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Abstract

Using sacrificial templates to create 3D structures is commonly employed in various fields such as
tissue engineering and water remediation to create complex and high surface area scaffolds. Herein, several
sacrificial templating techniques are tried, tested, and evaluated and several methods for creating 3D porous
material are discussed, including: solvent casting particulate leaching (SCPL) and simple sugar and salt
leaching. The porous material is then integrated with polymer soft lithography patterning to create a single
functionally graded adhesive (FGA) material to use in dry adhesive applications. The use of a soft foam
backing layer helps to improve the compliance and flexibility of the adhesive pad, thus enhancing peel
tolerance, buckling, and deflection and vibration resistance.

A dry FGA based on film-terminated silicone foam is developed utilizing the polymer foam's
capacity to absorb large amounts of energy and so deliver high adhesion and peel resistance. The fabrication
technique is based on simple sugar cube templating of common elastomers, followed by film termination
of the polymer cubes using the same material. Dependencies of the pull-off adhesive force and energy
release rate on preload and foam thickness are systematically investigated through a series of axisymmetric
indentation/de-bonding tests. The contribution of the foam backing layer to the overall compliance and
adhesion is analysed and discussed. The developed elastic film-terminated structure strongly enhances the
pull-off force and work of adhesion, and can be employed in the transport of delicate objects, as
demonstrated in the pick and place of a silicon wafer. Furthermore, the proposed foam-based FGAs can be
readily detached from the adherent surface by applying shear deformation between the pad and the surface.
This research clarifies the role of mechanical graded properties in adhesion and can have technical
implications in the development of a simple but effective dry adhesive material for mounting and
transporting objects using automated robotic devices.

The film terminated dry adhesive pads were further developed to investigate the feasibility of using
a foam backing material as a universal platform to improve the adhesive properties of other terminal surface

morphologies. Integrating other fast prototyping technologies as an alternative to lithographic templating
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techniques, scaled acrylonitrile butadiene styrene (ABS) 3D printed mushroom capped terminal structures
are determined to be comparable to polyacrylate microstructure templated moulds. The effect of the foam
is systematically evaluated using a similar axisymmetric indentation/de-bonding test with a probe of a large
radius of curvature. Contact splitting through the control of terminal structures in both micro and millimetre
scales shows improved contact properties with the addition of foam backing material. The mushroom
capped adhesive pads are employed to demonstrate shear peel tolerance and cold temperature surface
tolerance demonstrations.

Lastly, various sugar and salt templating techniques are explored and optimized for consistency
and repeatability to select the material most suitable for current research. Statistical analysis is used in the
selection process. A linearly approximated model to determine the pull-off force from foam porosity and
stiffness parameters are reported as sample candidates. Model estimates find that the density of sugar

granules and the applied preload force are the mostly significant contributors to increasing pull-off force.
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Chapter 1. Introduction and Literature Review

The objective of the thesis is to use a soft backing material to improve the adhesive properties of
dry adhesives. This is achieved in three steps corresponding to each research chapter of the thesis. The
thesis is organized as follows: Chapter 1 “Introduction and Literature Review” discussing leading research
and theories of contemporary structures and concepts currently employed in dry adhesives as well as some
background literature on polymer foam fabrication, Chapter 2 “Effect of Foam Backing Material Thickness
on Adhesive Properties at Low Preloads” — my published work studying the behaviour of preload and foam
backing material thickness on pull-off force, Chapter 3 “Multilayer Functionally Graded Material for Dry
Adhesive Applications: Scaling from Micro to Macro Terminal Structures” — an unpublished manuscript
exploring the universal platform of foam backing materials using different terminal structures at micro and
macro scales, and Chapter 4 “Compression Study on Foam Porosity” reports the effects of foam porosity
and stiffness on pull-off force, leading to the optimization of material fabrication of the previous two
chapters.

The rationale of the research chapters are as follows: Chapter 2 describes the systematic study of
the foam thickness and its improvement in adhesion strength compared to a simple polymer block. This
work is expanded upon in Chapter 3 where mushroom capped terminal structures were explored at both
micron and millimetre scales to determine if foam backing improves the adhesive properties of different
sized and geometries of terminal structures, thus making it a general design parameter rather than a terminal
structure specific one. Lastly, in Chapter 4, four sugar cubes with different porosities and stiffness values
were tested and statistically analysed to select the best foam porosity/stiffness that will result in optimal
adhesion properties.

This thesis includes work in fwo main fields: dry adhesives and polymer foam templating. Within
dry adhesives, the concept of compliance: the ability of the adhesive to maximize contact with the adherent
surface, is the linking agent between these fields. Dry adhesives are a developed area of biomimetic polymer

materials science focused on using various polymeric materials and patterning methods to design complex



surface features reminiscent of the Gecko toe pads for applications in material bonding. The adhesive
properties are generated from van der Waals interactions rather than chemical intrusion and bonding. This
is achieved through material templating techniques such as soft lithography which allows pattern transfer
from silicon materials to polymeric elastomers. The field of dry adhesives has defined various terminal
geometries, feature aspect ratios, and contact mechanic theories to assist in the design and understanding
of adhesive materials which has led to directional fibrillar materials able to hold kilograms of load.

However, there has been little research done on modifying the material configuration of the backing
substrate of dry adhesives. Herein, the theory of compliance plays a large role. Compliance is how easily
the adhesive can match the surface to which it is bound. Having better compliance means allowing more
contact area between the surface and the adhesive. To achieve this, flexible fibrillar structures are currently
being investigated due to improve contact on rough surfaces. These fibrillar structures with delicate terminal
features only span lengths of nano to micrometres, leaving the millimetre region largely unexplored. After
all, the Gecko, nature’s analogue, has millimetres of “soft” fleshy material backing its famed fingertips.

Thus, the field of polymer foams can simulate the soft equivalent of flesh. Currently, popular
polymer templating methods uses a sacrificial water-soluble particulate to create a 3D mould for the
prepolymer. Once the prepolymer is cured, the particulate is removed by water dissolution, leaving a bi-
continuous gyroid polymer foam, the other phase being air. Modifying this templating method, a soft foam
backing material with attached fibrillar structures is fabricated and its adhesive properties measured.
1.1. The Gecko

The gecko lizard is one of nature’s solution to a sticky problem. Recent research been completed
looking at their foot pads to determine how their climbing ability maybe exploitable to create synthetic dry
adhesives. The gecko toe pads, as seen in Figure 1, consists of a hierarchal system of flexible hairs with a
directional attachment mechanism. Autumn et al.’s investigation into a single seta’s adhesion performance
in parallel and perpendicular release direction to a surface seen in Figure 2, estimates that a 1cm? adhesive
pad is able to produce 10N of adhesive force resulting in a lower limit estimate of 20uN per seta at

approximately 5000 setae per square millimetre [1]. Autumn et al. has also shown in various movie clips



and slow motion video analysis, that the gecko accomplishes this directional control by attaching and

detaching its toe pads with the curling of its toes into and away from the surface [2].
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Figure 1: (a) A Tokay gecko (Gekko gecko); SEM of setae from toe pad of animal: from (b) rows of setae
to (c) single seta and finally the (d) fine terminal branches of the spatulae, (e) a single seta attached to a
MEMS cantilever to conduct parallel and perpendicular attachment-detachment tests on (f) an aluminium

bonding wire. Reproduced with permissions from Nature Publishing Group [1].
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Figure 2: (a) Perpendicular preload and parallel sliding pull-off test showing (b) preload dependence of

single seta from gecko toe pad. Reproduced with permissions from Nature Publishing Group [1].



1.2. Dry Adhesives

Dry adhesives are a class of adhesives where adhesion is reliant only on non-covalent bonding
forces; generally, physical interactions like van der Waals force [3], [4], hydrogen bonding, charge
interactions, suction, capillary effect, etc. whose individual force is small, but at critical mass can have an
overall effect. Most adhesives familiar to the public are chemical adhesives: wood glue, epoxy, clear tape,
post-it notes, etc. These adhesives use chemical bonding force between the surface and a semi-flowable
“wet” layer of chemicals. However, they are usually single use or deteriorate with each application and
leaves surface contamination/residue. In contrast, dry adhesives, can be regenerated by cleaning with a light
solvent or by self-cleaning mechanisms. The drawbacks of dry adhesives are its high cost, complexity,
lower overall adhesion performance, and lacking rough surface adhesion, thus limiting their use to light and
relatively smooth surface applications.
1.2.1. Compliance

Compliance can be defined as the change in displacement over force at maximum contact area [5].
It is linked with the ease of which the adhesive can contact the adherent surface. Chemical adhesives
maximize the requirement of intimate contact by using its wet adhesive layer to intrude into the surface,
filling in gaps and increasing surface contact area (before curing for permanent adhesives). Dry adhesives
need to use more flexible and small terminal end structures to reach deep into the microscopic and often
nanoscale valleys and peaks. Although there has been a plethora of work on the terminal surface of dry
adhesives, these complex fibrillar structures are complaint mostly only at short distances, while the backing
material’s larger range has garnered less attention. Within this work, compliance will be generalized as the
ability of the material to reach and increase its contact with the surface.
1.2.2. Terminal Structures

The simplest terminal structure for dry adhesives is the surface of a block of polymer material. Due
to differences between the surface and bulk, the bulk will only experience cohesive forces, while the surface
will experience a combination of cohesive and interactive (adhesive) forces with whatever medium it might

be in contact with, e.g. air, water, etc. One higher level of complexity is the pillar or hole structure, where



there is a continuous or confined air gap between surface features at uniform and regular spacings.
Complexity can drastically reduce the potential surface contact area depending on the packing and spacing
of the patterned features, but can also improve energy dissipation. The aspect ratio of the features can also
play a role; if the pillars are too long they will collapse via three mechanisms ground collapse, lateral

collapse, and capillary collapse as seen in Figure 3 [6].

a

Figure 3: (top) Mechanical failure modes of (a) high aspect ratio pillar arrays: (b) ground, (c) lateral,
and (d) capillary collapse; (bottom) SEM images of collapsed (a) PDMS, (b) PU, and (c, d) poly(ethylene
glycol) dimethacrylate hydrogel pillars. Reproduced with permissions from American Chemical Society

[6].



