Modelling Quantum Well Lasers

by

Philip Weetman

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Physics

Waterloo, Ontario, Canada 2002

(©Philip Weetman, 2002



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i



Acknowledgements

I would like to thank my supervisor, Dr. Marek Wartak, for his knowledge, generosity,
patience over the last several years of this program. It has been a great help.

Others who have been very helpful to me are Richard Voino and Dan Nedelko for
their computer expertise friendship and great support staff at UW and WLU, especially
Margaret Gaber and Judy McDonnell.

A special thanks to Rebecca Tiessen for being my inspiration.

il



Abstract

In this thesis, two methods to model quantum well lasers will be examined. The first
model is based on well-known techniques to determine some of the spectral and dynamical
properties of the laser. For the spectral properties, an expression for TE and TM modal
amplitude gain is derived. For the dynamical properties, the rate equations are shown.
The spectral and dynamical properties can be examined separately for specific operating
characteristics or used in conjunction with each other for a complete description of the
laser. Examples will be shown to demonstrate some of the analysis and results that can
be obtained.

The second model used is based on Wigner functions and the quantum Boltzmann
equation. It is derived from general non-equilibrium Greens functions with the application
of the Kadanoff-Baym ansatz. This model is less phenomenological than the previous model
and does not require the separation of physical processes such as the former spectral and
dynamical properties. It therefore has improved predictive power for the performance of
novel laser designs. To the Author’s knowledge, this is the first time such a model has been
formulated. The quantum Boltzmann equations will be derived and some calculations will
be performed for a simplified system in order to illustrate some calculation techniques as

well as results that can be obtained.
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Chapter 1

Introduction

1.1 Semiconductor Lasers

Since their advent in 1962, semiconductor lasers have become very important in the field
of opto-electronics. They have a wide range of uses from CD player components to optical
communications. Future applications will likely include optical memory storage and optical
computing. The laser’s small size, high efficiency, long life-time and ease of integrability into
electronic circuits means they can be a very cost effective solution for many applications.
Additionally, there is also the beneficial property that the device can be designed to operate
over a wide range of optical wavelengths. This is good for optical communications as the
important fiber wavelengths of 1.5 pum (minimum optical loss) and 1.3 pm (minimum
optical dispersion) are within the laser’s effective wavelength range.

The semiconductor laser is used for generating a modulated signal as an input to an
optical fiber. It is now possible to obtain gigahertz transmission rates [1l, 2, 3, 4]. Similar
devices known as semiconductor optical amplifiers (SOA’s) are being developed as an
alternative to electronic based optical amplifiers. SOA’s have no mirrors to set up a
resonant cavity and are therefore only single pass devices. In all other aspects however,
their design is similar to the lasers and so can be simulated with some of (but not all)
the tools developed in this thesis. Many researchers obtain SOA’s by simply applying an
anti-reflection coating to the mirrors of semiconductor lasers.

The first semiconductor lasers were essentially one semiconductor slab with an applied
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potential across it [5, 6, [7]. They were not practical to use as they required large input cur-
rents and had to be cooled to cryogenic (~ 5K) temperatures. Over the years, more com-
plicated structures have been developed (which require advanced fabrication techniques)
in order to decrease the current required and the need for such cooling [8] 0]. There is
still much research to be done in this field for additional improvements. Since the late 80’s
researchers have been studying the ”Quantum Well (QW) Laser” [10} [TT].

Z P-doped layer

Y«—I/'Xi_/

Electrodes

Heterostructure

A

/

Light output N-doped substrate
Figure 1.1: Schematic of a Quantum Well Laser

A schematic representation of a QW laser is shown in figure 1.1. A semiconductor
structure is grown in the z-direction on top of a base material known as the substrate.
A potential bias is applied in this direction which, with the doping of various layers,
causes a current flow into the shaded region of figure 1.1 labeled the ”heterostructure”. In
this region, electrons and holes recombine due to the interaction with an electromagnetic
field. The EM field propagating in the x-direction is selected and mirrors may be placed
perpendicular to this direction to set up the resonant cavity.

The heterostructure region is expanded in figure 1.2. Layers of various materials and
compositions are placed together to make up this structure. In this case, the so-called

separate confinement regions are constructed from InP. The well and barrier are both
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Figure 1.2: The Heterostructure Region of the QW Laser in fig 1.1

made from InGaAsP, those with superscript 1 have a composition In;_,, Ga, As, Pi_,,
and the layers with superscript 2 have composition In;_z, Ga,,As,,P1_,,. These subscripts
are used to denote the fractions of the various compounds in the layer. Since each different
layer has a different band-gap (the energy difference between the conduction and valence
band-edge), the potential profile shown in the energy representation of this structure in
figure 1.3 will be created.

