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Abstract

Carbonation is a naturally-occurring process whereby Ca-containing cement phases lose their

hydration water and are converted to carbonate minerals by reaction with atmospheric CO2. As

these secondary minerals develop in the microstructureof hydrated cement, porosity, pore-size

distribution and permeability are decreased. These are all considered desirable properties in a

wasteform. The objective of this study was to examine the effect of carbonation and different

pozzolans on the leach performance and mechanical strength of ordinary Portland cement (OPC)

wasteforms. Two methods of accelerated cement carbonation were used:

1. A “vacuum” carbonation method, where wasteforms are placed in an evacuated, sealed

cell and subjected to small additions of CO2 over several days at near vacuum conditions;

and

2. A “one-step” carbonation method, where CO2 gas is added to the wasteform paste as it is

being mixed.

Thirteen elemental constituents of interest to the safety assessments of long-term management of

Ontario Power Generation's radioactive waste (Cl, N, S, Se, 13C, Th, Pb, Co, Ni, Cu, Sr, Ba and

Cs) were stabilised/solidified via cement mix water. Wasteforms were produced with only OPC,

OPC and fly ash, or OPC and silica fume. Most wasteforms were carbonated using one of the

carbonation methods. Some wasteforms were not carbonated and served as controls.

Wasteforms were subjected to either standard leach testsor compressive strength tests.

The extent of carbonation was found to be about 20% for vacuum carbonation method,

substantially higher than that for one-step treatment (up to about 10%). For vacuum carbonated

wasteforms, carbonation occurred at theouter selvages of the wasteforms, whereas one-step

treatment resulted in homogenous carbonation.

Generally, compared to uncarbonated OPC wasteforms, vacuum carbonation increased leaching

of elements that areanionic in cementitious conditions (Cl, N, S, Se, 13C, Th), decreased

leaching of large metal cations (Sr, Ba, Cs, Pb) and had negligible effect on the leaching of the
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elements that form hydroxyl complexes (Co, Ni, Cu). 13C wasthe only anionic element whose

leachability was reduced by vacuum carbonation, as it may be precipitated in the form CO3
2- in

the large quantity of secondary carbonate minerals produced during the vacuum carbonation

process.

One-step carbonation did not result in substantial reductions in leachability, compared to

uncarbonated OPC wasteforms. However, it had an interesting inverse effect on large metal

cation leachability from fly ash- and silica fume-containing wasteforms. A model is presented

that proposes that porewater pH changes can have an effect on waste element leachability

because 1) the C-S-H Ca/Si ratio is dependent on the equilibrating porewater pH and 2) the

degree of ion sorption on C-S-H is dependent on the C-S-H Ca/Si ratio. This model should be

tested experimentally as it has important implications on wasteform design. Because of this

inverse behaviour, overall neither pozzolan outperformed the other with respect to leachability.

Generally, for uncarbonated wasteforms, OPC retained the elements more effectively than OPC

with pozzolans. For pozzolans, the leachability of these elements from OPC with fly ash was

lower than that of OPC with silica fume. Leaching of Cs was anomalously low from

uncarbonated OPC wasteforms, but follow-up experimentation did not corroborate this anomaly.

Further testing of these wasteforms to determine how the mineralogical fate of Cs can differ

between wasteforms is recommended.

All wasteforms tested wereof acceptable strength (<0.689 MPa). Fly ash, and, to agreater

degree, silica fume, improved wasteform strength when compared to OPC wasteforms.

Carbonation treatments had little effect on wasteform strength.

This study has provided much information about the leaching characteristics of a representative

set of waste elements from several cement-based wasteform treatments. Although it has not

indicated a wasteform design that is ideal for all elements studied, it does suggest that some

treatments may be effective for certain groupsof elements. Most notably, vacuum carbonation
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shows promise in improving the immobilisation of isotopesof large metal cations such as Sr, Ba,

Cs and Pb as well as 14C (as suggested by 13C here) in cement-based wasteforms.
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Glossary

Components of Ordinary Portland Cement

Alite Ca3SiO5

Belite Ca2SiO4

Aluminate Ca3Al2O6

Ferrite Ca2AlFeO5

Anhydrite or Gypsum CaSO4, CaSO4•2H2O

Periclase MgO

Free lime CaO

Components of Hydrated Ordinary Portland Cement

C-S-H xCaO•SiO2•nH2O

Portlandite Ca(OH)2

Ettringite Ca6Al2O6(SO4)3•32H2O

Monoaluminosulphate Ca4Al2O6SO4•12H2O

Gypsum CaSO4•2H2O

Hydrogarnet Ca3Al2O6•6H2O

Brucite Mg(OH)2

Other Terms

OPC Ordinary Portland Cement

w/s water/solid ratio

AFm Monoaluminosulphate-like solid-solutions

Pozzolan High silica cement additive
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1. INTRODUCTION

1.1 Background

Nuclear waste has many sources. Hospital wastes and industrial processes produce significant

amounts, but the largest contributor is the nuclear power generation industry (Glasser, 2001).

The need for effective methods for the disposal of nuclear waste has stimulated much research.

In recent years research has converged on stabilisation/solidification techniques for low-level

waste (LLW) and intermediate-level wastes (ILW). Stabilisation involves physicochemical

processes that act to detoxify waste, while solidification involves processes that improve the

mechanical and handling characteristics of the waste (Cote, 1986; Cocke and Mollah, 1993).

The United StatesEnvironmental Protection Agency has established that cementitious

solidification is the best-demonstrated available technology for the land disposal of most toxic

elements (Gougar et al, 1996). Cement-based stabilisation/solidification technology is preferable

because of the low cost of materials and equipment, availability, adaptability, tolerance to wet

conditions, non-flammability and durability under typical environmental conditions. Ordinary

Portland cement (OPC) is the most common cement binder used in stabilisation/solidification

technology. Although OPC-based wasteforms have been tested extensively for waste

compatibility, waste loading potential and standard leach test performance, the complete history

of OPC-wasteform technology development is difficult to piece together. The reason is that

much of the information is either published in hard-to-obtain government and industry

documents, or made proprietary because of some researchers’ concern over intellectual-property

protection (Hills, 2002).

Several radionuclides, namely, 3H, 14C, 36Cl, 59Ni, 79Se, 94Nb, 99Tc, 129I, 237Np, and isotopes of U,

Th, Ra, Pu, Paand Am are of interest to safety assessments of long-term management options of

Ontario Power Generation’s Low and Intermediate Level Waste (L&ILW). Carbon-14, a low-

energy beta emitter, is of particular interest, because it has a relatively long half-life, 5730 years,

and is readily absorbed into the cell tissue of living organisms. In general, CANDU reactors

produce larger quantities of 14C than other types of commercial nuclear reactors, such as Light

Water Reactorsor Gas Cooled Reactors. The majority of 14C is produced in the reactor
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moderator system and is captured on ion exchange resins in the moderator purification system.

Currently, cementation is the reference process for immobilising contaminants in the spent ILW

resins. Improved cement wasteform properties, and more specifically, the potential for enhanced

retention of 14C and other key radionuclides, are thereforeof relevance to Ontario Power

Generation in the context of its longer-term requirements for conditioned spent resins.

Reaction with carbon dioxide gas (CO2) may be a way of improving OPC-based wasteform

properties. Calcium-bearing phases in hydrated (“cured”) OPC are susceptible to dehydration

and conversion to calcium carbonate (CaCO3) (“carbonation”) upon reaction with carbon dioxide

(CO2). Precipitation occurs in the cement pore network thereby reducing permeability. Co-

precipitation of carbonates of elements that have similar ionic sizes and charges to Ca can also

occur. Therefore, carbonated cement is potentially superior to uncarbonated cement in terms of

waste retention.

Many materials that are not cementitious in their own right can be blended with OPC and can

enhance certain cement properties. Fly ash and silica fume are two such materials that are

readily available as industrial by-products. These are often called pozzolans, because they

contain very high contentsof reactive silica (SiO2). Silica encourages the conversion of

portlandite (Ca(OH)2) to calcium silicate hydrates (C-S-H) in OPC. While both portlandite and

calcium silicate hydrates are normally present in hardened OPC as the dominant phases, it is the

calcium silicate hydrates that are responsible for most of the strength exhibited by OPC.

The objective of this study was to examine the effect of carbonation and different pozzolans on

the leach performance and mechanical strength of OPC-based wasteforms. Although similar

studies have been conducted on either carbonated OPC-based wasteforms (Sweeny et al., 1998)

or pozzolan-containing OPC-based wasteforms (Asavapisit et al., 2001), this is the first to look at

the effects of both at once. Standard leach tests (ANSI/ANS 16.1; American Nuclear Society,

1986) were performed on wasteforms made with OPC, OPC and fly ash, or OPC and silica

fume. The mix water contained non-radioactive isotopesof Cl, N, S, Se, C, Th, Pb, Co, Ni, Cu,

Sr, Ba and Cs (chosen to represent the range of the key radionuclides discussed above). The

wasteforms were carbonated by one of the following two methods:
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1. Vacuum carbonation method, where wasteforms are placed in an evacuated, sealed cell

and subjected to small additions of CO2 over several days at near vacuum conditions.

This method was developed to address the problem of build-up of water (by-product of

carbonation), which normally shuts down the carbonation reaction.

2. One step carbonation method, where CO2 gas is added to the wasteform paste as it is

being mixed. It is a variation on a patented, one-step carbonation technique (Jennings

and Hodsons, 1993). A successful one-step technique would be more economical and

safer to implement than the vacuum carbonation method.

A similar set of wasteforms produced with de-ionised mix water was subjected to compressive

strength tests (ASTM, 1999b). Possible physico-chemical behaviours of the cement and cement

wasteforms are discussed.

1.2 General Cement Chemistry

1.2.1 Cement Composition and Manufacture

There are probably as many compositions of cement as there are applications of this unique

material. However, OPC, theoriginally-developed material, is a standard reference and still in

use today. It contains 60% CaO, 20% SiO2, and 2 to 5 % each of Al2O3, Fe2O3 and MgO; with

small (but not unimportant) amounts of Na, K and SO4. Many different phases can be found in

OPC, although alite (Ca3SiO5), belite (Ca2SiO4), aluminate (Ca3Al2O6), and ferrite (Ca2AlFeO5)

are the four principal phases. Periclase (MgO), free lime (CaO), anhydrite (CaSO4) or gypsum

(CaSO4•H2O) – additives that slow OPC setting and alkali sulphates (Na2SO4 and K2SO4) are

minor phases, usually less than 1 mass %.

OPC is produced by heating an approximate 70/30 mass ratio of powdered (< 90 micron)

limestone and clay or other aluminosilicate material in a rotary kiln to a temperature in excess of

1400oC for ten to fifteen minutes. The mixture partially melts and recombines in the semi-solid

state into a mass of 3 to 20 mm nodules called a clinker. The clinker is then cooled and crushed

to a particle size of <63 microns and mixed with several percent anhydrite.
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1.2.2 Cement Hydration

Upon the addition of water, the soluble constituents of cement - free lime, anhydrite and alkali

sulphates – start to dissolve and precipitate portlandite and gypsum. The bulk of the Na and K,

contributed from the soluble alkali sulphates, partition into the solution phase but a portion is

associated with newly-formed calcium silicate hydrates (C-S-H), and in high K cements

precipitated with the mineral syngenite (K2Ca(SO4)2).

In contrast to the high reactivity of many of the minor phases in cement and their control over the

porewater composition at early times, the major phases - alite, belite, aluminate and ferrite, along

with periclase, react more slowly with the porewater. For alite, belite and periclase, the percent

transformed to hydrated alteration products in one day would be about 10, 15 and 40%,

respectively. Aluminate and ferrite are the most reactive major phases; trivalent aluminium has a

high affinity for water. In pure water systems, 70% or moreof these phases will be transformed

into hydrated alteration products in one day. This rapid hydration is undesirable as it can result

in a flash set. However, the high initial SO4
2- content of the pasteporewater - ensured by the

addition of anhydrite to the clinker - causes ettringite (Ca6Al2O6(SO4)3
� 32H2O) crystals to form a

layer at the surfaces of hydrating aluminate particles, impeding further hydration.