Many other structures can be created by adding onto and/or modifying the pillar structure: straight,
tilted, curved, spiral supports, etc. These pillars generally act as a spring between the bulk polymer block
and the surface, fulfilling energy damping and dissipation functions. Additionally, structures can be placed
atop these fibrillar supports: film terminated [7], mushroom [8], spatula [9], and even hierarchical levels
[10] of any combination as seen in Figure 4, Figure 5, Figure 6, and Figure 7. Their development is widely

inspired by the multilevel hierarchical nature of biological analogues such as the gecko lizard.

Figure 4: SEM of (a) 50um diameter, 150um high micropillars, and (b) topped with an Sum thick film;

scale bar at 100um. Reproduced with permissions from Royal Society of Chemistry [7].

Figure 5: SEM of (a) undecorated pillars; (b) mushroom capped terminal end; scale bar at 10um.

Reproduced with permissions from Institute of Physics Publishing [8].



Figure 6: SEM of 35um diameter angled PU microfiber arrays with angled mushroom caps. Tip
orientation at following angles: (a) 34.8°; (b) 90.8°; and (c, d) 23.8°. Reproduced with permissions from

John Wiley and Sons [9].

Figure 7: SEM of three-level hierarchical PU fibres: (a) 400um diameter curved base fibres; (b) zoom-in
of base fibre tip with midlevel 50um diameter fibres; (c) zoom-in of midlevel fibres; (d) zoom-in of
terminal third level 3um diameter, 20um high fibres with Sum diameter flat mushroom caps. Reproduced

with permissions from American Chemical Society [10].



1.2.3. Contact Geometry and Splitting

The generalization of contact splitting is that the more pieces that the surface is broken up into, the
more energy can be dissipated by the adhesive [3], [11]. Having only a film terminated fibrillar structure
for example, is not very peel tolerance due to the propagation of a peel front once it has been initiated. The
initial pull-off force is high as energy is expended to overcome edge effects of the adhesive film; however,
once a front has begun, it is easier to continue peeling due to stresses at the interaction point. In contrast, if
the same film terminated fibrillar structure is split into many smaller sections (even if there is less overall
contact area), it will perform much better as each structure has its own energy barrier preventing
propagating of the peel front throughout the rest of the adhesive pad.

Furthermore, the contact geometry also plays a significant role in the control of adhesive properties,
more so than surface chemistry [3]. This has been extensively evaluated by Bartlett et al. creating a general
design parameter relating the contact geometry to a resulting force capacity [13], [14]. As mentioned
previously, radially symmetrical [8] and asymmetrical [9] terminal structures will restrict which direction
peeling will more easily occur. Parallel to tilted pillars, it is easier to peel from one direction than its
opposite direction. This behaviour can be observed with spatula terminated ends, as it is not centred on the
supporting structure, the shorter side is easier to detach than its longer end.

1.2.4. Functionally Graded Materials

FGAs are another class of materials where there is a gradient in mechanical and/or chemical
properties along the thickness of the material, as seen in Figure 8 [5]. In terms of dry adhesives, functionally
graded materials (FGM) can be the terminal structures, followed by the supporting structure, and finally
the backing substrate. In the presented work, the softness/flexibility of the graded materials with relation to
adhesive properties are investigated i.e. different terminal structures resting on pillar supports on foam or

block backing substrates.



Elurlr
Non-graded

(a) Biomimetic Functionally
Graded Adhesive

Glass
Geometrically graded

Figure 8: Schematic of (a) bioinspired FGA with viscoelastic chemical and geometrically graded layer
atop an elastic substrate on a glass substrate, (b) a simple viscoelastic layer on glass, (c) a viscoelastic
layer atop an elastic polymer on glass, and (d) an elastic film terminated biomimetic fibrillar adhesive on
glass. Reproduced with permissions from American Chemical Society [5].

1.3. Polymer Foams

Foams are 3D low-density materials that exhibit large voids and cavities of empty regions, resulting
in high surface area and being light in weight. They can be extremely flexible and compressible if the
component material is elastic and can have closed or open cell structures. Due to its high surface area, it is
used in many energy absorption/dissipation applications/devices, such as noise cancellation, thermal
dissipation/insulation, packaging, as a filler material, sensors, safety equipment, as well as chemical
adsorption, and 3D templating.

There are a few methods of creating dry solid polymer foams: using fast acting/curing
polymerization reactions, high temperatures and a pressure differential, or using physical agitation and
confinement. Spray foam insulation is an example that uses an isocyanate and polyol resin (PU) that can
expand several times its liquid volume, trapping air within its closed cell structure. Commonly used in
construction and other lightweight insulation applications, this material cures stiffly and can be sprayed

into a mould of a desired geometry [15]. Its soft polyurethane counterpart: memory foam, is made with di-



isocyanates and polyols, once mixed it reacts into a soft open cell structure that is later cured into its final

soft state [16]. These foams are used for furniture and packaging.

Figure 9: Photograph of (a) spray foam, credits: Cdpwebl61 as hosted on Wikipedia, CC BY-SA 3.0
and, (b) memory foam, credits: Johan as hosted on Wikipedia, CC BY-SA4 3.0
Another stiff closed cell foam: packing foam, uses expanded polystyrene (EPS) via high
temperature liberation of trapped gases from volatile compounds that results in a volume increase of 40-50
times. After confining in a mould, steam is used to fuse the individual pellets together resulting in a 98%

porosity material [17].

Figure 10: Photograph of EPS packaging foam, credits: Acdx as hosted on Wikipedia, CC BY-SA 3.0
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1.3.1. Contemporary Studies on Polymer Foam/Sponge Casting
Solvent Casting/Particulate Leaching

Previous examples of foam production are commercialized industrial processes; in this section, the
research methods of making dry foams using a sacrificial template (porogen) will be discussed. Sugar and
salt are commonly used in this technique as the granules can be removed via water infiltration and
dissolution.

Solvent casting/particulate leaching (SCPL) technique is a process of dispersing polymer in an
organic solvent, followed by the incorporation of water soluble particles into the solution before moulding
[18]. A polymer-particulate composite is formed after solvent evaporation before porogen leaching. Liao
et al. uses salt, which is easily removed by leaching in a water bath, resulting in a porous polymer structure
with controllable pore size and porosity. The choice of salt particle size and its weight percent to the
polymer solvent mixture determines the void dimensions [18]. SCPL's inherit issue stems from its non-
uniformity coating and frequent particulate encapsulation by the polymer, blocking later leaching [18].

Liao et al.'s modification of SCPL, solvent merging particulate leaching (SMPL), uses solvent
assisted polymer fusion of a dry mixture of poly(lactic-co-glycolic acid) (PLGA) a biodegradable polymer,
and salt granules. The modified SCPL technique directly incorporates the polymer and salt into a mould
before being chased by the polymer solvent. The liquid flows through the voids between the solid mixture,
fusing the polymer particles. A polymer non-solvent is pulled through to precipitate the polymer, followed
by flushing with water to remove the salt. The schematic of the process and the resulting material is shown
in Figure 11.

The PLGA scaffolds are created by grinding PLGA grains and sieving it through 250-470um mesh
(No. 40 and 60). The NaCl is also sieved and the dry mix is combined at various weight ratios at room
temperature before filling a Teflon container with No. 80 mesh attached to a Biichner flask with 10g of dry
mix. The resulting porosity of 85-95% at >100um pores can be controlled by the PLGA-NaCl weight ratio.
Cell and tissue culture applications require high porosity to promote growth, the interconnection of the

scaffolding will allow for ingrowth, vascularization, and nutrient transport.
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Figure 11: (left) Schematic of the SMPL method with polymer solvent, non-solvent, and water introduced
to the dry mix of PLGA and NaCl in succession to produce, (middle) (a-b) SEM images of 3D porous
PLGA material, and (right) (a-b) the resulting PLGA 3D scaffolding for tissue and bone growth.
Reproduced with permissions from John Wiley and Sons [18].

In-situ Aqueous Casting

Direct mixing of Au nanoparticle (NP) precursor KAuCls, in PDMS premix is synthesized for
aromatic and sulphur water purification and targeted drug release. The choice of polymer and reducing
agent is important as they must operate in both roles of NP formation and as a polymer curing agent.

Figure 12 indicates the fabrication route for producing a gel and foam of Au embedded PDMS
material. Using a combination of PDMS 10:1 v/v to curing agent, mixed with 0.02M aqueous KAuCl,
solution at 200:1 m/v (mg/mlL) and stirred at <70°C for 2h to form a gel then heated at 100°C over 2 days
or 165°C for 1h. The foam can be fabricated by stirring at <70°C for 45min, decanting unreacted KAuCl,

solution, rinsing with Millipore water, and stirred in water heated to >70°C until PDMS is cured [19].
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Figure 12: (left) Schematic of PDMS Au NP gel and foam fabrication; and (vight) characterization of
PDMS Au foam (g inset) SEM of microporous structure. Reproduced with permissions from John Wiley
and Sons [19].

TEM of the gel dissolved in toluene indicated the formation of 5-50nm NP crystals. SEM of pores
indicate 100-1000um voids with 10-100um pitting. It was determined that the NP loading was controlled
via the KAuCly concentration while the NP incorporation concentration into PDMS was controlled by
curing temperature [19].

Salt Fusion Pre-treatment

Solid porogen fusion prior to continuous polymer matrix formation via SCPL and gas foaming
process involving compression under CO; environment until equilibrium before a quick release of pressure
causing polymer foaming and fusion was investigated by Murphy et al. [20].

A modification to the standard SCPL method was completed, where the fused solvated polymer is
poured into the moulded fused salt mass. The salt templates were created by exposure in 95% humidity for
0-24h durations in SCPL templating. Compression moulded PLGA and 250-425um diameter salt dry mix
was similarly treated to humidity before being pressurized in CO; for gas foaming technique. All moulds
were then dried over 2 days in a vacuum desiccator [20].

