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Abstract 

Air-coupled ultrasound is gaining increasing industry momentum due to the demands and 

development of non-destructive evaluation (NDE) of aerospace composite materials. 

Currently, the micromachining technology has advanced such that vacuum cavities sealed by 

thin plates, known as Capacitive Micromachined Ultrasonic Transducers (CMUTs), can be 

fabricated through silicon micromachining processes in a low cost manner. Given the thin 

plates, a CMUT is able to vibrate with a low mechanical impedance and thus a high coupling 

efficiency with the ambient atmosphere. Nevertheless, air-coupled applications are still highly 

limited by the transmit power of air-coupled CMUTs. A circle is the routine geometry in most 

CMUT cell designs. Even though efforts have been put forward to address the limitations of 

circular design in terms of sensitivity, more investigation about other cell geometries is 

prudent.  

In this work, a novel air-coupled CMUT design with annular cell geometry is proposed. 

Finite element analysis and experimental studies demonstrated its significant improvement in 

transmit efficiency over the conventional circular-cell CMUTs. A lumped element model was 

constructed to facilitate a better understanding and provide an efficient design technique of the 

annular CMUT. Three optimization schemes were developed to optimize the transmit 

efficiency and achieve a reasonable comparison between the novel annular and conventional 

circular CMUT cells. Based on the lumped models, a design optimization flow chart was 

constructed to facilitate the analytical optimization of the three schemes. To further enhance 

the transmit power as well as offer depth focusing, a 9-element concentric annular-cell array 

was designed, fabricated, and characterized. A pillar-free etching process was developed to 

create the deep large-area cavities. The cross-talk between neighbouring cells and the plate-

cracking phenomenon were discussed with suggestions for improvement being provided.  

This study provides a systematic framework for designing and studying annular-cell 

CMUTs and demonstrates their great potential in transmitting high-power ultrasound in air. 

 



vii 

 

 

Acknowledgement 

Foremost, I would like to thank my supervisor Prof. John T.W. Yeow, for offering me the 

opportunity to work in his Advanced Micro-/Nano- Devices Lab (AMNDL). As a supervisor, 

Prof. Yeow has not only guided me academically but also trained me to become an efficient 

time manger. During the past four years, I have spent countless hours in the cleanroom, bought 

hundreds of wafers, and attended several international conferences. The requests for material 

purchases, cleanroom user fees, and travel expense were always approved. It is a wonderful 

feeling to know that my project would always be supported. I also want to thank my committee 

members - Prof. Cui Bo, Prof. Eihab Abdel-Rahman, and Prof. Daniel Stashuk. Thank to Prof. 

Eihab Abdel-Rahman for allowing me to use the vibrometer in his lab, to prof. Daniel Stashuk 

for carefully correcting every single grammar error in my comprehensive report, and to Prof. 

Cui Bo for discussing with me about my research challenges. In addition, I sincerely thank 

Prof. Buchanan for agreeing to act as my external committee member and fly over 2000 km to 

physically attend my defense, given his busy schedule.  

This work will not be possible without the financial supports from the CMC Microsystem, 

Dr. Mirek Macecek from Techno Scientific Inc., Waterloo Institute for Nanotechnology, and 

the University of Waterloo. I would also like to particularly thank the lab manager of Giga-to-

Nanoelectronics Centre (G2N) - Richard Barber. Thanks for his unbelievable efforts in 

maintaining the lab equipment and making the lab an enjoyable place to work in. In addition, 

thanks to Edward for the equipment training in Toronto Nano Fabrication Centre and Nathan 

for the help in thermal oxidation in Quantum NanoFab.  

My PhD experience was an enjoyable one because of all the lovely lab mates that I have 

met. Special thanks to Dr. Albert Chen who brought me into the world of CMUT, spent 

countless hours working in the cleanroom with me, and helped me edit each single article, to 

Dr. Zhenhao Li for being so enthusiastic whenever I asked for his assistant. It is you guys that 

make me feel at home. Thanks to the knowledgeable Dr. Lawrence Wong for always answering 



viii 

 

my dumb questions and being a great teacher. Thanks to Dr. Ruifeng Yang for being a good 

buddy who has always been more than happy to share his valuable cleanroom experience. To 

Zhou Zheng, Chen Chen, Champika and Yaning Cui, thanks for being great helpers whenever 

I requested. I sincerely apologize to the ones whose names are missed here.  

To my parents, thanks for respecting the decisions I made and being so supportive in my 

study. Your daily encouragement over the phone keeps me optimistic. I cannot be luckier than 

being your son.  

Lastly, and most specially, I would like to thank my beloved – Shuting. Thanks for sharing 

the most precious time in your life with me and being consistently patient, supportive, and 

understanding during the past four year. I would not make it this far without what you have 

given. Also, thanks to my girlfriend’s mother – Mrs. Liao, for taking care of me just like my 

mother. Thank you!  



ix 

 

 

Table of Contents 

EXAMINING COMMITTEE MEMBERSHIP ................................................................... ii 

AUTHOR’S DECLARATION ............................................................................................. iii 

STATEMENT OF CONTRIBUTIONS ............................................................................... iv 

Abstract………………………………………………………………………………………vi 

Acknowledgement ................................................................................................................. vii 

Table of Contents ................................................................................................................... ix 

List of Figures ....................................................................................................................... xiii 

List of Tables ....................................................................................................................... xvii 

Chapter 1 Introduction ....................................................................................................... 1 

1.1 Motivation ........................................................................................................... 1 

1.2 Contribution ........................................................................................................ 2 

1.3 Thesis Organization ............................................................................................. 3 

Chapter 2 Background of Ultrasound ............................................................................... 5 

2.1 Ultrasound Basics ................................................................................................ 5 

2.2 Piezoelectric Transducers .................................................................................... 9 

2.3 Transducer Arrays ............................................................................................. 11 

2.4 Capacitive Micromachined Ultrasonic Transducers ......................................... 13 

2.4.1 Fundamental of Operation ................................................................................. 13 

2.4.2 Fabrication Methods .......................................................................................... 14 

2.5 CMUTs for Air-coupled Applications .............................................................. 17 



x 

 

Chapter 3 Modeling of a Circular CMUT Cell ............................................................... 18 

3.1 Mass-spring-damper Model .............................................................................. 18 

3.1.1 Quality Factor .................................................................................................... 21 

3.1.2 Capacitive Force ................................................................................................ 24 

3.1.3 Q Factor at DC Bias .......................................................................................... 26 

3.1.4 Output Pressure ................................................................................................. 27 

3.2 Equivalent Circuit Model .................................................................................. 30 

Chapter 4 Annular CMUT Cells ...................................................................................... 33 

4.1 Revisiting Motivation ........................................................................................ 33 

4.2 Design Concept ................................................................................................. 34 

4.3 Finite Element Model ........................................................................................ 36 

4.3.1 Static Displacement under Atmospheric Pressure ............................................ 37 

4.3.2 Static Displacement at DC Bias ........................................................................ 40 

4.3.3 Resonance Vibration ......................................................................................... 40 

4.4 Power Density Comparison between Circular and Annular Cells .................... 42 

4.5 Fabrication ......................................................................................................... 43 

4.6 Characterization ................................................................................................ 46 

4.6.1 Static Displacement under Atmospheric Pressure ............................................ 47 

4.6.2 Transmit Sensitivity .......................................................................................... 47 

4.6.3 Receive Sensitivity ............................................................................................ 49 

Chapter 5 Lumped Element Modeling of an Annular CMUT Cell .............................. 52 

5.1 Modeling of a Clamped Annular Plate .............................................................. 53 

5.2 Lumped Element Model .................................................................................... 59 

5.2.1 Static Analysis at DC Bias ................................................................................ 62 



xi 

 

5.2.2 Resonance Vibration ......................................................................................... 64 

5.2.3 Transient Response ........................................................................................... 66 

5.3 Experimental and Simulation Verification ........................................................ 67 

5.3.1 Static Displacement under Atmospheric Pressure ............................................ 68 

5.3.2 Static Displacement at DC Bias ........................................................................ 69 

5.3.3 Frequency Response .......................................................................................... 70 

5.3.4 Transient Response ........................................................................................... 72 

Chapter 6 Optimization and Comparison of Circular and Annular CMUT Cells ..... 74 

6.1 Optimization Schemes ....................................................................................... 74 

6.2 Lumped Element Models .................................................................................. 77 

6.2.1 Circular Cell ...................................................................................................... 77 

6.2.2 Annular Cell ...................................................................................................... 81 

6.3 Design Optimization Flow chart ....................................................................... 83 

6.4 Experimental Verification ................................................................................. 86 

6.5 Comparison of circular and annular cells. ......................................................... 90 

6.5.1 Scheme I ............................................................................................................ 90 

6.5.2 Scheme II ........................................................................................................... 92 

6.5.3 Scheme III ......................................................................................................... 94 

Chapter 7 Air-coupled CMUT Array based on Concentric Annular Cell Geometry 96 

7.1 Design ................................................................................................................ 96 

7.2 Fabrication ....................................................................................................... 103 

7.2.1 Fabrication of Pillar-free Cavities ................................................................... 106 

7.2.2 ICP Etching of Isolation Trenches .................................................................. 108 

7.3 Characterization and Discussion ..................................................................... 110 



xii 

 

7.3.1 Static Displacement ......................................................................................... 110 

7.3.2 Frequency response ......................................................................................... 111 

7.3.3 Cross-talk ........................................................................................................ 112 

7.3.4 Plate Cracking ................................................................................................. 114 

Chapter 8 Summary and Future Work ......................................................................... 116 

8.1 Summary ......................................................................................................... 116 

8.2 Future Work .................................................................................................... 119 

Bibliography ........................................................................................................................ 120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

 

List of Figures 

Figure. 2.1.1 A pulse-echo event in the time domain. .......................................................... 5 

Figure. 2.1.2 Acoustic propagation at the interface of two media. ..................................... 6 

Figure. 2.1.3 Attenuation losses of air (a) and water (b) at 20 °C and 20% humidity at 

frequencies between 50 and 500 kHz. .............................................................. 7 

Figure. 2.1.4 Normalized pressure of a plane wave at a distance of 1 m in air (a) and 

water (b) at 20 °C and 20% humidity at frequencies between 50 and 500 

kHz. ..................................................................................................................... 8 

Figure. 2.1.5 Acoustic field of a circular transducer aperture. ........................................... 9 

Figure. 2.2.1 Structure of a standard PZT transducer probe. .......................................... 10 

Figure. 2.3.1 Types of ultrasonic transducer arrays. ......................................................... 11 

Figure. 2.3.2 Methods of air-coupled NDT of thin plates. ................................................. 12 

Figure. 2.3.3 Focused single-element transducers: (a) Spherically shaped piezo disk; (b) 

flat piezo disk with acoustic lens; (c) flat piezo disk with reflector. ........... 13 

Figure. 2.4.1 The structure of a typical CMUT cell. .......................................................... 14 

Figure. 2.4.2 Surface micromachining process for CMUT fabrication. .......................... 15 

Figure. 2.4.3 Fusion bonding process for CMUT fabrication. .......................................... 16 

Figure. 3.1.1 (a) Cross-sectional schematic of a circular CMUT cell. (b) Equivalent 

mass-spring-damper model. ........................................................................... 18 

Figure. 3.2.1. Equivalent circuit of a CMUT cell. .............................................................. 30 

Figure. 4.1.1 Operation modes of a circular-cell CMUT: (a) conventional mode; (b) 

collapse mode [88]. .......................................................................................... 34 

Figure. 4.2.1 Schematic of an annular CMUT cell............................................................. 35 



xiv 

 

Figure. 4.3.1 Static displacement of the annular CMUT plate under atmospheric 

pressure. ........................................................................................................... 37 

Figure. 4.3.2 Plate displacement profile on the cross section. ........................................... 38 

Figure. 4.3.3 Relations between   and   when b and h are fixed at different values. (a). 

b is fixed at 1500 µm while h is set to 15 µm, 20 µm, and 30 µm; (b). b is 

fixed at 2500 µm while h is set to 15 µm, 20 µm, and 30 µm; (c). b is fixed at 

3500 µm while h is set to 15 µm, 20 µm, and 30 µm. .................................... 39 

Figure. 4.3.4 Frequency responses at 100-V, 150-V, and 170-V DC biases. .................... 41 

Figure. 4.5.1 3-D and cross-sectional views of the annular CMUT. ................................. 44 

Figure. 4.5.2 Fabrication flow of the annular CMUT. ...................................................... 45 

Figure. 4.5.3 A Photograph of the fabricated annular CMUT mounted and wire-bonded 

onto a PCB carrier. ......................................................................................... 46 

Figure. 4.6.1 Measured and simulated displacement along the radial direction. ........... 47 

Figure. 4.6.2 Measured frequency responses of the CMUT biased at 100 V, 150 V, and 

170 V and excited by a 20-Vpp CW signal. ................................................... 48 

Figure. 4.6.3 Time-domain maximum dynamic displacement response when the CMUT 

was biased at 170-V DC and excited by a 20-cycle, 94.5-kHz, 20-ppV burst 

AC excitation signal. ....................................................................................... 49 

Figure. 4.6.4 Schematic of the pitch-catch experiment setup ........................................... 50 

Figure. 4.6.5 Pitch-catch experiment results. (top) excitation voltage of the transmit 

CMUT; (bottom) received signal from the pre-amplifier of the receive 

CMUT. .............................................................................................................. 51 

Figure. 5.1.1 An annular plate clamped at the inner and outer edges. ............................ 53 

Figure. 5.1.2 Relationship between b  and  . ................................................................. 57 

Figure. 5.1.3 Static displacement of a clamped silicon annular plate under atmospheric 

pressure. ........................................................................................................... 59 

Figure. 5.2.1 Schematic (a) and lumped model (b) of an annular CMUT cell. ............... 60 



xv 

 

Figure. 5.3.1 A photograph of the fabricated annular-cell CMUT on a PCB carrier. ... 68 

Figure. 5.3.2 Analytical, experimental, and simulation displacements under 

atmospheric pressure. ..................................................................................... 69 

Figure. 5.3.3 Analytical, simulation, and experimental frequency responses of the 

maximum dynamic displacements. ................................................................ 71 

Figure. 5.3.4 Transient responses of the CMUT biased at 200-V and actuated by a 20-

cycle 20-Vpp AC excitation signal. ................................................................ 72 

Figure. 6.1.1. Cross-section schematic of a circular CMUT cell. ...................................... 76 

Figure. 6.1.2. Cross-section schematic of an annular CMUT cell. ................................... 76 

Figure. 6.3.1 Design optimization flow chart ...................................................................... 84 

Figure. 6.4.1 Photographs of the fabricated devices: (a) Circular cells. (b) An annular 

cell. .................................................................................................................... 87 

Figure. 6.4.2 Static displacement of the CMUT plates under ATM: (a) Circular CMUT 

cell. (b) Annular CMUT cell. .......................................................................... 87 

Figure. 6.4.3 Optimized AC voltages at different DC biases. ........................................... 89 

Figure. 6.4.4 Maximum dynamic displacement at different DC biases. .......................... 89 

Figure. 6.4.5 Resonance frequencies at different DC biases. ............................................ 90 

Figure. 6.5.1 Calculated maximum output power density at the plate surface. .............. 91 

Figure. 6.5.2 Calculated minimum DC biases required for different surface output 

power density. .................................................................................................. 93 

Figure. 7.1.1 Schematics of the concentric annular-cell CMUT array. ........................... 97 

Figure. 7.2.1 A photograph of the fabricated CMUT array. .......................................... 103 

Figure. 7.2.2 Fabrication process of the CMUT array. ................................................... 105 

Figure 7.2.3 A silicon pillar found in the cavity. .............................................................. 107 

Figure 7.2.4 Metal mask-based pillar-free large-area cavity etching process. .............. 108 

Figure. 7.2.5 SEM images of an electrode lead in the DRIE isolation trench. .............. 109 

file:///C:/Users/Shuai%20Na/Desktop/UW%20PhD%20Thesis-Shuai%20Na.docx%23_Toc484741155


xvi 

 

Figure. 7.2.6 SEM images of the isolation trenches fabricated by: (a) DRIE. (b) ICP. 110 

Figure. 7.3.1 Measured plate static displacements of Cells 1 to 9. ................................. 111 

Figure. 7.3.2 Frequency responses at 20-Vpp AC and DC biases of 100 and 150 V. .... 112 

Figure 7.3.3 Multi-point scan of each activated cell and its neighbouring cells. ........... 113 

Figure. 7.3.4 Optical images of the cracked plates........................................................... 115 

  



xvii 

 

 

List of Tables 

Table. 4.3.1 Physical properties of silicon and silicon dioxide used in the model. .......... 37 

Table. 4.4.1 Comparison between circular and annular CMUT cell designs. ................. 43 

Table. 5.3.1 Design dimensions of the annular-cell CMUT. ............................................. 68 

Table. 5.3.2 Static parameters under atmospheric pressure. ........................................... 69 

Table. 5.3.3 Analytical and simulation results at DC bias and under atmospheric 

pressure. ........................................................................................................... 70 

Table. 6.1.1 Optimization schemes of air-coupled CMUT cells. ....................................... 75 

Table. 6.4.1 Design dimensions. ........................................................................................... 86 

Table. 6.5.1 Radius dimensions of the CMUT cells. .......................................................... 90 

Table. 6.5.2 Calculated optimization results of circular and annular cells for Scheme I.

 ........................................................................................................................... 92 

Table. 6.5.3 Calculated optimization results of circular and annular cells for Scheme II.

 ........................................................................................................................... 93 

Table. 6.5.4 Calculated optimization results of circular and annular cells for Scheme 

III. ..................................................................................................................... 94 

Table. 7.1.1 Physical properties of the plate materials. ..................................................... 99 

Table. 7.1.2 Radius dimensions of cells 1 to 9. .................................................................. 100 

Table. 7.1.3 Calculated static and dynamic performance of Cells 1 to 9. ...................... 102 

Table. 7.2.1 ICP etching recipe .......................................................................................... 109 

Table. 7.3.1 Measured resonance frequencies, maximum dynamic displacements, and 

calculated surface power densities of Cells 1-9. .......................................... 112



1 

 

 

Chapter 1 Introduction 

1.1 Motivation 

Ultrasound is commonly used in medical imaging [1], non-destructive evaluation (NDE) [2], 

and high intensity focused ultrasound (HIFU) therapy [3][4], which are all conducted in an 

immersion environment. In comparison, air-coupled ultrasound is less common, yet it holds 

important roles in vehicle borne radars [5], thickness measuring [6], and flow-meters [7]. 

Today, the increasing needs and requirements for human-computer interaction (HCI) [8] and 

air-coupled NDE [7][9] further promote the development of air-coupled ultrasonic transducers. 

In general, designing an air-coupled ultrasonic transducer is difficult mainly due to the fact 

that the atmosphere has a low acoustic impedance, and the attenuation loss of ultrasound 

propagating in the atmosphere is significant. A large impedance mismatch between the 

transducer and the ambient atmosphere brings about a high reflection loss which is detrimental 

to the transducer’s efficiency [10]. Also, the attenuation of acoustic waves in air is significant 

and increases drastically as the frequency goes up [11]. The attenuation limits the air-coupled 

transducers to operate at a low frequency (normally below 1 MHz) [12]. At a low frequency, 

a transducer with a limited aperture size usually has a small focal depth, which limits the 

working distance of the transducer. From the above, generating a high sound pressure level 

which can compensate the high acoustic attenuation and high reflection loss is essential for air-

coupled transducers. 

Conventional ultrasonic transducers are inherently resonant devices made from bulk 

piezoelectric materials. A backing layer is used to modify the transducer’s bandwidth, and a 

front matching layer is required to improve the transducer-medium coupling efficiency [13]. 

However, the matching layer, which is desired to have a low density, low acoustic propagation 

speed, and low attenuation loss, is difficult to achieve. As a potential replacement technology 

of piezo-based transducers, micro-electromechanical systems (MEMS)-based ultrasonic 

transducers have been extensively studied. At the beginning, they were made from polymer 
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films (with metal electrodes on the top) attached on back plates with cavities [14]. The 

capacitive force between the back plate and the film excited the film to compress and 

decompress the medium in order to generate ultrasound. Using micro-fabrication technology, 

transducers called capacitive micromachined ultrasonic transducers (CMUTs) can be made 

with thin plates covering tiny vacuum gaps, the depths of which can be precisely controlled 

[15]. Given the small gaps, CMUTs are able to have a very large electric field strength and 

thus an electromechanical coupling efficiency exceeding that of piezo-based transducers. On 

the other hand, since a thin plate has a very low mechanical impedance which matches well 

with the acoustic impedance of air, CMUTs can operate with a high coupling efficiency in air.  

Although with a high coupling efficiency, CMUTs’ transmit power is still limited. 

Different cell configurations have been studied to improve the transmit power, but most of 

them were focused on immersion CMUTs. For example, rectangular, square, and tent cells 

were compared to show that a tent cell had the highest transmit efficiency [18]. A piston-

shaped plate was reported with a superior transmit efficiency than a conventional circular one 

[19]. For air-coupled CMUTs, efforts have been primarily concentrated on the circular cell 

geometry. A CMUT with multiple moving circular plates demonstrated an improved transmit 

sensitivity due to the decreased effective cavity depth [20], and DC-free actuation methods 

were used to swing a circular plate in the entire cavity depth for a maximized output power 

[21][22]. In most cases, improving the transmit power involves high-amplitude input voltages, 

which set a high requirement on the breakdown voltage of the insulating layer [23]. On the 

other hand, due to the unavoidable space between circular cells, the fill factor of a circular-cell 

CMUT array is another limitation factor for a high transmit power. 

