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Abstract

Within industrial construction, piping can constitute up to 50% of the cost of a typical project. It has
been shown that across the activities involved in pipe fabrication, pipe fitting has the highest impact on
the critical path. The pipe fitter is responsible for interpreting the isometric drawing and then
performing the tack welds on piping components so that the assembly complies with the design. Three
main problems in doing this task are identified as: (1) reading and interpreting the isometric drawing is
challenging and error prone for spatially complicated assemblies, (2) in assemblies with tight allowable
tolerance, a number of iterations will take place to fit the pipes with compliance to the design. These
iterations (rework) will remain unrecorded in the production process, and (3) no continuous
measurement tool exists to let the fitter check his/her work in progress against the design information
and acceptance specifications. Addressing these problems could substantially improve pipe fitters’

productivity.

The objective of this research is to develop a software package integrating a threefold solution to
simplify complex tasks involved in pipe fabrication: (1) making design information easier to
understand, with the use of a tablet, 3D imaging device and an application software, (2) providing visual
feedback on the correctness of fabrication between the design intent and the as-built state, and (3)
providing frequent feedback on fabrication using a step-by-step assembly and control framework. The

step-by-step framework will reduce the number of required iterations for the pipe fitter.

A number of challenges were encountered in order to provide a framework to make real time, visual
and frequent feedback. For frequent and visual feedback, a real time 3D data acquisition tool with an
acceptable level of accuracy should be adopted. This is due to the speed of fabrication in an industrial
facility. The second challenge is to find the object of interest in real time, once a point cloud is acquired,
and finally, once the object is found, to optimally remove points that are considered as clutter to improve

the visual feedback for the pipe fitters.

To address the requirement for a reliable and real time acquisition tool, Chapter 3 explores the
capabilities and limitations of low cost range cameras. A commercially available 3D imaging tool was
utilized to measure its performance for real time point cloud acquisition. The device was used to inspect
two pipe spools altered in size. The acquired point clouds were super-imposed on the BIM (Building
Information Model) model of the pipe spools to measure the accuracy of the device. Chapter 4 adapts

and examines a real time and automatic object finding algorithm to measure its performance with

iv



respect to construction challenges. Then, a K-Nearest Neighbor (KNN) algorithm was employed to
classify points as being clutter or corresponding to the object of interest. Chapter 5 investigates the
effect of the threshold value “K” in the K-Nearest Neighbor algorithm and optimizing its value for an

improved visual feedback.

As a result of the work described in this thesis, along with the work of two other master students and a
co-op student, a software package was designed and developed. The software package takes advantage
of the investigated real time point cloud acquisition device. While the object finding algorithm proved
to be effective, a 3-point matching algorithm was used, as it was more intuitive for the users and took
less time. The KNN algorithm was utilized to remove clutter points to provide more accurate visual

feedback more accurate to the workers.
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Chapter 1

1.1 Introduction

Industrial construction is categorized as one of the most expensive construction sectors and thus
requiring rigorous project management tools and techniques. Industrial construction mostly refers to
construction of petrochemical, oil and gas, power plants and manufacturing facilities. According to the
U.S. Census Bureau (U.S Census Bureau News October 2014) $83 billion was spent in 2013 only on
industrial power generation projects. All developed countries consider industrial construction as a
primary sector in their economy. Across activities in industrial construction, piping can constitute up
to 50% of the cost of a typical project. It has also been reported that rework costs between 2% and 20%
of a construction project (CIl 2011). In the context of piping, the 20% rework only accounts for the
recorded rework and does not consider the iterations a pipe fitter or welder encounters in aligning the

pipe with the design.

In order to reduce rework, rigorous and continuous inspections throughout the fabrication process have
to be employed. Conventionally, pipe fitters and welders focus on doing good work. Once fabrication
is completed, the quality control personnel are responsible to measure angular and translation errors to
make sure the fabricated component is within tolerance. Development of a continuous measurement
framework would have the potential to replace the current lagging process. Furthermore, manual direct
contact measuring tools are currently being used, such as tapes and calipers. Utilization of such devices

increases the subjectivity of the measurement as well as being error prone and time consuming.

Three dimensional (3D) imaging tools can potentially facilitate a solution for continuous, accurate,
objective and non-disruptive measurements. These tools are capable of capturing points on surrounding
surfaces. The technology employed to do so will determine the level of accuracy and required time to
use the device. Currently, four main technologies for capturing the 3D information of surrounding
surfaces exist: (1) laser scanning, (2) photogrammetry, (3) structured light sensing, and (4) 3D
reconstruction using cameras with multiple focal length. While Laser scanning and photogrammetry
have been employed for over a decade, structured light sensors and multiple focal length cameras have
only been available since 2012. The main benefits of the recently developed technologies are their

comparatively low cost and high speed of acquisition.



1.2 Problem statement

Of all the skilled trade work that affects an industrial construction’s critical path, pipe fabrication is
often the most complex and the most in need of rework (Goodrum et al. 2016). Design information is
usually conveyed in the format of 2D isometric projections of the designed 3D BIM model, while a
recent trend towards providing 3D drawings alongside the isometric projection is beginning to form.
While improved information delivery reduces the probability of misinterpretation of a drawing, it does
not address the need for a continuous quality control and measurement tool. Hence, engineers need a
tool to keep track of the built status with respect to the design, accurately, objectively and in real time.
Such a tool has the potential to be employed in industrial facilities to avoid errors in assemblies, which

are costly rework scenarios.

Alternatively, recent advancements in 3D imaging, computer vision, computational geometry,
augmented reality, information and workflow have enabled their users to access geometric information
of the physical surrounding with an accuracy up to +1 mm. This improved control and awareness of
3D information can potentially reduce the risk of rework in tasks such as pipe fabrication and improve
workers’ productivity. However, lack of a real time framework has prevented these technologies from

being further employed in this industry.

As discussed earlier, reducing rework and optimizing productivity in a fabrication and modularization
environment could save industrial and commercial constructors up to 20% of the fabrication and
construction labour costs. Furthermore, doing work right the first time and in the best way requires
well trained workers, effective information delivery, feedback, and planning by developing a
combination of innovative 3D imaging and analysis algorithms. These developments could be
integrated with augmented reality tools to enhance effectiveness. This thesis is primarily focused on
pipe fabrication within industrial construction. As a result of the envisioned solution, a pipe fitter will
have a powerful tool that will overlay 3D scans of a work in progress with the 3D design of the work
on his/her tablet computer in a way that will guide his/her next steps, help him/her avoid errors in fit
ups and check tolerances. Implementation and integration of such technology raises important research

guestions.

In this thesis, three main questions towards the deployment of such technology in industrial

construction and pipe spool fabrication in particular, are posed and investigated:

(1) How applicable are the new generation of portable scanners and what are their main benefits and

limitations?



(2) Is utilization of a robust object finding algorithm feasible, given specific challenges existing in

construction sites (i.e. occlusion, clutter and variations in point cloud density)?

(3) How to can the clutter points be removed without removing points belonging to the object of

interest?

1.3 Thesis Structure

In Chapter 2, a thorough background study is presented on standard fabrication procedures in the piping
industry. Then, different 3D imaging technologies and their application software are described. This
thesis explores the applicability of recent portable 3D scanning sensors for real time assessments in
Chapter 3. The next two chapters examine object finding and clutter removal algorithms, which are
required post processing frameworks for these 3D scanners and devices to be employed in the industry.

Chapter 6 is a summary of applications and limitations of the topics investigated in this thesis.



Chapter 2
Fabrication Processes and Technology Background

2.1 Pipe spool fabrication

Pipe spools are components of larger piping networks intended to carry water, steam, fluids, chemical
gases, or fuel for industrial processes. Pipe spools are normally made in fabrication facilities, or
fabrication shops, away from the construction site in a process that involves cutting, bending, forming,
and fitting individual pipe components and finally welding them together. After the final quality check
on the pipe spools they will then be shipped to the site.

Typically, 30% to 50% of the industrial construction work involves pipe spool fabrication. Each piping
component is part of a larger assembly. A module constitutes from a number of assemblies which will
be welded or bolted together at specific coordinates dictated by the design. Tight tolerances are usually
stipulated to ensure that each pipe will fit within an assembly and assemblies meet each other at the
designed location in modules. That is why within industrial construction, pipe fabrication is chosen as

a primary focus of study in this thesis.

The next sections will explore the common practices in piping industry. (And how they will affect
dimensional control frameworks). Figure 2-1 shows an overview of the next few sections.

, Focus of next sections 1

- 1

I — - . .

Engineering | s ‘ Receiving and reviewing of drawings | i
company | § Ordering, purchasm_g and allocating I Shipping pipes to the

issuing = material I client

drawings W — i

(isometrics) I ‘ Fabrication | X

. 1

Figure 2-1. A general overview of the next sections

2.1.1 Receiving and reviewing drawings:

Piping scope is described and transmitted to contractors in the form of isometric drawings. In order to
fabricate piping, contractors engage in a drafting process that manipulates the scope into manageable
information pieces for pipe fabricators and welders and packages these pieces together with useful

fabrication information on what are called cutsheets.



This process allows for:

e densely packaging fabrication-specific information onto a single drawing to facilitate the

fabrication of a single unit of piping,

o fabrication of the largest possible pieces of piping that are able to be efficiently fabricated and

transported,
e introduction of tracking elements (i.e. weld mapping) to enable progress and quality tracking,

e dictating (by choosing the endpoints / boundaries of spools) favorable locations for Yard
Assembly Welds (YAW),

o removal of extraneous pipe assembly information from fabrication drawings that would

otherwise clutter an already busy document, and

e athorough review of piping scope for errors or discrepancies in the design.

2.1.2 Nomenclature

This section of the thesis will explore the common jargons used in the pipe fabrication industry.
I1SO:

“ISO” is short for “isometrics,” ISO’s are not-to-scale symbolic line drawings that use isometric
projection to represent the three-dimensional shape of the pipe on a two-dimensional drawing. Used in
the context of pipe fabrication and assembly, isometric refers to the drawing itself, and not just the
method of representation. 1SOs are used in the module assembly yard or the project site to assemble
spools into larger piping sections. As such, isometrics include information regarding the support of the
piping sections. ISOs contain not only dimensions and orientations of the subject piping, but indicate
the support and bolting materials required for the assembly as well (Figure 2-3). An example of a
support component that is indicated only in the isometric (not in the cutsheets, described in the
following section) is shown in Figure 2-2. The shown component is referred to as “Shoe”. An additional
plate between the spool and the Shoe is welded. The purpose of the added plate is to avoid tearing of

the spool in shear force.



Figure 2-2. Structural component, generally referred to as shoe.

Cutsheet:

The name “cutsheet” refers to cut lengths for individual pieces of straight pipes that are indicated on
this drawing (the cut lengths required to fabricate the spool). Cutsheets are similar to isometrics in that
they, too, are not-to-scale symbolic line drawings that use isometric projection to represent the three-
dimensional shape of the pipe on a two-dimensional drawing. However, cutsheets are geared towards
fabrication of pipe spools and not to assembly of pipe spools into larger pipe sections and their
installation into a module or plant. As such, information required for assembly and installation, such as
bolting and support material and location information are omitted. Instead, information that is useful to
fabrication (typically in the shop), such as cut lengths of pipe required for fabrication, and labelling of
welds (used for tracking and identification) are added. A single isometric may not necessarily
correspond to a single cutsheet. Figure 2-3, Figure 2-4 and Figure 2-5 show examples of different

combinations of isometric(s) and corresponding cutsheet(s).

] AECON INDUSTRIAL WEST

Figure 2-3. Single isometric translated to a single cutsheet. (a) Received isometric from engineering

company. (b) Produced cutsheet for fabrication (refer to Appendix C for lager images)



(b) ()

Figure 2-4. Single isometric translated to multiple cutsheets. (a) Isometric drawing. (b) and (c)

cutsheets derived from a single isometric drawing (refer to Appendix C for lager images).

© ’ @ (e

Figure 2-5. Multiple isometrics translated to multiple cutsheets. (a) and (b) isometric drawings of an
assembly. (c), (d) and (e) cutsheets derived from the corresponding isometrics (refer to Appendix C
for lager images).

Fab Weld:

Abbreviation for “fabrication weld,” a fab weld is a weld performed in the pipe fabrication facility. Not
to be confused with “field Weld,” (abbreviated “FW”’) which is a weld performed at the construction

site.
YAW:

Abbreviation for “Yard Assembly Weld,” a yard assembly weld is a weld performed in the module

assembly yard.



2.1.3 Workflow from design to fabrication and shipping:

Figure 2-6 shows an example a workflow starting from the design and finishing with the fabrication.

The details of this workflow may vary depending on the nature of the project and client’s request.
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Figure 2-6. An example workflow from design to fabrication (larger image found in Appendix C).

Official transmittal is a package including design files that are transferred from the engineering

company to the contractor (Figure 2-8). Once the design files (isometric drawings) are received from

the engineering company (in this case, Fluor) the drafting group has to review the documents. The

reviewing process includes number of tasks; such as: (1) making sure all of the dimensions are legible

and correct, (2) making sure that the grading used for the pipe material is either available in inventory
8



or in the market (some materials may be out of stock for periods of time) and, (3) all of the site specific

conditions have been taken into the account in the design drawings. A Request for Information will be

issue if any of the above conditions are not met. (Figure 2-9). Figure 2-7 also shows an example for the

plan view of a physical workflow in the fabrication facility.

B J—
- Layout “TO BE” >

(?2ral & Equipment Modules

| ——

__CUTTING AREA

FITTER TABLE (6)

WELD STATION (11)

FITTINGS (RAW)

PIPE (RAW)

KANBAN

OO0D

HYDRO 60' X 20'

NOTE: 1. DRAWN TO SCALE
2. ALL DIMENSIONS ARE IN FEET

Figure 2-7. An example of a physical work flow inside of a fabrication facility.
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After taking all the necessary measures to make sure the design drawings are correct, the drafting
group will convert the isometric drawings to the cutsheets and cut-lengths. Two virtually parallel
activities will begin once the cut-lengths and cutsheets are issued: (1) material allocation, and (2)

fabrication.

Material allocation:

Once the cut-lengths are issued the material allocation will take place. The process starts with checking
the inventory to see if the spool with the specified grading is available at the facility’s inventory. If the
spool with the specified grading does not exist, the company has to make a purchase order and purchase
the specified pipe spool. Once the spool arrives at the site it will be picked by the yard’s crane
(Figure 2-10) and will be placed at the outside pipe racks. The pipes will be then pushed on the trollies
entering the fabrication shop (Figure 2-11). The operator at the Vernon machine has access to the cut
lengths and will cut each spool to the designed length and places them in the pipe racks inside the
fabrication facility (Figure 2-12). Each pipe fitter will then pick up the pipe spool which he or she is

assigned for the fitting and fabrication.

Figure 2-10. Delivered material will be picked by onsite crane and placed on the racks.
12



Figure 2-11. Pipes will be pushed on the trolley, entering the shop.

Figure 2-12. Pipe spools will be cut based on the issued cut-length and placed on the wrack for

fabrication.
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Fabrication:

Once the cutsheets are released from the drafting group the general foreman at the facility has to
properly distribute the drawings amongst the fitters and welders. Each welder has a welding ticket
which will specifically dictate what kind of weld he is allowed to perform. Also, each bay in the shop
is designed for a specific pipe spool diameter. The proper distribution corresponds to accurately

assigning jobs to welders and fitters. ( Figure 2-13)

w\ ~ T—
& oRr FAB

Figure 2-13. Distribution of drawings by the general foreman
Normally, fitters are responsible for interpreting the cutsheets and performing the tack welds according
to the drawing(s). Once a tack weld is performed by the fitter, the spool will be shipped to the welding
station for welding. One of the main tasks of fitters is to maximize the number of roll welds. Roll welds
are welds in which the spool is rotating in a machine where the speed of the rotation is controlled by
the welder. Roll welds have a better quality and take an order of magnitude less time to complete.
(Figure 2-14)
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Figure 2-15. Roll welding.
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a | b

Figure 2-16. Tack weld vs. roll weld. (a) The fitter tack welds the flange to stabilize its location,
orientation and angel. (b) A complete roll weld done by the welder.
Once the assembly is complete the quality control personnel will inspect the assembly. The person
responsible for quality control will measure and compare all of the lengths and angles with respect to
the drawings. He/She will also control the material and grading of the spool. Assemblies may or may
not require hydro tests which will be the last test before the shipping. After confirmation of all the tests
the spools will be picked up by the shop’s crane and will be placed on the shipping truck to be
transported to the site. (Figure 2-17). The quality control person responsible has to fill an NCR (Non
Compliance Report) where a deviation from the design has occurred. (Figure 2-18 to 2-21). One of the
main shortcomings of the current measures for detecting rework is the fact that the iteration a fitter
takes to assemble a spool is not being taken into account. This means only mistakes that the fitter

remains unaware of, will be recorded as rework in the format of NCR logs.

s 2

Figure 2-17. Spool ready to be shipped out.
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Figure 2-18. NCR Log Page 1.
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Dave Arthurs  10: Dwayne Faulkner, Bernie Knierim

Dwayne / Bemie -

1172372015 01:26 PM

There is no impact on instrumentation functionality of the flange taps are on north or south side in
orientation provided we have one tap on the upstream (high pressure) side of the orifice plate and one tap
on the downstream (low pressure) side of the orifice plate. Additionally in this instance, the taps should be

below horizontal per standard instaliation in liquid service .

| recommend moving forward with the proposed solution to the NCR to have the tap on spool 60084

located South at 45° down.
Cheers

Dave Arthurs, C.E.T., B.Mus | FLUOR CANADA LTD. | Senior Designer / Field Engineer - Control Systems |
dave.arthurs@fivor.com | 10DC 40,4870 | Phone: +1.(780).640.2853 ext/ S032 | www.fluor.com

Dwayne Faulkner Dave, As discussed prior, plcase see the attach. .,
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From: Dwayne Faulkner/CA/Contr/FluorCorp

To: Dave "
Date: 1172372015 01:14 PM

Subject: 3032-F01-NCR-021

Dave,

As discussed prior, please see the attached NCR for your review of the proposed disposition.

