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Abstract 

Sodium is one of the most ubiquitous metal ions in both intracellular and extracellular 

fluids. Many fluorescent sensors have been designed to measure Na+ concentrations. However, 

Na+ binding to biomolecules such as DNA has long been considered to be non-specific. In the 

past few years, RNA-cleaving DNAzymes have emerged as promising tools for detecting Na+ 

due to their metal-specific activity. DNAzymes are DNA-based catalysts which require specific 

metal ions as cofactors for their catalytic activity. The initial goal of this research is to select 

DNAzymes that require Co(NH3)6
3+ as an intended cofactor through in vitro selection. However, 

new mutants of a previously reported Na+-specific DNAzyme were obtained instead.  

An in vitro selection was preformed following a standard protocol using Co(NH3)6
3+ as 

the intended cofactor. After 6 rounds of selection in pH 6 buffer, an active sequence was 

successfully enriched and isolated. However, this sequence named CoH1 shows catalytic activity 

in the presence of Na+, instead of Co(NH3)6
3+. The secondary structure prediction revealed a 

well-defined Na+ binding domain in its catalytic core, which explained the Na+-dependent 

activity. After a careful comparison, the structure of CoH1 was found to be highly similar to a 

previously reported Na+-dependent DNAzyme, NaA43. However, two nucleotides in NaA43 that 

are known to be critical for its activity were mutated to different bases in CoH1. Indeed, further 

mutation studies indicated that any changes to these mutated positions may completely abolish 

the activity of CoH1. 

As a new mutant of NaA43, CoH1 exhibited novel catalytic activity. With 10 mM Na+, 

CoH1 displays a fast cleavage rate of ~0.07 min-1, which is ~3.5-fold higher than NaA43. At pH 

6, CoH1 has a stronger Na+-binding affinity with a Kd value of 4.3 ± 0.6 mM Na+, suggesting a 

great potential in Na+ detection at low concentrations. Based on our results, pH is important for 
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distinguishing CoH1 from NaA43. Overall, CoH1 displays higher cleavage activity at pH below 

~6.5, while NaA43 is more active at higher pH.  

In addition, 2-aminopurine (2AP) was used as a fluorescence probe in converting the 

CoH1 DNAzyme into a folding-based Na+ sensor. 2AP is a fluorescent adenine analog whose 

fluorescence is strongly dependent on its local base stacking environment. By introducing a 2AP 

in the substrate strand, binding of Na+ induces ~80% signal enhancement. The Na+ sensor was 

demonstrated to be highly sensitive (a detection limit of 3.0 mM Na+) and selective over other 

monovalent ions. The 2AP probes also revealed the Na+-induced folding of the DNAzyme and 

provided important insights to the reaction mechanism. 
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Chapter 1. Introduction 

1.1 Nucleic acids 

Along with carbohydrates, lipids, and proteins, nucleic acids are among the most important 

biological macromolecules in all forms of life. Within cells, nucleic acids, including 

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), function in preserving, transmitting 

and expressing genetic information. Essentially, DNA and RNA are linear biopolymers with 

nucleotides as their repeating units. The three essential components of a nucleotide are: a) a five-

membered sugar ring; b) a nucleobase linked to the 1-carbon on the sugar ring; and c) a 

phosphate group at the 5-carbon (Figure 1.1A). The major difference between the DNA and 

RNA structure lies in the sugar ring: DNA contains 2-deoxyribose while RNA contains ribose. 

DNA uses four nucleobases: adenine (A), thymine (T), cytosine (C), and guanine (G). On the 

contrary, RNA uses uracil (U) instead of thymine (Figure 1.1B). The neighbouring nucleotides 

are connected through the phosphodiester linkage between the 3-hydroxyl group of one 

nucleotide and 5-phosphate group of the next.  

Resulting from Watson-Click base pairing, naturally occurring DNAs are found primarily 

in the double-stranded structure. Two complementary strands are held together by hydrogen 

bonds formed between intramolecular base pairs. Resulting from the low pKa value of the 

phosphate group (pKa1=2.2), the DNA backbone is negatively charged at neutral pH (pH 7.0). 

The alternating phosphate group and sugar residues construct the DNA backbone. The genetic 

information carried by DNA is stored in the sequence of base pairs and protected by the DNA 

backbone. Due to its genetic function in biology, DNA has been considered as a chemically 

passive molecule for a long time. 
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Figure 1.1 (A) The chemical structure of nucleotides and (B) the five nucleobases (A, T, C, G, U). 

 

1.2 Introduction to DNAzymes 

1.2.1 Catalytic DNA 

Far beyond their roles as genetic information carriers, some nucleic acids are cable of 

catalyzing biochemical reactions similar to protein enzymes, which are called nucleic acid 

enzymes (NAEs). RNA-based catalysts or ribozymes were first discovered in the early 1980s.1 

Ever since, natural ribozymes have been found to participate in several fundamental reactions, 

such as RNA cleavage,2 RNA self-processing,3 and peptide bond formation.4 Their DNA 

counterparts, deoxyribozymes or DNAzymes, are DNA molecules with catalytic activity toward 

specific chemical reactions. Despite the lack of known DNAzymes in nature, the first artificial 

DNAzyme (GR-5) was isolated through in vitro selection in 1994 by Breaker and Joyce.5 This 

DNAzyme succeeded in catalyzing the cleavage of a RNA substrate in the presence of Pb2+. 

The discovery of the GR-5 DNAzyme demonstrated that DNA can exhibit catalytic activity. 

Since then, many DNAzymes have been identified to catalyze a great variety of chemical 

reactions including RNA/DNA cleavage,6-7 ligation,8 DNA phosphorylation,9 and DNA 

adenylation.10 Among these, DNA-catalyzed RNA cleavage reaction is the most commonly 
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studied. For example, Figure 1.2 shows the catalytic motif of the first RNA-cleaving DNAzyme 

(GR-5) which contains 15 nucleotides.5 The enzyme strand consists of two substrate binding 

domains flanking a catalytic core. Substrate binding domains recognize and hybridize with the 

substrate strand by base pairing, yielding a DNAzyme complex. A ribo-adenosine (rA) 

embedded in the substrate sequence indicates the cleavage site. The GR-5 DNAzyme exhibited a 

catalytic rate up to ~1 min-1 in the presence of Pb2+ at 23℃ and pH 7. This rate is about 105-fold 

higher than the uncatalyzed reaction under the same conditions.  

 

Figure 1.2 The catalytic motif of the GR-5 DNAzyme with the cleavage site pointed by the arrow. The 15 

nucleotides (in blue color) compose the catalytic loop which is responsible for the catalytic activity. 

 

1.2.2 Examples of metal-specific DNAzymes 

Similar to protein enzymes and ribozymes, DNAzymes require specific metal ions as 

cofactors to catalyze chemical reactions. In other words, DNAzymes show high selectivity 

towards respective metal ions, and their catalytic activity may highly dependent on metal ion 

concentrations. For instance, the 10-23 DNAzyme was isolated through in vitro selection under 

simulated biological conditions (150 mM KCl, 2 mM MgCl2, 50 mM Tris buffer, pH 7.5, 

37℃).11 As shown in Figure 1.3A, its catalytic domain is composed of 15 nucleotides. The 

catalytic activity of the 10-23 DNAzyme is Mg2+-dependent with a rate of ~0.1 min-1 in the 

rA

G
A

A
G
TAGCGCC

G
C

C
G

3’- -5’
5’- -3’

GR-5
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presence of 2 mM Mg2+. By changing the substrate-binding domain, this DNAzyme can be used 

to target various RNA substrates. 

In the meantime, the other DNAzyme, 8-17, was also isolated from the same selection 

procedure (Figure 1.3B).11 This enzyme has a relatively small catalytic core, which contains a 

stem-loop of 3 base pairs and an unpaired loop of 4-5 nucleotides. Unlike the 10-23 DNAzyme, 

the 8-17 DNAzyme turned out to be substantially more active with Pb2+ than other metal ions. 

Moderate activity of 8-17 was still observed in the presence of many other divalent ions (e.g., 

Zn2+, Ca2+, Mg2+, Co2+). As a consequence, this DNAzyme was frequently isolated from other 

subsequent selections.12-14 

 

Figure 1.3 Secondary structures of (A) the Mg2+-dependent 10-23 DNAzyme and (B) the Pb2+-dependent 

8-17 DNAzyme. 

 

Apart from common metal cofactors in nature, DNAzymes with high activity towards 

actinide and lanthanide ions were also discovered. For example, a uranyl ion (UO2
2+) -specific 

DNAzyme called 39E was successfully selected by Liu et al (Figure 1.4A).15 Uranyl salts are 

toxic and can cause damage to human health when being exposed in the environment. This 

DNAzyme has >106-fold higher sensitivity over other competing metal ions. This can be 

explained by its ultrahigh UO2
2+ affinity with a dissociation constant of 97 nM. Subsequent study 

found that the bulge region might be responsible for UO2
2+ binding and catalysis.16 Its superior 

rA

G
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C
T
AGC TACA

A
C

G
A
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5’- -3’
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G G
C
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A
GC

T
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A B



 5

sensitivity and selectivity show potentials in real-time detection and quantification of UO2
2+ in 

the environment. 

 

Figure 1.4 Secondary structures of (A) the UO2
2+-dependent 39E DNAzyme and (B) the Ce3+-dependent 

Ce13d DNAzyme. 

 

Recently, several novel DNAzymes were selected by in vitro selection using lanthanide 

ions (e.g., Ce3+, Pr3+, Lu3+, Ho3+, Er3+, Tm3+).17-19 Most lanthanides are in the +3 oxidation state 

carrying high charge densities. For instance, the first lanthanide-dependent DNAzyme was 

selected by Huang et al. using Ce4+ as the target metal.17 As shown in Figure 1.4B, their 

optimized enzyme loop folded into a bulged-hairpin structure. Surprisingly, activity assays 

revealed that this DNAzyme (named Ce13d) has high activity with all trivalent lanthanides, but it 

barely has activity with Ce4+. The Ce13d DNAzyme exhibited a cleavage rate of 0.25 min-1 in 

the presence of 10 M Ce3+. Their mutation study demonstrated that nucleotides in red color are 

highly conserved which might be critical for catalysis. 

