
Reconfiguring Graph Colorings

by

Krishna Vaidyanathan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Krishna Vaidyanathan 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Graph coloring has been studied for a long time and continues to receive interest within
the research community [43]. It has applications in scheduling [46], timetables, and com-
piler register allocation [45]. The most popular variant of graph coloring, k-coloring, can
be thought of as an assignment of k colors to the vertices of a graph such that adjacent
vertices are assigned different colors.

Reconfiguration problems, typically defined on the solution space of search problems,
broadly ask whether one solution can be transformed to another solution using step-by-step
transformations, when constrained to one or more specific transformation steps [55]. One
well-studied reconfiguration problem is the problem of deciding whether one k-coloring can
be transformed to another k-coloring by changing the color of one vertex at a time, while
always maintaining a k-coloring at each step.

We consider two variants of graph coloring: acyclic coloring and equitable coloring, and
their corresponding reconfiguration problems. A k-acyclic coloring is a k-coloring where
there are more than two colors used by the vertices of each cycle, and a k-equitable coloring
is a k-coloring such that each color class, which is defined as the set of all vertices with a
particular color, is nearly the same size as all others.

We show that reconfiguration of acyclic colorings is PSPACE-hard, and that for non-
bipartite graphs with chromatic number 3 there exist two k-acyclic colorings fs and fe
such that there is no sequence of transformations that can transform fs to fe. We also
consider the problem of whether two k-acyclic colorings can be transformed to each other
in at most ` steps, and show that it is in XP, which is the class of algorithms that run
in time O(nf(k)) for some computable function f and parameter k, where in this case the
parameter is defined to be the length of the reconfiguration sequence plus the length of the
longest induced cycle.

We also show that the reconfiguration of equitable colorings is PSPACE-hard and W[1]-
hard with respect to the number of vertices with the same color. We give polynomial-time
algorithms for Reconfiguration of Equitable Colorings when the number of colors used is
two and also for paths when the number of colors used is three.

iii

Acknowledgements

I would like to thank my supervisor, Professor Naomi Nishimura, for her support,
guidance, and patience. This work would not have been possible without her suggestions
and feedback.

I would also like to thank Professor Therese Biedl and Professor Anna Lubiw for agree-
ing to read my thesis and providing valuable comments.

I am grateful to Kevin Yeo, Vijay Subramanya, Hicham El-Zein, Tatsuhiko Hatanaka,
Haruka Mizuta, Tesshu Hanaka, and Kshitij Jain for the many discussions that I have had
with them.

I am also grateful to my family and friends for their support.

Lastly, I am thankful to Professor Lekshmi for encouraging me to pursue graduate
studies.

iv

Table of Contents

List of Figures vii

1 Introduction 1

1.1 Organization . 3

2 Preliminaries 4

2.1 Graphs . 4

2.2 Graph classes . 5

2.3 Coloring . 6

2.3.1 Acyclic colorings . 7

2.3.2 Equitable colorings . 8

2.4 Reconfiguration . 11

2.5 Parameterized complexity . 13

3 Literature Survey 15

3.1 Colorings . 15

3.1.1 Acyclic colorings . 16

3.1.2 Equitable colorings . 16

3.1.3 List colorings . 17

3.1.4 Kempe chains . 17

3.1.5 Edge-colorings . 18

v

3.2 Reconfiguration of graph colorings . 18

3.2.1 Recoloring a single vertex . 18

3.2.2 Recoloring a single edge . 21

3.2.3 Kempe chain recoloring . 22

3.2.4 Reconfiguring list L(2, 1)-labelings 22

4 Acyclic Coloring Reconfiguration 24

4.1 Non-bipartite graphs of acyclic chromatic number 3 24

4.2 k-ACR REACH is PSPACE-hard . 27

4.3 k-ACR BOUND is in XP . 34

5 Equitable Coloring Reconfiguration 38

5.1 General properties of k-ECR REACH 38

5.2 k-ECR REACH is PSPACE-hard . 40

5.3 2-equitable colorings . 46

5.4 Paths . 50

6 Conclusions and Future Work 80

References 82

vi

List of Figures

2.1 Canonical form for a path of odd length (|colorclass(1 , f)| = 4, |colorclass(2 , f)| =
3, |colorclass(3 , f)| = 4) . 10

2.2 Canonical form for a path of even length (|colorclass(1, f)| = 4, |colorclass(2, f)| =
3, |colorclass(3, f)| = 3) . 10

3.1 Two non-Kempe equivalent 3-colorings of the triangular prism. 22

5.1 The figure shows a sample input and output 3-equitable coloring of a path
for Algorithm 4. 53

5.2 One iteration of Algorithm 6 . 57

5.3 One iteration of Algorithm 7. 58

5.4 Operations of Algorithm 6 for iteration p+ 2. 59

5.5 Example of one iteration of Algorithm 8. 63

5.6 An example of the operations in Algorithm 10. 69

5.7 An example of the operations in Algorithm 11. 72

5.8 An example for Algorithm 13, where Figure 5.8a and Figure 5.8b show a
subpath and a 3-equitable colorings before and after, respectively. 75

5.9 An example of the operations in Algorithm 14. 77

6.1 A possible canonical form for paths when k > 3. 81

vii

Chapter 1

Introduction

Reconfiguration problems consider finding step-by-step transformations between feasible
solutions of search problems. A few well-known examples of reconfiguration problems in-
clude the 15-puzzle, Rush Hour, and Rubik’s cube [15, 50]. Also, some of the search
problems on which reconfiguration problems have been studied are: graph coloring, inde-
pendent set, and Boolean satisfiability [55].

Another way of formulating reconfiguration problems is through the reconfiguration
graph. The reconfiguration graph of an instance of a search problem has as its vertex set
all feasible solutions, and two vertices in the reconfiguration graph are connected by an
edge if the feasible solution associated with one vertex can be transformed to the feasible
solution associated with the other vertex by a transformation step. Different adjacency
relations or, equivalently, transformation steps can be defined on the reconfiguration graph
of the search problem under consideration. When considering a search problem where a
feasible solution is a subset of the set of all vertices, three popular transformation steps
are token jumping (TJ), token sliding (TS), and token addition and removal (TAR) [30].

We explain the three transformation steps (TJ, TS, and TAR) in the context of In-
dependent Set Reconfiguration. An independent set of a graph is defined as a set
of vertices such that no two vertices in the set are adjacent. In all the three transformation
steps, we can model an independent set of a graph as a set of tokens placed on the vertices
of the independent set. In TJ, an independent set can be transformed by moving a token
from a vertex of the independent set to another vertex. In TS, an independent set can
be transformed by sliding a token along an edge from a vertex of the independent set. In
TAR, a token can be added or removed as long as there are at least m− 1 tokens (where
m is some positive integer).

1

Usually, three types of problems are raised in reconfiguration.

1. The Reachability problem, which takes as input two feasible solutions of an in-
stance of a search problem, and asks if the two feasible solutions are connected in
the reconfiguration graph.

2. The Shortest Transformation (or BOUND) problem, which takes as input two
feasible solutions of an instance of a search problem and a positive integer `, and asks
if the two feasible solutions are connected in the reconfiguration graph by a path of
length `.

3. The Connectivity problem, which asks if the reconfiguration graph is connected.

In this thesis, we are primarily interested in the Reachability problem, and more
specifically, reconfiguration of two variants of graph coloring (acyclic and equitable color-
ings).

Reconfiguration of graph colorings has real-world applications in the field of radio-
communication networks for radio channel reassignment [4] and in statistical physics for
single-site Glauber dynamics (single-site Glauber dynamics can be represented as a Markov
chain whose state space is the set of all k-colorings of a graph) [35] 1. They also have
applications in frequency assignment [28] and wireless local area networks [31].

The problem of whether two graph colorings are connected in the reconfiguration graph
has received significant attention, and some consider it to be the most well-studied problem
in reconfiguration [55]. Different variants of graph coloring such as proper coloring, list
coloring, list labeling, and edge-coloring have been considered. In addition, for the variants
of graph coloring mentioned, transformation steps such as changing the color of a vertex,
Kempe chain recoloring, and changing the color of an edge have been studied.

We consider two variants of graph coloring that have not been studied in reconfigu-
ration: acyclic colorings and equitable colorings. In reconfiguration of acyclic colorings,
we consider that the transformation step is to change the color of a vertex and study the
Reachability, Shortest Transformation, and Connectivity problems. In recon-
figuration of equitable colorings, we consider that the transformation step is to swap the
colors of two vertices, and study the Reachability problem.

1These applications were first reported by Cereceda [14].

2

1.1 Organization

The organization of the rest of the thesis is as follows.

In Chapter 2, we give terminology and notation that we use throughout this thesis.
We outline a brief history of graph coloring in Chapter 3. Then we survey results in
reconfiguration of variants of graph coloring when the transformation step is to change the
color of a single vertex, and also other transformation steps. We also provide the history
of acyclic colorings and equitable colorings.

We study Acyclic Coloring Reconfiguration in Chapter 4. We consider the Connec-
tivity problem and show that for any non-bipartite graph of acyclic chromatic number 3
there exist two k-acyclic colorings that can not be transformed to each other by a sequence
of transformation steps. We also prove that Acyclic Coloring Reconfiguration (k-
ACR REACH) is PSPACE-hard, and consider the related Shortest Transformation
problem (k-ACR BOUND) and show that it is in XP with respect to the length of the
reconfiguration sequence plus the length of the longest induced cycle.

In Chapter 5, we show that Equitable Coloring Reconfiguration (k-ECR
REACH) is PSPACE-hard and also W[1]-hard with respect to the size of a color class
(the number of vertices with the same color). Then we give an algorithm that runs in
linear time for 2-ECR Reach. Also, for paths, we show that 3-ECR Reach can be
solved in polynomial time.

Finally, in Chapter 6, we raise the question of whether the W-hardness of k-ACR
BOUND can be proved with respect to the length of the reconfiguration sequence plus
the length of the longest induced cycle. We also ask the question of whether k-ECR
REACH is in FPT for some parameter. Lastly, we conjecture that k-ECR REACH can
be solved in polynomial time for paths when the number of colors used is greater than
three and provide a sketch of a possible algorithm.

3

Chapter 2

Preliminaries

In this chapter, we present some definitions and notation that we use throughout the thesis.
In Section 2.1, we give standard graph theoretic definitions. In Section 2.2, we define classes
of graphs that we look at in this thesis. In Section 2.3, we provide formal definitions related
to coloring, and since this thesis deals specifically with acyclic and equitable colorings,
Sections 2.3.1 and 2.3.2 elaborate on definitions related to them, respectively. We are then
ready to introduce, in Section 2.4, definitions for reconfiguration problems in general and
specific definitions for the reconfiguration problems that we discuss in this thesis. Since
we discuss parameterized algorithms for k-ACR BOUND, which we define in Section 2.4,
we discuss parameterized complexity in Section 2.5.

2.1 Graphs

We refer the reader to the book by Diestel [18] for graph theoretic definitions that we
do not define. Unless otherwise specified, we consider only simple, undirected graphs and
denote the vertex and edge sets of a graph G as V (G) and E(G), respectively. We typically
denote by n the size of graph G, |V (G)|. Two vertices u and v are said to be adjacent
if uv ∈ E(G). The neighborhood of a vertex v in graph G, denoted by NG(v), is the set
{u | uv ∈ E(G)}. The degree of a vertex v is defined as d(v) = |{u | u ∈ V (G), uv ∈ E(G)}|
and the maximum degree ∆(G) = maxv∈V (G) d(v). A graph is bipartite if there exists a
partition of the vertex set into two disjoint sets such that no edge exists between two
vertices in the same set. The largest length of the shortest path between any two vertices
of a graph is called the diameter of the graph. The line graph of a graph G is defined

4

as the graph whose vertex set corresponds to E(G) and two vertics are adjacent if their
corresponding edges in E(G) share a common vertex [18].

An induced subgraph of G for a subset S ⊆ V (G), denoted as G[S], is the graph with
vertex set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}. For a path P , we define a subpath of
P as a connected subgraph of P . We also say that two vertices are connected if there exists
a path between them or if they are the same vertex. A subgraph A of a graph is said to be
connected if between any two vertices of A, there exists a path P such that V (P) ⊆ V (A).
For a connected graph G, we call a set S ⊂ V (G) a separator if the induced graph on
V (G) \ S has two vertices that are not connected.

A graph is k-chordal if there exists no induced cycle of length greater than k. For a
graph G, let Γ(G) denote the minimum positive integer t for which G is t-chordal. Thus,
Γ(G) = 3 when G is chordal.

An identification of two vertices u and v of a graph G is a transformation where u and
v are replaced by a vertex w and each edge wx is added, where x is adjacent to either u
or v in G.

We consider directed graphs in some of our proofs by directing the edges of an undirected

graph, and refer to the set of arcs of a directed graph
−→
G as E(

−→
G). We denote an arc from

u to v in a directed graph
−→
G as −→uv, where u, v ∈ V (

−→
G). Alternatively, we also denote the

arc from u to v as ←−vu. For a subset S of V (
−→
G), we denote the directed induced subgraph

by
−→
G [S]. For ease of reading, in this thesis, we also denote the directed induced subgraph

for the subset S by
−→
S .

2.2 Graph classes

We define a few classes of graphs that are looked at in the results surveyed in Chapter 3.

Definition 1. A graph G is cubic if each vertex in G has degree exactly three.

We define two similar decompositions, tree-decompositions and then path-decomposi-
tions.

Definition 2. A tree-decomposition of a graph G is defined as a pair (T,X) where T is a
tree and X maps a node of T to a vertex subset of G, satisfying the conditions below.

1.
⋃

v∈V (T) X(v) = V (G).

5

2. For each edge uv ∈ E(G), there is a node y in T such that u, v ∈ X(y).

3. For each vertex v ∈ V (G), the induced graph on the set of nodes y in T such that
v ∈ X(y) is connected.

The width of a tree-decomposition (T,X) is defined as maxy∈V (T)|X(y)|−1, and the
treewidth of a graph G, tw(G), is defined as the least integer t such that there is a tree-de-
composition of width t [18].

Definition 3. A path-decomposition of a graph G is a tree-decomposition (P,X) where P
is a path.

The width of a path-decomposition (P,X), similar to the width of a tree-decomposition,
is defined as maxy∈V (P)|X(y)|−1, and the pathwidth of G is defined as the least integer t
such that there is a path-decomposition of width t [18].

The following graph class was introduced by Bonamy et al. to study the structure
of the reconfiguration graph for Coloring Reconfiguration [9]. The following graph class
requires knowledge of k-colorings, which we define in Section 2.3.

Definition 4. We call a graph G k-color-dense if it has a k-coloring and satisfies either of
the following conditions [9].

1. G is the disjoint union of cliques that have at most k vertices each.

2. G has a separator S, two disjoint subsets D1, D2 where D1 ∪ D2 = V (G) \ S and
both G[D1], G[D2] are connected, and two vertices u ∈ D1 and v ∈ D2 such that the
below conditions hold.

(a) |D1|= 1 or |D1 ∪ S|≤ k.

(b) S ⊆ NG(v).

(c) The graph obtained by identifying u and v is a k-color-dense graph.

2.3 Coloring

A k-vertex coloring of a graph G is a function f : V (G)→ {1, . . . , k}. A k-vertex coloring
f of G is proper or a k-coloring if for every edge uv in E(G), f(u) 6= f(v). Given a graph G

6

and a k-vertex coloring f , a subgraph H is said to be 2-chromatic if there exist two colors
c1 and c2 such that for every vertex u in V (H), f(u) = c1 or f(u) = c2. We also say that
two k-vertex colorings f1 and f2 differ by t, where t = |{u | u ∈ V (G), f1(u) 6= f2(u)}|.

Definition 5. We denote the set of vertices with color i in a k-vertex coloring f of G as
colorclass(i, f). We also refer to the set of all vertices with a color as a color class.

Definition 6. For any vertex set A ⊆ V (G) of graph G and k-vertex coloring f of G,
colors(A, f) is the set {f(u) | u ∈ A}.

Definition 7. A k-vertex coloring f of a graph G is said to be restricted on an induced
subgraph S to a k-vertex coloring f |S of S if f |S(u) = f(u) for every vertex u in V (S).

2.3.1 Acyclic colorings

A k-coloring of a graph G is acyclic if there exists no 2-chromatic cycle in G [2]. The
acyclic chromatic number, A(G), of a graph G is the smallest integer k for which there is
a k-coloring of G that is acyclic [2]. Note that when Γ(G) = 3, any proper coloring of G is
also an acyclic coloring, as otherwise a C3 that uses two or fewer colors would have an edge
whose endpoints have the same color, contradicting the fact that the coloring is proper.

We provide some definitions that we use to prove that the reconfiguration graph of a
non-bipartite graph, when the number of colors used is three, is not connected. We define
weights on a graph by giving all its edges directions. In Section 4.1, we use a strategy
of assigning weights to a directed graph depending on the colors of an edge’s endpoints
and the edge’s direction to show a sufficiency condition for two 3-acyclic colorings being
connected by a reconfiguration sequence. For this purpose, we typically direct the graph
so that a particular cycle or path is directed. We assume without loss of generality that
the colors used in all 3-acyclic colorings are 1, 2, and 3.

Definition 8. For an arc −→uv of a directed graph
−→
G with 3-acyclic coloring f , its weight is

given by the following equation depending on the values of f(u) and f(v), and we denote it
by w(−→uv, f). Note that for every edge uv and 3-acyclic coloring f of the graph, the vertices
u and v do not have the same color in f .

f(v) = 1 f(v) = 2 f(v) = 3
f(u) = 1 +1 -1
f(u) = 2 -1 +1
f(u) = 3 +1 -1

(2.1)

7

Definition 9. The weight of a subgraph
−→
S of a directed graph

−→
G with a 3-acyclic coloring

f , denoted by W (
−→
S , f), is the sum of the weights of its arcs. More formally, W (

−→
S , f) =∑

−→uv∈E(
−→
S)
w(−→uv, f).

2.3.2 Equitable colorings

In this section, we first define equitable colorings, then we give basic definitions that we
use when discussing Equitable Coloring Reconfiguration. Finally, we give definitions and
notation for paths when the number of colors used is three.

A k-coloring f of a graph G is equitable or a k-equitable coloring if for any two colors
c1, c2 used by the k-coloring, |colorclass(c1, f)| − |colorclass(c2, f)| ∈ {−1, 1} [48]. The
equitable chromatic number is the smallest k such that a k-equitable coloring exists for a
given graph [5].

We now define a transformation step for a k-equitable coloring of a graph, which we
use when studying whether there exists a sequence of transformation steps between two
k-equitable colorings of a graph.

Definition 10. Given a graph G and a k-equitable coloring f , for two vertices u, v of
V (G), we define the swap operation as changing the color of u to f(v) and the color of v
to f(u). We denote this as swap(u, v) in f .

Definition 11. Given two k-equitable colorings f and h of graph G, if f and h differ by
2, then we say that the swap between f and h is swap(u, v) where u and v are the vertices
whose colors are different in f and h.

Next, we define a necessary condition for when there can exist a sequence of swaps that
transforms one k-equitable coloring to another k-equitable coloring of a graph.

Definition 12. Given a graph G and two k-equitable colorings f and h, f is viable to h
(and vice-versa) if |colorclass(i, f)| = |colorclass(i, h)| for 1 ≤ i ≤ k.

Note that for a k-equitable coloring of a graph, the size of every color class remains the
same after any number of swaps. Clearly, for any two k-equitable colorings f and h of a
graph, if f is not viable to h then there can not exist a sequence of swaps that transforms
f to h or vice-versa.

We formally characterize, given a k-equitable coloring and two vertices of a graph, when
the k-vertex coloring that we obtain by swapping the colors of the two vertices is a proper

8

coloring. Intuitively, to characterize this, the colors of two vertices u and v of a graph can
be swapped if and only if each vertex in the neighborhood of u does not have the same
color as v and vice-versa.

Definition 13. Given a graph G, a k-equitable coloring f , and vertices u and v, we say
that u and v are valid for each other if colors(NG(v))∩f(u) = ∅, colors(NG(u))∩f(v) = ∅,
and f(u) 6= f(v). We also say that swap(u, v) in f is valid and denote by valid(v, f) the
set of all valid vertices for v in f .

Given source and target k-equitable colorings fs and fe, respectively, of a graph and
a vertex v, if v has different colors in the source and target k-equitable colorings then, at
some point in the reconfiguration sequence, the color of v is swapped with the color of a
vertex, say w, with color fe(v). Ideally, the color of w in the target k-equitable coloring
is not fe(v). Suppose that fm is the k-equitable coloring in the reconfiguration sequence
when the colors of v and w are swapped. We define below, given fm, fe, and v, the set of
all such w.

Definition 14. Given a graph G, two k-equitable colorings f and h, and a vertex v such
that f(v) 6= h(v), we denote as candidate(f, h, v) the set of vertices u such that f(u) 6= h(u)
and h(v) = f(u).

We define below terms and notation for paths when k = 3, which we use in Section 5.4
where we show that the Reachability question for Equitable Coloring Reconfiguration
can be solved in polynomial time. We first give definitions for ease of understanding when
referring to vertices of a path. Next, we define a canonical k-equitable coloring for paths
for specific sizes of color classes.

Definition 15. Given a path P = v1, v2, . . . , vn, a k-equitable coloring f , and a color c,
we define the rightmost c as the vertex vi, 1 ≤ i ≤ n, where i is the largest number such
that f(vi) = c.

Definition 16. Given a path P = v1, v2, . . . , vn, we say that a vertex vj is left of vi,
1 ≤ i, j ≤ n, if i > j, and we say that vj is right of vi if i < j. We also say that vj is the
predecessor of vi if j = i− 1, and we say that vj is the successor of vi if j = i+ 1.

Definition 17. Given a path P = v1, v2, . . . , vn and a 3-equitable coloring f , we say that
P is a c-alternating path, where c is a color used by f , if, for all i, exactly one vertex in
the set {vi, vi+1}, 1 ≤ i ≤ n− 1, has color c in f .

9

We define below a canonical 3-equitable coloring of a path v1, v2, . . . , vn depending on
whether n is odd or even. A high-level overview of the colors of vertices in the path is
that, in the beginning, starting from v1 it alternates between 2 and 3, and then alternates
between 1 and 2, and finally alternates between 1 and 3. When n is odd the rightmost 1 is
vn, and when n is even the rightmost 1 is vn−1. In the definition, notice that ` is the index
of the leftmost 1 in the canonical 3-equitable coloring.

Definition 18. Given a path P = v1, v2, . . . , vn and fixed sizes of color classes, we define
a canonical 3-equitable coloring f of P such that the string f(v1)f(v2) . . . f(vn) belongs to
one of the below regular languages, depending on whether n is even or odd.