Dwayne Faulkner | FLUOR CANADA LTD. | QA, Mod Yard - NWR Project |

g

Dwayne.Faulkner@fiuorconstructors.com | Cell Phone 780.446-4334  3032-F01-NCR-021.pdf

Figure 2-19. NCR Log Page 2.
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Figure 2-20. NCR Log Page 3.
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Figure 2-22. NCR Log Page 5.

2.2 Data acquisition tools and techniques

Various technologies are used in 3D scanning devices, and each technology has its own limitations,
advantages and cost. This section will explore different methods of scanning and the technologies
associated with each one. The four primary technologies are: (1) photogrammetry, (2) laser scanning,
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(3) structured light, and (4) multiple focal length. The next 4 sub-sections are a detailed overview of

each of these technologies.

2.2.1 Photogrammetry

To get measurements of surface points, the very first technique scientists came up with was
photogrammetry (Burtch 2004), which emerged in the mid-nineteenth century. Photogrammetry is the
science of measuring surface points and recovering coordination of points (ASPRS 2007). Based on
the American Society for Photogrammetry and Remote Sensing (ASPRS) definition, photogrammetry
and remote sensing are the art, science, and technology of obtaining reliable information about objects
and the environment through processes of recording, measuring and interpreting photographic images
and patterns of recorded radiant electromagnetic energy and other phenomena. Two main types of

photogrammetry exists: (1) aerial photogrammetry and (2) close-range or stereo photogrammetry.

1. Aerial Photogrammetry: in this method the camera is vertically towards the ground mounted
onan aircraft (drone) capturing multiple overlapping photos while the aircraft is flying on a certain
path.  Photos are then processed in a stereo-plotter where it lets an operator see two photos at once in
a stereo view. Photos taken with this method are usually used in creation of digital elevation
models and topographical maps.

2. Close-range or stereo photogrammetry: using this type of photogrammetry one is capable of
acquiring point clouds using 2D images taken by a camera with known parameters. In machine
vision and computer science literature, the word photogrammetry and stereo photogrammetry

are used interchangeably. To get an accurate point cloud using this method usually one has to use

a tripod and has to stay close enough to the object of interest. To reconstruct a point cloud of a

certain object, at least two images has to be taken from the object. The common features between
corresponding images are detected and using the relative position of the camera to the images

a point cloud will be reconstructed. Researchers have worked on methods to more accurately and
reliably detect points in the two corresponding frames (Balali et al. 2015).

One of the main advantages of photogrammetry is its lower cost compared to laser scanning. Another

advantage of the photogrammetry is its integration with drones. Currently numerous research focus has

been dedicated to the use of drones utilizing photogrammetry on construction sites. Drones are being
used for quality inspection (Wang et al. 2015), safety inspection (Irizarry et al. 2012), field survey

(Barry and 3D as built modeling (Fathi et al. 2015). Furthermore, in addition to the use of

photogrammetry in drones, another important aspect of photogrammetry is their use in machine vision

and robotic manipulation. Vision based control in robotics (Chaumette and Hutchinson 2006),

intelligent surveillance (Guo et al. 2013) and object detection and mapping using SIFT (Scale Invariant
20



Feature Transform), SURF (Speeded-Up Robust Features) and LIFT (Learning Invariant Feature
Transform) are only a few applications of photogrammetry in the machine vision’s body of knowledge
(Allaire et al. 2008, Knopp et al. 2010 and Huang et al. 2007). However, Photogrammetry can be time
consuming and inaccurate in comparison with the data collected with laser scanners (Tang et al. 2010).
For more accurate photogrammetry high resolution cameras should be utilized and multiple images of
the inspected scene should be captured. Having to do so, the cost will rapidly increase and also the
manipulation of massive data will become challenging. As such, photogrammetry will not be the
primary source of acquiring 3D geometric data in this thesis.

2.2.2 Laser Scanning

The next subject to be discussed in this literature review is laser scanning. The recent developments of
laser scanning technology has made the creation of as-built BIMs increasingly feasible (Tang et al.
2010). In order to have a reliable point cloud with less time than the processes employed within
photogrammetry, the use of laser scanners is continuing to be further developed within construction.
Laser scanners are already widely used, and function as a versatile tool for 3D geometric data
acquisition. With the help of a sensor, a laser scanner measures the distances to points being scanned
at speeds up to thousands of points per second and can achieve an accuracy at the millimeters to
centimeter level (Staiger 2003). Phase shift and time of flight are the two main technologies being used
in this industry.

1. Time of Flight: in this method the distance between an object to the laser scanner is obtained
using the time that it takes for a laser beam from the moment that it has been shot out to the moment
that it comes back. Having this time and the constant for the speed of the laser beam distances of
points in the scene to the scanner will be calculated and recorded. Moreover, to compute [X,Y,Z]
positions of a point, both horizontal and vertical angles have to continually change. This is
accomplished by the scanner moving in a grid of 360 degrees in the horizontal plane and 330
degrees in the vertical plane. Needless to say, it takes time for the scanner’s lens shoot all of this
coordinates in space  which is why the time of flight method has been known to be more time

consuming than phased-base technology.

2. Phase shift: in this method the scanner has a constant beam of energy. By calculating the
phase shift between the outgoing wave and the incoming wave it calculates the distance between a
point and the sensor. In this method, it is possible to obtain points faster in comparison with the
time of flight method, however its range is limited to 80 meters. Studies have also shown that time of

flight scanners can achieve higher accuracies (San José Alonso et al. 2011).
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Figure 1: Comparison of Time of Flight and Phased Based Laser Scanning Technology

2.2.3 Structured-Light

A structured-light 3D scanner is a device for measuring the three-dimensional shape of an object using

projected light patterns (infrared light in Microsoft Kinect and Structure 10) and a camera system

(Furht, Ahson 2008). An infrared (IR) projector and one sensor within a certain distance of the

projector. The projector projects speckle patterns on the objects and the sensor calculates the distance

of a point to itself. In order to use triangulation, two separate images have to be captured (Figure 2-23).

Arbitrary point in the
scene being captured
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Figure 2-23. Triangulation used in structured light sensors

In terms of accuracy, the support group of Structure 10 (one of the commercially available scanners,

which uses structured light technology (Structure 10 2015) claims that the device can achieve an

accuracy of 1% of distance measured. Since the accuracy of structured-light sensors (Figure 2-24) are

significantly less than those of laser scanners (a FARO LS laser scanner can achieve an accuracy of 2
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mm up to distances of 30 m (FARO 2014)), the error involved with 3D geometric data acquisition will

be a focal point of study in the second chapter of this thesis.

Figure 2-24. Speckle pattern used in structured light technology (Structure 10 2015)

2.2.4 Multiple focal length

As discussed earlier, Photogrammetry uses the mathematics of light rays to build up knowledge of the
geometry of the scene. Regardless of the software used for reconstruction, the fundamental parameters
of the camera would help to build up the correct geometric characteristics of the scene and the relative
position of the camera to the scene. One of the key parameters is the focal length of the camera. The
focal length of a lens will determine the magnitude and the angle of the light ray. A long focal length
will have the light rays hit the image sensor at a shallower angles. In contrast to a long focal length, a

short focal length will cover a larger field of view.

With advancements in photography technologies, cameras with multiple lenses and each lens with its
own specific focal length are becoming available. This means instead of capturing one single image
with a large lens, one can capture multiple images and then fuse those images to have one high quality
image. This technology uses mirrors to adjust the camera modules to frame overlapping images over
the field of view. This will allow to gather more light than a traditional camera. By assigning different
exposures to different modules a very high dynamic range is achieved. Using multiple lenses will allow
to capture images in 3D and would also allow to adjust the focal plane and the depth of focal length
(Light 2016, Phtomodeler 2013).

2.3 Application Summary

In summary, as part of the research conducted in this thesis and also two other master students and a
co-op student, an application software was developed. The application software aims to reduce risk of:

(1) miscommunication of design information, (2) excessive fitting iterations, (3) assemblies being out
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of tolerance, and (4) modules not fitting at the designed locations. The developed software takes
advantage of 2-sided 1SOs to improve communication of design information and using 3D imaging and
augmented reality devices to provide frequent feedback on fabrication. The process starts with the
worker scanning the as-built component. Once the scan is acquired, the scanned point cloud has to be
superimposed on the 3D design (model) point cloud. The final step is to check if the assembly is
compliant or not. Figure 2-25 summarizes the designed process and how it influences the research
conducted in this thesis.

Designed Process

Step 1: Step 2: Step 3:Visual
Acquisition Object finding inspection
(Chapter 3) (Chapter 4) (Chapter 5)

Superimpose
el Check
the scan on the
3D design

Scan

the as-built compliance

Figure 2-25. The designed process for the software and its correlation with the contents of this thesis
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Chapter 3

A Preliminary Investigation of the Applicability of Portable Sensors for Fabrication

and Installation Control of Industrial Assemblies

This chapter is based on the following published article in the proceedings of CSCE’s Resilient
Infrastructure 2016, London, Ontario, with the same title. Minor changes are made on some parts of
the article to be more consistent with the body of the thesis. Thus, the content of this chapter is not
exactly the same as the paper.

The contribution of the author in this publication is conducting the experiments, data analysis and
drafting and partially editing the manuscript.

3.1 Introduction

Industrial construction comprises 10% to 20% of construction spending in Canada and U.S (U.S Census
Bureau News October 2014). Typically, 30% to 50% of the industrial construction work involves pipe
spool fabrication. Due to the complexity of pipe fitting, pipe fitters have a high impact on the critical
path (Goodrum et al. 2016). In order to improve productivity and reduce additional cost in industrial
construction, off-site fabrication is beneficial. Moreover, off-site fabrication is normally less expensive,
safer, and more sustainable, and results in higher quality fabrication in comparison to on-site
construction. These advantages result from the controlled conditions, more accurate quality control,
and reduced construction waste possible when working offsite (Haas, Fagerlund 2002). For these
reasons, modularization and industrial fabrication has become a part of growing trend towards off-site
fabrication (Han et al. 2012).

Generally, 54% of total construction defects are due to human factors such as craft worker insufficient
skill, or supervisor error (Opfer 1999). The improved quality control and productivity of modularization
is a potential solution to reduce such defects. However, inevitable defects experienced during modular
construction are costly and time consuming to repair (Akinci et al. 2006a). Additionally, 10% to 20%
extra structural material is typically used to stiffen and strengthen modules for transportation and
handling and loading, nevertheless damage and geometric defects may still occur which leads to
rework. The aforementioned statistics emphasizes the importance of proper and time efficient defect
detection in modular construction. Furthermore, it has been reported that 6% to 12% of construction
cost is because of rework caused by defects detected late (Burati Jr et al. 1992). In addition to the
previous statistics, approximately 15% of construction waste is caused by late detection of defective

components in either the construction or maintenance phase (Yue et al. 2006). In conclusion, these
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statistics indicate the importance of proper, timely and reliable defect detection and the importance of

integrated frameworks that can detect such defects efficiently and timely.

In order to overcome the challenges involved with the detection and prevention of fabrication defects,
various approaches have been taken. 3D imaging has been found an effective tool for capturing the as-
built status of construction components. However, continuous, accurate and cost efficient data
acquisition in off-site fabrication facilities and on construction sites is required to effectively use this
information as part of a quality control process. Additional practical applications of laser-scanning
technology have been introduced, such as automated progress tracking, safety planning, and
realignment planning (Nahangi et al. 2014). Real time processing of the acquired laser scans is a
challenge that still needs to be addressed for all of these applications. This challenge is due to the
preprocessing steps that need to be performed in order to generate reliable 3D point clouds.

Although various frameworks have been developed in order to reduce rework, an improved method for
real-time data acquisition integration is still necessary. This study is conducted to examine the
applicability of recently commercialized sensors in order to address the challenges of real-time data
acquisition. The challenges and opportunities of using such sensors in the off-site fabrication of pipe
spools was investigated. The key objective of this chapter is to use structured-light-based sensors to
identify the challenge and developing an integrated framework for defect detection, in a time-effective

framework.

3.2 Background

A range of diverse applications of 3D imaging in construction have been proposed. Some key
applications in construction using 3D imaging include: progress tracking (Turkan et al. 2012a),
automated inspection and material tracking (Bosché 2010, Memarzadeh et al. 2013, Yang et al. 2010),
safety (Chi and Caldas 2011), motion tracking (Brostow et al. 2008), and structural health monitoring,
such as concrete crack depth assessment (Liu, Cho et al. 2014).

Various methods have been investigated to assess the as-built status of construction projects. Abourizk
(AbouRizk 2010) introduced visualization and simulation for reducing rework and optimizing project
costs. In an effort to reduce cost and improving the required time for accurate data acquisition,
researchers have also investigated using unmanned aerial vehicles (UAV’s) for monitoring the built
environment (Ham et al. 2016). Other researchers have focused on the potential of using static
overlaying between the as-built and as-designed states for project control. This approach requires point
cloud registration between the as-built and as-designed states. For instance, Yue et al. overlaid a design

model of a facility with the as-built point cloud to identify which data points belong to a specific object
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and to detect the deviations between the as-built and as-designed conditions (Yue et al. 2006).
Moreover, 3D imaging has been used to automate continuous quality assessment of fabricated
assemblies with different approaches such as ICP (iterative closest point) for robust point cloud
registration, or skeleton-based registration for discrepancy detection (Nahangi and Haas et al. 2016,
Nahangi and Haas et al. 2014). 3D imaging using laser scanning technology has also been used for the
creation of as-built building information models (BIM) (Tang et al. 2010).

In summary, for reducing the cost and avoiding delays on construction projects, especially in industrial
construction, it is crucial to detect defects in a timely and costly efficient manner. To address this
challenge, different approaches have been studied, such as visualization and 3D imaging. The research
described in this chapter investigates the use of recently commercialized sensors for real-time geometric
data acquisition, and analysis to allow reliable detection and quantification of misalignments. In this
chapter of this thesis, as-built 3D point clouds were obtained using a structured-light-based sensor
(Structure 10).

3.3 Methodology

In this section, the key steps of the proposed method for real-time defect detection are explained.
Figure 2-1 shows the sequence of steps and the flow of information for the proposed method. The
method compares the real-time scanned data for a pipe assembly and registers the 3D point cloud with
the as-designed state integrated in the BIM.
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Figure 3-1. Proposed framework for real-time defect detection in modular assemblies.

The process of real-time defect detection consists of two main steps: (1) scanning the object-of-interest,
and (2) registration of the point cloud acquired with the model for discrepancy detection. The first step
requires scanning the object of interest, transferring the acquired point cloud to a processing machine
and manually finding the object of interest in the acquired scene. Once the appropriate data has been
acquired, automatic registration of the as-built (scanned) point cloud with the as-designed point cloud
begins using a PCA (Principal Component Analysis) algorithm followed by ICP for fine registration.
These registration steps can be performed in real time. Once the two point clouds have been registered,
a discrepancy calculation is performed to visualize whether the component is compliant or not. Each

step is described in the following sections.

3.3.1 Point Cloud Acquisition and Preprocessing

A recently commercialized 3D scanning device was used to obtain the as-built point cloud. As shown
in Figure 2-2, this sensor scans the object of interest within the manually defined boundary box. The
output of the scan is in .obj format which contains coordination of scanned points. After acquiring the
initial scan, the object of interest (pipe spool) has to be manually located in the scene and only then can

be registered to the design point cloud for further processing.
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Due to the presence of materials and construction equipment in the scenes being captured, it is almost
impossible to take a scan without clutter. That is why the next two chapters focus on automation of
finding the object of interest and then removing the clutter points. However for this study, both of these
steps were performed manually. After manually removing the clutter, the point cloud may need to be
resampled for better representation. The process of converting a sparse point cloud to a dense point
cloud is called resampling. Resampling makes it easier to represent the scan point cloud and to visually
compare it with the model. Figure 0-2 illustrates the necessity of resampling in the scanned point cloud
of relatively large objects, whereas the point cloud acquired in smaller pipe spool did not need
resampling. For this purpose, a triangle and the vertices representation of mesh in the STL (stereo
lithography) format are uniformly resampled. This will improve the registration and deviation

guantification.

