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Abstract 

Within industrial construction, piping can constitute up to 50% of the cost of a typical project. It has 

been shown that across the activities involved in pipe fabrication, pipe fitting has the highest impact on 

the critical path. The pipe fitter is responsible for interpreting the isometric drawing and then 

performing the tack welds on piping components so that the assembly complies with the design. Three 

main problems in doing this task are identified as: (1) reading and interpreting the isometric drawing is 

challenging and error prone for spatially complicated assemblies, (2) in assemblies with tight allowable 

tolerance, a number of iterations will take place to fit the pipes with compliance to the design. These 

iterations (rework) will remain unrecorded in the production process, and (3) no continuous 

measurement tool exists to let the fitter check his/her work in progress against the design information 

and acceptance specifications. Addressing these problems could substantially improve pipe fitters’ 

productivity.  

The objective of this research is to develop a software package integrating a threefold solution to 

simplify complex tasks involved in pipe fabrication: (1) making design information easier to 

understand, with the use of a tablet, 3D imaging device and an application software, (2) providing visual 

feedback on the correctness of fabrication between the design intent and the as-built state, and (3) 

providing frequent feedback on fabrication using a step-by-step assembly and control framework. The 

step-by-step framework will reduce the number of required iterations for the pipe fitter. 

A number of challenges were encountered in order to provide a framework to make real time, visual 

and frequent feedback. For frequent and visual feedback, a real time 3D data acquisition tool with an 

acceptable level of accuracy should be adopted. This is due to the speed of fabrication in an industrial 

facility. The second challenge is to find the object of interest in real time, once a point cloud is acquired, 

and finally, once the object is found, to optimally remove points that are considered as clutter to improve 

the visual feedback for the pipe fitters.  

To address the requirement for a reliable and real time acquisition tool, Chapter 3 explores the 

capabilities and limitations of low cost range cameras. A commercially available 3D imaging tool was 

utilized to measure its performance for real time point cloud acquisition. The device was used to inspect 

two pipe spools altered in size. The acquired point clouds were super-imposed on the BIM (Building 

Information Model) model of the pipe spools to measure the accuracy of the device. Chapter 4 adapts 

and examines a real time and automatic object finding algorithm to measure its performance with 



 

v 

respect to construction challenges. Then, a K-Nearest Neighbor (KNN) algorithm was employed to 

classify points as being clutter or corresponding to the object of interest. Chapter 5 investigates the 

effect of the threshold value “K” in the K-Nearest Neighbor algorithm and optimizing its value for an 

improved visual feedback.   

As a result of the work described in this thesis, along with the work of two other master students and a 

co-op student, a software package was designed and developed. The software package takes advantage 

of the investigated real time point cloud acquisition device. While the object finding algorithm proved 

to be effective, a 3-point matching algorithm was used, as it was more intuitive for the users and took 

less time. The KNN algorithm was utilized to remove clutter points to provide more accurate visual 

feedback more accurate to the workers.  
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Chapter 1  

1.1 Introduction 

Industrial construction is categorized as one of the most expensive construction sectors and thus 

requiring rigorous project management tools and techniques. Industrial construction mostly refers to 

construction of petrochemical, oil and gas, power plants and manufacturing facilities. According to the 

U.S. Census Bureau (U.S Census Bureau News October 2014) $83 billion was spent in 2013 only on 

industrial power generation projects. All developed countries consider industrial construction as a 

primary sector in their economy. Across activities in industrial construction, piping can constitute up 

to 50% of the cost of a typical project. It has also been reported that rework costs between 2% and 20% 

of a construction project (CII 2011). In the context of piping, the 20% rework only accounts for the 

recorded rework and does not consider the iterations a pipe fitter or welder encounters in aligning the 

pipe with the design.  

In order to reduce rework, rigorous and continuous inspections throughout the fabrication process have 

to be employed. Conventionally, pipe fitters and welders focus on doing good work. Once fabrication 

is completed, the quality control personnel are responsible to measure angular and translation errors to 

make sure the fabricated component is within tolerance. Development of a continuous measurement 

framework would have the potential to replace the current lagging process.  Furthermore, manual direct 

contact measuring tools are currently being used, such as tapes and calipers. Utilization of such devices 

increases the subjectivity of the measurement as well as being error prone and time consuming. 

Three dimensional (3D) imaging tools can potentially facilitate a solution for continuous, accurate, 

objective and non-disruptive measurements. These tools are capable of capturing points on surrounding 

surfaces. The technology employed to do so will determine the level of accuracy and required time to 

use the device. Currently, four main technologies for capturing the 3D information of surrounding 

surfaces exist: (1) laser scanning, (2) photogrammetry, (3) structured light sensing, and (4) 3D 

reconstruction using cameras with multiple focal length. While Laser scanning and photogrammetry 

have been employed for over a decade, structured light sensors and multiple focal length cameras have 

only been available since 2012. The main benefits of the recently developed technologies are their 

comparatively low cost and high speed of acquisition. 
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1.2 Problem statement 

Of all the skilled trade work that affects an industrial construction’s critical path, pipe fabrication is 

often the most complex and the most in need of rework (Goodrum et al. 2016). Design information is 

usually conveyed in the format of 2D isometric projections of the designed 3D BIM model, while a 

recent trend towards providing 3D drawings alongside the isometric projection is beginning to form. 

While improved information delivery reduces the probability of misinterpretation of a drawing, it does 

not address the need for a continuous quality control and measurement tool. Hence, engineers need a 

tool to keep track of the built status with respect to the design, accurately, objectively and in real time. 

Such a tool has the potential to be employed in industrial facilities to avoid errors in assemblies, which 

are costly rework scenarios.  

Alternatively, recent advancements in 3D imaging, computer vision, computational geometry, 

augmented reality, information and workflow have enabled their users to access geometric information 

of the physical surrounding with an accuracy up to ±1 𝑚𝑚. This improved control and awareness of 

3D information can potentially reduce the risk of rework in tasks such as pipe fabrication and improve 

workers’ productivity. However, lack of a real time framework has prevented these technologies from 

being further employed in this industry. 

As discussed earlier, reducing rework and optimizing productivity in a fabrication and modularization 

environment could save industrial and commercial constructors up to 20% of the fabrication and 

construction labour costs.  Furthermore, doing work right the first time and in the best way requires 

well trained workers, effective information delivery, feedback, and planning by developing a 

combination of innovative 3D imaging and analysis algorithms. These developments could be 

integrated with augmented reality tools to enhance effectiveness. This thesis is primarily focused on 

pipe fabrication within industrial construction. As a result of the envisioned solution, a pipe fitter will 

have a powerful tool that will overlay 3D scans of a work in progress with the 3D design of the work 

on his/her tablet computer in a way that will guide his/her next steps, help him/her avoid errors in fit 

ups and check tolerances. Implementation and integration of such technology raises important research 

questions. 

In this thesis, three main questions towards the deployment of such technology in industrial 

construction and pipe spool fabrication in particular, are posed and investigated:  

 

 (1) How applicable are the new generation of portable scanners and what are their main benefits and 

limitations?   
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(2) Is utilization of a robust object finding algorithm feasible, given specific challenges existing in 

construction sites (i.e. occlusion, clutter and variations in point cloud density)? 

 (3) How to can the clutter points be removed without removing points belonging to the object of 

interest? 

1.3 Thesis Structure  

In Chapter 2, a thorough background study is presented on standard fabrication procedures in the piping 

industry. Then, different 3D imaging technologies and their application software are described. This 

thesis explores the applicability of recent portable 3D scanning sensors for real time assessments in 

Chapter 3. The next two chapters examine object finding and clutter removal algorithms, which are 

required post processing frameworks for these 3D scanners and devices to be employed in the industry. 

Chapter 6 is a summary of applications and limitations of the topics investigated in this thesis.  
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Chapter 2   

Fabrication Processes and Technology Background 

2.1 Pipe spool fabrication 

Pipe spools are components of larger piping networks intended to carry water, steam, fluids, chemical 

gases, or fuel for industrial processes. Pipe spools are normally made in fabrication facilities, or 

fabrication shops, away from the construction site in a process that involves cutting, bending, forming, 

and fitting individual pipe components and finally welding them together. After the final quality check 

on the pipe spools they will then be shipped to the site. 

Typically, 30% to 50% of the industrial construction work involves pipe spool fabrication. Each piping 

component is part of a larger assembly. A module constitutes from a number of assemblies which will 

be welded or bolted together at specific coordinates dictated by the design. Tight tolerances are usually 

stipulated to ensure that each pipe will fit within an assembly and assemblies meet each other at the 

designed location in modules. That is why within industrial construction, pipe fabrication is chosen as 

a primary focus of study in this thesis.   

The next sections will explore the common practices in piping industry. (And how they will affect 

dimensional control frameworks). Figure 2-1 shows an overview of the next few sections. 

 

Figure 2-1. A general overview of the next sections 

2.1.1 Receiving and reviewing drawings: 

Piping scope is described and transmitted to contractors in the form of isometric drawings. In order to 

fabricate piping, contractors engage in a drafting process that manipulates the scope into manageable 

information pieces for pipe fabricators and welders and packages these pieces together with useful 

fabrication information on what are called cutsheets.  
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This process allows for:  

 densely packaging fabrication-specific information onto a single drawing to facilitate the 

fabrication of a single unit of piping,  

 fabrication of the largest possible pieces of piping that are able to be efficiently fabricated and 

transported,  

 introduction of tracking elements (i.e. weld mapping) to enable progress and quality tracking,  

 dictating (by choosing the endpoints / boundaries of spools) favorable locations for Yard 

Assembly Welds (YAW),  

 removal of extraneous pipe assembly information from fabrication drawings that would 

otherwise clutter an already busy document, and 

 a thorough review of piping scope for errors or discrepancies in the design. 

2.1.2 Nomenclature 

This section of the thesis will explore the common jargons used in the pipe fabrication industry. 

ISO:  

“ISO” is short for “isometrics,” ISO’s are not-to-scale symbolic line drawings that use isometric 

projection to represent the three-dimensional shape of the pipe on a two-dimensional drawing. Used in 

the context of pipe fabrication and assembly, isometric refers to the drawing itself, and not just the 

method of representation. ISOs are used in the module assembly yard or the project site to assemble 

spools into larger piping sections. As such, isometrics include information regarding the support of the 

piping sections. ISOs contain not only dimensions and orientations of the subject piping, but indicate 

the support and bolting materials required for the assembly as well (Figure 2-3). An example of a 

support component that is indicated only in the isometric (not in the cutsheets, described in the 

following section) is shown in Figure 2-2. The shown component is referred to as “Shoe”. An additional 

plate between the spool and the Shoe is welded. The purpose of the added plate is to avoid tearing of 

the spool in shear force.  
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Figure 2-2. Structural component, generally referred to as shoe.  

Cutsheet:  

The name “cutsheet” refers to cut lengths for individual pieces of straight pipes that are indicated on 

this drawing (the cut lengths required to fabricate the spool). Cutsheets are similar to isometrics in that 

they, too, are not-to-scale symbolic line drawings that use isometric projection to represent the three-

dimensional shape of the pipe on a two-dimensional drawing. However, cutsheets are geared towards 

fabrication of pipe spools and not to assembly of pipe spools into larger pipe sections and their 

installation into a module or plant. As such, information required for assembly and installation, such as 

bolting and support material and location information are omitted. Instead, information that is useful to 

fabrication (typically in the shop), such as cut lengths of pipe required for fabrication, and labelling of 

welds (used for tracking and identification) are added. A single isometric may not necessarily 

correspond to a single cutsheet. Figure 2-3, Figure 2-4 and Figure 2-5 show examples of different 

combinations of isometric(s) and corresponding cutsheet(s).  

 

Figure 2-3. Single isometric translated to a single cutsheet. (a) Received isometric from engineering 

company. (b) Produced cutsheet for fabrication (refer to Appendix C for lager images) 
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Figure 2-4. Single isometric translated to multiple cutsheets. (a) Isometric drawing. (b) and (c) 

cutsheets derived from a single isometric drawing (refer to Appendix C for lager images). 

 

Figure 2-5. Multiple isometrics translated to multiple cutsheets. (a) and (b) isometric drawings of an 

assembly. (c), (d) and (e) cutsheets derived from the corresponding isometrics (refer to Appendix C 

for lager images).  

Fab Weld:  

Abbreviation for “fabrication weld,” a fab weld is a weld performed in the pipe fabrication facility. Not 

to be confused with “field Weld,” (abbreviated “FW”) which is a weld performed at the construction 

site.  

YAW:  

Abbreviation for “Yard Assembly Weld,” a yard assembly weld is a weld performed in the module 

assembly yard.  
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2.1.3 Workflow from design to fabrication and shipping:  

Figure 2-6 shows an example a workflow starting from the design and finishing with the fabrication. 

The details of this workflow may vary depending on the nature of the project and client’s request.  

 

Figure 2-6. An example workflow from design to fabrication (larger image found in Appendix C). 

 

Official transmittal is a package including design files that are transferred from the engineering 

company to the contractor (Figure 2-8).  Once the design files (isometric drawings) are received from 

the engineering company (in this case, Fluor) the drafting group has to review the documents. The 

reviewing process includes number of tasks; such as: (1) making sure all of the dimensions are legible 

and correct, (2) making sure that the grading used for the pipe material is either available in inventory 
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or in the market (some materials may be out of stock for periods of time) and, (3) all of the site specific 

conditions have been taken into the account in the design drawings. A Request for Information will be 

issue if any of the above conditions are not met. (Figure 2-9). Figure 2-7 also shows an example for the 

plan view of a physical workflow in the fabrication facility.  
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Figure 2-7. An example of a physical work flow inside of a fabrication facility. 
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Figure 2-8. Official transmittal. 
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Figure 2-9. An issued RFI. 



 

12 

 

 

After taking all the necessary measures to make sure the design drawings are correct, the drafting 

group will convert the isometric drawings to the cutsheets and cut-lengths. Two virtually parallel 

activities will begin once the cut-lengths and cutsheets are issued: (1) material allocation, and (2) 

fabrication.  

 

Material allocation:  

Once the cut-lengths are issued the material allocation will take place. The process starts with checking 

the inventory to see if the spool with the specified grading is available at the facility’s inventory. If the 

spool with the specified grading does not exist, the company has to make a purchase order and purchase 

the specified pipe spool. Once the spool arrives at the site it will be picked by the yard’s crane 

(Figure 2-10) and will be placed at the outside pipe racks. The pipes will be then pushed on the trollies 

entering the fabrication shop (Figure 2-11). The operator at the Vernon machine has access to the cut 

lengths and will cut each spool to the designed length and places them in the pipe racks inside the 

fabrication facility (Figure 2-12). Each pipe fitter will then pick up the pipe spool which he or she is 

assigned for the fitting and fabrication.  

 

 

Figure 2-10. Delivered material will be picked by onsite crane and placed on the racks. 
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Figure 2-11. Pipes will be pushed on the trolley, entering the shop. 

 

 

Figure 2-12. Pipe spools will be cut based on the issued cut-length and placed on the wrack for 

fabrication. 
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Fabrication:  

Once the cutsheets are released from the drafting group the general foreman at the facility has to 

properly distribute the drawings amongst the fitters and welders. Each welder has a welding ticket 

which will specifically dictate what kind of weld he is allowed to perform. Also, each bay in the shop 

is designed for a specific pipe spool diameter. The proper distribution corresponds to accurately 

assigning jobs to welders and fitters. (  Figure 2-13)  

 

 

  Figure 2-13. Distribution of drawings by the general foreman 

Normally, fitters are responsible for interpreting the cutsheets and performing the tack welds according 

to the drawing(s). Once a tack weld is performed by the fitter, the spool will be shipped to the welding 

station for welding. One of the main tasks of fitters is to maximize the number of roll welds. Roll welds 

are welds in which the spool is rotating in a machine where the speed of the rotation is controlled by 

the welder. Roll welds have a better quality and take an order of magnitude less time to complete. 

(Figure 2-14)  
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Figure 2-14. (a) Fitting and (b) welding station. 

 

Figure 2-15. Roll welding. 
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Figure 2-16. Tack weld vs. roll weld. (a) The fitter tack welds the flange to stabilize its location, 

orientation and angel. (b) A complete roll weld done by the welder.  

Once the assembly is complete the quality control personnel will inspect the assembly. The person 

responsible for quality control will measure and compare all of the lengths and angles with respect to 

the drawings. He/She will also control the material and grading of the spool. Assemblies may or may 

not require hydro tests which will be the last test before the shipping. After confirmation of all the tests 

the spools will be picked up by the shop’s crane and will be placed on the shipping truck to be 

transported to the site. (Figure 2-17). The quality control person responsible has to fill an NCR (Non 

Compliance Report) where a deviation from the design has occurred.  (Figure 2-18 to 2-21). One of the 

main shortcomings of the current measures for detecting rework is the fact that the iteration a fitter 

takes to assemble a spool is not being taken into account. This means only mistakes that the fitter 

remains unaware of, will be recorded as rework in the format of NCR logs.  

 

 

Figure 2-17. Spool ready to be shipped out. 
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Figure 2-18. NCR Log Page 1. 
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Figure 2-19. NCR Log Page 2. 

 

Figure 2-20. NCR Log Page 3. 
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Figure 2-21. NCR Log Page 4. 

 

Figure 2-22. NCR Log Page 5. 

2.2 Data acquisition tools and techniques  

Various technologies are used in 3D scanning devices, and each technology has its own limitations, 

advantages and cost. This section will explore different methods of scanning and the technologies 

associated with each one. The four primary technologies are: (1) photogrammetry, (2) laser scanning, 
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(3) structured light, and (4) multiple focal length. The next 4 sub-sections are a detailed overview of 

each of these technologies.  

