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Abstract 

Recent advances in autonomous vehicles (AVs) are exponential. Prominent car 

manufacturers, academic institutions, and corresponding governmental departments around the 

world are taking active roles in the AV industry. Although the attempts to integrate AV technology 

into smart roads and smart cities have been in the works for more than half a century, the High 

Definition Road Maps (HDRMs) that assists full self-driving autonomous vehicles did not yet exist. 

Mobile Laser Scanning (MLS) has enormous potential in the construction of HDRMs due to its 

flexibility in collecting wide coverage of street scenes and 3D information on scanned targets. 

However, without proper and efficient execution, it is difficult to generate HDRMs from MLS 

point clouds.  

This study recognizes the research gaps and difficulties in generating transition lines (the 

paths that pass through a road intersection) in road intersections from MLS point clouds. The 

proposed method contains three modules: road surface detection, lane marking extraction, and 

transition line generation. Firstly, the points covering road surface are extracted using the voxel-

based upward-growing and the improved region growing. Then, lane markings are extracted and 

identified according to the multi-thresholding and the geometric filtering. Finally, transition lines 

are generated through a combination of the lane node structure generation algorithm and the cubic 

Catmull-Rom spline algorithm.  

The experimental results demonstrate that transition lines can be successfully generated for 

both T- and cross-intersections with promising accuracy. In the validation of lane marking 

extraction using the manually interpreted lane marking points, the method can achieve 90.80% 

precision, 92.07% recall, and 91.43% F1-score, respectively. The success rate of transition line 
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generation is 96.5%. Furthermore, the Buffer-overlay-statistics (BOS) method validates that the 

proposed method can generate lane centerlines and transition lines within 20 cm-level localization 

accuracy from MLS point clouds. In addition, a comparative study is conducted to indicate the 

better performance of the proposed road marking extraction method than that of three other 

existing methods. In conclusion, this study makes a considerable contribution to the research on 

generating transition lines for HDRMs, which further contributes to the research of AVs. 
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Chapter 1 Introduction 

1.1 Motivation 

1.1.1 Requirements for High-definition Road Maps 

The development of Autonomous Vehicles (AVs) starts in the 1980s, when Carnegie 

Mellon University introduced the Navlab vehicles that operated autonomously in a variety of road 

environments (Thorpe et al., 1991). AVs promise numerous improvements to vehicular 

transportation, including an increase in traffic capacity, less fuel consumption, and fewer accidents 

(Luettel et al., 2012). A range of technology companies, automotive manufacturers and suppliers, 

academic organizations, and government bodies are leading various technological efforts to make 

this technology more responsive, more accessible and ultimately safe (Abraham et al., 2017). For 

example, Ontario Good Roads Association published a white paper, which states that Ontario will 

develop an ecosystem across the province to help Ontario win the presently AV race (Shuja, 2015).  

The range of vehicular automation can be described by the Levels of Vehicle Automation, 

which is put forward by the U.S. Department of Transportation’s National Highway Traffic Safety 

Administration. The agency separates vehicle automation into five levels: no automation (Level 

0), function-specific automation (Level 1), combined function automation (Level 2), limited self-

driving automation (Level 3), and full self-driving automation (Level 4) (National Highway Traffic 

Safety Administration, 2013). Vehicles at level 4 are designed to monitor roadway conditions and 

operate all driving functions for an entire trip. To help full self-driving automation, extra platforms 

including motion planning systems, perception systems, mission planners, and behavioral systems, 

should be set on board (Fagnant & Kockelman, 2015).  
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The platforms control the behaviors of an autonomous vehicle based on two kinds of data: 

real-time perception results from onboard sensors and pre-loaded navigation maps (Schreiber et 

al., 2013). The onboard sensors, such as optical cameras, Radio Detection and Ranging (RADAR) 

and Light Detection and Ranging (LiDAR) systems, are essential parts to support the autonomous 

vehicles driving in road environments. Features around the vehicles are extracted out of the 

measured raw data with a goal of finding obstacles and determining motions. However, urban 

scenes could be too complex to be completely detected by the sensors. In such cases, road maps, 

which are used to generate routing trajectories for autonomous driving in well-structured 

environments, can support real-time motion planning if detailed road information is precomputed 

(Buehler et al., 2009).  

Finding the best path from starting position to a destination is an important function of road 

maps. Common road maps, such as commercial navigation maps, usually represent roads as 

connected lines with additional attributes. This information might be helpful enough for a driving 

assistant system for manual driving, as it solves the question of which road should be taken. 

However, to serve as an assistant system for autonomous driving, there is a further question that 

should be answered by the maps: which lane should be taken? Note this question, much detailed 

road information should be computed and added to the conventional road maps (Gwon et al., 2017). 

Structured features on roads, including lanes, road markings, and traffic signs, are basic 

components of an HDRM and important signals for the behavioral system of autonomous vehicles. 

Simulated features such as lane centerlines and transition lines, which autonomous vehicles move 

on, play an essential role in trajectory planning (de Lima & Victorino, 2016). HDRMs will provide 

great supporting information for the onboard sensors especially when lanes or obstacles are not 

perceptible.  
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1.1.2 MLS Compared with Other Techniques 

A classical road map for navigation is created from a Geographic Information System (GIS) 

through information filtering, organizing, and visualizing. The road information stored in a GIS 

database is mostly gathered by surveying and remote sensing techniques. Aerial photogrammetry, 

one remote sensing data source, is commonly used for road and road feature extraction. The 

method starts with extracting features from edges or regions on the images; road areas can then be 

extracted based on their features (Yin et al., 2015). With the extracted road areas, road centerlines 

can be generated through pattern recognition (Shi et al., 2014). These methods work very well 

along the main road network in study areas. However, simultaneously, they can be seriously 

impacted by blocking features along the road, such as high-rise buildings and trees. Moreover, 

when taking a further step toward road surface information extraction or branch road extraction, 

the small disconnects in picturing road details caused by blocking objects and missing elevation 

information makes the reconstruction of roads difficult (Wegner et al., 2013). In summary, due to 

the high complexity and diversity of road environments, the generation of HDRMs from aerial 

images is problematic.  

Compared with aerial images, laser scanning, as a continuously promoted remote sensing 

technique, can provide quick acquisition of high-quality 3D information of road scenes when 

integrated with positioning technology (Yu et al., 2015b). Currently, laser scanning data, or 3D 

point clouds, can be acquired through Airborne Laser Scanning (ALS) platforms, Mobile Laser 

Scanning (MLS) platforms, and Terrestrial Laser Scanning (TLS) platforms (Hyyppä et al., 2013). 

Point clouds recorded by the three types of laser scanning platforms contain not only factual 

geographic coordinate information but also the reflective intensity of feature surfaces. Laser 

scanning technology uses non-contact measurement to directly access scanned surfaces, depending 
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little on illumination. Although ALS, MLS, and TLS systems record similar properties, features 

of targets are represented distinctly in the point clouds from different platforms. A proper type of 

point cloud should be chosen for particular tasks, based on the scale of targets and desired point 

density.  

Choosing an appropriate type of point clouds for information extraction relies on the 

features of interest in the road environments. On the one hand, the point clouds of a road network 

should be easily acquired with the help of a few technicians. On the other hand, the resolution of 

the point clouds should be high enough to distinguish road surface features, including road curbs, 

road markings, and road signs. ALS platforms can undoubtedly cover a great scale of a city within 

a short time, whereas completing such a task with TLS platforms would be hard (Zhu & Hyyppa, 

2014). MLS platforms are useful for providing point clouds for roads within a small city, but 

remaining a time-consuming approach for the oversized cities. In terms of point density, TLS and 

MLS point clouds commonly have more than 10,000 pts/m2, which provides greater than 1 cm in 

resolution, while it is hard for ALS point clouds to reach that precision (Wang, 2016). As a result, 

road features such as lane markings are only distinguishable on TLS and MLS point clouds. Due 

to its higher flexibility and acquisition rate in large-scaled road scenes, MLS point clouds is more 

applicable than ALS and TLS point clouds for transition line generation in this study.  

1.1.3 Challenges of Road Transition Line Generation Using MLS Point Clouds  

Transition lines are driving paths that pass through road intersections (Guo et al., 2016). 

Note that transition lines are not real lines that are marked on the road surface, the generation of 

them should take the lane markings, which represents the edges of lanes, and traffic rules as 

essential references (Yang et al., 2013). Therefore, to generate transition lines, we first need to 
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extract road markings, especially the lane markings, from MLS point clouds. However, the 

complex patterns of road markings in road intersections make the acquisition of road markings 

challenging. Outliers, such as road side building facades, road pavements, and other points on the 

road surface, should also be distinguished and removed (Yang et al., 2012). Another challenge 

comes from conducting human knowledge (traffic rules) in lane centerline and transition line 

generation. Two directions of a road and forks of a road intersection should be classified, and then 

all the possible paths that vehicles may take to pass a road intersection should be determined 

following traffic rules (Liu et al., 2013a). need to be determined following traffic rules. In addition, 

any generated transition lines must be carefully confirmed to ensure their quality and to provide 

reference information for HDRMs.  

In addition to the complex patterns of road environments, challenges also arise from MLS 

point clouds. Such point clouds contain a mass of dense points with 3D geographic information, 

reflection information, return information, and so on. Organising these features would be a key 

pre-condition in developing efficient algorithms. First, the spatial discontinuity of points makes 

searching a target point or its nearby points time-consuming if points are not well organized in an 

index data structure (Yang et al., 2013). Second, intensity values become degraded when laser 

shooting points get far away from the sensor even though the features of the target surface keep 

the same, which makes distance an unavoidable variable when using intensity values (Cheng et al., 

2017). Third, it is inefficient to use the whole MLS point cloud for information extraction. Key 

features and key points should be detected and extracted by a method so that lane centerlines and 

transition lines can be precisely generated. In summary, challenges for simulating turning lines 

mainly come from the environmental complexity of roads and the features of MLS point clouds. 

This study thus focuses on proposing a solution for these challenges.  
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1.2 Objectives of the Thesis 

The goal of this study is to develop a semi-automated method for the generation of 

transition lines in typical urban road intersections. The specific objectives of this thesis are as 

follows: 

 To develop an improved computerized algorithm for road surface extraction from 

MLS point clouds of urban road intersections with road curbs. 

 To develop a novel semi-automated algorithm for node structure generation from 

clustered lane marking, which represents the edge of a lane, point clouds in road 

intersections.  

 To implement algorithms for ground point detection, road marking detection and 

transition line generation in T-intersections and cross-intersections. 

 To conduct a method for the validation of detected lane markings and transition lines 

and a comparative study for the evaluation of the road marking extraction method. 

1.3 Structure of the Thesis 

This thesis is extended from the successive four chapters. Chapter 2 introduces MLS, 

HDRMs, and the related work in road surface detection, road marking extraction and transition 

line generation. Chapter 3 describes the characteristics of the test datasets and elaborates the 

stepwise data processing methodology, including road surface extraction, lane marking extraction, 

and transition line generation. Moreover, the validation method is introduced. Chapter 4 presents 

and discusses the experimental results and the validation results in this study. Chapter 5 draws the 

conclusion with findings, summarises its contributions and limitations, and makes suggestions for 

future studies.   
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Chapter 2 Background and Related Work 

This chapter reviews the literature related to the generation of transition lines at road 

intersections from MLS point cloud data. Section 2.1 presents an introduction to HDRMs. Section 

2.2 introduces MLS technology. Section 2.3 documents recent studies of road surface detection, 

road marking extraction, and transition line generation. Section 2.4 summarises this chapter by 

figuring out the gaps in the previous studies. This chapter provides a theoretical background for 

the proposed method in this study. 

2.1 Introduction to HDRMs 

HDRMs describe the road geometry as linked lane segments. They characterize roads, on 

the one hand, with more recall and, on the other hand, with higher accuracy than standard digital 

maps to fulfill the requirements of driving assistance systems (Bétaille & Toledo-Moreo, 2010). 

The road network information stored in an HDRM database includes both road-level and lane-

level information. The lane-level information contains lane geometry, lane attributes, and road 

intersection geometry. Each set of the information in HDRMs has multiple potentialities for 

vehicular applications (Hillel et al., 2014). Lane geometry can be utilized for curve speed control 

(Jiang et al., 2010) and lane change aiding (Gao & Aghajan, 2009). Lane attributes, including lane 

width, elevation, grade, edge coordinates, and bank angle, can be used for lane keep assistance 

(Wu et al., 2008) as well as lane departure warning (Danescu & Nedevschi, 2009). Road 

intersection geometry can add additional safety benefit to navigation systems (Du, 2004). 
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(a) Cross-intersection (b) T-intersection 

Figure 2-1 Definition of transition lines 

Figure 2-1 clarifies the definition of transition lines in a cross-intersection (Figure 2-1 (a)) 

and a T-intersection (Figure 2-1 (b)). Three constraints are involved in the generation of transition 

lines for an HDRM database. First, each road is decomposed into a sequence of analytic lane 

centerline curves, which represent the centerlines of road lanes. Second, lane centerlines are 

directed line segments that have start and end nodes. Third, lane centerlines are connected by 

transition lines that are represented as curved or straight line segments. The acceptable vehicle 

positioning errors for lane-level navigation are based on a total error that combines the expected 

error of the road map database with vehicle positioning error. For three-meter-wide lanes, the lane-

level accuracy is specified to be 30 cm in the road map database, with less than 20 cm vehicle 

positioning error (Du, 2004). To help the construction of HDRMs, the main discussion of this 

thesis will focus on the generation of transition lines in road intersections.  

Transition lines in the HDRM database approximate real vehicle turning paths and describe 

the geometric details of a road intersection. They present all the possible paths that autonomous 
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vehicles may take to pass the road intersection. Moreover, the connectivity description provides a 

coordinate description to the inner attributes of the road intersection. Therefore, the vehicle 

positioning results from onboard sensors can be matched and constrained more continuously and 

precisely (Liu et al., 2013a). Transition lines can support smooth switch among a road intersection 

and provide more benefits to map-based vehicle positioning solutions (Zhang et al., 2011).  

