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Abstract 

This thesis demonstrates effective methods to improve weldability and electrode life in resistance spot 

welding (RSW) of zinc coated advanced high strength steel. Six kinds of electrodes were investigated 

to determine the effect of electrode design/material on electrode life and welding performance. The 

variables were material (Class 2 and Class 3), electrode shape (Dome and Parabolic), and coating on 

the electrode surface (Ni/TiC coating). Weld qualities were evaluated with mechanical tests, such as 

tensile shear and peel test, and analyzed using electrical weld signals. Since electrode life and 

weldability is strongly related to electrode surface degradation, the electrode surface was printed using 

carbon paper to clearly record the progression of the electrode life cycle. After finishing the electrode 

life test, the metallurgy of the electrodes was analyzed using standard cross sectioning techniques, 

optical microscopy, hardness and scanning electron microscopy (SEM) techniques. 

A new type of electrode, with core inserts, is examined for improvements to weldability and increase 

electrode life when welding zinc coated advanced high strength steel. By using a refractory material 

insert, the electrode exhibited a local high resistance which promoted weld nugget growth. This type 

of electrode made a thicker and larger weld nugget, and it improved weldability and mechanical 

properties, especially with regards to cross tension (CT) strength. The effect and mechanism of inserted 

electrode were verified with commercial FEA software. The results of different weld current flow, 

nugget formation, and heat distribution were explored. Additionally, welding signal analysis was 

performed to verify the performance of the electrode. This type of electrode was also life tested with 

various diameters and insert materials to measure the effects of these changes.  
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Chapter 1 

Introduction 

1.1 Overview 

Resistance spot welding (RSW) is widely used to join sheet metal in the automotive manufacturing 

industry [1, 2]. In particular, a short welding time and complete automation make RSW very attractive 

in mass production applications. Compared to other welding methods RSW lowers manufacturing cost 

making it highly suitable for mass production. Due to these advantages, RSW continues to be used for 

joining of advanced high strength steel or lightweight materials used for weight reduction of vehicles.  

In recent decades, the weight reduction requirement is driven by environmental concerns. Many 

countries have signed the Kyoto protocol, which are regulations to reduce greenhouse gas emissions, 

and took effect on February, 2005. Compared with the 1990s, countries are required to reduce emission 

of CO2 gas over 5%. Countries are also adopting more stringent global standards or regulations such as 

the corporate average fuel efficiency (CAFE) standard [3]. For these reasons, many car manufacturers 

need innovative methods to reduce automotive fleet carbon emissions and improve fuel efficiency.   

There are various ways to improve fuel efficiency. The three most common are: increasing engine 

efficiency, minimizing the drag coefficient, and reducing car weight [4, 5].  

The first method requires long-term investment and high expenses, coupled with practical limits. 

Decreasing the drag coefficient also has limitations related to driver and passenger safety. For this 

reason, many car manufacturers are adopting car body weight reduction to improve fuel efficiency.    

In order to reduce car body weight, the use of light materials, such as aluminum or magnesium, is a 

consideration. However, due to the cost, these materials are only used for specific parts. More 

commonly, car weight reduction is performed by decreasing the steel thickness and using high strength 

steel. 

In terms of spot welding, use of these high strength steels makes for more difficult welding conditions. 

To use this steel in a production line, it is beneficial to find ways to make better welds. To increase 

productivity and reduce maintenance effort, electrodes should have longer life, reduced welding time, 

and produce stronger welds.  

The aim of this thesis is to show improvement in RSW of zinc coated advanced high strength steel. 

This is done by examining a new type of electrode which can maximize electrode life, decrease 
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production time, reduce maintenance time, and reduce material cost. The performance of this electrode 

was analyzed by using mechanical tests, metallurgical tests, weld lobe diagrams, and welding data 

analysis. Finally, diameter and material parameters were effectively optimized for electrode life and 

weldability.  

 

1.2 Problems 

The main problems in RSW can be divided into two major sections: increase of use of AHSS, and 

coatings on the steel surface. These problems can lead to the fast electrode degradation or wear out.     

1.2.1 Increase of Use of Advanced High Strength Steel (AHSS) 

To meet the environmental requirements, many car makers and steel companies are trying to make an 

effort to reduce the car weight and to develop light, high strength steel. For the purpose of a light weight 

vehicle and reinforcement of crashworthiness, steel companies are developed, and developing many 

kinds of advanced high strength steel (AHSS) such as Dual Phase (DP), Complex Phase (CP), 

Transformation Induced Plasticity (TRIP), Martensitic (MART), and Twinning Induced Plasticity 

(TWIP) as shown in Figure 1.1 [6]. Generally, these steels have a higher strength than conventional 

steels. Therefore, they can be used with reduced thicknesses while maintaining strength, which helps 

to reduce car weight.   

 

Figure 1.1 Steel Application Trend in Automotive Industry [6] 
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According to a survey in North American light vehicles, the use of AHSS increased from 9.5 percent 

in 2007 to 34.8% in 2015 as shown in Figure 1.2. On the other hand, the use of mild steel and medium 

high strength steel has been dramatically reduced [6]. 

      

Figure 1.2 Metallic Content in North America Light Vehicles [6] 

 

The spot welding characteristics of AHSS are different in comparison to the mild steels. Due to the 

high percentage of carbon equivalent, AHSS has a high bulk resistivity [7]. As shown in Figure 1.3, the 

electrical resistivity increased steeply above 0.3 wt% of carbon. Therefore, AHSS steels require a lower 

weld current than mild steel. This result was confirmed via weld lobe diagram, the same as the Figure 

1.4 [8]. In this figure, the welding possible current range of DP steel was formed narrower and moved 

to lower welding current area than HSLA and mild steel. 

 

Figure 1.3 Effect of carbon equivalent on bulk resistivity at room temperature [7] 
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Figure 1.4 Weld lobe curves for the AHSS, HSLA, and mild steel [8] 

For these above reasons, as the next generation of high strength steels are created, making high quality 

welds will become a greater challenge.   

 

1.2.2 Application of Coatings on the Steel Surface 

Presently, many zinc coating methods are used on the steel surfaces in order to enhance corrosion 

resistance. Some examples are: hot-dip galvanized (GI), electrolytic galvanized (EGI), and 

galvannealed (GA). Two basic mechanisms used to protect steel surfaces are: barrier protection and 

cathodic protection [9]. Barrier protection occurs when the steel surface is protected by a zinc layer 

which fully covers the steel surface from the corrosive agents. Cathodic protection occurs when the 

zinc layer preferentially reacts to the corrosive agents. Due to improvements of steel durability, 

reducing maintenance costs, zinc coatings are applied by default in automotive industries. 

 

 

Anodic reactions 

𝑍𝑛 + 𝐻2𝑂 → 𝑍𝑛(𝑂𝐻)2 + 2𝐻+ + 2𝑒− 

𝑍𝑛(𝑂𝐻)2 → 𝐻2𝑂 

 

Cathodic reactions 

𝑂2 + 2𝐻2𝑂 + 4𝑒− → 4𝑂𝐻− 

Figure 1.5 The Corrosion Reactions of Zinc [10] 
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When spot welding is performed, however, the zinc layer is not beneficial in improving weld quality. 

Zinc is soft and has low electrical resistance, causing it to form a more conductive contact condition 

between electrodes and steel sheets. The lower resistance makes for more difficult welding conditions, 

detrimental to form a weld nugget. This means that zinc coated steel requires higher weld current or 

longer weld time to make the same diameter of weld nugget. Furthermore, these excessive welding 

conditions increase the possibility of creating an expulsion. As shown in Figure 1.6 below, the 

minimum weld nugget diameter for GI sheet steel requires a higher weld current, a longer weld time, 

or a combination of both [11].  

 

 

Figure 1.6 Welding possible range of uncoated and GI coated steel [11] 

 

 

1.3 Objectives 

The objectives of this thesis are as follows: 

1. To investigate RSW performance for different electrode materials, geometries, and surface 

coatings and to analyze the effect of these variables on welding performance, particularly on 

electrode life. 

2. To develop and propose a new type of electrode which significantly improves weld quality and 

increase electrode life when used with zinc coated advanced high strength steel.  
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1.4 Thesis Outline 

This thesis is comprised of six chapters as follow: 

Chapter 1: Introduction - This chapter includes the thesis overview, explanation of current problems, 

and the objectives and constraints of the supporting research.  

Chapter 2: Literature Review - This chapter summarizes findings of prior publications relevant to the 

research. 

Chapter 3: Experimental Methods - This chapter gives details of the material, equipment, electrodes, 

experimental procedure, and mechanical and metallurgical testing methods used in the 

research.  

Chapter 4: Effects of TiC/Ni Coating on Electrode Life - This chapter shows the results of electrode 

weld performance for different electrode materials, geometries, and coating.  

Chapter 5: Effect of Electrode Inserts on Electrode Life and Weldability - This chapter introduces the 

concept of an inserted electrode and reports on weld performances including the result of 

electrode life tests and weldability tests.  

Chapter 6: Conclusions and Recommendations - This chapter summarizes the main findings and 

conclusions of the research. In addition, future research work is proposed.  
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Chapter 2 

Literature Review 

2.1 Resistance Spot Welding (RSW) 

The resistance spot welding (RSW) is the most commonly used method to join steel sheets because it 

can be performed at low cost, fast speed, and does not required additional materials, such as filler metal, 

or shielding gas [12]. The three most important components for joining steel (using RSW) are: electrical 

current, clamping pressure on the steel sheet, and time period for steel melting. 

   

2.1.1 Fundamentals 

A basic principle of RSW can be expressed by the Joule’s law equation as below because joining is 

created by use of resistance heating [13]. 

Q = 𝐼2𝑅𝑡 

A high clamping force is applied to the overlapped steel sheets and a high electrical current (I [Amps]) 

flows through electrodes and the steel sheets. In this process, resistance (R [Ω]) is present between the 

electrodes and the steel sheets during the welding period (t [sec]). The flow of current through this 

resistance generates heat (Q [J]), and the steel starts melting when the heat generated in the weld area 

is sufficiently high. When welding is complete, a weld nugget is created between the faying surface of 

steel sheets as shown in Figure 2.1. The resistive heating causes the melting and joining of the steel 

sheets during the welding period. Figure 2.2 shows a schematic of weld area and temperature 

distribution which is created by the resistive heating.  

 

Figure 2.1 Cross sectional shape of RSW weld 
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Figure 2.2 Schematic of RSW weld and temperature distribution [14] 

 

2.1.2 Welding Parameters 

Based on the previous equation, the total heat input is greatly influenced by the weld current, weld time, 

and weld force. Weld current has the largest effect on the resistive heat because the generated heat is 

directly proportional to the square of the weld current [15]. Weld current density also has an impact on 

the weld performance [16]. If the weld current density is low, melting starts with difficulty, and the 

weld nugget is small or non-existent. Conversely, if the weld current density is too high, melting starts 

quickly but the possibility of expulsion and excessive deformation increase. Therefore, the weld current 

needs to be controlled carefully. Weld time is also an important factor in the RSW process [17].  Given 

the same total heat input, the maximum weld temperature changes depending on the weld time because 

the heat flux is different. A shorter weld time leads to a smaller melt area, and the weld may not form 

sufficiently. Conversely, if the weld time is too long, heat loss increases and the heat affected zone 

(HAZ) is larger. It is important to control the size of heated area around weld because it can change the 

mechanical or metallurgical properties. The weld force is also important parameters in the RSW process 

[18]. Contact resistance changes based on the amount of weld force. Low weld force results in defects 

such as porosity in the weld nugget, and cracks in the steel. High weld force results in a low contact 

resistance which then reduces the heat created. Figure 2.3 shows a weld nugget created using unsuitable 

welding parameters. High weld current, low weld force, and long weld time generated a void and 

excessive indentation depth in the nugget.  
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Figure 2.3 Weld defects of RSW weld 

Other factors also affect RSW weld quality. There are many such parameters, e.g.: base materials, 

coatings on the steel surface, electrodes, electrode condition, and so on. Accordingly, all these 

parameters should be carefully considered and properly selected. 

  

2.1.3 Welding Process 

The RSW process can be divided into five separate steps as shown in Figure 2.4 [19]: 

1. The upper and lower electrodes clamp the steel sheet during the squeeze time. 

2. Weld force is applied to steel sheet. 

3. Weld current is generated. 

4. The steel sheet cool down. 

5. The electrodes release from the steel sheet. 

 

Figure 2.4 The sequence of RSW process [19] 
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2.1.4 Weld nugget formation 

The weld nugget formation is closely related to contact resistance and the bulk resistance of steel itself 

[20]. Shortly after the weld time starts the steel surfaces make better contact, and the contact resistance 

rapidly decreases. During the weld time the bulk resistance of the steel increases. Particularly, it rises 

sharply when the steel is changing phase from solid state to liquid state [13]. Weld current, weld time, 

and weld force all have an effect on the shape of the dynamic resistance curve. This is because they 

affect the rate of temperature change within the nugget.  

One can evaluate and estimate weld nugget growth through weld data analysis. For example, Cho et al. 

studied the secondary dynamic resistance to analyze the weld nugget growth [21, 22]. In the case of 

AC RSW, the dynamic resistance can be calculated using the equation below. The resistance can be 

calculated with the selected currents and voltage which is measured every half weld cycle from the 

secondary circuit of the welding machine and a monitoring system. The currents and voltages selected 

the inflection points, the peak values when the current and voltage become di/dt =0 and dv/dt =0. 

R𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
𝑉𝑑𝑣 𝑑𝑡⁄ =0

𝐼𝑑𝑖 𝑑𝑡⁄ =0
  

Figure 2.5 shows an example of a dynamic resistance curve obtained from uncoated steel [21]. The 

dynamic resistance curve can be divided into five parts. First, the electrodes clamp the steel sheets, and 

the electrical weld currrent flows first through the micro-contacted points. At this point, the resistance 

is same as the sum total of bulk resistance including electrode to steel sheet and steel sheet to steel sheet. 

The initial resistance can change depending on the steel surface condition, coatings, and other factors. 

If the surface, both of the electrodes and the steel, is clean, the slope will be sharp and decreases quickly. 

In the second stage, the bulk resistance of steel is still high, but better contact condition is made due to 

the increased welding temperature. The minimum resistance, called α-peak, is observed at this point. 

After this peak, as the temperature rapidly increase, dynamic resistance also increases. The resistance 

then reaches the maximum point, called β-peak. The resistance of the steel increases with the elevated 

temperature and a small weld nugget is created. In the fourth stage, the bulk resistance of steel keeps 

increasing due to the increasing temperature. However, the indentation allowed by the softening of the 

steel forms a shorter weld current path. Consequently, the resistance starts to decrease according to the 

electrical resistance formula below. 
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In the fifth stage, the weld nugget continues to grow until the weld process is complete. If the heat 

generated in the weld nugget is allowed to become excessive, an expulsion occurs, where molten 

material exits the weld. 

