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Abstract

In near future Autonomous driving will affect every aspect of transportation and offer a
significant boost in mobility for everyone. Autonomous driving techniques and modules
must be chosen according to the task the platform is developed for. Slow speed driving
on campus or highway driving in poor weather conditions, may require different sets of
sensors, vehicle models and as a result different software architecture. Some of the main
modules that an autonomous driving system needs are the vehicle state estimator and
vehicle controller. The development of these two modules relies heavily on the robustness
of the vehicle model chosen and the task at hand.

University of Waterloo decided to join the Autonomous Driving research by partici-
pating in the project, which required development and implementation of the autonomous
driving demo sequence for Consumer Electronics Show in 2017. Since the demo sequence
was to be performed at slow speeds and, because certain vehicle parameters were not
available at the time, a kinematic vehicle model was used in implementation of the core
autonomous driving modules: state estimation and control. These modules are imple-
mented on a full scale autonomous driving platform and were designed based on the needs
and requirements of the demo sequence. The implementation results show that the cho-
sen vehicle model enables the state estimator to fuse incoming sensor data and allows the
controller to track the desired path and velocity profile.

For further deployment of the autonomous driving platform for research in urban and
highway driving an aggressive driving framework was proposed that is based on dynamic
vehicle model and incorporates the tire forces in the generation of the speed profile and
keeps the vehicle at the limits of adhesion. The aggressive driving controller can be utilized
for emergency evasive maneuvers at low road friction conditions. The controller was tested
on a high fidelity simulation software for a double lane change emergency maneuver. The
results showed that the aggressive driving framework proposed can be successfully incor-
porated into the autonomous driving architecture and can perform position and velocity
tracking at maximum possible speed.

iii



Acknowledgements

I would like to thank my supervisor Steven Waslander for continuous support and guidance
and giving me the opportunity to join this incredible field of research. I would also like to
thank my labmates in the Waterloo Autonomous Vehicles lab for creating a friendly and
supporting work environment.

iv



Dedication

In the name of Allah, the most compassionate, the most merciful!

This work I dedicate to my Lord, to Whom I am thankful for everything I achieved
and learned, my parents, who have always been supportive and encouraging and are my
role models and my siblings, who have always believed in me and helped me all the way.

v



Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Autonomoose - Platform 4

2.1 Sensor Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Vehicle’s Known Parameters . . . . . . . . . . . . . . . . . . . . . . 6

3 Vehicle State Estimator 8

3.1 Vehicle Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Existing Work On Vehicle State Estimation . . . . . . . . . . . . . . . . . 11

3.2.1 Kinematic Parameter Estimation . . . . . . . . . . . . . . . . . . . 11

3.2.2 Dynamic Parameter Estimation . . . . . . . . . . . . . . . . . . . . 12

3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Extended Kalman Filter For Autonomous Demo . . . . . . . . . . . 18

3.4 EKF Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Vehicle Control 23

4.1 Steering Control Background . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Pure pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Stanley Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



4.1.3 LQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.4 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.5 Potential Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Steering Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Longitudinal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Controller Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Steering Controller Results . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.2 Longitudinal Controller Results . . . . . . . . . . . . . . . . . . . . 38

5 Aggressive Driving Controller 42

5.1 Steering Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Feedforward Steering Force . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.2 Dugoff Tire Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Trajectory Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Dubins Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.2 Clothoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.3 Polynomial Spiral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Velocity Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Longitudinal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.1 Speed Tracking Feedback Controller . . . . . . . . . . . . . . . . . . 51

5.5 Feedforward Longitudinal Controller . . . . . . . . . . . . . . . . . . . . . 51

5.5.1 Slip Circle Feedback Control . . . . . . . . . . . . . . . . . . . . . . 51

5.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Conclusion 56

References 58

vii



List of Tables

2.1 Vehicle parameters as found through online resources . . . . . . . . . . . . 7

viii



List of Figures

2.1 Autonomoose Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 FWVM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 EKF vs raw GPS Measurements . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Heading Estimation (IMU vs EKF) . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Velocity Estimation (IMU vs EKF) . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Acceleration (X) Estimation (IMU vs EKF) . . . . . . . . . . . . . . . . . 21

3.8 Acceleration (Y) Estimation (IMU vs EKF) . . . . . . . . . . . . . . . . . 22

3.9 Yaw Rate Estimation (IMU vs EKF) . . . . . . . . . . . . . . . . . . . . . 22

4.1 Pure Pursit Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Stanley Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 potential field controller diagram model . . . . . . . . . . . . . . . . . . . . 29

4.4 Converging From The Left . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Heading Error (Converging From The Left) . . . . . . . . . . . . . . . . . 33

4.6 Lateral Error (Converging From The Left) . . . . . . . . . . . . . . . . . . 34

4.7 Following a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.8 Heading Error (Following a Curve) . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Lateral Error (Following a Curve) . . . . . . . . . . . . . . . . . . . . . . . 37

4.10 Following a Swerve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.11 Heading Error (Following a Swerve) . . . . . . . . . . . . . . . . . . . . . . 39

4.12 Lateral Error (Following a Swerve) . . . . . . . . . . . . . . . . . . . . . . 40

4.13 Velocity Profile Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



5.1 centre of percussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Tire curves and Slip Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Position Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Acceleration against slip circle . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 g-g diagram and tire slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Velocity Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Tracking Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



Chapter 1

Introduction

Reliable and safe transportation is one of the essential and basic ones in a today’s quickly
developing and adapting world. Services and commodities that can save even a few minutes
of our time are gaining traction due to a fast pace of our lifestyles. Being able to work, read
or check emails during a commute to work or while on a road trip, while an autonomous ve-
hicle is driving us to our destination,would introduce an enormous increase in productivity
in our day-to-day tasks. Furthermore, introducing the driverless taxis, buses or trucks can
significantly boost economical savings and allow people with disabilities and the elderly
to have the mobility that a car with a personal driver can offer. Reducing the amount
of human driving with robust, safety driven software with multilayer security features is,
therefore, a major goal for top universities and research and development departments of
major car manufacturers.

In 2016 University of Waterloo decided to join the global effort to build a fully func-
tional autonomous vehicle by first implementing the baseline autonomy demo for CES 2017
in collaboration with Renesas and QNX. The demo comprises of an autonomous vehicle
following a predefined path, stopping at the traffic light and stop sign, yielding to an ap-
proaching vehicle at the intersection and following the vehicle until the closest intersection.
To implement the demo sequence multiple essential modules must be first completed and
tested. Two of the most basic modules the demo sequence will need are a state estimation
and vehicle control. The state estimation allows the vehicle to know its own location by
fusing all of the available sensor data and determining maximum a posteriori estimate
of the true vehicle state. Developing the estimator for reliable state estimation requires
modeling the vehicle state evolution and the measurement system.

The estimator must take into consideration the vehicle’s kinematic and/or dynamic
model and fuse the measurement with the expected state evolution. Depending on the
purpose of the autonomous vehicle, the target driving speeds and scenarios different vehicle
models can be used to derive robust vehicle state estimation. Simple vehicle kinematic
models are typically used to implement a state estimator for lower speed driving, where
the geometry of vehicle motion is used to predict the future states and correlate it with the
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wheel odometry, inertial sensor and Global Positioning System (GPS) measurements as
was done in [3]. Estimation for high speeds, when the dynamic effects are more prevalent,
requires the model to represent the forces acting on the vehicle. Since the main source of
forces that act on the vehicle are from the tire - ground interaction, it becomes important
to estimate the tire forces in order to robustly observe the vehicle states at high speeds.
The estimator structure proposed in [4] utilizes the suspension travel sensors to identify the
normal forces at each tire and by fusing them with the inertial measurement system (IMU)
outputs produces full vehicle state estimates. The method is heavily reliant on vehicle’s
suspension parameters and utilizes a cascade design, such that normal forces are estimated
separately from the rest of the states. Another approach at estimating dynamic vehicle
parameters is proposed in [8]. The method in [8] uses the alignment torque measurement to
derive the friction coefficient, normal load and vehicle sideslip angle by means of utilizing
the effect of pneumatic trail of the tire. Using the alignment torque for estimating multiple
vehicle states, however, requires the nonlinear least squares optimization to be performed
at each step to extract the best estimate that fits the model behavior and state history the
best. In this thesis a simple kinematic model based state estimator is implemented for the
low speed demo sequence. The implemented state estimator uses the measurements that
are provided by GPS, wheel odometry and IMU to generate the optimal position, heading
and velocity that fit the states predicted by kinematic vehicle model. Given reliable state
estimation, a vehicle control module can be defined to track a desired reference trajectory.

A vehicle control module’s goal is to calculate the desired actuation signals to the
steering wheel, gas and brake based on the position available from the state estimation
and the desired path and velocity profile, provided by a local motion planner module. By
calculating the position and heading error between the path and the vehicle a steering
control command can be generated to minimize the error and keep the vehicle on the path.
Similarly, an error between a tracked point on the velocity profile and the vehicle velocity
can be used to generate an appropriate longitudinal control command.

Once the vehicle controller and state estimator is developed for a baseline autonomy
solution, the vehicle controller must be further improved for higher speeds and should
be able to incorporate advanced safety features such as emergency evasive maneuvers for
obstacle avoidance. Autonomous driving must be flexible enough for lower speed urban
driving as well as highway driving. Both urban driving and highway driving can be quickly
affected by adverse weather conditions and, therefore, require the controller to operate
at the limits of tire friction. As the friction limits drops the amount of available force
from the tire/asphalt interaction saturates and the controller has to take into account
maximum allowable longitudinal and lateral acceleration forces. Performing emergency
evasive maneuvers to avoid a collision in challenging weather conditions, for example,
requires that the vehicle controller performs the motion without losing stability and control
while tracking the path that avoids the obstacle, the task that can be performed by an
aggressive driving controller for autonomous racing. Existing aggressive driving controllers,
focused on driving at the limits of friction for racing applications, can be adopted for
autonomous driving applications, enriching the capabilities from path tracking based on
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simple kinematic model to stable path tracking based on the dynamic vehicle model at the
limits of tire friction.