2.2 Introduction to MLS 

MLS is a surveying technique that uses laser scanners mounted on a mobile platform to 

obtain surface information of objects (Talaya et al., 2004; El-Sheimy, 2005). By constantly 

emitting and receiving near-infrared laser beams, MLS systems can collect 3D coordinates of 

scanned surfaces (Haala et al., 2008; Marshall, 2011). Additional information including intensity 

properties, return number and number of returns are simultaneously recorded when laser energy 

returns (Lemmens, 2011). Compared with other surveying methods, such as surveying with GPS, 

total stations, and photogrammetry, MLS promises many advantages: rapid data acquisition, high 

point density, high accuracy, and flexible working time (Yen et al., 2011, Zhu et al., 2011). 

2.2.1 Components of MLS Systems 

As a sub-category of the mobile mapping system, MLS systems utilize motion tracking 

and time synchronized data acquisition. Generally, an MLS system has five essential components: 

laser scanners, optical cameras, an Inertial Measurement Unit (IMU), a Distance Measurement 

Indicator (DMI), a Global Navigation Satellite System (GNSS), and a control system for sensor 

synchronization (Talaya et al., 2004). Among these components, the laser scanners and the optical 

cameras are responsible for data collecting. The GNSS, the DMI, and the IMU compose a Position 

and Orientation System (POS).  
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 (1) Laser scanner 

Laser scanners constantly emit laser pulses at fixed angular increments and collect the 

backscattered energy for range measurement (Glennie, 2007). In different MLS systems, the type 

and the number of laser scanners might vary. Fixed scanning head laser scanners set the laser scan 

heads to a fixed angle, and only internal mirror movement takes place in measurements. To collect 

a 360-degree range of points, multiple laser scanners are required. Rotating scanning head laser 

scanners have rotating scan heads that can collect points in a full 360-degree planar sweep. In both 

cases, the scanning plane of the sensors coupled with the movement of the vehicle enables the 

system to collect point clouds in a wide window. The scan data collected through laser scanners 

consist of angles, intensities, and ranges with time stamps.  

The range to objects can be calculated mainly based on two techniques: time-of-flight and 

phase shift (Lichti, 2010). A laser scanner using time-of-flight technique launches a short laser 

pulse to a target, and then the range to the target (R) can be determined by the time difference 

between the emitted and received laser energy through the following equation (Lichti, 2010):  

𝑅 =
𝑐∆𝑡

2
,  

(2-1) 

where ∆𝑡 is the time interval between emitting and receiving of the laser pulse and 𝑐 is the speed 

of light. In contrast, for phase based laser scanners, the range to the target is computed using the 

phase difference between the emitted and received laser energy of an amplitude modulated 

continuous wave. The equation used for calculating the range from phase shift is (Lichti, 2010): 

𝑅 =
∆𝜑

2𝜋

𝜆

2
+
𝜆

2
𝑛,  

(2-2) 
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where ∆𝜑 is the phase shift, 𝜆 is the modulation wavelength and 𝑛 is the number of transmitted 

waves. Compared with time-of-flight scanners, phase-based scanners can achieve a higher 

accuracy and point density, while their scanning range is shorter (Petrie and Toth, 2008).  

 (2) Digital camera 

Digital cameras are always incorporated into MLS systems as a supporting system for 

visualization and referencing purposes. To aid in visualization, they individually take optical 

images of targets in a fixed time interval as a video stream. These optical images can be 

superimposed upon the point clouds to add detailed color and texture information to them (Zhou 

& Vosselman, 2012). This additional information might be helpful to advanced feature extraction 

such as traffic sign detection (Wen et al., 2016; Soilán et al., 2016). To aid in referencing, geo-

referenced images can be mapped to point clouds, which enables users to interact with images 

rather than oversized point cloud data. Further, ortho-images can be generated for validation 

purposes. Different arrangements of digital cameras could be applied to the MLS systems based 

on the scanning angle of laser scanners so that they can assist interpretation of point clouds.  

However, when we use the digital images as ancillary datasets, two features of them should 

be well considered. Firstly, note that photogrammetry is a passive remote sensing technique, the 

quality of images acquired by digital cameras varies depending on light conditions for the study 

areas and focus of the cameras. Secondly, perspective distortion, which refers to a complex 

deformation of the image because of the combined physical effects of distance and focal length, is 

indispensable in MLS systems due to the movement of vehicles (Valente & Soatto, 2015). When 

distorted images are mapped to point clouds, they might provide false information for the 

subsequent processing.  
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(3) Position and Orientation System (POS) 

To make a continuous scanning, vehicles should keep moving, which makes the positions 

of laser scanners various in data acquisition. Hence, position, velocity, and time information are 

essential for the geo-referencing of point clouds (Glennie, 2007). This information is provided by 

the POS that is composed of a GNSS, a DMI, and an IMU. The integration of these sensors allows 

exploiting the complementary nature of them.  

GNSS mainly provides three measurements: position, velocity, and time. Although GNSS 

can produce accurate positioning information in road environments, the signal quality might be 

affected by the blocking of high-rise buildings, roadside trees, or other obstacles. Furthermore, 

IMU can afford attitude information (heading, roll, and pitch) of the vehicle, and it can sense 

rotation angles and acceleration from three axes when satellite signals are not available. However, 

the accuracy of orientation and position information decrease in IMU with the accumulation of 

measuring time (Puente et al., 2013). Therefore, in MLS systems, the GNSS and IMU are 

integrated to ensure the orienting and positioning accuracy. IMU can enhance the positioning 

accuracy of GNSS when satellite signals are weak, while GNSS can update positioning 

information in IMU.  

DMI can provide additional positioning information for IMU and GNSS. It is fixed on one 

wheel of the vehicle to directly estimates traveling distance by measuring wheel rotation. When 

GNSS is under intermittent satellite signal coverage, rotation information can provide constraints 

to time drift in IMU.  
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(4) Control system 

A control system can synchronize laser scanners, digital cameras, and the position and 

orientation system. It stores the data acquired by laser scanners and digital cameras and integrates 

signals collected by the position and orientation system.  

2.2.2 Direct Geo-referencing and Scanning Parameters 

In an MLS system, when the surveying vehicle is moving, GNSS constantly measures the 

real-time geodetic coordinates of GNSS antenna phase center, and IMU records instant attitude 

angles including roll, pitch, and yaw. The position and orientation data are precisely time stamped 

to integrate sensors and determine the coordinates of scanned objects in the mapping frame. Laser 

scanners measure the distances and scanning angles from the scanned target to the scanning center. 

Digital cameras acquire the texture information of surrounding objects. As shown in Figure 2-2, 

laser scanners are referenced using their orientations and positions relative to the mapping frame 

and the positional relationship among IMU, GNSS and laser scanners. Then, the coordinates of 

scanned targets in the mapping frame can be computed through the distances and the scanning 

angles.  

The coordinates of scanned point P are calculated by the following equations (Glennie, 

2007; Barber et al., 2008):  

[
𝑋P
𝑌P
𝑍P

]

M

= 𝑅𝐼𝑀𝑈
𝑀 (𝜔, 𝜑, 𝜅) ∙

(

 
 
𝑅𝑠
𝐼𝑀𝑈(∆𝜔, ∆𝜑, ∆𝜅) ∙ 𝑟𝑃

𝑆(𝛼  𝑑) + [

𝐿𝑋
𝐼/𝑆

𝐿𝑌
𝐼/𝑆

𝐿𝑍
𝐼/𝑆

]

𝑠

𝐼𝑀𝑈

− [

𝐿𝑋
𝐺/𝐼

𝐿𝑌
𝐺/𝐼

𝐿𝑍
𝐺/𝐼

]

𝐼𝑀𝑈

𝐺𝑃𝑆

)

 
 
+ [

𝑋𝐺𝑃𝑆
𝑌𝐺𝑃𝑆
𝑍𝐺𝑃𝑆

]

𝑀

   

  (2-3) 
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where the descriptions of the parameters in Equation 2-3 are shown in Table 2-1.  

 

Figure 2-2 Illustration of direct geo-referencing 

Table 2-1 Descriptions of parameters in the direct geo-referencing equation 

Parameters Description 

XP, YP, ZP Location of scanned point P in the mapping frame.  

𝑅𝐼𝑀𝑈
𝑀 (𝜔,𝜑, 𝜅) 

Rotation matrix between the mapping frame and the IMU coordinate 

system. 𝜔,𝜑, and 𝜅 are the roll, pitch, and yaw of IMU with respect 

to the mapping frame. These parameters are defined by the system 

calibration.  

𝑅𝑠
𝐼𝑀𝑈(∆𝜔, ∆𝜑, ∆𝜅) 

Rotation matrix between IMU and the laser scanner. ∆𝜔, ∆𝜑, and ∆𝜅 

are boresight angles that align the frame of the laser scanner with IMU 

body frame. These parameters are provided by the system calibration.  

𝑟𝑃
𝑆(𝛼  𝑑) 

The relative position of P in the laser scanner coordinate system. 

𝑟𝑃
𝑆(𝛼  𝑑) = 𝑑 ∙ [

cos𝛼
0

sin𝛼
], where 𝑑 and 𝛼 are range and scanning angle 

measured by the laser scanner.  

𝐿𝑋
𝐼/𝑆
, 𝐿𝑌
𝐼/𝑆
, 𝐿𝑍
𝐼/𝑆

 
Lever-arm offsets from the origin of IMU to the origin of the laser 

scanner coordinate system.  

𝐿𝑋
𝐺/𝐼
, 𝐿𝑌
𝐺/𝐼
, 𝐿𝑍
𝐺/𝐼

 
Lever-arm offsets from the origin of IMU to the origin of GNSS 

antenna. 

𝑋𝐺𝑃𝑆, 𝑌𝐺𝑃𝑆, 𝑍𝐺𝑃𝑆 Location of GNSS phase center in the mapping frame.  
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2.2.3 RIEGL VMX-450 System 

This thesis utilizes the data collected by a RIEGL VMX-450 MLS system from Xiamen 

University. The RIEGL VMX-450 MLS system consists of two RIEGL VQ-450 laser scanners, 

four RIEGL VMX-450-CS6 optical cameras, and an Applanix POS LV 520 processing system. 

The components are integrated by a POS computer system and mounted onto a vehicle (Figure 2-

3). The position and navigation solution is provided by two GNSS antennas, a DMI, and an IMU 

in Applanix POS LV 520 system. RIEGL VQ-450 laser scanners are rotating head laser scanners 

which have a 360° field of view and produce ‘X’ shaped scan lines. The coordinate system and the 

plane projection system of the point clouds can be transformed to WGS84 and UTM in the data 

processing software RiPROCESS. Additionally, vehicle trajectory data are obtained and provide 

as ancillary data. A vehicle trajectory is a path that the vehicle moves along a road as a function of 

time (Guan et al., 2014). While the flight-of-time (ToF) MLS measurements were collected, the 

vehicle trajectory was recorded by the Position and Orientation System (POS). The raw GNSS 

data and IMU data were processed in Applanix POSPacTM MMS software, and the best estimation 

of the vehicle trajectory (hereafter referred to as trajectory points) is produced. The vehicle 

trajectory is essential for the direct geo-referencing of point clouds. 

 

Figure 2-3 A RIEGL VMX-450 system (Yu, 2015c) 
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Figure 2-4 A Google autonomous vehicle (Google, 2017) 

The type and the function of laser scanners for autonomous vehicle navigation and HDRM 

construction are different. For example, on a Google’s autonomous vehicle, a Velodyne HDL-64E 

laser scanner is configured on the top of the vehicle (Figure 2-4). Point clouds collected by the 

laser scanner are used for the real-time navigation of the vehicle. However, in a RIEGL VMX-450 

system, two RIEGL VQ-450 laser scanners are symmetrically mounted on the right and left sides, 

pointing to the rear of the vehicle. Point clouds collected by the two laser scanners are commonly 

used for post-processing.  

Table 2-2 shows the configuration and the measurement performance of a Velodyne HDL-

64E laser scanner on a Google autonomous vehicle and a RIEGL VQ-450 laser scanner in a RIEGL 

VMX-450 system. Both the two laser scanners use TOF measuring technology and provide 360° 

coverage. A RIEGL VQ-450 laser scanner can generate up to 550 thousand pts/s, while a Velodyne 

HDL-64E laser scanner can generate 2.2 million pts/s, which is better for real-time computation. 

However, the accuracy of a RIEGL VQ-450 laser scanner can reach 8 mm in measurement 

accuracy and 0.001° in angle measurement resolution, which is much higher a Velodyne HDL-

64E laser scanner’s 2 cm in measurement accuracy and 0.08ᵒ in measurement resolution. Therefore, 
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a RIEGL VQ-450 laser scanner can generate much more accurate point clouds than a Velodyne 

HDL-64E laser scanner. Since the construction of an HDRM is a one-time mission, point clouds 

collected by the RIEGL WMX-450 system are more suitable for that mission. When the base 

HDRM is created, it could be updated by AVs. 

Table 2-2 Comparison of RIEGL VQ-450 and Velodyne HDL-64E 

Laser scanner RIEGL VQ-450 Velodyne HDL-64E 

Configuration 

  

Measuring principle TOF measurement TOF measurement 

Maximum range Up to 800 m 120 m 

Minimum range 1.5 m 1.5 m 

Accuracy/precision 8 mm/5 mm (1 σ) 2 cm 

Field of view 360° 360° 

Angle measurement 

resolution 
0.001ᵒ 0.09ᵒ 

Effective measurement rate Up to 550 kHz @ 200m Up to 2.2 million points per sec 

Laser wavelength Near infrared Near infrared 

Laser beam divergence 0.3 mrad - 

Laser beam footprint 

7 mm @ exit aperture 

17 mm @ 50 m 

32 mm @ 100 m 

- 

Reference (RIEGL, 2017) (Glennie & Lichti, 2010) 
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2.3 Techniques for Generating Road Transition Lines 

2.3.1 Curb-based Road Surface Detection Using MLS Point Clouds 

Several methods have been developed to detect road surfaces from MLS point clouds, and 

these algorithms can be categorized into three types based on data structure: scan line, road patch, 

and voxel.  

