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Abstract

Query complexity is one of the several notions of complexity defined to measure the cost
of algorithms. It plays an important role in demonstrating the quantum advantage, that
quantum computing is faster than classical computation in solving some problems. Kempe
showed that a discrete time quantum walk on hypercube hits the antipodal point with
exponentially fewer queries than a simple random walk [K05]. Childs et al. showed that a
continuous time quantum walk on “Glued Trees” detects the label of a special vertex with
exponentially fewer queries than any classical algorithm [CCD03], and the result translates
to discrete time quantum walk by an efficient simulation.

Building on these works, we examine the query complexity of variations of the hyper-
cube and Glued Tree problems. We first show the gap between quantum and classical query
algorithms for a modified hypercube problem is at most polynomial. We then strengthen
the query complexity gap for the Glued Tree label detection problem by improving a clas-
sical lower bound technique; and we prove such a lower bound is nearly tight by giving a
classical query algorithm whose query complexity matches the lower bound, up to a polylog
factor.
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Chapter 1

Introduction

Ever since the idea of quantum computation was conceived in the 80s, researchers have
been active in demonstrating the quantum advantage, that quantum computation is much
faster than any classical computation in solving some problems. The computations were
abstracted into algorithms, and we care about the complexity of those algorithms, where
complexity measures the resources used by the algorithms.

Several complexity classes were defined, and query complexity is arguably one of the
most successful models, for it has been used to show quantum computation may achieve
an exponential speed-up over classical computation. For example, Simon’s problem is
the first theoretical problem ever studied that exhibits an exponential query complexity
gap; indeed, any classical algorithm solving Simon’s problem must make Ω(2n/2) queries,
where the best quantum algorithm solving it makes only Θ(n) queries. Following the work
of Simon, Shor presented the integer factorization algorithm, demonstrating a potential
exponential time complexity gap for a practical problem the first time.

However, both problems are based on the quantum Fourier transform; in fact, most
of the quantum algorithms designed in the 90s have some flavour of quantum Fourier
transform. It made people wonder whether there is another type of quantum algorithm
that does not invoke quantum Fourier transform at all. Since quantum algorithms, in
some sense, are generalizations of randomized algorithms, researchers cast their eyes onto
random walks. As a quantization of random walk, quantum walk was defined and heavily
studied1.

Kempe showed in [K05] that on the hypercube, a discrete time quantum walk reaches
the antipodal point in O(n) queries, which is exponentially faster than Ω(2n), the expected

1Ironically, quantum Fourier transform plays an important role in quantum walk type algorithms.
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hitting time of simple random walk on the hypercube of dimension n. However, there
is a O(n3) deterministic algorithm solving the same problem. Later in [CCD03], Childs,
Cleve, Deotto, Farhi, Gutmann and Spielman presented the Glued Tree label detection
problem with an oracle of input size N , and showed that any classical algorithm solving
the problem uses at least Ω(N1/6) queries, which is exponentially slower than a continuous
time quantum walk, though the precise classical query complexity was left open. They
also showed that the continuous time quantum walk can be simulated by a discrete time
quantum walk with a polylog overhead (see also [CGM09] and [C09]), thus the result for
the Glued Tree label detection problem also applies to some discrete time quantum walk.

Is it possible to modify those problems so that the variations exhibit query complexity
gaps that are larger than the largest gap known so far? We first define a class of graphs
with the hypercube being a special case, then we reason why such generalization may slow
down the most efficient quantum query algorithms. We also adopt similar ideas from the
algorithm solving the hypercube problem to show there is an efficient deterministic query
algorithm solving the modified hypercube problem, hence the query complexity gap for
this class of problems is at most polynomial in n, the dimension of the hypercube.

Next, we show for the Glued Tree problem, no classical algorithm would use fewer than
Ω(N/ log(N)) queries even if N , the input size of the given oracle, is reduced down to the
number of nodes on the graph; thus, we may redefine the input size of the oracle, which
strengthens the query complexity gap from N1/6/polylog(N) to N1/2/polylog(N). We then
present a O(N logN) deterministic algorithm whose complexity matches the Ω(N/ logN)
lower bound of the classical query complexity, up to a log factor, thereby proving the
classical query complexity is nearly tight.

1.1 Outline of this Thesis

In chapter 2, we review some relevant topics on algorithms and random walks. We start
with a summary of different types of algorithms, then introduce the oracle setting and
query complexity, which is the main theme of this thesis. We then proceed to build the
knowledge of random walk on graphs; starting with elementary probability, we develop
the notions of markov chains, random walks on line and the hypercube, and we end the
chapter with a discussion on hitting time.

In chapter 3, we turn the hypercube hitting time problem into a query problem, namely
a label detection problem, which can be solved by an efficient quantum query algorithm.
We introduce a class of related problems and show there is an efficient deterministic query
algorithm for all of them.
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In chapter 4, we modify the Glued Tree label detection problem. By improving a clas-
sical lower bound technique, we may shrink the input size of the problem by a polynomial
factor, thus strengthening the query complexity gap by a polynomial factor. We also come
up with a classical query algorithm in which the query complexity matches the lower bound
of the classical query complexity of the problem, thereby proving the query complexity of
the problem is tight, up to a factor logarithmic in the input size.

In chapter 5, we summarize our results, discuss ongoing research on query complexity,
and end this thesis with open problems.
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Chapter 2

Preliminaries

2.1 Algorithm

2.1.1 Introduction to Algorithms

Let us begin with a review of the concept of algorithm. We are mainly concerned with
randomized algorithms and deterministic algorithms in this thesis, but we also make some
reference to quantum algorithms. As opposed to quantum algorithms, randomized algo-
rithm and deterministic algorithms are sometimes referred to as classical algorithms.

According to the textbook [CLR09], an algorithm is any well-defined computational
procedure that takes some value, or set of values, as input and produces some value, or
set of values, as output. An algorithm is thus a sequence of computational steps that
transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified computational
problem. The statement of the problem specifies in general terms the desired input/output
relationship. The algorithm describes a specific computational procedure for achieving the
input/output relationship.

We are interested in the following three types of algorithms,

1. Deterministic Algorithm

A deterministic algorithm always returns the same output for a fixed input. Given a
problem, we say a deterministic algorithm solves the problem if the algorithm always
produces the correct output. (i.e., one that satisfies the input-output relation)

4



2. Randomized Algorithm

A randomized algorithm makes random choices in intermediate steps according to
some probability distribution. As a consequence, the output needs not always be the
same. Note that deterministic algorithm is a special case of randomized case, since
we may set the probability distributions to have values 1 and 0 only.

Given a problem, we say a randomized algorithm solves the problem if for each input,
the algorithm produces the correct output with high probability, i.e., probability at
least 2/3. (Note this definition is not exact, but it is good enough for the purpose of
this thesis, the reader is referred to [MR95] for a thorough treatment of the topic).

3. Quantum Algorithm

A quantum algorithm takes advantage of quantum mechanics, namely exploiting
the entanglement of states and interference phenomenon. Note quantum algorithm
reduces to a randomized algorithm if there is no interference at all. The reader is
referred to [KLM07] for a formal treatment of topics on quantum computing.

Search algorithm is one of the most famous and ubiquitous algorithms, below is a
common problem solved by search algorithms.

Example 1 (Search Algorithm). Consider a subset of a shuffled deck of 52 playing cards.
We want to find “ace of spades” among the cards if it is in the subset. Until we find the
card, we may either search for it from the top to the bottom, or draw cards randomly.
The former is a deterministic algorithm, because for a fixed subset, we always find “ace of
spades” in the same location, if it is in the subset; the latter is a randomized algorithm,
because the number of draws needed depends greatly on how “lucky” we are.

2.1.2 Query Model

Suppose the input x of the problem is given in a black box (also called an oracle), and we
may access the input only by querying the oracle O. The input to O can be an index, a
label, etc., and we learn something about x when we feed some input into O.

Formally, suppose we want to evaluate f(x) for some function f : {0, 1}n → {0, 1},
n ∈ Z, and input x = (xi)i∈[n] ∈ {0, 1}n. Given the oracle O : [n] → {0, 1} by O(i) = xi,
we may learn about i-th bit of x by querying O(i).

Definition 2. The query complexity of an algorithm is a function c : Z → Z such that
c(n) is the maximum number of queries made by the algorithm on input of a fixed size n.
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The classical (or quantum, resp.) query complexity of a problem is the infimum of query
complexity of all classical (or quantum, resp.) algorithms solving the problem. We further
define the query complexity gap to be the ratio of quantum query complexity versus classical
query complexity.

Note we do not count the intermediate steps between the queries, hence the algorithm is
allowed to take a huge number of steps, as long as it makes a minimum number of queries.

Let N denote the total number of inputs of an oracle, then we say an algorithm is
efficient if the query complexity is O(polylog(N)).

Example 3 (OR Function). Consider the function

f : ZN2 → {0, 1}

f(x) = ∨i∈[N ] xi =

{
0 x = 000 . . . 0

1 otherwise

Any search problem can be modelled as evaluating an OR function. Indeed, suppose we
want to search for some “marked” elements among N elements, and we label the elements
from 1 to N , then it corresponds to evaluating f with the input x, where

xi =

{
1 element i is marked

0 otherwise
.

Associated with the problem is an oracle O that takes indices i ∈ [N ] as input, then returns
O(i) = xi as output. In order to evaluate f , it is not always necessary to read every
index of x; for example, say x = 100 . . . 0, then we may query only the first index to learn
x 6= 000 . . . 0, and produce the output f(x) = 1 in just 1 query.

It can be shown that any classical algorithm solving this problem must make at least
Ω(N) queries, and any quantum algorithm solving this problem must make at least Ω(

√
N)

queries. Since there is a O(
√
N) quantum query algorithm, the query complexity gap is√

N versus N , a quadratic separation.