1. n is odd: (23)k1(12)k2(13)k31 where, for ` = n− 2(|colorclass(1, f)| − 1), k1 = n−`+1
2

,
k2 = |colorclass(2, f)| − k1, and k3 = n− (k1 + k2)

2. n is even: (23)k1(12)k2(13)k3 where, for ` = n − 2 |colorclass(1, f)| + 1, k1 = n−`+1
2

,
k2 = |colorclass(2, f)| − k1, and k3 = n− (k1 + k2)

2

v1

3

v2

2

v3

3

v4

1

v5

2

v6

1

v7

3

v8

1

v9

3

v10

1

v11

Figure 2.1: Canonical form for a path of odd length (|colorclass(1 , f)| =
4, |colorclass(2 , f)| = 3, |colorclass(3 , f)| = 4)

2

v1

3

v2

1

v3

2

v4

1

v5

2

v6

1

v7

3

v8

1

v9

3

v10

Figure 2.2: Canonical form for a path of even length (|colorclass(1, f)| =
4, |colorclass(2, f)| = 3, |colorclass(3, f)| = 3)

The following Observation follows from the definition of canonical 3-equitable colorings.

10

Observation 1. Given a 3-equitable coloring f of a path P such that for vi, ` ≤ i ≤ |V (P)|,
where v` is the leftmost 1 in f , f(vi) and the color of vi in the canonical 3-equitable coloring
of f are the same, then `− 1 is even.

Proof. From Definition 18, when n is odd ` = n − 2(|colorclass(1 , f)| − 1) and when n is
even ` = n− 2 |colorclass(1 , f)|+ 1. The observation follows from this.

2.4 Reconfiguration

In this section, we provide notation and terms for reconfiguration problems that we use
throughout the thesis. We first provide a general framework and then give specific defi-
nitions. Note that reconfiguration problems are usually defined on the solution space of
a problem. So, in general, the reconfiguration graph of a decision problem is defined to
be the graph whose vertex set is the set of feasible solutions of the decision problem un-
der consideration. We define the reconfiguration step of a reconfiguration problem to be
a single transformation rule that transforms one feasible solution to another. We define
an adjacency relation between two nodes of a reconfiguration graph if one node can be
transformed to the other by the reconfiguration step. A reconfiguration sequence is defined
as a path between two nodes in the reconfiguration graph. In this thesis, since we consider
reconfiguration problems for different colorings, we define the nodes of a reconfiguration
graph to be all possible colorings that satisfy a condition (e.g., colorings are proper for
Coloring Reconfiguration).

Definition 19. Given a feasible solution A, we denote its node in the reconfiguration
graph as the node of A.

Before describing Coloring Reconfiguration and Acyclic Coloring Reconfiguration, we
define their reconfiguration step.

Definition 20. Given a graph G and a k-vertex coloring f , we recolor the vertex v in f
if we change the color of v to obtain a k-vertex coloring that differs with f by 1.

Coloring Reconfiguration

Given a graph G and a positive integer k, we define the reconfiguration graph, Rk−COL(G),
to have its vertex set be all possible k-colorings of G. Two nodes in Rk−COL(G) are said
to be adjacent if the corresponding k-colorings differ by 1.

11

k-CR REACH
Input: A graph G and two k-colorings ga and gb.

Output: Is there a reconfiguration sequence between ga and gb?
Step: To recolor a vertex to obtain another coloring.

k-CR BOUND
Input: A graph G, two k-colorings ga and gb, and a positive integer `.

Output: Is there a reconfiguration sequence of length at most ` between ga and
gb?

Step: To recolor a vertex to obtain another coloring.

Acyclic Coloring Reconfiguration

Given a graph G and a positive integer k, we define the reconfiguration graph, Rk−ACR(G),
to have its vertex set be all possible k-acyclic colorings of G. In Acyclic Coloring Reconfig-
uration, similar to Coloring Reconfiguration, two nodes in Rk−ACR(G) are adjacent if the
corresponding k-acyclic colorings differ by 1.

k-ACR REACH
Input: A graph G and two k-acyclic colorings ha and hb.

Output: Is there a reconfiguration sequence between ha and hb?
Step: To recolor a vertex to obtain another acyclic coloring.

k-ACR BOUND
Input: A graph G, two k-acyclic colorings ha and hb, and a positive integer `.

Output: Is there a reconfiguration sequence of length at most ` between ha and
hb?

Step: To recolor a vertex to obtain another acyclic coloring.

Equitable Coloring Reconfiguration

Given a graph G and a positive integer k, we define the reconfiguration graph, Rk−ECR(G),
to have its vertex set be all possible k-equitable colorings of G. Two nodes of Rk−ECR(G)
are adjacent if the corresponding k-equitable colorings can be transformed to each other
by swapping the colors of two vertices. Here, the reconfiguration step for some k-equitable
coloring f is to swap the colors of two vertices.

12

k-ECR REACH
Input: A graph G with two k-equitable colorings fs and fe.

Output: Is there a reconfiguration sequence between fs and fe?
Step: To swap the colors of two vertices to obtain another equitable coloring.

k-ECR BOUND
Input: A graph G, two k-equitable colorings fs and fe, and a positive integer `.

Output: Is there a reconfiguration sequence between fs and fe of length at most
`?

Step: To swap the colors of two vertices to obtain another equitable coloring.

Independent Set Reconfiguration

Given a graph G, we define the reconfiguration graph, RIS−TJ (G), to have its vertex set as
the set of all possible independent sets. Two independent sets of equal size, say Ia and Ib,
are adjacent if |Ia4Ib|= 2 and two nodes in RIS−TJ (G) are adjacent if their corresponding
independent sets are adjacent. (For two sets A and B, we denote as A4B the symmetric
difference between A and B. More formally, A4B = (A \ B) ∪ (B \ A).) Another way to
formulate this variant of Independent Set Reconfiguration is through the TJ transformation
rule.

TJ-IS REACH
Input: A graph G with two independent sets Is and Ie.

Output: Is there a reconfiguration sequence between Is and Ie?
Step: To replace a vertex in the independent set with another vertex to obtain

another independent set.

2.5 Parameterized complexity

It is known that there can not be an algorithm that runs in polynomial time in terms of
its input size for a problem that is NP-hard (unless P = NP). But, for many a problem
there can be one or more secondary parameters other than input size that have a bearing
on the computational complexity of the problem. In parameterized complexity, we try to
take advantage of these secondary parameters while designing algorithms. Given a problem
with parameter k, the problem is fixed-parameter tractable for parameter k if there exists
an algorithm for the problem with running time in O(f(k)nc) where f is some computable
function on k, n is the input size, and c is a constant independent of n and k [19]. The
complexity class of all problems with fixed-parameter tractable algorithms is FPT.

13

To characterize when there is unlikely to exist a fixed-parameter tractable algorithm for
a problem, Downey and Fellows defined the W-hierarchy, a hierarchy of complexity classes,
as: FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP [19]. A problem of size n and parameter k
is said to be in XP for the parameter k if there exists an algorithm with running time in
O(nf(k)). Note that it is believed that FPT 6= W[1].

14

Chapter 3

Literature Survey

In this thesis, we study reconfiguration problems in graph coloring, specifically acylic col-
orings and equitable colorings. In Section 3.1, we discuss the background of some variants
of colorings, including acyclic colorings and equitable colorings. Later, in Section 3.2, we
look at previous work on reconfiguration problems in different variants of graph coloring.

3.1 Colorings

The history of the study of graph colorings can be traced back to the question by de Morgan,
in 1852, asking if it is possible to color, with four colors, the counties of England in a map
such that no two adjacent counties have the same color [43]. Since then, graph coloring
has been studied by many mathematicians and is considered central in the field of discrete
mathematics [14].

The question of de Morgan, which was generalized to ask for the minimum number of
colors required to color a map, is widely called the four-color problem. Kempe proposed a
solution for the four-color problem in 1879 [38], but it was disproved in 1890 by Heawood
[34]. The four-color problem was finally solved by Appel and Haken using computers to
perform extensive case-analysis in 1976 [3]. A simpler proof was given, later, by Robertson
et al. [53].

The complexity of finding the minimum number of colors needed for a proper coloring
of a graph was proved to be NP-hard by Karp [37]. Graph coloring continues to receive
significant attention by researchers; for a comprehensive survey on graph coloring, we refer
the reader to the book by Jensen and Toft [34].

15

3.1.1 Acyclic colorings

The acyclic coloring problem was first introduced by Grünbaum [25]. Since then it has been
studied by many experts in graph coloring. Grünbaum, in the same paper, conjectured that
for planar graphs the acyclic chromatic number is at most five, and this was later proved
to be correct by Borodin [12]. Kostochka, in his thesis, proved that deciding whether a
graph has an acyclic coloring using at most k colors is NP-complete by a reduction from
the 3-colorability problem, by replacing each edge uv in a graph with three edge-disjoint
paths from u to v of length two [40].

We use a similar method in Section 4.2 to show that k-ACR REACH is PSPACE-hard.

Erdős conjectured in 1976 that for a graph G with maximum degree ∆(G), when ∆(G)
tends to infinity, A(G) = O(∆(G)4/3) (where A(G) is the minimum integer k such that G
has a k-acyclic coloring); this conjecture was proved by Alon et al. using a probabilistic ar-
gument [2]. In the same paper, they also proved that A(G) is in Ω(∆(G)4/3/(log ∆(G))1/3).

3.1.2 Equitable colorings

The equitable chromatic number is the smallest k such that a k-equitable coloring exists
for a given graph, and was first formalized by Meyer [48]. This problem has applications
in load balancing [48], as well as scheduling and timetabling [24]. An application that
was cited by Meyer [48] is the garbage collection routes problem, where the vertices of a
graph correspond to garbage routes and an edge is drawn between two vertices if there
is a constraint that the two corresponding garbage routes do not operate on the same
day. Since it might be desirable to have approximately equal numbers of routes on any
particular day of the week, the garbage collection routes problem becomes the same as
finding a 6-equitable coloring (assuming a six-day workweek).

Erdős conjectured in 1964 that for any graph G, there exists a (∆(G) + 1)-equitable
coloring [39], and this conjecture was proved in the Hajnal-Szemerédi theorem [26]. The
Hajnal-Szemerédi theorem has spurred much research interest and has applications in find-
ing bounds on sums of random variables that have limited dependence [33, 52]. Bodlaender
and Fomin found that for bounded treewidth graphs, deciding if a graph has a k-equitable
coloring can be solved in polynomial time by using Kostochka et al.’s results [42] to handle
graphs with large maximum degree separately [5]. Fellows et al. used a reduction from
the Multicolor Clique problem to show that deciding if a graph has a k-equitable col-
oring is W[1]-hard when parameterized by the treewidth of the graph plus the number of
colors [22]. (The Multicolor Clique problem asks, given a graph and a k-coloring, if a

16

complete graph on k vertices such that all its vertices are colored distinctly is a subgraph.)

3.1.3 List colorings

We now consider another variant of colorings: list colorings. This variant of graph col-
oring has received attention from the research community and has seen the application
of interesting techniques that combine different methods; for a more in-depth survey of
list-coloring, we refer the reader to the survey by Alon [1].

Each vertex of a graph is assumed to have an associated list of permissible colors that
the vertex can take. A list coloring of a graph is a k-coloring, for some k, where the color of
each vertex belongs to the list associated with the vertex [18]. This variant was proposed,
independently, by Vizing [57] and Erdős et al. [20].

Another motivation to study list coloring is the frequency assignment problem, where
a vertex of a graph models a base station and an edge between two vertices represents the
physical proximity of two base stations and hence the chance of interference, and the list
associated with a vertex corresponds to the channels that can be assigned to it [28].

The list-chromatic number of a graph G is the smallest integer ` such that for any
assignment of lists to vertices, each list is of size at least ` and G has a list coloring [34].
While the list-chromatic number of a graph is at least the chromatic number of a graph, it
can be shown that, for some graphs, the difference between the chromatic number and the
list-chromatic number can be arbitrarily large [1]. Given this, the conjecture by Bollobás
and Harris that for any graph G, the list-chromatic number of the line graph of G is equal
to the chromatic number of the line graph of G is surprising [6]. Vizing and Erdős et al.
also, independently, proved a variant of Brooks’ theorem that states that for any connected
graph G that is not a complete graph or an odd cycle, the list-chromatic number of G is
less than or equal to ∆(G) [6, 57]. Brooks’ original theorem states that if a graph G is
a complete graph or a cycle of odd length then the chromatic number is ∆(G) + 1, and
otherwise the chromatic number is at most ∆(G) [13].

3.1.4 Kempe chains

Kempe chains were first introduced by Alfred Kempe in his incorrect proof of the four-color
problem [38]. Though Kempe’s proof was incorrect, Kempe chains have proved to be a
useful tool in graph coloring.

17

Given a graph G, a k-coloring, and any two colors c1 and c2, a (c1, c2)-component (or
a Kempe chain) is defined as a connected subgraph of G whose vertices have color either
c1 or c2.

We present some applications of Kempe chains in graph coloring. Kempe chains were
used by Melnikov and Vizing to give a short proof of Brooks’ theorem [47]. Las Vergnas
and Meyniel also proved several theorems related to Hadwiger’s conjecture using Kempe
chains [44]. Hadwiger’s conjecture states that every graph that does not have a Kk+1 as a
minor has a k-coloring, for any integer k [54].

Kempe chains also have applications in theoretical physics [56], timetables [51], and
Markov chains [58].

3.1.5 Edge-colorings

An edge-coloring of a graph G is a function f : E(G) → {1, 2, . . . , k} such that no two
incident edges are assigned the same color by f [18].

We first note that, for a graph G, finding an edge-coloring of G is equivalent to finding a
vertex-coloring on the line graph of G. Edge-colorings have not received as much attention
as vertex colorings, but they still have connections to well-studied problems like coloring
a map [34].

3.2 Reconfiguration of graph colorings

We give below related results on the reconfiguration of variants of graph coloring.

3.2.1 Recoloring a single vertex

We first consider the case when the reconfiguration step is to change the color of a single
vertex. Consequently, the obvious reconfiguration problems are k-CR REACH and k-CR
BOUND.

The problem of k-CR REACH was found to be PSPACE-complete for k ≥ 4 by Bon-
sma and Cereceda [10]. For k = 3, Cereceda et al. described a polynomial-time algorithm
that uses a characterization of when two 3-colorings are connected by a reconfiguration
sequence [17]. Bonsma et al. considered the related k-CR BOUND problem and showed
that it is NP-complete [11].

18

In terms of parameterized complexity, the following results are known for k-CR BOUND.
Bonsma et al. proved that when parameterized by the length of the reconfiguration se-
quence `, k-CR BOUND is W[1]-hard by a reduction from the Independent Set problem,
which is known to be W[1]-hard with respect to the size of an independent set [11]. They
also proved that k-CR BOUND is in XP when parameterized by the length of its recon-
figuration sequence, `, by a simple branching algorithm that considers, at each step, all
possible k-colorings adjacent to the k-coloring under consideration, and the algorithm only
considers a depth of recursion of `. We use a similar technique in Section 4.3 to show an
XP algorithm for k-ACR BOUND with respect to `+ Γ(G).

Bonsma et al. showed that when parameterized by k+`, the problem is fixed-parameter
tractable [11]. Johnson et al. independently also showed that k-CR BOUND is fixed-
parameter tractable for all fixed k when parameterized by the length of the reconfiguration
sequence, but by a different algorithm [36].

The geometry of the reconfiguration graph, such as its diameter and whether it is
connected, holds interest in the research community. So we consider the Connectivity
variant of k-CR REACH. We say that a graph is k-mixing if any two k-colorings of the
graph are connected by a reconfiguration sequence [9]. The mixing number of a graph G,
m(G), is defined as the smallest integer such that G is k-mixing for every k ≥ m(G).

An upper bound on the mixing number of a graph was given by Cereceda et al. using
the degeneracy of a graph, which we define below [15]. The degeneracy of a graph, deg(G),
is the minimum positive integer such that every subgraph of G has a vertex of degree at
most deg(G). Cereceda et al. proved that for k ≥ deg(G) + 2, G is k-mixing by using an
inductive argument [15]. This implies that m(G) ≤ deg(G) + 2.

Cereceda et al. also showed that for a graph G with chromatic number three, G is
not 3-mixing (i.e., R3−COL(G) is not connected) [15]. They used a strategy that assigns
a weight to an edge of a directed graph depending on the colors of its endpoints and
the orientation of the edge, and proved that for any orientation where a cycle is directed
the sum of the weights of the cycle’s edges is the same for any two k-colorings if the
corresponding vertices in the reconfiguration graph of both the k-colorings are connected.
We use a similar strategy in Section 4.1 to prove that for non-bipartite graphs G with
acyclic chromatic number 3, R3−ACY (G) is not connected.

Cereceda et al. proved results about bipartite graphs using the following transformation
of a graph. A pinch is defined as the identification of two non-adjacent vertices that are
at a distance of 2 from each other, and a graph G is pinchable to a graph H if there is
a sequence of pinches that transforms G to H [16]. Cereceda et al. followed the same
strategy as before to assign weights to directed edges to show that for a bipartite graph

19

G, the following statements are equivalent: G not being 3-mixing; the existence of a cycle
in G where the sum of its edges, when the cycle is directed, is not equal to zero; and G
being pinchable to C6 [16]. They proved the equivalence of the three statements with the
help of a height function that they define.

Cereceda et al. also showed that the problem of deciding whether a graph is 3-mixing
is coNP-complete for bipartite graphs, but when restricted to planar bipartite graphs there
exists a polynomial-time algorithm [16].

Bonamy et al. considered the structure of the reconfiguration graph of k-CR REACH
and introduced a class of graphs that have chromatic number greater than or equal to k,
the k-color-dense graphs [9]. They show that for t ≥ k + 1 and a k-color-dense graph G,
the diameter of Rt−COL(G) is in O(|V (G)|2). They also show that this bound is tight, by
proving that there exists a chordal graph H and has chromatic number greater than or
equal to k, that is also k-color-dense, such that R(k+1)−COL(H) has diameter in Θ(|V (G)|2).

Bonamy and Bousquet proved an upper bound on the mixing number using the Grundy
number, which we define below. Before defining the Grundy number, we define a greedy
coloring. A greedy coloring of a graph is a k-coloring that is obtained by a greedy algorithm:
the vertices of the graph are considered in some sequence and a vertex is assigned the least
color that is not used in its neighborhood. The Grundy number of a graph G, χg(G), is
the largest integer k for which the graph has a k-coloring that is a greedy coloring [34].

Bonamy and Bousquet showed by an inductive argument that when k ≥ χg(G) + 1,
then G is k-mixing and the diameter of Rk−COL(G) is at most 4χg(G)n [7]. They also
proved that when k ≥ tw(G) + 2, G is k-mixing and the diameter of Rk−COL(G) is at
most 2(n2 +n), where n = |V (G)| [7]. To prove this result, they define a class of canonical
colorings called coherent colorings, which are dependent on a particular tree decomposition
of the graph, and show that there is a reconfiguration sequence between any k-coloring
and a coherent coloring, and that there is also a reconfiguration sequence between any two
coherent colorings.

We next consider the reconfiguration problem for list colorings, k-list coloring re-
configuration. The reconfiguration step that has been studied in the literature is the
same as k-CR REACH: to change the color of a vertex.

The k-list coloring reconfiguration problem, defined below, models situations
where a feasible frequency assignment needs to be changed. Notice that since list colorings
are a generalization of proper colorings, k-list coloring reconfiguration is a general-
ization of k-CR REACH. We now formally define k-list coloring reconfiguration,
where the reconfiguration step is to change the color of a single vertex.

20

k-list coloring reconfiguration
Input: A graph G, a mapping that assigns a list of permissible colors to each

vertex, and two list colorings ga and gb.
Output: Is there a reconfiguration sequence between ga and gb where each inter-

mediate coloring is a list coloring?
Step: To recolor a vertex to obtain another list coloring.

Hatanaka et al. proved that k-list coloring reconfiguration is PSPACE-complete
for graphs of pathwidth two. They also showed, through a dynamic-programming ap-
proach, a polynomial-time algorithm for graphs of pathwidth one [28].

3.2.2 Recoloring a single edge

The analogous list edge-coloring of a graph assumes that each edge e has an associated list
of permissible colors, L(e), and an edge-coloring is a list edge-coloring if each edge has a
color from its associated list [18]. The k-list edge coloring reconfiguration can
now be defined as below.

k-list edge coloring reconfiguration
Input: A graph G, a mapping that assigns a list of permissible colors to each

edge, and two list edge-colorings ga and gb.
Output: Is there a reconfiguration sequence between ga and gb where each inter-

mediate coloring is a list edge-coloring?
Step: To change the color of an edge to obtain another list edge-coloring.

Ito et al. considered k-list edge coloring reconfiguration and showed that
the problem is PSPACE-complete even for planar graphs with maximum degree 2 and
six colors [29]. An edge uv of G is classified as tight if |L(e)|= max{d(u), d(v)}, mild if
|L(e)|= max{d(u), d(v)} + 1, and slack if |L(e)|≥ max{d(u), d(v)} + 2. Ito et al. showed
a polynomial-time algorithm for trees with the sufficient condition that each edge is either
mild or slack, by employing breadth-first search to order the edges and recoloring an edge
to its target color in this order by recoloring only edges that have not been encountered yet
[29]. This sufficient condition was later improved by Ito, Kawamura, and Zhou [32], who
showed that two list edge-colorings of a tree are connected by a reconfiguration sequence
if either there is at most one tight edge or for each two tight edges e1 and e2, the path
connecting them contains at least one slack edge.

21

3.2.3 Kempe chain recoloring

We consider a generalization of recoloring a single vertex, Kempe chain recoloring, which
was first studied by Fisk [23]. A Kempe change for a graph G with a k-coloring is defined
as an operation that interchanges the colors of vertices in a (c1, c2)-component (where c1

and c2 are any two colors) [21]. Two k-colorings are Kempe equivalent if there exists a
sequence of Kempe changes that transforms one k-coloring to the other.

Mohar conjectured that for k ≥ 3, all k-colorings of a graph are Kempe equivalent [49],
but van den Heuvel showed a counterexample for k = 3 (see Figure 3.1) [55]. However,
Mohar’s conjecture was proved for k ≥ 4 by Bonamy et al. [8], and Feghali et al. showed
that when k = 3 and for cubic graphs, all 3-colorings are Kempe equivalent unless the
graph is a complete graph on four vertices or a triangular prism (Figure 3.1) [21].