The motivation behind this work is to improve the transmit efficiency of current CMUT 

designs by defining a novel cell configuration. Such cell configuration should possess an 

improved surface output power density. When it is made into an array, the array should promise 

a high fill factor as well as allow acoustic focusing along the depth direction. The ultimate goal 

of this study is demonstrating the feasibility of using the proposed CMUTs for generating high-

power air-coupled ultrasound and constructing a systematic framework for the design, 

fabrication, and optimization of such devices. 

1.2 Contribution 
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The major contribution of this work is developing an air-coupled CMUT that can provide a 

significantly improved transmit efficiency over the conventional circular cell design.  

The second contribution is providing a systematic framework for analyzing and designing 

the proposed CMUTs. This framework consists of an analytical model and a set of analytical 

optimization schemes, which not only can be used to guide the design of the proposed CMUT 

for different applications but also provide a methodology for the design of CMUT with 

arbitrary cell configurations.  

The third contribution of this project involves developing a novel process of fabricating 

the proposed CMUT arrays. It provides a solution to overcoming the formation of silicon 

pillars during etching deep large-area cavities. Additionally, the method of creating deep 

narrow trenches with inductively coupled plasma (ICP) etching can be referred by the 

fabrication of similar structures.  

1.3 Thesis Organization 

This thesis is organized as follow: 

In Chapter 2, the background of ultrasound, basics of piezoelectric ultrasonic transducers, 

transducer arrays, CMUT fundamentals including operation principles and fabrication methods, 

and a review of CMUTs for air-coupled applications are presented. 

In Chapter 3, the analytical modeling of a conventional circular CMUT cell is presented. The 

introduced models include a mass-spring-damper model and an equivalent circuit model. 

In Chapter 4, the concept of an annular CMUT cell is introduced. The fabrication processes, 

FEA, and experimental results are presented to illustrate the feasibility of the design. 

In Chapter 5, an analytical model of the annular CMUT cell is built in attempt to promote a 

better understanding and accelerate the design procedure of an annular-cell CMUT. The model was 

derived from the plate theory and verified with both simulation and experimental methods.  

Based on the works in Chapters 3 and 5, Chapter 6 is dedicated to optimizing the design of 

both conventional circular CMUT cells and annular CMUT cells. An analytical comparison study 

between the two types of cells is conducted to illustrate the advantages of the annular one.  

In Chapter 7, a concentric annular-cell CMUT array was designed, fabricated, and 
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characterized. The fabrications challenges associated with the large device areas and virtual 

connections in the deep trenches are discussed. The cross-talking and plate cracking phenomenon 

associated with the fabricated devices are investigated.  

A summary of the thesis is included in Chapter 8. 
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Chapter 2 Background of Ultrasound 

2.1 Ultrasound Basics 

Ultrasound is typically defined as mechanical waves propagating within a matter medium at 

frequencies beyond the human audible band, which is approximately 20 kHz. As a type of 

wave, ultrasound obeys the common wave propagation relation of 

,f c                                                            (2.1) 

where  ,  f , and c  are the wavelength, frequency, and speed of sound in the medium. The 

basis of ultrasound imaging lie in the pulse-echo principle such that the transmitted acoustic 

signals are detected once they are reflected or backscattered from an interface between two 

structures or media with inhomogeneous acoustic impedance. Taking the simplest imaging 

approach, A-scan (Fig. 2.1.1), for example, an echo signal is detected after the transmitted 

pulse being reflected back or backscattered. Since the speed of sound in a medium is known, 

the reflector or scatterer can be located by multiplying the time of flight with the speed of 

sound and a factor of 0.5 as the signal has to travel from the transmitter to the scatterer and 

then back again: twice the separation distance. 

 

Figure. 2.1.1 A pulse-echo event in the time domain. 

The amplitude of the received signal is dependent on three factors, which are the sensor 

sensitivity, acoustic coupling or acoustic contrast of the two materials at the interface, and the 
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acoustic attenuation in the medium. Figure. 2.1.2 illustrates the acoustic propagation at the 

interface of two different materials with impedance 
1Z  and 

2Z , respectively.  

 

Figure. 2.1.2 Acoustic propagation at the interface of two media. 

A parameter governing the amount of sound reflected or transmitted at the interface is the 

Reflection Coefficient [1] 

2 1

2 1

.
Z Z

RF
Z Z





                                                  (2.1.2) 

Similarly, the Transmission Factor gives the ratio of the amplitude of the transmitted pressure 

to that of the incident pressure [1] 

2

2 1

2
1 .

Z
TF RF

Z Z
  


                                            (2.1.3) 

It should be noted that Eqs (2.1.2) and (2.1.3) assume the acoustic wave as a plane wave. From 

Eqs (2.1.2) and (2.1.3), if the acoustic impedance of the two materials is the same, RF will be 

equal to 0, which means the waves propagate in the same medium without reflection. In the 

case of wave propagating into a buffer 
1 2( ,  1,  0)Z Z RF TF   , the acoustic energy will 

be completely absorbed by the buffer, and the pressure at the interface is equal to zero. When 

the wave hits a hard boundary 
1 2( ,  1,  2)Z Z RF TF  , all the energy will be reflected back, 

and the pressure at the interface is double the pressure of the incident wave.  

The loss of the waves propagating in a medium is called “attenuation” and can be described 

by an exponential law with distance. Defining z as the propagation distance and P as the 

amplitude of the wave pressure, we can describe the attenuation as [1] 

( )( , ) (0, ) ,f zP z f P f e                                              (2.1.4) 
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where ( )f  is the attenuation loss in Np/m. Np and dB can be converted to each other based 

on 

2
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12 2
10

1 10 10 1

log
1

1 NP=ln = = 20log =0.115 1 dB, 
log (e) 20log (e)

1 dB 8.69 Np.

x

xx x

x x

 
 

         
   



       (2.1.5) 

According to measurement results in [11], the attenuation losses of air and water at 20 °C and 

20% humidity are plotted in Fig. 2.1.3.  

 

Figure. 2.1.3 Attenuation losses of air (a) and water (b) at 20 °C and 20% humidity at 

frequencies between 50 and 500 kHz. 

Correspondingly, the normalized acoustic pressure of a plane wave at a distance of 1 m is 

plotted in Fig. 2.1.4. It shows that the acoustic pressure decreases much more dramatically 
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with the increase of frequency in air than it does in water. As a result, air-coupled transducers 

are normally designed with a low operating frequency (several hundred kHz) in attempt to 

increase the power-delivery efficiency [30]. 

 

Figure. 2.1.4 Normalized pressure of a plane wave at a distance of 1 m in air (a) and water 

(b) at 20 °C and 20% humidity at frequencies between 50 and 500 kHz. 

Even though the assumption of plane wave was made in the above discussion, the real 

acoustic field at a transducer is more complicated and has a Sinc function profile due to the 

interference effect. Figure. 2.1.5 shows the acoustic field profile (isobars) of a circular aperture 

from a large-scale point of view.  
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Figure. 2.1.5 Acoustic field of a circular transducer aperture. 

The natural focal distance z determines the depth of imaging and is a function of the frequency, 

speed of sound in the medium, and the aperture radius as [1] 

2

.
a f

z
c

                                                           (2.1.5) 

Therefore, a higher frequency and a larger aperture size will help increase the focal depth. This 

relationship is especially important for air-coupled transducers because a tread off is required 

between a high frequency (results in a far focal distance) and a low acoustic attenuation (leads 

to a focal distance closer to the transmitter). The near field is defined as the area between the 

transducer and the focal spot, whereas the far field is the area beyond the focal distance. Figure. 

2.1.5 shows that the acoustic field profile narrows at the focal area. Since a narrow beam width 

can distinguish finer features, the beam width of a transducer is a critical imaging consideration. 

The beam width is typically defined as the width of the profile of the -3-dB maximum pressure 

at the focus. Similarly, the focal zone is defined as the length of the profile of the -3-dB 

maximum pressure at the focus. 

2.2 Piezoelectric Transducers 

Conventional ultrasonic transducers make use of the piezoelectric effect, where mechanical 

force and electric energy can be converted to each other in the piezoelectric materials. 

Therefore, they can be used as either an actuator or a sensor or both. The most widely used 

piezoelectric transducers are made of lead zirconate titanate (PZT) since it can offer a high 

a
Focal region

Near field Far field 

z

Focal zone

Beam width Transducer
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electro-mechanical conversion efficiency. However, only a piece of PZT is not suitable for 

realistic applications because this it has an acoustic impedance (approximate 30 Mrayl) 

significantly larger than that of air (approximate 4×10-4 Mrayl) [31]. As indicated in Eq (2.1.3), 

the large impedance mismatch will lead to an extremely low transmit efficiency. As a result, 

the PZT crystals are usually diced and packaged to form a transducer probe which includes 

more functional layers to improve the acoustic performance. A structural overview of a 

standard ultrasound probe is illustrated in Fig. 2.2.1. 

 

Figure. 2.2.1 Structure of a standard PZT transducer probe. 

The probe is comprised of a PZT layer, a matching layer, a backing layer, and an acoustic 

lens in front of the matching layer. The matching layer functions as a coupling agent between 

the PZT slab and the acoustic lens material which normally has a good coupling with the 

ambient environment. Ideally, a matching layer and an acoustic lens are required to have low 

densities, low acoustic propagation speeds, and low attenuation losses. Yet, such materials are 

difficult to realize [31]. The backing layer is used to absorb the mechanical energy of the PZT 

slab to suspense the residual vibration. Normally, it has a similar impedance with that of the 

PZT material such that the energy can be transferred into it. The backing layer is normally 

required for immersion applications, such as medical imaging, because without this layer, the 

impulse response of the PZT will be several-period long and the axial resolution will decrease. 

However, for air-coupled applications, which require the transducer to generate a high power, 

the back layer will not be present as it will dissipate a great portion of the acoustic power from 

the PZT slab. Recently, the trends of piezoelectric-based transducer research have been 

Backing layer

Housing

Electrode layer

Matching layer

Lens

PZT slab

Electrode wire
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dedicated on piezo ceramics which can offer a lower acoustic impedance, a higher damping 

(wider bandwidth), and an improved electro-mechanical coupling efficiency [32][33].  

2.3 Transducer Arrays 

Ultrasonic transducers can be classified into two types, which are single-element transducer 

and transducer array. A single-element transducer can be adopted for A-scan, which is to detect 

echo sources along the center line of the transducer. It can also be amounted onto a mechanical 

scanning station to conduct 1-D and 2-D scans to correspondingly achieve a 2-D and 3-D image. 

In comparison, an array transducer is made of a number of elements, which can be individually 

controlled. The most commonly used arrays include linear arrays, curvilinear arrays, phased 

arrays, radial arrays, annular arrays, and 2-D arrays (Fig. 2.3.1).  

 

Figure. 2.3.1 Types of ultrasonic transducer arrays. 

Linear arrays, phased arrays, and curvilinear arrays are all 1-D arrays which are used to 

conduct 1-D scan and generate a 2-D image. A linear array is normally long in size and has a 

constant width of field of view used for imaging organs near the skin. In comparison, a phased 

array and a curvilinear array have a fan-shaped field of view, which allows the acoustic wave 

to go through the gaps between ribs for cardiovascular imaging. The radial arrays are normally 

Linear array Phased array Curvilinear array

2D arrayAxial array Annular array
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used for catheter-based endovascular imaging. An annular array is different from a single-

element transducer by being able to focus along the depth direction. The capability of focusing 

along the depth direction allows an annular array to generate an improved acoustic power at 

the focal area as well as provide a large field of view in the depth direction. A 2-D array can 

come into different forms including a sparse array, fully-addressed 2-D array, and a row-

column array. It can be used for conducting electrical 2-D scans to achieve 3-D images.  

For air-coupled surface scanning applications, a 1-D or 2-D array can be adopted. However, 

for more common applications, such as air-coupled NDT of thin plates, the single-element 

transducers, which have fixed natural focal depths, are most commonly used. This is due to 

fact that the through-transmission mode (Fig. 2.3.2 (a)) [34] and the guided wave method (Fig. 

2.3.2 (b)) [35], which only require one high-intensity acoustic beam, are the most effective 

methods to detect discontinues in a plate structure.  

 

Figure. 2.3.2 Methods of air-coupled NDT of thin plates. 

To improve the acoustic power output as well as increasing the lateral resolution, a single-

element air-coupled transducer is normally manufactured with a curved aperture or a flat 

aperture with an acoustic lens or reflector in front of the acoustic source to enhance focusing. 

Figure. 2.3.3 governs three typical focused air-coupled ultrasonic transducers. For all these 

transducers, the backing space is filled with air instead of a damping material to maximize the 

Q factor of the piezo disk so as to improve the output power.  

Transmitter

ReceiverTransmitter

Receiver

(a) (b)



 13  

 

 

Figure. 2.3.3 Focused single-element transducers: (a) Spherically shaped piezo disk; (b) flat 

piezo disk with acoustic lens; (c) flat piezo disk with reflector. 

2.4 Capacitive Micromachined Ultrasonic Transducers 

Capacitive micromachined ultrasonic transducers (CMUTs) are a new generation of ultrasonic 

transducers fabricated with the micromachining technologies shared with the integrated circuit 

(IC) industry. CMUTs were invented by Dr. Khuri-Yakub’s research group at Stanford 

University about fifteen years ago [36]. Since then they have been considered as the most 

promising replacement technology of present piezoelectric ultrasonic transducers. 

2.4.1 Fundamental of Operation 

Figure. 2.4.1 illustrates the schematic of a fundamental CMUT element - a CMUT cell. It is 

made of a thin plate suspending over a vacuum cavity. In transmit mode, an AC excitation 

voltage and a DC bias are simultaneously applied on the top and bottom electrodes. Due to the 

induced capacitive force between the electrodes, the plate will vibrate and generate acoustic 

waves at its surface. In the receive mode, the plate will be disturbed by an incident wave. The 

induced vibration leads to a capacitance change, which can be detected and measured by a 

front-end circuit.  

Air backing Air backing Air backing

Piezo materialsMatching layer Matching layerPiezo materials

Piezo materials
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Focus

Reflector
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Figure. 2.4.1 The structure of a typical CMUT cell. 

The most common CMUT plates are made of single-crystal silicon with a thickness ranging 

from hundreds of nanometers to dozens of micrometers depending on the design frequency. 

This is especially true for air-coupled CMUTs because they are normally designed with a low 

frequency which requires a large cell diameter and a thick (dozens of micrometers) plate. 

However, for the high-frequency CMUTs used for medical imaging, low pressure chemical 

vapor deposition (LPCVD) silicon nitride are a better material option since its thickness can 

be precisely controlled by the deposition conditions and time, and its Young’s modulus is 

higher than that of single crystal silicon [37][38]. Given a higher Young’s modulus, the CMUT 

plate can be made with a smaller thickness which enables a higher sensitivity. Another benefit 

of using silicon nitride as the plate material is that LPCVD silicon nitride has a good insulating 

property and therefore can help improve the breakdown voltage [39]. 

2.4.2 Fabrication Methods 

Two typical fabrication processes for CMUTs are the surface micromachining process and 

fusion bonding process. They are distinguished by the ways how the plates are constructed. 

Surface micromachining is the first method used for CMUT fabrication 

[16][36][40][41][42][43][44][45]. In a typical surface micromachining process (Fig. 2.4.2), the 

plate is deposited on a sacrificial layer which is subsequently removed to create the suspended 

plate configuration. An additional plasma enhanced chemical vapor deposition (PECVD) step 

is used to seal the releasing holes in order to achieve a vacuum-sealed cavity.   

Vacuum

Insulating layer
Silicon Substrate layer 

(bottom electrode)

Top electrode

Plate
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Figure. 2.4.2 Surface micromachining process for CMUT fabrication. 

Compared with surface micromachining, the fusion bonding process, which was first 

reported by Huang et al in 2003 [46], is more straightforward. As shown in Fig. 2.4.3, the 

process begins with a highly doped silicon wafer which serves as the common bottom electrode 

and an SOI wafer of which the device layer is used as the plate. Cavities are etched into the 

insulating layer, which was deposited or grown from the silicon substrate. The two wafers are 

directly bonded and annealed to achieve a permanent covalent bond. The bonded pair is 

subsequently put into silicon etchant to remove the handling silicon of the top wafer. The 

buried oxide (BOX) layer of the SOI wafer is subsequently removed by buffered oxide etchant 

(BOE) to expose the suspending device layer as the plate.  
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Figure. 2.4.3 Fusion bonding process for CMUT fabrication. 

Figure. 2.4.3 only illustrates a typical wafer bonding process based on the SOI wafer as the 

top wafer. Investigations have also be conducted on the adhesive bonding process 

[47][48][49][50], anodic bonding process [51], LPCVD silicon nitride to LPCVD silicon 

nitride bonding process [38][52][53][54], and LPCVD silicon nitride to thermal silicon dioxide 

bonding process [55]. For either surface micromachining or wafer bonding processes, if an 

insulating material is used as the plate, a top electrode must be deposited on the plate. 

Alternatively, if the plate is made of conductive silicon, a top electrode may not be required 

because the plate itself can serve as the top electrode.  

Comparing the micro-machining and wafer bonding processes, we can find that the fusion 

bonding process has a number of advantages over the surface micromachining one. The 

primary advantage is that the fusion bonding process is much simpler by only requiring one 

photomask for cavity patterning. Also, the plate thickness can be well controlled as the plate 

is transferred from a commercial SOI wafer. Moreover, without the need for releasing the 
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sacrificial layer in the cavities, CMUT cells can be packed closer together, and a higher fill 

factor can be achieved. A significant problem associated with the sacrificial process is the 

stiction problem that the surface tension of the liquid etchant in the cavity brings the plate to 

the bottom and holds them together [56][57]. Since the wafer bonding step does not involve 

any liquid, the stiction problem can be avoided. Another benefit of using the wafer bonding 

process is that it allows the easy fabrication of arbitrary cavity shapes. Last but not least, by 

using the wafer bonding process, a very good cavity vacuum can be obtained since the wafer 

bonding can be conducted in a vacuum chamber.  

2.5 CMUTs for Air-coupled Applications 

The invention of CMUT originated from the researchers in Stanford University attempting to 

use air-coupled ultrasound to detect cracks in the wings of a fighter jet [58]. In 1997, the same 

group demonstrated transmitting air-coupled acoustic wave through a piece of aluminum 

which has a thickness of multiple of the half wavelength to allow the generation of standing 

waves inside the plate [59]. Soon after, it was found that the immersion performance of a 

CMUT was exceptionally high as fractional bandwidth of over 100% was reported. As a result, 

the focus of CMUT was shifted from air-coupled applications to immersion applications. 

However, there are still a number of papers on air-coupled CMUTs in the literature. For 

example, the radiated fields of air-coupled CMUTs were modeled, and CMUTs were used to 

scan the surface of a coin using a mechanical stage [60]. In 2008, General Electric reported a 

CMUT-based air-coupled transducer for NDT [61]. Here, the reported CMUTs demonstrated 

a higher transmit efficiency than the commercial piezoelectric transducers. More recently, 

researchers have investigated air-coupled CMUTs for chemical gases [62][63][64] and 

pressure sensing in harsh environments [65][66].These CMUTs operate at frequencies ranging 

from 100 kHz to 400 kHz depending on the air pressure. A CMUT array designed for vehicle 

collision avoidance applications was also reported in [67]. More recently, with the 

development of Human-Computer Interaction (HCI), ultrasound has also been demonstrated 

to be suitable for the applications such as pen tracking systems, in-door positioning systems, 

and range monitoring in air [8]. These potential air-coupled applications warrant the further 

development of air-coupled CMUTs.  
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Chapter 3 Modeling of a Circular CMUT Cell 

3.1 Mass-spring-damper Model 

The cross section of a typical circular CMUT cell is illustrated in Fig. 3.1.1 (a). The basic 

concept of analyzing a CMUT cell is to simplify it as a mass-spring-damper model as shown 

in Fig. 3.1.1 (b). 

      

                                              (a)                                                                 (b) 

Figure. 3.1.1 (a) Cross-sectional schematic of a circular CMUT cell. (b) Equivalent mass-

spring-damper model. 

The radial position, plate thickness, insulating layer thickness, cavity depth, cell radius are 

denoted by r , 
0t , 

it , 
0g , and a , respectively. The effective cavity depth g  is calculated 

based on 
0g , the relative permittivity of the insulating layer 

i , and 
it  based on the series 

capacitance theory as 

0 .i

i

t
g g


                                                        (3.1.1) 

The circular plate is subject to a pressure 
atm eP P P  , where 

atmP  and 
eP  represent the 

atmospheric pressure and electrostatic pressure, respectively. At static state ( , 0atm eP P P  ), 

the plate displacement be expressed as [68] 
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where D  is the flexural rigidity and equal to 
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In Eq (3.1.3), E  and   are the Young’s modulus and Poison’s ratio of the plate material. Due 

to the symmetry of the clamped circular plate, the peak static displacement locates at the center 

and equals 

4

.
64

p

Pa
u

D
                                                         (3.1.4) 

For the equivalent mass-spring-damper model, the average plate displacement is widely 

used as the spatial variable, which can be derived by integrating Eq (3.1.2) over the entire plate 

area (A) to be 

0

1 1
2 ( ) .

3

a

a pu ru r dr u
A

                                               (3.1.5) 

In the same way, the root mean square (RMS) displacement can be derived to be  

2

0

1 1 3 5
2 ( ) .