2.2.1 Photogrammetry 

To get measurements of surface points, the very first technique scientists came up with was 

photogrammetry (Burtch 2004), which emerged in the mid-nineteenth century. Photogrammetry is the 

science of measuring surface points and recovering coordination of points (ASPRS 2007).   Based on 

the American Society for Photogrammetry and Remote Sensing (ASPRS) definition, photogrammetry 

and remote sensing are the art, science, and technology of obtaining reliable information about objects 

and the environment through processes of recording, measuring and interpreting photographic images 

and patterns of recorded radiant electromagnetic energy and other phenomena. Two main types of 

photogrammetry exists: (1) aerial photogrammetry and (2) close-range or stereo photogrammetry. 

1. Aerial Photogrammetry: in this method the camera is vertically towards the ground mounted 

on an  aircraft (drone) capturing multiple overlapping photos while the aircraft is flying on a certain 

path.  Photos are then processed in a stereo-plotter where it lets an operator see two photos at once in 

a  stereo view. Photos taken with this method are usually used in creation of digital elevation 

models  and topographical maps. 

2. Close-range or stereo photogrammetry: using this type of photogrammetry one is capable of 

 acquiring point clouds using 2D images taken by a camera with known parameters. In machine 

 vision and computer science literature, the word photogrammetry and stereo photogrammetry 

are  used interchangeably. To get an accurate point cloud using this method usually one has to use 

a  tripod and has to stay close enough to the object of interest. To reconstruct a point cloud of a 

certain  object, at least two images has to be taken from the object. The common features between 

 corresponding images are detected and using the relative position of the camera to the images 

a  point cloud will be reconstructed. Researchers have worked on methods to more accurately and 

 reliably detect points in the two corresponding frames (Balali et al. 2015).  

One of the main advantages of photogrammetry is its lower cost compared to laser scanning. Another 

advantage of the photogrammetry is its integration with drones. Currently numerous research focus has 

been dedicated to the use of drones utilizing photogrammetry on construction sites. Drones are being 

used for quality inspection (Wang et al. 2015), safety inspection (Irizarry et al. 2012), field survey 

(Barry and 3D as built modeling (Fathi et al. 2015). Furthermore, in addition to the use of 

photogrammetry in drones, another important aspect of photogrammetry is their use in machine vision 

and robotic manipulation. Vision based control in robotics (Chaumette and Hutchinson 2006), 

intelligent surveillance (Guo et al. 2013) and object detection and mapping using SIFT (Scale Invariant 
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Feature Transform), SURF (Speeded-Up Robust Features) and LIFT (Learning Invariant Feature 

Transform) are only a few applications of photogrammetry in the machine vision’s body of knowledge 

(Allaire et al. 2008, Knopp et al. 2010 and Huang et al. 2007). However, Photogrammetry can be time 

consuming and inaccurate in comparison with the data collected with laser scanners (Tang et al. 2010). 

For more accurate photogrammetry high resolution cameras should be utilized and multiple images of 

the inspected scene should be captured. Having to do so, the cost will rapidly increase and also the 

manipulation of massive data will become challenging. As such, photogrammetry will not be the 

primary source of acquiring 3D geometric data in this thesis.  

2.2.2 Laser Scanning 

The next subject to be discussed in this literature review is laser scanning. The recent developments of 

laser scanning technology has made the creation of as-built BIMs increasingly feasible (Tang et al. 

2010). In order to have a reliable point cloud with less time than the processes employed within 

photogrammetry, the use of laser scanners is continuing to be further developed within construction. 

Laser scanners are already widely used, and function as a versatile tool for 3D geometric data 

acquisition. With the help of a sensor, a laser scanner measures the distances to points being scanned 

at speeds up to thousands of points per second and can achieve an accuracy at the  millimeters to 

centimeter level (Staiger 2003). Phase shift and time of flight are the two main technologies being used 

in this industry. 

1. Time of Flight: in this method the distance between an object to the laser scanner is obtained 

using  the time that it takes for a laser beam from the moment that it has been shot out to the moment 

that  it comes back. Having this time and the constant for the speed of the laser beam distances of 

points  in the scene to the scanner will be calculated and recorded. Moreover, to compute [X,Y,Z] 

positions  of a point, both horizontal and vertical angles have to continually change. This is 

accomplished by  the scanner moving in a grid of 360 degrees in the horizontal plane and 330 

degrees in the vertical  plane. Needless to say, it takes time for the scanner’s lens shoot all of this 

coordinates in space  which is why the time of flight method has been known to be more time 

consuming than phased- base technology. 

2. Phase shift: in this method the scanner has a constant beam of energy. By calculating the 

phase  shift between the outgoing wave and the incoming wave it calculates the distance between a 

point  and the sensor. In this method, it is possible to obtain points faster in comparison with the 

time of  flight method, however its range is limited to 80 meters. Studies have also shown that time of 

 flight scanners can achieve higher accuracies (San José Alonso et al. 2011). 
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 Figure 1: Comparison of Time of Flight and Phased Based Laser Scanning Technology  

2.2.3 Structured-Light 

A structured-light 3D scanner is a device for measuring the three-dimensional shape of an object using 

projected light patterns (infrared light in Microsoft Kinect and Structure IO) and a camera system 

(Furht, Ahson 2008). An infrared (IR) projector and one sensor within a certain distance of the 

projector. The projector projects speckle patterns on the objects and the sensor calculates the distance 

of a point to itself. In order to use triangulation, two separate images have to be captured (Figure 2-23).  

  

 

Figure 2-23. Triangulation used in structured light sensors 

 

In terms of accuracy, the support group of Structure IO (one of the commercially available scanners, 

which uses structured light technology (Structure IO 2015) claims that the device can achieve an 

accuracy of 1% of distance measured. Since the accuracy of structured-light sensors (Figure 2-24) are 

significantly less than those of laser scanners (a FARO LS laser scanner can achieve an accuracy of 2 



 

23 

 

 

mm up to distances of 30 m (FARO 2014)), the error involved with 3D geometric data acquisition will 

be a focal point of study in the second chapter of this thesis.  

 

Figure 2-24. Speckle pattern used in structured light technology (Structure IO 2015) 

 

2.2.4 Multiple focal length 

As discussed earlier, Photogrammetry uses the mathematics of light rays to build up knowledge of the 

geometry of the scene. Regardless of the software used for reconstruction, the fundamental parameters 

of the camera would help to build up the correct geometric characteristics of the scene and the relative 

position of the camera to the scene. One of the key parameters is the focal length of the camera. The 

focal length of a lens will determine the magnitude and the angle of the light ray. A long focal length 

will have the light rays hit the image sensor at a shallower angles. In contrast to a long focal length, a 

short focal length will cover a larger field of view.  

With advancements in photography technologies, cameras with multiple lenses and each lens with its 

own specific focal length are becoming available. This means instead of capturing one single image 

with a large lens, one can capture multiple images and then fuse those images to have one high quality 

image. This technology uses mirrors to adjust the camera modules to frame overlapping images over 

the field of view. This will allow to gather more light than a traditional camera. By assigning different 

exposures to different modules a very high dynamic range is achieved. Using multiple lenses will allow 

to capture images in 3D and would also allow to adjust the focal plane and the depth of focal length 

(Light 2016, Phtomodeler 2013).  

2.3 Application Summary  

In summary, as part of the research conducted in this thesis and also two other master students and a 

co-op student, an application software was developed. The application software aims to reduce risk of: 

(1) miscommunication of design information, (2) excessive fitting iterations, (3) assemblies being out 
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of tolerance, and (4) modules not fitting at the designed locations.  The developed software takes 

advantage of 2-sided ISOs to improve communication of design information and using 3D imaging and 

augmented reality devices to provide frequent feedback on fabrication.  The process starts with the 

worker scanning the as-built component. Once the scan is acquired, the scanned point cloud has to be 

superimposed on the 3D design (model) point cloud. The final step is to check if the assembly is 

compliant or not. Figure 2-25 summarizes the designed process and how it influences the research 

conducted in this thesis.  

 

Figure 2-25. The designed process for the software and its correlation with the contents of this thesis  
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Chapter 3 

A Preliminary Investigation of the Applicability of Portable Sensors for Fabrication 

and Installation Control of Industrial Assemblies 

This chapter is based on the following published article in the proceedings of CSCE’s Resilient 

Infrastructure 2016, London, Ontario, with the same title. Minor changes are made on some parts of 

the article to be more consistent with the body of the thesis.  Thus, the content of this chapter is not 

exactly the same as the paper.  

The contribution of the author in this publication is conducting the experiments, data analysis and 

drafting and partially editing the manuscript.  

3.1 Introduction  

Industrial construction comprises 10% to 20% of construction spending in Canada and U.S (U.S Census 

Bureau News October 2014). Typically, 30% to 50% of the industrial construction work involves pipe 

spool fabrication. Due to the complexity of pipe fitting, pipe fitters have a high impact on the critical 

path (Goodrum et al. 2016). In order to improve productivity and reduce additional cost in industrial 

construction, off-site fabrication is beneficial. Moreover, off-site fabrication is normally less expensive, 

safer, and more sustainable, and results in higher quality fabrication in comparison to on-site 

construction. These advantages result from the controlled conditions, more accurate quality control, 

and reduced construction waste possible when working offsite (Haas, Fagerlund 2002). For these 

reasons, modularization and industrial fabrication has become a part of growing trend towards off-site 

fabrication (Han et al. 2012).  

Generally, 54% of total construction defects are due to human factors such as craft worker insufficient 

skill, or supervisor error (Opfer 1999). The improved quality control and productivity of modularization 

is a potential solution to reduce such defects. However, inevitable defects experienced during modular 

construction are costly and time consuming to repair (Akinci et al. 2006a).  Additionally, 10% to 20% 

extra structural material is typically used to stiffen and strengthen modules for transportation and 

handling and loading, nevertheless damage and geometric defects may still occur which leads to 

rework. The aforementioned statistics emphasizes the importance of proper and time efficient defect 

detection in modular construction. Furthermore, it has been reported that 6% to 12% of construction 

cost is because of rework caused by defects detected late (Burati Jr et al. 1992). In addition to the 

previous statistics, approximately 15% of construction waste is caused by late detection of defective 

components in either the construction or maintenance phase (Yue et al. 2006). In conclusion, these 
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statistics indicate the importance of proper, timely and reliable defect detection and the importance of 

integrated frameworks that can detect such defects efficiently and timely. 

In order to overcome the challenges involved with the detection and prevention of fabrication defects, 

various approaches have been taken. 3D imaging has been found an effective tool for capturing the as-

built status of construction components. However, continuous, accurate and cost efficient data 

acquisition in off-site fabrication facilities and on construction sites is required to effectively use this 

information as part of a quality control process. Additional practical applications of laser-scanning 

technology have been introduced, such as automated progress tracking, safety planning, and 

realignment planning (Nahangi et al. 2014). Real time processing of the acquired laser scans is a 

challenge that still needs to be addressed for all of these applications. This challenge is due to the 

preprocessing steps that need to be performed in order to generate reliable 3D point clouds.  

Although various frameworks have been developed in order to reduce rework, an improved method for 

real-time data acquisition integration is still necessary. This study is conducted to examine the 

applicability of recently commercialized sensors in order to address the challenges of real-time data 

acquisition. The challenges and opportunities of using such sensors in the off-site fabrication of pipe 

spools was investigated. The key objective of this chapter is to use structured-light-based sensors to 

identify the challenge and developing an integrated framework for defect detection, in a time-effective 

framework. 

3.2 Background 

A range of diverse applications of 3D imaging in construction have been proposed. Some key 

applications in construction using 3D imaging include: progress tracking (Turkan et al. 2012a), 

automated inspection and material tracking (Bosché 2010, Memarzadeh et al. 2013, Yang et al. 2010), 

safety (Chi and Caldas 2011), motion tracking (Brostow et al. 2008), and structural health monitoring, 

such as concrete crack depth assessment (Liu, Cho et al. 2014). 

Various methods have been investigated to assess the as-built status of construction projects. Abourizk 

(AbouRizk 2010) introduced visualization and simulation for reducing rework and optimizing project 

costs. In an effort to reduce cost and improving the required time for accurate data acquisition, 

researchers have also investigated using unmanned aerial vehicles (UAV’s) for monitoring the built 

environment (Ham et al. 2016).  Other researchers have focused on the potential of using static 

overlaying between the as-built and as-designed states for project control. This approach requires point 

cloud registration between the as-built and as-designed states. For instance, Yue et al. overlaid a design 

model of a facility with the as-built point cloud to identify which data points belong to a specific object 
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and to detect the deviations between the as-built and as-designed conditions (Yue et al. 2006). 

Moreover, 3D imaging has been used to automate continuous quality assessment of fabricated 

assemblies with different approaches such as ICP (iterative closest point) for robust point cloud 

registration, or skeleton-based registration for discrepancy detection (Nahangi and Haas et al. 2016, 

Nahangi and Haas et al. 2014). 3D imaging using laser scanning technology has also been used for the 

creation of as-built building information models (BIM) (Tang et al. 2010).  

In summary, for reducing the cost and avoiding delays on construction projects, especially in industrial 

construction, it is crucial to detect defects in a timely and costly efficient manner. To address this 

challenge, different approaches have been studied, such as visualization and 3D imaging. The research 

described in this chapter investigates the use of recently commercialized sensors for real-time geometric 

data acquisition, and analysis to allow reliable detection and quantification of misalignments. In this 

chapter of this thesis, as-built 3D point clouds were obtained using a structured-light-based sensor 

(Structure IO). 

3.3 Methodology  

In this section, the key steps of the proposed method for real-time defect detection are explained. 

Figure 2-1 shows the sequence of steps and the flow of information for the proposed method. The 

method compares the real-time scanned data for a pipe assembly and registers the 3D point cloud with 

the as-designed state integrated in the BIM. 
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Figure 3-1. Proposed framework for real-time defect detection in modular assemblies. 

 

The process of real-time defect detection consists of two main steps: (1) scanning the object-of-interest, 

and (2) registration of the point cloud acquired with the model for discrepancy detection. The first step 

requires scanning the object of interest, transferring the acquired point cloud to a processing machine 

and manually finding the object of interest in the acquired scene. Once the appropriate data has been 

acquired, automatic registration of the as-built (scanned) point cloud with the as-designed point cloud 

begins using a PCA (Principal Component Analysis) algorithm followed by ICP for fine registration.  

These registration steps can be performed in real time.  Once the two point clouds have been registered, 

a discrepancy calculation is performed to visualize whether the component is compliant or not. Each 

step is described in the following sections. 

3.3.1 Point Cloud Acquisition and Preprocessing 

A recently commercialized 3D scanning device was used to obtain the as-built point cloud. As shown 

in Figure 2-2, this sensor scans the object of interest within the manually defined boundary box. The 

output of the scan is in .obj format which contains coordination of scanned points. After acquiring the 

initial scan, the object of interest (pipe spool) has to be manually located in the scene and only then can 

be registered to the design point cloud for further processing. 
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Due to the presence of materials and construction equipment in the scenes being captured, it is almost 

impossible to take a scan without clutter. That is why the next two chapters focus on automation of 

finding the object of interest and then removing the clutter points. However for this study, both of these 

steps were performed manually. After manually removing the clutter, the point cloud may need to be 

resampled for better representation. The process of converting a sparse point cloud to a dense point 

cloud is called resampling.  Resampling makes it easier to represent the scan point cloud and to visually 

compare it with the model. Figure 0-2 illustrates the necessity of resampling in the scanned point cloud 

of relatively large objects, whereas the point cloud acquired in smaller pipe spool did not need 

resampling. For this purpose, a triangle and the vertices representation of mesh in the STL (stereo 

lithography) format are uniformly resampled. This will improve the registration and deviation 

quantification. 

 

 

Figure 0-2. Preprocessing required for the proposed method. (a) Data acquisition using Structure IO. 

(b) as-built point cloud before resampling (sparse point cloud acquired by sensor), and (c) dense point 

cloud after resampling. 

3.3.2 Point Cloud Registration and Discrepancy Analysis 

Once the scan data is acquired and the required preprocessing steps are performed, the point cloud is 

imported to the processing section of the framework. The portion of the 3D CAD model (which may 

be integrated within the building information model) that corresponds to the scanned object is then 

isolated and processed to generate the as-designed point cloud.   

The next step is to automatically superimpose the point clouds representing the built and designed 

states. Automatic registration allows easier and more reliable quantification and localization of defects. 

As mentioned earlier, the registration step presented here consists of two steps:  
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(1) Coarse registration using PCA (Principal Component Analysis) to roughly align the two point 

 clouds.  Registration involves with an optimization of error between the two point clouds 

 representing the built and designed states. The initial state for finding the optimal solution 

 is critical in the  optimization process. Improper initial values may cause getting stuck in local 

 minima (Nahangi and 2014). The alignment of principal axes is ambiguous in PCA. In 

 order to address this inadequacy and finding an appropriate initial state that will result in 

 finding the correct global optimum, a loop was designed to check any possible 

 combination of principal axes. The algorithm will then extract the orientation with the 

 minimum error of corresponding points in the coarse registration step. Using this loop,  will 

 improve the robustness of the registration step. Figure 0-3 illustrates the problem of PCA if all 

 the combinations of the axes are not checked.  

(2) Fine registration using ICP (Iterative Closest Point) (Besl et al. 1992). In this step, the algorithm 

 finds the best match between the two states being compared. Based on (Salvi et al. 2007), ICP 

 is sufficiently quick and robust to be used for real-time fabrication. 

 

Figure 0-3.  Illustration of dependency of PCA to the initial position without using the described loop. 

(a) Oriented Initial state. (b) Resulted registration. (c) Not oriented initial state. (d) Wrong results 

using PCA without the described loop. 

Once the point cloud registration has been performed, discrepancies can be detected with 3 methods: 

(1) Using the method presented in (Nahangi and Haas2014), makes it possible to calculate translational 

and  rotational errors between corresponding points in the model and scanned data. This method 

makes the use of a robotics analogy and quantifies the incurred deviations using a kinematics chain 

and  geometric relationship between branches of a pipe spool. However, the accuracy of the sensor 

used was insufficient for reliable analysis using this method. 
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(2) Point to point distance calculation. Each point in the scan will be compared with its closest point in 

the  model and the distance will be reported.  