The reaction productsof the hydration of alite and belite are C-S-H and portlandite. C-S-H can

be represented by the formula xCaO•ySiO2•nH2O, where x/y varies between 0.6 and 1.7

(Pointeau, 2001) and n is variable. A greater proportion of alite in the unhydrated cement results

in more C-S-H upon hydration (Hills et al, 1996). The hydration of aluminate and ferrite results

in the formation of iron-bearing calcium aluminates such as Ca2Al2O5.8H2O and

Ca4Al2O7.13H2O. However, these phases are unstable and convert to hydrogarnet

(Ca3Al2O6.6H2O) over many days. With the high SO4
2- content present, other hydrated calcium

aluminate phases can form. Additional ettringite forms initially but within 24 hours begins to

convert to monoaluminosulphate (Ca4Al2O6SO4.12H2O) as SO4
2- becomes depleted in the

porewater. Dissolution of gypsum and syngenite can buffer this depletion, but once these phases

are consumed, all ettringite converts to monoaluminosulphate (Reardon, 1992). The structureof

monoaluminosulphate is one of stacked sequences of portlandite-type layers, where one out of

three Ca2+ arereplaced by Al3+. Thus, the layers have a positive charge that attracts SO4
2- to the
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interlayer regions. In cement/water systems many different anions are present that can substitute

for SO4
2- and Fe3+ can substitute for Al3+ resulting in a phase that does not have the exact

composition of monoaluminosulphate. These monoaluminosulphate-like phases are therefore

often referred to as AFm (“aluminium/ferrous mono”).

As hydrated reaction products develop on the anhydrous cement particles, further hydration

becomes limited by diffusion and the rateof water uptake decreases markedly. A typical cement

paste with a water/cement ratio of 0.4 becomes about 40% hydrated within one day, 70% within

one month, and 80% after six months. Years are then required for the percent hydration to

increase substantially beyond this point and without deliberate drying some porewater will

remain until complete hydration. Hydration ratescan vary considerably, however, depending on

cement fineness, curing temperature and the addition of chemicals to accelerate the process. It

should also be noted that OPC hydration behaviour is not always consistent when waste is

incorporated (Hills and Pollard, 1997).

1.2.3 Cement Additives

Considerable research effort has been focused on formulating cement blends that improve the

physical and/or chemical properties of cement wasteforms. Fly ash and silica fume are industrial

waste products that areoften blended with OPC. Fly ash has been used to reduce the heat of

hydration and increase strength of concrete in construction applications since the 1940s (Naik et

al., 1995) and silica fume since the 1970s (Bentz, 2000). These materials are sources of reactive

silica or pozzolans. Silica encourages the conversion of portlandite to C-S-H during hydration

resulting in cement with a denser microstructure (Kawamura and Torii, 1989) and reduced

chloride diffusivity (Ampadu et al., 1999). This conversion is especially advantageous in

wasteforms because portlandite is easily dissolved in natural environments (Faucon et al., 1998).

This can lead to a moreopen porenetwork in cement wasteforms and thus greater leachability of

waste constituents. A 10% addition of silica fume was found to increase the compressive

strength of a wasteform up to 33% while having no negative impact on Cr and Pb leaching

(Asavapisit et al., 2001). Venhuis and Reardon (2001) found that OPC wasteforms produced

with 20% fly ash showed no evidence of shrinkage cracking during carbonation.
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Addition of various other natural materials can result in improved wasteform properties:

Matsuzuru and Ito (1978) found that a 25% OPC replacement with mordenite and clinoptilolite

(zeolite minerals) resulted in a 100-fold reduction in Cs leachability; Osmanlioglu (2002) found

that a 5% OPC replacement with kaolin clay reduced the rateof Cs and Co leaching by 50%

without loss of wasteform strength; Olsen et al., (1997) noted apatite and zeolite formation in

cement/fly ash based wasteforms that had 11% replacement by attapulgite clay, which they

ascribed to the observed reduction in alkali metal leachabilities.

1.2.4 Cement in the Environment and Carbonation

Most hydrated cement phases are not stable below pH 10. Because many natural waters have

near-neutral pHs and may have low mineral content, there is concern over the effect that cement

mineral destabilisation and dissolution would have on the leachability and long-term stability of

stabilised/solidified wastes (Kirk, 1996; Faucon et al., 1998).

One of the more important processes that cement materials undergo in natural environments is

reaction with CO2, which is present in air and dissolved in subsurface waters. The reactions

involved in this “carbonation process” are shown below:

xCaO•ySiO2•nH2O + CO2(g)
� xCaCO3 + ySiO2 + nH2O

Ca(OH)2 + CO2(g)
� CaCO3 + H2O

Ca6Al2O6(SO4)3•32H2O + 3CO2(g)
� 3CaCO3 + 3CaSO4 + Al2O3• + 32H2O

Ca4Al2O6(SO4)•12H2O + 3CO2(g)
� 3CaCO3 + CaSO4 + Al2O3+ 12H2O

These reactions induce a drop in porewater pH, often to below 9. Because steel rebar corrosion

products can become depassivated at lower pH (Ihekwaba et al., 1996), much of the early work

in this area was concerned with the effect naturally occurring carbonation can have on the

strength of cement structures. However, this early work demonstrated that as carbonation

progresses, secondary carbonate minerals precipitate in the cement pore network. Carbonate

solid solutions exist between Ca2+ and ions of similar charge and size such as Pb2+, Cd2+, Sr2+
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and Ba2+ and have been used to immobilise such ions (Miyake et al, 1988). Smith and Walton

(1991) suggested that carbonation, therefore, could reduce the leachability of certain waste

elements from cement wasteforms. Dewaele et al. (1991) showed that carbonation, by

precipitation of secondary minerals, reduces porosity and pore-size distribution in a selvage

around the wasteform, thus providing a lower permeability outer barrier.

Carbonation can, therefore, convert soluble cement hydrates to relatively insoluble phases,

significantly alter the microstructureof hydrated cement and relocate certain elemental

constituents to different solid phases. The leachability of waste constituents from a carbonated

wasteform is potentially reduced. A wide investigation by Lange et al. (1996a, b, c., 1997) found

that cement cured in a CO2 environment had a higher content of calcite (a polymorph of calcium

carbonate), greater strength and reduced leachability for 12 common waste metals (Sr, Cr, Cu,

Mn, Ni, Pb, Sb, Zn, Cd, Ba, As and Hg) by as much as 80% when compared to cement cured in a

N2 environment.

1.2.4.1 Mechanism of Carbonation from an External CO2 Source

Reardon et al. (1989) suggested a three-stage interpretation of the cement carbonation process

(Figure 1, page 38). All stages are diffusion-controlled reactions involving gas, liquid and

mineral phases present in cement. The first stage is the rapid dissolution of CO2 in the alkaline

films coating cement grains. This stage is limited by the ratethat CO2 can diffuse through the

gas phase as there is a steep concentration gradient across the films. When the film becomes

saturated with respect to the CO2 concentration, the gradient disappears. Uptakeof more CO2

can only occur by the addition of hydroxide ions (OH-) to the solution, which increases the

solubility of CO2 in the film water. This new OH- is principally furnished by the dissolution of

portlandite. Thus, carbonation is then limited by the rate hydroxide ions can diffuse outwards

and CO2 can diffuse inwards towards reaction sites within cement particles. As shown above,

each of the carbonation reactions produces water that builds up in the pore network. The third

and final stage is initiated when the local pore network becomes completely saturated with liquid

water, which effectively closes-off the previously interconnected gas phase. The rateof reaction

is then controlled by the diffusion of CO2 through a water phase that is continuous from the

outside boundary of the cement specimen to the reaction site. As CO2 diffusivity is
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approximately four ordersof magnitude slower in water than in air (1.91 x 10-5 cm2/s versus 2.08

x 10-1 cm2/s respectively), the rateof CO2 uptake is very slow during this stage. The carbonation

process progresses as a front, moving inwards from the outside of a cement. The depth that

carbonation occurs depends on how far the front progressed before the third phase arises.

1.2.4.2 Accelerated Carbonation and Its Application to Cementitious Wasteforms

Early work on carbonation was carried out at low pressures. Young et al. (1974) found that the

rateof reaction could be increased by increasing CO2 pressure up to 2 atm. However, further

increases to 4 atm had little additional effect oncepores became water saturated. More recent

studies involved the use of CO2 pressures of up to 40 atm (Dewaele, 1989; Reardon et al., 1989

and Zhang et al., 1998). It was reasoned that greater carbonation could be achieved if greater

amounts of CO2 were introduced into the cement before poreclosureoccurred. These studies

showed that while pore closure is still a problem, high pressure carbonation held promise.

However, high pressure carbonation may pose undue hazards during the treatment of radioactive

wastes and would require rigorous safeguards to prevent leakage and/or rapid depressurisation.

Also investigated was the use of supercritical CO2 – a phase of CO2 that is twice as dense as

gaseous CO2 and is a solvent for water (Jones, 1996; Rubin et al., 1997; and Hartmann et al.,

1999). It was suggested that supercritical CO2 would dissolve porewater and replace portlandite-

and C-S-H-bound water with CO2. However, detailed experiments by Venhuis and Reardon

(2003) found no substantial enhancement of carbonation extent from the use of supercritical CO2

versus high pressure CO2 conditions.

Reardon et al. (1998) also investigated carbonation of wasteforms using CO2 clathrate hydrates -

CO2 molecules completely enclosed by a sheath of water molecules (CO2
.6H2O). The idea was

to overcome the problem of pore closure by expelling the water accumulated during carbonation

by decomposing CO2 clathrate hydrates. In this procedure, wasteform samples are pressurised in

CO2 to 3.45 MPa and brought to 5 oC. Under these conditions, CO2 clathrate hydrate is the

stable form of CO2 in water. So as CO2 pervades the pore network and converts cement minerals

to calcium carbonate and aluminosilicates, the water produced from the reaction is present as

both liquid water and clathrate hydrate water. Because the CO2 content of clathrate hydrates is
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several times higher than that dissolved in the water phase at the same pressure and temperature,

a large reservoir of CO2 is trapped as clathrates within the pores once pore closure occurs. The

clathrate hydrates are then destabilised by lowering the pressure in the cell. Their transformation

back into gas and water increases internal porewater pressures, which results in an expulsion of

both water and gas, thus clearing the porenetwork. Depressurisation with CO2 enables a new

cycle of carbonation reaction. A sequence of these CO2 pressurisation/depressurisation cycles

was thought to promote extensive carbonation. A pilot study indicated the method produced

carbonation extents similar to high pressure carbonation and has not been studied further.

In an attempt to avoid high pressure carbonation, Venhuis and Reardon (2001) developed a new

“vacuum” carbonation technique. The method enabled deeper carbonation by preventing

accumulation of reaction water in the porenetwork. The water is removed as it is produced by

conducting the experiment at very dry and very low pressure conditions. The low pressure (near-

vacuum) conditions results in a greater mean free path of water molecules as they diffuse

towards adesiccant. They found that vacuum carbonation applied to cementitious wasteforms

resulted in carbonation depths up to 11 mm – more than twice those obtained with high pressure

methods. Cationic waste elements showed lower leachabilities from vacuum carbonated

wasteforms than from uncarbonated wasteforms during ANSI/ANS 16.1 leach tests (see Section

2.2, page 18). Anionic waste constituents, however, showed theopposite effect.

Reardon et al. (1987) and Dayal and Reardon (1992) investigated the use of cement as a matrix

for 14C isolation. 14C in the form of 14CO3
2-/H14CO3

-, adsorbed to ion exchange resins, was

mixed with a cement paste. The 14CO3
2-/H14CO3

- was liberated from the resins by exchange with

porewater OH- and precipitated as calcium carbonate. The large reservoir of relatively soluble

Ca-bearing phases in cement, especially portlandite and C-S-H, promoted the reaction.

Chemical modelling showed that very little 14CO3
2-/H14CO3

- would remain in solution and thus

an almost total transfer of adsorbed 14C took place. 14C release behaviour then reflected calcium

carbonate dissolution characteristics (i.e. low solubility at high pH).
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1.3 Cement Wasteform Chemistry

1.3.1 Hydrolysis of Waste Elements in Cement Porewater

The dominant hydrolysis species of waste elements at pH levels representative of cement

porewater are important to consider, as they may affect the solubility of waste element-

containing minerals. In addition, the charge of a species (cation versus anion) has a fundamental

influence on its transport properties in solid/water systems and whether it can be taken up in a

particular crystallographic site or not. For example, AFm can take up only anions in its crystal

structures to form solid solutions, whereas C-S-H can take up both cations and anions (Gougar et

al, 1996). The hydrolysis species of the waste elements are shown in Figure 2 (page 38; based

on Baes and Mesmer, 1976).

From Figure 2 the waste elements studied here, as they occur in cement porewater, can be

classified into three groups:

1. Cl and oxyanions (Cl, N, S, Se, C and Th). With the exception of Cl, these are cationic

elements with sufficient positive field strength (ion charge: ion surface area) to cause the

detachment and ejection of all protons from their hydration water when they are placed in

solution. If the solution is not pH-buffered, these protons will cause a drop in pH. The

remaining oxygen atoms are covalently bonded to the waste element, resulting in a large

negatively-charged species or “oxyanion.”

2. Hydroxyl-metal complexes (Pb, Co, Ni and Cu). These elements have lower field

strengths and do not hydrolyse to the same extent as elements in Group 1. Consequently,

they are usually present in solution dominantly as cations at low to neutral pH, but can

form neutral or anionic hydroxyl complexes at higher pH.