2

3
1

1

2 3

2

3 1

1 2

3

Figure 3.1: Two non-Kempe equivalent 3-colorings of the triangular prism.

3.2.4 Reconfiguring list L(2, 1)-labelings

We next consider the list L(2, 1)-labeling problem and its reconfiguration problem, k-
list L(2, 1)-labeling Reconfiguration. An application for the list L(2, 1)-labeling
problem, defined later, is the assignment of channels to access points of a wireless local
area network (WLAN), where there is a chance of interference between access points at
close physical proximity. In situations where there is a requirement to have high throughput
performance, the current channel assignment may need to be changed. These situations
can be modeled by the k-list L(2, 1)-labeling Reconfiguration problem [31].

A list L(2, 1)-labeling of a graph assumes that each vertex of a graph has a set of labels
containing non-negative integers less than or equal to an integer k, called the list of the
vertex, and assigns to each vertex a label from its list such that the labels of each pair of
adjacent vertices differ by at least two and the labels of each pair of vertices that are at

22

distance two differ by at least one. The corresponding reconfiguration problem is defined as
below, where the reconfiguration step is to change the label of a vertex while maintaining
a list L(2, 1)-labeling.

k-list L(2, 1)-labeling Reconfiguration
Input: A graph G and two list L(2, 1)-labelings ga and gb.

Output: Is there a reconfiguration sequence between ga and gb where each inter-
mediate coloring is a list L(2, 1)-labeling?

Step: To recolor a vertex to obtain another list L(2, 1)-labeling.

Ito et al. showed that k-list L(2, 1)-labeling Reconfiguration is PSPACE-
complete even for bipartite planar graphs and k ≥ 6 [31]. They proved PSPACE-completeness
by a reduction from Independent Set Reconfiguration under the token sliding ad-
jacency relation. Ito et al. also showed that k-list coloring reconfiguration can be
solved in linear time for k ≤ 4. They showed this result by considering only when k = 4,
as when k ≤ 3 and the graph has a L(2, 1)-labeling it can be proved that the graph has
a constant number of vertices. Ito et al. then showed for a tree T , when each vertex v
of T has more than max{d(u) | u ∈ NT (v)} + 6 labels in the list associated with it, a
list L(2, 1)-labeling can be reconfigured to any other list L(2, 1)-labeling by performing a
breadth-first search on T and relabeling a vertex to its target label as it is encountered
through a sequence of relabelings. When a vertex v of T is relabeled to its target label,
the vertices in the sequence of relabelings to relabel v are those vertices that have not been
encountered yet [31].

23

Chapter 4

Acyclic Coloring Reconfiguration

In this chapter, we study reconfiguration problems in the acyclic coloring setting. We
study whether results for k-CR REACH also apply to k-ACR REACH. In Section 4.1,
we show that Cereceda et al.’s results [15] apply to k-ACR REACH, with modifications,
by giving examples of graphs where the reconfiguration graph of k-ACR REACH is not
connected. We also show that k-ACR REACH is PSPACE-hard through a reduction
from k-CR REACH in Section 4.2. In Section 4.3, we also show that Bonsma et al.’s
results [11] apply to k-ACR BOUND by showing that k-ACR BOUND is in XP when
parameterized by the length of the reconfiguration sequence plus the length of the longest
induced cycle (Γ(G)).

4.1 Non-bipartite graphs of acyclic chromatic number

3

A modification of Cereceda et al.’s result, which we summarize in Section 3.2.1, yields a
similar result for k-ACR REACH [15]. We remind the reader that weights are assigned
to a directed edge depending on the colors of the edge’s endpoints and the direction of the
edge (Definition 8), and the weight of a directed subgraph is the sum of the weights of the
edges of the directed subgraph (Definition 9).

We prove, below, a necessary condition for two 3-acyclic colorings of a graph to be
connected in the reconfiguration graph. We show that for two 3-acyclic colorings whose
nodes are connected in the reconfiguration graph, the weights of any directed cycle must
be equal.

24

Before stating the lemma, we give Cereceda et al.’s original lemma.

Lemma 1 ([15]). Given two 3-colorings f and h of a graph G, and a cycle C in G, if the

nodes of f and h are connected in R3−COL, then W (
−→
C , f) = W (

−→
C , h).

Lemma 2. Given two 3-acyclic colorings f and h of a graph H that contains a cycle C, if
f and h are in a connected subgraph of R3−ACR(H), then on orienting H in any way such

that C is directed, W (
−→
C , f) = W (

−→
C , h).

Proof. It is sufficient to prove that the lemma is true when f and h are adjacent; it is then
true by transitivity for all connected 3-acyclic colorings in R3−ACR(H). Let v be the vertex
where f and h differ by 1. We prove the lemma by showing that the weights of edges in

C which are incident to v are of equal magnitude but opposite in sign in W (
−→
C , f) and

W (
−→
C , h).

We first prove that for the vertices x and y in V (C) that are adjacent to v, f(x) =
f(y) = h(x) = h(y). If x and y have different colors in f and h, then v can take only one
color in both f and h. This contradicts f(v) 6= h(v); so, it must be that x and y have the
same color in f and h (f(x) = h(y) = f(x) = h(y)).

Since f and h differ by 1 at v, the only two edges of
−→
C where W (

−→
C , f) and (W (

−→
C , h)

might differ are xv and vy. If we show that the weights of xv and vy are of equal magnitude
but opposite in sign, then the lemma holds. We can also say that the directions of xv and

vy in
−→
C can be either −→xv,−→vy or ←−xv,←−vy as

−→
C is a directed cycle. Since the cases are

symmetric, we assume without loss of generality that the directions of the edges are −→xv
and −→vy. By performing case analysis on all possible values of f(v) and f(x) = f(y), it
can be seen that w(−→xv, f) + w(−→vy, f) = 0. Similarly, w(−→xv, h) + w(−→vy, h) = 0. Clearly

W (
−→
C , f) = W (

−→
C , h) must hold.

The following corollary is immediate from Lemma 2.

Corollary 1. Given any two 3-acyclic colorings f and h of a graph G with a cycle C, for

any orientation of G such that C is directed, if W (
−→
C , f) 6= W (

−→
C , h) then there exists no

path between the nodes of f and h, respectively, in R3−ACR(G).

We define a 3-vertex coloring βf,H of H from a 3-acyclic coloring f of H. We prove
Theorem 2 using this result.

Definition 21. Given a 3-acyclic coloring f of graph H, let βf,H be a 3-vertex coloring

25

such that for every vertex v in H, βf,H(v) has value as defined in Equation 4.1.

βf,H(v) =


1 if f(v) = 2

2 if f(v) = 1

3 if f(v) = 3

(4.1)

We first show that βf,H is acyclic if f is acyclic.

Claim 1. Given a graph H and a 3-acyclic coloring f of H, the 3-vertex coloring βf,H is
a 3-acyclic coloring.

Proof. Since colorclass(1, f) = colorclass(2, βf,H), colorclass(2, f) = colorclass(1, βf,H),
and colorclass(3, f) = colorclass(3, βf,H): if the endpoints of an edge have the same color
in βf,G, they also have the same color in f ; and if a cycle is 2-chromatic in βf,G, it is also
2-chromatic in f . Hence, as f is acyclic, βf,G is also acyclic.

We are now ready to prove Theorem 2. Before stating the theorem, we give Cereceda
et al.’s original theorem.

Theorem 1 ([15]). For a graph G with chromatic number three, R3−COL is not connected.

Theorem 2. For any graph H that is not bipartite and has acyclic chromatic number 3,
R3−ACR(H) is not connected.

Proof. We prove that R3−ACR(H) is not connected by showing that there exist two 3-acyclic
colorings whose nodes are not connected in R3−ACR(H). We claim that f , any 3-acyclic
coloring of H, and βf,H , which is a 3-acyclic coloring by Claim 1, are two such 3-acyclic
colorings.

It follows from Corollary 1 that showing the existence of a cycle whose weight is different
in f and βf,H is sufficient to prove that the nodes of f and βf,H are not connected in R3−ACR.
Since H is not bipartite, there exists a cycle C in H of odd length. We also assume that H
is oriented such that C is directed. For any edge uv in H, it can be verified for all possible
values of f(u), f(v), βf,H(u), βf,H(v) that w(−→uv, f) = −w(−→uv, βf,H); since the weight of a

directed cycle is the sum of the weights of its directed edges, W (
−→
C , f) = −W (

−→
C , βf,H).

Since C is of odd length and the weight of each edge can be either 1 or -1, W (
−→
C , f) 6= 0

and W (
−→
C , βf,H) 6= 0. Clearly W (

−→
C , f) 6= W (

−→
C , βf,H) since W (

−→
C , f),W (

−→
C , βf,H) 6= 0

and W (
−→
C , f) = −W (

−→
C , βf,H).

26

4.2 k-ACR REACH is PSPACE-hard

We prove that k-ACR REACH is PSPACE-hard by reducing k-CR REACH to it. Since
k-CR REACH is PSPACE-complete for k ≥ 4, this suffices [10]. Before stating our
reduction, we prove Theorem 3 using a technique similar to that used by Cereceda et al.
when showing that any two k-colorings of a graph G are connected by a reconfiguration
sequence when k ≥ deg(G) + 2 [15].

Theorem 3. Given a graph G and any two k-acyclic colorings f and h, if k ≥ n+ 2, then
there exists a reconfiguration sequence between f and h.

Proof. We prove our theorem by induction on the number of vertices in G. The theorem
is trivially true for one vertex. By the induction hypothesis, for a graph on n− 1 vertices,
any two k-acyclic colorings are connected in the reconfiguration graph. So, for a graph
G on n vertices, we consider some vertex v. Let Gn−1 denote the induced graph on
the vertices V (G) \ {v} and the reconfiguration sequence between f |Gn−1 and h|Gn−1 be
γn−1

1 , γn−1
2 , . . . , γn−1

t for some t. We also set γn−1
t+1 to h|Gn−1 .

We next prove that the k-acyclic colorings γn−1
1 , . . . , γn−1

t , γn−1
t+1 can be extended to a

sequence of adjacent k-acyclic colorings of G. Let γi, 1 ≤ i ≤ t + 1, be the k-vertex
coloring of G that is extended from γn−1

i by letting γi(v) = f(v). We consider the smallest i,
1 ≤ i ≤ t+1, for which γi is not acyclic and also let γ0 = f . Note that the k-vertex colorings
γi−1 and γi use at maximum n colors, and so |colors(V (G), γi−1)∪colors(V (G), γi)|= n+1.
Since k ≥ n + 2, we can have an intermediate k-acyclic coloring α by recoloring v in γi−1

to a color which is not used in either γi−1 or γi. We also change the color of v for every
k-vertex coloring in the set {γi, . . . , γt+1} to α(v). By placing α between γi−1 and the
modified γi we have a sequence of adjacent k-vertex colorings where γi is now acyclic.
We proceed similarly for all k-vertex colorings in the sequence that are not acyclic. Since
γn−1
t+1 = h|Gn−1 , either γt+1 = h or γt+1 and h are adjacent.

We reduce k-CR REACH to k-ACR REACH by using a technique similar to that
used by Kostochka when proving that deciding whether a graph has an acyclic coloring
using at most k colors is NP-complete [41]. Kostochka reduced the problem of 3-colorability
(deciding if a graph has a 3-coloring) to the problem of finding the acyclic chromatic number
of a graph by replacing each edge with three internally disjoint paths of length two.

Given an instance (G, gs, ge) of k-CR REACH, we construct a corresponding instance
(H, hs, he) of k-ACR REACH. We replace each edge uv of G with k internally disjoint uv
paths of length two. We call such internal vertices in these uv paths subdivision vertices

27

and other vertices original vertices. For each original vertex u in H, we denote the corre-
sponding vertex in G as uG. Similarly for each vertex u in G, we denote the corresponding
vertex in H by uH . The k-acyclic colorings hs, he are any k-acyclic colorings of G such
that, for every original vertex u in H, hs(u) = gs(uG) and he(u) = ge(uG).

Observation 2. The number of vertices and edges added to graph G in our reduction is
in O(n2k), where n = |V (G)|.

Proof. We prove the observation by first noting that, in our reduction, we add k vertices
and 2k edges to G for each edge in E(G). Since the number of edges in E(G) is at most n2,
it follows that the number of vertices and edges added by our reduction is at most n2k and
n22k respectively. Clearly the number of vertices and edges added to G is in O(n2k).

Observation 3. Given any subdivision vertex w in H, we can say the following about w.

1. |NH(w)|= 2.

2. The vertices in NH(w), say u and v, are original vertices.

3. For any k-acyclic coloring h of H, the vertices in NH(w), u and v, have h(u) 6= h(v).

Proof. The first two parts of the observation follow from the reduction. For the third part,
we prove that there exists a 2-chromatic cycle otherwise. Since w is a subdivision vertex,
uGvG ∈ E(G). From our reduction, since uGvG ∈ E(G), we can say that |NH(u)∩NH(v)|=
k. If h(u) = h(v), since h is a k-coloring the size of the set colors(NH(u) ∩NH(v), h) can
be at most k − 1, and so there must exist two vertices in NH(u) ∩ NH(v) with the same
color in h, which forms a 2-chromatic C4.

The following two observations follow from our reduction.

Observation 4. For every edge uv in E(H), the number of subdivision vertices in {u, v}
is exactly one.

Observation 5. For every induced cycle C in H, |V (C)|≥ 4.

Proof. We prove by way of contradiction. Suppose there is a cycle C of length three. Then
there is an edge e in C such that the endpoints of e are either both subdivision vertices or
both original vertices. This contradicts Observation 4.

28

Before stating the next observation, we make the following definition. For each k-
coloring g of G, we denote as Racyclic(g) the set of all k-acyclic colorings h of H such that
for every original vertex u in H, h(u) = g(uG) (we prove later in Claim 3 that such k-acyclic
colorings must exist).

Observation 6. Given a set Racyclic(g) for a k-coloring g in G, the following hold.

1. For each original vertex v and any two k-acyclic colorings in Racyclic(g), ha and hb,
ha(v) = hb(v).

2. For each induced cycle C in H and any k-acyclic coloring h in Racyclic(g), there exist
two original vertices w, x in V (C) such that h(w) 6= h(x).

Proof. Part one of the observation follows from the definition of Racyclic(g). We prove
part two of the observation by way of contradiction. Suppose there exists a cycle C such
that no two original vertices in V (C) have the same color in h. As C is of length greater
than or equal to four (Observation 5) and each edge has exactly one subdivision vertex
(Observation 4), there are two original vertices w, x in V (C) that are both adjacent to
the same subdivision vertex in V (C). But, as h(w) = h(x), this contradicts part three of
Observation 3.

Claim 2. Given a graph H with a k-acyclic coloring h and k ≥ 4, the following hold for
a subdivision vertex u.

1. There exists a color c such that c /∈ colors(NH(u), h) ∪ {h(u)}.

2. Given such a color c, the k-vertex coloring f such that f and h differ by 1 at u with
f(u) = c is a k-acyclic coloring.

Proof. To prove part one of the claim, we note that the neighborhood of u has only two
vertices (Observation 3) and since k ≥ 4, there exists at least one color c for which c /∈
colors(NH(u), h) ∪ {h(u)}.

We prove part two of the claim by showing that f is a k-coloring and that it contains no
2-chromatic cycle. Since c /∈ colors(NH(u), h), it is clear that f is a k-coloring. Since u is a
subdivision vertex, |NH(u)|= 2 and the vertices in NH(u) have distinct colors (Observation
3). It follows from u having exactly two neighbors that all cycles that contain umust include
both the vertices in NH(u). Since both the vertices in NH(u) have distinct colors and
c /∈ colors(NH(u), h), all cycles containing u must be colored by at least three colors.

29

Lemma 3. Given a graph G and a k-coloring f of G, if there exists no 2-chromatic induced
cycle, then there exists no 2-chromatic cycle in the graph.

Proof. Towards contradiction, let there exist a 2-chromatic cycle C which is not an induced
cycle. Assume without loss of generality that the two colors are 1 and 2. Let Cinduced be
an induced cycle such that V (Cinduced) ⊂ V (C). Such a Cinduced exists since C is not an
induced cycle. We know that for every vertex v in V (Cinduced), f(v) = 1 or f(v) = 2. This
would mean that there exists a 2-chromatic induced cycle in G.

Claim 3. We can say the following about Rk−COL(G) and Rk−ACR(G), for k ≥ 4.

1. For every k-acyclic coloring h in Rk−ACR(H), the k-vertex coloring g of G where for
every vertex u ∈ G, g(u) = g(uH), is proper.

2. For every k-coloring g in Rk−COL(G), there exists a k-acyclic coloring h in Rk−ACR(H)
such that g(uG) = h(u) for every original vertex u.

Proof. We note that if the first part of the claim is false, then there is an edge uv in E(G)
for which g(u) = g(v) and so h(uH) = h(vH). To prove the first part of the claim, it thus
suffices to prove that for no edge uv ∈ E(G), h(uH) = h(vH). By our reduction, there is a
subdivision vertex that is adjacent to only u and v. Now, from Observation 3, it follows
that h(u) 6= h(v).

We prove the second part of our claim by constructing a k-acyclic coloring h satisfying
h(u) = g(uG) for every original vertex u in H. For every original vertex u, let g(uG) = h(u).
And for every subdivision vertex v with neighbors w and x, let h(v) take a value such that
h(v) 6= g(wG), h(v) 6= g(xG) (this is possible since k ≥ 4). Clearly h is a k-coloring, so
what is left to prove is that there exists no 2-chromatic cycle. Towards contradiction,
suppose there is a 2-chromatic cycle. We can conclude from Lemma 3 that there also
exists an induced 2-chromatic cycle C. Since C is of length greater than or equal to four
(Observation 5) and each edge has exactly one subdivision vertex (Observation 4), there
are two original vertices p, q in C that are at a distance of two from each other. Also, as
C is 2-chromatic and h is proper, h(p) = h(q). For each original vertex z g(zG) = h(z), so
g(pG) = g(qG). But, since pGqG ∈ E(G), this contradicts the fact that g is proper.

The corollary below follows from part two of Claim 3.

Corollary 2. Given a k-coloring g of G, the set Racyclic(g) is non-empty for k ≥ 4.

30

Claim 4. Given a graph G, k ≥ 4, for source and target k-colorings gs and ge of G there
exist source and target k-acyclic colorings hs and he of H such that for each original vertex
u gs(uG) = hs(u), ge(uG) = he(u) and vice-versa.

Proof. The first part of the claim follows from part two of Claim 3, and the second part
of the claim follows from part one of Claim 3.

Claim 5. For each k-coloring g of G, the induced subgraph on the nodes of Racyclic(g) in
Rk−ACR(H) is a connected subgraph.

Proof. We can equivalently say that the nodes of any two k-acyclic colorings in Racyclic(g),
say ha and hb, are connected in Rk−ACR(H). The proof proceeds by induction on the
cardinality of the set {v ∈ V (H) | ha(v) 6= hb(v)}, i.e., the number of vertices where ha
and hb differ. When ha and hb differ by 1, the statement is trivially true. When ha and
hb differ by t (t > 1), take a vertex, say v, such that ha(v) 6= hb(v). From part one of
Observation 6, since each original vertex has the same color in any two k-acyclic colorings
in Racyclic(g), v is a subdivision vertex as ha(v) 6= hb(v). Let hc be the k-vertex coloring
that differs with ha by 1 at v, where hc(v) = hb(v). If hc is acyclic, then since hc differs
with hb by t− 1, hc and hb are connected by our induction hypothesis; so, since ha and hc
differ by 1, ha and hb are connected by transitivity.

We prove that hc is not acyclic if and only if there is either a vertex that is adjacent
to v with the same color as v in hc or a 2-chromatic cycle that contains v. The if part is
trivially true and the only if part follows as if this were not the case, since hc and ha differ
by 1 at v, a 2-chromatic cycle or two adjacent vertices with the same color must also exist
in ha, which contradicts the fact that ha is a k-acyclic coloring. We now prove that hc is
acyclic by showing that hc is proper and that there is no 2-chromatic cycle in hc.

We prove by way of contradiction that hc is proper. From the previous paragraph,
if hc is not proper then there is a vertex adjacent to v that has the same color as v in
hc. Also, as v is a subdivision vertex, it has two neighbors (Observation 3), say w and x,
and they are original vertices by Observation 4. Since ha, hb ∈ Racyclic(g), it follows from
Observation 6 that ha(w) = hb(w) and ha(x) = hb(x). Since ha and hc differ by 1 at v,
it also holds that hc(w) = ha(w) and hc(x) = ha(x). Consequently, hb(w) = hc(w) and
hb(x) = hb(x). Since hc(v) = hb(v), clearly the colors of w, x, and v are the same in hc
and hb respectively (hb(w) = hc(w), hb(x) = hc(x), hb(v) = hc(v)). So, if a vertex adjacent
to v has the same color in hc, then it also has the same color in hb, contradicting the fact
that hb is a k-coloring.

We now prove that hc is acyclic by showing that there is no 2-chromatic cycle in hc. To
prove our statement, it is sufficient to show that there is no 2-chromatic cycle containing v

31

in hc as we showed earlier that it would contradict the fact that hb is acyclic. Since v has
only two neighbors, w and x, any cycle containing v contains w and x as well. If we show
that the colors of w, x, and v are distinct in hc, then there can be no 2-chromatic cycle in
hc. As w and x are original vertices that are both adjacent to the same subdivision vertex,
from part three of Observation 3, hc(w) 6= hc(x). It also follows from hc being a k-coloring
that hc(v) 6= hc(w) and hc(v) 6= hc(x). Clearly w, x, and v have distinct colors in hc. Thus,
hc is a k-acyclic coloring that is adjacent to ha and differs from hb by t− 1.

Claim 6. For every two adjacent k-colorings ga and gb of G, k ≥ 4, there exist two k-
acyclic colorings in Racyclic(ga) and Racyclic(gb), respectively, whose nodes are connected in
Rk−ACR(H).

Proof. We prove the claim by showing that for any k-acyclic coloring ha in Racyclic(ga)
there is a reconfiguration sequence between ha and some k-acyclic coloring in Racyclic(gb).
Let v be the original vertex in H for which ga(vG) 6= gb(vG) and U be the set of neighbors
of v with color gb(vG) in ha. Since the color of v in any k-acyclic coloring in Racyclic(gb)
is gb(vG), the color of v should be changed at some point in the reconfiguration sequence
between ha and some k-acyclic coloring in Racyclic(gb). Before this, all the vertices in the
set U should be recolored to some color that is not gb(vG). We first show the existence of a
reconfiguration sequence that changes the color of each vertex in U , and then we show that
the color of v can be changed to gb(vG). Note that since only the colors of vertices in U ,
which are subdivision vertices (Observation 4), and v are changed, the k-acyclic coloring
at the end of the reconfiguration sequence is in Racyclic(gb).