Scan lines are commonly generated using the scanning angle field or the Global Positioning 

System (GPS) time stamp field in MLS point clouds if points are time-wise sorted. With a few 

points in a single scan line, computation can be conducted efficiently. McElhinney et al. (2010) 

detected road curbs (the boundaries of roads) to extract road surface points from scan lines. 

Elevation jump and slope of two adjacent points were computed and labeled as road curb points if 

both were greater than the thresholds. Yang et al. (2013) detected road curbs from a scan line 

through constructing a moving window operator. The moving window operator was used to detect 

curb points based on pre-defined curb patterns. Instead of searching for road boundaries, some 

methods directly extract road surface points from a scan line. Yan et al. (2016) utilized elevation 

jump between trajectory points and road surfaces to extract seed points, then road surface points 

were detected by moving least squares line fitting. Similarly, Riveiro et al. (2015) performed 

Principal Component Analysis (PCA) to the local neighborhood of seed points for road surface 

detection.  

When conducting the scan line based methods in ideal street scenes, a succession of parallel 

U-shaped polylines should be formed after the segmentation. However, obstacles such as parked 

cars, passengers, and pavement grass could break the ideal arrangement. Cabo et al. (2016) split 

and simplified scan lines using an improved version of the Douglas-Peucker algorithm. Lines that 
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belonged to the same planar were regrouped based on the proximity and the similarity to reduce 

the influence of obstacles. Although dividing a point cloud into scan lines makes complex 

computation and algorithm applicable, information contained in a scan line is still not enough to 

detect road curbs in complex road environments (Cabo et al., 2016). Furthermore, when MLS point 

clouds are not sorted by the time stamp field, or they are mosaicked from several datasets, scan 

line based algorithms need extra time for sorting of point clouds.  

Road patches can be generated by segmenting MLS point clouds into blocks with the 

assistance of trajectory data at a specified time or distance interval. Compared with scan lines, road 

patches not only have high computational efficiency but also contain more geometric information 

on road surfaces. Many road surface detection methods are based on road patches. Guan et al. 

(2014) and Yu et al. (2015b) transversely sectioned road patches into corresponding profiles and 

then gridded the profiles to form a pseudo scan-line with a given width. Next, principal points 

within a grid were extracted based on elevation jump. Points in a grid were labeled as outliers if 

the elevation jump was greater than a threshold. In these studies, road curbs in each profile were 

detected based on slope and elevation jump between two consecutive points. Wang et al. (2015) 

and Soilán et al. (2017) measured the saliency of points within each patch and then clustered salient 

points using region growing algorithm to compute the characteristics of road scenes and detect 

road curbs. Although road patch based methods provide promising results in road surface detection, 

the accuracy is influenced by the trajectory data. In T-intersections, the curved trajectories might 

cause false segmentation of MLS point clouds.  

Voxels are cuboid-shaped space with a given length, width, and height. Point clouds can 

be gridded using voxels. Some experts have tried to detect road surfaces and road curbs in voxels. 

Liu et al. (2013b) constructed a dynamic Digital Elevation Model (DEM) with the average height 
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of points in voxels to diminish the impact of moving vehicles around the scanners and to capture 

the complete geometric features of the road surfaces. Candidate road curbs were detected based 

on the height jump within a single voxel, and slope and height variance of two adjacent voxels. 

Dynamic DEMs can present complete road curbs and road surfaces; however, they are built from 

2D sequential laser range finder data and vehicle state data, which are not available in most MLS 

point cloud datasets. Luo et al. (2016) conducted multi-category labeling based on the voxelization 

of MLS point clouds. The semantic labeling model was trained and a library was constructed using 

the local object information and graph analysis. Voxels were labeled as road surface when their 

features had correspondences to the graphs in the library. Prior semantic knowledge was 

essentially needed in this method. Furthermore, Xu et al. (2017) calculated density gradients of 

adjacent voxels. If gradients of a voxel were large in more than one direction, the voxel was labeled 

as candidate road curb voxel. Energy function was constructed based on the area of a surface, with 

a rule that large surface had more energy. Least cost path model was then used for extracting 

labeled road curb voxels and removing noise. The method achieves promising results; however, it 

mainly focused on detecting road curbs. Road surface points should be further extracted with the 

detected curbs. Moreover, the computational time of applying this method could be lengthy when 

processing high-density and high-volume MLS point clouds in road intersections.  

2.3.2 Road Marking Extraction Using MLS Point Clouds 

Extracting road marking points from MLS point clouds contains two typical steps: 

candidate road marking point extraction and post-refinement. The input datasets of most road 

marking extraction methods are road surface point clouds due to the computing time consideration. 

In road surface point clouds, road marking points have a higher intensity than nearby road surface 

points. Thus, intensity thresholding has been commonly used in road marking extraction. The 



 21 

extraction methods can be classified into two categories: geo-referenced feature (GRF) image-

based methods and point-based methods. Methods in both categories can extract candidate road 

marking points from road surface points. However, outliers, such as false positive and negative 

noise and cracks, are unavoidably selected as candidate road marking points. Post-refinement of 

candidate road marking points is necessary. According to the features of outliers, they are filtered 

out through different algorithms.  

The generation of GRF images was mainly based on the Inverse Distance Weighting (IDW) 

interpolation (Guan et al., 2014). To extract road markings, intensity values were set as the gray 

scale of GRF images relied on two rules: a point with higher intensity had a higher weight and a 

point close to the central point was assigned a higher weight. Yang et al. (2012) filtered the 

generated GRF images by computing parameters including area, width, and length of the minimum 

bounding box of each 4-connected region on GRF images. The Progressive Probabilistic Hough 

Transform operator was then conducted to extract road marking pixels on the filtered images (Yang 

et al., 2012). Although road markings are highly reflective objects painted on road surfaces, the 

reflected laser pulse intensities also depend on the incident angle of the emitted laser beams and 

the range between measured road markings and laser scanners. Generally, the laser pulse intensity 

value decreases with the increase of range and incident angle (Yu et al., 2015b). Therefore, the 

method proposed by Yang et al. (2012) failed to extract road markings that were near road 

boundaries.  

To solve the uneven distribution and fluctuation of intensities, Guan et al. (2014) conducted 

the multi-threshold segmentation method for road marking extraction using GRF images. The 

distribution of point density was fitted to a Gaussian distribution function. According to the range 

𝑟 that was calculated by the standard deviation and the estimated mean of the distribution, road 
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surface points were segmented into point bins. Consequently, Otsu’s thresholding algorithm was 

applied to extract road marking points from each bin. Kumar et al. (2014) and Guan et al. (2015b) 

used estimated transverse range to divide GRF images into blocks and then determined an intensity 

threshold for each block based on its range from laser scanners. The accuracy of GRF image based 

methods can be over 90%; however, road markings were projected to a 2D plane, which inevitably 

led to some accuracy loss.  

The refinement of candidate road marking points in GRF images based methods is directly 

applied to the extracted pixels. Generally, eliminating false positive and false negative errors and 

filling the incomplete road markings are two main goals of refinement. False positive and false 

negative errors can be efficiently eliminated by the median filtering (Cheng et al., 2017) or the 

multi-scale tensor voting (Guan et al., 2015a). To fill the incomplete road markings, Kumar et al. 

(2014) converted labeled GRF images to binary images. A linear shaped structuring operator was 

then used to enlarge the road marking areas and refine the extraction results.  

Unlike GRF image based methods, point based road marking extraction methods directly 

analyze 3D road surface point clouds and detect candidate road marking points. Yan et al. (2016) 

segmented road surface points into scan lines according to the scanning angle. Then, in each scan 

line, road marking edge points were detected and preserved through a dynamic window median 

filter. Finally, an Edge Detection and Edge Constraint method was conducted to remove the 

gradient edges of extracted road markings. This method required highly accurate MLS point clouds 

to detect edges between road surface points and road marking points. Yu et al. (2015a) adopted a 

multi-thresholding strategy to road surface point clouds to solve the uneven distribution of 

intensities. Road surface point clouds were firstly partitioned into a set of blocks using vehicle 

trajectory data. Then, each block was compared to a threshold separately to extract candidate road 
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markings. The thresholds are determined via the Otsu’s thresholding algorithm (Otsu, 1979). This 

method offers a promising approach in road marking extraction and it can achieve high accuracy. 

The refinement of candidate road marking points extracted by point based methods is also 

critical since small elements on the road surface might have a high reflective level and cause false 

extraction noise. False positive and false negative errors can be removed by dividing the candidate 

road marking points into scan lines (Yan et al. 2016). The method essentially examined the length 

of extracted road markings and then removed the one shorter than the threshold. However, it had 

low computational efficiency due to the dividing. Yu et al. (2015a) developed a spatial density 

filter to eliminate false positive and false negative errors. For each point, the filter analyzed the 

distribution of its nearby points to determine whether a point should be removed. In addition, the 

overall geometric features of candidate road markings can be controlled by distance filtering 

(Holgado-Barco et al., 2017). According to the road painting standards, the method was performed 

to introduce the semantic constraints, including width and length of road markings, for candidate 

road marking refinement.  

2.3.3 Lane Centerline and Transition Line Generation 

In recent studies, lane centerline generation was widely conducted by analyzing GPS 

trajectories. Lane centerlines were extracted using an analytical equation that best fits the 

trajectories, with the constant curve as circles and null curve as straight lines (Toledo-Moreo et al., 

2010). The method was promising if road pattern was simple. Du & Barth (2008) generated a node 

structure to represent planar roadways for macro-scale navigation. The node structure consisted of 

a node table, a link table, a node attribute table, and a link attribute table. A pair of curved lines 

which represented the boundaries of a lane was described by a set of node points, and then the 
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centerline of the lane was generated by computing the midpoint of every corresponding pair of 

node points. However, GPS trajectory based lane centerline generation methods required the 

survey to each lane and driving as close as possible to its center, which is not applicable for large 

urban areas.  

Road intersections are defined as the places where two or more road sections across (Liu 

et al., 2013a). In road environments, there is no marked transition path from a lane to another in 

road intersections; however, it does not indicate that vehicles can drive freely in these areas. 

Therefore, generating a “virtual” line that connects one lane to another while maintaining the 

continuity between these two lanes is a great solution for HDRM construction. Cao & Krumm 

(2009) proposed a basic pattern for square areas in intersections. Lanes that entered the square 

areas and exited the square areas were classified as ‘entry’ and ‘exit’ nodes of an intersection, 

respectively. ‘Entry’ nodes can be connected to “exit” nodes based on the prior knowledge of 

traffic rules. A virtual line that entered from an ‘entry’ node and exited from an ‘exit’ node would 

represent the transition path for the two lanes.  

To generate transition lines, Zhang et al. (2011) and Liu et al. (2013a) assumed that vehicles 

traveled at the road intersection with a constant steering angle. A lane centerline was firstly 

simplified as a line segment with a pair of ‘entry’ and ‘exit’ node, and then direction symbols were 

calculated by the vectors of the start lane and the end lane. Finally, an arc section was calculated 

to represent the transition line. This method provided a solution to link ‘exit’ nodes and ‘entry’ 

nodes; however, it cannot preserve the continuity at joint points. Guo et al. (2016) presented a 

promising method for transition line generation. They employed the cubic Catmull-Rom spline 

with five control points to generate line segments from an ‘exit’ node to an ‘entry’ node and to 

keep the continuity at joint points.  The Central point of a road intersection, the ‘exit’ lane, and the 
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‘entry’ lane were utilized to determine the five control points. The success rate reached 90% in the 

experiment.  

2.4 Chapter Summary 

This chapter firstly reviews the curb-based road surface detection methods in recent studies. 

It can be summarised that scan line, road patch and voxel are three types of computing unit for 

road surface detection using MLS point clouds. Although scan line and road patch based 

algorithms promise impressive results in curb detection, most of them are only applicable to 

straight roads. Curved trajectories in road intersections might cause false segmentation of MLS 

point clouds. Moreover, most of the voxel based algorithms have low computational efficiency. In 

allusion to the problems in the existing studies, an algorithm for road surface detection in road 

intersections should be proposed.  

Furthermore, methods for road marking extraction and transition line generation are 

elaborately reviewed. It can be concluded that Yu’s method (Yu et al., 2015a) can achieve a 

promising result in road marking detection using MLS point clouds. Moreover, Guo’s method 

(Guo et al., 2016) can successfully generate transition lines and preserve continuity at joint nodes 

using GPS trajectory data. However, generating transition lines using road markings extracted 

from MLS point clouds has not yet been realized. To solve this problem in existing studies, a road 

marking node structure generation algorithm should be developed.  

This thesis is attempting to tackle the problems mentioned in this chapter.  
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Chapter 3 Methodology for Transition Line Generation 

This chapter elaborately introduces the methodology. Section 3.1 describes the study area, 

the MLS datasets, and the reference datasets. Section 3.2 presents an overview of the workflow. 

Section 3.3 explains the road surface detection method. Section 3.4 explains the lane marking 

extraction method. Section 3.5 explains the lane centerline and transition line generation method. 

The accuracy assessment mechanism is presented in Section 3.6. Section 3.7 summarises this 

chapter. 

3.1 Study Area and Datasets 

3.1.1 Study Area 

The study area is in Xiamen City, southeastern Fujian, China (longitude 2428’47.41N, 

11805’21.91E) (Figure 3-1 (a)). It is a tropical city that has a monsoonal humid subtropical 

climate. This kind of climate is characterized by mild and dry winter and hot and humid summer. 

The vegetation in Xiamen City is year-long green. Since there is less rainfall during the winter 

season and it is more suitable for data collection, the point clouds were collected on December 

20th, 2013. Figure 3-1 (b) shows the block embraced by Roundabout Main Road, Huandao East 

Road, Huizhan North Road, and Lvling Road. Roads in this area were scanned by a RIEGL VMX-

450 MLS system.  

The surveyed area, called International Conference and Exhibition Center Block, is an 

urban area where traffic is free-flowing. As a result, most road markings and road curbs in this 

area are complete, and cracks are rare on road surfaces. Moreover, roads with two lanes (one lane 

in each direction) or four lanes (two lanes in each direction) are intersected in this area. T-
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intersections and cross-intersections are formed. In addition, the intersections are characterized by 

numerous roadside trees, vehicles, light poles, and traffic poles. Diverse types of road intersections 

with the various numbers of lanes makes this area ideal for testing the proposed method.  

