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Abstract

Catalytic systems are crucial to a wide number of chemical production processes, and as a result there
is significant demand to develop novel catalyst materials and to optimize existing catalytic reactor systems.
These optimization and design studies are most readily implemented using model-based approaches, which
require less time and fewer resources than the alternative experimental-based approaches. The behaviour
of a catalytic reactor system can be captured using multiscale modeling approaches that combine continuum
transport equations with kinetic modeling approaches such as kinetic Monte Carlo (kMC) or the mean-field
(MF) approximation in order to model the relevant reactor phenomena on the length and time scales on
which they occur. These multiscale modeling approaches are able to accurately capture the reactor
behaviour and can be readily implemented to perform robust optimization and process improvement studies
on catalytic reaction systems. The problem with multiscale-based optimization of catalytic reactor systems,
however, is that this is still an emerging field and there still remain a number of challenges that hinder these
methods. One such challenge involves the computational cost. Multiscale modeling approaches can be
computationally-intensive, which limit their application to model-based optimization processes. These
computational burdens typically stem from the use of fine-scale models that lack closed-form expressions,
such as KMC. A second common challenge involves model-plant mismatch, which can hinder the accuracy
of the model. This mismatch stems from uncertainty in the reaction pathways and from difficulties in
obtaining the values of the system parameters from experimental results. In addition, the uncertainty in
catalytic flow reactor systems can vary in space due to kinetic events not taken into consideration by the
multiscale model, such as non-uniform catalyst deactivation due to poisoning and fouling mechanisms.
Failure to adequately account for model-plant mismatch can result in substantial deviations from the
predicted catalytic reactor performance and significant losses in reactor efficiency. Furthermore,
uncertainty propagation techniques can be computationally intensive and can further increase the

computational demands of the multiscale models.

Based on the above challenges, the objective of this research is to develop and implement efficient
strategies that study the effects of parametric uncertainty in key parameters on the performance of a
multiscale single-pore catalytic reactor system and subsequently to implement them to perform robust and
dynamic optimization on the reactor system subject to uncertainty. To this end, low-order series expansions
such as Polynomial Chaos Expansion (PCE) and Power Series Expansion (PSE) were implemented in order
to efficiently propagate parametric uncertainty through the multiscale reactor model. These uncertainty
propagation techniques were used to perform extensive uncertainty analyses on the catalytic reactor system
in order to observe the impact of parametric uncertainty in various key system parameters on the catalyst

reactor performance. Subsequently, these tools were implemented into robust optimization formulations



that sought to maximize the reactor productivity and minimize the variability in the reactor performance
due to uncertainty. The results highlight the significant effect of parametric uncertainty on the reactor

performance and illustrate how they can be accommodated for when performing robust optimization.

In order to assess the impact of spatially-varying uncertainty due to catalyst deactivation on the catalytic
reactor system, the uncertainty propagation techniques were applied to evaluate and compare the effects of
spatially-constant and spatially-varying uncertainty distributions. To accommodate for the spatially-varying
uncertainty, unique uncertainty descriptions were applied to each uncertain parameter at discretized points
across the reactor length. The uncertainty comparison was furthermore extended through application to
robust optimization. To reduce the computational cost, statistical data-driven models (DDMs) were
identified to approximate the key statistical parameters (mean, variance, and probabilistic bounds) of the
reactor output variability for each uncertainty distribution. The DDMs were incorporated into robust
optimization formulations that aimed to maximize the reactor productivity subject to uncertainty and
minimize the uncertainty-induced output variability. The results demonstrate the impact of spatially-
varying parametric uncertainty on the catalytic reactor performance. They also highlight the importance of
its inclusion to adequately account for phenomena such as catalyst fouling in robust optimization and

process improvement studies.

The dynamic behaviour of the catalytic reactor system was similarly assessed within this work to
evaluate the effects of uncertainty on the reactor performance as it evolves in time and space. For this study,
uncertainty analysis was performed on a transient multiscale catalytic reactor model subject to changes in
the system temperature. These results were used to formulate robust dynamic optimization studies to
maximize the transient catalytic reactor behaviour. These studies aimed to determine the optimal
temperature trajectories that maximize the reactor’s performance under uncertainty. Dynamic optimization
was also implemented to identify the optimal design and operating policies that allow the reactor, under
spatially-varying uncertainty, to meet targeted performance specifications within a level of confidence.
These studies illustrate the benefits of performing dynamic optimization to improve performance for

multiscale process systems under uncertainty.
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Chapter 1
Introduction

Catalysis is a crucial process in the production of chemicals and materials, and consequently it plays a
key role in a wide array of industrial applications for a number of key economic sectors such as energy
production, chemical manufacturing, and environmental engineering.! It is predicted that catalysts are used,
to some extent, in over 90% of all chemical production processes worldwide.? The world market for
catalysts was $16.3 billion in 2013, and this figure is expected to grow at a rate of 4.8% per year, with
expectations that over $20.6 billion will be invested in catalysis by 2018.2 This rapid growth in the catalysis
industry has motivated substantial research into the development of new catalyst materials and the
optimization of existing catalytic reactor processes to improve the efficiency and lower the costs of catalyst-
driven applications.*® In particular, reactor modeling approaches have emerged as a low-cost and efficient

means of performing design and optimization studies on catalytic reactors.®

Catalytic reactor systems are multiscale in nature and depend on a number of physical and chemical
phenomena that occur on differing length and time scales. The catalytic reactor behaviour is primarily
dictated by fine-scale catalyst events that evolve at a molecular level. These catalytic events are impacted
by bulk process parameters such as the system temperature and reactant concentrations, and thus they can
be controlled by direct manipulation of these key system parameters.”® Consequently, the diverse
mechanisms of catalytic reactor systems are most readily captured using multiscale modeling approaches
that simulate the various reactor events on the scales in which they occur.®** These multiscale models
typically consist of continuum models that capture the bulk behaviour of the reactor fluid species combined
with kinetic modeling approaches such as kinetic Monte Carlo (kMC) that describe the catalyst kinetic
behaviour.2 Multiscale modeling has paved the way for high-accuracy reactor models that to not require
additional model-fitting parameters as is often necessitated for empirical model-based approaches.
Sufficiently-designed multiscale models can therefore provide exceptionally accurate results for
optimization and process improvement studies as compared to traditional modeling methods.*? However,
there still lie numerous challenges that impede the advancement of multiscale model-based optimization
and design in catalytic reactor systems. These challenges include the trade-off between accuracy and

efficiency, and model-plant mismatch due to uncertainty.

In order to perform efficient model-based optimization and process improvement studies on a catalytic
reactor system, it is essential to develop reactor models with high accuracy and low computational cost.
Although multiscale models have the capability to provide exceptional accuracy for modeling catalytic
systems, they are typically computationally demanding and thus prohibitive to implement for robust

optimization applications. These models typically implement molecular modeling techniques such as kMC



to accurately simulate the catalytic reactions taking place, which lack a closed form and can be
computationally intensive. In addition, KMC and other Monte Carlo-based approaches are inherently
stochastic, and therefore require sufficiently large simulation spaces and high computational costs in order
to minimize the random fluctuations and achieve sufficient accuracy.® Alternatively, the catalytic
behaviour can be simulated using closed-form models such as the mean-field (MF) approach to reduce the
computational burden of the multiscale model. However, these approaches rely on assumptions that are not
representative of practical catalytic reactor systems, and consequently their results can deviate substantially
from the actual system response.’* Consequently, there exists a trade-off between the accuracy and
efficiency of the multiscale modeling approach that must be addressed in order to perform efficient

optimization while maintaining sufficient model accuracy.

Although multiscale models have the capability to accurately simulate the behaviour of catalytic reactor
systems, these models are restricted by model-plant mismatch and uncertainty.® This mismatch can stem
from a number of sources, including lack of knowledge about the system phenomena, as well as
uncertainties in the system parameters.’® There are often multiple potential reaction pathways capable of
describing a particular reaction, and therefore exact reaction mechanisms that take place in a catalyzed
system are not often known with complete certainty.'® Furthermore, the values of the system parameters
are subject to uncertainty due to experimental and measurement errors when estimating the values of the
system parameters from experimental results.r” In addition, any kinetic phenomena not taken into account
in the primary multiscale model (i.e. catalyst poisoning and fouling) can alter the catalyst kinetic behaviour
and can invoke further degrees of uncertainty in the catalyst parameters.'®?° These mechanisms can result
in spatially-varying uncertainties in catalytic flow reactor systems where the catalyst is subject to
concentration gradients in the reactant and product species. Failure to incorporate uncertainty and model-
plant mismatch into the optimization and design of catalytic reactor systems can result in significant loss
of reactor performance and can prevent the realization of desired system objectives.?2 Uncertainty
propagation techniques can unfortunately be computationally intensive to implement in multiscale
systems.?* Consequently, uncertainty is seldom taken into account when performing optimization and

process improvement studies on multiscale catalytic reactor systems.

1.1 Motivation, Objectives, and Contributions

The advent of multiscale modeling has reignited an interest in model-based design and optimization of
catalytic reactor systems, since this modeling method enables the direct control of molecular-scale catalytic
events through manipulation of the bulk system parameters.”® However, there are still a substantial number

of gaps in this field that impede on the convergence between the multiscale model-based methodologies



and real catalytic reactor systems. Model-plant mismatch and uncertainty in the parameters and reaction
mechanisms are significant hindrances to the accurate performance of multiscale models, yet only a handful
of studies have considered the effect of uncertainty in multiscale catalytic reactor models. Furthermore,
there has been very little research into spatially-varying parametric uncertainty or its effects on the
performance and optimization of multiscale catalytic flow reactor systems. As a result, the development of
low-cost uncertainty propagation techniques for efficient optimization of multiscale catalytic reactor
systems subject to uncertainty has been severely lacking.

Motivated by this, the overall objective of this research is to efficiently address the issue of model-plant
mismatch in the design and optimization of multiscale catalytic reactor systems. In this work, low-order
uncertainty propagation techniques are implemented to perform uncertainty analysis on a multiscale
multiscale single-pore catalytic flow reactor model in order to assess the impact of uncertainty on the system
performance. These techniques are subsequently applied to perform efficient robust and dynamic
optimization studies on the catalytic reaction system. Note that the reactor system considered in this work
consists of a virtual environment simulation whose reaction mechanisms are assumed to be concretely
known. Consequently, it is assumed that reaction mechanism uncertainty can be neglected, and therefore
uncertainty is only considered in the reactor model’s kinetic and design parameters within this research.

The specific objectives of this research are as follows:

e To perform uncertainty analysis on a multiscale single-pore catalytic flow reactor system with
the purpose of evaluating the impact of parametric uncertainty on the catalytic reaction system.
The uncertainty analysis is performed using low-order power series expansions (PSEs) and
polynomial chaos expansions (PCES) to approximate the variability in the reactor model outputs
as a function of the uncertain parameters. The effects of uncertainty are studied as they
propagate in space and in time through the catalytic reaction system. These measurements are
used to evaluate the deviation in the expected reactor performance due to uncertainty in key
system parameters.

e To assess the impact of spatially-varying uncertainty due to the exclusion of kinetic events such
as catalyst poisoning and fouling on the performance of the single-pore catalytic flow reactor
model. PCE is used to propagate unique uncertainty realizations in the uncertain parameters at
various points in space along the length of the multiscale reactor model. The response of the
catalytic reaction system to spatially-varying uncertainty is compared and contrasted to the
system response under spatially-constant uncertainty descriptions.

e To implement the proposed uncertainty propagation techniques into robust optimization

formulations in order to maximize the reactor performance under uncertainty. The catalytic



reactor performance is optimized by maximizing the concentration of the desired products and
by minimizing the variation in the output product concentrations due to parametric uncertainty.
To develop efficient closed-form data-driven models (DDMs) that perform rapid and accurate
optimization of the catalytic reaction system subject to a large number of uncertainty
realizations. These models are developed using gathered statistical data on the catalytic reactor
performance subject to parametric uncertainty.

To implement the uncertainty propagation techniques into dynamic optimization formulations
on a transient multiscale single-pore catalytic reactor model that is subject to uncertainty. These
dynamic optimization studies are used to determine the operation and design policies that
maximize the reactor performance and minimize the impact of uncertainty on the multiscale

catalytic reactor system.

In order to perform meaningful and accurate model-based optimization studies in catalytic reaction

systems, it is essential to implement techniques that mitigate model-plant mismatch in the reactor model.

However, the development of computationally-efficient uncertainty methods for multiscale catalytic

reactors is sorely lacking. This study aims to fill this gap through the implementation of advanced

uncertainty propagation techniques such as PSE and PCE, as well as practical modeling approaches such

as statistical DDMs, in order to perform efficient optimization on the multiscale single-pore catalytic reactor

model subject to uncertainty. This research will, therefore, contribute towards the development of efficient

robust and dynamic optimization policies for catalytic reactor improvement. Additionally, the uncertainty

analyses performed in this work grant insight onto the effects of parameter uncertainty on the behaviour of

heterogeneous catalytic reactor systems.

1.2 Thesis Outline

The remainder of the thesis is organized into seven chapters as follows:

Chapter 2 presents a review of the literature and discusses the relevant background information
for the research presented in this work. This chapter provides an overview of catalysis with a
key focus on the mechanisms of heterogeneous catalytic reactor systems. This chapter
additionally discusses the application of multiscale modeling to catalytic reactor systems and
the challenges associated with this method. The end of this chapter subsequently provides an
overview of model-plant mismatch, its impact on multiscale catalytic reactor systems, and the
uncertainty propagation methodologies that can be used to accommodate for parametric

uncertainty.



Chapter 3 introduces the multiscale single-pore catalytic flow reactor system considered in this
work and the multiscale modeling approaches that were used to capture the reactor performance.
The modeling approaches detailing the continuum flow of the chemical species through the
reactor and the Kkinetic catalyst surface events are described. Techniques are also discussed for
coupling the different models and for minimizing the impact of random noise when a stochastic
model is used in the multiscale formulation.

Chapter 4 provides an overview of the low-order series expansions (PSE and PCE) that can be
used to approximate the effects of parametric uncertainty on the multiscale single-pore catalytic
reactor performance. The accuracy of these uncertainty propagation models is verified via
comparison to the traditional Monte Carlo sampling method. In addition, this chapter provides
a brief comparison between the accuracy and efficiency of these two methods.

Chapter 5 performs uncertainty analysis on the steady-state multiscale catalytic reactor model
in order to evaluate the effects of parametric uncertainty in numerous key system parameters on
the single-pore catalytic flow reactor system. PSE is used to propagate parametric uncertainty
through the multiscale model and assess its impact at various spatial locations along the catalytic
reactor length. The PSE-based propagation framework is subsequently used to perform robust
optimization on the catalytic reaction system. This work has been previously published in the
AIChE Journal.?®

Chapter 6 investigates the impact of spatially-varying parametric uncertainty on the behaviour
of the steady-state multiscale catalytic reactor system. Catalytic deactivation due to poisoning
and fouling (i.e. mechanisms that were not included in the multiscale model) is considered to
be the source of the spatially-varying uncertainty descriptions. PCE is used to compare the
effects of spatially-constant and spatially-varying uncertainty descriptions on the multiscale
reactor performance. Subsequently, closed-form DDMs are developed to approximate key
statistics of the catalytic reactor performance subject to the spatially-constant and spatially-
varying uncertainty descriptions. These DDMs are used to perform efficient robust optimization
on the uncertain multiscale single-pore catalytic reactor system. This work has been accepted
for publication by the Canadian Journal of Chemical Engineering.?®

Chapter 7 investigates the effects of parametric uncertainty on the dynamic behaviour of a
transient multiscale single-pore catalytic reactor system. PSE is used to propagate uncertainty
through the reactor model and to evaluate its effects on the reactor performance as it propagates
in time. The effects of uncertainty are also investigated on the behaviour of a multiscale catalytic
reactor system subject to transient changes in the system temperature. This work was previously

published in the 11" IFAC Symposium on Dynamics and Control of Process Systems including
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Biosystems (DYCOPS).?” This study was further expanded through application to dynamic
optimization studies that seek to determine the optimal design and operational conditions of the
multiscale catalytic reactor model subject to spatially-varying uncertainty. PCE is used in these
studies to propagate the uncertainty in order to determine the optimal temperature profile and
the optimal design and operating policies that maximize the productivity of the catalytic reaction
system. This work has been accepted for publication by the Journal of Process Control.?

Chapter 8 presents the conclusions of this study and provides recommendations for future

research.



Chapter 2
Background and Literature Review

The importance of heterogeneous catalytic reactors in chemical processes has inspired a significant
amount of research directed towards identifying new catalysts and optimizing existing catalytic
processes.>?% The behaviour of a heterogeneous catalytic reactor system depends on fine-scale
(molecular) events that occur along the catalyst surface, which are in turn strongly influenced by the bulk
reactor behaviour. Accordingly, the catalytic reaction process can be enhanced if control of the fine-scale

events can be performed through direct manipulation of the system’s process parameters.’s

This behaviour is most prominently explored through the use of model-based approaches, which enables
easy implementation of optimization and process improvement techniques.®3! To accurately capture the
full behaviour of a catalytic reaction process, these models must encompass the wide range of physical and
chemical phenomena that evolve over differing length and time scales, and as a result, multiscale modelling
has emerged as a prominent approach for modeling catalytic reactor systems.®'® However, the multiscale
modeling approach still presents a number of challenges that need to be addressed. In addition to the large
computational costs, multiscale systems are particularly susceptible to uncertainty and model-plant
mismatch, which can significantly hinder the performance of the system.!* Neglecting model-plant
mismatch in model-based optimization and control schemes can cause substantial deviations from the
predicted reactor behaviour, which can lead to considerable losses in reactor efficiency.?-2% Therefore,

parametric uncertainty must be taken into account in order to accurately achieve process improvement.

The objective of this chapter is two-fold: To provide relevant background knowledge, and to present a
review of the literature on catalytic reactor systems, multiscale modeling, and model-plant mismatch. To
that end, Section 2.1 presents a brief overview on catalysis, with particular focus on heterogeneous catalysts
and their applications in chemical reactor systems. Subsequently, Section 2.2 details the multiscale
modeling approach and its uses in the literature with specific applications to heterogeneous catalysis. This
section additionally discusses the challenges associated with multiscale modeling and the techniques that
can be used to overcome them. Section 2.3 then provides an overview of model-plant mismatch and
parametric uncertainty, their effects on multiscale modeling approaches, and the various methods of
uncertainty propagation. The catalytic reactor system considered in this work consists of a heterogeneous
solid-fluid catalyst consisting of a single pore in a continuous flow reactor system; thus this chapter will

primarily focus on these types of catalytic reactor systems due to their relevance to this work.



2.1 Catalysis and Catalytic Reactor Optimization

Catalysts are materials that accelerate the rate of a chemical reaction through the provision of
energetically-favourable reaction pathways. Catalysts are not consumed during the reaction process, and
consequently a small amount of catalyst can be utilized to catalyze many reactions over long periods of
time. As a result, catalysts are extremely important to the efficient manufacture of chemical products in a
variety of industrial applications.!? It is important to note that catalysts do not affect the thermodynamics
of a reaction; rather they affect the kinetics of both the forward and the reverse reactions taking place, and
as such, a catalyst will only affect the speed of the reactions and not the species concentrations at
equilibrium.

Catalyst materials can be sub-divided into homogeneous and heterogeneous catalysts depending on the
phase of the catalyst relative to the reactants. In homogeneous catalysis, the catalyst is dispersed within the
same phase as the reactant species. Homogeneous catalysts typically consist of transition metal complexes
that bind to the reactant materials and weaken their chemical bonds to promote kinetically-unfavourable
reactions and to stabilize the reaction intermediates.? They have high selectivity and are easy to modify to
catalyze specific reactions. However, due to the homogeneous nature of the system, it can be difficult to
separate the catalyst from the products, limiting the use of homogeneous catalysts in continuous reaction
systems.®* In heterogeneous catalysis, on the other hand, the catalyst is in a different phase than the
reactants. Heterogeneous catalyst systems typically consist of solid catalysts interacting with liquid or
gaseous reactant species. These catalysts provide a solid surface on which reactants can adsorb and interact
with other reactant species. Solid heterogeneous catalysts additionally have a large number of low energy
surface electronic states, which enable lower activation energies of reaction than would be observed in an
un-catalyzed fluid-phase reaction.?** Heterogeneous catalysts have high catalytic activity and can be readily
separated from the reactants and products. In addition, heterogeneous catalysts can be readily incorporated
into a number of key chemical reactor systems, including batch reactors, continuous stirred-tank reactors
(CSTRs), plug flow reactors (PFRs), and fluidized beds.! Heterogeneous catalytic reactors, however,
typically require high system temperatures and reactant concentrations, and most heterogeneous catalysts
have low selectivity. To help overcome this, the selectivity of a heterogeneous catalyst can be improved

through the use of zeolites and other catalytic materials with adjustable pore sizes.?*

One of the key challenges in catalytic systems is that the catalysts are susceptible to deactivation through
a variety of different mechanisms.'®° Heterogeneous catalysts can be deactivated by fouling, which details
the physisorption of unwanted chemical species to the catalyst surface, effectively blocking the catalyst
sites from interacting with the reactant species. A key example of catalytic deactivation due to fouling is

catalyst coking, which details the deposition of coke and other carbon-based compounds on the catalyst



surface. Coke deposits on the catalyst surface can grow due to multilayer physisorption of carbon and coke,
which can restrict or block the flow of reactants through porous catalysts. Catalysts can similarly be
deactivated through poisoning mechanisms, which detail the strong chemisorption of undesired chemical
species on the catalyst surface. These adsorbates can physically block a number of catalyst sites, preventing
them from adsorbing or interacting with any further reactant species. In addition, strongly-adsorbed poisons
can alter the electronic properties and the geometric structure activity of a catalyst, resulting in changes in
the kinetic and structural catalyst parameters.® Catalyst deactivation is also possible due to thermal or
mechanical degradation of the catalyst, which are a result of the extreme reactor conditions. These effects
include the loss of catalyst surface area at high temperatures (sintering) and the physical erosion of the
catalyst materials due to high pressures. Catalyst deactivation presents a significant hurdle in catalytic
reactor engineering as it adversely affects the catalyst performance and alters the values of the catalytic
parameters.’®20 As a result, there is substantial interest both in developing techniques to prevent catalyst
deactivation and to regenerate the catalyst once it becomes suitably deactivated. The ability to regenerate a
catalyst depends on the deactivation mechanisms, as not all catalysts can be re-activated. Coke formations
can be readily removed via gasification techniques.®’ In addition, some poisoned and fouled catalysts can
be regenerated by heating, oxidation, and washing processes.*® However, many deactivated catalyst systems
cannot be regenerated without resulting in further damage to the catalyst. As a result, it would be more
desirable to modify the design and operating conditions of the catalytic reactor system in order to impede

catalyst deactivation, and thus, prolong the catalyst life.3%4°

In the chemical manufacturing industry, it is highly desirable to optimize the performance of catalytic
systems so as to increase the yield of the desired products while minimizing the reaction costs. This can be
achieved by adjusting the process and design parameters of a catalytic reaction system in order to maximize
the desired catalyst behaviour.*® In heterogeneous catalysis it is essential to maximize the surface area of
the catalyst in order to increase the number of interactions between the reactants and the catalyst. This can
be achieved by fabricating highly-porous catalyst materials with high surface area. Ideal solid catalysts can
also be achieved by affixing high surface area catalyst nanoparticles to the surface of a highly-porous
support material. Within these highly-porous catalytic reactor systems, the pore size also has a significant
effect on the reactor performance. Reducing the pore radius increases the surface-to-volume ratio in the
catalytic reactor, which results in an improvement in catalyst performance. In addition, pores with smaller
radii require lower diffusion times in order for reactants to reach active catalyst sites. In contrast, longer
reactor pores increase the internal catalyst surface area, resulting in a larger number of catalyst surface
sites.? The catalyst performance can also be increased by the addition of chemical promoters, such as alkali
or alkaline earth metals, that can enhance the activity or the selectivity of the catalyst material.**?> The

catalytic reactor behaviour may also be controlled by manipulating the reactor operating parameters such
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as the system temperature, fluid velocity, and the concentration of the reactants. The system temperature
directly affects the kinetics of the catalytic reaction wherein changing the system temperature impacts the
amount of adsorption, desorption, and reaction that occur on the surface of a heterogeneous catalyst.
Similarly, the initial concentrations of reactants also directly affect the catalyst kinetics, promoting higher
rates of adsorption and reaction. The system temperature and initial reactant concentrations additionally
affects other processes in the reactor system, such as the transport phenomena and the thermodynamics of
the reaction. Conversely, the fluid velocity controls the amount of time that the reactants remain within the
reactor system in a PFR and other flow-type reactors. Slower fluid velocities increase the probability that a
reactant molecule will diffuse to the catalyst surface and result in increased residence times. By adjusting
these parameters, it is therefore possible to control the reactor behaviour and optimize its performance.#

2.2 Multiscale Modeling of Catalytic Reactor Systems

Catalytic flow reactors are crucial to a number of industrial-scale chemical production processes, and
the widespread integration of these reactor systems has promoted significant interest in optimal design and
operation methodologies to boost reactor productivity and minimize production costs.**#4 This can be
accomplished experimentally by testing various operating conditions to determine which methods are the
most optimal.*>*® However, these approaches can require substantial amounts of time, materials, and
financing in order to determine the optimum design and operating conditions. Alternatively, model-based

approaches can be used to optimize the catalytic reactor behaviour at significantly reduced costs.®

The behaviour of catalytic reactor systems is complex and involves a number of phenomena that evolve
on differing length and timescales. These phenomena can be partitioned into two different domains: A
macroscopic domain, which accounts for the transport of momentum, mass, and energy through the reactor
system; and a microscopic domain, which details the Kinetic interactions between the individual chemical
species and the catalyst surface.® Note that although these domains capture the microscopic and atomistic
behaviour of the catalytic reactor system respectively, they are standardly referenced in multiscale modeling
approaches as the macroscopic and microscopic domains. Consequently, this terminology will be used

throughout the remainder of this thesis.

Catalytic reactor systems are typically modeled using continuum-based approaches that can be solved
through techniques such as finite difference and finite element analysis.*”~ These models typically assume
surface uniformity, and therefore the state of the catalyst surface can be determined through simple
mathematical expressions. They are thus incapable of accounting for catalyst heterogeneities such as
surface defects and lateral interactions between adsorbates, and therefore do not provide an adequate

description of the microscopic behaviour of a catalytic reactor system. Alternatively, the disparate scales
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of the catalytic reactor system can be captured using multiscale integration hybrid algorithms that can
capture each of the reactor events on the spatial and temporal scales in which they occur. These multiscale
modeling algorithms typically consist of kinetic modeling approaches such as kKMC or MF to capture the
catalyst surface behaviour, coupled with continuum modeling approaches to describe the macroscopic
behaviour of the reactor system. The aim of this section is to provide a description of the multiscale
modeling approach and the challenges associated with it, with a particular focus on modeling catalytic
reactor systems.

2.2.1 Multiscale Modeling Approaches

Most chemical processes involve numerous phenomena that evolve over various spatial and temporal
scales. These events generally cannot be adequately captured using a single modeling approach and require
unique models to simulate the relevant phenomena on the scales in which they occur. Developing an
empirical single-scale model to approximate the behaviour of these processes involves making numerous
assumptions and simplifications, and typically require model fitting parameters to adequately simulate the
experimental results.?? Alternatively, these systems can be modeled using multiscale integration hybrid
approaches, which connect and combine different modeling approaches in order to simulate all of the
relevant system phenomena on the appropriate scales. These multiscale methods are capable of achieving
high accuracy by simulating each of the system events on the relevant scales in which they occur, and
consequently, they are a significant improvement over singular model-based approaches.>'® Multiscale
models allow for intercommunication between each of the modeling methods, which enables optimization
and control of the microscale processes through manipulation of the macroscopic variables.? They
additionally facilitate the implementation of top-down optimization approaches, where the system design
and materials are determined in order to satisfy pre-specified optimization targets.’>'’3! As a result,
multiscale modeling has been instrumental for a number of key chemical processes such as polymer chain

growth,%51 thin film deposition,>2%2 batch crystallization,>*® and catalytic reaction mechanisms.4°6:57

The multiscale modeling approach combines numerous modeling approaches in order to simulate
phenomena occurring over a wide range of length and timescales that span from the electronic scale to the
macroscopic scale,®° as illustrated in Figure 2-1. On the lower end of the spectrum, the electronic scale
details the electronic interactions between atoms and can be used to estimate electronic system properties
such as the entropy and activation energy in a catalytic reaction system. These methods are typically
modelled using quantum simulations such as Density Functional Theory (DFT) and ab initio calculations.
The microscale (molecular) level describes the behaviour and interaction of individual atoms and

molecules, and it can be modeled using atomistic-based approaches such as Molecular Dynamics (MD) and
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Figure 2-1. Diagram of the modeling techniques relevant to the multiscale modeling approach and

their representative length and timescales.®

Monte Carlo (MC). In catalytic reaction processes, microscale simulations can be used to determine the
kinetic interactions between the catalyst surface, the reactant molecules, and the product molecules. These
processes can be modeled using kinetic approaches such as MF and lattice-based KMC. On the upper end
of the length and time scales, the macroscale level details the bulk properties such as the mass, momentum,
and heat transport within a catalytic reactor. This scale is traditionally modeled using continuum equations

and computational fluid dynamics (CFD) approaches.