 

Figure 2.5 Changing of D-resistance curve during the weld nugget formation [21] 

 

2.2 Mechanical and Metallurgical analysis of RSW 

As mentioned in chapter 1, the AHSS steels have a high bulk resistivity and hence these have a high 

sensitivity to welding parameters to produce a good weld that meets requirements such as strength or 

geometric criterions. In this section, RSW weldability is investigated from a mechanical perspective. 

 

2.2.1 RSW weldability of AHSS 

Basically, weld lobe curves have been used to characterize RSW weldability for different materials, 

steel sheet combinations and weld joints [1]. Normally, the lobe curves are shown in a 2-dimensional 

representation, plotting two main welding parameters, weld current and weld time, as seen in the Figure 

2.6 below. The lower boundary is determined when the weld nugget diameter does not meet the 
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minimum requirement, 4√𝑡  (𝑡 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑡𝑒𝑒𝑙 𝑠ℎ𝑒𝑒𝑡), and the upper boundary is defined by 

the existence of expulsion [23]. As a result, weldability can be visually judged based on the relative 

size of the weld lobe curve. 

 

Figure 2.6 Weld lobe curve [1] 

Generally, low strength steels having a low carbon equivalent result in a wide acceptable welding range, 

but AHSS steels that have high resistivity result in a relatively narrow range. Yu et al. reported on the 

weld lobe curve for TWIP980 [24]. TWIP 980 steel displayed a possible welding current range of only 

0.5kA, and expulsions were likely in most of welding range. In the case of TWIP steel, a high 

manganese (Mn) content of 18% was present. Although this alloying material increases the strength, 

the bulk resistivity also increased and the weldability suffers [25]. Another factor that results in a 

narrower weld lobe curve is the rigidity of the material. Higher rigidity leads to a spring back effect, 

and makes it more difficult to get sufficient contact area for spot welding [26]. The result is more 

resistance heat being generates at the electrode to steel interface and this encourages expulsion. In view 

of this, applying a higher weld force is recommended for the high-Mn steel joining. Saha et al. 

investigated welding defects of high-Mn steel [27]. The cracks are usually formed with higher welding 

current conditions due to the combination of increased nugget growing force, high rigidity of material, 



 

 13 

and tensile stress in HAZ. As a result, the defects are made in the weld as the form of (a) liquation 

cracking in HAZ, (b) intergranular crack, and (c) shrinkage cavity as seen in Figure 2.7.  

 

 

Figure 2.7 Welding defects of high-Mn steel [26] 

 

2.2.2 The effect of coating in AHSS 

Zinc coating layers, such as galvanized (GI), galvanealed (GA), and Al-Si, are widely used to prevent 

corrosion [28]. However, these coating layers make a good surface contact condition and decrease 

contact resistance [13]. As a result, the weld lobe curve moves to high current range. In the case of GI 

coated steel, once a spot weld starts, the zinc starts to melt when the temperature reaches approximately 

to 460℃ and moves around the edge of the weld due to the mechanical welding force. Then the extruded 

zinc forms a better contact and lowers the contact resistance. Figure 2.8 shows the differing contact 

resistance distribution between uncoated and coated steels. When starting to form a weld nugget, the 

zinc layer should be removed as soon as possible. However, part of the energy will necessarily be spent 

on melting and removing the zinc layer, which can result in an unacceptable weld nugget. 

 

 

Figure 2.8 Contact resistance distribution between uncoated and GI coated steels [29] 
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Gedeon et al. investigated changing lobe curves and dynamic resistance curves by varying the thickness 

of coating and kinds of coating [30, 31]. Figure 2.9 shows dynamic resistance curve for uncoated and 

GI coated steel. Uncoated steel displays an α-peak at an early stage in the welding and a clear β-peak. 

On the other hand, the GI coated steel did not display distinct peaks, and the resistance was lower than 

for uncoated steel. The zinc coating layer resulted in a better mechanical contact (formation of low 

resistance) and delayed the formation of weld nugget. Figure 2.10 illustrates changes to the weld lobe 

curve depending on the thickness of the coating. As the thickness of the coating increases, the weld 

current needed to melt the steel also increases [32].  

 

  

(a) Uncoated steel (b) GI coated steel 

Figure 2.9 Dynamic resistance curves [31] 

 

 

Figure 2.10 Changing of weld lobe curve depends on the thickness of coating [30] 
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2.2.3 Factors affecting the mechanical properties 

Lee et al. and Ma et al. investigated the stress distribution in the weld nugget using a static equilibrium 

to explain the crack initiation [35, 36]. The forces can be divided into three types: normal force (F), 

shear force (Q), and moment (M) which is generated by inertia as seen in Figure 2.11. If it is assumed 

that the weld nugget is symmetric and welded perfectly under optimal welding conditions, 

interfacial fracture does not happen, and the stresses can be calculated with equation (2-1) and 

(2-2) below.  The nominal stress is expressed by equation (2-1), and it is strongly related to the nugget 

diameter, 2r. The moment can be expressed by equation (2-2), and the modulus of section was applied 

to an elliptical shape that is similar to real weld nugget shape. As seen in these equations, the stresses 

are dependent to the nugget dimensions, such as nugget diameter, ‘a’, and thickness, ‘b’. Therefore, a 

larger and thicker nugget experiences a higher tensile shear strength.  

 

Figure 2.11 Diagram of applied forces in a weld [35] 

 

𝜎𝑛 =
F

𝜋𝑟2 

                                                             (2-1) 

𝜎𝑚 =
𝑀𝑦

𝐼
=

𝑃𝑒

𝑧
 ,        𝑧 =

𝜋𝑎𝑏

8
(𝑎2 + 𝑏2) 

                                 (2-2) 

 

Chao studied the failure mechanism and strength relationship of the weld with tensile shear and cross 

tension tests [37]. Figure 2.12 shows the stress distribution of weld nugget in lap shear and cross tension 

specimens. Tensile shear specimens show maximum stress at the edge of the weld nugget that is parallel 
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to the loading direction and maximum shear stress was also observed around the edge of the weld 

nugget. Therefore, in the case of representative weld nuggets, cracks form and propagate from the edge 

of the weld nugget. The equations (2.3) to (2.6) describe the failure stresses and strengths.  

 

 
 

(a) Tensile shear speciemen (b) Cross tension specimen 

Figure 2.12 Diagram of applied forces in a weld [35] 

 

 

P = ∫ 𝜎(𝜃) ∙
𝑑

2
𝑡

𝜋/2

−𝜋/2

∙ 𝑐𝑜𝑠𝜃 𝑑𝜃 =
𝜋

4
 t d 𝜎𝑚𝑎𝑥 = 0.785 t d 𝜎𝑚𝑎𝑥   

                                                            (2-3) 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 0.785 𝑡 𝑑 𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

(2-4) 

P = ∫ 𝜏(𝜃)
𝜋/4

−𝜋/4

∙ 𝑟𝑡 𝑑𝜃 = t d 𝜏𝑚𝑎𝑥   

                                 (2-5) 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = t d 𝜏𝑓𝑎𝑖𝑙𝑢𝑟𝑒   

                   (2-6) 
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Based on these equations, the correlation between tensile shear and cross tension strengths is expressed 

in equation (2-7) with the Von Mises criterion criteria.  

 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝐶𝑇 = 0.735 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝑇𝑆   

                                 (2-7) 

 

From a metallurgical perspective, the weld area shows a number of separate zones. Hernandez et al. 

studied about HAZ softening in DP steel. As shown in Figure 2. 13, a HAZ is formed around the weld 

nugget after the weld completes and it can be classified in detail as UC HAZ and SC HAZ depending 

on the thermal effect. Generally, HAZ softening is formed by tempering of martensitic between UC 

HAZ and SC HAZ and demonstrates lower hardness than the base metal (BM) [38, 39]. In terms of the 

mechanical properties, Ghosh et al. investigated HAZ softening and its role in decreasing strength [40].   

 

 

Figure 2.13 Cross section of a spot weld [41] 

 

Xia et al. reported that HAZ softening was caused by an increased martensitic volume fraction as 

demonstrated in Figure 2.14, and tensile strength had a linear correlation with HAZ softening. This 

suggests that the total heat input and the welding process have an effect on the creation of HAZ 

softening. In general, maximum HAZ softening is occurs on the Ac1 (refer to Figure 2.13) which does 

not cause an austenitic transformation. When spot welding uses a longer welding time and higher heat 

input, it will cool down more slowly and results in a large Ac1 width and increased HAZ softening. 

Figure 2.15 shows the HAZ softening resulting from different heat sources and heat input conditions. 

Softening is related to the chemical composition of the material, but shows a steep increase with 

increased heat input. 
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Figure 2.14 Relationship between DP martensitic volume fraction and HAZ softening [42] 

 

 

Figure 2.15 HAZ softening in DP600 steels with different heat sources and total heat input [43] 

 

2.3 The influence of the electrode 

The electrode is a very important factor in determining the weld qualities in RSW because the weld 

current last flows through the electrodes. However, as welding is progressed, the electrode surface 

progressively deforms and wear out, causing the weld current density to decrease rapidly and weld 

qualities to also deteriorate rapidly. 
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2.3.1 Electrode wear mechanism 

Electrode wear is mostly caused by the repetitive high temperature and pressure over multiple welds. 

Well known mechanisms of electrode wear are alloying, pitting, and deformation [44].  

The main cause of alloying is the zinc on the surface of the steel that diffuses to the electrode surface. 

This alloying between the electrode material and the coating layer contributes significantly to the 

overall damage process, particularly through enlargement of the electrode surface area. This 

enlargement depends on the welding conditions, electrode material, composition, zinc coating 

thickness, and others. 

 

Figure 2.16 Alloy formation on the electrode when welding hot-dip zinc coated steel [44] 

 

Williams et al. reported that the metallurgical changes occurred during the alloying process are 

composed of four stages as seen in Figure 2.16 [44]. As welding starts, zinc concentration increases as 

seen in Figure 2.17 ⓐ, and the FCC α phase with zinc in solid solution changes to BCC β brass (CuZn) 

at 33.6 wt% Zn as a phase diagram for copper-zinc as shown in Figure 2.17 ⓑ. Next, a β brass layer 

starts to form at the melting temperature, around 900°C, depending on the amount of zinc. In the stage 

3, 𝛾 brass (Cu5Zn8) begins to form when the zinc content reaches 50.6 wt% shown in Figure 2.17 ⓒ. 

These layers form unevenly and continuously on the electrode surface during the welds. Electrode wear 

is correlated to the amount of gamma phase brass formed. 
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Figure 2.17 Cu-Zn phase diagram [45] 

 

The second wear mechanism is pitting which is caused by melting and alloying of the contact area. 

Maroie et al. have studied pitting and surface oxidation in connection with copper and brass formation 

[46]. In many alloys, an oxide layer plays an important role in interface bonding, which, when broken, 

creates pitting. During oxygen exposure at room temperature, ZnO and Cu2O are formed. ZnO starts to 

form first, and then Cu2O formed later. If these oxides are then exposed to higher oxygen atmosphere, 

Cu2O is transformed into CuO which creates an outer layer, preventing any further Cu2O oxidation. 

Following the oxidation, if the temperature increases sufficiently, CuO is reduced to Cu2O. These 

reactions are expressed in the two sets of chemical reactions below. One set describes brass and the 

other copper. 

 

For copper, 

CuO → 1/2 O2 + Cu   (decomposition) 

or 

Cu+ CuO → Cu2O    (solid state reaction) 



 

 21 

For brass, two other solid state reactions can be made thermodynamically. 

2CuO + Zn → Cu2O + ZnO 

and 

CuO + Zn → Cu + ZnO 

 

Figure 2.18 shows the evolution of a Cu surface during oxygen exposure to α and β brass. As shown in 

the graph, β brass forms easily in higher temperatures and longer oxygen exposure times, but the 

formation of α brass decreases after a certain amount of exposure time. We expect therefore, that 

electrodes which have reached the end of their useful life will have higher amounts of β brass as 

opposed to α brass. 

 

  

(a) α brass (b) β brass 

Figure 2.18 Cu surface concentration during oxygen exposure with different annealing and 

temperature conditions [46] 
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Kimchi et al. analyzed the process of pitting using finite element analysis [47]. The electrode faces 

alloyed and adhered to the zinc with high welding temperature and high weld force. Subsequently, 

when the electrode was separated from the steel, electrode pitting occurs as base material was removed 

from the electrode surface. After repeated welds, the pitting area increased, and many small pitting 

areas joined together to form a large cavity. The large cavity influenced current distribution (unbalanced 

weld current) on the electrode surface. Higher temperatures and pressures were generated at the edge 

of the cavity, and this cavity area can detach. Figure 2.19 shows the carbon imprint tests for dual phase 

steel (DP600) [48]. As a consequence, the weld nugget shape can become ring shaped because weld 

current flows only through the contact area. This can lead to a weld nugget with low weld strength and 

shortens useful electrode life. 

 

 

Figure 2.19 Electrode face of carbon imprint method at different weld numbers [48] 

 

Another factor is that electrode surface deformation accelerates electrode degradation. Electrode 

deformation results from the high pressure and temperature conditions present in spot welding. On a 

microscopic level, recrystallization of the electrode leads to deformation since electrodes soften – and 

therefore deform – in the process of recrystallization. Re-crystallization as a process depends on both 

time and temperature. The force producing new grain structure is the difference in internal energy 

between the strained and unstrained material caused the re-crystallization temperature as shown in 

Table 2.1 [49]. The new grains form as very small nuclei and grow until they completely replace the 

base material. During recrystallization, the mechanical properties of ductility and strength are changed 

to high and low, respectively. Recrystallization proceeds faster in pure metals than in alloys. Therefore, 

electrodes are made of various materials such as Cu, Cr, Zn, and etc., to increase the recrystallization 

temperature and hinder electrodes recrystallizing [50]. However, high weld temperatures which cause 

recrystallization and pressure on the electrode surface creates large grains (coarse grains). At the same 
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time, these grains tend to allow dislocations to move with less force (low strength, hardness). Due to 

the repeated rising and falling temperatures during the welding process, grain growth and plastic 

deformation increase until they reach an unacceptable level. 

 

Table 2.1 Recrystallization and melting temperatures for various metals and alloys [49] 

Materials 
Recrystallization temp. Melting temp. 

℃ ℃ 

Zinc 7~75 420 

Cu (99.999 wt%) 200~250 1085 

Cr 636~954 1907 

Zr 618~928 1855 

Brass (60Cu-40Zn) 475 900 

Be 725 (429~644) 1287 

Ni (99.99 wt%) 600 (485~728) 1455 

Fe 450 1538 

Tungsten 1200 3410 

 

Generally, the Hall-Petch relationship theory explains the strength vs grain size relationship of 

electrodes [51, 52]. This theory describes the dependency of a material’s characteristics based on its 

grain size; the bigger the grain size, the lower the yield strength and hardness. This is shown in 

equations (2-8) and (2-9). When electrodes experience higher temperatures during welding, electrodes 

soften and recrystallize on the surface. As shown in Figure 2.21, Cu and Brass which can form on the 

surface of electrodes decrease yield strength as grain sizes increase.  