55

a

rms p au ru r dr u u
A

                                     (3.1.6) 

In the case of small displacement (deflection obeys Hooke’s law), the equivalent spring 

constant 
1k  can be derived by dividing the force acting on the plate by 

au  as 

1 2

192
.

a

AP D
k

u a


                                                       (3.1.7) 

According to the plate theory [69], the natural resonance frequency of a clamped circular 

plate can be expressed as 

0 2

0

10.22
,

D

a t



                                                      (3.1.8) 

where   represents the density of the plate material. As the natural resonance frequency of a 
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mass-spring-damper system can also be expressed as 

0 1 / ,k m                                                         (3.1.9) 

where m is the lumped mass, m can be developed to be 

1
02

0

1.84 ,
k

m m


                                                  (3.1.10) 

where 
0m  is the actual mass of the plate.  

When a resonator, such as a CMUT plate, works in the flexural mode, it will compress and 

decompress the medium. The effect of the medium on the vibrating resonator is called acoustic 

impedance and defined as 

,acoustic

P
Z

v
                                                     (3.1.11) 

where  and P v  are the surface pressure and particle velocity, respectively. For a single CMUT 

cell in an infinite, plane, rigid baffle, its plate is acoustically loaded by the pressure generated 

by itself, and thus the acoustic impedance is called “self-acoustic impedance” and denoted by 

11Z . For a resonating CMUT cell surrounded by other active cells, its plate is not only subjected 

to the self-acoustic impedance but also acoustically loaded by the pressure generated by the 

other cells. The impedance resulting from the other cells is called “mutual-acoustic 

impedance”. The mutual-acoustic effect is important when studying a CMUT cell in 

immersion, such as water, which has a large acoustic impedance, but it is insignificant in air 

because the air acoustic impedance is five orders of magnitude lower than that of water. 

Therefore, the mutual impedance is ignored throughout this thesis, and the acoustic impedance 

acousticZ  is simplified as the self-acoustic impedance 
11( ).acousticZ Z  

11Z  has a complex value 

and can be separated into the real and imaginary parts as 

11 11 11.Z R jX                                                    (3.1.12) 

The acoustic resistance 
11R  represents the real power radiated into the medium in the form of 

a longitudinal wave, where the motion and the pressure are in phase. The imaginary part 
11X  
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is called the acoustic reactance and represents the kinetic energy stored in the medium, where 

the motion and pressure are out of phase. Therefore, 
11X  acts as a mass load to the vibrating 

plate. Both 
11R  and 

11X  are functions of wave number ( / mk c , where   and 
mc  are the 

frequency and sound speed in the medium) as well as the aperture size of the transducer.  

For 1ka , which implies that the aperture size is much smaller than the acoustic wave 

length, the transmitter will act as a point source, and 
11X  dominates the acoustic impedance. 

On the other hand, if 1ka , which implies that the aperture size is much larger than the 

acoustic wavelength, 
11R  will be the dominant component in the acoustic impedance. As a 

result, it is approximately equal to the characteristic acoustic impedance of the medium as 

11 0 ,m mR Z c                                                (3.1.13) 

where 
m  is the medium density, and 

mc  stands for the sound speed in the medium. Since air-

coupled CMUTs are generally designed with large cell sizes, which are larger than the acoustic 

wavelength, an approximation of purely real radiation impedance is made in this thesis. To 

achieve a higher accuracy, one can calculate the acoustic impedance for a given design 

referring to [70]. 

From Eqs (3.1.11) and (3.1.6), the acoustic pressure generated at the surface of the CMUT 

plate can be expressed as 

11 11 11 0 11 11

3 5
( ) ,

5
rms a AC AC ac ACP Z u Z u Z u u Z u Z u                   (3.1.14) 

where 
0u  is the static average displacement at DC bias and under atmospheric pressure, and 

ac  is the frequency of the AC excitation voltage.  

3.1.1 Quality Factor 

The quality factor (Q factor) of a resonator is commonly defined as the ratio of the maximum 

energy stored to the energy dissipated per cycle by damping processes  
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Another definition of the Q factor is the ratio of resonance frequency to the -3dB bandwidth as 

3

,
dB

f
Q

f



                                                      (3.1.16) 

where f is the resonance frequency, at which the amplitude of the output is maximum. 
3dBf  

is the -3dB frequency bandwidth and can be calculated from the frequency response. Eqs 

(3.1.14) and (3.1.15) are approximately equivalent when Q becomes larger, meaning the 

resonator becomes less damped.  

For ultrasound imaging applications, a low Q factor, which indicates a broad bandwidth, 

is desired. This is because a large bandwidth results in a sharp pulse or less ringing effect in 

the time domain and thus allows a high axial imaging resolution. For applications such as gas 

sensing, a high Q factor is desired because it allows a high sensitivity of detecting small 

frequency shifts around the resonance frequency. However, for the CMUTs presented in this 

thesis, the Q factor is not a key design parameter since air-coupled ultrasonic transducers are 

normally actuated with burst signal, which is the main limitation of axial resolution. On the 

other hand, improving the bandwidth for vacuum-sealed air-coupled CMUTs is difficult due 

to the low damping effect of air. Even though the vented CMUT cell design, which makes use 

of the squeezing film effects to improve the damping effect, has been demonstrated with an 

improved bandwidth, the output power of such design is quite low [71][72]. 

Energy loss is a very important aspect for determining the Q factor. Studies show that, 

there are mainly five classes of energy loss in resonators. They are medium loss [73], support 

loss [74], thermo elastic damping loss [75], surface loss [76], and volume loss [77]. The overall 

Q factor is the combination of the Q factors corresponding to these losses  

1 1 1 1 1 1
.

medium support thermoelastic surface volumeQ Q Q Q Q Q
                            (3.1.17) 

For a vacuum-sealed CMUT cell, the medium loss is the dominant loss mechanism [77]. Hence 

Eq (3.1.17) is approximately equal to 
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.mediumQ Q                                                       (3.1.18) 

The equilibrium equation of the mass-spring-damper system has the form of  

 11 11 1

3 5
( ) ( ) 0.

5
a a am AX f u AR f u k u                                  (3.1.19) 

The damped resonance frequency 
df  can be determined by solving  

 

 

2 2

1 11 11

11

9
4 ( ) ( )

5
.

4 ( )

d d

d

d

k m AX f R f A

f
m AX f

 




                               (3.1.20) 

The Q factor can be calculated using  

 11 1
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                                   (3.1.21) 

The -3dB fractional bandwidth is therefore equal to 
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and the -6dB fractional bandwidth yields 
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In this thesis, since an approximation of purely real radiation impedance is made, Eq 

(3.1.19) can be simplified as 

2

0 02 0,a a au u u                                                (3.1.24) 

where   denotes the damping factor and is given by 
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1

3 5
.

10

Z A

k m
                                                      (3.1.25) 

The damped frequency yields 
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The Q factor can be calculated based on 
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                             (3.1.27) 

The -3dB fractional bandwidth can be therefore derived to be 
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and the -6dB fractional bandwidth yields 
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3.1.2 Capacitive Force 

Assuming the CMUT as a pair of parallel plates, the capacitive force or electrostatic force 

induced by the DC bias 
DCV  can be calculated based on 

21
.

2

e
e DC

a

dC
F V

du
                                                   (3.1.30) 

where 
eC  is the capacitance between the plate and the bottom electrode. In the work [17], 

eC  

is calculated based on two parallel plates at a separation distance of 
ag u . However, it is 

found that such assumption lacks accuracy and cannot give a precise prediction of the static 

and dynamic performance at the DC bias. Therefore, the actual capacitance, which takes the 

curvature of the deformed plate into consideration, is used in this thesis. It is calculated by 

integrating the capacitance over the entire plate area as [68][78] 
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The first and second derivatives of 
eC  with respect to 

au  are: 
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and 
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Taking all the forms of force into consideration, the equilibrium equation of the CMUT 

plate can be expressed as 

,mass m r e atmF F F F F                                               (3.1.34) 

where 
massF  is the inertia force,

mF  represents the restoring force or mechanical force resulting 

from the clamped boundary, and 
rF  is the acoustic loading force. Assuming Eq 3.1.13 is valid, 

Eq 3.1.34 can be expended to be 
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                            (3.1.35) 

At static state, 
massF  and 

rF  are equal to zero, and Eq (3.1.35) can be simplified as 
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                                           (3.1.36) 

Therefore, 
DCV  can be expressed in terms of 

au  as 
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a

k u AP
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du




                                            (3.1.37) 

Taylor expanding the fourth term of Eq (3.1.35) about the equilibrium position 
0au u  yields 
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where 
0u  is the average static displacement under 

atmP  and at 
DCV . Substituting Eq 3.1.38 into 

Eq 3.1.35 results in 
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             (3.1.39) 

It is shown that at 
DCV , the coefficient of the second term, which stands for the effective spring 

constant, is smaller than the lumped spring constant 
1k  by an amount of 
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. This phenomenon is known as the “spring softening 

effect”. With the increase of 
DCV , the effective spring constant will decrease to zero, and the 

electrostatic force becomes equal to the restoring force. The corresponding DC voltage is 

called “collapse voltage” or “pull-in voltage”. When 
DCV  is smaller than the collapse voltage, 

the plate will stabilize at a position. Once 
DCV  increases over the collapse voltage, the plate 

will lose its stability and collapse to the bottom. Therefore, combining Eqs (3.1.37) and 

(3.1.39), the collapse voltage can be calculated by solving 
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                      (3.1.40) 

3.1.3 Q Factor at DC Bias 

Defining the effective spring constant in Eq (3.1.39) as 
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one can rewrite Eq (3.1.39) as 
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The natural resonance frequency at DC bias yields 

2
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k

m
                                                        (3.1.43) 

Since the damping factor of Eq (3.1.42) is equal to 
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the damped frequency becomes 
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Similar with Eq (3.1.27), the Q factor at DC bias can be derived to be 

2
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The -3dB fractional bandwidths at DC bias is equal to 

11
3
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3
,
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dBdc

AZ
B

mk
                                                    (3.1.47) 

and the fractional bandwidth can be calculated based on  

6 33 .dBdc dBdcB B                                                   (3.1.48) 

3.1.4 Output Pressure 

Assuming Eq (3.1.13) is valid and the AC excitation voltage is in the form of sin( )AC acV t , Eq 

(3.1.39) can be rewritten as 
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In order to operate the CMUT in the linear region, 
ACV  is normally given a small amplitude 

compared to that of 
DCV .Therefore, the coefficient of the fourth term of Eq (3.1.49) can be 

simplified as: 
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The Taylor expansion of Eq (3.1.50) about 
0au u yields 
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               (3.1.51) 

Substituting Eq (3.1.51) into Eq (3.1.49), one obtains 
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(3.1.52) 

Defining 
ACu  as the dynamic average displacement around the equilibrium position 

0au u , 

the total displacement can be expressed as 
0ACu u . Substituting 

au  in Eq (3.1.52) with 

0ACu u  yields  
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  (3.1.53) 

Eq (3.1.53) indicates a system with a time-varying stiffness, and it can only be solved via 
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numerical approach. However, since 
ACV  is much smaller than 

DCV , the stiffness term can be 

simplified as a constant by ignoring the time-dependent term sin( )DC AC acV V t , and Eq (3.1.53) 

becomes 
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represents the effective spring constant. The solution of Eq (3.1.54) can be found to be 

sin( ),AC acu U t                                               (3.1.56) 
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                (3.1.57) 

The maximum amplitude of the average displacement U occurs at 

21 2 .dc                                                    (3.1.58) 

It should be noted that the frequency corresponding to the maximum displacement in the forced 

vibration is actually smaller than the resonance frequency of the damped free vibration. The 

maximum displacement is derived to be 
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Substituting Eq (3.1.59) into Eq (3.1.48), we get the maximal output pressure as 
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Assuming 2 2

2 114mk A Z  is always valid, P can be further simplified as 

1 .
U

P
A

                                                          (3.1.61) 

3.2 Equivalent Circuit Model 

Even though a damped mass-spring model is more straightforward, the standard lumped 

element method, used to analytically model an ultrasound transducer, was derived from 

Mason’s equivalent circuit [79], where the mechanical domain and the electrical domain are 

coupled together by a transformer. In this section, an equivalent circuit (Fig. 3.2.1), which acts 

as a full equivalence of the presented mass-spring-damper model, will be introduced in this 

section. It is a small-signal model, in which the CMUT cell is assumed to be pre-biased. 

 

Figure. 3.2.1. Equivalent circuit of a CMUT cell. 

As shown in Fig. 3.2.1, the equivalent circuit consists of two domains: the electrical domain 

on the left and the mechanical domain on the right. The capacitor 
0C  in the electrical domain 

denotes the capacitance between the top and bottom electrodes of the CMUT cell under 

atmospheric pressure and at DC bias at static state, namely 
0 0( )eC C u . The input voltage 

acV  

represents the AC excitation voltage at the frequency of interest. Since the CMUT is assumed 

to be pre-biased, no DC voltage is physically input into the circuit.  
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A common analogy in the mechanical domain is that the electrical current represents the 

velocity, and the electrical voltage represents the force. Therefore, the mechanical domain is 

designed with a mechanical impedance to stand for the restoring force and mass of the clamped 

CMUT plate, an acoustic impedance to represent the acoustic loading of the medium, and a 

capacitor in series with the two impedances to denote the spring-softening effect of the plate. 

The capacitor in the mechanical impedance is equal to the reciprocal of the equivalent spring 

constant as 

1

1
.mC

k
                                                           (3.2.1) 

The inductor in the mechanical impedance is equal to the mass of the plate as 

.mL m                                                           (3.2.2) 

The capacitor representing the spring softening effect illustrated in Eq (3.1.39) has a negative 

amplitude and equals  
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                                  (3.2.3) 

Different from Eq 3.1.11, where the acoustic impedance is defined as the pressure over the 

area of the plate, the acoustic impedance in the equivalent circuit is defined to be the force over 

the area as 

11 11.
r

acoustic

FAP
Z AR iAX

v v
                                        (3.2.4) 

The acoustic impedance is presented by a resistor (real part) and an inductor (imaginary part) 

connected in series in the mechanical domain of the equivalent circuit.  

The transformer connecting the electrical and mechanical domains “converts” the AC 

excitation voltage to the electrostatic force. The capacitive force induced by 
ACV  is equal to 

the one induced by the superposition of 
DCV  and 

ACV minus the one resulting from the DC bias 

as 
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As a result, the transforming ratio n can be derived to be 
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Comparing Eq (3.2.5) with Eq (3.1.61), it can be found that 

.ACn V AP                                                         (3.2.7) 

This means that at resonance vibration, the output acoustic force is equal to the electrostatic 

force resulting from the AC excitation voltage. In other words, at resonance, all the electrical 

energy is transmitted into the medium, and the maximum efficiency is achieved.  

For the convenience of calculation, the equivalent circuit can be simplified as a four-

element circuit as shown below 

 

Figure. 3.2.2. Four element equivalent circuit model of a CMUT cell. 

Based on the working principle of a transformer (equal power on each side), the elements in 

the mechanical domain in Fig. 3.2.1 can be converted to the following three elements  
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                                               (3.2.8) 

A simulation software, such as Simulink (The MathWorks, Inc), can be used to analyze the 

equivalent circuits. A real circuit can also be built for the same purpose.  

So far, it has been demonstrated that the equivalent circuit model is a full equivalence of 

the mass-spring-damper model. Considering that the mass-spring-damper model is more 

straightforward, it will be used as the only modeling method in the following chapters.  

C0

Lx Cx Rx
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Chapter 4 Annular CMUT Cells 

4.1 Revisiting Motivation 

The air-coupled CMUT cells reported to date have been primarily designed with one 

continuous boundary [80][81][82][83][84], which naturally leads to the adoption of circular 

geometry as it has no sharp corners and thus smaller concentrated stress and is easy to design 

and analyze due to the symmetric configuration. However, the transmit power of current air-

coupled CMUTs is still considered weak. Several reasons can be summarized as follows. First, 

the piston-type motion has been demonstrated as the ideal mode of motion for CMUT [19][85]. 

Nevertheless, the actual deformation of a circular CMUT plate is parabolic, and as a 

consequence the total effective displacement is subject to the RMS displacement of the plate. 

Secondly, a high DC bias and AC excitation voltage are required to increase the RMS 

displacement in order to achieve a high output power [24][80][81]. However, the maximum 

amplitudes of the DC and AC voltages are restricted by the dielectric breakdown voltage of 

the insulating layer, which is also subject to fabrication contamination and defects. Thirdly, 

even though DC-free actuation strategies, which allow a CMUT plate to swing the entire 

cavity, were investigated, the strong non-linearity involves in these strategies make it difficult 

to model and analyze [86][87]. Last but not least, in order to perform beamforming and 

improve the acoustic power, realistic CMUTs are commonly designed in array forms. Since 

the space between neighbouring cells of a conventional circular-cell CMUT cells cannot be 

avoided, a high transducer fill factor is hard to be achieved. 

Since the geometry and boundary conditions play important roles in the behaviours of a 

CMUT plate, more investigation about other geometries is prudent. A good example is the 

collapse-mode CMUT as shown in Fig 4.1, where the circular plate is in contact with the cavity 

bottom [88]. The boundary condition of a collapse plate is different from that of a conventional-

mode plate by having two separate fixed boundaries. Experimental studies have shown that 

when a CMUT operates in collapse mode, the resonance frequency and the output pressure are 
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both enhanced. The collapse-mode CMUT inspired the annular CMUT cell design in this 

thesis. In contrast to a conventional circular plate, an annular plate is clamped at the inner and 

outer edges, which result in two separate fixed constraints. It has three main advantages over 

the conventional circular design. First, a higher transmit sensitivity can be achieved due to a 

larger ratio of average-to-maximum displacement (RAMD) of the plate. Secondly, the receive 

sensitivity can be improved due to an increased capacitance between the top and bottom 

electrodes. Thirdly, multiple annular cells can be arranged in a concentric layout, which 

promises a high fill factor and allows acoustic focusing in the depth direction. 

 

Figure. 4.1.1 Operation modes of a circular-cell CMUT: (a) conventional mode; (b) collapse 

mode [88]. 

In this chapter, the concept of an annular CMUT cell will be first introduced. A finite 

element model is built to evaluate the static and dynamic performance of an annular CMUT 

cell. Based on the finite element mode, a preliminary comparison study between the annular 

and circular cells is performed to reveal the advantage of the novel design. Next, the fabrication 

process and characterization results of the first-generation annular-cell CMUT are presented. 

4.2 Design Concept 

The static and dynamic behaviours of a CMUT cell plate are determined by the plate material, 

structural dimensions, and boundary conditions. For a typical vacuum-sealed circular plate, the 

maximum static displacement under atmospheric pressure locates at the center. However, if 

(a)

(b)
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the plate is fixed at the center, the active area will become an annular shape while the maximum 

displacement moves to somewhere between the inner and outer edges. In Fig. 4.2.1, a 

schematic plot of such an annular CMUT cell is shown. The inner and outer radii of the annular 

plate are defined as a and b. The parameters r and h denote the radial position and the plate 

thickness. The effective cavity depth g  can be calculated based on the actual cavity depth 
0g

, the insulating layer thickness 
it , and the relative permittivity of the insulating material 

i  

using 

0 .i

i

t
g g


                                                        (4.2.1) 

The ratio of the inner to outer radius is defined as 

.
a

b
                                                            (4.2.2) 

The smaller   is, the more similar the plate is to a “tent” which is supported at the center. In 

contrast, the larger   is, the more similar the plate is to a “ring”. 

 

Figure. 4.2.1 Schematic of an annular CMUT cell. 

When choosing the frequency of operation of an air-coupled transducer, one is forced to 

make a trade-off between the axial resolution and the penetration depth as high-frequency 

acoustic waves suffer significant attenuation loss in air. In this chapter, the natural resonance 

frequency was chosen as 100 kHz, which leads to a wavelength of 3.4 mm and acoustic 
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attenuation factor of 2.19 dB/m at 20°C and 20% relative humidity [11]. Given a 100-kHz 

resonance frequency, the CMUT is required to be designed with a relatively thick plate. 

Otherwise, the undesired stress-stiffening effect will be induced and cause an increased 

resonance frequency and non-linear behaviours of the plate. The CMUT was finally designed 

to have a 20 µm thick plate with inner and outer radii of 1150 µm and 2500 µm, respectively. 

The plate thickness was selected based on the availability of commercial silicon-on-insulator 

(SOI) wafers from Ultrasil (Hayward, California). The outer radius was chosen to be 2500 µm 

as a middle ground: if it was too large, the thickness variation of SOI device layer might cause 

inconsistency, whereas if it was too small, the transmit power might be too small to be detected 

at a distance of several decimeters. The inner radius was determined based on the outer radius, 

plate thickness, and the designed resonance frequency using a FEA. 

4.3 Finite Element Model 

A finite element model of the annular CMUT cell was built in Comsol Multiphysics® 

(COMSOL Inc) to simulate its static and dynamic behaviours. When building the finite 

element model, the following conditions were defined:  

1. The annular plate was made of highly conductive single crystal silicon which was 

simplified as a linear and isotropic material;  

2. The insulating layer was made of wet thermal silicon dioxide;  

3. The top surface of the plate was subjected to one standard atmosphere (atm);  

4. The annular cavity was vacuum-sealed with depth of g ;  

5. The DC bias and AC excitation voltages were applied separately at the silicon plate and 

bottom surface of the cavity.  