1.2.3 Catalytic mechanism of RNA cleavage 

RNA-cleaving DNAzymes cleave at a single ribonucleotide within the substrate strand by 

promoting nucleophilic attack of the 2-hydroxyl group to the adjacent phosphodiester bond 

(Figure 1.5).20 As a genetic material, the DNA duplex is structurally inflexible. Therefore, the 
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single-stranded catalytic core is responsible for enzymatic activity that can bind functional 

groups and form tertiary structures. As mentioned above, most DNAzymes are metal-assisted, 

and require metal ions (e.g., divalent cations) as cofactors to achieve an appreciable reaction 

rate.21-23 Ultimately, the substrate strand splits at the cleavage site, resulting in 2, 3-cyclic 

phosphate and 5-hydroxyl RNA termini. 

 

Figure 1.5 Scheme of the RNA cleavage reaction in which the 2-hydroxyl group attacks the adjacent 

phosphodiester bond, forming 2, 3-cyclic phosphate and 5-hydroxyl RNA termini. (Adapted from ref. 

20) 

 

1.2.4 Role of metal ions in DNAzyme catalysis 

Metal ions play critical roles in the DNAzyme catalysis. Many DNAzymes have high 

binding affinity and specificity toward metal ions. As DNA is a negatively charged 

polyelectrolyte, DNA folding strongly depends on electrostatics. Therefore, cations may 

significantly promote the formation of DNAzyme structure.24 On the other hand, metal ions may 

serve as catalytic cofactors by directly participating in the chemical reaction.25 In a RNA 

cleavage reaction, a metal hydroxide can act as a general base assisting the deprotonation the 2-
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hydroxy group by attracting the proton (Figure 1.6b). Alternatively, a metal ion can function as a 

Lewis acid to coordinate directly to the 2-oxygen (Figure 1.6d). In another mechanism, a metal-

bound water molecule as a general acid stabilizes the negative charge on the 5-oxygen (Figure 

1.6a), which can also be achieved by direct coordination of a metal ion Lewis acid (Figure 1.6c). 

Besides, a metal ion as an electrophilic catalyst might make the phosphorus center more 

reachable for the nucleophilic attack by coordinating with the non-bridging oxygen (Figure 1.6e). 

As described above, metal ions can facilitate the RNA cleavage reaction through many possible 

ways. Generally, a metalloenzyme displays an increase in the catalytic rate with an increasing 

concentration of its cofactors. 

 

Figure 1.6 Potential catalytic roles of metal ions in the cleavage of a phosphodiester bond. Metal ions can 

act as (a) a general acid, (b) a general base, (c) a Lewis acid, (d) a Lewis base, and (e) an electrophilic 

catalyst. (Adapted from ref. 25) Copyright © 2001 Oxford University Press 

 

1.2.5 Applications of DNAzymes 

The discovery of artificial DNAzymes significantly expanded the variety of functional 

nucleic acids for various scientific disciplines, such as biosensing, nanodevices, logic gate 

operations and material assembly.26-28 The interest in using DNAzymes as molecular tools for 
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various applications arises from their inherent superiorities. In contrast to proteins or RNA-based 

enzymes, DNAzymes are relatively affordable, easily prepared and impressively stable. 

Generally, the phosphodiester bonds of DNA are almost 1000-fold more resistant to hydrolytic 

degradation than peptide bonds under physiological conditions as well as 100,000-fold compared 

to RNA.9 Also, DNA is available for modification with many fluorophores and other functional 

groups, or alternatively, conjugation with nanoparticles yielding multifunctional materials.29 

 

Figure 1.7 A scheme showing a colorimetric Pb2+ biosensor using DNAzyme-directed assembly of gold 

nanoparticles. In the presence of Pb2+, the 8-17 DNAzyme catalyzes the cleavage reaction and 

disassemble the aggregation leading to a color change from blue to red. The sensor performed 

colorimetric detection with different Pb2+ concentrations and with eight other divalent metal ions. 

(Adapted from ref. 36) Copyright © 2003 American Chemical Society 

 

Especially, the fact that DNAzymes exhibit nucleic acid cleavage activities in the presence 

of specific metal cofactors has been elicited to design metal ion biosensors, such as Pb2+,30 

Mn2+,31 Mg2+,32 Cu2+,33 Co2+,34 ,UO2
2+.35 Figure 1.7 describes a remarkable example of a 

colorimetric lead biosensor based on 8-17 DNAzymes.36 The biosensor consists of DNA-

modified gold nanoparticles, substrates, and DNAzymes. Three components were designed to be 

able to self-assemble by base pairing. Such self-assembling can lead to the aggregation of gold 
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nanoparticles and show a blue color. In the presence of Pb2+, the 8-17 DNAzyme catalyzes the 

cleavage reaction and disassemble the aggregation leading to a red color. The DNAzyme-gold 

nanoparticles sensor exhibits high sensitivity and selectivity toward Pb2+. 

1.3 In vitro selection of DNAzymes 

In vitro selection or SELEX (systematic evolution of ligands by exponential enrichment) 

aims to isolate the functional nucleic acids from large random-sequence pools. Since 1990, this 

methodology has been used to identify DNA or RNA sequences (aptamers) with specific binding 

affinities for small biomolecules.37 The successful isolation of the nucleic acid ligands has shown 

potential in therapeutic and diagnostic applications.38-39 In vitro selection is also applicable to 

artificial ribozymes catalyzing a growing variety of chemical reactions, such as RNA cleavage,40 

ligation,41 alkylation,42 and phosphorylation.43 To date, all known DNAzymes were isolated 

through in vitro selection. Since the first report in 1994, many methods have been developed to 

optimize the selection experiments based on different DNA-catalyzed reactions.44 However, the 

basic principles of reaction, separation, and amplification are consistent between the different 

selection strategies.  

Here, the in vitro selection process of RNA-cleaving DNAzymes is described; this is 

currently the most thoroughly studied research topic (Figure 1.8).45 The selection experiment 

begins with a large population of DNA molecules (~1014) with a 40-80 nucleotide random region 

and two constant regions. In most cases, a RNA phosphodiester bond is around 100,000 fold 

more facile to hydrolyze compared to DNA.9 Thus, a sole ribonucleotide (i.e., rA) is embedded 

in the DNA substrate strand, indicating the cleavage site. The DNA pool is then incubated under 

suitable buffer conditions to perform RNA cleavage reaction. During this selection step, several 

parameters are tunable including the concentrations and identities of metal ions, the temperature, 
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the pH value, and the incubation time. As a consequence, a small number of DNA molecules can 

successfully catalyze the RNA cleavage reaction.  

 

Figure 1.8 In vitro selection strategy of RNA-cleaving DNAzymes. 

 

To separate the desired cleaved products from the uncleaved DNA molecules, either biotin; 

streptavidin chromatography11,46 or denaturing polyacrylamide gel electrophoresis (dPAGE)17,47 

can be used to achieve the isolation. A biotin moiety attached DNA sequence can be 

immobilized on a streptavidin column; this only allows the active sequences (cleaved) to flow 

through. Alternatively, gel-based separation can also detect the size change of DNA molecules 

due to the cleavage reaction. However, fluorescent modification is always required for the 

observation and isolation. Afterwards, polymerase chain reaction (PCR) is introduced to amplify 

the cleaved DNA sequences, as well as regenerate the DNA pool which is ready for the next 

round of selection. To enrich the DNA pool of catalytically active sequences, the above 

procedures can be repeated for multiple rounds (5-15 rounds) until the activity becomes 
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sufficiently high. At the end of the selection, individual sequences in the pool will be cloned and 

identified. In addition, negative selection steps can be performed to increase the metal specificity 

by excluding the sequences that are active with competing metal ions.48 

1.4 Cobalt(III) hexammine 

Cobalt is a transition metal element with an atomic number of 27. Common oxidation states 

of cobalt are +2 and +3. As one of its most important coordination complexes, cobalt(III) 

hexammine [Co(NH3)6
3+] consists a central Co3+ coordinated by six ammonia orthogonal ligands. 

As shown in Figure 1.9, Co(NH3)6
3+ has roughly the same ionic radius and geometries of 

magnesium(II) hexahydrate [Mg(H2O)6
2+].49  

 

Figure 1.9 Chemical structures of Co(NH3)6
3+ and Mg(H2O)6

2+. The former is exchange-inert while the 

latter is labile to ligand exchange. 

 

Since the ammonia ligands of Co(NH3)6
3+ are kinetically stable, they do not exchange with 

solvent to allow inner-sphere interactions with the functional groups in RNA.50 These properties 

make Co(NH3)6
3+ a good probe in studying metal-RNA interactions. For example, NMR 

spectroscopy studies showed that Co(NH3)6
3+ can replace Mg(H2O)6

2+ in outer-sphere 

coordination and interact with RNA in a similar manner.49,51-52 In addition, Co(NH3)6
3+ has been 

used to probe RNA hairpins that contain G-U wobble pairs by electrospray ionization mass 
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spectrometry (ESI MS).53 Due to the rigid structure of duplex DNA, limited works have been 

reported to study the interaction between Co(NH3)6
3+ and DNA. It has been shown that 

Co(NH3)6
3+ causes DNA condensation by inducing DNA conformation changes.54 Besides the 

electrostatic attractions between cations and the negative phosphate group of DNA, major groove 

binding was also observed for Co(NH3)6
3+.55 Moreover, Co(NH3)6

3+ was found to be able to 

bridge the phosphates from opposing strands in the bend across the major groove and stabilize 

the A-DNA structure.56 

As noted above, inner-sphere coordination between metal ions and RNA is normally 

required in RNA cleavage reactions. Due to the tight binding of ammine ligands, Co(NH3)6
3+ 

does not exchange to allow coordination with phosphate oxygens or with water molecules to 

generate metal hydroxides.50 As a consequence, the competition from exchange-inert Co(NH3)6
3+ 

may provide insights into the metal-RNA interactions required for ribozyme catalysis.57-59 

DeRose and co-workers have reported that the addition of Co(NH3)6
3+ induced Mn2+ 

displacement and inhibition of a hammerhead ribozyme.60 Based on circular dichroism (CD) and 

thermal denaturation results, a specific binding affinity of Co(NH3)6
3+ appeared to be responsible 

for the inhibition effect by inducing structural changes. They ultimately concluded that at least 

two metal sites support hammerhead activity, one of which requires inner-sphere interactions. In 

contrast, the addition of Co(NH3)6
3+ was found to promote the Mg2+-induced self-cleavage of the 

Neurospora VS ribozyme.61 Despite that Co(NH3)6
3+ alone failed to induce self-cleavage, 

Co(NH3)6
3+ assists the folding of the VS ribozyme in the presence of Mg2+. In the hairpin 

ribozymes, Co(NH3)6
3+ alone can support efficient activity without additional divalent ions.62 

The study demonstrated that the rate-determining step in hairpin cleavage may not depend on 

direct coordination to phosphate oxygens or metal-bound hydroxide. 
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Recently, a similar competition method has been applied to investigate the role of metal 

ions in RNA-cleaving DNAzymes. Titration with Co(NH3)6
3+ inhibited the activity of an in vitro 

selected, bipartite DNAzyme.63 This indicated that there was at least one outer-sphere metal-

binding site on the DNAzyme.  