 

𝜎 = 𝜎0 + 𝑘𝑑−1/2 

   (2-8) 

𝐻 = 𝐻0 + 𝑘𝐻𝑑−1/2 

(2-9) 
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σ: Yield stress 

σ0: A materials constant for the starting stress for dislocation movement 

        (or the resistance of the lattice to dislocation motion) 

k: Strengthening coefficient (a constant specific to each material) 

d: Average grain diameter 

H: Hardness 

 

 

Figure 2.20 Linear relationship between yield strength and grain size [53] 

 

Parker et al. measured the micro-hardness in cross sections of the electrode at 0.05, 1.0, and 5.0 mm 

depth from the top surface [53]. As the number of welds increased, hardness decreased steadily as 

shown in Table 2.2. The hardness reduction for the first 10 welds was very rapid and the hardness 

reduction from 10 to 100 welds was far less. There was very slight change between 100 and 1000 welds. 

This indicates that recrystallization and grain growth are essentially complete. The largest amount of 

softening particularly occurs near the surface. This is attributed to the effect of the cooling water on all 

but the surface material. Dong et al. studied electrode surface extrusion using a finite element analysis 

[47]. As shown in Figure. 2. 21, maximum plastic deformation starts and accumulates at the edge of 

the electrodes. Eventually, weld current density decreases due to the increased total surface area. From 

the FEA results, they also found that long holding times and higher weld forces can accelerate this 

deformation. Based on these results, it appears that welding parameters and the process should be 

controlled to minimize or delay the electrode degradation. 
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Table 2.2 Microhardness results of electrodes welded with different coated steel [53] 

 

 

 

Figure 2.21 Plastic strain distribution of electrode [47] 

 

2.3.2 Attempts for improving electrode life and weldability 

Improving electrode life is one of the challenges in the automotive industry because it is correlated with 

productivity and stabilized weld qualities. However, it is clear that electrodes cannot be used 

permanently, and weld quality decreases as welding occurs. To address these problems, some methods 

were suggested for maximizing electrode life. 

Kevin, Zou et al., and Chen et al. studied about TiC/Ni coated electrode as a solution for reducing a 

formation of alloying, sticking, and deformation on the electrode surface [54, 55, 56]. Titanium carbide 

(TiC) is a hard-ceramic material and is generally used in harsh conditions that require a high corrosion, 
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thermal, and mechanical resistance.  Most of all, because the TiC does not react with zinc, the TiC/Ni 

coated electrode was expected to block the interaction between copper electrode and zinc. TiC/Ni 

coated electrode is manufactured by an electrode spark deposition (ESD) technique using a TiC/Ni 

sintered composite rod. Figure 2.22 (a) shows the cross section of TiC/Ni coated electrode having a 30 

to 50 μm of coating thickness. This coating layer acts as a barrier to prevent electrodes from alloying 

with the zinc and helps to operate at a lower weld current. 

 

  

(a) Initial state (b) After 1,200 welds 

 

(c) Element maps after 1,200 welds 

Figure 2.22 TiC/Ni Coated electrode [55, 56] 

Ti Kα 

Cu Kα Zn Kα 
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As the welding progressed, the TiC/Ni coating layer break, and the zinc penetrates through the copper 

as shown in Figure 2.22 (b). There is still remained some of TiC/Ni coating, but Zn penetrated into Cu 

electrode substrate through the area which is removed TiC/Ni. Therefore, weld current density becomes 

low and finally form unacceptable weld. TiC/Ni coating layer was effective to delay the formation of 

the zinc alloying on the electrode surface. However, TiC/Ni coating layer is not permanent and will 

eventually wear out under the repeated high temperature and pressure welding conditions. 

Key et al. studied an inserted electrode using a sintered composite insert to improve electrode life as 

seen in Figure 2.23 [57]. The basic concept of this electrode was reducing an electrode deformation by 

using refractory materials having a high hardness. The composite insert materials, such as W and Mo, 

were able to withstand a high welding temperature and were worn out instead of Cu electrode. As a 

result, with a specific volume fraction and manufacturing process, 32 vol. % W in a Cu matrix sintered 

for an hour, electrode degradation was reduced. As shown in Figure 2.24, the changing of electrode 

surface diameters between composite electrode and normal electrode has shown a different trend. In 

the initial stage of electrode life test, the normal electrode has shown a steady speed in electrode surface 

growth, but degradation speed of the composite electrode has decreased gradually. However, the 

composite insert introduces severe deformation from the elevated temperature which is generated from 

the refractory materials having a higher resistance than copper, and finally reaches to failure. 

Consequently, the composite insert electrode has a weakness for the deformation of the composite 

insert. 

 

 

Figure 2.23 A sintered composite insert electrode [57] 
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(a) Normal electrode (CuCr) 

 

(b) Composite electrodes 

Figure 2.24 Changings of electrode surface diameter [57] 

 

In a similar way, Shafers et al. and Mukae et al. have developed other types of inserted electrode as 

seen in Figure 2.25 and 2.26 [58, 59]. Insert materials were assembled to Cu electrode with same 

diameter of the electrode surface diameter. Many kinds of refractory materials, such as Nb, Rh, Ta, Mo, 

W and its alloy, were tested to find a suitable material for the insert. These electrodes, in common with 

composite insert electrode, were invented to solve the electrode degradation. Shafers et al. have used 

Rhodium (Rh) and Rhenium (Re) for insert material to weld Niobium (Nb) alloys as seen in Figure 

2.25. Cu electrode has a lower melting temperature than Nb, and it caused an electrode sticking problem 

in spot welding of Nb alloys. However, due to a higher melting temperature of Rh and Re insert 

materials, the sticking problem was reduced, and electrode life was increased. Another type of inserted 

electrode was an electrode having a double structured insert material as seen in the Fig 2.26. To reduce 

cracks or deformation of insert material, Mukae et al. have controlled average particle diameters (S, L, 

and X in Figure 2.26) of insert material by using a heat treatment. Depending on the degree of heat 
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treatment time and temperature, insert materials have different hardness, particle diameters, and 

different number of cracks. As a result, the heat treated inserted electrodes have formed electrode life 

from 3,000 to 10,000 welds.  

 

 

Figure 2.25 Inserted electrode having a Nb insert [58] 

 

 

Figure 2.26 Heat treated inserted electrode [59] 

 

These inserted electrodes mentioned above have advantages for increase electrode life and improve 

weldability. However, some issues, such as sticking problem, durability, and manufacturing, have been 

reported. Basically, the inserted electrodes were required additional process of heat treatment and 

different assembly methods, and filler metal for fabrication. These factors made the manufacturing 

difficult and increased the manufacturing cost. In addition, due to the high resistance which is formed 

high between electrodes and base materials, sticking problem is occurring and makes a pitting from the 

loss of insert material.  
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Electrode geometry is also an important factor for increase of electrode life and improvement of 

weldability [32,33,34,67]. Figure 2.27 shows general electrode external shapes, and these electrodes 

are adopted with consideration for the welding conditions or requirement such as flange/corner weld, 

high criterion of weld qualities, and so on [50].   

 

 

Figure 2.27 Electrode external shapes [50] 

 

Kim et al. studied about heat conduction of truncated shaped Class 2 electrodes having different face 

lengths of 2.8, 4.7, 6.6, and 8.5 mm as seen in Figure 2. 28 [32]. As the face thickness increases, the 

maximum electrode surface temperature increased except 2.8 mm. After 20 welds, 8.5mm electrode 

shown a constant temperature, but 2.8mm electrode made a steep increase after 10 welds. 

 

        

Figure 2.28 Changing of maximum electrode surface temperature [32] 

 

Pointed Dome Flat Offset Truncated Radius
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Based on this result, shorter face length did not guarantee a better heat conduction, and there existed an 

optimal face thickness between 4.7 and 8.5mm. Rao et al. investigated the effect of cooling water with 

a new cone-fin electrode [33]. As seen in Figure 2.29, the new cone-fin electrode has an extruded fin 

on the inner side of the electrode, and it improved the heat transfer between cooling water and electrode. 

To evaluate the effect of the fin, fin temperature was calculated using a Bessel type differential 

equation. In the case of conventional electrode, the temperature increased to 126.85℃. On the other 

hand, fin electrode decreased the temperature up to 26.85℃. 

 

 

Figure 2.29 Changing of maximum electrode surface temperature [33] 

 

In terms of external shape of electrode, Li et al. demonstrated the effect of cone angle of truncated 

electrode on heat transfer and used four kinds of cone angles, 15, 30, 45, and 60° [67]. When weld 

current flew through steel sheet, current density was formed unequally. Especially, the low cone angle 

electrode had more ununiformed weld current density (same as stronger electromagnetic stirring in the 

weld nugget), and it was effective for mixing the weld metal and reduced the temperature gradient. 

Thus, the lower cone angle electrode allowed the lower maximum temperature and faster cooling rate 

during the weld. Figure 2.30 (a) shows a temperature distribution for each cone angle electrodes. The 

highest (60°) angle electrode made a higher temperature on the electrode surface than the others because 

the smaller volume and mass caused a lower heat dissipation. Figure 2.30 (b) demonstrated the 

performance of heat dissipation. As the cone angle increases, the temperature gaps between electrode 

surface and 3mm distance away became smaller, and average temperature was increased. Eventually, 

a high angle electrode accelerated electrode degradation, and electrode life became short as seen in 

Figure 2.31. 
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(a) Temperature field of different cone angle electrode 

 

(b) Temperature distribution from the electrode surface  

Figure 2.30 Temperature distribution of different cone angle electrode [67] 

 

 

Figure 2.31 The results of electrode life tests [67] 
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2.4 Summary 

In this chapter, the basic principles about the RSW were introduced and investigated the fundamental 

causes for cracking and decreasing the weld qualities in AHSS from a mechanical and metallurgical 

perspectives. As a result, the bigger weld nugget geometry helps to further improve the mechanical 

performance. However, more heat input is required to melt a larger area, and it may also lead to the 

enlarged HAZ. Therefore, the welding parameters should be adjusted properly to make a bigger weld 

nugget with the smaller heat input, and in terms of weldability and reliability, expanding the lobe curve 

is another big challenge in the steel and automotive industry.  

Additionally, the electrode plays an important role in determining the weldability and reliability. Even 

if the optimized welding parameters are selected, it is because the electrode condition continuously 

changes. Therefore, the weld qualities cannot be guaranteed during a large number of welds. To solve 

this issue, there has been a lot of effort, and electrode life has accomplished much improvement through 

these methods. 
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Chapter 3 

Experimental Methods 

3.1 Materials  

The steel sheet used in this study was 1.0 mm thick AHSS DP600 with galvanized (GI) coating, 

supplied by ArcelorMittal Dofasco, Hamilton Canada. The chemical composition and mechanical 

properties of DP600 steel are listed in Tables 3.1 and 3.2, respectively. The average coating thickness 

on the top and bottom steel surfaces was 7.11 µm as shown in Figure 3.1.  

 

Table 3.1 Chemical Composition of DP600 

[Unit: wt%] 

C Mn P S Si Cu Ni Cr Mo 

0.1 1.83 0.011 0.003 0.15 0.02 0.01 0.35 0.003 

Als Alt Cb V Ti Ca N B  

0.034 0.036 0.002 0.003 0.018 0.004 0.006 0.0002  

 

Table 3.2 Mechanical properties of DP600 

Yield Strength Ultimate Strength Elongation Coating Thickness 

356 MPa 648 MPa 25% 
Top surface: 6.19 𝛍𝐦 

Bottom surface: 8.02 μm 

 

  

Figure 3.1 GI coating layer of DP 600 
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3.2 Equipment 

3.2.1 Welding Machine 

Welding experiments were conducted with a pedestal-type, pneumatically controlled, 250 kVA, 60Hz 

single phase AC RSW machine with constant current control operating. Welding parameters were 

controlled by a RobotronTM Series 400 system controller. Figure 3.2 shows the setup of the AC RSW 

machine used in this study. The automatic spot welding system was developed by using an Arduino 

UNO R3 microcontroller and is used to keep a steady welding speed (20 welds/min.) during the 

electrode life tests.  

 

 Figure 3.2 The AC RSW machine 

 

3.2.2 Measurement of Welding Signals 

A data acquisition system (DAQ) was used for weld quality monitoring and measurement of the 

welding signals; weld current, weld force, weld voltage, and electrode displacement. Figure 3.3 

describes the schematic of the welding signal measurement. A DLD-V SENSOTEC LVDT sensor and 

modulator were used for the measurement of electrode displacement, and a KISTLER 9041A force 

sensor was used for measurement of the weld force. For the measurement of weld current, a Miyachi 
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MB-25E hall sensor was used. The raw welding signals are collected by the DAQ board and displayed 

using LabVIEW software. At this point, the welding signals are not yet converted to real values, so 

secondary data processing is required. In this study, the mathematical software MATLAB R2015a was 

used for conversions. Figure 3.4 indicates the raw welding signals which are seen in the LabVIEW 

software before secondary data processing.   

 

 

Figure 3.3 Schematic of the welding signal measurement 

 

 

Figure 3.4 Measured raw welding signals 
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3.3 Electrodes 

The electrodes used for this study have a diameter of 16mm and a face diameter of 6mm, as specified 

by AWS D8.1M for group 3 (tensile strength > 500~800MPa) steels at 1.0mm in thickness [61]. 

3.3.1 Electrode Material 

Class 2 (Cl2) and Class 3 (Cl3) copper electrode were compared to investigate the effects of material 

on electrode life. The material properties of Cl2 and Cl3 Cu are shown in Table 3.3. The difference 

between these electrodes is that Cl2 electrode has a higher electrical conductivity and a lower micro-

hardness than the Cl3 electrode [50]. 

 

Table 3.3 Material properties of Class 2 and Class 3 electrodes [50] 

Electrodes 
Hardness 

[HV] 

Electrical 

conductivity 

Chemical compositions 

Cu Fe Ni Cr Si Be Zr 

Cu < 105 
100 

%IACS  
100 - - - - - - 

Class 2 170~190 
75~80 

%IACS Min. 
Rem. - - 

0.5~ 

1.5 
- - 

0.02~ 

0.2 

Class 3 200~210 
45 

%IACS Min. 
Rem. 

0.1 

max. 

1.4~ 

2.2 
- 

0.2 

max. 

0.2~ 

0.6 
- 

 

3.3.2 Electrode Geometry 

Dome shaped and parabolic shaped electrodes were tested to investigate the geometric effects on 

electrode life. Figure 3.5 demonstrates the geometric differences between these two kinds of electrodes. 