  

(a) Location of the study area (b) Trajectory (red) overlaid on Google imagery 

Figure 3-1 Study area in Xiamen, Fujian, China 

 

3.1.2 Characteristics of MLS Point Cloud Datasets 

A total of 2.961 billion points with the size of 19.7 GB were collected and stored in 17 

LAS files. The gray-scale values of the MLS intensity were transformed to 0 to 255. About 0.78 

billion trajectory points were generated and provided as ancillary data. Test datasets in this study 

are selected according to road intersection type, road intersection pattern, and road marking type. 

Firstly, there are two typical types of road intersections in the study area: T-intersection and cross-

intersection. Furthermore, there are two-lane roads and four-lane roads in the study area. Road 

intersection patterns and constraints in transition line generation are different when roads with 

different number of lanes are intersected. Moreover, road markings might be various in different 
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road intersections. In addition, vehicle trajectory should cover all branch roads of an intersection, 

since trajectory points are used as essential prior knowledge and input data in the proposed method.  

Therefore, four test datasets, including two T-intersections (Test Datasets 1 and 2) and two 

cross-intersections (Test Datasets 3 and 4) are selected from the original point clouds. Test Dataset 

1 is a T-intersection where two four-lane roads and one two-lane road intersected, and Test Dataset 

2 is a T-intersection where three four-lane roads intersected. Test Datasets 3 and 4 are cross- 

intersections where four four-lane roads intersected. Since they cover all road intersection types 

and road marking types in the study area, these four datasets are selected. All the four road 

intersections are characterized by detectable road curbs, standard road markings, and complex 

roadside objects. In Test Datasets 1, 3, and 4, road markings are in ideal condition and outliers 

such as vehicles, passengers are rare. In Test Dataset 2, some road markings are blocked by 

obstacles. Statistical information of the four test datasets is shown in Table 3-1, where X, Y, 

and Z is an extension of the test datasets in X, Y, and Z direction, respectively. Furthermore, 

Figure 3-2 presents the four test datasets and their corresponding trajectory points.  

Table 3-1 Statistical information about four test datasets 

Test 

Dataset 

No. of Points Average Point 

Density 

(pts/m2) 

X (m) Y (m) Z (m) No. of 

Trajectory 

Points 

Intersection 

Type 

1 19,243,445 2644 117.7 94.6 61.7 13748 T-intersection 

2 25,537,193 2782 173.8 119.2 40.6 25982 T-intersection 

3 17,444,202 2216 95.3 86.2 72.3 12946 Cross-

intersection 

4 16,094,181 3210 85.8 73.2 31.1 16973 Cross-

intersection 
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(a) Test Dataset 1 point cloud (a1) Test Dataset 1 trajectory points 

  

(b) Test Dataset 2 point cloud (b1) Test Dataset 2 trajectory points 

  

(c) Test Dataset 3 point cloud (c1) Test Dataset 3 trajectory points 

  

(d) Test Dataset 4 point cloud (d1) Test Dataset 4 trajectory points 

Figure 3-2 Four test datasets (a) to (d) and their trajectory data (a1) to (d1). 
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3.2 Overview of Workflow 

 

Figure 3-3 Workflow of the proposed method 

The proposed methodology contains three modules: road surface detection, lane marking 

extraction, and transition line generation. Figure 3-3 presents the workflow of the proposed 

methodology. In Module I, the voxel-based upward-growing algorithm (Yu et al., 2015b) is 
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employed for ground point detection from input point clouds. The region growing algorithm is 

improved to enhance curb-based road surface detection. In Module II, the multi-thresholding 

algorithm (Yu et al., 2015a) is used for road marking extraction. Geometric feature filtering 

(Holgado-Barco et al., 2017) is implemented to extract lane markings. In Module III, a node 

structure generation algorithm is proposed to generate lane geometries and lane centerlines from 

lane markings. The cubic Catmull-Rom spline (Catmull & Rom, 1974; Guo et al., 2016) is 

employed for transition line generation.  

The programming platform used in this thesis is Microsoft Visual Studio 2012. Algorithms, 

including the voxel-based upward-growing, the region growing, the multi-thresholding, the 

geometric filtering and the lane node structure generation, are implemented in C++ programming 

language. A third-party library, Point Cloud Library, is employed to realize K-dimensional tree 

construction, least-squares fitting, and density filtering. MATLAB R2016 is used to generate the 

cubic Catmull-Rom splines. In addition, Cloud Compare 1.04 is employed to display the test 

datasets and experimental results. Accuracy assessment is conducted in ArcGIS v10.2.2. 

3.3 Module I: Road Surface Detection 

The essential information for transition line generation is merely from road surface points. 

In other words, the non-road surface points should be removed to improve the efficiency. Thus, an 

algorithm that identifies road surfaces in road intersections is required. In this thesis, the region 

growing algorithm is improved to enhance road surface detection. The algorithm is characterized 

by using trajectory points as a prior knowledge and using voxels as the region growing data 

structure. 
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3.3.1 Ground Point Detection 

The voxel-based upward-growing algorithm (Yu et al., 2015b) is employed to detect 

ground points. Since MLS point clouds have large data volumes and high point density, the 

removal of non-ground (such as traffic signs, traffic lights, light poles, and tree crowns) can 

improve the computational efficiency and accuracy of the following algorithms. The algorithm 

contains three steps: point cloud partitioning, upward growing, and ground point labeling. 

  

(a) Point cloud segmented into blocks (b) A sample of point block 

Figure 3-4 Segmentation of point clouds 

Point clouds are firstly partitioned into point blocks to alleviate the ground undulation in 

each block and to decrease the processing time. As shown in Figure 3-4 (a), a point cloud scene is 

partitioned into a set of point blocks (𝐵𝑖, 𝑖 = 1, 2, 3, … ,𝑁𝑏) according to a width  𝑊𝑏 in the XOY 

plane, which is determined by the size of test datasets, in the XOY plane. Figure 3-4 (b) presents 

a sample of point block. Points in each block are analyzed and processed separately in the 

following steps.  
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(a) Voxelization of a point 

cloud (Yu et al., 2015) 
(b) 26 adjacent voxels of 𝑉𝑖 

(c) Up-ward growing and 

thresholding 

Figure 3-5 Voxelization of point clouds 

Voxelization is a segmentation process which divides the point cloud space into continuous 

cuboid-shape blocks and represents them as voxels (Figure 3-5 (a)). Voxelization creates a 

consecutive data structure for point clouds, and it makes the searching and the indexing of points 

more efficient. Moreover, through voxelization, the impacts of ground undulation can be 

eliminated, and thresholds can be set to classify ground points and non-ground points. Cube-

shaped voxels with the width of 𝑊𝑣 is used in this step. Voxels that contains no points are ignored 

in the processing. As shown in Figure 3-5 (b), a voxel 𝑉𝑖 has 26 adjacent voxels, with nine of them 

located above it (𝑣𝑜𝑥𝑒𝑙𝑠 𝑁1, 𝑁2, … , 𝑁9). The upward-growing process grows along with 𝑁1 to 𝑁9. 

If a point is involved in 𝑁1, 𝑁2, … , 𝑜𝑟 𝑁9, that voxel is used as a new starting voxel to grow up. 

This recursive upward-growing pattern stops when there is no point in 𝑁1, 𝑁2, … , 𝑎𝑛𝑑 𝑁9.  

As illustrated in Figure 3-5 (c), a voxel segment is formed after the upward-growing, with 

a known voxel 𝑉ℎ at the top of the segment and a known voxel 𝑉𝑙 at the bottom of the segment. 

Then, a ‘local height value’ variable (𝐻𝑙) is defined as the elevation difference between 𝑉ℎ and 𝑉𝑙. 

Similarly, a ‘global height value’ variable (𝐻𝑔) is defined as the elevation difference between 𝑉ℎ 

and the lowest point in the entire point cloud. Two criteria are used to label the ground voxels 
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(voxels that contain ground points): a local ground undulation threshold 𝑇𝑙  to constrain the 

maximum ground undulation within a block and a global ground undulation threshold 𝑇𝑔  to 

constrain the maximum ground undulation for the entire point cloud. If 𝐻𝑔 of a voxel is less than 

𝑇𝑔, and 𝐻𝑙 of the voxel is less than 𝑇𝑙, the voxel will be labeled as a ground voxel. Otherwise, it is 

labeled as a non-ground voxel (a voxel that contain non-ground points). By filtering out the non-

ground voxels, ground points are detected from the ground voxels. 

3.3.2 Road Surface Detection  

The region growing algorithm is improved to enhance road surface detection, mainly in 

two ways. First, trajectory points and road curbs are utilized as a prior knowledge. Second, voxels 

are used as processing units for growing and computing. The algorithm can detect road surfaces 

from road intersection scenes as well as straight road scenes. Figure 3-6 shows the three steps 

involved in this algorithm: seed voxel selection, voxel growth, and voxel labeling.  

 

Figure 3-6 Workflow of curb-based road surface detection 
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(a) Voxelization of ground points (b) Seed voxels in road surface detection 

 

(c) Breadth-first searching 

Figure 3-7 Principle of the region growing 

Trajectory points are important indicators of the road surface in seed selection because they 

mostly exist above road surfaces. Nevertheless, trajectory points cannot be directly used as seed 

points, since they all have a higher elevation than nearby road surface points. Thus, the processing 

unit should contain trajectory points and ground points simultaneously. To achieve this, the shape 

of voxels is modified. As shown in Figure 3-7 (a) and (b), the ground points (blue) and the 

trajectory points (red) are gridded into cuboid-shaped voxels, which have a height equal to the 

point cloud space. Constructing these voxels generates the link between road surface points and 
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the trajectory points. Those voxels that contain at least one trajectory point and one road surface 

point are selected as the original seed voxels.  

The Breath-first Searching (BFS) algorithm (Moore, 1959) is adopted in the voxel growth 

step. As shown in Figure 3-7 (c), a seed voxel 𝑉0 has eight adjacent voxels, named 𝑉1, 𝑉2, … , 𝑉8. 

The BFS algorithm exhaustedly searches 𝑉1 to 𝑉8 in sequence. If any of these adjacent voxels does 

not contain a road curb segment, it is pushed into a queue. Once 𝑉1 to 𝑉8 are all searched and 

labeled, the BFS algorithm picks up the next voxel in the queue as a new seed voxel and repeats 

the same searching pattern.  

 

Figure 3-8 Close-up illustration of road curbs 

Figure 3-8 shows the close-up views of the road curbs and demonstrates that the road curbs 

are vertical or mostly vertical to road surfaces and have obvious elevation jumps. Therefore, road 

curbs can be detected through elevation jump and slope thresholds. Road curb voxels (voxels that 

contain road curb points) are estimated based on the following two observations. 

1) Elevation jump 

If part of a road curb is covered by a voxel, the elevation jump in the voxel should meet 

the following observation (Guan et al., 2015a): 
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𝑇𝑐𝑢𝑟𝑏_𝑚𝑖𝑛 ≤ 𝐸𝑐 ≤ 𝑇𝑐𝑢𝑟𝑏_𝑚𝑎𝑥  , (3-1) 

where 𝐸𝑐 denotes the elevation jump in the voxel, and 𝑇𝑐𝑢𝑟𝑏_𝑚𝑖𝑛 and 𝑇𝑐𝑢𝑟𝑏_𝑚𝑎𝑥 is the threshold of 

the elevation jump. According to Guan et al. (2015a), street design and construction manuals in 

many countries document that the height of road curbs generally ranges from 10 cm to 25 cm, and 

𝑇𝑐𝑢𝑟𝑏_𝑚𝑖𝑛 and 𝑇𝑐𝑢𝑟𝑏_𝑚𝑎𝑥 is predefined as 8 cm and 30 cm, respectively.  

2) Slope 

The slope observation is defined as following (Guan et al., 2015a):  

arctan [
(𝑧𝑖+1 − 𝑧𝑖)

√(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2
] ≥ 𝑇𝑠𝑙𝑜𝑝𝑒  , (3-2) 

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and (𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1) are the coordinates of two adjacent points in a voxel, and 

𝑇𝑠𝑙𝑜𝑝𝑒 is the slope threshold. According to Guan et al. (2015a), the 𝑇𝑠𝑙𝑜𝑝𝑒 is predefined as 2𝜋 3⁄ . 

The growth stops when the following conditions occur: first, there is no seed voxel in the 

queue; second, the distance from a searched voxel to the original seed voxel is greater than the 

pre-defined threshold. The first condition indicates that the searching is completed. As an 

additional stop condition, a distance is set to restrain the searching radius of the BFS algorithm. 

Because of the ground’s undulation, if the growth from an original seed with higher elevation is 

not limited, road curbs located in lower positions might not be detected.  

3.4 Module II: Lane Marking Extraction 

Lane marking refers to road markings that indicate lane edges. Typical lane markings 

include single lines, double lines, and dashed lines. Since lane markings are critical information 

for lane centerline generation, they are extracted from the road surface points using four adapted 
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algorithms. The multi-thresholding and the density filtering (Yu et al., 2015a) are employed for 

road marking point extraction. Furthermore, lane markings are extracted through the Conditional 

Euclidean clustering (Yu et al., 2015b) and the geometric feature filtering (Holgado-Barco et al., 

2017).  

3.4.1 Road Marking Extraction and Refinement  

The extraction of road marking points contains three steps. Road surface points are firstly 

segmented into point sets by the multi-range partitioning. Then, an intensity threshold is 

determined by the Otsu filter (Otsu, 1975) for each point set and extract candidate road marking 

points, since the Otsu method has been widely utilized as the default image thresholding method 

in commercial software such as MATLAB (Guan et al., 2015a). Finally, the extracted candidate 

road marking points were refined by the density filter. The workflow of this algorithm is shown in 

Figure 3-9.   

 

Figure 3-9 Workflow of road marking extraction 

Generally, road markings are painted by highly reflective material on the road surfaces. 