We end this section with a proof of the classical lower bound of evaluating the OR
function. The quantum lower bound can be found in [BBB98]. The reader may need to
read the next section for topics on probability first.
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Lemma 4. Any classical algorithm that solves the OR function f on N bits makes Ω(N)
queries.

Proof. We make use of Yao’s Principle (more details can be found in Section 2.2.2. of
[MR95]). In short, Yao’s Principle states that the average cost of a randomized algorithm
is bounded below by the expected cost of any deterministic algorithm that solves the
problem with probability at least 2/3 under an input distribution, up to constant factor.
In our case, the cost is the number of queries.

To apply the principle, we only need to provide a distribution of inputs that is hard
for the deterministic algorithms, i.e., under such distribution of inputs, any deterministic
algorithm needs to make many queries in order to produce the correct result 2/3 of the
time.

Let X be a random variable of inputs, and consider the distribution

P (X = x) =


1/2 x = 000 . . . 0

1/(2N) x has exactly one 1-entry

0 otherwise

.

By rearranging the indices, we assume WLOG that a deterministic algorithm queries the
indices in the order 1, 2, 3, . . .. When the algorithm makes t = o(N) queries, the probability
the algorithm has discovered a 1-entry is t/N → 0 as N →∞.

Moreover, given that the algorithm has not discovered a 1-entry, the probability f(X) =
1 is

N − t
2N(1− t/N)

→ 1/2 as N →∞.

Hence, we cannot be correct about the value of f(X) 2/3 of the time when t = o(N), so any
algorithm that produces the correct output 2/3 of the time under this input distribution
must make Ω(N) queries.
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2.2 Random Walk

Over the past several decades, researchers gradually realized the importance of probability
theory in designing randomized algorithms. Being an essential part of the probability
theory, random walk has been closely studied and employed in randomized algorithms.

In this section, we give a brief summary of the concepts involved in this thesis. We
begin with a quick overview of elementary probability, then move onto Markov chains and
random walk on graphs, and finish this section with a discussion on hitting times. One
can learn more about topics on random walk in [B98], [L06], [R09], and [LPW08].

2.2.1 Quick Review of Elementary Probability

We first recall some key terms in probability theory; a detailed explanation can be found
in [R09].

Let Σ denote a collection of events. Associated with Σ is a probability measure, a set
function, P : Σ→ [0, 1] such that ∀ events E ∈ Σ, we have

1. 0 ≤ P (E) ≤ 1

2. P (S) = 1

3. For any sequence of mutually exclusive events E1, E2, . . . ∈ Σ,

P (∪∞n=1En) =
∞∑
n=1

P (En).

We say two events E and F are independent if P (E ∩ F ) = P (E)P (F ), where E ∩ F
denotes the events that both E and F happen.

Sometimes, we are interested in the conditional probability, i.e., given event E happens,
what is the probability that event F happens. Denote such event by F | E, then it satisfies
the equation

P (F | E) =
P (E ∩ F )

P (E)
.

The events are often described in terms of random variables. A random variable is a
function X : Σ→ S ⊆ R, and the events are of the form X = x for some x ∈ S.

8



The expected value of a random variable X is a linear function such that

E(X) =
∑
x∈S

xP (X = x).

Suppose S ⊆ R, then for t ∈ R++, the expected value of |X| is related to the tail
probability P (|X| ≥ t) =

∑
s≥t P (|X| = s) by the Markov Inequality,

P (|X| ≥ t) ≤ E(|X|)
t

.

If X is a random variable whose range is a subset of R+, then the Markov Inequality is
simply

P (X ≥ t) ≤ E(X)

t
.

Say two random variables X and Y are independent if the events X ≤ t1 and Y ≤ t2
are independent ∀t1, t2 ∈ R, then X and Y satisfies

E(XY ) = E(X)E(Y ).

2.2.2 Markov Chain

The type of random walk we are interested in can be captured by Markov chain, a model
that describes how a system changes over time, and Markov chain is a special type of
stochastic process. This section is a summary of the first three chapters of [L06].

Definition 5. A stochastic process is a collection of random variables Xt indexed by time.
In this thesis, we only consider discrete-time stochastic process, i.e., time will always be a
subset of the nonnegative integers {0, 1, 2, . . .}.

The random variables Xt take values in a set that we call the state space. Again, we
only consider discrete state space which can be either finite or countable, hence the state
space is isomorphic to some subset of N.

Given a discrete-time stochastic process, Xt, t = 0, 1, 2, . . ., where Xt takes values in
some set S ⊆ N, |S| = N ∈ N ∪ {ℵ0}. We call the possible values for Xt the states of the
system. We define the probability measure P and let

P (X0 = i0, X1 = i1, . . . , Xn = in)

9



denote the probability of the event (X0 = i0 and X1 = i1 and . . . and Xn = in). Equiva-
lently, we could give the initial probability distribution

φ0 ∈ RN , φ0
i = P (X0 = i), i = 1, . . . , N,

and the transition probabilities

qn(in | i0, . . . , in−1) = P (Xn = in | X0 = i0, . . . , Xn−1 = in−1),

where P (Xn = in | X0 = i0, . . . , Xn−1 = in−1) denotes the probability of the event Xn = in
given the event (X0 = i0 and X1 = i1 and . . . and Xn−1 = in−1). Now, it follows that

P (X0 = i0, . . . , Xn = in) = φ0
i0
q1(i1 | i0)q2(i2 | i0, i1) · · · qn(in | i0, . . . , in−1).

The probability measure satisfies the Markov property if the present state of the system
is all that is needed to make predictions of the behavior of a system in the future, i.e., the
past history is irrelevant. Formally, ∀i0, i1, . . . , in ∈ S,

P (Xn = in | X0 = i0, . . . , Xn−1 = in−1) = P (Xn = in | Xn−1 = in−1).

Definition 6. A Markov Chain is a stochastic process with the Markov property.

In this thesis, all Markov Chains are time-homogeneous, i.e., transition probabilities do
not depend on time. Formally,

qn(in | i0, . . . , in−1) = P (Xn = in | X0 = i0, . . . , Xn−1 = in−1) = p(in−1, in),

then for this time-homogeneous Markov Chain, we may define a N ×N transition matrix
T such that Tij = p(i, j) for all entries (i, j). The matrix T is a stochastic matrix, i.e.,

0 ≤ Tij ≤ 1, 1 ≤ i, j ≤ N

N∑
j=1

Tij = 1, 1 ≤ i ≤ N.

On the other hand, any matrix satisfying the two conditions can be the transition matrix
for a Markov Chain.

10



Note that for a time-homogeneous Markov Chain,

P (X0 = i0, . . . , Xn = in) = φ0
i0
q1(i1 | i0)q2(i2 | i0, i1) · · · qn(in | i0, . . . , in−1)

= φ0
i0
p(i0, i1)p(i1, i2) · · · p(in−1, in)

= φ0
i0
Ti0i1Ti1i2 · · ·Tin−1in .

If we let φn ∈ RN be the vector such that φni = P (Xn = i), then

φn = (P (Xn = j))j

= (
∑
i0∈[N ]

∑
i1∈[N ]

. . .
∑

in−1∈[N ]

P (X0 = i0, . . . , Xn−1 = in−1, Xn = j))j

= (
∑
i0∈[N ]

∑
i1∈[N ]

. . .
∑

in−1∈[N ]

φ0Ti0i1Ti1i2 · · ·Tin−1j)j

= φ0T n,

which gives the probability distribution of the states of the system in n steps.

Below is a simple example of Markov Chain:

Example 7 (Two-state Markov Chain). Suppose the state of a phone is modelled by Xt = 0
(the phone is free at time t) and Xt = 1 (the phone is busy). We assume that during each
time interval there is a probability p that a call comes in (for ease we will assume that
no more than one call comes in during any particular time interval). If the phone is busy
during that period, the incoming call does not get through. We also assume that if the
phone is busy during a time interval, there is a probability q that it will be free during the
next interval. Our model gives a Markov Chain with state space S = {0, 1} and matrix

T =

0 1( )
0 1− p p
1 q 1− q

This matrix gives the general form for a transition matrix of a two-state Markov Chain.
In order to specify the matrix one only needs to give the values of p and q.

2.2.3 Random Walk on Graphs

In this section, we illustrate two important random walks on graphs that are related to the
next two chapters, namely random walk on line and simple random walk on hypercube.
We first begin with an introduction to the notion of graph.

11



Definition 8. A graph G is an ordered pair of sets (V,E) such that the edges E is a subset
of the set of unordered pairs of the nodes V , where V is non-empty. We say u, v ∈ V are
neighbours of each other if {u, v} ∈ E. Denote N (u) = {v ∈ V : {u, v} ∈ E} to be the set
of neighbours of u ∈ V .

A finite graph is a graph where both V and E are finite; similarly for infinite graphs.
In this thesis, we consider both finite and infinite graphs.

An automorphism of a graph G = (V,E) is a bijective mapping τ : V → V such that
∀u, v ∈ V, {u, v} ∈ E ⇐⇒ {τ(u), τ(v)} ∈ E.

Example 9. The finite graph C5 = (V,E) is given by

V = {1, 2, 3, 4, 5}

E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}

Below is one representation of C5

1

2

34

5

(1, 2)(1, 5)

(2, 3)(4, 5)

(3, 4)

C5 has many automorphisms, τ(i) = (i mod 5) + 1 is one of them.

Graphs are ubiquitous; one can easily model transportation problems, scheduling prob-
lems, etc. as graph problems. An interesting example is to model a maze as a graph;
we start at the ENTRANCE, choose direction according to some probability distribution
at each intersection, and how long does it take to reach the EXIT? This interesting case
belongs to a huge class of process, namely random walk on graphs.

Random walk on graphs are merely time-homogeneous Markov Chains with the nodes
being the states, and the associated transition matrix depends on the edges1. Let us
illustrate the basic idea with two examples that are related to the following chapters.

1In fact, every reversible finite discrete-time Markov Chain can be represented as a random walk on
some graph with self-loops allowed.