(3) Approximating the error by the Root Mean Square (RMS) value. In order to measure the 

performance of assembly the RMS was used. RMS value is calculated as:  

 

    𝑅𝑀𝑆 = [
1

𝑛
 ∑ 𝑑𝑖

2

𝑛

𝑖=1

]

0.5

                                  (3.1) 

where, n is the number of corresponding points between the scan and model point cloud, and d is the 

Euclidean distance between each pair of points.  

In terms of pipe fabrication and tolerances for prefabricated pipe assemblies there are specified codes 

identifying general guidelines for pipe fabrication (Pipe Fabrication Institute 2000). 

  

Table 0-1. Linear tolerance along the pipe length [Pipe Fabrication Institution Standard ES-03] 

Pipe Size Under 10'' 12'' to 24'' 24'' to 36'' Over 36'' 

Acceptable 

Tolerance 
±1/8'' ±3/6'' ±1/4'' 

Increasing by plus or minus 1/16'' 

for each 12'' in diameter over 36'' 

 

Table 0-2. Angularity and Rotation Tolerances [Pipe Fabrication Institution Standard ES-03] 

Type Acceptable Tolerance 

End preparation for 

weld 

Shall not deviate from indicated position by more than 1/32'' 

across the land for inert gas weld joints or 3/32'' for other joints 

For Bending 

Tolerances 

Tolerance minimum radius and minimum tangent see PFI 

standard ES-24 

Rotation of flanges From the indicated position measured, 1/16'' max 

Alignment of 

Flanges and Ends 

Shall not deviate from indicated position measured across any 

diameter more than 3/64'' per foot or 1/32'' whichever is greater 

 

Once basic compliance checking is performed, decision regarding the shipment of the pipe spool will be made.  

After such basic compliance checking, the pipe spool is ready to be shipped to the construction site. Nevertheless, 
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if inspections on a pipe spool reveals a non-compliancy, the pipe spool will be sent back to the shop instantly. 

This framework has the potential to improve the time wasted for repairing and realigning defective assemblies on 

construction sites.  

3.4 Results 

The methodology described in the preceding sections was tested using a structured-light sensor to 

capture the as-built geometry of two small pipe spools. The Spool I is approximately 40×40×40 cm in 

overall orthogonal dimensions, and the Spool II is 200×50×30 cm. The dissimilarity in the size and 

proportions of these two spools was found to affect the results which will be discussed below. (Figure 

3-4) 

 

Figure 3-4. The pipe spools used for experimental studies. (a) Spool I, and (b) Spool II. 

In order to identify defective assemblies, a threshold in RMS value is identified. Defective assemblies 

are expected to have larger errors in the registration step. A set of experiments on the smaller pipe spool 

was performed to calibrate the RMS value based on the compliancy status of a typical assembly. In 

these experiments three compliant assemblies, one non-compliant with small rotational deviation, and 

three non-compliant were tested. Table 0-3 shows the results for calibrating the RMS value for 

identification of compliancy vs. non-compliancy. The RMS in Figure 0-5-(e), equals 0.0088 m, whereas 

the RMS in the intentionally defected assembly is 0.015 m. This value should be calibrated for each 

assembly. 
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Table 0-3. RMS value for different assemblies and the classification associated for each one in Pipe 

Spool II. 

Experiment number Intentional Status RMS (m) Classification 

1 Compliant 0.0092 OK 

2 Compliant 0.0088 OK 

3 Compliant 0.0098 Suspicious 

4 Non-Compliant 0.0105 Not-OK 

6 

Non-Compliant 

(Slightly) 0.0096 Suspicious 

7 Non-Compliant 0.0129 Not-OK 

8 

Non-Compliant 

(immense error) 0.0242 Not-OK 

9 

Non-Compliant 

(immense error) 0.0150 Not-OK 

 

For Spool II in the experiment, a threshold value is set for identifying the compliancy of the spool. This 

value is to 0.009 m. The configurations that have an average error more than 0.01 m were then deemed 

to be defective, and those below 0.009 m were considered to be compliant. However, the values between 

0.01 m and 0.009 m are the ones that the device is not accurate enough to identify. Such configuration 

are therefore classified as suspicious.  

In Figure 0-5-(d), a non-compliant configuration was tested. The results signify that the assembly is 

non-compliant with the model. Using such a framework by craft workers will allow them to detect the 

defective assemblies before causing delay to the project schedule. The defective assemblies can then 

be realigned or repaired before it leaves the work station, thereby reducing rework and improving 

productivity on construction sites. On the other hand, in Figure 0-5-(e), where the assembly is compliant 

with the 3D model, the two point clouds are superimposed perfectly. 
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Figure 0-5.  Registration results for Spool II. (a) Defected as-built model where faces 1 and 2 should 

be replaced with each other; (b) 3D CAD model converted to point cloud; (c) compliant as-built 

model; (d) Results for registration of models (a) and (b) ); (e) Results for registration of models (a) 

and (c) 

The as-built scans obtained using the commercial structured light sensor were found to be adequate for 

compliance checking of the small pipe spools using the process developed in this research.  However, 

inaccuracies in the scan data were observed when used with the relatively longer pipe spool. The result 

for the longer pipe spool is shown in Figure 0-6, where a significant deviation between the apparent 

lengths of the spool was evident in the point cloud registration even though no real error existed. The 

maximum length of the pipe spool in Figure 0-5 was 40 cm, and maximum length of the spool in 

Figure 0-6 was 200 cm. There are various reasons why the error manifested in Figure 0-6 occurs: (1) 

since the employed sensor uses the same technology as Microsoft Kinect (Khoshelham et al. 2012), the 

random error of depth measurement increases when the distance to the sensor increases. Consequently, 

in a 2 m pipe spool if the 3D data is captured in one frame, there would be substantial error in the point 

cloud captured. (2) Trying to capture points from closer distance requires moving while capturing. This 

action by itself causes numbers of errors: 

 

 Since pipe spools are relatively featureless objects, the accuracy of data collection may be 

compromised. 

 Various scanning devices use different sensors such as an accelerometer and/or a gyroscope to 

detect relative movements of the scanning device to aid in the reconstruction of the scanned 

point cloud.  Moving the scanning device along the object length may cause positional errors 

due to limitations of these sensors to result in cumulative error in the scanned data. 
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 Other factors such as interference of sunlight to the scene has significant impact on the quality 

of captured data as it is empowering the sensor's IR (infrared) emitter.  

 

Figure 0-6. (a) 3D CAD model transferred to point cloud, (b) Resampled scanned data, (c) 

Registration results (d) Error occurred using sensor on a relatively large object (2 m) 

3.6 Conclusions and recommendations based on Chapter 3 research 

A method was proposed to address the essential need for continuous monitoring of industrial 

assemblies. A preliminary investigation was performed to assess the applicability of commercialized 

sensors for real-time fabrication control of industrial pipe spools. This study aimed to find a solution to 

minimize the time for data acquisition. A framework was developed to reduce the rework caused by 

misalignments induced in the fabrication shops. For validating and verifying the performance of the 

proposed method, a case study was conducted on two objects altered in size and shape. Promising 

results were obtained when applied to a smaller pipe spool, whereas results obtained for a larger pipe 

spool contained errors in the scanned point cloud that compromised the compliance analysis. This error 

might be due to the loss of key frames in the 3D reconstruction of the scanned object. 

The structured light technologies are experiencing advancements every day. This means that even 

though the current state of the particular scanner is facing a challenge dealing with large objects, the 

future generation of these scanners will be more robust to the size of objects being scanned. This study 

is a proof of concept for using these technologies for real time fabrication quality control in pipe spool 

fabrication facilities. The current state may not be able to detect small deviations, but they can still be 

useful for early detection of incurred gross misalignment.  
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Chapter 4 

Automated BIM-Based Finding of 3D Objects in Cluttered Construction Point Cloud Models 

This chapter is based on the following submitted article with the same title in the Computer-Aided 

Civil and Infrastructure Engineering journal. Minor changes are made on some parts of the article to 

be more consistent with the body of the thesis.  Thus, the content of this chapter is not exactly the 

same as the paper. The contribution of the author in this publication is conducting all experiments, 

data analysis and partially drafting and editing the manuscript. This study has been submitted on 

March 28th, 2017.  

4.1 Introduction  

Automated modeling of fabricated construction components is the bottleneck in automatic and 

continuous monitoring of civil infrastructure (Dimitrov and Golparvar-Fard 2015). In particular, 

preprocessing the massive data collected on construction sites is key for effective and electronically-

integrated modeling of the built environment. Automated modeling is necessary for various key 

applications such as progress monitoring, status assessment, and quality control. For example, 

imperfections and fabrication errors may cause huge rework costs to the projects if they are not 

effectively monitored and corrected. In 2010, Canada's construction industries (i.e. residential, non-

residential engineering, repair, and other construction sectors) accounted for 6 

% of Canada's gross domestic product (GDP), contributing $73.8 billion (Statistics Canada 2010). In a 

typical construction project, rework costs between 2% and 20% of a project’s contract amount (CII 

2011). According to (Dissanayake et al. 2003), rework is defined as: “Activities in the field that have 

to be done more than once, or activities, which remove work previously installed as part of the project 

regardless of the source, where no change order has been issued and no change of scope has been 

identified by the owner”. Geometric non-compliance is one of the main factors causing rework in a 

project, in general, and in the fabrication processes, in particular.  

To reduce rework, rigorous and continuous inspections throughout the fabrication process are required. 

Conventional methods for quality control and rework mitigation utilize humans with manual direct 

contact measuring devices such as tapes and calipers. Manual execution of such tasks increases the 

subjectivity of information as well as other errors and limitations incorporated with intervention. This 

includes measuring locations with difficult access or spots having hazardous materials. Furthermore, 

the conventional methods are not only limited by human capabilities, but also, they are time consuming 

and may cause interruption in the production process. This results in depriving the managers of 

continuous monitoring and quality control on the fabrication process. Consequently, utilization of 
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conventional methods will fail to acquire accurate, rapid, and continuous geometric compliance 

monitoring systems.  

Advancements in 3D imaging technology have allowed its users to collect spatial data from their 

surroundings in a short time period, and with an acceptable accuracy level. Laser scanners measure the 

distances to points being scanned at speeds up to thousands of points per second (Park et al. 2007). 

Most of the applications of laser scanning in construction, including automated compliance control 

(Nahangi and Haas 2014), and schedule and progress tracking (Turkan et al. 2012b) rely on either 

manual or partially automated identification, location, orientation, and extraction of the object-of-

interest. Other methods rely on techniques, such as (Bosche et al. 2008a), that were premised on a priori 

knowledge of scanner location and orientation with respect to site coordinates. This is due to the 

indiscriminate data acquisition by the capturing devices. The point clouds acquired with a laser scanner 

will include clutter (unwanted objects in the background or surroundings of the object-of-interest), and 

uncaptured surfaces when the objects are occluded. The variation in the density of a point cloud and 

the existence of noise, which usually occurs on the edge surfaces, are also among the challenges in the 

automation of the object extraction process. Other contributing factors such as lighting conditions and 

site specific circumstances can also influence the quality of the captured point cloud (Sharif et al. 2016), 

which will exacerbate the complexity of the 3D object recognition process. An incomplete point cloud 

of a fabricated component is another common challenge. The aforementioned challenges reveal the 

complexity of formalizing an automated framework for object-of-interest isolation from a cluttered 3D 

point cloud. 

The manual extraction of an object-of-interest in a cluttered point cloud is inadequate, inaccurate, and 

inefficient in terms of the required time and the level of skill required (Figure 0-1). An automated and 

rapid object finding framework has the potential to be employed in automated object locating, robotic 

manipulation, and quality control processes in construction. A rapid framework will avoid late detection 

of possible defects, and therefore the cumulative error arising from infrequent fabrication monitoring 

(Golparvar-Fard et al. 2009a).This study aims to develop a robust framework for efficient and 

automated finding of an object-of-interest in cluttered point clouds. This framework is capable of 

addressing some of the major challenges in this area including:  

 Density variation: various types of sensors offer different levels of density in the point cloud 

acquired. The desired framework for object isolation must be insensitive to the density of the 

point cloud used.  

 Clutter presence: presence of unwanted objects in the background and surrounding the 

object-of-interest is the key motivation for automated recognition and isolation of the 

objects-of-interest. 
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 Occlusion and incompleteness occurrence: in visual sensing and vision-based data 

acquisition sensors, line of sight is a substantial parameter for capturing complete and reliable 

data. In the case that the objects are not visually tracked by sensors, some parts or 

components might be missing. The subsequent analyses and models are therefore influenced 

by such incomplete data (Nahangi and Haas 2016). The desired framework should also be 

relatively robust to incomplete point clouds. 

A robust framework for automated finding of objects-of-interest from cluttered and unprocessed 3D 

point cloud models is presented in this chapter. The framework is based on the mathematical model 

first presented by (Papazov and Burschka 2010).  Comparatively, this framework has three primary 

steps: (1) creating and storing a library of features from point pairs of 3D models using an invariant 

local feature, (2) finding the potential matching pairs from the point cloud with the code library 

generated using a RANSAC-based hypothesis testing, and (3) match refinement and isolation using an 

ICP-based (Iterative Closest Point) registration step. The key contribution of this study is the adaptation 

and application of a robust framework for automated finding of 3D objects in cluttered point cloud 

models from a construction environment. The framework is tested under various circumstances in order 

to investigate its performance for addressing the major challenges discussed previously, including 

density variation, clutter presence, and incompleteness of the captured data. First, the related 

background is thoroughly investigated in the following section to clearly identify the knowledge gap 

and the key contribution of this work. Next, the proposed methodology and its components are 

described. Finally, experimental results and analyses are provided to quantify the performance of the 

proposed method. 

 

Figure 0-1. Clutter removal example. (a) A facility is scanned; (b) surrounding objects are removed; 

(c) secondary attachments in the proximity of the object-of-interest (i.e. stands and supporting 

objects) are removed. (d) The object is finely retrieved by manually removing noise and other points 

remained. The isolation point cloud is then ready for further processing (e.g. automated registration 

for discrepancy quantification and quality control) 
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4.2 Background  

4.2.1 Terminology definition  

For the purpose of consistency and rigorousness throughout this manuscript, the following terms are 

defined and described as follows: 

Detection: refers to the process in which the presence of an object is identified in an acquired point 

cloud.  

Finding: refers to the process in which the presence of the object is not only sensed but also its 

geometric characteristics such as dimensions, location, and orientation are identified. The term 

“recognition” however, corresponds to identification and characterization of all the objects that meet 

the recognition criteria in the scene.    

Segmentation: refers to the process of classifying points from the surface of an object in one set and 

from a cluttered and noisy point cloud.  

Isolation: refers to the process of extracting a segmented object from the 3D point cloud and 

representing it as a single dataset. 

This section focuses on a comprehensive review of the existing methods for finding 3D objects from 

various perspectives with respect to some applications in construction automation. A general overview 

is first provided from the computer science perspective. Existing challenges and various categories of 

3D object recognition are also briefly discussed. Major applications in the construction literature and 

the existing research challenges are then discussed. Although there have been numerous research 

studies in automated object recognition from 2D images (Balali et al. 2015), video frames (Park et 

al.2012, Zhu and Brilakis 2010), and depth images (Ray and Teizer 2012) for a wide range of 

applications in construction, this paper only focuses on finding 3D objects in cluttered point clouds and 

the research challenges involved. 

4.2.2 3D object recognition: general categories and existing challenges from the computer 

science perspective 

The problem of finding an object-of-interest has been widely investigated in the computer science 

literature. Vision-based control in robotics (Chaumette and Hutchinson 2006), intelligent surveillance 

(Guo et al. 2013) and mobile manipulation (Quigley et al. 2009) are only a few applications, which are 

well developed and widely used in the related body of knowledge. 

However, finding objects in the aforementioned applications is relatively limited to 2D scene capturing 

approaches such as 2D images or 2D snapshots from video frames. Unprecedented opportunities have 
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recently become feasible with the significant improvements in 3D data acquisition, and there has been 

extensive work on 3D object recognition from 3D scenes (i.e. 3D point clouds). However, most of the 

existing frameworks are computationally very intensive, and therefore insufficiently effective and 

applicable. The required processing time is the major drawback for automated 3D object recognition 

and modeling in construction automation. 

According to (Guo et al. 2014), object recognition methods can be grouped into two main approaches: 

(1) global features or 3D keypoint detection and localization, and (2) local features characterization and 

localization. The former approach includes 3D SIFT (scale invariant feature transform) (Allaire et al. 

2008), 3D LIFT (learning invariant feature transform) (Huang et al. 2007) and 3D SURF (speeded-up 

robust features) (Knopp et al. 2010), which are performed on either depth images (2.5D) or 3D meshes. 

Such methods are incapable of finding 3D objects from 3D point clouds. The local features approach 

is thus more widely used for 3D object recognition from 3D point clouds. This approach includes 

signature-based and histogram-based methods such as spin images (Johnson and Hebert 1999), point 

signature (Chua and Javis 1997), and point pair features (Papazov and Burschka 2010). Based on the 

extensive survey by (Guo et al. 2014), local features have been found to be more efficient for 3D object 

recognition from 3D point clouds. 

4.2.3 3D object recognition: application in construction 

In built environments, it is imperative to find objects-of-interest automatically and effectively to assess 

their as-built status and map critical construction performance metrics. Such metrics include as-built 

progress compared to the as-planned schedule (Golparvar-Fard et al. 2012, Kim et al. 2013), or as-built 

shape or geometry compared to the as-designed geometry (Chen et al. 2016, Nahangi and Haas 2014) 

In this section, object recognition in the construction literature is investigated from three perspectives: 

(1) automated as-built modeling, (2) quality control and automated modeling, and (3) progress tracking. 