This work performs an extensive review of the existing estimation and vehicle control
techniques and describes the best choice for implementing in the demo that satisfies the
constraints. After identifing the most suitable vehicle model that matches the available ve-
hicle parameters, the most suitable state estomator and vehicle control modules are derived
and implemented. The results during the autonomous driving demo at CES 2017 showed
that the implemented estimator and the controller design performed well and achieved
the desired goal successfully. Althought the autonomous driving demo was a success the
controller design needs to be further improved for urban and highway driving to include
vehicle dynamics effects due to tire-road interaction.

Since driving in adverse weather conditions makes the regular controllers based on linear
tire models or geometry of the bicycle model unsuitable for safe execution of the path and
speed profile tracking task, an aggressive driving controller framework is introduced that
can be integrated into an autonomous driving architecture. A speed profile generation
method is introduced that uses the friction circle to keep the vehicle at the safe speed with
regards to the curvature profile. Further, the aggressive driving controller is implemented
with the generated speed profile that performs path tracking along the path with a double
lane change maneuver.

This thesis proceeds as follows, the test platform, available sensors and actuation is
described in Chapter 2. Chapter 3 covers the vehicle state estimator. Chapter 4 describes
the vehicle control framework that best fits the CES 2017 demo time line and platform
capabilities and the results of the implemented controller structure. Chapter 5 covers the
aggressive driving controller implementation for emergency evasive maneuvers, for highway
driving scenario.
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Chapter 2

Autonomoose - Platform

The University of Waterloo autonomous driving research platform, known as the Au-
tonomoose, is a 2015 Lincoln MKZ, retrofitted with a drive-by-wire system by Dataspeed
Inc. The drive-by-wire system gives the opportunity to control the vehicle without the
driver in the loop. The vehicle is a front wheel drive and has a hybrid powertrain with an
electrical motor and 2 liter gas engine with a continuously variable transmission.

2.1 Sensor Suite

The platfrom as seen in Figure 2.1 is equipped with Novatel Span GPS system and Novatel
Inertial Measurement Unit. The GPS system provides the position accuracy of about 5 cm
horizontally and vertically at 20 Hz. The IMU provides the heading angle accuracy of 0.08
degrees published at 100 Hz. The accuracy of the positioning system allows for reliable
and robust localization for autonomous driving applications. The CAN-ROS interface
additionally provides the encoder readings from all 4 wheels and, therefore, allows for
direct vehicle speed measurement once the effective wheel radius is measured or estimated.

The encoder readings from the steering system provide the current steering wheel angle
and if divided by the steering column gear ratio - it provides the average steering angle of
the front tires. Additionally, the Dataspeeed modules provide the reports on current gear
state, braking torque and throttle position. The vehicle comes equipped with additional
on-board automotive grade GPS and IMU units. Dataspeed modules provide the readings
from the GPS and IMU as standard ROS messages. The Dataspeed modules provide a
gear report at 50 Hz, IMU report at 100 Hz and GPS report at 1 Hz. The vehicle is
equipped with 3D laser scanner for detection the obstacles and mapping the environment.
Additionally vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication
radio systems are used on the platform to be able to identify the vehicles nearby and get

4



Figure 2.1: Autonomoose Platform

the information such as traffic light signals and road signs and their locations along the
path.

2.2 Actuation

The actuation is also provided via ROS interface by means of publishing desired actuation
commands as ROS topics. Custom ROS node provided by Dataspeed subscribes to actu-
ation commands and converts them into CAN signals that actuate the vehicle. Available
actuation commands are: throttle pedal percentage, brake torque, gear command, steering
wheel angle and steering wheel angular speed. All of the actuation commands are sent
to CAN at 50 Hz rate. The brake pedal command can also be published as a percentage
and Dataspeed’s ROS node can convert the percentage into braking torque using brake
pedal to brake torque map, in case the control law doesn’t utilize the output torque as
input. The throttle command, however, can not be converted to desired torque since no
engine-motor torque conversion was provided. The steering wheel command receives the
values between ± 8.2 rads. The angular speed of the steering wheel ranges from 0 to 8.7
rad/s. The angular speed value of 0 corresponds to a maximum achievable angular speed
as set by Dataspeed.

2.2.1 Vehicle’s Known Parameters

Due to the complexity of testing required to fully characterize the parameters of a com-
plete vehicle model and tight deadline for the CES demo completion, the process of vehicle
system identification was delayed until after the demo and is still underway on the Au-
tonomoose vehicle. We developed a model of the vehicle based on published values for the
Lincoln MKZ, which includes the following paramaters, listed in Table 2.1.
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Table 2.1: Vehicle parameters as found through online resources
Parameter Name Value Units Description
Weight 1627 kg Curb Weight of Vehicle
Wheelbase 2.84 m Distance between front

and rear axles
Max Steering
Wheel Angle

+/-8.203 rad Clockwise - negative,
counter-clockwise -
positive

Steering Wheel An-
gular speed

0/8.7 rad/s 0 speed corresponds
to default - maximum
achievable speed

Effective Wheel
Radius

0.33 m The effective wheel ra-
dius that is smaller due
to tire deflection under
the vehicle weight

Steering Column
Gear Ratio

1:16 - Relation between steer-
ing wheel angle and front
axle average steering an-
gle
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Chapter 3

Vehicle State Estimator

3.1 Vehicle Modeling

In order to get baseline autonomy the position and orientation measurements must be
filtered for noise. Depending on the measurement and vehicle model the measurement
denoising and vehicle state estimation can be performed in various ways. Basic kinematic
vehicle model for slow speeds can be described as below, using notation given in [14].

Ẋ = v cos(φ+ β)

Ẏ = v sin(φ+ β)

φ̇ =
v cos(β)

Lwb
(tan(δ))

(3.1)

The vehicle position, (X, Y ) ∈ R2 is updated based on vehicle’s ground speed v, yaw
angle φ and slip angle β. In Equation (3.1), Ẋ and Ẏ are velocities in global X and Y
coordinates, φ̇ is the heading rate and Lwb is the wheelbase. The wheelbase Lwb is a sum
of a distance from front axle to the centre of gravity, a, and a distance from the rear axle
to the centre of gravity, b. The slip angle, β, can be calculated from sine law from based
on the geometry shown in Figure 3.1 and derivation from [14]. From the triangle that is
formed by point O, CG and centre of front tire in Figure 3.1 a sine law can be represented
as:

sin(δ − β)

a
=

sin(π/2− δ)
R

(3.2)

similarly, using the adjacent triangle that connects points O, CG and the centre of the
rear axle we get:

sin(β)

b
=
π/2

R
(3.3)
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Figure 3.1: Bicycle Model

By expanding the summation of the arguments in the sine function in Equation (3.2) the
following expression can be derived:

sin(δ − β)

a
=

sin(δ) cos(β)− sin(β) cos(δ)

a
=

cos(δ)

R
(3.4)

The Equation (3.3) can be simplified further to be:

sin(β) =
b

R
(3.5)

Multiplying the first expression in Equation (3.4) with
a

cos(δ)
, adding Equation (3.5) results

in the following relation:
tan(δ) cos(β)

b+ a
=

1

R
(3.6)

Assuming the yaw rate φ̇ is equal to angular velocity of the vehicle at low speeds and
assuming no slip, yaw rate φ̇ can be expressed as:

φ̇ =
v

R
=
v cos(β)

a+ b
(tan(δ)) (3.7)

Using Equations (3.4) and (3.6) slip angle can be derived as:

β = tan−1
(
b tan(δ))

a+ b

)
(3.8)
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Figure 3.2: Bicycle Model

The forces acting on a center of gravity of the entire vehicle mass mv can be summarized
in Equation (3.9) using a bicycle model in Figure 3.1:

Fx = mvvyφ̇+ 2Fxf + 2Fxr

Fy = −mvvxφ̇+ 2Fyf + 2Fyr

Izzφ̈ = 2aFyf − 2bFyr

(3.9)

The total forces acting in the X and Y directions in the vehicle’s frame are Fx and Fy,
meanwhile the forces Fxf , Fxr are the force components on the front and rear tires in the
X direction, whereas Fyf , Fyr are force components acting on a tire in the Y direction.
The velocities vx and vy are the velocity components of the vehicle in the vehicle frame,
whereas Izz is the vehicle’s moment of inertia about Z axis in the vehicle frame and φ̈ is
the angular acceleration about axis Z. The front tire forces as seen in Figure 3.2 can be
expressed in terms of longitudinal and lateral components:

Fxf = Fl sin(δ) + Fc cos(δ)

Fyf = Fl cos(δ)− Fc sin(δ)

(3.10)

and for the rear tires the lateral and longitudinal forces overlap with the forces in the X
and Y directions.

Fyr = Fc

Fxr = Fl
(3.11)

The longitudinal Fc and lateral Fl forces in the linear tire region can be described as:

Fc = Ccα

Fl = Clλ
(3.12)

Cl and Cr are the longitudinal and lateral tire stiffness respectively, α and λ are a slip
angle and a slip ratio of individual tire. The slip ratio can be calculated by using the wheel
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rotational speed ω, longitudinal tire speed vx in the tire frame and effective wheel radius
reff :

λ =
reffω − vx
reffω

(3.13)

and slip angle αtire can be found from the ratio of the lateral and longitudinal velocities of
the tire:

α =
vy
vx

(3.14)

From the bicycle model the front and rear tire slip angles can be related to vehicle kine-
matics as shown below.