(b) (c)

Figure 0-2. Preprocessing required for the proposed method. (a) Data acquisition using Structure 10.
(b) as-built point cloud before resampling (sparse point cloud acquired by sensor), and (c) dense point

cloud after resampling.

3.3.2 Point Cloud Registration and Discrepancy Analysis

Once the scan data is acquired and the required preprocessing steps are performed, the point cloud is
imported to the processing section of the framework. The portion of the 3D CAD model (which may
be integrated within the building information model) that corresponds to the scanned object is then

isolated and processed to generate the as-designed point cloud.

The next step is to automatically superimpose the point clouds representing the built and designed
states. Automatic registration allows easier and more reliable quantification and localization of defects.

As mentioned earlier, the registration step presented here consists of two steps:
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(1) Coarse registration using PCA (Principal Component Analysis) to roughly align the two point

clouds. Registration involves with an optimization of error between the two point clouds
representing the built and designed states. The initial state for finding the optimal solution
is critical in the optimization process. Improper initial values may cause getting stuck in local
minima (Nahangi and 2014). The alignment of principal axes is ambiguous in PCA. In
order to address this inadequacy and finding an appropriate initial state that will result in
finding the correct global optimum, a loop was designed to check any possible
combination of principal axes. The algorithm will then extract the orientation with the
minimum error of corresponding points in the coarse registration step. Using this loop,  will
improve the robustness of the registration step. Figure 0-3 illustrates the problem of PCA if all
the combinations of the axes are not checked.

(2) Fine registration using ICP (Iterative Closest Point) (Besl et al. 1992). In this step, the algorithm

finds the best match between the two states being compared. Based on (Salvi et al. 2007), ICP
is sufficiently quick and robust to be used for real-time fabrication.
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Figure 0-3. Illustration of dependency of PCA to the initial position without using the described loop.

(a) Oriented Initial state. (b) Resulted registration. (c) Not oriented initial state. (d) Wrong results

using PCA without the described loop.

Once the point cloud registration has been performed, discrepancies can be detected with 3 methods:

(1) Using the method presented in (Nahangi and Haas2014), makes it possible to calculate translational

and rotational errors between corresponding points in the model and scanned data. This method

makes the use of a robotics analogy and quantifies the incurred deviations using a kinematics chain

and geometric relationship between branches of a pipe spool. However, the accuracy of the sensor

used was insufficient for reliable analysis using this method.



(2) Point to point distance calculation. Each point in the scan will be compared with its closest point in
the model and the distance will be reported.

(3) Approximating the error by the Root Mean Square (RMS) value. In order to measure the
performance of assembly the RMS was used. RMS value is calculated as:

1,
RMS = ;Zdi l G.1)

where, n is the number of corresponding points between the scan and model point cloud, and d is the
Euclidean distance between each pair of points.

In terms of pipe fabrication and tolerances for prefabricated pipe assemblies there are specified codes
identifying general guidelines for pipe fabrication (Pipe Fabrication Institute 2000).

Table 0-1. Linear tolerance along the pipe length [Pipe Fabrication Institution Standard ES-03]

Pipe Size  Under 10"  12"to 24" 24" to 36" Over 36"

Acceptable Increasing by plus or minus 1/16"
+1/8" +3/6" +1/4"

Tolerance for each 12" in diameter over 36"

Table 0-2. Angularity and Rotation Tolerances [Pipe Fabrication Institution Standard ES-03]

Type Acceptable Tolerance

End preparation for Shall not deviate from indicated position by more than 1/32"

weld across the land for inert gas weld joints or 3/32" for other joints
For Bending Tolerance minimum radius and minimum tangent see PFI
Tolerances

standard ES-24

Rotation of flanges From the indicated position measured, 1/16" max

Alignment of Shall not deviate from indicated position measured across any

Flanges and Ends diameter more than 3/64" per foot or 1/32" whichever is greater

Once basic compliance checking is performed, decision regarding the shipment of the pipe spool will be made.
After such basic compliance checking, the pipe spool is ready to be shipped to the construction site. Nevertheless,
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if inspections on a pipe spool reveals a non-compliancy, the pipe spool will be sent back to the shop instantly.
This framework has the potential to improve the time wasted for repairing and realigning defective assemblies on

construction sites.

3.4 Results

The methodology described in the preceding sections was tested using a structured-light sensor to
capture the as-built geometry of two small pipe spools. The Spool I is approximately 40x40x40 cm in
overall orthogonal dimensions, and the Spool Il is 200x50%30 cm. The dissimilarity in the size and
proportions of these two spools was found to affect the results which will be discussed below. (Figure
3-4)

(a) (b)

Figure 3-4. The pipe spools used for experimental studies. (a) Spool I, and (b) Spool II.
In order to identify defective assemblies, a threshold in RMS value is identified. Defective assemblies
are expected to have larger errors in the registration step. A set of experiments on the smaller pipe spool
was performed to calibrate the RMS value based on the compliancy status of a typical assembly. In
these experiments three compliant assemblies, one non-compliant with small rotational deviation, and
three non-compliant were tested. Table 0-3 shows the results for calibrating the RMS value for
identification of compliancy vs. non-compliancy. The RMS in Figure 0-5-(¢), equals 0.0088 m, whereas
the RMS in the intentionally defected assembly is 0.015 m. This value should be calibrated for each

assembly.
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Table 0-3. RMS value for different assemblies and the classification associated for each one in Pipe

Spool I1.
Experiment number Intentional Status RMS (m) Classification

1 Compliant 0.0092 OK

2 Compliant 0.0088 OK

3 Compliant 0.0098 Suspicious

4 Non-Compliant 0.0105 Not-OK
Non-Compliant

6 (Slightly) 0.0096 Suspicious

7 Non-Compliant 0.0129 Not-OK
Non-Compliant

8 (immense error) 0.0242 Not-OK
Non-Compliant

9 (immense error) 0.0150 Not-OK

For Spool 11 in the experiment, a threshold value is set for identifying the compliancy of the spool. This
value is to 0.009 m. The configurations that have an average error more than 0.01 m were then deemed
to be defective, and those below 0.009 m were considered to be compliant. However, the values between
0.01 m and 0.009 m are the ones that the device is not accurate enough to identify. Such configuration
are therefore classified as suspicious.

In Figure 0-5-(d), a non-compliant configuration was tested. The results signify that the assembly is
non-compliant with the model. Using such a framework by craft workers will allow them to detect the
defective assemblies before causing delay to the project schedule. The defective assemblies can then
be realigned or repaired before it leaves the work station, thereby reducing rework and improving
productivity on construction sites. On the other hand, in Figure 0-5-(¢), where the assembly is compliant

with the 3D model, the two point clouds are superimposed perfectly.
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(a) Reghtered (b) Registered

(d) (e)

Figure 0-5. Registration results for Spool Il. (a) Defected as-built model where faces 1 and 2 should
be replaced with each other; (b) 3D CAD model converted to point cloud; (c) compliant as-built
model; (d) Results for registration of models (a) and (b) ); (e) Results for registration of models (a)
and (c)

The as-built scans obtained using the commercial structured light sensor were found to be adequate for
compliance checking of the small pipe spools using the process developed in this research. However,
inaccuracies in the scan data were observed when used with the relatively longer pipe spool. The result
for the longer pipe spool is shown in Figure 0-6, where a significant deviation between the apparent
lengths of the spool was evident in the point cloud registration even though no real error existed. The
maximum length of the pipe spool in Figure 0-5 was 40 cm, and maximum length of the spool in
Figure 0-6 was 200 cm. There are various reasons why the error manifested in Figure 0-6 occurs: (1)
since the employed sensor uses the same technology as Microsoft Kinect (Khoshelham et al. 2012), the
random error of depth measurement increases when the distance to the sensor increases. Consequently,
in a 2 m pipe spool if the 3D data is captured in one frame, there would be substantial error in the point
cloud captured. (2) Trying to capture points from closer distance requires moving while capturing. This

action by itself causes numbers of errors:

e Since pipe spools are relatively featureless objects, the accuracy of data collection may be
compromised.

e Various scanning devices use different sensors such as an accelerometer and/or a gyroscope to
detect relative movements of the scanning device to aid in the reconstruction of the scanned
point cloud. Moving the scanning device along the object length may cause positional errors
due to limitations of these sensors to result in cumulative error in the scanned data.
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e Other factors such as interference of sunlight to the scene has significant impact on the quality

of captured data as it is empowering the sensor's IR (infrared) emitter.

@ v )

Figure 0-6. (a) 3D CAD model transferred to point cloud, (b) Resampled scanned data, (c)
Registration results (d) Error occurred using sensor on a relatively large object (2 m)

3.6 Conclusions and recommendations based on Chapter 3 research

A method was proposed to address the essential need for continuous monitoring of industrial
assemblies. A preliminary investigation was performed to assess the applicability of commercialized
sensors for real-time fabrication control of industrial pipe spools. This study aimed to find a solution to
minimize the time for data acquisition. A framework was developed to reduce the rework caused by
misalignments induced in the fabrication shops. For validating and verifying the performance of the
proposed method, a case study was conducted on two objects altered in size and shape. Promising
results were obtained when applied to a smaller pipe spool, whereas results obtained for a larger pipe
spool contained errors in the scanned point cloud that compromised the compliance analysis. This error
might be due to the loss of key frames in the 3D reconstruction of the scanned object.

The structured light technologies are experiencing advancements every day. This means that even
though the current state of the particular scanner is facing a challenge dealing with large objects, the
future generation of these scanners will be more robust to the size of objects being scanned. This study
is a proof of concept for using these technologies for real time fabrication quality control in pipe spool
fabrication facilities. The current state may not be able to detect small deviations, but they can still be

useful for early detection of incurred gross misalignment.
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Chapter 4

Automated BIM-Based Finding of 3D Objects in Cluttered Construction Point Cloud Models

This chapter is based on the following submitted article with the same title in the Computer-Aided
Civil and Infrastructure Engineering journal. Minor changes are made on some parts of the article to
be more consistent with the body of the thesis. Thus, the content of this chapter is not exactly the
same as the paper. The contribution of the author in this publication is conducting all experiments,
data analysis and partially drafting and editing the manuscript. This study has been submitted on
March 28th, 2017.

4.1 Introduction

Automated modeling of fabricated construction components is the bottleneck in automatic and
continuous monitoring of civil infrastructure (Dimitrov and Golparvar-Fard 2015). In particular,
preprocessing the massive data collected on construction sites is key for effective and electronically-
integrated modeling of the built environment. Automated modeling is necessary for various key
applications such as progress monitoring, status assessment, and quality control. For example,
imperfections and fabrication errors may cause huge rework costs to the projects if they are not
effectively monitored and corrected. In 2010, Canada's construction industries (i.e. residential, non-
residential engineering, repair, and other construction sectors) accounted for 6

% of Canada's gross domestic product (GDP), contributing $73.8 billion (Statistics Canada 2010). In a
typical construction project, rework costs between 2% and 20% of a project’s contract amount (ClI
2011). According to (Dissanayake et al. 2003), rework is defined as: “Activities in the field that have
to be done more than once, or activities, which remove work previously installed as part of the project
regardless of the source, where no change order has been issued and no change of scope has been
identified by the owner”. Geometric non-compliance is one of the main factors causing rework in a
project, in general, and in the fabrication processes, in particular.

To reduce rework, rigorous and continuous inspections throughout the fabrication process are required.
Conventional methods for quality control and rework mitigation utilize humans with manual direct
contact measuring devices such as tapes and calipers. Manual execution of such tasks increases the
subjectivity of information as well as other errors and limitations incorporated with intervention. This
includes measuring locations with difficult access or spots having hazardous materials. Furthermore,
the conventional methods are not only limited by human capabilities, but also, they are time consuming
and may cause interruption in the production process. This results in depriving the managers of
continuous monitoring and quality control on the fabrication process. Consequently, utilization of
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conventional methods will fail to acquire accurate, rapid, and continuous geometric compliance
monitoring systems.

Advancements in 3D imaging technology have allowed its users to collect spatial data from their
surroundings in a short time period, and with an acceptable accuracy level. Laser scanners measure the
distances to points being scanned at speeds up to thousands of points per second (Park et al. 2007).
Most of the applications of laser scanning in construction, including automated compliance control
(Nahangi and Haas 2014), and schedule and progress tracking (Turkan et al. 2012b) rely on either
manual or partially automated identification, location, orientation, and extraction of the object-of-
interest. Other methods rely on techniques, such as (Bosche et al. 2008a), that were premised on a priori
knowledge of scanner location and orientation with respect to site coordinates. This is due to the
indiscriminate data acquisition by the capturing devices. The point clouds acquired with a laser scanner
will include clutter (unwanted objects in the background or surroundings of the object-of-interest), and
uncaptured surfaces when the objects are occluded. The variation in the density of a point cloud and
the existence of noise, which usually occurs on the edge surfaces, are also among the challenges in the
automation of the object extraction process. Other contributing factors such as lighting conditions and
site specific circumstances can also influence the quality of the captured point cloud (Sharif et al. 2016),
which will exacerbate the complexity of the 3D object recognition process. An incomplete point cloud
of a fabricated component is another common challenge. The aforementioned challenges reveal the
complexity of formalizing an automated framework for object-of-interest isolation from a cluttered 3D
point cloud.

The manual extraction of an object-of-interest in a cluttered point cloud is inadequate, inaccurate, and
inefficient in terms of the required time and the level of skill required (Figure 0-1). An automated and
rapid object finding framework has the potential to be employed in automated object locating, robotic
manipulation, and quality control processes in construction. A rapid framework will avoid late detection
of possible defects, and therefore the cumulative error arising from infrequent fabrication monitoring
(Golparvar-Fard et al. 2009a).This study aims to develop a robust framework for efficient and
automated finding of an object-of-interest in cluttered point clouds. This framework is capable of
addressing some of the major challenges in this area including:

o Density variation: various types of sensors offer different levels of density in the point cloud
acquired. The desired framework for object isolation must be insensitive to the density of the
point cloud used.

o Clutter presence: presence of unwanted objects in the background and surrounding the
object-of-interest is the key motivation for automated recognition and isolation of the

objects-of-interest.
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e Occlusion and incompleteness occurrence: in visual sensing and vision-based data
acquisition sensors, line of sight is a substantial parameter for capturing complete and reliable
data. In the case that the objects are not visually tracked by sensors, some parts or
components might be missing. The subsequent analyses and models are therefore influenced
by such incomplete data (Nahangi and Haas 2016). The desired framework should also be
relatively robust to incomplete point clouds.

A robust framework for automated finding of objects-of-interest from cluttered and unprocessed 3D
point cloud models is presented in this chapter. The framework is based on the mathematical model
first presented by (Papazov and Burschka 2010). Comparatively, this framework has three primary
steps: (1) creating and storing a library of features from point pairs of 3D models using an invariant
local feature, (2) finding the potential matching pairs from the point cloud with the code library
generated using a RANSAC-based hypothesis testing, and (3) match refinement and isolation using an
ICP-based (lterative Closest Point) registration step. The key contribution of this study is the adaptation
and application of a robust framework for automated finding of 3D objects in cluttered point cloud
models from a construction environment. The framework is tested under various circumstances in order
to investigate its performance for addressing the major challenges discussed previously, including
density variation, clutter presence, and incompleteness of the captured data. First, the related
background is thoroughly investigated in the following section to clearly identify the knowledge gap
and the key contribution of this work. Next, the proposed methodology and its components are
described. Finally, experimental results and analyses are provided to quantify the performance of the
proposed method.

Points removed

(c)

Figure 0-1. Clutter removal example. (a) A facility is scanned; (b) surrounding objects are removed:;
(c) secondary attachments in the proximity of the object-of-interest (i.e. stands and supporting
objects) are removed. (d) The object is finely retrieved by manually removing noise and other points
remained. The isolation point cloud is then ready for further processing (e.g. automated registration

for discrepancy quantification and quality control)

38

(d



4.2 Background

4.2.1 Terminology definition

For the purpose of consistency and rigorousness throughout this manuscript, the following terms are
defined and described as follows:

Detection: refers to the process in which the presence of an object is identified in an acquired point
cloud.

Finding: refers to the process in which the presence of the object is not only sensed but also its
geometric characteristics such as dimensions, location, and orientation are identified. The term
“recognition” however, corresponds to identification and characterization of all the objects that meet

the recognition criteria in the scene.