12



Example 10 (Random Walk on Line). A random walk on Z is a walk on the infinite graph
G = (Z, E), where ∀u, v ∈ Z, (u, v) ∈ E ⇐⇒ |u− v| = 1

−3 −2 −1 0 1 2 3

The transition matrix T is given by

Tuv =


p v = u+ 1

1− p v = u− 1

0 otherwise

for some p ∈ [0, 1], and ∀u, v ∈ Z. Note that

0 ≤ Tuv ≤ 1, u, v ∈ V∑
v∈V

Tuv = Tu(u−1) + Tu(u+1) = (1− p) + p = 1, ∀u ∈ V,

so T is indeed a stochastic matrix.

Example 11 (Simple Random Walk on Hypercube). A hypercube is a finite graph H(n) =
(Zn2 , E) such that ∀u, v ∈ Zn2 , (u, v) ∈ E ⇐⇒ h(u ⊕ v) = 1, where h is the Hamming
weight2.

000

001 011

010

100

101 111

110

The hypercube H(3) = (Z3
2, E)

2For a given u ∈ Zn
2 , h(u) is the number of 1’s in u, e.g., h(10010) = 2
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For a simple random walk on the graph, the walk always moves to one of its neighbours
uniformly at random. In the case of H(3), that translates to the transition matrix

T =

000 001 010 011 100 101 110 111



000 0 1/3 1/3 0 1/3 0 0 0
001 1/3 0 0 1/3 0 1/3 0 0
010 1/3 0 0 1/3 0 0 1/3 0
011 0 1/3 1/3 0 0 0 0 1/3
100 1/3 0 0 0 0 1/3 1/3 0
101 0 1/3 0 0 1/3 0 0 1/3
110 0 0 1/3 0 1/3 0 0 1/3
111 0 0 0 1/3 0 1/3 1/3 0

,

which is symmetric. In fact, every transition matrix associated with some simple random
walk on a graph is symmetric.

2.2.4 Hitting Times

Often, we only have local information about the graph, and we are interested in traversing
the graph by effectively using local information. For example, suppose we start at a node
u, and we want to reach another node v; and the neighbours of nodes can be obtained
only by querying an oracle. If we perform a simple random walk on the graph, how many
queries does it take to reach v from u? Hence, it is natural to create the notion of hitting
times.

Definition 12 (Hitting Times). Given a Markov Chain with state space S, the hitting
time τA of a subset A ⊆ S is defined to be the first time one of the nodes in A is visited by
the chain. Formally, if Xt, t = 0, 1, 2, . . . is the random walk, then

τA := min{n ≥ 0 : Xt ∈ A}.

Observe that by the Markov Inequality,

P (τA ≥ t) ≤ E(τA)

t
.

Take t = 3E(τA), we get

P (τA ≥ 3E(τA)) ≤ E(τA)

3E(τA)
=

1

3

14



Hence, the random walk reaches the desired nodes with high probability in O(E(τA))
many steps. Suppose a step of the walk may be implemented by performing a query, then
O(E(τA)) is clearly a upper bound on the query complexity. Therefore, it is of great interest
to investigate the expected hitting time of random walks on graphs. The Hypercube is one
of the examples that demonstrate an exponential expected hitting time in the dimension.

Example 13 (Hypercube revisited). Given a hypercube H(n) = (Zn2 , E), suppose we start
at 0 = 000 . . . 0, and we perform simple random walk, what is the expected hitting time of
reaching 1 = 111 . . . 1, i.e., E(τ1)?

Let us first simplify the problem to a random walk on line. Observe that every node
u ∈ Zn2 can be classified by the shortest distance between u and 0. Denote Ak to be the set
of nodes at distance k to 0, then A0 = {0} and An = {1}. For each node u ∈ Ak, it has k
many 1-entries, and n − k many 0-entries; hence it has k many neighbours in Ak−1, and
n− k many neighbours in Ak+1, then a simple random walk performed at u moves to Ak−1
with probability k

n
, and to Ak+1 with probability n−k

n
. Therefore, it is natural to consider

the following modified random walk on the line:

A0 A1 A2 A3 An−2 An−1 An
· · ·

with the transition matrix

Tkj = TAk,Aj
=


k
n

j = k − 1
n−k
n

j = k + 1

0 otherwise

where k, j ∈ {0, . . . , n}

Let tk denote the number of steps the modified walk starting at Ak takes to reach An
the first time, then we have the following recurrence relation,

tk =


1 + t1 k = 0

1 + bktk−1 + (1− bk)tk+1 0 < k < n

0 k = n

where bk is a Bernoulli random variable that takes value 0 with probability n−k
n

, and 1 with
probability k

n
. Note that by definition t0 is the same as τ1.
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Now, taking the expectation, we have

E(tk) =


E(1 + t1) k = 0

E(1 + bktk−1 + (1− bk)tk+1) 0 < k < n

E(0) k = n

=


1 + E(t1) k = 0

1 + k
n
E(tk−1) + n−k

n
E(tk+1) 0 < k < n

0 k = n

,

where the second equality follows from the independence of bk and ti, linearity of expectation,
and the fact that E(bk) = k

n
.

It remains to solve the recurrence relation. Start by expanding the first few terms,

E(t1) = 1 +
1

n
E(t0) +

n− 1

n
E(t2)

= 1 +
1

n
[1 + E(t1)] +

n− 1

n
E(t2)

=⇒ E(t1) =

(
1

n
+ 1

)
n

n− 1
+ E(t2)

E(t2) = 1 +
2

n
E(t1) +

n− 2

n
E(t3)

= 1 +
2

n

[(
1

n
+ 1

)
n

n− 1
+ E(t2)

]
+
n− 2

n
E(t3)

=⇒ E(t2) =

[(
1

n
+ 1

)
n

n− 1

2

n
+ 1

]
n

n− 2
+ E(t3)

By induction,
E(tk) = µk + E(tk+1)

where

µk =

{
1 k = 0

( k
n
µk−1 + 1) n

n−k 1 < k ≤ n− 1

16



Hence,

E(τ1) = E(t0)

=
n−1∑
k=0

µk

=
n−1∑
k=0

k∑
i=0

(
n

n− i

k∏
j=i+1

(
j

n

)(
n

n− j

))

= n ·
n−1∑
k=0

k∑
i=0

1

n− i

k∏
j=i+1

j

n− j

= n ·
n−1∑
k=0

k∑
i=0

k!(n− (k + 1))!

i!(n− i)!

= n ·
n−1∑
k=0

k∑
i=0

(
n
i

)
(n− k)

(
n
k

)
≥ n

(n− (n− 1))
(
n
n−1

) · n−1∑
i=0

(
n

i

)
= 2n − 1,

which is approximately the same as the number of the nodes on the graph.

Due to the exponential expected hitting time in the dimension, we wonder if we may
possibly achieve an exponential query complexity gap on some query problem based on
hypercube. We examine this possibility in great details in the next chapter.
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Chapter 3

Search on Modified Hypercube

3.1 Hypercube

In the previous chapter, we have seen the hypercube and exponential expected hitting time,
and we are interested in coming up with a related query problem that exhibits exponential
query complexity gap between classical and quantum algorithms. One natural approach is
to model a random walk step as a query, but first, we need to make some adjustment to
the graph.

Consider the hypercube H(n) = (Zn2 , E). Call v ∈ Zn2 the i-th neighbour of u if v = u⊕ei
(i.e., v is obtained by flipping i-th bit of u). Note that if v is the i-th neighbour of u, then
u is also the i-th neighbour of v.

The next step is to relabel the nodes so that we cannot tell the distance between two
nodes by merely examining the labels. Formally, consider the graph G(n) = (Zn2 , E), where
{u, v} ∈ E(H(n)) ⇐⇒ {σ(u), σ(v)} ∈ E(G(n)), for a fixed σ drawn from the permutation
group S2n uniformly at random; in particular, u and v are neighbours of each other in H(n)

if and only if σ(u) and σ(v) are neighbours of each other in G(n).

Associated with G(n) is an oracle O that takes (u, i) as inputs, then returns (v, x) where
v is the i-th neighbour of u in G(n) (the fixed but unknown ordering of the neighbours of
each node is determined by σ), and

x =

{
i σ−1(v) 6= 1

0 σ−1(v) = 1
.

This way, we always know when the label of σ(1) is detected.

18



Problem 14. Suppose the label σ(0) is given, what is the number of queries made by the
most efficient algorithm in detecting the label of 1?

With a minor modification to the query model, a O(n) quantum walk based algorithm
was proposed by Kempe in [K05], which is exponentially faster than Ω(2n), the expected
hitting time of simple random walk on the hypercube, as shown in Example 13. Do all
classical algorithms take exponentially many queries in solving this problem? This answer
is no; a O(n3) deterministic algorithm is briefly discussed in the Appendix of [CCD03]. The
idea is to start at σ(0), keep track of the neighbours of the current node that are closer
to σ(0), then move onto the remaining neighbours, thereby ensuring that the algorithm
always moves away from σ(0) by 1 unit of distance in each step.

In the hope of making it harder for the algorithm to keep track of the neighbours that
are at known distance from σ(0), we modify the hypercube by adding more edges.

3.2 Modified Hypercube

Definition 15 (k-Modified Hypercube). A k-modified hypercube is the graph H
(n)
k =

(Zn2 , E), where {u, v} ∈ E for u, v ∈ Zn2 if and only if v = u ⊕ (⊕i∈Iei) for some I ⊆ [n]
such that 0 < |I| ≤ k. We call u and v the I-th neighbours of each other if v = u⊕(⊕i∈Iei).

Note that the standard hypercube is simply H
(n)
1 , and H

(n)
k is constructed by connecting

distinct nodes of distance no greater than k in H
(n)
1 by edges.