αf = β +
aφ̇

vx
− δ

αr = β − bφ̇

vx

(3.15)

3.2 Existing Work On Vehicle State Estimation

The existing work on the vehicle state estimation can be summarized in two main cate-
gories:

• Kinematic parameter estimation

• Dynamic parameter estimation

3.2.1 Kinematic Parameter Estimation

The main vehicle kinematic states such as position, heading and velocity can be estimated
using differential GPS system, on board IMU and wheel odometry with an Extended
Kalman Filter (EKF). In [3] the GPS, INS and wheel encoders were used for pose and yaw
angle estimation and for identifying the effective wheel radii Rl and Rr. The sideslip β
was assumed to be zero. 

Ẋ

Ẏ

φ̇

Ṙr

Ṙl

 =



−Vgsin(φ)

Vgcos(φ)

1

a
r − b

a
0

0


(3.16)

The measurements from the GPS are the X, Y position in NEU (North, East, Up) frame,
heading, ground speed yaw rate. When the GPS is not available the wheel encoder readings
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can be used for identifying the yaw rate from Equation (3.17) using the rear track width
Er assuming a front wheel drive vehicle:

φ̇ =
V r

Er/2
− V l

Er/2
(3.17)

The wheel speeds V r and V l are estimated using the wheel radius estimates Rl and Rr

and rotational speeds from wheel encoders ωr and ωl.

V r = ωrR
r

V l = ωlR
l

(3.18)

Since wheel encoders provide the measurements at a higher rate compared to GPS, the
yaw rate φ̇ estimated from wheel encoders can be integrated and added to the last yaw
measurement from GPS. The front wheel drive vehicle can provide reliable wheel speed
measurements except for the cases, when the brakes are actuated and the longitudinal slip
is present on all four wheels - yaw rate measurements will be corrupted with non-Gaussian
noise that can only be estimated by extending the vehicle model. Hence an INS or IMU
system must be integrated to identify the vehicle dynamic parameters such as longitudinal
slip ratio λ and, for more reliable position estimates, the sideslip angle β.

3.2.2 Dynamic Parameter Estimation

Multiple vehicle models exist in the literature and, accordingly, different state estimation
strategies have been developed that utilize the benefits of each modeling technique. In [4]
four wheel vehicle model (FWVM) has been used for state estimation of vehicle dynamic
properties such as sideslip angle and tire forces. The FWVM has some additional parame-
ters compared to bicycle model, such as front and rear track width Ef , Er. The estimation
process can be summarized in two blocks:

• estimating the normal forces on 4 tires and accelerations of cg

• estimating individual tire forces and vehicle side slip angle

The first block utilizes the measurements from the suspension sensors and IMU and pro-
vides the normal force estimates on the tires. The measurements from the suspension
sensors are used to identify the load variations of ms

ij at each wheel using quarter car
model and a linear spring approximation with ks being the spring coefficient, and 4ij is
the relative spring displacement, whereas index i represents the front/rear axle and index
j represents the left or right wheel respectively. The change in load 4mij at each corner
can be calculated as:

4ms
ij =

ks4ij

g
(3.19)
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The load at each wheel is estimated using the manufacturer provided initial load at
rest and the variation in load ms

ij. A linear Kalman filter is then utilized to estimate the
lateral load transfer 4Fzl using the lateral acceleration ay and steering angle δ as shown
in Equation (3.20). The mass at each corner, mij, is estimated from the suspension travel
in the previous block by adding mass variation, 4mij, to the mass at rest, ms

ij. The
parameters kf and kr, are the front and rear roll bar stiffnesses respectively, hf and hr are
heights to the front and rear roll centers, ms is, sprung mass and sum of mass, ms

ij at each
corner.

4Fzl = (mfl +mrl −mfr −mrr)g − 2

(
(
kf
Ef

+
kr
Er

)
θ − 2

msay
l

(
bhf
Ef

+
ahr
Er

)
(3.20)

The roll angle, θ, can be estimated using relative spring displacements 4ij, lateral acceler-
ation of the entire vehicle, ayv, total vehicle mass, mv, height of the cg, h, and tire stiffness,
kt.

θ =
4fl −4fr +4rl −4rr

(2ef )
− mvaymh

kt
(3.21)

Additionally the load shift due to longitudinal acceleration for front wheels Fz,fi and rear
wheels Fz,ri is estimated as follows:

Fz,fi =
1

2
mv(

b

Lwb
g − h

l
ax)±mv(

b

Lwb
+
h

l
ax)

h

Efg
ay

Fz,ri =
1

2
mv(

b

Lwb
g − h

l
ax)±mv(

a

Lwb
+
h

l
ax)

h

Erg
ay

(3.22)

Using the four wheel vehicle model shown in Figure 3.3 and using a tire model Fij =
Υ(Fz,ij, αij, ζij), the state vector X = [φ̇, Vg, β, Fylr , Fyrr , Fyfl , Fyfr , Fxf ]T can be expressed
as follows:

V̇g =
1

mv

(Fxf cos(β − δ) + Fyfl sin(β − δ) + (Fyrl) + Fyrr) sin(β − δ))

φ̈ =
1

Izz

 a(Fyfl cos(δ) + Fyfr cos(δ) + Fxf sin(δ))−

b(Fy21 + Fy22) +
Ef
2

(Fyfl sin(δ)− Fyfr sin(δ))



β̇ =
1

mvv

[
Fxf sin(β − δ) + Fyfl cos(β − δ)
+(Fyfr) + Fyfl) cos(β − δ)

]

ay =
1

mv

[
Fyfl cos(δ) + Fyfr cos(δ)(Fyrl + Fyrr) + Fxf sin(δ)

]
ax =

1

mv

[
−Fyfl sin(δ)− Fyfr sin(δ) + Fxf sin(δ)

]

(3.23)
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Figure 3.3: FWVM model
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The measurement vector is Y =
[
φ̇, V, ax, ay

]
. The ground velocity V was measured using

wheel encoders, yaw rate and accelerations are calculated using IMU readings. This method
offers good results at estimating vehicle’s dynamics characteristics defined by state vector
X, but requires knowledge of the chassi parameters such as kf front roll bar stiffness, kr
rear roll bar stiffness, kt tire stiffness, ks suspension spring stiffness, hf front roll center
height, hr rear roll center height, h cg height. Although these parameters can be obtained
using in-depth system identification and special modelling tools, the tight deadline and
high cost of the modelling tools make it not a feasible method for given task.

Another approach is to estimate the vehicle dynamic characteristics using the steering
torque measurements and the effect of pneumatic trail as was done in [8]. The method
utilizes the parabolic pressure distribution on the tire and no longitudinal forces. The
lateral force of the entire front axle can be characterized by sum of the lateral forces on
two tires.

Fy =
−Cc tanα +

C2
c

3
| tan(α)| tan(α)If −

C3
c

27
tan3(α)I2f if |α| ≤ αSL

− 1

If
sgn(α) else

(3.24)

The inverse normal front axle load If =
1

µFz
is main parameter to be estimated in this

method. Using the relation between tire slip angle and the vehicle kinematics expressed in
Equation (3.15) the front and rear axle dynamics can be summed as:

β̇ =
1

Mv

(Fyf + Fyr)− φ̇

φ̈ =
1

Iz
(aFyf − bFyr)

(3.25)

Differentiating Equations (3.15) and using Equation (3.25) the front axle slip angle αf can
be found from integrating expression below:

ˆ̇αf =

(
1

mvx
+

a2

Izzvx

)
Fyf +

(
1

mvx
− ab

Izzvx

)
Fyr − φ̇− δ̇ (3.26)

The δ is the steering wheel reading, vx can be measured from the wheel encoders and φ̇
can be measured using the on board IMU. Using the Equation (3.24) The vertical load on
the front axle is found using the pneumatic trail equation (3.27) and the aligning torque
τa expressed using the pneumatic tire model and the pneumatic trail tp.

tp =
tPO −

tPOCr
3

If | tan(α)|, if |α| ≤ αsl

0, otherwise
(3.27)
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τa = −(tm + tp)Fy (3.28)

The mechanical trail tm can be found from suspension kinematics as described from [12].
Using the estimates of the inverse front load If load and the nominal value the road friction
coefficient can be found as well.

µ̂ =
1

IfFzf
(3.29)

The method described in [7] can be implemented without any additional sensor that are not
already on the car. The only disadvantage is the use of the front lateral stiffness coefficient
Ccf , which is unknown for the demo vehicle, and the assumption of no longitudinal forces
on the tire. The longitudinal forces can be included by using a different tire model such as
Dougoff tire model as was done in [20].

The integration of GPS and Inertial Navigation Sensor (INS) for estimation of vehicle
dynamic properties has been proposed in [1]. The GPS readings were used for estimation
of lateral and longitudinal speeds vx, vy, INS measurements used for estimating the lateral
acceleration and yaw rate φ̇. The lateral acceleration is integrated to estimate the vy
lateral velocity between the GPS velocity measurements. By numerically differentiating
the yaw rate φ̇ and using the sideslip angle β, front and rear slip angles from Equation
(3.15) the cornering stiffness can be continuously estimated as well by solving the system
of Equations (3.9) and assuming linear tire forces in Equation (3.12). The only limitation
being the unreliability of the GPS measurements due to possibility of loss of signal.