1.5 Research focus 

The initial goal of this research is to select DNAzymes that require Co(NH3)6
3+ as a metal 

cofactor through in vitro selection. Since Co(NH3)6
3+ is exchange-inert, DNAzymes obtained 

from the selection was expected to exclusively use outer-sphere mechanism for cleavage. The in 

vitro selection, however, resulted in active sequences that are independent of Co(NH3)6
3+, but 

instead, dependent on Na+. A detailed analysis of these sequences was performed revealing a 

new mutant of a previously reported Na+-specific DNAzyme. A series activity assays were 

carried out to characterize the catalytic activity of this new mutant. In the meantime, a thorough 

comparison between NaA43 and this mutant was included focusing on their structures and 

catalysis. In addition, a preliminary application was explored by converting the new mutant into 

a folding-based Na+ sensor using 2-aminopurine (2AP) as fluorescent probes. 
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Chapter 2. DNAzyme selection with Co(NH3)6
3+ 

2.1 In vitro selection experiment 

The experiment of in vitro selection followed an established protocol in our lab with a few 

minor modifications.17-18 This in vitro selection was carried out with an initial library containing 

approximately 1014 random DNA sequences. Briefly, the initial DNA library was prepared by 

ligating two pieces of DNA (Lib-FAM and Lib-rA). Each DNA sequence contains a 50-

nucleotide random region flanked by two short binding arms (Figure 2.1A). This size is chosen 

as a balance of complexity, diversity, and sequence space coverage. The rA linkage embedded in 

the binding arm represents the putative cleavage site.  

As the intended target, hexaamminecobalt(III) chloride [Co(NH3)6Cl3] was used to induce 

the cleavage reaction due to its good solubility and stability.64 After incubating the initial library 

with 10 M Co(NH3)6Cl3 for 1 h, the reaction was quenched by 8 M urea (Step 1). Due to the 

uncertainty of the optimal pH, two separate selections were carried out independently in this 

work. The reaction was performed under either pH 6 or pH 7.5 with other conditions remaining 

identical. It is noteworthy that 1 mM ethylenediaminetetraacetic acid (EDTA) was added in the 

selection buffer to chelate any possible competitive cations (i.e., Ca2+, Fe3+, Zn2+). EDTA is a 

versatile chelating agent that can form four or six coordination bonds with a metal ion to prevent 

its interference.65 Ideally, a small fraction of DNA sequences can fold into a proper structure in 

the presence of Co(NH3)6
3+ , and cleave at the RNA junction. As shown in Figure 2.1B, the 

cleaved sequences (91 nt) was then be separated from the uncleaved full-length DNA (119 nt) in 

10% dPAGE (Step 2).  
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Figure 2.1 (A) The sequence of the initial library containing N50 randomized region with a fluorophore 

labeled at the 5 end. (B) An example of using 10% dPAGE gel to separate cleaved sequences (91-nt) 

from uncleaved library (119-nt) by referring to DNA ladder. (C) A designed scheme for the Co(NH3)6
3+ 

DNAzymes selection involving five main steps. The two rounds of PCR are to amplify the cleaved DNA 

sequences, and the dPAGE in step 5 is to isolate the positive strand after PCR. 

 

After each selection step, two rounds of PCR were performed to amplify the cleaved DNA 

sequences (Figure 2.1C). In PCR1, the cleaved sequences were extended and amplified to 

generate full-length templates for PCR2 (Step 3). Meantime, agarose gel electrophoresis was 

applied to monitor the amplification progress of PCR1. In PCR2, two functionally modified 

primers were used to complete the regeneration of DNA library (Step 4). P3 primer contains a 6-

carboxyfluorescein fluorophore (FAM) on its 5-end terminus and a rA base on its 3-end 



 16

terminus. And P4 primer contains a polymer spacer that can stop the polymerase reaction. After 

gel electrophoresis, the positive strand which contains both FAM and rA was isolated for the 

subsequent selection round (Step 5). Ideally, 5 to 15 rounds of selection are able to harvest the 

active sequence in the DNA library. 

2.2 Results and discussion 

Throughout this selection, the concentration of Co(NH3)6Cl3 remained as 10 M, and the 

incubation time was always 1 h. Due to the FAM label, the cleavage yield of each selection can 

be monitored by the fluorescence ratio between the uncleaved library and the cleaved fragment 

[Cleavage% =
஼௟௘௔௩௘ௗ ௦௛௢௥௧ ௙௥௔௚௠௘௡௧ (ଶ଼ ௡௧)

௎௡௖௟௘௔௩௘ௗ  ௟௜௕௥௔௥௬ (ଵଵଽ ௡௧)
 ]. The progressions of selection are summarized in 

Figure 2.2 showing the cleavage yield of each round. For pH 7.5, the cleavage% slightly 

increased during the first 4 rounds (black bars). However, the library failed to maintain its 

activity in the rest of rounds. For pH 6, a gradual increase in the cleavage activity was observed 

(red bars). At round 6, ~24% of the library was cleaved indicating that active sequences 

dominated the library as hypothesized. We decided to stop the selection here and carried out one 

round of negative selection for pH 6. In the negative selection, the library regenerated from the 

round 6 was incubated in the selection buffer only without the addition of Co(NH3)6
3+. After 1 h 

of incubation, a 12% cleavage was observed which indicates the nonspecific cleavage (blue bar). 

To identify the selected sequences, we sent the library sample of round 6 for deep sequencing. 
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Figure 2.2 Progress of the in vitro selection at pH 7.5 or pH 6 showing the cleavage% of each round. For 

the pH 6 selection, the gradual increase observed in gel images was shown at the top. 

 

2.3 Sequencing analysis 

The deep sequencing result included a total of 97,533 sequences. After the sequencing 

alignment (Geneious®8.1.7), 21,919 reads were successfully assembled into 1,000 families. The 

most populated first 200 families account for around 50% of the analyzed sequences. 

Interestingly, more than half of the first 100 families contain almost identical sequences with few 

differences at some fixed locations. For example, Table 1 listed main sequences of the top 20 

most populated families in the selected library. Among them, 19 families are homogeneous 

which all contain a motif of AGGTCAAAGGTGGGTG (purple colored) in the N50 region. This 

motif is known to be critical for the cleavage activity of the known lanthanide-dependent 

DNAzyme, Ce13d. The major difference between these families lies in one nucleotide (red 

colored), which locates at the end of the N50 region. Statistically, the possibility of the base being 

T is about 53% within these 20 families, while 47% of the sequences have an A at this site. Due 
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to their huge population in the library, this sequence category is likely to be responsible for the 

cleavage activity observed during the selection experiment. To confirm this hypothesis, it is 

necessary to verify whether these sequences can fold into a typical DNAzyme structure. 

Family 
# 

Sequence (5’---N50---3’) 
# 

copies 

1 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAWT-----AGTGACGG 84 

2 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAWT-----AGTGACGG 81 

3 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAAT-----AGTGACGG 56 

4 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCATT-----AGTGACGG 49 

5 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAAT-----AGTGACGG 46 

6 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAWT-----AGTGACGG 44 

7 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAWT-----AGTGACGG 43 

8 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCATT-----AGTGACGG 41 

9 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCATT-----AGTGACGG 39 

10 AAACAT-------GGAGCCATAGGTCAAAGGTGGGTGAGAGTCGTATCATAACGACTCGCAAT-----AGTGACGG 38 

11 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAWT-----AGTGACGG 38 

12 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAWT-----AGTGACGG 38 

13 AAACAT-------GGAGCCATAGGTCAAAGGTGGGTGAGAGTCGTATCATAACGACTCGCAAT-----AGTGACGG 36 

14 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAWT-----AGTGACGG 35 

15 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCATT-----AGTGACGG 34 

16 AAACATCTT-----AGAGGCTTGCAATAAGCTGAGGGATTGAGCATGCGAGGAGTGGTAGTGGAT-----AGTGACGG 32 

17 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAAT-----AGTGACGG 32 

18 AAACAT--------GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATAATATCGACCAGCATT-----AGTGACGG 30 

19 AAACATCAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCATT-----AGTGACGG 28 

20 AAACATTAT-----GGAGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCATT-----AGTGACGG 28 

 

Table 1. Sequences of the top most populated families appeared in the selected library from 5 to 3 with 

the N50 random regions in the middle. Among them, 19 families showed a striking similarity in their 

sequences except the 16th family (grey colored). A homogeneous motif of 16 nucleotides (purple colored) 

was found in 19 families. The nucleotide varies most frequently among the 20 families was highlighted in 
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red color. W represents either A or T. 

 

2.4 Secondary structure prediction 

In this work, Mfold software was used for secondary structure prediction.66-67 First, one 

of the representative sequence (5-GTC ACT ATA GGA AGA TGG CGA AAC ATC ATG 

GAG CCA TAG GTC AAA GGT GGG TGT GGT CGT ATC ATA TCG ACC AGC ATT AGT 

GAC) named CoH1 was folded. Figure 2.3A shows the predicted structure of CoH1 with a red 

arrow pointing to the cleavage site. This cis-cleaving version of this DNAzyme candidate was 

further replotted into Figure 2.3B.  

