] Very risky 

[ ] Extremely risky 

 

62) If you would like to introduce Summon to a friend/colleague, what would you recommend / 

emphasize for safe driving? 

 

63) What kind of features and capabilities do you expect from Summon in the future? 

 

64) Overall, how would you rate your knowledge about how the car makes decisions when using 

Summon? 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

65) Overall, how would you rate the difficulty of learning how to park with Summon? 

[ ] Very difficult 

[ ] Difficult 

[ ] Moderate 

[ ] Easy 

[ ] Very Easy 

 

66) For you, how important it is to know how Summon makes decisions? 
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[ ] Not important 

[ ] Slightly important 

[ ] Moderately important 

[ ] Very important 

[ ] Extremely important 

 

67) Please indicate to the extent that you agree with the following statements about Summon 

System here refers to Summon 

 

I am suspicious of the system's intent, action, or outputs 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

I am wary of the system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

The system's actions will have a harmful or injurious outcome 



 

 86 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

I am confident in the system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

The system is reliable 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

I can trust the system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 
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[ ] Agree 

[ ] Strongly agree 

 

I think that I would need the support of a technical person to be able to use this system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

I needed to learn a lot of things before I could get going with this system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly agree 

 

Summon Update 

 

68) Do you plan to update your software in the near future? 

[ ] Yes 

[ ] No 

 

69) Can you elaborate on reasons for not updating your car software in the near future? 
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Non-owners 

 

73) Do you plan to buy a Tesla car in the future? 

[ ] Yes 

[ ] No 
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Experimental Material 

In this Appendix, we present the questionnaires and scales used in the experiment.  

 

Pre-experiment Questionnaire 

This questionnaire was presented at the beginning of the experiment. 

 

Demographics and Driving Experience 

 

What is your age? 

----- 

 

What is your gender? 

[ ] Male 

[ ] Female 

[ ] Prefer not to say 

[ ] Other: 

 

What is your major? 

----- 

 

What is your Driver’s License class? 

[ ] Class G1 

[ ] Class G2 



 

 90 

[ ] Full Class G 

[ ] Other: 

 

Do you have normal vision or correctedtonormal vision (e.g. glasses, contact lenses)? 

[ ] Yes 

[ ] No 

 

How would you rate yourself as a computer user? (Your general knowledge of using computers) 

[ ] Novice user 

[ ] Below average user 

[ ] Average user 

[ ] Above average user 

[ ] Expert user 

 

For how long do you have your current driver’s license? 

----- 

 

For how long have you been driving? 

----- 

 

How often do you drive? 

[ ] Every day 

[ ] Almost every day 

[ ] A few days a week 
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[ ] A few days a month 

[ ] A few days a year 

 

On average, how many kilometers do you drive in a month? 

----- 

 

Do you have highway driving experience? 

[ ] Yes 

[ ] No 

 

AR HUD Experience 

 

Do you have experience using an augmented reality display before? 

[ ] Yes 

[ ] No 

[ ] I don't know what an augmented reality display is. 

 

Please rate your knowledge about augmented reality displays 

[ ] 1 - Not at all knowledgable 

[ ] 2 

[ ] 3 

[ ] 4 

[ ] 5 - Extremely knowledgable 
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Advanced Driver Assistance Systems (ADAS) Experience 

 

Please rate your knowledge regarding the following Driver Assistance Systems 

 

Adaptive Cruise Control 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

Automatic Parking 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

Collision Avoidance System 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 
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Cruise Control 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

Forward Collision Warning 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

Blind Spot Monitor 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

Lane Departure Warning System 

[ ] Not at all knowledgable 
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[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

Lane Change Assistance 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

Navigation 

[ ] Not at all knowledgable 

[ ] Not too knowledgable 

[ ] Somewhat knowledgable 

[ ] Very knowledgable 

[ ] Extremely knowledgable 

 

Do you actively use any of the following Driver Assistance Systems while driving? 

 

Adaptive Cruise Control 

[ ] Never 

[ ] Rarely 
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[ ] Sometimes 

[ ] Often 

[ ] Always 

 

Automatic Parking 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

Collision Avoidance 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

System Cruise Control 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 
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Forward Collision Warning 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

Blind Spot Monitor 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

Lane Departure Warning System 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

Lane Change Assistance 

[ ] Never 
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[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

Navigation 

[ ] Never 

[ ] Rarely 

[ ] Sometimes 

[ ] Often 

[ ] Always 

 

Locus of Control Scale (Craig, Franklin, & Andrews, 1984) 

This scale measures locus of control, beliefs about the cause of the events in one’s life. Locus of 

control can be internal or external. A person with an internal locus of control (a low score in this 

scale) believes that they can control the flow of the events happening in their lives. A person with an 

external locus of control (a high score in this scale) believes that the cause of the events is external, 

and they have little control over the outcomes. Locus of control can be important in understanding 

trust in automated vehicles (Stanton & Young, 2000). In general, people with an external locus of 

control should be more comfortable with vehicle automation than people with an internal locus of 

control. 

