XQuery Query Processing in Relational Systems

by

Yingwen Chen

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2004
© Yingwen Chen 2004

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF
A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

With the rapid growth of XML documents to serve as a popular and major media
for storage and interchange of the data on the Web, there is an increasing interest
in using existing traditional relational database techniques to store and/or query
XML data. Since XQuery is becoming a standard XML query language, significant
effort has been made in developing an efficient and comprehensive XQuery-to-SQL
query processor.

In this thesis, we design and implement an XQuery-to-SQL Query Processor
based on the Dynamic Intervals approach. We also provide a comprehensive trans-
lation for XQuery basic operations and FLWR expressions. The query processor
is able to translate a complex XQuery query, which might include arbitrarily com-
posed and nested FLWR expressions, basic functions, and element constructors,
into a single SQL query for RDBMS and a physical plan for the XQuery-enhanced
Relational Engine.

In order to produce efficient and concise SQL queries, succinct XQuery to SQL
translation templates and the optimization algorithms for the SQL query generation
are proposed and implemented. The preferable merge-join approach is also pro-
posed to avoid the inefficient nested-loop evaluation for FLWR expressions. Merge-
join patterns and query rewriting rules are designed to identify XQuery fragments
that can utilize the efficient merge-join evaluation. Proofs of correctness of the
approach are provided in the thesis. Experimental results justify the correctness of
our work.

il

Acknowledgement

My two-years’ adventure at the University of Waterloo turns out to be a highly
rewarding experience. I was able to not only upgrade my professional knowledge
and research skills, but also explore my interests and reshape my attitude for life
and challenges.

I owe all these accomplishments to my supervisor, David Toman, who led me
into the Master’s program and guided me throughout the whole process of the
study. His profound knowledge, insight and expressive clarity have guided me to
overcome obstacles during the research and the preparation of the thesis. 1 am
deeply grateful for his constant support and endless patience. Whenever I was in
doubt he never hesitated to offer his time and assistance. His encouragement and
understanding reinforce my confidence in my research skills. Studying under his
supervision is one of the luckiest things in my life. His enthusiasm for research
and passion for life have been an inspiration during my two-years’ study and will
continue to inspire me in my future career.

My heartfelt thanks to Professor M. Tamer Ozsu and Professor Grant Weddell
for reviewing the thesis. Many thanks for their valuable comments and encourage-
ment.

Always, my unending gratitude goes to my family for their endless love and
support. I am forever indebted to my parents, Enqgiang Chen and Hanying Li, who
never stop giving me a world of love. Special thanks to Yuwen for being a great
brother. My ongoing love and thanks to my husband for his understanding and
support.

v

Dedication

To my parents, Engiang and Hanying, who are the best parents in the world.

And to my husband, Yunxiang, for his love.

Trademarks

DB2, DB2 Universal Database are trademarks or registered trademarks of In-
ternational Business Machines Corporation in the United States, other coun-
tries, or both.

Oracle is a registered trademark of Oracle Corporation.

vi

Contents

1 Introduction 1
1.1 The Problem Scenario, 1
1.2 Why Use Relational Techniques? 1
1.3 Brief Overview of XQuery 2
1.4 Challenges 2
1.5 Related Worko 3

1.5.1 XML Publishing Scenario 4
1.5.2 XML Storage Scenario)

1.6 Contributions 6

1.7 Thesis Organization 7

2 Preliminary Knowledge 9
2.1 XML Document Definition L.

2.2 Syntax of Minimal XQuery 11
2.2.1 Variable Expression L 11
2.2.2 Basic Operations 11
2.2.3 FLWR Expressions 12

2.3 Interval Encoding: A Relational Schema Design 12
2.3.1 Initial Interval Encoding 13
2.3.2 Dynamic Interval Encoding 14

2.4 XQuery to SQL Translation 15
2.4.1 Simple SQL Templates for Basic Operations 16
2.4.2 SQL Translation for Minimal XQuery Expressions 17

vil

3 XQuery-to-SQL Query Processor
3.1 Assumptions
3.2 Overview of the Framework
3.3 Lexical Analysis and Parsing
3.3.1 Lexical Analysis
3.3.2 Syntax Analysiso
3.3.3 The Abstract Syntax Tree
3.4 Relational Algebra Tree Construction
3.4.1 Relational Operations
3.4.2 Mapping SQL Templates to Relational Algebra Trees
3.5 SQL Query Generation
3.5.1 The Translation of Relational Operations
3.5.2 Optimization of the SQL Query Generation
3.6 Physical Plan Translation

4 Optimization of the XQuery-to-SQL Translation

4.1 SQL Translation Templates Optimization
4.1.1 The Simplified Templates for XQuery Basic Operations
4.1.2 The Simplified Templates for the FOR Expression
4.1.3 The Simplified Templates for the WHERE Expressions . . .

4.2 Simplified Translation for Sequences of Basic Operations

4.3 Merge-join Approach to FLWR Expressions
4.3.1 Definitions
4.3.2 The Nested-FOR Pattern
4.3.3 The Multi-FOR Pattern

4.4 XQuery Rewriting Rules
4.4.1 Rewriting Rules for Nested-FOR Pattern
4.4.2 Rewriting Rules for Multi-FOR Pattern.
4.4.3 Discussion

4.5 The XQuery Optimizer,

22
22
24
25
25
25
27
28
29
34
47
48
23
61

5 Experiments

5.1

5.2

Experimental Setup o
5.1.1 Methodology
5.1.2 XQuery Use Cases and XML Data
Experiments
5.2.1 Experiment 1: W3C Use Case “TREE” Q4.
5.2.2 Experiment 2: W3C Use Case “TREE” Q5.
5.2.3 Experiment 3: W3C Use Case “XMP” Q1
5.2.4 Experiment 4: W3C Use Case “XMP” Q2
5.2.5 Experiment 5: W3C Use Case “SEQ” Q1.
5.2.6 Experiment 6: W3C Use Case “SGML” Q3
5.2.7 Experiment 7: XMark Benchmark Query Q8
5.2.8 Experiment 8 XMark Benchmark Query Q9

6 Conclusions and Future Work

6.1
6.2

Conclusions

Future Work

A A Comprehensive Translation for XQuery Basic Operations

Al

A2

SQL Translation Fragments for Basic Operations
A.1.1 Relational Algebra Tree for the First SQL Fragment
A.1.2 Relational Algebra Tree for the Second SQL Fragment
Translations for XQuery Basic Operations
A.2.1 The DOCUMENT operator
A.2.2 The Empty Constructor
A.2.3 The Element Constructor
A.2.4 The Concatenation Constructor
A.2.5 The HEAD Operator
A.2.6 The LAST Operator

1X

108
108
108
108
109
109
112
115
116
118
119
120
121

124
124
125

A.2.7 The TAIL Operator 134

A.2.8 The ROOTS Operator 135
A.2.9 The REVERSE Operator 136
A.2.10 The DISTINCT Operator 137
A.2.11 The SELECT Operator 139
A.2.12 The SUBTREESDFS Operator 140
A.2.13 The CHILDREN Operator 141
A.2.14 The COUNT Operator 142

B Experiments 145
B.1 Experiment 9: W3C Use Case “XMP” Q3 145
B.2 Experiment 10: W3C Use Case “XMP” Q5. 147
B.3 Experiment 11: W3C Use Case “XMP” Q11 149
B.4 Experiment 12: W3C Use Case “TREE” Q3 151
B.5 Experiment 13: W3C Use Case “SEQ” Q2 152
B.6 Experiment 15: W3C Use Case “SGML” Q1 153
B.7 Experiment 16: W3C Use Case “SGML” Q2 155
B.8 Experiment 17: W3C Use Case “SGML” Q5 157
B.9 Experiment 18: W3C Use Case “SGML” Q6 157
B.10 Experiment 19: W3C Use Case “SGML” Q9 158
B.11 Experiment 20: XMark Benchmark Query Q1 160
B.12 Experiment 21: XMark Benchmark Query Q2 160
B.13 Experiment 22: XMark Benchmark Query Q6 161
B.14 Experiment 23: XMark Benchmark Query Q13. 162
B.15 Experiment 24: XMark Benchmark Query Q15. 165
B.16 Experiment 25: XMark Benchmark Query Q16. 166
B.17 Experiment 26: XMark Benchmark Query Q17. 167

List of Figures

2.1

2.2
2.3
24
2.5

2.6

3.1
3.2
3.3

3.4
3.5
3.6
3.7

4.1
4.2
4.3

4.4

CONVERTING XML DATA TO THE ABSTRACT SYNTAX XML FoRr-

XML FOREST OF BOOKS.XML o i i .
INITIAL ENCODING OF SAMPLE DATA BOOKS.XML
TITLE IN AN INITIAL ENVIRONMENT

TRANSLATION OF “forx € edoe’” IN THE ENVIRONMENT FOR
{1, mm} o

EAcH TITLE FORMING A SEPARATE ENVIRONMENT (w, = 44) . .

THE FRAMEWORK OF XQUERY-TO-SQL QUERY PROCESSOR . .
THE GRAMMAR FOR MINIMAL XQUERY

DATA STRUCTURE OF ABSTRACT SYNTAX TREES FOR XQUERY
LANGUAGE e

SAMPLE ABSTRACT SYNTAX TREE
THE IMPLEMENTED XQUERY BASic OPERATIONS
DATA STRUCTURE FOR RELATIONAL ALGEBRA TREES

SAMPLE RELATIONAL ALGEBRA TREE

THE OPTIMIZED XQUERY-TO-SQL QUERY PROCESSOR
THE SQL TRANSLATION FOR NESTED-FOR PATTERN

TRANSLATION OF RESTRICTED NESTED-FOR PATTERN FRAG-
MENT USING Nested-loop STRATEGY

TRANSLATION OF RESTRICTED NESTED-FOR PATTERN FRAG-
MENT USING Merge-join STRATEGY« o o v v v oo ..

X1

4.5 THE XQUERY OPTIMIZER« v v i it et

5.1 THE GENERATED SQL QUERY FOR EXPERIMENT 1.

x1i

Chapter 1

Introduction

1.1 The Problem Scenario

With the rapid growth of XML document to serve as a popular and major media for
the storage and interchange of the data on the Web, much work has been done to
explore the effective techniques to store, query, and retrieve XML data. One of the
important research directions is to use the existing relational database techniques
to store and/or query XML data.

Various problems have been addressed and solved in the XML-relational prob-
lem domain. Some issues and approaches are related to publishing existing rela-
tional data in XML as a uniform data source and translating XML queries into
SQL to query the actual relational data source [11, 14, 16]; others are related to
storing XML data in RDBMS and evaluating XML queries by translating them
into SQL queries over relational tables that represent the XML data [9, 13, 19, 21].
A wide variety of XML query languages, e.g., XQuery [4], XPath, XML-QL, are
used in this problem space. Among these languages XQuery is quickly becoming
the standard XML query language. Thus there is a growing interest in evaluating
XQuery queries using relational techniques.

1.2 Why Use Relational Techniques?

There are several reasons for the interaction between XML and relational database
systems. One reason is the need of integrating different sources of data, such
as XML data and relational data, under a global XML schema. Another reason

1

Chapter 1: Introduction 2

is the requirement to store XML data in a relational database or to construct
XML documents from relational data. A typical reason lay to the advantage of
utilizing the sophisticated storage, highly optimized query processor and powerful
data management services provided by mature Relational Database Management
Systems (RDBMS).

1.3 Brief Overview of XQuery

XQuery is a strongly-typed and functional language that is still under development
by the World Wide Web Consortium (W3C) [4]. The basic building block of XQuery
is an expression. Since XQuery is a functional language, expressions can be arbi-
trarily nested. XQuery includes a wide variety of functions and operators, which
include arithmetic functions, string and regular expressions, element constructors,
boolean comparison operations, sequence construction, logical operations, function
calls, etc.

Path expressions are particularly designed to navigate nodes within XML trees.
Sequences of resulting nodes obtained by evaluating a path expression are combined
in their original document order. FLWR expressions are the core building blocks
of XQuery and the name comes from the for, let, where, return keywords used
by the expressions. The for clauses provide variable iteration over intermediate
results; the let clauses assign sub-expressions to variables. These assignments can
be filtered by the where clauses. The return clauses construct ordered sequences
of results that should be returned by the expression in the return clauses. FLWR
expressions are very useful in restructuring XML data.

1.4 Challenges

Since XQuery is emerging as the standard of XML query languages, considerable
effort has been directed towards developing XQuery query processor. There are two
major approaches. The first approach is to implement a native XQuery processor;
the other one is to develop an efficient and comprehensive XQuery-to-SQL query
processor. The thesis pursues the second approach. However, not all features of
XQuery can be translated into SQL queries. Researchers are facing many difficulties
in evaluating XQuery queries using relational engines. One typical difficulty comes
from the arbitrarily nesting nature of FLWR expressions. Some features of XQuery
are difficult to translate because of the semantic mismatch between XQuery and

Chapter 1: Introduction 3

SQL language. A typical semantic mismatch lays to the fact that XQuery handles
ordered XML data while the SQL handles unordered relational data. Preserving
document order while evaluating arbitrarily nested expressions is also a great chal-
lenge for the implementation of an XQuery query processor. For example, [14]
claims that it is impossible to map an order-based nested XQuery query to a single
equivalent SQL query without the help of materialized intermediate XML results.

Other difficulties arise in XML-to-relational mappings. A typical challenge may
lie in the mismatch between the complex recursive structure of XML data and
the simple flat structure of relational data. Although there are many challenges in
evaluating XML queries in RDBMS; there is a growing interest in this research area
because of the significant advantage of utilizing the mature RDBMS technology.

Among the approaches to XQuery-to-SQL translation, the Dynamic Intervals
technique [9] handles the core fragment of XQuery with arbitrarily nested FLWR
expressions. [9] proposed a comprehensive translation of XQuery expressions to
SQL queries that enables relational engines to produce predictably good query
plans. The Dynamic Intervals approach overcomes the difficulties that arise from
the incompatible features between XQuery and SQL language. The thesis continues
that work and makes further improvements!.

1.5 Related Work

In recent years, many techniques have been proposed for various issues in utilizing
the mature RDBMS techniques to store and query XML documents. There are two
major subproblems to the problems in this domain:

e What kind of XML-relational mapping schema is used to store and retrieve
the XML data from RDBMS, or retrieve relational data in the view of XML?

e Given an XML query, how to convert it into one or more SQL queries, which
can be evaluated in RDBMS to obtain the results?

There is a diversity of approaches to the problems and can be classified into
two main categories based on the research goals. One kind of approaches focus on
the XML publishing problems, querying existing relational data viewed as XML
[11, 14, 16]. The other approaches are about XML storage and the use of RDBMS
to store and query existing XML data [9, 10, 13, 18, 19, 21]|. The thesis focuses on

!The improvements are summarized in Section 1.6.

Chapter 1: Introduction 4

the XML storage scenario, encoding XML documents as relational data and using
relational engines to evaluate XQuery queries.

1.5.1 XML Publishing Scenario

Many techniques have been published to handle XML publishing using either local-
as-view approach (LAV), or global-as-view approach (GAV), or both, to define an
XML view of relational data [11, 14, 16]. In this scenario we are interested in the
part of translating XML queries into SQL queries.

XPeranto [16] proposes a general framework for processing arbitrarily complex
XQuery queries with features such as nested expressions and nested order over XML
views of relational data. Given an XQuery, the query is converted to an internal
query representation called XML Query Graph Model (XQGM). The XQGM is
then modified to eliminate the construction of intermediate XML fragments and to
push down predicates. Finally, the modified XQGM is translated into a single SQL
query to be evaluated in RDBMS. Although XPeranto claims to be able to handle
a general XQuery, the class of XQuery queries it actually handles is unclear.

Agora integration system [14] uses the LAV approach under an XML global
schema and handles XQuery FLWR expressions. The XQuery-to-SQL translation
proceeds in three steps. First, the input XQuery is normalized based on certain
rewriting rules. Then, the rewritten XQuery query is translated into a SQL query on
the virtual generic relational schema. Finally, the SQL query is rewritten based on
the real relational storage schema. [14]’s state-of-the-art query rewriting algorithms
for SQL semantics do not efficiently handle arbitrary levels of nesting, grouping,
etc. XQuery expressions that rely on document order, etc., cannot be translated.

MARS system [11] handles publishing as XML data from the mixed (rela-
tional+XML) storage. It translates XQuery queries into SQL by rewriting XQuery
queries into a set of decorrelated queries (called XBind query), which split an
XQuery query into the navigation part and the tagging template. The XBind
queries along with the views and integrity constraints are compiled to produce re-
lational queries and constraints. Then a ChaseandBackChase (C&B) algorithm is
used to find a minimal reformulation of relational queries under relational integrity
constraints. Although [11] deals with XQuery, it does not precisely characterize the
class of XQuery queries it handles.

Other XML publishing techniques for evaluating XML queries in RDBMS have
been studied in [12, 22].

Chapter 1: Introduction 5

1.5.2 XML Storage Scenario

In the XML storage scenario, the goal is to design a relational schema for storing
XML data in relations and to covert XML queries into SQL queries that can be
evaluated in RDBMS. The work of the thesis falls into this research area.

Many XML-to-relational encoding schema have been designed for XML stor-
age. Some of them deal with arbitrary XML documents without considering XML
schema [9, 10, 13, 19, 21]. Others select relational schema based on an XML schema,
ora DTD [7, 8, 17, 18].

[7] proposes a cost-based approach for the choice of a relational encoding schema
in situations in which an XML schema, an XQuery workload, and the target XML
application are provided. The goal of [7] is to maximize query performance for a
given application. However, [7] does not propose translation algorithms for XQuery
queries. [18] uses DTD to generate the relational encoding schema and stores the
XML data in relational tables based on the encoding schema. It only handles
XML-QL queries. Other relational encodings for storing XML data in relations
based on the XML schema or DTD have been studied [8, 17]. However, most of
these published works illustrate the XML query translation by examples; few of
them gave details about the query translation algorithm.

Many relational encodings that handle arbitrary XML documents have been
proposed [13, 19, 21]. [13] proposes an edge-based encoding to view an arbitrary
XML document as a graph and store all the edges of the graph in a single table
without considering XML schema and DTD. XRel [21] introduces a path-based
interval encoding that views XML documents as trees and stores an arbitrary XML
document in relational tables according to the node type and the root-to-node
path information. For each element, a path id is stored for each root-to-node
path. XRel provides an algorithm for translating a core part of XPath expressions
called XPathCore into SQL queries. XRel efficiently handles path expressions with
predicates over nonrecursive data sources, however, it does not address mapping
the FLWR expressions into relational queries.

Encodings that preserve document order have been studied in [19], where order
encoding methods that represent XML order in the relational data model are used to
translate order based XPath expressions into SQL. The approach is a modified edge-
based encoding that stores extra order information along with document structure
and data. For each node in XML trees, information of the node’s global document
order, position among its siblings and path information for each root-to-node path
are recorded. [19] handles XPath expressions with positional predicates but hardly
considers the FLWR expressions as well.

Chapter 1: Introduction 6

Other relational encodings that deal with arbitrary XML documents are pro-
posed by [9, 10, 20]. [10] uses two schema to store XML data: relational schema
and overflow graph. It provides an algorithm to translate STORED query, which is
query language used to express a mapping between XML data and relational data,
into SQL.

In the XML storage scenario, most of the relational encodings proposed only
deal with a limited subset of XQuery/XPath expressions, such as restricted path
expressions, and do not handle the arbitrarily-nested FLWR, expressions and the
construction of new nested documents. Among these approaches, [9] is only one
that handles more general XQuery queries. [9] proposes a novel encoding technique
called Dynamic Intervals, which is an improved interval encoding that handles
arbitrary XML documents and fully supports arbitrarily nested FLWR expressions,
arbitrary combinations and nesting of basic functions, element constructors, XPath
expressions, etc. Such encoding technique enables the preserve of document order
of the results throughout the entire query evaluation for nested FLWR expressions.
[9] provides a comprehensive SQL translation for the core features of XQuery. Using
the Dynamic Intervals approach, a complex XQuery query, which might contain
arbitrarily nested FLWR expressions, element constructors and built-in functions,
can be translated into one single SQL query while preserving the required document
order.

The Dynamic Intervals approach handles a much larger class of XQuery queries
than the other approaches introduced here. The thesis continues the work of [9] to
implement an XQuery-to-SQL query processor. The thesis also develops optimiza-
tion approaches to produce preferable relational plans.

1.6 Contributions

The contributions of the thesis are summarized as follows:

e We design and implement an XQuery-to-SQL Query Processor based on the
Dynamic Intervals approach introduced in [9]. The query processor handles
a comprehensive subset of XQuery queries. Given a complex XQuery query,
which might contain arbitrarily nested FLWR expressions, element construc-
tors and basic functions, the query processor is able to translate the query
into one single SQL query for RDBMS and one single physical plan for the
XQuery-enhanced Relational Engine [15].

Chapter 1: Introduction 7

e We correct several imprecisions in the SQL translations of XQuery expressions
in [9] and provide a comprehensive translation for XQuery basic operations
and FLWR expressions.

e We propose and implement a series of optimization approaches to produce
efficient and concise SQL queries. The optimization approaches include the
succinct SQL translation templates for XQuery expressions, the optimization
algorithms for the SQL query generation, etc.

e We propose the preferable merge-join approach to avoid the inefficient nested-
loop evaluation for FLWR expressions. Merge-join patterns and query rewrit-
ing rules are designed to capture a significant number of the XQuery fragments
that can utilize the efficient merge-join evaluation. Proofs of correctness for
the approach are also provided in the thesis.

e The experimental results justify the correctness of our work.

1.7 Thesis Organization

This chapter has introduced the framework of the XML-relational problem scenarios
and provided a brief overview of the related research work. The rest of the thesis
is organized as follows:

e Chapter 2, Preliminary Knowledge, is an overview of the background concepts
and techniques based on which our XML-to-SQL Query Processor is built.
The content in this chapter is a revised version of that in [9], where several
imprecisions of the SQL translations for XQuery expressions are corrected.

e Chapter 3, XQuery-to-SQL Query Processor, provides a detailed introduction
to the XQuery-to-SQL Query Processor implemented as part of the thesis.
This chapter presents comprehensive SQL translation templates for XQuery
expressions handled. Optimization algorithms for SQL query generation are
also introduced in this chapter.

e Chapter 4, Optimization of the XQuery-to-SQL Translation, introduces the
optimized SQL translation for XQuery expressions and proposes the merge-
join approach to efficiently handle the FLWR expressions. SQL translation
for the merge-join approach and proofs of correctness for the approach are
also provided in this chapter.

Chapter 1: Introduction 8
e Chapter b5, Ezperiments, provides part of the experiments we conduct to verify
the correctness of our work.

e Chapter 6, Conclusions and Future Work, summarizes the thesis and shows
a road map for future work based on the thesis.

A comprehensive translation for XQuery basic operations is provided in Ap-
pendix A. Appendix B contains the rest of the experiments we conduct.

Chapter 2

Preliminary Knowledge

In the thesis, a relational XQuery processor is implemented based on the Dynamic
Intervals approach introduced in [9], where a simple relational schema for XML data
and an XQuery-like language that captures core features of XQuery are proposed.
This chapter provides a brief overview of background concepts, techniques and
assumptions, on which our XQuery-to-SQL query processor is built.

2.1 XML Document Definition

Ever since the first W3C Recommendation for XML 1.0 was published in February
1998, different versions of XML specifications have been proposed, such as XML 1.1.
Most of the models for XML data describe an XML document as a tree structure.
[9] introduces a concise syntax for XML documents by describing an XML document
as an ordered forest composed of a sequence of rooted, node-labelled trees.

The XML forest (XF) proposed by [9] is constructed using three kinds of con-
structors: the empty forest constructor ([]), the element constructor (<s>XF </s>),
which construct a single tree by adding a root labelled “s” to the forest XF, and
the concatenation constructor (XF @ XF), which concatenates two ordered forests.

Although this formulation of an XML forest is quite simple, it can still distin-
guish node identity and node types (element, attribute and text), given additional
encoding conventions that relate either to node labelling or to a subtree pattern.
For example, an XML element “<book year="1994">" can be encoded as a subtree
of the element node book, and the attribute node is labelled as “attribute:year”.
Given an XML document, all the attribute nodes are encoded as subtrees of their

Chapter 2: Preliminary Knowledge 10

corresponding element nodes and are labelled by adding a prefix “attribute:” to the
attribute names. The attribute values can be encoded as subtrees of their attribute
nodes and are labelled by adding a prefix “text:.” to the attribute values. The text
nodes are encoded in the same way as the attribute value. Figure 2.1 illustrates
the process of converting the original XML data to the XML forest that matches
the abstract syntax.

Original XML data:

<bib>
<book year="1994">
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>

</book>
</bib>

The corresponding XML forest in the abstract syntax:

<bib>
<book>
<attribute:year> <text:1994> </text:1994> </attribute:year>
<title>
<text:TCP/IP Illustrated> </text:TCP/IP Illustrated>
</title>
<author>
<last> <text:Stevens> </text:Stevens> </last>
<first> <text:W.> </text:W.> </first>
</author>
</book>
</bib>

Figure 2.1: CONVERTING XML DATA TO THE ABSTRACT SYNTAX XML FOR-
EST

Since converting XML documents to the abstract syntax XML forests is not
the focus of the thesis, in the rest of the thesis, we do not handle this issue any
more. By default, the XML documents discussed in the scope of the thesis are in
the format of abstract syntax XML forests.

Chapter 2: Preliminary Knowledge 11

2.2 Syntax of Minimal XQuery

In [9], a more compact definition for the XQuery core language, called Minimal
XQuery, is introduced. Minimal XQuery expressions can be classified into three
major categories: the variable expression, the FLWR expressions and the basic
operations on XML forests.

2.2.1 Variable Expression

The variable expression (e ::= x) is equivalent to the wvariable reference in the
XQuery primary expressions [4]. A variable expression must match a name in
the input environment that contains the values (forest trees) for local variables. A
variable may be added to the environment by a for or let expression, or be provided
at the beginning of an XQuery query.

2.2.2 Basic Operations

Basic operations (e ::= XFn(ey, ..., ex)) in Minimal XQuery enable various XQuery
expressions, including constructors, path expressions, comparison expressions, etc.
Constructor operations include element constructor, empty forest constructor and
the concatenation operator. These constructors are often used to construct the
abstract syntax XML forests introduced in Section 2.1.

Path expressions can be constructed using the Horizontal Operations and Ver-
tical Operations introduced in [9]. A path expression is a sequence of one or more
steps separated by / or //. For a path expression, $people/person for example, the
equivalent expression in the Minimal XQuery syntax is as follows:

select('person’, children($people))

The expression is constructed in two steps: first, a children operation is used to
obtain all the children of the people element; second, a select operation is applied
to the result of the first step to select the trees whose root nodes are labelled
“person”. Analogous approach is applied to the ancestor-descendant(//) step by
using a subtreesdfs' operation at the first step.

Lsubtreesdfs is an XQuery basic operation that returns an XML forest containing all of the
subtrees of an input XML forest in the depth-first-search order. Details about XQuery basic
operations can be found in [9].

Chapter 2: Preliminary Knowledge 12

9] also handles path ezpression with predicates using head and tail operations.
For instance, the XQuery path expression “book[1]”, which is to return the first book
element in the book element forest, is equivalent to the expression “head(book)” in
the syntax of Minimal XQuery. For the path expression with existential predicates,
people/person|Qid ="person0'], beside using children and select operations, a where
expression is also used to filter the unexpected person elements.

One important kind of XQuery expressions are the comparison expressions.
Boolean operations (empty, equal, and less) are used to construct comparison ex-
pressions that serve as the boolean conditions within the where clauses of FLWR
expressions.

2.2.3 FLWR Expressions

FLWR expressions are the core features of XQuery that are used to combine data
from one or more XML documents. They support local variables bindings and
iterations over intermediate results.

The for clauses (e ::= forz € edoe’) and the let clauses (e ::= letz = eine’)
in a FLWR expression generate binding values (XML forests) for variables. The
bindings of variables form an environment to supply values for free variables in
subexpressions of a FLWR expression. The for clause binds its variable to the
iteration over the resulting subtrees obtained by evaluating its associated expres-
sion. The let clause, however, binds its variable to the resulting subforest of its
expression without iteration.

A where clause (where @ return e) filters the values (XML forests) using its boolean
condition. The return clause is evaluated using the values of the bound variables
and composes the result of the FLWR expression.

2.3 Interval Encoding: A Relational Schema De-
sign

As we mentioned in Chapter 1, there are two major problems in translating XQuery

to SQL:

e XML-to-relational mapping schema: which relational schema should be used
for XML documents to be stored into and retrieved from a relational system?

Chapter 2: Preliminary Knowledge 13

chapter
title section section

| T

Data Model title title section section

Syntax For XML title title
Data Model | |

Basic XML and
Syntax Semistructured
Data

Figure 2.2: XML FOREST OF BOOKS.XML

e Query translation: what kind of algorithms are used to translate XML queries
into SQL queries?

2.3.1 Initial Interval Encoding

The relational schema chosen in [9] is an interval-based schema. The basic idea is
that, for each node in an XML forest, a tuple consisting of the node’s label and
the interval, which is associated with the region representing the subtrees under
the node, are used to represent the node. To encode an XML document, the
XML document is first rewritten in the form of the abstract syntax XML forest
introduced in Section 2.1. Then, the XML forest is stored in a single relational
table where exists one and only one tuple (s,1,r) for each element, attribute and
leaf text node. Each tuple contains a string of node label name, s, a natural
number representing the left endpoint value of the associated interval, [, and a
natural number representing the right endpoint value of the interval, r. Detail
definition for the interval encoding can be found in [9]. An example of the interval
encoding for the sample XML data “books.xml” taken from XML Use Cases|3], is
shown in Figure 2.3. The source XML forest of “books.xml” is shown in Figure 2.2.

Chapter 2: Preliminary Knowledge 14

Ls [1 [r]
chapter 0 29
title 1 4
Data Model 2 3
section 5 10
title 6 9
Syntax For Data Model 7 8
section 11 28
title 12 15
XML 13 14
section 16 21
title 17 20
Basic Syntax 18 19
section 22 27
title 23 26
XML and Semistructured Data 24 25

Figure 2.3: INITIAL ENCODING OF SAMPLE DATA BOOKS.XML

2.3.2 Dynamic Interval Encoding

The goal of applying Dynamic Interval Encoding is to enable evaluating arbitrary
FLWR expressions within a single relational query. Environment E is introduced as
combinations of the values (XML forests) of the bound variables. A combination
of bindings for the bound variables forms a subenvironment in the environment
E. [9] introduces a dynamic interval encoding, which includes an index set I and
relational representations {T,,...,T,, } for the bound variables, to relationally
represent sequences of environments generated within the query evaluation process.
The index set I, which contains natural number index values, is used to identify the
range of the values of a binding for the bound variables within the whole interval
encoding.