We show the existence of a reconfiguration sequence that changes the color of each
vertex in U . From Claim 2, any subdivision vertex can be recolored to some color so that
the k-vertex coloring that we obtain is acyclic. It follows from this that we can recolor
each vertex in U in any k-acyclic coloring to some color to obtain a k-acyclic coloring as
all vertices in U are subdivision vertices. So, by iteratively recoloring vertices in U , we get
a reconfiguration sequence between ha and some k-acyclic coloring hc such that for every
u in U , hc(u) 6= gb(vG) and for every vertex w ∈ V (H) \ U , hc(w) = ha(w). Clearly hc is
in Racyclic(ga).

We now claim that by recoloring v in hc to gb(vG), the k-vertex coloring that we obtain,
say hb, is acyclic. Since hb and hc differ by 1 at v and no vertex adjacent to v has color
gb(vG) in hc, it follows that hb is proper. We can also say that if there is a 2-chromatic
cycle in hb, then the 2-chromatic cycle has to contain v as otherwise this would contradict
the fact that hc is acyclic.

We now show by way of contradiction that there is no 2-chromatic cycle in hb. Suppose
instead that there exists an induced 2-chromatic cycle C in hb. We know that C has to

32

contain v. As C is 2-chromatic and hb is proper |C|≥ 4. Hence, there exists a vertex y in
C at a distance of two from v such that hb(v) = hb(y). The vertex x in C that is adjacent
to both v and y is a subdivision vertex as v is an original vertex (Observation 4). As x is
a subdivision vertex, it follows that y is an original vertex. Since for each original vertex
z gb(zG) = hb(z), gb(vG) = gb(yG). But, since vGyG ∈ E(G), this contradicts the fact that
gb is proper.

We have shown that hb is acyclic, and since we have only changed the color of vertices
in U ∪ {v}, hb ∈ Racyclic(gb). Clearly there exists a reconfiguration sequence between ha
and hb, a k-acyclic coloring in Racyclic(gb).

Claim 7. For every two adjacent k-acyclic colorings ha and hb in Rk−ACR(H), there ex-
ist two connected k-colorings ga, gb in Rk−COL(Gc) such that for every vertex u in V (G),
ga(u) = ha(uH), gb(u) = hb(uH).

Proof. We need to show that the k-vertex colorings ga and gb where, for every original
vertex u, ga(u) = ha(uH), gb(u) = hb(uH), are k-colorings and their nodes in Rk−ACR(H)
are connected. From part one of Claim 3, we know that the k-vertex colorings ga and gb
such that ga(u) = ha(uH), gb(u) = hb(uH) for every every vertex u ∈ V (G) are proper.
To prove that ga and gb are connected in Rk−COL(G), let us consider the vertex where ha
and hb differ, say v. Note that such a v must exist since ha and hb are adjacent. If v is a
subdivision vertex then for every vertex u ∈ V (G), ga(u) = gb(u), and so the corresponding
vertices for ga and gb in Rk−COL(G) are the same; if v is an original vertex, then ga and gb
differ by 1 at v, and so the nodes of ga and gb are adjacent in Rk−COL(G).

We are now ready to prove Theorem 4.

Theorem 4. k-ACR REACH is PSPACE-hard for 4 ≤ k < n+ 2.

Proof. We show that our reduction can be executed in polynomial time and space, and
that an instance of k-CR REACH, (G, gs, ge), is a yes-instance if and only if the instance
(H, hs, he) of k-ACR REACH is a yes-instance. Since the number of vertices and edges we
add to G in our reduction is in O(n2k) (Observation 2) and k < n+2, our reduction can be
executed using polynomial time and space. From Claim 4, each instance of k-CR REACH
has a corresponding instance of k-ACR REACH and vice-versa. For the if part, if there
exists a reconfiguration sequence between gs and ge, then there also exists a reconfiguration
sequence between hs and he in Rk−ACR(H) (Claim 6). For the only if part, if there exists
a reconfiguration sequence between hs and he, then there exists a reconfiguration sequence
between gs and ge in Rk−COL(G) (Claim 7).

33

It follows from Theorem 3 that when k ≥ n+ 2 any instance of k-ACR REACH is a
yes-instance. Hence we can make the following note.

Note 1. As a consequence of Theorem 3, we can restrict our attention to k < n + 2 in
k-ACR REACH.

4.3 k-ACR BOUND is in XP

In this section, we prove that k-ACR BOUND is in XP when parameterized by the length
of the reconfiguration sequence plus the length of the longest induced cycle (Γ(G)). For
a graph on n vertices there are at most kn k-acyclic colorings and k-ACR REACH is
PSPACE-hard. By fixing the length of the reconfiguration sequence in k-ACR BOUND
to kn, we establish the fact that k-ACR BOUND is weakly PSPACE-hard as kn is expo-
nential in terms of n. This implies that there is no polynomial-time algorithm for k-ACR
BOUND when the data is encoded in unary, unless P = PSPACE. Our algorithm implies
that k-ACR BOUND is in XP for parameter `+ Γ(G) as there is an algorithm that runs
in time O(nf(`+Γ(G))), where f is some computable function on ` + Γ(G). We first give a
high-level description of our algorithm, then formally describe our algorithm and show a
proof of correctness and running time.

Algorithm 1 is a simple branch-and-bound algorithm that is inspired by Bonsma et
al.’s work [11], which we summarize in Section 3.2.1. For an instance (H, hs, he) of k-
ACR REACH, we start by considering all possible (k − 1)n k-vertex colorings that can
be obtained by changing the color of a vertex v in hs. For each such k-vertex coloring, it
can be checked in linear time whether the k-vertex coloring is proper. To check for the
existence of a 2-chromatic cycle, Algorithm 2, described later, is called. If the k-vertex
coloring is acyclic, the algorithm checks if the k-vertex coloring is he, and if not recursively
considers all possible adjacent k-vertex colorings. Since the length of the reconfiguration
sequence can be at most `, it suffices to consider a depth of recursion of `. (The reader is
reminded that ` is some positive integer taken as input by k-ACR BOUND.)

Since the length of the reconfiguration sequence is at most `, Algorithm 1 also has
depth of recursion of at most `. For one k-acyclic coloring there are at most (k − 1)n
adjacent k-acyclic colorings, so at each step of the algorithm we branch into (k − 1)n
possible directions. At each branch, it can be checked if the k-vertex coloring is proper
in O(|V (H)|) time and if there is no 2-chromatic cycle in O(∆(G)Γ(G)) time. Thus, this
yields a O((kn)`(n+ ∆(G)Γ(G)))-time algorithm.

34

Algorithm 1 AcyclicRecolor

Input: A graph H, a source k-acyclic coloring hs of H, a target k-acyclic coloring
he of H, and a positive integer `.

Output: Outputs YES if there exists a reconfiguration sequence of length less than
or equal to ` and NO otherwise.

1: procedure AcyclicRecolor(H, hs, he, `)
2: if AcyclicRecolorRecurse(H, hs, he, 0, `) = true then
3: return YES
4: else
5: return NO
6: end if
7: end procedure
8: procedure AcyclicRecolorRecurse(H, hs, he, `current, `)
9: if `current ≥ ` then

10: return false
11: else if hs = he then
12: return true
13: end if
14: for each k-vertex coloring ht that can be obtained by changing the color of a single

vertex, say v, in hs do
15: if there exists an edge uv in E(H) such that ht(u) = ht(v) or TwoChromat-

icCycle(H, ht, v) then
16: continue
17: else if AcyclicRecolorRecurse(H, ht, he, `current + 1, `) = true then
18: return true
19: end if
20: end for
21: return false
22: end procedure

Algorithm 2 takes as input a graph H, a k-acyclic coloring h of H, and a vertex v of H,
and outputs true if there exists a 2-chromatic cycle containing v and false otherwise. Algo-
rithm 2 calls an auxiliary procedure TwoChromaticCycleRecurse with parameters
H, h, v, and a dynamic array containing only v. The algorithm enumerates all possible
paths of length Γ(H) from v, and this suffices to enumerate all possible cycles of length
Γ(H) from v as well. The algorithm does so with the help of a for loop that creates a new
dynamic array, copying A to it, appending a neighbor of the vertex at the front of A and

35

recursively calling TwoChromaticCycleRecurse. The algorithm checks if the vertex
at the front of A is v, and if so, checks if the cycle in the array is 2-chromatic.

Algorithm 2 TwoChromaticCycle

Input: A graph H, a k-acyclic coloring h of H, and a vertex v of H.
Output: Outputs true if there exists a 2-chromatic cycle containing v and false

otherwise.

1: procedure TwoChromaticCycle(H, h, v)
2: Create a dynamic array A and append v.
3: return TwoChromaticCycleRecurse(H, h, v, A)
4: end procedure
5: procedure TwoChromaticCycleRecurse(H, h, v, A)
6: if size(A) = Γ(H) + 1 then
7: . We assume that Γ(H) is known
8: return false
9: end if

10: for each vertex w adjacent to A.front() in G do
11: if w = v and the cycle formed by the vertices in array A
12: is 2-chromatic in h then
13: return true
14: end if
15: Create a dynamic array A′ and copy A to it.
16: A′.append(w)
17: if TwoChromaticCycleRecurse(H, h, v, A′)=true then
18: return true
19: end if
20: end for
21: return false
22: end procedure

Lemma 4. Algorithm 2 has running time O(∆(H)Γ(H)) and either returns true if there
exists a 2-chromatic cycle that contains vertex v for k-vertex coloring h of H or returns
false otherwise.

Proof. By Lemma 3, to show that no cycle containing v is 2-chromatic it is enough to
check that none of the induced cycles that contain v are 2-chromatic. We also know
that the length of the longest induced cycle is Γ(H). The for loop in line 10 considers

36

each neighbor w of the vertex at the front of the array A and recursively calls procedure
TwoChromaticCycleRecurse with a copy of A appended with w. From line 12, the
depth of the recursion of TwoChromaticCycleRecurse is Γ(H) (we disregard calls
to TwoChromaticCycleRecurse at depth Γ(H) + 1). It follows that the procedure
considers all possible paths of length at most Γ(H) from v. In line 12, the algorithm checks
if the front of array A is v, and if so, checks if the cycle in A is 2-chromatic. By Lemma 3,
this is sufficient to check for the existence of a 2-chromatic cycle containing v. Since the
number of cycles of length at most Γ(H) that contain v is in O(∆(H)Γ(H)), the running
time of the algorithm is also in O(∆(H)Γ(H)).

Lemma 5. Algorithm 1 returns YES if and only if there exists a reconfiguration sequence
between hs and he in graph H.

Proof. All possible adjacent k-vertex colorings are enumerated in line 14 of Algorithm 1.
Line 15 checks if the k-vertex coloring is acyclic by checking the neighbors of the recolored
vertex, say v, to see if they share the same color and then calls Algorithm 2 to check for the
existence of 2-chromatic cycles containing v. Since the color of only one vertex is changed,
it is enough to check only the cycles containing v. Since Algorithm 2 is proved to be correct
in Lemma 4, it is clear that an instance of k-ACR REACH is a YES instance if and only
if Algorithm 1 returns YES.

Lemma 6. Algorithm 1 has running time O((kn)`+Γ(G)).

Proof. Algorithm 2 has running time in O(∆(G)Γ(G)) (Lemma 4), and since ∆(G) ≤ n
the running time of Algorithm 2 is also in nΓ(G). Assuming that the graph is stored as an
adjacency matrix, checking for the neighborhood of a vertex in line 15 takes O(n) time.
The for loop in line 14 iterates through kn possibilities. The depth of the recursion in
line 17 is at most ` due to line 9. Therefore, the total time complexity of Algorithm 1 is
O((kn)`nΓ(G)), which can be rewritten as O((kn)`+Γ(G)).

Theorem 5 then follows from Algorithm 1, Lemma 5, and Lemma 6.

Theorem 5. k-ACR REACH is in XP when parameterized by ` + Γ(G) where ` is the
length of its reconfiguration sequence and Γ(G) the length of the longest induced cycle in
G.

37

Chapter 5

Equitable Coloring Reconfiguration

In this chapter, we consider reconfiguration problems in equitable colorings, specifically
k-ECR REACH. We first investigate some general properties of k-ECR REACH in
Section 5.1. Next, in Section 5.2, we prove that k-ECR REACH is PSPACE-hard. We
then prove that k-ECR REACH can be solved in polynomial time when k = 2, in Section
5.3. Furthermore, in Section 5.4, we show that for paths, when k = 3 and the number of
vertices is greater than 15, if two k-equitable colorings are viable to each other then there
is a reconfiguration sequence between them.

5.1 General properties of k-ECR REACH

In this section, we investigate some general properties of k-ECR REACH. We prove some
results that follow from the definitions provided in Section 2.3.2, and also some preliminary
results.

The next observation follows from the definition of swapping.

Observation 7. For a graph G and a k-equitable coloring f , the k-vertex coloring we obtain
by swapping the colors of any two vertices is a k-equitable coloring if it is a k-coloring.

As a consequence of Observation 7, when swapping the colors of two vertices we only
need to consider whether the obtained k-vertex coloring is proper.

Before stating the following lemma, we remind the reader that the set of candidate
vertices, given two k-equitable colorings, is defined in Definition 14.

38

Lemma 7. Given a graph G and two k-equitable colorings f and h which are viable to
each other, for every vertex v in V (G) where f(v) 6= h(v), the set candidate(f, h, v) is
non-empty.

Proof. We prove the lemma by way of contradiction. If candidate(f, h, v) is empty, then
each vertex in colorclass(h(v), f) has color h(v) in h. In other words, colorclass(h(v), f) ⊆
colorclass(h(v), h). But, we know that v ∈ colorclass(h(v), h) and v 6∈ colorclass(h(v), f),
implying that |colorclass(h(v), f)| < |colorclass(h(v), h)| (since colorclass(h(v), f)∪{v} ⊆
colorclass(h(v), h)). This contradicts f being viable to h.

Lemma 8. Given a graph G and a k-equitable coloring f , for any color c used in f ,
b |V (G)|

k
c ≤ |colorclass(c, f)| ≤ d |V (G)|

k
e.

Proof. We first show that for any color c, |colorclass(c, f)| ≥ bn
k
c, where n = |V (G)|.

Towards contradiction, for a color c1 used in f , suppose |colorclass(c1, f)| ≤ bn
k
c−1. Then

for any other color ci, i 6= 1, used in f , |colorclass(ci, f)| ≤ bn
k
c, as otherwise f would not

be equitable. But,
∑

c |colorclass(c, f)| ≤ (bn
k
c − 1) + (k − 1)bn

k
c = kbn

k
c − 1 < n.

We next show that for any color c, |colorclass(c, f)| ≤ dn
k
e. Similar to the previous

paragraph, towards contradiction, for a color c2 used in f , suppose |colorclass(c2, f)| ≥
dn
k
e + 1. Then for any other color ci, i 6= 2, used in f , |colorclass(ci, f)| ≥ dn

k
e. This

contradicts f being equitable as
∑

c |colorclass(c, f)| ≥ (dn
k
e+1)+(k−1)dn

k
e ≥ kdn

k
e+1 >

n.

Lemma 9. Given a graph G and a k-equitable coloring f , if k ≥ 2∆(G) + 2 then for any
vertex v, |valid(v, f)| ≥ (k − 2∆(G)− 1)m where m = min1≤i≤k |colorclass(i, f)|.

Proof. We prove the lemma by showing the existence of a subset of valid(v, f) with size
at least (k − 2∆(G) − 1)m. We denote as good colors the colors that are not in the set
colors(NG(v)) ∪ {f(v)}. There are at least k − ∆(G) − 1 good colors. Let F be the set
of all the vertices with good colors, or equivalently the union of the color classes of all the
good colors. We prove the lemma by showing a lower bound on the size of F and then an
upper bound on the number of vertices in F that can not be valid for v.

We first prove a lower bound on the size of F . Since the size of a color class of f can
either be m or m+ 1, it follows that |F | ≥ (k −∆(G)− 1)m.

We next prove an upper bound on the number of vertices in F that can not be valid
for v. A vertex in F is not valid for v if and only if the neighborhood of that vertex
contains a vertex with color f(v) (by the definition of F , there can be no vertex in the

39

neighborhood of v with the same color as a vertex in F). In the worst case, each vertex
in colorclass(f(v), f) \ {v} is adjacent to only vertices in F and the neighborhood of each
vertex in colorclass(f(v), f)\{v} is disjoint. So, for each vertex in colorclass(f(v), f)\{v}
there are at most ∆(G) vertices in F that are not valid for v. Since v is not adjacent to
any vertex in F , there are at most (|colorclass(f(v), f)| − 1)∆(G) vertices in F that are
not valid for v. Since |colorclass(f(v), f)| ≤ m + 1, there are at least (k − 2∆(G) − 1)m
vertices u in F for which swap(u, v) is valid.

Theorem 6. If k ≥ n, an instance (H, fs, fe) of k-ECR REACH can be solved in
polynomial time.

Proof. We prove the theorem by showing that if fs and fe are viable to each other then it is
a yes-instance and a no-instance otherwise. It is immediate that if fs and fe are not viable
to each other then (H, fs, fe) is a no-instance. What is left to prove is that (H, fs, fe) is a
YES instance if fs and fe are viable to each other.

We show constructively that (H, fs, fe) is a yes-instance if fs and fe are viable to each
other. Note that all vertices in V (H) have distinct colors since k ≥ n. So, a k-vertex
coloring that we obtain by swapping the color of any two vertices is always equitable.
Consequently, any two vertices in H are valid for each other. For each vertex v such that
fs(v) 6= fe(v), we can swap the colors of v and a vertex in candidate(fs, fe, v) (which is
guaranteed to be non-empty by Lemma 7). By repeating this for each vertex in H in the
current k-equitable coloring whose color is different from its color in fe, we can obtain a
reconfiguration sequence between fs and fe.

Checking if two k-equitable colorings are viable to each other can be done by a linear
scan of all the vertices in a graph, so our theorem is proved.

5.2 k-ECR REACH is PSPACE-hard

In this section, we prove that k-ECR REACH is PSPACE-hard by reducing an instance
(G, Is, Ie) of TJ-IS REACH, which was defined in Section 2.4, to an instance (H, fs, fe)
of k-ECR REACH1. In our reduction, we require k in k-ECR REACH to be k =
|V (G)| − |Is| + 1. It follows from the description of our reduction that a k-coloring of H

1Our reduction was developed in collaboration with Tatsuhiko Hatanaka and Haruka Mizuta, who are
both affiliated with the Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05,
Sendai 980-8579, Japan, at the Combinatorial Reconfiguration Workshop in Banff International Research
Station, Alberta.

40

exists.

We copy to a graph H the vertices and edges in G and add (k− 1) |Is| isolated vertices
that we call buffer vertices and, additionally, a frozen structure that is a complete graph on
2n vertices. We call the vertices of the frozen structure frozen vertices. We call the copies
of vertices of G that are in H original vertices and for each vertex v in G, we denote as vH
the corresponding original vertex in H. Similarly, for each original vertex u in V (H), we
denote as uG its corresponding vertex in G. Note that, in addition to the edges we copy
from G to H, we have added k(k − 1) edges to the frozen structure.

We first remove edges from the frozen structure and then add edges between the frozen
and buffer vertices so that in any k-equitable coloring of H, valid swaps are possible only
between original vertices. Let M = {u1v1, u2v2, . . . , unvn} be a perfect matching of the
frozen structure. We remove the edges corresponding to M from the frozen structure.
Note that we have added 2k(k − 1) edges. We can see that in any k-coloring of H, the
frozen structure is colored by k colors and there is no valid swap between a frozen vertex
and another vertex.

We group the (k − 1) |Is| buffer vertices in k − 1 groups of size |Is|: B1, B2, . . . , Bk−1.
We draw edges from each vertex in a Bi, 1 ≤ i ≤ k − 1, to all the vertices in the set
V (M)\{ui, vi}. Since there are (k−1) |Is| buffer vertices, we have added (k−1) |Is| 2(k−1)
edges between frozen and buffer vertices. Since the frozen structure is colored by k colors
by any k-coloring and there is no valid swap between a frozen vertex and another vertex,
there is also no valid between a buffer vertex and another vertex.

As a consequence of our reduction, the following observation follows.

Observation 8. For any k-equitable coloring of H, valid swaps are only possible between
original vertices.

The following observation follows as no original vertex is adjacent to a buffer vertex or
a frozen vertex.

Observation 9. For any original vertex u of H, each vertex in NH(u) is an original vertex.

Claim 8. Our reduction of an instance of TJ-IS REACH to an instance of k-ECR
REACH can be executed in O(n3) time and space, where n = |V (G)|.

Proof. We prove the observation by noting that we add (k− 1)|Is|+2k vertices and 2k(k−
1) + (k − 1)|Is|2(k − 1) edges. Since Is is a subset of V (G), |Is|≤ n; we also know that
k = |V (G)|−|Is|+1. It follows from this that the number of vertices and edges added is in
O(n3), where n = |V (G)|.

41

Below, we make two definitions that rely on the frozen vertices having specific colors.
It follows from the frozen vertices having specific colors that a buffer vertex also has a
specific color as it is adjacent to every frozen vertex apart from some ui and vi of M
(1 ≤ i ≤ k). Since the frozen vertices can be assigned k colors and the buffer vertices
can be assigned k − 1 colors, the existence of a k-coloring of H where frozen vertices have
specific colors follows from the existence of a k-vertex coloring of H that, when restricted
to original vertices, is proper. That there exists a proper k-vertex coloring restricted to
original vertices follows as, since k = |V (G)|−|Is|+1, we can assign to the original vertices
corresponding to the vertices of Is color 1, and assign to the rest of the |V (G)|−|Is| original
vertices distinct colors which are not 1.

Definition 22. We say that a k-equitable coloring f of H is precolored if the frozen vertices
ui and vi, 1 ≤ i ≤ k, have color i.

Definition 23. For an independent set I in G of size |Is|, we define a corresponding k-
equitable coloring of I as any k-equitable coloring f such that: f is precolored; for each
vertex u in I, uH has color 1 in f ; and the remaining |V (G)|−|I| original vertices have
distinct colors from the set {2, . . . , k}.

The following observations follow from our reduction and the definition of corresponding
k-equitable colorings.

Observation 10. Given an independent set I in G of size |Is| and a corresponding k-
equitable coloring f of I, each original vertex u in H has color 1 in f if and only if uG ∈ I.

Observation 11. Given an independent set I of G of size |Is| and a corresponding k-
equitable coloring f of I, each original vertex u such that uG 6∈ I has a distinct color that
is not 1.