In the finite element model, five types of forces are involved: the inertia force 
inertiaF  

caused by the mass of the plate, the restoring force 
restoreF  resulting from the boundary 

conditions, the acoustic force 
acousticF  induced by the ambient medium, the electrostatic force 

electroF  induced by the DC bias and AC excitation, and atmospheric force 
atmF  due to 

atmospheric pressure. The dynamic equation can be expressed in terms of the five forces as 
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0.inertia restore acoustic electro atmF F F F F                                           4.3.1 

The physical properties of the materials involved in the model are listed in Table. 4.3.1 

Table. 4.3.1 Physical properties of silicon and silicon dioxide used in the model. 

Material 

Density  

3(kg/m )  
Poisson’s ratio 

Young’s modulus 

(GPa)  
Relative permittivity 

   Si 2330 0.27 169 N/A 

2SiO  2200 0.17 70 3.9 

4.3.1 Static Displacement under Atmospheric Pressure 

The simulated static displacement under atmospheric pressure is shown in Fig. 4.3.1. Since the 

plate is symmetric about the central axis of its plane, the displacement u  can be expressed as 

a function of the radial position r. In Fig. 4.3.2, the displacement profile cross section was 

shown. The maximum displacement 
maxu  is located at 1800 μmr   and equals 7.24 µm. The 

radial position of the maximum displacement is 25 µm to the left side of the plate’s median 

line. The 25-µm offset is induced by the asymmetric boundary conditions at the inner and outer 

edges. However, in contrast to the plate width (1350 µm), the offset is quite small. As a result, 

the displacement along the radial direction can be considered symmetrical about the plate 

median line. 

 

Figure. 4.3.1 Static displacement of the annular CMUT plate under atmospheric pressure. 
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Figure. 4.3.2 Plate displacement profile on the cross section. 

When studying a circular CMUT cell using a lumped model, the average displacement, 

which is defined as the average displacement over the entire plate area, is used as the 

displacement of the lumped mass [68][89]. In the same way, we define the average 

displacement of the annular plate as 

1
2 ( ) ,

b

a

a

u ru r dr
A

                                             (4.3.2) 

where A  is the plate area, and 
au  is the average displacement. 

au  can be calculated to be 3.84 

µm in this case. The RMS displacement is defined as 

21
2 ( ) .

b

r

a

u ru r dr
A

                                              (4.3.3) 

On the other hand, the RAMD is defined as 

max

,au

u
                                                        (4.3.4) 

and calculated to be 0.53. The dependence of RAMD on the design parameters of  , b, and h 

was studied with   ranging from 0.1 to 0.9 while b  and h were fixed at different values. The 

simulation results are shown in Fig. 4.3.3. 
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Figure. 4.3.3 Relationship between   and   for plate thicknesses of h =15, 20, and 30 µm 

and outer radii of a) 1500 µm, b) 2500, and c) 3000 µm, respectively. 

From Fig. 4.3.3, the following conclusions may be drawn: 

1. At fixed b and h, RAMD increases with the increase of  ;  

2. At fixed   and b, a and larger h results in a larger RAMD, which is more obvious when 

  is greater than 0.7;  

3. At fixed h and  , RAMD decreases with the increase of b.  

Consequently, to achieve a larger RAMD at a certain designed frequency, a thick plate with 
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a small inner radius should be used. In other words, a “tent” plate will result in a larger RAMD 

while a “ring” plate will lead to a smaller one. However, since the value of RAMD only varies 

within the range of 0.52 ~ 0.58, the dependence of it on the plate dimension parameters is 

relatively weak. 

According to [68], the RAMD of a circular CMUT is 0.33. As a result, the RAMD of the 

designed annular CMUT is improved by 61%. In general, the RAMD of an annular CMUT 

can be improved by 58% to 76%. The larger the RAMD is, the more evenly the plate deflects, 

and the more the plate behaves like a piston. Due to a higher capacitance between the top and 

bottom electrodes, a piston has a larger volume displacement and a higher electro-mechanical 

coupling efficiency than a flexible plate. As a result, an annular CMUT should be more 

efficient in transmitting and receiving ultrasound.  

4.3.2 Static Displacement at DC Bias  

The amplitude of the DC bias is limited by the pull-in and breakdown voltages. The presented 

design was simulated to have a pull-in voltage of 498 V. The breakdown voltage of the 0.9-

µm silicon dioxide insulating layer of the fabricated device, which will be introduced in Section 

4.5, was measured to be around 200 V. Other factors, such as the capacity of the external power 

supply and safety issues can also limit the DC bias. In this Chapter, the maximum DC bias was 

set to 170 V as it was lower than the breakdown and pull-in voltages of the device and 

compatible with our power supply. 

The simulated maximum displacement at 170-V DC bias and atmospheric pressure is 7.39 

µm. The average displacement and RAMD were simulated to be 3.92 µm and 0.53, 

respectively. Compared with the static displacement without DC bias, the DC bias introduces 

an additional 0.15-µm maximum displacement and 0.08-µm average displacement.  

4.3.3 Resonance Vibration 

The dynamic performance of the presented CMUT was studied through its frequency response 

to the AC excitation. The CMUT was simulated to be biased at 100 V, 150 V, and 170 V and 

excited by a 20-V peak-to-peak (Vpp) AC excitation voltage. The simulation results (Fig. 

4.3.4) indicate a typical response of an electrostatic-based transducer, namely, a higher DC 
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bias results in a larger maximum dynamic displacement and a lower resonance frequency. At 

100-V DC bias, the maximum displacement and resonance frequency is 1.14 µm and 98.53 

kHz. At 150-V and 170-V DC bias, the resonance frequency decreases to 97.78 kHz and 97.38 

kHz while the maximum dynamic displacement increases to 1.79 µm and 2.07 µm, 

respectively. The average displacement was simulated to be 0.60 µm, 0.95 µm, and 1.10 µm 

at 100-V, 150-V, and 170-V DC bias, respectively. The rms displacement was simulated to be 

0.72 µm, 1.14 µm, and 1.33 µm at 100-V, 150-V, and 170-V DC bias, respectively. 

 

Figure. 4.3.4 Frequency responses at 100-V, 150-V, and 170-V DC biases. 

The acoustic impedance of air can be expressed as 

,airZ R iX                                                       (4.3.5) 

where R and X are the resistive and reactive parts, respectively. The amplitude of the RMS 

acoustic pressure generated at the plate surface yields 

,air ac acP Z u                                                    (4.3.6) 

where 
acu  is the amplitude of the rms dynamic displacement induced by the AC excitation, and 

ac  is the frequency of the AC excitation. When biased at 100 V, 150 V and 170 V, the RMS 

output pressure was simulated to be 185.80 Pa, 288.60 Pa, and 331.15 Pa, and the transmit 

sensitivity yielded 18.58 Pa/V, 28.86 Pa/V, and 33.12 Pa/V. Based on Eq (4.3.6), the absolute 
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value of the acoustic impedance was calculated to be 416.84 Rayls, 412.06 Rayls, and 406.93 

Rayls, which was used to calculate the output pressure of the fabricated CMUT in Section 4.6. 

The -3-dB fractional bandwidths (FBWs) at 100-V, 150-V, and 170-V DC bias were simulated 

to be 0.89%, 0.88%, and 0.87%, respectively. The center frequencies of the -3-dB bandwidth 

at the three DC biases are consistent with the resonance frequencies.  

4.4 Power Density Comparison between Circular and Annular 

Cells 

Simulations were conducted on both circular and annular CMUT cells to study the efficacy of 

the latter design. The compared simulations shared the same natural resonance frequency (100 

kHz), plate material (Si), membrane thickness (20 µm), insulating layer material (
2SiO ), 

insulating layer thickness (2 µm), DC biases (from 170 V to 370 V), and AC excitation (20 

Vpp). 2 µm of insulating layer was selected to provide a high breakdown voltage (over 400 

V). Based on the resonance frequency, the radius of the circular plate was simulated to be 911 

µm. The annular plate was defined with the same inner and outer radius of the presented 

annular CMUT. The cavity depths for both designs were optimized for generating a maximum 

rms power density at the plate surface with an assumption that the plate would not touch the 

cavity bottom during vibrating. The transmit sensitivity was evaluated using the calculated rms 

output pressure divided by the amplitude of the AC excitation voltage. The optimized cavity 

depth 
opg , simulated resonance frequency 

dcf  at DC bias 
dcV , simulated rms output pressure 

P , calculated transmit sensitivity 
txS , calculated rms power intensity 

pP , and the percentage 

of the transmit sensitivity and power intensity improvement 
impS  and 

impP  are summarized in 

Table. 4.4.1.  
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Table. 4.4.1 Comparison between circular and annular CMUT cell designs. 

dcV  (V) 170 220 270 320 370 

Circular cell 

opg  (µm) 12.87 13.44 14.03 14.52 14.97 

dcf  (kHz) 97.10 96.25 95.60 94.70 93.90 

P  (Pa) 377.3 422.5 444.3 481.2 511.3 

txS  (Pa/V) 37.73 42.25 44.43 48.12 51.13 

pP  ( 2W/m ) 368.97 465.51 517.10 610.33 692.86 

Annular cell 

opg  (µm) 11.66 12.32 12.82 13.35 13.88 

dcf  (kHz) 94.90 93.90 92.50 91.50 90.70 

P  (Pa) 586.3 627.9 657.2 705.0 731.4 

txS  (Pa/V) 58.63 62.79 65.72 70.50 73.14 

pP  ( 2W/m ) 887.34 1041.68 1176.78 1383.21 1510.07 

impS  55.4% 48.6% 48.4% 46.5% 43.0% 

impP  140.5% 123.8% 127.6% 126.6% 117.9% 

Table. 4.4.1 demonstrates that the transmit sensitivity and power intensity of an annular 

cell is on average 48.4% and 127.3% higher than that of a circular cell. Even though the size 

of a circular cell is smaller, and more circular cells can be put into the same area of an annular 

cell, the entire active area of such layout will become smaller because of the unavoidable 

spaces between neighboring circular cells. As a result, the total power improvement of an 

annular design may exceed 127.3%.  

4.5 Fabrication 

A wafer bonding process [46], in which the plate was bonded onto the substrate with predefined 

cavities, was used to fabricate the proposed annular CMUT cell. Since the plate and cavities 

were fabricated separately, one could independently control their dimensions as opposed to the 

limitations associated with surface micromachining process [16][36][40]. The three-

dimensional (3-D) and cross-sectional views of the annular CMUT cell are shown in Fig. 4.5.1.  
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Figure. 4.5.1 3-D and cross-sectional views of the annular CMUT. 

The fabrication flow is illustrated in Fig. 4.5.2. First, a 4-inch, 500-µm thick, boron-doped, 

silicon substrate in <100> orientation with resistivity of 0.001 cm was prepared as the 

bottom wafer. A 4-inch silicon-on-insulator (SOI) wafer with a 20-µm thick boron-doped, 

<111> orientation, 0.002- cm silicon device layer was prepared as the top wafer. In the 

second step, the substrate wafer was patterned and etched by deep reactive-ion etching (DRIE) 

(PlasmaPro Estrelas100, Oxford Instruments plc). For the top SOI wafer, 0.9 µm of wet 

thermal silicon dioxide, which would be used as the insulating layer, was grown on the device 

layer at 1100 C . The wafer bonding was conducted in Step 3. First, both the top and bottom 

wafers were cleaned in standard SC-1 solution for 10 minutes at 80 C , then rinsed in running 

DI water for 15 minutes and spin-dried. Afterwards they were treated by oxygen plasma for 

the purpose of surface activation for 10 minutes in the chamber of the wafer bonding machine 

(AWB-04 aligner wafer bonder, Applied Microengineering Ltd)..  
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Figure. 4.5.2 Fabrication flow of the annular CMUT. 

After plasma activation, the chamber was evacuated, and the top wafer was brought into 

contact with the bottom wafer. As soon as the two wafers contact, a compressive force of 2500 

kN was exerted uniformly on the back sides of the two wafers and kept for 15 minutes to 

achieve a direct bonding. The direct-bonded pair was subsequently annealed at 1100 °C for 4 

hours in a furnace with nitrogen injection. In the fourth step, a layer of Polydimethylsiloxane 

(PDMS) (Sylgard 184, Dow Corning Inc) was deposited and cured on the silicon substrate to 

protect it from being etched by the Tetramethylammonium hydroxide (TMAH) used in the 

following step. The bonded pair was then dipped in buffered oxide etch (BOE) to remove the 

silicon dioxide on the SOI handling layer introduced in step 2. The handling layer of the SOI 

wafer was etched away by 30% TMAH at 80 °C . Using BOE again, the buried silicon dioxide 

(BOX) layer of the SOI wafer was removed such that the device layer was exposed. The PDMS 

protection layer was simply peeled off by hands at the end of this step. Step 6 was used to 

isolate each CMUT plate as well as to expose a window on the substrate wafer for electrode 
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deposition. In the last step, the top and bottom electrodes, which consisted of 30 nm of 

chromium covered with 70 nm of aluminum, were deposited through e-beam evaporation 

A photograph of the fabricated device mounted and wire-bonded onto a printed circuit 

board (PCB) carrier is shown in Fig. 4.5.3. The ring-shaped shadow indicates the plate 

deformation due to atmospheric pressure. It should be mentioned that the illustrated device is 

the first-generation device and was fabricated using only one photomask (the one for cavity 

patterning) to save the cost. The electrode and device outlines were simply patterned with 

kapton tapes, which leads to the rough-looking appearance of the device. The first-generation 

devices were only used in this chapter to verify the FEA results and demonstrate the feasibility 

of the design concept. A new batch of second-generation devices, which was fabricated using 

a full set of photomasks, will be introduced in Chapter 5. 

 

Figure. 4.5.3 A Photograph of the fabricated annular CMUT mounted and wire-bonded onto 

a PCB carrier. 

4.6 Characterization  

In this section, the fabricated device characterization for both the static and dynamic 

performance to demonstrate the transmit ability is presented. Since this thesis is mainly focused 

on transmitter CMUTs, which were designed with deep cavities to achieve a high output 

power, the presented devices are not optimized for receiving. Nevertheless, pitch-catch 

experiments were conducted to examine the fabricated device as a receiver. For the design of 

high-performance annular-cell CMUT for receiving, one can simply decrease the cavity depth 

to increase the receive sensitivity. 
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4.6.1 Static Displacement under Atmospheric Pressure 

The static displacement resulting from atmospheric pressure was measured with a profilometer 

(Dektak 8 Stylus Profiler, Bruker Corp). The measured displacement is consistent along the 

circumferential direction. The displacement along the radial direction is shown in Fig. 4.6.1. 

The maximum displacement was measured to be 7.35 µm and occurred at 1801 μmr  , which 

is 24 µm to the inner side of the plate’s medium line ( 1825 μmr  ). The average displacement 

was calculated to be 3.96 µm. As a result, the RAMD yields 0.54. The experiment results match 

well with the simulation results.  

 

Figure. 4.6.1 Measured and simulated displacement along the radial direction. 

4.6.2 Transmit Sensitivity 

The transmit performance of the fabricated CMUTs was evaluated by two different AC 

excitation modes: a continuous wave (CW) and a 20-cycle burst. The dynamic displacement 

of the plate was measured with a laser Doppler vibrometer (OFV-5000, Polytec Inc). The rms 

output pressure at the plate surface was calculated based on the measured maximum dynamic 

displacement using Eqs (4.3.3) and (4.3.6). 

A DC power source (GPR-30H10D, Good Will Instrument Co., Ltd) was used to bias the 

CMUT at 100 V, 150 V, and 170 V. At each bias voltage, the CMUT was excited by a 20-Vpp 

CW signal from a function generator (4040B, B&K Precision Corp). The CW signal was 

monitored using a digital oscilloscope (DSO-X 3034A, Agilent Technologies Inc). The 

frequency responses of the maximum dynamic displacements at different DC biases are 
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consistent along the circumferential direction and plotted in Fig. 4.6.2. It is shown that a higher 

DC bias results in a larger dynamic displacement and a lower resonance frequency. The 

maximum dynamic displacement was measured to be 0.93 µm at 98.5 kHz, 1.57 µm at 96.2 

kHz, and 2.18 µm at 94.5 kHz, at DC biases of 100 V, 150 V, and 170 V, respectively. 

Correspondingly, the rms output pressure at the plate surface was calculated to be 152.21 Pa, 

249.07 Pa, and 338.27 Pa, and the transmit sensitivity was calculated to be 15.22 Pa/V, 24.91 

Pa/V, and 33.83 Pa/V, respectively. The -3-dB FBW was measured to be 1.7%, 1.8%, and 

1.4% when the CMUT was biased at 100 V, 150 V, and 170 V, respectively. The center 

frequency of the -3-dB bandwidth was measured to be 98.5 kHz, 96.3 kHz, and 94.7 kHz. 

 

Figure. 4.6.2 Measured frequency responses of the CMUT biased at 100 V, 150 V, and 170 

V and excited by a 20-Vpp CW signal. 

The time-domain response at 170-V DC bias and 20-cycle, 94.5-kHz, 20-ppV burst excitation 

is shown in Fig. 4.6.3. The maximum dynamic displacement was measured to be 1.67 µm. The 

transmit sensitivity was calculated to be 25.85 Pa/V at the CMUT surface. 
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Figure. 4.6.3 Time-domain maximum dynamic displacement response when the CMUT was 

biased at 170-V DC and excited by a 20-cycle, 94.5-kHz, 20-ppV burst AC excitation signal. 

4.6.3 Receive Sensitivity 

The receive sensitivity was measured using a pitch-catch experiment setup consisting of two 

identical annular CMUTs, one for transmitting and the other for receiving. The two CMUTs 

were placed face to face at a separation distance of 20 cm, which was arbitrarily chosen such 

that the receiver was placed at the far field of the transmitter and was free from reflected 

echoes. Fig. 4.6.4 shows the schematic of the pitch-catch experiment setup. Both the transmit 

and receive CMUTs were biased at 170 V. The transmit CMUT was excited by a 20-cycle, 20-

Vpp, 94.5-kHz burst-mode sinusoidal signal while the receive CMUT was connected to a pre-

amplifier and a digital oscilloscope to measure the received signal. The pre-amplifier circuit is 

a transimpedance amplifier circuit which consists of an operational amplifier (OPA354, Texas 

Instruments Inc), a 25-k  feedback resistor, and a 15-pF feedback capacitor.  
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Figure. 4.6.4 Schematic of the pitch-catch experiment setup 

Fig. 4.6.5 (top) shows the burst-model excitation signal. The output voltage from the pre-

amplifier is shown in Fig. 4.6.5 (bottom). The maximum amplitude of the absolute pressure at 

the receive CMUT was simulated to be 5.3 Pa based on the measured output pressure at the 

transmitter’s surface, air attenuation loss, and diffraction loss. The receive sensitivity was then 

calculated to be 7.7 mV/Pa (-42.3 dB re 1 V/Pa). In comparison, a continuous signal resulted 

in an absolute pressure of 7.2 Pa at the receive CMUT. The receive sensitivity was measured 

to be 15.0 mV/Pa (-36.5 dB re 1 V/Pa). 
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Figure. 4.6.5 Pitch-catch experiment results. (top) excitation voltage of the transmit CMUT; 

(bottom) received signal from the pre-amplifier of the receive CMUT. 
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Chapter 5 Lumped Element Modeling of an 

Annular CMUT Cell 

In the last chapter, even though FEA predicted the performance of a particular annular CMUT 

design accurately, the computational expense makes it unsuitable in the design stage. 

Moreover, FEA could not demonstrate the principles of designing an annular-cell CMUT from 

an analytical perspective. As a result, it is necessary to develop an analytical model for more 

efficient analysis and design.  

The lumped element model, which is a mass-spring-damper system and employs the 

average displacement as the spatial variable, has been used extensively when studying a 

circular CMUT cell. Determination of the lumped parameters, i.e., the lumped mass and spring 

constant, was based on the explicit formulas of the plate’s resonance frequency and static 

displacement [17][68]. However, to the best of the author’s knowledge, such explicit formulas 

have not been reported for annular plates. In this chapter, the explicit expressions of the 

resonance frequency and static displacement of an annular CMUT plate are first developed 

using the plate theory [69] and curve fitting method [90]. The lumped mass and spring constant 

are then derived based on these expressions. The electrostatic force is calculated through 

integrating the electrostatic pressure over the plate area. The dynamic formula, which employ 

the average displacement as the spatial variable and couple the inertial force of the lumped 

mass, restoring force of the equivalent spring, electrostatic force induced by the DC bias, 

atmospheric pressure, and the acoustic loading, are constructed and solved. FEA and 

experimental studies are conducted to verify the effectiveness of the analytical model in 

predicting the static and dynamic performance including the static displacement under 

atmospheric pressure and DC bias, pull-in voltage, and frequency and transient response of the 

maximum dynamic displacement. The model only involves the physics of the device and does 

not employ FEA for any parameter determination. 
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This chapter is organized as follows. Section 5.1 presents the modeling of a clamped 

annular plate based on the classical plate theory and curve fitting method. Explicit expressions 

of the natural resonance frequency and static displacement are also given in this section. The 

lumped element model is proposed and solved in Section 5.2, which is followed by verification 

studies in Section 5.3. 

5.1 Modeling of a Clamped Annular Plate  

An annular plate fixed at the inner and outer edges is shown in Fig. 5.1.1. The plate is assumed 

to be made of a linear isotropic material. The inner and outer radius, thickness, and material 

density of the plate are denoted by a, b, h, and  , respectively. The time, radial and angular 

spatial variables are represented by t, r, and , respectively.  