The following questions are rated on a 5-point Likert scale, ranging from "Strongly Disagree" to 

"Strongly Agree". After the scores for items 1, 5, 7, 8, 13, 16 are reversed, rating for all items are 

summed to create a locus of control score. Higher scores indicate an external locus of control, and 

lower scores indicate an internal locus of control. 

 

1 I can anticipate difficulties and take action to avoid them. 
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2 A great deal of what happens to me is probably just a matter of chance. 

3 Everyone knows that luck or chance determine one’s future. 

4 I can control my problem(s) only if I have outside support. 

5 When I make plans, I am almost certain that I can make them work. 

6 My problem(s) will dominate me all my life. 

7 My mistakes and problems are my responsibility to deal with. 

8 Becoming a success is a matter of hard work, luck has little or nothing to do with it. 

9 My life is controlled by outside actions and events. 

10 People are victims of circumstance beyond their control. 

11 To continually manage my problems I need professional help. 

12 When I am under stress, the tightness in my muscles is due to things outside my control. 

13 I believe a person can really be a master of his fate. 

14 It is impossible to control my irregular and fast breathing when I am having difficulties. 

15 I understand why my problem(s) varies so much form one occasion to the next. 

16 I am confident of being able to deal successfully with future problems. 

17 In my case maintaining control over my problem(s) is due mostly to luck. 
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Video Questionnaire 

This questionnaire was presented after each video. 

 

National Aeronautics and Space Administration-Task Load Index (NASA-TLX; Hart & 

Staveland, 1988) 

NASA-TLX measures subjective mental workload by using six questions that correspond to six 

different demands. The items are scored on a 100-point scale divided into 20 equal intervals. 

Depending on the research question, an overall workload score or scores from relevant subscales can 

be used. 

NASA-TLX features the following items (dimensions): 

1. How mentally demanding was the task? (Mental Demand) 

2. How physically demanding was the task? (Physical Demand) 

3. How hurried or rushed was the pace of the task? (Temporal Demand) 

4. How successful were you in accomplishing what you were asked to do? (Performance) 

5. How hard did you have to work to accomplish your level of performance? (Effort) 

6. How insecure, discouraged, irritated, stressed, and annoyed were you? (Frustration) 

 

Situation Awareness Rating Scale (SART; Taylor, 1990) 

SART measures subjective situation awareness by using 10 dimensions of situation awareness 

(SA). Each dimension is asked on a 7-point Likert scale (1: Low, 7: High). Additionally, the 

dimensions are grouped into three categories, namely demand, supply, and understanding. The 

following formula used to calculate situation awareness score:  

SA = Understanding – (Demand – Supply). 

SART consists of the following items: 
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DEMAND 

Instability of Situation: How changeable is the situation? Is the situation highly unstable and 

likely to change suddenly (high), or is it very stable and straightforward? 

Complexity of Situation: How complicated is the situation? Is it complex with many interrelated 

components (high) or is it simple and straightforward (low)? 

Variability of Situation: How many variables are changing in the situation? Are there a large 

number of factors varying (high) or are there very few variables changing (low)? 

 

SUPPLY 

Arousal: How aroused are you in the situation? Are you alert and ready for activity (high) or do 

you have a low degree of alertness (low)? 

Concentration of Attention: How much are you concentrating on the situation? Are you bringing 

all your thoughts to bear (high) or is your attention elsewhere (low)? 

Division of Attention: How much is your attention divided in the situation? Are you concentrating 

on many aspects of the situation (high) or focused on only one (low)? 

Spare Mental Capacity: How much mental capacity do you have to spare in the situation? Do you 

have sufficient to attend to many variables (high) or do you have nothing to spare at all (low)? 

 

UNDERSTANDING 

Information Quantity: How much information have you gained about the situation? Have you 

received and understood a great deal of knowledge (high) or very little (low)? 

Information Quality: How good is the information you have gained about the situation? Is the 

knowledge communicated very useful (high) or not useful (low)? 

Familiarity with the Situation: How familiar are you with the situation? Do you have a great deal 

of relevant experience (high) or is it a new situation (low)? 
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Ride-related Questions 

 

How would you rate this ride in terms of the risks involved? 

[ ] 1 - Not at all risky 

[ ] 2 

[ ] 3 

[ ] 4 

[ ] 5 - Extremely risky 

 

To what extent were you able to focus your attention on monitoring the road and traffic? Mark only 

one oval. 

[ ] 1 - Not at all 

[ ] 2 

[ ] 3 

[ ] 4 

[ ] 5 - Very much 

 

To what extent were you able to focus your attention on word puzzle? 

[ ] 1 - Not at all 

[ ] 2 

[ ] 3 

[ ] 4 

[ ] 5 - Very much 

 

To what extent did you understand how the system (self-driving car) works? 
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[ ] 1 - Not at all 

[ ] 2 

[ ] 3 

[ ] 4 

[ ] 5 - Very much 

 

How many service centre signs did you see during the ride? 

 

Was there construction on the road? 