Observation 12. For every independent set I in G of size |Is|, there exists a corresponding
k-equitable coloring.

Proof. We prove this by constructing such a corresponding k-equitable coloring f of I.
Let f be precolored. For each vertex u in I, we let uH have color 1 in f . Since I is an
independent set, no two adjacent vertices have the same color. We color the remaining
original vertices with distinct colors from the set {2, . . . , k}.

What is left to prove is that f is equitable. The frozen structure has two vertices with
color i in f for 1 ≤ i ≤ k, the buffer and original vertices have |Is|+1 vertices with color j
in f for 2 ≤ j ≤ k, and the original vertices have |Is| vertices with color 1 in f . It follows
from this that |colorclass(1, f)| = |Is|+2 and |colorclass(j, f)| = |Is|+3 for 2 ≤ j ≤ k.

42

Claim 9. Given an independent set I in G of size |Is| and a corresponding k-equitable
coloring f of I, any swap between two original vertices u and v is valid if uG, vG 6∈ I.

Proof. We prove the claim by noting that each vertex in the set of original vertices not in
I has a distinct color in f that is not 1 (Observation 11). Also, the neighborhood of any
original vertex contains only original vertices (Observation 9). It follows from this that u
is the only vertex in NH(v) with color f(u) in f and v is the only vertex in NH(u) with
color f(v) in f . Clearly swap(u, v) is valid in f .

Claim 10. Given an independent set I in G of size |Is| and any corresponding k-equitable
coloring f of I, if there is a valid swap between two original vertices u and v in f where
uG ∈ I, vG 6∈ I, then (I \ {uG}) ∪ {vG} is an independent set of G.

Proof. We prove the claim by showing that (NG(vG) \ {uG}) ∩ I = ∅. Since swap(u, v)
is valid in f , there is no vertex in NH(v) \ {u} with color f(u) in f . From Observation
9, each vertex in NH(v) is an original vertex. We can also say from Observation 10 that
f(u) = 1 and for each vertex w in NH(v) \ {u}, wG 6∈ I (as f(w) 6= 1). It follows that
(NG(vG) \ {uG}) ∩ I = ∅.

Claim 11. For a graph G and an independent set I, the nodes of any two corresponding k-
equitable colorings of I are connected in Rk−ECR(H) by a path of length at most |V (G)|−|Is|.

Proof. We prove the claim for any two corresponding k-equitable colorings f and h of I.
We first show that f and h are viable to each other by noting that, for O being the induced
subgraph on the original vertices, since f and h are both precolored, |colorclass(i, f |O)| =
|colorclass(i, h|O)| for 1 ≤ i ≤ k.

Next, we show that only original vertices v such that vG 6∈ I have different colors in f
and h. As both f and h are precolored, only original vertices can have different colors in f
and h. Furthermore, since for each vertex w in I, f(wH) = h(wH) = 1 (from Observation
10), only original vertices v such that vG 6∈ I have different colors in f and h.

Now, we show that the color of each original vertex u such that uG 6∈ I and f(u) 6=
h(u) can be swapped with the color of a vertex x in candidate(f, h, u). Such an x in
candidate(f, h, u) exists as f and h are viable to each other (Lemma 7). Since x is a
candidate vertex, f(x) 6= h(x) and x is an original vertex such that xG 6∈ I. From Claim
9, as xG, vG 6∈ I and x, v are original vertices, swap(u, x) is valid in f . The k-equitable
coloring that we obtain from swap(u, x) is also a corresponding k-equitable coloring of I,
so we can repeat this for all vertices in H that have different colors in f and h. Since there

43

are at most |V (G)|−|Is| vertices that have different colors in f and h, there is a path of
length at most |V (G)|−|Is| between the nodes of f and h in Rk−ECR(H).

Claim 12. For every two independent sets Ia and Ib whose nodes are connected by a
path of length ` in RIS−TJ (G), the nodes of any two corresponding k-equitable colorings
of Ia and Ib, respectively, in Rk−ECR(H) are also connected by a path of length at most
`+ (|V (H)|−|Ia|).

Proof. We prove the claim by showing that for every two adjacent independent sets Ix and
Iy in G, each corresponding k-equitable coloring of Ix is adjacent to some corresponding k-
equitable coloring of Iy. Consequently, the node of each corresponding k-equitable coloring
of Ia is connected to the node of some corresponding k-equitable coloring of Ib by a path
of length at most ` in Rk−ECR(H). Since, from Claim 11, the node of each corresponding
k-equitable coloring of Ib is connected to the node of any other corresponding k-equitable
coloring of Ib by a path of length at most |V (H)|−|Ia|, our claim follows.

We show that the statement that for every two adjacent independent sets Ix and Iy
each corresponding k-equitable coloring of Ix is adjacent to some corresponding k-equitable
coloring of Iy is equivalent to the statement that any token jump in G can simulated by
a swap in H. Before stating our second statement formally, let f be any corresponding
k-equitable coloring of Ix, {x, y} = Ix4Iy ({x, y} is the symmetric difference of Ix and
Iy), and assume without loss of generality that x ∈ Ix and y ∈ Iy. Assuming that there
is a token on each vertex of Ix in G, a token jump is moving a token from x to y to form
Iy from Ix, and an equivalent swap is swap(xH , yH) in f . Formally, our second statement
states that for the adjacent independent sets Ix and Iy, swap(xH , yH) in f is valid. If
swap(xH , yH) in f is valid, it can be seen that the k-equitable coloring that we obtain is a
corresponding k-equitable coloring of Iy. To see why, notice that for each original vertex w
such that wG ∈ (Ix \ {x})∪{y} = Iy has color 1 in the k-equitable coloring that is formed.
It follows from this that our two statements are equivalent.

We now show that swap(xH , yH) is valid in f . It is sufficient to show that there is no
vertex in NH(xH)\{yH} with color f(yH) in f and that there is no vertex in NH(yH)\{xH}
with color f(xH) = 1 in f . We first show that there is no vertex in NH(yH) \ {xH} with
color 1 in f . Since Ix and Iy are adjacent, y is not adjacent to any vertex in Ix \ {x}, and
as only original vertices u such that uG ∈ Ix have color 1 in f (Observation 10), there is no
vertex in NH(yH) \ {xH} that has color 1 in f . From Observation 11, each original vertex
v such that vG 6∈ Ix has a color that is not 1 in f . Since for each vertex z in NH(xH)
zG 6∈ Ix, there is no vertex in NH(xH) that has color 1 in f . Consequently, swap(xH , yH)
in f is valid.

44

Claim 13. For every two k-equitable colorings fx and fy whose nodes in Rk−ECR(H) are
connected by a path of length `, if fx and fy are the corresponding k-equitable colorings of
independent sets Ix and Iy of G, respectively, then the nodes of Ix and Iy are connected by
a path of length at most ` in RIS−TJ (G).

Proof. We prove the claim by showing that each swap in the reconfiguration sequence
between fx and fy can be simulated by a token jump in G. For a swap between an original
vertex with color 1 and another original vertex, by a token jump, we specifically mean
moving a token from the corresponding vertex in G of the original vertex with color 1 to
the corresponding vertex in G of the other original vertex. Before formally making our
statement, we let the reconfiguration sequence between fx and fy be γ1, . . . , γ`−1 and also
assume that γ0 = fx and γl = fy.

We now show by induction on the length of the reconfiguration sequence that for each i,
0 ≤ i ≤ `−1, γi and γi+1 are corresponding k-equitable colorings of some two independent
sets Ia and Ib, respectively, and either Ia = Ib or Ia and Ib are adjacent. In the base
case, when the length of the reconfiguration sequence is zero, fx = fy and both of them
are corresponding k-equitable colorings of Ix(= Iy). In the inductive step, we can assume
that the statement holds for each j, 0 ≤ j ≤ p, and prove that it also holds for p + 1
(1 ≤ p ≤ ` − 1). Let the swap between γp and γp+1 be between vertices u and v. We
can also assume that γp is a corresponding k-equitable coloring of an independent set Ip.
Since valid swaps are only possible between original vertices (Observation 8), u and v are
original vertices. Consequently, the cases to consider are the following.

1. uG, vG 6∈ Ip.

2. uG ∈ Ip, vG 6∈ Ip or uG 6∈ Ip, vG ∈ Ip.

3. uG, vG ∈ Ip.

In Case (1), since each vertex x such that xG ∈ Ip has color 1 in γp+1, γp+1 is also a
corresponding k-equitable coloring of Ip. So effectively, there is no token jump.

In Case (2), we can assume without loss of generality that uG ∈ Ip, vG 6∈ Ip. Next, from
Claim 10, since swap(u, v) is valid in γp and γp is a corresponding k-equitable coloring
of Ip, the set (Ip \ {uG}) ∪ {vG} is an independent set. Since each vertex y such that
yG ∈ (Ip \ {uG})∪ {vG} has color 1 in γp+1, γp+1 is a corresponding k-equitable coloring of
(Ip \ {uG}) ∪ {vG}. And (Ip \ {uG}) ∪ {vG} is adjacent to Ip. So the token jump is from
uG to vG.

45

In Case (3), since both u and v have color 1 in γp, it is not a valid swap, a contradiction.

We are now ready to prove Theorem 7.

Theorem 7. k-ECR REACH is PSPACE-hard.

Proof. We prove that k-ECR REACH is PSPACE-hard by reducing an instance (G, Is, Ie)
of TJ-IS REACH to an instance (H, fs, fe) of k-ECR REACH, and showing that an
instance (G, Is, Ie) is a yes-instance if and only if (H, fs, fe) is a yes-instance. The reduction
we have described can be executed using polynomial time and space from Claim 8. From
Observation 12, there exist two k-equitable colorings fs and fe which are corresponding k-
equitable colorings of Is and Ie, respectively. So each instance (G, Is, Ie) of TJ-IS REACH
has a corresponding instance (H, fs, fe) in k-ECR REACH. If (G, Is, Ie) is a yes-instance,
then the nodes of Is and Ie are connected in RIS−TJ (G) and from Claim 12, the nodes of
fs and fe are also connected in Rk−ECR(H). If (H, fs, fe) is a yes-instance, then the nodes
of fs and fe are connected in Rk−ECR(H) and from Claim 13, the nodes of Is and Ie are
also connected.

The following lemma follows since TJ-IS REACH is W[1]-hard when parameter-
ized by the number of tokens [30], and for an instance (G, Is, Is) of TJ-IS REACH
and a corresponding instance (H, fs, fe) of k-ECR REACH from our reduction, |Is|=
colorclass(1, fs)− 1.

Lemma 10. k-ECR REACH is W[1]-hard when parameterized by the size of a color
class.

5.3 2-equitable colorings

We prove that k-ECR REACH is solvable in polynomial time when k = 2. Note that if
a 2-coloring exists for a graph, then the graph is bipartite. We also assume without loss of
generality that the colors used in any 2-equitable coloring are 1 and 2.

Lemma 11. Given a graph G and 2-equitable colorings f and h, if a vertex v in V (G) has
f(v) 6= h(v) and d(v) ≥ 2, then the nodes of f and h are not connected in R2−ECR(G).

Proof. We consider two vertices adjacent to v, say w and x, and assume without loss of

46

generality that f(v) = 1. Since f(w) 6= f(v) and f(x) 6= f(v), f(w) = f(x) = 2. For any
swap to change the color of v, the colors of w and x must also be changed to 1. But, to
change the colors of w or x, the color of v must be changed to 2. Therefore, to change
the color of at least one of the vertices u, v, or w, the colors of all three of them must be
changed. Since a swap can change the colors of only two vertices, there is no sequence of
swaps such that the colors of at least one of the vertices u, v, or w is changed.

Observation 13. Given a graph G and 2-equitable colorings f and h, a vertex v such that
f(v) 6= h(v), and any vertex u in candidate(f, h, v), then v is also in candidate(f, h, u).

Proof. We can assume without loss of generality that f(v) = 1, and so h(v) = 2. Since u is
in candidate(f, h, v), f(u) = 2 and f(u) 6= h(u). It follows that v is in candidate(f, h, u).

Notice that Observation 13 holds only for 2-equitable colorings. If more than two colors
are used, then given k-equitable colorings f and h and a vertex v such that f(v) 6= h(v),
for a vertex u in candidate(f, h, v), it can be that h(u) 6= f(v).

We describe, in Algorithm 3, an algorithm that, given as input a graph G and 2-
equitable colorings fs and fe, returns a reconfiguration sequence if (G, fs, fe) is a yes-
instance and an empty set otherwise. Before describing our algorithm we give a high-level
overview.

The three possible cases that Algorithm 3 handles are: fs and fe are not viable to each
other; there exists a vertex with degree greater than or equal to 2 having different colors
in fs and fe; and (G, fs, fe) is a yes-instance. In the first case, it is clear that (G, fs, fe) is
a no-instance. In the second case, from Lemma 11, (G, fs, fe) is a no-instance.

In the third case, Algorithm 3 groups the vertices with different colors in fs and fe
in set S, changes the color of vertices in S with degree 1, and then changes the color of
vertices with degree 0. Since there is no vertex in S with degree greater than or equal to
2, this suffices.

In the while loop in line 12, Algorithm 3 iteratively selects vertices u in S with degree
1. Since fi(u) 6= fe(u), where fi is the 2-equitable coloring under consideration in iteration
i, and both fi and fe are 2-equitable colorings, u’s neighbor, say w, is also in S and has
degree exactly 1. It follows from this that swap(u,w) is valid in fi. Since w has color
fe(u), it is in candidate(fi, fe, u), and so u is in candidate(fi, fe, u) from Observation 13.
Consequently, after swap(u,w), both u and w are colored with their target colors (fe(u)
and fe(w), respectively).

47

Next, in the while loop in line 18, Algorithm 3 selects vertices x with degree 0. We
can then select a candidate vertex y for x. Since y is also in S, y has degree 0 and so
swap(x, y) is valid in fi. As x is in candidate(fi, fe, y), y is also in candidate(fi, fe, x) from
Observation 13. So after swap(x, y), both x and y are colored with their target colors
(fe(x) and fe(y), respectively).

Algorithm 3 TwoEquitableRecolor

1: procedure TwoEquitableRecolor(G, fs, fe)
2: if IsViable(fs, fe) = false then
3: . IsViable returns true if fs and fe are viable to each other and false otherwise
4: return ()
5: end if
6: S ← {v | fs(v) 6= fe(v)}
7: if there exists a v in S such that d(v) ≥ 2 then
8: return ()
9: end if

10: f0 ← fs
11: i← 0
12: while there exists a u in S with d(u) = 1 do
13: w ← the single vertex in NG(u)
14: fi+1 ← SwapVertices(fi, u, w)
15: S ← S \ {u,w}
16: i← i+ 1
17: end while
18: while S 6= ∅ do
19: x← some vertex in S
20: y ← CandidateVertex(fi, fe, x)
21: . CandidateVertex returns a vertex in the set candidate(fi, fe, x)
22: fi+1 ← SwapVertices(fi, x, y)
23: S ← S \ {x, y}
24: i← i+ 1
25: end while

return (f1, f2, . . . , fi−1)
26: end procedure

Lemma 12. Algorithm 3 is correct and runs in O(n2) time, where n = |V (G)|.

Proof. We first show that Algorithm 3 is correct. The three cases that Algorithm 3 handles

48

are: fs and fe are not viable to each other; there is a vertex with degree greater than 2
that has different colors in fs and fe; and all other cases. Algorithm 3 handles the first
case in line 4, where it is immediate that if fs and fe are not viable to each other, then
(G, fs, fe) is a no-instance. Algorithm 3 handles the second case in line 8, where it follows
from Lemma 11 that if a vertex with degree greater than 2 has different colors in fs and
fe, then (G, fs, fe) is a no-instance. In line 6, the set S contains all the vertices that have
different colors in fs and fe. In the third case, Algorithm 3 iteratively changes the color of
vertices in S to their respective color in fe, in two steps.

The two steps in which Algorithm 3 changes the color of vertices in S are to first change
the color of vertices in S that have degree 1, and then to change the color of vertices in S
that have degree 0. This suffices as we know from the second case of our algorithm that
there is no vertex in S with degree greater than 2. Whenever the color of a vertex in S is
changed, the obtained k-equitable coloring is stored in fi+1 and vertices are removed from
S so that it stores the vertices that have different colors in fi+1 and fe.

The while loop in line 12 changes the color of vertices u in S with degree 1. Since fi
is proper, for the vertex w adjacent to u, fi(w) 6= fi(u). As fi is a 2-equitable coloring,
fi(w) = fe(u), and as fe is proper, fe(w) 6= fi(w). It follows from this that w is in
candidate(fi, fe, u) and d(w) = 1. Since NG(w) \ {u} = ∅ and NG(u) \ {w} = ∅, in line 14,
swap(u,w) is valid in fi. We can also say that u is in candidate(fi, fe, w) from Observation
13, as w is in candidate(fi, fe, u). So after swap(u,w), u and w have their target colors
(fe(u) and fe(w), respectively), and after line 15 the set S only has vertices whose colors
are different in fi+1 and fe.

The while loop in line 18 changes the color of vertices x in S with degree 0. The set
candidate(fi, fe, x) is guaranteed to be non-empty by Lemma 7. In line 21, some vertex
y in candidate(fi, fe, x) is returned by the procedure CandidateVertex. Since y is a
candidate vertex, fi(y) 6= fe(y), and so y ∈ S. As y ∈ S, d(y) = 0. Clearly swap(x, y) is
valid. And from Observation 13, as y is in candidate(fi, fe, x), x is in candidate(fi, fe, y).
So after line 23 the set S only has vertices whose colors are different in fi+1 and fe.

We now show that Algorithm 3 runs in O(n2) time, where n = |V (G)|. A call to
IsViable can be executed in O(n) time as two k-equitable colorings can be checked if they
are viable to each other by a linear scan of all the vertices. A call to CandidateVertex
can also be executed in O(n) time as a candidate vertex can be found by a linear scan of
all the vertices. Since the number of iterations of the while loops in Algorithm 3 is linear
in terms of the size of S, which is less than or equal to n, our algorithm runs in O(n2)
time.

The following corollary is immediate from the correctness of Algorithm 3.

49

Corollary 3. We can characterize yes-instances (G, fs, fe) of 2-ECR by the following
conditions.

1. fs and fe are viable to each other.

2. There is no vertex in G with degree greater than two that has different colors in fs
and fe.

5.4 Paths

In this section, we prove that for paths when the number of colors is 3, k-ECR REACH
can be solved in polynomial time. We prove this by showing that, for n > 15, any 3-
equitable coloring can be reconfigured to its canonical form, in four steps. For this, we
define three properties: dense ones, alternating ones, and matching ones. We first show, in
Corollary 4, that any 3-equitable coloring can be reconfigured to a 3-equitable coloring that
satisfies the dense ones property. Next, in Corollary 5, we show that a 3-equitable coloring
that satisfies the dense ones property can be reconfigured to a 3-equitable coloring that
satisfies the alternating ones property. Third, in Corollary 6, we show that any 3-equitable
coloring that satisfies the alternating ones property can be reconfigured to a 3-equitable
coloring that satisfies the matching ones property. Finally, in Corollary 7, we show that
a 3-equitable coloring that satisfies the matching ones property can be reconfigured to its
canonical 3-equitable coloring.

We make the following note before going further into our proof.

Note 2. Since the reconfiguration step in k-ECR REACH is to swap the colors of two
vertices, the length of a reconfiguration sequence between two 3-equitable colorings is the
same as the number of swaps between the two 3-equitable colorings.

We now define the dense ones property and describe an algorithm, Algorithm 4, to
reconfigure any 3-equitable coloring of a path to a 3-equitable coloring that satisfies the
dense ones property.

Definition 24. We say that a 3-equitable coloring of a path P = v1, v2, . . . , vn satisfies
the dense ones property if for any two vertices vi, vj with color 1, 1 ≤ i < j ≤ n, and
j − i ≥ 4, there exists a vertex vt, i < t < j, with color 1, and the rightmost 1 is either vn
or vn−1.

50

Algorithm 4, at each iteration, selects the rightmost 1 in the subpath v1, v2, . . . , vnsub

and “shifts” its color to a vertex vt, which is at a distance of at most 1 from vnsub
, such that

the 3-equitable coloring restricted to the subpath of vt and all vertices right of vt satisfies
the dense ones property. We are also assured that at each iteration, vnsub

’s successor (if it
exists) does not have color 1. Then, Algorithm 4 relies on the fact that if the rightmost
1 is neither vnsub

nor vnsub−1, then the color of the rightmost 1 can be swapped with the
color of either the successor of it or the vertex that is at distance 2 from it and right of
it. To this end, an auxiliary algorithm, Algorithm 5, repeatedly makes one of these swaps
until the rightmost 1 in the subpath v1, v2, . . . , vnsub

is either vnsub
or vnsub−1. The value of

nsub is then set to the index of the vertex left of and at distance 2 from the rightmost 1 in
the subpath v1, v2, . . . , vnsub

. Even after the value of nsub is changed, there is still no vertex
successor of vnsub

with color 1. Initially, nsub = n, and Algorithm 5 is called until there
is no vertex with color 1 in the subpath v1, v2, . . . , vnsub

. Since the value of nsub decreases
after each call to Algorithm 5, in some iteration, there will be no vertex with color 1 in
the subpath v1, v2, . . . , vnsub

.

An example of an input and output 3-equitable coloring of Algorithm 4 is given in
Figure 5.1.

Algorithm 4 ShiftOnes

Input: A path P = v1, v2, . . . , vn and a 3-equitable coloring f of the path that
uses colors 1, 2, and 3.

Output: A 3-equitable coloring that satisfies the dense ones property.

1: procedure ShiftOnes(P = v1, v2, . . . , vn, f)
2: nsub ← n
3: while ExistsOne(P, nsub , f) do
4: . ExistsOne checks if there exists a vertex in the subpath v1, v2, . . . , vnsub

with
color 1 in f

5: r ← RightmostOne(P ,nsub , f)
6: . RightmostOne returns the index of the rightmost 1 in the subpath
v1, v2, . . . , vnsub

7: (f, n′sub)← ShiftOnesAux(P, f, nsub , r)
8: nsub ← n′sub
9: end while

10: return f
11: end procedure

Algorithm 5 makes swaps so that the rightmost 1 in the subpath v1, v2, . . . , vnsub
is either

51

vnsub
or vnsub−1

. Before an iteration of the while loop, vt is the rightmost 1 in the subpath
v1, v2, . . . , vnsub

. In an iteration of the while loop, we consider three cases: t < nsub ; t = 1
or vt+1 and vt−1 have different colors; and all other cases. In the first two cases swaps are
made between vt and vt+1 or between vt and vt+2, respectively, and increment the value of
t to t + 1 or t + 2, respectively. In the third case, we show that t = nsub − 1 and so the
while loop breaks. As the value of t is always increased or the while loop breaks, it follows
that the while loop ends and that either vnsub

or vnsub−1 has color 1.