Consider the node relabeled graph G
(n)
k = (Zn2 , E), where {u, v} ∈ E(H

(n)
k ) ⇐⇒

{σ(u), σ(v)} ∈ E(G
(n)
k ), for a fixed σ drawn from the permutation group S2n uniformly at

random. Associated with G
(n)
k is an oracle O that takes (u, I) as input, then returns (v,X),

where v is the I-th neighbour of σ(u) (the fixed but unknown ordering of the neighbours
of each node is determined by σ), and

X =

{
I σ−1(v) 6= 1

0 σ−1(v) = 1
.

This way, we always know when the label of 1 is detected.

Suppose the label σ(0) is given, we are interested in the number of queries made by
the most efficient algorithm in detecting the label of σ(1). In the remaining section, we
denote σ(u) by uσ.
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Let us first make an interesting observation that this kind of modification may gradually
slow down the most efficient quantum algorithm when k gets larger than 1. The main idea
is to show we cannot distinguish between 1 and some other nodes, which reduces the
detection problem into finding a unique marked element, then apply the lower bound we
see in Example 3. Below is a lemma that applies to k = 2.

Let Aut(G
(n)
2 ) denote the group of automorphisms of G

(n)
2 , and consider the following

equivalence classes [·] defined on Aut(G
(n)
2 ),

[τ1] = [τ2] ⇐⇒ τ1(0σ) = τ2(0σ) and τ1(1σ) = τ2(1σ).

Moreover, it is not hard to see |[τ ]| = |[ν]| for all automorphisms τ and ν. In fact,
∀τ1, τ2 ∈ [τ ], τ2 = τ1χ for some χ ∈ [Id], where [Id] is the equivalence class induced by the
identity mapping; indeed, we have χ = τ−11 τ2 ∈ [Id]. Hence |[τ ]| = |[Id]| = |[ν]|.

Proposition 16. Let n be even, then for each i ∈ [n], G
(n)
2 has an equivalence class [τ ]

such that
τ(0σ) = 0σ

but
τ(1σ) = (1⊕ ei)σ 6= 1σ.

Proof. This proposition is easy to see if we work with the standard hypercube H = H(n)

instead. The hypercube H can be seen as the graph obtained by connecting nodes u and
u⊕ ej, ∀j ∈ [n].

Fix i ∈ [n], consider the graph Hi = (Zn2 , Ei), Ei = {{u, u⊕ e′j} | j ∈ [n]}, where

e′j =

{
ei j = i

ei ⊕ ej j 6= i
.

To see Hi is also a standard hypercube (i.e., isomorphic to H), we construct a bijection
between H and Hi. Write the nodes u ∈ Zn2 in the form

u = ⊕j∈Iuej,

where Iu = {j : uj = 1} is the collection of indices of 1-entry of u.

Consider the mapping f : Zn2 → Zn2 ,

f(u) = f(⊕j∈Iuej) = ⊕j∈Iue′j.
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Since for each v ∈ Zn2 , the decomposition v = ⊕j∈Ive′j is unique, u =
∑

j∈Iv ej is the unique
node such that f(u) = v, hence f is indeed a bijection. In particular,

v = u⊕ ej ⇐⇒ f(v) = f(u)⊕ e′j,

i.e., {u, v} ∈ E ⇐⇒ {f(u), f(v)} ∈ Ei, therefore Hi is also a hypercube.

Now, for each u and v of distance no greater than 2 in H, we have v = u ⊕j∈S ej for
some S ⊆ [n], 0 < |S| ≤ 2, then v = u⊕j∈Si

e′j, where

Si =

{
S ∪ {i} |S| = 1

S \ {i} |S| = 2
.

In other words, u and v are of distance no greater than 2 in Hi as well, hence both H
and Hi induce the same modified hypercube H

(n)
2 and the nodes relabeled G

(n)
2 , and the

existence of automorphisms follows.

Lemma 17. Let n be even, then any quantum algorithm must make Ω(n1/2) queries in

detecting the label of 1σ in G
(n)
2 .

Proof. As a consequence of the previous proposition, we cannot distinguish between (⊕j∈Sei)σ
and (⊕j∈Se′j)σ in G

(n)
2 by only examining the structure of G

(n)
2 ; in particular, we cannot

distinguish between
(⊕j∈[n]ej)σ = 1σ

and
(⊕j∈[n]e′j)σ = (1⊕ ei)σ 6= 1σ.

Since the structure does not help, in order to detect 1σ, we can only tell whether the label
has been detected by reading the output of the oracle, hence the label detection problem
is at least as hard as finding the marked element 1σ among n+ 1 elements. As mentioned
in Example 3, the lower bound for the quantum query complexity is Ω(n1/2).

For k > 2, we speculate such indistinguishability still exists, since connecting nodes of
further Hamming distance gives more freedom of choice of automorphisms.

3.2.1 An efficient classical algorithm

In this section, we see the idea from the Appendix of [CCD03] may be adapted to design
an efficient classical query algorithm for the modified hypercube. Again, we demonstrate
the idea for k = 2.
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Algorithm 1 An efficient detection algorithm for G
(n)
2

1: Let w1 be an arbitrary neighbour of 0σ, and let S1 = N (w1) ∩ ({0σ} ∪ N (0σ))

2: for i = 2 to bn/2c do
3: Let wi be an arbitrary neighbour of wi that is not in Si−1, i.e.,

wi ∈ N (wi−1) \ Si−1

4: Si ← N (wi) ∩ (∪u∈Si−1
N (u))

5: Search for 1σ in {wbn/2c} ∪ N (wbn/2c).

The idea is to start at σ(0), keep track of the neighbours of the current node that
are closer to σ(0), then move onto the remaining neighbours, thereby ensuring that the
algorithm always moves away from σ(0) by at least 1 unit of distance in each step.

For simplicity, we work with labels of the nodes in H(n). Before proving the correctness
of the algorithm, we need a useful lemma.

Lemma 18. Let h(·) denote the Hamming weight. ∀1 ≤ i ≤ bn/2c, we have

2i− 1 ≤ h(wi) ≤ 2i (3.1)

and
Si = {u ∈ N (wi) : h(u) ≤ 2i} (3.2)

Proof. It is straight forward to verify that (3.1) and (3.2) hold for i = 1. Suppose they
hold for i− 1 ∈ N.

Since wi ∈ N (wi−1) \ Si−1 and Si−1 = {u ∈ N (wi−1) : h(u) ≤ 2(i − 1)}, we must
have h(wi) > 2(i− 1). Also, the neighbours of any node u in H(n) is at most 2 Hamming
distance away from u, hence h(wi) ≤ h(wi−1) + 2 ≤ 2(i− 1) + 2 = 2i,

=⇒ 2i− 1 ≤ h(wi) ≤ 2i.

which completes the induction on (3.1). It remains to show (3.2).

(⊆) By definition, Si ⊆ N (wi). Also, ∀u ∈ Si−1, we have h(u) ≤ 2(i−1), then ∀v ∈ N (u),
h(v) ≤ 2i, hence Si ⊆ {u ∈ N (u) : h(u) ≤ 2i}.
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(⊇) Let u∗ ∈ {u ∈ N (wi) : h(u) ≤ 2i}, then u∗ = wi ⊕i∈I ei for some indices 0 < |I| ≤ 2;
we need to show u∗ ∈ Si.
Since h(wi−1) ≥ 2(i− 1)− 1 ≥ 1, we have (wi−1)γ = 1 for some index γ. We consider
the following two cases

1. Suppose h(wi)− h(wi−1) = 2, then wi = wi−1 ⊕ eα ⊕ eβ for some indices α 6= β
and γ 6∈ {α, β}, which implies (wi−1)α = (wi−1)β = 0 and (wi)γ = 1.

If u∗α = u∗β = 1, then

{α, β} ∩ I = ∅ =⇒ h(u∗ ⊕ eα ⊕ eβ) = h(u∗)− 2 ≤ 2i− 2 = 2(i− 1),

and

u∗ ⊕ eα ⊕ eβ = wi−1 ⊕i∈I ei
=⇒ u∗ ⊕ eα ⊕ eβ ∈ {u ∈ N (wi−1) : h(u) ≤ 2(i− 1)} = Si−1

=⇒ u∗ = (u∗ ⊕ eα ⊕ eβ)⊕ eα ⊕ eβ ∈ Si.

Else, u∗α = u∗β = 0, then {α, β} = I and u∗ = wi−1. Since

h(wi−1 ⊕ eγ) = h(wi−1)− 1 ≤ 2(i− 1),

we have wi−1 ⊕ eγ ∈ Si−1 by induction on (3.2). It follows that

u∗ = wi−1 = (wi−1 ⊕ eγ)⊕ eγ ∈ Si,

Otherwise, WLOG, suppose u∗α = 1 but u∗β = 0, i.e., α 6∈ I but β ∈ I.
If u∗γ = 1, then

h(u∗ ⊕ eα ⊕ eγ) = h(u∗)− 2 ≤ 2i− 2 = 2(i− 1).

Since by induction on (3.2),

u∗ ⊕ eα ⊕ eγ = wi−1 ⊕ eγ ⊕i∈I\{b} ei ∈ Si−1,

we have u∗ ∈ Si.
Else, u∗γ = 0, then

γ ∈ I =⇒ I = {β, γ} =⇒ u∗ ⊕ eα = wi−1 ⊕ eγ ∈ Si−1,

so u∗ ∈ Si.
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2. Suppose h(wi)−h(wi−1) = 1, which, by (3.1), happens only when h(wi) = 2i−1
and h(wi−1) = 2(i − 1), then wi = wi−1 ⊕ eλ for some index λ ∈ [n] and
(wi−1)λ = 0. Note that λ 6= γ and (wi)γ = 1.