Segmentation: refers to the process of classifying points from the surface of an object in one set and

from a cluttered and noisy point cloud.

Isolation: refers to the process of extracting a segmented object from the 3D point cloud and
representing it as a single dataset.

This section focuses on a comprehensive review of the existing methods for finding 3D objects from
various perspectives with respect to some applications in construction automation. A general overview
is first provided from the computer science perspective. Existing challenges and various categories of
3D object recognition are also briefly discussed. Major applications in the construction literature and
the existing research challenges are then discussed. Although there have been numerous research
studies in automated object recognition from 2D images (Balali et al. 2015), video frames (Park et
al.2012, Zhu and Brilakis 2010), and depth images (Ray and Teizer 2012) for a wide range of
applications in construction, this paper only focuses on finding 3D objects in cluttered point clouds and

the research challenges involved.

4.2.2 3D object recognition: general categories and existing challenges from the computer

science perspective

The problem of finding an object-of-interest has been widely investigated in the computer science
literature. Vision-based control in robotics (Chaumette and Hutchinson 2006), intelligent surveillance
(Guo et al. 2013) and mobile manipulation (Quigley et al. 2009) are only a few applications, which are
well developed and widely used in the related body of knowledge.

However, finding objects in the aforementioned applications is relatively limited to 2D scene capturing

approaches such as 2D images or 2D snapshots from video frames. Unprecedented opportunities have
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recently become feasible with the significant improvements in 3D data acquisition, and there has been
extensive work on 3D object recognition from 3D scenes (i.e. 3D point clouds). However, most of the
existing frameworks are computationally very intensive, and therefore insufficiently effective and
applicable. The required processing time is the major drawback for automated 3D object recognition
and modeling in construction automation.

According to (Guo et al. 2014), object recognition methods can be grouped into two main approaches:
(1) global features or 3D keypoint detection and localization, and (2) local features characterization and
localization. The former approach includes 3D SIFT (scale invariant feature transform) (Allaire et al.
2008), 3D LIFT (learning invariant feature transform) (Huang et al. 2007) and 3D SURF (speeded-up
robust features) (Knopp et al. 2010), which are performed on either depth images (2.5D) or 3D meshes.
Such methods are incapable of finding 3D objects from 3D point clouds. The local features approach
is thus more widely used for 3D object recognition from 3D point clouds. This approach includes
signature-based and histogram-based methods such as spin images (Johnson and Hebert 1999), point
signature (Chua and Javis 1997), and point pair features (Papazov and Burschka 2010). Based on the
extensive survey by (Guo et al. 2014), local features have been found to be more efficient for 3D object

recognition from 3D point clouds.

4.2.3 3D obiject recognition: application in construction

In built environments, it is imperative to find objects-of-interest automatically and effectively to assess
their as-built status and map critical construction performance metrics. Such metrics include as-built
progress compared to the as-planned schedule (Golparvar-Fard et al. 2012, Kim et al. 2013), or as-built
shape or geometry compared to the as-designed geometry (Chen et al. 2016, Nahangi and Haas 2014)
In this section, object recognition in the construction literature is investigated from three perspectives:

(1) automated as-built modeling, (2) quality control and automated modeling, and (3) progress tracking.

4.2.3.1 Object recognition for automated as-built modeling

As discussed by (Patraucean et al. 2015), as-built BIM creation is challenging due to the complexity of
construction components. However, some components represented by explicit geometric shapes can be
detected, recognized, and modeled given a 3D point cloud representing the built environment. Some
examples include MEP (mechanical, electrical, plumbing) components, in general, and cylindrical
objects (e.g. pipes and elbows), in particular. This research area is also known as scan-to-BIM in the
related literature (Bosché et al. 2015).
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(Rabbani et al. 2007) presented a generalized Hough-based method for detecting and recognizing
industrial and piping elements with some basic explicit shapes. The processing time for recognizing
objects from point clouds was substantial and therefore ineffective, because they were using the Hough
transform in 3D. This method was also incapable of recognizing and modeling elbows and T-sections.
(Ahmed et al. 2014) presented a method for detecting and reconstructing cylindrical objects such as 3D
pipes using a modified Hough Transform-based method. Their method overcomes the computationally
intensive 3D Hough Transform by projecting points into orthogonal slices (planes) and then applying
a 2D Hough-based circle detection. Their approach was also reported to be incapable of finding T-
sections and elbows and it was only applicable on cylindrical objects laid out in orthogonal directions.

(Son et al. 2014) presented a curvature-based cylindrical object recognition which was found to be
capable of finding elbows and intersections. However, their method relied on an accurate and complete
3D point cloud as an input, and it is therefore inadequate for finding complicated cylindrical branches.
(Lee et al. 2013) presented a skeleton-based method for 3D reconstruction of industrial elements. The
skeleton- based method was also inadequate and inaccurate in the case that an incomplete 3D point
cloud is imported to their framework. According to (Nahangi and Haas 2016), incomplete point clouds
will change the skeletons representing the centerlines, and will therefore create errors in the radius

detection and recognition.

A curvature-based segmentation method with applications to MEP components was then presented by
(Dimitrov et al. 2015). Although their method is sufficiently accurate in recognizing various
components from a cluttered scene, it is still computationally expensive. Their method requires
curvature calculation on a resampled point cloud, which is then used for checking connectivity of
components. Assuming that time-effective process controllers are desirable, in practice, their curvature-
based method is incapable of addressing the time related aspects and challenges. (Dimitrov et al. 2016)
then extended the curvature-based segmentation to model arbitrary shapes given a noisy and cluttered
3D point cloud model. Their recent work takes the advantage of the previously segmented components.
It then employs non-uniform rational B-splines (NURBS) for modeling arbitrary shapes in the form of
explicit and closed form mathematical functions. This is directed toward the ultimate goal of scan-to-
BIM creation. (Zhang et al. 2015) presented a framework for planar patch detection from cluttered point
clouds. The segmentation of planar patches is based on normal vector calculation and spectral clustering

which was found to be robust.
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4.3.2.2 Object recognition for quality control and as-built status assessment

One other key application for automated object recognition is to assess the as-built status or geometric
guality of the components compared to the as-designed drawings integrated in the BIM. This area is
also known as scan-vs-BIM in the related literature.

A framework for automated discrepancy quantification of fabricated serial components was presented
based on the as-built point clouds of components automatically registered and compared with their 3D
models. The isolation step was performed manually, which was disconnected from the fully automated
framework. Automated isolation of the components is therefore the key to expedite the entire process.
The method was then extended to parallel assemblies with a strategy for realigning the defective
assemblies (Nahangi et al. 2015); however, lack of an automated step to automatically extract an object-
of-interest given a point cloud was still a drawback for integration with automated fabrication process
controllers.

A skeleton-based method for discrepancy quantification was then presented, in which the object
isolation step was still performed manually (Nahangi and Haas 2016). Recently, (Czerniawski et al.
2016b) presented a 3D model-based object-of-interest recognition and isolation method, where
curvature was a signature or descriptor of the model. A bag-of-features with two-way curvature
descriptors was created in order to represent the 3D model of an object-of-interest. The feature was
then searched in a 3D point cloud transformed to the feature space. The hypothesis testing and matching
was then performed using a bi-variate histogram-based voting scheme. This method was limited to the
objects where curvature is a meaningful representative (e.g. industrial object, in general, and cylindrical
pipes, in particular). Although, the method was capable of extracting arbitrary 3D objects from cluttered
point clouds automatically and with a high recognition rate (90% in average), its computational time is

still a drawback for the applications desired.

4.2.4 Obiject recognition for progress tracking

Obiject detection and recognition has been widely used to track the progress of components compared
to the as-planned schedule integrated with the BIM. Generally, for the purpose of progress tracking,
detecting an object will be sufficient to measure the as-built schedule and compare with the as-planned
schedule.

An image-based framework for automated progress tracking using statistical correspondence for object
detection was presented (Golparvar-Fard et al. 2012). (Turkan et al. 2012b) presented a framework
based on the object detection method previously developed by (Bosche and Haas 2008b). The object
detection and progress tracking is based on the level of overlap between the as-planned and as-built 3D

point clouds that are finely aligned. (Kim, et al. 2013) presented a training-based framework for

42



automated progress tracking that used an SVM-based classifier for major objects in a building (i.e.
columns, beams and slabs).

Other than the aforementioned major application in construction, 3D object segmentation and
recognition are also used for some secondary applications. For example, (Czerniawski et al. 2016a)
used a similar approach to (Zhang et al. 2015) for automated removal of planar regions for facilitating
and expediting the recognition of cylindrical objects. A density-based clustering step was used to cluster
and segment various planar regions represented by their normal vectors. Recently, (Chen et al. 2016)
presented a framework for equipment localization using a principal axes descriptor and a training-based
approach used for detection.

In summary, the problem of robust and efficient finding of a 3D object in 3D point cloud models as
well as its major research challenges has remained an elusive goal. The following section frames the
knowledge gap from the conducted literature review, and identifies the major contribution of the work
in the current study. A summary of the investigated studies along with a general categorization from
different perspectives is also provided in Table 0-1.

4.2.5 Knowledge gap and research contribution

As discussed, for finding 3D objects in cluttered point cloud models of construction environments, the
previously developed frameworks are either relatively ineffective in terms of processing time or are not
fully automated. As well, the existing methods are limited to explicit shapes and geometries such as
MEP components (cylindrical objects) or some simple structural components (concrete beams and
columns with rectangular cross section). They are therefore not robust for construction components
with complex and arbitrary geometries. This chapter presents an automated and robust framework for
finding 3D object-of-interest within cluttered and noisy point clouds. A simple and abstract
representation of the framework is illustrated in Figure 0-2. The framework developed is capable of
addressing some of the major research challenges discussed previously (e.g. density, noise, and
incompleteness). The method takes advantage of existing 3D models integrated with the BIM. The

model-based 3D object-of-interest finding framework is described in the following section.
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(d)

Figure 0-2. Graphical abstract of the presented framework: (a) 3D model converted to a point cloud,
(b) cluttered 3D scene, (c) localized model on the scene, and (d) found and isolated object from the

scene.
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Table 0-1. Summary of 3D object recognition methods existing in the construction.

Identification

Research stream in

Specific application in

Reference Method . .
status construction construction
(Papazov et al. 2012) Recognition 3D Hough 3D modeling Industrial elements
transform
(Ahmed et al. 2014) Recognition 2D Hough As-built BIM Cylindrical pipes
transform
(Son et al. 2014) Recognition Curvature As-built BIM Cylindrical pipes
(Lee etal. 2013) Recognition Skeleton As-built BIM Cylindrical pipes
(Dimitrov and Golparvar-Fard Segmentation Curvature, NURBS As-built BIM MEP components
2015; Dimitrov et al. 2016)
(Zhang et al. 2015) Detection Normal vector As-built BIM Planar components
(Nahangi et al. 2015) Recognition NA As-built status Serial and parallel
(manual isolation) assessment
(Czerniawski et al. 2016b) Recognition Curvature As-built status Serial and parallel
assessment
(Golparvar-Fard et al. 2012) Detection Statistical Progress tracking Any type
(Bosche and Haas 2008; Detection Closest points Progress tracking Any type
Turkan et al. 2012)
(Kim et al. 2013) Detection SVM based Progress tracking Column, beam, slab
classifier
(Czerniawski et al. 2016a) Recognition Normal vector Object isolation Planar regions
(Chen et al. 2016) Detection PCA Automated monitoring Construction

equipment

4.3 Methodology

An overview of the implemented methodology for finding arbitrary shapes within cluttered point clouds

is illustrated in Figure 0-3. It is derived primarily from (Papazov and Burschka 2010) basic algorithm

and adopted to the class of construction object recognition problems addressed here. The result is then

extensively examined for performance. The method has three primary steps: (1) model library

generation, (2) scene representation, and (3) matching. The first step can be performed in the offline
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phase, meaning that the library can be generated and stored for further calculation. The second step is
to calculate features for hypotheses tested in the matching step (Step 3). The primary steps for finding

arbitrary objects are described in the following sections.

Offline phase — [Hash Table] Step I:
+3D model| | Feature > MOdCl Model library
ﬁ calculation library generation
@ 3D point s, and s;: * Feature Find Step 2:
. cloud sy — s;Il = d| |representation| |correspondences Scene
Online phase i representation
N
cr.iteria Transformthe|, | FindT asa
satisfied? model hypothesis
Step 3:
v Matching
Input/output )
Offline processing Isolated
. : refinement object
Online processing

*Refer to section 3.3.3 for the definitions of s;, s, and d

Figure 0-3. Proposed methodology for BIM-based object finding of construction assemblies has three

major steps: (1) Model library generation, (2) Scene representation, and (3) Matching.

4.3.1 Inputs and preprocessing

The required inputs for the proposed algorithm are the following:

(1) 3D Model denoted by M: in order to generate the model library the 3D model should be available
in the point cloud format. The solid objects existing as the CAD drawings integrated with the BIM are
converted to 3D point clouds using one of the methods well discussed by (Corsini et al. 2012). Poisson
disk sampling is used in this work for converting 3D solid objects into point

(2) 3D point cloud or the Scene denoted by S: that represents the as-built state or the scene being
investigated. Both M and S are preprocessed by constructing their weighted octree structures. Bin
subdivision in weighed octree is calculated based on the mean of all points that each bin contains
wherears in the normal octree subdivisions spilts bins at their central coordinate (i.e. one bin subdivides
into 8 equally sized bins). This step is required to normalize the density of the input point clouds.
Moreover, octree represents a uniformly resampled point cloud resulting from the original input point
cloud. Such a process is similar to voxelization for down sampling or resampling a 3D point cloud. A
hypothetical example of weighed octree construction of a typical point cloud (Model and Scene) is
illustrated in Figure 0-4.
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Figure 0-4. Density normalization using weighed octree: (a) a model after density normalization
using octree (c), a zoomed-in window is shown for illustrating density before (b), and (d) density after

normalization using octree structuring.

4.3.2 Model library generation

Model library generation is performed for creating the feature space of the objects and shapes existing
in the scene captured. This step can be performed beforehand, because it remains unchanged for a given
shape or geometry. In other words, a library of objects can be created and stored in a database for further
processing. The feature space used in this chapter is similar to the feature defined in (Papazov and
Burschka 2010). The only difference between the feature set used here with the previously defined
feature set in (Drost et al. 2010) is the distance element between the point pair. The local feature set

used in this work is illustrated in Figure 0-5.

As illustrated in Figure 0-5, a three-dimensional local feature descriptor is used to represent the model.

The feature set for a point pair (py,p,) is denoted by F(p,, p,) and is calculated as follows:

F(p1,p2) = (fu. f2, f3) (1)

in which, f; = 2(ny,d), f, = 2(n,,d), f3 = £(ny,n,). The operator £ returns the angle between the
two input vectors. This feature set is similar to the feature set used previously (Czerniawski et al.
2016a); However, the assumption of reducing one dimension from the local feature set, makes it
computationally less intensive and therefore more time effective. Moreover, removal of the distance
element from the feature set, results in similar dimensionality for the remaining elements, and therefore
it reduces the complexity of the feature space. This distinctive feature is useful in storing the feature
descriptors more efficiently. All points in the model are uniformly resampled and the feature set is then

created.
47



The key for calculating the feature descriptor is the normal vector at a resampled point cloud. The

normal vector is calculated using a four-step algorithm as follows:

1

Calculate k-nearest neighbours (KNN) given a point in a point cloud (p € P).

2

Assign the calculated neighborhood to the point p.
3- Fita plane to the neighborhood.
4-  Assign the plane’s normal vector to the point p (n.p;).

The k value for identifying the size of the neighborhood around a point will affect the accuracy of
normal vector calculation and therefore the isolation retrieval. The framework has been found very
robust to the size of the neighborhood for normal vector calculation. The procedure for normal vector
calculation is similar to the principal component analysis (PCA) for normal vector extraction. More

detail about normal vector calculation can be found in (Czerniawski et al. 2016b).

ny

5

Figure 0-5. Local feature descriptor used for object extraction. The distance between the point pair is
set constant. This assumption reduces the level of complexity and therefore reduces the processing
time for feature space creation.

A 3D hash table is used to store the library of features. The feature elements F = (f3, f2, f3) are used
to hash the entries in the table. The hash table is divided with an arbitrary cell size, which is found to
have a negligible impact on the robustness of the framework. The calculated feature sets are then
assigned to the corresponding cell in the table. This method has been found very efficient for the search
phase, and therefore improves the time related aspects of the framework. Figure 4-6 shows the creation

of a hash table for a hypothetical 3D shape.
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(131_, ?2) Hash Table

(P3, P4y M. P3, M. Dy)

(p1, P2, p1,n.P2)
(s, Pes M- P5, . Pe)

Figure 4-6. A hypothetical 3D shape is illustrated to show the procedure for generating the model
library and storing the feature descriptor. (a) Arbitrary point pairs are resampled from the model point
cloud and the feature set is calculated. (b) The feature sets is calculated. (b) The feature sets are then
used to hash the table for representing the model (i.e. points with similar feature sets with a threshold
value A6 are hashed in a similar cell).