The face thickness of parabolic shaped electrode is shorter than that of dome shaped electrodes.  
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(a) Dome shape (b) Parabolic shape 

 Figure 3.5 Electrode Geometry 

 

3.3.3 Electrode Coated with TiC/Ni 

TiC/Ni coated electrodes were investigated to study effects of coating on electrode life. A TiC/Ni 

coating was applied to the electrode’s surface by Electro Spark Deposition (ESD) process. The 

thickness of the TiC/Ni coating was approximately 30 to 50 µm and a cross-sectional image of a TiC/Ni 

coated electrode is shown in Figure 3.6.  

 

  

Figure 3.6 Cross sectional and surface images of the TiC/Ni coated electrode 
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3.3.4 Electrode Static Resistance 

To verify how the electrode resistance changes depends on the electrode surface conditions and applied 

weld forces, four-wire static resistance measurement was performed as shown in Figure 3.7 (a). The 

resistance was measured by using a four-wire micro ohmmeter (Agilent 34420A 7 ½ digit Nano Volt / 

Micro Ohm Meter) under different force values. To measure the resistance of the electrodes and avoid 

a misalignment problem, 1mm thick copper plate was inserted between electrodes. The force was 

manually applied and measured with force gauge (M5-1000) from 100 to 400kgf. Figure 3.7 (b) shows 

the measurement system for the electrode static resistance.  

 

 
 

(a) Schematic of measurement device (b) Experimental setup 

Figure 3.7 Measurement of electrode static resistance 

 

3.4 Electrode life test 

Electrode life testing was performed following AWS D8.9 standards [61]. Endurance testing was 

carried out on a panel measuring 126mm x 360mm as shown in Figure 3.8 and conducted with a 

prescribed welding direction. Table 3.4 shows the fixed welding parameters for electrode life testing. 

Welding current can change due to electrode conditions. Therefore, the operating weld current was set 

200A below the weld current that resulted in expulsion during the preliminary tests. During electrode 

life testing, one tensile shear test, one peel test, one cross sectional examination, and one imprinted 

image were made every 100 welds. 
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Figure 3.8 Endurance test panel 

 

Table 3.4 Welding conditions for electrode life test [61] 

Squeeze time Weld time Weld force Hold time Cooling water Welding rate 

30 cycles 15 cycles 326 kgf 5 cycles 4 l/min. 20 welds/min. 

 

3.5 Mechanical tests 

3.5.1 Strength tests 

Strength tests for tensile shear and cross tension specimens were performed using an Instron universal 

testing machine with 10 mm/min of strain rate. Each specimen was prepared according to the 

dimensions in AWS D8.9 standard and tested with specific fixtures. Figure 3.9 shows the specimen 

dimensions and test method.    

 
 

(a) Tensile shear specimen and test set-up 
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(b) Cross tension specimen and test set-up 

 

 
 

(c) Peel test specimen and test set-up 

Figure 3.9 Strength test methods [61] 

 

3.5.2 Imprinting Image 

Imprints were made to measure changing electrode surface area during electrode life testing. As the 

number of welds increase, the electrode surface area increases as well. To analyze the electrode surface 

degradation, imprinted images were measured every 100 welds by using a carbon paper as shown in 

Figure 3.10 below while applying weld force. The electrode contact surface areas were calculated with 

Image J software. 
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(a) Schematic of measurement  (b) Example of imprinting image 

Figure 3.10 Measurement of imprinting test 

 

3.6 Metallographic Characterization 

Metallographic cross section samples were cut through the center of the weld using an abrasive cut-off 

saw. The cross sectioned samples were hot mounted in conductive phenolic compound (Struers 

PolyfastTM) or cold mounted in epoxy resin. The mounted samples were mechanically ground using 

finer silicon carbide papers (180, 600, 1200grit) and polished with diamond suspended lubricants from 

6.0µm to 1.0µm particle size. Metallographic etching was conducted with 4% (HNO3OH) Nital etching 

for a few seconds for optical microscopy and scanning electron microscopy (SEM) test. Copper 

electrodes were etched using an etching liquid mixed with 50% Acetic acid and 50% Nitric acid. This 

process was performed very quickly due to the strong acid reaction. 

Optical microscopy for observing the spot weld area was performed using an Olympus BX51M 

microscope with QCapture Pro Ver. 5.1 imaging analysis software. Scanning Electron Microscope 

(SEM) for analysis of the electrode coating layer and microstructural examination (JEOL JSM-6460) 

was performed using a Zeiss Leo model 1550. An EDS (Oxford Instrument Microanalyses System) 

fitted to the electron microscope was used to analyze elemental compositions in the coatings. 

 

3.7 Microhardness 

Microhardness in the polished cross section weld specimens was measured by using a Clemex-JS 2000 

automated hardness test machine with 500g load and 15sec dwelling time. The measurement pattern of 

hardness profile was followed the AWS D8.9 standard as shown in Figure 3.11 [61]. There were larger 
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changes in the hardness in the HAZ area, as compared to the other regions, therefore, the measurement 

distance interval in the HAZ was set to half the length of that in the BM and weld nugget regions. 

 

 

Figure 3.11 Measurement of Hardness [61] 
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Chapter 4 

Effects of TiC/Ni Coating on Electrode Life  

In this chapter, electrode life was evaluated for the zinc coated AHSS. From the literature review in 

Chapter 2, it was revealed that the electrode is one of the most important factors which is deciding the 

weld qualities in RSW process. Using more specific electrode parameters, such as electrode material, 

geometry, and coating layer on the electrode surface, electrode life was evaluated through the 

mechanical and metallurgical methods and analyzed to select the general specification for the electrode.  

 

4.1 Evaluation of Electrode Life 

Electrode life was evaluated by weld strength from tensile shear test, button size from peel test, and 

nugget diameter from cross section test. Figure 4.1 shows the changing of these weld qualities through 

electrode life tests. The criterion of weld strength is the same as the ultimate strength of DP 600 steel, 

648MPa, and electrode life is defined as the number of weld when the strength is less than the criterion. 

The minimum allowable weld button and nugget diameter are 4.0 mm which is derived from the AWS 

D8.1 standard criterion, 4√𝑡 (t, being the thickness of the steel). Electrode life was determined as the 

number of welds at which button diameter is below the corresponding criterion value [61], but the other 

weld qualities, TS strength and nugget diameter, were used for evaluation of electrode life. Each 

criterion for TS strength and nugget diameter were 648MPa, same as the ultimate strength of base 

material and 4√𝑡, same standard criterion. Based on the results, the Class 2 TiC/Ni coated dome shaped 

electrode has the most improved electrode life of around 1,900 welds. Parabolic shaped electrodes have 

shown fluctuated weld qualities on uncoated and TiC/Ni coated electrodes because the contact area has 

greatly increased during this period, and it made the decrease of weld current density speed up. 

Especially the button size, which is getting a shunt effect from the first weld, decreases faster than the 

other weld qualities. The electrode life for uncoated parabolic shaped electrodes was about 500 welds 

and the TiC/Ni coating did not exhibit significant effects on electrode life. The results indicated that 

Class 3 electrodes, both of uncoated and TiC/Ni coated, had shorter electrode life than Class 2 

electrodes due to higher heat loss between electrode and steel sheet and within the electrode itself. As 

a result, the Class 3 electrodes had the shortest electrode life around 200 welds. Even if the electrode 

coated with TiC/Ni, it did not improve the electrode life as much as Class 2 electrode. 
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(a) Tensile shear strength 

 

 

(b) Button diameter from peel test 
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(c) Nugget diameter  

Figure 4.1 The results of electrode life test 

 

4.2 Requirements for the Electrode 

The electrode serves to deliver the weld current and force to steel, and it has a significant influence on 

electrode life. Therefore, selecting the appropriate electrode is necessary to meet the weld requirement, 

such as strength or nugget diameter [50]. Generally, there are some of the requirements for the electrode. 

First, the material of the electrode should have a high thermal conductivity and a low resistivity. The 

main component of the electrode is copper, and it is easy to soften from the resistance heat and makes 

deformation at the temperature about 500℃ above [62, 63]. If the thermal conductivity is high, the 

cooling effect is better, and the electrode degradation can be slow down. Second, the electrode is 

subjected to a high pressure repetitively during the weld. Thus, the electrode requires appropriate 

mechanical properties, such as hardness, compressive strength [13]. Last, the electrode has to have an 

optimal outer shape which can prevent the electrode from overheating. The electrode having a larger 

surface area is more effective to conduct the welding temperature to cooling water [64]. However, all 

these properties cannot be satisfied at the same time. Therefore, it is necessary to investigate and 

understand the welding characteristics for the different electrodes. 
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4.2.1 The Effect of Electrode Material and Coating 

To evaluate the effect of electrode material, Class 2 and Class 3 electrodes were tested. The main 

difference between the two electrodes is having a different electrical resistivity and hardness [50]. 

Under the condition applying only weld force, the measured contact resistances are the same as the 

Figure 4.2. The electrical resistance of the Class 3 electrode was formed two times higher than Class 2 

electrode at the operating weld force, 326 kgf. In the case of TiC/Ni coated electrodes, the contact 

resistance was formed higher than uncoated electrodes due to the high resistance of TiC/Ni layer, and 

also Class 3 electrode had a higher contact resistance as well. For this reason, the operating weld current 

of TiC/Ni coated electrode was set to lower than uncoated electrodes. 

  

(a) Uncoated electrodes (b) TiC/Ni coated electrodes 

Figure 4.2 Initial static contact resistance of Class 2 and Class 3 electrodes  

  

(a) Uncoated electrodes (b) TiC/Ni coated electrodes 

Figure 4.3 Hardness of Class 2 and Class 3 electrodes  
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From the measurement of static contact resistance, it was revealed that Class 3 has a higher resistance 

and will generates more resistance heat between electrode and steel sheet. To observe the effect of 

contact resistance, a hardness test was performed on the cross-sectional samples of each electrodes as 

shown in Figure 4.3, and repeated three times. Using the electrodes completed 100 welds, the hardness 

was measured 0.1, 0.5, 1.0, 3.0, and 5.0mm below from the top of the electrode. The hardness of the 

Class 3 electrode was higher than Class 2 at initial condition of electrode. However, the bigger hardness 

drop was made on the Class 3 electrode after it finished 100 welds. Especially, the hardness drop was 

made until 1.0mm below from the top surface of electrode. The more heat, which is generated from the 

weld nugget, contributed to acceleration of softening on the electrode surface and also led to decrease 

the hardness. Through these results, it was revealed that the higher hardness property of Class 3 

electrode was not effective to maintain the initial surface area for the weld temperature. 

 

Table 4.1 The melting temperature of the alloying elements of the electrodes 

 Electrode Alloying Fe Ni Cr Si Be Zr 

Class 2 

Elements 

(wt %) 
- - 0.5~1.5 - - 0.02~0.2 

Melting temp. 

[℃] 
  1,860   1,854 

Class 3 

Elements 

(wt %) 
0.1 max. 1.4~2.2 - 0.2 max. 0.2~0.6 - 

Melting temp. 

[℃] 
1,538 1,453  1,411 1,285  

 

The recrystallized area is another way to evaluate the degree of softening [63]. If the recrystallization 

occurs, the fine or elongated grain structures are detected near on the electrode surface, and these 

regions are accompanied by a low hardness. Generally, the recrystallization is defined as the nucleation 

and grain growth of the stress-free grains in the material, and there are some critical variables which 

are influencing the recrystallization; temperature, strain, initial grain size, and purity of the material 

[65]. Most of all, the temperature is the most important factor to decide the degree of recrystallization 

in RSW. For the copper material, the recrystallization temperature is formed in the range of 30% 

(350℃) to 50% (550℃) of the melting temperature. The electrode is made with some of the elements, 

therefore, the recrystallization temperature increases more than the pure copper. Considering the 

melting temperature of alloying elements in the Table 4.1, Class 3 electrode has a lower 
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recrystallization temperature than Class 2 electrode. Even though the Class 3 electrode has a higher 

hardness, it is not suitable for delaying the electrode deformation as much as Class 2 electrode.  

 

   

(a) Recrystallized depth of Class 2 electrodes 

   

(b) Recrystallized depth of Class 3 electrodes 

Figure 4.4 Recrystallization of the electrodes 

 

Figure 4.4 shows the recrystallized area that is formed at 100 welds and final welds. To compare the 

changing of recrystallization, initial state electrode was observed. In the case of uncoated and TiC/Ni 

coated Class 3 electrode have shown a thicker recrystallized depth, 312µm and 268µm. On the other 

hand, the Class 2 electrodes have a relatively thinner recrystallized area. The formation of recrystallized 

depths has shown a similar trend to the hardness result in Figure 4.3. The TiC/Ni coated electrodes have 

a slightly higher hardness than uncoated electrodes. 

Based on the above results, imprinting results were analyzed for the evaluation of electrode life as Table 

4.2 below. Using these results, weld current density was derived as Figure 4.5 (a). The initial weld 

current density was almost same, but the decreasing speed (slope of each curves) was different. Most 

of all, all electrodes, except TiC/Ni coated Class 2, have reached to 6.6 mm of electrode diameter at 

300 welds as shown in Figure 4.5 (b). Thus, TiC/Ni coated Class 3 electrode requires a lower operating 

weld current of 9.5kA, resulting in a smaller nugget diameter by the lower weld current density. 
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Table 4.2 Degradation of Class 2 and Class 3 electrodes 

 

Normal Dome  
Class 2 

TiC/Ni Dome  
Class 2 

Normal Dome 
Class 3 

TiC/Ni Dome  
Class 3 

Contact 
Area 

[mm2] 
(Diam.) 

Imprint 
image 

Contact 
Area 

[mm2] 
(Diam.) 

Imprint 
image 

Contact 
Area 

[mm2] 
(Diam.) 

Imprint 
image 

Contact 
Area 

[mm2] 
(Diam.) 