Algorithm 5 ShiftOnesAux

Input: A path P = v1, v2, . . . , vn; a 3-equitable coloring f of the path that uses
colors 1, 2, and 3; the index nsub of the vertex vnsub

such that we do
not consider vertices right of it and the successor of vnsub

(if it exists)
does not have color 1; and the index r of the rightmost 1 in the subpath
v1, v2, . . . , vnsub

.
Output: A 3-equitable coloring f such that the rightmost 1 in the subpath

v1, v2, . . . , vnsub
is either vnsub

or vnsub−1 and the color of any vertex right
of vnsub

is unchanged, and the index t− 2 of the vertex at distance 2 and
left of the rightmost 1 in the subpath v1, v2, . . . , vnsub

.

1: procedure ShiftOnesAux(P, f, nsub , r)
2: t← r
3: while t < nsub do
4: if t = 1 or f(vt−1) 6= f(vt+1) then
5: f ← SwapVertices(f, vt, vt+1)
6: t← t+ 1
7: else if t ≤ nsub − 2 then
8: f ← SwapVertices(f, vt, vt+2)
9: t← t+ 2

10: else
11: break
12: end if
13: end while
14: return (f, t− 2)
15: end procedure

52

3

v1

1

v2

3

v3

2

v4

1

v5

2

v6

3

v7

1

v8

3

v9

2

v10

(a) An input 3-equitable coloring to Algorithm 4.

3

v1

2

v2

3

v3

1

v4

3

v5

2

v6

1

v7

2

v8

3

v9

1

v10

(b) The output 3-equitable coloring, for the input in Figure 5.1a, to Algorithm 4.

Figure 5.1: The figure shows a sample input and output 3-equitable coloring of a path for
Algorithm 4.

Lemma 13. Algorithm 4 is correct and uses at most dn2

3
e swaps, where n = |V (P)|.

Proof. We first show the correctness of Algorithm 4 by assuming that Algorithm 5 is
correct, and then proving the correctness of Algorithm 5. We first show that, at each
iteration, the algorithm can call Algorithm 5. When nsub = n, as there is no successor of
vnsub

the algorithm can call Algorithm 5. In line 7, the value of n′sub is updated to the value
of the index of the vertex left of and at distance 2 from the rightmost 1 in v1, v2, . . . , vnsub

.
So after line 7, the successor of vnsub

(if it exists) does not have color 1, and so it follows
that at each iteration, the algorithm can call Algorithm 5. After the first iteration of the
while loop in Algorithm 4, f(vn) = 1 or f(vn−1) = 1, so f restricted to the subpath of
the rightmost 1 and all vertices right of it satisfies the dense ones property. In iteration i,
after line 7, let vti be the rightmost 1 in the subpath v1, v2, . . . , vnsub

, and after line 8, the
value of nsub is ti − 2. Since ti is at most the value of nsub before line 8, the value of nsub

is always strictly decreasing. In iteration i + 1, before line 7, the value of nsub is ti − 2,
and after line 7, the rightmost 1 in the subpath v1, v2, . . . , vnsub

, say vti+1
, is either vnsub

or
vnsub−1. The distance between vti+1

and vti is at most 3, and so f restricted to vti+1
and all

the vertices right of it satisfies the dense ones property. It follows from this and the fact
that the value of nsub is always decreasing that Algorithm 4 outputs a 3-equitable coloring
of the path that satisfies the dense ones property.

We now prove the correctness of Algorithm 5. We show that the swaps at each iteration
of the while loop in Algorithm 5 are valid, and that after the end of the while loop the color
of either vnsub

or vnsub−1 is 1. In the first iteration, before line 4, vt has color 1, and since vt is
the rightmost 1 in the subpath v1, v2, . . . , vnsub

no vertex in {vt+1, vt+2, . . . , vnsub
} has color 1.

53

The cases that we consider in an iteration of the while loop are: t = 1 or f(vt−1) 6= f(vt+1);
f(vt−1) = f(vt+1), t ≤ nsub − 2; and all other cases. In the first case, as vt−1 and vt+1 have
different colors swap(vt, vt+1) is valid. In the second case, f(vt−1) = f(vt+1), t+ 2 ≤ nsub ,
and since f is proper f(vt+1) 6= f(vt+2); so f(vt+2) 6= f(vt−1). We also proved in the
previous paragraph that vnsub

’s successor (if it exists) does not have color 1. Consequently,
swap(vt, vt+2) is valid. In the third case, we know that t = nsub − 1, so the color of
vnsub−1 is 1. In the first two cases, the value of t is modified in line 6 or 9 so that vt is
still the rightmost 1 in the subpath v1, v2, . . . , vnsub

, and it can also be seen that after the
modification of t, t ≤ nsub holds. At each iteration of the while loop, the value of t is either
increased in the first two cases or the while loop exits in the third case. The correctness
of Algorithm 5 follows.

We show the maximum number of swaps that Algorithm 4 may use by observing that
each call to Algorithm 5 (ShiftOnesAux) makes at most nsub − r swaps. Notice that
after line 7, either vnsub

or vnsub−1 has color 1, the color of no vertex right of vnsub
is

changed in the call to Algorithm 5, and n′sub < nsub , so
∣∣∣colorclass(1, f |vnsub

,vnsub+1,...,vn)
∣∣∣ <∣∣∣colorclass(1, f |vn′

sub
,vn′

sub
+1,...,vn

)
∣∣∣. Hence, there can be at maximum |colorclass(1, f)| calls

to Algorithm 5. Thus, as |colorclass(1, f)| ≤ dn
3
e (Lemma 8) and nsub − t ≤ n, there are

at most dn2

3
e swaps.

As a consequence of the correctness of Algorithm 4, the following corollary is immediate.

Corollary 4. The node of any 3-equitable coloring of a path P and a 3-equitable coloring
of P that satisfies the dense ones property are connected by a path of length at most dn2

3
e

in R3−ECR(P).

We now define the alternating ones property and an algorithm, Algorithm 8, to re-
configure any 3-equitable coloring of a path that satisfies the dense ones property to a
3-equitable coloring that satisfies the alternating ones property. We remind the reader
that a 3-equitable coloring restricted to the subpath v1, v2, . . . , vn is c-alternating if the
colors of the vertices alternate between c and any other color (Definition 25).

Definition 25. We say that a 3-equitable coloring of a path P = v1, v2, . . . , vn satisfies
the alternating ones property if either vn or vn−1 has color 1 and the subpath of P that
contains the leftmost 1 and all vertices right of it is 1-alternating.

Before describing the algorithm (Algorithm 8) to convert a 3-equitable coloring that
satisfies the dense ones property to a 3-equitable coloring that satisfies the alternating

54

ones property we describe two symmetric operations, Algorithms 6 and 7, that we use in
Algorithm 8 and throughout the rest of the section. In Algorithm 8, we use Algorithm 7
to obtain a 3-equitable coloring where a subpath of P is 1-alternating.

Algorithm 6 takes as input a subpath S = v1, v2, . . . , vn and a 3-equitable coloring
where S \{v1} is c-alternating and v1 and v2 do not have color c. At an iteration i, neither
vi nor vi+1 has color c and vi+2 has color c. We refer to vi and vi+1 as the buffer of iteration
i. At each iteration, the successor of vi+1 and the predecessor of vi either have color c or
do not exist. Since the vertices of the buffer of the iteration do not have color c, we can,
optionally, swap the colors of the two vertices of the buffer. We refer to this as an optional
swap. At each iteration, swap(vi+1, vi+2) is performed, and this is referred to as a required
swap. If f(vi+1) = f(vi+3), the required swap is not valid, and so the algorithm first
performs the optional swap. Since f is proper, after the optional swap, f(vi+1) 6= f(vi+3)
and so swap(vi+1, vi+2) is valid. After swap(vi+1, vi+2), vi+2 does not have color c. Since
before the first iteration S \ {v1} was c-alternating, if n− i− 4 ≥ 0, vi+4 has color c. On
incrementing i to i+ 2, either i > n− 2 or neither vi nor vi+1 has color c and vi+2 has color
c. So at the end of the while loop v1, v2, . . . , vn−1 is c-alternating.

An example of these operations is given in Figure 5.2.

55

Algorithm 6 LeftShift

Input: A subpath S = v1, v2, . . . , vn of some path and a 3-equitable coloring
f of the path such that: v2, v3, . . . , vn is c-alternating for some color c;
f(v1), f(v2) 6= c (i.e., each vertex with an odd index, apart from v1, has
color c); and if there is a predecessor of v1 then it has color c in f .

Output: A 3-equitable coloring such that v1, v2, . . . , vn−1 is c-alternating, v2 has
color c, and the colors of vertices not in S are unchanged.

1: procedure LeftShift(S = v1, . . . , vn, f)
2: i← 1
3: while i ≤ n− 2 do
4: if f(vi+1) = f(vi+3) then
5: f ← SwapVertices(f, vi, vi+1)
6: . Optional swap
7: end if
8: f ← SwapVertices(f, vi+1, vi+2)
9: . Required swap

10: i← i+ 2
11: end while
12: return f
13: end procedure

Algorithm 7 takes as input a subpath S = v1, v2, . . . , vn and a 3-equitable coloring where
S \ {vn} is c-alternating and vn and vn−1 do not have color c. The algorithm reverses the
order of vertices in S and passes S and f as input to Algorithm 6. After reversing the the
order of vertices in S to its original order, the algorithm returns the produced 3-equitable
coloring.

56

Algorithm 7 RightShift

Input: A subpath S = v1, v2, . . . , vn of some path and a 3-equitable coloring f
of the path such that: v1, v2, . . . , vn−1 is c-alternating for some color c;
f(vn−1), f(vn) 6= c (i.e., each vertex, apart from vn, whose index has the
same parity as n has color c); and if there is a successor of vn then it has
color c in f .

Output: A 3-equitable coloring such that v2, v3, . . . , vn is c-alternating, vn−1 has
color c, and the color of vertices not in S are unchanged.

1: procedure RightShift(S = v1, . . . , vn, f)
2: ReversePath(S)
3: f ← LeftShift(S = vn, vn−1, . . . , v1, f)
4: ReversePath(S)
5: return f
6: end procedure

1

v0

2

v1

3

v2

1

v3

3

v4

1

v5

2

v6

1

v7

3

v8

(a) An optional swap at iteration i = 1 between
v1 and v2 because v2 and v4 have the same color.

1

v0

3

v1

2

v2

1

v3

3

v4

1

v5

2

v6

1

v7

3

v8

(b) Required swap at iteration i = 1 between v2

and v3.

Figure 5.2: One iteration of Algorithm 6

57

3

v1

1

v2

2

v3

1

v4

3

v5

1

v6

3

v7

2

v8

1

v9

(a) Optional swap at iteration i = 8 between v7

and v8 because v7 and v5 have the same color.

3

v1

1

v2

2

v3

1

v4

3

v5

1

v6

2

v7

3

v8

1

v9

(b) Required swap at iteration i = 8 between v6

and v7.

Figure 5.3: One iteration of Algorithm 7.

Since Algorithms 6 and 7 are symmetric, it suffices to prove the correctness of Algorithm
6.

Lemma 14. Algorithm 6 is correct and uses at most n− 1 swaps.

Proof. Before proceeding with our proof, we consider that there is a predecessor of v1, v0,
and a successor of vn, vn+1. In Algorithm 6, it is optional for such a v0 and vn+1 to exist,
and our proof holds even when such a v0 and vn+1 do not exist.

We prove by induction on the value of i, which can take values in the set {1, 3, . . . , X}
(X = n − 2 when n − 2 is odd; X = n − 3 when n − 2 is even), that after an iteration i,
both vi+1 and vi+4 have color c, neither vi+2 nor vi+3 has color c, and that f is proper. We
also show that the swaps made in the algorithm are valid. From our input, this statement
holds before the first iteration, which we assume to be after iteration i = −1. In the base
case, after the iteration i = −1, our statement holds.

In the inductive step, we assume that our statement holds after the iteration i = p
and prove that it holds after the iteration i = p + 2. So, we can assume that f(vp+1) =
f(vp+4) = c, f(vp+2) 6= c, f(vp+3) 6= c, and that f is proper.

We prove that the optional swap in line 6 for iteration p+ 2 is valid. Since f(vp+2) 6= c
and f(vp+3) 6= c, neither of the two buffer vertices (vp+2 and v(p+2)+1) has color c, and as
f(vp+1) = f(vp+4) = c, both the predecessor of vp+2 and the successor of vp+3 have color c.
It follows from this that swap(vp+2, v(p+2)+1) is valid (see Figure 5.4a).

58

We prove that the required swap in line 7 for iteration p + 2 is valid. We can say
that f(v(p+2)+1) 6= f(v(p+2)+3) as otherwise the optional swap in line 6 would have been
performed. Also, since f(v(p+2)) 6= c, swap(v(p+2)+1, v(p+2)+2) is valid (see Figure 5.4b).

We now show that after iteration p+ 2, both v(p+2)+1 and v(p+2)+4 have color c, neither
v(p+2)+2 nor v(p+2)+3 has color c, and that f is proper. It follows from the required swap in
line 7 that v(p+2)+1 has color c. As both the required swap and the optional swap are valid,
f is proper. Since f is proper, v(p+2)+2 does not have color c. Before the first iteration
v2, v3, . . . , vn is c-alternating, and after an iteration i, as only the colors of vertices in the
set {vi, vi+1, vi+2} are changed in iteration i, the color of a vertex vj, i + 3 ≤ j ≤ n, is
unchanged. So after an iteration i, vi+3, vi+4, . . . , vn is c-alternating. Since after iteration p
v(p+2)+2 had color c and v(p+2)+2, v(p+2)+3, . . . , vn was c-alternating, after iteration p, v(p+2)+3

did not have color c and v(p+2)+4 had color c. As the colors of v(p+2)+3 and v(p+2)+4 are
unchanged in iteration p + 2, after iteration p + 2, f(v(p+2)+3) 6= c and f(v(p+2)+4) = c.
This also means that after iteration i = 1, v2 has color 1.

As there are at most dn−2
2
e iterations and each iteration uses at most two swaps, the

algorithm uses at most n− 1 swaps.

1

vp+1

2

vp+2

3

vp+3

1

vp+4

3

vp+5

(a) The optional swap for iteration p+2, between
vp+2 and vp+3, is always valid.

1

vp+1

3

vp+2

2

vp+3

1

vp+4

3

vp+5

(b) The required swap for iteration p+2, between
vp+3 and vp+4, is now valid.

Figure 5.4: Operations of Algorithm 6 for iteration p+ 2.

Definition 26. Given a 3-equitable coloring f of a path v1, v2, . . . , vn, for some i, 1 ≤ i ≤
n− 3, the vertices vi, vi+1, vi+2, vi+3 form a dense block if f(vi) = f(vi+3) = 1, f(vi+1) 6= 1,
and f(vi+2) 6= 1.

59

Observation 14. Given a 3-equitable coloring f of a path that satisfies the dense ones
property, f does not satisfy the alternating ones property if and only if there is a dense
block.

Proof. It is can be seen that if there is a dense block in f , then f does not satisfy the
alternating ones property. We next show that if f does not satisfy the alternating ones
property, it implies that there is a dense block in f . If f satisfies the dense ones property
and does not satisfy the alternating ones property but has no dense block, then the two
possibilities are: the rightmost 1 is neither vn nor vn−1; and there are two vertices with
color 1 and at distance greater than 3 from each other. But both the cases contradict the
dense ones property.

We now describe Algorithm 8. Algorithm 8 enumerates vertices vs, vs+1, vs+2, vs+3 from
s = n− 3 to s = 1 and checks, at each iteration, if the four vertices form a dense block. If
in an iteration the vertices vs, vs+1, vs+2, vs+3 form a dense block, notice that f restricted
to vs, vs+1 is 1-alternating, f(vs+1) 6= 1, f(vs+2) 6= 1, and f(vs+3) = 1. So we can call
Algorithm 7 (RightShift) on the subpath vs, vs+1, vs+2. After the call to Algorithm 7, f
restricted to vs, vs+1, vs+2, vs+3 satisfies the alternating ones property. Also, as the color of
no vertex right of vs+2 is changed and f(vs+1) = 1, f restricted to vs+1, vs+2, . . . , vn satisfies
the alternating ones property. But, f restricted to v1, v2, . . . , vs+1 might not satisfy the
dense ones property, as a vertex left of vs+1 with color 1 may be at distance 4 from vs+1.
To fix the dense ones property in f without changing the color of vertices right of vs,
Algorithm 9 is called, which we describe below.

Algorithm 9 takes as input a path P , a 3-equitable coloring f of the path, and vertices
v` and vr such that f restricted to the two connected subpaths in P \{v`+1, v`+2, . . . , vr−1},
respectively, satisfy the dense ones property, both v` and vr have color 1, and there is no
vertex right of v` and left of vr with color 1. Algorithm 9 outputs a 3-equitable coloring
that satisfies the dense ones property such that the color of each vertex right of vr−1 is
unchanged. Since f restricted to the two connected subpaths in P \ {v`+1, v`+2 . . . , vr−1}
satisfies the dense ones property and both v` and vr have color 1, the subpath of P where the
dense ones property may not be satisfied is v`, v`+1, . . . , vr. If f restricted to v`, v`+1, . . . , vr
satisfies the dense ones property then it also follows that f satisfies the dense ones property.
Otherwise, we can see that v` is at a distance of greater than or equal to 4 from vr. In each
iteration of a while loop, Algorithm 9 swaps the colors of only vertices left of vr so that
the distance between vr and the closest vertex left of vr with color 1 is reduced. Since no
vertex in the set {v`+1, . . . , vr−1}∪{v`−1} has color 1 and f uses three colors, if ` > 1, either
f(v`−1) 6= f(v`+1) or f(v`−1) 6= f(v`+2). So either swap(v`, v`+1) is valid or swap(v`, v`+2)

60

is valid. After either of these swaps ` is changed to ` + 1 or ` + 2, respectively, and the
distance between v` and vr is reduced. If the distance between v` and vr is still greater
than or equal to 4, then the while loop continues. Otherwise, if there is no vertex left of
v` with color 1, then as f restricted to v`, v`+1, . . . , vn satisfies the dense ones property f
also satisfies the dense ones property, and f is returned. If there is a vertex left of v` with
color 1, f restricted to v1, v2, . . . , v` may not satisfy the dense ones property as the closest
vertex left of v` with color 1, say w may be at a distance greater than or equal to 4 from
v`, so ` is updated to the index of w, and r to the previous value of ` and the while loop
continues. Since at each iteration either the distance between v` and vr keeps decreasing
(until the distance is less than 4) or ` is decremented, the while loop ends.

An example of one iteration of Algorithm 8 is given in Figure 5.5.

Algorithm 8 ShiftOnesCloser

Input: P and a 3-equitable coloring that satisfies the dense ones property.
Output: A 3-equitable coloring that satisfies the alternating ones property.

1: procedure ShiftOnesCloser(P , f)
2: if n ≤ 3 then
3: return f
4: end if
5: for s := n− 3 to 1 do
6: if f(vs), f(vs+3) = 1 and f(vs+1), f(vs+2) 6= 1 then
7: f ← RightShift(S = vs, vs+1, vs+2, f)
8: if f restricted to vs−3, vs−2, vs−1, vs, vs+1 does not satisfy the dense ones

property then
9: f ← FixDenseOnes(P , f , s− 3, s+ 1)

10: end if
11: end if
12: end for
13: return f
14: end procedure

61

Algorithm 9 FixDenseOnes

Input: P , a 3-equitable coloring f , the index of a vertex v` and the index of a
vertex vr such that f restricted to either of the two subpaths v1, v2, . . . , v`
or vr, vr+1, . . . , vn satisfies the dense ones property, and there is no vertex
right of v` and left of vr with color 1.

Output: A 3-equitable coloring where the dense ones property is satisfied and the
colors of vertices in the set {vr, vr+1, . . . , vn} are unchanged.

1: procedure FixDenseOnes(P , f , `, r)
2: while Distance(P, v`, vr) ≥ 4 or ExistsOne(P, `− 1, f) = true do
3: . ExistsOne checks if there exists a vertex in the subpath v1, v2, . . . , v`−1 with

color 1 in f
4: if Distance(P, v`, vr) ≥ 4 then
5: . Distance returns the distance between v` and vr in P
6: if ` > 1 and f(v`−1) = f(v`+2) then
7: f ← SwapVertices(f, v`, v`+1)
8: `← `+ 1
9: else

10: f ← SwapVertices(f, v`, v`+2)
11: `← `+ 2
12: end if
13: else if ExistsOne(P, `− 1, f) = true then
14: r ← `
15: ` ← the index of the vertex at minimum distance from vr that has color 1

and is left of vr
16: end if
17: end while
18: return f
19: end procedure

62

1

v1

3

v2

2

v3

1

v4

3

v5

2

v6

1

v7

2

v8

3

v9

1

v10

(a) In the first iteration of Algorithm 8, where s = 7, swaps are made to the dense block
v7, v8, v9, v10 so that it satisfies the alternating ones property.

1

v1

3

v2

2

v3

1

v4

3

v5

2

v6

3

v7

1

v8

2

v9

1

v10

(b) After line 7 in Algorithm 8, the dense ones property is not satisfied by the vertices enclosed
in the rectangle with rounded corners. In the first iteration of Algorithm 9, in line 7, a swap is
made between v4 and v5.

1

v1

3

v2

2

v3

3

v4

1

v5

2

v6

3

v7

1

v8

2

v9

1

v10

(c) After one iteration of Algorithm 9, the dense ones property is not satisfied by the vertices
enclosed in the rectangle with rounded corners. In line 7, a swap is made between v1 and v2.

3

v1

1

v2

2

v3

3

v4

1

v5

2

v6

3

v7

1

v8

2

v9

1

v10

(d) The dense ones property is satisfied by the entire path, and the subpath v7, v8, v9, v10 is
1-alternating.

Figure 5.5: Example of one iteration of Algorithm 8.

We give the proof of correctness of Algorithms 8 and 9 in Lemma 15.

Lemma 15. Algorithm 8 is correct and the number of swaps it uses is in O(n3).