First consider the case u∗λ = 1.
If h(u∗) = 2i, since h(wi) = 2i − 1, we must have u∗ = wi ⊕ eθ for some index
θ ∈ [n] such that (wi)θ = 0. Since γ 6= θ, we have u∗γ = 1 and

h(u∗ ⊕ eγ ⊕ eθ) = h(u∗)− 2 = 2i− 2 = 2(i− 1),

so by induction on (3.2),

u∗ ⊕ eγ ⊕ eθ = wi−1 ⊕ eλ ⊕ eγ ∈ Si−1 =⇒ u∗ ∈ Si.

Else, h(u∗) ≤ 2i− 1, then

h(u∗ ⊕ eλ) = h(u∗)− 1 ≤ 2i− 2 = 2(i− 1),

and
u∗ ⊕ eλ = wi−1 ⊕i∈I ei ∈ Si−1 =⇒ u∗ ∈ Si.

Otherwise suppose u∗λ = 0, then λ ∈ I and h(u∗) ≤ h(wi) = 2i− 1.
If u∗γ = 1, then

h(u∗ ⊕ eγ) = h(u∗)− 1 ≤ 2i− 2 = 2(i− 1),

so by induction on (3.2),

u∗ ⊕ eγ = wi−1 ⊕ eγ ⊕i∈I\{λ} ei ∈ Si−1 =⇒ u∗ ∈ Si.

Else, u∗γ = 0, then I = {λ, γ}, hence

u∗ ⊕ eλ = wi−1 ⊕ eλ ⊕ eγ ∈ Si−1 =⇒ u∗ ∈ Si.

Therefore, (3.2) holds by induction.

In each step of the algorithm, the Hamming distance between 0 and wi is at least 2i−1.
Since the Hamming distance between 0 and 1 is n, vbn/2c is 1 or a neighbour of 1, and a
brute force search guarantees the detection of 1.
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Since Si ⊆ N (wi), Si contains O(n2) nodes, which implies ∪u∈Si−1
N (u) contains at

most O(n4) nodes; since there are O(n) iterations, the number of queries made by steps
2 to 4 is bounded above by O(n5). The last step takes O(n2) queries. Therefore, the
algorithm runs in O(n5) queries.

Thus, the query complexity gap between classical and quantum algorithms for the
detection problem on G

(n)
2 is at most polynomial. We present the Glued Tree problem in

the next chapter, and that problem does have an exponential query complexity gap.
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Chapter 4

Glued Trees Problem

4.1 Introduction

In this chapter, we present a problem that exhibits an exponential query complexity gap,
namely the Glued Trees problem; this problem was first proposed in [CCD03]. We introduce
a slightly modified version of it, with the input size of the oracle reduced to the number of
nodes, thereby strengthening the query complexity gap to O(polylog(N)) quantum queries
to Ω(N1/2/ log(N)) classical queries. We also prove a tight Θ(N1/2) bound on the classical
query complexity, up to a log factor.

Definition 19 (Glued Trees). An instance of Glued Trees of 2n + 2 levels is a graph
Gn = (V,E) constructed by joining two perfect binary trees of height n by a cycle of length
2 · 2n that alternates between the leaves of the two trees; the cycle is arbitrary, subject to
this constraint.

We call the root of the left tree ENTRANCE and the root of the right tree EXIT.
Starting from the ENTRANCE, we label each level consecutively from 1 to 2n+ 2.
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Example 20. An instance of Glued Trees of 8 levels, i.e., G3:

with the leftmost node being the ENTRANCE and the rightmost node being the EXIT.

Since each perfect binary tree has
∑n

i=0 2i = 2(n+1)− 1 nodes, there are 2 · 2(n+1)− 1 =

2(n+2)−2 nodes in total, which matches the number of elements in Z(n+2)
2 \{000 . . . 0, 111 . . . 1}.

Hence, we may take V = Z(n+2)
2 \ {000 . . . 0, 111 . . . 1}, i.e., assign each node v ∈ V a

unique label from Z(n+2)
2 \ {000 . . . 0, 111 . . . 1}, and it is a bijection; in particular, the EN-

TRANCE is always assigned 000 . . . 01, and the remaining nodes get labels from Z(n+2)
2 \

{000 . . . 0, 000 . . . 01, 111 . . . 1} uniformly at random.

Associated with a Glued Tree is an oracle O that takes v ∈ V as input, then returns
the labels of neighbours of v, and it returns 111 . . . 1 if the EXIT is the input. We are
interested in the number of queries made by the most efficient algorithm in detecting the
label of the EXIT. In [CCD03], Childs et al. showed a quantum algorithm running in
O(poly(n)) queries. In the next two sections, we show the classical query complexity for
this problem is Θ(2n/2), up to a log factor.

Note that this is a different problem from the one defined originally in [CCD03]. Two
major differences are

1. The input size is O(22n) in [CCD03], whereas it is O(2n) in this chapter. If we let
N = 2n, then the query complexity gap for this problem is at least O(polylog(N))
quantum queries to Ω(N1/2/ log(N)) classical queries, which is N1/2/polylog(N).

2. The oracle defined in [CCD03] included a colouring of the edges; this was mainly
engaged to show the existence of an efficient quantum algorithm. We simplify the
oracle here, since we are only concerned with the classical query complexity in this
chapter. Our result still holds under their setting (with an edge colouring).
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4.2 An Ω(2n/2/n) Classical Lower Bound

In this section, we show any classical algorithm makes Ω(2n/2/n) queries in order to detect
the EXIT. Observe that in each query, any algorithm can either pick and query the label of
an unknown node 1, or query a known node. We first demonstrate it is possible to simulate
the process of randomly picking a unknown node by a special Tree Embedding process
originating at the ENTRANCE. Hence any classical algorithm can be represented as some
Tree Embedding process as described in [CCD03]. We show that this detects neither the
EXIT nor a cycle with high probability in o(2n/2) queries. First, let us study a modified
random walk on line that lies at the heart of the simulation process.

4.2.1 Random Walk on ((±),Z \ {0})

Consider a random walkW on ((±),Z\{0}) with initial probability distribution P ((−)−1, 0) =
P ((+)1, 0) = 1

2
, where (±)k,m denotes the walk reaching k in m steps with the direction

taken in the last step being (±). For example, P ((+)5, 11) is the probability that the walk
ends on 5 in 11 steps and the last direction the walk takes is right (i.e., the walk moves from
4 to 5 in the last step). In the language used in chapter 2, P ((±)k,m) = P (Wm = ((±), k)).

−3 −2 −1 1 2 3

(−)

(+)

1/2

1 1/2

1

1/21/2

The nodes at the top are ((−), k), and the nodes at the bottom are ((+), k).

The walk has a probability transition matrix T such that

T ((−)k,(−) k − 1) =

{
1
2

k < 0

1 k > 0
T ((−)k,(+) k + 1) =

{
1
2

k < 0

0 k > 0

T ((+)k,(−) k − 1) =

{
0 k < 0
1
2

k > 0
T ((+)k,(+) k + 1) =

{
1 k < 0
1
2

k > 0

Note that when k = 1, then k − 1 is replaced by −1; similarly for k = −1 and k + 1.

1an unknown node is a node that has not been either the input or the output of any query; in particular,
we always treat ENTRANCE as a known node.
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Call {k : k < 0} the left region and {k : k > 0} the right region, then the random walk
captures the property that

• If the walk takes a step to the left (or right, resp.) in the left region (or right region,
resp.), then the next step it takes is either left or right with probability 1/2 each.

• If the walk takes a step to the right (or left, resp.) in the left region (or right region,
resp.), then it goes back to ((+), 1) (or ((−),−1), resp.) definitely.

The key property we prove in the end is that if we perform a m-step walk, then the
probability of the walk landing on k or −k, k > 0 is

P (−k,m) = P (k,m) =


1

2(|k|+1)
k ∈ [m]

1

2(m+1)
k = m+ 1

0 k > m+ 1

where P (k,m) = P ((−)k,m) + P ((+)k,m).

Lemma 21. ∀k > 1,m ∈ N, we have
P ((+)k,m) = 1

2
P ((+)k − 1,m− 1), P ((−), k,m) = 1

2
P ((−)k − 1,m− 1),

P ((−)−k,m) = 1
2
P ((−)−k+ 1,m− 1), P ((+)−k,m) = 1

2
P ((+)−k+ 1,m− 1).

Proof. k > 1,m ∈ N

In the right region,

P ((+)k,m) = P ((+)k − 1,m− 1)T ((+)k − 1,(+) k) + P ((−)k − 1,m− 1)T ((−)k − 1,(+) k)

=
1

2
P ((+)k − 1,m− 1).

Now, observe that the walk has the following probability distribution

m = 0 : P ((+)1, 0) = P ((−)−1, 0) = 1/2,

m = 1 : P ((+)2, 1) = P ((−)−1, 1) = P ((+)1, 1) = P ((−)−2, 1) = 1/4.

Hence, P ((−), k, 1) = 1
2
P ((−)k − 1, 0).
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Next, ∀m ≥ 2,

P ((−)k,m) = P ((−)k + 1,m− 1)T ((−)k + 1,(−) k) + P ((+)k + 1,m− 1)T ((+)k + 1,(−) k)

= P ((−)k + 1,m− 1) +
1

2
P ((+)k + 1,m− 1)

=⇒ P ((−)k−1,m−1) = P ((−)k,m−2)+
1

2
P ((+)k,m−2) = P ((−)k,m−2)+P ((+)k+1,m−1).

Hence, to show

P ((−)k,m) =
1

2
P ((−)k − 1,m− 1),

it suffices to show

P ((−)k + 1,m− 1) =
1

2
P ((−)k,m− 2),

or inductively (on m) that

P ((−)k +m− 1, 1) =
1

2
P ((−)k +m− 2, 0).

This is true, because by the probability distribution,

P ((−)k +m− 1, 1) = P ((−)k +m− 2, 0) = 0, ∀k > 1,m ∈ N.