The width of a relational representation of an XML forest is defined as follows:

e for the initial relational encoding of an XML document (XML forest), a natu-
ral number w is assigned as its width. This value is greater than the maximum
value of the right endpoint 7 in the initial relational encoding;

e for the representation of the XML forests resulting from a evaluation of an
XQuery expression, the value of the width is determined by performing arith-
metic computation on the widths for the expression’s subexpressions. Func-
tions for computing the widths for various XQuery expressions can be found
in [9].

For an environment with an index set value i, the related tuples (s,[,r) in
T, (with a width w,,) for a bound variable x; satisfy the inequalities: i * w,, <

Chapter 2: Preliminary Knowledge 15

1 Ttitle

i s [1 [r

0 title 2 5
Data on the Web 3 4
title 16 19
Advanced Programming in the Unix environment 17 18
title 30 33
TCP/IP Illustrated 31 32

Figure 2.4: TITLE IN AN INITIAL ENVIRONMENT

[AND 7 < (i + 1) * w,,. The dynamic interval representation enables the values
bound to variables to keep track their corresponding environments while being able
to keep the values of a variable as the concatenation of the results over sequences of
environments. A general definition for Dynamic Interval Encoding can be found in
[9]. Example 2.3.1 illustrates the dynamic interval encoding for a path expression.

Example 2.3.1 For the following path expression,
document ("reviews.xml") /reviews/entry/title,

Figure 2.4 shows the resulting dynamic interval encoding T}i¢16 for the path ex-
pression evaluated using the initial environment. The initial environment con-
tains only an index set I, which has only one tuple (0). The path expression has
a resulting width that is the same as the width of the source XML document:
Weitle = Wdocument = 44. 0

2.4 XQuery to SQL Translation

The essential idea of Dynamic Intervals approach is to begin with an initial interval
encodings for the XML documents and construct the dynamic interval encoding for
the intermediate results during the query evaluation.

Based on the semantic of the Minimal XQuery, SQL translation templates for
the XQuery expressions are used to translate a complex XQuery query into a SQL
query by composing the SQL templates for the subexpressions of the query. Each
SQL template can be treated as a relational view with input table parameters
(Ty,, ..., Ty,), which are the SQL fragments for the sub-expressions.

Chapter 2: Preliminary Knowledge 16

2.4.1 Simple SQL Templates for Basic Operations

The translations for basic operations in Minimal XQuery can be firstly simplified by
assuming that the basic operation is evaluated within one unique input environment
instead of sequences of environments. For each basic operation in Minimal XQuery,
there is a corresponding SQL template along with a width function to compute the
width of the resulting XML forest. Example 2.4.1 illustrates the SQL translation
for a complex XQuery query.

Example 2.4.1 Consider the following XQuery expression:

children(document('reviews.zml’))

The SQL template for the document constructor, document('reviews.xml’), is de-
fined as follows:

CREATE VIEW DOCUMENT(reviews) AS
SELECT s,l,r
FROM reviews

The width of the result for the document constructor is wgocument = 44. The SQL
template for translating the children operation, children(7%), is defined as follows:

CREATE VIEW CHILDREN(7.) AS
SELECT w.s AS s,u.l AS l,u.r AS r
FROM T, u
WHERE EXISTS (

SELECT =
FROM T. v
WHERE .l <wu.l AND u.r < wv.r)

The resulting width of the children operation is exactly that of the input parameter
T,.. The final SQL query for the XQuery expression is composed as follows:

Chapter 2: Preliminary Knowledge 17

SELECT wu.s AS s,u.l AS l,u.r AS r
FROM
(SELECT s, [, r
FROM reviews) u
WHERE EXISTS (
SELECT =*
FROM
(SELECT s, 1, r
FROM reviews) v
WHERE wv.l < wu.l AND w.r <wv.r)

The width for the results of the XQuery expression is Wepiidren = Wdocument = 44. [

2.4.2 SQL Translation for Minimal XQuery Expressions

When FLWR expressions are evaluated over sequences of separated environments,
the environment index set I for a sequence of environments should be involved in
the SQL translation templates. The following paragraphs show the SQL translation
templates for basic operators (functions), let expressions, where expressions, and
for expressions.

Basic XQuery Functions

In order to evaluate XQuery basic operations over a sequence of environments, we
need to introduce the environment index set I in the translations. In the translation,
the input tuples for a basic operation are first separated based on the environments
they belong to by using the index values ¢+ € [; then, the basic operation is eval-
uated over the separated input tuples. The result of the basic operation is the
concatenation of the results of the evaluations over the sequence of environments.
A revised SQL template based on that from [9] is shown as follows:

Chapter 2: Preliminary Knowledge 18

CREATE VIEW Txpn(Te,,...,Ty,,) AS
SELECT s,l + i % wxr, AS [,7 4 1% wxF, AS 7

FROM Qxrn (
(SELECT 4, 8,0 — @ % Wy, 7 — @ % Wy,
FROM 1,7},
WHERE i*wz, <l AND 7 < (i+1)*wy,),

9y
(SELECT 4, 8,0 — @ % Wy, , 7 — & * Wy,
FROM I, T, .
WHERE ixw,, <l AND r < (i+1)*w,,,)

where w,, represents the width of the input table parameter 7, for the SQL tem-
plate and wxg, is the width of the output. This revised template enables us to
simplify the SQL translations for some basic operations such as the children oper-
ation and the roots operation.

LET Expressions: letx =eine’

The let expression is an assignment expression. The expression e in the let ex-
pression is first evaluated using its input environment £ = {I,T,,,..., T, }. Asa
result of the evaluation, the environment is increased by adding a binding of x = e.
The increased environment E' = {I,T,,,...,T,, ,T.} serves as an input environ-
ment to evaluate expression ¢’. The templates for creating the new environment
can be found in [9].

WHERE Expressions: where g returne

The where expression is a filter expression that filters out the undesired results
which are derived from certain environments. In other words, the where expres-
sion actually filters out the unwanted environments within the sequence of input
environments using its condition (. Then, the selected environments serve as the
input environment to evaluate an expression e. Similar the let expression, the where
expression produces a new environment for e. The template for creating the new
environment is provided in [9].

Chapter 2: Preliminary Knowledge 19

I TZ'I Txm Te Ctorzcedoe’
‘ 1 m lj s Iy It
Ei| i 1 fi [ttt] g1 Q... Qg
. . . 1 . .
: . . : — . :
: 1 Iy 1kn Ly Iin
E, | iy, . o [g @ ... Qgr
wxl wxm we Cforzcedoe’

o 2| 2| K

7 7 7 7 7

i 7 T 7 T,

E _ tl% ll 1 m tli li
lz=t']| 4 1 /1 1 91

k k k

It k1 1 m it it
Eyfz=t'] [fi /i t 91
. . . . 3 .

i 1 1 il 1l

E je=t3]]| L} I fm e gn'

_ by |k 1 m 1in I

Eﬂ [LL’ - tn] lnn n n tn gn

Wy, Wy, Wy Wer

Figure 2.5: TRANSLATION OF “forz € edoe’” IN THE ENVIRONMENT FOR

{z1,...,zn}.

FOR Expressions: forx € edoe’

The for expression is an iteration expression that expands both the size and the
number of the input environments by adding a series of bindings for the variable x
with the values (XML forest) obtained from each of the input environments. The for
expression iterates the bound variable z over each binding (XML tree) to evaluate
expression €’. The number of the expanded environments is the total number of
resulting trees obtained by evaluating e over a sequence of input environments.

The following paragraph shows the SQL templates for creating the new en-
vironment for the for expression, which are the revised versions that correct the
imprecisions in the original translation templates in [9]:

Chapter 2: Preliminary Knowledge 20

CREATE VIEW I'(T,) AS
SELECT 7.l AS i
FROM ROOTS(T.) 7

CREATE VIEW T.(T.) AS
SELECT z.s,x.l — i * we + 7.0l % we AS I,
T — 1% We +1.l*w, AS 7
FROM I,T. x,RO0TS(T) r
WHERE i xwe < 7.0 AND 7.7 < (i + 1) % w,
AND r.l <zl AND z.r <r.r

CREATE VIEW 77 (Ty,,T.) AS
SELECT z.s,x.l —i* wy, + 7.0 *wy, AS [,
T — 1k Wy, + 10 xwy AS T
FROM [,T,, =,RO0TS(T,) r
WHERE i we < 7.l AND 7.r < (i+ 1) * we
AND ik wy, <@l AND z.r < (i + 1) x wy,

The result of the for expression is defined as follows:
CREATE VIEW Trorscedoer AS SELECT * FROM T7,

The resulting width of the for expression iS Wy zeedoer = Wewe. The evaluation
process of the for expression is illustrated in Figure 2.5, which is a revised figure
originating from [9]. An example of the new environment created by evaluating the
for expression x € e is shown in Example 2.4.2.

r (28
i s [1 [r

2 title 90 93

Data on the Web 91 92

16 title 720 723

Advanced Programming in the Unix environment 721 722

30 title 1350 1353

TCP/IP Illustrated 1351 1352

Figure 2.6: EACH TITLE FORMING A SEPARATE ENVIRONMENT (w, = 44)

Example 2.4.2 Continuing with Example 2.3.1, consider the following for expres-
sion:

Chapter 2: Preliminary Knowledge 21

for $t in document('reviews.xml’)/reviews/entry/title do ...

Figure 2.6 shows a part of the expanded new environment after evaluating the for
expression in the example. The width of document “reviews.xml” is set to 44, and

the width of e is w, = 44. O

Chapter 3

XQuery-to-SQL Query Processor

In this chapter we introduce a XQuery-to-SQL Query Processor we implemented
to map the Minimal XQuery to the SQL language. Using Dynamic Interval Encod-
ing technique [9], the query processor is able to handle a wide variety of XQuery
expressions including arbitrarily-nested FLWR expressions, element constructors,
path expressions and built-in functions. Given an input XQuery, the processor is
able to generate a single SQL query, which can be executed in a traditional SQL
query processor like DB2 to get the expected result from the relational encodings
of XML data sources, and a physical plan, which can be executed in the XQuery-
enhanced Relational Engine [15] to produce the XML-formatted query result.

3.1 Assumptions

There are several assumptions placed on the XML data sources and on the XQuery
language that the query processor handles:

e The source XML documents that the processor deals with agree with the
abstract syntax of XML Forests defined in Section 2.1, otherwise, the source
documents should be transformed into the abstract XML forests using one of
the approaches described in Section 2.1.

e The XML documents have been already mapped into the relational schema
using the Interval Encoding technique introduced in Section 2.3.1.

e The input XQuery queries for the processor conforms to the syntax of the
Minimal XQuery introduced in Section 2.3.2. Hence, an XQuery expression

22

Chapter 3: XQuery-to-SQL Query Processor 23

Relational
Algebra Tree
Constructor

Abstract

Lexical

Parser
Analyzer

XQuery Query

Stream Syntax Tree

Relational Algebra Tree

¢ Relational Algebra Tree
SQL Plan
Constructor Physical Plan
saLo Constructor
uery —
g
saL Pl g @ Physical Plan
an 25
Optimizer o
B
SQL Query § x o Physical Plan
= Optimizer
o=
C ©
w o
RDBMS g 5‘ Physical Plan
(DB2, Oracle,...) 2 ¥
'©
[ang

Relational Encoding

XQuery-Enhanced Relational
Engine

<5

XML Decoder

XML Forests XML Forests

Figure 3.1: THE FRAMEWORK OF XQUERY-TO-SQL QUERY PROCESSOR

might need to be moderately rewritten into the form of Minimal XQuery
expression before it is input into the query processor.

For our examples we use the XML document “auction.xml” from the XMark Bench-
mark [1] and we assume that we always have an equivalent relational encoding table
named “auction”. The input XQuery is first rewritten in Minimal XQuery before it
is input into the query processor. For example, the fragment “$b/id[1]” in an input
XQuery is substituted by an equivalent expression “head(select('id’, children($b)))”.

Chapter 3: XQuery-to-SQL Query Processor 24

3.2 Overview of the Framework

Figure 3.1 shows the framework of the XQuery-to-SQL Query Processor. The query
processor acts as an XQuery-to-SQL compiler that translates XQuery language?
into SQL language.

The input to the query processor is a Minimal XQuery expression. An analysis
is performed by the compiler to complete the translation. The analysis includes the
following steps:

e The lexical analysis — breaks the input query into individual words or “tokens”
that are the units in the grammar of XQuery language.

e The syntax analysis — analyzes the phrase (expression) structure of XQuery
language, and builds an abstract syntax tree.

e The relational algebra tree construction — determines the meaning of each
expression and provides translation for each expression. A relational algebra
tree, which is a tree consists of relational operations that are analogous to
relational algebra operators, is generated as an intermediate result.

e The SQL query generation and optimization — traverses the relational algebra
tree to construct a SQL query and optimizes the query to generate a more
concise and efficient SQL query.

e The physical plan generation and optimization— traverses the relational alge-
bra tree to generate a physical plan and provide query optimization for such
a plan.

The processor produces two kinds of relational plans:

e The first one is a standard SQL query for commercial RDBMS like DB2,
Oracle. Using the relational encoding tables as the source XML documents,
the generated SQL query can be executed in a RDBMS to generate a rela-
tional encoding of the resulting XML forest. The relational encoding result
is then converted into an XML forest by an XML Decoder, which transforms
relational encodings back into XML forests.

I'The XQuery query we mentioned here and in the following sections is referred to Minimal
XQuery.

Chapter 3: XQuery-to-SQL Query Processor 25

e The second is a relational physical plan which consists of relational operations
[15] that are similar to relational algebra operators. The reason for generat-
ing such a physical plan for the XQuery-enhanced Relational Engine [15] is
that the evaluation of the generated SQL query in standard RDBMS is slow
due to a large number of less-equal comparison operations involved in the
joins operations during the evaluation, and RDBMS can not take advantage
of the ordering nature of the data. Based on this reason, the query proces-
sor generates the physical plan, where additional special efficient relational
operators can be used in order to achieve better performance. Given the gen-
erated physical plan along with the relational encodings for the source XML
documents, the relational engine [15] is able to generate the expected XML
forest.

3.3 Lexical Analysis and Parsing

3.3.1 Lexical Analysis

Given a string representing an input XQuery, the lexical analyzer produces a stream
of lexical tokens that include names, keywords, and punctuation marks. A lexical
token is defined as a sequence of characters that appear as a unit in the grammar of
a programming language [5]. Lexical tokens are classified into a finite set of token
types. The token types for Minimal XQuery language can be found in Figure 3.2.

In query processor, the lexical analyzer is generated by JLex [6], an automatic
lexical analyzer generator that produces a Java program from a lexical specification.
A lexical specification is a file that contains a regular expression and an action for
each token type in the language to be lexically analyzed. Detailed information
about JLex can be found in [6].

3.3.2 Syntax Analysis

After the input XQuery query stream is broken into a sequence of lexical tokens by
the lexical analyzer, the token stream is passed to the XQuery parser for syntax
analysis. The grammar of XQuery language must be provided to perform the
analysis.

The XQuery parser in the query processor is created using CUP [2] (Construc-
tion of Useful Parser), an automatic LALR parser-generator tool. A grammar

Chapter 3: XQuery-to-SQL Query Processor 26

expr (1= str

xfnExp

LET str := expr IN expr
WHERE cond RETURN expr
FOR str IN expr DO expr
(expr)

cond ::= EMPTY (expr)
| NOT EMPTY (expr)
| expr cop expr
| (cond)

xfnExp = 00O

DOCUMENT(’str’)
XNODE(str, expr)
expr Q@ expr

SELECT(’str’, expr)
unixfnExp (expr)

unixfnExp ::= HEAD | LAST | TAIL | REVERSE | DISTINCT | SORT
| ROOTS | SUBTREESDFS | CHILDREN | COUNT

([0-9] I [A-Za-z] I$I_|-1.1:1%hl#|&l*[VI\]/)*

str

cop <l <=1 =1>1>=

Figure 3.2: THE GRAMMAR FOR MINIMAL XQUERY

specification that describes the grammar rules is provided for CUP to generate
the parser. Figure 3.2 shows a simplified grammar for Minimal XQuery language,
which captures the essential features of the language. In the implementation, we
design a more complex grammar which supports a larger set of the expression for-
mats. For example, the keywords in the input query are case insensitive to the
query processor. For the element constructor, the query processor supports the
expressions in both formats of xnode(’'s’, expr) and <s>XF</s>.

Chapter 3: XQuery-to-SQL Query Processor

abstract class ExpTree { // XF
TraverseParseTree generatelterator ()

}

ExpVar (String id) // var
abstract class ExpXFn extends ExpTree // XFn
ExpLet (String id, ExpTree el, ExpTree e2) //let clause
ExpWhere (ExpBoolean b, ExpTree e) //where clause
ExpFor (String id, ExpTree el, ExpTree e2) //for clause

abstract class ExpBoolean {
TraverseBooleanParseTree generatelterator ()

}
ExpBoolEmpty (ExpTree e) //where empty (XF)
ExpBoolNotEmpty (ExpTree e) //where not empty(XF)

ExpBoolComp (ExpTree el, ExpTree e2) //where XF1 =(<,>,<=,>=) XF2

abstract class ExpXFn

ExpXFnEmptyConst () //empty constructor
ExpXFnDocument (String fn) //document (’file’)
ExpXFnConcatConst (ExpTree el, ExpTree e2) //XF @ XF
ExpXFnXnodeConst (String s, ExpTree e) //xnode (’root’ ,XF)
ExpXFnHead (ExpTree e) //head (XF)
ExpXFnLast (ExpTree e) //last (XF)
ExpXFnTail (ExpTree e) //tail (XF)
ExpXFnSort (ExpTree e) //sort (XF)
ExpXFnReverse (ExpTree e) //reverse (XF)
ExpXFnDistinct (ExpTree e) //distinct (XF)
ExpXFnSelect (String s, ExpTree e) //select(’label’ ,XF)
ExpXFnRoots (ExpTree e) //roots (XF)
ExpXFnChildren (ExpTree e) //children (XF)
ExpXFnSubtreedfs (ExpTree e) //subtreesdfs (XF)
ExpXFnCount (ExpTree e) //count (XF)

27

Figure 3.3: DATA STRUCTURE OF ABSTRACT SYNTAX TREES FOR XQUERY

LANGUAGE

3.3.3 The Abstract Syntax Tree

The XQuery parser does more than just recognizes the XQuery expressions. It also
produces an abstract syntax tree, which is a data structure that latter phases of the
compiler traverses. This kind of parse tree carries the parse structure of XQuery
language, with all parsing issues resolved. The SQL translation is later performed

by traversing the generated abstract syntax tree.

Java classes are designed for the abstract-syntaz-tree data structure. Figure 3.3

Chapter 3: XQuery-to-SQL Query Processor 28

lists the constructors of the java class. The object field variables of the classes
correspond to the variables within the constructor arguments. This kind of data
structure design separates the syntax analysis from the semantic interpretation. For
each form of XQuery expression an abstract syntax class is designed. A traverser,
which is a traverse method that performs the corresponding SQL translation for the
expressions, is also generated within each abstract syntax class for latter interpre-
tations. Example 3.3.1 illustrates the abstract syntax class of the for expression.

Example 3.3.1 The abstract syntax class of the for expression is as follows:

class ExpFor extends ExpTree {
public String var;
public ExpTree expl, exp2;
public ExpFor (String id, ExpTree el, ExpTree e2) {
var = id; expl = el; exp2 = e2;

}

public TraverseParseTree generatelterator () {
return (new TraverseFor ());

3

In the abstract syntax class, the constructor ExpFor constructs syntax trees for the
for expressions. A traverser TraverseFor is also provided to traverse the generated

syntax tree and perform the corresponding SQL translation for the for expressions.
O

For example, for the following XQuery expression

for $b in document(’bib’)//book do <books> $b </books>

the corresponding abstract parse tree is shown in Figure 3.4.

3.4 Relational Algebra Tree Construction

The XQuery parser generates an abstract syntax tree along with a corresponding
traverser for each node in the parse tree. Each node in the parse tree corresponds to

Chapter 3: XQuery-to-SQL Query Processor 29

For ($b)

N

Select (‘book’) Xnode (‘books’)

Subtreesdfs Var ($b)

Document (‘bib’)

Figure 3.4: SAMPLE ABSTRACT SYNTAX TREE

an XQuery expression in the input query. For each kind of the XQuery expression,
there is a corresponding SQL translation template.

In the Relational Algebra Tree Construction phase, the abstract syntax tree
is traversed and the XQuery-to-SQL transformation is performed. The traversers
traverse the parse tree and generate a relational algebra tree. For each form of
XQuery expression, there is a corresponding relational algebra tree, which is an
alternative representation for the corresponding SQL translation template.

Section 3.4.1 gives a brief introduction for the relational operations that are used
to generate the relational algebra tree. Section 3.4.2 introduces the SQL translation
templates for XQuery expressions and the corresponding relational algebra trees
that map the SQL templates.

3.4.1 Relational Operations

For translation purposes, relational operations are used to construct relational al-
gebra trees according to the SQL translation templates. The relational operations
are similar to relational algebra operators that perform the SQL operations. The
results after performing the relational operations are exactly the same as those of
the corresponding SQL operations. The set of relational operations we use in the
XQuery translation are implemented in XQuery-enhanced Relational Engine [15]
and are sufficient to handle the Minimal XQuery.

We use the notation of Operation[parameters|(Operationx) to represent a rela-
tion operation that has an input parameter list, parameters, which can be arith-
metic expressions or boolean expressions, and a list of input relational operations,

Chapter 3: XQuery-to-SQL Query Processor 30

Operationx, which provide input tuples. The possible operands in the expressions
in parameters include: constants, the incoming tuples from the input relational
operations, and the open parameters that consist of the tuples from the first input
operations of the nested-loop join operations in the ancestor nodes for the current
relational operation in a relational algebra tree?.

1 The Project Operation: Project|attributlist](operation)

This operation is equivalent to the duplicate-preserving projection operation in
relational algebra. The parameter attributlist specifies the attributes that are re-
tained by the operation from the input tuples. For example, if we want to preserve
the values of the first and the third attributes from the input tuples, attributlist is
then set to the form like “1,3”.

2 The AddColumn Operation: AddColumn|ezpression](operation)

This operation appends a new attribute to the input tuples. The values for the new
attribute are assigned by the computation results of the expression expression. The
expression can be an arithmetic expression whose operands can be either constant
natural numbers or the values of the attributes from the input tuples.

3 The Select Operation: Select[condition](operation)

The Select operation is used to filter out the unwanted tuples from the input op-
eration by evaluating the boolean expression condition. It implements the SQL
WHERE clause with a single boolean condition.

4 The LoopJoin Operation: LoopJoin|conditions](operationl, operation?2)

This operation implements the nested-loop join. If no boolean condition conditions
is given, the result is the Cartesian product of operationl and operation2; otherwise,
the boolean expressions filter out the unwanted results of the Cartesian product.
An example of conditions is “1 = 17, which means that an eligible tuples pair is
the one that the 1st attribute value of the tuple from operationl should equal to
the 1st attribute value of that from operation?2.

2In nested-loop join operations, the resulting tuples from their first input operations are it-
eratively passed to the second input operations as open parameters. Details about relational
operations can be found in [15].

Chapter 3: XQuery-to-SQL Query Processor 31

In this operation, the resulting tuples from its first operation operationl are
iteratively passed to the second operation operation2 as part of the open parameters
for operation2. Let {%1,...,%n} be the open parameters for operationl and let
(C1,..., Cm) be the resulting tuples of operationl. The open parameters for
operation2 are constructed by appending the resulting tuples from operationl to
the open parameters for operationl. Thus, the open parameters for operation2 are
represented as {%1,...,%n, %(n+1),...,%(n+m)} and can be used as operands
for the expressions in operation2.

5 The MergeJoin Operation: Mergeloin|conditions](operationl, operation?2)

This operator implements the merge join in SQL. The input operations for this
operation are assumed to be properly sorted already to support the join condition
conditions.

6 The LoopIn Operation: Loopln[conditions]|(opl, op2)

This operator preserves the tuples from opl whenever there exists a matching tuple
from op2 that satisfies the LoopIn conditions. Similar to the LoopJoin operation,
it uses the nested-loop join technique to evaluate the tuples from the inputs, and
the tuples and open parameters from opl are passed to op2 as its open parameters.

7 The LoopExceptIn Operation: LoopExceptin|conditions](opl, op2)

In contrast to the LoopIn operation, this operator returns the tuples from opl when-
ever there does not exist any matching tuple from op2 that satisfies the LoopFEz-
ceptIn conditions. Similar to the LoopJoin operation, it uses the nested-loop join
technique to evaluate the tuples from the inputs, and the tuples and open parame-
ters from opl are passed to op2 as its open parameters.

8 The MergeExceptIn Operation: MergeExceptln|[conditions](opl, op2)

Similar to LoopFzxceptIn operator, this operator implements the set difference in
relational algebra by using the merge join technique. The input operations are
assumed to be properly ordered to support the condition, conditions.

9 The CatUnion Operation: CatUnion[|(operationl,operation2)

This operation is a union operation in relational algebra based on the concatenation
of operationl and operation2. The result preserves duplicates.

Chapter 3: XQuery-to-SQL Query Processor 32

10 The MergeUnion Operation: MergeUnion[SortOrder|(opl, op2)

This operator performs a union operation based on merging ordered input. The
operation assumes that the input operations are properly ordered.

11 The Sort Operation: Sort[SortOrder|(operation)

The operator sorts the tuples generated by the input operation based on the given
sort order parameters. For example, a sort order “A1” means sorting the tuples
from operation in the ascending order of the values of its 1st attribute.

12 The CountAggregate Operation: CountAggregate|[groupbylist](operation)

The CountAggregate operation is a grouping operation. The parameter groupbylist
specifies a list of attributes that are used in the grouping operation. An additional
attribute with the values of count(x) is added to the input tuples as the result. The
operation assumes the input values have been sorted by the grouping attributes.

13 The XMLFileReader Operation: XMLFileReader[XMLfileName]()

This operation reads an XML file with the given file name in the parameter XMLfile-
Name into a relational encoding.

14 The TextFileReader Operation: TextFileReader|TextFileName]()

Similar to the XMLFileReader operation, this operation provides access to a rela-
tional encoding with the given file name in the parameter TextFileName.

15 The UNIT Operation: UNIT[()

This operator represents the relational table named “UNIT”, which always contains
only one tuple.

16 The EMPTY Operation: EMPTY[]()

This operator represents the relational table named “EMPTY”, which contains no
tuples.

Chapter 3: XQuery-to-SQL Query Processor 33

17 The ScalarProject Operation: ScalarProject||(operation)

This operation is used to implement the SQL scalar fulselect expression. It is
similar to the Project operation except that the ScalarProject operation only allows
its input operation return one and only one resulting tuple, which contains all the
attributes, as its output tuple, otherwise, the ScalarProject operation reports error
and terminates the execution.

Constructors:

document(’ filename’) the relational encoding for an XML document

[10 the empty forest constructor

xnode('label’, €) the element constructor, adds a labelled root to a forest
e1 @ eg the concatenation operator

Condition Operations:

empty(e) the test for emptiness

not empty(e) the test for not emptiness

e1 = es the equal condition, the test for label equality

e1 < e the less condition, the test for label ordering

el > e the greater condition, the test for label ordering

e1 < es the less and equal condition, the test for label ordering

e1 > e the greater and equal condition, the test for label ordering

Other Operations:

head(e) the first tree of a forest

tail(e) all but the first tree of a forest

last(e) the last tree of a forest

reverse(e) the forest in reverse order (top-level only)

select("str’, e) the subforest of trees with root labels are the 1st arg value
distinct(e) the subforest of distinct trees (1st preserved)

count(e) the number of the trees of a forest

roots(e) the forest of root nodes

children(e) the forest of all children in original order

subtreesdfs(e) the forest of all subtrees in DFS order

Figure 3.5: THE IMPLEMENTED XQUERY BASIC OPERATIONS

Chapter 3: XQuery-to-SQL Query Processor 34

abstract class PPhysicalPlan {
//Traverser for generating the relational-operation-query plan
PTraversePhyPlan generatelterator()

//Traverser for generating the SQL query
public PTraverseSQL printSQL()

}
PAddColumn (String SQLpara, PPhysicalPlan Te) //AddColumn operator
PProject (String SQLpara, PPhysicalPlan Te) //Project operator
PSelect (String SQLpara, PPhysicalPlan Te) //Select operator
PLoopJoin (String SQLpara, PPhysicalPlan Tel,

PPhysicalPlan Te2) //LoopJoin operator
PMergeJoin (String SQLpara, PPhysicalPlan Tel,

PPhysicalPlan Te2) //Merge operator
PLoopIn (String SQLpara, PPhysicalPlan Tel,

PPhysicalPlan Te2) //LoopIn operator
PLoopExceptIn (String SQLpara, PPhysicalPlan Tel,

PPhysicalPlan Te2) //LoopExceptIn operator
PMergeExceptIn (String SQLpara, PPhysicalPlan Tel,
PPhysicalPlan Te2) //MergeExceptIn operator

PCatUnion (PPhysicalPlan Tel, PPhysicalPlan Te2) //CatUnion operator
PMergeUnion (PPhysicalPlan Tel, PPhysicalPlan Te2) //MergeUnion operator
PSort (String SQLpara, PPhysicalPlan Te) //Sort operator
PTextFileReader (String SQLpara) //TextFileReader operator
PXMLFileReader (String SQLpara) //XMLFileReader operator
PUNIT QO //UNIT operator
PEMPTY () //EMPTY operator
PScalarProject (PPhysicalPlan Te) //ScalarProject operator
PCountAggregate (PPhysicalPlan Te) //CountAggregate operator

Figure 3.6: DATA STRUCTURE FOR RELATIONAL ALGEBRA TREES

3.4.2 Mapping SQL Templates to Relational Algebra Trees

The XQuery query processor is able to handle a variety of XQuery expressions. Fig-
ure 3.5 shows a summary of the implemented XQuery basic operations. For each
form of the XQuery expression, there is a corresponding SQL translation template
similar to that introduced in [9]. Instead of directly using the SQL templates to
generate the final SQL query, relational algebra trees that map the SQL templates
are composed together to construct a relational algebra tree as an intermediate
result for the SQL query generation. The generated relational algebra tree is anal-
ogous to the relational algebra representation for the final SQL query. The use of
such intermediate result facilitates the query optimization and the query generation

Chapter 3: XQuery-to-SQL Query Processor 35

for physical plans in latter phases of the translation.