3. Large metal cations (Sr, Ba and Cs). These large-radii elements have low field

strength and therefore do not hydrolyse to any significant extent in solution.

Consequently, they are present as cations at all pHs.

1.3.2 Mechanisms of Waste Leaching From Cement Wasteforms

Before interpreting the results of leach tests (see Section 3.1, page 21 and APPENDIX B, page

65), it is important to review the possible processes controlling the flux of elemental constituents
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from the wasteform and into the solution during the test. When a wasteform undergoes its first

rinse and is then suspended in the middle of a quantity of de-ionised water ten times its volume,

elemental flux from the sample to the solution may occur in three ways:

1. Ion diffusion from the wasteform’s macroporeporewater network in contact with the

leachwater

2. Ion diffusion from the intraparticle microporeporewater network in contact with the

leachwater, such as through the gel water of C-S-H

3. Dissolution of cementitious mineral grains whose surfaces are in direct contact with the

leachwater.

It is likely that mechanism #1 is the dominant mechanism of elemental transport to the

leachwater during the test, especially at early time. For example, because ion diffusivities are

much greater through macropores than through intraparticle micropores, mechanism #1 is

decidedly more important than mechanism #2. Furthermore, mechanism #1 is reasonably more

important than mechanism #3 if macroporewatersare saturated with respect to minerals they are

in contact with. Diffusive loss of dissolved mineral constituents from the macroporenetwork to

the leachwater could actually lead to dissolution of mineral grain surfaces not directly in contact

with the leachwater as minerals re-establish saturation through mineral dissolution. An

exception to this would be if the solubility of the solid phase controlling the elemental

constituent’s concentration is much lower in the porewater than that in the leachwater. An

example of this would occur in the case of Ca leachability from an OPC wasteform in de-ionised

water. Because the pH of OPC wasteform is very high (> 13), porewater Ca concentration is very

low (controlled by equilibrium with portlandite). When an OPC wasteform is placed in de-

ionised water with an initial pH of 7, however, portlandite solubility is very high. Thus in this

situation, Ca leachability should be dominated by mechanism #3.

Some elemental constituents may heavily partition into the porewater. In such cases,

concentration versus time1/2 curves in the leachate should be linear at early time or be represented

by classic cylindrical diffusion equations over the courseof the leaching.
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1.3.3 Standard Leach Tests and Their Interpretational Limitations

There are two standard leach tests commonly used for evaluating cementitious wasteforms: The

Toxicity Characteristic Leaching Procedure(TCLP) (U.S. Environmental Protection Agency,

1992) and ANSI/ANS 16.1. The latter is used more often when the immobilisation of

radioactive waste, rather than other hazardous wastes is being studied and was therefore used in

this study. It involves the immersion of each wasteform in a volume of de-ionised water about

ten times its volume for 2160 hours. The water is replaced after intervals of static leaching, and

is analysed for the waste elements initially present in the wasteform.

Simple leach testssuch as the TCLP and ANSI/ANS 16.1 cannot adequately represent the long-

term leach behaviour and impact of stabilised/solidified wasteon the environment because of the

short time span of the tests and the simplification of the physicochemical conditions. In an

attempt to scale up in time, rather than using leachwatersof typical groundwater compositions,

standardised leach testsoften use aggressive solutions, such as deionised water or acidic

solutions as leachwaters (Hills and Pollard, 1997). Some elements may show differences in their

leach behaviour over different time scales. For example, Hanna et al. (2001) using magic angle

spinning nuclear magnetic resonance (MAS NMR) found that after 10 days of curing, Cs only

occurred in the aqueous phase in blended cements. After 1 year of curing Cs had begun to

inhabit semi-crystalline or amorphous solid sites, resulting in what the authors claimed to be a

substantial reduction in Cs leaching. Unfortunately, a reduction in leaching implied on a one-

year scale may still be insufficient to demonstrate the effectiveness of a wasteform. Kienzler et

al. (2000) found that Cs release from OPC wasteforms was linearly time-dependant during 19-

year leach tests. They concluded that cement has no retention capacity for Cs (also noted in

Glasser (2001)). This is the only reference found for leach tests lasting longer than ANSI/ANS

16.1 test (2160 hours). Despite their drawbacks, simple leach tests do offer a benchmark by

which a decidedly inappropriate wasteform development procedureor treatment can be

differentiated from a potentially promising one.
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2. EXPERIMENTAL METHODS

2.1 Wasteform Preparation

Three sets of cement-based wasteforms were produced. Their properties are shown in Table 1

(page 42), Table 2 (page 43) and Table 3 (page 44). All wasteforms were made with a water to

solid ratio of about 0.6 by mass (37.5% water, 62.5% solid). Although this is a higher ratio than

the industry standard for construction applications of 0.4 to 0.45 (28.6% water, 71.4% solid to

31.0% water, 68.9% solid), its use for wasteform production allows for greater aqueouswaste

incorporation. Because waste ion leachability is likely higher at higher water/solid ratios, this

possibly demonstrates a “worst case scenario” for the effectiveness of the carbonation process

for waste immobilisation.

The first set (Table 1), produced for leach testing, consisted of 18 wasteforms produced with a

multi-element (Cl-, NO3
- and SO4

2- salts of Se6+, Th4+, Pb2+, Co2+, Ni2+, Cu2+, Sr2+, Ba2+ and Cs+)

mix water prepared by Kinectrics. Of the 18 wasteforms, two were made with straight OPC to

serve as standard reference controls, eight were made with a blend of OPC and fly ash, and eight

were made with a blend of OPC and reagent-gradesilica fume. Within each set of eight

pozzolan-added wasteforms, two served as composition controls, two were produced for vacuum

carbonation, and four were produced using the one-step carbonation technique (discussed

below). The amount of fly ash and silica fume added to the cement blends was 30% and 5% of

the total dry mass of solids, respectively. Attempts to add silica fume in quantities that would

simulate the silica addition to cement due to fly ash addition (~13%) proved difficult.

Specifically, silica fume has a very large bulk volume and was cumbersome to work with.

The second set of wasteforms (Table 2) was prepared and carbonated in a similar manner to

those above except that de-ionised water was used as mix water. These were produced for

compressive strength testing and extent of carbonation determinations. De-ionised water, rather

than the Kinectrics’ waste solution, was used for these wasteforms to isolate the effects of

wasteform composition and carbonation technique from those that may arise from entrained

waste.
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The mix water of the first set wasto include 13C as a contaminant. It was determined that

dissolution of 13C as a carbonate (13CO3
2-) with theother contaminants would cause volatilisation

of much of the 13C (as CO2) because of the very low pH (~2) of the solution. Instead, 13C was

studied in a separate set of wasteforms. Ten wasteforms were produced with mix water

containing 13C (Table 3). 13C was used as a surrogate for 14C because of the licensing required to

use 14C. 14C is considered a health risk, because it can readily exchange for 12/13C in CO2 and

thus be inhaled into the lungs and eventually incorporated into tissue. 13C is expected to behave

similarly to 14C in wasteform environments. The mix water was prepared by dissolving solid

Na2
13CO3 in de-ionised water to producea CO3

2- concentration of 1000 ppm. The wasteforms

were prepared in a manner similar to the first two sets. After preliminary performance data from

the first set did not reveal substantial benefits with the use of silica fume, it was decided to use

fly ash only for this set. These wasteforms were produced for leach testing only.

The cement used in all wasteform preparation was St. Mary’s CSA CAN3-A5 Type 10 OPC.

The fly ash was obtained from Ontario Power Generation’s Nanticoke thermal generating station

during August 2001. The silica fume, obtained from Sigma Chemical Co., wasreagent-grade

and had a measured surface area of 390 ± 40 m2g-1. The OPC, fly ash and silica fume were acid-

digested and analysed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; Activation

Laboratories, ACTlabs, Ancaster, ON) for major constituents (“whole rock analysis” ) and for the

elements that comprised the multi-element mix water (except Cl, N and S). To determine the Cl,

N and S content of the OPC and fly ash, one gram samples of each were dissolved at a

water:solid ratio of 100:1. The solutions were sealed in HDPE bottles and were gently spun on a

wheel immersed in a 25°C water bath for 24 h. The supernatant was sampled, filtered and

analysed by Ion Chromatography (IC) (Solutions Analytical Laboratory (SAL), University of

Waterloo, Waterloo, Ontario). The cement and fly ash used to produce the third set of

wasteforms was analysed for 13C by Continuous Flow Stable Isotope Mass Spectrometry (CF-

SIMS; Environmental IsotopeLaboratory (EIL), University of Waterloo, Waterloo, Ontario).

The results of these analyses are shown in Table 4 (page 45) and Table 5 (page 46). The multi-

element mix water solution was analysed by ICP-MS and IC to ensure the concentration of waste

constituents conformed to theoriginal recipe used in its preparation. The concentration of 13C in
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the mix water could not be confirmed by analysis, as it was beyond the operating range of any

available analytical technique. The multi-element mix water analysis results and the calculated

concentration of 13C are shown in Table 6 (page 47).

The initial mass of each contaminant element in each wasteform was determined by performing a

mass balance using data from Table 4, Table 5 and Table 6.

mi = Ci(OPC) x mOPC + Ci(pozzolan) x mpozzolan + Ci(mix water) x mmix water. (1)

Where:

mi = mass of element i in wasteform

Ci(OPC) = concentration of element i in the OPC

Ci(pozzolan) = concentration of element i in the pozzolan used

Ci(mix water) = concentration of element i in the mix water

mOPC = mass of OPC used

mpozzolan = mass of pozzolan used

mmix water = mass of mix water used

The results of these calculations are shown in Table 7 (page 48) and Table 8 (page49).

2.1.1 Paste Mixing and One-step Carbonation

The cement mixing method was based on ASTM Standard Practice for Mechanical Mixing of

Hydraulic Cement Pastes and Mortars of Plastic Consistency (ASTM, 1999a). This standard

procedurestipulates that after the cement is added to the mixing water, 30 second should be

allowed for absorption of the water. Next the paste is mixed slowly for 30 second, followed by a

15 second pause. Finally, the paste is mixed at moderate speed for 1 minute. Sometimes,

modifications were made to the standard practice, where necessary, to accommodate the addition

of pozzolan. Although fly ash was added to the cement prior to the addition of water, attempts to

add silica fume in this manner proved difficult. The extremely high surface area of the silica

fume enabled it to hydrate at amuch faster rate than OPC. As a result there was not enough

water to adequately hydrate the OPC and the resulting paste was dry and friable. To allow

enough time for the cement pasteto absorb more of the mix water and begin hydrating, silica

fume was added after the first mixing period. In addition, the second mixing period was doubled

to ensure adequate mixing of the final product.
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After the control and vacuum carbonation wasteforms were cast, the remaining paste was mixed

for another two minutes in the presence of a stream of pure CO2 gas. Simultaneously, the paste

was chilled by an ice bath to increase the solubility of CO2 gas in paste water, while at the same

time counteracting the heating effect due to the exothermic CO2 dissolution reaction.

After pouring wasteforms from this carbonated paste, the remaining slurry was mixed, chilled

and carbonated for two more minutes in an attempt to achieve a higher level of carbonation.

This paste was then cast and these wasteforms were also stored at ~23°C and 100% Relative

Humidity (RH) to prevent drying.

Steps weretaken to prevent contamination by atmospheric CO2 during mixing of the wasteforms.

The mixing apparatus was placed in a sealed plexiglass box that had hand-sized holes cut into the

left- and right- hand sides to allow for manipulation of the mixer, and a port for gas injection.

Before adding the waste solution to the cement blend intended for the uncarbonated and vacuum-

carbonated wasteforms, N2 gas was allowed to flow through the apparatus for several minutes to

displace atmospheric air. During the mixing a slight over-pressurisation of N2 gas was

maintained to prevent back-diffusion of atmospheric CO2. Carbon dioxide gas was allowed to

flow through the apparatus before and during the final mixing stages of the one-step treatments

to enrich the CO2 content of the mixing atmosphere.

Because there was concern whether significant isotopic exchange would occur between the 13C-

richCO3 in the cement paste and the 13C-depleted mixing atmosphere, duplicate 1-gram paste

samples were taken before and after exposure to the dynamic CO2 atmosphere and were analysed

for 13C (Environmental Isotope Laboratory. From these analyses, it was calculated that only

0.0448% of the 13C initially present in the paste was lost during mixing.