 

Figure. 5.1.1 An annular plate clamped at the inner and outer edges. 

The differential equation of motion for transverse displacement ( , , )u r t  of the plate is given 

by [69] 

2 2 2 2 2
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0,

u
D u h

r r r r r r r r t


 
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where D is the flexural rigidity and defined by 
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E is the Young’s modulus, and   is the Poisson ratio. Assuming free vibration, we can express 

( , , )u r t  as 
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0( , , ) ( , )sin( ),u r t U r t                                              (5.1.3) 

where ( , )U r   is the vibration amplitude, 
0  is the resonance frequency, and   is a phase 

angle. According to [91], ( , )U r   has the form of 

( , ) ( )cos( ),U r R r n                                                 (5.1.4) 

where  ( 0,  1,  2 ,..., )n n   represents the number of radial nodal lines. In axially symmetric 

vibration modal, n is equal to zero, and U is independent of  . Taking Eq (5.1.3) back into Eq 

(5.1.1) yields 

2 2 2 2
2 2

2 2 2 2 2 2
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cos( ) 0,R n

r r r r r r r r
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 

       
        
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       (5.1.5) 

where we define 
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 
                                                       (5.1.6) 

To find its solutions, Eq (5.1.5) is rewritten as two separate equations with “or” logic 

relationship 
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          
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                (5.1.7) 

The first equation of Eq (5.1.7) is the Bessel’s differential equation of the nth order, and it has 

a solution of [92] 

1 2( ) ( ) ( ),n nR r C J r C N r                                             (5.1.8) 

where 
nJ  and 

nN  are the Bessel’s functions of the first and second kinds and can be expressed 

as 
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The second equation in Eq (5.1.7) is the modified Bessel’s differential equation of the nth order 

and has the following solution [92] 

3 4( ) ( ) ( ),n nR r C I r C K r                                         (5.1.11) 

where 
nI  and 

nK  are the modified Bessel’s functions of the first and second kinds, 

respectively. 
nI  and 

nK  can be expressed as 
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1
( ) ,

!( )! 2

m n
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r
I r

m m n


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



 
  

  
                                   (5.1.12) 
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K r

n

  



   

  
 

                                   (5.1.13) 

nJ , 
nN , 

nI  and 
nK  have the following recursion properties [93] 

1( ) ( ) ( ) ,n n n

d n
J r J r J r

dr r
   




 
  

 
                                (5.1.14) 

1( ) ( ) ( ) ,n n n

d n
N r N r N r

dr r
   




 
  

 
                              (5.1.15) 

1( ) ( ) ( ) ,n n n

d n
I r I r I r

dr r
   




 
  

 
                                (5.1.16) 

1( ) ( ) ( ) .n n n

d n
K r K r K r

dr r
   




 
  

 
                              (5.1.17) 

The general solution of ( )R r  can be achieved by combining Eqs (5.1.8) and (5.1.11) as 

1 2 3 4( ) ( ) ( ) ( ) ( ),n n n nR r C J r C N r C I r C K r                             (5.1.18) 

where  1 2 3 4; ; ; C C C C  is the modal vector. The boundary conditions of the clamped annular 

plate can be expressed as 

0,  0,  0,  0.
r a r b

r a r b

u u
u u

r r 
 

 
   

 
                           (5.1.19) 

Combining Eqs (5.1.14) to (5.1.19), we have 
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      (5.1.20) 

Since 
1 2 3 4,  ,  ,  and C C C C  have non-zero solutions, the determinant of the coefficient matrix of 

Eq (5.1.20) should equal zero. Taking n = 0, we have 

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0.

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

J a N a I a K a

J b N b I b K b

J a N a I a K a

J b N b I b K b

   

   

   

   


  

  

                      (5.1.21) 

 1 2 3 4; ; ; C C C C  is equal to the first column of the adjugate matrix of Eq (5.1.21). We define 

the ratio of inner to outer radius as 

.
a

b
                                                           (5.1.22) 

Based on Eqs (5.1.21) and (5.1.22), the relationship between b  and   is plotted in solid 

lines in Fig. 5.1.2. 
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Figure. 5.1.2 Relationship between b  and  . 

Since the plotted curve has a very regular shape, curve fitting was employed to extract an 

approximate analytical expression of b  in terms of  . Assuming the expression in the form 

of reciprocal of a quadratic function, it can be developed using nonlinear least squares fitting 

method [90] to be 

2

478.1
.

102.8 101.8
b

 


 
                                         (5.1.23) 

The root-mean-square error (rmse) and the summed square of residuals (sse) of the fitting 

results are calculated to be 34.214 10  and 42.664 10 , respectively. Taking Eq (5.1.23) into 

Eq (5.1.6), the resonance frequency can be obtained as 

2

0 4 2

478.1
.

102.8 101.8

D

hb


  

 
  

  
                                   (5.1.24) 

The first-order modal shape yields 

1 0 2 0 3 0 4 0( ) ( ) ( ) ( ) ( ).U r C J r C N r C I r C K r                              (5.1.25) 

When atmospheric pressure ( )atmP  is taken into consideration, the equilibrium equation 

yields 
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2 2

2 2

1 1
.atmD u

r r r r r
P

r

     
    

     
                                (5.1.26) 

According to [94], the general solution of Eq (5.1.26) can be written as 

2 2

1 2 3 4ln ln ,psu u c c r c r r c r                                      (5.1.27) 

where 
psu  is a particular solution. To find 

psu , we rewrite Eq (5.1.26) as 

2

2

1
,atm

r r

P
M

r D

  
  

  
                                          (5.1.28) 

where 

2

2

1
.M u

r r r

  
  

  
                                            (5.1.29) 

M can be found through undetermined coefficient method to be 

2

.
4

atmr
M

P

D
                                                     (5.1.30) 

In the same way, 
psu  can be derived to be 

4

.
64

atm
ps

r
u

P

D
                                                     (5.1.31) 

1 2 3 4,  ,  ,  and c c c c can then be determined by taking Eqs (5.1.29) and (5.1.31) into the boundary 

conditions Eq (5.1.19) as 
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                              (5.1.32) 

Taking a silicon (simplified as an isotropic material) annular plate with 20 μm,h  0.46, 
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2500 μm,b  0.27,  and 169 GPaE  as example, the static displacement under 

atmospheric pressure ( 51.01 10  PaatmP   ) is shown in the dotted line in Fig. 5.1.3.  

 

Figure. 5.1.3 Static displacement of a clamped silicon annular plate under atmospheric 

pressure. 

Figure. 5.1.3 indicates that the maximum displacement locates at 27 μm  to the left of the 

median line (dot dash line), which means the displacement is not strictly symmetric about the 

median line. However, as the difference of the spatial distance is rather small compared to the 

width of the plate, the displacement can be simplified to be symmetric about the median line. 

As a result, we can define the expression of the displacement in a similar form with that of a 

clamped circular plate [68] as 

2
24 2 2( ) ( ) ( )2

( ) 1 .
384 24

atm atmb a r a r br a b
u r

D a b D

P P     
       

                (5.1.33) 

The constant coefficient (384) in front of D is determined by matching the maximum 

displacement with the theoretical result. The displacement profile, calculated using Eq 

(5.1.33), is plotted in the solid line in Fig. 5.1.3. Verification calculations were also conducted 

on plates with other dimensions, the results obtained with Eq (5.1.33) all showed very good 

agreement with the theoretical results. 

5.2 Lumped Element Model 
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When investigating the electromechanical coupling effects in a CMUT cell, the lumped model, 

more specifically the one-dimensional mass-spring-damper model, is regularly used to 

simplify the spatially distributed system into a discrete system [17][68]. In this section, we will 

also present a similar lumped element model to guide the annular CMUT analysis and design. 

The cross-section schematic of the annular CMUT cell is shown in Fig. 5.2.1 (a), and its 

corresponding lumped model is shown in Fig. 5.2.1 (b). 

   

Figure. 5.2.1 Schematic (a) and lumped model (b) of an annular CMUT cell. 

The cavity between the top and bottom electrodes is assumed to be vacuum with an 

equivalent depth of g , which is determined by the actual cavity depth (
0g ), insulating layer 

thickness (
it ), and relative permittivity (

i ) of the insulating material using 

0 .i

i

t
g g


                                                          (5.2.1) 

1,  ,  and airm k Z  in Fig. 5.2.1 (b) represent the lumped mass, spring constant, and damping, 

respectively. Defining the electrostatic pressure as 
eP , the total pressure exerted on the plate 

can be written as 

.atm eP P P                                                          (5.2.2) 

Taking Eq (5.2.2) into Eq (5.1.33), the peak displacement 
pu is derived to be 

  
4( )

.
384

p

P b a
u

D


                                                    (5.2.3) 
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The average displacement 
au  is defined as 

1 8
2 ( ) 0.533 .

15

b

a p p

a

u ru r dr u u
A

                                     (5.2.4) 

From Eq (5.2.4), the RAMD of a clamped annular plate is 0.533 which agrees with the result 

obtained in Chapter 4. On the other hand, the root-mean-square (rms) displacement is defined 

as 

21 48
2 ( ) 0.638 ,

5670

b

r p p

a

u ru r dr u u
A

                                 (5.2.5) 

which is 20% larger than the average displacement. Using 
au  as the spatial variable, the spring 

constant can be calculated by dividing the total force with the average displacement as 

1 2 3

720 (1 )
.

(1 )a

AP D
k

u b

 




 


                                            (5.2.6) 

Since the natural resonance frequency of a mass-spring system is 

1
0 ,

k

m
                                                           (5.2.7) 

m can be derived by combining Eqs (5.1.24) and (5.2.7) to be 

2

4

4

04

720( 102.8 101.8)

478.
,

(11 )
m m

 









                                      (5.2.8)  

where 
0m  is the actual mass of the plate and equal to 2 2(1 )h b  . Considering that air-

coupled applications usually require low operating frequencies (several hundred kHz), and air-

coupled CMUT cells typically have larger sizes than the acoustic wave length, we simplify the 

acoustic impedance as plane wave impedance (specific impedance) 

,air air airZ c                                                        (5.2.9) 

where  and air airc are the density and sound speed of air, respectively. For more accuracy, the 

calculated radiation impedance for a given design could be used in place of Eq (5.2.9). 
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5.2.1 Static Analysis at DC Bias 

The electrical capacitance between the top and bottom electrodes is defined as the capacitance 

integrated over the entire plate area 
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(5.2.10) 

where 
0  is the permittivity of vacuum.  The first derivative of 

eC  with respect to 
au  is 
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(5.2.11) 

The second derivative of 
eC  is 

2

0 0

2 2 2 2

3 1
.

2 ( 3 ) 2 ( 3 ) 2 2
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a a a a a a a a

d C A A C dC
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                (5.2.12) 

The electrostatic force 
eF  can be calculated based on 

21
.

2

e
e DC

a

dC
F V

du
                                               (5.2.13) 

Combining the inertial, restoring, electrostatic, and atmospheric force, the equilibrium 

equation of the lumped system is expressed as 
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                                  (5.2.14) 

The electrostatic force can be expanded based on Taylor’s expansion at 
0au u  (

0u  is the static 

average displacement under atmospheric pressure and at DC bias) as 
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and  
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(5.2.17) 
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By taking Eq (5.2.15) into Eq (5.2.14), we have 
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                                      (5.2.18) 

where 2

2 1 2

1

2
DC ek k V C   . Since 

2k  is the coefficient of the displacement variable, it is also 

the equivalent spring constant resulting from the spring softening effect. The pull-in voltage 

piV  and its corresponding displacement can be found by assuming 
2k  to be zero and Eq (5.2.14) 

to be satisfied 
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                                   (5.2.19) 

The resonance frequency at DC bias can be achieved by substituting 
1k  in Eq (5.2.7) with 

2k  

to be 

2
0 .dc

k

m
                                                       (5.2.20) 

5.2.2 Resonance Vibration 

Defining the AC actuation voltage as sin( )AC AC acV V t , the amplitude of the generated 

output pressure at the plate surface can be expressed as 

,air rac air ac racP Z U Z U                                                 (5.2.21) 

where 
racU  and 

racU  are the amplitudes of the rms dynamic velocity ( )racu and rms dynamic 

displacement ( )racu , respectively. The dynamic equation at AC excitation yields 

 
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1
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2

a rac e
ac air AC DC atm

a

d u du dC
m k u AZ V V AP

dt dt du
                         (5.2.22) 

If small signal (
AC DCV V ) is considered, the fourth term of Eq (5.2.22) can be simplified as 

 21/ 2 2 /DC AC DC e aV V V dC du  , which can further be expanded at 
0au u to be 
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Eq (5.2.23) indicates a system with time-dependent stiffness due to the existence of 
ACV . 

However, since 
ACV  is a small signal, we can further simplify Eq (5.2.23) as 
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Rewriting Eq (5.2.24), we have 
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                            (5.2.25) 

where   is the damping factor and equal to 

                                                  
2

0.6
.airZ A

k m
                                                       (5.2.26) 

The damped frequency at DC bias can be calculated to be 

2

0 1 .ddc dc                                                     (5.2.27) 

The Q factor of a CMUT cell is mainly determined by the energy loss mechanisms 

involving the medium loss, support loss, thermo elastic damping loss, surface loss, and volume 

loss. For a vacuum-sealed CMUT cell, the medium loss is the dominant loss factor [84]. The 

Q factor of the lumped system is 

1
.

2
Q


                                                         (5.2.28) 

The -3-dB and -6-dB fractional bandwidth (FBW) are 

3

1
2 ,dBB

Q
                                                     (5.2.29) 

and 
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6 33 2 3 .dB dBB B                                                 (5.2.30) 

Eq (5.2.25) indicates a typical single-degree-of-freedom (SDOF) system with harmonic 

actuation. Its steady-state solution can be found to be [95] 

_ sin( ),ac s ac acu U t                                               (5.2.31) 

where  
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                                    (5.2.32) 

From the expression of 
acU in Eq (5.2.32), we can find that the maximum dynamic 

displacement corresponds to 

21 2 ,                                                     (5.2.33) 

which means that the AC frequency at the maximum dynamic displacement is slightly lower 

than 
0dc . Substituting   in 

acU  with Eq (5.2.33), we have 

1

2
2

1
.

2 1
ac

U
U

k  



                                             (5.2.34) 

Taking Eq (5.2.34) back to Eq (5.2.21), we can get the amplitude of the output pressure as 

2 2
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2 2
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


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                           (5.2.35) 

Since 2 2

2 0.72 airmk A Z  normally holds, Eq (5.2.35) can be further simplified as 

1 .
U

P
A

                                                         (5.2.36) 

5.2.3 Transient Response 

Burst input signals are commonly used to drive air-coupled transducers for improved transmit 
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efficiency [10]. In this sense, the transient response to a burst signal can better reflect the actual 

performance of an air-coupled CMUT. Based on [95], the transient solution of Eq (5.2.25) can 

be expressed as 

0 0
_( ) sin( )cos( ) cos( ) sin( ) sin( ) .dct ac dc
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(5.2.37) 

The first term represents the free vibration induced by the excitation signal and will attenuate 

with time. The second term indicates the forced vibration which is the same with Eq (5.2.31). 

Base on Eq (5.2.37), the transient velocity can be achieved by calculating the first-order 

derivation of ( )acu t  as 

  

0

0

0
0

0

( ) sin( )cos( ) cos( ) sin( ) sin( )

            sin( )sin( ) cos( ) sin( ) cos( )

             + cos(

dc

dc

t ac dc
ac dc ac ddc ddc

ddc ddc

t

ac ddc ddc ac dc ddc

ac ac ac

w
u t e U w t w t

w w

e U w w t w w t

U t






   

   

 





  
      

  

   

).

(5.2.38) 

At the moment when the input signal terminates, the lumped mass will hold an 

instantaneous velocity 
_ 0acu  and dynamic displacement 

_ 0acu  which can further be used as the 

initial conditions to calculate the free vibration of the mass using 

0
_ 0 _ 0 0
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               (5.2.39) 

5.3 Experimental and Simulation Verification 

In this section, experimental and simulation studies on a fabricated second-generation annular 

CMUT (Fig. 5.3.1) were performed to verify the correctness of the developed lumped element 

model. The second-generation devices share the same architecture with the first-generation 

devices but was fabricated using a full set of photomasks based on the processes stated in 

Chapter 4. The vibrating plate is made of <111> single-crystal silicon with a resistivity of 0.002 

cm . The substrate, which also acts as the bottom electrode, is made of 500-μm-thick silicon 

in <100> orientation with a resistivity of 0.001 cm . Wet thermal silicon dioxide (grown at 
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1100 ˚C) is used as the insulating layer. Except for being fabricated with a full set of 

photomasks, the second-generation devices are different from the first-generation for their 

smaller cavity depth, which leads to an improved sensitivity. The dimensions of the second-

generation CMUT are listed in Table. 5.3.1.  

 

Figure. 5.3.1 A photograph of the fabricated annular-cell CMUT on a PCB carrier. 

Table. 5.3.1 Design dimensions of the annular-cell CMUT. 

 (μm)a   (μm)b   (μm)h  
0  (μm)g   (μm)it   (μm)g  

1150 2500 20 12 1 12.26 

FEA of the fabricated device was conducted using Comsol Multiphysics® (COMSOL Inc). 

The single-crystal silicon plate was simplified as a linear and isotropic elastic material in both 

the analytical calculation and FEA. The physical properties of the materials used in the two 

models are the same with those shown in Table. 4.3.1. 

5.3.1 Static Displacement under Atmospheric Pressure 

The static displacement of the annular CMUT plate under atmospheric pressure was measured 

using a profilometer (Dektak 8 Stylus Profiler, Bruker Corp). The measured, analytical, and 

simulation results are shown in Fig. 5.3.2. It demonstrates that the analytical results are in good 

agreement with the simulation and measured results.  
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Figure. 5.3.2 Analytical, experimental, and simulation displacements under atmospheric 

pressure. 

The results of the maximum displacement (
pu ) and its position ( r ), average displacement 

(
au ), and the RAMDs are listed in Table. 5.3.2. Even though minor difference exists in the 

maximum displacements and its positions, the RAMDs are in good consistency. The results 

verify the correctness of the annular plate model presented in Section 5.2. On the other hand, 

we should note that the derivation of the static displacement did not involve the nonlinear 

strengthening effects caused by the plate deformation [96]. For designs with thin plate 

thickness and wide plate width, neglecting the effects may cause over estimation of the static 

displacement.  

Table. 5.3.2 Static parameters under atmospheric pressure. 

Parameters  (μm)pu   (μm)r   (μm)au  RAMD  

Analytical 7.189 1825 3.832 0.533 

Simulation 7.239 1798 3.842 0.531 

Experimental 7.351 1800 3.965 0.539 

5.3.2 Static Displacement at DC Bias  

FEA was used to verify the static displacement at DC bias and under atmospheric pressure. 

Experimental results are not provided because a charged device might cause damage to the 

profilometer during measurement. In the FEA model, the dielectric breakdown voltage of the 

insulating layer was assumed to be higher than the pull-in voltage. For the analytical results, 
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the pull-in voltage (
piV ) was determined using Eq (5.2.19), the average displacement (

au ) was 

derived based on Eq (5.2.18), and the maximum displacement (
pu ) was calculated by 

multiplying the calculated average displacement with the RAMD. Table. 5.3.3 summarizes the 

analytical and simulation results. Simulation results show that the RAMD is consistent at 

different DC biases, which verifies the assumption of constant RAMD in the analytical model. 

Table. 5.3.3 Analytical and simulation results at DC bias and under atmospheric pressure. 

(V)

DCV
 

Analytical  Simulation 

(V)

piV
 

  

(μm)

au
 

  

(μm)

pu
 RAMD   

(V)

piV
 

  

(μm)

au
 

  

(μm)

pu
 RAMD  

100 341 3.878 7.271 0.533  334 3.888 7.328 0.531 

150  3.936 7.380 0.533   3.947 7.442 0.530 

200  4.025 7.548 0.533   4.039 7.620 0.530 

5.3.3 Frequency Response 

The effectiveness of the analytical model in predicting the frequency response was evaluated 

at DC biases of 100 V, 150 V, and 200 V. A 20-Vpp AC excitation signal was used to actuate 

the biased CMUT, and a laser Doppler vibrometer (LDV) (OFV-5000, Polytec Inc) was used 

to measure the maximum dynamic displacement of the vibrating plate. The analytical, 

simulation, and experimental frequency responses are plotted in Fig. 5.3.3. 
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Figure. 5.3.3 Analytical, simulation, and experimental frequency responses of the maximum 

dynamic displacements. 

The spring softening effect, namely a higher bias voltage leading to a lower resonance 

frequency and a larger dynamic displacement, can be observed. The analytical resonance 

frequencies at DC bias of 100 V, 150 V, and 200 V are calculated to be 98.01 kHz, 96.26 kHz, 

and 93.35 kHz, respectively. At 200-V bias, the analytical amplitude of the maximum 

displacement is 3.28 μm, which is very close to the experimental and simulation results. On 

the other hand, it can be found that the simulation data is more accurate than the analytical data 

at 100 VDCV  . But with the increase of DC bias, the experimental data shifts more to a lower 

frequency than the simulation data does. One possible explanation is that the actual cavity 

depth is smaller than the designed value, and consequently the spring softening effect is more 

obvious at a higher DC bias. In other word, this is caused by fabrication errors. Overall, the 

analytical, experimental, and simulation results are very close, which verifies the accuracy of 

the analytical model. 