4.2.3.1 Object recognition for automated as-built modeling 

As discussed by (Pătrăucean et al. 2015), as-built BIM creation is challenging due to the complexity of 

construction components. However, some components represented by explicit geometric shapes can be 

detected, recognized, and modeled given a 3D point cloud representing the built environment. Some 

examples include MEP (mechanical, electrical, plumbing) components, in general, and cylindrical 

objects (e.g. pipes and elbows), in particular. This research area is also known as scan-to-BIM in the 

related literature (Bosché et al. 2015). 
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(Rabbani et al. 2007) presented a generalized Hough-based method for detecting and recognizing 

industrial and piping elements with some basic explicit shapes. The processing time for recognizing 

objects from point clouds was substantial and therefore ineffective, because they were using the Hough 

transform in 3D. This method was also incapable of recognizing and modeling elbows and T-sections. 

(Ahmed et al. 2014) presented a method for detecting and reconstructing cylindrical objects such as 3D 

pipes using a modified Hough Transform-based method. Their method overcomes the computationally 

intensive 3D Hough Transform by projecting points into orthogonal slices (planes) and then applying 

a 2D Hough-based circle detection. Their approach was also reported to be incapable of finding T-

sections and elbows and it was only applicable on cylindrical objects laid out in orthogonal directions. 

 

(Son et al. 2014) presented a curvature-based cylindrical object recognition which was found to be 

capable of finding elbows and intersections. However, their method relied on an accurate and complete 

3D point cloud as an input, and it is therefore inadequate for finding complicated cylindrical branches. 

(Lee et al. 2013) presented a skeleton-based method for 3D reconstruction of industrial elements. The 

skeleton- based method was also inadequate and inaccurate in the case that an incomplete 3D point 

cloud is imported to their framework. According to (Nahangi and Haas 2016), incomplete point clouds 

will change the skeletons representing the centerlines, and will therefore create errors in the radius 

detection and recognition. 

 

A curvature-based segmentation method with applications to MEP components was then presented by 

(Dimitrov et al. 2015). Although their method is sufficiently accurate in recognizing various 

components from a cluttered scene, it is still computationally expensive. Their method requires 

curvature calculation on a resampled point cloud, which is then used for checking connectivity of 

components. Assuming that time-effective process controllers are desirable, in practice, their curvature-

based method is incapable of addressing the time related aspects and challenges. (Dimitrov et al. 2016) 

then extended the curvature-based segmentation to model arbitrary shapes given a noisy and cluttered 

3D point cloud model. Their recent work takes the advantage of the previously segmented components. 

It then employs non-uniform rational B-splines (NURBS) for modeling arbitrary shapes in the form of 

explicit and closed form mathematical functions. This is directed toward the ultimate goal of scan-to-

BIM creation. (Zhang et al. 2015) presented a framework for planar patch detection from cluttered point 

clouds. The segmentation of planar patches is based on normal vector calculation and spectral clustering 

which was found to be robust. 
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4.3.2.2 Object recognition for quality control and as-built status assessment 

One other key application for automated object recognition is to assess the as-built status or geometric 

quality of the components compared to the as-designed drawings integrated in the BIM. This area is 

also known as scan-vs-BIM in the related literature.  

A framework for automated discrepancy quantification of fabricated serial components was presented 

based on the as-built point clouds of components automatically registered and compared with their 3D 

models. The isolation step was performed manually, which was disconnected from the fully automated 

framework. Automated isolation of the components is therefore the key to expedite the entire process. 

The method was then extended to parallel assemblies with a strategy for realigning the defective 

assemblies (Nahangi et al. 2015); however, lack of an automated step to automatically extract an object-

of-interest given a point cloud was still a drawback for integration with automated fabrication process 

controllers. 

A skeleton-based method for discrepancy quantification was then presented, in which the object 

isolation step was still performed manually (Nahangi and Haas 2016). Recently, (Czerniawski et al. 

2016b) presented a 3D model-based object-of-interest recognition and isolation method, where 

curvature was a signature or descriptor of the model. A bag-of-features with two-way curvature 

descriptors was created in order to represent the 3D model of an object-of-interest. The feature was 

then searched in a 3D point cloud transformed to the feature space. The hypothesis testing and matching 

was then performed using a bi-variate histogram-based voting scheme. This method was limited to the 

objects where curvature is a meaningful representative (e.g. industrial object, in general, and cylindrical 

pipes, in particular). Although, the method was capable of extracting arbitrary 3D objects from cluttered 

point clouds automatically and with a high recognition rate (90% in average), its computational time is 

still a drawback for the applications desired. 

4.2.4 Object recognition for progress tracking  

Object detection and recognition has been widely used to track the progress of components compared 

to the as-planned schedule integrated with the BIM. Generally, for the purpose of progress tracking, 

detecting an object will be sufficient to measure the as-built schedule and compare with the as-planned 

schedule.  

An image-based framework for automated progress tracking using statistical correspondence for object 

detection was presented (Golparvar-Fard et al. 2012). (Turkan et al. 2012b) presented a framework 

based on the object detection method previously developed by (Bosche and Haas 2008b). The object 

detection and progress tracking is based on the level of overlap between the as-planned and as-built 3D 

point clouds that are finely aligned. (Kim, et al. 2013) presented a training-based framework for 
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automated progress tracking that used an SVM-based classifier for major objects in a building (i.e. 

columns, beams and slabs). 

Other than the aforementioned major application in construction, 3D object segmentation and 

recognition are also used for some secondary applications. For example, (Czerniawski et al. 2016a) 

used a similar approach to (Zhang et al. 2015) for automated removal of planar regions for facilitating 

and expediting the recognition of cylindrical objects. A density-based clustering step was used to cluster 

and segment various planar regions represented by their normal vectors. Recently, (Chen et al. 2016) 

presented a framework for equipment localization using a principal axes descriptor and a training-based 

approach used for detection. 

In summary, the problem of robust and efficient finding of a 3D object in 3D point cloud models as 

well as its major research challenges has remained an elusive goal. The following section frames the 

knowledge gap from the conducted literature review, and identifies the major contribution of the work 

in the current study. A summary of the investigated studies along with a general categorization from 

different perspectives is also provided in Table 0-1. 

4.2.5 Knowledge gap and research contribution  

As discussed, for finding 3D objects in cluttered point cloud models of construction environments, the 

previously developed frameworks are either relatively ineffective in terms of processing time or are not 

fully automated. As well, the existing methods are limited to explicit shapes and geometries such as 

MEP components (cylindrical objects) or some simple structural components (concrete beams and 

columns with rectangular cross section). They are therefore not robust for construction components 

with complex and arbitrary geometries. This chapter presents an automated and robust framework for 

finding 3D object-of-interest within cluttered and noisy point clouds. A simple and abstract 

representation of the framework is illustrated in Figure 0-2. The framework developed is capable of 

addressing some of the major research challenges discussed previously (e.g. density, noise, and 

incompleteness). The method takes advantage of existing 3D models integrated with the BIM. The 

model-based 3D object-of-interest finding framework is described in the following section. 
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Figure 0-2. Graphical abstract of the presented framework: (a) 3D model converted to a point cloud, 

(b) cluttered 3D scene, (c) localized model on the scene, and (d) found and isolated object from the 

scene. 

(a)

(b)

(c)

(d)
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4.3 Methodology  

An overview of the implemented methodology for finding arbitrary shapes within cluttered point clouds 

is illustrated in Figure 0-3. It is derived primarily from (Papazov and Burschka 2010) basic algorithm 

and adopted to the class of construction object recognition problems addressed here. The result is then 

extensively examined for performance. The method has three primary steps: (1) model library 

generation, (2) scene representation, and (3) matching. The first step can be performed in the offline 

 

Table 0-1. Summary of 3D object recognition methods existing in the construction.  

Reference 
Identification 

status 
Method 

Research stream in 

construction 

Specific application in 

construction 

(Papazov et al. 2012) Recognition 3D Hough 

transform 

3D modeling Industrial elements 

(Ahmed et al. 2014) Recognition 2D Hough 

transform 

As-built BIM Cylindrical pipes 

(Son et al. 2014) Recognition Curvature As-built BIM Cylindrical pipes 

(Lee et al. 2013) Recognition Skeleton As-built BIM Cylindrical pipes 

(Dimitrov and Golparvar-Fard 

2015; Dimitrov et al. 2016) 

Segmentation Curvature, NURBS As-built BIM MEP components 

(Zhang et al. 2015) Detection Normal vector As-built BIM Planar components 

(Nahangi et al. 2015) Recognition NA 

 (manual isolation) 

As-built status 

assessment 

Serial and parallel 

(Czerniawski et al. 2016b) Recognition Curvature As-built status 

assessment 

Serial and parallel 

(Golparvar-Fard et al. 2012) Detection Statistical Progress tracking Any type 

(Bosche and Haas 2008; 

Turkan et al. 2012) 

Detection Closest points Progress tracking Any type 

(Kim et al. 2013) Detection SVM based 

classifier 

Progress tracking Column, beam, slab 

(Czerniawski et al. 2016a) Recognition Normal vector Object isolation Planar regions 

(Chen et al. 2016) Detection PCA Automated monitoring Construction 

equipment 
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phase, meaning that the library can be generated and stored for further calculation. The second step is 

to calculate features for hypotheses tested in the matching step (Step 3). The primary steps for finding 

arbitrary objects are described in the following sections. 

 

Figure 0-3. Proposed methodology for BIM-based object finding of construction assemblies has three 

major steps: (1) Model library generation, (2) Scene representation, and (3) Matching. 

4.3.1 Inputs and preprocessing  

The required inputs for the proposed algorithm are the following:  

(1) 3D Model denoted by 𝑀: in order to generate the model library the 3D model should be available 

in the point cloud format. The solid objects existing as the CAD drawings integrated with the BIM are 

converted to 3D point clouds using one of the methods well discussed by (Corsini et al. 2012). Poisson 

disk sampling is used in this work for converting 3D solid objects into point  

(2) 3D point cloud or the Scene denoted by 𝑆: that represents the as-built state or the scene being 

investigated. Both 𝑀 and 𝑆 are preprocessed by constructing their weighted octree structures. Bin 

subdivision in weighed octree is calculated based on the mean of all points that each bin contains 

wherears in the normal octree subdivisions spilts bins at their central coordinate (i.e. one bin subdivides 

into 8 equally sized bins). This step is required to normalize the density of the input point clouds. 

Moreover, octree represents a uniformly resampled point cloud resulting from the original input point 

cloud. Such a process is similar to voxelization for down sampling or resampling a 3D point cloud. A 

hypothetical example of weighed octree construction of a typical point cloud (Model and Scene) is 

illustrated in Figure 0-4. 
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Figure 0-4.  Density normalization using weighed octree: (a) a model after density normalization 

using octree (c), a zoomed-in window is shown for illustrating density before (b), and (d) density after 

normalization using octree structuring.  

4.3.2 Model library generation  

Model library generation is performed for creating the feature space of the objects and shapes existing 

in the scene captured. This step can be performed beforehand, because it remains unchanged for a given 

shape or geometry. In other words, a library of objects can be created and stored in a database for further 

processing. The feature space used in this chapter is similar to the feature defined in (Papazov and 

Burschka 2010). The only difference between the feature set used here with the previously defined 

feature set in (Drost et al. 2010) is the distance element between the point pair. The local feature set 

used in this work is illustrated in Figure 0-5. 

As illustrated in Figure 0-5, a three-dimensional local feature descriptor is used to represent the model. 

The feature set for a point pair (𝑝1, 𝑝2) is denoted by 𝐹(𝑝1, 𝑝2) and is calculated as follows: 

 

𝐹(𝑝1, 𝑝2) = (𝑓1, 𝑓2, 𝑓3) (1) 

  

in which, 𝑓1 = ∠(𝑛1, 𝑑), 𝑓2 = ∠(𝑛2, 𝑑), 𝑓3 = ∠(𝑛1, 𝑛2). The operator ∠ returns the angle between the 

two input vectors. This feature set is similar to the feature set used previously (Czerniawski et al. 

2016a); However, the assumption of reducing one dimension from the local feature set, makes it 

computationally less intensive and therefore more time effective. Moreover, removal of the distance 

element from the feature set, results in similar dimensionality for the remaining elements, and therefore 

it reduces the complexity of the feature space. This distinctive feature is useful in storing the feature 

descriptors more efficiently. All points in the model are uniformly resampled and the feature set is then 

created.  

(a)

(b)

(c)

(d)



 

48 

 

 

The key for calculating the feature descriptor is the normal vector at a resampled point cloud. The 

normal vector is calculated using a four-step algorithm as follows: 

1- Calculate k-nearest neighbours (KNN) given a point in a point cloud (𝑝 ∈ 𝑃). 

2- Assign the calculated neighborhood to the point 𝑝. 

3- Fit a plane to the neighborhood. 

4- Assign the plane’s normal vector to the point 𝑝 (𝑛. 𝑝𝑖). 

The k value for identifying the size of the neighborhood around a point will affect the accuracy of 

normal vector calculation and therefore the isolation retrieval. The framework has been found very 

robust to the size of the neighborhood for normal vector calculation. The procedure for normal vector 

calculation is similar to the principal component analysis (PCA) for normal vector extraction. More 

detail about normal vector calculation can be found in (Czerniawski et al. 2016b).  

 

Figure 0-5. Local feature descriptor used for object extraction. The distance between the point pair is 

set constant. This assumption reduces the level of complexity and therefore reduces the processing 

time for feature space creation. 

A 3D hash table is used to store the library of features. The feature elements 𝐹 = (𝑓1, 𝑓2, 𝑓3) are used 

to hash the entries in the table. The hash table is divided with an arbitrary cell size, which is found to 

have a negligible impact on the robustness of the framework. The calculated feature sets are then 

assigned to the corresponding cell in the table. This method has been found very efficient for the search 

phase, and therefore improves the time related aspects of the framework. Figure 4-6 shows the creation 

of a hash table for a hypothetical 3D shape. 
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Figure 4-6. A hypothetical 3D shape is illustrated to show the procedure for generating the model 

library and storing the feature descriptor. (a) Arbitrary point pairs are resampled from the model point 

cloud and the feature set is calculated. (b) The feature sets is calculated. (b) The feature sets are then 

used to hash the table for representing the model (i.e. points with similar feature sets with a threshold 

value Δθ are hashed in a similar cell). 

To find various models, the hash table and the model library can be extended; that means the features 

for various models can be accumulated in an original hash table. This method for storing the model 

feature sets in the same library avoids recalculating features for previously generated shapes.  Model 

library generation with the required steps is summarized in Algorithm 1.  

Algorithm 1: Model library generation 

Input: 3D model point cloud {𝑀} 

Output: Model library {𝕄} 

Null {𝕄} : ∅ → {𝕄} 

For all points (𝑚1) in 3D model: 𝑚1 ∈ 𝑀 

Find all points {𝑚2} ⊆ 𝑀 such that ‖𝑚1 − 𝑚2‖ =

𝑑 

For all points in {𝑚2} ⊆ 𝑀 

- Create the point pair (𝑚1, 𝑚2) 

- Calculate the feature descriptor: 𝐹 = (𝑓1, 𝑓2, 𝑓3) 

- Populate 𝕄: store (𝑚1, 𝑚2) and normal vectors 

(𝑛. 𝑚1, 𝑛. 𝑚2) in the corresponding cell (𝑓1, 𝑓2, 𝑓3), 

in the hash table 𝕄 

End for 

End For 

Report 𝕄 

 

Hash Table

(a) (b)
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4.3.3 Scene representation  

Once the models are described using the feature set explained, and the library of the objects are created, 

the online mode is performed. The online mode starts with a RANSAC (Random Sample Consensus)-

based search. The regular RANSAC search for 3D objects is inefficient and almost impossible for 

realistic or practical sized point clouds. In contrast, the feature library is used for making the search 

more efficient and robust for real-sized point clouds. The sampling process for the RANSAC-based 

matching is illustrated in Figure 0-7. 

 

 

Figure 0-7. Scene representation for one typical iteration in the RANSAC-based matching algorithm. 

Step 1: an arbitrary point s1 is selected. Step 2: all possible s2’s are calculated. Step 3: all possible 

pairs (s1, s2) are created, and the features are calculated. Step 4: potential matching pairs are 

extracted from the hash table using the features calculated. Step 5: The transformation T is then 

calculated. 

To start searching for potentially matching pairs, the Scene (𝑆) is uniformly resampled (𝑠1). For each 

point resampled, all points {𝑠2} that are distanced at 𝑑 are stored to create a potential pair (𝑠1, 𝑠2). The 

feature elements are then calculated to identify the matching pairs from the Model (𝑀) stored in the 

hash table. The point set (𝑠1, 𝑠2) and the corresponding normal vectors (𝑛. 𝑠1, 𝑛. 𝑠2) are then matched 

with the existing pairs and normal vectors in the hash table. In other words, the potential matching pairs 

from the Model and Scene create a hypothesis to be tested in a RANSAC-based matching step. The 

matching step is described in the following section. 

4.3.4 Matching 

The matching step is combined with the Scene representation. The matching step is an iterative process 

based on the criteria defined for testing the hypotheses created from 𝑆. For all potential matching pairs 

identified from the hash table, the transformation (𝑇) that aligns the features (i.e. points and their normal 

Hash Table 

Step 1

Step 2

Hash

Step 3 Step 4 Step 5
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vectors) from the Model and Scene is calculated. For calculating the transformation𝑇, PCA (principal 

component analysis) is used for aligning two sets of four points in the Model and the Scene. The set of 

four points include the two points of the pair being investigated, and two arbitrary points located on the 

normal vectors starting from the points. In this chapter, the two points are located at the end of the unit 

normal vector starting from the point. Figure 0-8 illustrates the calculation of the point sets of four to be 

matched from the two datasets. 

 

Figure 0-8. Calculation of the point sets to be matched using principal component analysis. The four 

points include the pairs as two points: (m1, m2) or (s1, s2), and two points, (m3, m4) or (s3, s4),  

located at the end of a unit normal vector starting from each point. ‖m1 − m3‖ = ‖m2 − m4‖ = 1, 

and ‖s1 − s3‖ = ‖s2 − s4‖ = 1. The rigid transformation T can then be calculated using PCA. 