2.1.2 Wasteform Moulding

Cubic stainless-steel moulds were used to cast wasteforms produced for compressive strength

tests. The moulds and procedures followed are as described in ASTM Standard Test Method for

Compressive Strength of Hydraulic Cement Mortars (using 2-in. or [50-mm] Cube Specimens)
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(ASTM, 1999b). Cylindrical polypropylene moulds were used to cast wasteforms approximately

40 mm in diameter and 55 mm in length for chemical leach testing. These moulds conformed to

the requirements of ANSI/ANS 16.1. After casting, and prior to compressive strength or leach

tests, wasteforms were stored at ~23°C and 100% RH conditions to prevent drying.

2.1.3 Vacuum Carbonation

After two weeks of curing, the wasteforms produced for vacuum carbonation treatment were de-

moulded. The specimens were weighed before being suspended above a saturated KCl solution

(solid KCl present) in a 5 L gas-tight stainless steel cell (Figure 3, page 40). The cell was

evacuated until near-vacuum conditions were attained (approximately 1 kPatotal pressure). The

vacuum was shut off and the system was allowed to equilibrate (indicated by constant pressure).

As a saturated KCl solution at 25°C has a vapour pressure that is 85% of that of pure water, the

relative humidity in the cell - at equilibrium - was close to this value. Under these conditions,

liquid water of moderate ion concentration cannot exist in the poresof the wasteforms. Cement

porewater has a water vapour partial pressure higher than that of the saturated KCl solution

(~100% that of pure water). As porewater evaporated to attain equilibrium, it diffused out of the

wasteform where water vapour concentrations were lower. Equilibrium in the cell was re-

established by condensation of water vapour into the KCl solution. The wasteforms were left

under these conditions for 6 days to allow a gradual drying, i.e. removal of the free liquid

porewater from the samples. After this drying period, small quantities of CO2 were periodically

added to the cell, causing an initial increase of pressure to about 8 kPa, followed by a progressive

decrease as the CO2 reacted with the cement. Once the pressure dropped below 6 kPa, apair of

solenoid values would open in sequence, allowing the next controlled quantity of CO2 to enter

the cell. The solenoid valves were computer-controlled using a 16-bit data acquisition system.

The data acquisition system also allowed for periodic logging of gas pressure within the reaction

cell and the total number of injections. The CO2 injection process was continued for 5 days, at

which time the cell was again evacuated to remove air that may have leaked into the cell, which

would decrease the efficiency of CO2 transport from the source to the specimens. The injection

process was continued for another 5 days, at which time CO2 was gradually allowed into the cell

until ambient pressure was attained. The carbonated wasteforms were then removed and re-

weighed.
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2.2 Chemical Leach Tests

Chemical leach testson wasteforms were performed as specified in the ANSI/ANS 16.1

procedure. The wasteforms were immersed in a volume of de-ionised water about ten times its

volume for a prescribed period of time. The water was replaced after intervals of static leaching

and analysed for the waste elements that were added to the original cement mix water. Ten

leachate samples were collected from each wasteform specimen at various times over 2160 h. In

this study only the samples from the first 9 leaching intervals (1128 h) were analysed. The

leachate samples collected from duplicate wasteforms were combined in a 1:1 (mass) proportion

before analysis to give a cost-effective average of sample composition. Leachate solutions were

analysed by ICP-MS at ACTlabs for the trace element constituents comprising the simulated

wastewater solution, except for Cl, N and S, which were performed by IC at SAL.

Dissolved inorganic carbon (DIC) concentration in the leachate samples from the wasteforms

containing 13C was determined by alkalinity titration (Stumm and Morgan, 1981). In this

method, 0.0026 M H2SO4 (concentration of H+ = 0.0052 M) was added in small amounts to a 1

mL leachate sample. At pH 8.3, DIC is in the form HCO3
-. However by pH 4.3, all DIC has

converted to H2CO3 by reaction with H+. Because there are no other sourcesof alkalinity in

cement leachwater in this pH range (caustic alkalinity from portlandite and C-S-H dissolution

and from alkalis is neutralised above pH 10), the concentration of DIC can be calculated by

dividing the moles of H+ added to reduce the sample pH from 8.3 to 4.3 (calculated from the

mass of H2SO4) by the mass of sample. The leach samples were also analysed by Stable Isotope

Ratio Mass Spectrometry (S-IRMS) for the fraction of C atoms that were 13C (Environmental

Isotope Laboratory). From these two values the mass of 13C was determined

To make comparisons between leach tests easier, ANSI/ANS 16.1 defines a Leachability Index

(Li). A Li is related to the leaching characteristics of the wasteform and has a specific meaning

for each wasteform. The higher a Li for a leached element, the lower its leachability. The Li

represents leaching data in terms of mass-transport theory but without implying that long-term

leaching mechanisms are known. The latter can only be determined from longer-term leaching.
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In cases where the cumulative fraction leached (defined in APPENDIX A, page 61) was greater

than 0.20, a graphical determination of Li is presented in ANSI/ANS 16.1. Otherwise, Li is

defined as:
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where n = number of leach intervals (10 isstandard, 9 used here)

= 1.0 cm2/s (defined constant)

Di = effective diffusivity of element i (cm2/s)

The effective diffusivity of element i is defined as:
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where an = amount of element leached during leaching interval n (mg)

Ao = initial massof a given element in wasteform at start of leaching (mg)

V = volume of wasteform (cm3)

S = geometric surface area of wasteform (cm2)

T = mean time of leaching interval (s); [ 0.5(t1/2
n + t1/2

n-1) ]2

∆tn= duration of leaching interval n (s).

2.3 Compressive Strength Testing

After 60 daysof curing, compressive strength measurementswere performed on the cubic

wasteforms by Joe Aloisio (Kinectrics, Concrete Assessment and Repair) at Kinectrics, Toronto.

A standard test method was followed (ASTM, 1999b). In this test a hydraulic presswasused to

exert increasing uniaxial pressure on the wasteform. The maximum pressure reached prior to

wasteform failure is taken as the compressive strength.

2.4 Determination of Extent of Carbonation

The wasteforms tested for compressive strength were subsequently analysed for extent of

carbonation. Vacuum treatment resulted in a lighter-coloured outer selvage of carbonated

material. Thisselvage was measured on wasteform fragments that had a surface face

perpendicular to theoutside surface of the former wasteform (i.e. a partial cross-section). Eighty

(80) grit sandpaper wasused to produce a smooth surface for measurement.
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One-step treatment resulted in homogeneouscarbonation, so an alternative method was required

to determine the extent of carbonation. Two one-gram samplesof a wasteform from each

wasteform-type duplicate pair were digested with approximately 10 g of 5 M HCl in Erlenmeyer

flasks fitted with septum stoppers. The acid wassyringe-injected through the septum. Complete

digestion occurred in about 1 hour. During this time the flaskswere occasionally swirled gently

to ensure mixing. A syringe needle pierced the stopper to allow venting of gasesproduced

during digestion. Water-saturated CO2 is the only gas released in significant quantitiesduring

digestion, as it is the only wasteform constituent that is volatile under low-pH conditions. The

massof CO2 evolved wasgravimetrically determined by subtracting the massof the flasksafter

digestion from that before. From thisvalue, a correction was made to account for the massof

water leaving the container with the CO2 .
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3. RESULTS AND DISCUSSION

3.1 Chemical Leach Tests

Table 9 (page 50) shows the cumulative mass fraction released for each mix water element over

the 1128 h of the leach tests, i.e. total accumulated mass in the leachates/initial mass in the

wasteform. Notethat values have been presented in scientific notation to improve readability.

Plotsof cumulative mass fraction released against time for each element can be found in

APPENDIX B (page 65).

The Leachability Indices in Table 10 (page 51) were derived from the cumulative mass fractions

released. All Leachability Indiceswere above the U.S. Nuclear Regulatory Commission

requirement for wasteformscontaining radioactive waste (Li = 6; U.S. NRC, 2002). Also, it

should be noted that the wasteforms in this study were produced at aw/s (water/solid ratio) of

0.6. Cement for construction purposes isusually prepared at w/svaluesnear 0.45. High-

performance concretes that arebeing developed to house solid formsof radioactive wastesare

produced at w/svaluesas low as0.3. Thusdirect comparison of leach test performance in this

study to that of other studies isnot straightforward. For example, if the same fraction of a waste

element leached from two wasteformsof different w/s ratiosmade from the same mix water, the

higher w/swasteform would have retained more massof waste constituent per unit of binder

than the lower, because it has more waste initially present.

The resultsof the leach testsare best discussed under the three speciation groupingsestablished

above. For brevity in thisdiscussion, the following acronymswill be used: “OPC” – OPC-

containing; “FA” – OPC and fly ash-containing; and SF – OPC and silica fume containing.

Leachate pHsduring the leach testsaregiven in Section 3.1.4.

3.1.1 Cl and Oxyanions (Cl, N, S, Se, 13C and Th)

In general, the uncarbonated, OPC wasteformswere usually the most effective at retaining

anionic species than the other wasteforms; the vacuum treated wasteformswere the least

effective except for 13C.
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3.1.1.1 Leaching From Vacuum Carbonated Wasteforms

The most striking featureof the leaching of Cl and oxyanionic elements (except 13C, which is

discussed under Section 3.1.1.3) isgenerally high fraction leached from the vacuum treated

wasteformscompared to both the controlsand the one-step treated wasteforms. Venhuisand

Reardon (2001) reported the same feature for Cl and N (NO3). Vacuum carbonation createsan

outer selvage of carbonated material accompanied by a local porewater pH reduction to between

8 and 9. Hydrated calcium aluminate phases– mostly AFm that contained anions in their

interlayer regions before carbonation, would have been dissolved in thispH range (Reardon and

Dewaele, 1990) releasing anions to the porewater. The systematically higher anion release from

the FA wasteforms may be due to more AFm initially present in the FA wasteformscompared to

the SF wasteforms because of the higher aluminium content of fly ash compared to silica fume.

It ispossible that leaching of anions from vacuum carbonated wasteformswould level off with

time, as the outer selvagesof these wasteformsare “rinsed” of anionspurged from AFm. At that

time anion leaching from the other wasteforms types may surpass that from vacuum carbonated

wasteforms because anionscontained in the coreof vacuum carbonated wasteformsare protected

from leaching by the outer selvage of lower-permeability carbonated material. Sampleswere

taken at 4896 h from the leachate of wasteformsproduced with multi-element mix water and

were analysed for Cl, N and S. It wasnot clear if a cross-over in leaching was beginning to

occur at that time. Longer-term leach testsmay determine if and when a cross-over will happen,

which is required before a decision can be made about the usability of vacuum carbonation for

immobilising anionic wastes.

The leaching behaviour of N (in the form NO3
- in solution) did not follow that of other anions for

the vacuum carbonated SF wasteforms. Unlike other anions, N in solution has the same size and

geometry asC (a trigonal planar arrangement of oxygensaround the central atom, i.e. NO3
- and

CO3
2-). Unlike other anions, this structural similarity may allow some N to be incorporated into

the precipitating calcium carbonates, proxying for C in the crystal structure. However, the

reason why thisdid not occur to the same extent in FA wasteforms is not clear. Possibly, a

greater proportion of N in SF wasteformswaspartitioned into porewater, available for

precipitation, rather than in the limited AFm (relative to the FA wasteforms) prior to vacuum

carbonation.
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The cumulative fraction of N leached from the vacuum carbonated FA wasteformsappeared to

be greater than one. This is may be due to aproblem with the experimental method used to

determine the initial concentration of N in the wasteformsand/or acompounding of analytical

errorsduring calculation.

3.1.1.2 Can Increased Wasteform Al Content Decrease Anion Leaching?

Two questions that arose from the behaviour of anion leaching from vacuum carbonated

wasteformsare:

1. If AFm isa major storehouse for anions, would wasteformswith a greater amount of this

phase perform better because a smaller fraction would be destroyed upon vacuum

carbonation?

2. Can AFm formation be encouraged by simply increasing the Al content in the

wasteformsprior to production?

To answer these questions two wasteformswere produced from high-alumina cement (OPC

blended with 37% alumina (Al2O3)) along with two produced with OPC. A 14440 ppm solution

of CsCl wasused as mix water. Preparation, curing and vacuum carbonation of all four

wasteformswere asdescribed above. After vacuum carbonation ANSI/ANS 16.1 leach tests

were performed. Leachwater waschanged at 2, 7, 24, 48 and 120 h. Samplesof leachwater

from the same leach interval and wasteform type were combined in a 1:1 ratio before being

analysed by ICP-MS (ACTlabs) and IC (Analytical Chemical Services, University of Waterloo).

After 120 h of leaching, 0.69% of the Cl initially present in the OPC wasteformswas leached

whereas11% of that in the high alumina cement wasteformswas leached. More striking was the

20% of S leached from the high alumina cement wasteformscompared to only 0.92% from the

OPC-only wasteforms. Enhanced leaching of Cswasalso seen from Al-enhanced wasteforms

(13% vs. 7.0%).