To find various models, the hash table and the model library can be extended; that means the features
for various models can be accumulated in an original hash table. This method for storing the model
feature sets in the same library avoids recalculating features for previously generated shapes. Model

library generation with the required steps is summarized in Algorithm 1.

Algorithm 1: Model library generation
Input: 3D model point cloud {M}
Output: Model library {M}

Null {M}: @ - {M}

For all points (m,) in 3D model: m; € M

Find all points {m,} € M such that ||m; — m,|| =
d

For all points in {m,} € M
- Create the point pair (my, m,)
- Calculate the feature descriptor: F = (f3, f>, f3)

- Populate M: store (mq,m,) and normal vectors
(n.mq,n.my,) inthe corresponding cell (£, f2, f3).
in the hash table M
End for

End For

Report M
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4.3.3 Scene representation

Once the models are described using the feature set explained, and the library of the objects are created,
the online mode is performed. The online mode starts with a RANSAC (Random Sample Consensus)-
based search. The regular RANSAC search for 3D objects is inefficient and almost impossible for
realistic or practical sized point clouds. In contrast, the feature library is used for making the search
more efficient and robust for real-sized point clouds. The sampling process for the RANSAC-based

matching is illustrated in Figure 0-7.

”““wx

Hash Table

Step 3 Step 4 Step 5

(mym)™t - T

st Hash {(m mz) T12
(mg,mp) ™
(my, mz)
(my, mz)

(51,52) 2

(my, mz) &

o |E:1.;3 -
(my,m) ™ e
Figure 0-7. Scene representation for one typical iteration in the RANSAC-based matching algorithm.
Step 1: an arbitrary point s, is selected. Step 2: all possible s,’s are calculated. Step 3: all possible
pairs (sq,s,) are created, and the features are calculated. Step 4: potential matching pairs are
extracted from the hash table using the features calculated. Step 5: The transformation T is then
calculated.
To start searching for potentially matching pairs, the Scene (S) is uniformly resampled (s;). For each
point resampled, all points {s,} that are distanced at d are stored to create a potential pair (s4,s,). The
feature elements are then calculated to identify the matching pairs from the Model (M) stored in the
hash table. The point set (s, s,) and the corresponding normal vectors (n. s, n.s,) are then matched
with the existing pairs and normal vectors in the hash table. In other words, the potential matching pairs
from the Model and Scene create a hypothesis to be tested in a RANSAC-based matching step. The

matching step is described in the following section.

4.3.4 Matching

The matching step is combined with the Scene representation. The matching step is an iterative process
based on the criteria defined for testing the hypotheses created from S. For all potential matching pairs
identified from the hash table, the transformation (T') that aligns the features (i.e. points and their normal
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vectors) from the Model and Scene is calculated. For calculating the transformationT, PCA (principal
component analysis) is used for aligning two sets of four points in the Model and the Scene. The set of
four points include the two points of the pair being investigated, and two arbitrary points located on the
normal vectors starting from the points. In this chapter, the two points are located at the end of the unit
normal vector starting from the point. Figure 0-8 illustrates the calculation of the point sets of four to be

matched from the two datasets.

Set of four points
from the Model (M)

Set of four points
from the Scene (S)

Figure 0-8. Calculation of the point sets to be matched using principal component analysis. The four
points include the pairs as two points: (my, m;) or (s4,s,), and two points, (mz, my) or (s3,S4),
located at the end of a unit normal vector starting from each point. ||m; — mz|| = ||m, — my|| =1,

and |[s; — s3]l = |Is; — s4|| = 1. The rigid transformation T can then be calculated using PCA.

The method described for transformation calculation (hypothesis generation) is found to be robust and
quick. Therefore, the online phase remains very time effective to be implemented in real-time
applications. The entire Model is then transformed using the previously calculated transformation:
M*=TXM.

M* and S are then compared to test the hypothesis generated. For this purpose and to test the goodness
of the transformation calculated (hypothesis), the number of inliers is computed. A support term (Ay) is
therefore defined to investigate the appropriateness of the hypothesis. In other words, A, identifies an
additional criterion for the RANSAC-based matching algorithm used here.

For each hypothesis (T) generated, the support term is calculated as: A;(M, T) = my/m, where, mg is
the number of points that support a matching criterion. Such a matching criterion is defined as the
number of points from the transformed Model (M™) in close proximity to the Scene (S).

The matching step is performed until either a maximum number of iterations is reached or a pre-defined
portion of the points in the Model are retrieved from the scan. These two criteria are identified to stop
the RANSAC-based hypothesis testing framework.

51



Once the best hypothesis is found using the previously explained framework, the match is refined using
a post iterative closest point (ICP) alignment. The initial coarse alignment will be improved using a
post ICP alignment with a few number of iterations to find the best match between the two data sets.
This step augments the accuracy of the method for correct finding, because the datasets were resampled
to improve the time effectiveness of the framework. Some information is missing during resampling
because of the reduction in the density of the point cloud; however, this issue is compensated using this
post ICP refinement. Algorithm 2 summarizes the processing tasks explained in Step 2 and Step 3.
Figure 0-9 shows an example of the post-ICP refinement of the match found using the feature space
and the RANSAC-based search.
Algorithm 2: Scene representation (Step 2) and

matching (Step 3)

Input: Model library {M} and Scene (S)

Output: Isolated object-of-interest {S;} from S: S; €
S

Repeat N times

- Randomly select s
- Calculate all points {s,} such that: |[s, — s¢|| = d

- Create all pairs (s4,52)

For all pairs (s4,55)

- Calculate F (sq,52) = (f1,f2, f3)

- Find potential matching pairs in the model
(my,my) by (fi, fo, f3) as the key to the hash
table M.

- Create the set of four points from S and M: §* =

(51,52,53,54) and M* = (my, my, m3, my).

- Find transformation T that matches M* to S*
using PCA

- Transform the entire model withT: M* =T x M
- Calculate A;(M,T) = mg/m

- Find T and M* associated with the highest A
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End For
End Repeat

- Refine the match as: M* « M* X ICP(M*,S)

- Find correspondences S; € S of M* in S

Report S;

E 3

Figure 0-9. Refinement of the match using a post-ICP registration. Aligned point clouds (a) Before,
(b) after ICP registration.
As illustrated in Figure 0-9, the 3D model slightly deviates from the scene after calculating the initial
transformation using the RANSAC-based hypothesis testing. Such deficiency is resolved by
performing the post-1CP refinement step. The ICP registration requires only a few iterations to refine
the alignment. The effective parameters are summarized in Table 0-2 and were established using

experiments in this study. The effectiveness of the parameters is reported in section 3.4.3.

Table 0-2 Values of the effective parameters for the set of experiments performed

Parameter Description Value
d Distance between the point pairs  0.75p"
A6 Cell size for the hash table 12°
As Overlap ratio for the RANSAC 0.15
t Time criteria for RANSAC 20 sec
iterations  ICP iterations for post refinement 5

*p = diam(M), where diam returns the largest distance

between a pair in a point set.

4.4 Verification and Validation

In this section, the described framework is implemented and its performance is measured by designing
a set of experiments. The method is validated on two cases to evaluate its capability on various

geometries and shapes. The framework is implemented and programmed ina MATLAB-based platform
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integrated with C++ and a function library distributed by (Papazov and Burschka 2010). The processing
times reported in the following sections are benchmarked on a processing machine with a 3.7x12 GHz
processing unit and a 32 GB RAM.

4.4.1 Design of experiments

For verifying and validating the proposed methodology, a set of experiments are designed and
performed. The experiments are carried out on a small-scale pipe spool (as a curvilinear object) and a
structural frame (as a rectilinear object). The object-of-interest is in a laboratory environment, where
other unwanted objects are scanned in the background or in the close proximity of the object-of-interest.
For 3D point cloud acquisition, laser scanning is employed in this study. A FARO LS 840-HE is used
for scanning the lab facilities. Physical properties of the laser scanner used in this study can be found
in Table 4-3.

Table 4-3. Summary of physical properties of the 3D scanning device (FARO LS 840-HE)

Factor Value
Accuracy + 3mm at 25m
Scanning range 0.6m —40m
Acquisition speed 120,000 points/sec
Angular resolution 0.009°

For comparing the results in the cases investigated, and measuring the performance of the framework,

two critical metrics are reported:

1- Processing time: is the required time for both model library generation (offline phase), and matching
(online phase). Tracking the processing time enables the applicability of such a method for
developing real-time frameworks for process control.

2- Retrieval accuracy: is the average error between the transformed Model and the Scene. This is
represented by a root mean square (RMS) of the Euclidean distance between the corresponding
points. As mentioned earlier, two construction components are used in the experiments: (1) a
small- scale pipe spool, and (2) a small-scale structural frame. The latter is chosen to verify
the robustness of the proposed algorithm for finding structural elements from cluttered
laser scans. Previous studies (Czerniawski et al. 2016a) were directed toward recognizing

cylindrical objects (e.g. pipe spools). However, the method presented in this chapter can find
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any shape and geometry robustly and effectively. More information about the components

used in the experiments is provided in Table 0-4.

Table 0-4. Construction components used in the experiments

Point Bounding Element ID used for
cloud dimensions type results
Pipe 3mx2mx0.5 .
Curvilinear PS
Spool m
Box 3.5mx2mx2 .
Rectilinear BF
Frame m

4.4.2 Effective variants

To investigate the capability of the framework for addressing the existing challenges for efficient
finding of objects (discussed earlier), the experimental setup is tested under various circumstances.
Three major variants are investigated: (1) density of the 3D point cloud used in the isolation framework,
(2) clutter existing in the Scene, and (3) completeness of the object-of-interest in the 3D point cloud
acquired. A wide range of such variants is considered and their impact on the verification metrics

(processing time and retrieval accuracy) is analyzed in the following sections.

4.4.2.1 Density

For investigating the effect of density on the results, a dimensionless metric is defined. The metric is
called density ratio, which is the proportion of the number of points in the Scene to the constant number
of points in the Model. VVarious density ratios are investigated by down sampling the originally acquired
point cloud as the Scene. Down sampling is performed incrementally to evaluate how the recognition
rate is affected. Another metric is also defined to monitor the recognition rate. Recognition rate (RR) is
defined as follows:

TP
sl

in which, the nominator TP (True Positive) is the number of truly found points, and the denominator

RR (4.2)

||s|| is the size of the object-of-interest (s) in the Scene (s € S). Table 0-5 and Table 0-6 show the
summary of the analyses for the effect of density on the recognition rate. Figure 0-10 shows typical

results using various density ratios for the isolation of PS from cluttered point clouds.
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Figure 0-10 Effect of density on the accuracy of the object-of-interest isolation. Three density ratios
are illustrated. Density ratios is 5 for (a), 10 for (b), and 20 for (c). The top figures are cluttered point
clouds with the model aligned with the object-of-interest, and the bottom figures show the isolated

Table 0-5 Summary of the analyses on the effect of density on the critical metrics for Pipe Spool

object from the point clouds.

Density ~ Number RR RMS Time
ratio of points (cm) (sec)
0.3 3000 0 Failed  Failed
1 10000 0 Failed  Failed
2 20000 0 Failed  Failed

5 50000 0.956 1.34 27.5

8 80000 0.930 1.28 26.8

10 100000 0.929 131 25.1
20 200000 0924 1.25 19.2

Table 0-6. Summary of the analyses on the effect of density on the critical metrics for Box Frame

Density ~ Number RR RMS Time
ratio of points (cm) (sec)
0.3 3000 0 Failed  Failed
1 10000 0 Failed  Failed

2 20000 1 2.92 15.8

5 50000 0.995 2.86 22.9
10 100000 0.979 2.82 22.9
16 160000 0.983 2.81 22.9

For the PS case, the average RMS value for successfully isolated objects is 1.28 cm with a standard
deviation of 0.03 cm. For the BF case, the average RMS value is 2.85 cm with a standard deviation of

0.04 cm. This shows that the RMS value remains unchanged for the successful cases. In other words,
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the negligible change in the RMS value implies that the object-of-interest isolated from the laser scan
is robustly identified using various density ratios. Another observation is that the recognition rate (RR)
increases as the density ratio passes a minimum threshold value and it then remains relatively
unchanged. Figure 0-11 shows the relationship between the density ratio and the recognition rate for the

PS and BF cases investigated.

As shown in Table 0-5, Table 0-6, and Figure 0-11, for lower density ratios, the isolation of the object-
of-interest is unsuccessful. Unsuccessful isolation means that the final transformation found by the
algorithm is incorrect and the isolated point set does not correctly correspond to the object-of-interest.
This might be due to the over simplification of the scan occurring during the down sampling phase.
Down sampling may also cause inaccuracies in the calculation of normal vectors. As explained
previously, the accuracy of the normal vector calculation step is a key in the recognition and isolation
process. Therefore, for lower density ratios, the object may not be represented sufficiently densely,
which fails accurate normal vector calculation, and consequently, the object isolation given a cluttered

point cloud.
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Figure 0-11. Effect of density on the recognition rate
The processing time reported in Table 0-5 and Table 0-6, is the time required for the alignment of the
3D model within the point cloud. The isolation time, which requires nearest neighbor calculation, and
a post ICP refinement is excluded from the processing time reported in the results. The post-processing
time for calculating the closest points and refining the match is expected to be exponentially increasing

as the density of the point cloud increases (Rusinkiewicz and Levoy 2001).

4.4.2.2 Clutter

For investigating the effect of clutter on the object recognition and isolation framework, the

experimental objects are tested under various circumstances with varying clutter. The 3D point cloud
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used as the Scene is tested with an incrementally increased clutter around the object-of-interest. For
guantifying the amount of clutter in the S, clutter ratio is defined as:

Clutter ratio = Is =S a9l (4.3)

lIsll

in which, S is the 3D point cloud (Scene), and s is the object-of-interest. In other words, clutter ratio is
the proportion of the amount of clutter to the size of the object-of-interest. The clutter ratio is
dimensionless. The recognition rate (RR), as defined previously, is then calculated for each clutter
ratio. Experimental results for the PS and BF objects are summarized and reported in Table 4-7 and

Table 0-8.

Table 4-7. Summary of the analyses on the effect of clutter on the critical metrics for Pipe Spool
Clutter Number RMS Time
ratio of points RR (cm) (sec)
51.295 322191 0.764 1.30 20.9
12.191 81272 0.929 1.28 13.2
7.466 52156 0.974 1.28 15.3
1.473 15236 0.985 1.28 8.1
0.707 10514 0.984 1.28 0.8

Table 0-8. Summary of the analyses on the effect of clutter on the critical metrics for Box Frame

Clutter Number RMS Time
ratio of points RR (cm) (sec)
20.794 322191 0.764 281 17.4
17.604 279072 0.929 281 15.8
9.579 158692 0.974 281 13.2
5.087 91302 0.985 2.83 121

3.053 60796 0.984 3.69 10.9
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Figure 0-12. Effect of clutter on the recognition rate
As seen in Table 4-7 and Table 0-8, the recognition rate decreases as the clutter ratio increases. It signifies
that clutter presence affects the accuracy of the isolated object from a point cloud; however, the object
is still successfully and robustly found. The RMS value of the isolated object is calculated for various
clutter ratios. For the PS object, the average RMS (root mean square) value is 1.28 cm with a standard
deviation of 0.01 cm. For the BF, average RMS value is 2.99 cm with a standard deviation of 0.35 cm.
Low standard deviation signifies that the isolated object remains unchanged for the various clutter

ratios. Figure 0-12 shows how the recognition rate changes with the clutter ratios for the PS case.

As seen in Figure 0-12, recognition rate decreases as the clutter ratio increases for both cases. This might
be due to the existing noise in the scene. However, the object (3D model) is successfully aligned within
the point cloud, and it is therefore successfully isolated from the scene. The level of recognition rate
achieved even in the most cluttered case in the experiments is sufficiently reliable for enhancing further
assessments on the isolated object. Such further assessments include quality control, deviation analysis
and discrepancy quantification (Nahangi et al. 2015, Nahangi and Haas 2014). Figure 0-13 shows a
typical example of the effect of existing clutter on the isolation of the PS object. In this case, clutter is
gradually removed manually, and the framework is applied. Figure 0-13-(a) shows the fully cluttered
point cloud (original scan), and Figure 0-13-(e) shows the least amount of clutter existing around the
object-of-interest (PS object). Figure 0-13-(f) and Figure 0-13-(g) show the final results after the

recognition and isolation framework is applied.