By symmytry, in the left region, we have

P ((−)−k,m) =
1

2
P ((−)−k + 1,m− 1),

P ((+)−k,m) =
1

2
P ((+)−k + 1,m− 1).

Observe that the walk can be decomposed into two random walks on (±,Z \ {0}) that
are related to each other by symmetry, namely the one starting at ((−),−1) and the one
starting at ((+), 1). Indeed, let Wl denote the walk starting at ((−),−1) and Wr denote the
walk starting at ((+), 1), then we have P (Wl =(sign) k,m) = P (Wr =(−sign) −k,m).

In odd steps, Wl (or Wr, resp.) has nonzero probability only on nodes that are odd
levels away from −1 (or 1, resp.). Since there is an odd distance between 1 and −1, by
parity arguments, those two walks occupy alternating levels so they do not overlap. The
case is similar in even steps. Hence, we only need to analyze Wr, then apply the result to
Wl.
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Lemma 22. Consider the walk starting at ((+), 1) with total probability 1/2.
Let m ∈ N, then P ((±)k,m) = 0 except in the following cases:

1.

P ((+)m+ 1,m) = P ((+)m− 1,m) = P ((−)m− 1,m) = P ((−)−m,m) =
1

2(m+1)
.

2. ∀ odd j ∈ [3,m− 1]

P ((−)m− j,m) = 2P ((+)m− j + 2,m) +
1

2(m+1)
,

P ((+)m− j,m) = 2P ((−)m− j,m)− 1

2(m+1)
.

3. ∀ even l ∈ [2,m− 1]

P ((+)−m+ l,m) = 2P ((−)−m+ l − 2,m)− 1

2(m+1)
,

P ((−)−m+ l,m) = 2P ((+)−m+ l,m) +
1

2(m+1)
.

4. In particular, if m ≥ 2 is even, then

P ((−)1,m) = P ((−)−2,m) = 2P ((+)−2,m) +
1

2(m+1)
,

P ((+)1,m) = 2P ((−)1,m)− 1

2(m+1)
.

5. if m ≥ 3 is odd, then

P ((+)−1,m) = P ((+)2,m) = 2P ((−)2,m)− 1

2(m+1)
,

P ((−)−1,m) = 2P ((+)−1,m) +
1

2(m+1)
.

Proof. Observe that the walk has the following probability distribution

m = 0 : P ((+)1, 0) = 1/2,

m = 1 : P ((+)2, 1) = 1/4, P ((−)−1, 1) = 1/4,
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m = 2 : P ((+)3, 2) = 1/8, P ((+)1, 2) = 1/8,
P ((−)1, 2) = 1/8, P ((−)−2, 2) = 1/8,

m = 3 : P ((+)4, 3) = 1/16, P ((+)2, 3) = 1/16, P ((+)−1, 3) = 1/16,
P ((−)2, 3) = 1/16, P ((−)−1, 3) = 3/16, P ((−)−3, 3) = 1/16,

m = 4 : P ((+)5, 4) = 1/32, P ((+)3, 4) = 1/32,
P ((+)1, 4) = 5/32, P ((+)−2, 4) = 1/32,
P ((−)3, 4) = 1/32, P ((−)1, 4) = 3/32,
P ((−)−2, 4) = 3/32, P ((−)−4, 4) = 1/32.

which clearly satisfies the relations. Hence, suppose it holds true for n ∈ N, 4 ≤ n < m.

By the previous Lemma and induction,

1. ∀m ≥ 4,

P ((+)m+ 1,m) = P ((+)m− 1,m) = P ((−)m− 1,m) = P ((−)−m,m)

=
1

2
P ((+)m,m− 1) =

1

2
P ((+)m− 2,m− 1) =

1

2
P ((−)m− 2,m− 1) =

1

2
P ((−)−m+ 1,m− 1)

=
1

2(m+1)

2. ∀m− j > 1,

P ((−)m− j,m) =
1

2
P ((−)m− 1− j,m− 1)

= P ((+)m+ 1− j,m− 1) +
1

2(m+1)

= 2P ((+)m− j + 2,m) +
1

2(m+1)

P ((+)m− j,m) =
1

2
P ((+)m− 1− j,m− 1)

= P ((−)m− 1− j,m− 1)− 1

2(m+1)

= 2P ((−)m− j,m)− 1

2(m+1)
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3. Similarly, ∀ −m+ l < −1,

P ((+)−m+ l,m) = 2P ((−)−m+ l − 2,m)− 1

2(m+1)

P ((−)−m+ l,m) = 2P ((+)−m+ l,m)− 1

2(m+1)

It remains to consider the cases m − j = 1 (so m is even) and −m + l = −1 (so m is
odd). Note that exactly one of them holds in any step by parity argument.

Suppose m − 1 is odd, then in step m − 1, the walk is distributed on odd levels away
from the node 1. By induction on 5., we have

P ((+)−1,m− 1) = P ((+)2,m− 1) = 2P ((−)2,m− 1)− 1

2m

and

P ((−)−1,m− 1) = 2P ((+)−1,m− 1) +
1

2m
= 2P ((+)2,m− 1) +

1

2m

then

P ((−)1,m) = P ((−)2,m− 1)T ((−)2,(−) 1) + P ((+)2,m− 1)T ((+)2,(−) 1)

= P ((−)2,m− 1) +
1

2
P ((+)2,m− 1)

=
1

2
(2P ((+)2,m− 1) +

1

2m
) by 2.

=


1
2
P ((−)−1,m− 1)

2(1
2
P ((+)2,m)) +

1

2(m+1)

=

P ((−)−2,m)

2P ((+)3,m) +
1

2(m+1)

by Lemma
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and

P ((+)1,m) = P ((+)−1,m− 1)T ((+)−1,(+) 1) + P ((−)−1,m− 1)T ((−)−1,(+) 1)

= P ((+)−1,m− 1) +
1

2
P ((−)−1,m− 1)

= 2P ((+)2,m− 1) +
1

2(m+1)

= 2P ((−)1,m)− 1

2(m+1)

thus completing the induction on 2 and 4. The cases 3 and 5 in which m is odd is
similar.

We are ready to prove the main property.

Theorem 23. Suppose m ∈ N steps of the random walk are performed, then

P (−k,m) = P (k,m) =


1

2(|k|+1)
k ∈ [m]

1

2(m+1)
k = m+ 1

0 k > m+ 1

where P (k,m) = P ((−)k,m) + P ((+)k,m).

Proof. It suffices to show this property for the walk starting at ((+), 1) with total probability
1/2, then extends to the random walk by symmetry.

∀m ∈ N, by the previous Lemma, we have

P (m+ 1,m) = P ((+)m+ 1,m) =
1

2(m+1)

P (m− 1,m) = P ((+)m− 1,m) + P ((−)m− 1,m) = 2(
1

2(m+1)
) =

1

2m

P (−m,m) = P ((−)−m,m) =
1

2(m+1)
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∀ odd j ∈ [3,m− 1],

P (m− j,m) = P ((+)m− j,m) + P ((−)m− j,m)

= 2(2P ((+)m− j + 2,m) +
1

2(m+1)
)− 1

2(m+1)

+ 2(2P ((−)m− j + 2,m)− 1

2(m+1)
) +

1

2(m+1)

= 4(P ((+)m− j + 2,m) + P ((−)m− j + 2,m))

= 4P (m− j + 2,m)

∀ even l ∈ [2,m− 1],

P (−m+ l,m) = P ((+)−m+ l,m) + P ((−)−m+ l,m)

= 2(2P ((+)−m+ l − 2,m) +
1

2(m+1)
)− 1

2(m+1)

+ 2(2P ((−)−m+ l − 2,m)− 1

2(m+1)
) +

1

2(m+1)

= 4(P ((+)−m+ l − 2,m) + P ((−)−m+ l − 2,m))

= 4P (−m+ l − 2,m)

then apply induction we obtain the desired results on all nodes occupied by the walk
starting at ((+), 1). By symmetry argument, P (−k,m) = P (k,m), thereby extending the
results to nodes occupied by the walk originated from ((−), 1) as well.

4.2.2 Simulate the Random Picking Process

Consider a Glued Tree of 2n+ 2 levels, then there are 2n+2− 2 nodes in total. Suppose the
algorithm has queried t nodes, and it picks a node from the remaining 2n+2−2−t unknown

nodes uniformly at random, then each node gets picked with probability
1

2n+2 − 2− t
.

Note that one is allowed to pick an unknown node according to some distribution other
than the uniform distribution, but since each unknown node gets a label uniformly at ran-

dom, we have ∀ unknown v ∈ V , P ( label of v is a undiscovered label z) =
1

2n+2 − 2− t
,
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and

P (v gets picked) =
∑

z undiscovered label

P (v gets picked | label of v is z)P (label of v is z)

=
1

2n+2 − 2− t
∑

z undiscovered label

P (z gets picked)

=
1

2n+2 − 2− t

which gives the same result as the uniform distribution.

We are ready to state the Simulation algorithm.

Algorithm 2 Simulating the random picking process

1: Start at the Entrance.
2: Let b be either 0 or 1 with probability 1/2 each
3: if b = 0 then
4: Take a path P of length n to reach a node on level n+ 1 uniformly at random (i.e.,

querying and moving to a unvisited neighbour n times.)
5: z ← 0
6: for i = 1 to n+ 1 do
7: if z = 0 then
8: Let bi be either 0 or 1 with probability 1/2 each
9: if bi = 0 then

10: Move backward by one step, stop when reaching the ENTRANCE
11: else
12: Move to a neighbour that is not on P
13: z ← 1
14: else
15: Move forward to one of the two neighbours with probability 1/2 each

16: else
17: Take a path of length n+ 1 to reach a node on level n+ 2 uniformly at random
18: for j = 1 to n+ 1 do
19: Move forward to one of the two neighbours with probability 1/2 each, stop when

detecting the EXIT

20: Return the last node
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This algorithm runs in at most 2(n + 1) queries. To save some queries, instead of
querying nodes in every iteration, the algorithm can be implemented by generating a set
of directions from {backward, left, right} to represent the sequence of moves, then query
the nodes only when necessary.