One possible explanation for these results is that C-S-H isa significant storehouse for anions in

cement. Although anionsare retained in AFm in great densities, they can also be retained by C-

S-H, which issubstantially more abundant than AFm. Thus, it ispossible that C-S-H is the
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dominant immobilising phase for anions - indeed, it is the main sourceof sorption potential in

cement wasteform systems (Glasser, 1997). In this experiment, the added Al acted to tie-up Ca

in AFm rather than in C-S-H, reducing the amount of C-S-H. Asa result, rather than anions

being better immobilised by increasing their amount in AFm throughout the wasteform, they

became more susceptible to displacement and dissolution upon vacuum carbonation asC-S-H is

stable to a lower pH (<9) than Ca-aluminates (<11) (Reardon and Dewaele, 1990).

3.1.1.3 13C: A Special Case of Anion Leaching

13C showed lower leachability from vacuum carbonated compared to other wasteforms.

According to the model for other anions, large quantitiesof 13C-carbonate (13CO3
2-) should be

released to the porewater during vacuum carbonation by exchange and dissolution of the

initially-present AFm. At the same time, however, portlandite, C-S-H and other Ca phases

dissolve and convert to calcium carbonate minerals. These reactionsoccur in the outer regions

of the wasteforms, where the porewater is in contact with several kPa of CO2 gas. The 13C-

carbonate released from the AFm thus may then become reprecipitated or sequestered in a hail of

calcium carbonate precipitates. These precipitatesare relegated to regionsat and below the

surfacesof the wasteforms, but the reactionsprogress inwardsover time. Once these carbonated

wasteformsare placed in contact with a leaching solution, theoriginally-added 13C-carbonate is

present only asa small fraction of the total carbonate present (mainly 12C-containing) in the

porewater and secondary precipitates. Thiseffective dilution of the original 13C in the phases

that are in contact with the leachate accounts for the low fraction of 13C released ascompared to

the control and one-step wasteform samples.

It is noted that the measured 13C release fractions (and therefore Li values) cannot be reliably

corrected for the 13C contributed from the CO2 gas that wasused for carbonation.

Approximately 1% of the C atoms in the gasare 13C (analysed by EIL). So, for every gram of

carbon added to awasteform through carbonation, 10 mg of 13C are added. Only the 13C added

via the mix water is reflected in the cumulative fraction leached because the extent that the

wasteformswere carbonated wasnot determined. This means the 13C release fractionsare

maximum valuesand thus the effectivenessof the vacuum carbonation technique in reducing the

leachability of 13C may be considerably higher than indicated.
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3.1.1.4 Anion Leaching From Non-Vacuum Carbonated Wasteforms

Anion release from wasteforms that werenot vacuum carbonated wastypically lower than that

from vacuum-carbonated samples. Among the anions, the leaching of Th wasvery low (all

Li>19). Despite close correspondence in these low values, three general featurescan be

discerned:

1. Anionswere leached to a greater extent from wasteformscontaining pozzolans than those

that did not contain pozzolans.

2. Anionswere generally leached more from the non-carbonated SF wasteforms than non-

carbonated FA wasteforms.

3. The change in leachability of anions from both FA and SF wasteformsdue to one-step

carbonation was variable, depending on the element, but generally minor.

3.1.2 Hydroxyl-metal Complexes (Pb, Co, Ni and Cu)

The leachabilitiesof the hydroxyl-metal elements (Pb, Co, Ni, and Cu) were generally the lowest

compared to other elements (except Th) in this study. In general, the leachability of these

elements is the highest in SF wasteforms, followed by FA wasteformsand is the lowest in OPC

wasteforms. The exception is the lower leachability for Co and Ni in FA wasteformscompared

to OPC wasteforms. Vacuum and one-step carbonation generally had little influence on the

leaching of Co, Ni, and Cu from FA wasteforms. One-step carbonation had little effect on the

leaching of Co, Ni and Cu from SF wasteforms. However, vacuum carbonation reduced the

leaching of Pb, Co, Ni and Cu from SF wasteforms compared to uncarbonated SF wasteforms.

Concentrationsof many metals, such asPb, Co, Ni and Cu, in high pH, low-CO2 watersareoften

controlled by hydroxide mineral solubility (Baesand Mesmer, 1976). Hydroxide mineral

solubility generally decreaseswith increasing pH but can flatten out even or increase again at

very high pH if neutral or anionic hydrolysisproductsbecome dominant species. The actual

solubility behaviour, however, is complex and dependson the number and valence of hydrolysis

products, their equilibrium constantsand the composition of the water they are in. If metal

hydroxide solubility isassumed to be decreased with increased pH, most of the hydroxy-metal

leaching results seen here could be explained. The addition of pozzolans to cement reduces the

pH of cement porewater. pH reduction to below pH of 12.5 isdifficult - but not impossible -
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because the portlandite stability boundary isencountered at thispH. Silica fume always reduces

pH further and more quickly than fly ash for two reasons: silica fume hasa smaller particle size

and thus reacts faster, and fly ash containsalkalis, whereassilica fume doesnot. The reason why

Co and Ni showed lower leachability from FA wasteformscompared to OPC wasteforms is not

known. Reduced leaching of all four metals from vacuum carbonated SF wasteformswas

probably due to reduced wasteform permeability that accompaniesvacuum carbonation, but it is

unclear why the same phenomenon did not occur in FA wasteforms to the same extent.

Although Pb hydrolysessimilarly to Co, Ni and Cu, its leachability wasanomalouswithin this

group as it wassignificantly lower from both SF and FA vacuum carbonated wasteforms

compared to that from uncarbonated SF and FA wasteforms. Traditionally, geochemists

normally classified Pb along with Ca, Sr, Ba and Csas “ large ion lithophile” elements, which

have ionic radii greater than 0.1 nm. The ionic formsof Co, Ni and Cu in water, on the other

hand, have radii around 0.07nm. The term “Lithophile” refers to these elements’ tendency to

partition into silicate mineralsduring the cooling of magma (Goldschmidt, 1937), but the

classification isalso useful for distinguishing other chemical propertiesand behaviours. For

example, Pb readily formsa straight carbonate mineral (PbCO3) aswill Sr, Ba and Cs, while Co,

Ni and Cu form hydroxyl carbonates, or none at all. For this reason, Pb will also be discussed in

Section 3.1.3 on the behaviour of large metal cations.

3.1.3 Large Metal Cations (Sr, Ba, Cs (and Pb))

Venhuisand Reardon (2001) found less leaching of Sr and Cs from vacuum carbonated

wasteformscompared to uncarbonated wasteforms. Thiseffect of vacuum carbonation on large

metal cation leaching wasalso seen in this study as the cumulative fraction of Sr, Ba, Csand Pb

leached from vacuum carbonated wasteformswas generally much less than that from one-step

carbonated and uncarbonated wasteforms. Lowest levelsof Cs leaching from the non-

carbonated OPC wasteformswas the only exception and the resultsare anomalous. Inspection of

the dataand re-analysisof the leachwater confirmed thisanomaly. The highest Leachability

Index for Cs found in the literature was11.9, when the zeolite clinoptiolite (Ca0-0.5, Na, K)6

[Al6Si30O72]•20H2O) wasused asan additive to high performance slag cement (Kikuchi et al.,

1999). It ispossible that another zeolite, such asgismondine (Ca[Al2Si2O8]•4.5H2O), formed in
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situ in this study. Gismondine isknown to have high Cs binding potential in cementitious

environments (Bagosi and Csetenyi, 1998). Another duplicate set of uncarbonated OPC

wasteformswasproduced later to specifically address thisanomaly. Thiswasteform set wasalso

subject to ANSI/ANS 16.1 leach tests for 120 h and the anomaly was not repeated. An average

of 12.3% of the initially present Cs leached from the second set of wasteformscompared with

0.0861% from the original set. Further work should be done to determine the cause of the

original Csanomaly.

Vacuum carbonation partially transformssoluble Ca-bearing cement minerals into relatively

insoluble calcium carbonate. During this transformation Sr, Ba, Csand Pb housed in the original

cement mineralsor in the porewater could substitute for Ca in the latticesof calcium carbonate

mineralsdue to their like charge and similar size - thus forming solid-solutions. They may also

form pure-phase carbonate minerals (Klein and Hurlbut, 1993). In addition vacuum carbonation

reducesporosity and pore-size distribution in the carbonated selvage around the wasteform

(Dewaele et al., 1991) providing a lower diffusivity barrier in the region. So, there isa physical

aswell aschemical mechanism for the reduced leaching of these elements from vacuum

carbonated wasteforms. Venhuisand Reardon (2001) also found that Sr and Cs leachability was

reduced in vacuum carbonated wasteforms relative to uncarbonated wasteforms.

The carbonation reaction can also create another solid sink for large metal cations– sulphate

mineral precipitation. Carbonation, whether performed externally or by adding CO2 at the time

of the mix, generateshigh SO4
2- concentrations in the porewater because of the exchange of

SO4
2- for CO3

2- in AFm (Glasser et al., 1999). Some metal sulphates, such asbarite (BaSO4) and

cerussite (PbSO4), are very insoluble mineralsand may precipitate from the porewater asaresult

of an increase in SO4
2- concentration. X-ray diffraction performed on samplesof similar

wasteforms (Venhuis, 2000) have not identified any sulphate mineral phases, but total SO4
2-

concentrationsare low enough that they may have eluded detection by this technique.

Among the uncarbonated wasteforms, the SF wasteformsgenerally had the highest leaching of

Sr, Ba, Csand Pb, followed by FA wasteformsand the lowest in the OPC wasteforms. Leaching

of Ba wassimilar from FA and SF wasteforms, but washigher from FA wasteforms. Leaching
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of all four of these elements from the one-step carbonated wasteformsshowed a curious trend.

One-step carbonation reduced leaching slightly from SF wasteformsand increased leaching from

FA wasteformswhen compared to the uncarbonated SF and FA wasteforms, respectively. This

perplexing opposing behaviour wasconsistent for all four large metal cations.

A possible clue to explain the opposing behaviour, which may also shed light on the

anomalously low leachability of Cs from the uncarbonated OPC wasteforms, is found in the

work of Vialliset al. (1999). These authorsused solid-state nuclear magnetic resonance (NMR)

to examine the structure and Cs retention propertiesof C-S-H. As the principal component of all

OPC-based hydrated cements, even minor sorption propertiesof C-S-H can have an important

impact on leachabilitiesof elemental constituents. Vialliset al. identified several interlayer sites

for the exchange of cations in C-S-H and concluded that Cs retention by C-S-H varies inversely

with itsCa/Si ratio. The explanation they give is that Ca2+ increasingly occupies these interlayer

sitesas the Ca/Si ratio of C-S-H increases.

So what controls the Ca/Si ratio of C-S-H? Most studieson thissubject have dealt with the pure

CaO-SiO2-H2O water system, rather than real cements, where obtaining confident measurements

on thisgel-like phase in the midst of other crystalline material hasproved elusive. The published

solubility and compositional data of C-S-H in pure systemshave been reviewed and modelled by

Reardon (1992). The modelling showshow the predicted Ca/Si ratio of C-S-H varieswith the

pH of the equilibrating water over the stability range of C-S-H (pH>10). It is seen that the Ca/Si

ratio undergoesa maximum at a porewater pH of 12.5. Thus, C-S-H'sability to retain Csand

other cations must be at a minimum at thispH, i.e. their leachabilitiesshould be highest.

Hydrated OPC cement, without addition of pozzolans, typically have pHsabove 13. How high

above 13 dependson the alkali content (Na2O + K2O). The addition of pozzolans to cement

reduces the pH of cement porewater. A reduction to below the pH of the Ca/Si maximum is

difficult because it coincideswith the portlandite stability boundary, but it is not impossible.

Silica fume always reducespH further and more quickly than fly ash for two reasons: silica fume

hasa smaller particle size and thus reacts faster, and fly ash containsalkaliswhereassilica fume

doesnot. In the present study, if the porewater pH of the uncarbonated FA wasteformswas

reduced to above the Ca/Si maximum, and the pH of the uncarbonated SF wasteformswas
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reduced below the maximum during one-step carbonation, as illustrated in Figure 4 (page 41),

the fundamental findingsof Csand the other large metal cations’ leachability data would be

explained as in the following:

1. Uncarbonated OPC wasteforms had lower Ca/Si ratios than uncarbonated FA wasteforms

and thus lower large metal cation leachability.

2. Uncarbonated FA wasteformshad lower Ca/Si than uncarbonated SF wasteformsand

thus lower large metal cation leachability.

3. One-step carbonation, which added carbonic acid to the hydrating cements in the form of

dissolved CO2, compounds the pH reduction effect. In the case of FA wasteforms, CO2

addition would drive the pH closer to the maximum and thus increase large metal cation

leachability. In the case of SF wasteforms, CO2 addition would drive the pH away from

the maximum and thusdecrease large metal cation leachability.