4.4.2.3 Completeness

In order to investigate the effect of completeness on the isolation framework, various combinations of
the comprising branches and elements of the investigated objects are tested. The desired pipe spool to
be isolated from the point cloud is comprised of multiple branches. Branches are manually removed
from the input point cloud to test the capability of the framework for recognizing and isolating the

object, in the case of incomplete and missing data. Incomplete data might be due to occlusion or the
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line-of-sight during data acquisition. Completeness ratio is defined as the metric to quantify
completeness vs. incompleteness of the data. Completeness ratio is the proportion of the size of the
object in the imported point cloud, to the size of the completely scanned point cloud of the object-of-
interest. It should be noted that density and clutter ratios are kept unchanged while incompleteness is

being investigated.

Figure 0-13 Typical results for the effect of clutter on the accuracy of the object extracted from 3D
point clouds. A cluttered scene is investigated in five stages: (a) the scene is fully cluttered, (b)
background is removed, (c) some obviously unwanted objects are removed (structural components),
(d) planar clutter (ground, walls and ceilings if any) is removed, (e) secondary and support
attachments (holder jacks and stands) are removed. (f) The isolated object from manually cleaned

point cloud. (g) The isolated object from fully cluttered point cloud.
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Figure 0-14. Object recognition and isolation with incomplete and missing data. The point cloud in
the middle shows a completely scanned object. Each branch is manually removed in four different
steps and the capability of the algorithm developed is tested under missing and incomplete data. The
object recognition only fails in (d) because the removed branch contains critical features in finding
the correct transformation. In cases (a), (b), and (c), object recognition and isolation is successful.
Rather than the recognition rate, success rate is calculated for measuring the effect of incompleteness.
Success rate (SR) is a binary metric (1 if successfully isolated and 0 if isolation is failed).

Table 0-9 and

Table 0-10 show the effect of incompleteness on the success rate for recognizing and isolating the
investigated objects.
Table 0-9. Effect of completeness on isolating Pipe Spool from a cluttered laser scan

Completeness Number of SR Time
ratio points (sec)
0.958 74177 1 22.8
0.923 77842 1 22.9
0.913 74979 1 23.1
0.903 73363 0 Failed
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Table 0-10. Effect of completeness on isolating Box Frame from a cluttered laser scan

Completeness Number of SR Time
ratio points (sec)
0.993 157631 1 20.2
0.985 156449 1 20.1
0.980 157631 1 19.7

As reported in Table 0-9 and

Table 0-10, a threshold in the completeness ratio must be met in order to ensure recognizing and
isolating the objects successfully. Figure 0-14 illustrates how various branches are manually removed
from the imported point cloud into the recognition framework. Various branch removal results in

different completeness ratios that affects the success rate in the recognition framework.

4.4.3 Parameters effectiveness

The effective parameters reported in Table 0-2 were established using experiments in this study.
However, two scenarios were identified that caused the finding algorithm to fail using the proposed
parameters. The two scenarios are, (1) multiple objects being recognized and (2) failure to detect object
of interest. In order to resolve the first issue A, was increased so that only the object with the maximum
overlay percentage would remain as the isolated object. In the second case, the required time for
RANSAC algorithm was increased up to 40 seconds and in cases A, was also reduced. To measure the
effectiveness of the proposed parameters, an effectiveness ratio (ER) was defined. Effectiveness ratio
was defined as the proportion of the times that the object of interest was isolated using the proposed set
of parameters to the total number of times the object of interest was successfully isolated from the point

cloud. Table 0-11 and Table 4-12 illustrate the results of using the proposed parameters.

Table 0-11. Effectiveness ratio for the proposed parameters on isolating Pipe Spool from a cluttered
laser scan
Parameter Value ER
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As 0.15 0.92
t 20 sec 0.92

Table 4-12. Effectiveness ratio for the proposed parameters on isolating Box Frame from a cluttered

laser scan
Parameter Value ER
As 0.15 0.91
t 20 sec 0.91

Results show that the proposed parameters are sufficiently robust to be integrated with the automated
finding algorithm.

4.5 Conclusion and Future Work

A model-based 3D object recognition and isolation framework was adapted and examined to extract
the construction elements of interest from cluttered laser scans. The framework was desired to be
sufficiently robust and therefore reliable to be integrated with the automated and integrated construction
process controllers. In summary, this method employs a local feature of point pairs as a descriptor or a
local signature. The methodology for 3D object recognition and isolation has three primary steps:

1- Model library generation for the elements existing in the building information model. The library
of objects and their describing features calculated are stored in a hash table that enhances an
efficient and quick search.

2- Scene representation by calculating the features for potential point pairs and testing hypotheses
in a RANSAC-based hypothesis testing engine.

3- Matching and refining by transforming the 3D model on the acquired point cloud and refining
the match by a post-I1CP registration step.

An experimental study is performed for two different construction objects: a pipe spool (PS) as an MEP
component, and a box frame (BF) as a structural element. Density, clutter, and completeness are
thoroughly investigated to test the robustness of the framework. Processing time and recognition rate
are recorded as the verification metrics in the various cases are tested and investigated. Some interesting
observations and insights of the experimental study are listed as follows:

e It was shown in the experiments that if a threshold value is met as the required level of

density, the object-of-interest is robustly isolated from the point cloud.
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e It was demonstrated that even with a massively cluttered point cloud, the algorithm is
capable of extracting the object from the clutter surrounding it; however, the level of
noise increases inevitably, as the clutter increases. It therefore requires a finer post
refinement for noise removal.

e The algorithm also works in cases that an incomplete point cloud is imported to find and
isolate the object-of-interest. This capability addresses the unavoidable occlusion
challenge on the data acquisition phase.

The framework in this chapter can be used to find a wide range of curvilinear and rectilinear
construction components and elements, in contrast with the previous methods that were focused on
some specific and explicit geometries. Since the feature set used to represent an object is not limited to
an explicit geometry, it can even extract very complicated geometries including sophisticated
connections and surfaces. This was verified and validated by testing two relatively sophisticated
geometries within various construction sectors (i.e. MEP and structural elements).

As the framework is robust to the density and completeness of the point cloud acquired to represent the
scene, there is an emerging potential for integrating the framework with image-based 3D point cloud
techniques. Currently, inadequate number of images or insufficient level of overlap between the images
are the sources of inaccuracies in the image-based and structured-light-based techniques for 3D point
cloud generation. However, because the developed framework is robust to incompleteness and density
of the point clouds used, such inadequacy might be bypassed. Moreover, considering that the utilization
of image-based frameworks for data acquisition is less expensive comparing to the laser-based
techniques, it is important to explore the integration of the framework with image-based or structured-
light-based sensors in future research.

Although the recognition and localization of the 3D model is performed in a significantly faster
timeframe, the isolation module takes the dominant part of the time required for processing. Faster and
more effective search strategies such as kd-tree and graph theory may improve the processing time for
the isolation, and this inadequacy may be appropriately addressed. This could be a potential research
direction for future work. In the case that the isolation module is effectively utilized and the processing
time is reasonably quick, the entire framework may be integrated with structured-light based data
acquisition sensors for the development of (near) real-time process controllers. Such integrated
platforms are currently being developed by the authors.

The features and descriptors of construction objects can be calculated and stored as a new dimension
to the BIM, considering the fact that the model library generation phase is performed in the offline

phase. It can consequently save the processing time for model library generation, if the shape
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descriptors are integrated with the BIM. This new addition is currently under investigation by the
authors.

While the investigated framework proved to be somewhat effective, it was not used as part of the
developed software. The developed software was aimed to be highly practical for the use of pipe fitters
on the fabrication floor. The investigated algorithm suffers from two drawbacks which will make its
use impractical in industry: (1) The software requires two input variables: (a) overlap percentage, and
(b) termination time. In order for the software to operate properly the user has to have priory knowledge
on how to choose the two variables. (2) Purchasing the license key for the used software package could
be highly costly. A semi-manual algorithm was used instead. The utilized algorithms is more intuitive
from the user’s perspective, less costly and takes less time. A three pair point matching method is used
were the workers have to only select three corresponding points between the acquired scan and model
point cloud to superimpose the point clouds.
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Chapter 5

Optimal Nearest Neighbour Calculation for Automated Retrieval of

Construction Elements from Cluttered Point Clouds

This chapter is based on the following published article in the proceedings of Resilient Infrastructure
2017, Vancouver, with the same title. Minor changes are made on some parts of the article to be more
consistent with the body of the thesis. Thus, the content of this chapter is not exactly the same as the
paper.

The contribution of the author in this publication was conducting the experiments, data analysis and

partially drafting and editing the manuscript.

5.1 Introduction

3D image acquisition tools are becoming more prevalent in the construction industry as they have
become more affordable and as design information shifts from traditional 2D drawings to 3D BIM
models. 3D scanners enable their users rapid access to accurate information regarding the geometric
conditions on a job site or in a construction facility. Traditionally, laser scanners have been the most
reliable and accurate source of 3D data (Bosche and Haas 2008b) .Photogrammetry and structured light
scanners offer lower cost solutions but with compromised accuracy (Golparvar-Fard et al. 2009b).
Increased competition, demand and innovation is pushing the development of all areas of 3D data

acquisition and is resulting in higher quality technology being available at increasingly lower prices.

One area of substantial use of these tools is the development and implementation of scan vs. BIM
frameworks for early detection of construction defects. Typically, 15% of construction rework is due
to late detection of defective components (Burati Jr et al. 1992). Late detection of defects can result in
project schedule delays, cost overruns and cost propagation in projects with sensitive schedules.
Consequently, early detection of defects in construction projects has become a prime concern for
stakeholders. Geometric non-compliance is a major source of defects in construction. Advancements
in 3D image acquisition tools have enabled users to have access to geometric data in real-time and make
early detection of such deficiencies feasible (Brilakis et al. 2011). Comparing the design information
to the as-built data provides an assessment of the fabrication quality and can be done by superimposing
the 2 point clouds (3 by n matrices of geometric coordinates) to inspect the geometric compliance of

the completed assembly (Chapter 2).
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One of the challenges with comparing a scan point cloud with a model point cloud is that the scan
contains clutter points, which are points from the object’s environment that get captured when acquiring
the scan (Chapter 3). To compare the two point clouds the object of interest must be isolated in the scan
by removing the clutter points. To isolate the object of interest, the object must first be found within
the point cloud before the clutter can be removed. Chapter 3 thoroughly investigated and examined a
robust framework for automated object finding. Once the object of interest is found, scene point cloud
will be superimposed onto the design point cloud, post-processing algorithms have to be employed to
properly isolate the object of interest by removing the clutter. Automating the accurate extraction of
objects of interest from spatial data is the fundamental enabler for further developments in automated
spatial analysis. The goal when decluttering a point cloud is to isolate the points that correspond to the
object of interest from a complete point cloud without removing points belonging to the object of
interest Figure 5-1 shows the process for isolating an object of interest from a scene point cloud.

(a) (b) (c) (d)

Figure 5-1. Abstract of the process from scan acquisition to object isolation. (a) Acquired scan of the
scene including clutter points. (b) BIM model of the object of interest in point cloud format. (c)
Model superimposed on the scan. (d) Resulting point cloud
Classification methods have been investigated in literature and multiple algorithms have been
developed by researchers. One such application of the algorithms is clutter removal, where
classification methods facilitate the retrieval of points on the object of interest from the point cloud.
These methods include graph-cut based method (Pan et al. 2016) and structure less nearest-neighbor
techniques composed of K-nearest neighbours methods (Bhatia 2010). Nearest neighbor search
algorithms have been found to be the most effective (Bajramovic et al. 2006) for removing clutter. A
variety of KNN searching algorithms are used in point cloud modeling (Zhao and Meng 2009) to

calculate surface curvature in addition to noise and clutter removal.

KNN is acknowledged as a simple, robust and effective method for classification of points as belonging
to either the object of interest or to the clutter. Nonetheless, KNN still faces two main shortcomings as
a post-processing technique (Jiang et al. 2007): (1) the distance function used to measure the differences

and similarities between the 2 point clouds is the standard Euclidean distance, and (2) the neighborhood
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size is artificially assigned as an input parameter K, biasing the algorithm by the arbitrary nature of the
K value chosen. Since the accuracy of the algorithm is highly dependent on the K value, researchers
have proposed several models for selecting this value. For example, Xie proposed a model named
Selective Neighborhood Naive Bayes, also known as SNNB (HWLZLM, SNNB). The basic idea is that
multiple K values are tested and the one with the highest estimated accuracy to classify the data is
selected. As stated in (Guo et al. 2003), the simplest approach to selecting the K value in this model is
to run the algorithm multiple times with different K values and to identify the K associated with the
best trial.

To evaluate the success of the exclusion of clutter from the point cloud, the method presented in this
chapter uses two measures: (1) number of points erroneously remaining in the point cloud,(2) number
of points erroneously removed from the point cloud. The main contribution of this chapter is the
selection of an optimal K value depending on the number of points in the as-design point cloud and in
the as-built point cloud. The method was administered on cylindrical objects (pipe spools). The
accuracy of the model was tested and found to have an R square value equal to 0.75.

The following sections of this chapter is organized as follows. In Section 5.2, a survey of 3D imaging
methods in construction and post-processing techniques for finding the object of interest in a point
cloud is provided. In Section 5.3, the methodology for the experiment conducted is described. In
Section 5.4, includes details of applying the proposed methodology. Discussion and future works has

been discussed in Section 5.5.

5.2 Background

Two main areas have been investigated: (1) the use of 3D-imaging in construction, and (2) post-
processing algorithms for removing clutter in point clouds. A focus was placed on K-Nearest Neighbor
post-processing algorithms as this study utilized a KNN technique as the primary method for the clutter

removal algorithm.

5.2.1 3D-imaging in construction

Currently, ground-based laser scanners are the superior acquisition technology used as they can provide
the highest accuracy and density point clouds. Bosche and Haas used laser scanners to develop a
framework for construction object recognition using the projection of the BIM model onto the relative
position of the scanner (Bosche and Haas 2008b). Turkan presented a framework for automatic project
schedule updating based on the object recognition method previously developed by Bosche (Turkan et
al. 2012b). Nahangi developed a method for progress tracking using robotics analogy and forward

kinematics with a focus on mechanical, electrical and piping components (Nahangi et al. 2015).
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Coupling 3D design models with the acquisition of high quality 3D spatial data has made it possible to
directly compare a completed industrial component with its design model. Akinci presented a method
for comparing as-planned 3D design information (CAD model) with periodic imaging of critical
construction components (Akinci et al. 2006b). A great deal of research has gone into using 3D designs
with 3D spatial data to evaluate pipe spool assemblies as they are critical for industrial construction
projects including refineries and power plants. Pipe spool assemblies are typically prefabricated in shop
and then sent to the site to be assembled which requires accurate fabrication and an incident-free
transportation to the site. This has prompted researchers to investigate methods to better regulate the
prefabrication to ensure that spools are being fabricated within tolerance. Nahangi developed an
automated approach for monitoring and assessing fabricated pipe spools and structural systems using
automated scan-to-BIM registration (Nahangi, and Haas 2014, Nahangi et al. 2015). The method
reliably detects the presence of dimensional non-compliance. Lee introduced a new method to extract
critical points and centerlines in pipelines to reconstruct the model and compare it with BIM for
progress tracking (Lee et al. 2012). These methods still leave room for improvement and further

development to better assess the as-built conditions of pipe spools.

5.2.2 Post-processing algorithm: retrieval of object-of-interest

Manually removing clutter is a tedious task that requires automation to allow it to be part of a practical
3D imaging application in construction. Researchers have investigated and developed multiple
frameworks using Nearest Neighbor (NN) methods for finding and recognizing objects of interest in
point clouds (Czerniawski et al. 2016b). NN methods can be classified into two categories: 1) Structure
Less NN techniques, which overcome the memory limitation issue, where the whole data sets are
classified into training data and sample data points and distance is then calculated to find the nearest
neighbor, and 2) Structure Based NN algorithms which reduce the computational complexity by
structuring the data into different organisations such as Ball Tree (Liu et al. 2006), KD-Tree (Friedman
et al. 1977) and NB-Tree (Kohavi 1996). In this study, a KD-Tree was used to structure the points of
the point cloud in a 3D space. An Approximate Nearest Neighbor Search algorithm was then performed
on the sorted data to extract the desired points from the point cloud. Jiang surveyed improved KNN
search algorithms that either improve the distance function, the neighborhood size or the class

probability estimation (Jiang et al. 2007).

The main contribution of this chapter is to develop and evaluate an effective process that facilitates the
retrieval of an object from a point cloud scene. The method was applied to cylindrical objects, pipe
spools, and presents a mathematical solution to determine the optimal K-value to retrieve an object of

interest from a cluttered point cloud.
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5.3 Methodology

The methodology for optimal object retrieval of cylindrical objects from point clouds and the flow of
information between various components is illustrated in Figure 5-2. The objective of the proposed
method is to determine a mathematical solution to find the optimal threshold value in the decluttering
process utilizing a KNN (K Nearest Neighbour) algorithm. KNN is performed to remove points in the
scan point cloud that do not correspond to the model point cloud. For each point in the model, K points
in the scan point cloud that are closest to that point will be selected and stored in a new point cloud or
matrix. The goal is to store all points from the scan that correspond to the model and remove all points
that are considered clutter. Increasing the threshold value (K) in the algorithm will increase the number
of clutter points that are accepted as corresponding to the model (False Positive) and decreasing the K
value will increase the number of points corresponding to model that are incorrectly deemed to be
clutter (False Negative) Figure 5-5.