In the following sections, we first give a brief introduction to the data struc-
tures for relational algebra trees; then, we provide detailed SQL translations for
XQuery FLWR expressions and several examples of SQL translations for the basic

operations®.

Java classes are designed for constructing the relational-algebra-tree data struc-
ture. For each type of relational operation, there is a corresponding java class.
Traverse methods, which are used to traverse the relational algebra tree in latter
phases, are also constructed within the class. Figure 3.6 shows the constructors of
the java classes for relational operations. The object field variables of the classes
correspond exactly to the variables within the constructor arguments.

In relational operations, since no attribute names are provided for the in-
put/resulting tuples, the values from the tuples are manipulated based on their
attribute positions in the tuples. To facilitate the translation, attributes of result-
ing tuples from any relational operation are named C'1, ..., Cn according to their
left-to-right positions in the tuples. The attribute names are used in the arith-
metic/boolean expressions of relational operations?. Example 3.4.1 illustrates the
process of mapping a SQL fragment into a relational algebra tree.

Example 3.4.1 The following SQL fragment is frequently used in the XQuery-to-
SQL translation to identify the environments that the values of input table param-
eters belong to:

(SELECT 4,s,l —i*we AS I,r —i*w, AS r
FROM I,T,
WHERE ixw. <l AND r < (i+1)*xw.) Te

The corresponding relational algebra tree is shown in Figure 3.7. To make it easier
to understand, the attribute names 7, s,[l,r are used in the figure instead of us-
ing the attribute names C'1,...,Cn. The matching relational algebra tree can be
represented in the following form:

3A comprehensive translation for all of the XQuery basic operations are provided in Appendix
A.

4In the relational algebra tree introduced in the following paragraph, not all of the relational
operations use C1, ..., Cn to represent the attribute names for the input tuples. For example,
the Project and LoopJoin operations use position numbers to represent attributes.

Chapter 3: XQuery-to-SQL Query Processor 36

Project [1,2,5,6]

AddColumn [r-i*w]

AddColumn [[- i*we]

Select [r<(i+1)* w,]

Select [i*w, <=1]

LoopJoin []

/\
I T

(&

Figure 3.7: SAMPLE RELATIONAL ALGEBRA TREE

Te_i(Te) =
Project[1,2,5, 6](
AddColumn|[C4 — C1 * we](
AddColumn|[C3 — C1 * we(
Select[C4 < (C1+ 1) * we(
Select[C1 * w, < C3](
LoopJoin((T, T.)))))

where w, is the width of the relational representation of 7T,, which is computed
using the width function introduced in [9]. O

I. The Translations for Basic Operations

Based on the SQL translation template for XQuery basic operations (see Section
2.4.2), there are two kinds of SQL fragments that appear in most of the SQL
translation templates for the XQuery basic operations. The first kind of SQL
fragment is the fragment introduced in Example 3.4.1. The notation T, ;(T.) is
used to represent the relational algebra tree for the SQL fragment from Example
3.4.1. T, is the input table for the SQL fragment.

Chapter 3: XQuery-to-SQL Query Processor 37

The second SQL fragment that appears in all SQL translation templates for
XQuery basic operations except for the empty constructor is as follows:

CREATE VIEW Txgn(Z,...T.,.) AS

SELECT s,l + i % wxrn, AS [,7 4 4% wxF, AS 7
FROM (

) QXFn

In the following translation, we only provide the relational algebra tree for the SQL
fragment Qxr, in the SQL templates for basic operations. @Qxp, always returns
tuples (4,s,l,r). Given the mapping relational algebra tree Tg,. (with resulting
tuples (C'1,C2,C3,C4)) for the SQL fragment Q)xg,, the final relational algebra
tree for the SQL template is as follows:

Txn (TQXFn) =
Project[2, 5, 6](
AddColumn|[C4 + C'1 * wxgn](
AddColumn[C3 + C1 * wxrn)(TQye,)))

1. The DOCUMENT operator: document(’filename’)

This operation creates a relational encoding for the input XML document based on
the input environment. We assume there already exist initial relational encoding
tables for the input XML documents in the database systems.

1) The SQL Translation Template

The SQL translation template for generating the relational encoding of docu-
ment “filename” is shown as follows:

CREATE VIEW Tdocument (Tfilename) AS
SELECT s,l 4 % * Wdocument AS 1,7 4+ 7 * Wyocument AS T
FROM I, Tfilename

The width of the document, wqocument, can be set to any natural number that greater
than the maximum right endpoint value 74, in the initial relational encoding of

Chapter 3: XQuery-to-SQL Query Processor 38

the document. Here, we choose a value wyocument = Tmax + 1.

2) The Relational Algebra Tree

If the document is specified as an XML file with a suffix “.xm!” in the document
name, the source XML file is first read into a relational encoding using the relational
operation XMLFileReader. Thus, we have the following relational algebra tree
mapping for the SQL fragment Qxg, in the SQL template:

QxFn =
LoopJoin| |(1,
XMLFileReader|filename]()

Otherwise, if the source document is already in a relation, we have the following
alternative relational algebra tree for the SQL fragment Qxgn:

QxFn =
LoopJoin| |(Z,
TextFileReader|filename]()

2. The Empty Constructor: []()

This operator constructs an empty forest. It is often used to construct a new
XML forest. We assume there is an empty relation table named “EMPTY” in the
database systems. The EMPTY table is used to construct an empty forest that has
the same relational encoding schema (s, 1, r) (see Section 2.3.1) as that for the XML
documents.

1) The SQL Translation Template

Since the empty constructor constructs an empty XML forest, the result does
not depend on the input environment. Hence, we have the following SQL translation
template:

CREATE VIEW Tenpty AS
SELECT 's’ AS s, 0 AS I, 1 AS r
FROM EMPTY

Chapter 3: XQuery-to-SQL Query Processor 39

The width of the result is set t0 Weppey = 0 since no tuples are returned.

2) The Relational Algebra Tree

The mapping relational algebra tree for the SQL template is as follows:

Tempty =
AddColumn[1](
AddColumn[0](
AddColumn['s’](
BPTY[]())))

3. The Element Constructor: xnode('label’,e)

The element constructor is used to construct a new XML forest. The result of the
operation is to add a root node with the given label name, e.g. “label”, to the
resulting XML forest of the subexpression e.

1) The SQL Translation Template

The SQL translation template for the operation is shown as follows:

CREATE VIEW Tynode('label’,T.) AS
SELECT s,l 4+ i % Wynode AS L, 7 4 i % Wynode AS T

FROM (
(SELECT 4, label’ AS 5,0 AS lwe+1 AS r
FROM I,UNIT)
UNION ALL
(SELECT 4,s,0+1 AS I,r+1 AS r
FROM
(SELECT 4,s,l —i*we AS I,r —i*xwe AS r
FROM I,T,
WHERE isw, <! AND r < (i+1)*w.) T
)
) QxFn

Since the znode operation is to add one root node to the input XML forest T, the
width of the result of the operation is wynode = We + 2.

Chapter 3: XQuery-to-SQL Query Processor 40

2) The Relational Algebra Tree

The corresponding relational algebra tree for the fragment Qxg, in the SQL
template is as follows:

Toxe, =
CatUnion[|(

AddColumn|w, + 1](
AddColumn[0](
AddColumn['label’](
LoopJoin] |(Z,
ot]())))
Project[l1,2,5,6](
AddColumn|[C4 + 1](
AddColumn[C3 + 1](T¢c(Te))))

4. The ROOTS Operator: roots(e)

The roots operation returns the root nodes of the XML forest T, (with width w)
of the subexpression e.

1) The SQL Translation Template

The SQL translation template for the operation is shown as follows:

Chapter 3: XQuery-to-SQL Query Processor 41

CREATE VIEW Tjoots(7.) AS
SELECT s,l + % % Wyoots AS [, 7 + i % Wyoors AS T

FROM
(SELECT w.i,u.s,u.l,u.r
FROM
(SELECT 4,s,l —ixw, AS l,r —i*xw. AS r
FROM I,T,
WHERE % we <[AND r < (i + 1) * we
) u
WHERE NOT EXISTS (
SELECT *
FROM
(SELECT 4,s,l —i*xwe AS l,r —ixwe AS r
FROM I,Te
WHERE ¢ % w, <1 AND r < (i + 1) % w,
) v
WHERE v.l < u.l AND w.r < v.r AND w.i =v.i)
) QxFn

The resulting width is set to wyoots = we. Unlike other basic operations, given
an input XML forest, the result of a roots operation does not depend on the input
environments that the XML trees belong to. Hence, we have the following simplified
SQL translation template for the roots operation.

CREATE VIEW Tyoots(7T%) AS
SELECT w.s AS s,u.l AS l,u.r AS r
FROM 7. wu
WHERE NOT EXISTS (
SELECT *
FROM T, v
WHERE 0.l < u.l AND u.r <wv.r)

For the same reason, the children operation also has two variants of SQL translation
templates introduced in Appendix A.2.13.

2) The Relational Algebra Tree

For the first SQL template for the roots operation, the corresponding relational
algebra tree for the fragment Q)xg, in the template is as follows:

Chapter 3: XQuery-to-SQL Query Processor 42

TQuen =
LoopExceptIn[C'l = C1,C3 > C3,C4 < C4|(Te-i, Te-)

For the simplified SQL translation template, the corresponding relational algebra
tree for the whole template is shown as follows:

Troots =

LoopExceptIn[C2 > C2,C3 < C3|(Te, T.)

II. The Translations for FLWR expressions

1. The FOR Expression: for z € e do ¢

The for expression is an iteration expression that manipulates a sequence of input
environments by adding a series of bindings of the variable x. As a result, a new
environment, obtained by expanding both the size and the total number of the
original input environment, is created for the evaluation of the expression e’. The
new environment include the new environment index set I’, the new representations
T, ,...,T, for the bound local variables from the input environment, and the

xr1?
relational representation 7). of the bindings of the new variable x.

The SQL translation templates for the new environment I',T;, ,...,T, T, are
exactly the same as the ones introduced in Section 2.4.2. Let Roots T, be the
relational algebra tree for the roots operation roots(7,). The relational algebra tree

for I":

I' =
Project[2](Roots T)

The relational algebra tree for the new representation T}, of the bound variable z;
from the input environment is as follows:

Chapter 3: XQuery-to-SQL Query Processor 43

T, =
1 Project|2,8,9(
AddColumn[C4 — C1 % wy, + C6 * wy, |(
AddColumn|[C3 — C1 * wy, + C6 * wy,|(
Select[C4 < (C1+1) % wg,](
Select[C1 * w,, < C3](
Select[C7 < (C1+ 1) * we(
Select[C1 * w. < C6](

LoopJoin[|(
LoopJoin] |(1,Ty,),
Roots T.))))))))

The relational algebra tree for the representation 7, of the new bound variable z
is shown as follows:

T, =
Project(2,8, 9](
AddColumn[C4 — C1 % we + C6 * w(
AddColumn[C3 — C'1 * we + C6 * we(
Select|[C4 < CT|(
Select[C6 < C3](
Select[C7 < (C1+ 1) * we(
Select|C1 * w. < C6](
LoopJoin| |(
LoopJoin| |(1,T),
Roots T.))))))))

2. The LET expression: letz =cine’

Similar to the for expression, the let expression operates on the input environment
by adding a new table 7", representing bindings for the variable . However, differ-
ent from the for expression, the let expression adds just one binding for variable
x instead of a series of bindings. The SQL templates for the new environment
rrT,.,...,T, ,T, are defined in the same way as those introduced in [9]. The
relational algebra trees for the corresponding SQL templates are as follows:

Chapter 3: XQuery-to-SQL Query Processor 44

I' = Project[l](I)
T/

T

Project[l,2,3](T%,)

T, = Project[l,2,3](T%)

3. The WHERE expressions: where preturne

The where expression extracts the desired environments within a sequence of in-
put environments using its condition operation ¢. As a result, it produces a new

environment I’ 7" ... T, for the subexpression e.
1 Tm

We implement seven kinds of boolean operations () for where expressions: the
empty, not empty, equal (=), less (<), greater (>), lessequal (<=), and greaterequal
(>=). The SQL translations of I’ for various where expressions depend on the
boolean conditions and are introduced in the following paragraphs.

I. SQL Templates for the New Environment Index Set I’

1) The EMPTY Operation: where empty(e) return €’

The filter condition “empty(e)” selects those environments which provide no
results for the expression e. The SQL template for the new environment index set
I’ is as follows:

CREATE VIEW I'(T.) AS
SELECT 1
FROM I
WHERE NOT EXISTS (
SELECT =*
FROM T,
WHERE ixw, <l AND r < (i+1)*w,)

The corresponding relational algebra tree is shown as follows:

! —
empty ~

LoopExceptIn[C1 x w, < C2,(C1+ 1) xw. > C3](I,T¢)

Chapter 3: XQuery-to-SQL Query Processor 45

If the LoopFExceptIn operation only handles atomic equality conditions, then Ad-
dColumn operations are added to the above relational algebra tree to handle the
arithmetic computations occur in the above LoopFxceptin condition.

2) The NOT EMPTY Operation: where not empty(e) return €’

In contrast to the empty operation, this condition operation filters out the environ-
ments in which no result is returned after evaluating the expression e. The SQL
template for the new environment index set I’ is as follows:

CREATE VIEW I'(T.) AS
SELECT 4
FROM [
WHERE EXISTS (
SELECT *
FROM T,
WHERE i*we <l AND r < (i+1)*w,.)

The corresponding relational algebra tree is shown as follows:

/ —
empty —

LoopIn[C1 * w, < C2,(C1+ 1) * we > C3|(I,Te)

Similar to the translation of empty operation, if the LoopIn operation only handles
atomic equality conditions, then AddColumn operations are added to the above
relational algebra tree to handle the arithmetic computations occur in the above
LoopIn condition.

3) The EQUAL Operation: where ¢; = e, return ¢’

We only consider label equality for the equal operation in the boolean conditions.
This operation extracts environments that satisfy the label equality comparison
condition “e; = ey”. The condition is true only when the label values in the results
of e; and ey are unique and equal. For an index value i in the input environment
index set I, there should exist one and only one resulting tuple for each of the
expressions e; and e,. Otherwise, an error should be reported and the execution
process for the input XQuery should be terminated. The SQL scalar fulselect
expression can properly handle such situation. Scalar fulselect expression is used
in the following SQL template to construct the new environment index set [’

Chapter 3: XQuery-to-SQL Query Processor 46

CREATE VIEW I'(T,,,T.,) AS
SELECT i
FROM [
WHERE
(SELECT s FROM T,, WHERE i we, <[AND 7 < (i+1)%w,,)

(SELECT s FROM T,, WHERE i*we, <l AND 7 < (i +1)*w,,)

The above SQL template is specially designed for generating the SQL query by the
query processor. In order to map the above SQL template into a relational algebra
tree, the template need to be rewritten in an alternative way shown as follows:

CREATE VIEW I'(T.,,T.,) AS
SELECT 4
FROM
(SELECT i,
(SELECT s FROM T, WHERE i*w., <! AND r < (i+1)*w,,) AS si,
(SELECT s FROM 7., WHERE i % we, <! AND 7 < (i 4+ 1) * we,) AS s9
FROM [
WHERE sl =s2) IT

The corresponding relational algebra tree is as follows:

/ —
equal —

Project[1](
LoopJoin[2 = 1](
LoopJoin[|(Z,
Project[1](
ScalarProject|(
Select[%n * we, < C2|(
Select[C3 < (%on + 1) *x we,|(Te,)))),
Project[1)(
ScalarProject||(
Select|[%n * we, < C2|(
Select[C3 < (%on + 1) *x we,](Te,)))))

where “%n” in the relational Select operations represents the last open parameter
in the open parameters list for the first Select operation, Select[%n*xw., < C2|(...),

Chapter 3: XQuery-to-SQL Query Processor 47

in the above relational algebra tree. %n contains the values from the environment
index set [.

The SQL translations of I’ for the other where expressions (with comparison
conditions like less (<), greater (>), lessequal (<=), greaterequal (>=)) are anal-
ogous to that of the equal operation and are omitted in the thesis.

II. SQL Template for the New Representations of Variables

The SQL templates for creating the new relational representations for the bound
variables for various where expressions share the same template shown as follows:

CREATE VIEW T0 (Ty,) AS
SELECT s,l,7
FROM T, I’
WHERE i % wy, <1 AND r < (i + 1) % wy,

The result of where expression is defined as:
CREATE VIEW Tiwherepretume AS SELECT * FROM 7!

The width of where expression is set t0 Wwhere preturne = We. The relational algebra
tree for T, is as follows:

T, =
' Project(2, 3, 4](
Select[C1 x w, < C3](
Select[C4 < (C1+ 1) % wy,|(
LoopJoin[(1, T%,))))

3.5 SQL Query Generation

The relational algebra tree serves as an intermediate result for generating a final
SQL query for RDBMS and a physical plan for the XQuery-enhanced Relational
Engine [15]. Section 3.5.1 describes the technique to translate a relational algebra
tree into a single SQL query. While the resulting SQL query derived directly from
the relational algebra tree is quite cumbersome and lengthy, it can be optimized to

Chapter 3: XQuery-to-SQL Query Processor 48

produce a more amenable and concise query plan. The optimization techniques are
provided in Section 3.5.2.

3.5.1 The Translation of Relational Operations

Similar to the data structure for the XQuery abstract syntax tree, for each of the
relation operations, there is a corresponding SQL translation template. A relational
algebra tree is translated into a SQL query by composing the SQL translation of
the individual relational operation in the algebra tree.

During the SQL translations, the parameters for the relational operations should
be properly transformed into a form that can be used in the SQL query. For
example, for the Project operation Project[1](T:), the parameter “1” should be
transformed into “C1”, which represents the attribute C'1 in table T,. We use
S Lpara to represent the transformed parameters for the relational operations.

1. The Project Operation Translation: Project[attributlist](T,)

SELECT attributlist
FROM (T)

The parameter attributlist contains the expression for the SQL SELECT clause.

2. The AddColumn Operation Translation: AddColumn[expression](T)

SELECT C1,...,Cy, expression AS Cpiq
FROM (T.)

The AddColumn operation selects all the attributes in the input operation T, along
with a new attribute whose values are assigned by computing the expression in the
input parameter expression.

3. The Select Operation Translation: Select[condition|(T:)

Chapter 3: XQuery-to-SQL Query Processor 49

SELECT =*
FROM (T,)
WHERE condition

The parameter condition contains a condition for the SQL WHERE clause.

4. The LoopJoin Operation Translation: LoopJoin[conditions|(T.,,Te,)

There are two kinds of SQL translations based on the type of the second input
operation T¢,. If T., is not a ScalarProject operation, the LoopJoin operation has
the following SQL translation:

SELECT [.Cq,..., I.C}, r.Cq; AS CkJrl’ ey T’.Cj AS Ck-Jrj
FROM (T,)1, (Te,) r
WHERE conditions

where the parameter conditions contains the join conditions for the SQL WHERE
clause. If T, is a ScalarProject operation, the Loop.Join operation is translated as
follows using the SQL scalar fulselect expression®:

SELECT 1.Cy,..., 1.Cy, (T,)
FROM (T,) !
WHERE conditions

5. The MergeJoin Operation Translation: MergeJoin|conditions|(T,,,T.,)

The SQL translation is exactly the same as that of the LoopJoin operation. The
reason is that, while in a physical plan we can specifically choose the relational
operation at the algorithmic level, in a SQL query the choice of using the merge join
operation or the nested-loop join operation is determined by the query processor in
RDBMS. We can only define these operations on the conceptual level where these
two operations are represented using exactly the same SQL statement.

SRefer to the relational algebra tree for the SQL translation of the equality comparison oper-
ation in a where expression (See Section 3.4.2).

Chapter 3: XQuery-to-SQL Query Processor 50
6. The LoopIn Operation Translation: Loopln[conditions|(T.,,T.,)

SELECT =

FROM (T,) I

WHERE EXISTS (
SELECT =
FROM (T,) r
WHERE conditions

The parameter conditions contains the conditions for the SQL. WHERE clause.

7. The LoopExceptIn Operation Translation: LoopExceptin[conditions| (T,

T.,)
SELECT *
FROM (T,) I
WHERE NOT EXISTS (

SELECT
FROM (T,) r
WHERE conditions

The parameter conditions contains the conditions for the SQL. WHERE clause.

8. The MergeExceptIn Operation Translation: MergeExceptIn|conditions]
(Te,, To,)

The SQL translation is exactly the same as that of the LoopFEzceptin operation
because on the conceptual level these two operations are represented using exactly
the same SQL statement.

9. The CatUnion Operation Translation: CatUnion[|(7,,,Te,)

Chapter 3: XQuery-to-SQL Query Processor 51

(SELECT
FROM (T,)

)

UNION ALL
(SELECT
FROM (T,)

)

There is no parameter for this operation. The result of the operation preserves
duplicates.

10. The MergeUnion Operation Translation: MergeUnion[SortOrder|(T,,
T,)

The SQL translation is exactly the same as that of the CatUnion operation because
on the conceptual level these two operations are represented using exactly the same
SQL statement.

11. The CountAggregate Operation Translation: CountAggregate [groupby-
list](Te)

The parameter groupbylist is a list of attributes that are used for the grouping
operation. It is the condition of the SQL. GROUPBY clause. Let {Al,..., Ak} be
the attributes in groupbylist. There are two kinds of translation depending on the
value of the parameter SQ Lpara. If the parameter groupbylist is not empty, then
the operation is translated as follows:

SELECT Al AS C,...,Ak AS C},

char (COUNT (%)) AS Cii1, 0 AS Ciio, 1 AS Ciis
FROM (T.)
GROUP BY groupbylist

If the parameter groupbylist is empty, then we have the following translation:

SELECT char(COUNT(x)) AS C1,0 AS C2,1 AS C3
FROM (T.)

Chapter 3: XQuery-to-SQL Query Processor 52

12. The XMLFileReader Operation Translation: XMLFileReader[X M L file-
Namel()

Since we assume there already exist the relational encodings in RDBMS for the
XML documents, the SQL translation of this operation just returns the table with
the same name in the parameter XMLfileName.

SELECT C1,C2,C3
FROM XMLfileName

13. The TextFileReader Operation Translation: TextFileReader[TextFile-
Namel()

The SQL translation of the operation is the same as that for the XMLFileReader
operation:

SELECT C1,C2,C3
FROM TextFileName

14. The UNIT Operation Translation: UNIT] |()

In the SQL translation, the operation returns the table UNIT, which contains only
one tuple. The translation is as follows:

SELECT s’ AS C1,0 AS C2,1 AS C3
FROM UNIT

15. The EMPTY Operation Translation: EMPTY][|()

In the SQL translation, the table EMPTY, which contains no tuple, is used to
construct a relational encoding for an empty XML forest using the exact relational
schema (C'1,C2,C3) for the XML source data®. The translation is as follows:

6Refer to Section 2.3.1 for the relational mapping schema

Chapter 3: XQuery-to-SQL Query Processor 53

SELECT 's’ AS C1,0 AS C2,1 AS C3
FROM EMPTY

16. The ScalarProject Operation Translation: ScalarProject[](T)

The ScalarProject operation is always used together with a LoopJoin operation.
A LoopJoin operation together with a ScalarProject operation as its second input
operation are translated into a SQL scalar fulselect expression.

3.5.2 Optimization of the SQL Query Generation

The resulting SQL query produced directly from the relational algebra tree is quite
awkward and lengthy. In order to generate a more concise SQL query, algorithms
are designed for the SQL Plan Optimizer in the query processor to improve the SQL
query generation. Example 3.5.1 compares the SQL query generated directly from
the relational algebra tree with the optimized SQL query to show the effectiveness
of the optimization algorithms.

Example 3.5.1 For the following relational algebra tree from Example 3.4.1:

Te_i(Te) =
Project[l1,2,5, 6](
AddColumn[C4 — C'1 x we](
AddColumn[C3 — C'1 * we)(
Select[C4 < (C1+ 1) * we(
Select[C1 x w, < C3](
LoopJoin| |(1, T.))))))

Let w, = 44 be the width of T, the following SQL plan is generated automatically
by traversing the above relational algebra tree:

Chapter 3: XQuery-to-SQL Query Processor 54

(SELECT C1,C2,C5 AS C3,C6 AS C4 FROM (
SELECT C1, C2, C3, C4, C5, C4-C1x(44) AS C6 FROM (
SELECT C1, C2, C3, C4, C3-C1%(44) AS C5 FROM (
SELECT * FROM (
SELECT * FROM (
SELECT T10_Lf.C1, T10_Rg.C1 AS C2, T10_Rg.C2 AS C3,
T10_Rg.C3 AS C4 FROM
I T10_Lf,
Te T10_Rg
) T9
WHERE C1*(44)<=C3
) T8
WHERE C4<(C1+1)%*(44)
) T7
) T6
) T5
)

Compared to the original SQL template fragment based on which the relational
algebra tree has been built,

(SELECT i¢,s,l —i*w. AS I,7r —ixw, AS 7
FROM .7,
WHERE i*w. <! AND r < (i+1)*w.)

the automatic generated SQL plan is rather lengthy. After applying the optimiza-
tion algorithms the final SQL plan is as follows:

(SELECT T6_Lf.C1 AS C1,T6_Rg.C1 AS C2,T6_Rg.C2-T6_Lf.C1%(44) AS
C3,T6_Rg.C3-T6_Lf.C1%(44) AS C4 FROM
View_I T6_Lf,
T_e T6_Rg
WHERE T6_Lf.C1%(44)<=T6_Rg.C2 AND T6_Rg.C3<(T6_Lf.C1+1)*(44)
)

We can see that the optimized SQL query is essentially the same as the original
SQL translation template fragment in Example 3.5.1. In fact, by applying the
optimization algorithms, the generated SQL plans can be, however, even more

Chapter 3: XQuery-to-SQL Query Processor 55

concise than the SQL queries composed directly by the SQL translation templates.
O

There are two ways of reducing the size of the generated SQL query. One way is
to combine several SQL expressions into one single SQL SELECT block. The other
one is to eliminate the duplication of the same SQL fragments in the overall SQL
plan by introducing views.

Combining the SQL Expressions

Based on the SQL translations for relational operations, SQL fragments created
by composing the SQL translations for relational operations can be combined to-
gether into one single SQL SELECT block. Example 3.5.2 shows the basic idea for
combining the SQL expressions from such fragments.

Example 3.5.2 For the following fragment of the relational algebra tree from Ex-
ample 3.5.1:

Select[C4 < (C1+ 1) * we(
Select[C1 x w. < C3](
LoopJoin[](I, Te))))))

the corresponding SQL fragment that is generated based on the SQL translations
of the relational operations is as follows:

SELECT * FROM (
SELECT * FROM (
SELECT T10_Lf.C1, T10_Rg.C1 AS C2, T10_Rg.C2 AS C3,
T10_Rg.C3 AS C4 FROM
I T10_Lf,
Te T10_Rg
) T9
WHERE C1x*(44)<=C3
) T8
WHERE C4<(C1+1)%*(44)

The WHERE clause “WHERE C'4 < (C'141)%(44)” in the outer table expression can be
combined with the WHERE clause “WHERE C'1%(44) <= C3” in the nested expression

Chapter 3: XQuery-to-SQL Query Processor 56

since the outer SELECT clause “SELECT x” is to select all the attributes from the
nested expression. By performing this combination, the above SQL fragment can
be simplified into the following form:

SELECT * FROM (
SELECT T10_Lf.C1, T10_Rg.C1 AS C2, T10_Rg.C2 AS C3,
T10_Rg.C3 AS C4 FROM

I T10_Lf,
Te T10_Rg
) T9

WHERE C1x%(44)<=C3 AND C4<(C1+1)x*(44)

The SQL fragment can be further simplified by moving the outer WHERE clauses
into the inner join expression because the outer SELECT clause is the “SELECT x”.
Thus, we have the following query:

SELECT T10_Lf.C1, T10_Rg.C1 AS C2, T10_Rg.C2 AS C3,
T10_Rg.C3 AS C4 FROM
I T10_Lf,
Te T10_Rg
WHERE T10_Lf.C1%(44)<=T10_Rg.C2 AND T10_Rg.C3<(T10_Lf.C1+1)*(44)

As you might notice, combining the expressions is not just simply concatenating
the expressions in WHERE or SELECT clauses, or relocating the WHERE clause
expression; the expressions also need to be appropriately adjusted by replacing the
appropriate attribute names. The simplified SQL plan in the example illustrates
such adjustment. []

Based on the idea introduced in Example 3.5.2, the SQL Plan Optimizer is
able to combine the SQL translation of the relational algebra tree fragments, which
matche certain patterns, into a single SQL SELECT block. By combining the SQL
expressions, the final SQL plan is more concise than or equivalent to the SQL
query that is generated by directly composing the SQL translation templates for
the XQuery expressions. The patterns for the relational algebra tree fragment that
the SQL Plan Optimizer handles are shown in the following paragraphs. For the
purpose of simplicity and generality, the parameters of the relational operations in
the algebra tree fragment are omitted.

Chapter 3: XQuery-to-SQL Query Processor 57

e Pattern 1: Project(AddColumn x (Select * (LoopJoin(T,,T.,))))

“x”7 denotes the repetition of the operation followed by the “x”. The relational
algebra tree fragment that follows the pattern can be translated into a single
SQL SELECT block?. The SELECT clause in the SELECT block is constructed
based on the parameters of the Project operators, the AddColumn operators,
and the LoopJoin operator from the algebra tree fragment. The WHERE
clause in the SELECT block is constructed based on the parameters of the
Select operators and the Loop.Join operator. A typical relational algebra tree
fragment that matches the pattern is the relational algebra tree that maps
the following SQL fragment:

(SELECT i,s,l —i*we AS I,r —i*xw, AS r
FROM 1,7,
WHERE % w, <! AND r < (i+1)*w.)

e Pattern 2: Select(Select * (7))

The algebra tree fragment that follows the pattern can be translated into a
single SQL SELECT block by the SQL Plan Optimizer. The parameters from
the Select operators are concatenated together to provide the expression of
the WHERE clause in the resulting SQL statement.

e Pattern 3: AddColumn(AddColumn * (7))

The algebra tree fragment that follows the pattern can be translated into
a single SQL SELECT block that consists of only one SELECT clause and
one FROM clause. The expression of the SELECT clause is constructed by
combining the parameters from the AddColumn operations.

e Pattern 4: Project(AddColumn * (7))

Similar to Pattern 3, a single SQL SELECT block for the algebra tree fragment
is constructed by combining the parameters from the AddColumn operations
and the Project operations for the SELECT clause. A typical relational algebra
tree fragment that matches the pattern is the relational algebra tree that
maps the following SQL fragment from the SQL translation template for the
element constructor:

"Here, we consider the input operations T,, 7., as views.