3.2.3 Summary

Successful implementation of baseline autonomy depends on the ability to localize the
vehicle and track its kinematic and dynamic parameters. The estimation methods vary
by the models they utilize, sensors used and tracking performances and limitations. The
method described in 3.2.1 proposed by [3] shows promising results for relatively simple
approach and doesn’t require any additional sensors to be installed on the car. The only
disadvantage is that the longitudinal forces are neglected and possible occurrence of wheel
slip can affect the estimation of the yaw rate and as a result yaw angle - which can lead jitter
by automated steering controller. The assumption of no side slip limits the range of speeds
this methods can be used for due to tire dynamics that is not accounted for. Additional
estimators can be implemented as mentioned in 3.2.2 that can be used to improve the
planar kinematics method proposed by [3] as observed measurements and improve the
yaw and position estimates at higher speeds and accelerations. The only limitation being
the vehicle characteristics that are not shared by the manufacturer such as: tire curve,
various suspension characteristics as required by method in [4] or tire cornering stiffness
coefficient and front suspension kinematic parameters to estimate the pneumatic trail and
extract the dynamic parameters from it as described in [7]. The most feasible among
the dynamic parameter estimation methods is the one described in [1], that allows for
estimation of the side slip angle and cornering stiffness continuously. Although this method
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is great for estimation cornering stiffness with limited sensor suite, the loss of GPS signal
can be detrimental to the estimation of sideslip angle, which depending on the steering
controller and driving speeds, can result in large estimation errors. The combination of
GPS-INS based estimators [1] and pneumatic trail based observers as in [8] or in [20] can be
implemented, where the cornering stiffness, sideslip angle and tire slip angles can estimated
using GPS and INS. When the GPS measurements are not available the pneumatic trail
method can be used for estimation of the slip angle, friction limit and tire lateral forces.
The CES 2017 demo was planned to take place in a small demo track and due safety
concerns was limited to low speeds. The dynamic properties such as side slip and tire
forces were not expected to have a significant effect on the vehicle kinematics at low
speeds, additionally the on board INS on ”Skyline” has much higher accuracy compared
to the inertial sensors used in [4],[1] and [3]. The loss of GPS signal, therefore, would have
less effect on the estimation of the position and yaw angle, since the INS unit can provide
the pose estimates from internal filter that integrates the accelerometer and gyroscope
readings. It was decided, therefore, to implement an EKF estimator based on [3] with
modifications due to additional sensors.

3.3 Implementation

As was mentioned in Chapter 2 the GPS-INS unit installed on the ”Skyline” has top grade
accuracy for several minutes due to fiber-optic gyroscopes when the GPS signal is lost. The
yaw rate and yaw angle integrated from it can be estimated using the INS instead of rear
wheel encoders in the absence of GPS measurements, the vehicle speed is to be estimated
using the wheel encoders at higher rate rather than using the GPS as was done in [3]. The
reason for using INS for yaw rate instead of wheel speeds is that INS has a higher accuracy
and the longitudinal slip due to braking can significantly skew the estimates of yaw angle
and hence affect the pose estimates as well.

The model in Equation (3.1) can be simplified and expressed as discrete system Xt =
f(X,U) as shown below for the EKF estimation process in Equation (3.30), but the input
vector here is ignored for a simpler model.

Xt

Yt

φt

vxt

φ̇t

axt
ayt


=



Xt−dt + vxt−dt
cos(φt−dt)dt

Yt−dt + vxt−dt
sin(φt−dt)dt

φt−dt + φ̇t−dtdt

vxt−dt
+ axt−dt

dt

φ̇t−dt

axt−dt

ayt−dt


(3.30)

The yaw angle φ is zero at the East X coordinate according to East North Up (ENU)
convention. When the velocity vx estimates are not available the IMU acceleration ax is
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added to the previous velocity readings in the prediction step. Similarly the previous yaw
rate estimate is used for numeric integration of the yaw angle in the prediction step, since
all the IMU readings are published at the same rate.

3.3.1 Extended Kalman Filter For Autonomous Demo

Using the standard EKF algorithm 3.31:

Prediction

X̄t = ft−dtX̂t−dt

P̄t = Ft−dtPt−dtFt−dt
Update step

X̂t =

Kt = P̄tHt(HtP̄tHt +Rt)
−1)

Pt = (I −KtHt)P̄t

(3.31)

In the algorithm above Ft is the Jacobian of the discretized nonlinear motion model defined
by function ft estimated at the previous time instant using the previous estimate, and Ht is
the Jacobian of the measurement matrix, but since states to be measured are directly what
the sensors provide - the matrix Ht is identity. The matrices R and Q are the process and
measurement noise matrices. The measurement matrices for different sensors are provided
below:

GPS Measurement

HGPS =

[
1 0 0 0 0 0 0

0 1 0 0 0 0 0

]
Encoder velocity

HWheels =
[
0 0 0 1 0 0 0

]
IMU

HIMU =


0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



(3.32)

The Jacobian of the motion model with respect to state vector is listed below:

Ft =



1 0 −Vxt−dt
sin(φt−dt)dt cos(φt−dt)dt 0 0 0 0

0 1 Vxt−dt
cos(φt−dt)dt sin(φt−dt)dt 0 0 0 0

0 0 1 0 0 dt 0 0

0 0 0 1 0 0 dt 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


(3.33)
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Figure 3.4: EKF vs raw GPS Measurements

The wheel encoder readings where averaged between two rear wheels and the wheel radius
was assumed to be constant. The reason for not estimating the wheel radius as was done in
[3] is due to unreliability of ROS provided timers that are necessary to identify the velocity
from GPS readings. The GPS ROS drivers only provide position estimates and hence the
ground velocity must be estimated by numeric differentiation.

3.4 EKF Results

The random noise in the GPS measurements results in readings that can indicate that ve-
hicle is moving sideways or backwards even when the vehicle parked. The EKF utilizes the
vehicle model in the prediction step to propose the next pose due to the vehicle speed and
heading and fuses it with the GPS measurements. In Figure 3.4, the EKF smoothens the
random noise coming from the GPS, reduces the jitter and fluctuation. Since the weights
for GPS in the measurement noise matrix Q were set to be low, the EKF estimates follow
the GPS measurements very closely reducing the small amount of noise that is present.
The measurement of the vehicle heading from IMU were also successfully smoothened and
correlated with the integrated yaw rate prediction step as can be seen from Figure 3.5. The
IMU update rate is much higher than that of the GPS and therefore the oscillation of the
measurements has higher frequency. The EKF smoothens the drastic IMU measurement
as can be seen at 4.5-4.9 seconds on the plot, hence allowing for more smooth control signal
to steering and more comfortable ride.

Similarly the velocity measurement that have noise due to encoder speed registration
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Figure 3.5: Heading Estimation (IMU vs EKF)

errors, are smoothened and drastic changes in the odometry measurements that don’t
corrspond to the integral of the current acceleration ax do not skew the EKF velocity
estimates.

Similarly the longitudinal and lateral accelerations and the yaw rate readings from the
IMU were successfully smoothed in real time reducing the effect of random noise in the
measurements as can be seen from Figure 3.7, 3.8 and 3.9. Since the model used is a con-
stant acceleration model and since the lateral or longitudinal jerk and angular acceleration
is not measured, the acceleration measurements and yaw rate are only smoothened by the
EKF.
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Figure 3.6: Velocity Estimation (IMU vs EKF)

Figure 3.7: Acceleration (X) Estimation (IMU vs EKF)
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Figure 3.8: Acceleration (Y) Estimation (IMU vs EKF)

Figure 3.9: Yaw Rate Estimation (IMU vs EKF)
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Chapter 4

Vehicle Control

The vehicle controller for an autonomous vehicle can be characterized with two main
components:

• Steering Controller

• Longitudinal Controller

The trajectory planner node publishes a local path and an associated velocity profile as
a discrete vector. At every loop the controller finds the point on the velocity profile that
corresponds to the vehicle’s current position. The desired velocity at the tracked point
is to be tracked by the longitudinal controller. Similarly, the steering controller searches
through the local path and identifies the desired point to track. Once the closest point is
found the lateral and heading errors can calculated for steering controller.

4.1 Steering Control Background

The steering control methods can be essentially split into three groups:

• Geometric

• Dynamic

• Optimization based

4.1.1 Pure pursuit

The pure pursuit controller is among the simplest steering control methods that was used.
The pure pursuit controller is based on the geometry of the bicycle model. The controller
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Figure 4.1: Pure Pursit Controller

focuses on the center of the rear axle and a point on the path that is ld distance ahead of
the vehicle as can be seen from Figure 4.1. The heading angle error between the vehicle
model and road heading at the goal point are used to derive the control law. First, using
the geometry of triangles and sine law from Figure 4.1 the following relation can be found:

ld
sin(24ψ)

=
R

sin(π
2
)−4ψ

(4.1)

Equation (4.1) can be simplified further into Equation (4.2):

κ =
2 sin(4ψ)

ld
(4.2)

such that κ in Equation (4.2) is curvature of the arc from the rear axle to the goal point
as can be seen in Figure 4.1. Using geometry of the bicycle model from Equation (3.7) the
steering angle can be calculated to be:

δ(t) = tan−1(
2Lwb sin(4ψ)

ld
) (4.3)

By using the Equation (4.2) and dividing by velocity with proportional gain ksp for scaled
steering dynamics we get:

δ(t) = tan−1
(

2Lwb sin(4ψ)

kspvx(t)

)
(4.4)
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The velocity term in the denominator in Equation (4.4) can be very low and, therefore,
result significant steering angle changes. This can be avoided by adding a constant Vs as
can be seen in the following equation.

δ(t) = tan−1
(

2Lwb sin(4ψ)

kspvx(t) + Vs

)
(4.5)

The local curvature in Equation (4.2) can be simplified using the relation of the heading
error 4ψ and lateral error at the tracked point elat.

sin(4ψ) =
elat
ld
κ =

2elat
l2d

(4.6)

The control steering law from Equation (4.4) can be expressed as:

δ(t) = tan−1
(

2Lwbelat
kstvx(t) + Vconst

)
(4.7)

The constant kst covers all the terms in Equation (4.6) except the lateral error.

4.1.2 Stanley Controller

The DARPA urban challenge has boosted the development of the autonomous driving and
hence introduced multiple new methods and techniques for automated steering. Among
them is the Stanley method [22] of the team that won the DARPA Urban challange. The
Stanley Controller is designed for a bicycle model as seen in Figure 4.2. The steering law
is based on reducing two errors: elat - cross track error and 4ψ - heading error.

δ(t) = 4ψ(t) + tan−1
(
klatelat(t)

vx(t) + kc

)
(4.8)

A kc is added at the denominator for numeric stability at low speeds. The terms under
tan1 are almost identical to Pure Pursuit since the numerator in the Equation (4.4) can be
represented using the lateral error. The difference is then the addition of the heading error
between the heading of the vehicle and the road such that the heading of current closest
point on the path directly feeds into the steering law.