Imprint 
image 

1  
weld 

27.99 
(5.97) 

 

28.37 

(6.01) 
 

28.27 
(6.00) 

 

27.06 
(5.87)  

100  
welds 

29.32 
(6.11) 

 

28.94 

(6.07) 
 

30.88 
(6.27) 

  

28.75 
(6.05) 

 

200  
welds 

32.47 
(6.43)  

29.32 

(6.11)  

32.67 
(6.45)  

32.57 
(6.44)  

300  
welds 

35.15 
(6.69) 

 

31.37 

(6.32) 
 

34.32 
(6.61) 

 

34.52 
(6.63) 

 

500  
welds 

37.07 
(6.87) 

 

32.88 

(6.47) 
 

    

700  
welds 

39.15 
(7.06) 

 

33.49 

(6.53) 
 

    

2,000 
welds 

  
46.48 

(7.69) 
 

    

 

 

Incidentally, the operating weld current of Class 3 electrode was 300A higher than the Class 2 electrode, 

and the degree of the contamination of electrode surface was not severe as much as far beyond unusable 

as shown in Table 4.2. However, a smaller button size and intermittent interfacial fracture were made 

from the peel test within 200 welds on Class 3 electrode. Even if the shunt effect is considered, Class 

2 uncoated electrode has made an acceptable button diameter until the numbers of 600 welds. As 

mentioned in Table 3.3, Class 3 electrode has a low electrical conductivity, and hence it is difficult to 

deliver the weld current to faying surface of steel sheets effectively. Instead, the contact resistance 

between the electrode and the steel sheet was increased significantly from the formation of alloying, 

and the electrical energy was spent for the reaction of zinc layer and electrode more, not for the melting 

of steel sheets. Figure 4.6 to 4.9 are the SEM images and EDX results to analyze how deep the zinc 

diffuses to each electrode when electrode life tests were finished 100 and final welds. As shown in 

SEM figures, line scan method was used and measured every 10 or 20µm for a precise measurement. 
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(a) Changing of weld current density 

 

(b) Changing of contact area in region ‘A’ 

Figure 4.5 Weld current density and contact area for Class 2 and Class 3 electrode 

 

In Figure 4.6, zinc diffusion on Class 2 electrode was made until the depth of 10 to 20µm from the top 

surface of electrode at 100 welds. After finishing electrode life test (refer to Figure 4.7), the electrode 

has a deeper zinc diffusion depth of 40 to 50µm because the repeated resistance heat and weld force 

accelerate the alloying formation on the electrode surface. 
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(a) SEM images at the center of the electrode (b) EDX results 

Figure 4.6 SEM test result of the Class 2 uncoated electrodes at 100 welds  

 

 
 

(a) SEM images at the center of the electrode (b) EDX results 

Figure 4.7 SEM test result of the Class 2 uncoated electrodes at final welds  

 

In the case of the Class 3 electrode, a thicker zinc diffusion depth was found same as seen in Figure 4.8 

and 4.9. About 60µm thickness of alloying layer formed within 100 welds. At the final welds, a pitting 

area, which is formed from the localized removing of copper material during the weld, was detected at 
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the center of the electrode. For this reason, the zinc is able to accumulate in this area easily, and the 

total diffused depth has also increased to 100µm.   

 

 

 
 

(a) SEM images at the center of the electrode (b) EDX results 

Figure 4.8 SEM test result of the Class 3 uncoated electrodes at 100 welds 

 

 
 

(a) SEM images at the center of the electrode (b) EDX results 

Figure 4.9 SEM test result of the Class 3 uncoated electrodes at final welds  
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4.2.2 The Effect of Electrode Shape and Coating 

Dome and parabolic shaped electrode were selected for the second parameter to analyze the effect of 

improving electrode life. The heat conduction equation (4.1) for one-dimensional indicates the heat 

transfer rate (Q̇𝑐𝑜𝑛𝑑) is closely associated with the area (A) and temperature gradient (∂T/ ∂x) during 

the process [64, 66].  The heat transfer is normal to an isothermal surface, and hence the total volume 

is a very important parameter for electrode.  

 

Q̇𝑐𝑜𝑛𝑑 = −kA
∂T

∂x
 

               (4.1) 

Q̇𝑛
⃗⃗⃗⃗  ⃗ = Q𝑥̇𝑖 + Q𝑦̇𝑗 + Q𝑧̇𝑘⃗  

    (4.2) 

Q̇𝑥 = −kA
∂T

∂x
     Q̇𝑦 = −kA

∂T

∂x
     Q̇𝑧 = −kA

∂T

∂x
 

 (4.3) 

 

Li et al. also investigated that the effect of electrode shape has a negative effect on thermal conductivity 

and electrode life [67]. It was revealed that the less mass and volume cannot deliver the resistance heat 

effectively toward the cooling water side. Finally, the weldability is getting lower, and also electrode 

life becomes shorter. 

In this study, the parabolic shaped electrode having a shorter face length, the length between the outer 

electrode surface and inner electrode surface, was selected to evaluate the cooling effect of face length 

(refer to Figure 3.4 in Chapter 3). As mentioned above, the parabolic shaped electrode has a 26% 

smaller volume and 33% less weight (16.90 g, 2,185 mm3) than dome shaped electrode (25.08 g, 2,961 

mm3). With regard to the heat transfer, the total volume is dominant in deciding the electrode 

performance. The cooling water reaches close to the electrode surface, the resistance heat can be cooled 

down effectively. Thus, the shorter face thickness was assumed that it will help to improve the cooling 

effect.  
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Table 4.3 shows the imprinting images at different number of welds, and the contact area and electrode 

diameter was calculated. The electrode surface deformation was severe on the parabolic shaped 

electrode, and the weld current density also started to decrease steeply after the 300 welds as shown in 

Figure 4.10 (a).  However, the weld current density did not decrease continuously because the pitting 

makes the weld current density increases temporarily. At the numbers of 300 and 350 welds, the slope 

of weld current density has changed because the total contact surface area decreased due to the 

expansion of pitting. In the case of TiC/Ni coated dome shaped electrode, this phenomenon was found 

at 600, 900, 1200, and 1400 welds, respectively. In the case of TiC/Ni coated parabolic shaped 

electrode, there was no positive effect on the increase of the electrode life. The surface area was not 

expanded over 34mm2 (same as diameter of 6.6mm) until 300 welds as shown in Figure 4.10 (b), but it 

was steeply increased between 300 to 500 welds. Thus, the TiC/Ni parabolic shaped electrode has a 

similar weld current density to uncoated dome shaped electrode from 600 welds.  

 

  Table 4.3 Degradation of dome and parabolic shaped electrodes 

 

Uncoated Dome 
Cl2 

TiC/Ni Dome  
Cl2 

Uncoated Parabolic 
Cl2 

TiC/Ni Parabolic  
Cl2 

Contact 
Area 

[mm2] 
(Diam.) 

Imprint 
image 

Contact 
Area 

[mm2] 
(Diam.) 

Imprint 
image 

Contact 
Area 

[mm2] 
(Diam.) 

Imprint 
image 

Contact 
Area 

[mm2] 
(Diam.) 

Imprint 
image 

1  
weld 

27.99 
(5.97) 

 

28.37 

(6.01) 
 

26.97 
(5.86) 

 

24.54 
(5.59)  

100  
welds 

29.32 
(6.11) 

 

28.94 

(6.07) 
 

27.62 
(5.93) 

 

26.24 
(5.78) 

 

200  
welds 

32.47 
(6.43)  

29.32 

(6.11) 
 

29.71 
(6.16)  

30.00 
(6.18)  

300  
welds 

35.15 
(6.69) 

 

31.37 

(6.32) 
 

36.00 
(6.77) 

 

31.47 
(6.33) 

 

500  
welds 

37.07 
(6.87) 

 

32.88 

(6.47) 
 

40.72 
(7.07) 

 

36.00 
(6.77) 

 

700  
welds 

39.15 
(7.06) 

 

33.49 

(6.53) 
 

44.89 
(7.56) 

 

39.82 
(7.12) 

 

2,000 
welds 

  
46.48 

(7.69) 
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(a) Changing of weld current density 

 

(b) Changing of contact area in region ‘A’ 

Figure 4.10 Weld current density of dome and parabolic shaped electrodes 

 

The geometry effect was verified from the hardness result of Figure 4.11. As explained in equation 

(4.1) to (4.3), the parabolic shaped electrode, having a small volume, will soften earlier at the same 
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number of weld. Since the contact area increased significantly after 300 welds, hardness was measured 

using the electrodes which is finished 700 welds. A more significant drop in hardness was observed in 

both uncoated and TiC/Ni coated parabolic shaped electrodes. Therefore, the sharp geometry can 

accelerate the softening on the electrode surface. 

 

(a) Uncoated electrodes 

 

(b) TiC/Ni coated electrodes 

Figure 4.11 Hardness of dome and parabolic shaped electrodes  
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In terms of electrode geometry, when it assumed that all electrodes have a same reduced face length, 

the dome shaped electrode is vulnerable to expand the electrode surface due to the large curvature. 

Thus, the deformation speed of parabolic shaped electrode can be explained clearly by tracing of 

reduced face length. Figure 4.12 shows the reduced face length after finishing electrode life test of 100, 

300, and final welds, respectively. Until 100 welds, the reduced face lengths for uncoated electrodes 

were almost same because the dome shaped electrode has an extruded length of 0.2 mm on the surface 

(refer to a Figure 3.4 in Chapter 3), and this geometric condition works the same as the parabolic shaped 

electrode. For this reason, the uncoated dome and parabolic shaped electrodes have shown a similar 

trend on reducing face length until 300 welds. However, the real contact surface area was uncoated 

parabolic shaped electrode has larger than uncoated dome shaped electrode. It means that parabolic 

electrode has been made an additional expansion on the electrode surface.  

 

 

Figure 4.12 Changing of the electrode face length  

 

Figure 4.13 shows the electrode deformation at final welds, and the dotted lines indicate the initial 

geometry of each electrodes. From the Figure 4.13 (b) and (d), the deformed material of parabolic 

shaped electrodes (region A) was rolled up and accumulated around the top surface of the electrode, 

and the total contact area was increased. As a result, the button diameter of uncoated parabolic shaped 
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electrode was made intermittently below the criterion at 400 welds (refer to the Figure 4.1 (b)). On the 

other hand, dome shaped electrodes made a sharp and thin alloying material on the edge of electrode 

as shown in Figure 4.13 (a) and (c), and some of alloying were naturally removed when the zinc coating 

removes during the weld or electrodes are released after finish the weld. Generally, the TiC/Ni coating 

layer is well known as a barrier reducing or delaying a formation of local bonding and alloying between 

the electrodes and steel sheet surface [68], but this layer did not work normally on parabolic shaped 

electrode. Uncoated and TiC/Ni coated parabolic shaped electrodes have started to overtake the reduced 

face length of uncoated dome shaped electrode after 300 welds. Finally, parabolic shaped electrodes 

had a larger contact area than uncoated dome shaped electrode. When the contact area reaches 40 mm2 

(same as the diameter of 7.0 mm), electrode life test was over. Therefore, the TiC/Ni coated dome 

shaped electrode exhibits a slow deformation speed, which offers an improved long electrode life.  

 

  

(a) Uncoated Dome shaped (b) Uncoated Parabolic shaped 

  

(c) TiC/Ni Dome shaped (d) TiC/Ni Parabolic shaped 

Figure 4.13 Electrode deformation at final welds 
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4.3 Summary 

The study reported here evaluates electrode life for RSW of Zn coated AHSS. The effects of electrode 

material, geometry and TiC/Ni coating on electrode life are discussed. Some key conclusions include: 

 

Class 3 electrode exhibited shorter electrode life than Class 2 electrode. The larger recrystallized area 

(heat affected area) in class 3 electrode was made, and it led to accelerate the electrode softening. In 

addition, Class 3 electrode has a thicker alloying on the surface, and it caused more heat loss during the 

weld. From a view of material, since Class 3 electrode has a high resistance (lower electrical 

conductivity), the electrical energy loss in electrode itself is more than Class 2. As a result, Class 3 

electrodes had a shorted electrode life. Thus, Class 3 electrode is not suitable for zinc coated AHSS 

RSW. 

 

Parabolic shaped electrode showed shorter electrode life than dome shaped electrode on the basis of 

the result of button diameter. The main reason for the short electrode life is electrode deformation. Due 

to the short face length and small volume, parabolic shaped electrode provided a negative effect from 

the aspect of heat transfer. The contact surface area of parabolic shaped electrode increased quickly 

after 300 welds, and it induced the fast decreasing of weld current density. In addition, the accumulation 

of the deformed material on the top surface of electrode is contributed to increase the total contact area.  

Therefore, the parabolic shaped electrode is not as effective as the dome shaped electrode. 

 

TiC/Ni coated, dome shaped, and Class 2 electrode showed the best electrode life of 1,900 welds. The 

TiC/Ni coated electrode have shown a less reduction of hardness and formed a thinner recrystallized 

area. Thus, it is effective to delay the growing of electrode contact area, and maintained the weld current 

density relatively constant. The TiC/Ni coated Class 3 electrode exhibited a short electrode life around 

200 welds. The more heat loss within the electrode and the low operating weld current led to insufficient 

weld current density. The TiC/Ni coating on parabolic shaped electrode did not show significant effect 

to improve electrode life. Rapid increase of contact area 600 welds accelerated the decrease in weld 

current density and results in limited electrode life. 
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Chapter 5 

Effect of Electrode Inserts on Electrode Life and Weldability 

The electrode, which is made with TiC/Ni coating, dome shaped, and Class 2 material, was verified as 

the most effective electrode to improve electrode life in Chapter 4. However, the coating layer is not 

permanent and finally disappeared from the repeated force and high resistance temperature. Another 

problem is that it is hard to make a uniform thickness of coating layer. However, that does not mean 

that making an excessive coating is not appropriate because it is not economical and can generate very 

high contact resistance. For these reasons, the electrode life of TiC/Ni coated electrode is likely to be 

influenced and fluctuated by these external factors except main welding parameters. In Chapter 5, it 

was proposed another type of electrode which is able to increase electrode life and improve the spot 

weldability for zinc coated AHSS. To evaluate the weldability performance of the electrode, 

mechanical strength tests, and welding signal analysis were performed, and electrode life tests were 

also conducted for the promising electrodes. 

 

5.1 Principle of the Modified Inserted Electrode 

In previous studies, an inserted type of electrode was developed and evaluated to improve the 

weldability and increase electrode life. Key et al. [57], Nealon et al. [69] and Shingo et al. [70] tried to 

improve electrode life with inserted electrode that the electrode surface area is only contacted with 

refractory materials. The refractory materials increase the resistance between electrode and steel sheet, 

and help to form a weld nugget easier than the normal electrode. However, this type of electrode was 

reported that the inserted materials are broken from the repeated force and high temperature. Therefore, 

the inserted materials needed to be protected properly. Based on these concepts, a modified inserted 

electrode was suggested having a different design which is divided into two parts, copper part and 

inserted material part, to improve thermal conductivity and prevent too much resistance increase. At 

the center of the electrode, refractory materials, such as W and Mo were inserted and assembled to the 

copper electrode. Figure 5.1 shows the schematic of inserted electrode. Part number ① is a Class 2 

normal copper electrode, and part number ② is an inserted material. These two parts were assembled 

only by using a mechanical tolerance to minimize the manufacturing process. Depending on the 

diameter of inserted material or welding conditions, the specific dimensions of two parts can be flexibly 

changed. Another characteristic is that a penetrated hole was drilled to be able to contact the inserted 
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material and cooling water directly same as the number ③, and ④. This is because the larger contact 

area can help to maximize the cooling effect [4-1, 2, 5]. In addition, there is a space which the inserted 

material can move up by the weld force. From the results of electrode life tests in Chapter 4, the 

maximum reduced face length was less than 1.0mm. Therefore, this space was expected that it can help 

to push up the inserted material automatically by the weld force toward the top surface of the copper 

electrode.  