The resulting high interconnection (holes in the walls of the scaffolding) of the template assists cell
migration, ease cell-cell interactions, and improves neural/vascular growth within tissue scaffold. The

control of hole diameter and sphericity by salt fusion treatment increases the compression modulus of SCPL
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samples. This porogen “caking” phenomenon is seen by the salt surface roughening in Figure 13 and the

simplified schematic of Figure 14 as the granules fuse into one another.

Figure 13: SEM of 95% relative humidity controlled salt fusion at (s) 12h; and (b) 24h. Reproduced with

permissions from Mary Ann Liebert, Inc. [20].

a b

Figure 14: Schematic of salt fusion process at 95% humidity; (a) the granule at the beginning of the
process (b) fuses with thick salt bridges after 24h of exposure resulting in salt interconnection.
Reproduced with permissions from Mary Ann Liebert, Inc. [20].

The resulting salt fusion pre-treatment increases the elastic modulus of SCPL samples of 97+1%
porosity foam and a decrease is modulus for gas foaming samples of 94+1% porosity [20]. This
improvement in interconnection and modulus has the potential to promote growth of tissues for tissue
engineering applications. In the case of SCPL, the thick struts can improve the structural integrity of the
material while the gas foaming method is restricted by the presence of PLGA particles blocking salt fusion.

Figure 15 shows the thicker walls of the SCPL method compared to the gas foaming technique.
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(¢) 1h and (d) 24h salt fused template. Reproduced with permissions from Mary Ann Liebert, Inc. [20].

Sugar Cube Templating

Sugar production has a long history, its packaging form comes in a variety of forms: loose granules,
sugar loaf, sugar cube/lump, and sugar cubes. Existing industrial machines and processes have created sugar
for ease of handling. The process of moulding and casting itself'is also an old invention, providing flexibility
in shape and material choice. The use of casting has allowed the mass production and modular component
assembly of various machinery and devices. Combining two historical processes together can create a fast
and easy implementation of fabricating reusable polymer sponges [21].

Choi et al. uses PDMS, sugar cubes, granular sugar (400-500um), sanding sugar (1000-1100um),
and black sugar (1500-1800um) as seen in Figure 16 to fabricate polymer sponges. Sugar is first moulded
before immersion in a 1:10 PDMS to crosslinker polymer mixture. After 4h of degassing to promote
capillary force infiltration, the sample was cured at 120°C for 12min. Ultrasonic cleaning is completed at

40°C to remove the sugar before air drying [21].
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It can be seen in both Figure 16 and Figure 17 the absorption of oil (red) into the PDMS cube while
water is repelled. The sponge is reusable and simple to fabricate using sugar as a template. Choi et al.
discovered that the sugar granule size can affect the absorption capacity of the PDMS sponge. Figure 16

(b) shows the increase in absorption capacity of transformer oil using various sugar granule sized template.

510
490
470
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410
390

Absorption capacity (%)

Granulated Sandingsugar Blacksugar Granulated+ Granulated +
sugar Sanding sugar Black sugar

Figure 16: (top) Star shaped oleophilic (red liquid) and hydrophobic (transparent liquid) PDMS sponge;

(a) photos of granulated, sanding, and black sugar granules and their microscope images; and (b)
transformer oil absorption capacity of PDMS sponges created using different sugar granule sizes.

Reproduced with permissions from American Chemical Society [21].
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Cube sugar template

Figure 17: Photograph of (a) sugar template resulting in moulded (b) PDMS sponge; (c) optical and (d)
SEM imaging of PDMS sponge; (e, f) photos of PDMS sponge compression, (g) hydrophobic, and (h)
oleophilic behaviour. Reproduced with permissions from American Chemical Society [21].

Various oil and solvent capacities are reported and the PDMS cube was found to float atop the
water, thus making oil spill clean-up simple without the need of dispersion agent or burning while secondary
pollution can be avoided by reusing the PDMS sponges repeatedly. The criteria for oil spill clean-up are
selective, fast adsorption, and high capacity. PDMS sponge’s reusability and recyclability, reduces cost and
its high absorption capacity (several times its weight), and hydrophobic nature makes it an ideal oil
absorbent.

Salt Templated PDMS Plug

SCPL technique was used to fabricate a PDMS plug to block tube leaks. Control of the porous
structure was achieved via control of PDMS to dimethicone ratio and salt particle size. Exploiting the
swelling of PDMS sponges when absorbing organic liquids, it can be used as an expandable stopper [22].

Fabrication of sponges, as seen in Figure 18, used a premix at 10:1 PDMS to curing agent, followed
by dimethicone dilution and moulding in a SmL plastic tube, Smin of stirring of NaCl 1:1 w/w to PDMS
with centrifugation at 8000rpm for 20min, decanting of supernatant, the wet precipitate is cured at 80°C
for 15h. Ethanol was used to wash any dimethicone residue, followed by a 40°C water soak,
dichloromethane and ethanol with manual squeezing was done to remove the salt before drying at 60°C

[22].
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Figure 18: PDMS sponge plug (top) fabrication schematic, and (bottom) SEM imaging of porous

material. Reproduced with permissions from Royal Society of Chemistry [22].

d 0025 b

0.020} —dr‘f sample
- — swelled sample
o]
& o015}
< 43
2
o 0010}
5 E
1] \/

0.005+

0.000 -

0 5 10 15 20 T :
Strain (%) o) : (|

Figure 19: PDMS sponge plug (a) stress-strain curve and (b) plug in 8mm inner diameter glass tube

holding 43cm column of n-hexane. Reproduced with permissions from Royal Society of Chemistry [22].
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The PDMS sponge plug was evaluated using Oil Red O dyed n-hexane within a glass tube with
7mm diameter by 3mm thick cylindrical plug. Figure 19 shows the PDMS sponge swell to stop the flow.
Graphene Modified PDMS Sponge: Selective Continuous Absorption

Tran et al. used sugar templating method (on sugar cones) to cast their graphene modified PDMS
suction device. This “attachment” is shown to be able to continuously and selectively remove water
contaminants when connected to a pump [23].

Fabrication of the continuous flow stoppers used 10:1 PDMS to curing agent polymer premix and
the sugar cone was added and degassed in vacuum for 1h. The wet PDMS was cured at 120°C for 12min
and once cooled, the sugar was leached in sonicating water at 35°C for 30-60min. Graphene modified
PDMS sponges were prepared by injection of solvent dispersed graphene solution at 50mg graphene
powder to 20mL solvent which underwent 15min sonication. The composite sponge was air dried and the
process repeated thrice [23]. Resulting testing in Figure 20 showed faster contaminate adsorption of
graphene modified PDMS sponges than virgin PDMS sponge as well as demonstrated the continuous flow
device in Figure 21.

Continuous vacuum adsorption capacity at 4.5L of hexane in 30min in a non-turbulent mixture
with water using a 55mm sponge head before a decrease in efficiency is seen [23]. To simulate realistic
conditions, artificial turbulence was created via stirring and the assembly is still able to remove the hexane

droplets from emulsion very quickly.
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Figure 20: (top) Comparison of (a) PDMS and (b) PDMS-graphene sponge gasoline (orange) adsorption
at 0, 10, and 30s; and (bottom) SEM images of (a, b) PDMS and (c) PDMS-graphene sponges.

Reproduced with permissions from Royal Society of Chemistry [23].

Figure 21: Continuous removal of hexane (red) from a stirring mixture: at (a) onset, (b) 5s, (c) 10s, and

(d) 30s of operation. Reproduced with permissions from Royal Society of Chemistry [23].
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1.3.2. PDMS Sponge and Foam

PDMS is a transparent, inert, non-toxic, biocompatible, flexible, and non-flammable material. It is
used as an antifoaming agent, for medical devices, as a building material, and in soft lithographic
applications. PDMS has a viscoelastic behaviour and is hydrophobic, plasma oxidation can modify the
surface to exhibit an oxidized surface allowing hydrophilic characteristics.

Publication in PDMS foam is still relatively new. The terms “PDMS foam” and “PDMS sponges”
were searched using Google Scholar and the results are presented in Figure 22. The research in PDMS
foam/sponge is centred around its adsorption applications. This thesis will explore its use as a dry adhesive

backing material.
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Figure 22: (a) Schematic of PDMS polymer, credits: Smokefoot reuse under public domain (b) number of

PDMS foam/sponge publications per year as of June 20", 2017
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Chapter 2. Effect of Foam Backing Material Thickness on Adhesive

Properties at Low Preloads !

A myriad of natural substances have outstanding bulk resistance to cracking, deformation, and
damage, due to their micro-structured or porous gradations [5], [24], [25]. These materials are composed
of stress bearing structures orientated in the direction of force. Common examples of such materials can be
found in bamboos, bones, plant stems, and squid beaks [24]. The fully hydrated Humboldt squid’s beak
embedded in its soft buccal envelop, generates a chemical gradient which results in a stiffness ranging two
orders of magnitude across its entire structure [25]. FGM are deemed engineered mimics of their natural
analogues, synthetically manipulating and redistributing the stress and strain experienced by the material
[24].

Interestingly, bioinspired fibrillar adhesive systems of some animals and insects such as geckos
and spiders have long been regarded as graded materials. In addition to their sophisticated surface geometry,
the underlying mechanism of such biological adhesive systems relies on the graded structural and
mechanical properties of their surface and backing layers. Both theoretical and experimental studies have
shown that fibrillar dry adhesives are robust and flaw tolerant due to the graded nature and high compliance
of'its fibrillar structures and backing layers [5], [11]. Numerous types of wet and dry adhesive systems have
been developed, ranging from simple polymer blocks to mushroom shaped and film-terminated
micropillars, bundled into single or multi-level hierarchies using conventional nano/microfabrication
techniques [5], [9], [26]-[33]. These structures have different adhesion behaviours, dependent on the nature
of their mechanically graded fibrils and backing layer along its thickness.