Thus, road marking points have higher intensities than surrounding road surface points. However, 
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the intensity of a reflected laser pulse depends not only on the properties of the scanned surface 

but also on the distance from the laser scanner to the scanned surface and the incidence angle of 

the laser pulse. As shown in Figure 3-10 (a), the overall intensity of a road surface point cloud 

fades from the scanning center to its two sides. Consequently, road marking points closer to the 

scanning center have higher intensities than road marking points farther away from the scanning 

center. Due to the uneven distribution of intensities, road surface point clouds are partitioned into 

point sets based on the distance from points to the trajectory. As shown in Figure 3-10 (b), centered 

at a trajectory, multiple buffer regions are created with a width 𝑊𝑖, defined as 

𝑊𝑖 = 𝑤𝑠 ∗ 𝑖 (𝑖 = 1, 2, … , 𝑛) , (3-3) 

where 𝑤𝑠 is the original buffer width and 𝑛 is the number of buffers. The partitioning starts from 

the smallest buffer to the largest one.  

  

(a) Intensity deduction in MLS point clouds (b) Road surface segmentation 

Figure 3-10 Multi-thresholding road marking extraction 

The intensity threshold for road marking extraction is separately by Otsu’s thresholding 

algorithm in each point set. The algorithm exhaustively searches the threshold that maximises the 

inter-class variance (or minimises the intra-class variance). The scale of intensity should be 
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normalized to 0-255. The number of point at level 𝑖 is denoted by 𝑛𝑖 and the total number of point 

is 𝑁 = 𝑛0 + 𝑛1 +⋯+ 𝑛255. The algorithm is detailed by Otsu (1979) through Eqs. (3-4) to (3-

11). 

A probability distribution can be generated from the gray-level histogram: 

𝑃𝑖 = 𝑛𝑖 𝑁,      ⁄ 𝑃𝑖 ≥ 0, ∑𝑃𝑖

255

𝑖=0

= 1 . (3-4) 

Suppose that road marking points are extracted from a point set by a threshold at gray level 𝑡. The 

occurrence probabilities of road pavement 𝜔𝑠 and of road marking 𝜔𝑚, respectively, are 

𝜔𝑠 = 𝜔(𝑡) =∑𝑃𝑖

𝑡

𝑖=0

 , (3-5) 

and 

𝜔𝑚 = 1 − 𝜔(𝑡) = ∑ 𝑃𝑖

255

𝑖=𝑡+1

 , (3-6) 

where 𝜔(𝑡) is the zeroth-order cumulative moment up to the tth level in the histogram. The 

corresponding mean levels are 

𝜇𝑠 = 𝜇(𝑡) 𝜔(𝑡)⁄ =∑𝑖𝑃𝑖 𝜔𝑠⁄

𝑡

𝑖=0

 , (3-7) 

and  

𝜇𝑟 =
𝜇𝑇 − 𝜇(𝑡)

1 − 𝜔(𝑡)
= ∑ 𝑖𝑃𝑖 𝜔𝑚⁄

255

𝑖=𝑡+1

 , (3-8) 

where 

𝜇(𝑡) =∑𝑖𝑃𝑖

𝑡

𝑖=0

 , (3-9) 

and 
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𝜇𝑇 =∑𝑖𝑃𝑖

255

𝑖=0

 , (3-10) 

are the first-order cumulative moment of the histogram up to the tth level and the total mean level 

of the road pavement, respectively. The optimal intensity threshold 𝑡∗ is selected by searching the 

maximum inter-class variance 𝜎𝐼
2 through 

𝑡∗ = arg max
0≤𝑡≤255

𝜎𝐼
2 (𝑡) = arg

[𝜇𝑇𝜔(𝑡) − 𝜇(𝑡)]
2

𝜔(𝑡)[1 − 𝜔(𝑡)]
 . (3-11) 

With the generated threshold, candidate road marking points can be extracted from the point set.  

Extracted candidate road marking points might contain false extraction noise. The noise is 

caused by small objects that have similar intensities as road markings on road surfaces. To 

eliminate the noise, the spatial density filtering is conducted. The filter works because unlike road 

marking points, noise points distribute dispersedly and irregularly. For each candidate road 

marking point 𝑝(𝑥, 𝑦, 𝑧), its nearby points within a range of 𝑅𝑡  are searched. Suppose that the 

number of the nearby points is 𝑘, the spatial density 𝐷(𝑝) of 𝑝 is defined as following (Yu et al., 

2015a): 

𝐷(𝑝) = 1 +∑exp (−
(𝑥𝑖 − 𝑥)

2 + (𝑦𝑖 − 𝑦)
2 + (𝑧𝑖 − 𝑧)

2

(𝑘 3⁄ )2

𝑘

𝑖=1

) . (3-12) 

Since road marking points have higher spatial density than the noise, the noise can be eliminated 

by defining a spatial density threshold.  

3.4.2 Lane Marking Extraction 

The extracted road marking points are distinct and have no semantic meanings. Thus, the 

road marking points are firstly clustered through the Conditional Euclidean clustering. Then, the 

minimum bounding rectangle is derived for each point cluster to extract its geometric features. 
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Lane markings are finally extracted by the geometric filtering based on the design parameters of 

road markings in the study area. 

  

(a) Principle of the conditional Euclidean 

clustering 
(b) A sample of clustered road markings 

Figure 3-11 Road marking clustering 

The extracted road marking points are isolated and have no topological relationships. In 

other words, they have no semantic meanings. To extract lane marking points from road marking 

points, clustering should be applied. By assuming that nearby points belong to the same road 

marking, the Conditional Euclidean clustering is employed. Initially, all road marking points are 

labeled as non-clustered points and a Euclidean distance threshold 𝑑𝑇  should be determined 

according to the density of point clouds. As shown in Figure 3-11 (a), the algorithm starts from 

randomly selecting an unlabeled point as a seed point and constructing a 3D searching space 

centered at the seed point with the range 𝑑𝑇. Nearby points within the searching space are labeled 

and pushed into a queue. When all the nearby points are searched, the algorithm picks up the next 

point in the queue and processes it with the same procedure. A cluster is generated when there is 

no point in the queue. Then, the algorithm randomly selects another point as a new seed point and 

generate the next cluster. Consequently, semantic road marking clusters are generated, as shown 

in Figure 3-11 (b).  
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Table 3-2 Design parameters of road markings in China (GB51038-2015) 

No. Road Marking Type Legend (Unit: cm) Comment 

1 Dashed Line 

 

Allowed to Pass 

(Speed60km/h) 

2 White/Yellow Line 
 

 

Boundaries of 

Lanes 

3 Zebra Crossing Line 

 

Pedestrians Might 

Cross 

4 Turning Arrow 

 

Presenting the 

Moving Direction 

When road marking points are clustered, geometric features of point segments can be 

calculated and utilized for lane marking extraction. Generally, there are five types of road marking 

in the test datasets: solid line, dashed line, zebra crossing line, Chinese character, and turning arrow. 

The road marking painting standards, which are documented in the Code for Layout of Urban Road 

Traffic Signs and Markings (GB51038-2015), is shown in Table 3-2. A minimum bounding 

rectangle is generated to extract the shape features of each road marking cluster. According to the 

length 𝐿 and width 𝑊 of the minimum bounding rectangles, lane markings are extracted using the 

geometric parameters listed in Table 3-3. 
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Table 3-3 Parameters for lane marking extraction 

Road marking type Range of 𝐿 and 𝑊 Sample 

Dashed lines 
150 𝑐𝑚 ≤ 𝐿 ≤ 250 𝑐𝑚 

& 5 𝑐𝑚 ≤ 𝑊 ≤ 20 𝑐𝑚 
 

Single lane lines 
400 𝑐𝑚 ≤ 𝐿 ≤ 2500 𝑐𝑚 

& 5 𝑐𝑚 ≤ 𝑊 ≤ 20 𝑐𝑚 
 

Lane lines connected by a 

stop line 

600 𝑐𝑚 ≤ 𝐿 ≤ 2500 𝑐𝑚 

& 𝑊 ≥ 500 𝑐𝑚 
 

Outliers Otherwise  

3.5 Module III: Transition Line Generation 

This section describes the algorithms for transition line generation. As shown in Figure 3-

12, lane node structure, which represents lane geometries in road intersections, is firstly 

constructed by a combination of lane marking node structure generation and ‘exit’ and ‘entrance’ 

node pairing. Moreover, the cubic Catmull-Rom spline is employed to generate transition lines for 

paired nodes (Catmull & Rom, 1974; Guo et al., 2016).  

 

Figure 3-12 Workflow of transition line generation 
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3.5.1 Lane Node Structure Construction 

The lane node structure construction algorithm utilizes lane marking points and trajectory 

points as input data. The trajectory points are resampled at an interval 𝐼𝑇 to generate a point set 

𝑇𝑗  (𝑗 = 0, 1, … , 𝐿). As shown in Figure 3-13 (a), 𝑇 is used to partition the lane marking point cloud 

into blocks (𝐵𝑙𝑜𝑐𝑘𝑖 (𝑖 = 0, 1, … ,𝑁)). The length of blocks is restricted by a threshold 𝑇𝐵. For each 

block, a Cartesian coordinate system is confirmed, with an X axis towards the front of the vehicle, 

a Y axis towards the left of the vehicle, and a Z axis towards the top of the vehicle. The coordinate 

origin is set at the midpoint of the line segment that connects 𝑇𝑗 and 𝑇𝑗+1.  

 

 

(a) Lane marking partitioning  (b) Node structure generation 

Figure 3-13 Lane node structure construction 

Figure 3-13 (b) presents the processing of a block 𝐵𝑙𝑜𝑐𝑘𝑖. Firstly, lane marking points 

(black) in 𝐵𝑙𝑜𝑐𝑘𝑖  are projected onto the YOZ plane of the coordinate. Then, by exhaustedly 

searching the projected lane marking points, central points 𝑀𝑃𝑘  (1 ≤ 𝑘 ≤ 4)  (blue) of lane 

markings are computed. If the width of a lane marking segment is greater than a threshold 𝑇𝑀, it 

is labeled as a stop line (the white line where vehicles stop for traffic). Furthermore, candidate lane 
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centerline nodes (red) are generated by calculating the midpoint of 𝑀𝑃𝑘 and 𝑀𝑃𝑘+1. If the range 

between 𝑀𝑃𝑘 and 𝑀𝑃𝑘+1 is less than a threshold 𝑅𝑇, the candidate lane centerline node calculated 

from them is removed. In addition, by assuming that lanes are straight near road intersections, the 

least square fitting is employed to generate lane centerlines from generated nodes. If a lane 

centerline has an intersection with a stop line, it is labeled as ‘exit’ lane, and its vertex is labeled 

as ‘exit’ node. Otherwise, the lane is labeled as ‘entry’ lane, and its vertex is labeled as ‘entry’ 

node.  

  

(a) Pairing ‘entry’ and ‘exit’ nodes in a cross-

intersection 

(b) Pairing ‘entry’ and ‘exit’ nodes in a T- 

intersection 

Figure 3-14 Pairing ‘entry’ and ‘exit’ nodes 

When the node structure of a road intersection is generated, all proper ‘entry’ nodes for an 

‘exit’ node are then determined. As shown in Figure 3-14 (a), ‘entry’ nodes and ‘exit’ nodes on 

four branch roads in a cross-intersection are grouped as 𝐺1, 𝐺2, 𝐺3, and 𝐺4. The convex hull (black 

lines) of the four groups is firstly generated by the Gift Wrapping algorithm, which is described 

later, to build topological relationships for them (Jarvis, 1973; Cormen et al., 2001). Then, the 

algorithm searches the ‘exit’ nodes (𝐸𝑥𝑃𝑖  (1 ≤ 𝑖 ≤ 3)) in 𝐺1, and all the ‘entry’ nodes (𝐸𝑛𝑃𝑖  (1 ≤
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𝑖 ≤ 6) ) in 𝐺2 , 𝐺3  and 𝐺4 . Corresponding ‘entry’ nodes 𝐸𝑛𝑃3 and 𝐸𝑛𝑃4  for the ‘exit’ node 

𝐸𝑥𝑃3 and 𝐸𝑥𝑃2, respectively, are in the non-adjacent node group 𝐺2. Additional connections are 

generated from the rightmost ‘exit’ node 𝐸𝑥𝑃3 to the ‘entry’ node 𝐸𝑛𝑃1 and from the leftmost ‘exit’ 

node 𝐸𝑥𝑃1 to the ‘entry’ node 𝐸𝑛𝑃6. The algorithm processes the ‘exit’ nodes in 𝐺2, 𝐺3 and 𝐺4 in 

the same pattern.  

In T-intersections, two branch roads that have the same direction follow the same pairing 

rules as branch roads in cross-intersections. However, pairing rules for the other branch road 

should be additionally discussed, because vehicles cannot go straight ahead on this branch road. 

As shown in Figure 3-14 (b), ‘exit’ nodes of the branch road are labeled as solid points 𝐸𝑥𝑃𝑗  (1 ≤

𝑗 ≤ 2), and ‘entry’ nodes are labeled as points 𝐸𝑛𝑃𝑗  (1 ≤ 𝑗 ≤ 4). Links are constructed from the 

rightmost ‘exit’ 𝐸𝑥𝑃2  to ‘entry’ node 𝐸𝑛𝑃1  and from the leftmost ‘exit’ 𝐸𝑥𝑃1  to ‘entry’ vertex 

𝐸𝑛𝑃4 . Through the Gift Wrapping algorithm, proper ‘entry’ lanes for a ‘exit’ lane can be 

determined at T- and cross-intersections. 

 

Figure 3-15 Principle of the gift wrapping algorithm (Cormen et al., 2001). 
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As shown in Figure 3-15, to generate the convex hull 𝐶𝐻 of a set of points (𝑃1, 𝑃2, … , 𝑃ℎ), 

the Gift Wrapping algorithm starts with 𝑖 = 1 and 𝑃1, the lowest point, and selects 𝑃𝑖+1 that has 

the smallest polar angle with respect to 𝑝1. In case of a tie, the point farthest from 𝑃1 is selected. 