A higher DC bias leads to a larger electric field and dynamic displacement, but also sets a 

higher requirement on the thickness and quality of the insulating layer (thermally grown 

oxide). On the other hand, since the whole plate is used as the top electrode, the plate beyond 

the cavity areas should be isolated or minimized in order to reduce the parasitic capacitance as 

well as the chance of dielectric breakdown. In this sense, the presented design can be further 



 72  

 

improved.  

5.3.4 Transient Response  

To verify the transient model presented in Section 5.2.3, the CMUT was biased at 200 V and 

actuated by a 20-Vpp 20-cycle burst input at the device’s resonance frequencies (analytical: 

93.35 kHz; simulation: 94.29 kHz; experimental: 93.65 kHz). The transient responses during 

and after the excitation signal are shown in Fig. 5.3.4. The analytical maximum transient 

displacement reaches 1.68 μm at the end of the burst excitation, and then attenuates to -3-dB 

after 10 cycles. In comparison, the simulated and measured vibration attenuates a little bit 

faster. One possible explanation is that the reactance impedance was ignored in the analytical 

model. Moreover, the in-plane energy coupled into the support substrates [77] was not 

considered, which can also explain why the measured attenuation was faster than the 

simulation results. 

 

Figure. 5.3.4 Transient responses of the CMUT biased at 200-V and actuated by a 20-cycle 

20-Vpp AC excitation signal. 

Since the FEA model uses the results of the previous time step as the initial conditions to 

calculate the next time step, the time step, absolute tolerance, and relative tolerance must be 

set as small as possible to minimize the error accumulation and avoid non-convergence issues. 

As a result, about 7 hours were spent calculating the presented example using a personal 
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computer (Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz; Random-access memory 

(RAM): 16 GB). In comparison, the analytical model, implemented using a customized 

program in MATLAB (The MathWorks, Inc), only took a few seconds to run. In this sense, 

the analytical model is more efficient in the design stage.  
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Chapter 6 Optimization and Comparison of 

Circular and Annular CMUT Cells 

In the previous chapters, air-coupled annular-cell CMUTs have been studied through FEA, 

analytical, and experimental methods and demonstrated with a promising transmit sensitivity. 

In this chapter, three optimization design schemes are presented to maximize the transmit 

sensitivity and make a reasonable comparison between the circular and annular cells. In these 

schemes, the cavity depth is optimized based on the principle that the maximum plate 

displacement is equal to the cavity depth. In other words, the optimal design allows the plate 

to swing from the initial static position to the bottom of the vacuum cavity. Based on the 

lumped element modes, an optimization flow chart is constructed to implement the three 

schemes analytically. Circular and annular CMUTs with a common 97-kHz natural resonance 

frequency are fabricated and characterized to verify the efficacy of the optimization principle. 

Using the optimization flow chart, annular and circular cells with frequencies ranging from 

100 to 300 kHz are optimized and compared.  

6.1 Optimization Schemes 

The parameters involved in the three optimization schemes (I, II, and III) are listed in Table. 

6.1.1, where “g” indicates parameters with given values, “opt” denotes parameters to be 

optimized, and “max” and “min” refer to the parameters whose minimum and maximum 

parameter values are to be determined, respectively. In each design, the natural resonance 

frequency, plate thickness, and insulating layer thickness are fixed. This is due to the fact that 

the resonance frequency is determined by the application, and the plate and insulation layer 

thicknesses are most often limited by the availability of silicon-on-insulator (SOI) wafers and 

thermal oxidation cost and qualities, respectively [23][97]. In Scheme I, the cavity depth is 

optimized, such that the maximum surface power density can be achieved at a given DC bias 

and AC excitation voltage. Scheme II optimizes the cavity depth to minimize the requirement 
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on DC bias when the output power density and AC voltage are predefined. Similar to Scheme 

II, Scheme III optimizes the cavity depth in order to minimize the AC driving voltage at a 

given output power density and DC bias. 

Table. 6.1.1 Optimization schemes of air-coupled CMUT cells. 

Parameters 
Schemes 

I II III 

Nat. freq. g g  g 

AC volt. g g  min 

DC volt. g  min g  

Power density max g g  

Plate thickness 

Insulating layer thickness  

g 

g 

g 

g 

g 

g 

Cavity depth opt opt opt 

The schematics of circular and annular cells are illustrated in Figs. 6.1.1 and 6.1.2, 

respectively. For the circular cell, the plate radius and thickness, insulating layer thickness, and 

cavity depth are denoted by 
0x , 

0h , 
0it , and 

00g , respectively. The radial position and 

displacement of the circular plate are defined as x and ( )d x , respectively. The maximum 

displacement under atmospheric pressure 
atmP  and at DC bias 

DCV  is defined as 
_p DCd . The 

maximum dynamic displacement induced by AC excitation voltage (
ACV ) is denoted by 

_ .p ACd  

For the annular cell, a and b denote the inner and outer radii, respectively. The plate thickness, 

thickness of insulating layer, and cavity depth are represented by h, 
it , and 

0g , respectively. 

The displacement at radial position r is defined as ( )u r . The maximum static displacement 

under ATM and at 
DCV  is denoted by 

_p DCu . The maximum dynamic displacement at 
DCV  and 

ACV  is represented by 
_p ACu . 
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Figure. 6.1.1. Cross-section schematic of a circular CMUT cell. 

 

Figure. 6.1.2. Cross-section schematic of an annular CMUT cell. 

The cell plates shown in Figs. 6.1.1 and 6.1.2 are laminate structures and simplified as 

single-layer structures in the previous chapters. In order to improve the accuracy of the 

optimization calculation, the actual laminate structure of the plates will be taken into 

consideration in this chapter. However, since the insulating layer is normally much thinner 

than the silicon layer, its residual stress will be ignored considering its little contribution to the 

plate deformation.  

The cavity depth is optimized based on the principle that the maximum plate displacement 

equals the cavity depth. In other words, a larger or smaller cavity depth will either result in a 

lower electrical coupling efficiency or hinder the plate movement. Therefore, the optimized 

cavity depth of a circular CMUT cell can be described as 

00 _ _ .p DC p ACg d d                                              (6.1.1) 

The optimized cavity depth of an annular cell can be governed by 

0 _ _ .p DC p ACg u u                                                (6.1.2) 
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6.2 Lumped Element Models 

For reading convenience, we will briefly revisit the lumped element models of both air-coupled 

circular and annular cells before introducing the optimization flow chart. Meanwhile, 

modifications are made to the expressions of the plate flexural rigidities to take the laminate 

plate structures into account. 

6.2.1 Circular Cell 

The static displacement of a clamped circular plate under uniform pressure P is expressed as  

4 2
20

2

0 0

( ) (1 ) ,
64

Px x
d x

D x
                                               (6.2.1) 

where 
0D  is the plate flexural rigidity. For the presented laminate structure, 

0D  can be 

calculated based on [98] 
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The maximum displacement at 
0x x  is equal to 

4

0

0

.
64

p

Px
d

D
                                                          (6.2.3) 

The average displacement of a clamped circular plate is defined as 

0

0 0

1 1
2 ( ) ,

3

x

a pd xd x dx d
A

                                            (6.2.4) 

where 2

0 0A x  is the plate area. Therefore the RAMD of a circular plate is 

1
.

3
cRAMD                                                       (6.2.5) 
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The RMS displacement 
rmsd  can be derived to be 

0

2

0 0

1 1
2 ( ) .

5

x

rms pd xd x dx d
A

                                         (6.2.6) 

Therefore, the ratio of RMS-to-maximum displacement (RRMD) is equal to 1/ 5 . The 

relationship between 
rmsd  and 

ad  yields 

3 5
.

5
rms ad d                                                      (6.2.7) 

The natural resonance frequency of a clamped circular plate is equal to [69] 

0
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where 
0  is the average density of the plate.  

The lumped spring constant is defined as 

0 0
01 2

0

192
.

a

A P D
k

d x


                                                   (6.2.9) 

The lumped mass is equal to 

01.84 ,c cm m                                                     (6.2.10) 

where 2

0 0 0 0 0( )c im x h t    is the actual mass of the plate. The effective cavity depth is 

defined as 

 0
0 00 ,i

c

i

t
g g


                                                       (6.2.11) 

where 
i  is the relative permittivity of the insulating layer. Defining the permittivity of vacuum 

as 
0 , the capacitance between the top and bottom electrodes can be derived to be 
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When both DC bias and atmospheric pressure are considered, the static equilibrium 

equation yields 

2
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ce
a DC atm

a

dC
k d V A P
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                                        (6.2.13) 

By Taylor expanding /ce adC dd  at static displacement 
0ad d , we can write Eq (6.2.13) as 
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where 
02k  is the effective spring constant and equal to 
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The collapse voltage 
piV  and its corresponding average displacement can be obtained by 

solving Eq (6.2.15) at 
02 0k  . 

Defining sin( )AC AC acV V t , the amplitude of the acoustic pressure generated at the plate 

surface can be expressed as 

_ _ ,s air rms ac air ac rms acP Z D Z D                                      (6.2.16) 

where 
_rms acD  and 

_rms acD are the amplitudes of RMS dynamic velocity and displacement, 

respectively. 
airZ  denotes the amplitude of air acoustic impedance. The RMS power density at 

the plate surface can be written as 

2
2

_ ,s
ower air rms ac

air

P
P Z D

Z
                                             (6.2.17) 

Considering that the frequency of interest for most air-coupled ultrasonic applications is 

several hundred kHz, and the sizes of air-coupled CMUT cells are typically larger than the 
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wavelength, the acoustic impedance is simplified as plane wave impedance [27][68] 

,air air airZ c                                                     (6.2.18) 

where  and air airc are the air density and sound speed in air, respectively. Defining t as the 

time variable and 
_a acd  as the average dynamic displacement, the dynamic equation can be 

expressed as 
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(6.2.19) 

The steady-state solution of Eq (6.2.19) has the following form 

0sin( ),ac ac acd D t                                             (6.2.20) 
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In Eq (6.2.21), 
acD  represents the amplitude of the average dynamic displacement, 

0 _ dc  is the 

resonance frequency and equal to 
02 / ck m , and 

0 _ dc  stands for the damping coefficient at 

DC bias. The maximum amplitude of dynamic displacement can be derived to be 

1

2
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                                           (6.2.22) 
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Substituting Eq (6.2.22) into Eq (6.2.16), the surface output pressure can be achieved as  
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6.2.2 Annular Cell 

The displacement of a clamped annular plate under P has the form of 
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                                          (6.2.24) 

where D represents the flexural rigidity. Due to the laminate plate structure, it should also be 

calculated based on [98]. From Eq (6.2.24), the maximum static displacement is equal to 
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The average displacement of a clamped annular cell is defined as 
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where A represents the area of the annular plate. From Eq (6.2.26), the RAMD is equal to 8/15. 

Since the RMS displacement is defined as 
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the RRMD of an annular plate yields 8 70 /105 . Based on Eqs (6.2.26) and (6.2.27), the 

relation between 
rmsu  and 

au  obeys 

1.2 .rms au u                                                    (6.2.28) 

Defining the radio of inner to outer radius as /a b  , the natural resonance frequency can be 

expressed as  
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where   is the average density of the annular plate.  

The lumped spring constant and mass are equal to  
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and 

2

4

4

04

720( 102.8 101.8)

478.
,

(11 )
m m

 









                                 (6.2.31)  

respectively. Here, 2 2

0 (1 )( )ib h tm      is the actual mass of the annular plate. The 

effective cavity depth is defined as 
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The capacitance between the top and bottom electrodes can be expressed as 
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The equilibrium equation under ATM and at DC bias is 

2

1

1
0.

2

e
a DC atm

a

dC
k u V AP

du
                                          (6.2.34) 

Assuming the solution of Eq (6.2.34) as 
0au u  and the average dynamic displacement as 

acu

, the dynamic equation can be expressed as follow 
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where 
2k  is the effective spring constant and equal to 

0
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Similar to Eq (6.2.20), the steady-state solution of Eq (6.2.35) also has the form of 

sin( ),ac ac acu U t                                              (6.2.37) 

where 
acU  is the amplitude of average dynamic displacement and can be calculated based on 
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Here, 
2 /dc k m   and 

dc  are the resonance frequency and damping coefficient at DC bias, 

respectively. Based on Eq (6.2.16), the amplitude of output pressure at the plate surface is 

derived to be 
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6.3 Design Optimization Flow chart 

Based on the lumped models, a design optimization flow chart (Fig. 6.3.1), which involves the 

three optimization schemes, is built to facilitate analytical optimization of both circular and 

annular air-coupled CMUT cells. For simplicity, only the parameters and variables of circular 

cells ae listed. The variables and parameters associated with annular cells which are written in 

brackets. 
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According to Fig. 6.3.1, the first step of optimization is to calculate the maximum plate 

displacement  ( )p pd u  under 
atmP  using Eq (6.2.3) (Eq (6.2.25)).  ( )p pd u  is then set as the 

initial cavity depth in the optimization loop starting from Step 2, where 
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00 0( )g g 
 represent the searching step length and termination value, respectively. Step 3 is 

used to define the searching range of the average displacement in the k-th optimization loop of 

cavity depth. The searching step length is denoted by 
_ _ ( ).a step a stepd u  The DC bias ( ),DCV j

which corresponds to the average displacement  ( ) ( ) ,a aj u jd  is calculated based on Eq 

(6.2.13) (Eq (6.2.34)) in Step 4. Step 5 is used to create a DC bias series for all the discrete 

average displacement values in the k-th cavity depth optimization loop. The collapse voltage 

( )piV k  is calculated based on the criterion illustrated in Step 6, which defines that the effective 

spring constant 
02 2 ( )k k  decreases from a positive to a negative value when the cell plate 

collapses. 

The definitions of Schemes I to III are described in the three solid blocks, where 
_DC gV  

represents the given DC bias, 
_AC gV denotes the given AC excitation voltage, and the 

predefined surface power density is defined as 
_ower gP . A searching series of 

ACV  is created 

with 0 V as the initial value, 
_AC stepV  as the step length, and 

ACV 
 as the maximum value. Step 

7(I) is used to locate the index i where 
_( ) .DC DC gV i V  Step 8(I) is used to estimate the absolute 

error of the calculated cavity depth. If the error is within the tolerance 
ge , the optimization loop 

will terminate, else a new optimization loop will start. Based on the criteria illustrated in Step 

8(II), Step 7(II) is used to terminate the k-th optimization loop of cavity depth. The absolute 

error between the given and calculated surface power density is controlled by 
pe . Step 7(III) is 

used to find the index i where 
_( )DC DC gV i V . Step 8(III) is used to terminate the k-th 

optimization loop of cavity depth if the criteria shown in Step 9(III) are not satisfied. 

In this study, the proposed optimization flow chart was implemented using a customized 

program in MATLAB (The MathWorks, Inc). The values of 
0_ 00_,  ,  ,step step gg g e  and 

pe were 

chosen to be 10 nm, 10 nm, 10 nm, and 0.01W/m2, respectively. Even though smaller values 

of these parameters can help increase the accuracy, a longer calculation time will also be 

consumed. 
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6.4 Experimental Verification 

To investigate the effectiveness of the stated optimization principle, circular and annular 

CMUT cells with a common 97-kHz natural resonance frequency were fabricated based on the 

process introduced in Chapter 5 and used to perform transmit tests. The design dimensions are 

summarized in Table. 6.4.1.  

Table. 6.4.1 Design dimensions. 

Radius, circular cell (µm)   911 

Inner radius, annular cell (µm) 1150 

Outer radius, annular cell (µm) 2500 

Plate thickness (µm)     19.2 

Insulating layer thickness (µm)       1.6 

Cavity depth (µm)     11.8 

The CMUT plates, which were provided by SOI wafers, are made of single-crystal silicon 

(simplified as an isotropic material) with orientation of <111> and resistivity of 0.001 Ωcm. 

A layer of silicon dioxide, which serves as the insulating layer, was wet thermally grown on 

the top of the SOI device layer before wafer bonding. The substrate wafer is made of 500-µm 

single-crystal silicon with resistivity of 0.001 Ωcm and orientation of <100>. As both types 

of cells were fabricated in one die, they share the same plate thickness, insulating layer 

thickness, and cavity depth.  

Photographs of the fabricated CMUT cells are shown in Fig. 6.4.1, where the circular- and 

annular-shape shadows indicate the plate deformation due to atmospheric pressure. The 

triangular metal pads located in the corners are the top electrodes. They were directly deposited 

on the conductive silicon plate layer. The highly conductive silicon substrate itself was used 

as the bottom electrode. 
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2 mm(a)

           

1 mm(b)

 

Figure. 6.4.1 Photographs of the fabricated devices: (a) Circular cells. (b) An annular cell.   

A profilometer (Dektak 8 Stylus Profiler, Bruker Corp) was used to measure the static 

displacement of the CMUT plates under atmospheric pressure. The measured and calculated 

results are illustrated in Fig. 6.4.2.  

(a)   

(b)    

Figure. 6.4.2 Static displacement of the CMUT plates under ATM: (a) Circular CMUT cell. 

(b) Annular CMUT cell.  
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We note that for both types of cells, the measured maximum static displacement is slightly 

smaller than the analytical displacement. One possible explanation is that the actual plate 

thickness is smaller than 19.2 µm, which was calculated based on the specified value provided 

by the manufacturer. In Fig. 6.4.2 (b), it can be found that the measured maximum 

displacement of the annular plate is located at the left of the center radius position (1825 µm), 

where the maximum analytical displacement is. This is due to the fact that the established 

annular plate model assumed the deformation to be symmetrical about the center line as 

indicated in Eq (6.2.24). Overall, the measured results match well with the calculated ones. 

To evaluate the dynamic performance of the CMUTs, a DC power source (GPR-30H10D, 

Good Will Instrument Co., Ltd) was used to provide a DC bias, and a signal amplifier (Model 

9400, Tabor Electronics Ltd) was used to amplify the output sinusoidal signal from a function 

generator (4040B, B&K Precision Corp) to drive the CMUTs at different frequencies in 

continuous mode. A laser Doppler vibrometer (OFV-5000, Polytec Inc) was used to measure 

the frequency response of the maximum dynamic displacement to find the resonance frequency 

and its relative maximum dynamic displacement. Fig. 6.4.3 shows the measured and calculated 

minimum AC voltages required for maximizing the dynamic displacement at different DC 

biases. An approximately linear relationship between the DC bias and AC excitation voltage 

can be found. It is also shown that a higher DC bias requires a lower AC excitation voltage to 

maximize the dynamic displacement. The maximum dynamic displacement and resonance 

frequencies corresponding to Fig. 6.4.3 are illustrated in Figs. 6.4.4 and 6.4.5, respectively. 

Fig. 6.4.4 demonstrates that a higher DC bias leads to a smaller maximum dynamic 

displacement. This can be explained by the fact that a higher DC bias results in an increased 

static displacement, which in turn squeezes the active volume in the cavity. In Fig. 6.4.5, the 

spring softening effect, i.e., a higher DC bias leads to a lower resonance frequency, can be 

observed.  

Figs. 6.4.3 to 6.4.5 show that the measured results are overestimated by the calculation. 

This is also possibly due to the underestimated plate thickness which leads to a larger static 

displacement, a lower resonance frequency, a smaller active volume in the cavity, and a higher 

electrical field between electrodes. A higher electric field reduces the requirement of AC 

excitation voltage for a maximum dynamic displacement (Fig. 6.4.3). A smaller active volume 

reduces the maximum dynamic displacement (Fig. 6.4.4). Since the electrostatic force is 
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inversely proportional to the square of the distance between the electrodes, a larger spring 

softening effect can be found at a higher DC bias (Fig. 6.4.5). Nevertheless, the trends of the 

calculated results overall agree with those of the measured results. This validates the 

effectiveness of the optimization principle and accuracy of the lumped models.  

 

Figure. 6.4.3 Optimized AC voltages at different DC biases. 

 

Figure. 6.4.4 Maximum dynamic displacement at different DC biases. 
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Figure. 6.4.5 Resonance frequencies at different DC biases. 

6.5 Comparison of circular and annular cells.  

A comparative study is performed on optimizing both of the annular and circular cells in 

parallel. For simplicity, both types of cells were designed with 20-µm single-crystal silicon 

plates and 1.5-µm wet thermally grown silicon dioxide insulating layer. The radius dimensions 

are listed in Table. 6.5.1.  

Table. 6.5.1 Radius dimensions of the CMUT cells. 

Resonance frequency (kHz)    100   200    300 

Radius, circular cell (µm)   918   649   530 

Inner radius, annular cell (µm)   648 1000 1200 

Outer radius, annular cell (µm) 2000 2000 2000 

6.5.1 Scheme I 

Scheme I is suitable for optimizing CMUT cells when there exists limits on the amplitudes of 

DC bias and AC excitation voltage. These limits may result from the dielectric breakdown 

voltage of the device, difficulties in achieving high-voltage pulsers or integrating them into the 

driving circuits, and certain safety requirements. Based on the optimization flow chart of 

Scheme I, the cavity depth of both circular and annular cells was optimized for the maximum 
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surface RMS power density. To reduce the complexity, the AC voltage was fixed at 40 Vpp, 

and the DC bias was increased from 100 V to 300 V to represent different DC-to-AC ratios. 

The power density of the optimized CMUT cells at different DC biases is shown in Fig. 6.5.1. 

It indicates that both a higher DC bias and a higher resonance frequency will lead to a higher 

power density. This is reasonable because the power density is proportional to the square of 

both frequency and RMS dynamic displacement (Eq (6.2.17)). The power density is 

approximately a linear function of the DC bias at a certain frequency, but has a larger slope at 

a higher frequency. On average, the power density of the annular cells is double that of circular 

cells when the same DC bias and AC excitation voltage are applied. 