 

The method described for transformation calculation (hypothesis generation) is found to be robust and 

quick. Therefore, the online phase remains very time effective to be implemented in real-time 

applications. The entire Model is then transformed using the previously calculated transformation: 

𝑀∗ = 𝑇 × 𝑀.  

𝑀∗ and 𝑆 are then compared to test the hypothesis generated. For this purpose and to test the goodness 

of the transformation calculated (hypothesis), the number of inliers is computed. A support term (𝜆𝑠) is 

therefore defined to investigate the appropriateness of the hypothesis. In other words, 𝜆𝑠 identifies an 

additional criterion for the RANSAC-based matching algorithm used here.  

 

For each hypothesis (𝑇) generated, the support term is calculated as: 𝜆𝑠(𝑀, 𝑇) = 𝑚𝑠 𝑚⁄ , where, 𝑚𝑠 is 

the number of points that support a matching criterion. Such a matching criterion is defined as the 

number of points from the transformed Model (𝑀∗) in close proximity to the Scene (𝑆).  

The matching step is performed until either a maximum number of iterations is reached or a pre-defined 

portion of the points in the Model are retrieved from the scan. These two criteria are identified to stop 

the RANSAC-based hypothesis testing framework. 

 

Set of four points 

from the Model (M)
Set of four points 

from the Scene (S)

𝑇
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Once the best hypothesis is found using the previously explained framework, the match is refined using 

a post iterative closest point (ICP) alignment. The initial coarse alignment will be improved using a 

post ICP alignment with a few number of iterations to find the best match between the two data sets. 

This step augments the accuracy of the method for correct finding, because the datasets were resampled 

to improve the time effectiveness of the framework. Some information is missing during resampling 

because of the reduction in the density of the point cloud; however, this issue is compensated using this 

post ICP refinement. Algorithm 2 summarizes the processing tasks explained in Step 2 and Step 3. 

Figure 0-9 shows an example of the post-ICP refinement of the match found using the feature space 

and the RANSAC-based search. 

Algorithm 2: Scene representation (Step 2) and 

matching (Step 3) 

Input: Model library {𝕄} and Scene (𝑆) 

Output: Isolated object-of-interest {𝑆𝑖} from 𝑆: 𝑆𝑖 ⊆

𝑆 

Repeat N times 

- Randomly select 𝑠1 

- Calculate all points {𝑠2} such that: ‖𝑠2 − 𝑠1‖ = 𝑑 

- Create all pairs (𝑠1, 𝑠2) 

For all pairs (𝑠1, 𝑠2) 

- Calculate 𝐹(𝑠1, 𝑠2) = (𝑓1, 𝑓2, 𝑓3) 

- Find potential matching pairs in the model 

(𝑚1, 𝑚2) by (𝑓1, 𝑓2, 𝑓3) as the key to the hash 

table 𝕄. 

- Create the set of four points from 𝑆 and 𝑀: 𝑆4 =

(𝑠1, 𝑠2, 𝑠3, 𝑠4) and 𝑀4 = (𝑚1, 𝑚2, 𝑚3, 𝑚4).  

- Find transformation 𝑇 that matches 𝑀4 to 𝑆4 

using PCA 

- Transform the entire model with 𝑇: 𝑀∗ = 𝑇 × 𝑀 

- Calculate 𝜆𝑠(𝑀, 𝑇) = 𝑚𝑠 𝑚⁄  

- Find 𝑇 and 𝑀∗ associated with the highest 𝜆𝑠 
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End For  

End Repeat 

- Refine the match as: 𝑀∗ ← 𝑀∗ × 𝐼𝐶𝑃(𝑀∗, 𝑆)  

- Find correspondences 𝑆𝑖 ⊆ 𝑆 of 𝑀∗ in 𝑆 

Report 𝑆𝑖 

 

 

Figure 0-9. Refinement of the match using a post-ICP registration. Aligned point clouds (a) Before, 

(b) after ICP registration. 

As illustrated in Figure 0-9, the 3D model slightly deviates from the scene after calculating the initial 

transformation using the RANSAC-based hypothesis testing. Such deficiency is resolved by 

performing the post-ICP refinement step. The ICP registration requires only a few iterations to refine 

the alignment. The effective parameters are summarized in Table 0-2 and were established using 

experiments in this study. The effectiveness of the parameters is reported in section 3.4.3. 

 

Table 0-2 Values of the effective parameters for the set of experiments performed 

Parameter Description Value 

𝑑 Distance between the point pairs 0.75𝜌* 

Δ𝜃 Cell size for the hash table 12º 

𝜆𝑠 Overlap ratio for the RANSAC 0.15 

𝑡 Time criteria for RANSAC 20 sec 

iterations ICP iterations for post refinement 5 

* 𝜌 = 𝑑𝑖𝑎𝑚(𝑀), where 𝑑𝑖𝑎𝑚 returns the largest distance 

between a pair in a point set. 

 

4.4 Verification and Validation  

In this section, the described framework is implemented and its performance is measured by designing 

a set of experiments. The method is validated on two cases to evaluate its capability on various 

geometries and shapes. The framework is implemented and programmed in a MATLAB-based platform 

(b)(a)
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integrated with C++ and a function library distributed by (Papazov and Burschka 2010). The processing 

times reported in the following sections are benchmarked on a processing machine with a 3.7×12 GHz 

processing unit and a 32 GB RAM.  

4.4.1 Design of experiments 

For verifying and validating the proposed methodology, a set of experiments are designed and 

performed. The experiments are carried out on a small-scale pipe spool (as a curvilinear object) and a 

structural frame (as a rectilinear object). The object-of-interest is in a laboratory environment, where 

other unwanted objects are scanned in the background or in the close proximity of the object-of-interest. 

For 3D point cloud acquisition, laser scanning is employed in this study. A FARO LS 840-HE is used 

for scanning the lab facilities. Physical properties of the laser scanner used in this study can be found 

in Table 4-3.  

 

Table 4-3. Summary of physical properties of the 3D scanning device (FARO LS 840-HE) 

Factor Value 

Accuracy ± 3mm at 25m 

Scanning range 0.6m – 40m 

Acquisition speed 120,000 points/sec 

Angular resolution 0.009º 

 

For comparing the results in the cases investigated, and measuring the performance of the framework, 

two critical metrics are reported: 

1- Processing time: is the required time for both model library generation (offline phase), and matching 

 (online phase). Tracking the processing time enables the applicability of such a method for 

 developing real-time frameworks for process control.  

2- Retrieval accuracy: is the average error between the transformed Model and the Scene. This is 

 represented by a root mean square (RMS) of the Euclidean distance between the corresponding 

 points. As mentioned earlier, two construction components are used in the experiments: (1) a 

 small- scale pipe spool, and (2) a small-scale structural frame. The latter is chosen to verify 

 the robustness of the proposed algorithm for finding structural elements from cluttered 

 laser scans. Previous studies (Czerniawski et al. 2016a) were directed toward recognizing 

 cylindrical objects (e.g. pipe spools). However, the method presented in this chapter can  find 
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 any shape and geometry robustly and effectively. More information about the components 

 used in the experiments is provided in Table 0-4.  

 

Table 0-4. Construction components used in the experiments 

Point 

cloud 

Bounding 

dimensions 

Element 

type 

ID used for 

results 

Pipe 

Spool 

3m×2m×0.5

m 
Curvilinear PS 

Box 

Frame 

3.5m×2m×2

m 
Rectilinear BF 

4.4.2 Effective variants  

To investigate the capability of the framework for addressing the existing challenges for efficient 

finding of objects (discussed earlier), the experimental setup is tested under various circumstances. 

Three major variants are investigated: (1) density of the 3D point cloud used in the isolation framework, 

(2) clutter existing in the Scene, and (3) completeness of the object-of-interest in the 3D point cloud 

acquired. A wide range of such variants is considered and their impact on the verification metrics 

(processing time and retrieval accuracy) is analyzed in the following sections. 

4.4.2.1 Density 

For investigating the effect of density on the results, a dimensionless metric is defined. The metric is 

called density ratio, which is the proportion of the number of points in the Scene to the constant number 

of points in the Model. Various density ratios are investigated by down sampling the originally acquired 

point cloud as the Scene. Down sampling is performed incrementally to evaluate how the recognition 

rate is affected. Another metric is also defined to monitor the recognition rate. Recognition rate (RR) is 

defined as follows: 

𝑅𝑅 =
𝑇𝑃

‖𝑠‖
 (4.2) 

in which, the nominator 𝑇𝑃 (True Positive) is the number of truly found points, and the denominator 

‖𝑠‖ is the size of the object-of-interest (𝑠) in the Scene (𝑠 ⊆ 𝑆). Table 0-5 and Table 0-6 show the 

summary of the analyses for the effect of density on the recognition rate. Figure 0-10 shows typical 

results using various density ratios for the isolation of PS from cluttered point clouds. 
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Figure 0-10 Effect of density on the accuracy of the object-of-interest isolation. Three density ratios 

are illustrated. Density ratios is 5 for (a), 10 for (b), and 20 for (c). The top figures are cluttered point 

clouds with the model aligned with the object-of-interest, and the bottom figures show the isolated 

object from the point clouds. 

 

Table 0-5 Summary of the analyses on the effect of density on the critical metrics for Pipe Spool 

Density 

ratio 

Number 

of points 
RR 

RMS 

(cm) 

Time 

(sec) 

0.3 3000 0 Failed Failed 

1 10000 0 Failed Failed 

2 20000 0 Failed Failed 

5 50000 0.956 1.34 27.5 

8 80000 0.930 1.28 26.8 

10 100000 0.929 1.31 25.1 

20 200000 0.924 1.25 19.2 

 

Table 0-6. Summary of the analyses on the effect of density on the critical metrics for Box Frame 

Density 

ratio 

Number 

of points 
RR 

RMS 

(cm) 

Time 

(sec) 

0.3 3000 0 Failed Failed 

1 10000 0 Failed Failed 

2 20000 1 2.92 15.8 

5 50000 0.995 2.86 22.9 

10 100000 0.979 2.82 22.9 

16 160000 0.983 2.81 22.9 

 

For the PS case, the average RMS value for successfully isolated objects is 1.28 cm with a standard 

deviation of 0.03 cm. For the BF case, the average RMS value is 2.85 cm with a standard deviation of 

0.04 cm. This shows that the RMS value remains unchanged for the successful cases. In other words, 

(a) (b) (c)
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the negligible change in the RMS value implies that the object-of-interest isolated from the laser scan 

is robustly identified using various density ratios. Another observation is that the recognition rate (RR) 

increases as the density ratio passes a minimum threshold value and it then remains relatively 

unchanged. Figure 0-11 shows the relationship between the density ratio and the recognition rate for the 

PS and BF cases investigated. 

 

As shown in Table 0-5, Table 0-6, and Figure 0-11, for lower density ratios, the isolation of the object-

of-interest is unsuccessful. Unsuccessful isolation means that the final transformation found by the 

algorithm is incorrect and the isolated point set does not correctly correspond to the object-of-interest. 

This might be due to the over simplification of the scan occurring during the down sampling phase. 

Down sampling may also cause inaccuracies in the calculation of normal vectors. As explained 

previously, the accuracy of the normal vector calculation step is a key in the recognition and isolation 

process. Therefore, for lower density ratios, the object may not be represented sufficiently densely, 

which fails accurate normal vector calculation, and consequently, the object isolation given a cluttered 

point cloud. 

 

Figure 0-11. Effect of density on the recognition rate 

The processing time reported in Table 0-5 and Table 0-6, is the time required for the alignment of the 

3D model within the point cloud. The isolation time, which requires nearest neighbor calculation, and 

a post ICP refinement is excluded from the processing time reported in the results. The post-processing 

time for calculating the closest points and refining the match is expected to be exponentially increasing 

as the density of the point cloud increases (Rusinkiewicz and Levoy 2001). 

4.4.2.2 Clutter 

For investigating the effect of clutter on the object recognition and isolation framework, the 

experimental objects are tested under various circumstances with varying clutter. The 3D point cloud 
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used as the Scene is tested with an incrementally increased clutter around the object-of-interest. For 

quantifying the amount of clutter in the S, clutter ratio is defined as: 

𝐶𝑙𝑢𝑡𝑡𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
‖𝑆 − (𝑆 ∩ 𝑠)‖

‖𝑠‖
 (4.3) 

in which, S is the 3D point cloud (Scene), and s is the object-of-interest. In other words, clutter ratio is 

the proportion of the amount of clutter to the size of the object-of-interest. The clutter ratio is 

dimensionless. The recognition rate (RR), as defined previously, is then calculated for each clutter 

ratio. Experimental results for the PS and BF objects are summarized and reported in Table 4-7 and 

Table 0-8. 

 

Table 4-7. Summary of the analyses on the effect of clutter on the critical metrics for Pipe Spool 

Clutter 

ratio 

Number 

of points 
RR 

RMS 

(cm) 

Time 

(sec) 

51.295 322191 0.764 1.30 20.9 

12.191 81272 0.929 1.28 13.2 

7.466 52156 0.974 1.28 15.3 

1.473 15236 0.985 1.28 8.1 

0.707 10514 0.984 1.28 0.8 

 

Table 0-8. Summary of the analyses on the effect of clutter on the critical metrics for Box Frame 

Clutter 

ratio 

Number 

of points 
RR 

RMS 

(cm) 

Time 

(sec) 

20.794 322191 0.764 2.81 17.4 

17.604 279072 0.929 2.81 15.8 

9.579 158692 0.974 2.81 13.2 

5.087 91302 0.985 2.83 12.1 

3.053 60796 0.984 3.69 10.9 

 



 

59 

 

 

 

Figure 0-12. Effect of clutter on the recognition rate 

As seen in Table 4-7 and Table 0-8, the recognition rate decreases as the clutter ratio increases. It signifies 

that clutter presence affects the accuracy of the isolated object from a point cloud; however, the object 

is still successfully and robustly found. The RMS value of the isolated object is calculated for various 

clutter ratios. For the PS object, the average RMS (root mean square) value is 1.28 cm with a standard 

deviation of 0.01 cm. For the BF, average RMS value is 2.99 cm with a standard deviation of 0.35 cm. 

Low standard deviation signifies that the isolated object remains unchanged for the various clutter 

ratios. Figure 0-12 shows how the recognition rate changes with the clutter ratios for the PS case. 

 

As seen in Figure 0-12, recognition rate decreases as the clutter ratio increases for both cases. This might 

be due to the existing noise in the scene. However, the object (3D model) is successfully aligned within 

the point cloud, and it is therefore successfully isolated from the scene. The level of recognition rate 

achieved even in the most cluttered case in the experiments is sufficiently reliable for enhancing further 

assessments on the isolated object. Such further assessments include quality control, deviation analysis 

and discrepancy quantification (Nahangi et al. 2015, Nahangi and Haas 2014). Figure 0-13 shows a 

typical example of the effect of existing clutter on the isolation of the PS object. In this case, clutter is 

gradually removed manually, and the framework is applied. Figure 0-13-(a) shows the fully cluttered 

point cloud (original scan), and Figure 0-13-(e) shows the least amount of clutter existing around the 

object-of-interest (PS object). Figure 0-13-(f) and Figure 0-13-(g) show the final results after the 

recognition and isolation framework is applied.  

4.4.2.3 Completeness 

In order to investigate the effect of completeness on the isolation framework, various combinations of 

the comprising branches and elements of the investigated objects are tested. The desired pipe spool to 

be isolated from the point cloud is comprised of multiple branches. Branches are manually removed 

from the input point cloud to test the capability of the framework for recognizing and isolating the 

object, in the case of incomplete and missing data. Incomplete data might be due to occlusion or the 
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line-of-sight during data acquisition. Completeness ratio is defined as the metric to quantify 

completeness vs. incompleteness of the data. Completeness ratio is the proportion of the size of the 

object in the imported point cloud, to the size of the completely scanned point cloud of the object-of-

interest. It should be noted that density and clutter ratios are kept unchanged while incompleteness is 

being investigated. 

 

 

 

Figure 0-13 Typical results for the effect of clutter on the accuracy of the object extracted from 3D 

point clouds. A cluttered scene is investigated in five stages: (a) the scene is fully cluttered, (b) 

background is removed, (c) some obviously unwanted objects are removed (structural components), 

(d) planar clutter (ground, walls and ceilings if any) is removed, (e) secondary and support 

attachments (holder jacks and stands) are removed. (f) The isolated object from manually cleaned 

point cloud. (g) The isolated object from fully cluttered point cloud. 
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Figure 0-14. Object recognition and isolation with incomplete and missing data. The point cloud in 

the middle shows a completely scanned object. Each branch is manually removed in four different 

steps and the capability of the algorithm developed is tested under missing and incomplete data. The 

object recognition only fails in (d) because the removed branch contains critical features in finding 

the correct transformation. In cases (a), (b), and (c), object recognition and isolation is successful. 

Rather than the recognition rate, success rate is calculated for measuring the effect of incompleteness. 

Success rate (SR) is a binary metric (1 if successfully isolated and 0 if isolation is failed). 

Table 0-9 and  

 

 

 

 

Table 0-10 show the effect of incompleteness on the success rate for recognizing and isolating the 

investigated objects. 

Table 0-9. Effect of completeness on isolating Pipe Spool from a cluttered laser scan 

Completeness 

ratio 

Number of 

points 
SR 

Time 

(sec) 

0.958 74177 1 22.8 

0.923 77842 1 22.9 

0.913 74979 1 23.1 

0.903 73363 0 Failed 
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Table 0-10. Effect of completeness on isolating Box Frame from a cluttered laser scan 

Completeness 

ratio 

Number of 

points 
SR 

Time 

(sec) 

0.993 157631 1 20.2 

0.985 156449 1 20.1 

0.980 157631 1 19.7 

 

As reported in Table 0-9 and  

 

 

 

 

Table 0-10, a threshold in the completeness ratio must be met in order to ensure recognizing and 

isolating the objects successfully. Figure 0-14 illustrates how various branches are manually removed 

from the imported point cloud into the recognition framework. Various branch removal results in 

different completeness ratios that affects the success rate in the recognition framework. 