Proof. We first show that Algorithm 8 is correct if Algorithm 9 is correct, and then prove
the correctness of Algorithm 9. From Observation 14, if there is no dense block in f and
f satisfies the dense ones property then f also satisfies the alternating ones property. Al-
gorithm 8 enumerates, in a for loop, each four adjacent vertices in P vs, vs+1, vs+2, vs+3

63

from s = n− 3 to s = 1. At each iteration, the algorithm first checks if vs, vs+1, vs+2, vs+3

forms a dense block, and if so, as both vs and vs+3 have color 1 and neither vs+1 nor
vs+2 has color 1, Algorithm 7 (RightShift) can be called on this subpath in line 7. Af-
ter Algorithm 7 (RightShift) is called, f restricted to vs+1, vs+2, vs+3 is 1-alternating
and so vs, vs+1, vs+2, vs+3 no longer forms a dense block (though vs, vs+1, vs+2, vs+3 satis-
fies the dense ones property). Due to previous iterations of the for loop, f restricted to
vs+1, vs+2, . . . , vn satisfies the dense ones property and there is no dense block in this sub-
path. However, f restricted to v1, v2, . . . , vs+1 need not satisfy the dense ones property as
there might be a vertex at distance 4 from vs+1 with color 1 and left of vs+1. To fix this,
Algorithm 9 is called in line 9. As Algorithm 9 does not change the color of vertices to the
right of vs+1, the correctness of Algorithm 8 follows.

We prove the correctness of Algorithm 9. We show that after each iteration of the
while loop, f restricted to vr, vr+1, . . . , vn satisfies the dense ones property, there is no
vertex with color 1 that is both right of v` and left of vr, and that after each iteration
either the values of ` and r are decremented or the distance between v` and vr is reduced.
In an iteration, we first consider the case when the distance between v` and vr is greater
than or equal to 4. In line 7, since f(v`−1) = f(v`+2) and f is proper, f(v`+1) 6= f(v`−1).
Also, f(v`+2) 6= 1 as there is no vertex right of v` and left of vr with color 1. Consequently,
swap(v`, v`+1) is valid in line 7 and ` is incremented to `+1 in the next line. In line 10, v`+3

does not have color 1 (no vertex right of v` and left of vr has color 1) and either ` = 1 or
f(v`−1) 6= f(v`+2). Consequently, swap(v`, v`+2) is valid in line 10 and ` is incremented to
`+ 2 in the next line. It is immediate that after ` has been incremented, there is no vertex
right of v` and left of vr with color 1 and f restricted to vr, vr+1, . . . , vn satisfies the dense
ones property. We consider the case when the distance between v` and vr is less than 4 and
there exists a vertex left of v` with color 1. Since f restricted to vr, vr+1, . . . , vn satisfies
the dense ones property and the distance between v` and vr is less than 4, f restricted to
v`, v`+1, . . . , vn satisfies the dense ones property. In line 14, r is changed to `. In line 15, `
is changed to the index of the vertex at minimum distance and left of vr with color 1. The
swaps made in the algorithm are valid and at no point is the color of a vertex right of vr
changed. The correctness of Algorithm 9 follows.

We now prove that the number of swaps that Algorithm 8 uses is in O(n3). In an
iteration of the for loop in Algorithm 8, the call to Algorithm 7 (RightShift) in line 7
uses at most 2 swaps. In line 9, for a value of s + 1, the number of swaps that a call to
Algorithm 9 uses is in O(s2). This is because, for a specific value of r, to decrease the
distance between v` and vr, Algorithm 9 uses at most r swaps, and r can be decremented
until it has the value 1. Since in Algorithm 8 s can take values from n−3 to 1, the number
of swaps used is in O(n3).

64

The following corollary is immediate from the proof of correctness of Algorithm 8.

Corollary 5. The node of a 3-equitable coloring of a path that satisfies the dense ones
property is connected to the node of a 3-equitable coloring that satisfies the alternating
ones property by a path of length in O(n3).

We define the matching ones property, and algorithms to show that we can reconfigure
from a 3-equitable coloring that satisfies the alternating ones property to a 3-equitable
coloring that satisfies the matching ones property.

Definition 27. We say that a 3-equitable coloring of a path P = v1, v2, . . . , vn satisfies
the matching ones property if each vertex in P that has color 1 has the same color in its
canonical 3-equitable coloring.

To reconfigure a 3-equitable coloring that satisfies the alternating ones property to a 3-
equitable coloring that satisfies the matching ones property, we consider when n is odd and
when n is even and describe two algorithms, Algorithm 10 and Algorithm 11, respectively.
This is because, in Definition 18, we defined two configurations of canonical 3-equitable
colorings based on whether n is odd or even.

Before describing Algorithms 10 and 11, we make the following observation. As a
consequence of this observation, given a path and a 3-equitable coloring that satisfies the
alternating ones property, if the number of vertices of the path is greater than 15, a vertex
v that does not have color 1, such that both its predecessor and successor (if it exists) have
color 1 is guaranteed to be returned by a procedure, GetIsolatedVertex, that we call
in Algorithms 10 and 11.

Observation 15. Given a path P = v1, v2, . . . , vn, where n > 15, a 3-equitable coloring
that satisfies the alternating ones property, and color c 6= 1, there exists a vertex v in the
path with color c such that either both the successor and predecessor of v have color 1 or
the predecessor of v has color 1 and v = vn.

Proof. We assume without loss of generality that c = 2. We prove the observation by
way of contradiction. Suppose that there is no such v. Let v` be the leftmost 1 in P .
Notice that v`, v`+1, . . . , vn is 1-alternating and as no vertex left of v` has color 1 and f is
proper, there are at least b `−1

2
c vertices with color 3 in the subpath v1, v2, . . . , v`−1. We

now consider the following two cases.

1. the rightmost 1 is vn−1.

65

2. the rightmost 1 is vn.

In Case (1), as the rightmost 1 is vn−1 and f satisfies the alternating ones prop-
erty, the leftmost 1 is at a distance of 2 |colorclass(1, f)| − 2 from vn−1, and so ` =
n − 2 |colorclass(1, f)| + 1. Also, as there is no such v in P , no vertex in the subpath
v`, v`+1, . . . , vn can have color 2, and so, there are |colorclass(1, f)| vertices in the subpath
v`, v`+1, . . . , vn with color 3. Since there are at least b `−1

2
c vertices with color 3 in the

subpath v1, v2, . . . , v`−1, this implies Equation 5.4.

|colorclass(3, f)| ≥
⌊
`− 1

2

⌋
+ |colorclass(1, f)| (5.1)

=

⌊
(n− 2 |colorclass(1, f)|+ 1)− 1

2

⌋
+ |colorclass(1, f)| (5.2)

=

⌊
n

2
− 2 |colorclass(1, f)|

2

⌋
+ |colorclass(1, f)| (5.3)

=
⌊n

2

⌋
(5.4)

The functions n
2

and n
3

are non-decreasing and the growth rate of n
2

is higher than the
growth rate of n

3
. When n = 15, n

2
> 7 and n

3
= 5. For n > 15, as the difference between n

2

and n
3

is greater than or equal to two, the difference between bn
2
c and dn

3
e is greater than

zero. But, this means that Equation 5.4 contradicts Lemma 8 (|colorclass(3, f)| ≤ dn
3
e)

and the fact that n > 15.

In Case (2), as the rightmost 1 is vn and f satisfies the alternating ones property,
the leftmost 1 is at a distance of 2 |colorclass(1, f)| − 2 from vn, and so, ` = n −
2(|colorclass(1, f)| − 1). And, as there is no such v in P , no vertex in the subpath
v`, v`+1, . . . , vn can have color 2, and so, there are |colorclass(1, f)| − 1 vertices in the
subpath v`, v`+1, . . . , vn with color 3. Since there are at least b `−1

2
c vertices with color 3 in

the subpath v1, v2, . . . , v`−1, this implies Equation 5.8.

66

|colorclass(3, f)| ≥
⌊
`− 1

2

⌋
+ |colorclass(1, f)| − 1 (5.5)

=

⌊
n− 2(|colorclass(1, f)| − 1)− 1

2

⌋
+ |colorclass(1, f)| − 1 (5.6)

=

⌊
n+ 1

2
− 2 |colorclass(1, f)|

2

⌋
+ |colorclass(1, f)| − 1 (5.7)

=

⌊
n+ 1

2

⌋
− 1 (5.8)

The functions n+1
2

and n
3

are non-decreasing and the growth rate of n+1
2

is higher than
the growth rate of n

3
. When n = 15, n+1

2
= 8 and n

3
= 5. For n > 15, as the difference

between n+1
2

and n
3

is greater than or equal to three, the difference between bn+1
2
c − 1

and dn
3
e is greater than zero. But, this means that Equation 5.8 contradicts Lemma 8

(|colorclass(3, f)| ≤ dn
3
e) and the fact that n > 15.

We first describe Algorithm 10, which handles the case when n is odd. The algorithm
takes as input a path v1, v2, . . . , vn of odd length and a 3-equitable coloring that satisfies the
alternating ones property, and outputs a 3-equitable coloring that satisfies the matching
ones property. Initially, it checks if vn has color 1, and if so, then since f satisfies the
alternating ones property it must also satisfy the matching ones property and so returns
f . To eventually call Algorithm 7 (RightShift) on the subpath v`, v`+1, . . . , vn−1, the
algorithm makes swaps so that vn−2 and vn−1 have different colors that are not 1. To make
sure that vn−2 and vn−1 have different colors that are not 1, the algorithm first makes swaps
so that vn−2 and vn have different colors that are not 1.

67

Algorithm 10 MatchingOnesOdd

Input: P = v1, v2, . . . , vn such that n is odd, n > 15, and a 3-equitable coloring
that satisfies the alternating ones property.

Output: A 3-equitable coloring that satisfies the matching ones property.

1: procedure MatchingOnesOdd(P, f)
2: if f(vn) = 1 then
3: return f
4: end if
5: if f(vn−2) = f(vn) then
6: c← {2, 3} \ {f(vn)}
7: v ← GetIsolatedVertex(P, f, c)
8: .GetIsolatedVertex returns a vertex v with color c such that its predecessor

and successor (if it exists) have color 1
9: f ← SwapVertices(f, v, vn−2)

10: end if
11: f ← SwapVertices(f, vn−1, vn)
12: `← LeftmostOne(P, n, f)
13: f ← RightShift(S = v`, v`+1, . . . , vn−1,f)
14: return f
15: end procedure

68

2

v1

3

v2

2

v3

1

v4

2

v5

1

v6

2

v7

1

v8

3

v9

1

v10

3

v11

(a) To obtain a 3-equitable coloring where v9 (vn−2) and v11 (vn) have different colors that are
not 1, in line 9, the algorithm can perform swap(v7, v9), where v = v7.

2

v1

3

v2

2

v3

1

v4

2

v5

1

v6

3

v7

1

v8

2

v9

1

v10

3

v11

(b) Since v11 (vn) and v9 (vn−2) have different colors that are not 1, in line 11, the algorithm
can perform swap(v10, v11), where vn−1 = v10.

2

v1

3

v2

2

v3

1

v4

2

v5

1

v6

3

v7

1

v8

2

v9

3

v10

1

v11

(c) In line 13, Algorithm 7 (RightShift) is called on input the subpath v4, v5, . . . , v10 and f .

2

v1

3

v2

2

v3

3

v4

1

v5

2

v6

1

v7

2

v8

1

v9

3

v10

1

v11

(d) The 3-equitable coloring satisfies the matching ones property.

Figure 5.6: An example of the operations in Algorithm 10.

Lemma 16. Algorithm 10 is correct and the number of swaps it uses is in O(n).

Proof. We show that the swaps used in the algorithm are valid and it returns a 3-equitable
coloring that satisfies the matching ones property. In line 2, as vn has color 1 and f satisfies
the alternating ones property, v`, v`+1, . . . , vn is 1-alternating, where v` is the leftmost 1 in
the path, so since n is odd f satisfies the matching ones property.

We show that before line 11, f(vn−2) 6= f(vn). In line 8, GetIsolatedVertex returns
vertex v with color not in {1, f(vn−2)} such that both its predecessor and successor (if
v 6= vn) have color 1; the vertex v is guaranteed by Observation 15, so a linear scan of
the vertices of P suffices to return v. As vn−1 has color 1 and f is proper, vn−2 does not
have color 1 before line 9 and as f satisfies the alternating ones property and, as n > 15,

69

|colorclass(1, f)| ≥ 2 (Lemma 8) vn−3 has color 1. Hence, in line 9 swap(v, vn−2) is valid,
and moreover vn−2 still does not have color 1. As a consequence, we can assume before line
11 that f(vn−2) 6= f(vn) as either f(vn−2) 6= f(vn) originally or swap(v, vn−2) is performed
in line 9.

We now show that swap(vn−1, vn) is valid in line 11 and a call to Algorithm 7 (RightShift)
can be made in line 13. As f(vn−2) 6= f(vn), swap(vn−1, vn) is valid. After performing
swap(vn−1, vn) in line 11, both vn−2 and vn−1 have different colors that are not 1 and vn
has color 1. Since v`, v`+1, . . . , vn−2 is 1-alternating (as vn−3 has color 1), both vn−2 and
vn−1 have different colors that are not 1, and vn has color 1, Algorithm 7 (RightShift)
can be called on the subpath v`, v`+1, . . . , vn−1. So v`+1, v`+2, . . . , vn−2 is 1-alternating and
vn−2 has color 1.

Since the number of swaps made in lines 9 and 11 is in O(1) and the number of swaps
made by Algorithm 7 (RightShift) in line 13 is in O(n) (Lemma 14), the number of
swaps made by Algorithm 10 is also in O(n).

Algorithm 11 takes as input a path v1, v2, . . . , vn of even length and a 3-equitable
coloring that satisfies the alternating ones property, and outputs a 3-equitable coloring
that satisfies the matching ones property. Initially, it checks if vn−1 has color 1, and if so,
as f satisfies the alternating ones property f must also satisfy the matching ones property.
Otherwise, to be able to call Algorithm 6 (LeftShift) on the subpath v`−2, v`−1, . . . , vn−2,
the algorithm makes swaps so that v`−3 has color 1, and for this purpose, the algorithm
first makes swaps so that v`−3 and vn−1 have different colors. After calling Algorithm 6
(LeftShift), the algorithm considers two cases: f(v`−2) 6= f(vn−2) and f(v`−2) = f(vn−2).
In both the cases, the algorithm makes swaps so that vn−1 has color 1 and v`−3 no longer
has color 1.

70

Algorithm 11 MatchingOnesEven

Input: P = v1, v2, . . . , vn such that n is even, n > 15, and a 3-equitable coloring
that satisfies the alternating ones property.

Output: A 3-equitable coloring that satisfies the matching ones property.

1: procedure MatchingOnesEven(P, f)
2: if f(vn−1) = 1 then
3: return f
4: end if
5: `← LeftmostOne(P, n, f)
6: if f(v`−3) = f(vn−1) then
7: c← {2, 3} \ {f(vn−1)}
8: v ← GetIsolatedVertex(P, f, c)
9: .GetIsolatedVertex returns a vertex v with color c such that its predecessor

and successor (if it exists) has color 1
10: f ← SwapVertices(f, v, vn−1)
11: end if
12: f ← SwapVertices(f, v`−3, vn)
13: f ← LeftShift(S = v`−2, v`−1, . . . , vn−2, f)
14: if f(v`−4) 6= f(v`−2) then
15: v ← GetIsolatedVertex(P, f, f(v`−4))
16: f ← SwapVertices(f, v, v`−2)
17: end if
18: if f(v`−2) 6= f(vn−2) then
19: f ← SwapVertices(f, v`−3, vn)
20: f ← SwapVertices(f, vn−1, vn)
21: else
22: f ← SwapVertices(f, v`−3, vn−1)
23: end if
24: return f
25: end procedure

71

3

v1

2

v2

3

v3

2

v4

3

v5

1

v6

2

v7

1

v8

3

v9

1

v10

3

v11

1

v12

(a) To obtain a 3-equitable coloring where v3 (v`−3) and v11 (vn−1) have different colors that are
not 1, in line 10, the algorithm performs swap(v7, v11), where v = v7.

3

v1

2

v2

3

v3

2

v4

3

v5

1

v6

3

v7

1

v8

3

v9

1

v10

2

v11

1

v12

(b) Before calling Algorithm 6 (LeftShift), in line 12, the algorithm performs swap(v3, v12),
where v`−3 = v3 and vn = v12.

3

v1

2

v2

1

v3

2

v4

3

v5

1

v6

3

v7

1

v8

3

v9

1

v10

2

v11

3

v12

(c) In line 13, the algorithm calls Algorithm 6 (LeftShift) on the subpath v4, v5, . . . , v10.

3

v1

2

v2

1

v3

3

v4

1

v5

3

v6

1

v7

2

v8

1

v9

3

v10

2

v11

3

v12

(d) In line 16, to obtain a 3-equitable coloring where v2 (v`−4) and v4 (v`−2) have the same
color, the algorithm performs swap(v4, v8) (v = v8).

3

v1

2

v2

1

v3

2

v4

1

v5

3

v6

1

v7

3

v8

1

v9

3

v10

2

v11

3

v12

(e) If f(v`−2) 6= f(vn−2), to make the rightmost 1 v11, in line 19, the algorithm performs
swap(v3, v12).

3

v1

2

v2

3

v3

2

v4

1

v5

3

v6

1

v7

3

v8

1

v9

3

v10

2

v11

1

v12

(f) In line 20, the algorithm performs swap(v11, v12), obtaining a 3-equitable coloring that
satisfies the matching ones property.

Figure 5.7: An example of the operations in Algorithm 11.
72

Lemma 17. Algorithm 11 is correct and the number of swaps it uses is in O(n).

Proof. We show that the swaps used in the algorithm are valid and that it returns a 3-
equitable coloring that satisfies the matching ones property. In line 3, as vn−1 has color 1
and f is a 3-equitable coloring that satisfies the alternating ones property, v`, v`+1, . . . , vn−1

is 1-alternating where f(vn) 6= 1, so f satisfies the matching ones property.

We now show that, before line 12, f(v`−3) 6= f(vn−1) (5.9). If f(v`−3) = f(vn−1), in
line 8, GetIsolatedVertex returns a vertex v with color not in {1, f(vn−1)} such that
both its predecessor and successor (if v 6= vn) have color 1; as in Algorithm 10, the vertex v
is guaranteed by Observation 15 and so a linear scan of the vertices of P suffices to return
v. As n > 15, |colorclass(1, f)| ≥ 2 (Lemma 8), and as f satisfies the alternating ones
property, both vn−2 and vn have color 1. It follows that swap(v, vn−1) is valid in line 10.
If f(v`−3) 6= f(vn−1) originally, then the swap in line 10 is not performed.

We show that swap(v`−3, vn) is valid in line 12 and Algorithm 6 (LeftShift) can be
called in line 13. As v` is the leftmost 1 neither v`−4 nor v`−2 has color 1 and f(v`−3) 6=
f(vn−1) (5.9), so swap(v`−3, vn) is valid in line 12. Before swap(v`−3, vn), v` was the leftmost
1 and vn had color 1. Consequently, after swap(v`−3, vn) neither v`−2 nor v`−1 has color 1
and v`−3 has color 1. As v`−3 has color 1, v`−2 and v`−1 have different colors that are not
1, and v`, v`+1, . . . , vn−2 is 1-alternating, Algorithm 6 (LeftShift) can be called on the
subpath v`−2, v`−1, . . . , vn−2 in line 13. And after this v`−2, v`−1, . . . , vn−3 is 1-alternating,
where v`−1 has color 1.

We show that, before line 18, f(v`−4) = f(v`−2) (5.10). If f(v`−4) 6= f(v`−2), in
line 15, GetIsolatedVertex returns a vertex v with color f(v`−4) such that both its
predecessor and successor (if v 6= vn) have color 1. As v`−3 has color 1 and, as Algorithm
6 (LeftShift) has been called in line 13, v`−1 also has color 1, swap(v, v`−2) is valid in
line 16.

We next show that before line 18, f(vn−2) = f(vn) (5.11). After line 3, as v`, v`+1, . . . , vn
is 1-alternating and f does not satisfy the matching ones property, both vn and vn−2 have
color 1 and vn−1 does not have color 1. Since the color of vn−1 is unchanged, vn−1 does not
have color 1 before line 18. Since the colors of vn and v`−3 were swapped in line 12 and
the color of vn is unchanged, vn does not have color 1. As Algorithm 6 (LeftShift) was
called in line 13, vn−2 does not have color 1. Since none of the vertices in {vn−2, vn−1, vn}
have color 1 (5.12) and f is proper and uses only three colors, f(vn−2) = f(vn).

The algorithm now considers two cases: f(v`−2) 6= f(vn−2) and f(v`−2) = f(vn−2). In
the case when f(v`−2) 6= f(vn−2), before line 19 (where swap(v`−3, vn−2) is performed), the
following holds: f(v`−4) 6= f(vn) (as f(v`−4) = f(v`−2) (5.10) and f(vn) = f(vn−2) (5.11)),

73

f(v`−2) 6= f(vn) (as f(v`−2) 6= f(vn−2) and f(vn) = f(vn−2) (5.11)), f(v`−3) 6= f(vn−1)
(as f(v`−3) = 1), and there is no vertex right of vn. Consequently, swap(v`−3, vn) is
valid in line 19. As vn−2 does not have color 1 (5.12), there is no vertex right of vn,
and vn has color 1 after swap(v`−3, vn), swap(vn−1, vn) is valid in line 20. In the case
when f(v`−2) = f(vn−2), before line 22, as f(v`−2) = f(v`−4) (5.10) and f is proper,
f(vn−1) 6= f(v`−4) and f(vn−1) 6= f(v`−2). Also, neither vn nor vn−2 has color 1 (5.12). So,
since v`−3 has color 1, swap(v`−3, vn−1) is valid in line 22.

After line 13, v`−1, v`, . . . , vn−3 is 1-alternating where vn−3 has color 1, and after line
22, vn−1 has color 1. It follows that v`−1, v`, . . . , vn−1 is 1-alternating where f(vn−1) = 1.

The number of swaps used in the algorithm, other than in line 13, is in O(1). As the
number of swaps used by a call to Algorithm 6 (LeftShift) in line 13 is in O(n) (Lemma
14), the number of swaps used in Algorithm 11 is also in O(n).

As a consequence of Lemmas 16 and 17, the following corollary is immediate.

Corollary 6. The node of a 3-equitable coloring of a path P , such that |V (P)| > 15, that
satisfies the alternating ones property is connected to the node of a 3-equitable coloring that
satisfies the matching ones property by a path of length in O(n).

Before proceeding to Algorithm 14, we describe an operation, Algorithm 13. We use
Algorithm 13 when obtaining the canonical 3-equitable coloring; specifically, we use it to
obtain a 3-equitable coloring where each vertex right of the leftmost 1 that does not have
color 1 has the same color in its canonical 3-equitable coloring.