The variation in potential energy creates wells and barriers. The carriers (electrons or
holes) localize around the wells. In addition to this, the layers are designed in such a way
that the dielectric constants vary and also cause the electromagnetic field to be confined
(although not as strongly) in this region. The favorable overlap between the carriers and
the field in the active region (area where lasing mostly occurs) gives a higher probability
of interaction than the original single layer devices. Less current is therefore required for
lasing and they therefore produce less heat. This type of laser is called a quantum well
laser because the wells are on the quantum scale ( ~ 5nm).

There are additional improvements that can be made. It is common now to add more
than one well to the structure [1}, 2, Bl [4], this is referred to as a multiple quantum well
(MQW). MQW lasers have the benefit of a lower threshold current and higher modulation

response than a single QW because a higher proportion of the carriers are captured into
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Energy
EM field

z /\

Electrons —»

Quantum Well

<+— Holes

Figure 1.3: Energy Representation and Electric Field Envelope Over the Heterostructure
Region of the QW Laser

active wells. Other developments include introducing strain into the system by lattice
mismatch between various layers [12]. This modifies the band-structure which can have
the effect of lowering Auger recombination and reducing differences in gain due to different
light polarizations, a very beneficial property for SOA’s [13, [14], [15] [16].

1.2 Purpose

The purpose of this thesis is to develop a physical model of the quantum well laser that will
be able to simulate many of the operating characteristics. It is costly and time consuming
to fabricate and test new laser designs and so it is desirable to simulate new designs on a
computer. Even if it is not possible to predict the exact operating characteristics of a design,
it can still be beneficial to come up with some ”quality factor” to weed out less promising
designs. These devices are complicated by various interactions which include photon,
phonon, coulombic and other many-body interactions. A number of simplifications and

approximations have to be made for any model to be computationally practical. Here, two



models will be developed to describe the QW lasers and some of their important operating
characteristics. Each of these have their strengths and weaknesses. The first model will
be referred to as the conventional model. It is based on some standard techniques and
combines two commonly used models that describe different aspects of the laser [12, [16]
17, 18, 19} 20, 211 22, 23] 24, 25} 26]. The next model will be referred to as the Wigner
function model. It is derived from general non-equilibrium Greens functions [27, 28] 29] 30),
311, 1321 [33], 34]. The models to be constructed in this thesis will focus on the area around

the heterostructure region where the quantum effects are most significant.

1.2.1 Conventional Model

The main attractions of the conventional model are the speed of calculation and the sim-
plicity of incorporating physical effects. It is a good model for an engineer who needs to
get a quick estimate of the characteristics of a design that is not too dissimilar to current
designs. In this approach the properties of the laser are roughly divided into two parts,
the spectral and dynamical properties. The physical basis for this is that the two parts
operate on different time scales, the dynamical being slower (on the scale of picoseconds to
nanoseconds, 107?s - 107%s) and the spectral faster (on the scale of femtoseconds, 10~'%s).
The spectral properties include gain, refractive index change and line-width of the laser.
Here, an expression for the amplitude gain will be derived. This equation is slightly differ-
ent than current expressions used as it does not require one to define explicitly the active
region [I7, I8 [19]. This is beneficial when barriers separating QW’s are so small that
coupling effects occur and a significant portion of the carrier wave-functions are not within
the wells. The dynamical properties are the transport of the carriers as they interact with
each other, phonons, and the electromagnetic field. Rate equations are used in this part
122, 23]. The spectral and dynamical parts are linked together because the rate equations
require the spectral properties as input.

There are a number of drawbacks with this model. Physical distinctions between various
effects have to be made. One distinction already discussed is the separation of spectral and
dynamical properties. Another is the designation of ”2D” and ”3D” carriers in the rate
equations [22] 23]. This is a delineation between carriers that are low enough in energy to

be within the well and those at energies too high to be in the well. This is a semi-classical
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approximation to a complicated quantum mechanical situation. There is also the logical
inconsistency that the spectral properties assume the carriers are in equilibrium (which is
certainly not the case or there would be no transport) and that there is spin-orbit coupling
while the dynamical part assumes the carriers are not in equilibrium and ignores spin-orbit
coupling. The potential profile of the heterostructure is also not correct which will become
apparent when comparisons are made between the heterostructures calculated by the two
different methods.

In addition to these logical inconsistencies, a major problem is that the physical effects
are incorporated in a simplistic and phenomenological manner. The biggest culprit of this
is the rate equations. In this case physical interactions are incorporated via effective time
constants. These time constants have to be calculated from other microscopic theories,
taken from experimental results, or curve-fitted. This is a major hindrance if one is inter-
ested in designing a novel device where it is not possible to estimate the parameters from

previous similar designs and so reduces the stand-alone predictive power of this model.