 

 
(a) Detailed dimensions 

 

 

                   

(b) Examples of inserted electrodes 

Figure 5.1 Schematic of modified inserted electrode 
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5.1.1 Material properties for the insert materials 

Table 5.1 shows the material properties for the various insert materials. Most of all, under the harsh 

welding conditions, the insert material is required to have high thermal and mechanical properties, such 

as a compressive strength, fracture toughness, appropriate hardness, and high thermal resistance, to 

prevent an excessive deformation or degradation. In terms of electrical properties, the insert material 

should also have an acceptable high resistivity, but not too extremely high. Theoretically, a weld nugget 

starts to be made by the resistance which is formed between electrodes and steel sheets. Thus, in order 

to make the weld nugget in early stage of the weld, the selection of the insert material is very important. 

Through the above prerequisites for the selection of insert material, the refractory metals, W and Mo, 

were finally selected. To evaluate the effect of diameter of insert material, ∅3 and ∅4 mm rods were 

used for W inserted electrode, and ∅3 and ∅5 mm rods were used for Mo. 

 

Table 5.1 Material properties for the inserted materials [49] 

Material Cu W Mo WC TiB2 TiC 

Yield Strength  

[MPa] 
248 1725 1900 530 374 295 

Compressive Strength 

 [MPa] 
248 3975 1900 3347 3735 3020 

Fracture Toughness  

[MPa√𝑚] 
47.8 135 27.5 3.8 6.2 2.55 

Vickers Hardness  

[GPa] 
1.23 7.36 5.64 36 25 27.95 

Thermal Expansion 

Coefficient 
16.9 4.5 5.2 7.1 8.1 7 

Melting Temp.  

[°C] 
1080 3415 2615 2870 3045 3205 

Max. Service Temp.  

[°C] 
325 1018 1089 777 1259 862 

Thermal Conductivity 

 [W/m°C] 
394 172.5 138 88 96 21.5 

Electrical Resistivity 

[mΩ·m] 
0.021 0.057 0.056 1 0.15 2.145 
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5.2 Mechanism of Inserted Electrode 

Electric current only flows through the conductor in an electrical circuit. Therefore, copper having a 

low electrical resistivity, is the most commonly used material as a good conductor of heat and 

electricity. However, as shown in Table 5.1, W and Mo are worse conductors than copper, and the weld 

current is not easy to flow through these materials because of the relatively high resistivity. In the 

previous research, the only way the weld current can flow was through the insert material. However, 

the high resistivity of insert material can creates an excessive resistance heat, and the melting of steel 

sheet and electrode was made. In severe cases, melting can lead to electrode sticking or damage to 

insert material such as the loss of material. 

To prevent these problems, a new type of inserted electrode was designed so that the weld current can 

flow through the both parts. Figure 5.2 (a) describes a section view of ∅4mm inserted electrode which 

was applied different mechanical dimension on the electrode surface, and Figure 5.2 (b) illustrates a 

detail view of electrode surface area, B. The mechanical tolerance of 20µm in detail view inevitably 

occurs in the process of the assembly of insert material and copper electrode. However, this gap plays 

a role in changing the passage of weld current during the weld. 

 

 

 

(a) Section view of the inserted electrode (b) Detail view of the inserted electrode 

Figure 5.2 Dimensions of modified inserted electrode (unit: mm) 
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As explained above, the weld current flows through the good conductor, therefore, it is necessary to 

use the gap in order that the weld current flows through the inserted material first. If there is no gap, 

for example, when the inserted material and copper electrode assembled perfectly flat or the inserted 

material pushed up more, the weld current only flows through the copper part. In these cases, it is hard 

to get the effect of insert material. Therefore, the inserted electrode is required to be carefully controlled 

to maintain an appropriate tolerance when inserted electrode is assembled. 

 

5.2.1 Characteristic of modified inserted electrode in weld nugget  

Figure 5.3 is the results of microstructure for normal electrode and W∅3mm inserted electrode. Normal 

electrode and W inserted electrode welded with 10.5kA and 9.5kA of weld current, respectively. The 

other welding conditions were used the same as the welding condition of electrode life test. When spot 

welding was performed with the inserted electrode, nugget diameter and nugget thickness were 

increased 16 % and 7% more than normal electrode. In spite of the lower weld current, inserted 

electrode has melted thicker and larger. Therefore, this result shows that the insert material helps the 

melting of steel sheet. This type of weld nugget was commonly observed in the other inserted electrodes, 

W∅4.0, Mo∅3.0, and Mo∅5.0 mm. (Refer to Appendix A)  

 

(a) Normal electrode 
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(b) W ∅3mm inserted electrode 

Figure 5.3 Macrostructure and microstructure of weld 

 

5.2.2 Electrode temperature 

In terms of the increase of the thickness of the weld nugget, it was expected that there was a difference 

on the distribution of weld temperature between electrodes and steel sheets. However, it is hard to prove 

experimentally because RSW welding condition is coupled with mechanical, electrical, and thermal, 

and hence is limited to measure the temperature on the contact area by using a thermocouple. Instead, 

Gould et al. identified an analytical model for estimating a temperature and cooling rate of resistance 

spot welds by using a one dimensional thermal model [60, 71]. This analytical model has following 

assumption to make the model simple. First, thermal losses around the steel were ignored, and second, 

resistance heat flows from steel sheet to electrode surface. Last, the temperature distribution in weld 

was described by a sine wave half period having a peak at the faying surface of steel sheets. With these 

assumptions, the boundary condition can be expressed as the equation (5-1). Additionally, it is assumed 

that the thermal gradient in the electrode is linear, extending from electrode temperature to the 

temperature of the cooling water. Equation (5-2) shows the boundary condition expression for the 

temperature variation in RSW. 
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θ = (θ𝑃 − θ𝐸) cos (
𝜋

2∆𝑥
𝑥) 𝑒

−
𝛼𝜋2

4∆𝑥2𝑡 + θ𝐸 

(5-1) 

𝑑𝜃

𝑑𝑥𝑥=∆𝑥
= −

𝑘𝐸

𝑘𝑆

θ𝐸

∆𝑥𝐸
 

(5-2) 

𝜃𝑃: 𝑡ℎ𝑒 𝑝𝑒𝑎𝑘 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑝𝑜𝑡 𝑤𝑒𝑙𝑑 

 𝜃𝐸: 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑎𝑛𝑑 𝑠𝑡𝑒𝑒𝑙 

𝑥: 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑓𝑎𝑦𝑖𝑛𝑔 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜𝑤𝑎𝑟𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑓𝑎𝑐𝑒 

∆𝑥𝐸 : 𝑡ℎ𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑓𝑎𝑐𝑒, ∆𝑥: 𝑡ℎ𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑓𝑎𝑐𝑒 

𝑡: 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑙𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝑘𝐸  𝑎𝑛𝑑 𝑘𝑆: 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝐶𝑢 𝑎𝑛𝑑 𝑠𝑡𝑒𝑒𝑙 

 

Equation (5-3) below can be derived from the combining equation (5-1) and (5-2). 
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(5-3) 

In the case of calculating the temperature at the contact surface area right after the weld was finished, 

it will be assumed that ∆𝑥 and 𝑥 are same, and t is zero. Thus, the equation (5-3) becomes simpler as 

shown in equation (5-4).    

θ =
𝜃𝑃

1 + (
2
𝜋) (

𝑘𝐸
𝑘𝑆

)(
∆𝑥
∆𝑥𝐸

)
 

(5-4) 

By using this equation, the temperature between electrode and steel sheet was estimated for normal 

electrode and inserted electrodes as seen in Table 5.2. The peak temperature in the spot weld was 

assumed to be equal, but it was revealed that the low thermal conductivities of inserted materials 

increase the temperature about 300°C more at the contact surface.  
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  Table 5.2 Estimated temperature on contact area 

Electrode 
Estimated temp. 

[°C] 

𝑘𝐸  

[W/m°C] 

𝑘𝑆 

[W/m°C] 

𝜃𝑃 

[°C] 

∆𝑥 

[mm] 

∆𝑥𝐸 

[mm] 

Normal 939.5 394 30 

1725 1.0 6.0 W inserted 1262.8 172.5 30 

Mo inserted 1334.3 138 30 

 

These results were identified by the microstructure images of cross sectional specimens as shown in 

Figure 5.4. Fig 5.4 (a), which is welded with normal electrode and 9.5kA, was detected base metal 

microstructure on the top and bottom surface. Under the optimal weld current condition, Fig.5.4 (b), a 

fine grain structure was detected on both surfaces. On the other hand, W inserted electrode built a coarse 

grain structure near to the top surface of steel. 

 

 

A 

   

 (a) Normal_9.5kA (b) Normal_10.5kA (c) W∅3mm inserted_9.5kA 

B 

   

Figure 5.4 Microstructure of weld on top and bottom surfaces 
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5.2.3 Weld nugget formation 

Based on the above results, it was expected that the inserted electrode will be able to make a weld 

nugget with short weld time and low heat input. To evaluate the effect of inserted electrode, weld nugget 

formation was analyzed by using cross sectional specimens which are made every odd numbers of weld 

cycles as in Figures 5.5 and 5.6. From the steel surface and weld nugget images, the weld time which 

is started to form a weld nugget was detected, and also thermal transfer characteristic and the growth 

of weld nugget were analyzed from the specimens of each electrodes.  
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Figure 5.5 Weld nugget formation of W inserted electrode 
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Normal electrode started to melt from 5 cycles and nearly built a weld nugget at 9 cycles with 10kA of 

weld current. On the other hand, W and Mo inserted electrodes has started to generate the resistance 

heat from 3 cycles, and the weld nugget was created within 5 cycles at 9.5kA. Especially, the weld 

nugget of normal electrode continuously grew up until the weld finishes, but the inserted electrode 

produced almost same diameter of weld nugget within 11 cycles of weld time.  

 

Weld 

cycles 

Normal electrode Mo∅3mm inserted electrode Mo∅5mm inserted electrode 
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surface 
Weld nugget 
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Figure 5.6 Weld nugget formation of Mo inserted electrode 
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The biggest difference between the normal electrode and the inserted electrode is a different resistance 

heat distribution direction in the early stage of weld time. The normal electrode generates a resistance 

heat from faying surface and transfer to electrode surface. However, the inserted electrodes start a 

melting on both of faying surface and the electrode-steel contact surfaces.  

The main reason for this is that the insert materials have a lower thermal conductivity and higher 

electrical resistivity than a normal electrode. Another characteristic is that the normal electrode made 

an elliptical shape of heat distribution at 5 cycles of weld time, but the W and Mo inserted electrodes 

have shown a cylindrical form and fast heat distribution at 3 cycles of weld time. As mentioned in 

section 5.2, the temperature between electrode and steel was higher than normal electrode, and it was 

helpful for removing zinc layer. Finally, the fast removing of zinc layer was possible, and it made a 

welding condition such as a welding of uncoated steel. In the case of Mo inserted electrodes, the weld 

nugget formations were observed similar to the W inserted electrode. According to the electrode surface 

conditions and the diameter of insert materials, there was a slight difference on melting time, but the 

overall trend was almost same. The heat generation in both the faying surface and the contact surfaces, 

and the weld nugget was sufficient at 11 cycles based on the minimum weld nugget criterion. Through 

the analysis of weld nugget formation, it was verified that the inserted electrodes have a positive effect 

on making a weld nugget faster and easier than normal electrode. 

The weld nugget formation of each electrode can also be identified by dynamic resistance curves in 

Figure 5.7 above. Overall, normal electrode has formed a low dynamic resistance because zinc coating 

makes a good contact condition, and it delays the time for increasing resistivity. For this reason, it was 

not until the 9 cycles of weld time that the normal electrode start to form a small weld nugget by the 

elevated temperature. Additionally, α and β-peaks were not detected in the curve because the zinc does 

not effectively remove in a short period of weld time. On the other hand, inserted electrodes have a 

clear β-peak because the melting temperature has increased fast and removed the zinc layer effectively. 

The appearance of β-peak was similar to the start time of weld nugget formation in Figure 5.6. 

Therefore, it was revealed that the high resistivity of insert materials can attribute to increase the 

temperature fast and remove zinc layer within a short weld time and is easy to form a good weld nugget 

(refer to the Appendix B). 
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(a) Normal electrode 

 

(b) W ∅3mm inserted electrode 

Figure 5.7 Cumulative dynamic resistance curves 

 

Besides the dynamic resistance, monitoring of electrode movement and weld force is well known as an 

effective method to explain the weld nugget formation [72]. According to the welding stages in Figure 

2.5, both of signals have a distinctive value at each stage. Thus, these welding signals can be overlapped 
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with dynamic resistance. There is a dominant mechanism that determines the electrode movement as 

shown in equation (5-5) below [13]. When the weld current flows after electrodes clamp steel sheets, 

the electrode has a movement (the same as the plastic deformation) from the surface breakdown and 

asperity softening of steel. After a few weld cycles, steel temperature increases by the continuous heat 

input, and thermal expansion of steel causes electrode separation. If the weld contains a suitable size of 

molten nugget, plastic deformation occurs in steel sheet, and the electrode displacement increases. If 

expulsion occurred, molten steel comes out, and it leads to a large amount of electrode movement. On 

the contrary, insufficient heat input makes a slow thermal expansion and eventually causes a decreasing 

the electrode movement.  

 

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 −  𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 

(5-5) 

 

In terms of weld force, the shape of weld force curve is similar to the dynamic resistance curve. In the 

early weld cycles, the weld force is temporarily reduced by the surface breakdown and asperity 

softening of steel. This depends on the surface conditions of steel sheets and will come up a little later. 

As the weld nugget grows, weld force increases by the thermal expansion. Finally, if a good weld 

nugget is made, plastic deformation is made adequately, and it is expressed as indentation. On the other 

hand, a steep decrease and continuous increase of weld force are induced by an expulsion and not 

enough heat input, respectively. 

Figure 5.8 and 5.9 are analysis results of welding signals measured from LVDT and weld force sensor 

at different level of weld current, a low weld current and an optimal weld current conditions. In Figure 

5.8, normal and W inserted electrodes have shown a decrease of electrode movement after finish the 

surface breakdown. It means that the thermal expansion is still in progress. The normal electrode 

applying the weld current of 10 kA has shown a bigger movement at the beginning of welding, but the 

thermal expansion of weld nugget has progressed continuously. Another normal electrode which is 

applied lower weld current of 8 kA has a smaller movement and also was detected the thermal 

expansion until the end of weld time. W ∅3mm electrode has a bigger movement than the other 

electrodes, and W ∅4mm has shown a slight changing of electrode movement after 14 cycles. Finally, 

W ∅3mm inserted electrode has a bigger electrode movement than a normal electrode because the 

extruded length of insert material makes a bigger mechanical deformation. This phenomenon was also 

demonstrated from the weld force results in Figure 5.8 (b). Both of W inserted electrodes have a drop 
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of weld force at 3 cycles of weld time earlier than normal electrodes, and then, the curves of weld force 

have shown a peak at 9 cycles and 13 cycles. After finding a peak, the weld force was decreased because 

the weld nugget has become soft and decreased the thermal expansion. Normal electrode applied 10 

kA of weld current has shown a peak at 9 cycles and had a lower weld force at 15 cycles. The reason 

why the normal electrode has a lower weld force than W inserted electrodes is that the total melting 

area of normal electrode is larger than W inserted electrodes. Therefore, the results of displacement and 

weld force are not same. However, in the case of the normal electrode welded with 8 kA, weld force 

was increased until 15 cycles because the thermal expansion is still progressing.  