Although multiscale modeling is capable of coupling phenomena that evolve on each of these differing
scales, the interaction between multiple scales can be computationally intensive. Consequently most
multiscale modeling approaches consider the interactions between two different models.X® The disparate
scales of a catalytic reaction system are most readily captured using a bi-model multiscale algorithm, which
couples continuum transport modeling that simulate the macroscopic fluid phase behaviour with kinetic
modeling approaches such as MF or kMC that simulate the microscopic catalyst surface behaviour.34 Each

of these modeling methods will be subsequently detailed in the following subsections.
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2.2.1.1 Macroscale Continuum Modeling

The macroscopic behaviour of a chemical system is dependent on the positions and interactions of the
individual molecules that compose the system. Each of these molecules have their own energy, momentum,
and other properties that dictate their individual behaviour in addition to the properties of the overall system.
Subsequently, atomistic modeling approaches such as MC and MD can be implemented in order to
determine the properties of each molecule in the system. This will ascertain the macroscopic system
properties such as temperature and species concentrations at every point in the system. These approaches

are computationally-intensive, however, which limits their applications to large-scale systems.®

Alternatively, sufficiently-large macroscopic systems can be treated by applying the continuum
principle, such that the desired macroscopic properties can be determined at low computational costs using
continuum modeling methods. The continuum hypothesis treats the bulk system as continuous, despite it
being discontinuous on the molecular level. Macroscopic properties such as temperature, pressure, bulk
velocity, and viscosity are assumed to vary continuously throughout the system. Consequently, these
properties can be determined at any point in space and time using mathematical functions derived from

classical physical laws such as Newton’s laws of motion, thermodynamics, and Maxwell’s equations.>®

In catalytic reactor systems, desirable continuum properties such as temperature, bulk velocity, and bulk
species concentrations can be captured using energy, momentum, and mass conservation laws that express
the property variation in time and in space using partial differential equations (PDES). These PDEs can be
solved using CFD approaches such as finite differences (FD) or finite element analysis (FEA).%%%! These
continuum modeling approaches are well-established such that a number of software packages can be used
to implement these techniques for modeling in a variety of systems. In this work, the macroscopic system
behaviour of the catalytic flow reactor is modeled using conservation laws. These PDESs were solved using

intrinsic FD approaches to approximate the bulk properties at discrete points in space and time.

2.2.1.2 Microscale Kinetic Modeling

The microscopic behaviour of a system depends on a number of fine-scale events that evolve on a
molecular level. In a heterogeneous catalytic reactor system, these events detail the kinetic interaction
between the reactants, products, and the catalyst surface. Depending on the reaction mechanisms taking
place, these events can include the adsorption of the fluid species onto the catalyst surface, the desorption
of adsorbates back into the fluid phase, the diffusion of adsorbates across the catalyst surface, and the
reaction of adsorbed and/or fluid-phase species on the catalyst surface. The microscopic behaviour of the

catalyst surface domain can be modeled using any number of kinetic solvers such as MF and lattice-based
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kMC, %% in addition to molecular-level solvers such as configurational-bias MC and MD.®28 This section

will primarily focus on the MF and kMC kinetic modeling approaches due to their relevance to this work.

The MF approximation is a closed-form kinetic modeling approach that assumes uniform distribution
of the molecules that are adsorbed onto the catalyst surface. The adsorbates are allowed to freely move
along the catalyst surface using an infinite diffusion assumption, and each of the adsorbates are assumed to
share the same types of neighbours.5* Consequently, the coverage of each adsorbate species on the catalyst
surface can be approximated using a series of kinetic ordinary differential equations (ODES) in transient
systems, or a series of algebraic expressions in steady-state systems. These coverage expressions can be
solved using traditional ODE solvers and root finding methods. Therefore, the MF approach is
computationally efficient and can be readily implemented into multiscale modeling applications. However,
due to the infinite diffusion assumption, the MF approach is incapable of incorporating the lateral adsorbate

interactions that are crucial for many catalytic reaction mechanisms into the kinetic model 146566

On the other hand, KMC simulations apply MC sampling techniques in order to randomly select and
execute kinetic events in a microscopic system. Given a system in a particular state, the kMC approach
evaluates all of the states that are currently accessible and transitions the system into a new state at random
based on the state transition probabilities. As a result, KMC can be seen as a stochastic realization of the
chemical master equation, which determines the probability that a system is in a certain state at any point
in space and time.®” The transition probabilities of the kMC approach are determined by the chemical
kinetics and reaction rates that govern the interaction between the relevant molecules in a system.
Consequently, KMC is not focused on determining the exact position and momentum of each atom, but
rather on evaluating the dynamic evolution of a microscale system.%® The end result is a snapshot of the

possible configuration of molecules in a system and their potential kinetic interactions with each other.

The kMC algorithm can be expressed as follows. The kinetic rates are determined for all possible
microscopic events, such as adsorption, desorption, and reaction. An event is randomly selected based on
their Kkinetic rates and executed within the system. The system time is subsequently incremented by a
random interval generated from an exponential distribution, and the kinetic rates are updated based on the
new system configuration. This cycle repeats until either the final integration time has been met in transient
models or the system has reached steady state in static models.>*% Further details concerning the kMC

algorithm implemented in this work can be found in Chapter 3.

Lattice-based KMC is a specific sub-set of KMC that is useful for describing the microscopic evolution
of a surface. In a heterogeneous catalytic reactor system, lattice-based kMC implements a 2D lattice in
order to approximate the positions and interactions of adsorbates on the catalyst surface. In this approach,

the catalyst surface is denoted using a finite-sized lattice that updates to reflect the identity, positions, and
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interactions of adsorbates on the surface. Changes made to the system are reflected by updates in the lattice,
and important microscopic properties such as the surface coverages can be determined from the lattice
information. The algorithm for lattice-based kMC is the same as that of general KMC, except that the system

is restricted to the 2D surface lattice and the configuration of adsorbates within the lattice.

The kMC approach is a stochastic process that requires careful assembly to reduce random fluctuations
in the response variables, and as a result, its computational costs are higher than those required for the MF
approximation. In addition, a complete description of the system Kinetics is often unknown, and therefore
assumptions must be made regarding the microscopic events that can take place.®® Despite these flaws,
however, KMC is capable of providing excellent approximations of the true state of a microscopic kinetic
system. In catalytic reactor systems, KMC is able to directly account for lateral interactions and other
spatially-dependent interactions on the catalyst surface, and therefore it is able to accurately predict the
catalyst surface behaviour.t9° As a result, KMC has emerged as an excellent tool for modeling the

microkinetic behaviour of the catalyst surface.

2.2.2 Challenges in Multiscale Modeling

The multiscale modeling approach is capable of providing high-fidelity system models by combining
and interconnecting different modeling techniques in order to capture the relevant system phenomena on
the scales in which they evolve. However, multiscale modeling techniques still present a number of different
challenges that need to be addressed. The objective of this section is to present some of the issues
encountered in multiscale modeling as well as techniques that have been used in the literature to overcome

these shortcomings.

The accuracy of multiscale models is generally proportional to their computational cost and
subsequently a trade-off must be made in order to achieve low-cost results with sufficient accuracy. In
general, the accuracy-efficiency trade-off is a practical challenge associated with most computational
modeling processes, as frequently the methods that produce higher model accuracy require larger
computational costs.> The computational burdens in multiscale modeling approaches are typically
associated with the fine-scale phenomena. These events typically cannot be adequately described using
closed-form models, and therefore require the use of more intensive modeling approaches such as kMC.
Although closed-form models can be developed to supplement for KMC in microscopic systems, these
models typically cannot achieve suitable accuracy due to the assumptions that must be made. For example,
as discussed previously, the catalyst surface behaviour in a heterogeneous catalytic reactor system can be
approximated using the closed-form MF approach, which cannot explicitly take into account the lateral

interactions that are relevant for most catalytic reactions.** In order to derive accurate yet efficient
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multiscale models for a heterogeneous catalytic reaction, it is necessary to assess the impact of lateral
interactions and spatial heterogeneities on the reaction mechanism to determine whether MF would provide

sufficient accuracy or if KMC should be implemented.

The kMC modeling approach itself can be computationally demanding since only one kinetic event is
executed at a time and a large number of events are required in order to reach the kMC end conditions.™
This has motivated efforts to derive new, computationally-efficient KMC algorithms that seek to reduce the
model complexity without significant decrease in the model accuracy.’>”® For example, the computational
time can be reduced without significant loss of accuracy by decoupling the predominant kinetic events in
the kMC simulations and treating them deterministically.” This approach is most practical for fast kinetic
events, e.g. surface diffusion, which may consume the majority of the kMC computational time. Coarse-
graining techniques can additionally be applied to further reduce the model complexity. In the spatial
coarse-graining technique, the KMC lattice is subdivided into coarse cells, each consisting of an equal
number of individual lattice sites, or ‘microcells’. Each of these coarse cells is subsequently treated as an
individual ‘site” for the adsorption, desorption, and reaction of coarse-grained packets of similar molecules,
called ‘mesoparticles’. Thus, improved computational speeds are achieved by considering the actions and
interactions of multiple molecules within the mesoparticles on the coarse cells instead of the actions and
interactions of individual molecules.”®’” Similarly, temporal coarse-graining techniques such as the t-leap
algorithm can be used to simulate multiple kMC events simultaneously over a coarse time interval, 7.%""8
This algorithm must be confined by a leap condition that requires t to be suitably small, such that the system
experiences only slight change over that time interval.” Similar techniques, such as the coarse time-stepper
methodologies, can also be used to coarsely evaluate the reactor dynamics. This is of particular use in
multiscale systems where there exists no closed-form models to express the macroscopic system behaviour,
as it allows for the construction of ‘equation-free’ systems that rely only on the performance of microscale

models.”%8081

Further complications arise in multiscale models that incorporate stochastic modeling techniques to
solve a particular system domain. When coupling the kKMC model with macroscopic system models, they
become subject to random fluctuations that can cause instabilities. In a lattice-based kMC model, larger
lattice sizes can be implemented in order to minimize the stochastic noise and improve accuracy in the
responses. However, employing large lattices is computationally intensive due to the large number of events
required to meet the KMC end conditions, thus making it inefficient for optimization applications. In order
to circumvent this issue, smaller KMC lattices can be implemented with periodic boundary conditions to
determine the evolution of the surface behaviour.®? The stochastic noise can be further reduced by running
multiple independent KMC simulations using the smaller lattices and taking the average of the results.**23

These independent kMC simulations can be run in parallel using parallel computation techniques such as
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the decomposition-assignment-orchestration parallel computation program.® Alternatively, filtering
techniques can be applied to filter the outputs of a reduced-order KMC lattice and eliminate the stochastic
noise. In previous works, second-order linear filters have been applied to handle the stochastic fluctuations
of kMC models for application in thin film growth® and catalytic reactor systems.* Filtering approaches
can also be used to eliminate numerical instability when coupling KMC and continuum modeling
approaches that arise due to temporal mismatch between the modeling methods.%8” Similarly, feedforward-
feedback controllers implemented with gain-scheduled filters can be used to bound the stochastic kMC
noise in noisy kMC systems.

Multiscale models experience additional challenges in spatially-heterogeneous systems, where the
coarse-scale inputs to the fine-scale models vary with position. For instance, in catalytic flow reactor
systems such as the single-pore catalytic reactor studied in this work, the transport of the chemical species
coupled with the reactions on the catalyst surface produce concentration gradients that cannot be neglected.
These gradients lead to variation in the rates of microscopic surface events, which depend on the local fluid
concentrations at the catalyst surface. In these spatially-varying systems, special attention must be paid that
the appropriate gradients are reflected in the kMC lattice,’* and oftentimes the microscopic system
behaviour cannot be modeled using a single kMC model.1°#° Consequently, multiple kMC lattices must be
used to handle variation in the microscopic surface events over the full macroscopic spatial domain.*®® This
can be accomplished efficiently through the adoption of patch dynamics techniques such as the gap-tooth
model, where the spatial domain of the macroscopic model is evaluated coarsely using a minimal number
of KMC lattices.™*>" In the gap-tooth method, the entire spatial domain of the macroscopic model is
subdivided into periodically-spaced patches (teeth), separated by spaces (gaps).®*® Figure 2-2 provides a
graphical overview of how the gap-tooth method can be implemented for a kMC-continuum multiscale
system. Each tooth is simulated with an independent kMC lattice that is employed to determine the specific
microscopic behaviour at its location within the system. The teeth are considered to be infinitesimal, such
that the effects of the macroscopic gradients on a single tooth can be assumed to be negligible. On the other
hand, the gaps are treated coarsely, and the microscopic system behaviour across each gap is approximated

using interpolation. More details about the gap-tooth method are presented in Chapter 3.

2.3 Parametric Uncertainty in Multiscale Catalytic Reactors

Model-based optimization and process improvement studies are limited by the accuracy of the system
model. As a result, multiscale modeling approaches are ideal for simulating catalytic reactor systems for
robust optimization applications due to the high accuracy achieved by modeling each of the relevant

phenomena on the scales in which they occur. Like any other modeling approach, however, multiscale
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Figure 2-2. The gap-tooth scheme for a KMC-continuum multiscale system.

models are susceptible to uncertainty and model-plant mismatch, which can significantly hinder their ability
to capture the system performance.'**® Failure to adequately account for uncertainty can result in substantial
increases in the productivity costs as well as significant reactor performance losses.?*2% In addition, the
optimal operating conditions for many reactor systems are often close to the reactor’s safety limits, and
failure to incorporate model-plant mismatch can risk the unnecessary danger of exceeding the reactor safety
thresholds.®” Consequently, it is a necessity to factor in the uncertainty impact on the catalytic reactor
performance when performing robust optimization or control. The objective of this section is to provide an
overview of the potential sources for model-plant mismatch, and to discuss the various methods that can

account for uncertainty in multiscale system models.
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2.3.1 Sources of Model-Plant Mismatch in Catalytic Reactor Systems

The performance of a multiscale catalytic reactor model is significantly hindered by model-plant
mismatch stemming from uncertainty in both the model structure and the system parameters. The reaction
pathways that occur in the reactor are seldom completely known, with potentially undiscovered
intermediate steps not taken into consideration. Multiple microkinetic pathways are often proposed that are
capable of describing a particular reaction mechanism,® and therefore the exact pathway is often unknown.
Consequently, many catalytic reactor models are subject to model structure and reaction mechanism
uncertainties that inhibit them from accurately predicting the behaviour of the actual reaction system.

One of the most common and significant sources of model-plant mismatch in multiscale catalytic reactor
processes stems from uncertainty in the system parameters.’%2 True values for most design and kinetic
parameters cannot be precisely measured or predicted from experimental data as they are limited by
measurement and experimental errors.®® In addition, large kinetic models often contain a sizeable number
of kinetic parameters that cannot be accurately determined from gathered experimental data. This has
motivated the development of novel methods to assess which kinetic parameters can be estimated from
collected experimental results.®® Alternative approaches such as DFT and other quantum simulations can
be used to improve the estimates of the parameter values;*1°! however, these approaches are limited by

high computational costs and truncation errors.2102

Parametric uncertainty is also present in catalytic reactor systems due to Kinetic events not taken into
consideration, such as catalyst deactivation. Specifically, catalyst poisoning and fouling mechanisms have
been documented to alter the catalyst properties.’®1° As a result, the catalyst kinetics cannot be known with
certainty unless additional tests are performed to assess the how various degrees of catalytic deactivation
affect the behaviour of the catalyst. Catalyst coking is known to affect the radius of porous catalyst
materials, 3% whereas catalyst poisoning has been shown to affect several key catalyst parameters,
including the number of available catalyst sites,'®1°1% the activation energies,'®1%1951% and the kinetic rate
constants.1®1%197 Fyrther complications arise in catalytic flow reactors in which the chemical species
concentrations vary spatially, promoting non-uniform catalyst poisoning and fouling across the spatial
domain.?%1%8.10° The parametric uncertainty applied to these systems cannot be assumed spatially-constant,
and therefore reactor studies would require multiple independent uncertainty distributions to describe the

spatial variance in the uncertainty.
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2.3.2 Uncertainty Propagation Techniques for Multiscale Systems

Model-plant mismatch can cause substantial deviations from the predicted performance of a multiscale-
based catalytic reactor, which can lead to considerable losses in reactor efficiency.?22% |t is therefore
necessary to develop tools that can efficiently account for uncertainty in multiscale system models. One
approach to improve the performance of batch processes in the presence of model-plant mismatch is run-
to-run control, where data from previous batches is used to update the parameters and reduce the
uncertainty.>*!° This approach, however, requires previous model simulations and data from actual process

runs, which is not always available or desirable.

Alternatively, uncertainty can be directly transmitted through multiscale systems using uncertainty
propagation techniques. There are a number of different methodologies that can be used to propagate
parametric uncertainty, and therefore the selection of an appropriate uncertainty propagation method for a
particular application must be performed by assessing the trade-off between the accuracy and the efficiency
of the technique. Typically, the uncertainty propagation techniques with higher accuracy require
significantly increased computational costs, and consequently it is critical to select a suitable approach that
can produce models with suitable accuracy for the analysis.*? In each of the uncertainty propagation
approaches, the probability distribution function (PDF) of the uncertain parameters is determined and
subsequently propagated through the multiscale model in order to determine the variability in the system
outputs due to uncertainty. The PDFs for the uncertain parameters can be determined using data from
experimental results or DFT simulations,***** however if no data is available, the uncertain parameter
descriptions can be alternatively approximated by making assumptions about the uncertainty distribution.
A multivariate normal PDF is often regarded as a practical approximation to describe the parametric
uncertainty in most engineering applications, and the uncertainty distributions are assumed to be known

ahead of time.114.115

One way of propagating uncertainty through the system is by developing stochastic differential
equations (SDES) to describe the system behaviour, where the input uncertainties are expressed as stochastic
terms bounded by the uncertainty PDFs. Galerkin projection can be used in these systems to directly
compute the variation in the model outputs based on the statistical moments of the uncertain parameter
distributions. These methods are typically limited by complications with parameter determination, which
has stimulated much interest in the development of accurate and efficient parameter estimation
algorithms.116-118 |n addition, these methods require the use of closed-form differential equations, which are

often unable to accurately approximate the complete behaviour of a multiscale system.

The effects of model-plant mismatch are most readily propagated through system models using direct

computational techniques such as MC sampling. In this approach, numerous random realizations in the
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parameter uncertainty descriptions are propagated through the system model in order to determine PDFs
that describe the variability in the system outputs. This method has been previously employed in the
literature to propagate uncertainty through a multiscale catalytic plug flow reaction system in order to
determine the optimal catalyst for the decomposition of ammonia.l” Although MC sampling accurately
captures process variability, it requires large numbers of sample points to achieve the necessary accuracy,

and can thence involve prohibitive computational costs.

Alternatively, low-order mathematical models such as PSE and PCE can be formulated to efficiently
approximate the behaviour of the primary model under uncertainty and represent the output variability using
PDFs.119120 |n the PSE approach, the relationship between the uncertain parameters and the system outputs
is approximated using a Taylor series expansion, where the expansion derivative values are calculated using
sensitivity methods. In contrast, the PCE approach uses orthogonal basis functions to approximate the
relationship between the system outputs and the uncertain parameters. The coefficients to the PCE
polynomials can be determined through intrusive methods such as Galerkin projection,*?! or non-intrusive
methods such as non-intrusive spectral projection (NISP) and least-squares approximations.t?22 A formal

mathematical introduction to both series expansions will be provided in Chapter 4.

Both PSE and PCE have been incorporated into a number of optimal design and robust optimization
studies for a variety of different system models.?21% In particular, the PSE approach has been previously
implemented to propagate uncertainty through a multiscale thin film deposition model for robust
optimization and online control applications.8*2"-1%0 pPSE has additionally been implemented into back-off
approaches for simultaneous design and control of dynamic systems subject to uncertainty,®! in addition
to optimal design processes, for applications in post-combustion CO, capture and reactor-heat exchanger
systems.132133 Both PSE and PCE have been shown to accurately capture the variability of the system output
due to parametric uncertainty.'*20 The accuracy of each method depends on the system behaviour, the
number of uncertain parameters, and the distribution of the uncertain parameters. Consequently, the optimal
choice of series expansion varies from problem to problem. Previous comparisons for a multiscale thin film
deposition system have demonstrated that PSE is the most attractive option when considering uncertainty
in a single parameter, whereas PCE provides higher accuracy and efficiency for multivariate uncertainty

analysis.**

Notwithstanding the existence of the aforementioned tools, uncertainty analysis in multiscale process
systems remains a challenging and intensive task. Since multiscale models are not available in closed-form,
employing methods such as PSE and PCE requires extensive numerical analyses. Due to the stochastic
behavior of kMC simulations, it can be challenging to accurately determine the sensitivities for PSE-based
uncertainty analysis in kMC-based multiscale models. In order to achieve reasonable accuracy, the

sensitivities can be determined, at the cost of increased computational time, by taking the average over
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multiple model simulations.3>%¢ In addition, both PSE and PCE are subject to the trade-off between model
accuracy and model efficiency. The accuracy of the PSE and PCE approximations improves with the
addition of supplementary terms to the series expansion.'2013:138 However, higher-order PSE expansions
require the calculation of additional higher-order sensitivities that result in longer computational times.
Similarly, higher-order PCE expressions require the calculation of additional PCE coefficients, thus
requiring additional computational burdens. It is therefore desirable to determine the lowest expansion order
that will provide acceptable accuracy in the results a priori in order to reduce the overall computational
cost.

However, the implementation of even the lowest-order PSE and PCE expansions is limited in models
that lack a closed-form representation, such as the aforementioned kMC-based multiscale processes.
Although uncertainty propagation using PSE and PCE is more efficient than using the standard MC
sampling, these propagation methods still demand significant numerical analysis and computational power.
Consequently, these expansion-based approaches may become computationally-prohibitive to implement
into robust optimization studies, where a unique PSE or PCE model is required for each operating point
considered in the optimization process. This results in the need to simulate the multiscale model at each
operating condition tested by the optimization algorithm.

Statistical DDMs are a commonly-used approach that provide a practical alternative to the PSE and PCE
methods for performing computationally-efficient robust optimization of multiscale systems.129130.13% Thjs
modeling approach involves the identification of unique closed-form DDMs, which approximate the
behaviour of key statistical properties in the reactor output variability (i.e. the mean, variance, and
probabilistic bounds), using data collected from the system performance. However, the application of
DDM s to industrial problems is practically limited. DDMs are developed over a finite range of the desired
optimization parameters, and consequently, they cannot be used to accurately determine the system
behaviour outside of these ranges. As a result, new DDMs would need to be constructed in order to evaluate
the system performance outside of the defined optimization parameter range. In addition, DDMs can be
computationally intensive to develop, as a significant number of data points are required in order to achieve
sufficient accuracy. Despite these disadvantages, DDMs provide a practical and efficient means to perform
optimization schemes for computationally-intensive systems such as the multiscale single-pore catalytic

reactor system subject to parametric uncertainty that is considered in this work.

2.4 Summary

This chapter provided an overview of the literature and the methods employed in multiscale modeling

with specific application to catalytic reactor systems. Relevant background knowledge was provided for
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catalysis, catalytic reactors, and the multiscale methodology. Furthermore, the challenges encountered with
the multiscale modeling of catalytic reactor systems and their potential solutions were discussed. In
particular, the effects of model-plant mismatch and parametric uncertainty on the multiscale model
performance were discussed. Despite the wide amount of solutions available for uncertainty propagation,
there has been little research devoted to addressing model-plant mismatch in multiscale catalytic reactor
systems. In addition, the effects of spatially-varying uncertainty due to catalyst deactivation on the
multiscale reactor performance has not been studied. This provides motivation to perform uncertainty
analysis on a catalytic reactor system and to investigate techniques to efficiently propagate uncertainty
through the multiscale catalytic reactor for applications in optimization and process improvement studies.

23



Chapter 3
Catalytic Flow Reactor Multiscale Model Development

Catalytic reactor systems consist of a number of different events that occur on differing scales. The
catalytic reactions that take place are molecular-level phenomena that describe the interactions between the
various catalyst, reactant, and product species. In a heterogeneous catalyst system, these interactions often
detail the adsorption, desorption, and reaction of the chemical species on the catalyst surface. Catalytic
reactors also consist of a macroscopic phase, which details the flow of the reactant and the product species
within the reactor. In order to accurately depict the diverse phenomena that occur in a catalytic system,
multiscale modeling approaches are needed to simulate each of the events on their corresponding spatial

and temporal lengths.

The objective of this chapter is to present the multiscale modeling approach employed within this work
to model a multiscale single-pore catalytic flow reactor system. The multiscale single-pore catalytic reactor
model was originally proposed by Majumder and Broadbelt,'* and it has been extended for the applications
considered in this work. Section 3.1 describes the catalytic reactor considered in this work and the reaction
mechanisms that take place. Subsequently, Section 3.2 discusses the various modeling approaches
(continuum modeling, KMC, and MF) used to simulate the different reactor scales. Further discussions are
provided in Section 3.3 concerning the multiscale model assembly and the techniques implemented to
ensure a solution approach. This section also compares the behaviour of the kMC-based and MF-based
multiscale models to determine which kinetic modeling approach would be the most appropriate to consider

for this work.

3.1 Reactor Design and Reaction Mechanism

The catalytic reactor system implemented in this work consists of a single pore in a porous catalytic
membrane of length L and with pores of radius p, as presented in Figure 3-1a. The reactor consists of a thin
film of catalytic material adhered to the interior of an inert porous support. The catalyst is assumed to be
uniformly distributed along the inner support surface. Reactant molecules enter the reactor pore as a fluid
and traverse axially along the pore length through convection. The fluid molecules are also subject to
diffusion, which promotes radial molecular transport within the pore. Molecules at the solid-fluid interface

can interact with the catalyst through adsorption and react to form products.

The reaction mechanism considered in this work consists of a spatially-dependent bimolecular reaction
mechanism with two reactant species, A and B. This reaction mechanism has been previously implemented

in the literature for multiscale catalytic reactor systems, 4% and it is the basis for many different bimolecular
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. Species A . Species B “ Species C

Figure 3-1. Schematic of a) the porous catalytic membrane; b) the kinetic reaction events, depicting

molecules of species A (blue spheres), molecules of species B (orange spheres), molecules of species

C (joint blue and orange spheres), and catalyst surface sites (brown spheres)

catalytic reaction systems such as the oxidation of carbon monoxide or the hydrogenation of olefins. The
reactants chemisorb to the catalyst surface, where they can react to form a single gas-phase product, C, or
desorb back into the gas phase, as depicted in Figure 3-1b. These reaction events can be represented

according to the following equations:

A+ =47 (3-1)
B+x+x=B" (3-2)
A"+ B* = C + *x (3-3)

In the equations above, = and = represent a single site and double empty sites on the catalyst surface
respectively, while A* and B* represent the adsorbed forms of species A and B. Note that the adsorbed
molecules are also capable of undergoing surface diffusion. However, for the reaction mechanism
considered in this work, the rates of surface diffusion are assumed to be significantly slower than the rates

of desorption and reaction, such that surface diffusion can be neglected.
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3.2 Multiscale Modeling of the Catalytic Reactor System

The catalytic reactor behaviour is simulated using a multiscale modeling approach that discretizes the
single-pore reactor into two subdomains. These domains consist of the macroscopic fluid phase domain,
which is simulated by continuum modeling; and the microscopic catalyst surface domain, which is
simulated using kinetic modeling approaches such as MF and KMC. The behaviour of each domain cannot
be simulated without information from the other, and consequently information is passed between the two
models through an overlapping ‘handshake’ region.® The following sections summarize the models used
to approximate both the fluid phase and the catalyst surface domains of the multiscale model, while
subsequent sections discuss the handshake region and the model coupling. The modeling approaches
described below have been implemented to capture the transient behaviour of the catalytic reactor system.
However, catalytic flow reactors are typically operated under continuous operating conditions,* and
therefore the catalytic reactor models are typically developed to operate at steady-state. In this work, the
single-pore catalytic reactor behaviour is evaluated under both transient and steady state conditions, and
therefore the following sections will provide additional commentary on how the transient models can be

adapted for steady-state operation.