Letting 𝑖 = 𝑖 + 1, 𝑃3 has the smallest polar angle with respect to 𝑝2. Using the same pattern, the 

algorithm can reach the highest point, say 𝑝ℎ , and the right chain of 𝐶𝐻 is constructed. Then, 

starting at 𝑝ℎ, 𝑝ℎ+1 that has smallest polar angle with respect to 𝑝ℎ from the negative x-axis is 

selected. The left chain can be constructed by repeating the same pattern until original point 𝑝0 is 

reached again.  

3.5.2 Transition Line Generation 

To generate a safe path from an ‘exit’ node to an ‘entry’ node and to keep the continuity at 

the nodes, the cubic Catmull-Rom spline is employed (Catmull & Rom, 1974; Guo et al., 2016). 

Five control points 𝑃𝑘
𝑎𝑏 (0 ≤ 𝑘 ≤ 4) on a transition line 𝐿𝑎𝑏 (green curve line), which connects 

lane centerline 𝑎 (yellow line) and 𝑏 (purple line), are shown in Figure 3-16 (a). The ‘exit’ node 

𝐸𝑥𝑃𝑎 (yellow dot) of 𝑎 is set as 𝑃1
𝑎𝑏, and the ‘entry’ node 𝐸𝑛𝑃𝑏 (purple dot) of 𝑏 is set as 𝑃3

𝑎𝑏. An 

intermediate point 𝑚𝑎𝑏 (blue dot), which is described later in this section, is set as 𝑃2
𝑎𝑏. 𝑃0

𝑎𝑏 is set 

to a location that makes line 𝑃𝑜
𝑎𝑏𝑃2

𝑎𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (blue dashed line) parallel to 𝑎 to ensure the continuity at 

𝑃1
𝑎𝑏, because the tangent vector at a control point on a cubic Catmull-Rom spline is determined by 

the adjacent control points on two sides of it. The final control point 𝑃4
𝑎𝑏 is set with the same 

pattern according to 𝑏.  
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(a) Calculating a transition line (b) Intermediate point generation 

Figure 3-16 Transition line generation 

When five control points 𝑃𝑘
𝑎𝑏 (0 ≤ 𝑘 ≤ 4)  are determined, for 0 ≤ 𝑡 ≤ 1 , the cubic 

Catmull-Rom spline curves are defined by Equation 3-13 (Catmull & Rom, 1974):  

𝑟𝑘
𝑎𝑏(𝑡) =∑𝑓𝑖(𝑡)𝑝𝑘+𝑖

𝑎𝑏

3

𝑖=0

, 𝑘 = 0,1, (3-13) 

where 𝑓𝑖(𝑡) (0 ≤ 𝑖 ≤ 3)  are the basis functions of cubic Catmull-Rom splines, and they are 

defined by the follow equations (Catmull & Rom, 1974):  

{
 
 
 

 
 
 

  

𝑓0(𝑡) =
1

2
(−𝑡 + 2𝑡2 − 𝑡3)

𝑓1(𝑡) =
1

2
(2 − 5𝑡2 + 3𝑡3)

𝑓2(𝑡) =
1

2
(𝑡 + 4𝑡2 − 3𝑡3)

𝑓3(𝑡) =
1

2
(−𝑡2 + 𝑡3)

   . (3-14) 

In addition, cubic Catmull-Rom spline curves have three properties (DeRose & Barsky, 

1988). First, the spline curves have symmetry. Thus, 𝑃𝑘
𝑎𝑏  (𝑖 = 0, 1, … , 4)  and 𝑃5−𝑘

𝑎𝑏  (𝑖 =
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0, 1, … , 4) define the same curves in a different parameterization. Second, the spline curves have 

geometric invariance. The shapes of the spline curves are not affected by the choice of coordinate 

system. Third, the spline curves have C1 continuity, and the shapes of the spline curves can be 

modified when control points are changed. Thus, the shaped of transition lines can be adjusted 

based on the angles of road intersections. 

The intermediate point is defined according to Guo et al. (2016) to complete the transition 

line generation in road intersections. As can be seen in Figure 3-16 (b), the center point 𝑂 of an 

intersection is calculated by averaging all the ‘exit’ nodes (yellow) and ‘entry’ nodes (purple). For 

a left-turn transition line, the intermediate point is defined by an offset distance 𝐷𝐿 in the bisector 

of the angle between 𝐸𝑥𝑃𝑖𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑂𝐸𝑛𝑃𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . The intermediate point for a right-turn transition line is 

determined in the same pattern with a larger 𝐷𝑅, since the study area follows the right-hand traffic. 

For a straight-ahead transition line, the intermediate point is defined as the midpoint (green) of line 

segment 𝐸𝑥𝑃𝑖𝐸𝑛𝑃𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . According to the type of transition lines, different intermediate points are 

defined to generate them. 

3.6 Validation Methods 

3.6.1 Accuracy Assessment of Road Markings 

The performance of the road marking extraction method is assessed by thematic accuracy, 

which refers to the differences between the labeled attributes of remotely sensed features and the 

true attributes of reference features (Congalton and Green, 2008). The confusion matrix for the 

binary classification is illustrated in Table 3-4, where 𝑇𝑃 represents true positive, 𝑇𝑁 represents 

true negative, 𝐹𝑃 indicates false positive, and 𝐹𝑁 indicates false negative. In this study, 𝑇𝑃 is the 
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number of road marking points which are correctly classified, whereas 𝐹𝑃 is the number of outliers 

that are falsely classified as road marking points. 𝑇𝑁 referes to the number of correctly classified 

outliers, whereas 𝐹𝑁  refers to the number of road marking points which are misclassified as 

outliers.  

Table 3-4 Confusion matrix for binary classification 

Class\Classified as Positive as Negative 

Positive TP FN 

Negative FP TN 

Furthermore, the thematic accuracy is measured by three criteria: recall, precision, and F1-

score (Van Rijsbergen, 1979; Sokolova et al., 2006). The recall, which indicates the integrity of 

the extracted road markings, is expressed as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑝

𝑅𝑐𝑝𝑡
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , (3-15) 

where 𝐶𝑝 is the number of points belonging to the actual road markings, and 𝑅𝑐𝑝𝑡 is the number of 

road marking points in reference data. The precision denotes the percentage of valid road markings, 

and it is expressed as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑝

𝑅𝑐𝑟𝑡
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 , (3-16) 

where 𝑅𝑐𝑟𝑡 indicates the number of points extracted by the proposed method. The global score is 

evaluated by F1-score, which is obtained by 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 . (3-17) 
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3.6.2 Accuracy Assessment of Lane Centerlines and Transition Lines 

The generated lane centerlines and transition lines are assessed by the Buffer-overlay-

statistics (BOS) method (Tveite, 1999). The method firstly generates buffers in various sizes 

around test lines and reference lines and then compares them through overlaying and statistics.  

 

Figure 3-17 Elements used in the BOS method (Tveite, 1999) 

The elements used in the BOS method for line feature assessment are presented in Figure 

3-17. In the left side of Figure 3-17, there are two line-based datasets, where X is a test dataset, 

and R is a reference dataset. To the right is the buffering and overlaying result. The method 

generates four types of result areas: areas that are inside the buffer of X (𝑋𝐵) and the buffer of R 

(𝑅𝐵) (𝑋𝐵 ∩ 𝑅𝐵), areas that are inside 𝑋𝐵 and outside 𝑅𝐵 (𝑋𝐵 ∩ 𝑅𝐵̅̅ ̅̅ ), areas that are outside 𝑋𝐵 

and inside 𝑅𝐵 (𝑋𝐵̅̅ ̅̅ ∩ 𝑅𝐵), and areas that are outside 𝑋𝐵 and 𝑅𝐵 (𝑋𝐵̅̅ ̅̅ ∩ 𝑅𝐵̅̅ ̅̅ ). Simultaneously, 

four types of line segments are formed: line segments of 𝑅 inside 𝑋𝐵, line segments of 𝑅 outside 

𝑋𝐵, line segment of 𝑋 inside 𝑅𝐵, and line segments of 𝑋 outside 𝑅𝐵.  

To present a quantitative accuracy assessment of lines features, buffering and overlaying 

is conducted iteratively. For a number (𝑛) of buffer sizes 𝐵𝑖, (1 ≤ 𝑖 ≤ 𝑛), conduct the following 
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four steps. Firstly, perform buffering on the line features in 𝑋 and 𝑅 with 𝐵𝑖, and call the generated 

buffer polygons 𝑋𝐵𝑖  and 𝑅𝐵𝑖 , respectively. Secondly, overlay 𝑋 with 𝑅𝐵𝑖  to generate a mixed 

dataset 𝑋𝑅𝐵𝑖. Overlay 𝑅 with 𝑋𝐵𝑖 to generate a mixed dataset 𝑅𝑋𝐵𝑖. Thirdly, calculate the sum 

length of the line segments from 𝑋 outside 𝑅𝐵𝑖 in 𝑋𝑅𝐵𝑖 and the total length of line features in 𝑋. 

The recall 𝐶𝑖 of 𝑋 is computed by (Tveite, 1999):  

𝐶𝑖 =
𝐿𝑒𝑛𝑔𝑡ℎ(𝑅 𝑖𝑛𝑠𝑖𝑑𝑒 𝑋𝐵𝑖)

𝐿𝑒𝑛𝑔𝑡ℎ(𝑅)
 . (3-18) 

Finally, calculate the sum length of the line segments from 𝑅 inside 𝑋𝐵𝑖 in 𝑅𝑋𝐵𝑖 and the total 

length of line features in 𝑅. The miscoding 𝑀𝑖 of 𝑋 is computed by (Tveite, 1999): 

𝑀𝑖 =
𝐿𝑒𝑛𝑔𝑡ℎ(𝑋 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑅𝐵𝑖)

𝐿𝑒𝑛𝑔𝑡ℎ(𝑋)
 . (3-19) 

3.7 Chapter Summary 

The details of the test datasets and the entire method of transition line generation using 

MLS point clouds is presented in this chapter. The method contains three modules. In module one, 

the voxel-based upward-growing is employed to detect ground points from input point clouds. 

Subsequently, the region growing is enhanced for road surface detection. In module two, the multi-

thresholding is employed for road marking extraction. Geometric feature filtering is adapted to 

extract lane markings from clustered road markings. In module three, lane marking node structures 

are constructed through the proposed algorithm, and proper ‘entry’ lanes for ‘exit’ lanes are 

connected. The cubic Catmull-Rom spline algorithm is employed for transition line generation. In 

addition, the quantitative assessment methods are stated. 

In addition, since the proposed method is a semi-automated method, some parameters 

might need to be manually adjusted when the method is applied to a new study area. Firstly, lane 
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markings are extracted based on the road marking design standards in the study area. When 

conducting the algorithm in another study area, especially in other countries, the road marking 

design standards might be different and parameters should be changed accordingly. Furthermore, 

in lane node structure algorithm, ‘exit’ and ‘entry’ nodes are paired according to traffic rules in 

the study area. However, traffic rules might be different in other countries. Thus, rules for ‘exit’ 

and ‘entry’ node pairing should be adjusted. In addition, five control points for cubic Catmull-

Rom splines are determined based on the right-hand traffic in the study area. If the method is 

conducted to a study area that follows left-hand traffic, the control points should be modified.  
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Chapter 4 Results and Validation 

This chapter presents the stepwise results and validation of transition lines generated by 

the proposed method, organized into four sections. Section 4.1 shows the results and the analysis 

of the ground removal algorithm, the road surface detection algorithm, the lane marking extraction 

algorithm, and the transition line generation algorithm. Section 4.2 includes the accuracy 

assessment of the extracted lane markings and generated transition lines. Section 4.3 presents a 

comparative study of road marking extraction. Finally, Section 4.4 summarises this chapter.  

4.1 Results and Evaluation 

4.1.1 Ground Point Detection 

Ground points were detected through the voxel-based upward-growing algorithm. The four 

parameters used in this algorithm are as follows: 

 𝑊𝑏: size of a block, 

𝑊𝑣: size of a voxel, 

𝑇𝑔: a global ground undulation threshold, and 

𝑇𝑙: a local ground undulation threshold. 

According to the point density of the test datasets, the block size and the voxel size were set as 

𝑊𝑏 = 20𝑚, 𝑊𝑣 = 0.5𝑚, respectively, to confirm the time complexity of the algorithm. Since the 

algorithm was conducted to remove roadside objects and preserve road curbs, the thresholds were 

set as 𝑇𝑔 = 3𝑚, 𝑇𝑙 = 0.3𝑚, respectively. Figure 4-1 (a) to (d) presents the ground point detection 

results. 
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(a)  (a1) 

  

(b) (b1) 

  

(c) (c1) 

  

(d) (d1) 

Figure 4-1 Detected ground points (a) to (d) and road surface points (a1) to (d1) 
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4.1.2 Road Surface Detection 

Road surface points were detected by the improved region growing algorithm. The input 

data were detected ground points and trajectory points. The algorithm firstly gridded the point 

clouds into voxels from x direction and y direction with a given width. Then, the BFS was 

conducted to detect and label the road surface voxels. Road curbs were detected based on elevation 

jump and slope. Five parameters were used in this algorithm: 

𝑊𝑅: size of a voxel, 

𝑇𝑐𝑢𝑟𝑏_𝑚𝑎𝑥, 𝑇𝑐𝑢𝑟𝑏_𝑚𝑖𝑛: elevation jump thresholds, 

𝑇𝑠𝑙𝑜𝑝𝑒: slope threshold, and 

𝑇𝐵: searching range. 

According to Guan et al. (2015a), 𝑇𝑐𝑢𝑟𝑏_𝑚𝑖𝑛 = 8 𝑐𝑚 , 𝑇𝑐𝑢𝑟𝑏_𝑚𝑎𝑥 = 30 𝑐𝑚 , and 𝑇𝑠𝑙𝑜𝑝𝑒 = 2𝜋 3⁄  

were set. To determine the optimal parameters for 𝑊𝑅 and 𝑇𝐵, and to evaluate the sensitivity of 

each of them, two experiments were carried out. The purpose of detecting road surface points is to 

improve the accuracy of the road marking extraction. Thus, road markings extracted by different 

parameters were evaluated to determine the optimal parameters. Test Dataset 1 was used for the 

experiments, since it has different and exhaustive features described in Section 3.1.2. 