Chapter 3: XQuery-to-SQL Query Processor 58

CREATE VIEW Tynode('label’,T,) AS
SELECT s,l 4+ i * Wynode AS [, 7 4 i * Wynode AS 7
FROM @xFn

e Pattern 5: Project(AddColumn * (LoopJoin(Tt,,Te,)))

Similar to Pattern 1, the SELECT clause in the resulting SQL SELECT block is
constructed based on the parameters of the Project operators, the AddColumn
operators and the LoopJoin operator from the algebra tree fragment. The
WHERE clause in the SELECT block is constructed based on the parameters of
the LoopJoin operator. An example of the algebra tree fragment that matches
the pattern is the algebra tree that maps the following SQL fragment from
the SQL template for the XQuery znode operation:

(SELECT 4,'label’,0 AS l,we+1 AS r
FROM I,UNIT)

e Pattern 6: Project(AddColumn * (Select x (7¢)))

Similar to Pattern 1, parameters of the Project operators and the AddColumn
operators are combined to construct the SELECT clause; parameters from the
Select operators are concatenated to construct the WHERE clause.

e Pattern 7: Project(Select * (LoopJoin(Ty,,T:,)))

The approach to translate the algebra fragment into a single SQL SELECT
block is similar to Pattern 1. A sample fragment that matches the pattern
is the relational algebra tree that maps the following SQL fragment from the
SQL template for the XQuery last operation:

(SELECT wu.i AS i,u.s AS s,u.l AS l,u.r AS r
FROM
(...)u,
(...)wv
WHERE vv.l < u.l AND w.r < vv.r AND vv.i = u.i
) QxFn

Chapter 3: XQuery-to-SQL Query Processor 59

e Pattern 8: Project(Select * (1))

The fragment that matches the pattern is translated into a single SQL SELECT
block, where the expression of the SELECT clause is provided by the param-
eters from the Project operation and the WHERE clause is constructed by
concatenating the conditions from the Select operations.

You might notice that some patterns introduced above overlap with each other.
The SQL Plan Optimizer chooses the longest pattern that the algebra tree fragment
matches.

Eliminating Common Subexpressions

In the SQL translation templates introduced in Section 3.4.2, the input table pa-
rameters are repeatedly referenced in multiple locations within a template. For
example, in the SQL translation template for the XQuery children operation (see
Appendix A), the following common subexpression is referenced for three times:

(SELECT 4,s,l —i*we AS I,r —i*xw, AS r
FROM I,T,
WHERE ixw, <[l AND r < (i+1)*we)

Such kind of repetition frequently appears in many of the SQL templates. To
simplify the query plan, common table expressions® are used to generate the named
expressions for the repeatedly referenced common suberpressions in the SQL tem-
plates. By using common table expressions, the size of the generated SQL query is
greatly reduced. We use common table expressions for the following SQL fragments:

e The SQL translation of the index set I. In the SQL translation templates,
the index set I is defined as view and is frequently referenced in the SQL
translation templates. During the SQL query generation, whenever a new
index set [is constructed in the translation, a common table expression is
used to represent the new index set I.

e The SQL plans for the input table parameters (7,,...,7,,) of the SQL
templates. In most of the SQL translation templates for XQuery expressions,
the input table parameters are repeatedly referenced for several times. Using

8For detailed explanation for common table expression please check SQL reference.

Chapter 3: XQuery-to-SQL Query Processor 60

common table expressions to represent the table parameters can avoid the
duplication of the same SQL fragments.

e Other frequently appeared SQL fragments are also replaced by the common
table expressions.

A sampling SQL plan that is refined by using common table expression is shown in
Example 3.5.3.

Example 3.5.3 The following XQuery expression:

children(document('reviews.xml’))

can be translated into the following SQL query where common table expressions
are used:

WITH
ViewO AS
(SELECT 0 AS C1
FROM UNIT T1
),
Viewl AS

(SELECT T1_Lf.C1 AS C1,T1_Rg.C1l AS C2,
T1_Rg.C2-T1_Lf.C1x(44) AS C3,
T1_Rg.C3-T1_Lf.C1x(44) AS C4

FROM

ViewO T1_Lf,

(SELECT T2_Rg.C1 AS C1,T2_Rg.C2+T2_Lf.C1%(44) AS C2,
T2_Rg.C3+T2_Lf.C1x(44) AS C3

FROM ViewO T2_Lf, reviews T2_Rg

) T1_Rg

WHERE T1_Lf.C1#(44)<=T1_Rg.C2 AND
T1_Rg.C3<(T1_Lf.C1+1)*(44)

)

(SELECT C2 AS C1,C3+C1*(44) AS C2,C4+C1%x(44) AS C3 FROM
(SELECT *
FROM Viewl T2_Lf
WHERE NOT EXISTS (
SELECT * FROM
(SELECT *
FROM Viewl T3_Lf
WHERE NOT EXISTS (
SELECT =
FROM Viewl T3_Rg

Chapter 3: XQuery-to-SQL Query Processor 61

WHERE T3_Lf.C3>T3_Rg.C3 AND T3_Lf.C4<T3_Rg.C4
AND T3_Lf.C1=T3_Rg.C1)
) T2_Rg
WHERE T2_Lf.C3=T2_Rg.C3 AND T2_Lf.C1=T2_Rg.C1
)
) T1

In the WITH clause, View0 is the name of the the common table expression for the
initial set I in the input environment for the whole query. The initial index set [
always contains only one tuple (0). Viewl is the common table expression for the
SQL plan for the expression, document(’eviews’), whose result serves as the input
table parameter to the children operation. The SQL plan for “document('reviews’)”
is repeatedly referenced for three times in the SQL template. By using a common
table expression, the repeated common subexpressions that translate the XQuery
fragment, document('reviews’), are replaced by the same result table Viewl. O

The optimization methods we introduced above are very effective and can
greatly reduce the size of the final SQL query, often by up to 80%.

3.6 Physical Plan Translation

The translation from a relational algebra tree into a physical plan is straight for-
ward. The intermediate relational algebra tree can be treated as a tree-form of the
physical plan. Thus, the physical plan can be easily generated by traversing the
intermediate relational algebra tree. The generated physical plan is very similar to
the representation of the relational algebra tree shown in Section 3.4.2. Before the
generated physical plan is output to the XQuery-enhanced Relational Engine [15],
the physical plan should be optimized using the existing relational optimization
techniques, such as join order selection algorithms. Since the focus of the thesis
is the XQuery-to-SQL translation, the details of the physical plan construction are
omitted in the thesis.

Chapter 4

Optimization of the
XQuery-to-SQL Translation

This chapter introduces a series of optimization approaches for the XQuery-to-SQL
translation. Section 4.1 introduces succinct SQL translation templates for XQuery
expressions, which is an improvement over the original SQL translation templates
introduced in Chapters 2 and 3. Section 4.2 presents simplified SQL translation
of sequences of basic operations. The preferable merge-join approach, which can
efficiently handle value joins in FLWR expressions, is introduced in Section 4.3.

4.1 SQL Translation Templates Optimization

Based on the SQL translation templates introduced in Section 3.4.2, we can see
that for an index value ¢ € I from an environment E = {I,T,, ...T,, }, the cor-
responding tuples (s,[,r) from T, always satisfy the two inequalities: i * w,, <[

AND 7 < (i + 1) % w,, (w,, is the width of T},). Based on these two inequalities,
two equations are derived and are shown in Lemma 4.1.1.

Lemma 4.1.1 Given an environment £ = {I,T,, ...T, }, an index value ¢ € [
and its corresponding tuples (s,l,r) € Ty, in {T,,...T,, } satisfy the following
equations:

l—i*xw, = MOD(,w,,) (4.1)

62

Chapter 4: Optimization of the XQuery-to-SQL Translation 63

where “MOD” and “/” are integer operators. [J

Based on the above equations, the SQL translation templates for XQuery ex-
pressions can be simplified by eliminating the join operations of I and 7,,. By
performing arithmetic computations on the left-endpoint values [of the tuples from
T,,, we are able to identify their corresponding environments without joining with
the environment index set I. The modified SQL translation templates for XQuery
expressions are shown in the following paragraphs. Since the join operation of I and
T,, appears frequently in the SQL templates for XQuery expressions, such modifi-
cation not only simplifies the final generated SQL query and the physical plan, but
also reduced the size of the final relational plans.

4.1.1 The Simplified Templates for XQuery Basic Opera-
tions

In the original SQL translation template for XQuery basic operations (see Sec-
tion 2.4.2), the input table parameters Ty ,...,T,, should relate their tuples to
the corresponding environments by performing join operations with the relation I.
However, using the equations in Lemma 4.1.1, the environment that a given tuple
in 7}, belongs to can be identified without using the index set I. The template for
XQuery basic operations is simplified as follows:

CREATE VIEW Txpn(Th,,-..,T%,,) AS
SELECT s,l 47 * wxrn AS I,7 41 % wxr, AS 7

FROM Qxrn (
(SELECT [/wy, AS i, s, MOD(l,wg,) AS I, MOD(r,w,,) AS r
FROM T,),

(SELECT [/w,,, AS i, s, MOD(l,ws,,) AS I, MOD(r,w,,,) AS r
FROM T,)

4.1.2 The Simplified Templates for the FOR Expression

Similar to the modification for basic operations, the SQL translation of for expres-
sion can be simplified by using the equations from Lemma 4.1.1. The translation of
the new environment index set I’ remains unchanged, while the translations for the

Chapter 4: Optimization of the XQuery-to-SQL Translation 64

new representations 7, of the local variables and the translation for the represen-
tation 7 of the new bound variable provided by the for expression are simplified
as follows:

CREATE VIEW T7.(T.) AS
SELECT s, MOD(z.l,w.) + r.l x we AS I,
MOD(z.r,we) + 7.l * we AS 7
FROM T, z, ROOTS(T:) r
WHERE r. <xz. AND z.r <r.r

CREATE VIEW T, (Ty,,T.) AS
SELECT s, MOD(z.l,wy,;) + .l % wy, AS I,
MOD(x.1, wy,) + .l * wy, AS 7
FROM T, z, ROOTS(T,) r
WHERE 7.l/we = x.l/wy,

4.1.3 The Simplified Templates for the WHERE Expres-
sions

The Simplified Templates for the New Environment Index Set I’

The SQL translations for the new environment index set I’ for different types of
where expressions can be simplified as follows.

1) The EMPTY Operation

The simplified SQL template for the empty operation in the where expression
“where empty(e) return...” is shown as follows:

Chapter 4: Optimization of the XQuery-to-SQL Translation 65

CREATE VIEW I'(T.) AS
SELECT =+
FROM [
WHERE NOT EXISTS (
SELECT =*
FROM
(SELECT !/w. AS i, s, MOD(l,w.) AS I, MOD(r,w.) AS r
FROM T,
) Te_i
WHERE I.i=T,;i)

By using the above simplified SQL template, the less-equal and less comparison
operations in the original SQL template provided in Section 3.4.2 are replaced with
an equality comparison operation.

2) The NOT EMPTY Operation

The simplified SQL template for the not empty operation in the where expression
“where not empty(e) return...” is shown as follows:

CREATE VIEW I'(T.) AS
SELECT 1
FROM 1
WHERE EXISTS (
SELECT =*
FROM
(SELECT l/w. AS i, s, MOD(l,w.) AS I, MOD(r,w.) AS r
FROM T,
) Te_i
WHERE [.i=T,;i)

Similar to the empty operation, by using the above simplified SQL template, the
less-equal and less comparison operations in the original SQL template provided in
Section 3.4.2 are replaced with an equality comparison operation.

3) The Comparison Operations

Chapter 4: Optimization of the XQuery-to-SQL Translation 66

For the where expression with equality comparison operation “where el =
e2 return...”, the following fragment from the original SQL translation template
for the new index set I”:

(SELECT s FROM T,, WHERE i*we, <l AND 7 < (i +1)*we,)

(SELECT s FROM T, WHERE i x we, <l AND 7 < (i + 1) % we,)

can be replaced by the following equivalent SQL fragment:

(SELECT s FROM T,, WHERE [/w., =i)

(SELECT s FROM T,, WHERE [/we, =i)

The SQL templates for the where expressions with the other comparison oper-
ations, such as “>" “>=" “<” and “<=", can use a similar modification.

The Simplified SQL Template for the New Representations of Variables

The SQL template for the new representations of the local variables, which are
provided by the input environment for the where expression, is simplified as follows:

CREATE VIEW T) AS
SELECT s,l,r
FROM T,,,I'
WHERE [/w,, =i

Based on the two equations in Lemma 4.1.1, the above simplified SQL templates
are equivalent to the original SQL templates introduced in Chapters 2 and 3, and
simplified SQL templates produce exactly the same results as those from the original
templates.

Chapter 4: Optimization of the XQuery-to-SQL Translation 67

4.2 Simplified Translation for Sequences of Basic
Operations

As we mentioned in previous chapters, the XQuery FLWR expressions change the
sequence of input environments by either expanding the size of the environments
or filtering out the unwanted environments. For XQuery basic operations, however,
the input environments remain unchanged after the operations. For example, a
children operation, children(e), returns all the children of the resulting XML forest
obtained by evaluating the expression e without changing the input environment
E.

The SQL translations for the various basic operations share the same pattern.
At the beginning of the translation for a basic operation, the index set values
i are introduced to the tuples from the input table parameters (1,,,...,T},) to
construct the corresponding tuples (i, s,{’,r") that contain the input environment
information. The following SQL fragment! is used to construct such kind of tuples
for an input table parameter 7. :

(SELECT l/w,, AS i, s, MOD(l,w,,) AS I, MOD(r,w,,) AS 7’
FROM Ty,) T,

i

At the end of the translation for a basic operation, the index values i are eliminated
from the resulting tuples by transforming the tuples (i, s,1’,7’) back into the form
of (s,1,r). The following SQL fragment achieves such goal:

SELECT s,l’ + i % wxpn AS I,7" + i % wxF, AS 7
FROM (

) QXFn

During the evaluation of a sequence of consecutive basic operations, the en-
vironment index values i are repeatedly introduced/eliminated from the tuples.
Since the environment does not change during the evaluation of a sequence of ba-
sic operations, such repeated introduction/elimination is unnecessary and should
be avoided. Algorithms are designed to detect sequences of consecutive primitive

In the following sections, we use the simplified templates for the SQL translations for XQuery
expressions.

Chapter 4: Optimization of the XQuery-to-SQL Translation 68

operations within the input query and to translate each sequence together.

Example 4.2.1 The following sequence of basic operations is an XQuery fragment
from XMark query Q8 [1]:

children(select('person’, children(select(’buyer’, children($t)))))

During the optimized evaluation process, the environment index values ¢ are firstly
introduced to the input tuples (s, [, r) from $¢ before the evaluation of the beginning
operation, children($t¢), in the sequence; at the end of the translation for the last
operation, the index values ¢ are eliminated from resulting tuples (i, s,l’,r") and
final tuples in the form of (s,[,r) are returned. [J

The algorithm for XQuery basic operations to handle their input and output
tuples within different situations (whether they are within a sequence of primitive
operations or not.) is shown as follows.

Algorithm TranslateXFn. This algorithm is applied to translate an XQuery
basic operation into a relational algebra tree during the evaluation process. The
algorithm avoids the repeated introduction/elimination of the index set I whenever
the current basic operation is a part of a sequence of consecutive basic operations.

The input of the algorithm includes the input table T, (with a width w,), which is
the result of the child node of the current basic operation, the input environment,
environment, the information about the type of the parent node for the current
operation, parentType, and the type of the child node, childType. This information
serves as a switch to control what form of tuples is returned by the current operation.
The current basic operation returns different form of tuples ((s,l,r) or (i,s,U',7"))
according to the parent and child expression types. [J

Using the optimization approaches introduced in Section 4.1 and Section 4.2, the
XQuery-to-SQL Query Processor is able to generate a more concise SQL query.
Compared to the SQL plan that is generated without using these kinds of opti-
mization approaches, the size of the refined SQL plan for a complex XQuery query
can be reduced by up to 45%. For example, for a SQL query, which is gener-
ated without applying these optimization approaches, has a size of 18Kb, while the
optimized SQL query has a much smaller size of 10Kb.

Chapter 4: Optimization of the XQuery-to-SQL Translation 69

Algorithm 1 TranslateXFn
Require: T., environment, childType, parentType
Te_i - Te
{If the child node is not a basic operation, T, contains tuples (s,l,r).}
if childType is not a basic operation then
T, ; = the relational algebra tree for the SQL template that transforms tuples
(s,l,r) € T, into the form of (i, s,l', 1)
end if
6: Translate the current basic operation with input table 7, ; and obtain a rela-
tional algebra tree Ty, , which returns tuples in the form of (i, s,1’,1").
7. wxg, = the width function with the input w, {Set the width of the result of the
current basic operation. }
8: {If the parent node is a FLWR expression, tuples (s,[,r) should be returned.}
9: if parentType is a FLWR expression then
10: Txg, = the relational algebra tree for the SQL template that converts the
resulting tuples of Tg,.. back into the form of (s,,7)
11: else
12: Txpn = TQXFn
13: end if
Ensure: Tkg,

ot

4.3 Merge-join Approach to FLWR Expressions

To achieve performance in processing XQuery queries comparable to that of us-
ing RDBMS, the inefficient nested-loop evaluation for FLWR expressions should
be avoided. This section introduces the preferable merge-join approach that ef-
ficiently handles value joins in the FLWR expressions. By using the merge-join
approach, the nested for expressions that are independent of each other are eval-
uated independently. The merge join technique? can be applied to evaluate the
where expressions that correlate the variables bound by the for expressions. The
following example illustrates the problem scenario.

Example 4.3.1 We use the query ” For each book found at both bstorel.example.com
and bstore2.example.com, list the title of the book and its price from each source.”

(Q5) from W3C Use Case "XMP” [3] as an example:

2Similar to the relational merge join algorithm or other algorithmically preferable join algo-
rithms.

Chapter 4: Optimization of the XQuery-to-SQL Translation 70

<books-with-prices>
{
for $b in doc(”http://bstorel.example.com/bib.xml”)//book,
$a in doc(”http://bstore2.example.com/reviews.xml”)//entry
where $b/title = $a/title
return
<book-with-prices>
{ $b/title }
<price-bstore2>{ $a/price/text() }</price-bstore2>
<price-bstorel>{ $b/price/text() }</price-bstorel>
</book-with-prices>
}

</books-with-prices>

This query has two nested for expressions that are independent to each other (shown
in boldface). Following the for expressions is a where expression (shown in italic)
with an equality comparison condition whose two operands are path expressions
that depend on variables $a and $b, respectively.

In the nested-loop evaluation, given the initial input environment E0 = {I,} for
the whole query, the first for expression is first evaluated to produce an environ-
ment E° which provides binding values for the variable $b. Then, the second for
expression is evaluated using the environment E° to produce a new environment
E% containing the binding values for variables $6 and $a. Let E“ represents the
bindings for the variable $a generated by evaluating the second for expression using
the environment £0. The new environment E* is the result of a Cartesian product
of the two sets of binding values for the variables $b and $a (E** = E® x E%).
Finally, the equality comparison condition in the where clause is applied to filter
out the unwanted bindings for the variables.

In the merge-join approach the two for expressions are evaluated independently
using the same input environment E0. As a result, two new environments E°
and E® are created, which provide sufficient information to evaluate the equality
comparison condition in the where clause. These two environments can be merged?
together with the where condition, using an efficient merge join algorithm to avoid
the generation of a Cartesian product as that in the nested-loop evaluation. The
resulting environment is exactly the same environment generated using the nested-
loop evaluation.

3Similar to the merge join in RDBMS.

Chapter 4: Optimization of the XQuery-to-SQL Translation 71

Abstract

XQuery
Optimizer

Lexical
Analyzer

XQuery Query Parser

Stream Syntax Tree

Abstract Syntax Tree

v

Relational
Algebra Tree

Constructor

Relational Algebra Tree

+ Relational Algebra Tree

SQL Plan
Constructor

Physical Plan
Constructor

SQL Query
[}
£
° w
SQL Plan § 2 Physical Plan
.. ©
Optimizer ol
c
Ss
T X
SQL Query ¢ & o Physical Plan
= Optimizer
8=
(=1
RDBMS ““JJ e
(DB2, Oracle,...) 52 Physical Plan
: ¢
[any

Relational Encoding

XQuery-Enhanced Relational

Engine
XML Decoder

XML Forests XML Forests

Figure 4.1: THE OPTIMIZED XQUERY-TO-SQL QUERY PROCESSOR

Using the merge-join approach, the query processor efficiently evaluates the
nested FLWR expressions using the preferable merge join operation and avoids the
inefficient nested-loop join operation. [J

Before we can utilize the merge-join approach, we must identify the merge-join
fragments of the input XQuery that can utilize the merge-join approach. However,

Chapter 4: Optimization of the XQuery-to-SQL Translation 72

it is very difficult to design an algorithm to capture all the possible fragments.
We proposes two heuristic merge-join patterns, the Nested-FOR Pattern and the
Multi-FOR Pattern, to identify a considerable number of the merge-join fragments
in XQuery queries. In addition, we design rewriting rules for XQuery expressions
that improve our chances of applying the merge-join approach. Details for the
two merge-join patterns and the rewriting rules are introduced in the subsequent
sections.

Based on the merge-join patterns and the rewriting rules, an XQuery Opti-
mazer is designed and added to the XQuery-to-SQL Query Processor. The updated
framework for the optimized XQuery processor is shown in Figure 4.1. Given an
input XQuery, the XQuery Optimizer first identifies the merge-join fragments by
performing query rewriting using the rewriting rules and the pattern recognition us-
ing the merge-join patterns. Then, the XQuery Optimizer rewrites the recognized
fragments into merge-join expressions, which are specially designed to distinguish
the merge-join fragments to other XQuery expressions* and to facilitate the use of
the merge-join strategy in latter phases of the translation. The XQuery Optimizer
is introduced in Section 4.5.

4.3.1 Definitions

Before we describe the details of the merge-join approach, we introduce the follow-
ing definitions.

Definition 4.3.2 Given a set of variables {$z1,...,%z,,} and an XQuery expres-
sion expr, we say that expression expr depends on variables {$z1,...,%x,,}
if {$z1,...,8xz,,} is the set of all variables that appear in the expression expr. We
use the notation of expr($zy, ..., $x,,] to represent an XQuery expression expr that
depends on variables $x1,...,$x,, O

Definition 4.3.3 Given an environment F, and an XQuery expression expr, we
say that expression expr depends on environment FE, if expr and E, satisfy
the following constraints:

Let {$z1,...,%x,,} be the list of all the variables that the XQuery expression
expr depends on. Let environment E, be one of the environments {E,,, ..., F,, }°

4The syntax of Minimal XQuery is extended by adding the merge-join expressions.

5During the evaluation of an XQuery query, a new environment is produced whenever a FLWR
expression in the query is evaluated. These kinds of environments that occur during the evaluation
procedure for an XQuery query form the series of environments {E,,, ..., E;,} in the order of
their first appearance during the evaluation process.

Chapter 4: Optimization of the XQuery-to-SQL Translation 73

created during the evaluation of the XQuery query. Environment F, is the first
environment that contains the value bindings for all variables in {$z1,...,$z,,}.

We use the notation of expr[E,] to represent an XQuery expression expr that
depends on environment F,. []

Definition 4.3.4 Given an environment E, and a wariable expression $x in an
XQuery query, we say that variable $x depends on environment E, if $x and
E, satisfy the following constraints:

Let expr be the expression that provides binding values for the variable $2°¢ in
the XQuery. Let the environment E, be one of the environments {E,,, ..., E,, }
created during the evaluation of the XQuery. If expression expr depends on the
environment F,, then we say that variable $x depends on environment E.,.
Let {$z1,...,%z,,} be the list of all the variables that expression expr depends on.
Then, we also say that variable $x depends on variables $x1, ..., $x,,. O

Definition 4.3.5 Given two variable expressions $x and $y in an XQuery query,
we say that variables $x and $y are independent of each other if $x and
$y satisfy the following constraints:

Let {$x1,...,8z,} and {$yi,...,%y,} be the lists of all variables on which
the variables $x and $y respectively depend. We say that variables $x and $y
are independent of each other if $zx is not in {Sy,,...,%y,} and $y is not in

{$z1,...,82,}. O

4.3.2 The Nested-FOR Pattern
The Pattern

Pattern 4.3.1 (Nested-FOR) An XQuery fragment that matches the following
XQuery pattern can utilize the merge-join approach:

FOR $x IN expr[E,] DO
WHERE pathexp[$x] = pathexp[$z;] RETURN
(WHERE pathexp[$z| = pathexp[$z;] RETURN)x

SFor an XQuery query, only the for expressions “for $x in expr do” and the let expressions
“let $ = expr in” create bindings to the variables that appear in the XQuery query. The
expression expr in the for/let expression provides bindings to the variable $z in the for/let
expression.

Chapter 4: Optimization of the XQuery-to-SQL Translation 74

We call an XQuery fragment that matches the merge-join pattern a pattern frag-
ment. The expression expr[E,] from the pattern represents an XQuery expression
that depends on the environment F, generated during the evaluation of the sur-

Wy ”

rounding expressions. “x” means zero or more matches.

The pattern has the following constraints:

e The pattern starts with a for expression, which is followed by a list of where
clauses. There must be at least one where clause in the where clauses se-
quence.

e The conditions in the where clauses are label equality comparisons. For each
where condition, there are two path expressions pathexp[$x] and pathexp[$z;].
pathexp[$x] represents a path expression that only depends on the variable
$2 introduced by the for expression in the pattern. pathexp[$z;] represents
a path expression that only depends on a variable $z; from outer bindings’.
Let {$z1,...,82;} be the list of all variables that appear in path expres-
sions pathexp[$z;]. Variable $z is independent of any variable from the set

{$z1,...,%x,}. O

The following examples show the pattern fragments that match Nested-FOR
Pattern.

Example 4.3.6 There are two fragments (shown in boldface) that match Nested-
FOR Pattern in the following query:

for $r in document("record.xml")//record,
$p in document(”patient.xml”)//patient,

where $r/patientSSNo=8$p/Ssno
return

for $e in document(”record.xml”)//entry

where $e/diagnosis=8r/entry/diagnosis

and $e/diagnosis = "flu"
return <res> $p/name,
<occured>$e/@date</occured></res>

W

The first fragment starts from the second for loop “for $p in ...” in the query.
The second fragment starts from the third for loop “for $e in ...”. These two
fragments are replaced with two merge-join expressions by the XQuery Optimizer
and can be evaluated using the merge-join approach. [

"The outer bindings could be provided by the outer for loops or the outer let expressions.

Chapter 4: Optimization of the XQuery-to-SQL Translation 75

The pattern fragments shown in Example 4.3.6 are the simplest fragments that
match Nested-FOR Pattern. A more complex fragment that follows Nested-FOR
Pattern is shown in the following example.

Example 4.3.7 The following query has one fragment (shown in boldface) that
follows Nested-FOR Pattern:

for $p in document("patient.xml")//patient,
$e in $p/entry,
$s in $e/sn
return
<s>
for $r in $p/id
where $r/patientSSNo=$e/Ssno return
where $e/diagnosis="flu" return
<res> $p/name,
<occured>$e/@date</occured></res>
</s>

The for loop “for $r in $p/id 7 together with the where clause can be replaced
with a merge-join expressions by the XQuery Optimizer and be executed using
merge-join approach. [J

The Merge-join Expression

An XQuery fragment that follows Nested-FOR, Pattern is replaced with one single
merge-join expression named NestedFOR, which is specially designed to represent
the pattern. The merge-join expression for Nested-FOR Pattern is shown as follows:

NestedFOR[conditions|(forloop)

where conditions lists the conditions from the sequence of where clauses, and
forloop lists the for expression. The Nested FOR expression is added to the Mini-
mal XQuery syntax as a new kind of expression. Hence, the input query shown in
Example 4.3.6 is rewritten by the XQuery Optimizer as follows:

Chapter 4: Optimization of the XQuery-to-SQL Translation 76

for $r in document("record.xml")//record do
NestedFOR [$r/patientSSNo=$p/Ssno]
($p in document("patient.xml")//patient)
return
NestedFOR[$e/diagnosis=$r/entry/diagnosis]
($e in document("record.xml")//entry)
return
where $e/diagnosis = "flu"
return <res> $p/name, <occured>$e/@date</occured></res>)

Translation of the Pattern

Let E; = {Lin, Ty, ..., T, } be the input environment for the pattern fragment of
Nested-FOR Pattern. Fj;, is created by evaluating the expressions that appear be-
fore the pattern fragment and serves as an input environment for the for expression
(the first expression) in the pattern fragment. Let E, = {L,, T ,..., T2 } (m < n)
be the environment that the expression expr[E,| in the for expression® depends on.
The merge-join evaluation for the pattern can be divided into four steps.

Step 1. Evaluate the FOR Expression:

Since variable $z depends on environment E,, the for expression from the pat-
tern, “FOR $x IN expr[E,| DO”, can be evaluated in the environment E,. The
SQL translation technique introduced in Section 4.1 is used to translate the for ex-

. . ’ / / .
pression. As a result, a new environment E, = {I., T ..., T7 T7 } is produced.

Step 2. Evaluate the Path Expressions in WHERE Expressions:

Before performing the equality comparisons for the where clauses, the path
expressions in the where conditions are evaluated. The methodology for translating
path expressions is exactly the same as discussed in the previous parts of the thesis.

Let k be the total number of where clauses in the pattern fragment. Based on
the constraints of the pattern, there are two types of path expressions in the where
clauses and each type has a total number of k path expressions. Let pathexp?[$z] =

8For simplicity, if not specifically stated, the expressions we mention in the merge-join approach
refer to the expressions that appear in the pattern fragment.

Chapter 4: Optimization of the XQuery-to-SQL Translation 7

pathexpi™[$z1), ..., pathexp?[$z] = pathexpi®[$z;] be the equality comparison con-
ditions from the where clauses. Path expressions, pathexp?[$z], ..., pathexp;[$z],
which only depend on the variable $z from the for expression in the pattern are eval-
uated in the environment E! and produce the corresponding results 7. cf”l/, e ,Tfk' ,
listed in the order of their corresponding where conditions. These tables along with
the index set I/ are joined together into one table 1T to provide information for

further evaluation of the where clauses.

The second form of path expressions, pathexp!*[$x1], ..., pathexpi"[$z;], which
depend on variables bound by the outer bindings are computed with the environ-
ment F;,. Let Tj?, . ,Tjg be the corresponding results. These tables along with
the index set [;, are joined into one table IT.! for the further evaluation of the

where clauses.