3.2.1 Macroscopic Fluid Phase Domain

The macroscopic fluid phase model depicts the flow of the reactant and product species through the
reactor pore using the continuum approach. Note that the present system is assumed to have a reasonably
small Knudsen number, i.e. the fluid species are assumed to have sufficiently small mean free paths such
that the continuum assumption is reasonable. The catalytic reaction is assumed to be isothermal, and the
fluid flow within the reactor pore is assumed to be plug flow with a constant axial velocity across the reactor
length. Additionally, the fluid phase is assumed to be dilute, such that the system temperature and pressure
would not be significantly affected by the kinetic catalyst surface events. Thus, the momentum and heat
transport equations can be assumed negligible and only the mass transport equation is used to determine
the macroscopic reactor behaviour. The reactor pore is treated as perfect cylinders and therefore the angular
terms of the continuum models can be neglected. In addition, the fluid velocity is assumed to be sufficiently
large such that axial diffusion can be neglected. As a result, the fluid phase behaviour can be described by

the following 2D Cartesian mass transport PDE:

SCs(xyt) _ o 8%Cs(oyt)  8Cs(xyt)
st TS &y2 5x

(3-4)
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where C,(x, y, t) denotes the molar concentration of chemical species s at an axial distance x from the
reactor inlet and a radial distance y from the pore center at time t; D represents the diffusion coefficient

for species s; and v represents the fluid velocity. Eq. (3-4) has the following boundary conditions:

€(0,7,6) = Coin (3:5)
e (3-6)
Dy 22D = 0,005, 0,6) + Wsdes (3,9, 8) + W5 proa (X P, ) = Wsons (X9, ) (37)
Cs(x,p,t) = Csin (3-8)

where C;;, denotes the inlet concentration of species s, whereas Cg,,.(t) denotes the outlet
concentration of species s at the center of the pore outlet (x =L,y = 0) at time t. Furthermore,
ws qas(X, p, t) and wg 405(x, p, t) denote the rates of adsorption and desorption respectively for species s
along the catalyst surface (y = p) at an axial length x and time ¢, while ws (ons(x, p, t) denotes the rate of
consumption of a fluid phase species s through reaction with adsorbed molecules at a location (x, p) and
time ¢, and w; roq (X, p, t) denotes the rate of production species s directly into the gas phase at (x, p) and
time t following the reaction. Note that the parameters ws qqs, Ws des: Wsproa, ANd Ws cons IN EQ. (3-7)
need to be estimated from the microscopic catalyst surface model. Additionally, the transient fluid phase
continuum model depicted above can be readily adapted to operate at steady state. This can be accomplished

by setting the time derivative in Eq. (3-4) to zero and ignoring the initial condition presented in Eq. (3-8).

3.2.2 Microscopic Catalyst Surface Domain

The behaviour of the catalyst surface domain depends exclusively upon the rates of the microkinetic
events taking place. The events considered in this work include the adsorption of the chemical species to
the catalyst surface, the desorption of the species from the catalyst surface, and the reaction between
adsorbed reactants to form products. The catalyst surface behaviour can be simulated using kinetic

modeling approaches such as the MF approximation and lattice-based kMC.

Although it is preferable to use the MF approximation due to its lower computational costs, it can only
be implemented in catalytic reaction applications where lateral interactions and spatial heterogeneities have
a negligible effect on the results. The reaction mechanism considered in this work requires lateral

interactions between adsorbed molecules of species A and B, as denoted in Eq. (3-3). Therefore, it is
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necessary to assess the accuracy of the MF approximation against the catalyst surface behaviour determined
through kMC in order to establish which kinetic modeling approach should be used in this work. The
following sections detail each of the kinetic modeling methods and their incorporation into the multiscale
model. The MF approximation and the lattice-based kMC approach will be compared in a later section
(Section 3.3.2) to determine which modeling approach will be implemented throughout the remainder of

this work.

3.2.2.1 Mean-Field Approximation

The objective of the MF approximation is to determine the fractional coverage of each adsorbed species
on the catalyst surface as a function of time. Each of the adsorbed molecules is assumed to be
homogeneously distributed,** and as a result the surface coverages for the reaction mechanism considered

in this work (Egs. (3-1)-(3-3)) can be determined using the following ODEs:

860 4(x,p,t) _Eaa _Er

st = ka,ACA(x' P t)ge(x' P t) - kd,Ae RT GA(x' P t) - kre RTGA(x' P t)eB(x! P, t) (3_9)
505(x.p,t) _Eap _Er

— ka,BCB(x' P t)He(x, P t) - kd,Be RT eB(x' P, t) - kre RT@A(_X, P, t)HB (x' P t) (3-10)

St

where 04(x, p, t), 05(x, p, t), and 6,(x, p, t) denote the local fractional coverages of species A, species
B, and empty catalyst sites respectively at an axial length x along the catalyst surface (y = p) and at time
t; ka4 and k, p denote the adsorption rate constant for species A and B respectively; k,; 4 and k, g denote
the desorption rate constant for species A and B respectively; E; 4 and E; g denote the activation energy of
desorption for species A and B respectively; R is the ideal gas constant; T represents the temperature of the
reactor; k, denotes the reaction rate constant; and E,. denotes the activation energy of reaction. These ODEs

are subject to the following initial condition:

0s(x,p,0) =0 (3-11)

Note that the MF models are built under an infinite diffusion assumption, (i.e. adsorbates are assumed
to diffuse freely across the catalyst surface) and as a result any two adsorbed molecules of species A and B
can react with each other, regardless of their location on the catalyst surface. Similar to the macroscopic
fluid phase continuum model, the MF ODESs can be readily modified to determine the steady state catalyst

surface coverages. This can be achieved by setting the time derivatives to zero and ignoring the initial
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conditions, which simplifies the MF equations into a series of algebraic expressions that can be solved using

root-finding methods. Further details concerning the MF approximation can be found in the literature.14*

3.2.2.2 Lattice-based Kinetic Monte Carlo

The lattice-based KMC model is a MC-based stochastic approach that determines the catalyst surface
behaviour by executing catalytic events based on their kinetic rates. These catalytic surface events are
simulated using a KMC algorithm implemented with a finite square lattice and assuming periodic boundary
conditions. In the present model, it is assumed that each catalyst surface site can be occupied by a single
adsorbate molecule, and additionally all surface reactions are limited to interactions between first nearest
neighbours for simplicity.

The rate of adsorption is derived from the kinetic theory of ideal gases,'° and depends upon the
concentration of chemical species within the fluid phase. Consequently, it cannot be determined without
prior assessment of the macroscopic fluid flow behaviour. The rate of adsorption can be expressed

according to the following formulation:

Wa,s(x, p, t) = Cs(x, p, )N, (x, p, )ka,s (3-12)

Here, W, s(x, p, t) represents the total rate of adsorption of the s™ species on the catalyst surface (y =
p) located at an axial distance x from the pore entrance and at time t, while N, (x, p, t) denotes the local

number of empty sites on a kMC lattice at (x, p, t).

The rate of desorption can be determined using an Arrhenius type expression as follows:

Egs

Wd,s (x' P, t) = Ns(x' p, t)kd,se_R_7: (3'13)

In this equation, Wy s(x, p, t) represents the total rate of desorption of the s™ species on the catalyst
surface (y = p) located at an axial distance x from the pore entrance and at time ¢, and N is the total
number of sites occupied by species s on the lattice at (x, p, t).

The rate of reaction is dependent on the number of relevant reactant species present on the catalyst
surface and their proximity to each other. In order for the reaction to occur, the necessary reactants must be
adsorbed adjacent to each other on the catalyst surface due to the first nearest neighbour interaction

approximation. These groupings of close-proximity adsorbates capable of reacting are defined as a surface
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reactant ensemble.®® The surface reactant ensemble for the reaction mechanism considered in this work
(Egs. (3-1)-(3-3)) consists of two adjoined molecules of species A and B adsorbed on the catalyst surface.

The rate of reaction is as follows:
Er
W, (x,p, £) = HCPD ke T (3-14)

where W,.(x, p, t) denotes the total rate of reaction at (x, p) and time t, while N,.(x, p, t) denotes the
total number of surface reactant ensembles on the surface lattice at (x, p, t). Since the surface reactant
ensembles are allowed to form in any four directions on the lattice surface, as depicted in Figure 3-2, N,. in
Equation (3-14) accounts for all these ensembles.

The lattice-based KMC algorithm used in this work can be outlined as follows. The kinetic rates are first
determined for every possible kinetic event using Egs. (3-12)-(3-14). Note that the kinetic parameters in
these equations are derived from experimental data or from DFT simulations. Once the Kinetic rates have
been determined, a random number {; is generated from the standard uniform distribution (i.e. 0 < {; <
1), and is used to select a kinetic event to execute on the kMC lattice. The kinetic event is chosen by
mapping each of the possible events along the interval between 0 and 1 based on their Kinetic rates, and
selecting an event within this range using ¢;. For the reaction mechanism considered in this work, this

selection process can be described using the following set of rules:

Wa,a
Z?S (Wa,s +Wd,s) +Wr

If0<( <

, then adsorption of species A is selected.

Waa
S (W s+ W 5)+ Wy

WaatWap
n
e (Was+Wqs)+ Wy

o |If

<{¢ <

, then adsorption of species B is selected.

n,
ZSS(WM)
n,
Yo (Was+Was)+Ws

T Wa)+Waa
n,
S (Was+Wqs)+ Wy

o |If , then desorption of species A is selected.

<
<C1—Z

. If Z?s(Wa,s)"'Wd,A < ( < Z?S(Wa,s)+wd,A+Wd,B
Z?S(Wa,s"'wd,s)'*'wr 1= Z?S(Wa,s‘l'wd,s)‘l'wr

, then desorption of species B is selected.

|f Z?S(Wa,s"'wd,s)
TS (Wos+W g s)+ W

< {4 < 1, then reaction is selected.
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Figure 3-2. Four A-B surface reactant ensembles on a KMC lattice.

Here, ng denotes the total number of chemical species in the system. Once an event has been selected,
a second uniform random number, {,, is generated from the standard uniform distribution to select the
location on the lattice surface where the event will occur. Note that not all lattice sites are capable of
executing each kinetic event, i.e. adsorption can only occur on an empty catalyst site, desorption of species
s can only occur on a site where a molecule of s is adsorbed, and reaction can only occur where surface
reactant ensembles exist. It is therefore necessary to keep track of the location of each empty site, adsorbed
molecule, and surface reactant ensemble on the catalyst surface in order to appropriately select a site to
execute a particular kinetic event. The site is selected by multiplying ¢, by the total number of available
event sites (N,, Ny, or N,.) and rounding up to determine the site number. Once an appropriate site has been
randomly selected, the kinetic event is executed. If the selected event is reaction, then the reaction counter
M¢ proa(x, p, t) is incremented by one. This reaction counter is defined as the number of molecules of
species C produced directly into the fluid phase from a KMC lattice at (x, p) and at time t, and it is needed
to calculate the surface boundary condition (Eqg. (3-7)) in the macroscopic fluid phase model, as will be

discussed in the next section. Following the event execution, the time of reaction is incremented as follows:

— ln({3) _
ntnp) = Yo S [Wa,s (1,0, +W g s (x,0,6) | +Wr-(x,p,8) (3-15)

31



where t,(x, p) denotes the amount of time that has passed between the current executed Kinetic event
and the previously-executed kinetic event, and {5 is a third random number generated from the standard
uniform distribution. The cycle repeats until the final time Aty has been reached in a transient system. A
complete flowchart of the implemented KMC algorithm is displayed in Figure 3-3a. Alternatively, in a time-
independent system, the KMC cycle ends once lattice has reached steady state. It is assumed that a lattice
has attained steady state when the change in the number of adsorbed molecules over the past 1000 kMC
events falls below the KMC tolerance criterion, &, c. A complete flowchart of the steady-state KMC

algorithm is illustrated in Figure 3-3b.

3.2.3 The Handshake Region

The macroscopic fluid phase model and the microscopic catalyst surface model both rely on terms that
are dependent upon the other domain, and thus cannot be solved independently. Communication between
the two domains occurs at a ‘handshake’ region, which exists where there is overlap between the domains.
Information regarding the concentrations of the chemical species at the catalyst surface is passed from the
fluid phase model to the catalyst surface model, where it is used to determine the kinetic rates of the surface
events. Similarly, the concentration of adsorbates and the number of reactions that occurred on the catalyst
surface over a set period of time are passed back to the fluid phase domain model in order to compute the
rates of the surface boundary condition presented in Eq. (3-7). Note that the rates depicted in Eq. (3-7)
depend on the kinetic model used to simulate the microscopic catalyst surface behaviour. If the MF
approximation is implemented into the multiscale model, then the rates in Eq. (3-7) for the bimolecular

reaction mechanism considered in this work (Egs. (3-1)-(3-3)) can be determined as follows:

Ws,ads (x' p t) = Aka,scs (x' P, t) ge (x' P, t) (3'16)
_Eas
Wg des (x: p, t) = Akd,se RT Qg (x: p, t) (3'17)
Er
Weproa (X, p, t) = Akre RTO4(x, p, £)0p (X, p, t) (3-18)
Ws cons(X, P, t) =0 (3-19)

where A is a unit conversion constant whose value depends on the concentration of active sites on the

catalyst surface and can be calculated as follows:
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A = i site (3-20)

Nay

3
where k = 0.001mT is a unit conversion factor, Cg;;. denotes the active site concentration on the
catalyst surface, and N, is Avogadro’s number.

On the other hand, if kKMC is implemented into the multiscale model, then for the reaction mechanism

considered in this work, the rates in Eq. (3-7) can be determined as follows:

Ne(x:p;t)

Ws,qas (%, p, 1) = kg Cs(x, p, t) Newwar (3-21)
_% NS( ) :t)
Ws ges(X, p,t) = Akgse RT ﬁ (3-22)

Mcproa(x.p.t) (3_23)

ng(x,p,t)
NtotalZL:1 P TL(x:p:t)

Wc prod (x, P, t) =1

Wg cons (x: P, t) =0 (3'24)

where Ng;.. denotes the total number of catalyst sites on the KMC lattice, and M o4 (X, p, t) denotes
the number of molecules of C produced directly into the fluid phase via reaction over n,(x, p, t) kinetic
events on the catalyst surface (y = p) at an axial distance x and at time t.

The single-pore catalytic reactor considered in this work is spatially-heterogeneous which produces
concentration gradients along the axial length of the fluid phase domain. Thus, the catalyst surface
behaviour varies as a function of the reactor length and unique MF equation evaluations or KMC lattice
simulations are required in order to simulate the catalyst behaviour at every point along the reactor surface.®
Alternatively, spatial coarse-graining techniques such as the gap-tooth method can be incorporated into the
handshake region to approximate the axial variation of the catalytic surface events using significantly fewer
MF equations or KMC lattices.®** The gap-tooth approach incorporated in this work subdivides the axial
length of the catalyst surface into n;... ‘teeth’, where the microkinetic activity is directly computed using
independent kMC lattices. The teeth are separated by ‘gaps’, where the microkinetic activity is
approximated through interpolation. The teeth are equidistantly spaced, such that each tooth is located at a
fixed position along the catalyst surface (x;p0:n, p,t) for all time t. The first tooth is considered at the
reactor entrance (0, p, t), and the last tooth is considered at the reactor’s outlet (L, p, t). The process begins
by ‘lifting’ concentrations out of the fluid phase at each tooth location on the catalyst surface to calculate
the adsorption rates. The catalyst surface at each tooth is allowed to evolve using independent kMC or MF

simulations, i.e. each tooth has its own lattice-based kMC model or series of MF equations representing the
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catalyst surface at that particular point in the reactor’s spatial domain. The microkinetic activity is extracted
at each tooth and interpolated to approximate the activity across each gap. The process concludes through
‘restriction’, where the complete set of microkinetic data is returned to the fluid phase model through the
boundary conditions presented in Eg. (3-7). Note that decreasing the number of teeth used in the gap-tooth
model will lower the computational cost at the price of decreased model accuracy. Consequently, it is
necessary to determine the minimum number of required teeth required to achieve suitable accuracy a
priori. For the catalytic reactor system implemented in this work, the number of teeth used varied between
seven and eight teeth, depending on the application.

3.3 Multiscale Model Assembly and Solution Approach

The multiscale model is assembled to assess the transient behaviour of the single-pore catalytic reactor
system. At the beginning of the simulation, the fluid phase continuum models are solved using an implicit
Euler method FD approach that subdivides the reactor interior into 101 axial points and 43 radial points.
The continuum models are solved using a temporal step size of Aty = 0.01s, until the initial multiscale
trade-off time Atysr = 0.25 has been attained. Increasing the number of discretization points does not
enhance the model accuracy and results in additional unnecessary computational cost. Subsequently, the
fluid concentrations are extracted near the catalyst surface and used to determine the microkinetic rates for
the MF equations and the KMC lattices at each tooth in the gap-tooth model. For the MF approximation,
the MF ODEs (Egs. (3-9) and (3-10)) are solved at each point using an explicit Runge-Kutta-Fehlberg
(Runge-Kutta (4,5)) method until the total MF integration time reaches Aty sr. For the KMC approach,
independent KMC simulations are applied at each tooth until the KMC integration time reaches t,;sr. The
noise in the KMC results is reduced by using an average of the outputs over the last 1,000 kMC events.
Afterward, the relevant catalyst surface information is extracted for each tooth and interpolated using cubic
interpolation to determine the values across the gaps. These values are plugged into the surface boundary
condition (Eq. (3-7)) and used to re-evaluate the fluid phase behaviour over another time interval t,;sr. This
multiscale cycle is repeated until the overall reactor time has reached the final simulation time tf;y,4;. Figure
3-4a provides an illustration of the overall multiscale model algorithm. Note that the multiscale trade-off
time (Atygr) denotes the time domain over which each modeling method is simulated before
communicating with the other modeling method. Using larger multiscale trade-off times can decrease the
computational cost of the multiscale model, but larger values of At,,¢; can additionally produce instabilities
in the model coupling. Consequently, it is necessary to determine a priori the maximum value of Aty ¢

that will not produce any instabilities.
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The algorithm for the steady-state multiscale catalytic reactor model is similar to that of the transient
model described previously. At the start of the reactor simulation, the steady-state fluid phase continuum
models are solved using an elliptic FD approach. The spatial domain of the reactor is discretized into 43
radial points and 101 axial points, akin to the transient model. The fluid concentrations are subsequently
extracted at each of the tooth locations on the catalyst surface and used as inputs for the MF and kMC
approaches. If the MF model is used, the steady-state MF equations are solved at each tooth using root-
finding methods. Alternatively, if the kMC model is used, kKMC simulations are used to evolve the catalyst
surface behaviour at each tooth until the surface lattices have reached steady state. It is assumed that a
lattice has attained steady state when the change in the number of adsorbed molecules for each species falls
below the kMC tolerance criterion, &, Over the last 1,000 kMC events. The noise in the KMC results is
additionally reduced by taking an average of the outputs over the last 1,000 KMC events. The outputs from
both kinetic modeling methods at each tooth are subsequently interpolated to determine the values along
the gaps. These values are inserted into the surface boundary condition (Eqg. (3-7)), and the fluid phase
behaviour is re-assessed based on the updated catalyst surface information. This cycle is repeated until the
maximum variation in the species concentrations at each point (x, y) within the reactor model is less than
the multiscale tolerance criterion, &, at which point the system is assumed to be at steady state. A

graphical representation of the steady-state multiscale algorithm can be found in Figure 3-4b.

3.3.1 Lattice Size Determination

Due to the stochastic nature of the KMC simulations, the responses obtained from the multiscale model
can be noisy depending on the lattice size. Larger lattices produce more accurate results since stochastic
fluctuations have less impact due to the increased number of sites. However, larger lattices require more
kKMC event steps to reach the same integration times as smaller lattices, which results in additional
computational costs. Therefore, a lattice size that provides enough accuracy while still maintaining as low
a computational cost as possible must be specified through offline analysis. Figure 3-5 shows the evolution
of the surface coverage for species A on the first tooth approximated using 30x30, 100x100, and 200x200
kMC lattice sizes. The 30x30 lattice is able to capture the general behaviour of the surface evolution
process; however, the noise in the response impedes accurate determination of the surface coverage values.
Alternatively, larger lattices provide a good approximation of the surface evolution during the kMC
simulation with minimal noise. No significant improvement is observed between the 100x100 and 200x200
lattice sizes. However, both larger lattices require significantly more computational time compared to the
30x30 lattice as can be seen in the computational times recorded in the caption of Figure 3-5. To improve

the accuracy of the smaller lattice-size kKMC simulations without gaining significant additional
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computational time, the results from eight independent 30x30 lattice KMC simulations are averaged and
compared to the previous simulation results. This averaging technique has been used in previous studies to
reduce the noise produced by smaller KMC lattices.**#* As shown in Figure 3-5, the noise in the coverage
of species A using the averaged 30x30 lattices is comparable to the noise of the result obtained from a
100x100 lattice. Furthermore, as presented in the caption of Figure 3-5, the computational time for the
averaged 30x30 lattice approach is significantly lower as compared to the higher lattice sizes. The present
work, therefore, employs the average of eight independent multiscale simulations utilizing 30x30 kMC
lattice sizes to represent the evolution of the surface catalyst. In order to further reduce the computational
costs, parallel computation techniques are also implemented to calculate each of the eight multiscale

simulations in parallel.

| i ’H |
008 . w% |
N R i,ﬁwswmwwwg

Time (s)

Figure 3-5. Comparison of the surface coverage evolution of species A at the first reactor tooth using
30x30 (1s), 100x100 (21s), 200x200 (422s), and an average of eight 30x30 (3s) lattices in the kMC

simulations.
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Note that the computational costs of the kMC algorithm can be reduced through decoupling techniques,
where the predominant kinetic events are decoupled from the kMC model and handled deterministically.™
For the reaction mechanism considered in this work, the predominant kinetic events under nominal
conditions consist of the adsorption of species A and B, which each account for 32% of the total kinetic
events (i.e. they were each executed 32% of the time by the kMC model). However, these adsorption terms
cannot be decoupled from the KMC model, as these events determine the configuration of the adsorbates
on the catalyst surface, which is necessary to determine the location of the surface reactant ensembles

required to accurately determine the kinetic rates of reaction.

3.3.2 Comparison of Mean-Field and Kinetic Monte Carlo

In order to investigate the performance of the MF approximation with respect to the lattice-based kMC
approach, multiscale models were developed for both methods. These multiscale models were subsequently
used to simulate the behaviour of a single-pore catalytic flow reactor at steady state under the nominal
conditions presented in Table 3-1. The values for these parameters were derived from a previous study by
Dooling and Broadbelt.®® The computational costs (3.4GHz Intel i7-3770 processor) and outlet
concentration of each chemical species of both modeling approaches are listed in Table 3-2. In addition,
Figure 3-6 illustrates the axial concentration profiles derived from both multiscale models at the catalyst
surface (y = p). In the aforementioned figure, the circles illustrate the local concentrations at each of the
teeth considered in the gap-tooth model. The results in Table 3-2 illustrate that the computational costs of
the KMC-based multiscale model (92s) are approximately 30 times higher than the computational costs of
the MF-based multiscale model (3s), demonstrating the computational advantages of using the MF
approximation over KMC simulations. However, the results presented in Table 3-2 and Figure 3-6 reveal a
large discrepancy between the MF-based multiscale results and the kMC-based multiscale results.
Specifically, the MF-based multiscale model significantly over-predicts the number of reactions taking
place on the catalyst surface, resulting in a final product concentration that is 1.7 times the product
concentration obtained using the kMC-based multiscale model. These results are to be expected, as the MF
approximation is unable to account for lateral interactions and other catalyst surface spatial heterogeneities.
On the other hand, the KMC approach can readily incorporate these spatial catalyst surface phenomena,
resulting in significantly improved accuracy in the model results. These results demonstrate that lateral
interactions play a major role in the reaction mechanism considered in this work, and as a result the MF-
based multiscale model is unable to accurately predict the catalytic reactor behaviour. This is in accordance
with previous analyses that have been performed in the literature for bimolecular reaction mechanisms.*

As a result, the kMC-based multiscale model was determined to be the superior model for this application
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Table 3-1. Nominal parameter values for the multiscale catalytic reactor model.

Parameter Value Units
Cain 241 mmol/L
Cgin 241 mmol/L
Cein 0 mmol/L
Dy 5300 um?/s
Dg 5300 um?/s
D¢ 5300 um?/s
Egqa 95 kJ/mol
Eap 100 kJ/mol
E, 57 kJ/mol
kaa 1 molecule-L/(mol-site-s)
kaop 1 molecule-L/(mol-site-s)
kg a 10 molecule/(site-ns)
kag 10 molecule/(site-ns)
k, 16 molecule/(site- us)
L 1 pm
ng 3 chemical species
450 K
A 2.08 sites-um-mol/(L-molecule)
Csite 1.25 x 10% sites/m?
ExMc 5 %
Ems 5 %
v 10 mm/s
p 10 nm

and therefore it was incorporated into the modeling approaches implemented throughout the remainder of

this work.
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Table 3-2. Concentration of each chemical species at the reactor outlet as determined by the MF-

based and KMC-based multiscale models
Total CPU C 4 out (MMol/L) Cg out (MmMol/L) C¢outr (Mmol/L)
Time (s)
MF-Based 3 238.2251 238.2251 2.7749

Multiscale
Model

kMC-Based 92 239.3588 239.3617 1.6422

Multiscale
Model

2415 2415 3

241 1 241 1 25
2405 1 2405
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240
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Figure 3-6. Axial concentration profiles on the catalyst surface (y = p) for the MF-based multiscale
model (green) and the kMC-based multiscale model (blue) for a) Species A, b) Species B, ¢) Species
C. The circles denote the locations of the teeth used in the gap-tooth approximation for both

multiscale models.

3.4 Summary

This chapter provided an extensive description of the single-pore catalytic flow reactor system
considered in this work and the multiscale modeling approach used to capture the reactor’s behaviour. The
multiscale model combined continuum modeling approaches to capture the macroscopic behaviour of the
reactor fluid phase with MF or lattice-based kMC to describe the microscopic catalyst surface behaviour.

Furthermore, the gap-tooth approach was implemented to manage the effects of the fluid phase
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concentration gradients on the catalyst surface behaviour. The models discussed were developed to capture
the transient behaviour of the catalytic reactor system. Discussion was also provided regarding the
modification of these models to capture the steady state behaviour of the reactor. Furthermore, the MF and
kMC approaches were compared to determine which model would be most suitable for capturing the
catalyst surface behaviour in the multiscale reactor system. When compared to the KMC approach, the MF
approximation required substantially lower computational costs. However, its inability to account for lateral
surface interactions limit its ability to provide sufficient accuracy. As a result, the kMC-continuum
multiscale model was implemented throughout the remainder of this work.
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Chapter 4
Uncertainty Propagation using Polynomial Chaos
Expansions and Power Series Expansions

It is well-established that uncertainty in key parameters of a catalytic reactor system can result in
significant model-plant mismatch.?22% This is especially detrimental for optimization and process
improvement studies, which depend upon model accuracy to predict and improve reactor performance.
Uncertainty analysis seeks to quantify the difference Ays(x, y, t) between the actual outputs {(x, y, t) and
the predicted outputs P (x, y, t) at a specific spatial point (x,y) within the reactor interior at any time t.
This is accomplished by implementing probabilistic or bound restraints on each model output y,, (x, y, t),
where ¥, (x,y,t) denotes the nth model output in Y(x,y,t), based on the uncertainty of the input
parameters @ through the identification of output PDFS, fpp 4, (x,y,¢)- These output PDFs provide the data

required to determine statistical information such as the mean p(v,, (x, y, t)) and variance o (¥, (x, y, t)).
Additionally, fpp y(x,y,:) can be used to determine probabilistic bounds PP (x,y,t) and Y2 (x,v,t) to

evaluate ¥, (x, y, t) at a particular confidence level, a, i.e.
lprli(xJ Y, t) = F_l(nhbn(xJ Y, t)) (4'1)

where b € {up, lw}, and F~*(TT|yp,, (x, v, £) ) represents the inverse cumulative distribution function for
a probability IT € {1 - %%} The empirical cumulative distribution function for each output is obtained

from the corresponding cumulative frequency histogram. To calculate the histogram of the output, the range
of the output data is divided into bins of equal widths, and the number of data points that fall into each bin
is counted. The cumulative probability at point p is then approximated by determining the cumulative
summation of the sample points in each of the bins between (and including) the first bin and the bin that

encompasses p. Subsequently, this value is divided by the total number of sample points P.