4.1.3 LQR

Optimal control techniques can also be used for steering. In [19] an approach is described
for using Linear Quadratic Regulator with dynamic bicycle model with an assumption of
vehicle operating in the linear tire force region with constant cornering stiffness coefficient.
The bicycle model and tire forces expressed in Equations (3.9), (3.12) (3.10) and (3.11)
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Figure 4.2: Stanley Controller

can be further summarized in the equations below (4.9) with front and rear lateral stiffness
coefficients denoted as Ccf ,Ccr.

[
ay

φ̈

]
=


−(Ccf + Ccr)

mvvx

lrCcr − lfCcf
mvvx

− vx
lrCcr − lfCcf

Izzvx

−(l2fCcf + l2rCcr)

Izzvx


[
vy

φ̇

]
+

 Ccf
mv
lfCcf
mv

 δ (4.9)

Using the bicycle dynamic model the error dynamics of the vehicle with regard to
the path model and using path yaw rate r can be represented in an affine form Ẋ =
AXe +B1δ +B2r as below.


˙ecg

ëcg

θ̇e

θ̈e

 =



0 1 0 0

0
−(Ccf + Ccr)

mvvx

Ccf + Ccr
mv

lrCcr − lfCcf
mvvx

0 0 0 1

0
lrCcr − lfCcf

Izzvx

lfCcf−lrCcr

Izz

−(l2fCcf + l2rCcr)

Izzvx



ecg

˙ecg

θe

θ̇e



+


0

Ccf
m
0

lfCcf

Izzvx

 δ +



0

lrCcr − lfCcf
mvvx

− vx
0

−(l2fCcf + l2rCcr)

Izzvx

 r(s)
(4.10)
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The term ecg is the cross track error relative to the center of gravity of the car and θe
is the heading error. Using the error state vector Xe = (ecg ėcg θe θ̇e)

T The control law is
summarized as:

δ(k) = −KXe = −k1ecg − k2ėcg − k3θe − k4θ̇e (4.11)

The gain vector K can be found from minimizing the objective function in Equation (4.12)
such that matrix Q is weight matrix for minimizing error state vector Xe and matrix R is
the weight matrix to minimize the control effort δ.

JLQR =
∞∑
k=0

xδ(k)Qx(k) + δ(k)Rδ(k) (4.12)

The Riccati matrix that satisfies the objective function JLQR can be sloved using discretized
versions of matrix A and B denoted as Ad and Bd respectively.

P = ATdPAd − ATdPBd(R +BT
d PBd)

−1BT
d PAd +Q (4.13)

The resulting Riccatti matrix P can be used to find the gain vector from the expression
below.

K = (R +BT
d PBd)

−1BT
d PAd (4.14)

4.1.4 Model Predictive Control

Another approach that utilizes the optimal control techniques is using the model predictive
control method. In [2] an MPC approach was used for dynamic bicycle model and nonlinear
tire model. Unlike the linear tire model introduced in Equation (3.12) , the nonlinear tire
model covers the variations in coefficient of friction µ, takes into account the normal load
force on the tire F t

z and covers the region of tire curve where the force is saturated.

Fl = fl(α, λ, µ, Fz)

Fc = fc(α, λ, µ, Fz)
(4.15)

The normal load for front and rear tires Fz is assumed to be constant and is derived from
the load distribution relative to centre of gravity of the vehicle.

Fzf = bmg
2(a+b)

Fzr = amg
2(a+b)

(4.16)

All of the vehicle dynamics Equation (3.9) - (3.15) are summarized in the differential
equations below:

υ̇ = fs,µ(υ, u)

η = h(υ)
(4.17)
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The input u is the steering angle δ and υ = [y, ẏ, ẋ, φ, φ̇, Y, X]T is the state vector.
The output map is given as follows:

h(υ) =

[
0 0 0 1 0 0 0

0 0 0 0 0 1 0

]
υ (4.18)

The system dynamics is discretized using Euler method as follows:

υ(t+ 1) = fdts,µ(υ(t),4u(t))

η(t+ 1) = h(υ(t))

u(k) = u(t− 1) +4u(t)

u(t) = δf (t)

(4.19)

And the following cost function was used:

J(υ(t),4ut) =

Hp∑
i=1

∥∥η̂t+1,t − ηreft+i,t

∥∥2
Q

+
Hc−1∑
i=0

∥∥4ut+i,t∥∥2R (4.20)

where 4ut = 4ut,t, ..,4ut+HC−1,t is the vector for optimization over the prediciton horizon
Hp and control horizon Hc, ηref is the desired output, Q and R are the weight matrices.
The given J(υ,4ut) is minimized subject to Equation (4.21)

υk+1,t = fdts,µ(υk,t,4u)

ηk,t = h(υk,t)

k = t, ...., t+HP

δf,min =< 4uk−1,t =< 4δf,max
k = t, ...., t+HC − 1

uk,t = uk−1,t +4uk,t

(4.21)

The model used in the method is not linear and hence the authors used nonlinear
optimization package NPSOL for optimizing the input vector at every iteration.

4.1.5 Potential Field

In [16] an automatic steering method was proposed for lanekeeping and path following
based on an artificial potential field. The potential field is created by increasing the poten-
tial as the lateral distance and the heading error increases away from the center of the lane
or a path. The energy represented below as Vc. The potential Vc increases as the vehicle
moves away from the lane at lateral distance and deviates from the heading. The effect
of lateral and heading error is increased by the look ahead distance xla and potential field
gain kpf
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Figure 4.3: potential field controller diagram model

Vc = kpf (elat + xla sinψ)2 (4.22)

Deriving the virtual control force from the equation above by taking a derivative with
respect to lateral error elat yields:

Fpf = −2kpf (elat + xla sin4ψ) (4.23)

The force Fpf is the proportional force to maintain the vehicle in the middle of the lane.
Using the force Fpf and assuming the vehicle is in the linear region of it’s tire curve the
desired steering angle can be found from dividing the force by the front lateral stiffness
coefficient Ccf .

δ = Fpf/Ccf (4.24)

Since pure proportional gain controllers can not guarantee comfortable ride and may cause
oscillations the force Fpf must be damped.

Fpf = −kLK(elat + xla sin4ψ)− kd4ψ̇ (4.25)

where the kd is the damping coefficient that must be tuned for comfortable ride.
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4.2 Steering Control Architecture

The dynamic model based steering control methods, although designed for more detailed
and higher fidelity models, require a larger amount of parameters to be known, Cr - tire
cornering stiffness, Cl -longitudinal tire stiffness, a, b - distances to center of gravity from
front and rear axles. The tire parameters are also functions of road friction and for different
road surfaces will need to be modelled separately. Typically the modelling of the tire
parameters is an expensive and time consuming process. In the given timeline for the CES
2017 and according to the budget tire parameter modelling was not possible. Therefore
the steering methods described in [19] and [10], [11] were not chosen for implementation.
Additionally, optimization based methods require the tire paramaters as well. Continuous
optimization requires larger computational resources compared to the other methods and
hence it gives us another reason not to use the LQR or MPC based controllers. As a result,
since the speeds the demo was going to be taking place was considered to be relatively low
and tire dynamics not going to play a significant role - geometry based steering control
methods were chosen as desired method. According to [19] Stanley controller has significant
advantages to Pure Pursuit as long as the path is smooth and the vehicle is driving at
moderate speeds. It was decided, therefore, to implement the Stanley controller for CES
2017 demo with some minor modifications.

δ(t) = khead4ψ(t) + tan−1
(
klatelat(t)

vx(t) + kc

)
+ kd4ψ̇ (4.26)

Namely damping term kd4ψ̇ was added to reduce the oscillation due to heading error,
khead gain was added to scale down the heading error effect relative to other terms.

4.3 Longitudinal Control

Automated longitudinal control, whether for speed profile tracking or cruise control typi-
cally utilizes a structure as below:

ax(t)des = kp(vx − vxref ) + kI

∫ t

0

(vx − vref )dt (4.27)

where ax(t)des is the desired longitudinal acceleration, (vx − vxref ) is the velocity error, kp
and kI are the proportional and integral gains accordingly. If the acceleration to brake
or engine torque map is available it can be converted to corresponding throttle and brake
pedal position. The use of the integral term in the speed control is introduced to cancel the
effects of the disturbances such as: Faero - aerodynamic drag force, Froll - rolling resistance
force, Fturn - is the longitudinal component of the steering angle during cornering and
Fgrade - the disturbance due to road grade. Since the given vehicle Linkoln MKZ 2017 has
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a complex hybrid gas-electric engine, continuously variable transmission and the throttle-
engine output torque was not provided - the longitudinal control structure provided in [14]
will need to be used with some modifications for final throttle pedal control input.

Dataspeed offers a baseline longitudinal controller with a proportional gain on speed
and proportional-integral gain controller for throttle input.

acmd = kthracmd + kI
∫ t
0
(vxcar − vref )dt, acmd > 0

acmd = acmdmvrwheel, acmd < 0
(4.28)

Throttle command keeps increasing over time until (vxcar − vref ) is zero or negative,
in which case the brake is activated. The brake torque command, when published as a
ROS topic, is converted into required brake pedal position via torque - pedal position
map provided and implemented by Dataspeed, whereas the throttle command is published
directly as a desired pedal percentage.

4.4 Controller Results

4.4.1 Steering Controller Results

The tracking performance can be summarized by three different maneuvers:

• converging to a path from a distance

• following a long curve

• following a tight swerve

The results of the autonomous platform’s controller performance are generated from the
real time data that was recorded on the vehicle’s onboard computer via ROS topics.