Despite great achievements in the manipulation of adhesion through geometric surface alterations
[34], [35], the contribution of soft backing materials on these properties have received less attention and
only a limited number of publications address the systematic study of gradient mechanical properties along
the thickness [36]. Inspired by the graded nature of gecko and tree frog toe pads, a biomimetic FGA system

using film-terminated PDMS micropillars was developed by our group, simulating the soft organic tissue
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beneath. The outstanding adhesive properties of these structures was found to be attributed to the compliant
nature of the backing material [5]. A new dry adhesive is proposed in this work, using a single-layer foam
backing layer with a terminal thin film to take advantage of the high energy absorption characteristics of
cellular materials, that usually experience stress-plateau during compression, absorbing a large amount of
energy during deformation [37], [38]. Polymer foams, as a class of cellular materials, are used in dry
adhesive systems due to its superior energy absorption capability, resulting in high adhesion with the
surface. The dependence of adhesive strength on foam layer thickness and preload was investigated.
Additionally, the film-terminated foam-based adhesive demonstrates a simpler and less expensive
alternative to the current complex fabrication process of dry fibrillar adhesives. As an example of an
application of this material, the adhesive pad was employed in the transportation of delicate objects.
2.1. Materials and Methods
2.1.1. Fabrication of Thin Film Terminated Foam Adhesives

The steps involved in the fabrication of a film-terminated foam-based adhesive sample are
illustrated in Figure 23. A mixture of PDMS (Sylgard 184, Dow Corning) at 10:1 weight ratio of resin to
curing agent were prepared, vortex mixed, and vacuum degassed before being used in subsequent steps.
The terminal film and foam backing were fabricated separately before fusing together to avoid defects,

ensuring a high quality terminal films.

Sugar cube
l © l @ (@

Uncured PDMS ]
()

Cured PDMS

Figure 23: Fabrication schematic of film terminated silicone foam adhesive: (a) sugar cube template; (b)

flat silicon wafer, (c) PDMS soaked sugar cube; (d) cured PDMS thin film, (e) uncured PDMS soaked
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sugar cube placed on cured PDMS film, (f) PDMS soaked sugar cube cured, sugar removed, and system
is peeled from mould; (g) finished film terminated foam dry adhesive system.

First, the terminal thin film was fabricated by pouring 2g of PDMS premix onto a pre-treated flat
<100> p-type silicon wafer (University Wafer) and spin-coated (Specialty Coating Systems G3-8) at
3500rpm for 45s, rested for Smin, and cured at 120°C for 1h. All foam samples had a terminal film
fabricated in this manner. Second, the sugar cube template was placed into a petri dish of PDMS premix
and degassed for 1-2h to displace the air within the template with polymer liquid. Excess liquid was
scrapped from the sides of the polymer soaked sugar cubes using a straight edge. The wet uncured cube
was placed directly onto the cured film still attached to the silicon wafer. The cube was left to rest for Smin
with a small weight on its top face before being cured at 120°C for 2h. After cooling, the film terminated
cube was detached from the silicon wafer and any polymer flashing was trimmed. The thickness of the
sugar-polymer system was adjusted by polishing the cube against a sandpaper block until the desired values
of 5 and 10mm were reached. The native dimension of the sugar-polymer system is approximately 15mm.

Finally, the sugar-polymer system was placed into a container of DI water and sonicated for 2h
resulting in the dissolution of sugar, removing the template. The film-terminated foam was then dried in
the oven at 120°C overnight to remove any residual water. The polymer control sample was fabricated by
pouring the premix formulation into a petri dish and cured alongside the foam samples to avoid variations
in curing conditions, sample thicknesses varied from 1.5-3.0mm which did not affect the pull-off force.
Four samples of each foam thickness were fabricated and for brevity and clarity, we designate the samples
by the type of backing material i.e. “f XX”: film terminated foam sample, where XX is the thickness of the
foam in millimetres and “C”: polymer block control. The sample name may be followed by “- YY mN”,
where YY denotes the preload force.

Silicon wafer pre-treatment was completed to aid PDMS thin film release. 1-2 drops of
(heptadecafluoro-1,1,2,2-tetrahydrodecyl) trichlorosilane (FDTS) (Gelest, Inc.) were added to 250mL of

pentane and the silicon wafers were submerged and left to soak in the solution for 1h before rinsing with
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pentane and left to dry under airflow. It was followed by curing at 90°C for 1h and cleaned with KimWipes
and ethanol to remove any residue.
2.1.2. Characterization

The adhesive structure is composed of two different components: the film-terminated surface and
the backing material. The thickness of terminal film was measured by an optical profilometer (RTEC
Instrument) and the porosity of the backing material () was calculated from the density and volume of
PDMS and sucrose. Replication of the sugar template was confirmed by SEM of a cross sectional segment
of the porous foam.

The same custom-built micro-indentation machine used in our previous work [5], [7] was employed
to measure the adhesive properties of the fabricated samples. Indentation tests were carried out with
different preload forces of: 0.1, 1, 5, and 10mN, using a 6mm diameter hemispherical glass probe (ISP
Optics Corp.) attached to a flat and levelled glass slide. A single 7mN preload test profile was later added
for each sample to confirm their trends. Every sample had its foam end attached to a 1/2” slotted head, 1/8”
pin SEM aluminium stub (Ted Pella, Inc.) using double sided tape. The approaching and retracting
velocities were set at 1pym/s with 1s holding time between them. Tests were completed in ambient
temperature and humidity. At least three locations on each sample were tested and their average preload
and pull-off values are reported with error bars. Tests were performed in the same day alongside a flat
PDMS block as control. KimWipe and ethanol was used to clean the glass probe and remove debris/fibres
from the sample film terminated end, followed by air drying, prior to testing.

A universal mechanical tester (UMT) (Centre for Tribology Inc.) was employed and manually
controlled for the pick and place demonstration using a 100kg load-cell with a clamp attachment.

2.2. Results and Discussion
2.2.1. Structure of Thin Film Terminated Foam Adhesive
PDMS foams are commonly used in the production and development of re-useable water

remediation materials [21]-[23], [39], [40]. In this work, we proposed to use the PDMS foam as a backing
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material to enhance the compliance and adhesion of the elastomer film. The foam structures can be
fabricated using various methods involving a sacrificial template to control porosity. Using loose and fused
grains of commonly available water soluble solids such as salt [ 18], [20] and sugar [21]-[23], [39], [40] are
fairly popular. Herein, the sugar cube templating method was selected due to its uniform and consistent
dimensionality and porosity for fast prototyping and modular design. Figure 24(a) shows the similarity of
the sugar cube template and completed film terminated foam adhesive. Figure 24(b) shows an image of the
cured system where the terminal film is completely transparent, exposing the granular structure of the foam
material behind it. Figure 24(c) is a SEM image of the terminal film surface after several uses prior to
cleaning. There is some accumulation of particulate debris and fibrous material. This image also highlights
an area of defects on the film, as seen by the pore pitting. This defect is suspected to be from imperfect
contact between the terminal film and backing layer, likely due to some trapped air pocket at the interface
during the fabrication process. Figure 24(d) is a SEM image showing the overall structure of the sacrificial
sugar cube template perfectly replicated in the PDMS foams. The foam has a continuous porous structure
and the imprints left by the sugar template can still be seen with its regular crystalline geometry.

The dimensions of the sugar template were measured (n=20) to be: 15.63+0.07 by 15.5540.09 by
15.56+0.14mm, having a mass of 3.526140.0239g. The sugar cube’s porosity was calculated using the
density of sucrose (1.587g/cm3) to be: 41.23+0.77%. After removal of the sugar, the polymer foam’s
porosity was calculated using the specific gravity of PDMS (1.03 at 25°C) to be: 70.62+1.78% which is
larger than the expected porosity (~58.77%) from the sugar cube. This discrepancy in foam porosity may
be attributed to incomplete absorption of PDMS into the sugar template prior to curing or the sugar cube

may have inaccessible voids where PDMS is unable to penetrate due to air pocket trapping or sugar crystal

grain volume exclusion. The relative density of the foam is calculated from @y =1 —u = pﬂ where p is

the porosity of the foam, p is the density of the foam, and p; is the density of the constituent material. The

relative density was found to be ~0.3, which classifies the structure as a high-density foam.
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Previous studies on elastic film-terminated fibrillar interfaces has shown a slight increment of the
energy release rate with a decrease in the thickness of the terminal layer, £3, where t is the thickness of the
terminal layer [5]. The proposed film-terminated foam structure resembles a film-terminated fibrillar
interface due to the supporting cellular walls of the foam. Therefore, it is reasonable to anticipate similar
dependency of the adhesion to the film thickness. However, the fabrication and peeling of very thin terminal
films can damage the terminal film. Thus, preliminary work in this study showed that the defect-free

terminal layer of thickness of 19.10+0.37um can be attached to the foam samples.

Nanomechanics
Research Institute

Figure 24: (a) Close-up image of (left) sugar cube and (right) film terminate PDMS foam adhesive cube;
(b) A top-view optical photo of the film-terminated foam cube showing the transparent film and granular

foam structure behind it; (c) SEM image of the terminal film after several uses, showing accumulated
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particulate and fibre contaminants along with pore pit defects; (d) SEM image of the PDMS foam
showing sacrificial sugar crystal imprint and the continuous porous void
2.2.2. Adhesion Behaviour of the Film-Terminated Foam Samples

Indentation experiments, setup as seen in Figure 25(a), were performed to investigate the adhesive
behaviour of the film-terminated foams. As expected, indentation test on the flat control samples of PDMS
with different thickness resulted in similar adhesion behaviour. Therefore, adhesion of the control sample
can be deemed thickness independent within our millimetre test range. Figure 25(b) illustrates an example
load-displacement curve for the PDMS flat control and film-terminated foam adhesive, “f10”.

The approaching snap-in force were trivial for both control and foam samples. The normal
compressive loading progressed till a fixed preload of 10mN. The maximum indentation depth reached in
all experiments was <100um which is far below the dimensions of the probe. The slope of the loading
portion of load-displacement curve lower for the foam sample compared to the control sample, indicating
a drastic softening at the interface contributed by the foam backing material. The notable difference in the
surface stiffness (S = dF/dd), i.e. the slope of the unloading portion and the surface compliance (€ =
1/S = dd/dF) can be readily observed. The slope of loading and unloading portion of the indentation
curves for the control sample are similar due to small hysteresis, while the foam sample undergoes great
hysteresis during unloading as can be seen by the difference in slope of the loading and unloading portions.
Retraction continued until the pull-off point is reached, where the tensile adhesive force is at a maximum.
It is apparent that the addition of a foam layer as the backing material enhances the pull-off force of the
simple flat control PDMS sample. The de-bonding for both samples is rather smooth and fast without the
common crack trapping mechanism usually observed in film-terminated fibrillar adhesives [5], [41]. Visual
post-inspection of the foam-based adhesive showed no defect marks left post indentation, essential for
reusability.