4.4.3 Parameters effectiveness  

The effective parameters reported in Table 0-2 were established using experiments in this study. 

However, two scenarios were identified that caused the finding algorithm to fail using the proposed 

parameters. The two scenarios are, (1) multiple objects being recognized and (2) failure to detect object 

of interest. In order to resolve the first issue 𝜆𝑠 was increased so that only the object with the maximum 

overlay percentage would remain as the isolated object. In the second case, the required time for 

RANSAC algorithm was increased up to 40 seconds and in cases 𝜆𝑠 was also reduced. To measure the 

effectiveness of the proposed parameters, an effectiveness ratio (ER) was defined. Effectiveness ratio 

was defined as the proportion of the times that the object of interest was isolated using the proposed set 

of parameters to the total number of times the object of interest was successfully isolated from the point 

cloud. Table 0-11 and Table 4-12 illustrate the results of using the proposed parameters.  

 

Table 0-11. Effectiveness ratio for the proposed parameters on isolating Pipe Spool from a cluttered 

laser scan 
Parameter Value ER 
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𝜆𝑠 0.15 0.92 

t 20 sec 0.92 

 

 

 

 

Table 4-12. Effectiveness ratio for the proposed parameters on isolating Box Frame from a cluttered 

laser scan 
Parameter Value ER 

𝜆𝑠 0.15 0.91 

t 20 sec 0.91 

 

Results show that the proposed parameters are sufficiently robust to be integrated with the automated 

finding algorithm.  

4.5 Conclusion and Future Work 

A model-based 3D object recognition and isolation framework was adapted and examined to extract 

the construction elements of interest from cluttered laser scans. The framework was desired to be 

sufficiently robust and therefore reliable to be integrated with the automated and integrated construction 

process controllers. In summary, this method employs a local feature of point pairs as a descriptor or a 

local signature. The methodology for 3D object recognition and isolation has three primary steps:  

1- Model library generation for the elements existing in the building information model. The library 

of objects and their describing features calculated are stored in a hash table that enhances an 

efficient  and quick search.  

2- Scene representation by calculating the features for potential point pairs and testing hypotheses 

in a RANSAC-based hypothesis testing engine.  

3- Matching and refining by transforming the 3D model on the acquired point cloud and refining 

the match by a post-ICP registration step. 

An experimental study is performed for two different construction objects: a pipe spool (PS) as an MEP 

component, and a box frame (BF) as a structural element. Density, clutter, and completeness are 

thoroughly investigated to test the robustness of the framework. Processing time and recognition rate 

are recorded as the verification metrics in the various cases are tested and investigated. Some interesting 

observations and insights of the experimental study are listed as follows: 

  It was shown in the experiments that if a threshold value is met as the required level of 

density, the object-of-interest is robustly isolated from the point cloud. 
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  It was demonstrated that even with a massively cluttered point cloud, the algorithm is 

capable of extracting the object from the clutter surrounding it; however, the level of 

noise increases inevitably, as the clutter increases. It therefore requires a finer post 

refinement for noise removal. 

 The algorithm also works in cases that an incomplete point cloud is imported to find and 

isolate the object-of-interest. This capability addresses the unavoidable occlusion 

challenge on the data acquisition phase. 

The framework in this chapter can be used to find a wide range of curvilinear and rectilinear 

construction components and elements, in contrast with the previous methods that were focused on 

some specific and explicit geometries. Since the feature set used to represent an object is not limited to 

an explicit geometry, it can even extract very complicated geometries including sophisticated 

connections and surfaces. This was verified and validated by testing two relatively sophisticated 

geometries within various construction sectors (i.e. MEP and structural elements). 

As the framework is robust to the density and completeness of the point cloud acquired to represent the 

scene, there is an emerging potential for integrating the framework with image-based 3D point cloud 

techniques. Currently, inadequate number of images or insufficient level of overlap between the images 

are the sources of inaccuracies in the image-based and structured-light-based techniques for 3D point 

cloud generation. However, because the developed framework is robust to incompleteness and density 

of the point clouds used, such inadequacy might be bypassed. Moreover, considering that the utilization 

of image-based frameworks for data acquisition is less expensive comparing to the laser-based 

techniques, it is important to explore the integration of the framework with image-based or structured-

light-based sensors in future research. 

Although the recognition and localization of the 3D model is performed in a significantly faster 

timeframe, the isolation module takes the dominant part of the time required for processing. Faster and 

more effective search strategies such as kd-tree and graph theory may improve the processing time for 

the isolation, and this inadequacy may be appropriately addressed. This could be a potential research 

direction for future work. In the case that the isolation module is effectively utilized and the processing 

time is reasonably quick, the entire framework may be integrated with structured-light based data 

acquisition sensors for the development of (near) real-time process controllers. Such integrated 

platforms are currently being developed by the authors. 

The features and descriptors of construction objects can be calculated and stored as a new dimension 

to the BIM, considering the fact that the model library generation phase is performed in the offline 

phase. It can consequently save the processing time for model library generation, if the shape 
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descriptors are integrated with the BIM. This new addition is currently under investigation by the 

authors. 

While the investigated framework proved to be somewhat effective, it was not used as part of the 

developed software. The developed software was aimed to be highly practical for the use of pipe fitters 

on the fabrication floor. The investigated algorithm suffers from two drawbacks which will make its 

use impractical in industry: (1) The software requires two input variables: (a) overlap percentage, and 

(b) termination time. In order for the software to operate properly the user has to have priory knowledge 

on how to choose the two variables. (2) Purchasing the license key for the used software package could 

be highly costly. A semi-manual algorithm was used instead. The utilized algorithms is more intuitive 

from the user’s perspective, less costly and takes less time.  A three pair point matching method is used 

were the workers have to only select three corresponding points between the acquired scan and model 

point cloud to superimpose the point clouds.  
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Chapter 5 

Optimal Nearest Neighbour Calculation for Automated Retrieval of 

Construction Elements from Cluttered Point Clouds  

This chapter is based on the following published article in the proceedings of Resilient Infrastructure 

2017, Vancouver, with the same title. Minor changes are made on some parts of the article to be more 

consistent with the body of the thesis.  Thus, the content of this chapter is not exactly the same as the 

paper.  

The contribution of the author in this publication was conducting the experiments, data analysis and 

partially drafting and editing the manuscript.  

5.1 Introduction  

3D image acquisition tools are becoming more prevalent in the construction industry as they have 

become more affordable and as design information shifts from traditional 2D drawings to 3D BIM 

models. 3D scanners enable their users rapid access to accurate information regarding the geometric 

conditions on a job site or in a construction facility.  Traditionally, laser scanners have been the most 

reliable and accurate source of 3D data (Bosche and Haas 2008b) .Photogrammetry and structured light 

scanners offer lower cost solutions but with compromised accuracy (Golparvar-Fard et al. 2009b). 

Increased competition, demand and innovation is pushing the development of all areas of 3D data 

acquisition and is resulting in higher quality technology being available at increasingly lower prices. 

One area of substantial use of these tools is the development and implementation of scan vs. BIM 

frameworks for early detection of construction defects. Typically, 15% of construction rework is due 

to late detection of defective components (Burati Jr et al. 1992). Late detection of defects can result in 

project schedule delays, cost overruns and cost propagation in projects with sensitive schedules. 

Consequently, early detection of defects in construction projects has become a prime concern for 

stakeholders. Geometric non-compliance is a major source of defects in construction. Advancements 

in 3D image acquisition tools have enabled users to have access to geometric data in real-time and make 

early detection of such deficiencies feasible (Brilakis et al. 2011). Comparing the design information 

to the as-built data provides an assessment of the fabrication quality and can be done by superimposing 

the 2 point clouds (3 by n matrices of geometric coordinates) to inspect the geometric compliance of 

the completed assembly (Chapter 2).  
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One of the challenges with comparing a scan point cloud with a model point cloud is that the scan 

contains clutter points, which are points from the object’s environment that get captured when acquiring 

the scan (Chapter 3). To compare the two point clouds the object of interest must be isolated in the scan 

by removing the clutter points. To isolate the object of interest, the object must first be found within 

the point cloud before the clutter can be removed. Chapter 3 thoroughly investigated and examined a 

robust framework for automated object finding. Once the object of interest is found, scene point cloud 

will be superimposed onto the design point cloud, post-processing algorithms have to be employed to 

properly isolate the object of interest by removing the clutter. Automating the accurate extraction of 

objects of interest from spatial data is the fundamental enabler for further developments in automated 

spatial analysis. The goal when decluttering a point cloud is to isolate the points that correspond to the 

object of interest from a complete point cloud without removing points belonging to the object of 

interest Figure 5-1 shows the process for isolating an object of interest from a scene point cloud. 

 

Figure 5-1. Abstract of the process from scan acquisition to object isolation. (a) Acquired scan of the 

scene including clutter points. (b) BIM model of the object of interest in point cloud format. (c) 

Model superimposed on the scan. (d) Resulting point cloud 

Classification methods have been investigated in literature and multiple algorithms have been 

developed by researchers. One such application of the algorithms is clutter removal, where 

classification methods facilitate the retrieval of points on the object of interest from the point cloud. 

These methods include graph-cut based method (Pan et al. 2016) and structure less nearest-neighbor 

techniques composed of K-nearest neighbours methods (Bhatia 2010). Nearest neighbor search 

algorithms have been found to be the most effective (Bajramovic et al. 2006) for removing clutter. A 

variety of KNN searching algorithms are used in point cloud modeling (Zhao and Meng 2009) to 

calculate surface curvature in addition to noise and clutter removal. 

KNN is acknowledged as a simple, robust and effective method for classification of points as belonging 

to either the object of interest or to the clutter. Nonetheless, KNN still faces two main shortcomings as 

a post-processing technique (Jiang et al. 2007): (1) the distance function used to measure the differences 

and similarities between the 2 point clouds is the standard Euclidean distance, and (2) the neighborhood 
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size is artificially assigned as an input parameter K, biasing the algorithm by the arbitrary nature of the 

K value chosen. Since the accuracy of the algorithm is highly dependent on the K value, researchers 

have proposed several models for selecting this value. For example, Xie proposed a model named 

Selective Neighborhood Naive Bayes, also known as SNNB (HWLZLM, SNNB). The basic idea is that 

multiple K values are tested and the one with the highest estimated accuracy to classify the data is 

selected. As stated in (Guo et al. 2003), the simplest approach to selecting the K value in this model is 

to run the algorithm multiple times with different K values and to identify the K associated with the 

best trial.   

To evaluate the success of the exclusion of clutter from the point cloud, the method presented in this 

chapter uses two measures: (1) number of points erroneously remaining in the point cloud,(2) number 

of points erroneously removed from the point cloud. The main contribution of this chapter is the 

selection of an optimal K value depending on the number of points in the as-design point cloud and in 

the as-built point cloud. The method was administered on cylindrical objects (pipe spools). The 

accuracy of the model was tested and found to have an R square value equal to 0.75. 

The following sections of this chapter is organized as follows. In Section 5.2, a survey of 3D imaging 

methods in construction and post-processing techniques for finding the object of interest in a point 

cloud is provided. In Section 5.3, the methodology for the experiment conducted is described. In 

Section 5.4, includes details of applying the proposed methodology. Discussion and future works has 

been discussed in Section 5.5. 

5.2 Background  

Two main areas have been investigated: (1) the use of 3D-imaging in construction, and (2) post-

processing algorithms for removing clutter in point clouds. A focus was placed on K-Nearest Neighbor 

post-processing algorithms as this study utilized a KNN technique as the primary method for the clutter 

removal algorithm. 

5.2.1 3D-imaging in construction 

Currently, ground-based laser scanners are the superior acquisition technology used as they can provide 

the highest accuracy and density point clouds. Bosche and Haas used laser scanners to develop a 

framework for construction object recognition using the projection of the BIM model onto the relative 

position of the scanner (Bosche and Haas 2008b). Turkan presented a framework for automatic project 

schedule updating based on the object recognition method previously developed by Bosche (Turkan et 

al. 2012b).  Nahangi developed a method for progress tracking using robotics analogy and forward 

kinematics with a focus on mechanical, electrical and piping components (Nahangi  et al. 2015). 
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Coupling 3D design models with the acquisition of high quality 3D spatial data has made it possible to 

directly compare a completed industrial component with its design model. Akinci presented a method 

for comparing as-planned 3D design information (CAD model) with periodic imaging of critical 

construction components (Akinci et al. 2006b). A great deal of research has gone into using 3D designs 

with 3D spatial data to evaluate pipe spool assemblies as they are critical for industrial construction 

projects including refineries and power plants. Pipe spool assemblies are typically prefabricated in shop 

and then sent to the site to be assembled which requires accurate fabrication and an incident-free 

transportation to the site. This has prompted researchers to investigate methods to better regulate the 

prefabrication to ensure that spools are being fabricated within tolerance. Nahangi developed an 

automated approach for monitoring and assessing fabricated pipe spools and structural systems using 

automated scan-to-BIM registration (Nahangi, and Haas 2014, Nahangi et al. 2015). The method 

reliably detects the presence of dimensional non-compliance. Lee introduced a new method to extract 

critical points and centerlines in pipelines to reconstruct the model and compare it with BIM for 

progress tracking (Lee et al. 2012). These methods still leave room for improvement and further 

development to better assess the as-built conditions of pipe spools. 

5.2.2 Post-processing algorithm: retrieval of object-of-interest 

Manually removing clutter is a tedious task that requires automation to allow it to be part of a practical 

3D imaging application in construction. Researchers have investigated and developed multiple 

frameworks using Nearest Neighbor (NN) methods for finding and recognizing objects of interest in 

point clouds (Czerniawski et al. 2016b). NN methods can be classified into two categories: 1) Structure 

Less NN techniques, which overcome the memory limitation issue, where the whole data sets are 

classified into training data and sample data points and distance is then calculated to find the nearest 

neighbor, and 2) Structure Based NN algorithms which reduce the computational complexity by 

structuring the data into different organisations such as Ball Tree (Liu et al. 2006), KD-Tree (Friedman 

et al. 1977) and NB-Tree (Kohavi 1996). In this study, a KD-Tree was used to structure the points of 

the point cloud in a 3D space. An Approximate Nearest Neighbor Search algorithm was then performed 

on the sorted data to extract the desired points from the point cloud. Jiang surveyed improved KNN 

search algorithms that either improve the distance function, the neighborhood size or the class 

probability estimation (Jiang et al. 2007).  

The main contribution of this chapter is to develop and evaluate an effective process that facilitates the 

retrieval of an object from a point cloud scene. The method was applied to cylindrical objects, pipe 

spools, and presents a mathematical solution to determine the optimal K-value to retrieve an object of 

interest from a cluttered point cloud. 
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5.3 Methodology  

The methodology for optimal object retrieval of cylindrical objects from point clouds and the flow of 

information between various components is illustrated in Figure 5-2. The objective of the proposed 

method is to determine a mathematical solution to find the optimal threshold value in the decluttering 

process utilizing a KNN (K Nearest Neighbour) algorithm. KNN is performed to remove points in the 

scan point cloud that do not correspond to the model point cloud. For each point in the model, K points 

in the scan point cloud that are closest to that point will be selected and stored in a new point cloud or 

matrix. The goal is to store all points from the scan that correspond to the model and remove all points 

that are considered clutter. Increasing the threshold value (K) in the algorithm will increase the number 

of clutter points that are accepted as corresponding to the model (False Positive) and decreasing the K 

value will increase the number of points corresponding to model that are incorrectly deemed to be 

clutter (False Negative) Figure 5-5.  

Two criteria have been defined to determine how successfully desired points are extracted from the 

scan for each K value. The criteria are defined as follows:  

 

Void Rate (VR) = 
Number of  points corresponding to the model and removed erroneously

Number of points in the point cloud after applying KNN
      (5.1) 

 

Noise Rate (NR) = 
Number of clutter points that are incorrectly accepted 

Number of points in the point cloud after applying KNN
                             (5.2) 
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Figure 5-2. Research methodology and the flow of information between different components. 

The optimal K value is one where both VR and NR are minimized. Assuming that minimizing both 

criteria is of equal importance, the optimal value will be determined by intersecting VR (Void Rate) 

and NR (Noise Rate) trend lines (Figure 5-6 and Figure 5-7). Experiments were carried out on a pipe 

spool assembly in Ralph Haas Infrastructure and Sensing Analysis laboratory at the University of 

Waterloo. The assembly measures approximately 2m× 1.5m consisting of four individual pipe spools. 

(Figure 5-3) 

 

Figure 5-3. The test pipe spool assembly. Angular distortions to the assembly were induced at the 

flange numbers one and two, numbered in red. Branches are numbered in white for further reference 

in the article. 

5.3.1 Finding the object of interest 

A set of experiments was carried out on an industrial pipe spool to verify the proposed methodology 

for optimal clutter removal using a KNN algorithm on cluttered 3D point clouds. The object-of-interest, 

Y N 
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the pipe spool, is located in a laboratory environment and is surrounded by other unwanted objects that 

get scanned resulting in noisy point clouds.  

Five different scenarios were generated using the pipe spools. Four scans were taken from different 

locations for each scenario. The four scans were taken to ensure that a complete representation of the 

assembly in each scenario was captured. The first scenario is the case were the assembly complies with 

the design. In second scenario a rotational error has been imposed on flange number 1. The third 

scenario has a rotational error imposed at flange number 1. In the final two scenarios, the assembly was 

disassembled into its component spools (Figure 5-4) and the component spools were each individually 

tested for optimal extraction. In the fourth scenario all the individual spools comply with their designs 

and in the fifth scenario deviations have been imposed on branches one and four. A total of 11 scene 

point clouds were acquired.   

 

 

Figure 5-4. Disassembled spools for scenarios four and five. (a) All spools are compliant to the 

design. (b) Branch numbers one and four have been distorted. 