1.2.2 Wigner Function Model

The second model used in this thesis is based on non-equilibrium one-particle Greens
functions with their evolution described by Dyson’s equations [27, 28, 32]. It is intended to
make up for the shortcomings of the conventional model by treating all physical interactions
in a consistent manner via their self-energies. In this model, there are no distinctions
between spectral and dynamical properties or 2D and 3D carriers and the various transport
processes between them. Since interactions are treated more rigorously, there is less of a
reliance on phenomenological parameters and thus has enhanced predictive power.

The whole laser structure is too time consuming to model with Greens functions. One
therefore focuses on the heterostructure region in detail and models the outer regions as
blackbody reservoirs (particles that enter the heterostructure will come from a constant
equilibrium distribution, particles that leave the heterostructure region will be completely
absorbed by the reservoirs). By virtue of these boundary conditions, this is an open
and irreversible system (regardless of the types of interactions that occur within the het-
erostructure region). A more convenient method to model open system boundaries in this

case is to replace the Greens functions with Wigner functions by performing the Wigner-



Weyl transformation [27, B2, 34] (and later a Markovian approximation). The evolution
equations for the Wigner functions are derived from Dyson’s equations using this trans-
formation and are commonly referred to as the quantum Boltzmann equations (QBE).
They are referred to this way because in the limit of classical interactions, they reduce
to the classical Boltzmann equation (BE). This also means that in the classical limit, the
coordinates used for the Wigner functions become the classical phase space variables. The
classical limit of phase space is a tremendous advantage for formulating the open system
boundary conditions in this problem. If the boundaries are taken far enough away from
the most significant quantum effects, then it can be assumed that classical boundary con-
ditions are approximately valid [29, [31]. A common form for the BE boundary conditions
is in terms of in-going and out-going particles and this will be adopted here.

There are other benefits to the Wigner function formulation. Although care must be
taken not to think of the Wigner functions as a pure distribution function in phase-space
(due to Heisenberg uncertainty which manifests itself in the lack of positive definiteness
[29]), they are much more intuitive than the Greens functions. As Kadanoff states [35]
36] ”the most important consequence is the natural manner in which self-consistent field
theories appear in the simplest approximation such as Hartree-Fock and random-phase.”
Another benefit of the Wigner functions is, due to their BE form at the boundaries, it is
an easier matter to couple these to classical models such as drift-diffusion if it is desired
to model a larger system. This will not be done here as the focus is on the active region.
Other areas where Wigner functions have been used include nuclear reaction modeling
137, 138] and expressions of potential scattering cross-sections[39, [40].

The model to be derived is an extension of the Wigner function model of the resonant
tunneling diode[29, 3] B2, [41] which has also been used to describe some properties of the
QW laser[33] [42]. This is extended by adding interband coupling via the electromagnetic
interaction. As well, coulombic interactions and phonon interactions are incorporated
generally. There are other Greens function models[42] but they are often too complicated
to be practical for calculation. Other classes of models known as the Maxwell Bloch
and Semiconductor Bloch Equations incorporate some of these effects and they can be
derived by simplifying the QBE [43] 44, 45]. This model has a good physical foundation

to incorporate additional effects or to examine particular effects in more detail.
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The drawback of this model is the increase in computation time. Therefore, for practical
calculations, some interactions have to be simplified and dimensionality (we effectively
average out x-y dependence) reduced. This is done in a physically reasonable way so that

the specific details of the interactions that are deemed most important are kept.

1.3 Outline of Thesis

Chapter 2 summarizes some background theory in semiconductors and basic techniques
that are common to both methods. The thesis is then divided into two main parts. Part
I is a grouping of chapters that describe the conventional model. Chapter 3 describes the
calculation of the spectral property of amplitude gain. Chapter 4 describes the dynamical
properties and the basic model of the rate equations. Chapter 5 shows some results of
the spectral and dynamical properties calculated individually and together for consistency.
Part IT is a grouping of chapters that describe the Wigner function model. Chapter 6
derives the model starting with the non-equilibrium Greens functions and Dyson’s equa-
tions. Chapter 7 describes numerical implementation and presents some results. Chapter

8 concludes and discusses future work.



Chapter 2

Basic Semiconductor Theory

The technique of designing a heterostructure to meet desired requirements is known as
band-structure engineering [10} 11, 46]. Of importance to semiconductor lasers is the con-
finement of carriers and electromagnetic fields, the light output wavelength and polariza-
tion sensitivity. This chapter will discuss how to choose the compositions of semiconductor
layers such as in figure 1.2 to arrive at the desired profile of figure 1.3. Band-structure
engineering cannot tell exactly what the profile should be to obtain the desired output
characteristics. However, it can be used to obtain a good first guess on such properties as
the energy of maximum laser gain and carrier confinement. Given enough simulations and
experience, researchers can estimate quite well some of the operating characteristics with
just band-profile information. It is also fundamental to have this information for the later
detailed calculations.