 

Figure. 6.5.1 Calculated maximum output power density at the plate surface.  

Table. 6.5.2 lists the resonance frequencies, static and dynamic displacement, pull-in 

voltages, and optimized cavity depth at 100- and 300-V DC bias. It is noted that the frequencies 

at DC biases and collapse voltages of the annular cells are lower than those of the circular cells. 

This means that the optimized annular cells have a greater spring softening effect. It can also 

be found that the smaller static displacement of the annular plates under ATM leads to smaller 

optimized cavity depth. On the other hand, even though both types of cells have similar 

maximum dynamic displacement, the higher RRMD of annular cells enables them to generate 

a higher acoustic power. 
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Table. 6.5.2 Calculated optimization results of circular and annular cells for Scheme I. 

Nat. freq. (kHz) 100          100 200          200 300          300 

DC bias (V) 100 300 100 300 100 300 

Circular cell 

Freq. at DC (kHz)   98.73   96.19 198.64 195.98 298.59 295.94 

Collapse volt. (V) 336.43 604.43 464.46 811.65 566.60 982.86 

Opt. cavity depth (µm)   12.12   14.66     5.66     7.65     4.19     5.91 

Max. static disp. at ATM (µm)     8.37     8.37     2.09     2.09     0.93     0.93 

Max. static disp. at DC (µm)     8.45     8.77     2.13     2.28     0.96     1.04 

Max. dynamic disp. (µm)     3.69     5.91     3.54     5.43     3.24    4.89 

Annular cell 

Freq. at DC (kHz)   98.13   94.26 198.16 194.29 298.18 294.34 

Collapse volt. (V) 283.58 519.75 397.42 700.40 486.20 847.12 

Opt. cavity depth (µm)   10.51   12.92     5.01     6.82     3.71     5.26 

Max. static disp. at ATM (µm)     6.58     6.58     1.66     1.66     0.74     0.74 

Max. static disp. at DC (µm)     6.68     7.04     1.70     1.86     0.77     0.86 

Max. dynamic disp. (µm)     3.90     6.06     3.32     5.03     2.94     4.41 

6.5.2 Scheme II 

In Scheme II, the cavity depth was optimized at a given AC excitation voltage (40 Vpp) such 

that a predefined RMS power density could be achieved by applying the minimum DC bias. 

Table. 6.5.3 summarizes the optimization results of circular and annular cells with different 

natural frequencies and output power density. In Fig. 6.5.2, the minimum DC biases required 

for different power density are shown. Combining Table. 6.5.3 and Fig. 6.5.2, it can be seen 

that the minimum DC biases of annular cells are, on average, half those of the circular cells. It 

is also shown that a higher DC bias leads to a greater spring softening effect. With the increase 

of power density, the required minimum DC bias increases at a larger slope at lower 

frequencies. The collapse voltages of the optimized annular cells are around half those of the 

circular cells.  
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Table. 6.5.3 Calculated optimization results of circular and annular cells for Scheme II. 

Nat. freq. (kHz) 100          100 200          200 300          300 

Power density (kW/m2)     0.8     1.2     2.0     4.0     5.0     7.0 

Circular cell 

Freq. at DC (kHz)   97.3   95.40 198.19 195.38 297.31   295.71 

Collapse volt. (V) 502.48 674.09 541.08 882.6 797.57 1014.86 

Opt. cavity depth (µm)   13.74   15.27     6.13     8.02     5.18       6.03 

Max. static disp. at ATM (µm)     8.37     8.37     2.09     2.09     0.93       0.93 

Max. static disp. at DC (µm)     8.62     8.89     2.16     2.32     0.99       1.05 

Max. dynamic disp. (µm)     5.10     6.36     3.96     5.70     4.17       4.98 

Annular cell 

Freq. at DC (kHz)   98.54   97.49 198.87 197.04 298.20   297.13 

Collapse volt. (V) 254.90 336.71 317.47 503.18 493.32   607.57 

Opt. cavity depth (µm)   10.18   11.09     4.46     5.68     3.74       4.26 

Max. static disp. at ATM (µm)     6.58     6.58     1.66     1.66     0.74       0.74 

Max. static disp. at DC (µm)     6.65     6.73     1.68     1.74     0.77       0.79 

Max. dynamic disp. (µm)     3.52     4.35     2.76     3.94     2.91       3.45 

 

Figure. 6.5.2 Calculated minimum DC biases required for different surface output power 

density. 

Scheme II can be used to optimize CMUT cells when there is an upper limit on the AC 

excitation voltage and minimum requirement on the amplitude of surface power density. Since 
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the minimum DC bias required by an annular cell is half that of a circular cell, an annular cell 

holds a higher sensitivity in transmitting ultrasound and allows a lower breakdown voltage. 

6.5.3 Scheme III 

Scheme III is designed for optimizing the cavity depth to minimize the AC excitation voltage 

required by a predefined RMS power density at a given DC bias. In this section, a lower power 

density was predefined at a lower frequency to make the calculated AC voltages comparable 

at different frequencies. The resonance frequencies at DC bias, static and dynamic average 

displacement, collapse voltages, and optimized cavity depth are summarized in Table. 6.5.4. It 

can be found that the optimized annular cells show a greater spring softening effect, which is 

similar to Scheme I.  

Table. 6.5.4 Calculated optimization results of circular and annular cells for Scheme III. 

Nat. freq. (kHz) 100          100 200          200 300          300 

Power density (kW/m2)     0.8            0.8     2.5            2.5     5.0            5.0 

DC bias (V) 100 300 100 300 100 300 

Circular cells 

Freq. at DC (kHz)   99.34   95.03 199.20 193.86 299.19 294.44 

Collapse volt. (V) 469.36 540.58 616.51 667.46 780.44 844.69 

Opt. cavity depth (µm)   13.43   14.09     6.58     6.87     5.11     5.37 

Max. static disp. at ATM (µm)     8.37     8.37     2.09     2.09     0.93     0.93 

Max. static disp. at DC (µm)     8.42     8.84     2.12     2.34     0.95     1.07 

Max. dynamic disp. (µm)     4.98     5.22     4.41     4.53     4.14     4.23 

Annular cells 

Freq. at DC (kHz)   97.92   85.49 197.84 184.03 298.14 285.81 

Collapse volt. (V) 269.66 375.61 367.13 457.54 480.66 562.66 

Opt. cavity depth (µm)   10.35   11.50     0.81     5.40     3.68     4.06 

Max. static disp. at ATM (µm)     6.58     6.58     1.66     1.66     0.74     0.74 

Max. static disp. at DC (µm)     6.69     7.38     1.71     2.04     0.77     0.95 

Max. dynamic disp. (µm)     3.56     4.07     3.09     3.34     2.91     3.04 

Figure. 6.5.3 illustrates the calculated minimum AC voltages at different predefined power 
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density and DC biases. We note that given the same power density and DC biases, an annular 

cell only needs half the AC voltages of a circular cell. Moreover, for both cell types, with the 

decrease of AC voltage, an increasing higher DC bias is required to maintain the same output 

power density. As a result, a tradeoff has to be made between a lower AC voltage and a much 

higher DC bias. For example, if dielectric breakdown is the main concern, a high AC and low 

DC should be chosen. On the other hand, if the AC power is the concern, a low AC and a 

reasonably high DC can be used. Figure. 6.5.3 can also be utilized to find the minimum DC 

bias for a given AC excitation voltage and power density. Taking the 300-kHz annular cell for 

instance, at 20-V AC excitation voltage, the minimum DC bias for 5-kW/m2 power density 

reads 100 V, which agrees with that of Fig. 6.5.2.  

 

Figure. 6.5.3 Calculated minimum AC voltages required for different surface output power 

density. 
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Chapter 7 Air-coupled CMUT Array based on 

Concentric Annular Cell Geometry  

In the previous three chapters, efforts were focused on the FEA, analytical modeling, 

optimization, and fabrication of a single annular CMUT cell. These fundamental studies 

demonstrated the feasibility of the annular cell design as well as provided important tools for 

analyzing and designing annular-cell CMUTs. Considering that the annular configuration 

allows multiple cells to be arranged in a concentric layout, which promises the highest fill factor 

[28], a concentric annular-cell array is promising for further enhancing the transmit power and 

offering depth focusing. In this chapter, a CMUT array consisting of nine concentric annular 

cells is presented. The lumped element model was adopted to design the cells and predict their 

performance. The CMUT was fabricated based on the wafer bonding technique [46]. A novel 

pillar-free etching process was developed to create the deep large-area cell cavities, and a 

fabrication process modified for enhancing the electroconductivity of the electrical leads in the 

isolation trenches is discussed. Each cell of the fabricated CMUT array was characterized for 

both the static and dynamic performances. The cross-talk and plate-cracking phenomenon of 

the fabricated CMUT were investigated, and relative suggestions are provided for design 

improvement. 

7.1 Design 

The proposed concentric annular-cell CMUT array was designed with a natural resonance 

frequency of 200 kHz, which was chosen as a tradeoff between being high enough to produce 

a reasonably narrow acoustic beam and sufficiently low to avoid excessive attenuation in air. 

The aperture size of the array was designed based on the chosen frequency (200 kHz) and the 

desired natural focal distance (z) using Eq (2.1.5) 
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,
zc

a
f

                                                        (7.1.1) 

where a, f, and c denote the aperture radius, natural resonance frequency, and sound speed in 

air, respectively. Since acoustic focusing is performed within the near field, z should be large 

enough to allow a practical working distance and sufficiently small to avoid an oversized 

aperture. In this thesis, z was chosen as 6 cm, which results in an aperture radius of about 1 

cm. This preliminarily designed aperture size will be later used to determine the number of 

cells contained in the array. 

The top-view and cross-section schematics of the array are illustrated in Fig. 7.1.1. In the 

top view, the black dot at the center indicates the supporting post of Cell 1, the grey annular 

areas represent the active plates, and the blank regions between neighbouring cells stand for 

the isolation trenches. From the cross-section view, the plate is a laminate structure consisting 

of a highly conductive silicon structural layer, an insulating layer made of wet thermal silicon 

dioxide (SiO2), and a passivation layer made of plasma enhanced chemical vapor deposition 

(PECVD) SiO2. A layer of wet thermal SiO2 is designed in the post areas of the bottom wafer 

to increase the breakdown voltage of the device.  

 

Figure. 7.1.1 Schematics of the concentric annular-cell CMUT array. 
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The key dimensions of the CMUT are the silicon layer thickness t0, insulating layer thicknesses 

ti1 and ti2, thickness of the passivation layer tp, cavity depth g, cell inner radius ai, and cell outer 

radius bi. The widths of the plate supporting area and the isolation trench are defined as ws and 

wt, respectively. The cell-to-cell distance is defined as kerf =wt+2ws. Based on the availability 

of commercial silicon-on-insulator (SOI) wafers, the device layer was chosen to be 20 µm, 

which is thick enough to avoid non-linear effects of large deformation and sufficiently thin to 

deform at a large amplitude for a high output power. The wet thermal SiO2 grown in our facility 

was measured with a dielectric strength of around 300 V/µm. The degraded dielectric strength 

(relative to the reported value of 950 V/µm [99]) is believed to result from two reasons: a 

temporary facility contamination and the large device area which likely contains more pinholes 

and particle contaminations. In this work, the CMUT was designed for a DC bias voltage of 

less than 500 V. Hence, the insulating layer was designed with a thickness of 1.9 µm, of which 

0.5 µm was provided by the bottom wafer, and 1.4 µm was grown on the top wafer. The two 

insulating layers were different in thicknesses because they were grown in separate batches, 

which were shared with other wafers to save cost. Although the residual stress of the thermal 

SiO2 is around 200 MPa, its contribution to the plate deformation is negligible. Taking the 

consumed silicon into consideration, the final thickness of the silicon structural layer can be 

calculated to be 19.35 µm. A passivation layer of 500 nm was chosen to ensure a good isolation 

between the electrical leads and the conductive plates. It was deposited using a mixed 

high/low-frequency system (Oxford PlasmaLab System 100 PECVD, Oxford Instruments plc) 

with a low film stress (-10 MPa to 15 MPa).  

As developed in Chapter 5, the natural resonance frequency of the clamped laminate 

annular plate can be written as 
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where τ is the ratio of ai to bi, and D denotes the flexural rigidity of the plate. The plate mass 

is defined as m0=ρ0t0+ρiti1+ρptp, where ρ0, ρi, and ρp stand for the densities of silicon, thermal 

SiO2, and PECVD SiO2, respectively. For the laminate plate, D can be calculated based on [98] 
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where Ep, E, and Ei are the Young’s Modulus of PECVD SiO2, silicon, and thermal SiO2, 

respectively, and µp, µ, and µi represent the corresponding Poisson’s ratios of the three 

materials. The physical properties of the materials used in the design calculations are listed in 

Table. 7.1.1.  

Table. 7.1.1 Physical properties of the plate materials. 

Material Si Thermal SiO2 PECVD SiO2 

Density (kg/m3) 2330 2200 2300 

Poisson’s ratio       0.27       0.17       0.25 

Young’s Modulus (GPa)   169     70     85 

Relative permittivity N/A       3.9 N/A 

Based on Eq (7.1.2), bi can be derived to be 
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                              (7.1.4) 

Given ω0, t0, and ti1, ai and bi can be determined based on each other. In this study, the cells 

were designed in a sequence of 1 to n with the definition of a1=150 µm, wt=60 µm, and ws=95 

µm. These parameters were chosen to be small in order to achieve a relatively high fill factor. 

However, it should be mentioned that a1 should also be sufficiently large to prevent excessive 

stress concentration at the center of the plate, ws should be large enough to ensure structural 

strength for clamping the plate, and wt should be reasonably large to avoid an overhigh aspect 

ratio of the isolation trenches. Extracting ω0 from Eq (7.1.2) yields 
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where wi= bi–ai is the plate width of Cell i. Equation (7.1.5) indicates that ω0 is a weak function 

of bi and a strong function of wi. Therefore, all the cells in the array should be designed with 

similar plate widths in order to achieve the same natural resonance frequency. According to 

the calculated results (Table. 7.1.2), the outer radius of Cell 9 is closest to the desired aperture 

radius of 1 cm, and hence the array was designed with nine cells. The fill factor is calculated 

to be 81%, which can be further improved by designing a smaller kerf. For instance, decreasing 

kerf from 250 µm to 150 µm will result in a fill factor of 88%. However, choosing kerf should 

also take the fabrication feasibility and structural strength into consideration. 

Table. 7.1.2 Radius dimensions of cells 1 to 9. 

Dimension Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

ai (µm)   150 1341.4 2537   3733.8 4931.4 

bi (µm) 1091.4 2287 3483.8  4681.4 5879.3 

wi (µm)   941.4   945.6   946.8    947.6   947.9 

Dimension Cell 6 Cell 7 Cell 8 Cell 9  

ai (µm) 6129.3 7327.5 8525.9   9724.4  

bi (µm) 7077.5 8275.9 9474.4 10673  

wi (µm)   948.2   948.4   948.5     948.6  

According to Eq (5.2.3), the maximum static displacement of Cell i under atmospheric 

pressure Patm has the form of 
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Based on Eq (7.1.6), since the nine cells have similar plate widths, their static displacements 

are rather consistent. The consistency of the static displacements is of significance because it 

allows the cells to be designed with the same cavity depth, which is more practical from the 

perspective of fabrication.  

For the presented array, a cavity depth of 5.2 µm was designed with a predicted collapse 

voltage of 410 V. Based on the lumped model, the static and dynamic performance of the cells 
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actuated by a 20-Vpp AC voltage at DC biases of 100 and 150 V are calculated and shown in 

Table. 7.1.3, where f0 and fdc represent the natural resonance frequency and frequency at the 

DC bias (Vdc), respectively. The collapse voltage, maximum static displacement at DC, 

maximum dynamic displacement at AC, root-mean-square (rms) dynamic displacement at AC, 

and output power density at the plate surface are denoted by Vc, up_dc, up_ac, urms_ac, and Power, 

respectively.  
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Table. 7.1.3 Calculated static and dynamic performance of Cells 1 to 9. 

Design Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

up (µm)     1.65     1.68     1.69     1.69     1.69 

Vc (V) 425 417 415 413 413 

f0 (kHz) 200.01 200.00 200.05 199.99 200.03 

fdc (kHz), Vdc=100 V 198.41 198.34 198.37 198.30 198.33 

up_dc (µm), Vdc=100 V      1.69     1.72     1.73     1.73     1.74 

up_ac (µm), Vdc=100 V      1.52     1.54     1.54     1.55     1.55 

urms_ac (µm), Vdc=100 V      0.97     0.98     0.98     0.99     0.99 

Power (kW/m2), Vdc=100 V      0.60     0.62     0.62     0.62     0.62 

fdc (kHz), Vdc=150 V 196.26 196.10 196.11 196.02 196.04 

up_dc (µm), Vdc=150 V      1.74     1.77     1.78     1.79     1.79 

up_ac (µm), Vdc=150 V      2.35     2.39     2.39     2.40     2.40 

urms_ac (µm), Vdc=150 V      1.50     1.52     1.52     1.53     1.53 

Power (kW/m2), Vdc=150 V      1.40     1.45     1.45     1.46     1.46 

Design Cell 6 Cell 7 Cell 8 Cell 9  

up (µm)     1.70     1.70     1.70     1.70  

Vc (V) 412 412 412 411  

f0 (kHz) 200.01 200.00 200.02 200.02  

fdc (kHz), Vdc=100 V 198.30 198.29 198.31 198.31  

up_dc (µm), Vdc=100 V      1.74     1.74     1.74     1.74  

up_ac (µm), Vdc=100 V      1.55     1.55     1.55     1.55  

urms_ac (µm), Vdc=100 V      0.99     0.99     0.99     0.99  

Power (kW/m2), Vdc=100 V      0.62     0.62     0.62     0.62  

fdc (kHz), Vdc=150 V 196.01 196.00 196.01 196.00  

up_dc (µm), Vdc=150 V      1.79     1.80     1.80     1.80  

up_ac (µm), Vdc=150 V      2.41     2.41     2.41     2.41  

urms_ac (µm), Vdc=150 V      1.54     1.54     1.54     1.54  

Power (kW/m2), Vdc=150 V      1.47     1.47     1.47     1.47  

The average maximum static displacement under Patm was predicted to be 1.69 µm. The 

average resonance frequencies at 100 and 150-V DC biases were calculated to be 198.33 and 
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196.06 kHz, respectively. Therefore, the frequency shift, which results from the spring-

softening effect, is about 2 kHz. The frequency spread among the nine cells at 100 and 150-V 

DC biases are 0.12 and 0.26 kHz, respectively. The inconsistency of the biased resonance 

frequencies can be reduced by designing the cells based on a predefined biased resonance 

frequency instead of the natural resonance frequency. The surface power densities were 

calculated based on the rms dynamic displacements to be 0.62 and 1.45 KW/m2 at DC biases 

of 100 and 150 V, respectively. Generating a higher power requires a larger cavity depth and 

a higher DC bias and AC excitation voltage. The thickness and quality of the insulating layer 

determine the maximum voltage that the CMUT can stand before breakdown. On the other 

hand, a larger plate displacement may lead to non-linear elasticity [86][80]. To avoid the non-

linear effects as well as increase the output power, the CMUT can be designed with a thicker 

plate, thicker insulating layer, and larger cavity depth. 

7.2 Fabrication 

A photograph of the fabricated CMUT array is shown in Fig. 7.2.1. Each cell in the array has 

two sets of top electrode leads and bonding pads. The bottom electrodes are located at the 

corners of the transducer. 

 

Figure. 7.2.1 A photograph of the fabricated CMUT array.  

The fabrication process (Fig. 7.2.2) in this chapter was also developed based on the wafer 

bonding technique. It started with an SOI wafer as the top wafer and a silicon substrate as the 
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bottom wafer. The SOI device layer, which serves as the CMUT plate, is made of 20-µm 

single-crystal silicon with orientation of <1 1 1> and a resistivity of 0.001 Ω·cm. The silicon 

substrate is 500 µm thick with a resistivity of 0.005 Ω·cm and orientation of <1 0 0>. At first, 

the top and bottom wafers were wet thermally grown with 1.4 and 0.5-µm SiO2, respectively. 

Next, the bottom wafer was patterned with cavities, which were then etched into the silicon 

substrate using deep reactive ion etching (DRIE). Direct wafer bonding was performed in step 

3. First, both wafers were cleaned with RCA-1 solution at 80 ˚C for 10 mins to achieve a 

contamination-free and hydrophilic surface. Then they were treated with oxygen plasma for 

10 min to enhance the surface activity. The wafers were brought into contact with a 2500-kN 

compressive force right after the plasma treatment (AWB-04 aligner wafer bonder, Applied 

Microengineering Ltd). The direct-bonded pair was then annealed at 1100 ˚C for 2 hours to 

achieve a permanent covalent bonding. In step 4, a layer of polydimethylsiloxane (PDMS) 

(Sylgard 184, Dow Corning Inc) was cast on the bottom wafer to protect it from being attacked 

in the subsequent step. In step 5, buffered oxide etch (BOE) was used to expose the SOI 

handling silicon, which was subsequently etched away using 25% tetramethylammonium 

hydroxide (TMAH) solution at 80 ˚C. The wafer was then dipped into BOE again to remove 

the buried SiO2 (BOX) layer to expose the silicon device layer. Finally, the PDMS film was 

peeled off with a sharp blade. In step 6, the isolation trenches and bottom electrode windows 

were etched out using inductively coupled plasma (ICP). In the next step, PECVD SiO2 was 

deposited as the passivation layer. The top and bottom electrode areas were exposed using 

reactive ion etching (RIE) in step 8. In the final step, 200-nm aluminum electrodes were 

deposited using sputtering and patterned through the lift-off process. It should be mentioned 

that a thick photoresist (AZ4620, Electronic Materials plc) was used in steps 8 and 9, because 

the isolation trenches are 20 um deep and could not be entirely covered by the thin photoresist 

such as AZ3312 (Electronic Materials plc) using the spin coating method.  
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Figure. 7.2.2 Fabrication process of the CMUT array. 