Once scanning is completed the object must be found in the scans.  This study utilized the algorithm 

provided in Chapter 3 (Papazov and Burschka 2010) to find the object of interest. This algorithm 

requires two inputs. The first input is the BIM (as-designed) model in Stereo Lithography (STL) format. 

The second input is the scene or the as-built point cloud. Once the two inputs are loaded into the object 

finding algorithm, a transformation matrix is computed and outputted. The transformation matrix is a 

4×4 matrix which consists of a 3×3 matrix describing a 3D rotation of the point cloud and a 3×1 vector 

describing the translation. From the eleven acquired scenes, seven had the object of interest detected 

by the object finding algorithm. 
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5.3.2 Point cloud isolation  

In order to ensure that all the surfaces of the object of interest (pipe spools) were captured, scans were 

taken from four perspectives. These four scans were then merged into a single point cloud. The 

operation of merging point clouds of the same scene, taken from different angles, is referred to as 

registration. To register a point cloud, three corresponding points must be identified and selected in 

each scan. White spheres (shown in (Figure 5-3) were placed in the scene to be used as the 

corresponding points between scans for registration. “Faro Scene,” a commercially available software 

was used to merge the point clouds together. Once the scans were registered, the resulting point cloud 

was down sampled from its initial two million points to approximately two hundred thousand points. 

The initial point cloud was too dense for the purpose of this study and down sampling allowed the 

computation time to be reduced for the algorithm. Down sampling populates a new point cloud by 

sampling points from the original point cloud and was done according to Poisson-disk distribution 

which resulted in the point cloud where the points were equally distributed across all surfaces. In other 

words, an equal number of points would be found for any two arbitrarily chosen surfaces of equal area. 

For more information on the down sampling algorithm please refer to (Corsini et al. 2012).  

Given the two point clouds and the transformation matrix the extraction of the object of interest was 

calculated (see Algorithm 1). A third point cloud was calculated using stored points from the scene 

point cloud that have been determined to correspond to the model point cloud. The filtering process 

was performed using a KNN algorithm. This study includes an iterative step where the K value changes 

to examine its effect on the success of object extraction. The processes in this section are summarized 

below in Algorithm 1. 

Algorithm 1: Scene representation, matching and 

Isolation  

Input: Model point cloud (𝕄), Scene point cloud (𝑆) 

and Transformation matrix (T ) 

Output: Isolated object-of-interest point cloud (𝑆𝑖) 

from 𝑆: 𝑆𝑖 ⊆ 𝑆 

Superimpose M on S using T 

Perform ICP for fine registration  

Select a K value 

Create a new K × 𝑀 matrix (N) 

Repeat M times 

        For 𝑀𝑖 ∈ 𝑀  
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    -  Find K nearest point from (S) to (M) 

- Store points in matrix (N) 

End For  

End Repeat 

Report N 

 

5.3.3 Calculation of Void Rate and Noise Rate 

After down sampling and performing Algorithm 1, the success of Algorithm 1 was measured by 

performing Algorithm 2, described below. The success of object extraction was measured with two 

defined criteria. As explained in Section 5.3.1, Void Rate and Noise Rate are the two parameters for 

measuring the accuracy of the extraction. The accuracy was changed by changing the K value.  Figure 

5-5 shows an example of a false positive and a false negative.  

 

Figure 5-5. Challenges of removing clutter points without removing points on the object of interest. 

(a) Example of remaining clutter points after clutter removal for K equal to 8. (b) Example of 

removed points from the object of interest for the same K value. 

Algorithm 2: Void Rate and Noise Rate at a Certain K 

value  

Input: Model point cloud (𝕄), Scene point cloud (𝑆) 

,Transformation matrix (T ) and Isolated point cloud (N) 

Output: Noise Rate (NR) and Void Rate (VR) 

𝐾 = {1, 10, 50, √𝑀, √𝑆,
M

S
} 

Repeat for all 𝐾𝑖 ∈ {𝐾} 

- Manually remove remained clutter points in (N) and 

store the trimmed point cloud as (𝑁2) 

- Manually remove clutter points from (S) and store the 

trimmed point cloud as (𝑁3) 

- n =  number of points in 𝑁2 
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- m = number of points in 𝑁3 

- q = number of points in N 

Remained noise after decluttering = q-n 

Mistakenly removed points after decluttering = m-n 

- Calculate VR and NR 

- VR = 
m−n

q
 

- NR = 
q−n

q
 

End Repeat 

Report VR, NR and 𝐾𝑖 

 

5.3.4 Best Fit and Optimization 

After performing Algorithm 2, a set of VR and NR values was calculated where each member of the 

set was calculated based on a distinct K value. To find the optimal K value for each scan, NR and VR 

values were graphed with respect to their corresponding K value as shown in Figure 5-6 . Once 

tabulated, trend lines were fitted to each data set. The optimal K value for each scan was then calculated 

based on the intersection of the trend lines. The intersection point was found by solving the system of 

equations created by the two trend lines. This process was repeated for all of the scans acquired. 

MATLAB’s curve fitting tool was used to fit the data set of optimal K values and the size of the 

corresponding model and scan point clouds to a mathematical model. The results of this section are 

discussed in Section 5.4. Algorithm 3, used to fit the mathematical model, is described below. 

 

 

 

 

 

 

 

 

 

 

Algorithm 3: Finding the Best Fit with Varying K value  

Input: Model point cloud (𝕄), Scene point cloud (𝑆) , Set of 

Optimal K values of testing sample {K’} 

Output: equation of best fit plane 

- Normalize M and S values 

- Import M, S and K’ value into the optimization tool 

- Use linear regression to find the best fit plane  

- Calculate 𝑅2to evaluate goodness of the plane 

Report parameters of the fitted plane and 𝑅2 
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5.4 Results  

Applying Algorithms 1 and 2, as defined in Section 5.3, will generate VR and NR values for each K 

value used for each scene considered. Table 5-1 provides a summary of the results obtained by applying 

the algorithms on scene one (compliant spool assembly).  

The headings used in the table are defined as follows:  

M: number of points in model point cloud 

S: number of points in scan point cloud 

K: threshold value used in KNN search algorithm 

N: number of points in isolated point cloud 

m: number of points after manually removing points that are considered as noise in the initial scan point 

cloud 

n: number of points in the isolated point cloud (after applying the clutter removal algorithm) that 

correspond to the object of interest 

q: number of points in the isolated point cloud 

 

 

Table 5-1. VR and NR values computed using different K values for scene 1 

M S K N m-q n-q q VR NR 

12061 

12061 

81272 

81272 

1 

7 

3546 

5447 

33 

437 

2648 

1151 

6161 

6161 

0.42 

0.18 

0.005 

0.07 

12061 

12061 

81272 

81272 

10 

50 

5668 

6882 

481 

776 

974 

55 

6161 

6161 

0.158 

0.009 

0.078 

0.125 

12061 

12061 

81272 

81272 

110 

285 

7464 

7935 

1307 

1798 

4 

24 

6161 

6161 

0.006 

0.003 

0.2121 

0.29 

 

Figure 5-6 shows the curves that were fit to the data summarized in Table 5-2.  VR and NR must be 

minimized to find the optimal K value for each scan. To do so, a trend line was fitted to both VR and 

NR data sets. The optimal K value was calculated as the solution to the system of equations created by 

the VR and NR trend lines. Figure 5-6 graphically depicts the calculation of the optimal K value for 

scene number one. 
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Figure 5-6. Calculation of optimal K at the intersection of VR and NR trend lines. 

For each scan, a logarithmic equation was used to fit a line to the void rate (VR) data points while a 

power equation was used to fit a line to the noise rate (NR) data points. Equations (5.3) and (5.4) below 

illustrate the general formats of equations that were used to calculate the trend lines that best fit the data 

points.  

 

𝑌 = 𝑎 ln 𝑥 + 𝑏 and 𝑅1
2      (5.3) 

 

𝑌 = 𝑎́𝑥𝑏́ and 𝑅2
2                  (5.4) 

 

In equation (5.3), 𝑅1
2 denotes the root mean square values between the observed data points and the 

corresponding VR values predicted by the trend line. Similarly, 𝑅2
2 denotes the root mean square 

values between the observed data points and the corresponding NR values predicted by the trend lines. 

Solving the system of equations defined by equations (5.3) and (5.4) provides the optimal K value for 

each scan.  

 

Table 5-2. Parameter values for fitted lines and subsequent optimal K calculation. 

Scene No. a b 𝑎́ 𝑏́ 𝑅1
2 𝑅2

2 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙  

1 

2 

0.0487 

0.036 

-0.0195 

-0.035 

0.832 

0.2478 

-1.12 

-0.495 

0.92 

0.87 

0.81 

0.83 

11 

17 

3 

4 

0.052 

0.196 

-0.0417 

-0.2294 

0.0458 

0.0965 

-0.273 

-0.122 

0.96 

0.66 

0.46 

0.45 

6 

7 

5 

6 

7 

0.2938 

0.1371 

0.0982 

-0.2586 

-0.1559 

-0.0573 

-0.021 

0.4918 

1.0744 

0.13 

-0.68 

-0.65 

0.81 

0.73 

0.88 

0.47 

0.80 

0.66 

5 

8 

9 
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A 3D plot was generated with the size of the scan point cloud on the x axis, the size of the model 

point cloud on the y axis and the optimal K value computed on the z axis. A best fit plane was then 

fitted to this plot. The equation of this best fit plane provides a mathematical solution to find the 

optimal K value based on the size of both the scan and model point clouds. Equation (5.5) shows the 

parametric form of the equation used to fit the plane. Table 5-4 shows the inputs and predictions that 

the model used to generate the variables.  

 

𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑎1𝑀 + 𝑎2𝑆 + 𝑎0      (5.5) 

M and S denote to the number of points in the scene and model point clouds, respectively. 

𝑎1, 𝑎2 and 𝑎3 are the coefficients that were determined. MATLAB’s curve fitting tool was used to 

best fit the plane. Table 5-3 and Table 5-4 summarize the parameters calculated within their 95% 

confidence interval. Table 5-4 shows both the observed and predicted optimal K values, along with 

the 𝑅2 for plane that was fit.  

Table 5-3. Coefficients calculated for the best fit plane. 

 𝑎0 𝑎1 𝑎2 

Most Probable Value 

Lower Bound Value Within %95 Level of Confidence 

9.14 

5.26 

2.706 

-1.52 

2.05 

-2.18 

Upper Bound Value Within %95 Level of Confidence 13.02 

 

6.93 

 

6.27 

 

To calculate the coefficients the input data had to be normalized. The mean and standard deviation for 

the number of points in the scan were calculated to be 9.3+e4 and 3.67+e4 respectively. The number 

of points in the model point clouds was also standardized with a mean value of 1.05+e4 and a 

standard deviation of 1.533+e3.  

Figure 5-7 show a graphical representation of the plane fitted to the data and the residual values 

between the data sets and the predictive model.  
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Figure 5-7. Graphical representation of the fitted plane to predict optimal K value. (a) 3D 

representation of the predictive model. (b) Residual values from the predictive plane. 

To determine the goodness of fit, 𝑅2 was calculated. 𝑅2 was calculated by dividing the sum of 

squares due to regression (SSR) over total some of squares (SST).  

 

Table 5-4. Comparison of the calculated K values and the predicted values using the fitted plane 

along with a measure of the goodness of fit. 

 Observation  Predicted SSE SST SSR 𝑅2 

Scene Size Model Size Optimal K Optimal K    0.75 

81272 12061 11 10 1 3.45 0.73  

145265 

28009 

108007 

108007 

108007 

74569 

12061 

12061 

8864 

10841 

9327 

8864 

14 

6 

7 

5 

8 

9 

11 

9 

14 

12 

13 

15 

49 

9 

49 

49 

25 

36 

78.45 

9.87 

4.5 

17.16 

1.306 

0.02 

3.45 

0.02 

23.59 

8.16 

14.87 

34.30 

 

 Mean 8.6 Sum 218 114.85 1 880  

 

5.5 Conclusion and recommendations based on Chapter 5 research 

This chapter of the thesis presented a case study in which clutter points were optimally removed from 

a scan point cloud. A mathematical closed form solution was provided for calculating the optimal K 

value for removing clutter points in a point cloud based on number of points in scan and model point 

clouds using a KNN algorithm. Experimental data was gathered by scanning a pipe spool assembly 

under different configurations with respect to the compliance of the assembly. The individual spools 

from the assembly were also experimented on individually to provide additional data points to develop 

a more accurate model. A plane was ultimately fitted to the data providing an R square value of 0.75. 
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To develop a more widely adaptable model, objects with different geometric shapes have to be tested 

using the developed algorithm.  

While KNN is a simple, robust and effective method for classification of points as being either part of 

the object of interest or as clutter, it is ineffective when it is assessing a scan of an object that has a 

gross misalignment compared to its model. With respect to pipe spools, two examples of gross 

misalignment that make KNN ineffective are: when a pipe that is substantially longer than the design 

is used and when an elbow is installed with a 90o rotation from the design. In both of these instances, 

KNN will not recognize the points in the scan that do not correspond to the model are part of the 

erroneous assembly and will remove these points as if they are clutter. 

The authors will pursue more accurate prediction models such as, neural networks, Bayesian network 

and other machine learning algorithms to develop a more robust solution for clutter removal. However, 

depending on the application, mathematical closed form models may not be accurate enough and are 

vulnerable to errors.  
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Chapter 6 

Thesis Summary, Conclusions and Future Work 

6.1 Summary  

3D imaging technologies have the potential to be employed for checking the work in progress against 

the design information and acceptance specification industrial construction processes. However, a 

number of challenges exists for these technologies to be applied in industrial pipe spool fabrication 

facilities. One of the challenges is the necessity for real time 3D point cloud acquisition. Any acquisition 

technology/tool that disrupts the fabrication process is not appreciated by the industry. That is why 

Chapter 3 focuses on the use of low cost range cameras for real time data acquisition. A number of 

challenges were identified for the current state of these technologies for large objects. These challenges 

include: (1) being vulnerable to movement due to utilization of inaccurate sensors for localization and 

mapping, and (2) being sensitive to the lighting condition, object colour (reflectivity), short scanning 

range (up to 5 m), and non-linear increase in error while moving away from objects. However, the rate 

to which computational processing power is increasing coupled with more accurate sensors becoming 

available at lower costs, has led the author to believe that these challenges will be addressed in near 

future and the application of these sensors will increase substantially.  

Once a reliable and accurate point cloud is captured, two challenges are identified. Chapter 4 focuses 

on experimenting and adapting an object finding method to address the major object finding challenges 

in construction. Occlusion, clutter and incomplete scans are unavoidable parts of scanning in 

construction sites. Manually selecting an object of interest in a point cloud is a time consuming process, 

which has to be semi- or fully automated. The examined method works in cases where an incomplete 

point cloud is imported to find and isolate the object-of-interest. This capability addresses the 

unavoidable occlusion challenge in the data acquisition phase. It was also shown that if a threshold 

value is met as the required level of density, the object-of-interest is robustly isolated from the point 

cloud. And finally, it was demonstrated that even with a massively cluttered point cloud, the algorithm 

is capable of extracting the object from the clutter surrounding it; however, the level of noise increases 

inevitably, as the clutter increases.  

To improve the clutter removal process, Chapter 5 focuses on a mathematical solution to optimally 

choose the threshold value in the KNN algorithm. The optimization is set to minimize number of 

outliers while minimizing the number of removed points on the object of interest. 
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6.2 Research contributions and conclusions  

The contributions of the work are as follows: (1) a number of challenges and advantages of applying 

low cost range cameras using structured light technology for quality control in pipe spool fabrication 

facilities were identified and discussed, (2) a robust object finding method was adapted and studied 

experimentally to address major challenges in construction, (these challenges include: occlusion, 

clutter, and density variation,) and (3) a mathematical closed form solution was provided to optimize 

the threshold value used in KNN algorithm to optimally remove clutter points.  

Following from these contributions are three conclusions:  

(1) While a number of challenges were identified when using these low cost range cameras, their 

resulting point clouds were sufficiently accurate on smaller scans. This means that these sensors, if 

applied correctly, can be valuable for real time applications.  

(2) With increased computational power, a one-to-one comparison of point sets utilizing RANSAC 

could be applied to find MEP components automatically and robustly, even in highly occluded and 

cluttered point clouds. For more practical purposes, a semi-automated method where users have to 

choose three corresponding points between the scan and model point clouds could be utilized. Using 

these three points, a PCA (principal component analysis) will be applied to roughly align the two point 

clouds followed by an ICP (iterative closest point) to locally optimize the overlay between the scan and 

model.  

(3) The success of the clutter removal algorithm is highly dependent on the used threshold value of K. 

The optimization provided will minimize the number of outliers and removed points from object of 

interest. For more accurate categorization of data points more sophisticated algorithms and data training 

methods should be utilized such as deep neural networks.  

6.3 Limitations  

The evaluation of the applicability of real time sensors is conducted on two cases. More cases with 

variations in size, lighting, object colour, speed of scan and etc. should be conducted to better evaluate 

the limitations of these devices.  

While the RANSAC based object finding algorithm proved to be somewhat effective for automatic 

finding, it relies on an overlap parameter. Although this parameter is calibrated for the two case studies 

and proved to be effective, its performance could decline when it is applied to other objects and 

construction elements. Also, it was implemented using commercial software, which is not completely 

defined.  
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Mathematical closed form solutions are vulnerable to the extreme data points and may yield wrong 

answers. In order to use a more sophisticated data classification algorithm more data points should be 

acquired.  

6.4 Future work 

In Chapter 4, the recognition and localization of the 3D model is performed in a significantly faster timeframe, 

the isolation module takes the dominant part of the time required for processing. Faster and more effective search 

strategies such as kd-tree and graph theory may improve the processing time for the isolation, and this inadequacy 

may be appropriately addressed. This could be a potential research direction for future work. Also, to extend the 

study conducted in Chapter 5, a more widely adaptable model has to be developed. The model has to 

consider the impact of objects with different geometric shapes.  