Compared to the initial DNA library (Figure 2.1A), a TCTT motif in the binding domain 

evolved to TCAT (yellow colored) during the selection process, while part of the random region 

hybridized with the binding domain instead. The rest of the random region, including a 16-nt 

loop (in purple box), a hairpin structure (in black box), and a 5-nt motif (in red box), composed 

its hypothetical catalytic core. Note that the prediction was based on a hypothetical ionic strength 

of 1 M NaCl, while the actual selection buffer used contains only ~25 mM Na+. Therefore, the 

T·G wobble pair and two Watson-Crick base pairs shown above the hairpin structure might not 

be reliable. In addition, a T in the 5-nt-motif between the wobble pair and the binding arm, may 

or may not form base pair with an A near the cleavage site. Since the major difference lies in the 

5-nt motif, most of those populated sequences fold into a similar secondary structure. 
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Figure 2.3 (A) Secondary structure predicted by the Mfold software with a red arrow pointing to the RNA 

site. (B) The cis-cleaving version of CoH1 consists of two duplex regions flanking a hypothetical catalytic 

loop. The presented catalytic loop consists of a 16-nt loop that is identical to the Ce13d DNAzyme, a 

hairpin, and a 5-nt motif. (C) The trans-cleaving form of CoH1 including a substrate strand (FAM-

labeled) and an enzyme strand. 

 

The DNAzyme can be further converted to its trans-cleaving form (Figure 2.3C), which 

was used for subsequent activity analysis. The substrate strand containing 30 nucleotides was 

labeled with a FAM group at the 3-end. The enzyme strand binds to the substrate strand to form 

two duplex regions flanking the catalytic loop. To ensure the stable duplex structure, the binding 

arms were extended by 8 base pairs. Based on the literature review, substrate-binding arms play 

negligible role in the catalysis of DNAzymes, whose length is adjustable as long as sufficient 

substrate binding stability is retained.11,68 The catalytic loop of CoH1 contains 16 nucleotides 

(red colored) which are identical to the Ce13d DNAzyme (Figure 1.4B) selected by our lab 
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previously.17 However, Ce13d is known to be inactive under this selection condition based on 

our knowledge. On the other hand, the existence of an additional 5-nt motif (blue colored) in 

CoH1 reminded us of another Na+-dependent DNAzyme, NaA43, reported by the Lu lab in the 

University of Illinois recently.69 A more detailed comparison was discussed in the next chapter. 

2.5 Materials and methods 

2.5.1 Chemicals 

In this in vitro selection, all the DNA sequences including the DNA library and PCR 

primers (Table 2) were purchased from Integrated DNA Technologies (IDT, Coralville, IA). 

Hexammine cobalt (III) chloride was purchased from Sigma-Aldrich. 

Tris(Hydroxymethyl)aminomethane (Tris), 2-(N-morpholino)ethanesulfonic acid (MES), 2-[4-

(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), EDTA, sodium chloride, 

magnesium chloride hexahydrate were purchased from Mandel Scientific (Guelph, Ontario, 

Canada). Acrylamide/bisacrylamide 40% solution (29:1), urea, 10x TBE solution, ammonium 

persulfate (APS), agarose, and ethidium bromide were purchased from Bio Basic Inc. TEMED 

was purchased from OmniPur. SsoFast EvaGreen supermix was purchased from Bio-Rad. T4-

DNA ligase, deoxynucleotide (dNTP) solution mix, Taq DNA polymerase with ThermoPol 

buffer, 10x gel loading dye, and low molecular weight DNA ladder were purchased from New 

England Biolabs. All solutions used in this work were prepared with Milli-Q water. 



 22

 

Table 2. List of all the DNA sequences used in this selection experiment. 

 

2.5.2 Selection methods 

To prepare the DNA library, Lib-FAM DNA (200 pmol), Lib-rA DNA (300 pmol), and 

splint DNA (300 pmol) were first mixed in annealing buffer (10 mM Tris-HCl buffer, pH 7.5, 10 

mM MgCl2). The mixture was then annealed at 90 °C followed by slow cooling down to room 

temperature. The ligation reaction followed the T4 ligation protocol provided by New England 

Biolabs. As prepared DNA library was further purified and extracted from 10% dPAGE (650 V, 

1 h). In this work, Bio-Rad ChemiDoc MP imaging system was used to take the gel images and 

quantify the fluorescence. A gel slice containing the DNA library was crushed and soaked in 

extraction buffer (1 mM EDTA, 10 mM Tris-HCl, pH 7.0). The further purification was achieved 

by using a Sep-Pak C18 column (Waters). The extracted DNA library was dried in an Eppendorf 

Vacufuge at 45 °C overnight. 

The DNA library was resuspended in selection buffer A (50 mM MES buffer, pH 6, 25 

mM NaCl, 1 mM EDTA) or selection buffer B (50 mM HEPES buffer, pH 7.5, 25 mM NaCl, 1 

DNA name Sequences and modifications

Lib-FAM-N50 5’-GGCGAAACATCTTN50TAGTGACGGTAAGCTTGGCAC-FAM

Lib-rA 5’-AATACGAGTCACTATrAGGAAGAT

Splint 5’-AAGATGTTTCGCCATCTTCCTATAGTCCACCACCA

P1 primer 5’-GTGCCAAGCTTACCG

P2 primer 5’-CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA

P3 primer 5’-FAM-AAATGATCCACTAATACGACTCACTATrAGG

P4 primer 5’-AACAACAACAAC-iSp18-GTGCCAAGCTTACCG

P701
5’-CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTC

AGACGTGTGCTCTTCCGATCTCTGCAGAATTCTAATACGAGTCAC

P501
5’-AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTC

TTTCCCTACACGACGCTCTTCCGATCTGTGCCAAGCTTACCG
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mM EDTA). For each round of selection, 10 M of Co(NH3)6Cl3 was introduced to induce the 

cleavage reaction. After 1 h of incubation, 8 M urea was added to quench the reaction. The active 

sequences with 28 nucleotides missing were then separated from the inactive library using 10% 

dPAGE. Next, the cleaved strands were extracted and purified to serve as the DNA template for 

PCR. 

2.5.3 PCR 

First, a real-time PCR (rt-PCR) was carried out to estimate the amount of selected DNA 

and the cycles for PCR1. A reaction mixture (20 L) contains the DNA template (1 L), P1 and 

P2 primers (400 nM each), and SsoFast EvaGreen Supermix (10 L). The thermocycling 

protocol provided by vendor was followed (95 °C for 30 s, 95 °C for 5 s, and 55 °C for 5 s). 

For PCR1, a 50 L reaction mixture contains the DNA template (2 L), P1 and P2 

primers (200 nM each), dNTP mixture (200 M), 1 × Taq buffer (5 L), and Taq DNA 

polymerase (1.25 units). The cycling protocol used in PCR1 is as follows: 94 °C for 5 min; 94°C 

for 30 s, 55 °C for 30 s, and 72°C for 30 s. In general, the number of cycles varies from 5 to 20 

in each round. The reaction product was mixed with 30% glycerol and quantified with 2% 

agarose gel (120 V, 50 min). Finally, a gel/PCR DNA fragment extraction kit (IBI Scientific) 

was applied to purify the PCR1 product.  

For PCR2, the one-tenth diluted PCR1 product was used as the template. A 100 L 

reaction mixture contains the DNA template (2 L), P3 and P4 primers (250 nM each), dNTP 

mixture (200 M), 1×Taq buffer (10 L), and Taq DNA polymerase (2.5 units). The reaction 

was carried out for 12 cycles with the same cycling protocol as PCR1. The PCR2 product was 
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then purified with ethanol precipitation method and 10% dPAGE. After the purification step, the 

regenerated library was resuspended in 10 uL of selection buffer for the next round of selection. 

2.5.4 Sample preparation for sequencing  

The round 6 library was first modified before sending for deep sequencing. PCR1 was 

performed to generate the full-length library as mentioned above. Next, PCR2 was performed to 

introduce specific index sequences into the library for the Illumina sequencing technology. 

Instead of P3 and P4, the forward primer (P701) and the reverse primer (P501) were used with 

their sequences listed in Table 2. The PCR product was then purified with 2% agarose gel (120 V, 

50 min). A gel/PCR DNA fragment extraction kit (IBI Scientific) was used to extract the library 

from the gel. Finally, the purified DNA sample was eluted in 20 L of Milli-Q water. The DNA 

concentration measured with a NanoDrop spectrophotometer was ~10 ng/L. The sample was 

shipped to McMaster University for sequencing. 
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Chapter 3. New mutants of a Na+-specific DNAzyme 

3.1 The Ce13d and NaA43 DNAzymes 

3.1.1 Background 

Since the first discovery of DNAzymes in 1994, enormous efforts have been put in 

selecting new catalytic DNA which requires divalent metal ions as cofactors. The main 

motivation was for biosensor development. Although most previous work focused on divalent 

metal-dependent DNAzymes, significant recent progress has been made on trivalent metal ions 

especially lanthanide ions (e.g., Ce3+, Pr3+, Lu3+, Ln3+).17-19 For example, the Ce13d DNAzyme 

(Figure 3.2A) selected in our group presents a cleavage rate of ~0.25 min-1 with 10 M Ce3+.17 

Its mutation studies indicated that the enzyme loop (red colored) is critical for the catalysis. Any 

changes to these nucleotides can completely eliminate the activity. The role of the hairpin is 

mainly to stabilize the structure which is less important. 

Apart from multivalent metals, monovalent metal ions, such as Na+, is also essential for 

diverse biochemical processes in animal cells. Sodium is one of the most ubiquitous metal ions 

in both intracellular and extracellular fluids.70 In cells, the concentration of Na+ is important for 

maintaining transmembrane potential and regulating signal transduction pathways. The 

intracellular Na+ concentration is ~10 mM, and the extracellular Na+ concentration is ~142 

mM.71 Normal serum sodium levels are between approximately 135 to 145 mM. A low serum 

sodium level might result in a human disease called hyponatremia.72 As a result, it is important to 

develop cost-efficient biosensors with high sensitivity and selectivity for Na+ detection in 

biological fluids. 
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RNA-cleaving DNAzymes have been considered as a promising method to detect the 

intercellular Na+ concentration due to their metal-dependent activity. So far, limited numbers of 

DNAzymes were discovered showing Na+ specificity. The EtNa DNAzyme was selected through 

an in vitro selection using hemin as the initial target.73 It has the highest cleavage rate of 2.0 h-1 

with 120 mM NaCl, and a superior Na+ selectivity over other monovalent ions. However, the 

EtNa DNAzyme requires organic solvents (e.g., ethanol) to achieve its desired activity which 

greatly hinder its biological applications. Recently, Torabi et al. successfully selected a sodium-

specific DNAzyme called NaA43 (Figure 3.1A&B) with 400 mM Na+.69 As shown in Figure 

3.1C, it possesses a cleavage rate of 0.02 min-1 with 10 mM Na+ in reaction buffer (50 mM Bis-

Tris, pH 7.0, 90 mM LiCl). The NaA43 DNAzyme showed an apparent dissociation constant (Kd) 

of ~39.1 mM when serving as a fluorescent Na+ sensor. 