More credence could be given to thisexplanation if it wassupported by actual porewater pH

data. Porewater expression techniquesare available to obtain these data and should be

applied.

3.1.3.1 Interchange-ability of Large Metal Cation Retention Models

Two separatemodelshave been proposed for themechanism of large metal cation retention in

vacuum carbonated and one-step carbonated wasteforms. Although CO2 is added to the

wasteforms in both cases, the modelsare carbonation-method specific. During one-step

carbonation CO2 is pervasively but sparsely added to the hydrating paste. Carbonatesof Ca

and/or other large metal cations may not form under these conditionsasCO2 may be readily and

extensively accommodated in AFm or form itsown pure-phase mineral, calcium carboaluminate

(Ca3Al2O6CaCO3•11H2O). Under vacuum carbonation, CO2 is more densely added to the

hydrated wasteform in a thin outer selvage. In this situation, the pH drops in the porewater such

that AFm and C-S-H are mostly dissolved and calcium carbonate takes their place.

3.1.4 pH During Leach Tests

The pH of leachwater from wasteformsproduced with the multi-element mix water during the

first 456 hoursof leaching isshown in Table 11 (page 52). Leachate pH of non-vacuum

carbonated wasteformswasgenerally close to 11. Thishigh pH is imparted by diffusion of high
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concentration OH- from the wasteform’sporewater, which is maintained by equilibrium with

portlandite, C-S-H and calcium aluminate minerals in the cement matrix.

Although pozzolansare added to OPC to reduce porewater pH (in addition to increasing the

amount of C-S-H), adifference in pH was not seen in leachwaters from OPC and FA/SF

wasteforms. However, it ispossible that the leachwatersdid not accurately reflect porewater

pHs. Because pozzolans increase the amount of C-S-H in cement, they increase the volume of

the micropore network (Section 1.3.2) and thuspermit greater ion transport in and out of the

cement and more rapid attainment of equilibrium between porewater and leachewater. The OPC

wasteforms may have had a higher porewater pH than the FA or SF wasteforms that wasnot

reflected in the leachwatersbecause the leachwatersdid come to equilibrium with the wasteform

porewater.

In the case of vacuum carbonated wasteforms, portlandite, C-S-H and calcium aluminate

minerals have been converted to calcium carbonate, silica gel and aluminium oxyhydroxide in

the outer selvagesof the wasteforms. The pH should then be controlled by the dissolution of

calcium carbonate – the most soluble of the three phasesat the ambient partial pressure of CO2 in

the leachwater. Thispressure is initially at atmospheric equilibrium (0.03 kPa). Equilibrium

calculationsshow that the pH should be close to 9.8, assuming the leachwater attainssaturation

with respect to calcium carbonate under closed-system conditions (no atmospheric CO2 ingress)

and 8.3, under open system conditions (complete CO2 ingress). In the event of partial

equilibrium of the leachwater with respect to calcium carbonate, somewhat lower pHswould

result. An inspection of the pH values for the vacuum carbonated wasteformsshowsvalues

generally consistent with CaCO3/CO2 equilibrium. However, leachwatersof vacuum carbonated

silica fume wasteformsgenerally have higher pHs than that of vacuum carbonated fly ash

wasteforms. This may be due to the larger amount of silica gel produced in the carbonation of

the silica fume wasteforms. Silica gel, similarly to C-S-H above, may act asa diffusive pathway

to the high OH- porewater in the interior of the specimens.
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3.2 Compressive Strength

The resultsof the compressive strength testsare shown in Table 12 (page 53). All wasteforms

were above the U.S. Nuclear Regulatory Commission’s minimum compressive strength

requirements for wasteformscontaining radioactive waste (0.689 MPa; U.S. NRC, 2002).

Because pozzolans increase the proportion of C-S-H relative to portlandite, and C-S-H is

responsible for most of the strength exhibited by cement, it isnot surprising that wasteforms

containing fly ash or silica fume had higher compressive strength values than the straight OPC

wasteforms. Because silica fume is more reactive than fly ash, it wasprobably more effective at

increasing the C-S-H content, which would explain why the silica fume wasteformsshowed

higher strength values than the fly ash wasteforms. Carbonation did not have a substantial

influence on wasteform strength except that vacuum carbonated SF wasteformswere stronger

than the uncarbonated SF wasteforms. Sweeny et al. (1998) suggested that cement strength

improvementsmight occur upon formation of calcium carbonate and carbonate metal double

salts (i.e. carbonatescontaining two different cations) in pore spacesof the carbonated

wasteforms. It is not clear, however, why the FA wasteforms, which showed even greater

carbonation, did not show this improvement in strength with carbonation.

3.3 Extent of Carbonation

3.3.1 Uncarbonated and One-step Carbonated Wasteforms

The resultsof acid-digestion (see Section 2.4, page19) of the uncarbonated and one-step

carbonated wasteformsare shown in Table 13 (page 54). Among the uncarbonated wasteforms

the FA and SF wasteformscontained lessCO2 than the OPC wasteforms. One-step carbonation

increased the amount of CO2 in the treated wasteforms, with the longer-exposure treatment

having a greater effect than the shorter-exposure treatment.

The total amount of CO2 in the uncarbonated and one-step carbonated wasteformsappears to be

dependent on both CO2 concentration in the mixing atmosphere and pozzolan addition.

Pozzolans reduce paste porewater pH and in turn reduce CO2 solubility while the one-step

treatment increasesCO2 solubility by increasing the CO2 partial pressure above the paste. The

one-step treatmentswork to counteract the solubility reducing effect of pozzolans.
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3.3.2 Vacuum Carbonated Wasteforms

A selvage of carbonated material 0.5 cm and 1.0 cm thick was measured visually on the vacuum

carbonated wasteformscontaining silica fume and fly ash, respectively. The exact amount of

CO2 uptake by individual wasteformscould not be quantified by simply recording masschanges

before and after the carbonation treatment. This is because water was removed while CO2 was

added to the wasteforms. However, the total massof water removed to the desiccant during

vacuum carbonation of all the wasteformsproduced with the multi-element solution was

recorded. Because there isan approximate 1:1 molar relationship between water removed from

cement and CO2 added during carbonation (Reardon and Dewaele, 1990) the total massCO2 %

of the wasteformsafter carbonation can be calculated using the following equation:
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where: mw = massof water removed to desiccant = 126.82 g

mi = initial massof wasteforms (i.e. before carbonation) = 1350.07 g.

The % CO2 of all the vacuum carbonated wasteformswas20.2% (present mostly in the outer

carbonated selvages). Therefore, on average, vacuum carbonation adds more CO2 to wasteforms

than either of the one-step treatments.
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4. SUMMARY OF CONCLUSIONS

Compressive strength performance and the leachability of thirteen waste elements from a variety

of OPC-based wasteformswere studied. The wasteformswere made from OPC, OPC and fly

ash, or OPC and silica fume. Some of the fly ash- or silica fume-containing wasteformswere

also carbonated by vacuum or one-step carbonation.

The extent of carbonation was found to be about 20% for vacuum carbonation method -

substantially higher than that for one-step treatment (up to about 10%). For vacuum carbonated

wasteforms, carbonation occurred at theouter selvagesof the wasteforms, whereasone-step

treatment resulted in homogenouscarbonation.

During the first few hundred hoursof leach tests, the leachate pH of uncarbonated and one-step

treated wasteformswas found to be close to 11, whereas the leachate pH of vacuum carbonated

waste wasmuch lower, around 8-9.

Based on their hydrolysis characteristics, the wasteelementsstudied were placed in one of three

groups: Cl and oxyanions (Cl, N, S, Se, 13C and Th); hydroxyl-metal complexes (Pb, Co, Ni and

Cu); and large metal cations (Sr, Ba and Cs). The leaching behaviour of elemental waste

constituentswasoften consistent within these groups.

In general, Cl and oxyanion (N, S, Se, 13C, Th) were most effectively retained in uncarbonated

OPC wasteforms than carbonated wasteformsor OPC wasteformswith pozzolan. Among

carbonation techniques, leachability of these elementswasnot significantly affected by one-step

carbonation, but was increased by vacuum carbonation. By lowering porewater pH, vacuum

carbonation likely dissolves AFm - which contains anions in its interlayer sites– displacing

anions to the porewater. Although 13C-carbonate ionsprobably behaved like other anionsand

were displaced from AFm during vacuum carbonation, they likely re-precipitated in the large

quantity of secondary carbonate mineralsproduced during vacuum carbonation. 13C leachability

was thus the lowest from vacuum carbonated wasteforms.
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The leachabilitiesof the hydroxyl-metal elements (Pb, Co, Ni, and Cu) were the lowest

compared to other elements (except Th) in this study. In general, the leachability of these

elementswas the highest in silica fume-containing wasteforms, followed by fly ash-containing

wasteformsand was the lowest in OPC wasteforms. The exception is the lower leachability for

Co and Ni in fly ash-containing wasteformscompared to OPC wasteforms. Metal hydroxide

solubility is the usual control on the concentration of these elements in cement porewater and is

generally inversely dependent on pH. It isbelieved that pozzolans, particularly silica fume,

could lower the pH. In general, carbonation techniquesdid not affect the leaching behaviour of

these elements. One exception to thiswas the lower leaching from vacuum carbonated SF

wasteforms.

Among the uncarbonated wasteforms, the silica fume-containing wasteformshad the highest

leaching of large metal cations (Sr, Ba, Csand Pb), followed by fly ash-containing wasteforms

and the lowest in the OPC wasteforms. Vacuum carbonation significantly reduced large metal

cation leachability when compared to uncarbonated and one-step carbonated wasteforms. When

cement phasesconvert to carbonate mineralsduring carbonation, these elementssubstitute for Ca

to form solid solutionswith calcium carbonate or form their own pure-phase carbonates. In

either case, the elementsbecame housed in relatively insoluble phases. One-step carbonation did

not result in substantial reductions in the leachability of large metal cationscompared to

uncarbonated OPC wasteforms. However, it had an interesting inverse effect on the leachability

of large metal cations from fly ash- and silica fume-containing wasteforms. A model is

presented that proposes that this inverse behaviour occursbecause:

1. The degree of ion sorption on C-S-H is inversely dependent on the C-S-H Ca/Si ratio

(Viallis et al. 1999) and

2. The C-S-H Ca/Si ratio isdependent on the equilibrating porewater pH and goesthrough a

maximum at pH 12.5 (Reardon, 1992).

OPC paste hasa porewater pH above 13 and it is believed that fly ash and silica fume reduced

porewater pH to above 12.5 and below 12.5 respectively. Upon one-step carbonation, the pH
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was reduced further, pushing the Ca/Si ratio towards its maximum in the case of fly ash

(reducing sorption), and away from its maximum in the case of silica fume (increasing sorption).

The following summary commentscan be made about the wasteform treatments in termsof

leaching:

1. Comparing just the controls, FA wasteformsusually outperformed SF wasteforms, but

because of the differing effects that carbonation had, neither wasteform composition was

superior when averaged acrosscarbonation treatments.

2. Generally, one-step carbonation did not result in substantial reductions in leachability and

occasionally increased leachability. In addition, there was little difference between

shorter and longer exposure one-step carbonation with respect to leaching.

3. The greatest leaching of anionic elements (except for 13C) wasalways from vacuum

carbonated wasteforms, whereas the least leaching of large metal cations (including Pb)

wasusually seen from vacuum carbonated wasteforms. Vacuum carbonation had little

effect on the leaching of hydroxyl-complex forming metals, except in the case of Pb

where the leaching reduction waspronounced.

4. The uncarbonated OPC wasteformsshowed least leaching for six of the 13 elements

studied – more than any other treatment.

All wasteformswere of acceptable compressive strength. Fly ash, and, to a greater degree, silica

fume, improved wasteform compressive strength when compared to OPC wasteforms.

Carbonation treatmentshad little effect on wasteform compressive strength.

Thisstudy hasprovided much information about the leaching characteristicsof a representative

set of waste elements from several cement-based wasteform treatments. Although it has not

indicated a wasteform design that is ideal for the elementsexamined, the study suggests that

some treatments may be effective for certain groupsof elements. Most notably, vacuum

carbonation showspromise in improving the immobilisation of isotopesof large metal cations

such asSr, Ba, Csand Pb, aswell as 14C (assuggested by 13C here) in cement-based wasteforms.
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Areas for Future Research

There are many areaswhere research is required to develop useable OPC-based wasteform

technologies. Several areaswhere further work would be valuable were identified in this study:

• The high fraction of anions leached from vacuum-carbonated wasteforms relative to

uncarbonated wasteforms isundesirable. Although a method of enriching wasteform Al

content in order to encouragethe formation of anion-retaining phases (mostly AFm) was

tested and was found to be unsatisfactory, follow-up research isstill warranted. In future

experiments, Al content could be enriched by adding aluminate (Ca3Al2O6) to the paste

rather than alumina (Al2O3) aswasdone here. This may reduce competition for Ca

between C-S-H and AFm asaluminate would contribute Ca.