Observe when one starts at the ENTRANCE and moves along the path of length
k ∈ [n + 1], one always lands on level k + 1. This structure is quite important, and it is
exploited again later in designing the deterministic algorithm.

One can easily verify (though tedious) that starting in 4 and 17 of the algorithm, the
first n steps of the algorithm is exactly a random walk on ((±),Z\{0}) with node −1 being
level n+ 1, and node 1 being level n+ 2. In the (n+ 1)-th step, the probability differs only
on levels 1, 2, 2n - 1, 2n, since the algorithm stops once reaching the ENTRANCE or the
EXIT. It has the following probability distribution

P (n+ 1− k) = P (n+ 2 + k) =



1

2(k+2)
0 ≤ k ≤ n− 2

1

2(n+2)
k = n− 1

3

2(n+2)
k = n

(A Matlab code is included in the Appendix for verification purpose)

Since we always choose uniformly at random, each node on the same level gets picked
with the same probability. Hence, each node on level n + 1 − k and n + 2 + k , k ∈

{0, . . . , n−2} gets picked with probability
1

2(k+2)

1

2(n+1−k−1) =
1

2n+2
, where 2(n+1−k−1) is the

number of nodes on level n+ 1− k and n+ 2 + k; in particular, given the node is unknown
and on level {3, . . . , 2n}, the probability of this node getting picked follows a uniform
distribution. It is the same as the true conditional probability distribution, because both
are uniform distributions.

Suppose the number of nodes queried is t = o(2n/2), we show next that even if we
run the algorithm o(2n/2) many times, the probability this algorithm returns a node not
meeting the condition (i.e., node is either known or on level ∈ {1, 2, 2n + 1, 2n + 2}) is
negligible when n is large enough. Indeed, in each round, the probability of the node

not meeting the condition is at most
t+ 8

2(n+2)
≤

1

2(n/2)
, then the probability this algorithm

ever returns a node not meeting the condition in o(2n/2) many trials follows a geometric
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distribution with tail probability bounded below by

(1−
1

2(n/2)
)o(2

n/2) = (1−
1

2(n/2)
)s·o(2

n/2)/s

= [(1−
1

2(n/2)
)o(2

n/2)]1/s

≥ [(1−
1

2(n/2)
)2

n/2

]1/s

≥ (
1

e
)1/s

which can be arbitrarily close to 1, since we may take large s ∈ N as n gets large.

The algorithm simulates the random picking process because

• Under the true distribution, when only o(2n/2) nodes have been queried, the proba-
bility that a randomly picked unknown node is on level l ∈ {1, 2, 2n + 1, 2n + 2} is
O( 1

2n
), which is negligible when n is large enough.

• the two conditional probability distributions are the same

It remains to show the algorithm is a special case of a bigger framework, namely the Tree
Embedding Process, and prove a Ω(2n/2) lower bound for this process.

4.2.3 Lower Bound for Tree Embedding

For any algorithm that starts at the Entrance and queries only known nodes, the oracle
always returns two unknown nodes unless the algorithm detects a cycle on the Glued Tree.
Hence, before the algorithm detects a cycle, we may think of the algorithm embedding a
binary tree into the Glued Tree rooted at ENTRANCE. This section is devoted to show
any Tree Embedding process that detects either a cycle or the EXIT with high probability
must make Ω(2n/2) queries.

The Tree Embedding was first defined in [CCD03]. Later [FZ03] gave a Ω(2n/2) lower
bound assuming the input size is exponentially larger than the number of nodes (which
eliminates the possibility of picking a random unknown node). For completeness, we adapt
and include the proof here.
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For a rooted binary tree T , define an embedding of T into G to be a function π from the
nodes of T to the nodes of G such that π(ROOT) = ENTRANCE and for all nodes u and
v that are neighbours in T , π(u) = π(v) are neighbours in G. We say that an embedding
of T is proper if π(u) 6= π(v) for u 6= v. We say that a tree T exits under an embedding π
if π(v) = EXIT for some v ∈ T (i.e., the embedding detects the EXIT).

Algorithm 3 Tree Embedding [CCD03]

1: Given a binary tree T, label the ROOT of T as 0, and label the other nodes of T with
consecutive integers so that if node i lies on the path from the root to node j then
i < j.

2: Set π(0) = ENTRANCE.
3: Let i and j be the neighbours of 0 in T .
4: With probability 1/2 set π(i) = u and π(j) = v, and with probability 1/2 set π(i) = v

and π(j) = u.
5: for i = 1, 2, 3, . . . do
6: if node i is not a leaf, and π(i) is not EXIT or ENTRANCE then
7: Let j and k denote the children of node i, and l denote the parent of node i
8: Let u and v be the neighbours of π(i) in G other than π(l)
9: With probability 1/2 set π(i) = u and π(j) = v, and with probability 1/2 set
π(i) = v and π(j) = u

The algorithm for simulating random picking process is merely a special case of the
Tree Embedding process; indeed, in the Simulation algorithm, if b = 0, then the algorithm
embeds a path, and if b = 1, the algorithm embeds either a path or a tree.

We are ready to show the proof that bounds the query complexity of Tree Embedding
process from below.

Lemma 24. [FZ03] Any Tree Embedding process, on average of all possible random cycles,
can detect neither a cycle nor the EXIT with high probability in o(2n/2) queries.

Proof. Let T be a tree with t nodes, with image π(T ) in Gn under the random embedding
of π. For any nonroot node u ∈ T , let p(u) ∈ T be the parent of u.

We assume that in Gn, the ENTRANCE is at level 1 and the EXIT is at level 2n+ 2,
and the middle layer is between levels n+ 1 and n+ 2. Thus both binary trees have height
n. To reach the EXIT from the column n+ 1, π has to move right n times in a row, which
has probability 2−n. Since there are at most t tries on each path of T , and there are at
most t such paths, the probability of finding the EXIT, P (T exits on Gn), is bounded by
t2 · 2−n.
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Now assume that π(T ) does not detect the EXIT. It is easy to see that

P (π is improper) =
∑
a,b∈T

P [π(a) = π(b) and π(p(a)) 6= π(p(b))]

=
∑
a,b∈T

∑
u∈V (Gn)

P [π(a) = π(b) = u and π(p(a)) 6= π(p(b))]

We calculate P (π(a) = π(b) = u) first for fixed a, b ∈ T and u ∈ Gn. Let the height of
u be the distance h from u to a leaf of the subtree that u is in, i.e., if u is at level l ≤ n+1,
then h = n+ 1− l, and if u is at level l ≥ n+ 2, then h = l − (n+ 2).

u

h

Look at the two paths pa and pb in T from the root to a and to b, respectively. Either
both paths go through the middle layer of Gn, or only one path goes through the middle
layer (at least one path must go through the middle layer). Assume first that both paths
go through the middle layer.

Assume WLOG that pb goes through the middle layer at least as many times as pa.
From the last time pa goes through the middle layer, in order to reach u it must first reach
some ancestor of u, and let v be the highest ancestor 2.

v

u
w

z

h′

h

pa
pb

2v is the node that is closest to the ENTRANCE if l ≤ n + 1, or the EXIT if l ≥ n + 2.
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If v is u, then pa and pb each takes an edge below u (refer to the graph). There are two
scenarios, namely pa taking the left edge and pa taking the right edge. Suppose pa takes
the left edge, then when it crosses the middle layer, it may take any leaf of the subtree
that w is in, and there are at most 2(h−1) many of them that have not been queried. Since
T has t nodes, the process makes at most t queries, hence there are at least 2n − t many
nodes on level n + 1 which pa can possibly take, so the probability of pa landing on the

subtree that w is in is bounded above by
2(h−1)

2n − t
, on average of all possible random cycles.

After pa lands on the subtree, it must go up by h levels to reach u, and the probability
of choosing the edges to go up is 1/2 for each level, hence the probability of pa getting

to u is bounded above by 2−h ·
2(h−1)

2n − t
=

1

2(2n − t)
. The case is similar for pb. Therefore,

the probability of pa and pb meeting at u is at most 2(
1

2(2n − t)
)2 =

1

2(2n − t)2
. Note that

when u is on level n+ 1 or n+ 2, then the above probability is
1

(2n − t)2
.

If v is not u. Let the height of v be h′. We may adopt the same argument as in
the previous paragraph by considering the subtrees induced by z and u instead, then the

probability of pa reaching v and pb reaching u are bounded above by
1

2(2n − t)
and

1

2n − t
,

respectively. Since the probability of pa moving from v to u is 2(h−h′), the probability of pa

and pb meeting at u is at most
2(h′−h)

2(2n − t)2
. Summing over all possible v’s, we get

n∑
h′=h

2(h−h′)

2(2n − t)2
=

1

2(2n − t)2
0∑

m=h−n

2m ≤ 1

(2n − t)2

or
3

2(2n − t)2
if u is on level n + 1 or n + 2. Summing over all possible u’s, we obtain the

upper bound
3(2(n+2) − 2)

2(2n − t)2
.

Now assume that only one path, say pb goes through the middle layer, and that π(a) =
π(b) = u. The probability of pa getting to u is 2(h−n), and the probability of pb getting to u
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is at most
1

2n − t
. Summing over all possible u’s on the binary containing the ENTRANCE,

∑
u

2(h−n)

2n − t
=

n∑
h=1

2(n−h) 2(h−n)

2n − t
=
n+ 1

2n − t

where the first equality follows from the fact that there are 2(n−h) many u’s with height h.

Hence,

P (π is improper) =
∑
a,b∈T

P [π(a) = π(b) and π(p(a)) 6= π(p(b))]

=
∑
a,b∈T

∑
u∈V (Gn)

P [π(a) = π(b) = u and π(p(a)) 6= π(p(b))]

≤
∑
a,b∈T

3(2(n+2) − 2)

2(2n − t)2
+
n+ 1

2n − t

≤ t2

2n − t
(
3(2(n+2) − 2)

2(2n − t)
+ n+ 1)

which can be smaller than any constant probability for t = o(2n/2) and large n.