 

Figure 3.1 Secondary structure of (A) the cis-cleaving and (B) the trans-cleaving NaA43 DNAzymes. (C) 

The cleavage percentage of the cis-cleaving NaA43 DNAzyme with different concentrations of Na+ as a 

function of the incubation time. Inset: cleavage rate or kobs (min-1) of the NaA43 DNAzyme. (Adapted 

from ref. 69) Copyright © 2015 National Academy of Sciences 
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3.1.2 Structure comparison 

Comparing the Ce13d and NaA43 DNAzymes side by side (Figure 3.2A&B), they both 

present an identical 16-nucleotide loop (red colored) and a hairpin structure. The rest a few 

nucleotides marked in blue are their main distinctions. Noting that this similarity is more than a 

coincident, several systematic studies were published to address this issue.74-75 First, Torabi and 

Lu found that the activity of Ce13d requires Na+ and trivalent lanthanide ions simultaneously.75 

The Na+-dependent activity of Ce13d was also reported by Zhou et al.74 Since NaA43 uses Na+ 

as its sole cofactor, the small motif of TGGCG (blue colored in Figure 3.2B) was believed to 

replace the role of Ce3+ in the reaction. A series of rational mutation studies were carried out by 

Zhou et al. Indeed, they concluded that the G23 in this motif as indicated in Figure 3.2B, is 

critical for the activity of NaA43. Based on their results, the 16-nucleotide loop serves as a 

conserved Na+ binding site (Figure 3.2D) which appears in both of the DNAzymes, and the small 

motif on the left side of the hairpin also plays an important role in the catalysis. 

As mentioned above, the predicted structure of CoH1 (Figure 3.2C) is also similar to 

Ce13d and NaA43. The presence of a 16-nucleotide loop suggests that this DNAzyme candidate 

may bind to Na+. Besides, it also has a 5-nt motif on the left side of the hairpin with merely two 

nucleotides (in red box) differing from NaA43. Taken together, we suspect that this DNAzyme 

candidate has the Na+-dependent activity. Since the selection buffer used in our selection 

contained ~25 mM Na+, it is possible that the Na+-active sequences survived from each round. 

On the other hand, the presence of 1 mM EDTA in our selection helped to eliminate any 

interference from other multivalent ions but not Na+. This result also explained the 12% non-

specific cleavage observed in the negative selection. 
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Figure 3.2 The secondary structure of the (A) Ce13d, (B) NaA43, and (C) CoH1 DNAzymes. The 

identical nucleotides in enzyme loop regions were marked in red color. A nucleotide, G23, was highlighted 

in the NaA43 DNAzyme. (D) A scheme describing the metal binding sites of Ce13d and NaA43. The 

enzyme loop and the substrate junction form a selective Na+-binding pocket. In Ce13d, Ce3+ binds to the 

non-bridging oxygen which is replaced by G23 in NaA43T. (Adapted from ref. 74) Copyright © 2015 

Oxford University Press 

 

Although Co(NH3)6
3+-dependent activity was not achieved, the high activity of the 

selected sequence attracted our interest. This sequence is similar to the previous NaA43 

DNAzyme despite the fact that they were selected from different libraries in distinct selection 

buffers. In other words, CoH1 can be considered as a mutant of the NaA43 DNAzyme. Based on 

the previous study, G23 in the 5-nt motif is critical for the activity of NaA43.74 On the contrary, 

CoH1 presents a T at this site which may result in a different catalytic performance in the 

reaction. Besides, it is important to further verify the role of this 5-nt motif in RNA cleavage 
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reaction. Taken these together, mutation studies were designed regarding to 3 nucleotides, 

T2A3G5, in this motif as shown in Figure 3.3. Most of these mutants existed in the selected 

library with a small population. For each mutant, all of the other parts are identical to the CoH1 

except those highlighted nucleotides in the pink box. Currently, a total of 12 sequences were 

tested as the enzyme strands in the following activity assays. 

 

Figure 3.3 Secondary structures of designed mutations based on CoH1. For CoH2, those nucleotides in 

the shaded box were replaced with TTTT. For CoH3-12, the 5 nucleotides in the red box were replaced 

with corresponding sequences in the pink box, respectively. Each mutant differs from CoH1 only at those 

highlighted regions.  

 

3.2 Na+-dependent activity 

To confirm the Na+-dependent activity, all 12 potential sequences in Figure 3.3 were 

tested respectively by hybridizing with the FAM-labeled substrate. Each DNAzyme complex 

was annealed in 50 mM MES buffer (pH 6, pH adjusted using LiOH) containing 25 mM LiCl to 

prevent background cleavage and to stabilize the duplex regions. The cleavage reaction was 

carried out in the presence of 20 mM Na+ at pH 6, which is similar to the selection condition. As 
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shown in gel images (Figure 3.4B), significant cleavage was observed for CoH1 and CoH2 after 

1 h of incubation. The cleavage yields of 12 sequences were analyzed and summarized in Figure 

3.4A. Among all the sequences, CoH1 containing the T2A3G5 in its 5-nt motif showed the 

highest cleavage of 45%. This is not surprising since this sequence dominated the selected 

library. Besides, the high cleavage of CoH2 indicates that the replacement of the loop in the grey 

box (Figure 3.3) with TTTT does not affect the activity.  

 

Figure 3.4 (A) Cleavage yield of all 12 sequences in the presence of 20 mM Na+ for 1 h. (B) Gel images 

of the Na+-dependent activity test with the mutations showing above. The upper band represents the 

uncleaved substrate and the lower band represents the cleaved FAM bearing fragment. For each mutant, 

the left lane represents the cleavage without Na+, and the right lane represents the cleavage with 20 mM 

Na+ added. 

 

As for other mutants regarding to the T2A3G5 nucleotides, CoH6 and CoH3 also exerted 

moderate activities under such reaction condition. Comparing CoH1, CoH3, CoH4, and CoH5, 

we found that T2 is critical for the activity. Mutating this thymine to adenine maintained half of 

the cleavage activity, while mutating to C or G abolished the activity. Referring to the 
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sequencing analysis, this activity result explained the fact that this nucleotide appeared to be 

either T or A in the library. Besides, A3 turned out to be immutable which failed to tolerate any 

mutations (CoH8-10). The cleavage activity greatly dropped when replacing G5 with T5 (CoH7). 

However, the G5 to A5 mutation is tolerable according to the significant cleavage of CoH6 with 

only 10% decrease. Since CoH1 with the T2A3G5 provided the highest cleavage, it was used for 

following studies. 

The Na+-dependent activity of CoH1 was further studied by incubating with various 

concentrations of Na+. As shown in the gel image (Figure 3.5B), the cleavage% increased with 

the Na+ concentration increasing. Quantified cleavage activity was plotted as a function of Na+ 

concentration in Figure 3.5A. Below around 1.5 mM, the cleavage activity of CoH1 is linearly 

related to Na+ concentration (inset). The cleavage reached the saturation stage in the presence of 

~10 mM Na+. The high cleavage at low Na+ concentrations suggests a high sensitivity of CoH1 

toward Na+, which may benefit the Na+ detection in future applications. This is an important 

advantage considering that the intracellular Na+ concentration is only around 10 mM. 

 

Figure 3.5 (A) Cleavage yield of CoH1with various Na+ concentrations in 1 h. Inset: the linear response 

region with [Na+] below 1.5 mM. (B) A gel image showing the cleavage with [Na+] ranging from 0 to 500 
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mM. The upper band represents the uncleaved substrate and the lower band represents the cleaved FAM 

bearing fragment. (C) The inhibition effect of Co(NH3)6
3+ (10 M) on the cleavage activity of CoH1. 

 

Since Co(NH3)6
3+ was used as the intended cofactor during the selection, it is necessary 

to verify its effect on CoH1. As shown in Figure 3.5C, Co(NH3)6
3+ alone failed to initiate the 

catalysis. In the presence of Na+, the addition of Co(NH3)6
3+ inhibited the cleavage by 17% 

compared to Na+ alone. However, there was still 32% of activity remained. The Co(NH3)6
3+ 

concentration used in this assay was 10 M, which is same as the in vitro selection experiment. 

Therefore, this result suggests that Co(NH3)6
3+ failed to serve as a cofactor for this active 

sequence during the selection. However, CoH1 still survived from the selection process due to 

the insufficient inhibition caused by Co(NH3)6
3+. 

3.3 Cleavage kinetics 

Next, the kinetics study on the cleavage reaction of CoH1 was carried out. With different 

concentrations of Na+, the cleavage reaction was quenched after various incubation times. For 

instance, Figure 3.6B shows the cleavage of CoH1 in the presence of 10 mM Na+. The cleavage 

yield observed in the gel image was replotted as a function of Na+ concentration as shown in 

Figure 3.6A. Each kinetic profile was further fitted into a first-order equation, 

%𝑃௖௟௘௔௩௔௚௘,௧ = %𝑃௠௔௫(1 − 𝑒ି௞௧). %Pmax is the maximum cleavage% at the end of the reaction 

and k is the cleavage rate. In Figure 3.6B, the reaction rate obtained from the fitting was 

summarized in a chart. With 100 mM Na+, a cleavage rate of ~0.10 min-1 was reached. With only 

10 mM Na+, CoH1 displayed a cleavage rate of ~0.07 min-1. Compared to the NaA43 DNAzyme 

reported (Figure 3.1C), the rate of cleavage CoH1 is ~3.5-fold higher under the same Na+ 

concentration.  
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Figure 3.6 (A) Kinetic profile of the CoH1 DNAzyme with various concentrations of NaCl at pH 6. (B) A 

gel image showing the kinetics of CoH1 with an incubation time ranging from 0 to 60 min. The upper 

band represents the uncleaved substrate and the lower band represents the cleaved FAM bearing fragment. 