Two criteria have been defined to determine how successfully desired points are extracted from the
scan for each K value. The criteria are defined as follows:

Number of points corresponding to the model and removed erroneously (5 1)

Void Rate (VR) =

Number of points in the point cloud after applying KNN

. Number of clutter points that are incorrectly accepted
Noise R NR) = 2
oise Rate ( ) Number of points in the point cloud after applying KNN (5 )
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Figure 5-2. Research methodology and the flow of information between different components.

The optimal K value is one where both VR and NR are minimized. Assuming that minimizing both
criteria is of equal importance, the optimal value will be determined by intersecting VR (Void Rate)
and NR (Noise Rate) trend lines (Figure 5-6 and Figure 5-7). Experiments were carried out on a pipe
spool assembly in Ralph Haas Infrastructure and Sensing Analysis laboratory at the University of
Waterloo. The assembly measures approximately 2mx 1.5m consisting of four individual pipe spools.
(Figure 5-3)

Figure 5-3. The test pipe spool assembly. Angular distortions to the assembly were induced at the
flange numbers one and two, numbered in red. Branches are numbered in white for further reference

in the article.

5.3.1 Finding the object of interest

A set of experiments was carried out on an industrial pipe spool to verify the proposed methodology

for optimal clutter removal using a KNN algorithm on cluttered 3D point clouds. The object-of-interest,
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the pipe spool, is located in a laboratory environment and is surrounded by other unwanted objects that
get scanned resulting in noisy point clouds.

Five different scenarios were generated using the pipe spools. Four scans were taken from different
locations for each scenario. The four scans were taken to ensure that a complete representation of the
assembly in each scenario was captured. The first scenario is the case were the assembly complies with
the design. In second scenario a rotational error has been imposed on flange number 1. The third
scenario has a rotational error imposed at flange number 1. In the final two scenarios, the assembly was
disassembled into its component spools (Figure 5-4) and the component spools were each individually
tested for optimal extraction. In the fourth scenario all the individual spools comply with their designs
and in the fifth scenario deviations have been imposed on branches one and four. A total of 11 scene

point clouds were acquired.

Figure 5-4. Disassembled spools for scenarios four and five. (a) All spools are compliant to the
design. (b) Branch numbers one and four have been distorted.
Once scanning is completed the object must be found in the scans. This study utilized the algorithm
provided in Chapter 3 (Papazov and Burschka 2010) to find the object of interest. This algorithm
requires two inputs. The first input is the BIM (as-designed) model in Stereo Lithography (STL) format.
The second input is the scene or the as-built point cloud. Once the two inputs are loaded into the object
finding algorithm, a transformation matrix is computed and outputted. The transformation matrix is a
4x4 matrix which consists of a 3x3 matrix describing a 3D rotation of the point cloud and a 3%1 vector
describing the translation. From the eleven acquired scenes, seven had the object of interest detected

by the object finding algorithm.
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5.3.2 Point cloud isolation

In order to ensure that all the surfaces of the object of interest (pipe spools) were captured, scans were
taken from four perspectives. These four scans were then merged into a single point cloud. The
operation of merging point clouds of the same scene, taken from different angles, is referred to as
registration. To register a point cloud, three corresponding points must be identified and selected in
each scan. White spheres (shown in (Figure 5-3) were placed in the scene to be used as the
corresponding points between scans for registration. “Faro Scene,” a commercially available software
was used to merge the point clouds together. Once the scans were registered, the resulting point cloud
was down sampled from its initial two million points to approximately two hundred thousand points.
The initial point cloud was too dense for the purpose of this study and down sampling allowed the
computation time to be reduced for the algorithm. Down sampling populates a new point cloud by
sampling points from the original point cloud and was done according to Poisson-disk distribution
which resulted in the point cloud where the points were equally distributed across all surfaces. In other
words, an equal number of points would be found for any two arbitrarily chosen surfaces of equal area.
For more information on the down sampling algorithm please refer to (Corsini et al. 2012).

Given the two point clouds and the transformation matrix the extraction of the object of interest was
calculated (see Algorithm 1). A third point cloud was calculated using stored points from the scene
point cloud that have been determined to correspond to the model point cloud. The filtering process
was performed using a KNN algorithm. This study includes an iterative step where the K value changes
to examine its effect on the success of object extraction. The processes in this section are summarized

below in Algorithm 1.

Algorithm 1: Scene representation, matching and

Isolation

Input: Model point cloud (M), Scene point cloud (S)
and Transformation matrix (T )
Output: Isolated object-of-interest point cloud (S;)
fromS: S, €S
Superimpose M on Susing T
Perform ICP for fine registration
Select a K value
Create a new K x M matrix (N)
Repeat M times
For M; e M
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- Find K nearest point from (S) to (M)
- Store points in matrix (N)
End For

End Repeat

Report N

5.3.3 Calculation of VVoid Rate and Noise Rate

After down sampling and performing Algorithm 1, the success of Algorithm 1 was measured by
performing Algorithm 2, described below. The success of object extraction was measured with two
defined criteria. As explained in Section 5.3.1, VVoid Rate and Noise Rate are the two parameters for
measuring the accuracy of the extraction. The accuracy was changed by changing the K value. Figure

5-5 shows an example of a false positive and a false negative.

()

Figure 5-5. Challenges of removing clutter points without removing points on the object of interest.
(a) Example of remaining clutter points after clutter removal for K equal to 8. (b) Example of

removed points from the object of interest for the same K value.

Algorithm 2: Void Rate and Noise Rate at a Certain K

value

Input: Model point cloud (M), Scene point cloud (S)
, Transformation matrix (T ) and Isolated point cloud (N)
Output: Noise Rate (NR) and Void Rate (VR)

K = {1,10,50,VM, VS, 5}

Repeat for all K; € {K}

- Manually remove remained clutter points in (N) and
store the trimmed point cloud as (N,)

- Manually remove clutter points from (S) and store the
trimmed point cloud as (N3)

- n = number of points in N,
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- m = number of points in Ny

- @ = number of points in N

Remained noise after decluttering = g-n
Mistakenly removed points after decluttering = m-n
- Calculate VR and NR

m-n

-VR =

-NR =2
q

End Repeat
Report VR, NR and K;

5.3.4 Best Fit and Optimization

After performing Algorithm 2, a set of VR and NR values was calculated where each member of the
set was calculated based on a distinct K value. To find the optimal K value for each scan, NR and VR
values were graphed with respect to their corresponding K value as shown in Figure 5-6 . Once
tabulated, trend lines were fitted to each data set. The optimal K value for each scan was then calculated
based on the intersection of the trend lines. The intersection point was found by solving the system of
equations created by the two trend lines. This process was repeated for all of the scans acquired.
MATLAB?’s curve fitting tool was used to fit the data set of optimal K values and the size of the
corresponding model and scan point clouds to a mathematical model. The results of this section are

discussed in Section 5.4. Algorithm 3, used to fit the mathematical model, is described below.

Algorithm 3: Finding the Best Fit with Varying K value

Input: Model point cloud (M), Scene point cloud (S) , Set of
Optimal K values of testing sample {K’}

Output: equation of best fit plane

- Normalize M and S values

- Import M, S and K’ value into the optimization tool

- Use linear regression to find the best fit plane

- Calculate R?to evaluate goodness of the plane

Report parameters of the fitted plane and R?
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5.4 Results
Applying Algorithms 1 and 2, as defined in Section 5.3, will generate VR and NR values for each K

value used for each scene considered. Table 5-1 provides a summary of the results obtained by applying
the algorithms on scene one (compliant spool assembly).

The headings used in the table are defined as follows:

M: number of points in model point cloud

S: number of points in scan point cloud

K: threshold value used in KNN search algorithm

N: number of points in isolated point cloud

m: number of points after manually removing points that are considered as noise in the initial scan point
cloud

n: number of points in the isolated point cloud (after applying the clutter removal algorithm) that
correspond to the object of interest

g: number of points in the isolated point cloud

Table 5-1. VR and NR values computed using different K values for scene 1

M S K N m-q n-q q VR NR
12061 81272 1 3546 33 2648 6161 0.42 0.005
12061 81272 7 5447 437 1151 6161 0.18 0.07
12061 81272 10 5668 481 974 6161 0.158 0.078
12061 81272 50 6882 776 55 6161 0.009 0.125
12061 81272 110 7464 1307 4 6161 0.006 0.2121
12061 81272 285 7935 1798 24 6161 0.003 0.29

Figure 5-6 shows the curves that were fit to the data summarized in Table 5-2. VR and NR must be
minimized to find the optimal K value for each scan. To do so, a trend line was fitted to both VR and
NR data sets. The optimal K value was calculated as the solution to the system of equations created by
the VR and NR trend lines. Figure 5-6 graphically depicts the calculation of the optimal K value for

scene number one.
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Figure 5-6. Calculation of optimal K at the intersection of VR and NR trend lines.
For each scan, a logarithmic equation was used to fit a line to the void rate (VR) data points while a
power equation was used to fit a line to the noise rate (NR) data points. Equations (5.3) and (5.4) below
illustrate the general formats of equations that were used to calculate the trend lines that best fit the data

points.
Y=alnx+bandR,> (5.3)
Y = dx? and R, (5.4)

In equation (5.3), R,% denotes the root mean square values between the observed data points and the
corresponding VR values predicted by the trend line. Similarly, R,* denotes the root mean square
values between the observed data points and the corresponding NR values predicted by the trend lines.
Solving the system of equations defined by equations (5.3) and (5.4) provides the optimal K value for

each scan.

Table 5-2. Parameter values for fitted lines and subsequent optimal K calculation.

Scene No. a b a b R,? R,? Koptimat
1 0.0487 -0.0195 0.832 -1.12 0.92 0.81 11
2 0.036 -0.035 0.2478 -0.495 0.87 0.83 17
3 0.052 -0.0417 0.0458 -0.273 0.96 0.46 6
4 0.196 -0.2294 0.0965 -0.122 0.66 0.45 7
5 0.2938 -0.2586 -0.021 0.13 0.81 0.47 5
6 0.1371 -0.1559 0.4918 -0.68 0.73 0.80 8
7 0.0982 -0.0573 1.0744 -0.65 0.88 0.66 9
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A 3D plot was generated with the size of the scan point cloud on the x axis, the size of the model
point cloud on the y axis and the optimal K value computed on the z axis. A best fit plane was then
fitted to this plot. The equation of this best fit plane provides a mathematical solution to find the
optimal K value based on the size of both the scan and model point clouds. Equation (5.5) shows the
parametric form of the equation used to fit the plane. Table 5-4 shows the inputs and predictions that

the model used to generate the variables.

Koptimar = M + a5 +ay  (5.5)
M and S denote to the number of points in the scene and model point clouds, respectively.
a4, a, and aj are the coefficients that were determined. MATLAB’s curve fitting tool was used to
best fit the plane. Table 5-3 and Table 5-4 summarize the parameters calculated within their 95%
confidence interval. Table 5-4 shows both the observed and predicted optimal K values, along with
the R? for plane that was fit.
Table 5-3. Coefficients calculated for the best fit plane.

Qo a a
Most Probable Value 9.14 2.706 2.05
Lower Bound Value Within %95 Level of Confidence 5.26 -1.52 -2.18
Upper Bound Value Within %95 Level of Confidence 13.02 6.93 6.27

To calculate the coefficients the input data had to be normalized. The mean and standard deviation for
the number of points in the scan were calculated to be 9.3+e4 and 3.67+e4 respectively. The number
of points in the model point clouds was also standardized with a mean value of 1.05+e4 and a
standard deviation of 1.533+e3.

Figure 5-7 show a graphical representation of the plane fitted to the data and the residual values

between the data sets and the predictive model.
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Figure 5-7. Graphical representation of the fitted plane to predict optimal K value. (a) 3D
representation of the predictive model. (b) Residual values from the predictive plane.
To determine the goodness of fit, R? was calculated. R? was calculated by dividing the sum of

squares due to regression (SSR) over total some of squares (SST).

Table 5-4. Comparison of the calculated K values and the predicted values using the fitted plane

along with a measure of the goodness of fit.

Observation Predicted SSE SST SSR R?

Scene Size Model Size  Optimal K Optimal K 0.75
81272 12061 11 10 1 3.45 0.73
145265 12061 14 11 49 78.45 3.45
28009 12061 6 9 9 9.87 0.02
108007 8864 7 14 49 45 23.59
108007 10841 5 12 49 17.16 8.16
108007 9327 8 13 25 1.306 14.87
74569 8864 9 15 36 0.02 34.30
Mean 8.6 Sum 218 114.85 1880

5.5 Conclusion and recommendations based on Chapter 5 research

This chapter of the thesis presented a case study in which clutter points were optimally removed from
a scan point cloud. A mathematical closed form solution was provided for calculating the optimal K
value for removing clutter points in a point cloud based on number of points in scan and model point
clouds using a KNN algorithm. Experimental data was gathered by scanning a pipe spool assembly
under different configurations with respect to the compliance of the assembly. The individual spools
from the assembly were also experimented on individually to provide additional data points to develop

a more accurate model. A plane was ultimately fitted to the data providing an R square value of 0.75.
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To develop a more widely adaptable model, objects with different geometric shapes have to be tested
using the developed algorithm.

While KNN is a simple, robust and effective method for classification of points as being either part of
the object of interest or as clutter, it is ineffective when it is assessing a scan of an object that has a
gross misalignment compared to its model. With respect to pipe spools, two examples of gross
misalignment that make KNN ineffective are: when a pipe that is substantially longer than the design
is used and when an elbow is installed with a 90° rotation from the design. In both of these instances,
KNN will not recognize the points in the scan that do not correspond to the model are part of the
erroneous assembly and will remove these points as if they are clutter.

The authors will pursue more accurate prediction models such as, neural networks, Bayesian network
and other machine learning algorithms to develop a more robust solution for clutter removal. However,
depending on the application, mathematical closed form models may not be accurate enough and are

vulnerable to errors.
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Chapter 6
Thesis Summary, Conclusions and Future Work

6.1 Summary

3D imaging technologies have the potential to be employed for checking the work in progress against
the design information and acceptance specification industrial construction processes. However, a
number of challenges exists for these technologies to be applied in industrial pipe spool fabrication
facilities. One of the challenges is the necessity for real time 3D point cloud acquisition. Any acquisition
technology/tool that disrupts the fabrication process is not appreciated by the industry. That is why
Chapter 3 focuses on the use of low cost range cameras for real time data acquisition. A number of
challenges were identified for the current state of these technologies for large objects. These challenges
include: (1) being vulnerable to movement due to utilization of inaccurate sensors for localization and
mapping, and (2) being sensitive to the lighting condition, object colour (reflectivity), short scanning
range (up to 5 m), and non-linear increase in error while moving away from objects. However, the rate
to which computational processing power is increasing coupled with more accurate sensors becoming
available at lower costs, has led the author to believe that these challenges will be addressed in near

future and the application of these sensors will increase substantially.

Once a reliable and accurate point cloud is captured, two challenges are identified. Chapter 4 focuses
on experimenting and adapting an object finding method to address the major object finding challenges
in construction. Occlusion, clutter and incomplete scans are unavoidable parts of scanning in
construction sites. Manually selecting an object of interest in a point cloud is a time consuming process,
which has to be semi- or fully automated. The examined method works in cases where an incomplete
point cloud is imported to find and isolate the object-of-interest. This capability addresses the
unavoidable occlusion challenge in the data acquisition phase. It was also shown that if a threshold
value is met as the required level of density, the object-of-interest is robustly isolated from the point
cloud. And finally, it was demonstrated that even with a massively cluttered point cloud, the algorithm
is capable of extracting the object from the clutter surrounding it; however, the level of noise increases

inevitably, as the clutter increases.

To improve the clutter removal process, Chapter 5 focuses on a mathematical solution to optimally
choose the threshold value in the KNN algorithm. The optimization is set to minimize number of

outliers while minimizing the number of removed points on the object of interest.
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6.2 Research contributions and conclusions

The contributions of the work are as follows: (1) a number of challenges and advantages of applying
low cost range cameras using structured light technology for quality control in pipe spool fabrication
facilities were identified and discussed, (2) a robust object finding method was adapted and studied
experimentally to address major challenges in construction, (these challenges include: occlusion,
clutter, and density variation,) and (3) a mathematical closed form solution was provided to optimize

the threshold value used in KNN algorithm to optimally remove clutter points.
Following from these contributions are three conclusions:

(1) While a number of challenges were identified when using these low cost range cameras, their
resulting point clouds were sufficiently accurate on smaller scans. This means that these sensors, if

applied correctly, can be valuable for real time applications.