Two adhesion descriptors: pull-off force (F,,,,) and the overall work of adhesion (W ,45), were

used to quantitatively compare the adhesion of the proposed PDMS foam-based adhesive with the flat
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control. The variation in effective elastic modulus of the foam along the thickness was also estimated from

the indentation curves to verify the graded nature of the foam adhesive.
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Figure 25: (a) Schematic of foam indentation test setup with sample bottom view contact area (scale bar
at 200um); (b) typical force (E,)-displacement (9) indentation curve of the control sample “C-10mN”
and film terminated foam “f10-10mN” with the same preload

The influence of foam thickness and preload on pull-off force are shown in Figure 26(a). It is
observed that the pull-off force reaches optimal values at around 10mm foam thickness before decreasing
slightly for 15mm in the preload range of 0.1-10mN. The cause of this decrease is still unknown and will
be subject to future study. However, the increasing trend in pull-off force with the foam thickness can be
attributed to the ratio of the contact radius to foam thickness, i.e. the confinement parameter (a/h), and its
effect on the compliance of the samples. To obtain more insight about the physical properties of our system,
we assume that the contact mechanics of soft elastic bodies can be used to interpret our results. The
compressive deformation of an elastomeric cellular material usually starts with a linearly elastic region,
followed by the non-linear elastic buckling of the cells, and eventual collapse of the cells causing a drastic
rise in stiffness. Our assumption is reasonable as, at the low preload range of 0.1-10mN, our foam-based

adhesives showed linearly elastic behaviour.
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Figure 26: (a) Pull-off force vs. foam thickness for various preloads; (b) compliance vs. a/h of control
and 5 and 10mm foam adhesive system (inset) f.(a / h), correction factor fitting

It is known that the ratio between the contact radius and thickness of an elastic half-space subjected
to a normal compressive force affects the actual value of the normal displacement and compliance [42].
The compressive force, displacement, and compliance of the contact between a rigid hemispherical probe
and a soft elastic half-space with infinite thickness (a/h — 0), whether obtained in the framework of Hertz
or JKR contact mechanics, will be unaffected by the confinement ratio. This is not the case for a soft half-
space with finite thickness, where the confinement ratio increases. Shull has introduced geometrical
correction factors for all mentioned parameters to account for finite systems. The effective compliance (C")

is obtained by considering the geometrical correction factor (f.):

-1
1 0.75 2.8x(1— 2v)>
C'=Cfc (YY) 7—7==1+ +
! C( / h) fc(a/h) (((a/h)+(a/h)3) (a/h)
As the contact area is pinned during unloading, the effective modulus of our samples can be

1
2E*a

calculated using the Boussinesq definition of compliance: Cg = € = [5], [42], [43], where E* is the

_y2
reduced Young’s modulus of the soft material defined as El = % According to Gibson and Ashby, a
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wide class of disordered cellular materials have the initial Poisson’s ratio of v = 0.33 [38]. However, the
Poisson’s ratio of low-density foam rapidly decreases with excessive compressive loads as shown by Zhu
et al [44]. In a compression test with strains up to 75%, we found that the Poisson’s ratio of our material is
approximately ~0.20. The geometrical correction factor can be calculated and compliance of the structures
can be determined using the reverse slope of the unloading portion of the indentation curve. Figure 26(b)
shows the corrected compliance vs. (a/h) of samples “f5” and “f10” for different preloads. The inset graph
shows the variation in the calculated correction factor, f.(a / h) with the confinement parameter a/h.
Assuming either frictionless or full-friction boundary conditions will create only marginal errors in the
calculation [42]. Thus, it is apparent that the compliance increases with the thickness of the foam backing
layer, resulting in larger contact area and pull-off force.

To verify the nature of the foam-based adhesive as a graded material, we determined the variation
of elastic modulus versus strain in the direction of the thickness. Figure 27 shows variation of the elastic
modulus (E) with the maximum strain at preload (€,,4,) of the fabricated samples. Cellular materials are
known to soften with increasing compressive deformations until the cell walls begin to come into contact,
before gradually increasing in stiffness approaching full bulk density. Thereafter, the modulus of the foam
will approach that of the bulk material [45]. The dominant mechanism of deformation for linearly elastic
foams is the reversible bending of the cell walls. It has been shown for open-cell foams that the initial
tangent modulus can be written as E€ = AgE*[¢g]? where 4, is a geometric constant of proportionality,
E?® is the tangent modulus of the parent solid and ¢ is the relative density of the foam [38]. Schraad and
Harlow have shown that both the proportionality constant and relative density evolve with strain when the
foam is subjected to compression [45]. Therefore, the modulus of the cellular material will be a function of
strain as: E(g) = A(&)E*® [¢@(&)]%. The functionality of the proportionality constant and the relative density
with strain depends on the loading, geometrical, and material properties, whose detailed study is out of
scope of this paper. However, an empirical correlation between modulus and strain of our proposed

structure is shown in Figure 27.
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Figure 27: Elastic modulus vs. maximum strain of 5, 10, and 15 mm film terminated foam

The increase in pull-off force with preload is shown in Figure 28. Similar trends have been observed
for both elastic and functionally graded biomimetic fibrillar adhesives due to the gradient of mechanical
properties along its thickness [5], [46]. It is noteworthy to consider that thickening the foam layer
corresponds to enhanced sublayer void fractions in the biomimetic fibrillar adhesive, which can be achieved
by increasing the aspect ratio or spacing between the fibrils. Kim et al. have shown that thinner solid and
homogenous backing material creates more evenly distributed stress in the contact of fibrillar adhesives,

yielding higher pull-off forces [36].

32



2+ttt 12
I f5 f10 ]
10 + f15 - ®-C I T 10
I | ]
| ]
8 + T8
z :
=6+ + 6
" ]
4w 14
PR @ ]
Y YPTTTIITTICCRETIL L @ @ ]
, (@@ 1,
) S S SR Ry
0 2 4 6 8 10 12
Preload [mN]

Figure 28: Pull-off force vs. preload for various film terminated foam thicknesses
Another important adhesion descriptor is the overall work of adhesion. In the loading portion of an
indentation test, the intermolecular surface attractive forces result in the storage of strain energy, providing
the work required for the separation of contact surfaces during unloading. The hysteresis of an adhesive
(Uhnys) occurs due to the dissipation of energy in a loading/unloading cycle. The overall work of adhesion

(W 44n) 1s defined as the hysteresis per change in contact area, an effective adhesion descriptor for PDMS

[5],[43], [46], itis defined as: Upys = $FdS ; Wagp = :ljhi = M, where A, 4, 1S the maximum contact

max Amax

area at the preload holding time. As the indentation tests were performed at different preloads, both A4

and Upys vary from test to test. For such a case, the slope of the Apqy and Uy, has been introduced as a

reasonable estimate of the overall work of adhesion [5], [46]. Figure 29 shows the linear relationship

between the hysteresis and the maximum contact area for the flat control sample, sample “f5”, and “f10”.
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The work of adhesion can be determined from the slope of the fitted linear model. The work of adhesion

was calculated to be 0.0898] /m? for the flat control “C”, 1.0951] /m? for “f5”, and 1.8589] /m? for “f10”.
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Figure 29: Adhesion hysteresis changes linearly against the maximum contact area. The slope of the lines
represents the overall work of adhesion

The results suggest that the use of foam backing enhances the work of adhesion of the flat control
sample by almost 20 fold. Interestingly, the work of adhesion of the foam-based adhesive is more than
quadruple that of the elastic film-terminated biomimetic fibrillar adhesives (0.3-0.4] /m?) reported in
previous work [5], [46]. Note that the usual thickness of the backing materials in the aforementioned fibrillar
adhesives is around 1mm and thickening the backing material has adverse effect on the adhesion as studied
by Kim et al. [36]. As a result, the proposed foam-based dry adhesive may have great potential as a more
facile, simpler, and cost-effective fabrication route for the production of dry, reusable adhesives. Although

the work of adhesion is lower than that of mushroom shaped micropillars [4], such a simplified and
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economic technique can provide great flexibility in the variation of the foam’s physical and geometrical
parameters that might lead to improved work of adhesion without changing the terminal structures.
2.2.3. Application of Film-Terminated Foam-Based Adhesives as FGAs

Dry biomimetic fibrillar adhesives have been used in emerging technologies such as robotics,
micro-manipulation, and in the transport of light objects [27], [47]-[50]. Our proposed adhesive structure
benefits from high adhesion strength and repeatable use. There is great potential in applications for the
transportation of thin, fragile, and flat materials with reusable foam-based adhesives. Figure 30 shows the
transportation of a 4” silicon wafer by a cube of film-terminated foam-based adhesive. The normal
compression of the adhesive patch approaching the surface enables the attachment of the object as shown
in Figure 30(a-b) with a displacement of >0.75mm. The adhesion of the silicon wafer on the foam adhesive
remains stable during the vertical and lateral movement of the object as shown in Figure 30(c-e).
Interestingly, we found that the adhered object can be readily released using a shear force generated by
lateral movement, >2mm displacement when the object is confined in its new location, seen in Figure 30(f-
g). The release is triggered by the initiation of a crack on one edge of the adhesive interface, as observed
from the left side of the adhesive interface in Figure 30(f); the detailed mechanism of the detachment needs

further investigation.
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Figure 30: Snapshot of pick and place of film terminated foam using a UMT machine with red arrows

indicating the movement of the grip head
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2.3. Conclusions

Film-terminated silicone foam has been successfully fabricated and demonstrated to operate as a
dry functional graded adhesive. The fabrication of foam adhesive is relatively simple; it can replace current
complex, multi-step low-throughput fabrication techniques for fast modular fabrication of gripper heads
and mounting pads. The adhesion behaviours of the film terminated foam adhesives were characterized in
terms of its compliance, effective modulus, adhesive pull-off force, and work of adhesion. The foam
elastomer backing shows remarkable improvement in adhesion performance, thanking to its open cell foam
structure which can absorb and dissipate energy. In contrast to the bulk polymer, the adhesion of foam
adhesives was found to be preload dependent and increases with preload. Furthermore, the influence of the
foam thickness was systematically studied, showing an optimum foam thickness of around 10mm for the
highest adhesion in the preload range of 0.1-10mN. This study was also able to demonstrate the use of such
a foam adhesive as a mounting pad for pick and place applications of smooth delicate materials. Since both
homogenous foams and FGMs are well-known energy absorbing materials, there seems to be great potential
in the utilization of the energy absorption properties of functionally graded foams in the design of advanced
adhesive materials. The combination of such energy absorbing materials and dry adhesives can open new

avenues to produce dry elastic adhesives with high resistance to damage and de-bonding.