The acceptable lateral error threshold was identified by the distance from the vehicle
to the edge of the lane marking, such that the vehicle is centered along the path. Since
the distance to the edge of lane marking on the Demo track was set to be 1m, the lateral
error must not exceed that distance in order for the vehicle to stay in the lane at all
times. Heading error was also identified by the lane marking, such that the vehicle if not
positioned along the path would still stay within the lane markings. The heading error
threshold was calculated to be 0.3 radians.

In Figure 4.4 the steering controller converges to a path by tracking the path heading
and reducing the lateral error. This maneuver can demonstrate the performance of the
controller when the vehicle is stopped on the sidewalk and needs to start driving and get
on the path simultaneously. Since the proportional gain on the heading error term has
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Figure 4.4: Converging From The Left

more significant influence compared to the lateral distance term, the vehicle converges
from 15 meter offset initial position in approximately 60 meters. The vehicle converges
to within few centimeters as may be seen in Figure 4.6 and performs the maneuver with
about ± 0.35 radians of heading error. The heading error noise can be explained by the
noisy measurements coming from the onboard IMU.

To improve lateral convergence the proportional lateral error gain klat can be increased.
To see the combined effect of the lateral distance and heading error on the steering con-
troller performance the tracking of the continuous arc was performed, as can be observed
from Figure 4.7. The vehicle closely follows the path since the heading error gain khead.
dominates in the steering control law, the lateral distance error is small at the initial posi-
tion and the curved path only introduces continuously changing heading. The lateral error
for curved path is within acceptable 1 meter threshold as can be seen in Figure 4.9 and the
heading error stays within 0.1 - 0.2 radians with an exception of slight change of heading
rate at 40 meters along the curve.

To examine the performance of the controller due to continuously varying heading and

31



Figure 4.5: Heading Error (Converging From The Left)
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Figure 4.6: Lateral Error (Converging From The Left)
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Figure 4.7: Following a Curve
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Figure 4.8: Heading Error (Following a Curve)
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Figure 4.9: Lateral Error (Following a Curve)
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Figure 4.10: Following a Swerve

lateral distance - tracking results are presented for following a swerve in Figure 4.10. This
maneuver can describe the performance of the controller in sudden maneuvers such as lane
change or avoiding an obstacle. The controller performs well while tracking swerve with
an average lateral distance error less than a meter and, therefore, keeps the vehicle within
desired error threshold. The heading error stays within ± 0.1 radians and the lateral error
is no more than 0.65 meters despite sudden changes in heading along the path as can be
seen in Figures 4.11 and 4.12.

The steering controller tracking performance was within the required error limits that
guaranteed the successful demo sequence completion.

4.4.2 Longitudinal Controller Results

The longitudinal controller performed within acceptable margins on a flat track. As can
be observed from Figure 4.13 vehicle velocity tracks the desired profile very closely within
0.2 m/s error. The plot is generated using the swerve path and hence due to drag force
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Figure 4.11: Heading Error (Following a Swerve)
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Figure 4.12: Lateral Error (Following a Swerve)
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Figure 4.13: Velocity Profile Tracking

Fturn generated from the longitudinal component of the steering force the velocity profile
fluctuates periodically.

The longitudinal controller performed well within the desired threshold as defined for
the demo sequence. The limitations of the longitudinal controller can be eliminated after a
complete powertrain system identification and a controller design that takes into account
the drag forces acting on the vehicle and the forces available from the tire curve in low
friction conditions.
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Chapter 5

Aggressive Driving Controller

The controller architecture proposed in Chapter 4 and implemented for CES 2017 is feasible
for low speed applications. For urban and highway driving the controller in Chapter 4 may
not be safe for implementation since it does not account for tire dynamics and as a result,
does not make sure the vehicle maintains the lateral force induced by steering actuator
to be within acceptable tire limits. Similarly the longitudinal controller performed for
CES 2017 in 4 does not maintain the tires within the allowable tire limits, as it only
implements velocity tracking. To implement the autonomous driving in the urban or
highway environment the controller needs to be designed using dynamic vehicle model
for safety at higher speeds. To do so the vehicle control commands can be generated as
longitudinal and lateral forces. The force commands can be converted into steering or
throttle and brake commands. In [11] steering control method was proposed for tracking
a path at the limits of friction. The controller generates the control lateral force that lies
within the acceptable limits of tire force curve.

5.1 Steering Control Law

The total control steering force consists of two components: F fb
y feedback force and F ff

y .

F cmd
y = F fb

y + F ff
y (5.1)

Where F fb
y is the feedback component and the F ff

y is the feedforward lateral command
force. The feedback steering force is calculated using the potential field method described
in [16] and summarized in Chapter 4.

5.1.1 Feedforward Steering Force

The feedforward component of the steering control law is generated using the the concept
of centre of percussion as described in [11]. The centre of percussion is the point along the
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Figure 5.1: centre of percussion

longitudinal axis of the bicycle model at distance xcop from cg, where the effect of lateral
forces from the rear tires is canceled by the rotational acceleration such that:

F r
y

mv

+ xcop
−bF r

y

Izz
= 0 (5.2)

The feedforward force calculated at the centre of percussion reflects the effect of road
geometry on the steering angle, similar to race driver steering in advance when reaching a
corner. The derivation of the feedforward force starts with the expressing error dynamics
of the potential field controller described in Subsection 4 as lateral error at the cg e,lateral
error at centre of percussion ecop, lateral distance at a lookahead distance from the cg, ep,
in vehicle’s local coordinate frame.

ep = elat + xp sin(4φ)

ė = vy cos(4φ) + vx sin(4φ)

ṡ = vx cos(4φ)− vy sin(4φ)

(5.3)

Distance traveled along the path s and its derivative can also be expressed in vehicle
coordinates. Assuming small angles and that v̇x4φ ≈ 0 the error dynamics can further be
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described as follows (5.4)

4φ̇ = φ̇− kṡ
ėp = ė+ xp4φ̇
4φ̈ = φ̈− ks̈− k̇ṡ
ëp = v̇y + vxφ̇− vxkṡ+ xpφ̈− xp(ks̈+ k̇ṡ)

(5.4)

Using a substitution of φ̇ with an expression from Equation (3.9) and replacing the lateral
acceleration in (3.9) with ay = v̇y +vxφ̇ the dynamics defining the evolution of the error,ep,
become:

ëp =
F f
y + F r

y

mv

− vxkṡ+ xp
aF f

y − bF r
y

Izz
− xp(ks̈+ k̇ṡ) (5.5)

Using the centre of percussion expression in (5.2), assuming the Izz can be approximated
by Izz = mvab, assuming that the centre of percussion is at distance a from cg, and by
equating (5.5) to zero the F ff

y can be derived as:

F ff
y =

mb

Lwb
(vxkṡ+ xcop(ks̈+ k̇ṡ)) (5.6)

5.1.2 Dugoff Tire Model

The total steering force can be converted to a desired steering angle by finding the desired
slip angle from the tire curve if a nonlinear tire model or by dividing the total steering
force by the cornering stiffness. In [21] a Dugoff tire nonlinear model was used for mapping
the lateral control force to steering angle for better performance at the peak forces. The
Dugoff tire model incorporates the effect of combined slip for lateral and longitudinal forces
(5.7).

Fx = Cl
ζ

1 + ζ
f(λ)

Fy = Cc
tan(α)

1 + ζ
f(λ)

λ =
µFz(1 + ζ)

2
√

(Clζ)2 + (Cc tan(α))2

(5.7)

f(λ) =
(2− λ)λ, if λ < 1

1, if λ ≥ 1
(5.8)

Dugoff tire model is analytically derived and incorporates the reduction of both lateral
and longitudinal tire forces as the tire approaches its force limits. Using the Dugoff tire
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model, therefore, offers more advantages over other methods for vehicle with front wheel
drive powertrain, since the combined slip during acceleration can be impossible to account
for with other tire models that assume no longitudinal forces.

5.2 Trajectory Planner

Multiple methods for nonholonomic trajectory planning exist in the autonomous driving
literature. Some of the most successful ones are based on the following three major meth-
ods:

• Dubins Curves

• Clothoids

• Polynomial Spirals

5.2.1 Dubins Curves

In [15] an optimal path planning method is proposed that is based on utilizing the motion
primitives such as a combination of straights and constant curvature arc segments. The
minimum arc radius is defined by the maximum steering angle. A search is performed
based on the desired final position and heading and starting configuration. Final result
is a configuration of arcs and straight line segments that can take car-like robot to a
desired position without violating the steering angle constraints. Multiple variations exist
that utilize the planning method proposed in [15] and augment the final curves based on
the required performance. In [5] Dubins curves are first used to find the admissible path
through the cluttered environment using the optimal path planning technique proposed
in [15] and later a sixth degree polynomial is fitted in each arc or straight segment using
quadratic programming and minimizing the lateral and longitudinal jerk.

5.2.2 Clothoid

Another approach is using the elementary paths that consist of clothoid segments [17].
Clothoids are curves with linear function of their curvatures. Therefore instead of segments
of constant curvatures like described in [15] the elementary paths utilize curve segments
with linearly increasing or decreasing curvatures that allow for natural exit and entry to
the cornering maneuver instead of sudden, discontinuous jumps in curvature that appear
in Dubins curves. Elementary path segments can also be used in a search based method
to find the best configuration in a nonholonomic motion planning problem. In [18] Dubins
curves are first used to identify the optimal path to the desired position and heading,
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clothoid segments are then fit into the Dubins curve segments to replace the constant
curvature arcs with linear function curvature clothoids. Bi-elementary clothoid segments
were used for lane change maneuver at the limits of friction in [5] using the controller
proposed in [10]. The final path is generated by the integrating of the curvature profile
k(s) (5.9):

x(s) = x0 +

∫ sf

0

cos(θ(s))ds

y(s) = y0 +

∫ sf

0

sin(θ(s))ds

θ(s) = θ0 +

∫ sf

0

k(s)ds

(5.9)

5.2.3 Polynomial Spiral

The clothoids can not have second order continuity at the point of junction of two segments
since the curvature is a first order linear function. The curvature has a direct effect on the
steering wheel angle and the smoothness of the curvature profile, therefore, ride comfort and
can be defined to create a more natural steering angle dynamics. In [9] a polynomial spiral
method is proposed for nonholonomic motion planning. The curvature of a polynomial
spiral is an n-degree polynomial. The coefficients of a polynomial are used as parameters
for optimization. In [6] a state space sampling planner was introduced that generates
multiple feasible solutions that follow the center line or a middle of a lane with different
offset distances, therefore allowing for obstacle avoidance along the centreline. In [13] a
state lattice method was used that comprises of multiple smaller segments or predefined
polynomial spirals and a search for shortest possible path that is built by small segments
can be done. Additionally in [23] cubic and quartic polynomials were used where the first
derivatives match at the point of junction of the spiral segments for smoother controller
input. Polynomial spirals are better suited to trajectory planning in complex environments,
as they provide more flexibility in defining the curvature, and enable minimization of higher
order derivative objectives such as lateral jerk.