The reaction rates obtained from the fitting under various concentrations of Na+ were summarized in the 

chart. 

 

Furthermore, we plotted the cleavage rate of CoH1 as a function of Na+ concentration 

(Figure 3.7). The cleavage rate increases with a rising concentration of Na+ and reaches a 

saturation stage. Its enzyme kinetics was then fitted into a one-site saturation binding curve with 

an apparent dissociation constant (Kd) of 4.3 ± 0.6 mM Na+. As described above, NaA43 

presented a Kd value of ~39.1 mM when serving as a fluorescent Na+ sensor. Under its optimal 

condition (50 mM MES, pH 6, 25 mM LiCl), CoH1 has a stronger Na+-binding affinity than 

NaA43. 
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Figure 3.7 The cleavage rate of CoH1 as a function of Na+ concentration. The one-site binding equation 

used for fitting is 𝑣 = 𝑣௠௔௫ ∙ [𝑀ା]/(𝑘ௗ + [𝑀ା]) , where 𝑣  is the reaction rate, [𝑀ା]  is the Na+ 

concentration, and 𝑘ௗ is the apparent dissociation constant. 

 

3.3.1 pH-dependent activity 

From structure comparison, we noticed that CoH1 differs from the NaA43 mainly on 2 

critical nucleotides (Figure 3.2A&B). However, CoH1 exhibited a higher cleavage rate and 

superior sensitivity at low Na+ concentrations in our activity assays. Thus, a more systematic 

comparison should be made for better understanding these two Na+-dependent DNAzymes. The 

optimal reaction condition of NaA43 as reported contains 50 mM Bis-Tris, pH 7, 90 mM LiCl.69 

On the contrary, CoH1 was selected through in vitro selection using 50 mM MES buffer, pH 6. 

As a result, we suspected that the reaction pH might be responsible for the distinct performance 

of these two DNAzymes. To test this, we compared the kinetics of NaA43 with CoH1 and the 

other two active mutants (CoH3 and CoH6) at either pH 6 or pH 7. In the presence of 10 mM 

Na+, our active sequences (CoH1, CoH3, and CoH6) catalyzed the cleavage reaction with a faster 

rate under pH 6 (Figure 3.8A). At pH 7, NaA43 performed a higher cleavage activity than CoH1, 

CoH3, and CoH6 (Figure 3.8B).  
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Figure 3.8 The kinetics studies on NaA43 (blue diamond), CoH1 (red circle), CoH3 (green triangle), and 

CoH6 (yellow triangle) with 10 mM NaCl at (A) pH 6 or (B) pH 7. 

 

Above results indicated that pH is an important parameter to distinguish these two 

DNAzymes. The pH-dependent assays were performed with the addition of 10 mM Na+ in 

various pH buffers. As shown in Figure 3.9A, the activity of CoH1 increased from pH 4.5 to pH 

6.0 and decreased at higher pH. The optimal reaction condition of CoH1 turned out to be pH 6.0. 

By contrast, the highest activity of NaA43 was observed at pH 7.0. Overall, CoH1 performs 

higher cleavage activity at pH below ~6.5, while NaA43 has more advantages at higher pH. 

Referring to the structures of these two DNAzymes, it is interesting to note that few mutations in 

the 5-nt motif resulted in distinct pH-dependent activity. The pKa value of T2A3 nucleotides in 

CoH1 might be responsible for its high activity at low pH. Future efforts could be paid to 

understand the pH-dependent mutations in more details. Besides, such property indicates the 

advantages of applying CoH1 for Na+ detection in relatively acidic environment such as cancer 

cells.76 



 36

 

Figure 3.9 (A) Cleavage yield of CoH1 and NaA43 with 10 mM NaCl at different pH for 30 min. (B) The 

normalized cleavage of CoH1 and NaA43 as a function of Ce3+ in the presence of 10 mM NaCl. Dots 

above the red standard line represent the promotion caused by Ce3+, while those below the red standard 

line represent the inhibition by Ce3+. 

 

3.3.2 The effect of Ce3+ 

In previous study, the activity of NaA43 can be accelerated by Ce3+. This was explained 

by the Ce3+-involved mechanism, in which Ce3+ binds to the non-bridging oxygen and 

neutralizes the evolving negative charge in the transition state.74 To further understand the 

cleavage mechanism, the effect of Ce3+ was studied for both CoH1 and NaA43 in the presence of 

10 mM Na+ (Figure 3.9B). The y-axis was the ratio of the cleavage with both Na+ and Ce3+ over 

the cleavage with Na+ only. In the figure, the area above the red line represents the promotion 

effect of Ce3+, while the area below represents the inhibition effect. Indeed, low concentrations 

of Ce3+ promoted the catalysis of NaA43 at pH 7. However, the activity of CoH1 decreased 

linearly with the gradual addition of Ce3+. Unlike NaA43, CoH1 is dominated by Na+ only with 

Ce3+ playing no positive role in its cleavage activity. 
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3.4 Metal specificity test 

For traditional Na+ probes, detecting Na+ with high selectivity over other monovalent 

ions (e.g., K+) is still a challenge.77 To determine the metal specificity of CoH1, a total of 20 

metal ions including monovalent, divalent, and trivalent ions were tested at pH 6. In this 

experiment, concentrations of 10 mM, 1 mM, and 100 M were used for monovalent, divalent, 

and trivalent ions, respectively. As shown in Figure 3.10B, CoH1 showed a significant cleavage 

with Na+ but not with other monovalent ions tested. Also, none of trivalent ions induced 

cleavage for CoH1. For divalent ions, a cleavage of ~36% was also observed with 1 mM Pb2+ as 

shown in Figure 3.10A. Many other metal-specific DNAzymes also show activity toward Pb2+, 

such as Ce13d.17,73,78 Due to the low concentration of Pb2+ in physiological condition, this is not 

likely to become a concern in future applications. Based on these results, CoH1 displays a high 

selectivity to Na+ especially over other competing monovalent ions. 

 

Figure 3.10 (A) Selectivity of CoH1 with 20 different metal ions at pH 6 for 1 h. Each data was 

normalized by subtracting the background cleavage (without metal). (B) Gel images showing the cleavage 

in the presence of monovalent (10 mM), divalent (1 mM) and trivalent (100 M) ions. 
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3.5 Materials and methods 

3.5.1 Chemicals 

All the DNA sequences listed in Table 3 were purchased from Eurofins Genomics. 

NaA43 was purchased from Integrated DNA Technologies (Coralville, IA). Sodium chloride, 

cesium chloride, calcium chloride dihydrate, magnesium chloride hexahydrate were purchased 

from Mandel Scientific (Guelph, Ontario, Canada). Other metal salts including lithium chloride 

hydrate, potassium chloride, rubidium chloride, cerium chloride heptahydrate, scandium chloride 

hydrate, manganese chloride tetrahydrate, iron chloride hexahydrate, nickel chloride hexahydrate, 

cobalt chloride hexahydrate, copper chloride dehydrate, zinc chloride, mercury perchlorate, lead 

acetate, barium chloride dihydrate, aluminium chloride hydrate, yttrium chloride hexahydrate 

were purchased from Sigma-Aldrich. Sodium acetate, 2-(N-morpholino)ethanesulfonic acid 

(MES), 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES) were purchased from 

Mandel Scientific (Guelph, Ontario, Canada). Lithium hydroxide was purchased from Alfa Aesar. 

Acrylamide/bisacrylamide 40% solution (29:1), urea, 10x TBE solution, ammonium persulfate 

(APS) were purchased from Bio Basic Inc. TEMED was purchased from OmniPur. All solutions 

used in this work were prepared with Milli-Q water. The pH of the buffers was measured with 

Denver Instrument UltraBasic pH meter. 

DNA 
name 

Sequences and modifications 

FAM-
Sub 

5’-GTCACGAGTCACTATrAGGAAGATGGCGAAA-FAM 

CoH1 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCATTAGTGACTCGT 

CoH2 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTTTTCGACCAGCATTAGTGACTCGT 

CoH3 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAATAGTGACTCGT 

CoH4 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCACTAGTGACTCGT 
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CoH5 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCAGTAGTGACTCGT 

CoH6 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAACATTAGTGACTCGT 

CoH7 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCATCATTAGTGACTCGT 

CoH8 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCTTTAGTGACTCGT 

CoH9 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCCTTAGTGACTCGT 

CoH10 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAGCGTTAGTGACTCGT 

CoH11 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCAACGTTAGTGACTCGT 

CoH12 5’-TTTCGCCATAGGTCAAAGGTGGGTGTGGTCGTATCATATCGACCACCAATAGTGACTCGT 

NaA43 
5’-

TTTCGCCATCCAGGTCAAAGGTGGGTGAGGGGACGCCAAGAGTCCCCGCGGTTAGTGACTCGTGAC 

 

Table 3. List of all the DNA sequences used in above activity assays. 

 

3.5.2 Denaturing polyacrylamide gel electrophoresis (dPAGE) 

In this work, denaturing polyacrylamide gel electrophoresis was mainly used to analyze 

and purify the FAM-labeled oligonucleotides from DNAzyme cleavage reactions. The gel stock 

solution of 15% dPAGE (500 mL) contains urea (240g), 40% acrylamide (29:1) (187.5 mL), and 

10x TBE (50 mL). As a denaturing agent, urea can destroy the secondary structure of DNA 

which allows DNA separation based on the molecule weight.79 The gel mixture was prepared by 

mixing 15% gel stock solution, 10% APS, and TEMED, which was then transferred to the glass 

plate. 