Since we may simulate random picking process with 2(n+ 1) queries, we may simulate
any classical algorithms making t queries by Tree Embedding process with at most 2t(n+1)
queries. Hence, we obtain the following corollary.

Corollary 25. Any classical algorithms that detect either a cycle or the EXIT with high
probability must make Ω(2n/2/n) queries.

4.3 An O(n2n/2) Deterministic Algorithm

The lower bound Ω(2n/2/n) is almost tight as we show in this section. We present a
O(n2n/2) classical deterministic query algorithm. To overcome the randomness in the
middle layer, one natural approach is to try “every possible option”. We first incorporate
this idea in designing the following deterministic algorithm.
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Algorithm 4 The first approach

1: Start at the ENTRANCE, query all nodes on level l ∈ [b2n/3c] and denote the set of
nodes by U .

2: Follow any path from U to reach an arbitrary node v0 on level n+ 2.

3: for i = 1 to dn/3e do
4: Denote the two unvisited neighbours of vi−1 by v0i and v1i , respectively.
5: Form a “perfect binary tree”3 Ti of height dn/3e + i rooted at v0i (i.e., first query

the neighbours of v0i that are not vi−1, then repeat the same process to the neighbours
until the furthest node from v0i is at distance dn/3e+ i).

6: if Ti ∩ U = ∅ then
7: vi ← v0i
8: else
9: vi ← v1i

10: Form a “perfect binary tree” T of height b2n/3c rooted at vdn/3e; the EXIT is on T .

Observe that starting at the ENTRANCE, one always lands on level l + 1 if one takes
a path of length l ∈ [n+ 1]. Hence, the first step can be seen as quering all paths of length

b2n/3c − 1, and there are
∑b2n/3c

i=1 2i = O(22n/3) nodes on those paths.

For vi−1 on level n + 1 + i, the unvisited neighbours v0i and v1i are on levels n + i and
n+2+ i. Steps 5 to 9 ensure we always move to the node on level n+2+ i; indeed, suppose
v0i is on level n + i and v1i is on level n + 2 + i, then the distance between v0i and U is
n+ i−b2n/3c = dn/3e+ i, whereas the distance between v1i and U is dn/3e+ i+2. Hence,
a perfect binary tree rooted at v0i has common element with U , but it is not the case for
v1i , so we may distinguish between v0i and v2i , and move to the node on level n+ 2 + i.

For each i ∈ [dn/3e], at most 2dn/3e+i queries are needed to form the perfect binary tree
Ti, then the total number of queries needed is

dn/3e∑
i=1

2dn/3e+i = O(22n/3).

By induction, vdn/3e is on level n + 2 + dn/3e, so the EXIT is at distance (2n + 2) −
(n+ 2 + dn/3e) = b2n/3c away from vdn/3e, hence is on the perfect binary tree T of height
b2n/3c. The total number of queries needed to detect the EXIT is therefore O(22n/3).

3The procedure does not always produce a tree
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We can actually do better than the first approach. Suppose again that v0i is on level
n+ i and v1i is on level n+ 2 + i, and one follows a path of length i− 1 starting at v0i , then
one lands on level n + 1 definitely, whereas one lands on level m > n + 1 if starting at v1i
instead. Exploiting this structure gives an O(n2n/2) algorithm. The same algorithm was
discovered independently by Shalev Ben-David and disclosed in a footnote in [AA15].

Algorithm 5 An O(n2n/2) classical algorithm

1: Start at the ENTRANCE, query all nodes on level l ∈ [bn/2c] and denote the set of
nodes by U .

2: Follow a random path to reach an arbitrary node v0 on level n+ 2.

3: for i = 1 to dn/2e do
4: Denote the two unvisited neighbours of vi−1 by v0i and v1i , respectively.
5: Starting at v0i , follow a random path of length i− 1 to reach a node ui.
6: Form a “perfect binary tree” Ti of height dn/2e+ 1 rooted at ui
7: if Ti ∩ U = ∅ then
8: vi ← v0i
9: else

10: vi ← v1i

11: Form a “perfect binary tree” T of height bn/2c rooted at vdn/2e; the EXIT is on T .

If v0i is the node on level n+ i, then ui is on n+ 1, and step 6 ensures we always query
a node w on level n+ 1− dn/2e − 1 = dn/2e, i.e., w in U . If v0i is on level n+ 2 + i, then
the tree formed in step 6 is disjoint from U . Hence, together with steps 7 to 10, we can
always identify and move to the node on a higher level. After dn/2e iterations, we are on
level n + 2 + dn/2e, which is at distance 2n + 2 − (n + 2 + dn/2e) = bn/2c to the EXIT,
so the EXIT is discovered in step 11.

This algorithm takes O(2n/2) queries in step 1, 6, and 11. Since there are O(n) itera-
tions, the total number of queries is O(n2n/2).

44



Chapter 5

Conclusion

In this thesis, we have mainly studied the classical query complexity of detection problems
on modified Hypercube and Glued Tree.

• For the search problem on the modified Hypercube H
(n)
k where k is a constant, the

classical query complexity is at most O(polylog(N)), and we presented some evidence
that the lower bound of the quantum query complexity may increase as we add more
edges to the graph.

• For the search problem on the Glued Trees with input size N , we consider a variant
with input size roughly equal to the number of nodes by introducing a simulation
process; we strengthened the query complexity lower bound. We also presented a
classical algorithm, which shows the classical query complexity bound is tight, up to
a log factor.

In summary, the classical query complexity has an Ω(N1/2/ log(N)) lower bound,
and an O(log(N)N1/2) upper bound, hence the complexity is Θ(N1/2), tight up
to a log factor. The query complexity gap is O(polylog(N)) quantum queries to
Ω(N1/2/ log(N)) classical queries.

We only examined algorithms on graphs in this thesis, but query complexity gap is not
limited to just graphs. There are many other types of problems that exhibit large query
complexity, and some of the gaps are even exponentially larger than the one achieved by
the Glued Trees. The largest query complexity gap known so far is 1 versus N , where N is
the input size; such separation is achieved by the Fourier Sampling problem, and the reader
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can learn more about the topic in [AC17]. On the other hand, Aaronson and Ambainis
showed in [AA15] that for any partial Boolean functions which can be solved by a quantum
algorithm in k queries, where k is a constant, the most efficient classical algorithm for it
has query complexity bounded above by O(N1−1/2k).

We end this thesis with some related open problems

• For partial Boolean functions, is the query complexity gap at most O(N1/2)?

• Is there any graph reach problem that exhibits a query complexity gap ofO(polylog(N))
versus N?
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Appendix A

Matlab Code for Simulation

This is one of many random walks we tried on the Glued Tree. The code was written
first for checking the distribution, and once we found this good candidate, we proved its
validity afterwards. The input and output are specified in the comment of the function.
When interpreting the output, the reader should refer to the diagram provided in chapter
section 4.2.1.

A.1 Code

function Dist = GTRP(W_type, W, steps)

%A function for Simulating the random picking process or Computing the

%probability distribution of random walk on (\pm, Z) in # steps

%

%W_type is the walk type, it can be either ’S’ which stands for Simulation, or

%anyt other string, which returns the random walk

%

%W takes input and returns the walk starting at (-, -1) if W = ’Wl’, (+, 1)

%if W = ’Wr’ and mix of the two with probability 1/2 each if W is any

%other string

format rat

if W_type == ’S’
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n = steps;

else

n = steps + 2;

end

%Define Transition matrix M

M = zeros(2 * (2 * n - 1));

M(2 * n, 2 * n) = 1;

M(2 * n - 1, 2 * n - 1) = 1;

for i = (2 - 1):(n - 1)

M(i, i + 1) = 1;

end

for i = ((n + 1) - 1):((2 * n - 1) - 1)

M(i, i + 1) = 1/2;

M(i, i + (2 * n) - 1) = 1/2;

end

for i = ((2 * n - 1) + 2):((2 * n - 1) + n)

M(i, i - (2 * n - 1)) = 1/2;

M(i, i - 1) = 1/2;

end

for i = ((2 * n - 1) + (n + 1)):(2 * (2 * n - 1))

M(i, i - 1) = 1;

end

%Output different results

I = eye(2 * (2 * n - 1));

if W == ’Wl’

Dist_Temp = 1/2 * I(:, (2 * n - 1) + n);

elseif W == ’Wr’

Dist_Temp = 1/2 * I(:, n);

else

Dist_Temp = 1/2 * (I(:, (2 * n - 1) + n) + I(:, n));

end
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if W_type == ’S’

Dist_Temp = (Dist_Temp’ * M^n)’;

Dist = [[(- n : -1) (1 : n)]’...

[0; Dist_Temp(1:2 * n - 1)] + [Dist_Temp(2 * n:2 * (2 * n - 1)); 0]];

else

Dist_Temp = (Dist_Temp’ * M^(n - 2))’;

Dist = [[(- n : -1) (1 : n)]’ [0; Dist_Temp(1:2 * n - 1)]...

[Dist_Temp(2 * n: 2 * (2 * n - 1)); 0]];

end

end

52


	List of Figures
	List of Symbols
	Introduction
	Outline of this Thesis

	Preliminaries
	Algorithm
	Introduction to Algorithms
	Query Model

	Random Walk
	Quick Review of Elementary Probability
	Markov Chain
	Random Walk on Graphs
	Hitting Times


	Search on Modified Hypercube
	Hypercube
	Modified Hypercube
	An efficient classical algorithm


	Glued Trees Problem
	Introduction
	An (2n/2/n) Classical Lower Bound
	Random Walk on ((), Z{0})
	Simulate the Random Picking Process
	Lower Bound for Tree Embedding

	An O(n 2n/2) Deterministic Algorithm

	Conclusion
	Reference
	Matlab Code for Simulation
	Code