• The addition of anhydrite or gypsum to OPC to control setting rateshasan undesirable

side effect in wasteforms: Sulphate from these mineralscompeteswith waste anions for

limited immobilisation sites. Thissulphate could be reduced or removed completely

provided it can be replaced with waste sulphate or possibly other waste anions that are

able to form ettringite-like phases.

• The poor performance of vacuum carbonation for the retention of anions

in wasteforms revealed in this study may be an artefact of the short-term duration of the

leach tests. Once the anions, which were mobilised in the exterior carbonated selvagesof

the wasteforms, have been lost to diffusion, the leachability of the remaining anions from

the vacuum carbonated samples may in fact outperform the controlsand one-step

treatments. A lower physical permeability of the outer carbonated zone could contribute

to this. Longer-term leaching tests– at least one to two years - would be required to

evaluate thispossibility.

• The cause of the anomalously high Cs retention behaviour seen in the first set of

uncarbonated OPC wasteformsshould be re-investigated asCs is normally a difficult

waste element to immobilise. Solid-stateanalysesshould be performed on both setsof

the uncarbonated OPC wasteforms to determine how the mineralogical fate of Csdiffers

between them.
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• In this study a model to explain the inverse effect one-step carbonation had on the

leachability of some elements from fly ash-containing wasteformscompared to silica

fume-containing wasteformswasdeveloped. Thismodel proposes that porewater pH

changescan have an effect on waste element leachability because the C-S-H Ca/Si ratio,

on which the degreeof ion sorption on C-S-H isdependent, isaffected by the

equilibrating porewater pH. This model should be tested experimentally as it has

important implicationson wasteform design. Among the experimentsshould be included

a chemical characterisation of expressed cement porewater with special attention paid to

pH. Quantification of the sorptivity-change dependence of C-S-H with respect to pH

may be possible, which would allow accurate modeling of the immobilising potential of

C-S-H, and ultimately OPC-based wasteforms.

• Although the waste elementsstudied here were all stable isotopes, actual nuclear waste

would also contain radioactive isotopes. Transmutation and related heat production can

have a destructive effect on the crystallographic propertiesof immobilising phases. Also,

radiogenic daughter elementscan have very different solubility controlsand sorption

characteristics than their parent elements. Both of these aspectsbecome more important

in the long-term and need to be considered.
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Figures

Figure 1: Schematic Illustrating the Model Proposed by Reardon et al. (1989) to
describe the Three Stages of Diffusion Control on CO2 gas reacting with an initially
unsaturated cementitious material
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Figure 4: Ca/Si Ratio of C-S-H as a Function of pH and Conjectured Positions of
Wasteform Porewater for OPC, Fly Ash and Silica Fume Controls at Time of Leaching
(Adapted from Reardon, 1992)
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Tables

Table 1: Characteristics of Wasteforms Produced With Multi-element Mix Water
O

P
C

F
ly

as
h

S
ili

ca
F

u
m

e

L-OPC-CTRL-1 100.00 0.00 0.00 0.61 126.21 6.1 4.1 80.5 105.0 1.3

L-OPC-CTRL-2 100.00 0.00 0.00 0.61 127.25 6.1 4.1 80.5 105.0 1.3

L-FA-CTRL-1 70.00 30.00 0.00 0.60 123.85 6.1 4.1 80.5 105.0 1.3

L-FA-CTRL-2 70.00 30.00 0.00 0.60 124.12 6.1 4.1 80.5 105.0 1.3

L-FA-COA-1 70.03 29.97 0.00 0.62 123.6 6.4 4.1 84.5 108.8 1.3

L-FA-COA-2 70.03 29.97 0.00 0.62 124.16 6.45 4.1 85.2 109.5 1.3

L-FA-COB-1 70.03 29.97 0.00 0.62 124.76 6.5 4.1 85.8 110.1 1.3

L-FA-COB-2 70.03 29.97 0.00 0.62 124.66 6.6 4.1 87.1 111.4 1.3

L-FA-V-1 70.00 30.00 0.00 0.60 123.12 6.1 4.1 80.5 105.0 1.3

L-FA-V-2 70.00 30.00 0.00 0.60 122.22 6.1 4.1 80.5 105.0 1.3

L-SF-CTRL-1 94.88 0.00 5.12 0.61 130.58 6.6 4.1 87.1 111.4 1.3

L-SF-CTRL-2 94.88 0.00 5.12 0.61 127.72 6.65 4.1 87.8 112.1 1.3

L-SF-COA-1 95.00 0.00 5.00 0.61 130.12 6.7 4.1 88.5 112.7 1.3

L-SF-COA-2 95.00 0.00 5.00 0.61 129.83 6.7 4.1 88.5 112.7 1.3

L-SF-COB-1 95.00 0.00 5.00 0.61 131.21 6.7 4.1 88.5 112.7 1.3

L-SF-COB-2 95.00 0.00 5.00 0.61 131.34 6.7 4.1 88.5 112.7 1.3

L-SF-V-1 94.88 0.00 5.12 0.61 129.71 6.8 4.1 89.8 114.0 1.3

L-SF-V-2 94.88 0.00 5.12 0.61 130.56 6.7 4.1 88.5 112.7 1.3
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m

e
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m
3 )

S
u

rf
ac

e
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re
a

(c
m

2 )

S
u

rf
ac

e
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ea
/v

o
lu

m
e

ra
ti

o
(c

m
-1

)

Wasteform
Name

M
as

s
(g

)

L
en

g
th

(c
m

)

D
ia

m
et

er
(c

m
)

A
ve

ra
g

e
m

as
s

o
f

d
u

p
lic

at
es

(g
)

None
(control)

One-step,
shorter

exposure

One-step,
longer

exposure

Vacuum

None
(control)

One-step,
shorter

exposure

One-step,
longer

exposure

Vacuum

None
(control)

Solids (% by mass)
Composition

W
at

er
/s

o
lid

ra
ti

o
(b

y
m

as
s)Carbonation

Method

126.73

123.99

123.88

124.71

130.14

122.67

129.15

129.98

131.28
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Table 2: Characteristics of Wasteforms Produced for Compressive Strength Tests and
Extent of Carbonation Determinations

O
P

C

F
ly

as
h

S
ili

ca
F

u
m

e

CS-OPC-CTRL-1 100.00 0.00 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-OPC-CTRL-2 100.00 0.00 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-FA-CTRL-1 69.85 30.15 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-FA-CTRL-2 69.85 30.15 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-FA-COA-1 69.85 30.15 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-FA-COA-2 69.85 30.15 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-FA-COB-1 69.85 30.15 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-FA-COB-2 69.85 30.15 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-FA-V-1 69.85 30.15 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-FA-V-2 69.85 30.15 0.00 0.61 5.08 5.08 103.0 121.6 1.2

CS-SF-CTRL-1 94.87 0.00 5.13 0.59 5.08 5.08 103.0 121.6 1.2

CS-SF-CTRL-2 94.87 0.00 5.13 0.59 5.08 5.08 103.0 121.6 1.2

CS-SF-COA-1 94.87 0.00 5.13 0.59 5.08 5.08 103.0 121.6 1.2

CS-SF-COA-2 94.87 0.00 5.13 0.59 5.08 5.08 103.0 121.6 1.2

CS-SF-COB-1 94.87 0.00 5.13 0.59 5.08 5.08 103.0 121.6 1.2

CS-SF-COB-2 94.87 0.00 5.13 0.59 5.08 5.08 103.0 121.6 1.2

CS-SF-V-1 94.87 0.00 5.13 0.59 5.08 5.08 103.0 121.6 1.2

CS-SF-V-2 94.87 0.00 5.13 0.59 5.08 5.08 103.0 121.6 1.2

None
(control)

Solids (% by mass)
Composition

W
at

er
/s

o
lid

ra
tio

(b
y

m
as

s)Carbonation
Method

None
(control)

One-step,
shorter

exposure

One-step,
longer

exposure

Vacuum

None
(control)

One-step,
shorter

exposure

One-step,
longer

exposure

Vacuum

V
o
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m

e
(c

m
3 )

S
ur

fa
ce

A
re

a
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m
2 )
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ur
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Table 3: Characteristics of Wasteforms Produced with 13C Solution for Leach Tests

O
P

C

F
ly

as
h

S
ili

ca
F

u
m

e

L(C-13)-OPC-CTRL-1 100.00 0.00 0.00 0.65 123.78 5.3 4.1 69.3 94.0 1.4

L(C-13)-OPC-CTRL-2 100.00 0.00 0.00 0.65 124.84 5.2 4.1 68.7 93.4 1.4

L(C-13)-FA-CTRL-1 69.97 30.03 0.00 0.59 123.08 5.3 4.1 69.3 94.0 1.4

L(C-13)-FA-CTRL-2 69.97 30.03 0.00 0.59 124.8 5.2 4.1 68.7 93.4 1.4

L(C-13)-FA-COA-1 69.79 30.21 0.00 0.57 126.65 5.6 4.1 73.3 97.9 1.3

L(C-13)-FA-COA-2 69.79 30.21 0.00 0.57 126.74 5.6 4.1 73.3 97.9 1.3

L(C-13)-FA-COB-1 69.79 30.21 0.00 0.57 126.66 5.2 4.1 68.7 93.4 1.4

L(C-13)-FA-COB-2 69.79 30.21 0.00 0.57 126.84 5.3 4.1 69.3 94.0 1.4

L(C-13)-FA-V-1 69.97 30.03 0.00 0.59 118.22 5.3 4.1 69.3 94.0 1.4

L(C-13)-FA-V-2 69.97 30.03 0.00 0.59 117.81 5.3 4.1 69.3 94.0 1.4

None
(control)

Solids (% by mass)
Composition

W
at

er
/s

o
lid

ra
ti

o
(b

y
m

as
s)Carbonation

Method

None
(control)

One-step,
shorter

exposure

One-step,
longer

exposure

Vacuum

V
o

lu
m

e
(c

m
3 )

S
ur

fa
ce

A
re

a
(c

m
2 )

S
u

rf
ac

e
ar

ea
/v

ol
u

m
e

ra
ti

o
(c

m
-1

)

Wasteform Name

M
as

s
(g

)

L
en

g
th

(c
m

)

D
ia

m
et

er
(c

m
)



45

Table 4: Whole Rock Analysis of Solids Used in Wasteform Preparation

OPC Fly ash
Silica
Fume

SiO2 19.57 43.6 93.9

Al2O3 5.46 23.51 0.03

Fe2O3 2.33 4.72 0.06

MnO 0.055 0.0225 <0.003

MgO 2.28 2.195 0.12

CaO 62.53 8.22 0.12

Na2O 0.2 0.825 0.12

K2O 1.11 1.54 0.09

TiO2 0.299 1.3665 0.006

P2O5 0.12 0.41 <0.03

LOI 1.36 9.92 5.34

Total 95.3 96.3 99.8

Concentration (mass %)
Oxide
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Table 5: Concentration of Elements Comprising Mix Waters in Solids Used to Prepare
Wasteforms

OPC Fly ash
Silica
Fume

Cl 383 32 N/A

N 3.52 13.13 N/A

S 5300 4967 N/A

Se 1.9 16.6 <0.1

13C N/A

Th 3.5 14.5 <0.1

Pb 28.7 45.1 <0.01

Co 7.5 39.3 <0.1

Ni 28.1 66.3 0.6

Cu 17.6 124 0.3

Sr 288 1220 0.5

Ba 140 477 2.6

Cs 0.9 1.6 <0.1

Concentration (ppm)
Species

398.0
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Table 6: Concentration of Elements in Mix Waters

Multi-
element
solution

Na2
13CO3

solution

Cl 2.25

N 248

S 142

Se 332

13C 200.3

Th 1,104

Pb 258

Co 253

Ni 225

Cu 510

Sr 498

Cs 1,039

Ba 515

Na 767

Element

Concentration (ppm)
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Table 7: Initial Mass of Waste Elements in Wasteforms Produced With Multi-element
Mix Water