The author will study the impact of an integrated framework utilizing portable scanners and real time 

visual feedback on pipe fitters productivity to quantitatively measure the effectiveness of a framework 

integrating all three contributions of this work.  
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Appendix A 

MATLAB code: finding the optimal K value for clutter removal 

clear all; 
clc; 
  
s=textread('lab_scan.txt'); 
scan=pointCloud(s); 
  
m=textread('model.txt'); 
model = pointCloud(m); 
  
m(:,4)=1; 
mt=m'; 
A = [-0.828077197   -0.000714839    -0.560613871    288.2137451; 
-0.560241342    0.037523892 0.827479005 -387.1165771; 
0.020445079 0.999295533 -0.031473041    -101.2927094; 
0   0   0   1]; 
  
c=A*mt; 
ct=c'; 
ct=ct(:,1:3); 
t_model=pointCloud(ct); %Transformed model 
  

  
n=round(scan.Count/t_model.Count); %number of nearest neighbors (k) 
n=8 
filter_scene=zeros(n*t_model.Count,3); 
  
for i=1 : t_model.Count 
    point = t_model.Location(i,:); 
    [indices,dists] = findNearestNeighbors(scan,point,n); 
     
    for j=1:n 
        filter_scene((i-1)*n+j,:) = scan.Location(indices(j),:); % here we are reading all the coordinates of nearest 

neighbors and puting them in a matrix of closest points 
    end 
     

     
end 
  
f_scene=pointCloud(filter_scene); 
  
[tform ,ft_model, rmse]=pcregrigid(t_model,f_scene,'Extrapolate',true,'MaxIterations',50); 
  
figure('units','normalized','outerposition',[0 0 1 1]) 
subplot(1,2,1) 
pcshowpair(f_scene,ft_model) 
title('Rango+ICP') 
axis off 
subplot(1,2,2) 
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pcshowpair(f_scene,t_model) 
title('Rango') 
axis off 
  
figure('units','normalized','outerposition',[0 0 1 1]) 
subplot(1,2,1) 
pcshow(f_scene) 
title('K-nearest points') 
axis off 
subplot(1,2,2) 
pcshowpair(scan,t_model) 
title('Rango') 
axis off 
  
figure('units','normalized','outerposition',[0 0 1 1]) 
subplot(1,2,1) 
pcshow(scan) 
title('Scan') 
axis off 
subplot(1,2,2) 
pcshow(model) 
title('Model') 
axis off 
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Appendix B 

MATLAB code: for resampling using weighed octree (Chapter 3) 

classdef OcTree < handle 
% OcTree point decomposition in 3D 
%    OcTree is used to create a tree data structure of bins containing 3D 
%    points. Each bin may be recursively decomposed into 8 child bins. 
% 
%    OT = OcTree(PTS) creates an OcTree from an N-by-3 matrix of point 
%    coordinates. 
% 
%    OT = OcTree(...,'PropertyName',VALUE,...) takes any of the following 
%    property values: 
% 
%     binCapacity - Maximum number of points a bin may contain. If more 
%                   points exist, the bin will be recursively subdivided. 
%                   Defaults to ceil(numPts/10). 
%     maxDepth    - Maximum number of times a bin may be subdivided. 
%                   Defaults to INF. 
%     maxSize     - Maximum size of a bin edge. If any dimension of a bin  
%                   exceeds maxSize, it will be recursively subdivided. 
%                   Defaults to INF. 
%     minSize     - Minimum size of a bin edge. Subdivision will stop after  
%                   any dimension of a bin gets smaller than minSize. 
%                   Defaults to 1000*eps. 
%     style       - Either 'equal' (default) or 'weighted'. 'equal'  
%                   subdivision splits bins at their central coordinate 
%                   (ie, one bin subdivides into 8 equally sized bins). 
%                   'weighted' subdivision divides bins based on the mean 
%                   of all points they contain. Weighted subdivision is 
%                   slightly slower than equal subdivision for a large 
%                   number of points, but it can produce a more efficient 
%                   decomposition with fewer subdivisions. 
% 
%    Example 1: Decompose 200 random points into bins of 20 points or less, 
%             then display each bin with its points in a separate colour. 
%        
  
% 
%    Example 2: Decompose 200 random points into bins of 10 points or less, 
%             shrunk to minimallly encompass their points, then display. 
%        pts = rand(200,3); 
%        OT = OcTree(pts,'binCapacity',10,'style','weighted'); 
%        OT.shrink 
%        figure 
%        boxH = OT.plot; 
%        cols = lines(OT.BinCount); 
%        doplot3 = @(p,varargin)plot3(p(:,1),p(:,2),p(:,3),varargin{:}); 
%        for i = 1:OT.BinCount 
%            set(boxH(i),'Color',cols(i,:),'LineWidth', 1+OT.BinDepths(i)) 
%            doplot3(pts(OT.PointBins==i,:),'.','Color',cols(i,:)) 
%        end 
%        axis image, view(3) 
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% 
% 
% OcTree methods: 
%     shrink            - Shrink each bin to tightly encompass its children 
%     query             - Ask which bins a new set of points belong to. 
%     plot, plot3       - Plots bin bounding boxes to the current axes. 
% 
% OcTree properties: 
%     Points            - The coordinate of points in the decomposition. 
%     PointBins         - Indices of the bin that each point belongs to. 
%     BinCount          - Total number of bins created. 
%     BinBoundaries     - BinCount-by-6 [MIN MAX] coordinates of bin edges. 
%     BinDepths         - The # of subdivisions to reach each bin. 
%     BinParents        - Indices of the bin that each bin belongs to. 
%     Properties        - Name/Val pairs used for creation (see help above) 
% 
% See also qtdecomp. 
  
%   Created by Sven Holcombe. 
%   1.0     - 2013-03 Initial release 
%   1.1     - 2013-03 Added shrinking bins and allocate/deallocate space 
% 
%   Please post comments to the FEX page for this entry if you have any 
%   bugs or feature requests. 
     
    properties 
        Points; 
        PointBins; 
        BinCount; 
        BinBoundaries; 
        BinDepths; 
        BinParents = zeros(0,1); 
        Properties; 
    end 
     
    methods 
         
        function this = OcTree(pts,varargin) 
            % This is the OcTree header line 
            validateattributes(pts,{'numeric'},... 
                {'real','finite','nonnan','ncols', 3},... 
                mfilename,'PTS') 
             
            % Initialise a single bin surrounding all given points 
            numPts = size(pts,1); 
            this.BinBoundaries = [min(pts,[],1) max(pts,[],1)]; 
            this.Points = pts; 
            this.PointBins = ones(numPts,1); 
            this.BinDepths = 0; 
            this.BinParents(1) = 0; 
            this.BinCount = 1; 
             
            % Allow custom setting of Properties 
            IP = inputParser; 
            IP.addParamValue('binCapacity',ceil(numPts)/10); 
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            IP.addParamValue('maxDepth',inf); 
            IP.addParamValue('maxSize',inf); 
            IP.addParamValue('minSize',1000 * eps); 
            IP.addParamValue('style','equal'); 
            IP.parse(varargin{:}); 
            this.Properties = IP.Results; 
             
            % Return on empty or trivial bins 
            if numPts<2, return; end 
             
            % Start dividing! 
            this.preallocateSpace; 
            this.divide(1); 
            this.deallocateSpace; 
        end 
         
        % MATLAB performs better if arrays that grow are initialised, 
        % rather than grown during a loop. These two functions do just that 
        % before and after the identification of new beens. 
        function preallocateSpace(this) 
            numPts = size(this.Points,1); 
            numBins = numPts; 
            if isfinite(this.Properties.binCapacity) 
                numBins = ceil(2*numPts/this.Properties.binCapacity); 
            end 
            this.BinDepths(numBins) = 0; 
            this.BinParents(numBins) = 0; 
            this.BinBoundaries(numBins,1) = 0; 
        end 
        function deallocateSpace(this) 
            this.BinDepths(this.BinCount+1:end) = []; 
            this.BinParents(this.BinCount+1:end) = []; 
            this.BinBoundaries(this.BinCount+1:end,:) = []; 
        end 
         
        function divide(this, startingBins) 
            % Loop over each bin we will consider for division 
            for i = 1:length(startingBins) 
                binNo = startingBins(i); 
                 
                % Prevent dividing beyond the maximum depth 
                if this.BinDepths(binNo)+1 >= this.Properties.maxDepth 
                    continue; 
                end 
                 
                % Prevent dividing beyond a minimum size                 
                thisBounds = this.BinBoundaries(binNo,:); 
                binEdgeSize = diff(thisBounds([1:3;4:6])); 
                minEdgeSize = min(binEdgeSize); 
                maxEdgeSize = max(binEdgeSize); 
                if minEdgeSize < this.Properties.minSize 
                    continue; 
                end 
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                % There are two conditions under which we should divide 
                % this bin. 1: It's bigger than maxSize. 2: It contains 
                % more points than binCapacity. 
                oldCount = this.BinCount; 
                if nnz(this.PointBins==binNo) > this.Properties.binCapacity 
                    this.divideBin(binNo); 
                    this.divide(oldCount+1:this.BinCount); 
                    continue; 
                end 
                if maxEdgeSize>this.Properties.maxSize 
                    this.divideBin(binNo); 
                    this.divide(oldCount+1:this.BinCount); 
                    continue; 
                end 
            end 
        end 
         
        function divideBin(this,binNo) 
            % Gather the new points (a bit more efficient to copy once) 
            binPtMask = this.PointBins==binNo; 
            thisBinsPoints = this.Points(binPtMask,:); 
             
            % Get the old corner points and the new division point 
            oldMin = this.BinBoundaries(binNo,1:3); 
            oldMax = this.BinBoundaries(binNo,4:6); 
            if strcmp('weighted',this.Properties.style) && any(binPtMask) 
                newDiv = mean(thisBinsPoints,1); 
            else 
                newDiv = mean([oldMin; oldMax], 1); 
            end 
             
            % Build the new boundaries of our 8 subdivisions 
            minMidMax = [oldMin newDiv oldMax]; 
            newBounds = minMidMax([... 
                1 2 3 4 5 6; 
                1 2 6 4 5 9; 
                1 5 3 4 8 6; 
                1 5 6 4 8 9; 
                4 2 3 7 5 6; 
                4 2 6 7 5 9; 
                4 5 3 7 8 6; 
                4 5 6 7 8 9]); 
             
            % Determine to which of these 8 bins each current point belongs 
            binMap = cat(3,[0 0 0],[0 0 1],[0 1 0],[0 1 1],... 
                [1 0 0],[1 0 1],[1 1 0],[1 1 1]); 
            gtMask = bsxfun(@gt, thisBinsPoints, newDiv); 
            [~,binAssignment] = max(all(bsxfun(@eq,gtMask,binMap),2),[],3); 
            % [~, binAssignment] = ismember(gtMask,binMap,'rows'); % A little slower than above. 
             
            % Make the new bins and reassign old points to them 
            newBinInds = this.BinCount+1:this.BinCount+8; 
            this.BinBoundaries(newBinInds,:) = newBounds; 
            this.BinDepths(newBinInds) = this.BinDepths(binNo)+1; 
            this.BinParents(newBinInds) = binNo; 
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            this.PointBins(binPtMask) = newBinInds(binAssignment); 
            this.BinCount = this.BinCount + 8; 
        end 
         
        function shrink(this) 
            % Shrink all bins to bound only the points they contain 
            % WARNING: this operation creates gaps in the final space not 
            % covered by a bin. Only shrink OcTree structures when you only 
            % intend to use the points used to create the tree to query the 
            % tree space. 
            binChildren = arrayfun(@(i)find(this.BinParents==i),1:this.BinCount,'Un',0)'; 
            binIsLeaf = cellfun(@isempty, binChildren); 
            for i = find(binIsLeaf(:))' 
                binShrink_recurse(i, true) 
            end 
             
            function binShrink_recurse(binNo, isLeafBin) 
                % Build a list of all points that fall within one of the 
                % bins to be checked, and the list of which point falls in 
                % which bin. 
                oldBoundaryMin = this.BinBoundaries(binNo,1:3); 
                oldBoundaryMax = this.BinBoundaries(binNo,4:6); 
                if isLeafBin 
                    % Shrink bin based on child POINTS 
                    ptsMask = this.PointBins==binNo; 
                    if ~any(ptsMask) 
                        % No points, shrink the bin to infinitely small 
                        proposedBoundaries = [oldBoundaryMin oldBoundaryMin]; 
                    else 
                        pts = this.Points(ptsMask,:); 
                        proposedBoundaries = [... 
                            max([oldBoundaryMin; min(pts,[],1)]) ... 
                            min([oldBoundaryMax; max(pts,[],1)])]; 
                    end 
                else 
                    % Shrink bin based on child BINS 
                    childBoundaries = this.BinBoundaries(binChildren{binNo},:); 
                    proposedBoundaries = [min(childBoundaries(:,1:3),[],1) max(childBoundaries(:,4:6),[],1)]; 
                end 
                 
                if ~isequal(proposedBoundaries, [oldBoundaryMin oldBoundaryMax]) 
                    % We just shrunk the boundary. Make it official and 
                    % check the parent 
                    this.BinBoundaries(binNo,:) = proposedBoundaries; 
                    parentBin = this.BinParents(binNo); 
                    if parentBin>0 
                        binShrink_recurse(parentBin, false) 
                    end 
                end 
            end 
        end 
         
        function binNos = query(this, newPts, queryDepth) 
            % Get the OcTree bins that new query points belong to. 
            % 
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            % BINS = OT.query(NEWPTS) searches the OcTree object OT and 
            % returns an N-by-1 vector of BINS giving the bin index in 
            % which each of the N points in NEWPTS is contained. For any 
            % query points outside all bins in OT, the index -1 is 
            % returned. 
            % 
            % BINS = OT.query(NEWPTS,DEPTH) restricts the search to DEPTH 
            % levels in the OT bin tree. Note that the first bin 
            % (containing all other bins in OT) has DEPTH = 1. 
  
            if nargin<3 
                queryDepth = max(this.BinDepths); 
            end 
             
            numPts = size(newPts,1); 
            newPts = permute(newPts,[3 2 1]); 
            binNos = ones(numPts,1)*-1; 
                         
            binChildren = arrayfun(@(i)find(this.BinParents==i),1:this.BinCount,'Un',0)'; 
            binIsLeaf = cellfun(@isempty, binChildren); 
            ptQuery_recurse(1:numPts, this.BinParents==0, 0) 
             
            function ptQuery_recurse(newIndsToCheck_, binsToCheck, depth) 
                % Build a list of all points that fall within one of the 
                % bins to be checked, and the list of which point falls in 
                % which bin. 
                boundsToCheck = this.BinBoundaries(binsToCheck,:); 
                [ptInBounds, subBinNo] = max(all(... 
                    bsxfun(@ge, newPts(:,:,newIndsToCheck_), boundsToCheck(:,1:3)) & ... 
                    bsxfun(@le, newPts(:,:,newIndsToCheck_), boundsToCheck(:,4:6))... 
                    ,2),[],1); 
             
                if ~all(ptInBounds) 
                    % Special case usually when depth=0, where a point may 
                    % fall outside the bins entirely. This should only 
                    % happen once so let's fix it once and let subsequent 
                    % code rely on all points being in bounds 
                    binNos(newIndsToCheck_(~ptInBounds)) = -1; 
                    newIndsToCheck_(~ptInBounds) = []; 
                    subBinNo(~ptInBounds) = []; 
                end 
                binNosToAssign = binsToCheck(subBinNo); 
                newIndsToAssign = newIndsToCheck_; 
                binNos(newIndsToAssign) = binNosToAssign; 
                 
                % Allow a free exit when we reach a certain depth 
                if depth>=queryDepth 
                    return; 
                end 
                 
                % Otherwise, for all of the points we just placed into 
                % bins, check which of the children of those bins those 
                % same points fall into 
                [unqBinNos, ~, unqGrpNos] = unique(binNosToAssign); 
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                for i = 1:length(unqBinNos) 
                    thisPtMask = unqGrpNos==i; 
                    if ~binIsLeaf(unqBinNos(i)) 
                        ptQuery_recurse(newIndsToCheck_(thisPtMask), binChildren{unqBinNos(i)}, depth+1) 
                    end 
                end 
                 
            end 
        end 
         
        function h = plot(this,varargin) 
            % OcTree.plot plots bin bounding boxes of an OcTree object 
            % 
            % H = OT.plot('name',value,...) allows you to specify any 
            % properties of the bounding box lines that you would normally 
            % supply to a plot(...,'name',value) command, and returns plot 
            % object handles (one per bin) to H. 
            hold on; 
            h = zeros(this.BinCount,1); 
            for i = 1:this.BinCount 
                binMinMax = this.BinBoundaries(i,:); 
                pts = cat(1, binMinMax([... 
                    1 2 3; 4 2 3; 4 5 3; 1 5 3; 1 2 3;... 
                    1 2 6; 4 2 6; 4 5 6; 1 5 6; 1 2 6; 1 2 3]),... 
                    nan(1,3), binMinMax([4 2 3; 4 2 6]),... 
                    nan(1,3), binMinMax([4 5 3; 4 5 6]),... 
                    nan(1,3), binMinMax([1 5 3; 1 5 6])); 
                h(i) = plot3(pts(:,1),pts(:,2),pts(:,3),varargin{:}); 
            end 
        end 
        function h = plot3(this,varargin) 
            % OcTree.plot plots bin bounding boxes of an OcTree 
            % 
            % See also OcTree.plot 
            h = this.plot(varargin{:}); 
        end 
    end 
end 
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Appendix C Enlarged Photos Used in Chapter 2 

 



 

 

 

Figure 2-3. (a) 
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Figure 2-3. (b) 
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Figure 2-4. (a) 
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 Figure 2-4. (b) 
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Figure 2-4. (c) 
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Figure 2-5. (a) 
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Figure 2-5 (b) 
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Figure 2-5. (c) 
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Figure 2-5 (d) 
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Figure 2-5. (e) 
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