 

 

(a) Changing of electrode displacement 

 

(b) Changing of weld force 

Figure 5.8 Comparison of displacement and force signals at a low weld current condition 
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Figure 5.9 describes electrode displacements and weld forces at high weld current and an optimal weld 

current. Unlike the result of low weld current, a normal electrode applying the weld current of 10.5 kA 

had a fast decrease of displacement similar to W inserted electrodes until 8 cycles. After that, it kept 

decreasing until 11 cycles, eventually, the expulsion was made from the excessive heat input. As a 

result of this, electrode movement has risen dramatically. At the same weld cycle, weld force has also 

shown a significant decrease because a large amount of molten metal moved out from the weld nugget. 

On the other hand, W inserted electrodes have started a mechanical deformation stably from 9 cycles. 

 

 

(a) Changing of electrode displacement 

 

(b) Changing of weld force 

Figure 5.9 Comparison of displacement and force signals at an optimal weld current condition 
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Since the insert material was effective to melt the steel, the plastic deformation was made earlier, and 

the weld forces were reduced more than the normal electrode of 10 kA at 9 to 11 cycles. From the 

analysis of displacement and weld force, inserted electrodes have revealed that they have advantages 

for steel melting faster and easier. 

 

5.2.4 Weld current flow analysis using FEA 

From the result of the weld nugget formation, it was observed that there was a different type of weld 

current flow. To prove the weld current flow mechanism and the different assembled conditions, a spot 

welding simulation was performed by using a SORPAS® 2D commercial software [75]. The steel sheet 

and electrode were selected a zinc coated DP 600 and Class 2 (CuCrZr) electrode in the database, and 

the other welding parameters and boundary conditions were applied same as the real welding condition. 

Figure 5.10 shows the simulation results of the normal electrode and W inserted electrode for the weld 

nugget formation. The weld current density and the weld temperature plots were captured every 3 weld 

cycles. In the case of the normal electrode, current density (Avg. 0.8kA/mm2) was concentrated on the 

edge of the electrode and the melting was started at the faying surface that is formed a highest resistance. 

The current density in W inserted electrode also formed around the edge of electrode, but the intensity 

(Avg. 1.5 kA/mm2) was higher than normal electrode. 

Weld 

Cycles 
Normal electrode W∅3mm inserted electrode 

3 Cycles 

(50msec) 
   

6 Cycles 

(100msec) 
   

9 Cycles 

(150msec) 
   

12 Cycles 

(200msec) 
   

15 Cycles 

(250msec) 
   

Figure 5.10 Distribution of weld current density 
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As shown in Figure 5.10, W inserted electrode has shown a change in the flow of weld current. The 

weld current flew through the inserted material at the beginning of weld, but the weld current delivered 

through both the insert material and Cu electrode after 6 cycles. From the steel surface images of 

inserted electrodes in Figure 5.5, W inserted electrode was revealed that melted area was only made at 

the contact area of inserted material until 5 to 7 cycles. Therefore, the weld current density was formed 

high due to the small contact area of inserted material. 

 

 

Figure 5.11 Comparison of temperature profile 

 

Figure 5.11 shows the welding temperature which is generating at each cycle. Normal electrode 

increased the weld temperature slowly, but W inserted electrode made a fast increase of temperature in 

weld nugget. Especially, W inserted electrode decreased the weld temperature after 12 cycles (200 

msec.) because current flow changed from insert material to Cu electrode. Thus, the resistance heat 

which was generated from Cu electrode did not contribute to increase of weld temperature, but on the 

contrary it made the weld cool down. From the above results, the RSW process using inserted electrodes 

can be divided into two stages. The first stage, which accelerated melting speed, contributed to melt a 

zinc coating layer and steel effectively at the beginning of the weld. The second stage helps weld nugget 

grow stably. 
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In reality, according to the assembled electrode conditions, there was a disparity in weld performance. 

Representatively, three kinds of electrode conditions can be made during the fabrication. For example, 

the inserted material assembled with perfectly flat to the copper electrode, slightly extruded, and pushed 

up. Figure 5.12 shows the simulation results for these possible fabricating conditions having the length 

of -20, 0, and 20µm for extruded, flat, and pushed-up conditions. In the case of flat condition, the weld 

nugget formation was similar to the normal electrode, but the temperature did not increase enough to 

melt the steel. The pushed-up conditioned electrode had an unusual shape of temperature distribution. 

From the results of weld current density, flat and pushed-up conditioned electrodes did not flow the 

weld current through the insert material part. The flat electrode made an ideal contact, but weld current 

has dispersed and lower than pushed-up conditioned electrode. Eventually, the positive effect of 

inserted electrode is hard to implement in two assembled conditions.  

 

Inserted 

condition 
Extruded (-20µm) Flat (0 µm) Pushed-up (+20µm) 

Electrode 

 

  

Temp. 

distribution 

(15cycles)  
Max.: 1,728.0 ℃ 

 
Max.: 631.9 ℃ 

 
Max.: 689.3 ℃ 

Current 

density 
 

Max.: 1.82 kA/mm2 
 

Max.: 0.40 kA/mm2 
 

Max.: 0.44 kA/mm2 

Figure 5.12 Simulation results for different fabricating conditions 

 

Another important characteristic is that the heat affected area is generated larger than insert electrode 

having extruded condition. Since the weld current is concentrated on the edge of electrode [73], melting 

is started over a wide area, and finally the possibility of expansion of HAZ will be increased. Therefore, 

maintaining the clearance should be controlled very carefully when the insert material is assembled to 

Cu electrode. 
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5.3 Evaluation of Weldability for the Inserted Electrode 

The weldability evaluation for the inserted electrodes was conducted with mechanical and metallurgical 

methods.  

5.3.1 Weld lobe curve 

As mentioned in Chapter 2, weldability can be described graphically in a 2-dimensional area by the 

weld lobe curve [1]. Table 5.3 shows the result of weld lobe curves for normal and W∅3mm inserted 

electrode base on the button diameter from the peel test. The other results are referred to in Appendix 

C. The green colored range, which is welded with low weld current or short weld time, is that the button 

diameter was not satisfied with the minimum criterion, and the orange colored area is the region which 

is made an expulsion repeatedly. 

 

Table 5.3 Weld lobe curves for Normal and W ∅3mm inserted electrode 

24 0.00 5.20 5.79 6.72 6.49 5.64 7.31 5.75 

21 0.00 4.47 5.49 6.43 5.42 6.63 5.19 6.01 

18 0.00 3.92 4.88 6.65 5.42 5.46 5.70 5.81 

15 0.00 3.32 4.53 6.51 5.24 6.29 5.86 5.44 

12 0.00 0.00 3.14 4.84 5.33 7.65 5.65 5.67 

9 0.00 0.00 0.00 3.95 4.15 4.74 5.20 5.15 

Cycles 

      Current[kA] 
7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 

(a) Normal electrode 

24 2.77 4.84 5.43 5.88 7.53 7.38 5.73 5.68 

21 2.71 4.69 5.25 7.83 7.90 8.25 6.38 6.37 

18 1.12 4.96 5.1 7.59 7.45 8.27 7.26 6.26 

15 0.00 4.83 5.43 6.98 7.82 8.10 7.98 7.90 

12 0.00 4.66 5.04 5.40 6.92 7.22 5.88 6.16 

9 0.00 3.09 4.28 5.14 6.67 7.19 5.18 7.46 

Cycles 

      Current[kA] 
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

(b) W ∅3mm inserted electrode 
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In the case of normal electrode, the largest width of weld current range was 2.0 kA at 15 cycles. On the 

other hand, the inserted electrodes, both of W and Mo, were expanded the lobe curves toward low weld 

current area, and made the weld button possible with short weld time. When a larger diameter of insert 

materials are used, the lobe curve range was reduced in low weld current range.  

Figure 5.13 shows the expansion of weld lobe curves at the 15 cycles of weld time. Normal electrode 

had a welding possible range of 1.5kA, but inserted electrodes obtained an expanded welding range 

about 2.0 to 2.5 kA. At the maximum weld current for each electrode, expulsion was made, and it 

tended to reduce the button diameter due to the loss of liquid metal. 

 

 

Figure 5.13 Expansion of weld lobe curves for various electrode designs (open marks indicate 

expulsion)   

 

5.3.2 Strength and microhardness results 

Tensile shear (TS) and cross tension (CT) strength tests were conducted to evaluate more quantitatively 

as shown in Figure 5.14. As the weld current increases, the TS strengths for W and Mo inserted 

electrodes was increased linearly, and it slightly decreased at the maximum weld current. On the other 

hand, the CT strengths were not increased as much as TS strength. Similar to the trend of AHSS [6], 

the ductility ratio, which is used to represent the ductility of spot weld, decreased due to the high 

stiffness made from the high carbon equivalent. Interestingly, compared with the welding conditions 
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making a similar size in button diameter, normal electrode at 9.5kA has a lower CT strength than 

inserted electrodes at 7.5kA except Mo ∅3mm (refer to the Appendix D). The CT strengths of inserted 

electrode has improved about 28% more than normal electrode. And the CT strengths were improved 

in most of the weld current conditions except the maximum weld current making an expulsion. 

 

 

(a) Comparison of normal and W inserted electrodes 

 

(a) Comparison of normal and Mo inserted electrodes 

Figure 5.14 Strength test results of DP600 spot welds produced using various electrodes 
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To evaluate the improved mechanical characteristic of inserted electrode, welding specimens, at 9.5kA 

and 7.5kA for normal and inserted electrodes, were selected because they have shown a similar CT 

strength. Figure 5.15 shows CT strengths, button diameters, and heat inputs. Based on the welding 

signal results in Figure 5.5 and 5.6, the heat input for nugget growth was calculated excluding early 

stage of weld. Heat input was calculated from the welding signals, weld current and voltage, during the 

weld time by equation (5.6).  

 

Q = ∫ 𝑖(𝑡)2
𝑇2

𝑇1

𝑅(𝑡) 𝑑𝑡  = ∫ 𝑖(𝑡)
𝑇2

𝑇1

𝑣(𝑡) 𝑑𝑡 

    (5.6) 

Normal electrode has shown a bigger button diameter due to the large amount of heat input made from 

higher weld current, but CT strength was not improved as much as the inserted electrodes. To calculate 

the real heat input which was used for steel joining, the early heat input was removed and recalculated 

based on the result of weld nugget formation. Consequently, similar amounts of real heat input were 

used for joining. The red colored bars are the real heat input except the heat input spent for zinc 

removing and steel heating. The weld time was decided based on the weld nugget formation results in 

Figure 5.5 and 5.6. The heat input for normal electrode was calculated from 8 to 15 cycles, and inserted 

electrodes were calculated from 3 or 5 to 15 cycles. 

 

     

Figure 5.15 Correlation between heat input and mechanical performance for each electrode 
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In general, inserted electrode has shown an improved weld qualities more than the normal electrode. 

However, in the case of Mo inserted electrodes, button diameter and CT strength were lower than W 

inserted electrode at 7.5kA because the weld current is so close to the lower limit of weld lobe curve 

that the weld qualities were not enough. However, considering the low weld current, the inserted 

electrodes, especially W inserted electrodes, have shown an improved CT strength with low weld 

current. 

 

5.3.3 Micro-hardness results 

To identify the reason for the improved CT strength above, the microhardness across each weld was 

measured. Figure 5.16 describes the overlapped results of hardness and microstructure images for 

normal and W∅3mm inserted electrode to achieve more accurate analysis. The regions affected by the 

heat were identified with FZ, CG-FG-ICHAZ, and SCHAZ/BM to be divided at the Ac1 line of critical 

transformation temperature, which is known as an austenizing temperature, based on optical 

microscopy [74]. The average hardness in FZ was formed about 400 to 430Hv, and BM had a hardness 

of about 210 to 230Hv. A sharp hardness drop was made between the boundary of SCHAZ/BM and 

CG-FG-ICHAZ (Ac1 line), and the hardness values decreased from 400Hv to below 250Hv. SCHAZ 

including softening zone has been detected and identified in AHSS [38], but for DP600 this region is 

hard to determine the region clearly. Thus, in this study, CG-FG-ICHAZ and FZ were used for the 

verification of the effect of inserted electrode.  

 

(a) Normal electrode with 10.5kA, 15 Cycles 
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(b) W∅3mm inserted electrode with 7.5kA, 15Cycles 

 

(c) W∅3mm inserted electrode with 9.5kA, 15 Cycles 

Figure 5.16 Micro-hardness test results  

 

Normal electrode has been measured 5.54 mm and 7.14 mm for FZ and CG-FG-ICHAZ including FZ. 

To verify for the effect of low weld current and inserted material, cross-sectional specimens, which is 

welded with W∅3mm inserted electrode and 7.5 kA of weld current, were analyzed as seen in Figure 

5.16 (b) and (c). The dimension of FZ and CG-FG-ICHAZ including FZ for Fig 5.16 (b) specimen has 

been measured 5.94 mm and 7.17 mm, and Fig 5.16 (c) has been determined 6.06 mm and 7.39 mm, 

respectively. As the previous result for the heat input, the weld specimen made by normal electrode 
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was expected that it will have a larger heat affect area than inserted electrodes. Approximately, the 

inserted electrode had a larger nugget diameter, but the CG-FG-ICHAZ was not expanded as much as 

normal electrode. As shown in equation (5-7) below, the HAZ ratio was defined for a quantitative 

comparison of HAZ expansion.  

HAZ ratio =  
𝐹𝑍 𝑤𝑖𝑑𝑡ℎ

𝐹𝑍 𝑤𝑖𝑑𝑡ℎ + 𝐻𝐴𝑍𝐶𝐺−𝐹𝐺−𝐼𝐶  𝑤𝑖𝑑𝑡ℎ
 

(5-7) 

Normal electrode has shown a ratio of 0.79, and W ∅3mm inserted electrodes represented a ratio of 

0.83 and 0.82. For the other specimens, HAZ ratio was calculated as shown in Appendix E.  

 

(a) CT strength vs HAZ ratio 

 

(b) TS strength vs HAZ ratio 

Figure 5.17 Correlation between strengths and HAZ ratio  
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Figure 5.17 describes the effect of HAZ ratio that affects the mechanical strengths. In each figure, the 

black colored dot lines are the strength and HAZ ratio of normal electrode which is welded with optimal 

weld current, and the result was used for criterion. From the result of CT strength in Figure 5.17 (a), 

low strengths were developed on the left side of the plot because the specimens were made a small weld 

nugget from the low weld current. On the right side, it was located the specimens which is made an 

expulsion. Since the severe expulsion made from high weld current can cause a drop in strength, few 

welds of W∅3mm and normal electrodes were made on the left side. Based on the HAZ ratio line of 

0.79, most of specimens for inserted electrode were located at the top-right of the plot. Thus, it was 

revealed that inserted electrodes are able to make a better weld joining with low weld current. This 

trend similarly comes to the TS strength results of Figure 5.17 (b). The low strength specimens welded 

with low weld current were located underneath the left side of the plot, and the expulsion specimens 

are located on the right side with the low HAZ ratio generated from the excessive heat input.  