The polynomial spiral was chosen for implementation of the aggressive driving controller
due to all of the above-mentioned advantages. The path can be generated similar to (5.9)
by using the quadrature rule for integration. The trajectory planning method described
in [9] generates the optimal path from an initial vehicle state xin = (x(0), y(0), θ(0)) ∈ R3

to a desired state xdes. The vehicle desired path x = (x, y, θ, k) consists of a position x
and y, heading angle θ and path curvature k. Each component of the path, including the
curvature profile, is parameterized along the arc length s. The curvature is chosen to be
represented by a cubic polynomial function k(s) : R→ R. The four polynomial coefficients
(a, b, c, d) and final arc length sf of the curvature profile k(s) are used as optimization
parameters in generating the desired path.

k(s) = a+ bs+ cs2 + ds3 (5.10)
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The curvature profile can be re-parameterized using knots, p, that lie equidistantly along
the length of the path [13].

p =


p1

p2

p3

p4

 =


k(

sf
3

)

k(
2sf
3

)

k(sf )

sf

 (5.11)

The path components (x(s), y(s), θ(s)) are generated by integrating the curvature to
get the heading and integrating the heading to get the Euclidean position as shown in
Equation (5.12).

x(s) = x0 +

∫ sf

0

cos(θ(s))ds

y(s) = y0 +

∫ sf

0

sin(θ(s))ds

θ(s) = θ0 +

∫ sf

0

k(s)ds

(5.12)

The position integral in this case is known as the Fresnel Integral and only has a numerical
solution. In [9], a quadrature rule was proposed for calculating the integral and generating
the path.

The path planner can be defined as a nonlinear optimization subject to multiple con-
straints. The objective function for the optimization can vary depending on the design
of the planner and desired behavior. The optimization is constrained by the maximum
and minimum curvature bounds that represent maximum vehicle steering angle and by
desired final position, heading and curvature. If the optimization parameters can be de-
noted as p = ( p1 p2 p3 sf ), then the constraint function, g(p), can be expressed using
boundary condition, h(p), as shown in Equation (5.13):

g(p) = h(p)− xf = 0 (5.13)

To find the smooth path from initial state xin to final state xf with upper and lower
boundaries of the curvatures defined by ±kmax the following optimization problem needs
to be solved (5.14):

min J = 1
2

∫ sf
0
k(p)2

s.t. g(p) = h(p)− xf = 0

−kmax ≤ p ≤ kmax

(5.14)

This basic formulation of the path planner optimization can be extended to include
static and dynamic obstacle constraints, and can be integrated into hierarchical motion
planners [?].
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5.3 Velocity Profile

Once the path planner generates a curvature profile, k(s) and path to the desired final
state (x(s), y(s), θ(s)) the controller must execute it with minimum tracking error. It will
be assumed the controller aims to drive the vehicle at the maximum possible velocity, given
the desired path is chosen as was done in [?] and [13].

Velocity profile generation is based on the slip circle. The longitudinal ax(s) and lateral
ay(s) acceleration along the path must be bounded by the friction limit of the road which
is expressed as a product of gravitational force g and coefficient of friction µ(5.15).

(µ · g)2 = ax(s)
2 + ay(s)

2 (5.15)

At the point of maximum curvature, the longitudinal acceleration is set to zero and the
vehicle corners at a constant velocity. Assuming steady state cornering the maximum
velocity is found from acceleration which is proportional to curvature k(s) and square of
longitudinal velocity vx(s) (5.16).

µ · g = ay(s) ≈ k(s)vx(s)
2 (5.16)

In the path segments preceding the local maximum and following the next local maximum,
however, the longitudinal acceleration does not need to be constrained to zero. Instead,
the longitudinal acceleration can be expressed as a function of velocity, as follows.

ax(s) =
dvx
dt

=
dvx(s)

ds
· ds
dt

=
dvx(s)

ds
· vx(s) (5.17)

Therefore, the velocity profile can be defined by a nonlinear differential equation.(
dvx(s)

ds
· vx(s)

)2

= (µ · g)2 − k(s)2 · vx(s)4 (5.18)

The left hand side of Equation (5.18) can be rearranged using forward differencing. The
velocity at the current path segment is expressed as us and us+4s is the velocity at distance
4s along the curve.

dvx(s)

ds
· vx(s) ≈

4vx(s)
4s

· vx(s) =
vs+4s − vs
4s

· vs (5.19)

The right hand side of Equation (5.18) represents the available longitudinal acceleration at
a given point on the curve with the current curvature. When moving from the maximum
curvature segment towards the lower curvature segment the vehicle should be able to
accelerate but within the boundaries of the curvature of the next segment. Therefore
an allowable acceleration and velocity must be found such that they do not violate the
slip circle defined by Equation (5.18). By using the numeric approximation in (5.19) and
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assuming we start at the point of maximum curvature the following equation can be used
for generating the velocity profile.

vs ·
vs+4s − vs
4s

=
√

(µ · g)2 − k2s+4s · v4s (5.20)

where ks+4s is the curvature at the new path segment and vs is the velocity at the previous
step. Solving for vs+4s results in,

vs+4s = vs ±4s ·

√
(µ · g)2 − k2s+4s · v4s

vs
(5.21)

The terms under the square root represent the available longitudinal acceleration if the
vehicle was to travel at the previous speed on a new segment with a smaller curvature
ks+4s. Depending on requirement, whether it is maximum acceleration or braking, the

allowable longitudinal acceleration4s·

√
(µ · g)2 − k2s+4s · v4s

vs
is either added or subtracted

from the initial velocity.

The resulting velocity profile can be used to calculate the maximum allowable acceler-
ation profile for a given curvature profile using Equation (5.18). In order for the velocity
profile planner to decide whether the obstacle avoidance maneuver should be performed
with acceleration or deceleration, two profiles can be generated as two boundaries for pos-
sible velocity profiles. For braking, the given numeric approximation can be done until
vs+4s reaches zero - full stop. Since at every step the velocity is decreasing and no risk of
violating the slip circle will occur even if the curvature is increasing, the profile generation
for braking doesn’t require a reverse integration step. If the calculation starts at the peak
curvature then at every step the velocity profile will generate the maximum possible veloc-
ity with an acceleration that doesn’t violate the slip circle. The polynomial spirals however
can have up to two maximas and up to three different zeros and since the velocity only
depends on the magnitude of the curvature finding the maximas and minimas of |k(s)|
would require a search through the polynomial in the domain of interest. To generate
the maximum velocity profile forward and backward integration must be performed using
(5.21). An algorithm for velocity profile generation is defined in Algorithm 1.
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Algorithm 1 Velocity profile generation

1: forward integration
2: N =

sf
4s size of the path vector

3: for i = 1 : N do
4: if (µ · g)2 > k2i+1 · v4i then

5: vi+1 = vi +4s ·
√

(µ · g)2 − k2i+1 · v(i)4

v(i)

6: else vi+1 =
µ · g
ki+1

7: end if
8: end for
9: reverse integration
10: for i = N : 1 do
11: if (µ · g)2 > k2i−1 · v4i then

12: vi−1 = vi +4s ·
√

(µ · g)2 − k2i−1 · v(i)4

v(i)

13: else vi−1 =
µ · g
ki−1

14: end if
15: end for

5.4 Longitudinal Control

The longitudinal controller finds the desired tracking velocity according to the velocity
profile and the vehicle position as described in 4. Due to actuation delays and dynamic
response of the vehicle tires the longitudinal controller in [10] uses lookahead distance for
velocity profile tracking. The longitudinal controller used by [10] has only proportional
gain terms, since the vehicle is supposed to drive at the limits of friction and introducing
the integral gain term for velocity tracking may keep increasing the error even when the tire
force is saturated, therefore the controller might get unstable overtime. The longitudinal
force command is calculated by summing multiple force components.

Fx = F speed
x + F slip

x + Fdrag (5.22)

The Fdrag consists of multiple terms that summarize the resistance forces acting on a vehicle
5.23.

Fdrag = Frolling + Faero + Fgrade + Fturn (5.23)

The Faero is the aerodynamic drag and can be calculated from Faerodyn =
CdAρv

2
x

2
. Froll is

the rolling resistance that can be assumed constant. Fgrade = −mg sin(θgrade) is the force

due to road grade angle θgrade, Fturn = m
b

a+ b
ay| tan(δ)| is the longitudinal component of

the steering.
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5.4.1 Speed Tracking Feedback Controller

The virtual speed tracking force is calculated using a proportional gain Kspeed and velocity
error between the vehicle speed vx and desired speed from the velocity profile vdes:

F speed
x = Kspeed(vdes − vx) (5.24)

The desired speed, vdes, is identified using the preview distance. The proportional gain
Kspeed is identified from experiments based on the vehicle and powertrain parameters.
Since the goal of the aggressive controller is to keep at the vehicle at the edge of the slip
angle there is no damping term in the F speed

x .