Algorithm 13 takes as input a subpath S = v1, v2, . . . , vn and a 3-equitable coloring
that uses colors c1, c2, and c3 where S is c1-alternating and outputs a 3-equitable coloring
where S is still c1-alternating (and the color of each vertex with color c1 is unchanged),
and all vertices in S that have color c2 (c3) are grouped “close” to each other. (Here, by
close we mean that each vertex with color c2 (c3) is at a distance of 2 from another vertex
with color c2 (c3).) The algorithm iteratively selects a vertex from the set {v2, v3, . . . , vn−1}
with color c3 and checks if there is a vertex right of it with color c2, and if so, swaps the
colors of these two vertices. If there is no vertex right of the current vertex with color c3,
then the algorithm exits as this means that S is still c1-alternating and there is no vertex
with color c2 right of the leftmost c3.

An example of an input and output of Algorithm 13 is given in Figure 5.8.

74

Algorithm 13 Rearrange

Input: A subpath S = v1, v2, . . . , vn of some path and a 3-equitable coloring f of
the path that uses colors c1, c2, c3 such that f(v1) = c1 and v1, v2, . . . , vn
is c1-alternating.

Output: A 3-equitable coloring such that v1, v2, . . . , vn is c1-alternating with
f(v1) = c1, there is no vertex left of the rightmost c2 with color c3,
and the color of a vertex not in S is unchanged.

1: procedure Rearrange(S = v1, . . . , vn, f , c2, c3)
2: for i := 2 to n− 1 do
3: if f(vi) = c3 then
4: for j := i+ 1 to n do
5: if f(vj) = c2 then
6: f ← SwapVertices(f, vi, vj)
7: break
8: end if
9: end for

10: if j > n then
11: break
12: end if
13: end if
14: end for
15: end procedure

1

v1

2

v2

1

v3

3

v4

1

v5

2

v6

1

v7

3

v8

1

v9

(a)

1

v1

2

v2

1

v3

2

v4

1

v5

3

v6

1

v7

3

v8

1

v9

(b)

Figure 5.8: An example for Algorithm 13, where Figure 5.8a and Figure 5.8b show a
subpath and a 3-equitable colorings before and after, respectively.

75

Lemma 18. Algorithm 13 is correct and the number of swaps it uses is in O(n), where
n = |V (S)|.

Proof. The proof of correctness of the algorithm follows from the observation that, as long
as S is c1-alternating, a swap of the colors of any two vertices in S that do not have color
c1 is valid.

We show by induction on i that, in line 3, there is no vertex left of vi in S with color
c3. In the base case, when i = 2, as it is a condition on the input that f(v1) = c1, the
statement is trivially true. In the inductive step, we assume that the statement is true for
i = p and prove the statement when i = p + 1. If f(vp) 6= c3 our statement is true, so we
consider f(vp) = c3. In the case when there is no vertex right of vp in S with color c2, the
algorithm terminates after iteration i = p and i would not be incremented to p+ 1. In the
case when there is such a vertex vj (where j is minimum) in iteration i = p, the colors of
vi and vj are swapped in line 6. Since j > i = p (vj is right of vi), vp does not have color
c3 and no vertex left of vp+1 has color c3.

As we have shown that, in line 3, there is no vertex left of vi with color c3, if f(vi) = c3,
vi is the leftmost c3. Thus the algorithm terminates when there is no vertex right of the
leftmost c3 with color c2.

We show that the number of swaps that the algorithm uses is in O(n) by noting that
the number of swaps is at most |colorclass(c2, f |S)|. This follows as, in line 5, when a
vertex vj with color c2 is encountered, after swap(vi, vj) is made in line 6, the vertex vi,
which now has color c2, is not encountered again by the algorithm. As the swap in line 6
is made between a vertex with color c3 and a vertex with color c2, the number of swaps
that the algorithm makes is at most |colorclass(c2, f |S)|, and so is in O(n).

We are now ready to describe Algorithm 14. The algorithm first calls Algorithm 13
(Rearrange) on the subpath v`, v`+1, . . . , vn (where v` is the leftmost 1), so that each
vertex in this subpath has the same color as in the canonical 3-equitable coloring. If v1 has
color 2, as the vertices with color 1 have the same color in the canonical 3-equitable coloring,
it can be seen that f is the canonical 3-equitable coloring and is returned. Otherwise, to
change the color of v1 to 2 and to make v1, v2, . . . , v`−1 3-alternating, swap(v1, v`) (where
v` is the leftmost 1) is performed so that Algorithm 6 (LeftShift) can be called on the
subpath v1, v2, . . . , v`−1.

An example of the operations is given in Figure 5.9.

76

Algorithm 14 CanonicalReconf

Input: A path P = v1, v2, . . . , vn such that n > 15 and a 3-equitable coloring f
that satisfies the matching ones property.

Output: The canonical 3-equitable coloring of P .

1: procedure CanonicalReconf(P ,f)
2: `← LeftmostOne(P, n, f)
3: f ← Rearrange(S = v`, v`+1, . . . , vn, f , 2, 3)
4: if f(v1) = 2 then
5: return f
6: end if
7: f ← SwapVertices(f, v1, v`)
8: f ← LeftShift(S = v1, v2, . . . , v`, f)
9: return f

10: end procedure

3

v1

2

v2

3

v3

2

v4

1

v5

2

v6

1

v7

2

v8

1

v9

3

v10

1

v11

3

v12

(a) In line 7, after calling Algorithm 13 and before calling Algorithm 6, the algorithm performs
swap(v1, v5) where v` = v5.

1

v1

2

v2

3

v3

2

v4

3

v5

2

v6

1

v7

2

v8

1

v9

3

v10

1

v11

3

v12

(b) In line 8, the algorithm calls Algorithm 6 (LeftShift) on the subpath v1, v2, . . . , v5 so that
v1 will have color 2.

2

v1

3

v2

2

v3

3

v4

1

v5

2

v6

1

v7

2

v8

1

v9

3

v10

1

v11

3

v12

(c) We obtain the canonical 3-equitable coloring!

Figure 5.9: An example of the operations in Algorithm 14.

Lemma 19. Algorithm 14 is correct and the number of swaps it uses is in O(n).

77

Proof. We show that the swaps made in the algorithm are valid and the 3-equitable
coloring produced is the canonical 3-equitable coloring. After the call to Algorithm 13
(Rearrange) in line 3, from Lemma 18, we obtain a 3-equitable coloring where, in the
subpath v`, v`+1, . . . , vn, there is no vertex left of the rightmost 2 with color 3. As v` is the
leftmost 1, each vertex left of v` does not have color 1. Consequently, the colors of vertices
in the subpath v1, v2, . . . , v`−1 alternate between 2 and 3. From Observation 1, ` − 1 is
even. So, in line 5, if f(v1) = 2, f(v`−1) = 3 and f is a canonical 3-equitable coloring

(5.13).

We show that swap(v1, v`) is valid in line 7. The colors of vertices v1 and v` are swapped
so that Algorithm 6 (LeftShift) can be called in line 8. If v1 had color 2 f would have
been returned in line 5 (5.13), so v1 has color 3. As f is proper and ` > 2 (as n > 15),
v2 has color 2. We now show that both v`−1 and v`+1 have color 2. From Observation 15,
there is at least one vertex v with color 2 whose predecessor and successor (if the vertex
is not vn) have color 1. As Algorithm 13 (Rearrange) had been called in line 3, there is
no vertex left of the rightmost 2, in the subpath v`, v`+1, . . . , vn, with color 3. If v`+1 does
not have color 2 then no vertex right of v`+1 can have color 2 and so no such v can exist,
contradicting Observation 15. And, as ` − 1 is even, v1 has color 3, and the colors of the
vertices in the subpath v1, v2, . . . , v`−1 alternate between 2 and 3, v`−1 has color 2. So in
line 7, swap(v1, v`) is valid. Note that after swap(v1, v`), v1 has color 1.

We now show that Algorithm 6 (LeftShift) can be called on the subpath v1, v2, . . . , v`.
We showed that v2 has color 2, and after swap(v1, v`) in line 7 v1 has color 1. Also, since
v2, v3, . . . , v` is 3-alternating, Algorithm 6 (LeftShift) can be called in line 8.

After Algorithm 6 (LeftShift) has been called v1, v2, . . . , v`−1 is 3-alternating with
f(v2) = 3, and as `−1 is even, v`−1 has color 3. Since v`+1 has color 2 and v`−1 has color 3,
v` has color 1. As the color of no vertex right of v` is changed by Algorithm 6 (LeftShift)
and before line 8 only one vertex in the subpath v1, v2, . . . , v` had color 1, since v` has color
1 after line 8, no other vertex left of v` can have color 1. Consequently, as v2 has color 3,
v1 has color 2. Thus, as the colors of the vertices in the subpath v1, v2, . . . , v`−1 alternate
between 2 and 3, v1 has color 2, v`−1 has color 3, and the color of each vertex right of v`−1

in f is the same as the color of the vertex in the canonical 3-equitable coloring of f (as f
satisfies the matching ones property), f is a canonical 3-equitable coloring.

As the number of swaps that Algorithm 13 (Rearrange) and Algorithm 6 (LeftShift)
use is in O(n), the number of swaps that Algorithm 14 uses is also in O(n).

The following corollary is immediate from Lemma 19.

78

Corollary 7. The node of a 3-equitable coloring of a path P , such that |V (P)| > 15, that
satisfies the matching ones property is connected to the node of the canonical 3-equitable
coloring by a path of length in O(n).

As a consequence of Corollaries 4, 5, 6, and 7, the following lemma is immediate.

Lemma 20. The node of any 3-equitable coloring of a path P with |V (P)| ≥ 15 is connected
to its canonical 3-equitable coloring by a path of length in O(n3) in R3−ECR(P).

We are now ready to prove Theorem 8.

Theorem 8. Given a path P and two 3-equitable colorings fs and fe of P , we can decide
if their nodes are connected in Rk−ECR(P) in O(|V (P)|) time.

Proof. If n ≤ 15, we can employ a brute-force algorithm to construct R3−ECR(P) and check
if the nodes of fs and fe are connected. If n > 15, we can check if fs and fe are viable
to each other in linear time. If fs and fe are viable to each other, then from Lemma 20,
both fs and fe are connected to their canonical 3-equitable coloring, and their canonical
3-equitable colorings are the same. It follows that the nodes of fs and fe are connected in
R3−ECR(P).

79

Chapter 6

Conclusions and Future Work

We have shown that k-ACR REACH is PSPACE-hard for k ≥ 4, and that k-ACR
BOUND is in XP for the parameter `+ Γ(G). As we have shown that k-ACR BOUND
is in XP, the next question is whether an XP algorithm is the best that we can hope for
with respect to parameter ` + Γ(G). This raises the question of whether the W-hardness
of k-ACR BOUND with respect to ` + Γ(G) can be proved. Additionally, since we only
have weak PSPACE-hardness of k-ACR BOUND, the complexity of k-ACR BOUND is
also a question for future study.

Since we have shown that for non-bipartite graphs of acyclic chromatic number three
the reconfiguration graph for k-ACR REACH is not connected, an interesting question
is whether other results about the connectivity of the reconfiguration graph for k-CR
REACH can be extended to k-ACR REACH.

We have shown that k-ECR REACH is PSPACE-hard and W[1]-hard with respect
to the size of a color class. It was also proved independently that k-ECR REACH is
PSPACE-hard for fixed k even for the class of planar graphs when k = 4 [27]. Since it
is unlikely for there to exist a fixed-parameter tractable algorithm with respect to either
the size of a color class or k, whether there exists an FPT algorithm for k-ACR BOUND
with respect to some parameter is a question of future study.

In Section 5.4, we show that k-ECR REACH can be solved in polynomial time for
paths when k = 3. We conjecture that k-ECR REACH can also be solved in polynomial
time for paths when k > 3. A possible algorithm could be to reconfigure a k-equitable
coloring of a path to its canonical k-equitable coloring, which might look something like
Figure 6.1.

Conjecture 1. k-ECR REACH can be solved in polynomial time for paths.

80

Conjecture 1 also raises the question of whether there exist polynomial-time algorithms
for k-ECR REACH in other classes of graphs, like trees, stars, bounded treewidth graphs,
and so on.

2 3 k 2 3 k 1 2 1 1 3 1 1 k 1 14 4 2 3

Figure 6.1: A possible canonical form for paths when k > 3.

81

References

[1] Noga Alon. Restricted colorings of graphs. Surveys in Combinatorics, 187:1–33, 1993.

[2] Noga Alon, Colin McDiarmid, and Bruce Reed. Acyclic coloring of graphs. Random
Structures and Algorithms, 2(3):277–288, 1991.

[3] Kenneth Appel and Wolfgang Haken. Proof of 4-color theorem. Discrete Mathematics,
16(2):179–180, 1976.

[4] John Billingham, Robert Leese, and Hannu Rajaniemi. Frequency reassignment in
cellular phone networks. Smith Institute Study Group Report, 2005.

[5] Hans L Bodlaender and Fedor V Fomin. Equitable colorings of bounded treewidth
graphs. Theoretical Computer Science, 349(1):22–30, 2005.

[6] Béla Bollobás and Andrew J Harris. List-colourings of graphs. Graphs and Combina-
torics, 1(1):115–127, 1985.

[7] Marthe Bonamy and Nicolas Bousquet. Recoloring bounded treewidth graphs. Elec-
tronic Notes in Discrete Mathematics, 44:257–262, 2013.

[8] Marthe Bonamy, Nicolas Bousquet, Carl Feghali, and Matthew Johnson. On a con-
jecture of Mohar concerning Kempe equivalence of regular graphs. arXiv preprint
arXiv:1510.06964, 2015.

[9] Marthe Bonamy, Matthew Johnson, Ioannis Lignos, Viresh Patel, and Daniël
Paulusma. Reconfiguration graphs for vertex colourings of chordal and chordal bi-
partite graphs. Journal of Combinatorial Optimization, 27(1):132–143, 2014.

[10] Paul Bonsma and Luis Cereceda. Finding paths between graph colourings:
Pspace-completeness and superpolynomial distances. Theoretical Computer Science,
410(50):5215–5226, 2009.

82

[11] Paul Bonsma, Amer E Mouawad, Naomi Nishimura, and Venkatesh Raman. The com-
plexity of bounded length graph recoloring and CSP reconfiguration. In Proceedings
of the 9th International Symposium on Parameterized and Exact Computation, pages
110–121. Springer, 2014.

[12] Oleg V Borodin. On acyclic colorings of planar graphs. Discrete Mathematics,
25(3):211–236, 1979.

[13] Rowland Leonard Brooks. On colouring the nodes of a network. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, volume 37, pages 194–197. Cambridge
University Press, 1941.

[14] Luis Cereceda. Mixing graph colourings. PhD thesis, The London School of Economics
and Political Science (LSE), 2007.

[15] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Connectedness of the
graph of vertex-colourings. Discrete Mathematics, 308(5):913–919, 2008.

[16] Luis Cereceda, Jan Van den Heuvel, and Matthew Johnson. Mixing 3-colourings in
bipartite graphs. European Journal of Combinatorics, 30(7):1593–1606, 2009.

[17] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Finding paths between
3-colorings. Journal of Graph Theory, 67(1):69–82, 2011.

[18] Reinhard Diestel. Graph theory. Springer-Verlag, Electronic Edition, 2005.

[19] Rodney G Downey and Michael R Fellows. Fundamentals of Parameterized Complex-
ity, volume 4. Springer, 2013.

[20] Paul Erdős, Arthur L Rubin, and Herbert Taylor. Choosability in graphs. In Process-
ing West Coast Conference on Combinatorics, Graph Theory and Computing, Con-
gressus Numerantium, volume 26, pages 125–157, 1979.

[21] Carl Feghali, Matthew Johnson, and Daniël Paulusma. Kempe equivalence of colour-
ings of cubic graphs. Electronic Notes in Discrete Mathematics, 49:243–249, 2015.

[22] Michael R Fellows, Fedor V Fomin, Daniel Lokshtanov, Frances Rosamond, Saket
Saurabh, Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful
problems parameterized by treewidth. Information and Computation, 209(2):143–153,
2011.

[23] Steve Fisk. Geometric coloring theory. Advances in Mathematics, 24(3):298–340, 1977.

83

[24] Hanna Furmańczyk. Equitable coloring of graph products. Opuscula Mathematica,
26(1):31–44, 2006.

[25] Branko Grünbaum. Acyclic colorings of planar graphs. Israel Journal of Mathematics,
14(4):390–408, 1973.

[26] András Hajnal and Endre Szemerédi. Proof of a conjecture of P. Erdős. Combinatorial
Theory and its Applications, 2:601–623, 1970.

[27] Tatsuhiko Hatanaka. Personal communication, Feb 2017. Corresponded through
email.

[28] Tatsuhiko Hatanaka, Takehiro Ito, and Zhou Xiao. The list coloring reconfiguration
problem for bounded pathwidth graphs. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 98(6):1168–1178, 2015.

[29] Takehiro Ito, Marcin Kamiński, and Erik Demaine. Reconfiguration of list edge-
colorings in a graph. Discrete Applied Mathematics, 160(15):2199–2207, 2012.

[30] Takehiro Ito, Marcin Kamiński, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and
Katsuhisa Yamanaka. On the parameterized complexity for token jumping on graphs.
In Proceedings of the International Conference on Theory and Applications of Models
of Computation, pages 341–351. Springer, 2014.

[31] Takehiro Ito, Kazuto Kawamura, Hirotaka Ono, and Xiao Zhou. Reconfiguration
of list L(2, 1)-labelings in a graph. In International Symposium on Algorithms and
Computation, pages 34–43. Springer, 2012.

[32] Takehiro Ito, Kazuto Kawamura, and Xiao Zhou. An improved sufficient condition
for reconfiguration of list edge-colorings in a tree. In Proceedings of the International
Conference on Theory and Applications of Models of Computation, pages 94–105.
Springer, 2011.

[33] Svante Janson and Andrzej Rucinski. The infamous upper tail. Random Structures
and Algorithms, 20(3):317–342, 2002.

[34] Tommy R Jensen and Bjarne Toft. Graph Coloring Problems, volume 39. John Wiley
& Sons, 2011.

[35] Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of a
low-degree graph. Random Structures and Algorithms, 7(2):157–166, 1995.

84

[36] Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniël
Paulusma. Colouring reconfiguration is fixed-parameter tractable. arXiv preprint
arXiv:1403.6347, 2014.

[37] Richard M Karp. Reducibility among Combinatorial Problems. In Complexity of
Computer Computations, pages 85–103. Springer, 1972.

[38] Alfred B Kempe. On the Geographical Problem of the Four Colours. American
Journal of Mathematics, 2(3):193–200, 1879.

[39] Hal A Kierstead and Alexandr V Kostochka. A short proof of the Hajnal–
Szemerédi Theorem on equitable colouring. Combinatorics, Probability and Com-
puting, 17(02):265–270, 2008.

[40] Alexandr V Kostochka. Upper Bounds of Chromatic Functions of Graphs (in Russian).
PhD thesis, Novosibirsk, 1978.

[41] Alexandr V Kostochka. Personal communication, August 2016. Corresponded through
email.

[42] Alexandr V Kostochka, Kittikorn Nakprasit, and Sriram V Pemmaraju. On equitable
coloring of d-degenerate graphs. SIAM Journal on Discrete Mathematics, 19(1):83–95,
2005.

[43] Marek Kubale. Graph Colorings, volume 352. American Mathematical Society, 2004.

[44] Michel Las Vergnas and Henri Meyniel. Kempe classes and the Hadwiger conjecture.
Journal of Combinatorial Theory, Series B, 31(1):95–104, 1981.

[45] R M R Lewis. A Guide to Graph Colouring. Springer International Publishing,
Switzerland, 2016.

[46] Dániel Marx. Graph colouring problems and their applications in scheduling. Periodica
Polytechnica, Electrical Engineering, 48(1):11–16, 2004.

[47] L S Melnikov and V G Vizing. New proof of Brooks’ theorem. Journal of Combinatorial
Theory, 7(4):289–290, 1969.

[48] Walter Meyer. Equitable coloring. The American Mathematical Monthly, 80(8):920–
922, 1973.

[49] Bojan Mohar. Kempe equivalence of colorings. In Graph Theory in Paris, Proceedings

85

of a Conference in Memory of Claude Berge, pages 287–297. Birkhäuser Basel, 2007.

[50] Amer E Mouawad. On Reconfiguration Problems: Structure and Tractability. PhD
thesis, University of Waterloo, 2015.

[51] Moritz Mühlenthaler and Rolf Wanka. On the connectedness of clash-free timetables.
arXiv preprint arXiv:1507.02805, 2015.

[52] Sriram V Pemmaraju. Equitable coloring extends Chernoff-Hoeffding bounds. In Ap-
proximation, Randomization, and Combinatorial Optimization: Algorithms and Tech-
niques, pages 285–296. Springer, 2001.

[53] Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. The four-colour
theorem. Journal of Combinatorial Theory, Series B, 70(1):2–44, 1997.

[54] Paul Seymour. Hadwiger’s conjecture. In Open Problems in Mathematics, pages 417–
437. Springer, 2016.

[55] Jan van den Heuvel. The complexity of change. Surveys in Combinatorics, 409:127–
160, 2013.

[56] Eric Vigoda. Improved bounds for sampling colorings. Journal of Mathematical
Physics, 41(3):1555–1569, 2000.

[57] Vadim G Vizing. Coloring the vertices of a graph in prescribed colors. Diskret. Analiz,
29(3):10, 1976.

[58] Jian-Sheng Wang, Robert H Swendsen, and Roman Kotecký. Antiferromagnetic Potts
models. Physical Review Letters, 63(2):109, 1989.

86

	List of Figures
	Introduction
	Organization

	Preliminaries
	Graphs
	Graph classes
	Coloring
	Acyclic colorings
	Equitable colorings

	Reconfiguration
	Parameterized complexity

	Literature Survey
	Colorings
	Acyclic colorings
	Equitable colorings
	List colorings
	Kempe chains
	Edge-colorings

	Reconfiguration of graph colorings
	Recoloring a single vertex
	Recoloring a single edge
	Kempe chain recoloring
	Reconfiguring list L(2,1)-labelings

	Acyclic Coloring Reconfiguration
	Non-bipartite graphs of acyclic chromatic number 3
	k-ACR REACH is PSPACE-hard
	k-ACR BOUND is in XP

	Equitable Coloring Reconfiguration
	General properties of k-ECR REACH
	k-ECR REACH is PSPACE-hard
	2-equitable colorings
	Paths

	Conclusions and Future Work
	References