Step 3. Evaluate the WHERE Expressions Using the Merge Join:
The two environments {I,, 7%, ..., 7=} and {I;,, T:", ..., Ti"} obtained from

ey’ el
previous step are used to evaluatle the where clauses. Since the where conditions
are the label equality comparisons, for each index value i € I, there should exist
one and only one corresponding tuple in Te"’“"i' e {T. e”*“l', LT é”k/ }. Similarly, for each
index value 7 € I;,, there should exist one and only one corresponding tuple in
T e {1, ... T, e’:} If the above constraints are not satisfied, an error should be
reported and the execution procedure should be terminated. The scalar fulselect

expression is used to properly handle such situation.

Based on the constraints for the equality comparison condition, scalar fulselect
expressions are used to join the environment {17, Te"’“"l/, o ,Te:”k' } into table IT* and
the environment {I;,,,7¢",...,T:"} into table IT:7, respectively. IT and IT:"
both contain attributes (i, s1,...,s;) with one column for the index values from
I or I, and a column of node labels s; for every table T2 € {T,... ,Tg;'} or
T e {1, ... T}

ey’

S 617...,Tfk’. To join the
environment {1/, Tfl', ..., TZ} into table ITY , we have the following SQL transla-
tion template:

Let w? wy, be the corresponding widths for tables sa

Chapter 4: Optimization of the XQuery-to-SQL Translation 78

CREATE VIEW IT® AS
SELECT 1,
(SELECT s FROM T2 WHERE l/w® =I..i) AS s,

(SELECT s FROM T2 | WHERE l/w? =1I,.i) AS sj_1,

(SELECT s FROM T2 WHERE l/w? =I,.i) AS s
FROM I,

The same SQL translation template is also applied to the environment {1;,, ", ...,

Te’:} to generate the table IT". Then, the two resulting tables, IT;’ and IT, are
joined together to obtain the set of pairs of indices for the matching environments
that satisfy the where conditions. The SQL translation template and the fragment

of the physical plan for generating the indices pairs are introduced as follows.

For the two environments F;, and E, that are used to evaluate the pattern frag-
ment, F, is either an environment generated before E;, or exactly the environment
E;.°. Let $f1,...,8f; represent the variables that satisfy the following constraints:

1. the binding values of the variables are provided in the environment FEj;, while
not in the environment FE,;

2. the variables are bound by the nested for expressions;

3. the for expressions, which provide bindings for the variables, contribute to
the extension of the environment F, into the environment FEj;,.

Example 4.3.8 is used to illustrate the variables that satisfy the constraints for a
merge-join fragment in an XQuery.

Example 4.3.8 For the merge-join fragment (shown in boldface) in the following
query.

9If the environment E, is exactly the environment E;,, then the evaluation process of the
merge-join fragment using the merge-join approach is exactly the same as that using the nested-
loop strategy.

Chapter 4: Optimization of the XQuery-to-SQL Translation 79

for $p in document("patient.xml")//patient,
$e in $p/entry,
$s in
for $t in $e/sn
return $t
return
<s>
for $r in $p/id
where $r/patientSSNo=$e/Ssno return
where $e/diagnosis="flu" return
<res> $p/name,
<occured>$e/@date</occured></res>
</s>

the variables that satisfy the constraints defined above are the variables $e and $s.
Although the variable $¢ is also bound by a for expression, it does not satisfy the
third constraint because its host for expression does not contribute to the creation
of the input environment for the merge-join fragment. [J

For the variables $ f1, ..., $f; defined above, let TY,, ..., T, (with widths wy,, .. .,
wy,) be the corresponding representations in Ej,. The SQL translation template
for creating the set of pairs of indices based on the where conditions is as follows:

CREATE VIEW I, AS
SELECT op0.: AS %;,,0pl.i AS i,
FROM IT™ op0, ITY opl
WHERE o0p0.s; = opl.s; AND ... AND op0.s; = opl.si
AND (... (op0.i/wy;)/wy,_, ...) wy = opl.i/w,

where w,, is the width of the representation 7). € E! for the variable $z whose value
is assigned during the generation of 7). As a result, the table I, contains the set
of pairs of indices for the matching environments from F;, and E.

For the physical plan fragment that generates the set of pairs of indices, tuples
in tables IT* and IT are ordered first in the order of the label values from the
resulting tables of the path expressions, which are from the most selective equality
comparison condition in the where clauses. Let pathexp?[$z] = pathexpi™[$z;] be
such most selective condition in the where clauses. Then an preferable merge
join operation is applied to join the tables IT? and IT with the condition

Chapter 4: Optimization of the XQuery-to-SQL Translation 80

IT®.s; = IT™.s;, which corresponds to the most selective where condition. Af-
ter that, a sequence of relational select operations' whose conditions correspond
to the remainder of the where conditions are applied to the joined result!!. Finally,
a project operation is applied to the results to extract the set of pairs of indices
(IT= i, IT") for the matching environments.

Compared with the SQL translation template for I,q,, in the corresponding
physical plan fragment, we can specifically choose the merge join operation to ob-
tain the indices pairs for the matching environments, while for the SQL translation,
the choice of using the merge join operation or the nested-loop join operation is
determined by the query processor in RDBMS!2.

Step 4. Construct the New Environment:

There are two sets of environments obtained in the previous steps of evaluation:
the environment E;, and the environment E!. The two environments and the
matching indices I,4;, are used to construct the input environment for the remainder
of the query. This environment is identical to the one we would have obtained by
using the nested-loop evaluation. Let E' = {I', T, ,...,T, T} be the environment
produced by the merge-join approach, where I’ is the new environment index,
T, ,...,T, arethe new representation for the local variables provided by Ej,, and

T! is the representation of variable $z. Let w,, be the width of T}, € {T},,..., 1%, }
in E;,. The environment £’ is defined as follows:

CREATE VIEW I'(Iuir) AS
SELECT iy, * wy + MOD(iy, w,) AS i
FROM Lpgir

CREATE VIEW T7, (Ipair,Ts;) AS
SELECT s, (iin * Wy + MOD(ig, wy)) * wy, + MOD(l,w,,) AS I,
(tin * Wy + MOD(ig, wy)) * wy, + MOD(r,wy,) AS r
FROM Lpair, T,
WHERE 1/wg, = is

0The select operation is a relational operation introduced in Chapter 3.

UTf there are only one where clause in the merge-join expression, then the select operations are
omitted.

12Hence, although our processor generates the SQL queries in such a way that enables the use
of the merge join, the RDBMS might not choose the preferable merge join.

Chapter 4: Optimization of the XQuery-to-SQL Translation 81

CREATE VIEW T/(Ipair, T.) AS
SELECT s, (i * wy + MOD(ig, wy)) * w, + MOD(I, w,) AS I,
(1in * wy + MOD(ig, wy)) * wy + MOD(r,w,) AS r
FROM Ipair, T,

WHERE [/w, = iy

Figure 4.2 illustrates the translation process for evaluating the fragments that
match Nested-FOR Pattern. Example 4.3.9 illustrates the SQL translation for
Nested-FOR Pattern.

Example 4.3.9 The following XQuery fragment is used to illustrate the process
of the translation for Nested-FOR Pattern:

for $c in document("client.xml")/client/id do
for $o0 in document(”order.xml”)/order/cid do
where $c/text()=%0/text()

return ...

In this XQuery fragment, there is one merge-join fragment (shown in boldface) that
matches Nested-FOR Pattern. For the path expression, document ("client.xml")
/client/id, let T;; be the representation of the path expression result evaluated
using the initial environment Ey = {I}. For the path expression, document ("order
.xml")/order/cid, let T,,; be the representation of the path expression result
evaluated in the initial environment Ey. The tuples in T;4 and T,;4 are as follows:

1 Tia(wia = 20) Teia(weia = 20)
i s |1 [r s [1 [r
0 id 1 4 cid 5 8
id1 2 3 id1 6 7
id 11 14 cid 15 18
id2 12 13 id3 16 17

The input environment for the merge-join fragment is E¢ = {I., T.}, which is
generated by evaluating the first for expression “for $c in ...” in the query.
The Dynamic Interval encodings for I, and T, are as follows:

I. T.(we = 20)
i S | 1 | r
1 id 21 24
id1 22 23
11 id 231 234
id2 232 233

Chapter 4: Optimization of the XQuery-to-SQL Translation 82

Input environment Environment for the for loop

J'r'»";'.n — { "'?'n 1 l"l‘-’e‘J ----- l"r.-’f‘u } Jlr"‘1:1‘- = {‘f:l‘-- -'Ilr‘:l]’ffj pooos I J|>

Tm

1
Evaluate the for loop

Evaluate path expressions o e o e’ et
P P F —{‘f;n'fn'.j""'fn'.m' .

Y

T ! ' 1
{.Ilr_r'n..llrfljr|Ire__;:} {Jlr;]u_-JIr!ml llll'k}
I |
Scalar fulselect Scalar fulselect
f!‘rl? 'l'I.'\'l
frik] 5
. T !: 1 "n'

new

Figure 4.2: THE SQL TRANSLATION FOR NESTED-FOR PATTERN

The merge-join fragment is computed using the following steps:

1. First, the for expression “for $o in ...” is evaluated using the initial environ-
ment Fj since it does not depend on any variable. The resulting environment
E° ={1,,T,} after such evaluation is as follows:

Chapter 4: Optimization of the XQuery-to-SQL Translation 83

I, To (wo = 20)
i S | 1 | r
5 cid 105 108
id1 106 107
15 cid 315 318
id3 316 317

2. Then, the path expression $c/text() in the where clause is computed us-
ing input environment £° and produces the resulting table T§, Jteat with the
width wge/tess = we. The path expression $o/text() is evaluated using in-
put environment £° and generates the resulting table T¢ Jteat with the width
Wso/text—w,- Lhe Dynamic Interval encodings for Tg, Jtext and Tg, Jteqt ATE BS

follows:
Ie T§c text (w$c/tezt = 20) I, T§O text (w$0/tezt = 20)
1 S | 1 | T 1 s | 1 | r
1 id1 22 23 5 idl 106 107
11 id2 232 233 15 id3 316 317

3. Scalar fulselect expressions are then used to join the environment {I., T§, /tm}
into table IT¢ and the environment {1,, Tg, ..} into table IT7, respectively:

CREATE VIEW ITC AS
SELECT 1,
(SELECT s FROM T¢

$c/text WHERE l/w$c/tea:t =1.1) AS s
FROM I,

CREATE VIEW IT? AS
SELECT 1,
(SELECT s FROM T¢, ., WHERE I/wso/err = loi) AS s1
FROM I,

Tuples in tables ITY and I'T} are as follows:

ITS IT?

i | s1 i | s1
1 id1 5 id1
11 | id2 15 | id3

Chapter 4: Optimization of the XQuery-to-SQL Translation 84

These two tables are joined together using a join condition corresponding to
the equality comparison condition in the where clause. Then, the set of pairs
of indices for the matching environments are extracted from the results of the
joined tables. We have the following SQL translation to generate the pairs of
indices :

CREATE VIEW I, AS
SELECT opl.i AS 4, 0p2.i AS iy
FROM IT¢ opl, IT? op2
WHERE opl.s; = op2.s51

In our example, the tuples in table I,q;, are as follows:

Ipair

Yin | lx

4. After the pairs are obtained, the new environment E' = {I’, T/, 7"} for the
remainder of the query is constructed using the templates introduced in Step
4 of the translation of Nested-FOR Pattern:

CREATE VIEW I’(Ipui) AS
SELECT 4, * wo + MOD(iy, w,) AS i
FROM Lpgir

CREATE VIEW 7)(Ipqir,T:) AS
SELECT s, (iin * Wo + iz) * we + MOD(l,w.) AS I,
(Lin * Wo + iz) * we + MOD(r, w.) AS 7
FROM ILpgip, Tt
WHERE [/w, = isn

CREATE VIEW T!(Ipair,T,) AS
SELECT s, (iin * Wy + iz) * wo + MOD(l,w,) AS I,
(Tin * Wo + iz) * Wy + MOD(r,w,) AS r
FROM Ipaz’m T,
WHERE [/w, = iy

Chapter 4: Optimization of the XQuery-to-SQL Translation

The Dynamic Interval encoding for the environment E’ is as follows:

I T/ (wl, = 20) T! (w! = 20)

i S | 1 | r s | 1 | r
25 id 501 504 cid 505 508
id1 502 503 id1 506 507

In order to justify the correctness of the merge-join approach for the merge-join
fragment in the example, the Dynamic Interval encodings for the environments
created during the nested-loop evaluation are provided below.

7

In the nested-loop evaluation, the for expression “for $o in ...” is evaluated
using the input environment E¢ = {I.,T.}. The Dynamic Interval encodings for
the resulting environment E" = {I,,,T}*,T"} is as follows:

Tn T7 (w, = 20) T7 (w = 20)
i s |1 [r s [1 [r
25 id 501 504 cid 505 508
id1 502 503 id1 506 507
35 id 701 704 cid 715 718
id1 702 703 id3 716 77
225 id 4511 4514 cid 4505 4508
id2 4512 4513 id1 4506 4507
235 id 4711 4714 cid 4715 4718
id2 4712 4713 id3 4716 4717

Then the where expression in the merge-join fragment is evaluated in the envi-
ronment £ . Only the environments from E™ that satisfy the equality compari-
son condition, $c/text()=%0/text(), are selected into the resulting environment
EY = {I' T ,T"} for the remainder of the input query:

I 7 (wr = 20) 7 (wp = 20)

i S | 1 | r s | 1 | r
25 id 501 504 cid 505 508
id1 502 503 id1 506 507

Comparing the environment E’ generated by the merge-join approach with the
environment E™ generated by the nested-loop evaluation, we can see that these
two environments are identical. Proof of correctness for the merge-join approach is
provided in the following section. [

Chapter 4: Optimization of the XQuery-to-SQL Translation 86

Proof of Correctness for the Pattern

If we add one more constraint to the for expression in Nested-FOR Pattern, we
obtain a more restricted but simpler version of Nested-FOR Pattern as follows:

FOR $x IN expr DO
WHERE pathexp[$x] = pathexp[$z;] RETURN
(WHERE pathexp[$z| = pathexp[$z;] RETURN)x

where the expression expr in the for expression does not depend on any variables.

An example of the XQuery fragment that matches the more restricted version of
Nested-FOR Pattern is shown in Example 4.3.6. The SQL translation for creating
the indices pairs I, and the new environment E’ for the remainder of the query
that comes after the merge-join fragment for the restricted Nested-FOR Pattern
can be simplified as follows:

CREATE VIEW I, AS
SELECT op0.¢ AS ij,, opl.i AS i,
FROM IT# op0, IT® opl
WHERE o0p0.s; = opl.s; AND ... AND op0.s; = opl.sg

The new environment F’ is defined as follows:

CREATE VIEW I'(Iuir) AS
SELECT i, * wy + iy AS i
FROM Lpgir

CREATE VIEW T), (Ipair,Ty;) AS
SELECT s, (iipn * Wy + ig) * Wy, + MOD(l, w,,) AS I,
(in * Wy + ig) * Wy, + MOD(r,wy,) AS 7
FROM Ipaim Tzi
WHERE [/wg, = is

Chapter 4: Optimization of the XQuery-to-SQL Translation 87

CREATE VIEW T),(Ipir, Ty) AS
SELECT s, (ijn * Wy + ig) * wy + MOD(I, w,) AS [,
(iin * Wy + ig) * Wy + MOD(r, w,) AS 7
FROM Lpgir, Ty
WHERE [/w, = iy

In order to prove the correctness of the merge-join approach for Nested-FOR
Pattern, we first prove the correctness of the restricted version of Nested-FOR
Pattern, which is simpler and easier to understand.

Proof 4.3.10 The following proof is provided to prove the correctness of the merge-
join approach for the restricted version of Nested-FOR Pattern as follows:

FOR $x IN expr DO
WHERE pathexp[$z] = pathexp]
(AND pathexp[$x] = pathexp]

$a5])

where the expression expr in the for expression does not depend on any variables.

Let Ey, = {lin, Ty, - .-, Ty, } be the input environment for the merge-join frag-
ment of the restricted Nested-FOR Pattern and T}, ..., T}, be the relational repre-
sentations of variables $z1,...,$z, in Ej,. Let E" = {I/, T ..., T" T"} be the
resulting environment generated after evaluating the merge-join fragment using the
nested-loop approach, where I/, is the new environment index, T;}l', e ,T:;‘; are the
new representations of variables $z,...,$x,, and T ;" is the representation of the
variable $z provided by the for expression. Let E' = {I', T, ,...,T, ,T,} be the
resulting environment generated by the merge-join approach. We prove that the
environment E’ and the environment E™ are identical, thus showing the correctness

of the merge-join approach for the restricted Nested-FOR Pattern.

There are two major steps to prove that the two environments, E’ and E", are
identical. We first prove that the two environments are constructed using equivalent
queries. Then, we prove that these two environments contain the same data.

STEP 1: Queries Defining for Environment E’ and E" .
1) Notation.

We firstly define notation that is needed in latter phases of the proof. Since
the widths for the bound variables remain unchanged in different environments

Chapter 4: Optimization of the XQuery-to-SQL Translation 88

generated during the evaluation process, w,,,...,w,, , w, are used to represent the
widths of the representations of variables $z1, ..., $x,, $z in different environments.

Since the expression expr in the for expression'® “FOR $x IN expr DO” does
not depend on any variables provided by Ej,, expr can be evaluated using the initial

environment Ey = {ly}. Let TO(s,1%,7°) be the resulting table of such evaluation

and let w, = w, be the width of T?. Let E/ = {I.,T=,..., T T} be the

xry?

environment obtained by evaluating the for expression in the environment Ej. Let
T (5,1, r™") be the representation for variable $z in E’. We have the following

' v

: / .
queries for I and T :

Ia/: = {lg : (37l27r8) S QrootS(Té))}
Tfl = {(s, l(e)r * Wy + lg, lgr * Wy + rg) :
(,00,70) € T A (5,12 .70) € Qroots(T?) A 10 <10 A 70 <10}

where Qroots(T0) is the resulting table of the XQuery roots operation on T and

e

Qroots(TeO) g TeO
2) The computation of the environment E™ using the nested-loop strategy.

The nested-loop evaluation for the merge-join fragment follows the following
steps:

e First, we evaluate the for expression “FOR $x IN expr DO”with the input en-
vironment Ey,. Let E" = {I,, T ,..., T} T} be the resulting environment
after such evaluation.

Let T (s, 1™, r"™) (with w, = w,) be the result of the expression expr eval-
uated in the environment F;,. Since the expression expr does not depend
on any variable, the tuples in 7" and the tuples in T2 satisfy the following
relationship:

Tén = {(Syiin*wx"i_lgaiin*wm"i'rg) : (SJ(@]?rg) ETSO A Z”L EI"L}

Based on the above analysis and the SQL translation templates for the for ex-
pressions, we have the following relational representation for the environment
E™ constructed by evaluating the second for loop in the pattern:

BFor simplicity, if not specifically stated, the ezpressions we mention in the proof refer to the
expressions that appear as part of the pattern.

Chapter 4: Optimization of the XQuery-to-SQL Translation 89

L= {I": (.0 7") € Qroots(TE")}
= {im*we +10: i € Lin A (5,19,79) € Qroots(TO)}
= {im*wy+i,: tjn €L N i, eI}
T = {(s,17 % wy, + MOD(ly,, wy,), 1" % wy, + MOD(ry,, wy,)) :
(5,17, 77) € Qproots(TI™) A (8,1gy,72,) € Ty N Ly, Jwe, = 17 /we}
= {(s, (lin * wy + 1) * Wy, + MOD(ly,, Wy,),
(iin * Wy + 1) *x Wy, + MOD(7y,, wy,)) :
Gin € Iin N iy € Il N (8,1g;,72,) € Ty N gy /Wa;, = tin}

r = {(s, ZZJTL * we + MOD(I™, w), lé’: * we + MOD(r0, w,)) :
(5.2 7) € Quas(T) . (30,7 €T A 432 S A i < 1)

= (s, (tn *wy + ZQT) * Wy + lg, (Lin * Wy + 1) * wy + Tg) :
iin € Lin N i, €I A (5,09,70) € TO A (5,12 ,70) € Qroots(TO)}

ylerle ylers le,
= {(s, (in * wy + 1) ¥ wy + MOD(IZ' | w,),
(iin * Wy + 15) * wy + MOD(12 w,)) :
bin € Iy N il Il A (5,157 e T A IE jw, =i}

PR A 1

where Q,oots(T7) is the resulting tables of the XQuery roots operation on T2,
which is exactly the I, in environment E.

e In the second phase the sequence of the where clauses are evaluated using
the environment E™. The where clauses filter out the unwanted environments
within E™ and the remaining forms the resulting environment E™, which is
a subset of environment E™:

I = {intin€ly A Qu(TP,..., T2, T™)}

TQZ’ = {s,l,r):i€ly A (s,l,r) €Ty N ljwy, =i}

TV = A{s,,r):iel A (s,l,r) TP A ljw, =i}
where Q, (17, ..., T} ,T}) are the equality comparison conditions from where
clauses.

Figure 4.3 shows the process of the nested-loop evaluation for the pattern frag-
ment.

Chapter 4: Optimization of the XQuery-to-SQL Translation

Lin(iin) Ty, (s, Ly, T:v1) Ty, (8,1z,,72,)
mod(ly,, Wy,) mod(ly, , Wy,)
Toy = bin * Wy, + Ty, = lin * Wg,, +
mod (7, , Wy,) mod(ly, , Wy,)
Wy, Wy,
(for$x...)l (for$x...)l (for$x...)l
In(Zn) T;::ll (S,Z,’l") T;ﬂ(S,Z,T‘)

in:im*we—i—lg

[=in *wy +
mod(ly,, Wy,)

I =1ip % wy,+
mod(ly, , wy,)

(Qroots(Tezn)) r= ln * w:c1+ r= Zn * wam""‘
mod (7, , Wy,) mod(ly, , Wy,)

Wy Wy,

(where ...)l (where ...)l (where ...)l
I (i) T;j’l'(s7 l,r) TZ (s,1,7)

il =i * Wy + 19 [=il % wy, + [=1l *w,, +
mod(ly, , Wy,) mod(l,,, , Wy,)
=1,k Wy, + =,k Wy, +
mod (7, , Wy,) mod(l,,, , Wy,)

Wy Wy,

(expr)

90

Té’l’b(s lZ’I’L 7,.1/71)

y’e 1 e

I = G4y, * we
+19

T = i, * We
+70

We

(for $x)l

Ty (sl r)

=1, * Wgp+
mod (1", w,)
T = Uy ¥ Wyt
mod (ri", w,)

Wy = We

" (s,l,7)

x

L= iy, * wp+
mod (1", w,)

Figure 4.3: TRANSLATION OF RESTRICTED NESTED-FOR PATTERN FRAGMENT
USING Nested-loop STRATEGY

2) The computation of the environment E’ using the merge-join strategy.

Based on the merge-join approach for the restricted Nested-FOR Pattern, we
have the following representation for the resulting environment E' = {I', T
Ty, T3}

R

r = {’L”m * Wy + Iy (iina %c) S Ipair}
(in * Wy + ig) * Wy, + MOD(1,, wy,)) :
(Zznﬂ:c) S Ipair A (S,in,rgci) S sz A lxl/wxz = Zzn}
T, = {(s, (lin *wy +iz) * wy + MOD(lf,wx), (Tin * Wy + 1g) * Wy

+MOD (72 w,)) = (iins i) € Lpair A (8,12 ,7%) € TF A 12 Jwy = iy}

Chapter 4: Optimization of the XQuery-to-SQL Translation 91

Figure 4.4 shows the merge-join evaluation process for the restricted version of
Nested-FOR Pattern.

1. The input environment for the merge-join pattern.

Izn(zzn) Txl (37 l.1‘17 rxl) T:vn (37 lacnyra:n)
lin lml = ljn * Wey + l:rn = lin * Wy, +
mod(ly, , Wy,) mod(l,,, , Wy,)
Ty, = bin * W+ | ... | Tg,, = bin * Wg, +
mod (7, , Wy,) mod(ly,, , Wy,)
Wy, Wy,

2. Evaluate “for $x € exprdo” in the merge-join pattern using initial environment FEj.

; 0 0 ,.0 1 (s 7 Y 7
IO<ZO) Te (SaleﬂTe) Iz(zx) Tf (5)l£ 7T§)
. . 7 .
io=0 19 it =17 12 =i % wy +1°
0 (for $z...) 0 ry
Te - (Qroots(T¢)) Ty =iy %Wy +Te
We Wy = We
3. Evaluate the where clauses using the merge join operation.
Ipﬂi’l‘(iinvilz) I/(i/) Tél (S,Z,T‘) T;n (S,Z,T) T;(S’l:r)
(Z”L,Z/z) Tin * Wg lZ(ZZn*’wz-‘rl;) | = (Zzn*wz-i-llz) | = (’iin*wz-i-lgr)
+i’, *Wg,; + mod(le, , Wa,) *Wg,, + mod(ly,, wz,) *wz + 19
— 7= (lin * Wg + 1) r = (iin * Wy + %) 7= (iin *wz +12)
*Wey + mod(rz, , Wz) Wz, + mod(re,, We,,) *wy + 19
Wa, W, Wy

Figure 4.4: TRANSLATION OF RESTRICTED NESTED-FOR PATTERN FRAGMENT
USING Merge-join STRATEGY

3) Based on the analysis in 1) and 2), we can see that the environment E™ created
by the nested-loop evaluation and the environment E’ created by the merge-join
approach are defined by the same query expressions.

STEP 2: The Data Sets in Environment E’ and E™ .

Based on the above queries derived for the environment £’ and the environment
E", we can see that the difference between the E’ and E™ is determined by the
difference of the index values in I’ € E’ and I’ € E™. If we prove that these two
index sets contain the same set of values, then the two environments are identical.

We first prove that any value in the index set I] generated by the nested-loop
evaluation always appears in the index set I’ generated by the merge-join approach.

Chapter 4: Optimization of the XQuery-to-SQL Translation 92

Let 77, € I),. Then there must exist an index value i;,, € I;;, and an index value
ir,, € I, that satisfy i), = ism, * w, +4,,. For the path expressions in the where
clauses the resulting values corresponding to i, or 7, must satisfy the equality
comparison conditions in the where clauses. We prove that the pair (ism,,1,,) is a

tuple in the table I, generated by the merge-join approach.

We know that the pairs I, are created by joining the two environment index
sets I;, and I/, with join conditions corresponding to the equality comparison con-
ditions in the where clauses. Since the pair of the index values %;,, and Z;Z are from
I;, and I}, respectively, we need to prove that the corresponding values of the path
expressions in the where clauses satisfy the equality comparison conditions. As
we have already shown in the previous analysis, the values of the path expressions
that correspond to either the index value i;,, or i), satisfy the equality comparison
conditions in the where clauses; thus, (i,,1,,) is a tuple in Ipq;. The resulting
index value generated from the pair is 4; = i, * w, +1,,, which is exactly the same
as i, .

Similarly, we can prove that for any index value i, in the index set I’, there
always exist one and only one index value 4, from I.

For an index value ¢; € I, there must exist an indices pair (i, , i,) in [pqir, Where

i = lin; * Wy + 1, . The resulting values of the path expressions that corresponds
1

to one of the index values in the indices pair must satisfy the equality comparison
conditions in the where clauses. Based on the queries we derive from the nested-
loop evaluation, there exist one and only one index value 7], from I}, where i;, =
. .
lin; * We + 17, .

From above, we prove that the two index sets I/ and I’ contain exactly the same
set of values. Since the queries for constructing the environments E” and E’ are
equivalent, we prove that these two environments are identical. [J

Using similar approach, we can prove the correctness of the merge-join approach

for Nested-FOR Pattern. The proof for Nested-FOR Pattern is omitted in the
thesis.

4.3.3 The Multi-FOR Pattern
The Pattern

Pattern 4.3.2 (Multi-FOR) The XQuery fragments that follow the following
XQuery pattern can utilize the merge-join approach:

Chapter 4: Optimization of the XQuery-to-SQL Translation 93

FOR $f1 IN expr DO
(FOR $f; IN expr DO)+
(WHERE pathexp[$f;] = pathexp[$f;] RETURN) +

where expr represents any XQuery expression and “+” means one or more matches.
The variables $f; and $f; represent two different variables bound by the for ex-
pressions in the pattern fragment. pathexp[$f;] and pathexp[$f;] represent path
expressions that only depend on variables $f; and $f; respectively.

The pattern imposes the following constraints:

e The pattern starts with a list of nested for expressions, which are directly
followed by a set of where clauses with no other expressions intervening.

o Let {$f1,...,8fm} (m > 2) be the list of variables introduced by the nested
for loops in the pattern. These variables are independent of each other. In
other words, the for expressions in the pattern are independent of each other.

e The conditions in where clauses are equality comparisons, whose two operands
are path expressions depend on different variables from {$f;,...,$f,}. O

A sample XQuery fragment that matches Multi-FOR Pattern is shown in Ex-
ample 4.3.11.

Example 4.3.11 The following fragment in an XQuery query follows Multi-FOR
Pattern:

for $seller in doc("users.xml")//user_tuple,
$buyer in doc("users.xml")//user_tuple,
$item in doc("items.xml")//item_tuple,
$highbid in doc("bids.xml")//bid_tuple
where $seller/userid = $item/offered_by
and $item/itemno = $highbid/itemno
and $highbid/userid = $buyer/userid

This fragment can be replaced with a merge-join expression by the XQuery Opti-
mizer and be evaluated using the merge-join approach. [

Chapter 4: Optimization of the XQuery-to-SQL Translation 94

The Merge-join Expression

An XQuery fragment that follows Multi-FOR Pattern is replaced with one single
merge-join expression named MultiFOR in the form as follows:

MultiFOR[conditions](forloops)

where conditions is a list of the conditions from the where clauses, and forloops lists
the independent for expressions in the original order. The MultiFOR expression is
added to the Minimal XQuery syntax as a new kind of expression. The merge-join
expression for the merge-join fragment in Example 4.3.11 is shown below:

MultiFOR[$seller/userid = Sitem/of fered_ by,
$item/itemno = $highbid/itemno,
$highbid/userid = Sbuyer userid |

$seller in document("users.xml)//user_tuple,
$buyer in document("users.xml”)//user tuple,
$itern in document(”items.xml")//item tuple,
$

highbid in document(”bids.xml")//bid tuple)

(

Translation of the Pattern

Let By = {Lin, Ty, ..., Ty, } be the input environment for the whole fragment of
Multi-FOR Pattern. Let {$f1,...,$fn} (m > 2) be the list of variables introduced
by the nested for loops in the pattern. The variables are listed in the order of the
appearance of their corresponding for expressions in the fragment. The evaluation
steps are as follows:

Step 1. Evaluate the FOR Expressions Independently:

The for expressions in the pattern are evaluated in the input environment E;,
independently. Let Ey, = {Iy,, Tfll, b By ={,, Tf:, ...} be the resulting
environments. The new representation for the bound variables provided by the
environment F;, are omitted since they are not relevant to the merge-join evalua-
tion. Among the resulting environments, T]fl R ,TJ{’: (with corresponding widths
wy,, ..., wy,) are the representations of variables $f,...,$.