1] Footnote: this chapter is largely recreated from “Functionally graded dry adhesives based on film-terminated silicone foam” [51] published by
the International Journal of Adhesion and Adhesives on February 4th 2017, copyright permission can be found below in “Letter(s) of Copyright

Permission”.
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Chapter 3. Multilayer Functionally Graded Material for Dry
Adhesive Applications: Scaling from Micro to Macro Terminal

Structures

Many fundamental theories on adhesion mechanics like contact geometry, contact splitting, and
compliance has identified design parameters and defined a range of properties for adhesive engineers to
create and better understand their adhesives. In this chapter, the universal application of soft backing
material adhesion enhancement will be tested using mushroom capped structures in micro and millimetre
scales.

Since the creation of soft lithography technique, many fast prototyping strategies and techniques
have been developed for dry adhesive micro mould patterning. Silicon wafer direct peeling and etching [4]
are common to transfer lithographic patterns to polymer materials. As 3D printing becomes more and more
synonymous to being a matter replicator, the cost and feature resolution will eventually reach single micron
accuracy. Even at current tens of micron resolutions, 3D printers have great advantages in cost of materials,
ease of operation, efficient use of operator time, and allowance for high throughput operations. 3D printers
do not need a large clean room, nor require harsh and highly toxic chemicals to fabricate moulds. Lastly,
unlike traditional lithography, scaling features and printing is all completed via computer control, if the
software aided digital designs are correctly made and sliced, printing is done with little to no supervision,
drastically reducing human error and various chemical and particulate contaminants.

This study will evaluate the direct scaling of a micro mould by a ratio of 1:70, achieving the lowest
printable limit of the 3D printer currently available at our facility. With the addition and integration of the
fast sugar cube templating method, adhesive properties will be evaluated to determine if 3D printed moulds
using the same design parameters of their micrometre cousins can be transferred quickly and easily without

suffering a large penalty in performance. The polymer used for printing the mould is ABS and an acetone
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vapour treatment step will be performed to smooth part roughness and to reflow material to fill gaps left by
the printing process.
3.1. Materials and Methods
3.1.1. Fabrication of PDMS Samples

The fabrication steps are as summarized in the Figure 31. A mixture of PDMS (Sylgard 184, Dow
Corning) at 10:1 weight ratio of polymer and curing agent were prepared, vortex mixed, and vacuum
degassed for all samples. The PDMS control sample was cured in a small plastic petri dish. The film foam

sample’s terminal film was fabricated separately before fusing together with a PDMS soaked sugar cube.

DISSOLUTION in DI water overnight
4 MACRO inking and CURED 120°C 1 h
[ | SWELL with pentane
DEGAS 1-2 h with template

IS SIS

v v

Film foam Macro block Macrofoam Microblock  Micro foam

Figure 31: Summary of sample preparation
The terminal thin film was fabricated by pouring 2g of premixed PDMS onto a pre-treated flat
<100> p-type silicon wafer (University Wafer) and spin-coated (Specialty Coating Systems G3-8) at
3500rpm for 45s, rested for 5Smin, and cured at 120°C for 1h.
Sugar cube templates were placed into a petri dish of premixed PDMS and degassed for 1-2h to

displace the air within the template with polymer premix. Excess polymer was scrapped from the sides of
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the polymer soaked sugar cubes using a plastic straight edge. The “foam film” sample saw the uncured cube
was placed directly onto the cured film, which is still attached to the silicon wafer. All other foam moulded
samples, the template was placed in a petri dish and degassed with the sugar cube sitting atop its respective
mould.

The cube was left to rest for Smin with a small weight on its top face before being cured at 90°C
for 2-3h. After cooling, the samples are detached from their respective moulds and any polymer flashing
was trimmed. The dimensions of the sugar template were measured (n=20) to be: 15.63+0.07 by
15.5540.09 by 15.561+0.14mm, having a mass of 3.526140.0239g.

All sugar template samples were placed into a container of DI water and left overnight to dissolve
the template. PDMS samples were then oven dried at 120°C overnight to remove any moisture. Ethanol
cleaning with KimWipe was completed between indentation tests. To avoid different sample treatments, all
samples were left in the same DI water bath, dried in the oven together, and were otherwise treated to the
same post curing steps. The resulting porosity of the PDMS foam is 70.62+1.78%.

Release Agent Coating

Silicon wafer and all moulds were pre-treatment with release agent to aid with unmoulding. FDTS
(Gelest, Inc.) were added to a glass slide and moulds were suspended above the slide. The release agent
was cured under vacuum at 90°C for 1h. The flat silicon wafer was cleaned with ethanol and KimWipes
and to remove any residue while the other moulds underwent PDMS moulding to remove residues.
Moulding and Mushroom Caps

The 3D printed ABS macro mould underwent acetone evaporative smoothing for 15min before
being treated with previous release agent. The mould underwent PDMS moulding to create a PDMS master.
The PDMS master itself was also treated with release agent before further replication.

The unmoulded PDMS pillars are dipped in a thin layer (500rpm for 15-30s for 1-5min) of
premixed PDMS as the inking step, left suspended for Smin before pressing onto a release agent treated

glass slide and rested for Smin before curing. The assembly was cured at 120°C for 1h before leaving to
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cool in room temperature. To detach the mushroom caps without damage, the assembly is dipped into
pentane and the swelling detaches the pillars from the glass one by one, reducing the chance of damaging
the mushroom caps.

The polyacrylate micro mould was provided by colleagues from the University of Alberta and
Simon Fraser University, D. Sameoto and C. Menon [52]. The mould was created using deep UV patterning
with built-in cap structures for moulding biomimetic dry adhesives.

To avoid differences in post treatment, all other samples were also swelled in pentane and dried
together.

3.1.2. Characterization

Three controls were used during the investigation: a pristine block of PDMS, a micron sized
mushroom caps on a PDMS block, and a millimetre sized mushroom caps on a PDMS block. They will be
referred to as “C”, “micro block”, and “macro block”.

The foam samples are as follows: a 19.10+0.37um film terminated PDMS foam pad, a micron
sized mushroom caps on PDMS foam; and a millimetre sized mushroom caps on PDMS foam. They will
be referred to as “film foam”, “micro foam”, and “macro foam”.

Moulds

The moulded dimensions of the micro and macro mushroom caps are listed in Table 1. Imaging
was completed via SEM for the micro mould and the macro mould was captured with a USB microscope
camera (Dino-Lite Premier AD4113ZT). Measurements were completed using ImageJ (1.501).

Table 1: Mould design dimensions and measurements

. Pillar . Surface
Mould Material Fﬂrlr?; @ length farl;l]q) [stlc]lng coverage
i [hm] " [%]
. Polyacrylate
lg/l:lir(r) theoretical 12 12 15 > 49.25
(i _‘llef)) PDMS 13.537 12.681 15.717 4.130 +1.18
N sample +0.291 +0.414 +0.180 +0.376
Macro ABS
features theoretical 840 840 1050 350 61.97
(x70) PDMS 884.896 1089.184 1218.924 153.272 +6.80
(n=10) sample +51.683 +21.499 +75.870 +98.028
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The macro features from the x70 mould has longer than expected pillar length due to added material
from the inking step to create the mushroom caps. The higher cap diameter with the associated smaller
spacing is also due to the inking step; as the wet PDMS spreads while curing, it increases the cap diameter

while decreasing the spacing, but the square centre-to-centre spacing is still maintained.
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Figure 33: (a) Microscopy of mushroom caps, and (b) pillars of PDMS macro foam sample
A Fortus 360mc (FDM Technology) was used to print the macro mould at a part resolution of

+0.0015mm/mm (£0.0015") to +0.127mm (+0.005") slice height using ABS at 100% fill. The original

41



model was designed using SolidWorks before slicing in Cura 2.3.0. The ABS mould was then casted in
PDMS and the PDMS negative was used for sample making.

Due to the limitations of 3D printing, the pillar walls are not as straight as the micro pillars;
however, the mushroom caps have higher priority and can be seen in Figure 32 and Figure 33 to be
comparable to its micro cousin.

3.2. Results

Previously evaluating the adhesive behaviour of foam backed dry adhesives of the same material
[51], found that controlling the softness of the adhesive pad in a geometrically graded fashion [5], resulted
in modest increases in adhesive strength, work of adhesion, and energy dissipation. This report extends the
investigation from flat featureless terminal ends to micro and macro mushroom terminal caps.