 

How many exits were there? 

 

Trust (Items taken from "Checklist for Trust between People and Automation", Jian, 

Bisantz, & Drury, 2000) 

 

Please rate the following statements about the self-driving system you have seen in the video. 

 

I am suspicious of the system's intent, action, or outputs 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly Agree 

 

I am wary of the system 
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[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly Agree 

 

The system's actions will have a harmful or injurious outcome 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly Agree 

 

I am confident in the system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 

[ ] Agree 

[ ] Strongly Agree 

 

The system is reliable I can trust the system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither agree nor disagree 
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[ ] Agree 

[ ] Strongly Agree 

 

System Usability Scale (SUS; Brooke, 1996) 

This scale measures several aspects of usability such as effectiveness, efficiency, and satisfaction 

by using 10 items rated on 5-point Likert scales (1: Strongly Disagree, 5: Strongly Agree). Items are 

scored as follows: 

• Reverse the scores for items 2, 4, 6, 8 and 10. 

• Subtract 1 from each score. 

• Sum the scores, and multiply by 2.5 to obtain an overall usability rating ranging from 0 to 

100. 

SUS consists of the following items: 

1. I think that I would like to use this system frequently 

2. I found the system unnecessarily complex 

3. I thought the system was easy to use 

4. I think that I would need the support of a technical person to be able to use this system 

5. I found the various functions in this system were well integrated 

6. I thought there was too much inconsistency in this system 

7. I would imagine that most people would learn to use this system very quickly 

8. I found the system very cumbersome to use 

9. I felt very confident using the system 

10. I needed to learn a lot of things before I could get going with this system 
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Post-experiment Questionnaire 

This questionnaire was presented at the end of the experiment. 

 

To what extent did the task (experiment) feel similar to real world? 

[ ] 1 - Very dissimilar 

[ ] 2 

[ ] 3 

[ ] 4 

[ ] 5 - Very similar 

 

To what extent have you noticed system failures (e.g. failure to appropriately detect the objects) 

during the experiment? 

[ ] 1 - Never noticed a system 

[ ] 2  

[ ] 3  

[ ] 4  

[ ] 5 - Always noticed when there was a system failure 

 

AR visualizations 

Please rate the following statements about the visuals 

 

The color used for highlighting the lead vehicle was appropriate 

[ ] 1 - Strongly disagree 

[ ] 2 
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[ ] 3 

[ ] 4 

[ ] 5 - Strongly agree 

 

The color used for highlighting other vehicles on the road was appropriate 

[ ] 1 - Strongly disagree 

[ ] 2 

[ ] 3 

[ ] 4 

[ ] 5 - Strongly agree 

 

The visuals used for highlighting road signs were appropriate 

[ ] 1 - Strongly disagree 

[ ] 2 

[ ] 3 

[ ] 4 

[ ] 5 - Strongly agree 

 

Attitudes Towards AR HUD Designs 

The following set of questions were asked for each AR HUD (Basic, Advanced, Advanced+) 

 

It was easy to understand what the car was doing 

[ ] Strongly disagree 

[ ] Disagree 
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[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

[ ]  

I was aware of what was going on regarding the traffic 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

The interface was distracting 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

It may pose a risk if I have to take the control over and switch to manual driving 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 
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It will increase driving safety 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

I would actively use this system if I had a semi-autonomous car 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

It is capable of providing necessary information 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

Design Preference 

 



 

 109 

Of the 3 Interfaces, which one would you prefer? 

[ ] Interface 1 

[ ] Interface 2 

[ ] Interface 3 

[ ] No Interface 

 

Why? 

----- 

 

Questions about Self-Driving Cars in General (Includes items taken from "Checklist for 

Trust between People and Automation", Jian, Bisantz, & Drury, 2000) 

 

Please rate the following statements about self-driving cars in general (system here refers to 

selfdriving cars) 

 

I am suspicious of the system's intent, action, or outputs 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

I am wary of the system 

[ ] Strongly disagree 

[ ] Disagree 
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[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

The system's actions will have a harmful or injurious outcome 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

I am confident in the system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

The system is reliable 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 
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I can trust the system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

I think that I would need the support of a technical person to be able to use this system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

I needed to learn a lot of things before I could get going with this system 

[ ] Strongly disagree 

[ ] Disagree 

[ ] Neither disagree nor agree 

[ ] Agree 

[ ] Strongly Agree 

 

To what extent do you see yourself using a self-driving car in the near future? (Assuming they will 

become widely available) 

[ ] 1 - Extremely unlikely 
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[ ] 2 

[ ] 3 

[ ] 4 

[ ] 5 - Extremely likely 

 

For you, how important it is to know how a self-driving car makes decisions? 

[ ] 1 - Not at all important 

[ ] 2 

[ ] 3 

[ ] 4  

[ ] 5 - Extremely important 

 

Open-ended AR HUD Question 

 

In a real world headsup display for selfdriving cars, what would you like to see on the interface 

(what kind of information/objects/notifications/other features etc.)? 

-----  
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