Chapter 4: Optimization of the XQuery-to-SQL Translation 95

Step 2. Evaluate the Path Expressions in the WHERE Expressions:

Based on the constraints for the pattern, the path expressions from the where
clauses only depend on the variables $f1,...,$f,. Let pathexpi[$f], ..., pathexpy,
[$/i] be the path expressions from the where clauses and each of them depends
on a variable $f; € {$f1,...,%fn}. These path expressions are evaluated in the
environment Ey, and produce a set of resulting tables TJ;’, e 7Tz£;' These tables,

along with the index set I}, are joined into one table ITY:.

Step 3. Evaluate the WHERE Expressions Using the Merge Join:

By evaluating all the path expressions in where clauses, we obtain m sets of
environments {I,, Tzfll, . ,Tszll .. -7{Ifm:T1£m» . ,Tg}:; }, which correspond to the
variables $f1,...,$f,. For a variable $f; € {$f1,...,$f} that does not appear
in the path expressions in the where clauses, its corresponding environment just
includes the corresponding index sets Iy,. Using the scalar fulselect expression,

these environments are joined into tables IT/1, ... IT/™ respectively.

Let IT/i € {IT",... IT"} be the table generated by joining the environment

{15, 1], ... ,Tzfzi }. ITYi contains attributes (if,, s, ... ,32) with one column for

index Iy, and a column for node labels s;-ci for each table Tzf;i € {Tsz, e ,TI{Z.}.
Let w}j;’_ be the width of Tg;?’. The SQL translation that uses the scalar fulselect

expression to construct the table 77 is as follows:

CREATE VIEW ITF(I; T, ..., T) AS
SELECT iy,
(SELECT s FROM Tj! WHERE I/wii = Ij,.i) AS s,

(SELECT s FROM T} WHERE l/wj =Ij.i) AS sf
FROM Ifi

(SELECT s FROM T} , WHERE l/w)i , =1I;.i) AS sfi_,,

Using the tables IT/t, ... IT/m the equality comparison conditions in the where
clauses can be evaluated by joining these tables together with join conditions corre-
spond to the where conditions. As a result, a relation ;s (iy,, ..., 1y,), which con-
tains sets of indices for the matching environments from Ey,, ..., Ey, , is extracted
from the result of the join. We have the following SQL translation template for
creating the set of indices based on the where conditions:

Chapter 4: Optimization of the XQuery-to-SQL Translation 96

CREATE VIEW Ij;5; AS
SELECT ify,...,1,
FROM ITh ... 1T/
WHERE iy, /wy, =ip/wyp, AND if /wy =if/wyp, ... AND if /wy =iy, /wy,
AD s =gl anD ..

where, for each equality comparison condition pathexp[$fi;] = pathexpi[$f;] in the
where clause, there is a corresponding condition si = si in the SQL translation.
In the SQL template for I, the strategy for joining the tables IT!, ..., IT™ are
determined by the query processor in RDBMS. Since the RDBMS might not be
able to take advantage of the ordering nature of the data, the preferable merge join
operation might not be used in the query evaluation in RDBMS.

Unlike the SQL translation approach, in the physical plan translation for the
XQuery-enhanced Relational Engine [15], preferable merge join operations can
be specifically chosen to join the tables IT/1, ... IT/». There are many choices to
join these tables using merge join operations. The choice of an optimal join order
selection falls into the traditional relational query optimization problems for join
operations, which is not in the scope of the thesis. Here, we can just pick one of
the existing join order selection algorithms from the literature.

Step 4. Construct the New Environment:

Given the table [j;q(if, ..., 1y,) together with the input environment E;, for
the pattern fragment and the environments Fy,, ..., Yy, created by evaluating the
for expressions, we are able to construct the input environment for the remainder of
the query. The generated environment is identical to that we would have obtained
by using the nested-loop evaluation.

Let I',T; ..., T, ,T},...,T; be the resulting environment produced by the
merge-join approach, where I" is the new environment index, T}, ,..., T} are the
new representations of the local variables provided by the environment FE;, and
T}, ..., Ty, are the representations of the variables $f1,...,8f, provided by the
for expressions in the pattern. Let w,, be the width of T,, € {T,,,...,T,,} from

E;,. The new environment is defined as follows:

Chapter 4: Optimization of the XQuery-to-SQL Translation 97

CREATE VIEW I'(Ij;s) AS
SELECT (... (ifl * Wy, + MOD(ifQ,wa)) k...) ok wy,, + MOD(ifm,wfm) AS 1
FROM Ijst

CREATE VIEW T, (s, T,) AS
SELECT s, ((...(if, *wg, + MOD(ig,, wg,)) *...) xwyg,, +MOD(iyg, ,wy,,)) * W,
+ MOD(l, wy,;) AS I,
((.. (i xwp, + MOD(ig,, wyp,)) *...) *xwy, +MOD(iy, ,wy,)) * W,
+ MOD(r,wy,) AS r
FROM Ly, T,
WHERE if /wy = 1/w,,

In the above SQL template for Tz’ji, the input table [Ij;,; can be substituted by the
new environment index set I’ generated using Ij;5;. Thus, we have an alternative
SQL template for T}, , which is shown as follows:

CREATE VIEW T, (I',T,,) AS
SELECT s, * wy, + MOD(l,wy;) AS [,i % wy, + MOD(r,ws,) AS r
FROM I',T,,
WHERE (... (i/wy,)/...)/ws = l/wg,

CREATE VIEW T} (Iisi,T}) AS
SELECT s, ((... (ifl * Wy, + MOD(if2,’LUf2)) k...) ok wy,. + MOD(ifm,wfm)) * Wy,
+MOD(l,wy,) AS I,
((-. (i, *wp, + MOD(igy, wy,)) *...) *wy,, +MOD(iy,, ,wy,,)) * wy,
+ MOD(r,wy,) AS r
FROM Lo, T30

fi
WHERE ifi = l/wfi

In the above SQL template for T}w the input table [;;; can be substituted by the
new environment index set I’. Thus, we have an alternative SQL template for T}’ci,
which is shown as follows:

Chapter 4: Optimization of the XQuery-to-SQL Translation 98

CREATE VIEW T} (I',Tf') AS
SELECT s,i*wy, + MOD(l,wy,) AS l,i*wys, +MOD(r,wy,) AS 7
FROM I',Tf
WHERE (... (1/wy,)/) /wp = (l/wy,)/wy,

The new environment generated using the above SQL templates is exactly the same
as that generated using nested-loop approach introduced in Chapter 3.

Proof of Correctness for the Pattern

The approach to prove the correctness of the merge-join approach for Multi-FOR
Pattern is similar to that provided for the restricted Nested-FOR Pattern. Details
of the proof are omitted in the thesis.

4.4 XQuery Rewriting Rules

The merge-join patterns introduced in previous sections are general enough to
capture a significant fraction of the merge-join fragments. In order to capture a
larger fragment of XQuery that can utilize the merge-join approach, several XQuery
rewriting rules are designed to transform the input XQuery into an equivalent
XQuery which might contain a larger number of fragments that match the merge-
join patterns.

There are two types of rewriting rules. One type of rewriting rules are designed
to help the emergence of the merge-join fragments for Nested-FOR Pattern; the
other help the appearance of the merge-join fragments for Multi-FOR, Pattern.

4.4.1 Rewriting Rules for Nested-FOR Pattern

We design two rewriting rules for Nested-FOR Pattern: one is Nested-FOR LET
Relocating Rule that relocates the let expressions in the input query; the other is
Nested-FOR WHERE Relocating Rule that relocates the where expressions in the
input query.

Chapter 4: Optimization of the XQuery-to-SQL Translation 99

I. The LET Expression Relocating Rule.

Rewriting Rule 4.4.1 (Nested-FOR LET Relocating Rule) This rewriting
rule helps the emergence of the merge-join fragments for Nested-FOR Pattern by
relocating the let expressions in the input query.

The query rewriting process introduced below is applied repeatedly to each let
expression in the input query until all [et expressions are checked:

The input query is viewed as an expression tree. Starting from a node of the let
expression “let $x := expr in” in the expression tree, the expression tree is traversed
in the child-to-parent direction until a for expression is found. If the variable bound
by the let expression does not depend on the variable bound by the for expression,
the let expression is relocated to the top of the for expression. The above traverse
process is continued until a for expression that does not satisfy the above condition
is met. [J

Based on the semantic of the let expression, such a query rewriting produces a
query equivalent to the original query. An example that utilizes such a rewriting
rule is shown in the following example.

Example 4.4.1 For the following input query:

for $item in doc("items.xml")//item_tuple
let $bid_counts :=
for $i in distinct-values(doc(”bids.xml”)//itemno)
let $b := doc(”bids.xml”)//bid_tuplefitemno = $i]
return
<bid_count>
<itemno>{ $i }</itemno>
<nbids>{ count($b) }</nbids>
</bid_count>
for $bc in $bid_counts
where $item/itemno = $bc/itemno
return ...

There is one merge-join fragment (shown in boldface) that matches Nested-FOR
Pattern. However, since variable $bc depends on variable $bid_counts, which is
bound by the let expression nested within the first for expression, the for expression
in the merge-join fragment is evaluated within the iteration of variable $item. By
applying the Nested-FOR LET Relocating Rule, the let expression (shown in italic)

Chapter 4: Optimization of the XQuery-to-SQL Translation 100

7

in the query is relocated to the top of the for expression “for $item in ...”.
The rewritten query is as follows:

let $bid_counts :=
for $i in distinct-values(doc(”bids.xml”)//itemno)
let $b := doc(”bids.xml”)//bid_tuplefitemno = $i]
return
<bid_count>
<itemno>{ $i }</itemno>
<nbids>{ count($b) }</nbids>
</bid_count>
for $item in doc("items.xml")//item_tuple
for $bc in $bid_counts
where $item/itemno = $bc/itemno
return ...

After the rewriting, the two for expressions in the query can be evaluated inde-
pendently and the efficient merge-join approach can be utilized to evaluate the
fragment. [

II. The WHERE Expression Relocating Rule.

Rewriting Rule 4.4.2 (Nested-FOR WHERE Relocating Rule) This rewr-
iting rule helps the emergence of the merge-join fragments for Nested-FOR Pattern
by relocating the where expressions in the input query.

Let eynere denote a where expression of the form “where pathexpr([$z| = pathexp-
r[$y] return...”. The path expressions pathexpr[$z] and pathexpr[$y] from the
where condition depend on two different variables provided by two for expressions
in the input query. Let efo,, and ey,, be such two for expressions and ey, appears
in the scope of ey,,,. Each where expression eypere in the input query is relocated

to the position that directly follows the for expression e f4p,. [

Based on the semantic of the where expression, the above query rewritten pro-
cess produces equivalent queries to the original ones. Examples that utilize such a
rewriting rule are shown below.

Example 4.4.2 The following input query “List the names of persons and the
names of the items they bought in Europe.” is from XMark Q9 [1]:

Chapter 4: Optimization of the XQuery-to-SQL Translation 101

for $p in document("auction.xml")/site/people/person
let $a := for $t in document(”auction.zml”)/site
/closed_auctions/closed_auction
let $n := for $t2 in document(”auction.xml”)
/site/regions/europe/item
where $t/itemref/@item = $t2/Qid
return $t2
where $p/@id = $t/buyer/@person
return <item> $n/name/text() </item>
return <person name=$p/name/text()> $a </person>

There are two merge-join fragments (shown in boldface and italic, respectively)
matching Nested-FOR Pattern. However, only the fragment shown in boldface
can be identified using the two merge-join patterns. By applying the Nested-FOR

WHERE Relocating Rule, the query is transformed into an equivalent query as
follows:

for $p in document("auction.xml")/site/people/person
let $a := for $t in document(”auction.zml”)/site
/closed_auctions/closed_auction
where $p/@id = $t/buyer/@person
return
let $n := for $t2 in document(”auction.xml”)
/site/regions/europe/item
where $t/itemref/@item = $t2/Qid
return $t2
return <item> $n/name/text() </item>
return <person name=$p/name/text()> $a </person>

where two fragments that match Nested-FOR Pattern are identified. [

Example 4.4.3 For the input query:

Chapter 4: Optimization of the XQuery-to-SQL Translation 102

for $p in document("patient.xml")//patient,
$x in (for $r in document(”record.xml”)//record,
$e in $r/entry
where $r/patientSSNo=8$p/Ssno and $e/diagnosis="flu"
return <res>
$p/name,
<occured>$e/@date</occured>
</res>)
return $x

There is one merge-join fragment (shown in boldface) that can utilize the merge-
join approach. However, this fragment can not be identified using the two merge-
join patterns. By applying the Nested-FOR WHERE Relocating Rule, the query is
transformed to an equivalent query as follows:

for $p in document("patient.xml")//patient,
$x in (for $r in document(”record.xml”)//record
where $r/patientSSNo=8p/Ssno
return
for $e in $r/entry
where e/diagnosis="flu"
return <res>
$p/name,
<occured>$e/@date</occured>
</res>)
return $x

where a fragment that matches Nested-FOR Pattern is identified. [

4.4.2 Rewriting Rules for Multi-FOR Pattern

Similar to the rewriting rules for Nested-FOR Pattern, we design two rewriting rules
for Multi-FOR Pattern: the first is Multi-FOR LET Relocating Rule that relocates
the let expressions and the other one is Multi-FOR WHERE Relocating Rule that
relocates the where expressions in the input query.

I. The LET Expression Relocating Rule.

Chapter 4: Optimization of the XQuery-to-SQL Translation 103

Rewriting Rule 4.4.3 (Multi-FOR LET Relocating Rule) This rewriting r-
ule helps the emergence of the merge-join fragments for Multi-FOR Pattern by
relocating the let expressions in the input query.

Let “let $2 := expr in...” be a let expression whose subexpression expr does
not depend on any variable. If there is such a let expression in the input query, the
let expression is repeatedly relocated to the top of its parent nodes until all of the
for expressions in the input query are the descendants of such a let expression. [

Based on the semantic of the let expression, the rewritten query produces exactly
the same results as the original query. A query fragment that utilizes such a rewrit-
ing rule is shown in the following example.

Example 4.4.4 Consider the following fragment:

for $seller in doc(”users.xml”)//user_tuple,
$buyer in doc(”users.xml”)//user_tuple,
$item in doc(”items.xml”)//item_tuple,
$highbid in doc(”bids.xml”)//bid_tuple
let $bids = doc("bids.xml")//id in
where $seller /userid = $item/offered_by
and $item/itemno = $highbid/itemno
and $highbid/userid = $buyer/userid
return

There is one merge-join fragment (shown in boldface) that can utilize the merge-
join approach but can not be identified. By applying Multi-FOR LET Relocating
Rule, the query is rewritten into an equivalent query as follows:

let $bids = doc("bids.xml")//id in
for $seller in doc(”users.xml”)//user_tuple,
$buyer in doc(”users.xml”)//user_tuple,
$item in doc(”items.xml”)//item_tuple,
$highbid in doc(”bids.xml”)//bid_tuple
where $seller/userid = $item/offered_by
and $item/itemno = $highbid/itemno
and $highbid/userid = $buyer/userid
return

Chapter 4: Optimization of the XQuery-to-SQL Translation 104

As a result of the rewriting, a fragment that matches Multi-FOR Pattern is iden-
tified. O

II. The WHERE Expression Relocating Rule.

Rewriting Rule 4.4.4 (Multi-FOR WHERE Relocating Rule) This rewrit-
ing rule helps the emergence of the merge-join fragments for Multi-FOR Pattern
by relocating the where expressions in the input query.

Let eyhere denote a where expression of the form “where pathexpr|$z] = pathexp-
r[$y] return...”. The path expressions pathexpr[$z] and pathexpr[$y] both depend
on the variables provided by the for expressions in the input query.

If there exist a sequence of consecutive where expressions in the query, where
expressions of the form as ey pere in the sequence are relocated within the scope
of the sequence in a way such that, in the resulting sequence, all of the where
expressions that do not conform to the form as e pere are the descendant nodes of
the where expressions of the form as e, pere. [

Based on the semantic of the where expression, such a relocation produces an
equivalent query to the original one. An example of applying Multi-FOR WHERE
Relocating Rule to generate the fragment for Multi-FOR Pattern is shown as follows:

Example 4.4.5 The following query fragment is from the W3C Use Case [3]:

for $seller in doc(”users.xml”)//user_tuple,
$buyer in doc(”users.xml”)//user_tuple,
$item in doc(”items.xml”)//item_tuple,
$highbid in doc(”bids.xml”)//bid_tuple

where $seller/name = "Tom Jones"
and $seller/userid = $item/offered_by
and contains($item/description , "Bicycle")

and $item/itemno = $highbid/itemno
and $highbid/userid = $buyer/userid

There is one merge-join fragment (shown in boldface) in the above query that
cannot be identified. Applying the rewriting rule, the query is transformed into an
equivalent query as follows:

Chapter 4: Optimization of the XQuery-to-SQL Translation 105

for $seller in doc(”users.xml”)//user_tuple,
$buyer in doc(”users.xml”)//user_tuple,
$item in doc(”items.xml”)//item_tuple,
$highbid in doc(”bids.xml”)//bid_tuple
where $seller/userid = $item/offered_by
and $item/itemno = $highbid/itemno
and $highbid/userid = $buyer/userid
and $seller/name = "Tom Jones"
and contains($item/description , "Bicycle")

After the rewriting, a fragment that matches Multi-FOR, Pattern is identified. [J

4.4.3 Discussion

The Multi-FOR Pattern overlaps with Nested-FOR Pattern. Since Multi-FOR
Pattern is able to handle a larger number of independent for expressions at once,
Multi-FOR Pattern is often a better choice. This situation is illustrated in the
following example.

Example 4.4.6 Consider the query:

for $p in document("patient.xml")//patient,
$r in document("record.xml")//record,
$e in document("record.xml")//entry
where $r/patientSSNo=$p/Ssno and $e/diagnosis = "flu"
and $e/diagnosis=$r/entry/diagnosis
return <res> $p/name, <occured>$e/@date</occured></res>

If Multi-FOR WHERFE Relocating Rule is applied to the query, a merge-join frag-
ment (shown in boldface) for Multi-FOR Pattern is created as follows:

Chapter 4: Optimization of the XQuery-to-SQL Translation 106

for $p in document(” patient.xml”)//patient,
$r in document(”record.xml”)//record,
$e in document(”record.xml”)//entry
where $r/patientSSNo=8$p/Ssno
and $e/diagnosis=8r/entry/diagnosis
and $e/diagnosis = "flu"
return <res> $p/name, <occured>$e/@date</occured></res>

If Nested-FOR WHERE Relocating Rule is applied, then the two fragments that
match Nested-FOR Pattern (shown in boldface and italic, respectively) are recog-
nized in the following rewritten query:

for $p in document("patient.xml")//patient,
$r in document(”record.xml”)//record

where $r/patientSSNo=8p/Ssno
return

for $e in document(”record.xml”)//entry

where $e/diagnosis=8$r/entry/diagnosis

and $e/diagnosis = "flu"

return <res> $p/name, <occured>$e/@date</occured></res>

For this case, using Multi-FOR WHERE Relocating Rule to create a fragment that
matches Multi-FOR Pattern is a better choice. [

For the XQuery queries provided in the W3C Use Cases [3] and the XMark Bench-
mark [1], Multi-FOR Pattern seems to be a better choice whenever there exist
fragments that match both Nested-FOR Pattern and Multi-FOR Pattern. Based
on this analysis, we propose a heuristic architecture for the XQuery Optimizer
to perform the query rewriting and pattern identification, where fragments that
match both two merge-join patterns are identified as the merge-join fragments for
Multi-FOR Pattern.

4.5 The XQuery Optimizer

As mentioned before, an XQuery Optimizer is added to the XQuery processor to
perform the query rewriting and pattern identification. The heuristic architecture
for the XQuery Optimizer is shown in Figure 4.5.

The optimization process of the XQuery Optimizer is divided into two phases:

Chapter 4: Optimization of the XQuery-to-SQL Translation

Abstract Syntax

Phase 1

Tree (AST)

Query
Rewriting

Pattern
Identification

Multi-FOR Pattern

Phase 2

AST

Query
Rewriting

Pattern

107

Optimized

Identification

Nested-FOR Pattern

Figure 4.5: THE XQUERY OPTIMIZER

AST

>

e In the first phase, the rewriting rules for Multi-FOR Pattern are applied to
the input abstract syntax tree produced by the XQuery parser. Based on the
rewritten query, fragments that match Multi-FOR Pattern are identified and
are rewritten as merge-join expressions for Multi-FOR Pattern (see Section
4.3.3). The rewritten abstract syntax tree is then passed to the second phase.

e Similar to the first phase, in the second phase, the rewriting rules for Nested-
FOR Pattern are applied to the output of the first phase to perform the query
rewriting. Then the fragments that match Nested-FOR Pattern are identified

and are rewritten into merge-join expressions for Nested-FOR Pattern.

The output of the XQuery Optimizer is a refined abstract syntax tree that fa-
cilitates the use of the preferable merge-join approach in latter phase of the query
translation. With the use of the merge-join approach, the XQuery processor is able

to generate high quality relational plans for the input XQuery queries.

Chapter 5

Experiments

5.1 Experimental Setup

5.1.1 Methodology

The XQuery-to-SQL Query Processor we propose in the thesis is able to translate
an input XQuery into a single SQL query. To justify the correctness of the trans-
lation, we choose twenty-six XQuery queries from the W3C Use Cases [3] and the
XMark Benchmark [1] as test cases. We create the corresponding relational en-
coding tables in database systems for the XML source documents. The test cases
are first rewritten in the Minimal XQuery syntax introduced in Section 2.2. Then,
the rewritten queries are input into the query processor and translated into SQL
queries. Finally, the generated SQL queries are executed in DB2 to obtain the
relational encodings of the resulting XML forests. These resulting encodings can
be easily decoded back to the form of XML forests by the XML Decoder.

The experiments conducted in the thesis focus on the regression test, which
justifies the correctness of our work. The XQuery query processor is written in
Java v1.4. The generated SQL queries are tested in DB2 v8.1.0.0.

5.1.2 XQuery Use Cases and XML Data

The use cases from W3C are created by the XML Query Working Group and are
focused on different application areas. In the experiments, we first test the XQuery
queries from the W3C Use Cases. We have several reasons: firstly, the example

108

Chapter 5: Experiments 109

input XML data are provided in the W3C Use Cases; secondly, the size of the
input data is relatively small, thus it is more convenient to conduct the testing
since our concern about the experiments is the correctness of the SQL queries;
finally, the W3C Use Cases provides the results for each query, which enable us
to check the correctness of the SQL plans that the query processor produces. The
XQuery queries from the W3C Use Cases we use are in four categories: Use Case
“XMP”, Use Case “TREE”, Use Case “SEQ” and Use Case “SGML” [3].

Queries from the XMark Benchmark [1] are also used in the experiments. The
XML source documents “auction.xml” are generated by the data generator from
the XMark Benchmark, using scale factors 0 (27KB), 0.001 (114KB), and 0.002
(207TKB).

Before we test the generated SQL queries in the database systems, relational
encoding tables must be created for the source XML documents. The attributes
for the encoding tables are set as follows:

(c varchar (maxlength),
C2 bigint not null,
C3 bigint not null)

Attributes C'1, C2, C'3 are corresponding to the attributes (s,(,7) for the interval
encoding introduced in Section 2.3.1. We use bigint as the data type for [and r
because the left and right endpoint values of the resulting tuples can be very large
based on the Dynamic Interval Encoding technique.

Relational tables UNIT and EMPTY are also constructed in the database sys-
tems. The UNIT table can be any kind of relational table that contains one and
only one tuple. The EMPTY table is a table that has exactly the same schema
as that of the relational encoding tables for the XML documents but contains no
tuples.

5.2 Experiments

In this section, we only show part of the experimental results. The rest of the
experiments can be found in Appendix B.

5.2.1 Experiment 1: W3C Use Case “TREE” Q4

The queries from the W3C Use Case “TREE” test the capability of extracting
elements from very flexible structural documents while maintaining the original

Chapter 5: Experiments 110

hierarchy. We take the query @4 from the Use Case as an input query in the
experiment.

1. The Input XQuery Query

For the query Q4 “How many top-level sections are in Book1?” from the W3C Use
Case “TREE”, the XQuery solution from the W3C Use Cases is as follows:

<top_section_count>

{
count (doc ("book.xml") /book/section)

}

</top_section_count>
The query is rewritten in the syntax of Minimal XQuery as follows:

<top_section_count>
count (select (’section’,children(select(’book’,document (’book’)))))
</top_section_count>

2. The Generated SQL Query

The corresponding SQL query generated by the XQuery query processor is shown
in Figure 5.1. In the following experiments the generated SQL queries are omitted.

3. The Result of the SQL Query

We run the generated SQL query in DB2 and obtain the following relational en-
coding result:

Cc1 c2 C3
top_section_count 0 3
2 1 2

2 record(s) selected.

Chapter 5: Experiments

WITH ViewO AS
(SELECT 0O AS C1 FROM
UNIT T1
),
Viewl AS
(SELECT T1_Lf.C1, T1_Rg.C1 AS C2,
T1_Rg.C2 AS C3, T1_Rg.C3 AS C4 FROM
ViewO T1_Lf,
book T1_Rg
),
View2 AS
(SELECT T1_Lf.C1 AS C1, T1_Lf.C2 AS C2,
T1_Lf.C3 AS C3, T1_Lf.C4 AS C4 FROM
Viewl T1i_Lf,
(SELECT * FROM
(SELECT * FROM
Viewl T3_Lf
WHERE NOT EXISTS (
SELECT * FROM
Viewl T3_Rg
WHERE T3_Lf.C3>T3_Rg.C3 AND T3_Lf.C4<T3_Rg.C4
AND T3_Lf.C1=T3_Rg.C1)
) T2
WHERE C2=’book’
) T1_Rg
WHERE T1_Rg.C3<=T1_Lf.C3 AND T1_Lf.C4<=T1_Rg.C4
AND T1_Lf.C1=T1_Rg.C1
),
View3 AS
(SELECT * FROM
View2 T1_Lf
WHERE NOT EXISTS (
SELECT * FROM
(SELECT * FROM
View2 T2_Lf
WHERE NOT EXISTS (
SELECT * FROM
View2 T2_Rg
WHERE T2_Lf.C3>T2_Rg.C3 AND T2_Lf.C4<T2_Rg.C4
AND T2_Lf.C1=T2_Rg.C1)
) Ti_Rg
WHERE T1_Lf.C3=T1_Rg.C3 AND T1_Lf.C1=T1_Rg.C1)
),
Viewd AS
(SELECT T1_Lf.C1 AS C1,T1_Lf.C2 AS C2,
T1_Lf.C3 AS C3,T1_Lf.C4 AS C4 FROM
View3 T1_Lf,
(SELECT * FROM
(SELECT * FROM
View3 T3_Lf
WHERE NOT EXISTS (
SELECT * FROM
View3 T3_Rg

WHERE T3_Lf.C3>T3_Rg.C3 AND T3_Lf.C4<T3_Rg.C4
AND T3_Lf.C1=T3_Rg.C1)
) T2
WHERE C2=’section’
) Ti_Rg
WHERE T1_Rg.C3<=T1_Lf.C3 AND T1i_Lf.C4<=T1_Rg.C4
AND T1_Lf.C1=T1_Rg.C1
),
View5 AS
(SELECT * FROM
Viewd T1_Lf
WHERE NOT EXISTS (
SELECT * FROM
View4d T1_Rg
WHERE T1_Lf.C3>T1_Rg.C3 AND T1_Lf.C4<T1_Rg.C4
AND Ti_Lf.C1=T1_Rg.C1)
)
(SELECT * FROM
(SELECT C2 AS C1,C3+C1x(2+2) AS C2,
C4+C1%(2+2) AS C3 FROM
((SELECT * FROM
(SELECT C1,C2,C3+1 AS C3,C4+1 AS C4 FROM
((SELECT * FROM
(SELECT C1, ’0° AS C2,0 AS C3,1 AS C4 FROM
(SELECT * FROM
ViewO T6_Lf
WHERE NOT EXISTS (
SELECT * FROM
View5 T6_Rg
WHERE T6_Lf.C1=T6_Rg.C1)
) T5
) T4_Rg)
UNION ALL
(SELECT * FROM
(SELECT C1, CHAR(COUNT(*)) AS C2,
0 AS C3, 1 AS C4 FROM
Viewb T7
GROUP BY C1
) T4_Lf)
) T3
) T2_Rg)
UNION ALL
(SELECT * FROM
(SELECT C1, ’top_section_count’ AS C2,
0 AS C3, 2+1 AS C4 FROM
(SELECT T9_Lf.C1 FROM
View0 T9_Lf,
UNIT T9_Rg
) T8
) T2_Lf)
) T1
) T_root
ORDER BY C2)

Figure 5.1: THE GENERATED SQL QUERY FOR EXPERIMENT 1

The resulting relational encoding can be easily transformed back to the following
XML forest using the XML Decoder:

<top_section_count>
<2>
</2>
</top_section_count>

As mentioned in Chapter 2, by default, the XML documents discussed in the scope
of the thesis are in the format of abstract syntaxr XML forest. The above resulting

Chapter 5: Experiments 112

XML forest can be easily converted back to the XML forest shown below, given
additional encoding information for the attribute nodes and the text nodes:

<top_section_count>
2
</top_section_count>

5.2.2 Experiment 2: W3C Use Case “TREE” Q5

1. The Input XQuery Query

For the query Q5 from the W3C Use Case “TREE": “Make a flat list of the section
elements in Bookl. In place of its original attributes, each section element should
have two attributes, containing the title of the section and the number of figures
immediately contained in the section.”, the XQuery solution from the W3C Use
Cases is as follows:

<section_list>
{
for $s in doc("book.xml")//section
let $f := $s/figure
return
<section title="{ $s/title/text() }" figcount="{ count($f) }"/>
}

</section_list>
The query is rewritten in the syntax of Minimal XQuery as follows:

<section_list>
for $s in select(’section’,subtreesdfs(document(’book’)))do
let $f := select(’figure’,children($s)) in
<section>
<title>
children(select(’title’,children($s)))
</title> @
<figcount> count ($f) </figcount>
</section>
</section_list>

Chapter 5: Experiments 113

2. The Result of the SQL Query

The relational encoding result obtained by running the generated SQL plan for Q5
in DB2 is as follows:

C1 Cc2 C3

section_list 0 875449729
section 87030073 87059664
title 87030074 87059659
Introduction 87033026 87033027
figcount 87059660 87059663
0 87059661 87059662
section 174060145 174089736
title 174060146 174089731
Audience 174066031 174066032
figcount 174089732 174089735
0 174089733 174089734
section 225254305 225283896
title 225254306 225283891
Web Data and the Two Cultures 225261921 225261922
figcount 225283892 225283895
1 225283893 225283894
section 404433865 404463456
title 404433866 404463451
A Syntax For Data 404447544 404447545
figcount 404463452 404463455
1 404463453 404463454
section 614329921 614359512
title 614329922 614359507
Base Types 614350685 614350686
figcount 614359508 614359511
0 614359509 614359510
section 665524081 665553672
title 665524082 665553667
Representing Relational Databases 665546575 665546576
figcount 665553668 665553671
1 665553669 665553670
section 819106561 819136152
title 819106562 819136147
Representing Object Databases 819134245 819134246
figcount 819136148 819136151
0 819136149 819136150

36 record(s) selected.