In developing the fabrication process, two significant challenges were encountered: etching 

the large-area cell cavities without silicon pillars and depositing the electrode leads with no 

virtual connections in the isolation trenches. 
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7.2.1 Fabrication of Pillar-free Cavities 

Silicon pillars were created in the DRIE process, where the photoresist residue or particle 

contaminations acted as micro masks. Figure 7.2.3 shows a scanning electron microscope 

(SEM) image of a silicon pillar, which leads to a protrusion the plate. It is noted that the silicon 

pillar has a gradient sidewall on the right side. This was possibly due to the unevenness of the 

photoresist residue, the right part of which was completely consumed before the DRIE was 

finished. Silicon pillars in the cavities are detrimental to the CMUT performance as they 

obstruct the plate displacement and may cause plate cracking due to their sharp ends. In the 

earlier fabrication runs, the positive photoresist was used to pattern the cavities. Due to 

unavoidable contaminations, such as dust and photoresist residue on the transparent regions of 

the photomask, it was almost impossible to eliminate the silicon pillars. The same issue was 

also reported in [80], where the researchers managed to improve the photolithography quality 

by performing a second exposure after rotating the photomask by 180˚. However, this approach 

requires the photomask to be redesigned and the two alignments to be perfectly matched. 

Moreover, a second exposure still cannot guarantee pillar-free cavities because the particles 

introduced in the photoresist spin coating and the photoresist bombarded off the wafer during 

DRIE can also induce silicon pillars. Since negative photoresist could define the cavities with 

the photomask opaque regions, which were robust to contamination, the author redesigned the 

mask and turned to using negative photoresist (AZ nLOF 2035, AZ Electronic Materials plc). 

Taking two random runs as an example, the number of particles in the cavity areas across the 

whole wafer after photolithography was found to reduce from 21 (positive photoresist) to 8 

(negative photoresist). The remaining particles might be the dust introduced in the spin coating 

or the photoresist residue transferred from the mask. After the DRIE process, the number of 

silicon pillars present in the cavity areas was found to be 14. The additional 6 pillars are 

believed to result from the contaminations on the DRIE chamber wall or the photoresist 

particles bombarded off the sample. Even though the chamber can be cleaned and 

preconditioned, eliminating the photoresist particles is challenging because photoresist 

presents as the etching mask. As a result, the photolithography process was modified to using 

a metal mask. 
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Figure 7.2.3 A silicon pillar found in the cavity. 

The metal mask-based pillar-free large-area cavity fabrication process is illustrated in Fig. 

7.2.4, where the particle contaminations are represented by the protrusions in the cavity. 

Firstly, a layer of 500-nm chromium was deposited on the bottom wafer through electron-beam 

evaporating. Secondly, the chromium layer was patterned with cavities using negative 

photoresist. In step 2-3, the exposed chromium was removed through wet etch leaving the 

particles in the cavity. Steps 2-4 and 2-5 were used to over etch the chromium underneath the 

particles such that the particles could be released. In step 2-6, the SiO2 in the cavity areas was 

removed by BOE, and the photoresist was stripped off. In the final step, DRIE was used to etch 

the cavities with the chromium mask, which was removed afterwards. It should be mentioned 

that steps 2-4 and 2-5 can also cause the chromium at the cavity boundaries to be over etched. 

Nevertheless, since the width of the over-etched chromium is rather small compared to the 

width of the cavity, its impact on the CMUT performance is very small. On the other hand, if 

the chromium layer is not used, it would be challenging to achieve a pillar-free cavity by over 

etching the SiO2. This is because the etching rate of SiO2 in BOE is very slow, and the 

photoresist can be damaged after a period of time. 
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Figure 7.2.4 Metal mask-based pillar-free large-area cavity etching process. 

7.2.2 ICP Etching of Isolation Trenches 

Another fabrication challenge is depositing the electrode leads without virtual connections in 

the isolation trenches. In the early runs of this project, DRIE was used to create the isolation 

trenches, and 200-nm aluminum electrode leads were deposited through sputtering. The 

resistance between the two top electrode bonding pads of Cell 1 was measured to be around 

700 Ω, which became infinitely high after the device was loaded with a DC bias and AC 

voltage. To identify the problem, we took SEM pictures of the trenches before and after loading 

the CMUTs. As shown in Fig. 7.2.5, virtual connections, which are indicated by the burning 
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marks at the foot of the trench wall, can be found. The virtual connections can be attributed to 

two reasons: the steep trench walls and the notching effect caused by DRIE when SiO2 is used 

as the etching stop layer [100].To overcome the virtual connection problem, we modified the 

trench etching process by using an ICP etching. The ICP recipe was developed on a RIE etcher 

(Phantom II Reactive-ion Etching system, Trion technology, FL), in Giga-to-Nanoelectronics 

Centre, University of Waterloo, as Table 7.2.1: 

Table. 7.2.1 ICP etching recipe 

Gas Sulfur tetrafluoride (SF6) / Tetrafluoromethane (CF4) 

Flow rate (SCCM) 50/100 

Pressure (mTorr) 50 

Power (W) 250 

Etching rate (µm/min) 1.35 ~ 1.38 

SEM images of the cross sections of the trenches fabricated through DRIE and the developed 

ICP etching are illustrated in Fig. 7.2.6. It shows that the slant angle of the trench wall was 

increased from 90º to 135º. As a result, better step coverage of the electrode leads was achieved 

and the resistance between the two bonding pads of Cell 1 was eventually measured to be less 

than 50 Ω. 

 

Figure. 7.2.5 SEM images of an electrode lead in the DRIE isolation trench.  

Before electric load

After electric load

Burnt metal

Burnt metal
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(a) 

 

(b) 

Figure. 7.2.6 SEM images of the isolation trenches fabricated by: (a) DRIE. (b) ICP.  

7.3 Characterization and Discussion 

7.3.1 Static Displacement  

The plate static displacements along the radial direction were first characterized using a 

profilometer (Dektak 8 Stylus Profiler, Bruker Corp) (Fig. 7.3.1).  As predicted in Section 7.1, 

the static displacements are rather consistent among the cells. The average maximum 

displacement was measured to be 1.72 µm, which is 0.3 µm larger than the predicted value. 

The isolation trench depth, which is also equal to the plate thickness, was measured to be 19.21 

µm. The fact that the measured plate thickness is 0.14 µm smaller than the design value can 

partially explain the underestimation of the static displacement. Based on Fig. 7.3.1, the rms 

static displacement and the ratio of rms-to-maximum displacement (RRMD) can be calculated 

to be 1.10 µm and 0.64, which agree well with the results obtained in Chapters 4 and 5. 
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Figure. 7.3.1 Measured plate static displacements of Cells 1 to 9. 

7.3.2 Frequency response 

The dynamic performance of the fabricated CMUT array was characterized using an LDV 

(OFV-5000, Polytec Inc). A DC power source (GPR-30H10D, Good Will Instrument Co., Ltd) 

was used to individually bias the CMUT cells at 100 V and 150 V, and a function generator 

(4040B, B&K Precision Corp) was used to actuate the biased CMUT cells with a 20-Vpp 

continuous-wave (CW) sinusoidal signal. The AC signal was monitored by an oscilloscope 

(DSO-X 3034A, Agilent Technologies Inc). The frequency response of the maximum dynamic 

displacement of each cell was measured at a sampling step of 200 Hz and shown in Fig. 7.3.2. 

The resonance frequencies at DC biases and the maximum dynamic displacements were 

extracted from Fig. 7.3.2 and summarized in Table. 7.3.1. Combining Tables. 7.3.1 and 7.1.3, 

it can be found that the measured resonance frequencies at DC biases of 100 and 150 V are 

lower than the predicted values by around 2 and 3 kHz, respectively. The measured maximum 

dynamic displacements are smaller than the predicted ones by approximately 20%. On one 

hand, the overestimated biased resonance frequency is a result of the overestimated plate 

thickness and the over-etched cavity widths. On the other hand, the fact that the material and 

structural damping was ignored in the design calculations may also lead to a decreased 

resonance frequency and dynamic displacement. Based on the measurement results, the 

average surface output power densities of the CMUT was calculated to be 0.40 and 0.96 kW/m2 
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at DC biases of 100 and 150-V, respectively.  

 

Figure. 7.3.2 Frequency responses at 20-Vpp AC and DC biases of 100 and 150 V. 

Table. 7.3.1 Measured resonance frequencies, maximum dynamic displacements, and 

calculated surface power densities of Cells 1-9. 

Cell 
Vdc=100 V 

 
Vdc=150 V 

fdc (kHz) up_ac (µm) Power (kW/m2) fdc (kHz) up_ac (µm) Power (kW/m2) 

1 196.0 1.42 0.51  193.1 2.10 1.08 

2 196.5 1.53 0.42  193.4 2.16 1.15 

3 196.0 1.21 0.37  193.0 1.91 0.90 

4 196.2 1.10 0.31  193.2 1.84 0.83 

5 195.9 1.40 0.50  192.8 2.07 1.05 

6 195.8 1.15 0.33  192.8 1.82 0.81 

7 195.9 1.22 0.38  193.0 1.92 0.90 

8 195.9 1.23 0.38  192.9 1.96 0.94 

9 196.3 1.24 0.39  193.3 1.97 0.96 

7.3.3 Cross-talk 

A multi-point scan of each activated cell and its neighbouring cells was performed to evaluate 

the cross-talk between neighbouring cells (Fig. 7.3.3). The scan was conducted at 100-V DC 
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bias and 20-Vpp AC voltage at a frequency of 196.1 kHz. The particular AC frequency was 

chosen because it was the average resonance frequency, where the nine cells responded with 

relatively consistent amplitudes. Since the maximum scan area of the laser is 3 × 3 mm, only 

a portion of the aperture was covered. Figure. 7.3.3 reveals that significant cross-talk existed 

on Cell 1 when Cell 2 was activated. One explanation is that Cell 1 has a resonance frequency 

close to 196.1 kHz and therefore responded with a high amplitude. On the other hand, the 

cross-talk on Cell 2 was much smaller when Cell 1 was activated. This is possibly due to the 

acoustic interference effect that the vibration of Cell 2 coupled into the support posts, 

propagated through the substrate, and focused at the center area. The maximum cross-talk 

displacement of Cell 1 was measured to be 0.6 µm, -13 dB of the vibration amplitude of Cell 

2. Since acoustic coupling in air is generally weak due to the low air impedance, the observed 

cross-talk is believed to mainly result from the acoustic coupling in the substrate. Therefore, 

the cross-talk can be reduced by increasing the widths of the isolation trenches and the 

supporting posts of the cells.  

 

Figure 7.3.3 Multi-point scan of each activated cell and its neighbouring cells. 

Figure. 7.3.3 also indicates non-uniformity of plate vibration, which is more significant on 

the cells with larger radii. This can be explained by the fact that the variations of plate 

thicknesses and cavity depths are more significant across a larger area. The cavity depths were 

characterized with a variation of 1.7% across the whole device area (2 × 2 cm), and the plate 

thickness has a variation of 2.5% across the 4-inch wafer area according to the SOI 
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specification. However, since a burst signal, which consists of a single frequency component, 

is normally used to actuate an air-coupled CMUT, the plates will still vibrate at the fundamental 

model. This was confirmed by the fact that no node was found on the entire plates during the 

LDV measurement. To improve the vibration uniformity, an SOI wafer with a higher device 

layer uniformity can be used as the top wafer. To decrease the variation of the cavity depths, 

an SOI wafer can be employed as the bottom wafer, such that the BOX layer can be used as 

the stopping layer for the cavity etching, and the cavity depth can be strictly controlled by the 

thickness of the device layer. Another advantage of using an SOI wafer as the bottom wafer is 

that it can provide a very high breakdown voltage [81][101].  

7.3.4 Plate Cracking  

A problem of plate cracking (Fig. 7.3.4) was encountered when biasing the CMUT at 150 V 

and increasing the AC excitation voltage from 20 to 32 Vpp using a signal amplifier (Model 

9400, Tabor Electronics Ltd). According to the LDV measurement, the maximum plate 

displacement reached the maximum value of 3.51 µm when the AC excitation voltage was 

increased to 30 Vpp. The plate cracked as we further increased the AC voltage to over 32 Vpp. 

This means that the vibrating plate made contact with the cavity bottom when the cracking 

happened. The strike between the plate and cavity is believed to be the main reason for the 

cracking. However, there are few literatures on the failure of CMUT plates, the mechanism of 

the plate cracking requires further investigations. Nevertheless, since an annular CMUT plate 

suffers a higher stress concentration at the boundaries due to its smaller circumference-to-area 

ratio and larger RAMD compared with a circular plate, a thicker plate can be used to increase 

the failure strength at the plate boundaries so as to prevent the plate from cracking. 
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Figure. 7.3.4 Optical images of the cracked plates.  
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Chapter 8 Summary and Future Work 

8.1 Summary 

In an attempt to improve the transmit efficiency of current air-coupled CMUTs, a novel CMUT 

cell design based on annular geometry was proposed in Chapter 3. The simulated results for 

the annular cell show a 58% ~ 76% RAMD improvement relative to a conventional circular 

one. Due to the RAMD improvement, the annular CMUT’s the transmit sensitivity, in Pa/V, 

and the output power intensity, in 2W/m , are simulated to be 48.4% and 127.3% higher than 

that of a circular one. 94.5-kHz single-cell annular CMUTs were fabricated using the wafer 

bonding technique. Since the design has a millimeter-level cavity dimension, a high-quality 

lithography process is required to avoid photoresist residual in the cavity area. Otherwise, 

silicon pillars will form during the following DRIE cavity etching step. In the end, a negative 

photoresist was used to pattern the cavity because even if the mask had contaminations in the 

cavity area (opaque on the mask), the photoresist under the area would not be affected. In 

addition, achieving a uniform electric field between the electrodes requires a smooth cavity 

bottom surface and a high cavity aspect ratio. For this purpose, DRIE with a slow etching rate 

and short etch/deposit cycle was used.  

A RMS output pressure of 338.27-Pa was calculated at the CMUT surface based on the 

measured dynamic displacement via a vibrometer at 170-V DC bias and 20-Vpp AC excitation. 

Considering that the CMUT is only biased at 34% of the pull-in voltage (498 V), the output 

pressure is promising. Currently, the DC bias is limited at 170 V due to a relatively low 

breakdown voltage of the insulating layer. This is largely due to a temporary contamination 

problem associated with the oxide furnace in the cleanroom. A thicker and better-quality 

insulating layer can address this issue and increase the output pressure. For example, if the DC 

bias is increased from 34% to 75% of the pull-in voltage, the rms output pressure is simulated 

to be 878.84 Pa which leads to a 160% improvement.  
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The experiment results agreed with the simulation results in the maximum dynamic 

displacement while the center frequency and the -3-dB FBW are underestimated in the 

simulation. Perhaps the mismatch can be attributed to the support loss which was ignored in 

the finite element model. When the plate vibrates, a portion of the in-plane energy is coupled 

into the support substrate at the clamped edges. Since an annular plate has two separate 

clamped edges, the support loss will be more significant than that of a circular plate.  

In some cases, the efficacy of an ultrasonic transducer is strictly measured by the transmit 

efficiency of the transducer relative to the aperture size. While the efficiency may be improved 

for a given vibrating plate area, a single annular cell does indeed have a larger overall aperture 

(active plate area). In other words, the outer radius of an annular cell may still be larger than 

that of a circular cell. Nonetheless, the annular shape allows cells of different sizes to be 

patterned into a concentric array. Since each annular cell is continuous in the circumferential 

direction, the fill factor of the layout is larger compared to that of an annular layout made of 

circular cells. In another embodiment, the annular cell design would fit well with devices that 

require a hollow center.  

In Chapter 5, an analytical model was developed to facilitate a better understanding as well 

as provide a reliable design technique of the air-coupled annular CMUTs. Explicit expressions 

of the resonance frequency, modal vector, and static displacement of a clamped annular plate 

under uniform pressure were developed based on the plate theory and curve fitting method. 

Using these expressions, a lumped element model based on the mass-spring-damper system 

was proposed for analyzing annular-cell air-coupled CMUTs. The proposed lumped model 

was verified by both simulation and experiments on a fabricated device. The fabricated device 

shared the same fabrication processes with that in Chapter 4 but with a full set of masks. The 

verification results of the static displacement at atmospheric pressure and DC bias, pull-in 

voltage, frequency and transient response demonstrate that the analytical model is able to 

provide comparable accuracy of a FEA model and will save significant computation time.  

In chapter 6, three optimization schemes are proposed for designing air-coupled CMUT 

cells based on the principle that the maximum plate displacement is equal to the cavity depth, 

Scheme I assumes fixed DC bias and AC excitation voltage, at which the cavity depth is 

optimized to maximize the output RMS power density at the plate surface. Given the power 
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density, Schemes II and III optimize the cavity depth to minimize the requirements on DC bias 

and AC excitation voltage, respectively. A design optimization flow chart was developed based 

on the lumped models to facilitate analytical optimization. Using the wafer bonding technique, 

circular and annular CMUT cells of 97 kHz were fabricated to verify the optimization 

principle. The measured results agree well with the calculated ones in both static and dynamic 

aspects.  

Based on the optimization flow chart, the circular and annular cells with natural frequencies 

between 100 and 300 kHz were analytically optimized. The calculated results of Scheme I 

demonstrate that an annular cell can generate double the power density of a circular cell at the 

plate surface. According to the results of Schemes II and III, an annular cell only requires half 

the DC bias and AC excitation voltage of a circular cell to generate the same power density. 

Considering the improved transmit efficiency of annular cells, we are exploring concentric 

annular arrays, where individually-addressed annular cells are arranged in a concentric layout, 

to generate high-intensity focused ultrasound along the depth direction.  

In Chapter 7, considering that the annular configuration allows multiple cells to be arranged 

in a concentric layout, which promises the highest fill factor [19], a concentric annular-cell 

array is proposed to further enhance the transmit power and offer depth focusing. The proposed 

array consists of nine cells, which are separated by isolation trenches. The lumped element 

model demonstrated in Chapter 5 was adopted to design the cells and predict their performance. 

The CMUT was fabricated based on the wafer bonding technique [21]. A novel pillar-free 

etching process was developed to create the deep large-area cell cavities. A fabrication process 

modified for enhancing the electroconductivity of the electrical leads in the isolation trenches 

is described. The fabricated CMUT was characterized for both the static and dynamic 

performance. The measured static displacements and frequency responses of the nine cells 

showed good consistency and agreed well with the predicted values. The maximum amplitude 

of the cross-talk vibration was found at the center cell and measured to be 0.6 µm. A wider 

isolation trench can be designed to reduce the cross-talk. The plate-cracking phenomenon was 

studied and attributed to the strike between the plate and cavity. We suggested that a thicker 

plate be adopted to increase the failure strength in order to prevent the cracking problem. The 

CMUT produced a surface power density of 0.96 kW/m2 at DC bias of 150 V and AC 

excitation voltage of 20 Vpp. To achieve a higher output power, one can design the CMUT 
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with a deeper cavity, thicker plate, and thicker insulating layer and operate it at a higher electric 

power.  

8.2 Future Work 

In the short term, efforts should be concentrated on three aspects. First, as stated in Chapter 5, 

the support loss is suspected to play a role in the damping mechanism of the annular plate. 

Therefore, characterization of the support loss in a vacuum chamber can help improve the 

accuracy of the analytical model. Secondly, thick silicon plates instead of thin ones were used 

throughout this thesis. This is due to the fact that the deflection of a thick plate is small 

compared to its thickness and can avoid the large deflection effects due to the static 

displacement under the atmospheric pressure. Even though the same principle can be followed 

in the future, a comprehensive analytical model which covers the non-linear phenomenon of a 

large-deformed plate can make the design more flexible. Thirdly, more studies should be 

performed to improve the frequency consistency and plate deformation uniformity among the 

cells and investigating the cross-talk and plate-cracking mechanisms to allow for a better array 

design.  

In the long term, a dedicated beamforming circuit board, which has a high-power 

capability, needs to be constructed. The board should be able to generate an AC bust signal 

with a high amplitude, for example 60 Vpp, to allow the optimal operation of an annular CMUT 

array. In addition, the acoustic field and the transmit waveforms of the annular array need to 

be characterized using a commercial calibrated microphone. Furthermore, even though this 

study is dedicated to developing CMUTs for transmitting ultrasound, Chapter 4 has 

demonstrated that the design can also be used for receiving ultrasound. However, using the 

same design of a transmit CMUT for receiving ultrasound is not efficient. This is because a 

transmit CMUT is intendedly designed with a large cavity depth, which leads to a low 

capacitance and sensitivity. As a result, the receive CMUTs should be separately designed with 

a small cavity depth. However, it should be noted that, to achieve a consistent resonance 

frequency, the radius dimensions of the receive CMUT need to be recalculated since it has a 

higher spring softening level compared to that of the transmit CMUT.  
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