Parametric uncertainty in the uncertain parameters & can be propagated through a system model using
direct sampling methods such as MC sampling, or through the use of low-order mathematical models such
as PSE and PCE. The PSE approach is derived from Taylor series, and it relies on the sensitivity of the
model outputs with respect to the uncertain variables in order to construct low-order approximations.?12°
Alternatively, PCE targets the relationship between the desired model outputs y and the uncertain
parameters @ using orthogonal stochastic polynomial expansions.12%:122123.141 The objective of this chapter

is to discuss and compare PSE and PCE for uncertainty propagation in a multiscale catalytic flow reactor
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system. Sections 4.1 and 4.2 will discuss the PSE and PCE algorithms respectively that were implemented
in this work. Although these modelling approaches have been previously implemented in the
literature,83120.125.126 they have been adapted to form a new algorithmic framework that practically quantifies
spatially-varying and transiently-varying uncertainty for catalytic multiscale systems. Note that the effects
of transient uncertainty are not explored in this work. The PSE and PCE methodologies are subsequently
validated and contrasted in Section 4.3 in order to assess the accuracy and the efficiency of each approach
when performing uncertainty analysis on the multiscale catalytic reactor system considered in this work.

4.1 Uncertainty Propagation using Power Series Expansions

The PSE approach is a Taylor series-based method that calculates the deviation from the predicted model

output due to uncertainty. The PSE formulation for the nth system output can be expressed as follows:

7 w (2-8)" (M xyt)
Y6, 0) = oy, 0) + By Ol (Pal))

(4-2)
where n denotes the order of the PSE term and ® denotes the nominal values of the uncertain parameters
®. This equation illustrates the dependence of PSE on the sensitivities of the model outputs with respect to
the uncertain parameters. The use of sensitivities is a common practice as it requires minimal sampling
from the multiscale model and therefore the computational cost for PSE remains reasonable regardless of
the model complexity. Needless to say, the computational cost for PSE depends on the number of uncertain
parameters and the number of terms considered in the PSE, which both require the calculation of additional
sensitivities in order to construct representative low-order models.**>142 First-order PSEs can be used to
provide analytical expressions for the variability in ¥, (x, y, t) at low computational cost, whereas higher
order PSEs require MC sampling to determine the PDFs for the system outputs. In addition, higher-order
series expansions result in further increased computational costs due to the computation of the higher-order
sensitivity terms. However, adding more terms to the PSE can improve the accuracy of the PSE-based
approximation®*120127 and the number of terms required for reasonable accuracy depends on the degree of
nonlinearity of the system model. The order of the PSE required to approximate the model must therefore

be determined offline through direct comparison to the primary model.

In heterogeneous multiscale systems, a single uncertainty analysis is not sufficient to explicitly describe
the effects of uncertainty throughout the spatial domain of the model. PSEs must subsequently be

constructed at multiple discrete spatial points within the reactor to establish a comprehensive understanding
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of the effects of uncertainty. Accordingly, a step-by-step spatially-varying PSE-based uncertainty
propagation algorithm for spatially heterogeneous multiscale systems has been used in this study and is as

follows:

1. Discretize the spatial and temporal domains into I axial points, J radial points, and K temporal points
corresponding to points (xud,iqud,jvtud,k) at which different uncertainty distributions will be
applied to each uncertain parameter considered in @. To evaluate the system outputs {r at various
points in space and time within the reactor, similarly discretize the reactor interior into U axial points,
V radial points, and W temporal points corresponding to the locations (xo,,,u, Yov,v» tov,w) where the
process output variation is to be assessed. Note that the discretization points (xov,uryov,v: to,,,w) at
which the output variation is to be assessed are independent from the discretization points
(xud,i, Yud,j» tud’k) at which unique uncertainty descriptions are applied to the uncertain parameters;
that is, it is not necessary to sample the output variation at every uncertainty distribution
discretization point and vice versa. Thus, different indexes are required to differentiate between
(Xov,u Yov,wr tovw) a0 (Xuais Yud,j tua k).

2. Define the vector of system outputs W(Xop,. Yov,vr tovw) =
(1 (Rovser Yousr towm s ¥ (Xowus Yous Eowse s - 9 (Xowr Yousr Eoww)] € R and the vector
of nominal system outputs Y(Xop 1w Yovv» tovw) =
(81 (Rovsar Yousr towm s B (Kowas Your Lo s - B (Xomr Yo tow)] € RPN at each
discrete point (xov'u,ym,,v,tw,w). Similarly, define the matrix-block for the uncertain parameters
D =[dy, ... P, Pyl ER*M where the elements of the 3D  matrix

&, € RIXJ*K denote the values for the mth uncertain parameter at each uncertainty description point

(xud,i’ Yud,j: tud,k), i.e.
$m = {Dm (Fuao Yua j tuak)|i = L2, j = 1,2,..J; k= 1,2, .. K} (4-3)

Similarly, let the matrix-block ® = [, ..., @, ..., @y ] € R>*M represent the nominal values of
the uncertain parameters, where the elements of the 3D matrix ¢,,, € R"*/*K denote the nominal
values for the mth uncertain parameter at each uncertainty description point (xud_l-, Yud,j» tud,k).

3. Define the PDF fPD,q,’)m(xu i Vudjtudk) for each uncertain parameter ¢, at each point

(%ud,i» Yua,j» tua ) according to:
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¢m (xud,il yud,j' tud,k)

€ fPD,¢m(xud,i,yud']-,tud'k) (:u ((;bm (xud,i: Yud,j» tud,k)) ’ a? ((pm (xud,i: Yud,j tud,k))) (4'4)

Note that different types of probability distributions can be implemented to describe the uncertainty
in the input parameters. These PDFs can be constructed from data gathered from laboratory or

computational experiments.
Determine the sensitivities of each system output ,, at every discretized point (xo,,_u,yw_v, to,,_w)

with respect to the uncertain parameters ®. The first and second-order sensitivities can be obtained

as follows:

](xov’u’ Yov,v» tov’w) = (awn(xov,giov,v:tov.w))¢=&) (4_5)
2

M(xov,u:YOv,vr tOU,W) = (a wn(xovéug’zov,v'tov.W))q) e (4_6)

Build a PSE model for each system output, lpn(xov,w Yovw» tovw ), USING the sensitivities calculated

from the previous step, i.e.

Yn (xov,w Yovw tov,w) = Pn (xov,uv Yo tov,w) +] (xov,w Yovw tov,w) (@)

+2(® = &) M (Xov, Y g1, Lovw) (@ — B) + - (4-7)

Note that higher order terms can be added to the PSE model provided that their corresponding
sensitivities have been computed in Step 4.

Propagate the parametric uncertainty through the PSE models using MC sampling to determine the
system output variability at each discretized point, 1/1n(x0,,,u, Yov.v»r tov,w) using the expansion shown
in Eq. (4-7). The MC sample points are generated from the PDF fpp ¢ for the matrix-block of

uncertain parameters, ®. This will resultin @ PDF, o, (., vonmton): AL rEPresents the effect of

uncertain parameters on the system output at the point (xm,,u, Yov v tm,,w). Alternatively, if the PSE

is first-order (n = 1), then the PDF for the variability in 1,, can be directly calculated as follows:

. _(bn=n)*
20%(Yn) (4-8)

h PDYn = V2ma2(Py) ¢
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where a2 (y,,) = Joi]".

7. Compute the desirable statistics on ¥, (Xop,u, You,v» tovw ), 1-€., the mean p (l/)n(xo,,’u, Vov,or to,,,w)),

the variance o2 (wn(xov,u,yw,v, to,,,w)), and the probabilistic bounds ¥ (Xoy 1 You,v toww) and

P (xo,,,u, Yov.vr tov,w). The probabilistic bounds can be determined at a specified confidence level,
a, according to Eq. (4-1). This step should be repeated for each output variable v,, at each output

discretization point (xoy 1, Yov,v tovw)-

The multiscale model used in this work is stochastic; therefore, stochastic sensitivity is required to
compute the gradients in the PSE approximations. As discussed in Chapter 3, the stochastic noise can be
reduced by taking the average over multiple model simulations with the same parameter values and using
the averaged responses to calculate the sensitivities. A larger number of sample points for each average
leads to more accurate results at the cost of additional computational time. This trade-off was addressed
within this work by taking the average over eight simulations of the multiscale model performed in parallel,

which was determined to provide reasonable accurate results at acceptable computational costs.

4.2 Uncertainty Propagation using Polynomial Chaos Expansions

The PCE uncertainty propagation methodology uses orthogonal basis functions to approximate the

relationship between the uncertain parameters @ and the system output y,,, as follows;120122:123.141
lpn(x' Y, t) = Z?]ozo an (X, Y t)ﬁn (E) (4'9)

where a,, denotes the nth order PCE coefficients, B, represents the nth order orthogonal polynomial
basis functions that are defined as a function of €, which denotes a set of independent random parameters
from standard distributions that vary as a function of the uncertain parameters ®. The orthogonal basis

functions B(E) comply with the following condition:!?3

[ B:(®)B;BPE)IE = 65,8, (4-10)
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where P (&) denotes the joint density of Z and &, ; is the Kronecker delta. Note that the PCE coefficients
a,) are dependent on the system’s spatial and temporal domains (x, y, and t). The spatially-varying PCE

method implemented in this work to propagate parametric uncertainty through the multiscale catalytic flow

reactor model can be expressed by the following step-by-step algorithm:

1. Perform Steps 1 to 3 from the PSE algorithm presented in the previous section.
2. Define E=[&, ..., &y, ..., ] € RPM as the uncorrelated standard random variables where the

elements of 3D matrix ,, € R*/*K denote the values for the mth parameter at each uncertainty

description point (xyq i, Yua,j» tuax ). i-€.

En = {Em (Fuao Vua j tuak)|i = L2, 1, j = 1,2,..); k= 1,2, .. K} (4-11)

As shown in Eg. (4-9), E is a requirement for the PCE implementation since the orthogonal
polynomial basis functions B require independent random variables generated from standard
distributions as inputs.1?212 The values of £ are a function of @ and can be determined by
transforming @ such that fpp z has standard properties.*” For example, if the uncertain parameters
@ are independent and normally distributed, which is a typical assumption made in uncertainty
quantification, then the PDFs of the standard random variables £ (fppz) will have a normal
distribution with mean u = 0 and variance 2 = 1.

3. Select a hypergeometric polynomial B(Z) to use as an orthogonal basis for the PCE model depending
on the distribution of fpp, z. The Askey scheme of stochastic polynomials provide an ideal choice of
polynomial bases since the weight functions of Askey polynomials are orthogonal to the density
functions for most standard probability distributions.*?? For example, the recommended polynomial
basis for multivariate Gaussian uncertainty distributions are the Hermite polynomials, a subset of the

Askey scheme, which are expressed as follows:!?

== &N

Hey(8) = (—1)1e™%/2 — ¢~='%/2 (4-12)

The first four Hermite polynomials are as follows:

Heo(E) =1; He (E) = E; He,(E) = E2 — 1; Hez(E) = E3 — 3E (4-13)
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The complete Hermite-based PCE formulation takes the following form:

lpn (xov,ur Yov,v tov,w) =0ay (xov,u' Yov,v» tov,w) +

§=1 Z§=1 legzl Z%:l [al,m (xov,w YOv,v' tov,w)fm (xud,ir yud,jv tud,k) +
2
az,m,m (xov,u: Ym/,vr tov,w) (Em (xud,i' Yud,jr tud,k) - 1) +

Zﬁ_ll azim (xov,uv Yov,v» tov,w)’fm (xud,i: Yud, j» tud,k)'fl (xud,i' Yud, j» tud,k)] + (4'14)

Determine the PCE coefficients a,, (xm,,u, Yov,v» to,,rw). This can be accomplished through intrusive
techniques that directly modify the source code such as Galerkin projection,? or non-invasive
approaches that require sampling the primary model such as the least-squares approximation and
non-intrusive spectral projection.'?2122 The number of sample points required for non-intrusive PCE
is dependent on the number of uncertain parameters @ and the number of discretized uncertainty
description points (xud'i, Yud,j» tud,k). Thus, more sample points are required to accurately determine
a,,(xm,_u, ym,,v,to,,,w) when larger numbers of uncertain parameters and uncertainty description
points are considered. Note that the intrusive approaches require direct modification of constitute
equations and therefore are only applicable for closed-form systems. Ergo, non-invasive techniques
are required to determine the PCE coefficients for process models that lack a closed-form, such as

the multiscale catalytic flow reactor considered in this work. Also note that a PCE model with a set
of coefficients a,,(xov’u,yov,v,tw,w) can only capture the output variability for a single output
variable ,, at a single point (xov,u,yov,v,tm,lw). Consequently, unique independent PCE models
must be determined for each output  at each output analysis point (Xoy,., Yov,v» tovw )-

Propagate the parametric uncertainty through the PCE models using MC sampling to determine the
variability in each output v, (xm/,u, Yov.v tm,,w). MC sampling is used to determine random values
in the uncorrelated standard parameters , which are substituted into the PCE model to determine
Wn(Xovuw Yov,v tovw):

Compute the mean u (l/)n (Xov,1 Yov,vr tov,w)), the variance o2 (zpn(xm,,u, Vov.r tov,w)), the
probabilistic bounds ¥n? (Xv, Yovws tovw) @A YR (X0 Yov,p tovw ), and other desirable
statistics from the PCE outputs i, (xm/,u, Yov.vr to,,,w). The probabilistic bounds can be determined
at a specified confidence level a as demonstrated in Eq. (4-1). This step should be repeated for each

output variable ,, at each output discretization point (Xoy,., Yov v tovw )-
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The computational efficiency of non-intrusive PCE is limited by the number of uncertain parameters
.., the number of discretized uncertainty description points (xud,iqud,jv tud,k), the PCE order i, and the
number of sample points used to determine the PCE coefficients. Lower-order PCE models require fewer
PCE coefficients a, compared to higher-order PCE models and therefore have significantly reduced
computational costs, however decreasing n can significantly impede the accuracy of the PCE model and
introduce significant error. Similarly, decreasing the number of sample points used in non-intrusive PCE
reduces the computational cost, at the cost of additional error in the PCE models. The optimal PCE order
and the optimal number of sample points can be determined by increasing n and the number of points

respectively until no further improvement in the model accuracy is achieved.

4.3 Comparison of Polynomial Chaos Expansions and Power Series

Expansions

In order to compare the performance of PSE and PCE, parametric uncertainty was propagated through
the primary multiscale catalytic flow reactor model and evaluated in the concentration of the product species
C at the reactor outlet, C¢ . (t). For this analysis, the reactor model was subjected to step changes in
temperature. The reactor temperature was initialized at T = 460K, and the reactor species concentrations
were allowed to evolve for five seconds at this temperature. Subsequently, the reactor was subjected to 20K
step changes every five seconds for a total reaction time of t¢;,,; = 35s, according to the temperature profile
presented in Figure 4-1a. Uncertainty was considered for a single kinetic parameter (the activation energy
of desorption for species 4, Ej; 4) and a single reactor design parameter (the pore radius, p). The uncertainty
in the activation energy, E, 4, was assumed to vary as a function of space due to catalyst deactivation. To
account for this behaviour, different uncertainty descriptions were applied to E, 4 at each tooth considered
in the gap-tooth model. For this analysis, the reactor was sub-divided into seven teeth (n;eern, = 7), and
therefore uncertainty analysis was performed with respect to eight independent parameters consisting of
the radius, p, and seven different uncertainty descriptions of the desorption activation energy of species A
at each tooth (I = 7). Note that the uncertainty in Ej; 4 cannot vary radially as this parameter only affects
phenomena that occur along the catalyst surface; thus, J = 1. The uncertainty in each parameter was

assumed to be normally-distributed for simplicity, with a mean and variance defined as follows:

[1(p), #(Eq.)] = [10 nm, 95 K] /moll]
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[UZ(P)' o? (Ed,A(O' P)) s s OF (Ed,A(xud,i: P))' wr0° (Ed,A (L'P))] =

2 2 2 2 2 2
M° 812259 14449 225625 9 14445 g1225 Y

mol2’ mol2’ mol2’ mol2’ mol2’ mol2’

[4 nm?,3.61

361-2]  (4-15)

The accuracies of PSE and PCE were determined by direct comparison of both methods to the output
probability distributions determined via direct MC sampling of the multiscale reactor model. The
comparison was performed using a second-order PSE expansion with sensitivities calculated using centered
finite differences. Conversely, the PCE formulation was determined using second-order Hermite
polynomials with 45 model coefficients computed using the least-squares method over 75 randomly
generated sample points. The number of model coefficients is consistent with the number of terms for a
second-order PCE applied to a system with eight uncertain parameters. Additionally, the number of sample
points for the PCE formulation was determined a priori as the lowest number of sample points necessary
to achieve sufficient accuracy, as increasing the number of sample points does not significantly improve
the predictions. The comparison was performed at each discretized point in time t at the center of the reactor
outlet (x = L,y = 0) for the product concentration C¢ o, (t). The resulting distributions were used to
determine upper and lower bounds, i.e. C¢5, . (t) and C{%,,. (t), at a confidence interval of @ = 1% for each
series expansion. These bounds were compared against those calculated from probability distributions
obtained from 5,000 MC realizations in the uncertain parameters. The number of MC sample points was

sufficient to accurately capture the system behaviour.

The results for both PSE and PCE are illustrated in Figures 4-1b, ¢, and d. In Figure 4-1b, the upper and
lower bounds obtained via PSE and PCE are compared to the transient concentration profiles obtained from
MC sampling as well as the nominal transient concentration profile. In addition, Figure 4-1c compares the
PDFs obtained from each sampling method at the end of the reaction process (tf;nq; = 35s), and Figure 4-
1d compares the temporal evolution of the statistical parameters (probabilistic bounds and expected values)
for each sampling method. Furthermore, Table 4-1 compares the computational cost and the statistical
parameters for each model expansion with respect to MC sampling after 8s, 23s, and 33s. These times were
selected because they correspond to the reactor behaviour at steady state for each of the implemented
temperatures (T = 480K, T = 440K, and T = 460K, respectively). Table 4-1 additionally compares the
absolute errors and percentage errors between the statistical parameters calculated via PSE/PCE and the
statistical parameters of the MC sampling results. For the sake of comparison, the percentage errors were

calculated by normalizing the absolute errors by the difference in the probabilistic bounds, as follows:
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Figure 4-1. Comparison of PSE and PCE on the multiscale catalytic reactor model: (a) Dynamic

temperature profile; (b) Outlet concentration response; (¢) PDF: Outlet concentration; (d) Expected

value and bounds evaluated at a 2% confidence level.

XExpansion (L'O.t)_XMC(L:O't)

0, — -
0% Error = P O e® (4-16)

where Xgxpansion(L, 0,t) and Xy (L, 0,t) denote the value of statistical parameter X, which denotes
the expected value and probabilistic bounds as determined via PSE/PCE expansions and MC sampling
respectively. In addition, C;'0,; o (t) and Coly. e () denote the values for the upper and lower bounds

for species s determined from the MC sampling results at a time t and at the reactor output.

As shown in Figure 4-1b, parametric uncertainty results in significant variations in the reactor behaviour
that cannot be neglected without severe loss of performance. Specifically, the upper and lower probabilistic
bounds indicate variations as high as 80% and 44% respectively from the expected values of the reactor
outlet product concentrations. Table 4-1 illustrates that the errors in both PSE and PCE remain below 200
umol/L (10%), indicating that both expansions provide reasonable representations of the effects of
parametric uncertainty on the outlet product concentration of the reactor. According to Figure 4-1b, the
probabilistic bounds derived from both PSE and PCE are able to adequately bound the MC simulation
results within the desired confidence level, with an average of one violation per 100 MC sample points at
any one time. Additionally, Figure 4-1c demonstrates that both PCE and PSE are able to capture the shape
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Table 4-1. Statistics and computational costs of the reactor outlet product concentration at times

t=8s,t=23s,and t = 33s

MC Sampling PCE PSE
Total CPU Time () 67 h 21h 29h
Outlet Product | p(Ce oue(85)) 2.104136 2.111071 2.142147
Concentration, (6.935 pmol/L, (38.011 umol/L,
t=8s, T=480 K 0.262% Error) 1.435% Error)
mmellt) Clout (85) 3.828483 3.788037 3.643543
(40.446 pmol/L, (184.94 pmol/L,
1.527% Error) 6.981% Error)
C . (85) 1.179294 1171071 1.374553
(8.223 pmol/L, (195.26 pmol/L,
0.310% Error) 7.371% Error)
Outlet Product | p(Ccone(235)) 1.699618 1.7299 1.725425
Concentration, (30.282 pmol/L, (25.807 pmol/L,
t=23s, T=440 K 1.426% Error) 1.215% Error)
(mmoliL) CP . (235) 3.055214 3.194008 3107126
(138.79 pmol/L, (51.912 pmol/L,
6.536% Error) 2.445% Error)
C . (235) 0.93184 0.951576 1.033342
(19.736 pmol/L, (101.502 pmol/L,
0.929% Error) 4.780% Error)
Outlet Product | p(Ccone(335)) 1.998262 1.974835 2.009483
Concentration, (23.427 ymol/L, (11.221 pmol/L,
t=33s, T=460 K 0.945% Error) 0.453% Error)
(mmeliL) c .(335) 3.637066 3438921 3502315
(198.15 pmol/L, (134.75 pmol/L,
7.995% Error) 5.437% Error)
c ..(335) 1.15872 1.187462 1.217854
(28.742 pmol/L, (59.134 pmol/L,

53

1.160% Error)

2.386% Error)



of the outlet distribution, whereas Figure 4-1d illustrates that both expansions provide good approximations
of the expected value and the probabilistic bounds of the outlet distribution. The results in Table 4-1 show
that PSE and PCE provide a 31.3% and 43.3% decrease respectively in the computational cost as compared
to MC sampling. At time t = 23s, the PCE results are 81.8 um (3.9%) more accurate than PSE at capturing
the lower bound behaviour, whereas PSE provides a 86.9 um (4.1%) superior fitting of the upper bound.
Similar behaviour is observed at t = 33s, where PCE is 30.4 um (1.2%) better at capturing the lower bound
behaviour and PSE is 63.4 um (2.6%) better at capturing the upper bound behaviour. At t = 8s, the PCE
results are 144.5 um (5.5%) and 187.0 pm (7.1%) better at approximating the behaviour of the upper and
lower bounds respectively as compared to PSE. Overall, these results demonstrate that neither PSE nor PCE
is clearly better when it comes to accurately capturing the catalytic model behaviour. On average, PCE
provides a better fit than PSE for the multivariate uncertainty distribution implemented as predicted in the
literature,*3* but PCE does not provide a significant increase in accuracy over PSE. However, PCE requires
fewer sample points to build its model approximation compared to PSE, and therefore incurs lower
computational cost.

4.4 Summary

This chapter provided a general overview of the PSE and PCE uncertainty propagation methods and
discussed how they could be used to propagate spatially-varying and transiently-varying uncertainty
through a multiscale catalytic flow reactor system. Although the algorithms provided are capable of
propagating uncertainty that evolves over time, this type of uncertainty description (i.e. time-varying
uncertainty) has not been considered in any of the case studies implemented in this work. This chapter
additionally compared the accuracy and efficiency of PSE and PCE in the propagation of spatially-varying
uncertainty through the transient multiscale reactor model. These results demonstrated that both methods
are capable of accurately capturing the variation in the reactor concentrations due to parametric uncertainty,
and at significantly lower computational costs as compared to MC sampling. PCE proved to be slightly
superior to PSE in terms of accuracy and computational cost. However, since both methods have similar

accuracy, both series expansions were used to propagate parametric uncertainty in this work.
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Chapter 5
Distributional Uncertainty Analysis and Robust
Optimization in a Steady-State Catalytic Flow Reactor”

Catalytic reactors play an important role in a wide variety of chemical engineering applications. This
has promoted significant interest in model-based catalyst design and optimization to improve reactor
efficiency at minimal cost and resources. The effectiveness of a model-based optimization scheme is
dependent on the accuracy and the efficiency of the system model. Since reactor systems are generally
operated under continuous conditions,** they are most efficiently optimized by neglecting the transient
reactor behaviour through the implementation of steady-state multiscale modeling approaches. However,
these models are subject to uncertainty in the system parameters, which can introduce substantial model-
plant mismatch and can lead to significant deviations when performing optimization and process
improvement studies. It is therefore necessary to understand the impact of parametric uncertainty on the

catalytic reactor behaviour and to account for it within model-based optimization schemes.

Motivated by this, the objective of this chapter is to study the effects of parametric uncertainty on the
steady-state behaviour of a single-pore catalytic reactor system. This is accomplished by propagating
uncertainty in an increasing number of key system parameters and observing their impact on reactor
performance. The catalytic reactor implemented in this study is simulated using a kMC-continuum based
steady-state multiscale reactor model as described in Chapter 3. Additionally, PSE expressions are
developed to propagate the parametric uncertainty through the multiscale model. These techniques are then
used to perform robust optimization on the catalytic reactor system subject to uncertainty in key system

parameters.

This chapter is divided as follows. In Section 5.1, uncertainty analysis is performed to evaluate the
effects of uncertainty in several key system parameters on the concentration of the product species C along
the length of the reactor. For these studies, uncertainty is considered in both the catalyst kinetic parameters
and the reactor design parameters such as the pore radius. In Section 5.2, the proposed uncertainty
quantification method is embedded within optimization formulations that aim to specify the optimal
operating conditions and design parameters, which can improve reactor productivity in the presence of

uncertainty.

*The contents of this chapter have been published in the American Institute of Chemical Engineering Journal.?
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5.1 Uncertainty Analysis

In order to understand the negative impact of model-plant mismatch on the optimization of catalytic
reactor systems, it is crucial to first understand how uncertainty in key system parameters affects the
behaviour of the steady-state multiscale catalytic reactor. To that extent, the PSE-based algorithm described
in Chapter 4 was used to perform uncertainty analysis by propagating key parameter uncertainties through
the steady-state multiscale single-pore catalytic reactor model. The following three scenarios were
considered in this work: an uncertainty analysis of a reactor with a known catalyst pore size and three
uncertain key kinetic parameters, an uncertainty analysis of a reactor where the catalyst pore size was not
known with certainty in addition to the three uncertain kinetic parameters, and an extension of the
uncertainty analysis to encompass all uncertain model parameters. In all three scenarios, the catalyst surface
domain of the multiscale model was coarse-grained into eight teeth (i.e. n;eotp, = 8) Separated by 125nm
gaps. Consequently, the effects of uncertainty were analyzed in the species concentrations at eight axial
points on the catalyst surface corresponding to the locations of each tooth (located at (xo,,,u =
Xtoothr Yovv = p), where U = 8 and VV = 1 in the PSE algorithm). Furthermore, the variation in the effects
of uncertainty on the fluid concentrations were considered at four equidistant radial points at the reactor
outlet with coordinates (x4, = L, Yopy = Vi), Where y,; = {Onm, 3.33nm, 6.67nm, 10nm}, U = 1, and
V = 4 in the PSE algorithm. Probabilistic bounds for each scenario were calculated at a confidence level

of & = 2%. The results obtained from these scenarios are discussed in the next sections.