5.5 Feedforward Longitudinal Controller

The feedforward force is calculated using the acceleration estimated by using acceleration
profile from 5.17 after the velocity profile has been generated and the vehicle total mass
mv according to Newton’s Law.

F ff
x = mvax(s) (5.25)

5.5.1 Slip Circle Feedback Control

The slip circle is the representation of the available tire force during combined lateral
and longitudinal slipping. The slip circle allows the controller to identify the available
longitudinal force when the vehicle is cornering at the peak forces. The purpose of using
the slip circle feedback is not to make a vehicle drift, but rather to keep it within the friction
limit of the tire. The slip circle feedback force F slip

x is calculated using the normalized slip
circle diagram technique proposed in [10]. Two axes of the slip circle are the longitudinal
slip ratio and lateral slip angle normalized by the peak values based on the tire force curve.
The slip circle feedback force is only implemented on the longitudinal controller to make
sure the steering controller always has maximum available lateral force to keep the vehicle
on the path. The slip circle feedback force is summarized in the following equations 5.26:

F slip
x =

Kζ4ζ̄ +Kα4ᾱ, ζ̄ ≤ 0

−Kζ4ζ̄ −Kα4ᾱ, ζ̄ > 0
(5.26)

4ζ̄ =
|ζ̄| −

√
1− ᾱ2, ᾱ ≤ 1

|ζ̄|, α > 1

4ᾱ =
0, ᾱ ≤ 1

|ᾱ| − 1, ᾱ > 1

(5.27)
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Figure 5.2: Tire curves and Slip Circle

The slip circle feedback force is calculated using the deviation away from the slip circle
on the normalized longitudinal slip 4ζ̄ and normalized lateral slip angle 4ᾱ axes and
multiplying the corresponding gains Kζ and Kα. The normalization is done based on the
peak values of the lateral slip angle and longitudinal slip from the tire curve as can be
seen from Figure 5.2. The force F slip

x is positive if the slip is negative, which is similar
to letting go off the brakes when the tires start becoming saturated. When the slip is
positive, however, the F slip

x is negative, which is similar to letting go off the throttle when
wheels start slipping longitudinally. The deviation from the slip circle 4ζ̄ is equal to
absolute value of slip ratio when the lateral slip angle passed the peak - the feedback force
must restore the lateral force for steering. When the slip angle is less than the peak value
the distance 4ζ̄ is equal to the deviation towards the edge of the circle. However, the
deviation 4ᾱ is zero when the slip angle is less than the peak value - allowing for the slip
circle feedback force to be fully proportional to the slip ratio. If the slip angle is larger
than the peak value 4ᾱ is equal to the distance towards the edge of the slip circle. The
final proportional force might get unstable if the vehicle is in combined slip and exceeds
the peak values. In [21], the final force is, therefore, limited to a maximum traction force
available Favail 5.28.

F avail
x =

√
µmvgb

Lwb

2

− Fy (5.28)

During the combined slip the maximum traction force, F avail
x , may not return the actual

available force due to nonlinear behavior of the tire forces. Calculating the maximum
available force using the Dugoff tire model instead offers a higher fidelity estimate of the
available longitudinal force.

F avail
x = Cσ

ζ

1 + ζ
f(λ) (5.29)

5.6 Simulation Results

The simulation was implemented on a high fidelity vehicle simluation software CarSim.
To demonstrate the capabilities of the polynomial spirals, a smooth double lane change
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Figure 5.3: Position Tracking

maneuver is implemented from a single set of parameters while the vehicle is already driving
at top available speed along a larger polynomial spiral segment at maximum speed. The
position tracking results for lane change maneuver had the largest cross track error of
0.7m at the entry to the lane change curve and less than 0.01 m towards the exit as can
be observed in Figure 5.3 and Figure 5.7. The heading error stays within 0.04 radians
despite driving at the tire limits, which can be explained by the F ff

y term in the lateral
controller that allows to react to quickly changing curvature along the path by making a
turn in advance. The potential field feedback force F fb

y on the other hand, ensures that
the vehicle stays within the lane and keeps the lateral error margin less than a 1 m at
all times, despite the tire force saturation in the lateral direction. While having feasible
position tracking the controller also keeps the vehicle within the road friction limits. In
Figure 5.4 the vehicle acceleration is plotted with a circle of radius equal to a road friction
capacity µg, and the vehicle stays within the vicinity of the circle during reference path
following as well as during lane change. Since the longitudinal controller increases the
control effort as vehicle starts deviating from the normalized tire force circle, the lateral
acceleration readings become denser as they move away from the edge of the slip circle
indicating the effect of the slip circle feedback force. The front tire average slip shown
on the g-g diagram in Figure 5.5 stays in the vicinity of the unit circle on the lateral

slip angle axis
α

αpeak
since the longitudinal controller gives preference to having maximum

lateral force available for stable steering. On the longitudinal slip axis
ζ

ζpeak
, however, the

slip ratio leaves the circle while accelerating as well as braking with bigger deviation from
the slip circle compared to the lateral slip angle axis. One of the reasons for this is the
look ahead distance on the feedback controller that keeps the vehicle speed at an offset
from the velocity profile and, therefore, vehicle ends up being above the allowable vehicle
speed limit as can be seen from Figure 5.6. The lookahead distance must be adjusted
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Figure 5.4: Acceleration against slip circle

according to the curvature slope to avoid the longitudinal controller overshoots.Another
possible improvement could be an introduction of the velocity smoothening step, such that
a smooth polynomial profile can be fit and optimized with constrained acceleration profile
and, therefore sharp spikes and steep slopes on the speed profile can be reduced prior to
generating longitudinal actuation command. Overall velocity tracking performance keeps
the vehicle at the maximum possible speed while implementing reliable position tracking
at the maximum available tire forces.
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Figure 5.5: g-g diagram and tire slip

Figure 5.6: Velocity Tracking

Figure 5.7: Tracking Error
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Chapter 6

Conclusion

Autonomous driving is a rapidly growing field that has the potential to satisfy the long
overdue transportation needs for people who can not drive themselves or prefer to be using
their commuting time for business or entertainment. The possible significant influence on
the financial sector and possibility of reduction of the carbon footprint due to introduction
of autonomous delivery platforms, taxis, shuttle services or car share initiatives makes
this research area so impactful. Not only can autonomous vehicles be programmed to
drive more efficiency and utilized by multiple users, but they can also easily surpass the
human drivers in safety performance. Unlike human drivers, autonomous vehicles do not
stop paying attention to the road and the traffic conditions and do not fall asleep after
long hours of driving, therefore it is always alert and is always making the best possible
decision based on the information provided. The human drivers base their decision making
while driving on their past experiences or intuition, whereas autonomous vehicles have the
advantage of precisely estimating vehicle states by means of using analytical models and
executing the required actuation command that tracks the desired vehicle pose, heading or
velocity. Depending on the operation requirements, various analytical vehicle models can
be used to implement the best candidates for the estimation or control tasks.

Multiple state estimation techniques exist that are either tailored for low speed driving,
such as campus shuttle service for instance, or for urban and highway driving. Estimators
that are designed for low speed driving utilize a vehicle model that is based on the geometry
of the bicycle model and makes multiple assumptions, which reduces the needed number of
states to track and as a result a number of sensors as well. Implementing estimators that
take into account the vehicle kinematics as well as the dynamics, not only may require
additional sensors, but also a complete vehicle modeling procedure to be performed in
order to retrieve all the parameters that influence the dynamic behavior of the car.

This work offers an estimation method that was designed for low speed driving demo for
CES 2017. The chosen kinematic and measurement models implemented in the estimator
showed excellent results in reducing the oscillation and noise in the observed states. The
measurements correlated well with the predicted states from the model and the estimator
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didn’t diverge.

Similarly to the estimation design process, choosing the right controller depends on the
task at hand and the requirements it introduces. While some of the control techniques
based on the bicycle model kinematics require minimal computational resources and only
need basic vehicle model parameters, their performance depends on the assumption of low
speeds and no slip condition. The control techniques that utilize vehicle dynamics and/or
optimization process, on the other hand, depend heavily on the vehicle model parameters
that are not always easily accessible and may require a separate estimation and system
identification procedure and additionally require more computational resources. Since the
task was to implement a low speed demo sequence and very small amount of parameters
were available, a steering controller based on the vehicle kinematics, a Stanley controller,
was chosen and implemented. The steering controller performance was satisfactory and it
satisfied all of the requirements of the demo sequence.

For further development of the autonomous driving platform for urban scenarios and
highways in various adverse weather conditions, an aggressive driving controller framework
was introduced in this work, that can be incorporated seamlessly into the autonomous driv-
ing software architecture. The aggressive driving controller was implemented with a path
defined as a polynomial spiral curve. With the curvature profile provided by the local plan-
ner the aggressive driving controller generates maximum speed profile for a given friction
coefficient and performs position and velocity tracking using bicycle model for vehicle dy-
namics and Dugoff model for the tire forces. The controller was tested using a high fidelity
simulation software in a double lane change scenario to demonstrate a possible emergency
maneuver execution during highway driving. The controller performed well in tracking
position and desired path heading despite driving close to the edges of the slip circle. The
longitudinal controller tracks the desired speed profile with a certain overshoot due to
lookahead distance and use of proportional gain framework. Although this framework for
the longitudinal controller delivers promising results while tracking the maximum speed
profile, for autonomous driving purposes the additional speed profile smoothening step can
be added that would remedy the performance of the controller in tracking maximum and
minimum peaks on the speed profile. Additionally, an MPC framework can further be de-
veloped that can use the speed profile generation method introduced in this work, and can
add cost to penalizing the slip circle feedback force in order to keep the vehicle away from
the edges of the slip circle to ensure stability and safety. The use of lookahead distance
in the longitudinal controller may cause overshoots in the velocity tracking, therefore, the
lookahead distance can be chosen from an optimal lookup table that takes into account
current speed, powertrain response model and required acceleration profile.
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