3.2.1. Force Displacement Curves

Figure 34 shows an example of a force-displacement curve. There are three main regions: the
loading curve, the contact curve, and the pull-off curve. The preload force is determined as the peak force
measured during the loading curve with the rate of approach of 10um/s. The set preloads are 100, 200,
300, 400, 500mN and 1, 2, 3, 4, 5N of force. The contact time is set for 1s for all tests. The pull-off force
is determined as the peak force measured during the unloading curve with the rate of retraction of 10um/s.
A 3" watch glass was used as the probe surface and was measured to be 2a= 76.85+0.50mm in diameter
and h= 8.59+0.23mm in height. Using the spherical cap formula: r = (a? + h?)/2h, the radius of

curvature R= 90.28mm is calculated.
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Figure 34: (top) UMT indentation setup; (bottom) IN preload force displacement plot of (a) block and
(b) foam samples

Figure 35 summarizes the preload and pull-off force curves with reported values arranged in Table
7 within the Appendices. The control sample “C”, has the simplest geometry, a block of PDMS, thus has
little preload dependence. Next, the “film foam” sample has some preload dependence, but overall performs
worse than the control within this preload range. Comparing both mushroom capped samples “macro foam”
and “micro foam”, there is significant increases in pull-off force compared to their “macro block” and
“micro block” counterparts. Providing some context, commercially available double-sided tape (3M poster

tape) has a holding force of about 1/4lbs or 113g (1.11N).
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Figure 35: (a) Preload versus pull-off force of all block and foam samples; (b) calculated contact area
work of adhesion plot

3.2.2. Displacement Hysteresis Curves

Due to characterization machine limitations, contact area could not be directly measured.
Unfortunately, this means that the work of adhesion will be calculated estimates. Hysteresis is plotted by
itself (real values) against the displacement of the probe into the sample in Figure 36. Herein, hysteresis is
the energy difference between the loading and unloading curves. The displacement is simply the distance
the probe has intruded into the sample.

There are two very distinct regions, the shorter displacement grouping representing the block
backed dry adhesives, and the other for the foam backed samples. Foam backing has a significant effect in

increasing the energy dissipation of such adhesive systems; the hysteresis is plotted in Figure 35.
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Figure 36: (a) Displacement hysteresis relationship of samples, (b) expanded region for block samples

3.2.3. Indentation Force Deflection (IFD)

Based on the D3574-11 Test B1 ASTM standard for “Flexible cellular materials — slab, bonded,
and moulded urethane foams”, the deflection force is reported for 25% and 65% IFD in Table 3.
Modifications to the standard are as follows: flat metal plates larger in dimensions than the sample were
used in place of perforated boards, sample size was limited by the sugar cube at approximately (15mm)3
, and a pre-flex deflection of 75% was selected. UMT load cell: DFH-100 (100kg).

Table 2: IFD values for PDMS foam

IFD 25% 65%
(n=8) [mN] STDEV [mN] STDEV
~70% porosity

PDMS foam >10.27 72.54 5057.35 962.76

3.2.4. Scaling

Due to the high cost, fragility, and complexity of silicon micro patterned moulds, 3D printing was
explored to ease the process of fast prototyping and mould making. The scaling from the micro to macro
mould is approximately 1:70 and is at the limit of the 3D printer’s capabilities. These millimetre features
are interesting as seen in the recent work by Isla et al. [53] with their switchable release pillars. Our system

in contrast can be detached through shear or torque, due to the foam backing material.
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Even with an almost two magnitude change in scale, the compliant foam is still acting as an
adhesion multiplier that increases the adhesive ability of surface features, such as the mushroom caps. At
least within this range of 15 to 1050um feature size, having a foam backing is a boon to increasing adhesive
pull-off force. Following our simple fabrication steps using sugar cubes as the foam template, this might be
a faster, more cost-efficient method of improving dry adhesives and seems to be applicable to micro to
macro terminal structures.

Foam Pore Size Mismatch

The foam pore size and structure is the same for both the micro and macro samples as the sugar
template was not scaled. Thus, the ratio of the pore size to terminal features is different for the micro vs
macro moulds.

Non-standard Probe

Normally, it is standard practise to use either a flat punch or a 6mm hemispherical glass probe for
indentation tests. However, flat punches result in alignment issues and 6mm diameter probes are far too
small to fit even just one macro pillar within the view of microscope camera. Furthermore, the range of
preload and pull-off forces far exceeds what is nominal for the load cell attached to the micro-indenter.
Thus, it was determined to use a larger probe, a 3" watch glass to characterize the samples. This results in
some discrepancies that were not considered in previous works. As such, it is difficult to resolve the lower
pull-off force performance of the “film foam” sample compared to the control. Based on previous results,
at low preload using the 6mm probe, the “film foam” configuration beats control. Thus, there might be a
crossover point between probe curvature, preload, and foam samples that have not been captured. Future
investigation with different probe curvatures might be necessary to determine if “film foam” and control
block samples have a crossover point and if there is any effect on the micro and macro samples.

3.2.5. Application of PDMS Adhesive Pads

This foam backing material has the potential to universally improve adhesion tolerance, peel

tolerance, moisture and cryogenic resistance, as well as being flexible enough to conform to surfaces. In

Figure 37, a silicon wafer had the samples attached, was cooled in a -20°C freezer for 15min then removed
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into ambient conditions. The surface was approximately -6°C in a 21°C room quickly condensed water
vapour on its surface.
After peeling the adhesives to show that they are still working if attached prior to cooling, they are

reattached in the presence of water and the tape fails to stay attached while all other samples can hold the

combined weight of the wafer plus samples.

Figure 37: Still images from video of low temperature surface adhesion in ambient environment, a)
peeling of tape, b) macro foam, c) control, and d) macro block sample. As well as the associated
reattachment and lifting capabilities of e) tape, f) macro foam, g) control, and h) macro block.

The next demonstration shows the foam’s vibration and peel tolerance. The samples are attached
to glass slides perpendicular to a test arm that will push into it Smm parallel to its adhered surface and Smm
perpendicular from its attachment point. Figure 38 shows the macro foam sample able to resist peeling and
stays attached to the surface after a few seconds of deflection while the macro block sample immediately

fails.
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Figure 38: Still images from video of UMT knockoff test between a)-b) macro foam and c)-d) macro block.
a) and c) showing contact of test arm with the sample and b) and d) the result of Smm deflection into the
sample’s side.
3.3. Conclusions

It was determined, at least in the preload range of 100mN to SN, for micro to macro scale (1:70)
of 15 to 1050um, the addition of foam backing material through sugar templating, increases pull-off
strength by approximately 50% and 160% at high preload respectively. Due to the nature of foam materials,
the hysteresis energy dissipation is also increased by several times compared to simple block backing. This
innovative and simple improvement in the fabrication of dry adhesives allows the use of the same material
avoiding material mismatch and can serve as a platform for all terminal structures be it micro or macro in
scale. With this concept, future investigation of negative Poisson moulds and other controlled foam
structures can be possible with advancements in 3D printed PDMS techniques. Other materials such as low

viscosity PU have been successfully used to make polymer foams with the sugar templating process.
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Chapter 4. Compression Study on Foam Porosity

The selection of a suitable sugar cube for the above studies were evaluated from various brands
and types. The trade-off of using premade cubes to handmade variants were also investigated. Two sugar
cube making processes were explored, 10% weight direct mixing of water with sugar granules and 95%
humidity indirect water vapour fusing of loose sugar granules [20]. However, due to inconsistent quality in
porosity (non-uniform and fragile) and shape (no flat faces), commercially produced sugar cubes were
deemed the superior choice.

Available in local supermarkets across Ontario are four common sugar cubes marketed under two
brands: Lantic Inc. and Redpath Sugar Ltd. as seen in Figure 39. Each brand has a white and raw sugar
product; the samples are labelled by their manufacturer followed by a letter “W” to symbolize white sugar

or “B” for raw brown sugar i.e. “LanticW” will be a sample of Lantic white sugar templated polymer cube.

SUGAR CUBES
SUCRE EN CUBES |

Figure 39: Commercially purchased sugar cubes from Lantic Inc. and Redpath Sugar Ltd.
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4.1. Porosity and Pull-off Dependence

The porosity of each sample was first determined, followed by a compressive test. Pull-off force
data was collected at the end.
4.1.1. Porosity

As can be seen in Table 3, raw sugar cubes, in general, have higher polymer porosity due to their
dense packing. However, they are slightly smaller in two of its dimensions, thus reducing the overall volume
and size of the adhesive pad. Since the last dimension is similar to the other cube thicknesses, the terminal
film was attached to one of the two faces that share that depth.

Table 3: Summary of porosity and volume measurements of sugar templated polymer cubes

Brand Type PDMS Porosity [%]  Volume [mm"3] Thickness [mm]
Lantic White (n=12) 70.061+1.49 3729.04+24.96 15.53+0.20
Raw (n=12) 72.8440.71 3429.334+52.49 15.1240.13
Redpath White (n=12) 68.9610.86 3753.62142.65 15.39140.08
Raw (n=4) 72.0740.26 3440.79+£10.63 15.1640.02

4.1.2. Indentation Force Deflection

In terms of foams, we expect greater porosity to result in a softer material. As such, IFD as defined
in section 3.2.3 was completed for the sugar cubes to determine their stiffness. As seen in Table 4, raw
sugar cubes with higher porosity has significantly lower stiffness in both the low and high compression
tests compared to their white sugar counterparts. Although the high porosity low stiffness sample would
have been the ideal sample, it was quickly discovered that the thinner polymer cell walls of the foam air
cavity is unable to withstand its own adhesive force. At higher preloads with higher pull-off forces, terminal
film detachment from the foam layer is observed. This is detrimental to its reusability.