5.1.1 Scenario 1: Uncertainty Analysis on the Catalytic Reactor with Known
Pore Size

Uncertainty in key system parameters was propagated to the fluid concentrations inside the catalytic
reactor. The key parameters were identified prior to the analysis by performing an offline sensitivity
analysis on each model parameter. The sensitivity analysis was conducted by varying each of the multiscale
model parameters independently by £25% and £50%. The results from this analysis were used to determine
the sensitivity of the output concentrations to each of the uncertain parameters. Note that the temperature,
the inlet fluid velocity, the length, and the radius of the catalytic pore, i.e. the operating conditions and
design parameters, remained constant during this analysis and were set to the nominal values reported in
Table 3-1. From this analysis, it was determined that the activation energies of desorption for species A and
reaction, i.e. E; 4 and E., have the largest overall effect on the system. Uncertainty was also applied to the

adsorption constant k, 4 as it is the key parameter affecting the adsorption rate of species A. The key
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uncertain parameters considered in this work were assumed to be normally distributed around the mean

values of [u(kq ), #(Eq,n), u(E;)] = [1,95,57] with the following covariance matrix:

0.01  0.005  0.005
0?(kqa Eqa Er) =0.005 81225 1.46205 (5-1)
0.005 1.46205 2.9241

Figure 5-1 displays the effects of the uncertainty on the output fluid concentrations Cj,,,. for each
chemical species, determined via MC sampling through both the primary multiscale reactor model and the
second-order PSE. The probabilistic bounds are presented in Table 5-1 alongside the computational times
required by each method. Note that for the sake of comparison, the percent errors were calculated using Eqg.
(4-16). Second-order PSE was chosen based on preliminary simulations using different PSE orders, which
revealed that second-order PSE provides suitable results at acceptable computational costs. A total of 2,000
MC sampling points were applied to the primary multiscale model to capture the effects of uncertainty on
the multiscale catalytic reactor behaviour. The number of MC simulations was determined by adding
sample points to the analysis until the difference in the mean and variance of the PDFs in the outputs

remained fairly constant, i.e. below 1% error between subsequent simulation runs.

As shown in Figure 5-1, uncertainty in these kinetic model parameters results in substantial variability
in the concentrations. This is especially apparent in product C, where the probabilistic bounds show that
the concentration can deviate from 45% to 65% of its predicted mean value, as shown in Table 5-1.

Furthermore, Table 5-1 illustrates that the second-order PSE approximation can accurately describe the

Species A Species B Species C

002y 0mzp 0012,

0o 0omr 00f

0.008 0008 000581

0.006 0,006 00061

0.004 0.004 0.004

0.002 0002 0002

0 0 0
233 2385 230 2395 240 2405 241 233 2385 230 2395 240 2405 241 0 0.5 1 15 2 25 3

C, 5y (mMolL) Cq gy (MMOIL) Cp o (MMOIL)

Figure 5-1. PDFs of the steady state output concentrations C; ., generated by MC sampling

through the primary multiscale model (blue) and second-order PSE (red).

57



uncertainty propagation through the single-pore catalytic reactor model using only 11% of the
computational cost required by the MC sampling method when applied to the primary multiscale model.
Figure 5-2a shows the concentration PDFs for each chemical species at various radial distances across the
reactor outlet (Cs(L, y¢;)), which were determined using second-order PSE. This figure reveals that the
concentrations do not significantly change along the reactor’s radial domain. As a result, for brevity, the
uncertainty propagation in the radial direction is not considered in the remainder of this work. Additionally,
Figure 5-2b shows the concentration PDFs of each chemical species at the catalyst surface along the
reactor’s axial direction, i.e. Cs(Z¢o0tn, ). AS Shown in this figure, the uncertainties are propagated in the
axial direction, resulting in more variability in the steady state concentrations towards the end of the pore.
The propagation of uncertainty implies that the variability in the output concentrations can be reduced by
shortening the lengths of the reactor pore. However, this would occur at the expense of reducing the
production of species C, and results in decreased reactor productivity.

Table 5-1. Distributional uncertainty analysis, Scenario 1.

v v Nominal c tational
) , , ) omputationa
Method Species siout siout Concentration _
(mmol/L) (mmol/L) Time (s)
(mmol/L)
MC applied to the A 238.51 240.17 239.18
Primary B 238.52 240.11 239.22 10,812
Multiscale Model C 0.8990 2.4961 1.8022
238.42 240.16
A (81 umol/L, | (19 pumol/L, 239.18
4.87% Error) | 1.15% Error)
) 238.45 240.09
MC applied to the
B (67 pmol/L, | (13 umol/L, 239.22 1,193
Second-Order PSE
4.22% Error) | 0.83% Error)
0.9116 2.5689
C (13 wmol/L, | (73 umol/L, 1.8022
0.79% Error) | 4.56% Error)
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Species A Species B Species C
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Figure 5-2. PDFs of the concentration for each chemical species (a) along the radial direction at the

reactor outlet (Cs(L, y¢;)), and (b) along the axial direction within the reactor interior (Cs(Xtooth, P))-

5.1.2 Scenario 2: Uncertainty Analysis on the Catalytic Reactor with Uncertain
Pore Size

The results discussed in the previous subsection assumed that the size of the pore in the single-pore
catalytic reactor system is known with certainty. Experimental observations have demonstrated that the
shape and size of a nanopore can deviate significantly from their expected value,'* as the dimensions of a
nanopore cannot be precisely determined through experimental observations. Therefore, uncertainty in the
pore size should be taken into account when assessing the performance of catalytic flow reactor systems.
Taking this into consideration, uncertainty analysis was performed on a catalytic reactor where the pore
size was assumed to be uncertain. For this analysis, both the pore radius and the kinetic parameters studied
in Scenario 1 (Section 5.1.1) were considered as the set of uncertain parameters. The pore radius was
assumed to be normally distributed with a mean value of u(p) = 10 nm and a standard deviation of 20%
of the mean value. This assumption was based on a previous study performed on the pore size distribution

of nanoporous alumina.l*® The key kinetic parameters were assumed to follow the same normal distribution
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Table 5-2. Distributional uncertainty analysis, Scenario 2.

Nominal
1(Cs out) Cilout Coout Concentration | Computational
Method | Species | (mmol/L) | (mmol/L) | (mmol/L) (mmol/L) Time (s)
McC A 239.16 237.38 240.19 239.18
applied to
the B 239.16 237.43 240.18 239.22
. 10,898
Primary
Multiscale C 1.8461 0.8267 3.6036 1.8022
Model
239.17 237.40 240.18
9 umol, 15 pumol, 11 pmol,
A Ou (1o (lu 239.18
0.36% 0.53% 0.41%
Error) Error) Error)
MC
) 239.16 237.37 240.16
applied to C 1 (63 1 (24 1
mol, mol, mol,
the B " g 3 239.22 1,784
0.36% 2.30% 0.89%
Second-
Error) Error) Error)
Order PSE
1.8377 0.8185 3.6013
8 umol, 8 umol, 2 umol,
C B B @ 1.8022
0.30% 0.29% 0.09%
Error) Error) Error)

as described in the previous subsection. Figure 5-3 shows the effect of parameter uncertainties on the output
species concentrations C; o, determined using MC sampling applied to the primary multiscale reactor
model and the second-order PSE. A comparison of the mean values, probabilistic bounds, nominal model
parameter values and computational times is also presented in Table 5-2. Note that for the sake of
comparison, the percent errors were calculated using Eq. (4-16). Second-order PSE was chosen based on
preliminary simulations using different PSE orders, which revealed that second-order PSE provides suitable
results at acceptable computational costs. A total of 2,000 MC sampling points were applied to the primary
multiscale model to capture the effects of uncertainty on the multiscale catalytic reactor behaviour. The

number of MC simulations was determined by adding sample points to the analysis until the difference in
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Figure 5-3. PDFs of the output fluid concentrations Cj ,,,. using MC applied to the primary

multiscale model (blue) and the second-order PSE (red).

the mean and variance of the PDFs in the outputs remained fairly constant, i.e. below 1% error between

subsequent simulation runs.

The results show that the second-order PSE is capable of capturing the effect of uncertainties in the pore
radius in addition to the key Kinetic parameters. The errors in the bounds obtained from the second-order
PSE are within + 5%, and the PSE-based uncertainty analysis requires 16% of the computational time
required using MC sampling applied to the primary multiscale model. Figure 5-4a compares the PDFs of
the output concentration Cj ,,,, for the cases of known and uncertain pore radius sizes. This figure reveals
that uncertainty in the pore radius has a significant effect on the shape and bounds of the steady-state
concentration profiles and therefore has a significant effect on the reactor performance. Specifically, when
the probabilistic bounds listed in Tables 5-1 and 5-2 are compared, the lower bounds for species A and B
decrease by 984 uM while the upper bounds for species C increased by 892 uM when the pore radius is
assumed to be uncertain. Figure 5-4b, on the other hand, shows the PDFs of the axial concentrations along
the reactor length C(x:00tn,p) for reactors with known and uncertain pore radius size. This figure
demonstrates notably wider PDFs throughout the reactor for each chemical species when uncertainty is

considered in the pore radius.

5.1.3 Scenario 3: Uncertainty Analysis on the Catalytic Reactor for All
Uncertain Parameters

The previous scenarios presented in this work only considered uncertainty in the pore radius and three

kinetic parameters. The aim of this scenario is to evaluate the effects of considering additional uncertain
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Figure 5-4. PDFs of the (a) output fluid concentrations Cj ,,,. and (b) steady state fluid
concentrations, Cs(X:00tn, £), along the reactor axial length; pore radius fixed (blue) and uncertain
(red).

parameters into the analysis. Accordingly, two analyses were performed using six and ten uncertain
parameters, respectively. For the six parameter case study, uncertainty was considered in the pore radius in
addition to the five kinetic parameters which had the largest effect on the concentrations, i.e. kg, 4, kg g,
Eq 4, Eq p, and E,.. The uncertain kinetic parameters were assumed to be normally distributed around their

mean values as listed in Table 3-1, with the following covariance matrix:

0%(ka,a ka5 Eq.n Eap Er p) =

0.01 0.005 0.005 0.005 0.005 0 1
0.005 0.01 0.005 0.005 0.005 0
0.005 0.005 8.1225 4.06125 1.46205 0 (5-2)
0.005 0.005 4.06125 9 1.46205 0
I0.005 0.005 1.46205 1.46205 2.9241 0 l
l 0 0 0 0 0 10_18J

The ten uncertain parameter case study considered parametric uncertainty in all eight kinetic parameters
in addition to uncertainty in the pore radius and the fluid diffusivity, i.e. k, 4, kg g, kg 4, ka g, Eq.a: Ea B
ky, E, p, and D. Note that in this case study, the diffusivity of each fluid species was assumed to be the
same, such that each diffusivity would be equally affected by parametric uncertainty. All uncertain
parameters were assumed to be normally distributed around their nominal values as listed in Table 3-1, with

the following covariance matrix:
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Figure 5-5 shows the effect of parametric uncertainties on the output concentration of species C, C¢ ¢,

for both the six parameter and ten parameter uncertainty analyses, using MC sampling applied to the

primary multiscale model and second-order PSE approximations. The computational costs, mean, variance,

and upper and lower bounds evaluated at a 2% confidence interval are additionally presented in Table 5-3.

Note that for the sake of comparison, the percent errors for the means and the probabilistic bounds were

calculated using Eq. (4-16). Second-order PSE was chosen based on preliminary simulations using different

PSE orders, which revealed that second-order PSE provides suitable results at acceptable computational

costs. A total of 10,000 and 16,000 MC sampling points were applied to the primary multiscale model to

capture the effects of uncertainty in the six uncertain parameter and the ten uncertain parameter cases,

respectively. The number of MC simulations was determined by adding sample points to the analysis until

the difference in the mean and variance of the PDFs in the outputs remained fairly constant, i.e. below 1%

error between subsequent simulation runs.

Table 5-3. Distributional uncertainty analysis, Scenario 3.

Number of
C a2(c c crP Computational
Method Uncertain I‘( C,out) ( C,out) C,out C,out p
(mmol/L) (mmol?/L2) (mmol/L) (mmol/L) Time (s)
Parameters
MC applied 6 1.7641 0.3907 0.5972 3.6995 68,623
to the
Primary
Multiscale 10 1.7673 0.3965 0.5817 3.7031 101,672
Model
1.7705 0.3865 0.5861 3.5448
MC applied 6 (6 umol/L, (4 pmol?/L?, (11 pmol/L, (154 pmol/L, 2,156
to the 0.21% Error) 1.06% Error) 0.36% Error) 4.98% Error)
Second- 1.7510 0.3938 0.5067 3.5667
Order PSE 10 (16 pmol/L, (2 pmol?/L?, (75 pmol/L, (136 pmol/L, 5,819
0.52% Error) 0.38% Error) 2.40% Error) 4.37% Error)
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Figure 5-5. PDFs of the output fluid concentration for species C, C¢ oy, Using MC applied to the
primary multiscale model (blue) and the second-order PSE (red) for (a) six uncertain parameters and

(b) ten uncertain parameters.

The results from Figure 5-5 and Table 5-3 indicate that the second-order PSE is able to capture the
output variability, as the PSE model errors for the mean and variance are below + 1% while probabilistic
bounds all remain within + 5% of the bounds obtained from the primary reactor model. MC sampling
directly applied to the primary model required a CPU time that is 12 and 35 times larger than the
computational costs of the second-order PSE functions, respectively. Accuracy may be slightly improved
using higher order PSEs; however, it requires substantially larger computational cost due to the additional
multiscale simulations necessary to calculate the higher order sensitivities. Figure 5-5 illustrates that the
inclusion of additional uncertain parameters produces slight changes in the shape of the concentration
distributions. As shown in Tables 5-2 and 5-3, the lower and upper bounds deviated 230 and 57 UM
respectively between the output variability for the six and the four uncertain parameter cases; likewise, the
lower and upper bounds deviated 18 and 47 uM respectively between the six uncertain parameter and the
ten uncertain parameter case. Tables 5-2 and 5-3 also show that higher CPU times are required to compute
the PSE-based model when additional uncertain parameters are included in the analysis as there are more
input-output sensitivities that need to be estimated thus requiring the need to perform additional sampling
using the primary multiscale model. Figure 5-6 illustrates the effects of uncertainty on the concentration of
species C as it varies along the axial reactor length, C¢(xt00tn, ), When six and ten uncertain parameters
are considered in the analysis. This figure reveals that the uncertainties are propagated axially, similar to

the previous scenarios, resulting in larger variability at the pore outlet.

In the present scenario, the uncertainty in the pre-exponential factors for the desorption and reaction
termsi.e. kg 4, kg4 g, and k,., were assumed to vary with a standard deviation of 10% of their nominal values.

In principle, these terms can vary orders in magnitude from their corresponding expected values,'” which
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Figure 5-6. PDFs of the steady state fluid concentration for species C, C¢(Xto0tn, ), @long the

reactor axial length; six uncertain parameters (red) and ten uncertain parameters (green).

could have a significant effect on the resulting output concentration profiles. To illustrate these effects, the
standard deviations for the pre-exponential factors were increased from 10% to 32% of the corresponding
nominal values, thus allowing these parameters to change by at least an order of magnitude with respect to
their expected values. Figure 5-7 compares the variation in the concentration of the output product PDFs
generated using the PSE approximation when the standard deviations of the pre-exponential factors are set
to 10% and 32% of the nominal values respectively within the ten uncertain parameter case study. Similarly,
the difference in the mean, variance, and probabilistic bounds are listed in Table 5-4. These results indicate
that larger variations in the pre-exponential factor have significant effects on the output concentrations,
resulting in a 13% wider standard deviation and a 6.5% shift in the upper and lower bounds for the outlet

concentration of species C.

5.2 Robust Optimization

Process optimization is often sought as a practical tool for performance improvement. The quality of the
solution obtained from optimization is directly determined by the accuracy of the model being used to
represent the system under analysis and the model parameters. High-order models such as mechanistic
models of large-scale or complex systems often cannot be embedded within an optimization framework
due to excessive computational costs. In addition, model parameters are always subject to uncertainty which
adds complexity into the analysis. Parametric uncertainty can be directly propagated through the system
model to accommodate for its effects, however this approach can be computationally prohibitive to

implement for a large number of uncertain parameters. Consequently, low-order models that capture the
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Table 5-4. Distributional pre-exponential factor uncertainty analysis.

Pre-exponential Factor, 1(Ceout) 0%(Ccour) C¥ e Ceh e
Standard Deviation (mmol/L) (mmol?/L2) (mmol/L) (mmol/L)
10% of the Nominal

1.7510 0.3938 0.5067 3.5667
Values
32% of the Nominal
1.7425 0.5056 0.3045 3.7732
Values

0 1
C

mmol/L)

C.out (

Figure 5-7. PDFs of the output fluid concentration for species C, C¢ oy, fOr ten uncertain
parameters using a standard deviation of 10% of the nominal value (blue) and 32% of the

nominal value (red) in the pre-exponential factors.

key system characteristics under parameter uncertainty are used in model-based optimization to improve
the performance of the process. These models are implemented subject to uncertainty in only the most

sensitive key system parameters to effectively minimize computational costs.

In order to illustrate the benefits of applying the low-order series expansions discussed in Chapter 4 for
uncertainty quantification, the PSE-based framework was used to identify the optimal operating conditions

on the multiscale catalytic flow reactor system that maximize the reactor productivity under uncertainty in
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the most relevant key system parameters. As shown in the previous sections, the present heterogeneous
multiscale reactor model is subject to product concentration variability due to uncertain realizations in the
model parameters. On the other hand, key operating conditions and design parameters such as the
temperature (T), inlet fluid velocity (v), and pore length (L) can be adjusted to improve process productivity.

Accordingly, a robust optimization formulation can be specified for this process as follows:

max Au(Ceour) = (1 = Ao ?(Ce.out)

Subject to:

Multiscale model, Egs. (3-1)-(3-24)
Uncertain parameter descriptions
PSE model, Egs. (4-7)

Tin < T < Trax

Liin < L < Linax

Vmin =V < Viax (5-4)

where u(Cc o) represents the expected concentration of species C at the center of the pore outlet while
0%(Ceout) Tepresents its variance. The parameter A is a weight that determines the significance of the
expected value and variance in the optimization formulation. In principle, u(C¢ ou¢) and 62 (Ce o) Can be
estimated through a large number of MC sampling points applied on the primary multiscale model. As
shown in the results presented in the previous section, this approach is computationally prohibitive.
Accordingly, u(Cc oue) and a2 (Ce oue) in Eq. (5-4) are calculated using a second-order PSE. That is, for
each set of values in the optimization variables, a second-order PSE is built, using the primary multiscale
model, to estimate (Ce oye) and a2 (Cc oue)- Note that the primary multiscale model is only used in Eq.
(5-4) to compute the sensitivities needed for the PSE approximations. In the present analysis, the weight A
in Eq. (5-4) was set to 0.5. Furthermore, uncertainty was considered in the three kinetic parameters
ko a,E 4 4, Er, and the pore radius p. Although it is important to account for uncertainty in all unknown
parameters, the addition of each uncertain parameter results in additional computational costs. In order to
perform efficient robust optimization, uncertainty was therefore only considered in the parameters that had
the most significant impact on the catalytic reactor performance. The uncertainty analyses from the previous
sections illustrated that although increasing the number of parameters did affect the product concentration

PDF, they did not result in a substantial change in shape or in probabilistic bounds between Scenario 2 and
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the ten uncertain parameter study in Scenario 3. As a result, uncertainty was only considered in
ko a,E 4 4, Er, and p. The uncertainty in each of the parameters was assumed to follow a normal distribution
with the means and standard deviations defined as in Scenario 2. To compare the results obtained from Eqg.
(5-4), a similar problem was formulated under the assumption of perfect knowledge of the model

parameters, i.e.

max u(C
e u( C,out)

Subject to:

Multiscale model, Egs. (3-1)-(3-24)
Tin < T < Trax

Lin < L < Linax

Vmin Sv<s Vimax (5'5)

As shown in Eq. (5-5), only the expected value of the outlet concentration of species C was considered
in the cost function. At each optimization step, simulations of the primary multiscale model were performed
to compute u(Cc oye)- For the two optimization problems (5-4) and (5-5), T, and Ty g, Were set to 300K
and 700K while L, and L, Were set to 0.5um and 1.5um and v,;,;,, and v,,4, Were set to 5mm/s and

15mm/s, respectively.

The optimal reactor temperature, pore length, and fluid velocity obtained from the robust optimization
formulation (MaxConc) and the nominal optimization formulation (Nominal), i.e. problems (5-4) and (5-5)
respectively, are shown in Table 5-5. The mean, variance, and probabilistic bounds at a 2% confidence
interval for the species C concentration PDFs obtained using these two optimization formulations are also
shown in Table 5-5. For the case of the nominal optimization, the statistics on the process outputs were
obtained by performing MC sampling on the primary multiscale model using the same uncertainty
parameter descriptions as for problem (5-4). As shown in Table 5-5, large pore lengths (L = L;,4,) and
small fluid velocities (v = v,,;,) are needed to maximize the production of species C, which is expected
for a catalytic flow reactor system. Additionally, reasonably high temperatures maximize the number of
reactions taking place on the surface to improve the production of species C. As shown in Figure 5-8, the
concentration of species C experiences a maximum at T = 466K, as predicted by the nominal optimization
results. This optimal temperature is a result of the surface reaction ensembles necessary for reaction to

occur. Initially, increasing the temperature will increase the rate of reaction, resulting in higher product
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Figure 5-8. Nominal outlet fluid concentration for species C, u(C¢ ou¢), as a function of temperature

T and fluid velocity v; pore length L = 1.5 pm.

concentrations; however, at sufficiently high temperatures, the increasing desorption rate significantly

affects the number of surface reaction ensembles, which decreases the reaction rate.

The results for the robust optimization under uncertainty (MaxConc in Table 5-5) indicate that a lower
reactor temperature, with the same pore length and inlet velocity as that obtained from the nominal
optimization, is needed to account for parameter uncertainty. As shown in Table 5-5, accounting for the
variance in the outlet concentration due to parameter uncertainty results in a 9.76% and 3.92% decrease in
the mean and variance of the product concentration, respectively, when compared to the nominal
optimization. Figure 5-9 depicts the outlet concentration PDFs of species C from both the robust
optimization formulation (MaxConc) and the nominal optimization formulation (Nominal). This figure
shows that product variability can be reduced at the expense of reducing production of species C. To further
investigate this condition, an additional robust optimization problem was formulated to minimize product

variability under specific production constraints in the presence of uncertainty, i.e.
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Table 5-5. Nominal and robust optimization results.

Optimization Ccou 0%(Ccou ce, Ceo
p . T (K) L(um) v (mm/s) ﬂ( C, t) ( C, t) C,out Cout
Scenarios (mmol/L) | (mmol%L?) | (mmol/L) | (mmol/L)

Nominal
Optimization 466 1.50 5.00 5.7568 3.4694 2.2658 11.2122
(Nominal)
Robust
Optimization 455 1.50 5.00 5.1949 3.3331 1.5345 10.3859
(MaxConc)
Robust
Optimization 466 1.44 5.54 5.0185 2.6944 2.0069 9.9064
(MinVar)

min o (Ceouc)
Subject to:
Multiscale model, Egs. (3-1)-(3-24)
Uncertain parameter descriptions

PSE model, Egs. (4-7)

.U(CC,out) = M*(CC,out)
Tmin <T<s Tmax
Lmin SL< Lmax

Vmin sSv< Vimax (5'6)

where .u*(CC,out) represents a minimum acceptable concentration of species C on average, which was
set to 5 mmol/L for this problem. Similar to the robust optimization problem (5-4), a second-order PSE was
used to evaluate u(Ce our) and a2(Ce oue ). Additionally, the same uncertain parameter descriptions used
to solve problem (5-4) were applied in this problem. The results from this optimization formulation are
presented in Table 5-5 (MinVar) and Figure 5-9. These results reveal a 22.3% decrease in the variance of
the outlet concentration PDF for species C when compared to the nominal optimization results; accordingly,

the upper and lower bounds computed from the results of this robust optimization problem (MinVar) are
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Figure 5-9. PDFs of the output fluid concentration for species C, ,u(CC,(,ut), at the nominal
optimization conditions (Nominal, blue) and the robust optimization formulations, i.e. MaxConc (red)

and MinVar (green).

10.4% and 13.7% closer to its mean value when compared to the bounds obtained from the nominal
optimization formulation (Nominal). Note that the mean value in the production of species C obtained from
MinVar is close to the production constraint considered in problem (5-4). These product specifications are
obtained at approximately the same temperature as the nominal optimization results, but with a 60nm
shorter pore length and with a 540um/s faster inlet fluid velocity. Figure 5-9 clearly indicates that the results
obtained from problem (5-6) produces a narrower distribution centered on its mean production value when
compared to the distributions obtained from problems (5-4) and (5-5), respectively. These results show that
parameter uncertainty play a key role and must be considered for process improvement in multiscale

systems.

5.3 Summary

Model-based robust optimization of catalytic flow reactor systems are adversely affected by

uncertainties in the system parameters. Consequently, it is important to understand the impact of uncertainty
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in key system parameters on the overall performance of a catalytic reactor system. In this chapter,
uncertainty analysis was performed on the multiscale catalytic flow reactor system and subsequently
implemented into robust optimization schemes. Uncertainty in an increasing number of different key system
parameters was propagated through the multiscale catalytic reactor using PSE to fully observe its impact
on the reactor performance. This revealed that parametric uncertainty has a significant effect on the catalytic
reactor performance and cannot be neglected in the design of the reactor. It was likewise observed that
increasing the number of uncertain parameters has a significant impact on the product concentration PDFs,
which illustrates the importance of propagating uncertainty in all uncertain parameters.

Increasing the number of uncertain parameters, however, additionally increases the computational cost
of the analysis, and consequently there is a trade-off between accuracy and efficiency. Based on the results
from the uncertainty analysis, robust optimization was performed on the catalyst reactor system considering
uncertainty in only the most significant system parameters. For these optimization studies, uncertainty was
considered in kg 4, E 4 4, Ey, and p, as it was observed that adding more uncertain parameters did not result
in a critical change in the shapes of the product concentration PDFs or their statistical properties. PSE was
used to propagate the uncertainty through the multiscale model in order to determine the mean and variance
of the output distribution for use in the robust optimization scheme. This methodology was used in order to
determine the temperature, reactor length, and fluid velocity values that simultaneously maximized the
reactor productivity and minimized the variance of the product concentration PDFs due to uncertainty.
These studies illustrated that parametric uncertainty can have a substantial effect on robust optimization

and process improvement studies, which highlights the importance of taking uncertainty into account.
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Chapter 6
Data-Driven Model-based Optimization of a Catalytic
Reactor Subject to Spatially-Varying Uncertainty®

Catalysts are crucial to the majority of chemical fabrication applications. They are particularly
advantageous as they are not consumed over the course of the reaction, and therefore do not need to be
constantly resupplied. They are prone, however, to deactivation due to mechanisms such as catalyst
poisoning and fouling, which can significantly impede the reactor productivity. In poisoning and fouling
mechanisms, undesired species chemically or physically adhere to the catalyst active sites, blocking them
from interacting with the system reactants and thus preventing them from catalyzing the reaction. In
addition, catalyst poisons have been known to alter the electronic and structural properties of the catalyst.*
Consequently, catalyst poisoning and fouling can have significant adverse effects on the catalyst
performance.'®20 Catalyst deactivation can be directly incorporated into the multiscale model through
inclusion of the kinetic poisoning and fouling mechanisms; however, this approach requires explicit
knowledge of the catalyst deactivation kinetics, and it can be computationally intensive to implement.
Alternatively, the catalytic parameters can be directly adjusted to indirectly capture the effects of
deactivation on the catalyst behaviour. However, in a catalytic reactor system subject to an unknown degree
of poisoning or fouling, the values of the adjusted catalytic parameters would not be known with complete
certainty unless additional tests were performed to assess the variation in the parameters needed to capture
the reactor behaviour subject to various degrees of catalyst deactivation. Alternatively, these parameters
could be treated as uncertain, such that the uncertainty propagation techniques discussed in previous

chapters can be applied to account for the catalyst deactivation.

Further complications arise in catalytic flow-type reactors, where concentration gradients lead to non-
uniform rates of catalyst deactivation along the catalyst surface.?%%1% The uncertainty in the catalyst
parameters of a catalytic flow reactor would vary as a function of space, and multiple uncertainty
descriptions would be required to capture the effects of poisoning and fouling along the length of the reactor.
Consequently, a large number of uncertainty descriptions would be required to adequately account for the
effects of parametric uncertainty in catalytic flow reactors subject to non-uniform catalyst deactivation,
resulting in large computational costs. Despite the efficiency of PSE and PCE, these approaches would
require significant computational power to adequately approximate the effects of spatially-varying
uncertainty that are due to catalyst deactivation in the multiscale catalytic flow reactor system.

Consequently, these methods may become computationally-prohibitive to implement for the robust

*The contents of this chapter have been accepted for publication in the Canadian Journal of Chemical Engineering.
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optimization of a poisoned catalytic flow reactor, since unique PSE or PCE models would be required at
each operating point considered in the optimization process. Subsequently, it is necessary to develop
alternative models to enable efficient optimization of a catalytic reactor system subject to non-uniform

catalyst deactivation.