3.5.3 Na+-dependent activity assays 

The FAM-labeled substrate strand was used in all activity assays with sequence showing 

in Figure 3.3. To form the DNAzyme complex, substrate strands and enzyme strands were first 

hybridized in buffer A (50 mM HEPES, pH 7, 25 mM LiCl). The pH 7 buffer was used to 

prevent background cleavage caused by the unexpected Na+ in water. The DNAzyme complex (2 
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M) was prepared by annealing the FAM-substrate (2 M) and the enzyme (3 M) in 90°C 

water, followed by gradual cooling to room temperature. The reaction was carried out in buffer B 

(50 mM MES, pH 6, 25 mM LiCl). Each reaction had a volume of 7 L containing DNAzyme 

complex (200 nM) and 1 L of NaCl solutions with a concentration gradient (0, 0.1, 0.2, 0.5, 1, 2, 

5, 10, 20, 50, 100, 500 mM). After 1 h of incubation, the reaction was quenched with the 

addition of 8 M Urea (8 L). The reaction products were separated by 15% dPAGE (200V, for 1 

h 20 min) and analyzed by a Bio-Rad ChemiDoc MP imaging system. To test the effect of 

Co(NH3)6
3+, Co(NH3)6Cl3 (10 M) was introduced into the reaction with or without Na+ for 1 h. 

3.5.4 Kinetics assays 

The kinetics assay of CoH1 was carried out in buffer B with different concentrations of 

NaCl (0, 0.1, 0.5, 1, 5, 10, 20, 50, 100 mM). After various incubation times (0, 0.5, 1, 2, 5, 10, 15, 

30, 60 min), the reaction was quenched with the addition of 8 M Urea (8 L). When comparing 

the kinetics of CoH1, CoH3, CoH6, and NaA43, reactions were quenched after 0, 10, 30, 60 min, 

respectively. Buffer C (50 mM HEPES, pH 7, 25 mM LiCl) was used for reactions at pH 7.  

3.5.5 pH-dependent and selectivity assays 

In pH-dependent assays, CoH1 and NaA43 were incubated with 10 mM NaCl in various 

pH buffers for 30 min. Acetate buffer (50 mM, with 25 mM LiCl) was used for pH 4.5, and 

HEPES buffer (50 mM, with 25 mM LiCl) was used for pH 7.6. To test the effect of Ce3+, 

reactions were performed in the presence of 10 mM NaCl for 1 h. At the same time, 1 L of 

CeCl3 stock solution was added to the reaction resulting in a final Ce3+ concentration of 0, 0.5, 1, 

2, 5 M. For CoH1, buffer B was used. For NaA43, buffer A was used.  
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In the selectivity experiment, concentrations of 10 mM, 1 mM, and 100 M were used 

for monovalent, divalent, and trivalent ions, respectively. After 1 h, the reaction was quenched 

and characterized by 15% dPAGE (200V, for 1 h 20 min). 

  



 42

Chapter 4. Na+ sensing with 2-aminopurine labeled DNAzymes 

4.1 Introduction 

Based on the activity study above, the new mutant of the NaA43 DNAzyme selected by 

our in vitro selection is highly sensitive and selective to Na+ at pH 6. With 10 mM Na+, CoH1 

displayed a cleavage rate of ~0.07 min-1 in the gel-based assays. Having demonstrated its 

catalytic properties, we aimed to further apply the CoH1 in designing a Na+-biosensor. So far, 

many strategies have been reported to design metal ion sensors using metal-specific 

DNAzymes.28,80-82 For instance, a traditional DNAzyme-based fluorescent sensor is constructed 

by attaching a fluorophore/quencher pair to DNAzyme strands. The quencher group can 

eliminate the initial cleavage signal. The fluorophore is released and detected in the presence of 

metal ion targets. Following this strategy, Torabi et al. successfully converted the NaA43 

DNAzyme into a fluorescent sensor for imaging Na+ in live cells (Figure 4.1A).69 This sensor 

exhibited a detection limit of 135 M and a remarkable selectivity. 

 

Figure 4.1 (A) Catalytic beacon design of the Na+-dependent NaA43 DNAzyme. The substrate strand 
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(NaA43S) was labeled with a FAM at its 3 end and a quencher at its 5 end. The enzyme strand 

(NaA43E) was labeled with a second quencher at its 3 end. Upon adding Na+, the substrate was cleaved 

and released the fluorophore. (Adapted from ref. 69) Copyright © 2015 National Academy of Sciences 

(B) The chemical structures of an adenine and its analog, 2AP. (C) Two strategies of probing the Na+-

induced folding in Ce13d with 2AP. (Adapted from ref. 83) Copyright © 2016 Oxford University Press 

 

Most recently, robust Na+ sensing was achieved by probing a well-defined Na+ aptamer 

with 2-aminopurine (2AP).83 As described above, the Ce13d and NaA43 DNAzymes share a 16-

nucleotide domain (Figure 3.2), which was demonstrated to be a highly selective and robust Na+ 

aptamer in the subsequent biochemical studies. This is known to be the first well-defined metal 

binding domain found in the metal-specific DNAzymes. Based on Tb3+ luminescence and DMS 

(dimethyl sulfate) footprinting studies, the binding of Na+ to this 16-nucleotide pocket induces a 

specific local folding of the Ce13d DNAzyme.74,84  

A novel strategy of sensing Na+ by detecting the metal-induced folding in a DNAzyme 

was developed using 2AP. 2AP is a fluorescent adenine analog with its chemical structure 

showing in Figure 4.1B. The emission intensity of 2AP highly depends on the local base-

stacking interactions.85 Figure 4.2A describes the base-stacking interactions in a DNA double 

helix. Apart from hydrogen bonding, base stacking also contributes to the duplex stability.86-87 

The fluorescence of 2AP is efficiently quenched by enhanced stacking interactions with neighbor 

bases, which could be recovered by relaxing the base stacking.88 Taking advantages of this 

property, 2AP has been widely used as a powerful reporter of nucleic acid structure.89-91 

For Na+ sensing, a 2AP was introduced to the substrate strand by replacing the rA at the 

cleavage site. As shown in Figure 4.1C, the binding of Na+ resulted in a relaxed base stacking 

around 2AP, and enhanced the emission in the meantime.83 Using the wild-type Ce13d enzyme, 

the addition of 100 mM Na+ induced a fluorescence increase of ~40% (Figure 4.2B, red trace). 
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Titrating the chloride salts of Rb+ or Cs+ led to a slight decrease in the signal. This may due to 

the increased ionic strength in the solution. High salt concentration can mask the repulsion force 

between two phosphodiester backbones. As for NaA43, the signal was increased by only ~20%. 

This difference was explained by the 5-nt motif in NaA43 which may modulate the stacking 

environment near 2AP. Moreover, a series of rational mutations were designed to improve the 

signal by at most 600%. A detection limit of 0.4 mM Na+ was finally attained using an optimized 

sequence. On the other hand, replacing an adenine in the aptamer loop with 2AP resulted in a 

fluorescence quenching (Figure 4.1C). This indicates a more compact structure of the enzyme 

loop upon binding to Na+. 

 

Figure 4.2 (A) The base-stacking interaction in a DNA double helix. (Adapted from ref. 86) (B) 

Normalized fluorescence intensity at 370 nm of the Ce13d DNAzyme as a function of metal ion 

concentration. (Adapted from ref. 83) Copyright © 2016 Oxford University Press 

 

As a new mutant of NaA43, CoH1 also possesses the well-defined Na+ aptamer in its 

catalytic loop. Instead of using a beacon design, 2AP probes were applied to CoH1 to achieve the 

folding-based Na+ detection in this work. This will provide valuable information about the 

conformational change and reaction mechanism of CoH1 as well. 
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4.2 Na+-induced folding of CoH1 

First of all, we shortened the CoH1 enzyme to improve the duplex stability. Previous 

studies revealed that the role of a hairpin is to stabilize the structure which is unimportant for the 

activity. As a result, we shortened the hairpin structure in the wild-type CoH1 into the secondary 

structure in Figure 4.3A (in grey box). To confirm its activity, the cleavage reactions of both 

original and shortened CoH1 were carried out with 10 mM Na+. As shown in Figure 4.3B, CoH1 

with shortened hairpin structure still preserved its high cleavage activity. For better comparison, 

NaA43 with the same shortened hairpin structure was also used in the 2AP assays, whose 

activity was confirmed in a previous study reported by our group.74 

 

Figure 4.3 (A)The secondary structure of CoH1 with a shortened hairpin in the grey box. The 16-nt loop 

in red color represents the Na+-binding domain. A deoxyri-2AP replaced the rA at the cleavage site. (B) 

Activity test of the wild-type and shortened CoH1 in the presence of 10 mM Na+ for 30 min. The 

truncated hairpin structure maintained the cleavage activity. 

 

To introduce probes into the DNAzyme, the rA at the cleavage site was replaced with a 

2AP deoxyribonucleotide embedded in the substrate strand (Figure 4.3A). With an excitation at 

310 nm, the CoH1 DNAzyme complex emits the peak intensity at ~370 nm (Figure 4.4, green 
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trace). With the addition of 100 mM Na+, the emission intensity of CoH1 was improved by ~80% 

(red trace). This signal increase suggests that the base stacking between 2AP and its neighbor 

bases was relaxed upon binding with Na+. In other words, the tertiary structure of the aptamer 

domain induced by Na+ turns the 2AP site into a relatively more flexible state. As a comparison, 

the fluorescence of the NaA43 DNAzyme was measured (blue trace). The initial signal of CoH1 

was higher than that of NaA43. This may due to the weak A-T base pair on the left side of the 

2AP in CoH1 which leaves 2AP into a relatively loose state. The signal of NaA43 increased by 

40% with 100 mM Na+ (yellow trace). 

 

Figure 4.4 The fluorescence spectra of the CoH1 and NaA43 DNAzymes probed by 2AP with or without 

100 mM Na+. The emission wavelength ranges from 360 to 450 nm. 

 

4.3 Sensitivity and selectivity 

To test the sensitivity of 2AP-probed DNAzymes, sodium chloride was titrated gradually 

to achieve a final concentration of 100 mM Na+. To normalize the signal, the peak intensity at 

370 nm was divided by the initial fluorescence in the absence of Na+. As shown in Figure 4.5A, 

the fluorescence signal increased with increasing Na+ concentrations. After fitting the one-site 
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binding equation of 𝐹 = 𝐹଴ + 𝑎 ∙ [𝑀ା]/(𝑘ௗ + [𝑀ା]), a dissociation constant (Kd) of 39 mM Na+ 

was obtained. With 100 mM Na+, a fluorescence enhancement of ~80% was reached. By contrast, 

only ~30% enhancement was observed for NaA43 with a Kd value of 66 mM. Due to their 

structural similarity, the 5-nt motif (blue colored) must be responsible for the higher 

enhancement observed in CoH1, which is more flexible and sensitive to the folding of Na+ 

aptamer. Alternatively, the mutation of T2A3 in the 5-nt motif might facilitate the aptamer 

domain to bind Na+ more strongly.  