Table 4-1 Accuracy of road marking extraction when applying different searching ranges 

Searching 

Range (m) 
5 10 15 20 25 30 35 

F1-score (%) 86.20 90.83 93.37 93.99 94.46 94.34 94.23 

Recall (%) 82.15 89.64 94.83 95.88 96.60 96.55 96.59 

Precision (%) 90.68 92.05 91.96 92.17 92.42 92.23 91.98 
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Table 4-1 presents the F1-score, recall, and precision of road marking extraction results 

using different searching ranges, with recall and precision recorded as well. A fixed voxel size 

𝑊𝑅 = 10 cm was used to explore the influences of searching ranges. Then, the road surface 

detection was carried out with different searching ranges, which were from 5 m to 35 m at an 

interval of 5 m. Generally, the F1-score exponentially improved as the searching range increased 

from 5 m (86.20%) to 25 m (94.46%), and then slightly dropped from 25 m (94.46%) to 35 m 

(94.23%). The improvement of the F1-score from 5 m to 25 m was caused by the increase of recall. 

Since the BFS searching started from the trajectory, the road surface was not completely detected 

when the searching range was small, and road markings close to the boundaries of the road surface 

were not extracted. However, when the searching range was overlarge, outliers on the pavements 

might be involved in road surface detection results. Accordingly, searching range 𝑇𝐵 was set as 25 

m for the BFS searching in road surface extraction.   

Table 4-2 Accuracy of road marking extraction when applying different voxel sizes 

Voxel Size (cm) 6 8 10 12 14 16 

F1-score (%) 93.18 93.98 94.46 93.29 91.59 89.66 

Recall (%) 96.89 97.01 96.60 93.52 90.33 86.62 

Precision (%) 89.74 91.13 92.42 93.06 92.89 92.93 

Table 4-2 presents the F1-score of road marking extraction results using different voxel 

sizes, with recall and precision recorded simultaneously. The searching range 𝑇𝐵 = 25 m was 

fixed to explore the influences of the voxel size, which was from 6 cm to 16 cm at an interval of 2 

cm. Generally, the F1-score slightly increased when the voxel size increased from 6 cm (93.18%) 

to 10 cm (94.46%), and then significantly decreased when the voxel size was larger than 10 cm. 

When the voxel size was overlarge, road markings close to the boundary of the road surface were 
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involved in the same voxel as the road curb and removed, which caused a significant loss in recall. 

However, more points were covered with larger voxels, which made the calculation of elevation 

jump and slope more accurate. Hence, 𝑊𝑅 = 10 cm was optimal for the road surface detection in 

this study.  

With the defined parameters, the detected road surface points in Test Dataset 1 to 4 are 

presented in Figure 4-1 (a1) to (d1). The overall performance of the improved algorithm was 

promising in the four test datasets. One false detection occurred in Test Datasets 1 and 2 (Figure 

4-1 (a1) and (b1)), as part of the road pavement was labeled as road surface. The road surface 

detection method was sensitive to the condition of road curbs; thus, the defects of road curbs might 

cause a large area of false detection. Furthermore, a detailed examination of a detected road surface 

is shown in Figure 4-2, and three features of the algorithm can be concluded from it. First, all road 

markings can be detected on the extracted road surfaces. Second, the boundaries of road surfaces 

are not smoothed due to the cubic shape of voxels. Third, small holes might exist due to noise on 

road surfaces.  

 

Figure 4-2 Details of a road surface detection result 



 60 

4.1.3 Road Marking Extraction and Refinement 

Road marking points were extracted from road surface points, using the multi-thresholding 

algorithm. Road surface points were segmented into point sets centered at the trajectory data with 

the threshold 𝑤𝑠 = 1𝑚 . The intensity threshold for each point set was determined by Otsu’s 

thresholding algorithm. As shown in Figure 4-3, the method completely extracted road markings; 

however, the overall quality of the extracted points was not satisfactory due to noise. Thus, to 

simultaneously eliminate noise and preserve the recall of road markings, the density filtering 

threshold 𝑇𝑆𝐷 = 8 was set for the test datasets. Samples of the refined road markings are shown in 

Figure 4-4. 

 

 

(a) Candidate road marking points 

in Test Dataset 1 

(b) Candidate road marking points 

in Test Dataset 3 

Figure 4-3 Candidate road marking points in Test Datasets 1 and 3  
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(a) Extracted road markings (b) Road markings after noise removal 

Figure 4-4 Extracted road markings after noise removal 

 

Road marking extraction results are shown in Figure 4-5. Generally, road markings are 

painted using a material that has high reflectance to laser pulses, and road marking points have 

higher intensities than the surrounding road surface points. However, due to the decay of road 

markings and obstacles on roads, some road marking points might have low intensities, and some 

road markings could be broken. In such cases, errors might occur in road marking extraction. 

Figure 4-6 presents a critical error that occurred in the results for road marking extraction in Test 

Dataset 2. Road features are indicated by variations in color intensity. The road marking close to 

the road boundary was covered by a material that had low reflectance to laser pulses, or it might 

be completely decayed. Since its intensity was lower than that of the road surface, the road marking 



 62 

was not extracted from the road surface. Such defects of the road marking could lead to a failure 

in lane structure generation, thus causing errors in transition line generation. 

 

 

(a) (b) 

  

(c) (d) 

Figure 4-5 Extracted road markings after refining 
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Figure 4-6 Defect of the road marking in Test Dataset 2 

4.1.4 Lane Marking Extraction 

The extracted road marking points still had no topological relationships. To build such 

relationships among disordered points and to apply semantic meanings, the Conditional Euclidean 

clustering algorithm was employed to cluster road marking points. According to the point densities 

of test datasets, the searching range 𝑑𝑇 was set at 0.3 cm to ensure that at least one point was within 

the searching range. Moreover, to generate every single zebra crossing line as a separate cluster, 

the 𝑑𝑇 should be set to be less than the interval between two zebra crossing lines. Thus, 𝑑𝑇 =

0.1 𝑚 was set for the method. The clustering results of Test Dataset 1 and 3 are shown in Figure 

4-7 with clusters colored differently. In addition, as shown in Figure 4-8, points belonging to 

dashed line markings, single line markings, turning line markings, turning arrows, and Chinese 

characters are correctly clustered, whereas line markings connected by stop lines cannot be 

clustered separately. 



 64 

 

 

(a) Clustered road markings  

in Test Dataset 1 

(b) Clustered road markings  

in Test Dataset 3 

Figure 4-7 Clustering results of road markings 

 

  

(a) Clustered dashed line markings 

  

(b) Clustered line markings 

 
 

(c) Clustered zebra crossing line markings 



 65 

  

(d) Clustered Chinese characters and arrow markings 

Figure 4-8 Clustering results of different road markings 

 

 

(a) Extracted lane markings in Test Dataset 1 (b) Extracted lane markings in Test Dataset 2 

 
 

(c) Extracted lane markings in Test Dataset 3 (d) Extracted lane markings in Test Dataset 4 

Figure 4-9 Lane markings extracted from test datasets 
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Lane markings, including dashed lines, single lines, double lines, and stop lines, were 

extracted using the geometric feature filtering algorithm. The algorithm derived minimum 

bounding rectangles to extract length L and width W of clustered road markings. The filtering was 

conducted using the L and W range presented in Table 3-3. Most of the lane markings were 

preserved in the results (see Figure 4-9), whereas all turning arrows, zebra crossing lines, and 

Chinese characters were removed. However, as shown in Figures 4-9 (b), (c), and (d), several zebra 

crossing lines were also preserved, because they were close to nearby lane markings. Moreover, 

some of the broken lane marking segments were falsely removed due to their small size, which 

implied that lane markings might not be extracted when they are mostly blocked by obstacles. 

4.1.5 Transition Line Generation 

Lane node structures were generated by the proposed method. The resampling interval 𝐼𝑇 

was determined by the corresponding rate of the navigation system used in the MLS system and 

the driving speed. In this study, the corresponding rate of the GNSS system was 0.01s, and the 

maximum driving speed was 40 km/h. Thus, the interval of trajectory points was about 8.3 cm. 

Note that the over-segmentation of the lane markings might aggravate the influence of noise; the 

resampling interval 𝐼𝑇 = 6 was defined for the test datasets. The width of a point block was about 

50 cm. Additionally, the following three thresholds were used in this algorithm: 

 𝑇𝑀, threshold to detect stop lines, 

 𝑇𝑅𝑚𝑖𝑛 𝑎𝑛𝑑 𝑇𝑅𝑚𝑎𝑥, thresholds for node filtering. 

The thresholds were defined according to the minimum lane width in the study area, which was 3 

m. When points in a data block were projected onto the transformed coordinate system, if the 
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length of a clustered road marking was greater than 𝑇𝑀 = 2𝑚, the marking was labelled as a stop 

line. To eliminate false lane centerline nodes, 𝑇𝑅𝑚𝑖𝑛 was set as 2 m and 𝑇𝑅𝑚𝑎𝑥 was set as 4 m. 

Figure 4-10 presents lane node structures in a road segment, with lane marking nodes in blue and 

lane centerline nodes in red.  

  

Figure 4-10 Lane node structure generation results in a road segment 

Transition lines were generated by the cubic Catmull-Rom spline algorithm. As shown in 

Figure 4-11, test datasets are overlapped by the generated lane centerlines (green), lane markings 

(blue), and transition lines (purple). ‘Entry’ nodes of lane centerlines are square dots, and ‘exit’ 

nodes are triangle dots. In the four test datasets, most corresponding ‘entry’ and ‘exit’ nodes were 

correctly connected by transition lines, except that two transition lines connected wrong pairs of 

‘exit’ and ‘entry’ nodes in Test Dataset 2 (Figure 4-11 (b)). Thus, the success rate of transition line 

generation was about 96.5%, again suggesting that road marking defects had negative effects on 

transition line generation.  
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(a) Generated transition lines  

in Test Dataset 1 

(b) Generated transition lines  

in Test Dataset 2 

  

(c) Generated transition lines  

in Test Dataset 3 

(d) Generated transition lines  

in Test Dataset 4 

Figure 4-11 Generated transition lines in the test datasets 

 

HDRM generation is a post-processing process. To speed it up, automation of the process 

is critical. Therefore, the computing time of the proposed method in four test datasets is shown in 

Table 4-3. The consuming time was calculated in each procedure and in total. The computer used 
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in this study had an AMD FX-8350 4.2MHz CPU, and 16 GB RAM. The proposed method 

performed very well considering the large-volume point cloud data. The voxel-based upward-

growing and the improved region growing algorithms efficiently removed outliers from the test 

datasets. Road marking extraction and refinement procedure contributed most of the processing 

time because the multi-thresholding algorithm exhaustively processed every single point of the 

input data. By taking advantage of the Conditional Euclidean clustering algorithm, the lane 

marking extraction procedure did not consume much time. Furthermore, the lane marking node 

structure generation algorithm and the cubic Catmull-Rom spline algorithm were both efficient. 

Therefore, the overall efficiency of the proposed method could be further improved by modifying 

the multi-thresholding algorithm and the density filtering algorithm. 

Table 4-3 Computing time of the proposed method 

Dataset 1 2 3 4 

Size 565MB 521MB 905MB 623MB 

No. of MLS Points 19,243,445 25,537,193 17,444,202 16,094,181 

No. of Trajectory Points 13748 25982 12946 16973 

Time for Ground Point 

Detection (s) 
13.1s 21.5s 12.8s 12.3s 

Time for Road Surface Point 

Detection (s) 
29.3s 35.3s 50.4s 53.9s 

Time for Road Marking 

Extraction and Refinement (s) 
309.2s 347.1s 456.9s 424.2s 

Time for Lane Marking 

Extraction (s) 
105.5s 126.5s 185.7s 193.2s 

Time for Transition Line 

Generation (s) 
15.5s 17.1s 30.6s 30.1s 

Total Time (s) 472.6s 547.5s 736.4s 713.7s 
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4.2 Accuracy Assessment  

4.2.1 Accuracy Assessment of Road Markings 

Accuracy assessment of road markings was conducted by comparing the extracted road 

marking points from the test datasets with the manually interpreted road markings in the raw point 

clouds. The precision, recall, and F1-score were calculated to evaluate the road marking extraction 

results.  

 
 

(a) Road markings extracted from Test 

Dataset 1 

(a1) Manually labeled road markings in Test 

Dataset 1 

  

(b) Road markings extracted from Test 

Dataset 2 

(b1) Manually labeled road markings in Test 

Dataset 2 
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(c) Road markings extracted from Test 

Dataset 3 

(c1) Manually labeled road markings in Test 

Dataset 3 

  

(d) Road markings extracted from Test 

Dataset 4 

(d1) Manually labeled road markings in Test 

Dataset 4 

Figure 4-12 Extracted road markings and reference data 

Table 4-4 Accuracy assessment of road markings using manually interpreted point clouds 

Test Dataset 1 2 3 4 

Precision (%) 92.42 88.67 91.71 90.38 

Recall (%) 96.60 83.54 96.28 91.84 

F1-score (%) 94.46 86.23 93.94 91.10 
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Extracted road marking points and manually interpreted road marking points are shown in 

Figure 12 (a) to (d) and Figure (a1) to (d1), respectively. The results of road marking accuracy 

assessment using manually interpreted point clouds are listed in Table 4-4. The average precision 

of the test datasets was 90.80%. Generally, the loss in precision has two causes. On the one hand, 

false clustering might occur when zebra crossing lines and lane lines are connected. On the other 

hand, the density filter cannot remove all noise from candidate road marking points. The average 

recall of the four test datasets reached 92.07%. The loss in recall might be caused by the removal 

of small road marking segments when conducting the geometric feature filtering. The F1-score of 

the four test datasets were all over 86%, which implied that the road marking extraction method 

can extract most of the road marking points in T- and cross-intersections. The proposed method 

performed well in Test Datasets 1, 3, and 4, whereas Test Datasets 2 contributed more to the loss 

of accuracy due to the broken road markings. Thus, the method should be improved in the future, 

to extract complete road markings in complex road intersection scenes.  