Based on the above, the aim of this chapter is to perform efficient robust optimization on a multiscale
catalytic flow reactor system subject to spatially-varying uncertainty that is due to catalyst fouling. To that
extent, the effects of spatially-varying uncertainty descriptions were analyzed on the performance of the
steady-state multiscale catalytic reactor described in Chapter 3. Spatially-varying uncertainty was
propagated through the reactor model by assigning unigue uncertainty descriptions for the uncertain
parameters at each tooth considered in the gap-tooth model. The impact of the spatially-varying uncertainty
due to catalyst fouling was assessed via comparison to uncertain catalytic reactor systems where the
uncertainty is constant in space. Subsequently, low-order DDMs were developed to capture the key
statistical information of the product variability at the catalytic reactor outlet due to spatially-constant and
spatially-varying uncertainty. These DDMs were implemented into robust optimization schemes to perform

efficient optimization of the catalytic reactor system subject to spatially-varying uncertainty.

This chapter is organized as follows. In Section 6.1, uncertainty analysis is performed to compare the
effects of spatially-constant and spatially-varying uncertainty descriptions on the catalytic reactor
performance. In this study, PCE is used to efficiently propagate each parametric uncertainty description
through the multiscale reactor model. In Section 6.2, the statistical DDM algorithm is discussed and
implemented for efficient robust optimization of the multiscale catalytic reactor model that is subject to

spatially-constant and spatially-varying uncertainty.

6.1 Spatially-Varying Uncertainty Analysis

The objective of this section is to analyze the impact of spatially-varying parametric uncertainty on the
multiscale catalytic reactor performance using PCE. Spatial variation in the catalyst parameters is assumed
to occur due to heterogeneous catalyst poisoning and fouling along the axial length of the reactor.?:108.109
Catalyst deactivation is primarily known to affect the number of catalyst sites available for interaction with
the reactant and product species;'®%1% however, it is challenging to propagate uncertainty through the
number of available catalyst sites without directly simulating the kinetic events for the deactivation
mechanisms. This is because the number of available catalyst sites has a direct effect on the KMC simulation
lattices. Thus, any deactivated site due to poisoning and fouling would require random selection of a lattice
site, which can become computational intensive or even prohibitive for actual applications. Furthermore,

the poisoning and fouling mechanisms are subject to uncertainty thus increasing the problem’s complexity.
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In order to overcome this issue, the effects of catalyst deactivation on the multiscale reactor behaviour were
approximated by propagating uncertainty through alternative catalytic parameters such as the activation
energies of desorption and reaction. The catalyst deactivation varies as a function of the reactor axial length,
and as a result, spatially-varying uncertainty distributions were applied to these parameters to account for
the effects of catalyst deactivation on the catalytic reactor behaviour. Further complications arise due to the
transient nature of catalytic poisoning and fouling. Specifically, catalyst deactivation is a dynamic process
that accumulates over time, and special care must consequently be taken when analyzing the effects of
poisoning and fouling within a steady-state catalytic reactor model. To overcome this issue, it was assumed
that the steady-state reactor model implemented in this work would capture a snapshot of the catalytic
reactor subject to an unknown degree of poisoning and fouling at a specific point in time. In order to extend
the usefulness of this assumption, it was further assumed that the rates of the poisoning and fouling
mechanisms were significantly lower than the rates of the reaction mechanism taking place (Egs. (3-1)-(3-
3)), i.e. the rates of catalyst deactivation were orders of magnitude slower than the reaction mechanism.
Hence, the steady-state multiscale model behaviour dominates over the dynamic catalyst deactivation
processes.

In order to fully assess the impact of spatially-varying parametric uncertainty on the catalytic flow
reactor performance, uncertainty analysis was performed on the steady-state multiscale catalytic flow
reactor model subject to spatially-constant and spatially-varying uncertainty distributions. For these studies,
the catalyst surface domain was discretized into seven teeth (i.e. ngeerp, = 7) Separated by 143nm gaps.
Parametric uncertainty due to catalytic deactivation was considered in the activation energy of desorption
for species A, E; 4. This parameter was chosen as it was determined to have the most significant effect on
the catalyst reactor behaviour out of all the kinetic parameters. For the case of the spatially-constant
uncertainty description, Scenario 1A, the parametric uncertainty was assumed to be normally distributed

with statistical properties defined as follows:

02(Eg4) = 8.1225kJ?/mol? (6-1)

For the case of the spatially-varying uncertainty descriptions, Scenario 1B, a unique uncertainty
description was applied at each of the seven teeth considered in the gap-tooth model (I = 7 in the PCE
model). Note that the uncertainty in E4 4 cannot vary radially as this parameter only affects phenomena that
occur along the catalyst surface; thus, /] = 1 in the PCE model. In addition, it was assumed that the rates of

catalyst fouling would be highest at the center of the reactor pore (x = 0.5,y = p), and thus the uncertainty
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in E4 4 was assumed to be highest at the pore center and lowest at the pore inlets and outlets. The uncertainty
distributions at each point were assumed to be normally distributed with their means and variances as
follows:

pU(Eq 4) = 95 kd/mol

[02 (Ed,A o, P)) - (Ed,A (Xua,i P)) . (Ed,A (L, P))] =

[3.61,8.1225,14.44,22.5625,14.44,8.1225, 3.61] kJ?/mol? (6-2)

A graphical illustration of the uncertainty descriptions applied to Ej; 4 as a function of the axial reactor
length is presented in Figure 6-1a. Second-order Hermite polynomial PCEs (n = 2 in Eq. (4-12)) were used
to propagate uncertainty through the primary multiscale model for both Scenario 1A and Scenario 1B. The
PCE coefficients were calculated using the least-squares approach over 50 and 100 randomly-generated
sample points for Scenario 1A and Scenario 1B, respectively. The number of sample points were determined
a priori to be sufficient as increasing the number of points did not significantly alter the PCE model results.
The effects of uncertainty were analyzed in the product concentration of species C at the reactor outlet
Ccoue in addition to seven points along the length of the reactor C¢(xoy.,0) Where Xopu = Xro0tn
correlates to the axial locations of each tooth considered in the gap-tooth model. Thus, seven unique PCE
models were developed for each scenario in order to assess the impact of parametric uncertainty on the

catalytic flow reactor system.

The statistical parameters derived from the uncertainty analysis are listed in Table 6-1 for both Scenario
1A and Scenario 1B at various spatial points along the catalytic reactor pore length. Table 6-1 additionally
lists the computational costs required for each scenario. The probabilistic bounds were generated at a
confidence level of @ = 2%. Figure 6-2a and 6-2b additionally illustrate the product variability for Scenario

1A and Scenario 1B respectively at the reactor outlet (C¢ o,,;) using PCE and MC sampling applied to the
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Figure 6-1. Spatially-varying uncertainty descriptions applied to a) Eg 4, b) E
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Figure 6-2. Graphical comparison of the output variability for C ,,,, determined via MC sampling
(blue) and second-order PCE (red) for: a) Scenario 1A (MC determined via 1000 sample points),
b) Scenario 1B (MC determined via 5000 sample points), ¢) Scenario 2A (MC determined via 1000
sample points), d) Scenario 2B (MC determined via 12 000 sample points)

primary multiscale model. Figure 6-3a similarly showcases the effects of parametric uncertainty for
Scenario 1A and Scenario 1B at each tooth along the pore axial length. As shown in Figure 6-2, the PCE
approximations provide accurate estimates of the product variability caused by each of the uncertainty
descriptions considered. Additionally, Figures 6-2a, 6-2b, and 6-3a demonstrate that spatially-varying
uncertainty descriptions have a significant impact on the ranges and shapes of the output PDFs. In particular,
the right tail of the outlet PDFs demonstrate the most abrupt differences in shape between Scenario 1A and
Scenario 1B, as illustrated Figures 6-2a and 6-2b. The right tail of the output PDF for Scenario 1B gradually
decreases over increasing values of Cc . Whereas the right side of the output PDF for Scenario 1A
terminates abruptly at approximately C¢ ,,, = 2mmol/L. According to Table 6-1, the variances in the output
PDFs for Scenario 1B are notably smaller than the variances in the output PDFs for Scenario 1A throughout
the axial length of the reactor. In particular, the Scenario 1B variance is 40% smaller at the reactor’s second
tooth (x = 0.1667nm, y = p), and 77% smaller at the reactor outlet (x = L,y = p). Table 6-1 additionally
demonstrates that there is a 1.5% decrease, an 8.5% decrease, and a 45% increase in the expected value,
the upper bound, and the lower bound respectively between Scenario 1B and Scenario 1A at the reactor
outlet. Note that the differences between Scenario 1A and Scenario 1B vary across the reactor axial length,

as demonstrated in Figure 6-3a. The largest difference in the expected value does not occur at the reactor
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Table 6-1. Statistical parameters for Scenario 1A, Scenario 1B, Scenario 2A, and Scenario 2B

generated via PCE for the second tooth (x = 167nm), the fifth tooth (x = 667nm), and the seventh

tooth (x = L).
1(Ccout) | 0*(Ccout) Cehut c¥ .. | Computational
(mmol/L) | (mmol?/L?) | (mmol/L) | (mmoliL) | Time(h)

Scenario | Second 0.273052 0.002366 0.35937 | 0.136114 1.20
1A Tooth

Fifth 1.060009 0.039881 1.338404 | 0.508057

Tooth

Seventh 1.588864 0.085173 1.981756 | 0.803473

Tooth
Scenario Second 0.27191 0.001413 0.331029 | 0.159438 2.39
1B Tooth

Fifth 1.039666 0.013819 1.234957 | 0.693248

Tooth

Seventh 1.56425 0.019978 1.813259 | 1.162544

Tooth
Scenario Second 0.269546 0.004704 0.410496 | 0.087068 121
2A Tooth

Fifth 1.061179 0.072682 1.616761 | 0.342353

Tooth

Seventh 1.579944 0.160057 2.403091 | 0.511757

Tooth
Scenario Second 0.270852 0.002622 0.38104 0.138607 4.18
2B Tooth

Fifth 1.032405 0.026899 1.37824 | 0.599408

Tooth

Seventh 1.552789 0.036642 1.964148 | 1.062671

Tooth
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Figure 6-3. PDFs of the output variability in C as a function of reactor axial length for:
a) Scenario 1A (blue) and Scenario 1B (red), b) Scenario 2A (blue) and Scenario 2B (red)

outlet as would be expected; according to Table 6-1, the largest difference occurs in the middle of the pore
at the location corresponding to the reactor model’s fifth tooth (x =0.667nm, y = p), with a 1.9%
difference as opposed to the 1.5% difference at the reactor outlet. This result clearly exhibits the effect of
spatially-varying uncertainty on the reactor performance. Note that the computational cost for Scenario 1B
(2.39 h) was approximately double the computational cost of Scenario 1A (1.20 h). This is primarily due to
the number of sample points used to determine the PCE models for each scenario (50 points for Scenario
1A and 100 points for Scenario 1B.)

To further analyze the difference between spatially-constant and spatially-varying uncertainty
distributions, the uncertainty analysis was expanded to consider uncertainty in more than one key
parameter. In a realistic catalytic reactor scenario, few parameters would be known with complete certainty,
and thus uncertainty would have to be applied to each system parameter. In addition, each of the parameters
affected by catalyst deactivation would be subject to spatially-varying uncertainty along the reactor length.
As a result, the most influential sensitive uncertain parameters to the system must be first identified.
Subsequently, uncertainty can be propagated through the key parameters that have the most significant
effects on the catalytic reactor performance in order to approximate the reactor behaviour under uncertainty.
The remaining parameters can be assumed constant at their nominal values. Although this approach would
not provide a complete description of realistic uncertainty propagation on the catalyst reactor system, it can
provide a good approximation if sufficiently significant parameters are selected. For the catalytic reactor
system considered in this work, it was determined that the activation energy of desorption for species A,
E,4 4, and the activation energy of reaction, E,., are the two parameters that had the most significant effect
on the catalytic reactor performance. Consequently, the effects of spatially-varying uncertainty was
assessed by applying spatially-constant and spatially-varying uncertainty descriptions to both parameters

in order to account for the effects of catalyst deactivation on the reactor behaviour. In the case of the
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spatially-constant uncertainty profiles, Scenario 2A, the parametric uncertainty was assumed to be normally

distributed for both parameters, with means and variances defined as follows:

[4(Eg,0), n(E.)] = [95,57] kdimol

[02(Eg,4), 0%(E,)]| = [8.1225,2.9241] kJ2/mol? (6-3)

In the case of the spatially-varying uncertainty descriptions, Scenario 2B, a unique uncertainty
description was applied for both E,; 4, and E,. at each of the seven teeth considered in the gap-tooth model,
for a total of 14 unique uncertainty descriptions. The uncertainty descriptions applied to E; 4, were assumed
to be normally distributed with the statistical parameters defined in Eq. (6-2). Likewise, the uncertainty
descriptions applied to E, were assumed to be normally distributed with statistical parameters defined as

follows:

[u(E,)] = 57 kd/mol

[O'Z(ET(O, p)), ..., 02 (Er(xud,i, p)) s 02(E (L, p))] =

[1.2996,2.9241,5.1984,8.1225,5.1984, 2.9241,1.2996] kJ?/mol? (6-4)

A graphical illustration of the uncertainty descriptions applied to E; 4 as a function of the axial reactor
length is presented in Figure 6-1a. Similarly, Figure 6-1b graphically displays the uncertainty descriptions

applied to E,. as a function of the axial reactor length.

Second-order Hermite polynomial PCEs (n = 2 in Equation (4-12)) were used to propagate uncertainty
through the primary multiscale model for both Scenario 2A and Scenario 2B. The PCE coefficients were
calculated using the least-squares approach from data gathered over 50 and 175 randomly-generated sample

points for Scenario 2A and Scenario 2B respectively.

The results and computational costs for both uncertainty analyses are detailed in Table 6-1. The
probabilistic bounds were computed at a confidence level of @ = 2%. In addition, Figure 6-2c and 6-2d
illustrate the product variability for Scenario 2A and Scenario 2B respectively at the reactor outlet (C¢ 4y,¢)
using both PCE and MC sampling applied to the full multiscale model. Figure 6-3b similarly illustrates the
effects of parametric uncertainty for both cases at each tooth along the axial length of the reactor. As
described in Table 6-1, the computational cost for Scenario 2B was approximately 3.5 times higher than

that of Scenario 2A. Similar to the previous scenarios, these differences are due to the number of sampling
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points required to determine the PCE coefficients for both scenarios (50 points for Scenario 2A and 175
points for Scenario 2B). Figures 6-2c, 6-2d, and 6-3b illustrate that there are significant differences in the
shapes and ranges of the output PDFs between Scenario 2A and Scenario 2B. However, the differences in
the shapes are not as extreme as the differences observed between Scenario 1A and Scenario 1B. According
to Table 6-1, the spatially-varying uncertainty distributions still have the greatest effect on the variance of
the output distributions. In particular, the variance for Scenario 2B is 44% smaller than that of Scenario 2A
at the reactor’s second tooth (x = 0.1667nm, y = p), and 77% smaller at the reactor outlet (x = L,y = p).
Additionally, there is an 18.3% increase in the upper bounds and a 108% decrease in the lower bounds is
observed in Scenario 2B relative to Scenario 2A. Similar to the single uncertain parameter cases (Scenario
1A and Scenario 1B), the difference in the expected value is greatest at the fifth tooth in the reactor model,
(x =0.667nm, y = p), which is 2.7% lower for Scenario 2B than for Scenario 2A. On the other hand, there
is only a 1.7% decrease in the expected value between Scenario 2B and Scenario 2A at the reactor outlet,
as illustrated in Table 6-1. These results demonstrate that spatially-varying uncertainty descriptions can
have a significant impact on the catalytic reactor behaviour and must be incorporated into catalytic reactor

models when spatially-varying catalyst deactivation is present.

6.2 Robust Optimization Using Statistical Data-Driven Models

This section aims to perform robust optimization on the multiscale catalytic flow reactor process. In
order to provide efficient optimization of the multiscale catalytic reactor model subject to a large number
of uncertainty descriptions, statistical DDMs were determined to model the key statistical parameters of the
variability in the reactor outlet product concentration, C¢ o,,¢. These DDMs were subsequently embedded
within robust optimization schemes to determine the values of key design and operational parameters that
maximize the reactor productivity. The pathway from the multiscale model to the robust optimizer can
therefore be described as follows. The primary multiscale model is used to determine sample points at
random realizations of the uncertain parameters and at each combination of design and operation
parameters. These points are used to determine the PCE model coefficients that describe the parametric
uncertainty at each combination between the design and operation parameters. The resulting PCE models
are then used to determine the statistical information (mean, variance, and probabilistic bounds) for each
combination of design and operation parameter conditions, which are the key inputs used to construct the
DDMs. The DDMs are subsequently embedded within the robust optimizer in order to determine the
conditions that maximize the reactor productivity. The next section describes the algorithm used to calculate
the statistical DDMs for the multiscale catalytic reactor model subject to uncertainty. The performance of

the statistical DDMs were subsequently validated by comparison to the uncertain catalytic reactor behaviour
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as determined via PCE at random values for the desired design and operating conditions. These DDMs were
subsequently implemented into efficient robust optimization schemes that aim to maximize the reactor
productivity and minimize the reactor variability subject to the spatially-constant and spatially-varying

uncertainty descriptions detailed previously.

6.2.1 Statistical Data-Driven Model Determination and Assessment

The statistical data-driven modeling approach seeks to develop low-order DDMs to estimate the values
of key statistical parameters of the process output variability over a specified range of design and
operational parameters X. The DDMs are highly efficient and require substantially lower computational
costs compared to uncertainty propagation techniques such as PCE, which makes them ideal for process
improvement and robust optimization studies. However, DDMs are less accurate compared to the
aforementioned uncertainty propagation techniques which can limit their applications in systems that are
highly sensitive to X. In this work, DDMs are determined using output information gathered at discrete
operating points for each input design and operational parameter. This data is most readily determined using
low-order mathematical approaches such as PCE to propagate parametric uncertainty to the model outputs
Y. The DDM approach incorporated in this work was adapted from previous DDM algorithms in the
literature.2%13° The description below provides a general algorithm that can be used to compute DDMs for
an output parameter of interest y,, at a point (xm,,u,yow) over a given range of Q different design and

operational parameters labeled as x4, ..., Xq, ---» Xo-

1. Discretize the operational region for each input parameter x, into JV; equidistantly-spaced values

Xang separated by intervals of Ay, as follows:

Xq = [Xq,l' s Xamg ...,)(q,Nq] € R,

Xq,nq = {Xq,min + (’nq - 1)AXq|Xq,min < Xq,nq < Xqmax Mg = 1,2,.. 'Nq} (6-5)

Note that the accuracy of the data-driven models can be improved by increasing JV,; however, a large
Ny can significantly increase the computational costs. Thus, the minimum number of discretization
points for each input parameter x, needed to achieve sufficient DDM accuracy must be determined
a priori by analyzing how each of the model outputs i, are affected by x, and selecting the number

of points needed to adequately fit the data to a low-order model.
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2. Apply the PCE algorithm described previously to determine the variability in q;(xm,,u,yo,,,,,) with

respect to the uncertain parameters & at each combination of the input design and operational

parameters ()(ml,..., Xangr -+ )(QMQ). The PCE results can be used to determine the mean

H(wn(xov,uIYOv,v))’ the variance o2 (wn(xov,u,yov,v)), and the upper and lower bounds

Un® Koy Yovw) and PR (x,.Youp) at each combination of input parameters
X1y s Xqngy ...,)(QMQ). Note that the accuracy of the DDMs is directly proportional to the

accuracy of the PCE models used to generate the data points.

3. Based on the design and operational parameters values (i.e. the input) and the statistics of the output
variables (i.e. the outputs), select suitable models to correlate the statistical data determined in the
previous step to the input operational and design parameters
X1, - Xq» - Xo. The selection of suitable data-driven models is problem-specific and depends on

the correlation and sensitivity between the input-output information. Thus, a general model selection
procedure is not currently available; typically, model selection is mostly based from observations
and process experience.

4. Estimate the parameter values for the models selected in the previous step using model regression

techniques such as the least-squares approach.

Using this algorithm, low-order statistical DDMs were constructed to approximate key statistical
parameters of the output variability in the multiscale single-pore catalytic reactor model subject to
parametric uncertainty. The DDMs were determined as a function of the reactor temperature T, the fluid
velocity v, and the pore radius p, which were considered as the optimization parameters in this analysis.
The statistical data used to determine the DDMs were obtained using the PCE-based algorithm proposed in
Chapter 3 over an operational temperature range of 446K < T, < 486K, a fluid velocity range of 6mm/s <
V,, < 14mmis, and a range in the pore radius between 6nm < P, < 14nm. The input parameters to the
DDMs, i.e. T, v, and p, were discretized into N = 5 temperature values, JV,, = 3 fluid velocity values,
and WV, = 3 pore radius values. The number of discretization points was determined a priori to be the
lowest number of data points needed to adequately capture the reactor variability subject to each of these
design and operational parameters. Following the discretization, PCE was used to determine the mean,
u(Ce,oue), the variance, a%(Ce oye), the upper bound, C¢b,,, and the lower bound C2%,,, for each of the 45
possible combinations of 7, , v,, , and P, subject to each of the uncertainty descriptions presented in

Scenarios 1A-2B (Egs. (6-1)-(6-4)). The upper and lower bounds were generated at a confidence interval

of @ = 2%. The generated data was fit to suitable models of the following form:
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Z(CC,out) =f(T,v,p) (6'6)

Where Z (Cc_out) represents a key statistical parameter of the variability in C¢ ,,,¢. Further information
concerning the determination of the DDMs can be found in Appendix A. The coefficients of the DDMs

were determined using the least-squares approach to fit the PCE-generated data to T, v, , and Pn,, for

each of the uncertainty descriptions considered. The DDMs for the uncertainty descriptions used in
Scenarios 1A and 2A, Scenario 1B, and Scenario 2B required 50h, 100h, and 190h to compute respectively
using PCE. The model coefficients determined for each DDM are listed in Appendix A.

In order to assess the accuracy of the statistical DDM approach, the DDMs constructed subject to the
spatially-varying uncertainty conditions in Eq. (6-2) (Scenario 1B) were graphically assessed with respect
to the PCE-generated data points for each of the statistical parameters, as illustrated in Figure 6-4. This
figure demonstrates that the DDMs can fit the generated data quite well, as significant deviations were only
observable in the relationship between the variance and the reactor temperature. This is because the
relationship between o2 (CC,out) and T varies sporadically and there is consequently no clear-cut model
that can perfectly fit the variance data. Therefore, the temperature dependence of the variance was
approximated using a linear relationship, as presented in Appendix A, as this was determined to provide
the most accurate representation of the variance for all values of T. To demonstrate the performance of the
statistical DDMs, five randomly-generated combinations of T, v, and p were passed through the DDMs
constructed using the spatially-varying uncertainty PDF described in Scenario 1B. These results were
compared to those generated using PCE subject to the same uncertainty descriptions under the same
combinations of T, v, and p. Table 6-2 compares the results obtained from the DDMs and from the PCE
approximations for each of the five randomly-generated input parameter combinations. As these results
demonstrate, the DDMs are able to predict the catalytic flow reactor behaviour with sufficient accuracy
over the desired range of input parameters. Significant errors (>10%) were only observed in the variance,
however this was to be expected due to large deviations observed between the DDMs and the PCE model
with respect to this statistic. Similar comparisons were implemented to assess the performance of the DDMs
subject to the uncertainty descriptions in Scenarios 1A, 2A, and 2B. The results of these analyses are detailed

in Appendix A.
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Figure 6-4. Comparison of the DDMs for 11(Cc out ): 02(Ce out): Ce pyer @A Cfloye to the PCE-

generated data points with respect to: a) temperature and fluid velocity for various pore radii values,
b) temperature and pore radius for various fluid velocity values, and ¢) fluid velocity and pore radius
for various temperature values. The data points were generated at each combination of the reactor
temperature values T = [446, 456, 466, 476, 486] K, the fluid velocity values v = [6, 10, 14] mm/s,
and the pore radius values p = [6, 10, 14] nm.
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Table 6-2. Accuracy of the DDMs for for u(Cc our), 02(Ceout ), Cobyer and €24, compared to five

C,out’

randomly-generated sample points determined via PCE.

M(CC,out) 02 (CC,out) Cz,lz;ut Cé“z)ut

(mmol/L) | (mmol?/L?) | (mmol/L) | (mmol/L)

Point 1: T (K) 485.88 1.78781 0.02188 2.09602 1.42984
MC sampling y

10.500
PCE (mmfs) 1.79060 0.02318 2.11632 1.37263

p(m) | 10263 | ©.16%) | (5.95%) | (0.97%) | (4.00%)

Point 2: T (K) 447.82 0.99798 0.00871 1.17390 0.71213
MC sampling y

13.108
PCE (mm/s) 1.00657 0.00983 1.21028 0.72746

p(m) | 11532 | ©86%) | (129%) | (3.10%) | (2.15%)

Point 3: T (K) 467.89 2.33791 0.03778 2.67874 1.80561
MC sampling y

7.3199
PCE (mmfs) 2.33277 0.04040 2.72809 1.78492

p(m) | 10859 | ©22%) | (6.94%) | (1.84%) | (1.15%)

Point 4: T (K) 473.52 2.10901 0.03463 2.40456 1.63539
MC sampling y

7.6877
PCE (mmfs) 2.09779 0.03175 2.45158 1.61055

p(nm) | 11802 | ©53%) | (832%) | (1.96%) | (1.52%)

Point 5: T (K) 463.65 2.69515 0.04951 3.07983 2.09216
MC sampling v

8.7780
PCE (mmfs) 2.69109 0.05549 3.16913 2.04680

p(m) | 76514 | (0.15%) | (12.1%) | (2.90%) | (2.17%)
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6.2.2 Robust Optimization

In this section, the DDMs constructed in the previous section were implemented to perform robust
optimization on the single-pore catalytic reactor system. The optimization scheme sought to determine the
values of key design and operating parameters (i.e. the reactor temperature T, the fluid velocity v, and the
pore radius p) that improve the reactor performance subject to each of the parametric uncertainty
descriptions listed in Equations (6-1)-(6-4). This section considers two different optimization schemes. The
first optimization scenario, maxProd, aims to enhance the reactor performance by maximizing the expected
value of the outlet product concentration, M(CC,out)i in order to improve the anticipated yield of the product
species C. This scenario is meant to illustrate how the reactor performance can be optimized under nominal
circumstances. The second optimization scenario, minlmpact, seeks to minimize the impact of parametric
uncertainty on the reactor system in a two-fold approach. First, it aims to minimize the product variability
due to parametric uncertainty by decreasing the difference between the upper and lower bounds (i.e.

Ceb e — Clous). Secondly, this scenario aims to maximize the lower bound of the product outlet

concentration, C¢%,,, in order to maximize the reactor productivity under uncertainty. This scenario is
meant to illustrate how the effects of parametric uncertainty on the reactor performance can be minimized
while simultaneously aiming to maximize the reactor productivity. Note that these optimization scenarios
can be readily implemented subject to uncertainty in any of the remaining system parameters. Nevertheless,
each different uncertainty formulation will require the development of a new DDM model to determine the
key statistical parameters for the catalytic reactor behaviour. Such an approach can be computationally
costly to implement for a realistic scenario with multiple sources of uncertainty in each of the uncertain

parameters.

As stated previously, the first scenario (maxProd) aims to maximize the expected value of the catalytic

reactor model, as described in the following formulation:

max u(Ce,out)

Subject to:

Parametric Uncertainty, Equations (6-1)-(6-4)
DDMs, Equation (6-6)

Tmin < T < Thnax

Vimin SV < Vimax

Pmin < p < Pmax (6'7)
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In the formulation depicted above, the reactor performance was optimized with respect to the mean value
of the outlet product concentration, u(C¢ o,¢) While accounting for uncertainty in the kinetic parameters,
Eq 4 and E,., as detailed in Scenarios 1A-2B. The parameters were constrained by their minimum and
maximum values, where [Tpin, Tmax] = [446,486] K, [Vinin, Vinax] = [6, 14] mm/s, and [pin, Pmax] =
[6, 14] nm. The optimization problem was implemented for each of the uncertainty descriptions considered
in the Section 6.1, i.e. constant uncertainty in E; 4 (Scenario 1A, Equation (6-1)), spatially-varying
uncertainty in Eg 4 (Scenario 1B, Equation (6-2)), constant uncertainty in E; 4 and E, (Scenario 2A,
Equation (6-3)), and spatially-varying uncertainty in E; 4 and E,. (Scenario 2B, Equation (6-4)). DDMs
were constructed for each scenario by fitting PCE-generated statistical data for each uncertainty description
to the models presented in the Appendix A. A complete listing of the DDM coefficients for each scenario
can additionally be found in Appendix A.