Moreover, the Kd value (39 mM Na+) of CoH1 is fairly higher than the Kd (4.3 mM Na+) 

obtained from previous activity assays. Several factors may contribute to such a difference. First, 

the low emission intensity of 2AP probes causes a significant signal noise in the spectra. Also, 

the fluorescence of 2AP highly depends on its aqueous environment. For example, an increasing 

ionic strength caused by the Na+ titration tends to decrease the fluorescence. Since folding-based 

method is less sensitive than the cleavage-based method, we proposed that the folding of the 

aptamer loop might not fully reflect the catalysis of the DNAzyme. In other words, other parts of 

CoH1, such as the 5-nt motif, also play a critical role in the cleavage reaction apart from the 

folding of the aptamer. In addition, the range of 0-20 mM was plotted in Figure 4.4B. A linear 

relationship was obtained with a detection limit of 3.0 mM Na+. The detection limit was 

calculated from 3/slope, where  is the standard deviation of background signal.  

As discussed above, the linear response obtained from the gel-based activity assays is 

below 1.5 mM Na+. Herein, the linear Na+ response of the folding-based sensors is wider and 

more robust. The decreased sensitivity is likely due to the low emission intensity of 2AP. In 

addition, in the cleavage assay, each Na+ might participate in the cleavage of multiple 

DNAzymes with catalytic turnovers. We propose that Na+ binding to the aptamer domain is 
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necessary for the activity. The folding of the aptamer loop relaxes the base stacking at the 

cleavage site, which creates a ready-to-go state for the reaction to start. However, those 5 

nucleotides on the left side of the hairpin are responsible for directly participating into the 

reaction. Especially, T2 and A3 bases (Figure 4.3, red box) are critical and determine the reaction 

rate to a great extent based on mutation studies. This conclusion is consistent with previous study 

on NaA43 in which G23 turned out to be important for its catalysis.74 

 

Figure 4.5 (A) Normalized fluorescence intensity at 370 nm of the CoH1 and NaA43 as a function of Na+ 

concentration. (B) The linear response appeared between 0 to 20 mM Na+. A detection limit of 3.0 mM 

Na+ was obtained. The emission intensity enhancement at 370 nm was normalized by equation F/F0-1. F0 

and F represent the fluorescence signal before and after the addition of Na+, respectively. 

 

Next, the sensor specificity was tested by comparing with other competing monovalent 

ions in group 1A. As seen in Figure 4.6, only Na+ induced a fluorescence increase of ~60% with 

a concentration of 50 mM (green bars). With the addition of 100 mM metals, only Cs+ showed a 

weak response while all the other ions made negligible change on the signal (red bars). 

Meanwhile, ~80% enhancement was induced with 100 mM Na+ suggesting a high selectivity of 

the 2AP sensor. 
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Figure 4.6 The selectivity test of the 2AP sensor in the presence of 50 mM or 100 mM various 

monovalent ions. 

 

4.4 Materials and methods 

4.4.1 Chemicals 

The deoxyribo-2AP-modified substrate, shortened CoH1, and NaA43 enzymes were 

purchased from Integrated DNA Technologies (Coralville, IA, USA). Table 4 lists all the DNA 

sequences and modifications. All the metal salts including sodium chloride, lithium chloride 

potassium chloride, rubidium chloride, and cesium chloride, along with all the buffers were 

described in the last chapter. Milli-Q water was used to prepare all the buffers and solutions. 

DNA 
name 

Sequences and modifications 

Sub-
deoxyribo-

2AP 
5’-GTCACGAGTCACTAT[2AP]GGAAGATGGCGAAA 

CoH1 
(shortened) 

5’-TTTCGCCATAGGTCAAAGGTGGGTGGGAGTTTTTACTCCGCATTAGTGACTCGTGAC 

NaA43 
(shortened) 

5’-
TTTCGCCATCCAGGTCAAAGGTGGGTGAGGAGTTTTTACTCCGCGGTTAGTGACTCGTGAC 



 50

 

Table 4. DNA oligonucleotides and their modifications used in the 2AP assays. [2AP] = 2-aminopurine. 

 

4.4.2 Fluorescence spectroscopy 

First, the DNAzyme complexes (1 M) were prepared by annealing in buffer B (50 mM 

MES, pH 6, 25 mM LiCl). The ratio of 2AP-modified substrates and enzyme strands was 1:2. 

The mixture was heated in 80°C water and followed by gradual cooling down to 4°C for at least 

30 min. The fluorescence spectra were measured using a fluorometer (FluoroMax-4, Horiba 

Scientific). With an excitation at 310 nm, the emission intensity was measured from 360 to 450 

nm. For each measurement, a small volume (<1.0 L) of metal salts was titrated into the sample 

to achieve an intended concentration. After a quick mix, the fluorescence was measure as soon as 

possible. The emission intensity at 370 nm was always used for quantification. The emission 

intensity enhancement at 370 nm was normalized by equation F/F0-1. F0 and F represent the 

fluorescence signal before and after the addition of Na+, respectively. The Kd value was obtained 

by fitting into the one-site binding equation: 𝐹 = 𝐹଴ + 𝑎 ∙ [𝑀ା]/(𝑘ௗ + [𝑀ା]). [M+] is the metal 

concentration, and 𝑎 is the fluorescence change when [M+] = ∞. 

4.4.3 Gel-based assays 

To confirm the cleavage activity of the shortened CoH1, the DNAzyme complexes were 

prepared with either wild-type or shortened CoH1 enzymes. The reactions were carried out with 

10 mM NaCl at room temperature. After 30 min, the reaction was quenched with the addition of 

8 M Urea (8 L). The reaction products were separated by 15% dPAGE (200V, for 1 h 20 min) 

and analyzed by a Bio-Rad ChemiDoc MP imaging system. 
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Chapter 5. Conclusions and future work 

In summary, active DNAzyme sequences were enriched and isolated after 6 rounds of in 

vitro selection at pH 6. Although the selection used Co(NH3)6
3+ as the intended cofactor, this 

selected representative sequence (CoH1) showed catalytic activity in the presence of Na+ only, 

while Co(NH3)6
3+ acted as an inhibitor. The secondary structure prediction of the CoH1 revealed 

a well-defined Na+ binding domain in its catalytic core, which explained the Na+-dependent 

activity. In particular, the structure of CoH1 was found to be highly similar to the previously 

reported Na+-dependent DNAzyme, NaA43. However, two nucleotides in the NaA43 that are 

known to be critical for its activity mutated into T2A3 in the CoH1. Further mutation studies 

indicated that any mutation to T2 or A3 may completely abolish the activity of CoH1. One of the 

future directions is to perform more mutation studies to provide a detailed picture of its catalytic 

mechanism. 

As a new mutant of NaA43, CoH1 exhibited distinct catalytic activity in the gel-based 

studies. With 10 mM Na+, CoH1 displays a fast cleavage rate of ~0.07 min-1, which is 3.5-fold 

higher than NaA43 at the same Na+ concentration. Under its optimal condition (50 mM MES, pH 

6, 25 mM LiCl), CoH1 has a stronger binding affinity toward Na+ with a Kd value of 4.3 ± 0.6 

mM Na+. In conclusion, CoH1 shows a great potential in Na+ detection at low concentrations. 

Based on our results, pH is important for distinguishing CoH1 from NaA43. Overall, CoH1 

displays higher cleavage activity at pH below ~6.5, while NaA43 is more active at higher pH. It 

is interesting to note that two-site mutations in the 5-nt motif resulted in distinct pH-dependent 

activities. From the biochemistry aspects, future efforts can be paid in studying the pH-

dependent evolution of the 5-nt motif. Due to the critical role of these 5 nucleotides, a DNA 

library containing a fixed hairpin, the Na+ binding domain, and a 5-nt motif with random 
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sequences could be designed for future selections. By tuning the selection conditions (e.g., pH, 

ionic strength, metal ions), new mutants with distinct properties could be discovered.  

Finally, 2AP probes were applied to convert the CoH1 DNAzyme into a folding-based 

Na+ sensor. The sensor displays a linear respond below 20 mM with a detection limit of 3.0 mM 

Na+. In the presence of 100 mM Na+, ~80% enhancement was observed in the Na+ sensor with a 

high selectivity over other monovalent ions. The 2AP probes revealed the Na+-induced folding of 

the Na+ aptamer and provided important insights to the reaction mechanism. To improve the 

fluorescence signal, rational mutations can be performed to CoH1. For example, a double 

mutation of C10A20 was demonstrated to enhance the signal by 600% in Ce13d.17 Ultimately, the 

optimized sensor could be applied for real-time Na+ detection in live cells. In the subsequent 

work, replacing A3 in the 5 nt-motif with 2AP may reveal the local folding of the 5-nt motif. This 

strategy can be followed to study more metal-binding domains in other metal-specific 

DNAzymes. 
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Chapter 6. Lab Safety 

General laboratory safety practices should always be followed during experiments. This 

includes wearing gloves, goggles and a lab coat. Material safety data sheets should also be 

referred to routinely. In particular, toxic chemicals should be stored appropriately and handled 

carefully. Ethidium bromide may be used to stain the gel and locate the DNA. This is a potential 

mutagen and carcinogen, and will therefore be handled with caution. During preparation and 

handling, nitrile gloves will be worn as well as a lab coat. Handling of this solution will be 

carried out inside a chemical fume hood to prevent exposure. All waste that comes into contact 

with ethidium bromide, as well as the solution after use will be collected in a specially marked 

container and brought down to ESC-150 (Environmental Safety Facility) for disposal.  

Precautions to prevent electrical shock must be taken to use electrophoresis apparatus 

safely. The power must be turned off before connecting the electrical leads. Hands must be dry 

before connecting the leads. The equipment should always be kept away from sinks or other 

water sources. 
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