The XML forest corresponding to the resulting relational encoding for this query

Chapter 5: Experiments 114

is as follows:

<section_list>
<section>
<title> <Introduction> </Introduction> </title>
<figcount> <0> </0> </figcount>
</section>
<section>
<title> <Audience> </Audience> </title>
<figcount> <0> </0> </figcount>
</section>
<section>
<title>
<Web Data and the Two Cultures>
</Web Data and the Two Cultures>
</title>
<figcount> <1> </1> </figcount>
</section>
<section>
<title> <A Syntax For Data> </A Syntax For Data> </title>
<figcount> <1> </1> </figcount>
</section>
<section>
<title> <Base Types> </Base Types> </title>
<figcount> <0> </0> </figcount>
</section>
<section>
<title>
<Representing Relational Databases>
</Representing Relational Databases>
</title>
<figcount> <1> </1> </figcount>
</section>
<section>
<title>
<Representing Object Databases>
</Representing Object Databases>
</title>
<figcount> <0> </0> </figcount>
</section>
</section_list>

In the following experiments, we only show the query results in the form of decoded
XML forests.

Chapter 5: Experiments 115

5.2.3 Experiment 3: W3C Use Case “XMP” Q1

The queries from this Use Case illustrate the samples of querying databases and
document communities. We take the query @4 from the Use Case as an input
query in the experiment. It is a good example to show the capability of the query
processor to handle the expressions that are composed of basic operations and
FLWR expressions.

1. The Input XQuery Query

For the query Q1 “List books published by Addison-Wesley after 1991, including
their year and title.”, the XQuery solution from the W3C Use Cases is as follows:

<bib>
{
for $b in doc("http://bstorel.example.com/bib.xml")/bib/book
where $b/publisher = "Addison-Wesley" and $b/@year > 1991
return
<book year="{ $b/Q@year }">
{ $b/title }
</book>
}
</bib>

The rewritten query in Minimal XQuery syntax is as follows:

<bib>
for $b in select(’book’,children(select(’bib’,document(’bib’)))) do
where not empty(
select(’addison-wesley’,children(select(’publisher’,children($b)))))
return
where children(select(’year’,children($b))) > <1991>[]1()</1991>
return
<book>
<year> children(select(’year’,children($b))) </year>
@ select(’title’,children($b))
</book>
</bib>

Chapter 5: Experiments 116

2. The Result of the SQL Query

The resulting XML forest obtained by running the generated SQL plan in DB2 is
as follows:

<bib>
<book>
<year> <1994> </1994> </year>
<title> <TCP/IP Illustrated> </TCP/IP Illustrated> </title>
</book>
<book>
<year> <1992> </1992> </year>
<title>
<Advanced Programming in the Unix environment>
</Advanced Programming in the Unix environment>
</title>
</book>
</bib>

5.2.4 Experiment 4: W3C Use Case “XMP” Q2

1. The Input XQuery Query

For the query Q2 “Create a flat list of all the title-author pairs, with each pair
enclosed in a "result” element.” from the W3C Use Case “XMP”, the XQuery

solution from the W3C Use Cases is as follows:

<results>
{
for $b in doc("http://bstorel.example.com/bib.xml")/bib/book,
$t in $b/title,
$a in $b/author
return
<result>
{ $t 2
{ $a }
</result>
}

</results>

Chapter 5: Experiments 117
The rewritten query in Minimal XQuery syntax is as follows:

<results>
for $b in select(’book’,children(select(’bib’,document(’bib’)))) do
for $t in select(’title’,children($b)) do
for $a in select(’author’,children($b)) do
<result>
$t @ $a

</result>

</results>

2. The Result of the SQL Query

The resulting XML forest of the SQL plan generated by the query processor is as
follows:

<results>
<result>
<title> <TCP/IP Illustrated> </TCP/IP Illustrated> </title>
<author>
<last> <Stevens> </Stevens> </last>
<first> <W.> </W.> </first>
</author>
</result>
<result>
<title>
<Advanced Programming in the Unix environment>
</Advanced Programming in the Unix environment>
</title>
<author>
<last> <Stevens> </Stevens> </last>
<first> <W.> </W.> </first>
</author>
</result>
<result>
<title> <Data on the Web> </Data on the Web> </title>
<author>
<last> <Abiteboul> </Abiteboul> </last>
<first> <Serge> </Serge> </first>
</author>
</result>
<result>
<title> <Data on the Web> </Data on the Web> </title>

Chapter 5: Experiments 118

<author>
<last> <Buneman> </Buneman> </last>
<first> <Peter> </Peter> </first>
</author>
</result>
<result>
<title> <Data on the Web> </Data on the Web> </title>
<author>
<last> <Suciu> </Suciu> </last>
<first> <Dan> </Dan> </first>
</author>
</result>
</results>

5.2.5 Experiment 5: W3C Use Case “SEQ” Q1

The queries in this Use Case illustrate queries based on the order of elements in
a document. We take the query @1 from the Use Case as an input query in the
experiment.

1. The Input XQuery Query

For the query Q1 “In the Procedure section of Reportl, what Instruments were used
in the second Incision? 7 from the W3C Use Case “SEQ”, the XQuery solution
from the W3C Use Cases is as follows:

for $s in
doc("reportl.xml")//section[section.title = "Procedure"]
return ($s//incision) [2]/instrument

The rewritten query in Minimal XQuery syntax is as follows:

for $s in select(’section’,subtreesdfs(document (’reportl’))) do
where not empty
(select (’procedure’,children(
select (’section.title’,children($s)))))
return
select (’instrument’,children(head(tail(
select(’incision’,subtreesdfs($s))))))

Chapter 5: Experiments 119

2. The Result of the SQL Query

The resulting XML forest of the SQL plan generated by the query processor is as
follows:

<instrument>
<electrocautery> </electrocautery>
</instrument>

5.2.6 Experiment 6: W3C Use Case “SGML” Q3

The example document and queries in this Use Case were originated from those
created for a 1992 conference on Standard Generalized Markup Language (SGML).
The DTD and the example document have been transformed from SGML to XML
to be used in [3]. We take the query @3 from the Use Case as an input query in
the experiment.

1. The Input XQuery Query

For the query Q3 “Locate all paragraphs in the introduction of a section that is in
a chapter that has no introduction.” from the W3C Use Case “SGML”, the XQuery
solution from the W3C Use Cases is as follows:

<result>
{
for $c in doc("sgml.xml")//chapter
where empty($c/intro)
return $c/section/intro/para
}

</result>
The rewritten query in Minimal XQuery syntax is as follows:

<result>
for $c in select(’chapter’,subtreesdfs(document(’sgml’))) do
where empty(select(’intro’,children($c)))
return select(’para’,children(select(’intro’,
children(select(’section’,children($c))))))
</result>

Chapter 5: Experiments 120

2. The Result of the SQL Query

The resulting XML forest of the SQL plan generated by the query processor is as
follows:

<result>
<para>
<The Graphic Communications Association ...>
</The Graphic Communications Association ...>
</para>
<para>
<security>
<c> </c>
</security>
<Exiled members of the former ...>
</Exiled members of the former ...>
</para>
</result>

Since some of the strings in the resulting XML forest are quite long, we just show
the beginning part of the strings and omit the rest.

5.2.7 Experiment 7: XMark Benchmark Query Q8

1. The Input XQuery Query

For the query Q8 “List the names of persons and the number of items they bought.”
from the XMark Benchmark:

for $p in document("auction.xml")/site/people/person
let $a := for $t in document("auction.xml")/site
/closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t
return <item person=$p/name/text()> count ($a) </item>

The query is rewritten in Minimal XQuery syntax as follows:

Chapter 5: Experiments 121

for $p in select(’person’,children(select(’people’,children
(select(’site’ ,document (’auction’)))))) do
let $a = for $t in select(’closed_auction’,children(
select(’closed_auctions’,children
(select(’site’,document (’auction’)))))) do
where children(select(’person’,children(select(’buyer’,
children($t))))) = children(select(’id’,children($p)))
return $t
in <item>
<person> children(select(’name’,children($p)))</person> @
count ($a)
</item>

2. The Result of the SQL Query

The source XML data we use in this experiment is generated by the XMark data
generator with a scale factor 0. The resulting XML forest of the SQL query for
XMark @8 is as follows:

<item>
<person>
<Jaak Tempesti> </Jaak Tempesti>
<5> </5>
</person>
</item>

5.2.8 Experiment 8: XMark Benchmark Query Q9

1. The Input XQuery Query

For the query Q9 “List the names of persons and the number of items they bought
in Europe.” from the XMark Benchmark:

Chapter 5: Experiments 122

for $p in document("auction.xml")/site/people/person

let $a := for $t in document ("auction.xml")/site
/closed_auctions/closed_auction
let $n := for $t2 in document("auction.xml")

/site/regions/europe/item
where $t/itemref/@item = $t2/0@id
return $t2

where $p/Q@id = $t/buyer/@person
return <item> $n/name/text() </item>
return <person name=$p/name/text()> $a </person>

The rewritten query in Minimal XQuery syntax is as follows:

for $p in select(’person’,children(select(’people’,children
(select(’site’ ,document (’auction’)))))) do
let $a = for $t in select(’closed_auction’,children(select(’closed_auctions’,
children(select(’site’,document(’auction’)))))) do
let $n = for $t2 in select(’item’,children(select(’europe’,
children(select(’regions’,children(select
(’site’ ,document (’auction’)))))))) do
where children(select(’item’,children(select(’itemref’,
children($t))))) = children(select(’id’,children($t2)))
return $t2
in where children(select(’id’,children($p))) =
children(select(’person’,children(select(’buyer’,children($t)))))
return <item> children(select(’name’,children($n))) </item>
in <person> <name> children(select(’name’,children($p))) </name> @ $a </person>

2. The Result of the SQL Query

We use the same source XML data from Experiment 7. The resulting XML forest
of the SQL query for XMark ()9 is as follows:

<person>
<name> <Jaak Tempesti> </Jaak Tempesti> </name>
<item> </item>
<item> </item>
<item>
<abhorr execution beckon rue>

Chapter 5: Experiments 123

</abhorr execution beckon rue>
</item>
<item> </item>
<item> </item>
</person>

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we designed and implemented an XQuery-to-SQL Query Processor
based on the Dynamic Intervals approach [9]. We also provided a comprehensive
translation for XQuery basic operations and FLWR expressions. The query pro-
cessor we implemented is able to translate a complex XQuery query, which might
include arbitrarily composed and nested basic functions, element constructors, and
nested FLWR expressions, into a single SQL query for RDBMS and a physical plan
for the XQuery-enhanced Relational Engine [15].

The optimization approaches, which include the optimization algorithms to com-
bine SQL expressions into a single SQL SELECT block and the succinct SQL trans-
lation templates for XQuery expressions, can effectively reduce the size of the final
SQL query and produce preferable SQL plans.

The preferable merge-join approach is proposed to efficiently handle value joins
in FLWR expressions!. By using the merge-join approach, the inefficient nested-
loop evaluation can be avoided. Proofs to prove the correctness of the merge-
join approach are provided. The proposed merge-join patterns are general enough
to capture a considerable number of the XQuery fragments that can utilize the
preferred merge-join approach. We also propose a series of query rewriting rules
to capture a larger fraction of the merge-join fragments. With the help of the
merge-join patterns and the rewriting rules, the XQuery Query Optimizer is able to

!Theoretically, the merge join is more efficient than the nested-loop join. The efficiency of
using the merge-join operation to handle the FLWR expressions are proved by the experimental
results in [15].

124

Chapter 6: Conclusions and Future Work 125

capture a significant number of merge-join fragments in the input XQuery queries.
As a result, the processor is able to generate predictably efficient relational plans.
The experimental results justify the correctness of our work.

6.2

Future Work

We have the following suggestions for the future work:

A more complex syntax can be designed for Minimal XQuery to handle a
larger class of XQuery expressions, which include XQuery basic operations
like contain, before, after, etc.; complex arithmetic expressions; the Order By
expression in FLWOR expressions.

The merge-join approach can be further improved by designing additional
merge-join patterns and rewriting rules to capture the a larger set of merge-
join fragments.

The physical plan that our system generates for the XQuery-enhanced Rela-
tional Engine [15] can be further optimized.

Currently, we only implemented head, tail and last operations to handle path
expressions with predicates. For a path expression like “$p/person[3]”, the
rewritten XQuery query in Minimal XQuery syntax is quite cumbersome.
Additional basic operations can be designed to efficiently handle a wider range
of path expressions with predicates.

Appendix A

A Comprehensive Translation for
XQuery Basic Operations

A.1 SQL Translation Fragments for Basic Oper-
ations

There are two SQL fragments that appear in most of the SQL translation templates
for the XQuery basic operations. The relational algebra trees that map the two
SQL fragments are provided as follows.

A.1.1 Relational Algebra Tree for the First SQL Fragment

The following fragment appears frequently in the SQL templates for XQuery basic
operations:

(SELECT 4,s,l —i*we AS I,r —i*xw, AS 7
FROM 1,7,
WHERE ixwe <l AND r < (i+1)*we) Tey

The corresponding relational algebra tree is shown as follows:

126

Appendix A: A Comprehensive Translation for XQuery Basic Operations 127

Te_i(Te) =
Projectll,2,5,6](
AddColumn|[C4 — C'1 * we](
AddColumn[C'3 — C'1 * w,](
Select[C4 < (C1+ 1) * we(
Select[C1 * w, < C3](
LoopJota| |(7, T.))))))

A.1.2 Relational Algebra Tree for the Second SQL Frag-
ment

The second SQL fragment that appears in all SQL translation templates for XQuery
basic operations except for the empty constructor is as follows:

CREATE VIEW Txpn(Te, ...T.,) AS
SELECT s,l 47 % wxrn AS I,7 41 % wxr, AS 7
FROM (

) QXFn

where Qxg, returns tuples (4, s,1,7). Let Tq,,, (with resulting tuples (C'1,C2,C3,C4))
be the relational algebra tree for Qxr,. The corresponding relational algebra tree
for the above SQL fragment is shown as follows:

TxFn (TQXFn) =
Project[2,5,6](
AddColumn[C4 + C'1 % wxgn](
AddColumn[C3 + C1 * wxen) (T,)

Appendix A: A Comprehensive Translation for XQuery Basic Operations 128

A.2 Translations for XQuery Basic Operations

A.2.1 The DOCUMENT operator

The expression: document(’ filename’)

The SQL Translation Template

CREATE VIEW Tdocument (T;‘ilename) AS
SELECT 5,1 4 % * Wdocument AS 1,7 4+ @ * Wdocument AS 7
FROM I, Tilename

The width of the result is Wyocument = Tmax + 1.

The Relational Algebra Tree

4

If the name of the document is specified as an XML file with a suffix “.xml” in the
string filename, then the document operation has the following relational algebra
tree mapping:

TQun =
LoopJoin| |(Z,
XMLFileReader|[filename]()

Otherwise, it has an alternative mapping:

TQun =
LoopJoin][|({,
TextFileReader|filename]()

A.2.2 The Empty Constructor

The expression: [|()

Appendix A: A Comprehensive Translation for XQuery Basic Operations 129

The SQL Translation Template
CREATE VIEW Tempty AS

SELECT 's’ AS s, 0 AS I, 1 AS r
FROM EMPTY

The width of the result is wempry = 0.

The Relational Algebra Tree

Tempty =
AddColumn[1](
AddColumn[0](
AddColumn['s’|(
EMPTY(]()))

A.2.3 The Element Constructor

The expression: xnode(’label’, e)

The SQL Translation Template

CREATE VIEW Tynoge('label’, T,) AS
SELECT s,l 4+ ¢ * Wynode AS I, 7 4+ @ * Wynode AS 7

FROM (

(SELECT 4, label’ AS 5,0 AS l,w.+ 1 AS r
FROM I,UNIT)

UNION ALL

(SELECT 4,s,l+1 AS I,r+1 AS r
FROM

(SELECT 4,s,l —i*we AS I,r —i*w, AS r
FROM I.T,

WHERE ixwe <l AND r < (i+1)*xw.) T/

7

)
) QXFn

Appendix A: A Comprehensive Translation for XQuery Basic Operations 130

The width of the result is WxNode = We + 2.

The Relational Algebra Tree

Let T, ;(T.) be the relational algebra tree for the SQL fragment shown in Section
A.1.1. The relational algebra tree that maps the Qxg, in the SQL template is as
follows:

TQxrn =
CatUnion| |(

AddColumn|w, + 1J(
AddColumn[0](
AddColumn|['label’](
LoopJoin[|(Z,
UNIT[]()))))
Project[l,2,5,6](
AddColumn[C4 + 1)(
AddColumn[C3 + 1|(Te(Te))))

A.2.4 The Concatenation Constructor

The expression: e; Q eqy

Appendix A: A Comprehensive Translation for XQuery Basic Operations 131

The SQL Translation Template

CREATE VIEW Tcatunion (TelaT€2) AS
SELECT s, + % * Weatunion AS I,7 + i * Weatunion AS T

FROM (
(SELECT 4,s,l —i%we, AS I,r —i*xwe, AS r
FROM 1,7,
WHERE ¢ % we, <1 AND 7 < (i + 1) % we,
)
UNION ALL
(SELECT 4,s,0 + we, AS I,7+we, AS 7
FROM
(SELECT 4, 8,l —i% we, ASl,7 — i * we, AS T
FROM 1,7,
WHERE ¢ % we, <1 AND r < (i + 1) * we,
) T,
)
) QxFn

The width of the result is wa = we, + We, .

The Relational Algebra Tree

Let T.;(T.,) and T, ;(T.,) be the relational algebra trees for the SQL fragment,
which is shown in Section A.1.1, with input tables T, and T, respectively. The
relational algebra tree that maps the Qxp, in the SQL template is as follows:

Toxe, =
CatUnion| |(T..(T¢,),

Project[l1,2,5,6](
AddColumn|[C'4 + we,](
AddColumn[C3 + we,|(Tei(Te,))))

A.2.5 The HEAD Operator

The expression: head(e)

Appendix A: A Comprehensive Translation for XQuery Basic Operations

The SQL Translation Template

CREATE VIEW Theaq(T%) AS
SELECT s, + % % Whead AS I,7 4 7 % Whead AS T

FROM
(SELECT wu.i AS i,u.s AS s,u.l AS l,u.r AS r
FROM
(SELECT i,s,l —i*we AS I,r —i*w, AS 7
FROM I,T,
WHERE % we <1 AND 7 < (i + 1) x w,
) u,
(SELECT i,s,l,r
FROM
(SELECT 4,s,l —i*we AS I,r —i*xwe AS r
FROM 1,7,
WHERE i%w. <[AND r < (i+1)*%w.) v
WHERE NOT EXISTS
(SELECT =
FROM
(SELECT 4,s,l —i*xwe AS I,r —i*we AS r
FROM 1,7,
WHERE i%we <[AND r < (i+1)*w.) w
WHERE w.l < v.l AND v.i = w.i)
) vv
WHERE vv.l < u.l AND w.r <wvv.r AND vv.i = u.l
) QxFn

The resulting width of HEAD operation is whead = We.

The Relational Algebra Tree

132

The relational algebra tree that maps the Qxg, in the SQL template is as follows:

TQoxrn =
Project[l1,2,3,4])(
Select[C4 < C8|(
Select[C7 < C3|(
LoopJoin[l = 1](T¢(Te),
LoopExceptIn[C1l = C1,C3 > C3|(T.i(Te), Tci(Te))))))

Appendix A: A Comprehensive Translation for XQuery Basic Operations

A.2.6 The LAST Operator

The expression: last(e)

The SQL Translation Template

CREATE VIEW Tjss(7.) AS
SELECT s, + i % wpast AS 1,7 + 4 % wpast AS T

FROM

(SELECT u.i AS i,u.s AS s,u.l AS l,u.r AS r

FROM

(

)

WHERE
) QxFn

SELECT ¢,s,l —i*w, AS I, r —i*xw, AS r

FROM 1,7,
WHERE % w, <[AND r < (i+ 1) * we
u)
SELECT 14,s,l,r
FROM
(SELECT 4,s,l —i*we AS I,r —i*xw, AS r
FROM 1,7,

WHERE i%we <[AND r < (i+1)*%w.) v
WHERE NOT EXISTS
(SELECT
FROM
(SELECT 4,s,l —i*we AS I,r —i*we AS r
FROM I,T,
WHERE i%we <[AND r < (i+1)*w.) w
WHERE v.r < w.r AND v.i = w.i)
VU
vu.l < wu.l AND w.r < vv.r AND vv.i = u.l

The resulting width of last operation is wj,ss = we.

The Relational Algebra Tree

133

The relational algebra tree that maps the Qxg, in the SQL template is as follows:

Appendix A: A Comprehensive Translation for XQuery Basic Operations

TQuen =
Project|l,2,3,4|(
Select[C4 < C8|(
Select[C7 < C3](
LoopJoin[l = 1|(Tei(Te),
LoopExceptIn[C1 = C1,C4 < C4|(Te4(T.),Tci(Te))))))

A.2.7 The TAIL Operator

The expression: tail(e)

The SQL Translation Template

CREATE VIEW Ti.i(7:) AS
SELECT s,0 + 7 % wiaj AS L, 7 + i % Wy AS 7

FROM
(SELECT u.i AS i,u.s AS s,u.l AS L,u.r AS r
FROM
(SELECT i,s,l —i*we AS I,r —i*we AS 1
FROM 1,7,

WHERE % w, <! AND r < (i 4 1) * w,
) U,
(SELECT 4,s,l,7
FROM
(SELECT 4,s,l —ixw, AS I, —i*w. AS r
FROM 1,7,
WHERE i xwe <1 AND 7 < (i + 1) xwe) v
WHERE NOT EXISTS
(SELECT x*
FROM
(SELECT 4,s,l —i*we AS I,r —i*w, AS r
FROM I, T,
WHERE i*xwe <[AND r < (i +1)*%w,) w
WHERE w.l < v.l AND v.i = w.i)
) wvv
WHERE vv.r < u. AND vv.i = u.t
) QxFn

134

Appendix A: A Comprehensive Translation for XQuery Basic Operations 135

The resulting width of tail operation is Wy = we.

The Relational Algebra Tree

The relational algebra tree that maps the Qxg, in the SQL template is as follows:

TQoxr, =
Project[l1,2,3,4](
Select[C8 < C3|(
LoopJoin|[l = 1](T%._(Te),
LoopExceptIn[C1l = C1,C3 > C3|(Te.i(Te), Tei(Te)))))

A.2.8 The ROOTS Operator

The expression: roots(e)

The SQL Translation Template

CREATE VIEW Tyoots(7:) AS
SELECT s,l + 7 * Wyoots AS [, 7 + 1 % Wyoors AS T

FROM
(SELECT wu.i,u.s,u.l,u.r
FROM
(SELECT i,s,l —i*we AS I,r —i*we AS 7
FROM 1,7,
WHERE % w, <! AND r < (i+ 1) * w,
) u
WHERE NOT EXISTS (
SELECT =
FROM
(SELECT 4,s,l —i*we AS I,r —i*we AS r
FROM I, Te
WHERE 4% we <[AND r < (i + 1) * we
) v

WHERE v.l < u.l AND w.r < v.r AND w.i=1v.7)
) QxFn

Appendix A: A Comprehensive Translation for XQuery Basic Operations 136

The above SQL translation template can be simplified as follows:

CREATE VIEW Toots(T.) AS
SELECT w.s AS s,u.l AS l,u.r AS r
FROM T, u
WHERE NOT EXISTS (
SELECT =*
FROM 7. v
WHERE .l <wu.l AND u.r <w.r)

The resulting width is set to Wyoots = We.-

The Relational Algebra Tree

The relational algebra tree that maps the Qxp, in the first SQL template is as
follows:

TQuen =
LoopExceptIn[C1l = C1,C3 > C3,C4 < C4|(Tei(Te), Tei(Te))

The relational algebra tree for the simplified SQL translation template is shown as
follows:

Troots =

LoopExceptIn[C2 > C2,C3 < C3|(T,, T¢)

A.2.9 The REVERSE Operator

The expression: reverse(e)

The SQL Translation Template

Let Qroors(r.) represents the SQL template for the roots operation with input
table parameter T,. The SQL template for the reverse operation is as follows:

Appendix A: A Comprehensive Translation for XQuery Basic Operations

CREATE VIEW Theverse(T.) AS
SELECT s,l 4+ i * Wyeverse AS I, 7 + 7 * Wreverse AS T
FROM
(SELECT wu.i,u.s,u.l —r.l+ (we —r.r) AS I,
wr —rl+ (we—rr) AS r
FROM
(SELECT 4,s,l —i*we AS I,r —i*xwe AS 1
FROM I,T,
WHERE % we <1 AND r < (i + 1) % w,
) U,
(SELECT 4,s,l —i*we AS I,r —i*xwe AS 1
FROM I, Qroors(t.)
WHERE % w, <[AND r < (i + 1) * we
) T
WHERE r.0 < wu.l AND w.r <r.r AND w.i = 1.4
) QxFn

The width of the result is Wreverse = We.

The Relational Algebra Tree

137

Let Roots T, be the relational algebra tree for the SQL template for the roots
operation roots(7,). The relational algebra tree that maps the Qxg, in the SQL

template is as follows:

TQoxr, =
Project[1,2,9,10](
AddColumn[C4 — C7 + (we — C8)|(
AddColumn|[C3 — C7 + (we — C8)](
Select[C4 < C8|(
Select[C7 < C3](
LoopJoin|[l = 1|(Tci(Te), Tei(Roots T¢)))))))

A.2.10 The DISTINCT Operator

The expression: distinct(e)

Appendix A: A Comprehensive Translation for XQuery Basic Operations

The SQL Translation Template

The SQL template for the distinct operation is as follows:

CREATE VIEW Tyistinct(T%) AS
SELECT s,l + i * Wgistinct AS I, 7 + 7 * Wistinct AS 7
FROM
(SELECT wu.i AS i,u.s AS s,u.l AS l,u.r AS r
FROM
(SELECT 4,8, —ixw. AS I,r —i*w, AS r
FROM 1,7,
WHERE % we < AND r < (i + 1) * we
) u,
(SELECT i4,s,l,r
FROM
(SELECT 4,s,l —i*we AS I,r —i*we AS r
FROM I, Qroors(T.)
WHERE i%we <[AND r < (i+1)*%w.) v
WHERE NOT EXISTS
(SELECT
FROM
(SELECT 4,s,l —ixw, AS I, 7 —i*xw. AS r
FROM I, Qroors(.)
WHERE i%w, <[AND r < (i+1)*w.) w
WHERE w.l < v.l AND w.s =wv.s AND v.i = w.i)
) wvv
WHERE vv.l < u.l AND u.r < wvv.r AND vv.t = u.i
) QxFn

The width of the result is Wyistinet = We.-

The Relational Algebra Tree

138

The relational algebra tree that maps the Qxg, in the SQL template is as follows:

Appendix A: A Comprehensive Translation for XQuery Basic Operations

Toxr, =
Project[l1,2,3,4](
Select[C4 < C8|(
Select[C7 < C3|(
LoopJoin[l = 1](T¢ 4,
LoopExceptIn[C1 = C1,C2 = C2,C3 > C3]
(Te_i(Roots T,),T._i(Roots T¢))))))

A.2.11 The SELECT Operator

The expression: select('str’, e)

The SQL Translation Template

The SQL template for the distinct operation is as follows:

CREATE VIEW Tieect('str’,T.) AS
SELECT s,l 47 * Wselect AS [, 7 + 7 % Wselect AS T

FROM
(SELECT wu.i AS 4,u.s AS s,u.l AS l,u.r AS r
FROM
(SELECT 4,8, —ixwe AS I,r —i*we AS r
FROM 1,7,
WHERE 7% we <! AND r < (i + 1) * w,
) U,
(SELECT 4,s,l,7
FROM
(SELECT 4,s,l —i*xwe AS I,r —ixwe AS r
FROM I, Qroors(t.)
WHERE i xwe < AND 7 < (i + 1) xwe) v
WHERE s ='str’
) T
WHERE 7.0 < wu.l AND w.r <r.r AND u.i = 1.3
) QxFn

The resulting width is Weelect = We.

139

Appendix A: A Comprehensive Translation for XQuery Basic Operations 140

The Relational Algebra Tree

The relational algebra tree that maps the Qxg, in the SQL template is as follows:

TQuen =
Project|l,2,3,4|(
Select[C4 < C8|(
Select[C7 < C3](
LoopJoin[l = 1)(T¢.(Tv),
Select[C2 ='str'|(T.i(Roots T¢))))))

A.2.12 The SUBTREESDFS Operator

The expression: subtreesdfs(e)

The SQL Translation Template

CREATE VIEW Tiubtreesdss(T.) AS
SELECT s, [+ % Wsubtreesdfs AS l; T+ 1 * Wsybtreesdfs AS T
FROM
(SELECT wu.i AS i,u.s AS s,u.l+vl*we AS l,ur+vl*w. AS r
FROM
(SELECT 4,8, —ixw. AS I,r —i*xw, AS r
FROM I,T.
WHERE % we <[AND r < (i + 1) * we
)
(SELECT 4,8, —ixwe AS I,r —i*xw, AS r
FROM 1,7,
WHERE 7 % w, <1 AND 7 < (i + 1) % w,
) v

WHERE v.l < wu.l AND w.r <wv.r AND u.i = v.1
) QXFn

The width of the result is Wsyptreesdts = W2.