The results of the optimization study for each uncertainty description are listed in Table 6-3.
Additionally, Figure 6-5 depicts the PDFs for the output variation in C¢ ., at the optimal conditions for

each of the uncertainty descriptions considered. Table 6-3 demonstrates that the optimal operating

== == Scenario 1A
= Scenario 18
Scenario 2A
Scenario 2B

CC:out (mmol/L)

Figure 6-5. Predicted reactor performance and uncertainty variation in the outlet product
concentration C¢ ., at the specific design and operating conditions that maximize the expected value
of C¢ our (MaxProd) subject to the following uncertainty distributions: a) Scenario 1A, b) Scenario 1B,

c) Scenario 2A, d) Scenario 2B
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Table 6-3. Optimization results: maxProd

Optimal u(Ccou) | oF (Ccout) Cléf,ut Cé‘%ut

Conditions (mmol/L) | (mmol?/L?) | (mmol/L) | (mmol/L)

Scenario 1A | T (K) 480.3 5.410922 0.7133601 | 6.827551 | 2.827122
v (mm/s) 6.0
p (nm) 6.0

Scenario 1B | T (K) 480.8 5.349082 | 0.18956324 | 6.202265 4.12735
v (mm/s) 6.0
p (nm) 6.0

Scenario 2A | T (K) 480.5 5.376998 | 1.19838621 | 7.428064 | 2.298057
v (mm/s) 6.0
p (nm) 6.0

Scenario 2B | T (K) 480.9 5.316916 | 0.27437001 | 6.442276 3.96698
v (mm/s) 6.0
p (nm) 6.0

conditions for all four uncertainty distributions occur at the slowest fluid velocities, the smallest pore radii,
and at moderately-high temperature values around 480 K. These results are in agreement with the findings
in Chapter 5. The results in Figure 6-5 and Table 6-3 additionally demonstrate the impact of spatially-
varying uncertainty descriptions on the catalytic reactor behaviour. Figure 6-5 illustrates that under the
optimal conditions, there are significant differences in the PDF shape when spatially-constant and spatially-
varying uncertainty descriptions are applied. Similarly, Table 6-3 shows that under optimal conditions, the
expected values, variances, and upper and lower bounds differ by 1.14%, 73.4%, 9.16%, and 46.0%
respectively between Scenario 1B and Scenario 1A. Similarly, the means, variances, and upper and lower
bounds differ by 1.11%, 77.1%, 13.3%, and 72.6% respectively between Scenario 2B and Scenario 2A
under the optimal conditions. These results demonstrate that spatially-varying parametric uncertainty can
have significant impact on the optimal reactor performance and must be accounted for in order to minimize

model-plant mismatch.

The second optimization scenario, minlmpact, aims to minimize the impact of parametric uncertainty

on the catalytic reactor model, as described previously. This is accomplished by maximizing the reactor
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productivity subject to parametric uncertainty while minimizing the variability in the outlet product

concentration. This robust optimization formulation can be expressed as follows:

mas{ACHS.. — (1= (Gl — CEi)

C,out

Subject to:
Parametric Uncertainty, Equations (6-1)-(6-4)
DDMs, Equation (6-6)

“(CC,out) = #*(Cc,out)
Tmin <T< Tmax
Vmin SV = Viax

Pmin < p < Pmax (6'8)

where H*(Cc,out) denotes the minimum acceptable mean value of the outlet product concentration,
Ccout» Which was set to y*(CC,(,ut) = 3mmol/L for this optimization formulation. Similarly, the

significance of the output variability and the lower bound on the reactor optimization is controlled through

the weight term, A, which was assigned a value of A4 = 0.25.

The optimization study results subject to each uncertainty distribution are listed in Table 6-4.
Furthermore, Figure 6-6 provides a graphical illustration of the variation in C¢ o, at the optimal conditions
for each of the uncertainty descriptions considered. The results in Figure 6-6 illustrates that under the
optimal conditions, there are significant differences in the PDF shape when spatially-constant and spatially-
varying uncertainty descriptions are applied. This is most notable in the graphical differences between the
PDFs for Scenario 1A and Scenario 1B, which exhibits the same distinct differences under optimal
conditions that were observed under nominal conditions as detailed in Section 6.1. The results in Table 6-
4 demonstrate that the optimal region occurs at moderate temperatures between T = 474K and T = 481K,
low fluid velocities between v = 6mm/s and v = 9mm/s, and intermediate pore radius sizes between p =
7nm and p = 11nm. The optimal results for the spatially-varying uncertainty distributions (Scenario 1B
and Scenario 2B) can be found at higher temperatures, lower fluid velocities, and larger pore radii than the
optimal results for their constant uncertainty counterparts (Scenario 1A and Scenario 2A). In addition, the
results in Table 6-4 indicate that the reactor output variability for the spatially-varying uncertainty
descriptions are smaller than those observed for spatially-constant uncertainty profiles under optimal

conditions. In particular, there is a 0.003% decrease, 73.3% decrease, 8.35% decrease, and 37.7% increase
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Table 6-4. Optimization results: minimpact

Optimal (Ccour) | 0%(Ceour) Cléf,ut Ceut
Conditions (mmol/L) | (mmol?/L?) | (mmol/L) | (mmol/L)
Scenario 1A | T (K) 474.30 3.000192 0.235622 | 3.789694 1.6826
v (mm/s) 8.68
p (nm) 7.44
Scenario 1B | T (K) 475.00 3.000113 0.06295 3.473385 | 2.316576
v (mm/s) 6.00
p (nm) 10.64
Scenario 2A | T (K) 480.20 3.000809 0.381307 | 4.113448 | 1.313281
v (mm/s) 6.52
p (nm) 9.88
Scenario 2B | T (K) 481.70 3.00216 0.09045 3.63878 2.23217
v (mm/s) 6.00
p (nm) 10.64

in the expected value, variance, and upper and lower bounds respectively between the results for Scenario
1B and Scenario 1A. Similarly, the optimal statistical parameters for Scenario 2A and Scenario 2B differ
by 0.045%, 76.3%, 11.5%, and 70.0% respectively. In total, approximately 7.7s were needed to run each
robust optimization scenario for each of the uncertainty descriptions considered in this work. However, the
computational costs to determine a single optimization operating point using PCE is orders of magnitude
higher (1.20h, 2.39h, 1.19h, and 4.18h for Scenarios 1A, 1B, 2A, and 2B, respectively), and consequently
the computational cost to perform robust optimization using PCE would be several orders of magnitude
larger (approximately 5 orders of magnitude larger for the reactor system considered in this work) than the
cost for robust optimization using the DDMSs, hence the significance and motivation to develop DDMs in

the present analysis.
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Figure 6-6. Predicted reactor performance and uncertainty variation in the outlet product
concentration C¢ o, at the specific design and operating conditions that minimize the impact of
parametric uncertainty on C¢ o, (Minlmpact) subject to the following uncertainty distributions:

a) Scenario 1A, b) Scenario 1B, ¢) Scenario 2A, d) Scenario 2B

6.3 Summary

The objective of this chapter was to perform robust optimization on a multiscale catalytic flow reactor
system that was subject to an unknown degree of catalyst deactivation due to poisoning and fouling. The
effects of the poisoning and fouling mechanisms on the catalytic reactor performance were captured by
assigning parametric uncertainty to key catalytic parameters (activation energies of desorption for species
A, E; 4 and reaction, E;) in order to approximate the effects of catalytic deactivation on the reactor
performance. In catalytic flow reactor systems, the rates of poisoning and fouling differ along the reactor
length due to variation in the fluid species concentrations. The spatial variation in the catalytic deactivation
processes was captured by assigning unique uncertainty descriptions to each of the key catalytic parameters

at each tooth in the multiscale catalytic reactor model.

In this chapter, PCE expressions were constructed to efficiently propagate the catalytic parametric
uncertainty through the multiscale reactor model. These formulations were used to perform uncertainty

analysis on the multiscale reactor and to compare the effects of spatially-varying uncertainty due to catalyst
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deactivation against spatially-uniform uncertainty descriptions. These results revealed that spatially-
varying uncertainty has a substantial impact on the shape and the statistical parameters of the output
variability. Subsequently, the spatially-varying uncertainty descriptions were implemented into a robust
optimization formulation designed to maximize the productivity and minimize the impact of variability on
the catalytic reactor system. In order to minimize the computational burden of calculating a PCE model
with a large number of uncertainty realizations for each of the operating conditions considered in the
optimization study, low-order statistical DDMs were developed to efficiently calculate the key statistics of
the output variability over a range of values in the operating parameters. These DDMs enabled the robust
optimization to perform orders of magnitude faster than if PCE had been used. The results from this study
show that spatially-varying parametric uncertainty can have significant impact on the reactor productivity,
and therefore, if it is not taken into consideration, can result in significant deviations in optimization studies.
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Chapter 7
Distributional Uncertainty Analysis and Dynamic
Optimization in Transient Multiscale Catalytic Reactors*

The development and implementation of steady-state multiscale catalytic reactor models in the studies
described in Chapters 5 and 6 were motivated by the fact that the operation of catalytic reactor systems is
typically done under continuous conditions. These models provide efficient descriptions of the catalytic
reactor performance through negligence of the transient reactor behaviour. Catalytic flow reactors,
however, are time-dependent processes that are sensitive to dynamic variations in the system. The
characteristics of a catalytic reaction mechanism can vary significantly between the initial system behaviour
and the system behaviour at steady state.’** In addition, model-based dynamic optimization and control
studies require transient models that can capture the dynamic system behaviour subject to changes in the
operating parameters. Therefore, it is necessary to evaluate the transient behaviour of the multiscale

catalytic reactor system subject to dynamic system changes in addition to parametric uncertainty.

The objective of this chapter is to implement the transient multiscale single-pore reactor model described
in Chapter 3 in order to perform dynamic analysis on the catalytic flow reactor system. To that extent, PSE
is used to perform uncertainty analysis on the transient multiscale catalytic reactor model. This analysis is
extended to observe the behaviour of the uncertain multiscale reactor model subject to dynamic changes in
the system temperature. Furthermore, PCE is implemented to perform a pair of dynamic optimization
studies designed to enhance the reactor productivity subject to parametric uncertainty. In the first study,
dynamic optimization is applied to determine the optimal temperature profiles that maximize the reactor
performance under uncertainty; while the second study seeks the optimal design and operating policies to

achieve targeted performance specifications within a level of confidence subject to uncertainty.

This chapter is organized as follows. In Section 7.1, uncertainty analysis is performed in order to assess
the spatial and temporal effects of parametric uncertainty in key system parameters on the transient
multiscale catalytic reactor model. This section additionally considers the response of the multiscale
catalytic reactor system under uncertainty subject to transient changes in the reactor temperature. Section
7.2 then presents the two different dynamic optimization case studies that were performed on the transient

reactor system.

* The contents of the first half of this chapter have been previously presented at the 11" IFAC Symposion of
Dynamics and Control of Process Systems, including Biosystems (DY COPS-CAB 2016),%" and the contents of the
second half of this chapter has been accepted for publication by the Journal of Process Control (JPC).2
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7.1 Spatial and Transient Uncertainty Analysis using Power Series

Expansions

The behaviour of a catalytic reactor system at steady state can differ significantly from the initial reactor
behaviour. Thus, it is important to study the effects of parametric uncertainty on the catalytic reactor system
as a function of time and space in order to understand its transient effects on the reactor performance. For
this analysis, uncertainty was propagated through the multiscale catalytic reactor model using the PSE
approach described in Chapter 4. Uncertainty was applied to key kinetic parameters kg 5, E; 5, and E,. as
well as to the axial fluid velocity, v. These uncertainties were assigned normal distributions with the

following mean (nominal) values:
[1(kep) u(Eq ), u(E), u(v)] = [1; 100; 57; 0.01] (7-1)
The covariance matrix for these parameters is as follows:

02 (ka,A' Ed,A' ET' U.) =

0.04 0.002 0.002 0
0.002 16  2.5992 0 (7-2)
0.002 2.5992 5.1984 0

0 0 0 4x107°

Second-order PSEs were used to propagate the parametric uncertainty into the concentrations of product
species C at multiple points both in time and along the spatial domains in the reactor. Preliminary
simulations showed that this order in the PSE approximation is suitable to capture the uncertain effects
considered in this analysis. Finite difference approximations were used to determine the sensitivities
J(x,y,t) and M(x, y,t) for the PSE models using averaged results obtained from multiple independent
simulations of the primary multiscale reactor model using a 30x30 kMC lattice size. For this analysis, the
catalyst surface domain was subdivided by the gap-tooth method into eight equidistantly-spaced teeth;
increasing the number of teeth in the model discretization did not significantly improve the accuracy in the
results. The probabilistic bounds for the variation in the concentration of species C were generated from the
PSE models at a confidence interval of @ = 0.27%, which corresponds to the bounds of the third standard

deviation for a normal PDF.
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7.1.1 Uncertainty Analysis at Constant Temperature

The effects of parameter uncertainty were analysed for the single-pore catalytic flow reactor at a
temperature of T = 425K. The time-dependent reactor performance was evaluated through the product
(species C) concentration at the pore outlet C¢ ,,,¢(t) for a total batch time of tf;,,, = 8s subdivided into
eight different time intervals spaced 1s apart (i.e. U =1, V =1, and W = 8 in the PSE algorithm).
Furthermore, the product concentration was assessed along the catalyst surface at tf;y,4; as a function of the
axial length, i.e. Cc(x, p,8), where (i.e. U =101, V =1, and W = 1 in the PSE algorithm). Figure 7-1
shows the time-dependent PSE-based probabilistic bounds for C¢ . (t) evaluated at a confidence interval
of a = 0.27%. This result shows that the concentration of species C rapidly increases at the beginning of
the reaction before slowing down and reaching steady-state at around 4s. Additionally, the deviation
between the upper and lower probabilistic bounds demonstrates the significant effect of parametric
uncertainty on the overall reactor performance, as the product concentration varies from 0.4mmol/L to
3.5mmol/L at steady-state. Figure 7-1 also shows the concentration profiles for 500 random MC simulations
sampled from the uncertain parameter distributions, as well as the nominal parameter concentration profile,
using the primary multiscale model. As demonstrated, the PSE-based bounds at a = 0.27% are able to

adequately envelop the variation in product concentrations that exist as a result of parameter uncertainty.

. mm == Seocond Order PSE
— MC Sampling
===== Nominal Parameters

Ce puit) (MmoOIAL)

Figure 7-1. Bounds on the concentration of species C, C. ,,,:(t), estimated from second-order PSEs.
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This shows that, when compared to the primary reactor model, the second-order PSE is capable of providing
sufficiently accurate bounds. The uncertainty analysis using 500 MC simulations of the primary model
required approximately 790s of CPU time. Following the determination of the PSE model, the PSE
simulation required 2s to compute the bounds; thus, demonstrating its superiority over the standard MC

sampling method using the primary model.

Figure 7-2 presents the PSE-based probabilistic bounds for the axial concentration profiles of product C
along the catalyst surface at the final batch time. This figure also shows the concentration profiles for 500
random MC simulations sampled from the uncertain parameter distributions in addition to the nominal
parameter concentration profile. As demonstrated in the plot, the concentration profiles are adequately
covered by the PSE-based probabilistic bounds similar to Figure 7-1. By inspecting the temporal and spatial
evolution of product C from Figures 7-1 and 7-2 using only nominal (mean) values in the uncertain
parameters (red dotted lines in the Figures), it is clear that parameter uncertainty has a nonlinear effect on
this output. This is expected due to the Arrhenius relationship between the rates of desorption/reaction and
the uncertain activation energies. Fig. 7-2 also demonstrates the propagation of the effects of parametric
uncertainty along the reactor length, which results in substantially wider variation of the product

451
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Figure 7-2. Bounds on the concentration of species C, C.(x, p, 8), estimated from second-order PSEs.
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concentration at the pore outlet than at the pore inlet. Fig. 7-1 demonstrates a similar trend, where the effects

of uncertainty result in significantly wider variation in concentrations of product C.

7.1.2 Uncertainty Analysis using Step Changes in Temperature

The aim of this section is to analyse the effect of temperature changes on the present catalyst reactor
multiscale model. Accordingly, uncertainty analysis was performed on a single-pore catalytic flow reactor
under step changes in temperature. Note that due to the absence of the heat transport equation, the catalytic
reaction model would not be able to account for the thermal lag that would occur when the temperature was
changed. Consequently, changes in the system temperature were only considered along the catalyst surface,
such that the fluid phase of the catalytic reactor could be assumed isothermal. This assumption was made
in order to reduce the computational cost of the optimization. The temperature was initialized at T = 425K;
at times t =8s and t = 17s, the reactor temperature was changed to T = 375K and T = 475K,
respectively. Note that the large change in temperature was utilized for the purpose of illustrating the effects
on the output concentration; however, smaller temperature changes would be expected to occur during
normal operation. The temperature changes were implemented once the reactor had reached steady-state.

The reactor’s performance under these changes was evaluated every second for a total batch time of tf,q; =

30s, therefore U = 1,V = 1, and W = 30 in the PSE algorithm.

Figure 7-3 presents the PSE-based probabilistic bounds evaluated at &« = 0.27% for the concentration
of species C at the reactor outlet as a function of time. As expected, the variation in the concentration due
to parametric uncertainty is directly correlated to the quantity of species C produced in the reactor, i.e. wider
variability is observed when large amounts of product C are produced and vice-versa. Furthermore, the
concentration of the product increases in a nonlinear fashion for higher reactor temperatures, which can be
attributed to its role in the Arrhenius expressions in the rates of desorption and reaction. Note that when the
temperature is raised, there is an initial substantial increase in the product concentration, followed by a
decrease to a new steady-state value. In order to investigate this behaviour, the quantity of surface reactant
ensembles was examined for each KMC surface lattice at three different intervals: before, during, and after
the temperature increase. Before the temperature increase (i.e. at T = 375K), the rate of reaction is relatively
small, and as a consequence, there are a large number of possible surface reactant ensembles available.
When the temperature is increased (i.e. from 375K to 475K), the rate of reaction increases accordingly, and
due to the large number of surface reactant ensembles, the rate of production of species C increases
substantially. The number of surface reactant ensembles is quickly diminished due to the high reaction
rates, reducing the production of species C until the reactor attains the new steady-state. The opposite

behaviour was observed when the temperature is decreased. Figure 7-3 also shows the concentration
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Figure 7-3. Bounds on the concentration of species C, C¢ o, (t), estimated from second-order PSE.

profiles for 500 random MC simulations sampled from the uncertain parameter distributions, as well as the
nominal parameter concentration profile, using the primary model. This uncertainty propagation approach
required a CPU time of 3,600s whereas the PSE bounds were computed in significantly less time, requiring
only 6s of CPU time. As shown in Figure 7-3, the PSE bounds are able to cover the variation in the MC
sampling concentration profiles. Note that the concentration profiles are shifted substantially closer to the

upper bound, demonstrating the nonlinearity of the system.

Figure 7-4 displays the PSE-based PDFs for the effects of parametric uncertainty on the axial
concentration profiles for product C at different time intervals, i.e. Cc(x, p, tss). Here, tgs € {6s,15s,30s}
corresponds to steady state batch times for temperatures T = 425K, T = 375K, and T = 475K,
respectively. For this analysis, U = 8, V = 1, and W = 3 in the PSE algorithm. As shown in this figure,
the effects of uncertainty propagate along the axial reactor length as the product concentration increases.
Furthermore, the distributions in the output are notably different for the different axial lengths and

temperatures considered; in addition, the PDFs become wider as more species C is produced.
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Figure 7-4. PDF of the axial concentration profiles for species C, Cq(x, p, tss).

7.2 Dynamic Optimization Studies

The behaviour of the single-pore catalytic flow reactor is subject to a number of design and operational
parameters that can be adjusted a priori or online respectively in order to improve reactor’s performance.
The aim of this section is to present a set of dynamic optimization studies that illustrate the benefits of
implementing suitable operating policies and proper selection of design parameters for improvement of
spatially-dependent multiscale systems under uncertainty. For both case studies, second-order PCE was
implemented to propagate uncertainty to the reactor outlet product concentrations. Uncertainty was
considered in the activation energy of desorption for species 4, E; 4) and the pore radius, p. The uncertainty
in the activation energy, E; 4, was assumed to vary along the reactor length due to catalyst deactivation
from poisoning and fouling. Subsequently, unique uncertainty profiles were applied to E; 4 at each tooth
considered in the gap-tooth model. For these case studies, the reactor was sub-divided into seven teeth
(Nteetn = 7), therefore I =7 and J = 1 for the PCE model. The uncertainty was assumed to remain
constant as a function of time, and consequently K = 1. For both case studies, the uncertainty in each
parameter was assumed normally-distributed as described in Equation (4-15) of Chapter 4. The dynamic

optimization case studies are described below.
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7.2.1 Case Study 1: Optimal Operating Policies

The performance of a catalytic reactor is significantly affected by the temperature changes imposed on
the reactor system. Thus, adjusting this variable on-line can result in attractive operating policies that can
maximize reactor productivity. In addition, product variability due to parametric uncertainty needs to be
considered to produce robust operating strategies that can account for this phenomena. The aim of this case
study is to perform dynamic optimization on the single-pore catalytic flow reactor model to search for the
temperature profile that enhances reactor productivity while accounting for uncertainty in the multiscale
model parameters. The dynamic optimization formulation proposed in this work to identify the optimal
temperature profiles is as follows:

max 1 (Cc.out (trinat))

s.t.

Multiscale model, Egs. (3-1)-(3-24)
Uncertain parameter descriptions, Eq. (4-15)
PCE model, Eq. (4-14)

Tmin < T < Thax

T = [T(Aty), ..., T(NpAtr)]

t € [0,Aty, 2Aty, 3Atr, ... Np Aty ]

trinat = NrAty (7-3)

As shown above, parametric uncertainty was propagated in the activation energy of desorption for
species A as a function of the axial length (E; 4 (x4, p)) @and in the pore radius (p) using the uncertainty
descriptions shown in Eq. (4-15). Thus, a set of eight uncertainty descriptions were considered in this
analysis (seven uncertainty descriptions for E; 4(x,4, p) and one uncertainty description for p). The

reactor performance was evaluated solely through the expected outlet concentration of product species C,
U (CC,out(tfinal))s after a total reaction time of tf;,,; = 12s. The temperature was allowed to vary at time

intervals of Aty = 3s. For consistency and for the sake of comparison between the different temperature
profiles implemented, the reactor temperature was set at the nominal value T = 460K for 3s so that the
system would be initialized from the same operating condition before the temperature was allowed to vary.
Note that varying the initial reactor temperature would provide meaningful information on the effects of

the initial temperature on the reactor behaviour, however this is beyond the scope of this work.
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Subsequently, the system temperature was allowed to change three different times for each scenario for a
total reaction time of t;,5, = 12s, thus for this analysis, N = 4 in Eq. (7-3). Increasing the total reaction
time did not improve the results significantly but rather produced unnecessary additional computational
costs. In addition, the temperature was constrained between upper and lower bounds of T,,, = 480K and
Tmin = 440K, respectively. The results obtained from the dynamic optimization formulation in Eq. (7-3)
were contrasted with the reactor performance under a constant temperature profile of T = 460K
(constTemp). In order to reduce the computational burden associated with dynamic optimization schemes
applied to multiscale systems, the PCE scheme discussed in Chapter 4 was applied for uncertainty
guantification as depicted in Eq. (7-3). That is, for each temperature profile tested by the dynamic
optimization algorithm, a second-order PCE model was developed and implemented to evaluate

U (Caout(tﬁnal)). Additionally, the temperature was limited to a discrete number of temperature values
between T,,,;,, and T, 4, t0 further decrease the computational costs.

Table 7-1 compares the statistical properties and probabilistic bounds evaluated at @ = 2% confidence
between a constant temperature profile (constTemp) and the optimal temperature profile (meanConc)
obtained from the solution of Eq. (7-3). The actual temperature profile obtained from the dynamic

Table 7-1. Case Study 1: Results

Scenarios | Temperature | i (ce o (trimar)) | 02 (Coout(trmar)) | Cooue(trinat) | Ceoue(trinar)
Profile (mM) (mM?) (mM) (mM)

Constant T = 460K 2.0483 0.2442 3.6223 1.2654
Temperature
(constTemp)
Maximum T = 460K 2.0839 0.2202 3.4578 1.3029
Temperature - 480K
(maxTemp)
Dynamic T = 460K 2.1217 0.2697 3.8859 1.3476
Optimization - 480K
(meanConc) - 440K

- 480K
Dynamic T = 460K 1.7473 0.1493 2.9071 1.1207
Optimization - 440K
(minVar) - 460K

- 440K
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optimization problem presented in Eq. (7-3) is also described in Table 7-1. Additionally, the uncertainty
effects on the outlet product concentration as determined through PCE and MC sampling over 5,000 points
are shown in Figure 7-5a and 7-5b using the meanConc and constTemp temperature profiles, respectively.
As shown in these panels, PCE is capable of accurately capturing the outlet variation due to uncertainty
using a constant or a time-dependent temperature profile. As illustrated by the results in Table 7-1, the
temperature profile that needs to be implemented on-line to maximize the expected product concentration
alternates between the highest and the lowest temperature values (T = 480K and T = 440K, respectively),
ending on the maximum temperature of T = 480K. It is expected that up to a certain temperature value,
higher reactor temperatures would produce higher product concentrations, as discussed in Chapter 5. Note
that the optimal temperature profile invokes on-line changes in temperature, which implies that transient
temperature profiles can provide improved results over a static temperature profile. To validate this
observation, Table 7-1 includes the statistical parameters obtained when the reactor temperature profile was
held constant at the maximum temperature, T = 480K (maxTemp). Figure 7-5c¢ illustrates the variation in
the outlet product concentration due to uncertainty for the maxTemp condition, which demonstrates that
PCE is able to capture the output response under uncertainty with reasonable accuracy. Furthermore, Figure
7-6 compares the PDFs obtained from the constTemp, maxTemp, and meanConc temperature profiles as
well as their expected values and probabilistic bounds (@ = 2%). As shown in Table 7-1 and Figure 7-6,

a) b) 1
I MC Sampling I MC Sampling
0.8 _PCE 0ar _PCE
0.6F 06
0.4 0.4t
0.2F 0.2
0 0
0 1 2 3 4 5 ] 8 0 1 2 3 4 5 i} 8
CC,out(tﬂnaI) (mmol/L) Ce ouilting) (mmoliL)
d) 141
I MC Sampling Ll I MC Sampling
—PCE —PCE
0 1 2 3 4 5 G 8 ] 1 2 3 4 5 i} 8
Cc oullfna) (MMOIL) Co outlting) (MMOIL)

Figure 7-5. PDFs of the concentration of species C at the reactor outlet (x = L,y = 0), trinq = 12s:

for (a) meanConc; (b) constTemp; (c) maxTemp; and (d) minVariate.
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Figure 7-6. PDFs and probabilistic bounds of the concentration of species C at the reactor outlet

(x =L,y = 0) at tfyq = 12s for meanConc (red), constTemp (blue), and maxTemp (green).

the meanConc temperature profile offers improvements in the expected value of the outlet product
concentration over the static temperature profiles. Specifically, there is a 4% increase in the expected
concentration of product C over the nominal profile (T = 460K), and a 2% increase over the static high-
temperature profile (T = 480K). Table 7-1 and Figure 7-6 reveal that the differences are most noticeable
in the upper bounds, where the meanConc profile provides a 7% increase over the constTemp profile, and
a 12% increase over the maxTemp profile. These results demonstrate that the productivity of the single-
pore catalytic flow reactor can be optimized by performing on-line adjustments of the system temperature

while taking parameter uncertainty into account.