Table 4: Summary of IFD stiffness measurements of sugar templated polymer cubes

Deflection [mN] Lantic Redpath
White (n= 8) Raw (n=8) White (n=8) Raw (n=4)
IFD25% 510.274+72.54 270.32+81.44 437.36+112.67 282.22453.12
IFD65% 5057.35+962.76 1635.264+324.04  4121.204£960.39  3277.714£320.78

Figure 40 shows the deflection curve and sample measured force of the IFD test. At constant speed,

the samples experience two pre-flex indentations at 75% of the thickness of the sample in the first 15s,
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followed by a 360s relaxation period before the 25% of 65% IFD, the value is read at the end of a 60s

holding period.
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Figure 40: Sample IFD force displacement curve of Lantic raw sugar templated polymer cube: (a) is the
first 155 and (b) last 1255 of the test displacement and resulting deflection force
The resulting IFD forces with sample foam porosities are presented in Figure 41. In general, higher
polymer porosity results in lower material stiffness. A change in sugar porosity of approximately 4% can
produce a difference in stiffness of 200-300%. Due to the limitation of commercially available sugar cubes,

other porosities were not investigated.
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Figure 41: Relationship of foam porosity and IFD stiffness

4.2. Pull-off Relationship

Pull-off tests were performed using the 6mm glass hemispherical setup described in 2.1.2. The
pull-off data for the four sugar samples were fitted to a non-orthogonal three factor (two 2-level, one 8-
level) linear model. After three iterations, the reduced model is: y = B, + B, * preload + B; * type;
where the preload is the force applied in millinewtons (mN) and type equals -1 for white sugar and 1 for
raw sugar. The ANOVA analysis is available in Table 5 and the parameter values in Table 6. The analysis
roughly estimates parameter coefficients assuming linearity. Only the type of sugar and preload force was
determined to have a significant effect on pull-off force. From this analysis, higher preloads and white sugar

templates optimises the pull-off force.
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Table 5: ANOVA table for reduced model, evaluating brand, sugar type, and preload dependence

ANOVA

Source SS df MS F |

Regression 95.59 2 47.80 88.27 Probe

Error 135.36 250 0.54 3.86 Fo.01.3.250

Total 230.95 252 2.60 t0.01/2,250
s 0.54

Table 6. Parameter values for reduced model indicating only preload and sugar type significance

Parameter Coefficients + Description
B 2.3298 0.1369 Intercept
B, 0.0236 0.0055 Preload
B; -0.3511 0.1248 Sugar type

The pull-off plots: Figure 42 and Figure 43 show “Redpath W” sugar templated samples to have the best

performance. All foam samples at all preloads (in this range) perform better than the control polymer block.

0.0 20 4.0 6.0 80 100 oo 200 400 60.0 0.0
a Tttt 8 | 7 80
70 170 70 370
60 f Teo 60 = Yo

Figure 42: Preload and pull-off relationship of samples at (a) low and, (b) full preload range
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Figure 43: Porosity and pull-off relationship of samples at different preloads (mN) for (a) porous
samples only and, (b) including the control sample

4.3. Conclusion

It was determined that small changes in porosity produces large changes in foam stiffness. Higher
polymer porosity results in lower stiffness with the trade-off of thinner foam cell walls. Using simple non-
orthogonal linear modelling, sugar brand and all multi-factor interacts were found to be insignificant. Sugar
type and preload forces were the only significant terms in determining pull-off force. Overall, white sugar
templates obtained the highest pull-off forces when compared to the other samples, while all foam samples
resulted in higher results than the control sample in the range of 0-80mN preload using the 6mm
hemispherical probe. Thus, commercially produced white sugar templates made from “RedpathW” and

“LanticW” polymer cubes were used in all future studies.
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Chapter 5. Concluding Remarks and Recommendations

Unlike a simple polymer block, the attachment of a soft backing material to terminal dry adhesive
structures can improve adhesive strength, as measured by pull-off force and work of adhesion. The work
presented in this thesis indicates that the backing material is an important adhesive design parameter
currently less explored. The range of improvements in adhesion characteristics seen previously with the
addition of a soft backing material to a film terminated structure, are generalizable to other terminal
structures as micro and macro mushroom capped structures were successfully fabricated. Lastly, the
porosity and thickness of the backing materials has been optimized for the sugar cube, using statistical
modelling that shows the significant contribution of sugar cube type and preload to pull-off force.

Using a granular sacrificial template has the advantage of fast prototyping, and its integration with
3D printed moulds helps accelerate the development and understanding of adhesive pad design. The simple
fabrication of polymer foam using sugar linked with the standard soft lithography methods of pattern
transfer, is a highly modular design approach. The adhesive pads are assembled by selecting
interchangeable components for terminal end structures and backing geometry combinations, thereby
providing the designer with ease of fabrication and replication. Further, as the master moulds are not
damaged, they need only be designed and made once. The sugar template method also has the advantage
of using only one material for the composition of the adhesive pad, avoiding material incompatibility while
improving polymer cohesion.

The studies presented herein have also collected and integrated foam stiffness with indentation
studies, identifying the standardized testing parameters and reporting material property values for future
comparative study and reference. Finally, some end applications of the product have been demonstrated: a
robotic pick and place arm, adhesion in high moisture and low temperature environments, and the adhesive
pad’s tolerance to lateral deflection. In conclusion, the thesis objective is complete as the foam thickness,

various terminal structures, and porosity/stiftness PDMS foam were tried and tested.
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Based on the findings of the studies completed herein, to optimize an adhesive pad design for dry
adhesives, a mushroom structure decorated atop pillars which in turn sits above a soft porous material of
the same material is ideal. The contact splitting of the terminal structures into smaller regions (the smaller
the greater the adhesion), although it decreases the overall contact area, has significant benefits in creating
crack trapping locations and impedes crack front propagation. Having pillar support struts help to impart
some compliance and independent flexibility and energy absorption for each mushroom cap, akin to that of
a shock absorbing compression spring. Lastly, the porous backing material (white sugar cubes of 10-15mm
thickness of approximately 70% porosity) provides even more energy dissipation and further flexibility to
conform to curved surfaces while restricting unwanted deflection forces, thus allowing smart control of
adhesive release in the form of controlled shearing or torque. Further, as shown in our 70 time scale up of
the micro mould, the foam backing material is effective for direct application to features spanning from
micron to millimetre scales, thus there should be no terminal structure restrictions. The sugar cube studies
have shown that only the preload and sugar type (porosity) played a significant role in contributing to pull-
off force, as evaluated via statistical analysis and modelling. In this sense, any brand of sugar cube can be
used so long as it has flat surfaces for terminal structure attachment.

The backing material properties of dry adhesives is an important parameter and should be
considered when designing dry adhesive systems as they provide greatly improved pull-off force and work

of adhesion characteristics compared to simple non-porous backing substrates of the same material.
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5.1. Future Work

At the end of this thesis, some potential topics of study have been identified for future investigation.
In the above studies, commercially produced sugar cubes were used instead of in house made sugar
templates due to inconsistencies in the sugar fusing process of handmade samples. However, there is no
way of controlling the parameters of commercially purchased sugar cubes which results in little control of
the sugar granule distribution and thus the geometry of the polymer copy. The printing of silicon materials
and PDMS is rising in popularity as demonstrated by Structur3D Printing a local 3D solutions company
who sells a silicon injector attachment for commercial 3D printers. With the advent of this technology,
porous backing material can be extruded layer-by-layer, controlling substrate parameters such as cell wall
thickness, porosity, Poisson ratio, cavity dimensions and shape, and eases scalability.

On that vain, it would be extensively interesting to investigate negative Poisson ratio geometries
and their impact on adhesion properties by selecting origami geometric designs for both the terminal end
structures and supporting backing material such as the Miura-ori (fold), herringbone tessellation, hilula and
cube tessellation, triangle and hexagon twist just to name a few. Other auxetic patterns outside of origami
includes the bowtie and fractal pattern.

Lastly, there is value in investigating the effect of probe radius of curvature on the pull-off force as
in this thesis, two probes of different radii of curvature was investigated and the results hint at probe

curvature dependence for some terminal geometries.
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Appendices

Table 7: Preload pull-off force values

Sample Tests Preload Pull-off
[N] STDEV [N] STDEV
C 2 0.11 0.01 0.44 0.12
2 0.21 0.01 0.47 0.06
3 0.32 0.02 0.42 0.13
3 0.41 0.01 0.43 0.12
4 0.52 0.03 0.42 0.11
5 1.06 0.19 0.47 0.00
5 1.98 0.08 0.49 0.12
4 2.98 0.04 0.49 0.13
4 4.03 0.06 0.50 0.13
4 5.03 0.06 0.50 0.13
Film foam 5 0.10 0.01 0.17 0.08
5 0.19 0.01 0.20 0.07
5 0.29 0.02 0.21 0.06
5 0.39 0.02 0.23 0.04
5 0.49 0.02 0.24 0.04
5 0.98 0.03 0.26 0.04
5 1.97 0.06 0.29 0.05
5 2.96 0.08 0.30 0.06
5 3.94 0.12 0.30 0.06
4 5.00 0.00 0.32 0.05
Micro block 2 0.11 0.01 0.55 0.07
2 0.21 0.02 0.74 0.05
2 0.31 0.01 0.85 0.04
3 0.42 0.02 1.00 0.13
3 0.52 0.02 1.04 0.10
4 1.02 0.02 1.20 0.08
4 2.02 0.03 1.28 0.07
4 3.00 0.03 1.25 0.05
4 4.01 0.02 1.23 0.05
4 4.95 0.06 1.17 0.09
Micro foam 5 0.10 0.01 0.55 0.13
5 0.20 0.01 0.74 0.12
5 0.29 0.01 0.88 0.12
5 0.39 0.01 0.97 0.08
5 0.49 0.02 1.06 0.06
5 0.99 0.03 1.29 0.11
5 1.98 0.05 1.55 0.12
5 2.97 0.07 1.75 0.23
5 3.95 0.10 1.80 0.26
4 5.00 0.00 1.79 0.27
Macro block 2 0.10 0.01 0.22 0.04
2 0.20 0.01 0.27 0.01
2 0.31 0.02 0.30 0.01
2 0.41 0.02 0.35 0.03
3 0.51 0.01 0.39 0.04
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Preload Pull-off

Sample Tests [N] STDEV  [N] STDEV
Macro block 3 0.99 0.03 0.47 0.05
(cont’d) 4 1.90 0.17 0.52 0.02
5 2.88 0.28 0.56 0.04
5 3.99 0.04 0.57 0.03
4 4.96 0.06 0.56 0.03
Macro foam 5 0.10 0.01 0.29 0.11
5 0.19 0.01 0.45 0.16
5 0.29 0.02 0.55 0.17
5 0.39 0.02 0.70 0.18
5 0.49 0.02 0.82 0.24
5 0.98 0.03 1.06 0.19
5 1.97 0.06 1.28 0.12
5 2.96 0.08 1.33 0.12
5 3.95 0.11 1.34 0.11
4 5.00 0.00 1.32 0.12
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