The Relational Algebra Tree

The relational algebra tree that maps the Qxg, in the SQL template is as follows:

Appendix A: A Comprehensive Translation for XQuery Basic Operations 141

TQuen =
Project[l,2,9,10|(
AddColumn|[C4 + w, * C'7|(
AddColumn|[C3 + w, * C'7)(
Select[C4 < C8|(
Select[C7 < C3](

LoopJoin[l = 1)(T¢ (Te), Te i(T%)))))))

A.2.13 The CHILDREN Operator

The expression: children(e)

The SQL Translation Template

CREATE VIEW Tthiidren(Te) AS
SELECT s, + i * Wehildren AS [,7 + @ % Wehildren AS T

FROM
(SELECT wu.i,u.s,u.l,u.r
FROM
(SELECT 4,s,l —i*we AS I,r —i*xwe AS 7
FROM I,T,

WHERE 7% we <[AND r < (i + 1) % we
) u
WHERE EXISTS (
SELECT =
FROM
(SELECT 4,s,l —i*we AS I,r —i*xwe AS r
FROM I, Te
WHERE 4% we <[AND r < (i + 1) * we
) v
WHERE v.l < u.l AND w.r < v.r AND w.i=v.i)
) @xFn

Similar to the roots operation, the above SQL translation can be simplified as
follows:

Appendix A: A Comprehensive Translation for XQuery Basic Operations 142

CREATE VIEW Tenitdren(T:) AS
SELECT u.s AS s,u.l AS l,u.r AS r
FROM T. u
WHERE EXISTS (
SELECT =
FROM 7T, v
WHERE wv.l <wu.l AND u.r <w.r)

The width of the result iS Wehildren = Wy

The Relational Algebra Tree

The relational algebra tree that maps the Qxg, in the first SQL template for the
children operation is as follows:

TQuen =
LoopIn[C1l = C1,C3 > C3,C4 < C4|(Te-i,T. i)

The relational algebra tree for the simplified SQL template is shown as follows::

Tchildren =

LoopIn[C2 > C2,C3 < C3)(Te,T.)

A.2.14 The COUNT Operator

The expression: count(e)

Appendix A: A Comprehensive Translation for XQuery Basic Operations

The SQL Translation Template

CREATE VIEW Teoune(7.) AS
SELECT s,l + % % Weount AS I, 7 + & % Weount AS 7
FROM
((SELECT 4,char(COUNT(%)) AS s,0 AS [,1 AS r
FROM
(SELECT 4,s,l —i*we AS I,r —i*we AS r
FROM I, QRroors(1)
WHERE i % w, <! AND r < (i 4 1) * w,
) u
GROUP BY ¢
)
UNION ALL
(SELECT i,/0' AS 5,0 AS I,1 AS r
FROM
(SELECT i
FROM I i
WHERE NOT EXISTS (
SELECT =
FROM
(SELECT 4,s,l —i*we AS I,r —i*xw, AS r
FROM I, Qroors(1.)
WHERE i we <1 AND 7 < (i+ 1) x w,
) v
WHERE i.i=v.i)
) i
)
) QxFn

The width of the result is Weoune = 2.

The Relational Algebra Tree

143

The relational algebra tree that maps the Qxg, in the SQL template is as follows:

Appendix A: A Comprehensive Translation for XQuery Basic Operations 144

TQuen =
CatUnion[|(

CountAggregate[l](T,_;(Roots 1))
AddColumn[1](
AddColumn[0](
AddColumn[0'](
LoopExceptIn[C1l = C1](I,T._i(Roots T¢)))))

Appendix B

Experiments

B.1 Experiment 9: W3C Use Case “XMP” Q3

1 The Input XQuery Query

For the query Q3 “For each book in the bibliography, list the title and authors,
grouped inside a “result” element. 7 from the W3C Use Case “XMP”:

<results>
{
for $b in doc("http://bstorel.example.com/bib.xml")/bib/book
return
<result>

{ $b/title }
{ $b/author }
</result>

}

</results>

The query is rewritten in the syntax of Minimal XQuery as follows:

145

Appendix B: Experiments 146

<results>
for $b in select(’book’,children(select(’bib’,document(’bib’)))) do
<result>
select (’title’,children($b)) @
select (’author’,children($b))
</result>
</results>

2 The Result of the SQL Query

The following XML forest corresponds to the resulting relational encoding obtained
by executing the generated SQL query in DB2:

<results>
<result>
<title>
<TCP/IP Illustrated> </TCP/IP Illustrated>
</title>
<author>
<last> <Stevens> </Stevens> </last>
<first> <W.> </W.> </first>
</author>
</result>
<result>
<title>
<Advanced Programming in the Unix environment>
</Advanced Programming in the Unix environment>
</title>
<author>
<last> <Stevens> </Stevens> </last>
<first> <W.> </W.> </first>
</author>
</result>
<result>
<title> <Data on the Web> </Data on the Web> /title>
<author>
<last> <Abiteboul> </Abiteboul> </last>
<first> <Serge> </Serge> </first>
</author>
<author>
<last> <Buneman> </Buneman> </last>
<first> <Peter> </Peter> </first>

Appendix B: Experiments 147

</author>
<author>
<last> <Suciu> </Suciu> </last>
<first> <Dan> </Dan> </first>
</author>
</result>
<result>
<title>
<The Economics of Technology and Content for Digital TV>
</The Economics of Technology and Content for Digital TV>
</title>
</result>
</results>

B.2 Experiment 10: W3C Use Case “XMP” Q5

1 The Input XQuery Query

For the query Q5 “For each book found at both bstorel.example.com and bstore2.-
example.com, list the title of the book and its price from each source.” from the
W3C Use Case “XMP”:

<books-with-prices>
{
for $b in doc("http://bstorel.example.com/bib.xml")//book,
$a in doc("http://bstore2.example.com/reviews.xml")//entry
where $b/title = $a/title
return
<book-with-prices>
{ $b/title }
<price-bstore2>{ $a/price/text() }</price-bstore2>
<price-bstorel>{ $b/price/text() }</price-bstorel>
</book-with-prices>
}

</books-with-prices>

The query is rewritten in the syntax of Minimal XQuery as follows:

Appendix B: Experiments 148

<books-with-prices>
for $b in select(’book’,subtreesdfs(document (’bib’))) do
for $a in select(’entry’,subtreesdfs(document(’reviews’))) do
where
children(select(’title’,children($b)))
children(select(’title’,children($a)))
return
<book-with-prices>
select(’title’,children($b)) @
<price-bstore2>
children(select(’price’,children($a)))
</price-bstore2> @
<price-bstorel>
children(select(’price’,children($b)))
</price-bstorel>
</book-with-prices>
</books-with-prices>

2 The Result of the SQL Query

The following XML forest corresponds to the resulting relational encoding obtained
by executing the generated SQL query in DB2:

<books-with-prices>
<book-with-prices>
<title>
<TCP/IP Illustrated> </TCP/IP Illustrated>
</title>
<price-bstore2> <65.95> </65.95> </price-bstore2>
<price-bstorel> <65.95> </65.95> </price-bstorel>
</book-with-prices>
<book-with-prices>
<title>
<Advanced Programming in the Unix environment>
</Advanced Programming in the Unix environment>
</title>
<price-bstore2> <65.95> </65.95> </price-bstore2>
<price-bstorel> <65.95> </65.95> </price-bstorel>
</book-with-prices>

Appendix B: Experiments 149

<book-with-prices>
<title> <Data on the Web> </Data on the Web> /title>
<price-bstore2> <34.95> </34.95> </price-bstore2>
<price-bstorel> <39.95> </39.95> </price-bstorel>
</book-with-prices>
</books-with-prices>

B.3 Experiment 11: W3C Use Case “XMP” Q11

1 The Input XQuery Query

For the query Q11 “For each book with an author, return the book with its title and
authors. For each book with an editor, return a reference with the book title and the
editor’s affiliation.” from the W3C Use Case “XMP”:

<bib>
{
for $b in doc("http://bstorel.example.com/bib.xml")//book[author]
return
<book>
{ $b/title }
{ $b/author }
</book>
}
{
for $b in doc("http://bstorel.example.com/bib.xml")//book[editor]
return
<reference>
{ $b/title }
{ $b/editor/affiliation }
</reference>
}
</bib>

The query is rewritten in the syntax of Minimal XQuery as follows:

Appendix B: Experiments 150

<bib>
(for $b in select(’book’,subtreesdfs(document(’bib’))) do
where not empty (select(’author’,children($b)))

return
<book>
select(’title’,children($b)) @ select(’author’,children($b))
</book>)
Q
(for $b2 in select(’book’,subtreesdfs(document(’bib’))) do
where not empty (select(’editor’,children($b2)))
return
<reference>
select(’title’,children($b2)) @
select(Paffiliation’,children(select(’editor’,children($b2))))
</reference>)
</bib>

2 The Result of the SQL Query

<bib>
<book>
<title>
<TCP/IP Illustrated> </TCP/IP Illustrated>
</title>
<author>
<last> <Stevens> </Stevens> </last>
<first> <W.> </W.> </first>
</author>
</book>
<book>
<title>
<Advanced Programming in the Unix environment>
</Advanced Programming in the Unix environment>
</title>
<author>
<last> <Stevens> </Stevens> </last>
<first> <W.> </W.> </first>
</author>
</book>
<book>
<title> <Data on the Web> </Data on the Web> /title>

Appendix B: Experiments 151

<author>
<last> <Abiteboul> </Abiteboul> </last>
<first> <Serge> </Serge> </first>
</author>
<author>
<last> <Buneman> </Buneman> </last>
<first> <Peter> </Peter> </first>
</author>
<author>
<last> <Suciu> </Suciu> </last>
<first> <Dan> </Dan> </first>
</author>
</book>
<reference>
<title>
<The Economics of Technology and Content for Digital TV>
</The Economics of Technology and Content for Digital TV>
</title>
<affiliation> <CITI> </CITI> </affiliation>
</reference>
</bib>

B.4 Experiment 12: W3C Use Case “TREE” Q3

1 The Input XQuery Query

For the query Q3 “How many sections are in Bookl, and how many figures?” from
the W3C Use Case “TREE”:

<section_count>

{ count(doc("book.xml")//section) }
</section_count>,
<figure_count>

{ count(doc("book.xml")//figure) }
</figure_count>

The query is rewritten in the syntax of Minimal XQuery as follows:

Appendix B: Experiments 152

<section_count>

count (select(’section’,subtreesdfs(document (’book’))))
</section_count> @
<figure_count>

count (select(’figure’,subtreesdfs(document (*book’))))
</figure_count>

2 The Result of the SQL Query

<section_count> <7> </7> </section_count>
<figure_count> <3> </3> </figure_count>

B.5 Experiment 13: W3C Use Case “SEQ” Q2

1 The Input XQuery Query

For the query Q2 “In the Procedure section of Reportl, what are the first two
Instruments to be used?” from the W3C Use Case “SEQ”:

for $s in doc("reportl.xml")//
section[section.title = "Procedure"]
return ($s//instrument) [position()<=2]

The query is rewritten in the syntax of Minimal XQuery as follows:

for $s in select(’section’,subtreesdfs(document (’reporti’))) do
where
not empty(select(’procedure’,children(
select(’section.title’,children($s)))))
return
let $i := select(’instrument’,subtreesdfs($s))
in head($i) @ head(tail($i))

Appendix B: Experiments 153

2 The Result of the SQL Query

<instrument>
<using electrocautery.> </using electrocautery.>
</instrument>
<instrument>
<electrocautery> </electrocautery>
</instrument>

B.6 Experiment 15: W3C Use Case “SGML” Q1

1 The Input XQuery Query

For the query Q1 “Locate all paragraphs in the report (all "para” elements occurring
anywhere within the “report” element).” from the W3C Use Case “SGML”:

<result>
{
doc("sgml.xml")//report//para
}

</result>

The query is rewritten in the syntax of Minimal XQuery as follows:

<result>
select(’para’,subtreesdfs(select (’report’,
subtreesdfs(document (’sgml’)))))

</result>

2 The Result of the SQL Query

<result>
<para>
<With the ever-changing ...> </With the ever-changing ...>
</para>
<para>
<As part of the ...> </As part of the ...>
</para>
<para>

Appendix B: Experiments 154

<While SGML is a ...> </While SGML is a ...>
<emph> <markup> </markup> </emph>

<in computer-generated ...> </in computer-generated ...>
</para>
<para>

<Markup is everything ...> </Markup is everything ...>

<emph> <marking> </marking> </emph>
<up of typewritten ...> </up of typewritten ...>
<emph>
<procedural markup> </procedural markup>
</emph>
<.> </.>
</para>
<para>
<Most electronic ...> </Most electronic ...>
</para>
<para>
<Generic markup (also ...> </Generic markup (also ...>
<emph> <purpose> </purpose> </emph>
<of the text in ...> </of the text in ...>
</para>
<para>
<Industries involved ...> </Industries involved ...>
</para>
<para>
<SGML defines a ...> </SGML defines a ...>
</para>
<para>
<SGML can describe ...> </SGML can describe ...>
</para>
<para>
<You can break a ...> </You can break a ...>
</para>
<para>
<At the heart of ...> </At the heart of ...>
</para>
<para>
<A database schema ...> </A database schema ...>
<emph> <rules> </rules> </emph>
<to help ensure ...> </to help ensure ...>
</para>
<para>
<Content is the ...> </Content is the ...>
<emph> <tagging> </tagging> </emph>
<. Tagging must conform ...> </. Tagging must conform ...>
<xref> <xrefid> <topd> </topd> </xrefid> </xref>
QD> <)

Appendix B: Experiments 155

</para>
<para>
<SGML does not...> </SGML does not...>
</para>
<para>
<The Graphic Communications ...>
</The Graphic Communications ...>
</para>
<para>
<security> <c> </c> </security>
<Exiled members of ...> </Exiled members of ...>
</para>
</result>

B.7 Experiment 16: W3C Use Case “SGML” Q2

1 The Input XQuery Query

For the query Q2 “Locate all paragraph elements in an introduction (all “para”

elements directly contained within an "intro” element).” from the W3C Use Case
“SGML”:

<result>
{

doc("sgml.xml")//intro/para
}

</result>

The query is rewritten in the syntax of Minimal XQuery as follows:

<result>
select(’para’,children(select(’intro’,
subtreesdfs(document (’sgml’)))))

</result>

Appendix B: Experiments 156

2 The Result of the SQL Query

<result>
<para>
<With the ever-changing ...> </With the ever-changing ...>
</para>
<para>
<As part of the ...> </As part of the ...>
</para>
<para>
<While SGML is ...> </While SGML is ...>
<emph> <markup> </markup> </emph>

<in computer-generated ...> </in computer-generated ...>
</para>
<para>

<Markup is everything ...> </Markup is everything ...>

<emph> <marking> </marking> </emph>
<up of typewritten ...> </up of typewritten ...>
<emph>
<procedural markup> </procedural markup>
</emph>
<.> </.>
</para>
<para>
<SGML defines a ...> </SGML defines a ...>
</para>
<para>
<SGML can describe ...> </SGML can describe ...>
</para>
<para>
<You can break a ...> </You can break a ...>
</para>
<para>
<The Graphic Communications ...> </The Graphic Communications ...>
</para>
<para>
<security> <c> </c> </security>
<Exiled members of ...> </Exiled members of ...>
</para>
</result>

Appendix B: Experiments 157

B.8 Experiment 17: W3C Use Case “SGML” Q5

1 The Input XQuery Query

For the query Q5 “Locate all classified paragraphs (all “para” elements whose ”se-
curity” attribute has the value 7¢”).” from the W3C Use Case “SGML”:

<result>
{
doc("sgml.xml")//para[@security = "c"]
X

</result>
The query is rewritten in the syntax of Minimal XQuery as follows:

<result>
for $c in select(’para’,subtreesdfs(document(’sgml’))) do
where
not empty(select(’c’,children(select(’security’,children($c)))))
return $c
</result>

2 The Result of the SQL Query

<result>
<para>
<security> <c> </c> </security>
<Exiled members of the former ...>
</Exiled members of the former ...>
</para>
</result>

B.9 Experiment 18: W3C Use Case “SGML” Q6

1 The Input XQuery Query

For the query Q6 “List the short titles of all sections (the values of the "shorttitle”
attributes of all "section” elements, expressing each short title as the value of a new

element.)” from the W3C Use Case “SGML”:

Appendix B: Experiments 158

<result>
{
for $s in doc("sgml.xml")//section/@shorttitle
return <stitle>{ $s }</stitle>
}

</result>

The query is rewritten in the syntax of Minimal XQuery as follows:

<result>
for $s in children(select(’shorttitle’,children(
select(’section’,subtreesdfs(document(’sgml’)))))) do
<stitle> $s </stitle>
</result>

2 The Result of the SQL Query

<result>
<stitle>
<What is markup?> </What is markup?>
</stitle>
<stitle>
<What is SGML?> </What is SGML?>
</stitle>
<stitle>
<How does SGML work?> </How does SGML work?>
</stitle>
</result>

B.10 Experiment 19: W3C Use Case “SGML”
Q9

1 The Input XQuery Query

For the query Q9 “Locate all the topics referenced by a cross-reference anywhere
in the report (all the "topic” elements whose "topicid” attribute value is the same

as an "zrefid” attribute value of any “zref” element).” from the W3C Use Case
“SGML”:

Appendix B: Experiments 159

<result>
{
for $id in doc("sgml.xml")//xref/@xrefid
return doc("sgml.xml")//topic[@topicid = $id]
}

</result>

The query is rewritten in the syntax of Minimal XQuery as follows:

<result>
for $id in children(select(’xrefid’,children(select
(’xref’,subtreesdfs(document(’sgml’)))))) do
for $t in select(’topic’,subtreesdfs(document(’sgml’))) do
where children(select(’topicid’,children($t))) = $id
return $t
</result>

2 The Result of the SQL Query

<result>
<topic>
<topicid> <top4> </top4> </topicid>
<title> <Structure> </Structure> </title>
<para>
<At the heart of ...> </At the heart of ...>
</para>
<para>
<A database schema ...> </A database schema ...>
<emph>
<rules>
<to help ensure ...> </to help ensure ...>
</reles>
</emph>
</para>
</topic>
</result>

Appendix B: Experiments 160

B.11 Experiment 20: XMark Benchmark Query
Q1
1 The Input XQuery Query

For the query Q1 “Return the name of the person with ID ‘person0’ registered in
North America.” from the XMark Benchmark:

for $b in document ("auction.xml")/site/people/person[@id="person0"]
return $b/name/text ()

The query is rewritten in the syntax of Minimal XQuery as follows:

for $b in select(’person’,children(select(’people’,
children(select(’site’,document (’auction’)))))) do

where children(select(’id’,children($b))) = <person0>[] ()</person0>

return children(select(’name’,children($b)))

2 The Result of the SQL Query

The source XML data used in this experiment is generated by the XMark data
generator with a scale factor 0.

<Jaak Tempesti> </Jaak Tempesti>

B.12 Experiment 21: XMark Benchmark Query
Q2
1 The Input XQuery Query

For the query Q2 “Return the initial increases of all open auctions.” from the
XMark Benchmark:

for $b in document("auction.xml")/site/open_auctions/open_auction
return <increase> $b/bidder[1]/increase/text() </increase>

Appendix B: Experiments 161

The query is rewritten in the syntax of Minimal XQuery as follows:

for $b in select(’open_auction’,children(select(’open_auctions’,
children(select(’site’,document(’auction’)))))) do
<increase>
children(select(’increase’,children(
head(select(’bidder’,children($b))))))
</increase>

2 The Result of the SQL Query

The source XML data used in this experiment is generated by the XMark data
generator with a scale factor 0.

<increase> <55.50> </55.50> </increase>

B.13 Experiment 22: XMark Benchmark Query
Q6
1 The Input XQuery Query

For the query Q6 “How many items are listed on all continents?” from the XMark
Benchmark:

for $b in document("auction.xml")/site/regions
return count ($b//item)

The query is rewritten in the syntax of Minimal XQuery as follows:
for $b in select(’regions’,children(select(’site’,

document (’auction’)))) do
count (select (’item’,subtreesdfs($b)))

2 The Result of the SQL Query

The source XML data used in this experiment is generated by the XMark data
generator with a scale factor 0.

<6> </6>

Appendix B: Experiments 162

B.14 Experiment 23: XMark Benchmark Query
Q13

1 The Input XQuery Query

For the query Q13 “List the names of items registered in Australia along with their
descriptions.” from the XMark Benchmark:

for $i in document("auction.xml")/site/regions/australia/item
return <item name=3$i/name/text()> $i/description </item>

The query is rewritten in the syntax of Minimal XQuery as follows:

for $i in select(’item’,children(select(’australia’,
children(select(’regions’,children
(select(’site’ ,document (’auction’)))))))) do
<item>
<name> children(select(’name’,children($i))) </name> @
select(’description’,children($i))
</item>

2 The Result of the SQL Query

The source XML data used in this experiment is generated by the XMark data
generator with a scale factor 0.

<item>
<name>
<scarce brook> </scarce brook>
</name>
<description>
<parlist>
<listitem>
<text>
<senses concave ...> </senses concave ...>
<keyword>
<preparation rejoice> </preparation rejoice>
</keyword>

Appendix B: Experiments 163

</text>
</listitem>
<listitem>
<text>
<swear canker ...> </swear canker ...>
<emph>
<untruths misgives ...> </untruths misgives ...>
</emph>
<error discontent ...> </error discontent ...>
<keyword>
<season presently victory women beating>
</season presently victory women beating>
</keyword>
<deprive almost ...> </deprive almost ...>
</text>
</listitem>
<listitem>
<text>
<spotted attend ...> </spotted attend ...>
<bold>
<naturally sanctuary...> </naturally sanctuary ...>
</bold>
<service cricket ...> </service cricket ...>
</text>
</listitem>
<listitem>
<parlist>
<listitem>
<text>
<maintained peril ...> </maintained peril ...>
</text>
</listitem>
<listitem>
<text>
<bold>
<friar prophetess> </friar prophetess>
</bold>
<spirits delays ...> </spirits delays ...>
</text>
</listitem>
<listitem>
<text>
<piece hours cruelly april league winged>
</piece hours cruelly april league winged>
<keyword>
<tract element ...> </tract element ...>
</keyword>

Appendix B: Experiments 164

<words blessing ...> </words blessing ...>
</text>
</listitem>
</parlist>
</listitem>
<listitem>
<parlist>
<listitem>
<text>
<sent fled bids ...> </sent fled bids ...>
<emph>
<preventions spurr ...> </preventions spurr ...>
</emph>
<valorous line ...> </valorous line ...>
<bold> <sold> </sold> </bold>
<marriage sampson ...> </marriage sampson ...>
<emph>
<cars livery stand> </cars livery stand>
</emph>
<denay> </denay>
<keyword>
<cimber paper admittance tread character>
</cimber paper admittance tread character>
</keyword>
<battlements seen ...> </battlements seen ...>
</text>
</listitem>
<listitem>
<text>
<traduc barks ...> </traduc barks ...>
<keyword>
<transformed nourish breeds north>
</transformed nourish breeds north>
</keyword>
</text>
</listitem>
</parlist>
</listitem>
</parlist>
</description>
</item>

Appendix B: Experiments 165

B.15 Experiment 24: XMark Benchmark Query
Q15

1 The Input XQuery Query

For the query Q15 “Print the keywords in emphasis in annotations of closed auc-
tions.” from the XMark Benchmark:

for $a in document("auction.xml")/site/closed_auctions/closed_auction
/annotation/description/parlist/listitem/parlist/listitem
/text/emph/keyword/text ()

return <text> $a </text>

The query is rewritten in the syntax of Minimal XQuery as follows:

for $a in children(select(’keyword’,children(select(’emph’,children
(select(’text’,children(select(’listitem’,children
(select(’parlist’,children(select(’listitem’,children
(select(’parlist’,children(select(’description’,children
(select (Pannotation’,children(select(’closed_auction’,children
(select(’closed_auctions’,children(select(’site’,
document (*auction’))))))))))))))))))))))))) do

<text>$a</text>

2 The Result of the SQL Query

The source XML data “auction.xml” used in this experiment is generated by the
XMark data generator with a scale factor 0.002 (207KB).

<text>
<wax> </wax>
</text>
<text>
<pursuivant sparrow hamlet>
</pursuivant sparrow hamlet>
</text>

Appendix B: Experiments 166

B.16 Experiment 25: XMark Benchmark Query
Q16

1 The Input XQuery Query

For the query Q16 “Return the IDs of those auctions that have one or more keywords
in emphasis.” from the XMark Benchmark:

for $a in document("auction.xml")/site/closed_auctions
/closed_auction
where not empty ($a/annotation/description/parlist
/listitem/parlist/listitem/text
/emph/keyword/text ())
return <person id=$a/seller/@person />

The query is rewritten in the syntax of Minimal XQuery as follows:

for $a in select(’closed_auction’,children(select(’closed_auctions’,
children(select(’site’,document(’auction’)))))) do
where not empty (children(select(’keyword’,children(select(’emph’,
children(select(’text’,children(select(’listitem’,children
(select(’parlist’,children(select(’listitem’,children
(select(’parlist’,children(select(’description’,children
(select(’annotation’,children($a))))))))))))))))))))
return
<person>
<id>
children(select (’person’,children(select(’seller’,children($a)))))
</id>
</person>

2 The Result of the SQL Query

The source XML data “auction.xml” used in this experiment is generated by the
XMark data generator with a scale factor 0.002 (207KB).

Appendix B: Experiments 167

<person>
<id>
<person21> </person21>
</id>
</person>
<person>
<id>
<personl9> </personl9>
</id>
</person>

B.17 Experiment 26: XMark Benchmark Query
Q17

1 The Input XQuery Query

For the query Q17 “Which persons don’t have a homepage?” from the XMark
Benchmark:

for $p in document("auction.xml")/site/people/person
where empty($p/homepage/text())
return <person name=$p/name/text()/>

The query is rewritten in the syntax of Minimal XQuery as follows:

for $p in select(’person’,children(select(’people’, children
(select(’site’ ,document(’auction’)))))) do
where empty(children(select(’homepage’,children($p))))
return
<person> <name>
children(select(’name’,children($p)))
</name> </person>

2 The Result of the SQL Query

The source XML data “auction.xml” used in this experiment is generated by the
XMark data generator with a scale factor 0.001 (114KB).

Appendix B: Experiments

<person>

<name> <Huei Demke> </Huei Demke> </name>
</person>
<person>

<name> <Kawon Unni> </Kawon Unni> </name>
</person>
<person>

<name> <Ewing Andrade> </Ewing Andrade> </name>
</person>
<person>

<name> <Bassem Manderick> </Bassem Manderick> </name>
</person>
<person>

<name> <Masanao Marsiglia> </Masanao Marsiglia> </name>
</person>
<person>

<name> <Saul Schaap> </Saul Schaap> </name>
</person>
<person>

<name> <Martti Halgason> </Martti Halgason> </name>
</person>
<person>

<name> <Laurian Grass> </Laurian Grass> </name>
</person>
<person>

<name> <Shooichi Oerlemans> </Shooichi Oerlemans> </name>
</person>
<person>

<name> <Uzi Atrawala> </Uzi Atrawala> </name>
</person>
<person>

<name> <Aloys Singleton> </Aloys Singleton> </name>
</person>
<person>

<name> <Nestoras Gausemeier> </Nestoras Gausemeier> </name>
</person>
<person>

<name> <Yechezkel Calmet> </Yechezkel Calmet> </name>
</person>
<person>

<name> <Slavian Usery> </Slavian Usery> </name>
</person>
<person>

<name> <Shaoyun Morreau> </Shaoyun Morreau> </name>
</person>

168

Bibliography

1]

2]

3]
[4]

[5]

(6]

[7]

8]

[9]

[10]

[11]

XMark — An XML Benchmark Project. Available from http://www.xml-
benchmark.org.

Cup user’s manual, 1999. Available from http://www.cs.princeton.edu/ ap-
pel/modern/java/CUP/.

XML Query Use Cases. Technical report, W3C, 2003.
XQuery 1.0 An XML Query Language. Technical report, W3C, 2003.

A. W. Appel. Modern Compiler Implementation in Java. Cambridge Univer-
sity Press, 1999.

E. Berk. JLex: A lexical analyzer generator for Java(TM), 2000. Available
from http://www.cs.princeton.edu/ appel/modern/java/JLex/.

P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML schema to relations:
A cost- based approach to XML storage. Proc. 18th Intl. Conf. on Data Eng.,
pages 64-75, 2002.

Y. Chen, S. B. Davidson, and Y. Zheng. Constraint preserving XML Storage
in Relations. Proc. WebDB Workshop, 2002.

D. DeHaan, D. Toman, M. P. Consens, and M. T. Ozsu. A Comprehensive
XQuery to SQL Translation using Dynamic Interval Encoding. Proc. SIGMOD
Conference, pages 623-634, 2003.

A. Deutsch, M. Fernandez, and D. Suciu. Storing Semistructured Data with
STORED. Proc. SIGMOD Conference, pages 431-442, 1999.

A. Deutsch and V. Tannen. MARS: A System for Publishing XML from Mixed
and Redundant Storage. Proc. VLDB Conference, pages 201-212, 2003.

169

Appendix B: Experiments 170

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

M. Fernandez, A. Morishima, and D. Suciu. Efficient Evaluation of XML
Middle-ware Queries. Proc. SIGMOD Conference, pages 103-114, 2002.

D. Florescu and D. Kossman. Storing and Querying XML Data using an
RDBMS. IEEFE Data Engineering Bulletin, 22:27-34, 1999.

[. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries over
Heterogenous Data Sources. In Proc. 27th VLDB Conference, pages 241-250,
2001.

L. Nie. Efficient XQuery Processing using B+ Tree Indices. Master’s thesis,
University of Waterloo, 2004.

J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and J. Funderburk.
Querying XML Views of Relational Data. Proc. 27th VLDB Conference, 2001.

J. Shanmugasundaram, E. Shekita, J. Kiernan, R. Krishnamurthy, S. D. Vi-
glas, J. Naughton, and I. Tatarinov. A General Technique for Querying XML
Documents using a Relational Database System. ACM SIGMOD Record, 30(3),
2001.

J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations
and Opportunities. In Proc. 25th VLDB Conference, pages 302-314, 1999.

. Tatarinov, S. Viglas, E. J. S. Kevin S. Beyer, Jayavel Shanmugasundaram,
and C. Zhang. Storing and Querying Ordered XML Using a Relational
Database System. In Proc. SIGMOD Conference, pages 204-215, 2002.

D. Toman and G. E. Weddell. Querying XML: On the Utility of Interval
Encoding. Technical report, University of Waterloo, 2002.

M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A Path-
Based Approach to Storage and Retrieval of XML Documents Using Relational
Databases. ACM Transactions on Internet Technology, 1:110-141, 2001.

X. Zhang, B. Pielech, and E. Rundesnteiner. Honey, I Shrunk the XQuery! —
An XML Algebra Optimization Approach. Proc. jth WIDM Workshop, pages
15-22, 2002.