To properly explain the benefits of performing on-line temperature adjustments on the reactor
production rates, it is necessary to understand the impact of the changing temperature on the catalyst kinetic
behaviour. In the previous section, it was observed that when the temperature is altered, there is a sharp
change in the reactor concentration before the system returns to its new steady state. These sharp changes
are due to the state of the catalyst surface under the various temperatures. Although this initial spike in
concentration does reduce as the catalyst surface approaches the new steady state, the rate of reaction
following the temperature change remains larger than the rate of reaction from a constant temperature
profile if the system was initialized at the same temperature. The opposite behaviour is observed when the
temperature is lowered. This analysis demonstrates that toggling the system temperature to a lower value

will populate the catalyst surface with a larger number of surface reactant ensembles, which results in an
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overall increase in the rate of production once the temperature is raised once again. The results in Table 7-
1 also indicate that higher expected product concentrations are paired with larger product variability due to
uncertainty. For instance, the outlet product concentration of the reactor under meanConc conditions has a
10% larger variance than the outlet product concentration of the reactor under the constTemp profile, as
illustrated in Table 7-1. To further explore this behaviour, an additional dynamic optimization study was
performed to determine the temperature profile that minimizes the variability in the product concentrations,
and therefore decreases the impact of parametric uncertainty on the reactor productivity. This optimization
problem is as follows:

: 2
rTnel'{‘l o (CC,out (tfinal))

S.t.

Multiscale model, Egs. (3-1)-(3-24)
Uncertain parameter descriptions, Eq. (4-15)
PCE model, Eq. (4-14)

Tin < T < Toax

T = [T(Aty), ..., T(NpAtr)]

t € [0,Aty, 2At 7, 3Aty, ... Np Aty ]

trinar = NpAtr (7-4)

For the formulation proposed above, the catalytic reactor model was subjected to the same parametric
uncertainty descriptions and specifications considered in the problem presented in Eg. (7-3). The results for
this dynamic optimization problem (minVar) have been compiled in Table 7-1 and the variation in the outlet
product concentration is illustrated in Figure 7-5d. As shown in Table 7-1 (minVar), minimal variation in
the product concentrations due to uncertainty can be achieved by implementing the lowest possible
temperature, raising it, and then lowering it to the lowest value once again. Implementation of this
temperature profile produced a 39% decrease in the variation of the outlet product concentration over the
ConstTemp results and a 45% decrease in the variation of the outlet product concentration over the
meanConc results, as shown in Table 7-1. Additionally, implementing the minVar temperature profile
results in an 18% decrease in the expected value of the outlet product concentration as compared to the
meanConc results. These results reflect that the effects of uncertainty are minimized when the outlet product
concentration is minimized. Additionally, they confirm that decreasing the reactor temperature produces a

net decrease in the expected product concentration, therefore producing minimal variance. Additional
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optimization formulations that weights the mean and variance in the output concentration can be
implemented similar to the steady-state case studies implemented in Chapters 5 and 6, but they were not

implemented on the transient multiscale model for brevity.

7.2.2 Case Study 2: Optimal design and operating policies

The production of chemical species within a catalytic flow reactor requires precise on-line control of the
fine-scale events to attain desired product specifications. Additionally, the reactor design is also relevant to
ensure that the reactor is capable of achieving targeted product concentrations. The aim of this case study
is to illustrate the benefits of performing simultaneous design and on-line control for a multiscale system
under uncertainty. In particular, this case study aims to simultaneously identify the optimal design
parameter and operating policies on the catalytic reactor multiscale system that complies with a product
target concentration under uncertainty. The problem under consideration can be stated as follows:

7g‘rel%nL Length (L)

S.t.

Céout(trinat) = Céout

Multiscale model, Egs. (3-1)-(3-24)
Uncertain parameter descriptions, Eq. (4-15)
PCE model, Eq. (4-14)

Tmin < T < Thax

T = [T(Aty), ..., T(NpAtr)]

t € [0,Aty, 2Atr, 3Aty, ... Np Aty ]

trinal = NrAty (7-5)

where C&%,,; (tinar) is determined at 99% confidence (a = 2% such that P(C¢ oyt = Cfout) = 0.99)
and C¢ ., denotes the targeted set point for the outlet product species concentration. As shown in Eq. (7-
5), the dynamic performance of the reactor was realized through on-line adjustments of the reactor
temperature at specific time points akin to the previous case study. Additionally, reactor design was
simultaneously performed by searching for the optimal pore length L to use during reactor assembly. As in

the previous case study, the variation in temperature was limited to discrete intervals between T,,,;;, = 440K
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and T4, = 480K and the temperature was allowed to change every Aty = 3s for a total reaction time of
tring = 12s (thus Ny =4 in Eq. (7-5) for this analysis). Additionally, the uncertainty descriptions
considered in this case study are the same as those considered previously (Section 7.2.1) and were similarly
propagated using second-order PCE. Note that the uncertainty in E; 4 was still considered to vary axially
at each of the seven teeth implemented in the gap-tooth model, and that the number of teeth was not changed
for the differing reactor pore lengths. Alternatively, the gap spacing was modified so that the seven teeth

remained equidistantly spaced and yet still spanned the entire length of the reactor pore.

The present case study considers two different scenarios with set points of C¢,,, = 1.3mmol/L
(scenario 1) and C¢ o, = 2.7mmol/L (scenario 2), respectively. The optimal temperature profiles and pore
lengths obtained for each scenario are presented in Table 7-2. The table also lists the statistical parameters
for both scenarios, i.e. mean, variance, and bounds at a 2% confidence level. In addition, the red circles (0)
in Figure 7-7a and Figure 7-7b compare the variation in the product concentration over 100 random
realizations of the multiscale model using the optimal design and operating policies obtained for scenario
1 (s1_Opt) and scenario 2 (s2_Opt), respectively. As shown in Figure 7-7, the identified conditions for both
scenarios only violate their respective set points one time out of 100, which validates the specifications
outlined in the dynamic optimization problem. To further investigate the advantages of the simultaneous

Table 7-2. Case Study 2: Results

Scenarios | Temperature | Pore | u(Ceou(trina)) | 0% (Cooue(tymar)) | Coou(trmat) | Cloue(Erimar)
Profile Length (mmol/L) (mmol/L2/L?) (mmol/L) (mmol/L)

sl_Opt T = 460K 1um 2.1043 0.2370 3.5367 1.2974
(Cooue =13 | 7 400K
mMm) - 440K

- 480K
s1_constT T = 460K 1um 2.0541 0.2367 3.4890 1.2220
(Ceour =13 | 480K
mM)
s2_Opt T = 460K 2 um 4.2064 1.0742 7.5002 2.6824
(Ceout = 2.7 440K
mM) - 460K

- 480K
s2_constT T = 460K 2 um 4.1879 1.0026 7.2534 2.4940
(Ceout = 2.7 — 480K
mM)
nomParams T = 460K 1um 2.0483 0.2442 3.6223 1.2654
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Figure 7-7. Validation of the reactor outlet product concentrations C due to parametric uncertainty:
(@) Scenario 1 (C¢ oy = 1.3 mM); (b) Scenario 2 (C¢ 4y = 2.7 mM). 0: s1_Opt, s2_Opt; x:

sl constT, s2_constT; +: nomParams.

design and on-line control approach, the behaviour of the reactor was tested under a constant temperature
profile T = 480K using the pore lengths determined from the results of s1_Opt and s2_Opt. That is, for the
first and second scenario under constant temperature (s1_constT and s2_constT), the reactor’s length (L)
was set to 1 um and 2 um, respectively, as shown in Table 7-2. Additionally, the reactor behaviour was
investigated under the nominal conditions reported in Table 3-1 (nomParams). As shown in Figure 7-7a
and Figure 7-7b, the s1_constT and s2_constT results violate the set points two times out of 100 on average.
In contrast, the nomParams results violate the set points 2% of the time for scenario 1, and 92% of the time
for scenario 2. Table 7-2 shows a 6% smaller lower bound (Céﬁ’,ut(tﬂnm)) between s1_opt and s1_constT
as well as an 8% smaller lower bound between s2_opt and s2_constT. The lower bounds obtained from
s1_Optand s2_Opt furthermore differ by 3% and 112% respectively from the lower bounds obtained in the
nomParams scenario. These results further demonstrate the benefits of searching for an optimal design and

temperature profile scheme for process improvement.

7.3 Summary

This chapter explored the effects of parametric uncertainty on the transient behaviour of the catalytic

reactor system and implemented these effects into dynamic optimization studies. To that extent, uncertainty
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analysis was performed on the dynamic multiscale catalytic flow reactor model using PSE to propagate key
system parameter uncertainty to the model outputs as a function of time and space. These results illustrated
that uncertainty has a substantial effect on the predicted reactor behaviour as it evolves in time and in space.
The uncertainty analysis was further extended to analyze the uncertainty impact on the reactor performance
subject to transient changes in the local temperature along the catalyst surface. In addition to re-enforcing
that parametric uncertainty can have substantial effects on the system behaviour, these results provided
insight into the catalytic reactor performance under changes in the system temperature. Subsequently, the
transient multiscale reactor was implemented into dynamic optimization formulations that sought to
identify the optimal reactor design and operating policies that maximize the reactor performance subject to
uncertainty. For these optimization studies, PCE was used to propagate spatially-varying parametric
uncertainty through the transient reactor system. The first study aimed to identify the optimal temperature
trajectory that would maximize the product concentration of the reactor system under uncertainty, while
the second study aimed to simultaneously identify optimal operating policies and reactor design conditions
that allow the reactor to meet targeted performance criterion within a certain degree of certainty. These
studies revealed that by alternating the temperature profile between high and low temperature values, it was
possible to improve the yield of the catalytic reactor system, thus illustrating how transient operational
strategies can improve the reactor performance over steady-state based analyses. These studies additionally
illustrated how the use of uncertainty implementation techniques such as PCE can be used to overcome

reactor performance loss due to uncertainty.
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Chapter 8
Conclusions and Recommendations

Catalytic reactor systems play a crucial role in the majority of industrial chemical production processes.
This has motivated the need for robust optimization schemes to maximize the catalytic reactor productivity.
These optimization processes are most readily implemented using model-based approaches, whose
performances are regrettably limited by parametric uncertainty and model-plant mismatch. The objective
of this research was to study the impact of parametric uncertainty on a multiscale catalytic flow reactor
model and to subsequently implement uncertainty propagation techniques to perform efficient reactor
optimization. The behaviour of the catalytic reactor system was captured using multiscale modeling
approaches that combined continuum transport equations with kinetic models such as lattice-based kMC
that simulate each of the reactor phenomena on the relevant scales on which they occur. In order to reduce
the computational costs, low-order PSE and PCE series expansions were developed to efficiently propagate
parametric uncertainty through the multiscale catalytic reactor model. These models were used to capture
the variability and determine the key statistical parameters in the reactor system outputs that result from

uncertainty in the system parameters.

8.1 Conclusions

Catalytic flow reactor models contain numerous physical and kinetic parameters subject to uncertainty
due to difficulties in measuring their values from experimental results. These parametric uncertainties can
cause substantial deviations between the predicted outputs of the reactor models and the practical reactor
behaviour. As a result, it is crucial to study the impact of uncertainty in the system parameters on the
catalytic reactor performance and to accommodate for uncertainty when performing model-based
optimization and process improvement studies. In Chapter 5, a rigorous uncertainty analysis was performed
in order to analyze the effects of uncertainty in a wide selection of key system parameters on the behaviour
of the multiscale single-pore reactor model. This study analyzed the impact of accounting for uncertainty
in an increasing number of system parameters as it affects the variability in the output species concentrations
of the catalytic reactor system. The results of these analyses emphasized that uncertainty has significant
effects on the catalytic reactor behaviour. Furthermore, they illustrated how parametric uncertainty
propagates in space through flow-style reactor systems. The need to accommodate for all uncertain
parameters in model-based reactor studies was illustrated by the continued significance of uncertainty as

the number of uncertain parameters was increased.
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It can be computationally challenging, however, to propagate uncertainty through each uncertain system
parameter when performing optimization and process improvement studies. Consequently, the results of
the uncertainty analyses in Chapter 5 can be used to identify the key uncertain system parameters that have
the largest impact on the output variability. These uncertainty descriptions were subsequently implemented
into a robust optimization formulation that sought to maximize the catalytic reactor performance subject to
uncertainty in the most sensitive key system parameters. The results from the robust optimization studies
demonstrated that taking parametric uncertainty into account can substantially impact the operating
conditions that produce the most optimal catalytic reactor performance. Furthermore, the optimization
studies revealed that the variability in the reactor product concentrations could be reduced at the cost of
lower reactor productivity.

Catalytic reactor systems are challenged by catalyst deactivation due to fouling and poisoning. These
processes physically block catalyst sites and chemically interact with the catalyst to decrease its
productivity. Catalyst fouling and poisoning is primarily known to affect the number of available catalyst
surface sites, however it is difficult to account for catalyst deactivation through this parameter without
directly simulating the kinetic deactivation events within the catalyst surface model. Alternatively, the
effects of catalytic deactivation on the behaviour of a catalytic reactor system can be captured by
propagating parametric uncertainty through alternative catalytic parameters such as the activation energies.
In catalytic flow reactor systems, the effects of catalyst poisoning and fouling can vary in space, and thus,
the uncertainty due to catalyst deactivation cannot be adequately captured using a single uncertainty
description. Uncertainty analyses were therefore performed in Chapter 6 to analyze the effects of spatially-
varying uncertainty due to catalyst deactivation on the single-pore catalytic reactor performance.
Furthermore, robust optimization was performed on the multiscale catalytic reactor system subject to
spatially-constant and spatially-varying uncertainty descriptions. Due to the large number of uncertainty
realizations required to capture the effects of spatially-varying uncertainty, low-order statistical DDMs were
developed to efficiently approximate key statistical values in the reactor output variability under uncertainty
as a function of the key design and operational parameters. These DDMs were implemented into robust
optimization schemes in order to perform efficient optimization on the multiscale catalytic reactor model
subject to spatially-constant and spatially-varying uncertainty. As a result, the computational costs for these
DDM-based optimization studies were orders of magnitude lower than the computational costs of
performing robust optimization using PCE. The results from these studies emphasized that spatially-varying
parametric uncertainty can have significant impact on the reactor productivity and can result in significant

deviations in optimization studies if it is not taken into consideration.

Catalytic reactor systems are typically operated under continuous conditions, which encourages the use

of steady-state reactor models for model-based optimization and design schemes. These approaches,
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however, neglect the dynamic reactor behaviour and cannot be used to accommodate for transient changes
in the system parameters. Motivated by this, a transient single-pore catalytic reactor model was
implemented in Chapter 7 to perform dynamic optimization and simultaneous design and operation control
studies on the catalytic reactor subject to parametric uncertainty. PSE was initially used to perform
uncertainty analysis on the transient multiscale reactor model in order to evaluate the effects of parametric
uncertainty on the reactor behaviour as a function of time and space. In addition, uncertainty analysis was
performed on a catalytic reactor system subject to transient changes in the system temperatures. These
findings illustrated that changes in the system temperature produce spikes in the species concentrations as
the state of the catalyst surface adapts to the changes in the kinetic rates. These observations were
subsequently used to design a series of dynamic optimization formulations aiming to identify optimal
operating policies. Further dynamic optimization studies were performed to simultaneously identify the
optimal reactor design parameters and operating policies that can maximize reactor productivity under
uncertainty in the multiscale model parameters. These studies illustrate that optimal time-dependent
operating strategies can provide improvements in the reactor performance over static temperature profiles

in the multiscale catalytic system.

8.2 Recommendations

The research presented in this work analyzed the impact of parametric uncertainty on the performance
of a multiscale catalytic flow reactor system and subsequently implemented uncertainty propagation
techniques to perform efficient robust and dynamic optimization studies on the reactor system. There still
remain, however, a number of different avenues of potential research in this field. Thus, the following

recommendations are made to further extend this research in the future.

Accommaodate for time-varying uncertainty in the catalytic reactor performance: Poisoning and fouling
are dynamic mechanisms that continually deactivate the catalyst surface over time. As a result, the catalyst
parameters affected by catalytic deactivation would be continuously altered in time as the accumulation of
poisons and foulants on the catalyst surface increases. It is therefore necessary to expand the uncertainty
propagation methods implemented within this work to study the effects of time-varying uncertainty
descriptions on the multiscale catalytic reactor performance and to implement transient uncertainty due to

catalyst deactivation into dynamic optimization and control processes.

Implement the poisoning/fouling reaction mechanisms into the catalytic reactor model: The research
presented in Chapter 6 assumed that the state of catalyst deactivation was unknown, and consequently,
uncertainty was propagated through the catalytic parameters to account for the effects of uncertainty.

However, the reaction mechanisms for catalyst poisoning and fouling can be directly incorporated into the
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lattice-based kMC model, assuming that the kinetic parameters for these events are known. This would
allow for the development of dynamic operating policies that can minimize catalyst deactivation in the

presence of uncertainty on a multiscale catalytic reactor system.

Extend the kMC model to accommodate for surface diffusion: The present research assumed that the
diffusion of adsorbates on the catalyst surface was sufficiently slow for the reaction mechanism considered,;
and as a result, surface diffusion could be ignored. Complicated heterogeneously-catalyzed reactions,
however, often require moderate surface diffusion in order to allow the adsorbed reactants to move within
close enough proximity to react. There are several kinetic models for surface diffusion that have been
readily implemented into lattice-based kMC models for applications in other fields such as thin film
deposition.®*# Consequently, surface diffusion should be incorporated into the multiscale catalytic reactor

model so that it can accommodate for a wider range of reaction mechanisms.

Extend the techniques to practical catalytic reaction mechanisms: The studies performed in this research
were applied to a general bimolecular reaction mechanism between two unspecified reactants A and B to
form a gas-phase product C. However, the catalytic reaction mechanisms encountered in typical industrial
applications are more complex and involve a substantially larger number of elementary reaction steps. To
illustrate the potential for the uncertainty propagation techniques and optimization methodologies
assembled in this research, the multiscale catalytic reactor model can be expanded to accommodate a

practical industrial example using real experimental data.

Implement coarse-graining techniques to reduce computational cost: The continuum-kMC based
multiscale model used in this research can be computationally-intensive to implement, due to the number
of individual kinetic events executed during each cycle of the kMC model. There exist numerous spatial
and temporal coarse-graining techniques that can be used to reduce the computational cost of the kMC
method. In addition, the Kinetic events can also be kinetically coarse-grained. In this process, forward and
reverse events (i.e. adsorption and desorption of a single species) are combined, based on the difference
between their kinetic rates (i.e. W, s — Wg), such that only the most probable of the two events is
considered at each kMC cycle. The considered event would have a modified rate of occurrence based on
the difference between the individual event rates, and as a result, fewer events would be required to reach

the multiscale trade-off time, At,, ¢y, reducing the overall computational cost.

Expand the MF approach to accommodate for lateral surface interactions: The MF approach is a
substantially faster kinetic surface model as compared to lattice-based kMC; however, it cannot account for
lateral interactions between adsorbates on the catalyst surface. Nevertheless, if the MF approach were
adapted to accommodate for spatially-dependent interactions, it could provide substantial improvements to

the computational cost of the multiscale catalytic reactor model. In addition, the MF approach is closed-
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form, and therefore intrusive uncertainty propagation techniques such as Galerkin projection PCE can be
applied to efficiently propagate parametric uncertainty at lower computational costs. The MF approach can
be modified by developing low-order stochastic models to approximate the rate of events that require lateral
interactions (i.e. bimolecular reactions). These low-order models can be developed based on the surface
coverages of the interacting species using lattice-based kMC, and they can be implemented into the MF
equations to form SDEs that can approximate the lateral catalyst surface interactions and improve the results
of the MF approach.
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Appendix A
Supplementary Material for Chapter 6

The statistical data-driven models (DDMs) implemented in the main body of this work were determined
using TableCurve 3D® to fit PCE-generated statistical data to a large set of candidate models, including
high-order polynomials, and rank them according to their accuracy as determined through their R-squared
values. The model for each key statistical parameter was selected based on its ability to accurately capture
the generated data for all of the uncertainty descriptions implemented, which was assessed by their R-

squared values. The DDMs were determined to be as follows:
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where T, v, and p denote the temperature in K, the fluid velocity in mm/s, and the pore radius in nm
respectively. The DMM parameters were determined using least-squares regression to fit PCE-derived
statistical data-points computed at various reactor temperatures, fluid velocities, and pore radii for each of
the four uncertainty descriptions implemented in this work. These uncertainty descriptions consist of
Scenario 1A (spatially-constant uncertainty in E; 4 as described by Eq.  (6-1)), Scenario 1B (spatially-
varying uncertainty in E; 4 as described by Eq. (6-2)), Scenario 2A (spatially-constant uncertainty in E; 4
and E, as described by Eq. (6-3)), and Scenario 2B (spatially-varying uncertainty in E; 4 and E, as
described by Egs. (6-2) and (6-4)). The parameters for each DDM are provided in Tables A-1 through A-4
below. Additionally, Tables A-5 through A-7 compare the results obtained from the DDMs and from PCE
approximations for the five randomly-generated combinations of T, v, and p for Scenario 1A, Scenario 2A,

and Scenario 2B, respectively.
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Table A-1. DDM parameters to estimate the expected value of the outlet product concentration

.U(Cc,out)-

Scenario 1A Scenario 1B Scenario 2A Scenario 2B
b0 45.123 47.058 49.597 49.272
by 0.217 50 0.211 70 0.208 07 0.207 22
by, -2.2861 x 10 -2.2232 x 10* -2.1869 x 10* -2.1759 x 10*
by 7.8704 7.728 8.1097 7.9575
bya 305.68 300.97 313.67 308.63
b,s 0.302 25 0.350 04 0.353 57 0.358 69
b6 841.80 866.38 868.14 871.05

Table A-2. DDM parameters to estimate the variance of the outlet product concentration a(Ce ou¢)-

Scenario 1A Scenario 1B Scenario 2A Scenario 2B
by2 o -16.486 -9.6107 -6.8512 -2.9203
by2 4 2.3123 x 102 5.3188 x 103 3.8976 x 103 -7.3941 x 103
by, 32.980 15.420 15.128 2.4507
by 3 26.679 14.406 16.538 0.895 38
by2 4 -5.1531 x 102 -1.3128 x 102 -1.4147 x 10 1.2740 x 102
by 5 -3.8118 x 102 -1.0908 x 102 -1.6991 x 10 1.6123 x 102
bs2 6 -42.266 -21.490 -17.653 18.317
by2 , 8.7922 x 10 4.0692 x 10 3.7080 x 102 -3.9571 x 10
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Table A-3. DDM parameters to estimate the upper bound of the outlet product concentration C.?

C,out*

Scenario 1A Scenario 1B Scenario 2A Scenario 2B
bup,o 49.025 53.339 80.254 62.837
bup 0.160 96 0.158 01 0.104 43 0.147 73
bup,2 -1.6748 x 10* -1.6555 x 10* -1.1074 x 10* -1.5551 x 10*
bup3 7.793 6.4618 8.867 7.8388
bup.a 303.03 258.8 338.8 304.67
byp,s -0.073 98 0.292 71 0.448 69 0.342 14
bup,e 652.91 837.01 918.04 862.81

Table A-4. DDM parameters to estimate the upper bound of the outlet product concentration Cé‘f{,ut.

Scenario 1A Scenario 1B Scenario 2A Scenario 2B
biwo -78.257 29.698 -29.163 35.323
by 1 0.591 28 0.277 25 0.527 02 0.267 09
byy, 2 -6.2029 x 10 -2.9091 x 10* -5.5053 x 10* -2.7941 x 10*
by, s 5.6773 7.9957 9.5261 8.3118
biwa 231.56 309.95 360.42 320.57
bu s -0.692 24 0.243 46 0.098 04 0.327 05
by 6 332.89 813.41 724.89 857.72
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Table A-5. Accuracy of the DDMs for u(Ce out ), 02(Ceout)s Celoun @nd €%, compared to five

randomly-generated sample points determined via PCE for Scenario 1A.

”(CC,out) o’ (CC,out) C:Il;,out Cllélvg,out
(mmol\L) (mmol?/L?) (mmol/L) (mmol/L)
Point 1: T (K) 485.88 1.8040 0.093 92 2.3092 0.9131
MC sampling
v (mm/s) 10.500
PCE 1.8110 0.087 10 2.3407 0.9982
0, 0, 0, 0,
» (nm) 10.263 (0.39%) (7.26%) (1.36%) (9.31%)
Point 2: T (K) 447.82 1.0179 0.037 11 1.2676 0.4125
MC sampling
v (mm/s) 13.108
PCE 1.0212 0.034 50 1.2847 0.4076
0, 0, 0, 0,
» (nm) 11532 (0.32%) (7.03%) (1.35%) (1.19%)
Point 3: T (K) 467.89 2.3738 0.151 98 2.8883 1.1541
MC sampling
v (mm/s) 7.3199
PCE 2.3664 0.151 05 2.9506 1.2653
» (nm) 10.859 (0.31%) (0.61%) (2.16%) (9.63%)
Point 4: T (K) 473.52 2.1384 0.110 39 2.7014 1.1833
MC sampling
v (mm/s) 7.6877
PCE 2.1252 0.116 98 2.6504 1.1596
» (nm) 11.802 (0.62%) (5.97%) (1.89%) (2.00%)
Point 5: T (K) 463.65 2.7231 0.190 66 3.3037 1.3593
MC sampling
v (mm/s) 8.7780
PCE 2.7306 0.210 90 3.4223 1.4351
» (nm) 76514 (0.27%) (10.6%) (3.59%) (5.58%)
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Table A-6. Accuracy of the DDMs for u(Ce out ), 02(Ceout)s Celoun @nd €%, compared to five

randomly-generated sample points determined via PCE for Scenario 2A.

”(CC,out) o? (CC,out) C:Il;,out Cllélvg,out
(mmol\L) (mmol?/L?) (mmol/L) (mmol/L)
Point 1: T (K) 485.88 1.7899 0.147 27 2.4600 0.6816
MC sampling
v (mm/s) 10.500
PCE 1.7934 0.134 62 2.4631 0.7792
0, 0, 0, 0,
» (nm) 10.263 (0.19%) (8.59%) (0.12%) (14.3%)
Point 2: T (K) 447.82 1.0147 0.062 53 1.5273 0.3343
MC sampling
v (mm/s) 13.108
PCE 1.0197 0.067 27 1.5708 0.3176
0, 0, 0, 0,
» (nm) 11532 (0.50%) (7.57%) (2.84%) (4.99%)
Point 3: T (K) 467.89 2.3636 0.264 70 3.3103 0.9121
MC sampling
v (mm/s) 7.3199
PCE 2.3441 0.252 27 3.2587 0.9706
» (nm) 10.859 (0.82%) (4.70%) (1.56%) (6.41%)
Point 4: T (K) 473.52 2.1309 0.178 69 2.8975 0.9356
MC sampling
v (mm/s) 7.6877
PCE 2.1048 0.192 01 2.8940 0.9036
» (nm) 11.802 (1.22%) (7.45%) (0.12%) (3.42%)
Point 5: T (K) 463.65 2.7297 0.341 94 3.9217 1.1804
MC sampling
v (mm/s) 8.7780
PCE 2.7043 0.363 72 3.8066 1.0618
» (nm) 76514 (0.93%) (6.37%) (2.94%) (10.1%)
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Table A-7. Accuracy of the DDMs for u(Ce ot ), 02(Ceout)s Celoun @nd €%, compared to five

randomly-generated sample points determined via PCE for Scenario 2B.

”(Cc.out) o’ (CC.out) Czll;,out Cf4“l/?,out

(mmol\L) (mmol#/L?) | (mmol/L) | (mmol/L)

Point 1: T (K) 485.88 1.7733 0.03178 2.1513 1.3072

MC sampling v (mm/s) | 10.500

PCE 1.7750 0.032 55 2.1593 1.3122
p (nm) 10.263 (0.10%) (2.44%) (0.37%) (0.38%)

Point 2: T (K) 447.82 1.0010 0.017 14 1.2875 0.6656

MC sampling v (mm/s) | 13.108

PCE 1.0013 0.016 35 1.2894 0.6814
p (nm) 11.532 (0.03%) (4.60%) (0.16%) (2.37%)

Point 3: T (K) 467.89 2.3242 0.058 03 2.8216 1.6968

MC sampling v (mm/s) | 7.3199

PCE 2.3127 0.060 25 2.8263 1.6854
p (nm) 10.859 (0.49%) (3.83%) (0.16%) (0.67%)

Point 4: T (K) 473.52 2.1007 0.048 71 2.5739 1.5329

MC sampling v (mm/s) | 7.6877

PCE 2.0790 0.046 16 2.5254 1.5267
p(nm) | 11.802 (1.03%) (5.23%) (1.88%) (0.41%)

Point 5: T (K) 463.65 2.6797 0.084 93 3.2917 1.9266

MC sampling v (mm/s) | 8.7780

PCE 2.6672 0.085 88 3.2847 1.9272
p (nm) 7.6514 (0.47%) (1.12%) (0.21%) (0.03%)
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