As a result, the normal electrode has shown a lower TS and CT strength than W inserted electrodes. In 

comparison with W inserted electrodes, 7.5kA specimen has a slightly small FZ, and hence the TS and 

CT strengths were produced lower than the 9.5kA specimen. However, in terms of minimizing the CG-

FG-ICHAZ, 7.5kA of welding condition has shown a bigger HAZ ratio. Therefore, it was proved that 

the more heat input will not guarantee the higher CT strength, and minimized HAZ lead to improved 

mechanical strength.   

Even though the weld specimen of normal electrode was made in an optimal welding current, the CT 

strength was made lower than the inserted electrodes. To investigate the fracture characteristic, the weld 

specimens having a similar weld nugget diameter were selected. Figure 5.18 describes the fracture 

surface of each CT specimens. The normal electrode welded with 10.5 kA had a low HAZ ratio of 0.79 

and was even observed cracks which are propagated from the steel surface to weld nugget and. In terms 

of fracture, crack initiation was not started at the base metal, but at the edge of the weld nugget. 

However, inserted electrodes promote fracture which starts from the boundary of CG-FG-ICHAZ and 

necking in BM area. Even though the weld nugget diameter was similar, the fracture shape was 

different. The measured fracture diameters from the fracture specimens were 7.12, 7.37, and 7.48mm 

in order of normal, W∅3mm, and Mo ∅5mm electrodes. As mentioned in Chapter 2, the value of CT 

strength mechanically depends on the diameter and thickness of weld nugget. Thus, the inserted 

electrodes, having a narrow CG-FG-ICHAZ, were more beneficial for improvement of CT strength 

than the normal electrode. 
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 (a) Normal electrode at 10.5kA  

  

 

 (b) W ∅3.0mm electrode at 8.5kA  

 

  

 (c) Mo ∅5.0mm electrode at 8.5kA  

Figure 5.18 Cross section of fracture specimens  

 

5.4 Electrode life for the Inserted Electrode 

Electrode life tests were conducted for the W and Mo inserted electrodes, and the results are the same 

as the Figure 5.19. According to the increasing of the diameter of insert material, the electrode life was 

increased. The electrode life of Mo ∅3mm was finished at the 1,800 welds. In comparison to W ∅3mm 

electrode, the electrode life was short. The main reason for the short electrode life of Mo ∅3mm 

electrodes was caused by the decreased current density. Since the Mo has a lower fracture toughness 

than Cu, buckling is easily made on the edge of electrode surface in the assembly process of inserted 

electrode. Additionally, from the imprinting images in Figure 5.20 (a), Mo has revealed that it was 

easily softened and made a good contact condition from the repeated weld force and the effect of 

resistance enhancement was reduced the same as the ‘A’ in the plot. As a result of the increase of 

contact area, the resistance, ‘B’, at the final cycles of weld was getting lower like ‘C’. Thus, Mo ∅3mm 
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has a shorter electrode life compared to the other electrodes. However, W ∅3mm had an improved 

electrode life of 4,400 welds because the high current density was well maintained. This result detected 

from the imprinting images and dynamic resistance curves as shown in Figure 5.20 (b). As the welding 

progressed, β-peak was clearly made from the insert material earlier than the first weld same as the ‘A’ 

in the plot. Furthermore, the mechanical clearance led to form a high contact resistance at the initial 

weld cycle like ‘C’ in the figure. This shape of dynamic resistance was maintained until 4,000 welds. 

However, due to the increased Cu electrode area, the resistance to nugget growth sharply dropped, and 

finally the electrode life ended at 4,400 welds. W ∅4mm has shown a similar trend in dynamic 

resistance curve (refer to Appendix F). Instead, the bigger diameter of insert material generated the 

higher resistance after the β-peak. Thus, the button diameter has been made during 8,400 welds. In the 

case of Mo ∅5mm, the fracture toughness is low, but the contact area of insert material is relatively 

larger than the other electrodes. Therefore, the softening issue for insert material was relatively reacted 

low, and the high resistance was maintained until 10,500 welds, and it has a longest electrode life among 

all inserted electrodes.     

 

 

Figure 5.19 Electrode life test results for the inserted electrodes  
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(a) Mo ∅3.0mm inserted electrode 

 

(b) W ∅3.0mm inserted electrode 

Figure 5.20 Changing of dynamic resistance at different number of welds 
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5.5 Summary 

A new type of inserted electrode was investigated for improving weldability and increasing electrode 

life. The effect of inserted electrodes was demonstrated through the mechanical/metallurgical tests, 

welding signal analysis, and FEA.   

 

Insert materials form a higher electrical resistance between electrodes and steel sheets, and it 

contributed to removing a zinc coated layer within a shorter weld time than normal electrode. By using 

a mechanical tolerance, the zinc removal has been made more effective. Additionally, the weld current 

flow changed from insert material to Cu electrode, and it helped to form a higher weld current density 

at the beginning of the weld. Therefore, the inserted electrode can reach the acceptable weld nugget 

with a short weld time or low weld current. 

 

From the effect of the increased resistance, lobe curves of inserted electrodes were expanded. 

Especially, it was possible to achieve good weld qualities, such as strength and button diameter, with 

low weld current, about 7.0 kA to 8.5 kA. In the case of upper weld current limits, it has decreased 0.5 

to 1.0 kA due to the high resistance of the insert materials. 

 

At the welding conditions making a similar button diameter, inserted electrodes have shown bigger CT 

strengths than the normal electrode. This is because it was possible to melt a zinc and form a weld 

nugget with less heat input. As a result, the less heat input formed a narrow width of CG-FG-IC HAZ, 

and it was identified from the measurement of hardness and calculation of HAZ ratio.  

 

Mo ∅5.0 mm inserted electrode has shown the most increased electrode life among the tested 

electrodes. Depending on the diameter of inserted electrode, there was a significant difference of 

electrode life. This is due to the fact that the larger contact area of inserted material has a higher 

possibility to make an acceptable weld nugget for the reduced weld current density. 
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Chapter 6 

Conclusions and Recommendations 

6.1 Evaluation of Electrode Life in RSW of Zinc Coated AHSS 

Electrode life tests for the GI coated DP600 were conducted to evaluate electrode performance. 

Electrode material, geometry, and TiC/Ni coating were chosen and assessed for main electrode 

parameters. The following conclusions were reached: 

1. Class 3 electrodes exhibited a larger recrystallized area (heat affected area) and thicker alloying on 

the electrode surface. These issues accelerated electrode softening and caused more heat loss during 

the weld. Therefore, Class 3 electrodes are not suitable for zinc coated AHSS RSW. 

2. Parabolic shaped electrodes have a negative effect on the increase of electrode life. The small volume 

and sharp shape create poorer conditions for heat transfer. The contact surface area increased rapidly 

after 300 welds, and that induced a rapid decrease in weld current density. Therefore, parabolic shaped 

electrodes are not appropriate for reducing electrode deformation. 

3. TiC/Ni coating was ineffective on Class 3 and parabolic shaped electrodes, but highly effective on 

dome shaped and Class 2 electrodes demonstrating electrode life as high as 1,900 welds. TiC/Ni coated 

electrodes showed less softening of the base electrode material and formed a thinner re-crystallized 

layer. 

 

6.2 Improvement of Weld Performances with the Inserted Electrode  

A new type of inserted electrode was proposed and investigated for improved weld quality and 

increased electrode life.   

1. Insert materials form a higher electrical resistance between the electrode and the steel sheet, 

contributing to earlier removal of the zinc coating layer. The mechanical clearance of the insert material 

causes more effective zinc melting and improves weld current flow.  

2. The analysis of dynamic resistance, electrode displacement, and weld force data shows that the 

inserted electrodes are able to form an acceptable weld nugget in a shorter time or with lower weld 

current.  

3. The inserted electrodes shift the lobe curves toward lower weld currents and expand them.  
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4. Since the inserted electrodes require less energy for melting the zinc layer and forming the weld 

nugget, it was observed that a narrower HAZ width was formed. Consequently, higher CT strengths 

were observed. 

5. W∅4.0 mm and Mo ∅5.0 mm inserted electrodes show the longest electrode life of those materials 

investigated.   

 

6.3 Recommendations 

1. Parabolic shaped electrodes have shown good weld current density within a lifetime of 300 welds. 

Therefore, investigation and optimization of geometry should be performed for minimizing electrode 

deformation. 

2. The inserted electrode was proposed and investigated using only W and Mo refractory materials. 

Both materials have good mechanical and thermal properties, but investigation of other refractory 

materials or ceramic materials may result in further improvements.  

3. Regarding reliability, the mechanical strength tests for inserted electrodes should be repeated 

sufficient to provide statistical confidence. 

4. The inserted electrode has not made any cracks on the weld area of steel surface. Thus, the effect of 

reducing cracks needs to be investigated for other AHSSs. 
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Appendix A 

Weld nugget shape of inserted electrodes 

 

(a) W∅4mm inserted electrode 

 

(b) Mo∅3mm inserted electrode 
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Appendix B 

Dynamic resistance curves 

 

(a) W ∅4mm inserted electrode 

 

(b) Mo ∅3mm inserted electrode 
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(c) Mo ∅5mm inserted electrode 
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Appendix C 

Weld lobe curves for each electrode (button diameter) 

24 3.14 4.12 6.23 6.70 7.10 8.45 8.34 6.18 

21 3.07 4.70 5.25 5.54 6.77 8.13 7.22 6.15 

18 2.51 4.57 5.09 5.38 7.15 7.32 8.89 7.92 

15 2.57 3.88 4.98 5.23 6.80 6.84 8.33 7.64 

12 0.00 3.37 4.72 4.83 5.36 7.18 7.92 5.92 

9 0.00 0.00 3.15 4.28 4.77 5.67 6.90 7.44 

Cycles 

      Current[kA] 
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

(a) W ∅4mm inserted electrode 

24 2.48 4.30 5.32 6.71 6.81 7.42 6.50 6.14 

21 0.00 4.42 5.21 5.53 6.01 6.86 5.33 5.98 

18 0.00 2.68 4.91 5.51 5.95 6.35 7.42 6.38 

15 0.00 0.00 4.63 5.27 7.04 7.44 6.70 6.13 

12 0.00 0.00 1.76 4.60 5.06 5.94 6.83 6.14 

9 0.00 0.00 0.00 0.00 4.39 4.84 4.89 5.51 

Cycles 

      Current[kA] 
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

(b) Mo ∅3mm inserted electrode 

24 4.15 4.93 5.50 6.77 7.95 8.87 8.17 6.63 

21 4.33 4.90 5.45 5.80 7.80 8.51 8.63 7.02 

18 3.30 4.68 5.34 5.71 7.78 8.12 8.51 6.82 

15 0.00 3.95 4.90 5.42 7.44 7.64 7.80 7.38 

12 0.00 0.00 3.93 4.91 7.07 7.10 7.25 5.92 

9 0.00 0.00 0.00 0.00 3.56 4.42 4.89 6.57 

Cycles 

      Current[kA] 
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

(c) Mo ∅5mm inserted electrode 

* Green colored: Unacceptable, White colored: Acceptable, Orange colored: Expulsion 

* Weld criterion: 4.0mm (4√𝑡, 𝑡 = 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑡𝑒𝑒𝑙 𝑠ℎ𝑒𝑒𝑡)  
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Appendix D 

Mechanical test results 

1) Normal electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

Max. TS Strength [kgf] No weld No weld 930.89 1083.94 1130.58 1290.37 

Max. CT Strength [kgf] No weld No weld 326.45 398.93 464.82 433.57 

Button diameter [mm] No weld No weld 4.53 5.09 5.86 6.10 

 

2) W ∅3mm inserted electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

Max. TS Strength [kgf] 850.48 1002.68 1084.94 1209.11 1189.40  

Max. CT Strength [kgf] 278.40 537.68 527.06 543.27 244.27 - 

Button diameter [mm] 0.00 5.43 7.82 7.98 7.90 - 

 

3) W ∅4mm inserted electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

Max. TS Strength [kgf] 792.08 1082.98 1192.66 1269.40 1308.28 - 

Max. CT Strength [kgf] 292.03 565.91 598.13 560.77 524.69 - 

Button diameter [mm] 2.57 4.98 6.80 8.33 7.64 - 

 

4) Mo ∅3mm inserted electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

Max. TS Strength [kgf] No weld 975.83 1222.34 1270.90 1317.94 - 

Max. CT Strength [kgf] No weld 351.91 509.94 504.05 600.71 - 

Button diameter [mm] No weld 4.63 7.04 6.70 6.13 - 

 

5) Mo ∅5mm inserted electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

Max. TS Strength [kgf] No weld 898.20 1188.87 1282.50 1171.87 - 

Max. CT Strength [kgf] No weld 427.89 506.87 473.92 468.08 - 

Button diameter [mm] No weld 4.90 7.44 7.80 7.38 - 
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Appendix E 

Analysis of FZ / HAZ area  

1) Normal electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

FZ width [mm] No weld No weld 2.76 4.86 5.51 5.54 

HAZCGFGIC width [mm] No weld No weld 5.68 6.46 6.96 7.10 

HAZ Ratio No weld No weld 0.49 0.75 0.79 0.78 

 

2) W ∅3mm inserted electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

FZ width [mm] 4.43 4.64 5.82 6.23 5.81 - 

HAZCGFGIC width [mm] 6.01 5.89 7.00 7.39 6.99 - 

HAZ Ratio 0.74 0.79 0.83 0.84 0.83 - 

 

3) W ∅4mm inserted electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

FZ width [mm] 4.79 5.48 5.53 6.21 4.73 - 

HAZCGFGIC width [mm] 6.64 6.74 6.95 7.40 6.75 - 

HAZ Ratio 0.72 0.81 0.80 0.84 0.70 - 

 

4) Mo ∅3mm inserted electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

FZ width [mm] No weld 4.78 5.46 6.03 6.25 - 

HAZCGFGIC width [mm] No weld 6.37 6.85 7.38 7.61 - 

HAZ Ratio No weld 0.75 0.80 0.82 0.82 - 

 

5) Mo ∅5mm inserted electrode 

 6.5 kA 7.5 kA 8.5 kA 9.5 kA 10.5 kA 11.5 kA 

FZ width [mm] No weld 4.27 5.68 5.93 6.10 - 

HAZCGFGIC width [mm] No weld 6.21 6.84 7.20 7.50 - 

HAZ Ratio No weld 0.69 0.83 0.82 0.81 - 
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Appendix F 

Changing of dynamic resistance during electrode life test  

1) Normal electrode 

 

2) W ∅4mm inserted electrode 
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3) Mo ∅5mm inserted electrode 
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