4.2.2 Accuracy Assessment of Transition Lines and Lane Centerlines 

To evaluate the localization accuracy of the generated transition lines, the BOS method 

was applied. GRF images that were generated from raw point clouds were utilized as reference 

data. The gray values of pixels on the GRF images were interpolated from the intensities of raw 

point clouds using the IDW interpolation method (Guan et al., 2014). The resolution of the GRF 

images was set to be 2 cm. A detailed description of GRF image generation can be found in Guan’s 

(2014) study. Reference transition lines and lane centerlines were manually interpreted on the GRF 

images using ArcGIS v10.2.2. Centered by the manually labeled transition lines and lane 

centerlines, reference buffer zones with different widths, which indicate the range between the 
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buffer zone boundaries and the manually interpreted transition lines and lane centerlines, were 

created and overlapped with the generated transition lines and lane centerlines.  

The calculated values in both recall and miscoding of the generated transition lines and 

lane centerlines from Test Datasets 3 and 4 are listed in Tables 4-5. Reference buffers with the 

width of 15 cm and 20 cm were created to evaluate the performance of the proposed method. When 

conducting 15 cm BOS to the lines, the recall of Test Dataset 3 and 4 achieved 91.83% and 90.98%, 

respectively, and the miscoding was 7.01% and 7.82%, respectively. When conducting 20 cm BOS 

to the lines, the proposed method was capable of achieving 100% recall and 0% miscoding in Test 

Dataset 3 and 4. With the increased width of reference buffers, the miscoding values decreased, 

which demonstrated that most of the generated transition lines and lane centerlines were located 

within the precision allowable reference buffers. Therefore, the proposed method can provide a 20 

cm-level localization accuracy to ensure the safety of autonomous vehicles and the precision of 

HDRMs.  

Table 4-5 Recall and miscoding of Test Datasets 3 and 4. 

 Test Dataset 3 Test Dataset 4 

Buffer Zoning (cm) 15 20 15 20 

Recall (%) 91.83 100 90.98 100 

Miscoding (%) 7.01 0 7.82 0 

In addition, Figure 4-13 present the generated transition lines and lane centerlines in Test 

Dataset 3 and Test Dataset 4 within 15 cm and 20 cm width of reference buffers. The black 

rectangles in Figure 4-13 (a) and (c) indicate the miscoding parts in Test dataset 3 and Test Dataset 

4 when the width of reference buffers was set as 15 cm. Furthermore, it is identified that generated 
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transition lines and lane centerlines are completely located within the reference buffers with 20 cm 

in width.  

   

(a) Transition line validation using 15 cm 

buffer in Test Dataset 3 

(b) Transition line validation using 20 cm 

buffer in Test Dataset 3 

    

(c) Transition line validation using 15 cm 

buffer in Test Dataset 4 

(d) Transition line validation using 20 cm 

buffer in Test Dataset 4 

Figure 4-13 Generated transition lines and lane centerlines within reference buffers. 
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4.3 Comparative Study 

Since road marking information was essential for transition line generation, a comparative 

study was conducted to compare the road marking extraction method used in this study with three 

other methods: Yu et al. (2015a), Zhang (2016), and Chen et al. (2009). Chen et al. (2009) 

conducted statistical analysis to select the intensity peaks as thresholds. The thresholds were then 

used to extract road markings that had a similar direction to the trajectory. Yu et al. (2015a) 

detected road surface points through the curb based segmenting. Then, the start point and the end 

point of the trajectory were used to partition the road surface into blocks, and road marking points 

were extracted from each block through Otsu’s thresholding. In Zhang’s method (Zhang, 2016), 

MLS point clouds were transformed to Geo-Referenced Feature (GRF) images, and road markings 

were detected through image processing. The high-pass filtering was firstly applied to the DTM 

of MLS point clouds to detect the road surfaces. Then, a GRF image was generated from the road 

surface pixels, and intensity deduction was corrected by the large-size high-pass enhancement. 

Finally, the road marking pixels were detected by applying Otsu’s thresholding to the whole GRF 

image. 

The methods were tested in Test Dataset 1 and Test Dataset 3. These two test datasets were 

selected for this comparative study for two reasons. First, Test Dataset 1 and Test Dataset 3 covered 

all road marking types in the four test datasets. Second, the trajectories in Test Dataset 1 (T- 

intersection) were curved (Figure 4-14 (a)), while the trajectories in Test Dataset 3 (cross-

intersection) were straight (Figure 4-15 (a)). The results of the comparative study are shown in 

Figure 4-14 and Figure 4-15. In addition, based on point by point comparison with the manually 

interpreted road marking points (Figure 4-14 (b) and Figure 4-15 (b)), the performance of the 

methods was evaluated with precision, recall, and F1-score (Table 4-6).  
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(a) Test Dataset 1 point cloud and trajectory 

data 

(b) Manually interpreted road markings 

 
 

(c) Road markings extracted by Chen’s 

method 

(d) Road markings extracted by Zhang’s 

method 

  

(e) Road markings extracted by Yu’s  

method 

(f) Road markings extracted by the proposed 

method 

Figure 4-14 Extracted road markings in Test Dataset 1 
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(a) Test Dataset 3 point cloud and trajectory 

data 

(b) Manually interpreted road markings 

  

(c) Road markings extracted by Chen’s 

method 

(d) Road markings extracted by Zhang’s 

method 

  

(e) Road markings extracted by Yu’s  

method 

(f) Road markings extracted by the proposed 

method 

Figure 4-15 Extracted road markings in Test Dataset 3 
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Table 4-6 Comparison with different road marking extraction methods 

Dataset 1 3 

Method Chen 

et al. 

(2009) 

Zhang 

(2016) 

Yu et 

al. 

(2015a) 

Proposed 

Method 

Chen et 

al. 

(2009) 

Zhang 

(2016) 

Yu et 

al. 

(2015a) 

Proposed 

Method 

Recall (%) 68.90 91.38 80.71 92.42 77.45 90.57 91.66 91.71 

Precision (%) 92.11 82.95 83.25 96.60 90.76 87.53 94.39 96.28 

F1-score (%) 78.83 86.96 81.96 94.46 83.58 89.02 93.00 93.94 

Chen’s method (Figure 4-14 (c) and 4-15 (c)) focused only on the lane markings along the 

direction of the vehicle trajectory. Thus, road markings, including turning arrows, stop lines, and 

Chinese characters, were not extracted, and that caused a signification loss of recall. Yu’s method 

(Figure 4-14 (e) and 4-15 (e)) had low F1-score in Test Dataset 1, since its road surface detection 

method and road marking extraction method are both based on the straight trajectory. When the 

method was applied in Test Dataset 1, road pavements that were close to the central part of the 

intersection were misclassified as road surface, and the road surface was not segmented correctly. 

That caused a loss of F1-score in the result for Test Dataset 1. Zhang’s method detected most of 

the road markings in the two test datasets (Figure 4-14 (d) and 4-15 (d)). However, road pavements 

that were smooth and had large areas were not eliminated by the high-pass filtering. As a result, 

road pavement points that have high intensities were misclassified as road markings. In addition, 

Zhang transformed MLS point clouds to geo-referenced images and detected road marking pixels 

on the images. Labeling road marking points through the images also caused a loss of precision.  

The proposed method successfully extracted most of the road marking points in Test 

Dataset 1 and 3 (Figure 4-14 (f) and 4-15 (f)). Unlike Chen’s method, it had the ability to extract 

all types of road markings on road surfaces. Unlike Zhang’s geo-referenced feature image based 

method, it directly extracted road marking points from MLS point clouds and did not cause 

accuracy losses due to data transformation. Moreover, it performed better in road surface detection; 
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thus, noises caused by road pavement points were rare. Compared with Yu’s method, the proposed 

method made an over 10% improvement in F1-score when trajectories were curved in Test Dataset 

1. However, some errors still occurred in the results. The errors in the extracted road markings 

were mainly caused by road marking decay and constant road marking extraction thresholds. 

Although road marking extraction thresholds were separately determined in each data block, 

intensity deduction still happened in the data blocks. As a result, road marking points that had low 

intensities due to the road marking decay might not be extracted. Simultaneously, road surface 

points that had high intensities could be falsely extracted as road marking points. In addition, 

noises that were close to the road markings were not eliminated by the density filtering, thus 

reducing precision.  

4.4 Chapter Summary 

This chapter presents the stepwise experimental results of the proposed method. According 

to the accuracy assessment and the comparative study of road marking extraction, it can be 

concluded that the proposed road marking extraction method can achieve highly accurate results, 

with 90.80% in precision, 92.07% in recall, and 91.43% in F1-score, respectively. Furthermore, 

based on the accuracy assessment of generated transition lines and lane centerlines, it indicates 

that the proposed method can generate transition lines and lane centerlines with 20 cm-level 

positioning accuracy in road intersections. However, the accuracy of the proposed method may be 

influenced by defects in extracted lane markings. 

This chapter also analyzes the computational efficiency of the proposed method. The 

proposed algorithms for road surface detection and node structure generation are highly efficient; 

however, the total efficiency of the proposed method could be further improved in the future by 

modifying the algorithms for road marking point detection and refinement. 
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Chapter 5 Conclusions and Recommendations 

5.1 Conclusions 

MLS systems have enormous potential in the construction of HDRMs because of the 

following advantages: flexibility in collecting time, complete coverage of street scenes, and 3D 

high resolution in point clouds. However, the unique data structure and the high density of point 

clouds makes developing advanced methods for the generation of road maps from the MLS data 

challenging. Currently, road surface information such as road markings and road cracks can be 

extracted from the MLS point clouds, whereas transition lines in road intersections are mainly 

generated from public GPS trajectory data. In addition, nowadays, there is still no commercial 

software which specializes in modeling and interpreting MLS point clouds for transportation 

related applications. Therefore, the construction of HDRMs requires new software and high-end 

workstations.  

To provide a credible approach for HDRM construction, this study develops a semi-

automated method for transition line generation in road intersections from MLS point clouds. 

Ground points are detected by the voxel-based upward-growing, followed by the curb-based 

region-growing for road surface point detection. Then, candidate road marking points are extracted 

from road surface points using the multi-thresholding. The density filtering is employed for noise 

removal in candidate road marking points. Next, semantic clusters of road markings are segmented 

using the Conditional Euclidean clustering, and subsequently, lane markings are extracted with the 

geometric feature filtering. Moreover, lane centerlines are generated from the lane marking node 

structure, followed by the generation of transition lines through the Catmull-Rom spline.  
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Four test datasets have been used in this study to evaluate the performance of the proposed 

method. Assessment of the test datasets contains two parts: the accuracy assessment of extracted 

lane marking points and the accuracy assessment of generated lane centerlines and transition lines. 

In the validation of lane marking extraction using manually interpreted lane marking points, the 

method can achieve 90.80% precision, 92.07% recall, and 91.43% F1-score, respectively. The 

success rate of transition line generation is 96.5%. Moreover, the BOS method validates that the 

proposed method can generate lane centerlines and transition lines within a 20-cm range of 

reference path. Detailed analysis of the experimental results demonstrates that the proposed 

method can successfully generate most of the transition lines, whereas defects of road markings 

could cause a loss in accuracy.  

This thesis concludes that the proposed stepwise methodology can generate transition lines 

and lane centerlines in T-intersections and cross-intersections from MLS point clouds to provide 

highly accurate navigation and localization services for autonomous vehicles. It also provides a 

reliable solution to overcome the challenges in the generation of HDRMs for worldwide 

automotive manufacturers and mapping companies such as HERE, Google, TomTom, and Baidu.  

5.2 Contributions 

As stated in the objectives (Chapter 1), the transition line generation method proposed in 

this study mainly contributes to the construction of HDRMs using MLS point clouds. The detailed 

contributions are, namely, an improved curb-based region growing algorithm for road surface 

detection and a semi-automated node structure generation algorithm:  

(1) The curb-based region growing algorithm detects road surface points by using 

trajectory points as seeds and then iteratively searching nearby areas. This algorithm is 
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feasible for different types of curbed urban roads, including straight roads, curved roads, 

and road intersections. Furthermore, it reduces accuracy loss by detecting road surface 

points directly from point clouds. 

(2) A semi-automated node structure generation algorithm is presented. The generated lane 

centerline nodes facilitate the construction of transition lines. By utilizing lane marking 

point clouds as input data, it does not require GPS trajectory covers all lanes, and that 

improves the efficiency of the data collection in road intersections.  

5.3 Limitations and Recommendations 

Although the proposed method in generating transition lines in road intersections has 

provided satisfactory results, according to the Chapter 4, some limitations still exist. Therefore, 

limitations are clarified and recommendations are made to guide the future work. The details can 

be noted as follows: 

(1) ‘Exit’ and ‘Entry’ nodes are paired mainly based on lane information and traffic rules 

in this study because turning arrow markings cannot be extracted through the geometric 

filtering. Thus, more works are still needed to make the algorithm more completed. 

Some approaches in computer vision, such as machine learning and deep learning, 

could be adopted to classify road markings in MLS point clouds. 

(2) Defects of road markings have negative effects on the lane marking node structure 

generation algorithm due to the segmentation process. Thus, more works are still 

needed to improve it.  

(3) The proposed method is only proved in small T- and cross-intersections. However, road 

marking standard and lane pattern could be more complex in large road intersections. 
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Moreover, point density and intensity is influenced by the scanning distance. Therefore, 

experiments in large road intersections are needed to test the application range of the 

proposed method.  

(4)  The efficiency of the proposed method could be furtherly improved. As mentioned in 

Chapter 4, the road marking extraction and refinement takes more than half of the total 

computational time. To reduce the time complexity of the algorithm, a more efficient 

approach for computing the distance from a point to a trajectory could be developed in 

the future.  

(5) The generated lane centerlines and transition lines should be assessed by test driving. 

Although generated line features are tested and validated to be correct and complete 

through manual interpolation of UAV images, the safety and comfort level cannot be 

assessed. Thus, test driving should be conducted in the future to give a complete 

validation of transition lines.  
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