(2) With increased computational power, a one-to-one comparison of point sets utilizing RANSAC
could be applied to find MEP components automatically and robustly, even in highly occluded and
cluttered point clouds. For more practical purposes, a semi-automated method where users have to
choose three corresponding points between the scan and model point clouds could be utilized. Using
these three points, a PCA (principal component analysis) will be applied to roughly align the two point
clouds followed by an ICP (iterative closest point) to locally optimize the overlay between the scan and
model.

(3) The success of the clutter removal algorithm is highly dependent on the used threshold value of K.
The optimization provided will minimize the number of outliers and removed points from object of
interest. For more accurate categorization of data points more sophisticated algorithms and data training

methods should be utilized such as deep neural networks.

6.3 Limitations

The evaluation of the applicability of real time sensors is conducted on two cases. More cases with
variations in size, lighting, object colour, speed of scan and etc. should be conducted to better evaluate

the limitations of these devices.

While the RANSAC based object finding algorithm proved to be somewhat effective for automatic
finding, it relies on an overlap parameter. Although this parameter is calibrated for the two case studies
and proved to be effective, its performance could decline when it is applied to other objects and
construction elements. Also, it was implemented using commercial software, which is not completely
defined.
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Mathematical closed form solutions are vulnerable to the extreme data points and may yield wrong
answers. In order to use a more sophisticated data classification algorithm more data points should be

acquired.

6.4 Future work

In Chapter 4, the recognition and localization of the 3D model is performed in a significantly faster timeframe,
the isolation module takes the dominant part of the time required for processing. Faster and more effective search
strategies such as kd-tree and graph theory may improve the processing time for the isolation, and this inadequacy
may be appropriately addressed. This could be a potential research direction for future work. Also, to extend the
study conducted in Chapter 5, a more widely adaptable model has to be developed. The model has to
consider the impact of objects with different geometric shapes.

The author will study the impact of an integrated framework utilizing portable scanners and real time
visual feedback on pipe fitters productivity to quantitatively measure the effectiveness of a framework
integrating all three contributions of this work.
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Appendix A

MATLAB code: finding the optimal K value for clutter removal

clear all;
clc;

s=textread('lab_scan.txt");
scan=pointCloud(s);

m=textread('model.txt");
model = pointCloud(m);

m(:,4)=1;

mt=m’;

A =[-0.828077197 -0.000714839 -0.560613871 288.2137451;
-0.560241342 0.037523892 0.827479005 -387.1165771,
0.020445079 0.999295533 -0.031473041 -101.2927094;

000 1]

c=A*mt;

ct=c’,

ct=ct(:,1:3);

t_model=pointCloud(ct); %Transformed model

n=round(scan.Count/t_model.Count); %number of nearest neighbors (k)
n=8
filter_scene=zeros(n*t_model.Count,3);

for i=1 : t_model.Count
point = t_model.Location(i,:);
[indices,dists] = findNearestNeighbors(scan,point,n);

for j=1:n
filter_scene((i-1)*n+j,:) = scan.Location(indices(j),:); % here we are reading all the coordinates of nearest
neighbors and puting them in a matrix of closest points
end

end
f_scene=pointCloud(filter_scene);
[tform ,ft_model, rmse]=pcregrigid(t_model,f_scene,'Extrapolate’,true,'MaxIterations',50);

figure(‘units','normalized','outerposition’,[0 0 1 1])
subplot(1,2,1)

pcshowpair(f_scene,ft_model)

title('Rango+ICP")

axis off

subplot(1,2,2)
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pcshowpair(f_scene,t_model)
title('Rango")
axis off

figure('units','normalized’,'outerposition’,[0 0 1 1])
subplot(1,2,1)

pcshow(f_scene)

title('K-nearest points’)

axis off

subplot(1,2,2)

pcshowpair(scan,t_model)

title('Rango’)

axis off

figure('units','normalized’,'outerposition’,[0 0 1 1])
subplot(1,2,1)

pcshow(scan)

title('Scan’)

axis off

subplot(1,2,2)

pcshow(model)

title('Model")

axis off
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Appendix B

MATLAB code: for resampling using weighed octree (Chapter 3)

classdef OcTree < handle
% OcTree point decomposition in 3D

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

OcTree is used to create a tree data structure of bins containing 3D
points. Each bin may be recursively decomposed into 8 child bins.

OT = OcTree(PTS) creates an OcTree from an N-by-3 matrix of point
coordinates.

OT = OcTree(...,'PropertyName',VALUE,...) takes any of the following
property values:

binCapacity - Maximum number of points a bin may contain. If more
points exist, the bin will be recursively subdivided.
Defaults to ceil(numPts/10).

maxDepth - Maximum number of times a bin may be subdivided.
Defaults to INF.

maxSize - Maximum size of a bin edge. If any dimension of a bin
exceeds maxSize, it will be recursively subdivided.
Defaults to INF.

minSize - Minimum size of a bin edge. Subdivision will stop after
any dimension of a bin gets smaller than minSize.
Defaults to 1000*eps.

style - Either 'equal’ (default) or 'weighted'. 'equal’
subdivision splits bins at their central coordinate
(ie, one bin subdivides into 8 equally sized bins).
‘weighted' subdivision divides bins based on the mean
of all points they contain. Weighted subdivision is
slightly slower than equal subdivision for a large
number of points, but it can produce a more efficient
decomposition with fewer subdivisions.

Example 1: Decompose 200 random points into bins of 20 points or less,
then display each bin with its points in a separate colour.

Example 2: Decompose 200 random points into bins of 10 points or less,

shrunk to minimallly encompass their points, then display.

pts = rand(200,3);

OT = OcTree(pts, binCapacity',10,'style’,'weighted");

OT.shrink

figure

boxH = OT .plot;

cols = lines(OT.BinCount);

doplot3 = @(p,varargin)plot3(p(:,1),p(:,2),p(:,3),varargin{:});

for i = 1:0T.BinCount
set(boxH(i),'Color',cols(i,:),'LineWidth', 1+OT.BinDepths(i))
doplot3(pts(OT.PointBins==i,:),"",'Color',cols(i,:))

end

axis image, view(3)
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%

%

% OcTree methods:

%  shrink - Shrink each bin to tightly encompass its children

% query - Ask which bins a new set of points belong to.

% plot, plot3 - Plots bin bounding boxes to the current axes.

%

% OcTree properties:

% Points - The coordinate of points in the decomposition.

% PointBins - Indices of the bin that each point belongs to.

% BinCount - Total number of bins created.

% BinBoundaries - BinCount-by-6 [MIN MAX] coordinates of bin edges.
% BinDepths - The # of subdivisions to reach each bin.

% BinParents - Indices of the bin that each bin belongs to.

%  Properties - Name/Val pairs used for creation (see help above)
%

% See also gqtdecomp.

% Created by Sven Holcombe.

% 1.0 -2013-03 Initial release

% 1.1 -2013-03 Added shrinking bins and allocate/deallocate space
%

% Please post comments to the FEX page for this entry if you have any
% bugs or feature requests.

properties
Points;
PointBins;
BinCount;
BinBoundaries;
BinDepths;
BinParents = zeros(0,1);
Properties;

end

methods

function this = OcTree(pts,varargin)
% This is the OcTree header line
validateattributes(pts,{'numeric'},...
{'real’,'finite’,'nonnan’,'ncols', 3},...
mfilename,'PTS")

% Initialise a single bin surrounding all given points
numPts = size(pts,1);

this.BinBoundaries = [min(pts,[],1) max(pts,[],1)];
this.Points = pts;

this.PointBins = ones(numPts,1);

this.BinDepths = 0;

this.BinParents(1) = 0;

this.BinCount = 1;

% Allow custom setting of Properties
IP = inputParser;
IP.addParamValue('binCapacity',ceil(numPts)/10);
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IP.addParamValue('maxDepth',inf);
IP.addParamValue('maxSize',inf);
IP.addParamValue('minSize',1000 * eps);
IP.addParamValue('style','equal’);
IP.parse(varargin{:});

this.Properties = IP.Results;

% Return on empty or trivial bins
if numPts<2, return; end

% Start dividing!

this.preallocateSpace;

this.divide(1);

this.deallocateSpace;
end

% MATLAB performs better if arrays that grow are initialised,
% rather than grown during a loop. These two functions do just that
% before and after the identification of new beens.
function preallocateSpace(this)
numPts = size(this.Points,1);
numBins = numPts;
if isfinite(this.Properties.binCapacity)
numBins = ceil(2*numPts/this.Properties.binCapacity);
end
this.BinDepths(numBins) = 0;
this.BinParents(numBins) = 0;
this.BinBoundaries(numBins,1) = 0;
end
function deallocateSpace(this)
this.BinDepths(this.BinCount+1:end) = [];
this.BinParents(this.BinCount+1:end) = [];
this.BinBoundaries(this.BinCount+1:end,:) = [];
end

function divide(this, startingBins)
% Loop over each bin we will consider for division
for i = 1:length(startingBins)
binNo = startingBins(i);

% Prevent dividing beyond the maximum depth

if this.BinDepths(binNo)+1 >= this.Properties.maxDepth
continue;

end

% Prevent dividing beyond a minimum size

thisBounds = this.BinBoundaries(binNo,:);

binEdgeSize = diff(thisBounds([1:3;4:6]));

minEdgeSize = min(binEdgeSize);

maxEdgeSize = max(binEdgeSize);

if minEdgeSize < this.Properties.minSize
continue;

end
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% There are two conditions under which we should divide

% this bin. 1: It's bigger than maxSize. 2: It contains

% more points than binCapacity.

oldCount = this.BinCount;

if nnz(this.PointBins==binNo) > this.Properties.binCapacity
this.divideBin(binNo);
this.divide(oldCount+1:this.BinCount);
continue;

end

if maxEdgeSize>this.Properties.maxSize
this.divideBin(binNo);
this.divide(oldCount+1:this.BinCount);
continue;

end

end
end

function divideBin(this,binNo)
% Gather the new points (a bit more efficient to copy once)
binPtMask = this.PointBins==binNo;
thisBinsPoints = this.Points(binPtMask;:);

% Get the old corner points and the new division point

oldMin = this.BinBoundaries(binNo,1:3);

oldMax = this.BinBoundaries(binNo,4:6);

if stremp(‘weighted',this.Properties.style) && any(binPtMask)
newDiv = mean(thisBinsPoints,1);

else
newDiv = mean([oldMin; oldMax], 1);

end

% Build the new boundaries of our 8 subdivisions
minMidMax = [oldMin newDiv oldMax];
newBounds = minMidMax(]...

123456;

1264509;

153486;

156489;

423756;

426759;

453786;

456789)];

% Determine to which of these 8 bins each current point belongs
binMap = cat(3,[0 0 0],[0 0 1],[0 1 0],[0 1 1]....
[LOO],[101],[110],[111));
gtMask = bsxfun(@gt, thisBinsPaints, newDiv);
[~,binAssignment] = max(all(bsxfun(@eq,gtMask,binMap),2),[],3);
% [~, binAssignment] = ismember(gtMask,binMap,'rows"); % A little slower than above.

% Make the new bins and reassign old points to them
newBinInds = this.BinCount+1:this.BinCount+8;
this.BinBoundaries(newBinlInds,:) = newBounds;
this.BinDepths(newBinlInds) = this.BinDepths(binNo)+1;
this.BinParents(newBinInds) = binNo;
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this.PointBins(binPtMask) = newBinlInds(binAssignment);
this.BinCount = this.BinCount + 8;
end

function shrink(this)
% Shrink all bins to bound only the points they contain
% WARNING: this operation creates gaps in the final space not
% covered by a bin. Only shrink OcTree structures when you only
% intend to use the points used to create the tree to query the
% tree space.
binChildren = arrayfun(@(i)find(this.BinParents==i),1:this.BinCount,'Un',0)’;
binlsLeaf = cellfun(@isempty, binChildren);
for i = find(binlsLeaf(:))'
binShrink_recurse(i, true)
end

function binShrink_recurse(binNo, isLeafBin)
% Build a list of all points that fall within one of the
% bins to be checked, and the list of which point falls in
% which bin.
oldBoundaryMin = this.BinBoundaries(binNo,1:3);
oldBoundaryMax = this.BinBoundaries(binNo,4:6);
if isLeafBin
% Shrink bin based on child POINTS
ptsMask = this.PointBins==binNo;
if ~any(ptsMask)
% No points, shrink the bin to infinitely small
proposedBoundaries = [oldBoundaryMin oldBoundaryMin];
else
pts = this.Points(ptsMask,:);
proposedBoundaries = [...
max([oldBoundaryMin; min(pts,[],1)]) ...
min([oldBoundaryMax; max(pts,[1,2)1)];
end
else
% Shrink bin based on child BINS
childBoundaries = this.BinBoundaries(binChildren{binNo},:);
proposedBoundaries = [min(childBoundaries(:,1:3),[],1) max(childBoundaries(:,4:6),[],1)];
end

if ~isequal(proposedBoundaries, [oldBoundaryMin oldBoundaryMax])
% We just shrunk the boundary. Make it official and
% check the parent
this.BinBoundaries(binNo,:) = proposedBoundaries;
parentBin = this.BinParents(binNo);
if parentBin>0

binShrink_recurse(parentBin, false)

end

end

end
end

function binNos = query(this, newPts, queryDepth)
% Get the OcTree bins that new query points belong to.
%
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% BINS = OT.query(NEWPTS) searches the OcTree object OT and

% returns an N-by-1 vector of BINS giving the bin index in

% which each of the N points in NEWPTS is contained. For any

% query points outside all bins in OT, the index -1 is

% returned.

%

% BINS = OT.query(NEWPTS,DEPTH) restricts the search to DEPTH
% levels in the OT bin tree. Note that the first bin

% (containing all other bins in OT) has DEPTH = 1.

if nargin<3
queryDepth = max(this.BinDepths);
end

numPts = size(newPts,1);
newPts = permute(newPts,[3 2 1]);
binNos = ones(numPts,1)*-1;

binChildren = arrayfun(@(i)find(this.BinParents==i),1:this.BinCount,'Un’,0)';
binlsLeaf = cellfun(@isempty, binChildren);
ptQuery_recurse(1:numPts, this.BinParents==0, 0)

function ptQuery_recurse(newIndsToCheck_, binsToCheck, depth)

% Build a list of all points that fall within one of the

% bins to be checked, and the list of which point falls in

% which bin.

boundsToCheck = this.BinBoundaries(binsToCheck,:);

[ptinBounds, subBinNo] = max(all(...
bsxfun(@ge, newPts(:,:,newlndsToCheck ), boundsToCheck(:,1:3)) & ...
bsxfun(@le, newPts(:,:,newlndsToCheck ), boundsToCheck(:,4:6))...

2),[1,1);

if ~all(ptinBounds)
% Special case usually when depth=0, where a point may
% fall outside the bins entirely. This should only
% happen once so let's fix it once and let subsequent
% code rely on all points being in bounds
binNos(newlIndsToCheck _(~ptInBounds)) = -1;
newlndsToCheck_(~ptInBounds) = [];
subBinNo(~ptInBounds) = [];

end

binNosToAssign = binsToCheck(subBinNo);

newlndsToAssign = newlndsToCheck_;

binNos(newlIndsToAssign) = binNosToAssign;

% Allow a free exit when we reach a certain depth
if depth>=queryDepth

return;
end

% Otherwise, for all of the points we just placed into

% bins, check which of the children of those bins those
% same points fall into

[ungBinNos, ~, ungGrpNos] = unique(binNosToAssign);
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for i = 1:length(ungBinNos)
thisPtMask = unqGrpNos==i;
if ~binlsLeaf(ungBinNos(i))
ptQuery_recurse(newlndsToCheck_(thisPtMask), binChildren{ungBinNos(i)}, depth+1)
end
end

end
end

function h = plot(this,varargin)
% OcTree.plot plots bin bounding boxes of an OcTree object
%
% H = OT.plot('name’,value,...) allows you to specify any
% properties of the bounding box lines that you would normally
% supply to a plot(...,'name’,value) command, and returns plot
% object handles (one per bin) to H.
hold on;
h = zeros(this.BinCount,1);
for i = 1:this.BinCount
binMinMax = this.BinBoundaries(i,:);
pts = cat(1, binMinMax([...
123;423;453;153;123;...
126;426;456;156;126;123)),...
nan(1,3), binMinMax([4 2 3; 4 2 6]),...
nan(1,3), binMinMax([4 5 3; 4 5 6]),...
nan(1,3), binMinMax([1 5 3; 1 5 6]));
h(i) = plot3(pts(:,1),pts(:,2),pts(:,3),varargin{:});
end
end
function h = plot3(this,varargin)
% OcTree.plot plots bin bounding boxes of an OcTree
%
% See also OcTree.plot
h = this.plot(varargin{:});
end
end
end
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Appendix C Enlarged Photos Used in Chapter 2
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