Cl N S Co Ni Cu Se Sr Cs Ba Pb Th

L-OPC-CTRL-1 30.06 12.20 421.24 12.71 12.99 26.01 16.03 80.37 50.03 38.96 15.98 53.40

L-OPC-CTRL-2 30.30 12.30 424.71 12.82 13.10 26.23 16.16 81.03 50.44 39.28 16.11 53.84

L-FA-CTRL-1 21.63 11.78 409.64 13.03 13.49 27.57 15.83 90.62 48.28 44.83 15.49 51.76

L-FA-CTRL-2 21.68 11.80 410.54 13.06 13.52 27.63 15.86 90.82 48.38 44.93 15.53 51.87

L-FA-COA-1 21.24 12.07 402.38 13.30 13.69 28.10 16.21 89.95 49.50 45.04 15.73 53.05

L-FA-COA-2 21.34 12.12 404.20 13.36 13.76 28.23 16.29 90.36 49.72 45.25 15.80 53.29

L-FA-COB-1 21.44 12.18 406.16 13.43 13.82 28.36 16.36 90.79 49.97 45.47 15.88 53.55

L-FA-COB-2 21.43 12.17 405.83 13.42 13.81 28.34 16.35 90.72 49.92 45.43 15.87 53.51

L-FA-V-1 21.50 11.71 407.23 12.95 13.41 27.41 15.74 90.09 47.99 44.57 15.40 51.46

L-FA-V-2 21.34 11.62 404.25 12.86 13.31 27.21 15.62 89.43 47.64 44.24 15.29 51.08

L-SF-CTRL-1 29.55 12.58 414.45 13.09 13.58 27.29 16.61 85.24 51.64 41.49 16.50 55.16

L-SF-CTRL-2 28.91 12.31 405.37 12.81 13.28 26.69 16.24 83.37 50.51 40.58 16.14 53.95

L-SF-COA-1 29.53 12.51 414.11 13.02 13.50 27.12 16.51 84.93 51.32 41.28 16.42 54.82

L-SF-COA-2 29.47 12.48 413.19 12.99 13.47 27.06 16.47 84.74 51.21 41.19 16.38 54.70

L-SF-COB-1 29.78 12.61 417.58 13.12 13.62 27.35 16.64 85.64 51.75 41.62 16.55 55.28

L-SF-COB-2 29.81 12.62 417.99 13.14 13.63 27.38 16.66 85.72 51.81 41.67 16.57 55.34

L-SF-V-1 29.36 12.50 411.69 13.01 13.49 27.11 16.50 84.67 51.30 41.22 16.39 54.79

L-SF-V-2 29.55 12.58 414.39 13.09 13.58 27.29 16.61 85.23 51.63 41.49 16.50 55.15

Initial mass (mg)Wasteform
Name
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Table 8: Initial Mass of 13C in Wasteforms

L(C-13)-OPC-CTRL-1 39.64

L(C-13)-OPC-CTRL-2 39.98

L(C-13)-FA-CTRL-1 39.98

L(C-13)-FA-CTRL-2 40.54

L(C-13)-FA-COA-1 41.43

L(C-13)-FA-COA-2 41.46

L(C-13)-FA-COB-1 41.44

L(C-13)-FA-COB-2 41.49

L(C-13)-FA-V-1 38.40

L(C-13)-FA-V-2 38.27

Wasteform Name
Initial mass
of 13C (mg)
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Table 9: Cumulative Fraction of Contaminants Leached

Cl N S Se
13C Th Pb Co Ni Cu Sr Ba Cs

(x 101) (x 102) (x 103) (x 104) (x 102) (x 107) (x 105) (x 105) (x 104) (x 104) (x 103) (x 103) (x 104)

None None 0.87 3.17 6.31 1.18 2.23 3.67 10.50 8.14 9.23 1.13 28.49 7.26 8.61

None 0.55 24.58 8.05 24.77 4.09 3.93 22.64 6.24 4.81 1.38 31.74 36.51 2611.44

One-step
(shorter

exposure)
0.97 30.53 7.21 30.28 4.21 6.86 27.51 6.52 4.58 2.91 41.77 54.05 3244.00

One-step
(longer

exposure)
0.83 31.23 7.40 38.83 3.86 3.97 30.71 7.14 4.96 2.06 54.10 65.67 3578.58

Vacuum 4.61 126.76 347.10 1449.25 1.77 10.08 10.33 7.02 6.69 1.40 2.90 1.28 1010.18

None 1.23 46.11 6.17 30.30 5.01 34.93 51.96 15.52 3.87 65.21 40.95 5941.93

One-step
(shorter

exposure)
1.08 42.10 5.99 28.99 3.87 26.44 53.10 16.33 2.61 65.50 41.53 5688.19

One-step
(longer

exposure)
1.05 41.27 6.22 54.49 9.89 31.30 51.94 17.48 3.04 60.47 40.53 5329.31

Vacuum 3.36 32.38 77.26 164.35 4.65 9.41 25.64 7.75 2.53 8.25 3.05 2931.12

Silica fume

Pozzolan Carbonation

Cumulative Fraction Leached

Fly ash



51

Table 10: Leachability Indices

Cl N S Se 13C Th Pb Co Ni Cu Sr Ba Cs

None None 9.1 9.9 11.3 14.6 10.2 19.8 14.7 15.3 13.6 14.8 10.1 11.2 13.2

None 9.5 8.3 11.3 12.1 10.2 19.8 14.4 15.3 13.7 14.7 9.9 9.8 8.0

One-step
(shorter

exposure)
9.1 8.2 11.3 11.9 10.1 19.3 14.0 15.4 13.8 14.4 9.7 9.5 7.8

One-step
(longer

exposure)
9.1 8.1 11.1 11.7 10.1 19.7 13.9 15.3 13.8 14.6 9.5 9.3 7.7

Vacuum 7.8 6.5 7.0 8.5 10.6 19.1 14.8 15.2 13.7 14.6 12.1 12.9 9.1

None 9.0 7.8 11.3 12.0 19.6 13.9 13.4 13.5 14.0 9.5 9.9 7.3

One-step
(shorter

exposure)
9.0 7.8 11.3 12.0 19.7 14.1 13.4 13.4 14.3 9.4 9.8 7.2

One-step
(longer

exposure)
9.1 7.9 11.2 11.5 19.2 14.0 13.4 13.4 14.0 10.0 10.2 7.3

Vacuum 7.7 8.1 9.0 10.5 19.6 14.8 14.1 13.6 14.3 12.0 13.2 7.9

Leachability Indices

Fly ash

Silica fume

Pozzolan Carbonation
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Table 11: pH of Leachwater During First 456 Hours of Leach Testing

2
hours

7
hours

24
hours

48
hours

72
hours

96
hours

120
hours

456
hours

None None 11.86 11.03 11.43 11.41 11.03 11.39 8.53 8.94

None 11.68 10.65 8.43 11.34 11.25 11.19 10.92 8.51

One-step
(shorter

exposure)
11.59 10.92 11.42 11.42 11.35 11.25 10.85 8.53

One-step
(longer

exposure)
11.50 10.88 11.49 11.49 11.10 11.31 9.85 8.61

Vacuum 8.85 7.94 9.02 9.45 8.24 9.08 9.26 8.27

None 11.25 10.94 11.47 11.53 11.37 11.38 11.21 11.13

One-step
(shorter

exposure)
11.31 10.91 11.53 11.55 11.12 11.41 8.14 11.74

One-step
(longer

exposure)
11.36 10.94 11.52 11.57 10.78 11.41 11.31 11.73

Vacuum 9.06 9.25 10.40 9.94 9.90 10.31 7.99 8.75

Silica fume

Fly ash

pH
Pozzolan Carbonation
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Table 12: Compressive Strength of Wasteforms Prepared With Multi-element Mix
Water After 60 Days of Curing

Wasteform 1 Wasteform 2 Average

None None 22.58 23.10 22.84

None 32.41 31.72 32.06

One-step (shorter exposure) 31.20 31.20 31.20

One-step (longer exposure) 28.44 29.82 29.13

Vacuum 28.61 29.99 29.30

None 31.54 34.47 33.01

One-step (shorter exposure) 37.23 35.34 36.28

One-step (longer exposure) 29.48 34.82 32.15

Vacuum 42.06 41.89 41.97

Silica fume

Pozzolan Carbonation Type
Compressive Strength (MPa)

Fly ash
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Table 13: Extent of Carbonation of Uncarbonated and One-step Carbonated
Wasteforms Prepared With Multi-element Mix Water

Pozzolan Carbonation method
Extent of carbonation (CO2

mass % of wasteform)

None None 5.09
None 4.13

One-step (shorter exposure) 4.87
One-step (longer exposure) 9.78

None 2.02
One-step (shorter exposure) 2.59
One-step (longer exposure) 4.05

Fly ash

Silica Fume
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APPENDIX A. CALCULATION OF CUMULATIVE FRACTION

LEACHED

To illustratethe calculation of the cumulative fraction leached of an element from a wasteform

during ANSI/ANS 16.1 leach tests, 13C data from the uncarbonated fly ash-containing

wasteforms will be used as an example.

In the preparation of the wasteforms 260.0 g OPC, 111.6 g fly ash and 220.8 g mix water was

used for a total of 592.4 g of materials. The mixture wastherefore 43.90% OPC, 18.8% fly ash

and 37.3% mix water.

Two wasteforms were produced from this mixture. Their masses were 1) 123.8 g and 2) 124.8 g.

The first wasteform was thus made from (123.8 g x 0.439) = 54.4 g OPC, (123.8 g x 0.188) =

23.3 g fly ash and (128.8 g x 0.373) = 48.0 g mix water. Doing the same calculations for the

second wasteform, it was made from 54.8 g OPC, 23.5 g fly ash and 46.5 g mix water.

The OPC/fly ash blend used was 3.67% C and 1.09% of that C was 13C. Therefore 0.04% of the

blend is 13C. The mix water was 0.02% C and 99.9% of that was 13C. Therefore 0.02% of the

mix water was 13C. The first wasteform thus contained ((54.4 g + 23.3 g) x 0.0004 + 48.0 g x

0.0002) = 0.041 g 13C. The second wasteform contained 0.0405 g 13C. Because leachwater from

both wasteforms was combined after collection, the initial masses of 13C were averaged. The

average initial mass of 13C was 40.3 mg.

Samples of leachwater collected at various times were analysed for C concentration and % 13C.

From these values the concentration of 13C was calculated (i.e. C concentration x % 13C) and

listed in Table A. 1.
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Table A. 1: Concentration of Element in Leachwater during Leaching Intervals

Leach sampling

time (hours)

mg C/kg

leachwate

r

% 13C
mg 13C/ kg

leachwater

Initial rinse (30 s) 2.88 1.10 0.0318

2 3.72 1.12 0.0415

7 3.48 1.14 0.0397

24 6.96 1.22 0.0853

48 3.12 1.18 0.0368

72 6.00 1.27 0.0760

96 5.40 1.27 0.0687

120 4.56 1.17 0.0533

456 10.7 1.75 0.187

1128 61.6 1.80 1.11

From the mass of leachwater the mass of 13C was calculated (i.e. 13C concentration in leachwater

x mass of leachwater = mass of 13C) and listed in Table A. 2.

Table A. 2: Mass of Element Leached During Leaching Intervals

Leach sampling time

(hours)

mg 13C/ kg

leachwater

Mass of leachwater

(kg)

mg 13C

leached

during leach

interval

Initial rinse (30s) 0.0318 0.940 0.0298

2 0.0415 0.940 0.0389

7 0.0397 0.940 0.0371

24 0.0853 0.940 0.0799

48 0.0368 0.940 0.0345



63

72 0.0760 0.940 0.0711

96 0.0687 0.940 0.0643

120 0.0533 0.940 0.0499

456 0.187 0.940 0.175

1128 1.11 0.940 1.04

By dividing the mass of 13C leached during each interval by the initial mass of 13C present minus

the mass leached during the 30 s initial wasteform rinse the fraction leached was calculated and

listed in Table A. 3.

Table A. 3: Fraction of Initial Element Mass in Leachwater During Leaching Intervals

Leach sampling time

(hours)

13C leached during leach

interval

(mg)

Fraction of initial mass

of 13C leached during

interval

2 0.0389 0.000967

7 0.0371 0.000923

24 0.0799 0.00199

48 0.0345 0.000857

72 0.0711 0.00177

96 0.0643 0.00160

120 0.0499 0.00124

456 0.175 0.00437

1128 1.04 0.0265

To calculate the cumulative fraction leached the mass of 13C leached during each interval was

added to the sum of the masses leached in previous intervals (summarised in Table A. 4).
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Table A. 4: Cumulative Fraction of Initial Mass of Element Leached During Leaching

Leach Time (hours) Cumulative Fraction

Leached

2 0.00171

7 0.00263

24 0.00462

48 0.00547

72 0.00724

96 0.00884

120 0.0101

456 0.0144

1128 0.0409
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APPENDIX B. CUMULATIVE FRACTION LEACHED CURVES

Key to graph labels:

OPC – Wasteforms produced with only OPC

FA- Wasteforms produced with OPC and fly ash

SF – Wasteforms produced with OPC and silica fume

C – Wasteforms not carbonated

OS1 – Wasteforms one-step carbonated, shorter exposure

OS2 – Wasteforms one-step carbonated, longer exposure

V – Wasteforms vacuum carbonated
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