In order to understand the principles behind band-structure engineering, it is necessary
to understand some basic theory of semiconductors. This chapter will summarize the
semiconductor theory required. The first section will discuss the carrier properties and the

second section will discuss the electromagnetic properties.

2.1 Dispersion Relations, Band Structure

The dispersion (energy-momentum) relationships will be analyzed by finding the eigenso-

lutions for carriers in the structures.
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2.1.1 Bulk Materials

A single, large layer is referred to as a bulk material. This will first be analyzed before the
heterostructures are developed.
The general Hamiltonian that incorporates the spin-orbit interaction is[12]
2

o=2r
2m,

+U(r) + o-VU(r) xp (2.1)

2,2
dmzc

where U(r) is the periodic potential due to the positive ion core background. It is assumed
to be static. The last term represents the spin-orbit interaction, o are the Pauli spin
matrices.
It is desired to find the eigen-solutions of equation (Z.1)). The n'* eigen-vector is assumed
to be of the form _
oikr

Unx(r) = Wun,k(r) (2.2)

where u, k(r) is the Bloch function, a normalized function periodic in the unit cell defined
by the periodicity of U(r). The subscript n represents the band index and includes spin.
Thus the solution is a plane-wave in box-normalization modulated by a periodic function.

Using this, the eigen solution to equation (2] can be written as

PR v+ Mk o VU (o4 K| ) = B00une) (23)
2m, my 4m2c? " " " '
This equation is difficult to solve exactly so generally simplifications and perturbative
solutions are applied. The perturbation expansions are around band extremums (k,) and
are referred to as the k - p method [47, [48].

The term E,(0) is the band-edge energy and is the eigenvalue solution Hu,,o(r) =
E,(0)uy0(r). The Hamiltonian can be difficult to diagonalize as U(r) in equation (2.1)) can
be complicated depending on the molecular model used. In practice, researchers do not
calculate this, but use commonly accepted values (deduced from experiment or previous
detailed calculations) of the band-gap. E, = E.(0) — E,(0) is the difference between the
band-edge energy of the first conduction and valence bands, . This is sufficient here because
for laser calculations of a single layer, only the difference between band-edges is important,

not the actual value of the band-edge.
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Parabolic Approximation

The first approximation to make is to ignore the spin-orbit interaction and to apply the

k - p expansion. To first order the periodic function is

hk - P/
Up i (T) = Uy o(T) + [ ’ ] (2.4)
2 i, (Bl - )
where u,, is the k = 0 solution which can be found by standard methods, py, =
J ), o ()P o(r)d’r and Q is the unit cell.
Q
The energy must be expanded to second order (the first order does not exist)
E(k)—E(o)+h22 L) kk (2.5)
" - r 2 " m* ) s o ‘

where «, § range over the x,y, 2z directions and

a B B«
1 ) 1 j :pnn’pn’n+pnn’pn’n
— 5 ,ﬂ+ ) 3 3 )
<m* ap Mo [ * =, E,(0) — E.(0)

7)o

isotropic approximation. The diagonal term is defined as

()=
m* a’a_m’&

and called the effective mass. It is now apparent why this is referred to as the parabolic so-

The inverse effective mass tensor ( is diagonal (o = (3) in the principal axis for an

lution, the energy dispersion is parabolic in the momentum. An example of this dispersion

is graphed in figure 2.1.

The Luttinger Kohn (LK) Hamiltonian

In this case, the spin-orbit terms are included in the Hamiltonian. A k - p expansion is
once again used [12, [49]. Upon examination of equation (23)) it can seen that at the band
extremum, the solutions are of the Hydrogen Atom form. For that reason, a basis of s
orbitals near the bottom of the conduction band and p orbitals near the top of the valence

band are chosen :
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Conduction Band

Ec(0)
k E

RAO)

Valence Band

Figure 2.1: The Band Dispersions for the First Conduction and Valence Bands in the
Parabolic Model

s orbitals:
{]iS }> [iS 1>} (2.6)

which is the spherical harmonic for total angular momentum = 0. The symbol 7 in this

case is v/—1.

p orbitals:

)= A (X +iY) 1) W
% (X +Y) 1) +1/31(2) 1)
5,3 = HIX =) b+ /21(2) 1)
LR =HIX -1 )

which are the spherical harmonics for total angular momentum = 1.

The s and p orbitals shown here are degenerate in energy. The two other p orbitals
will be ignored because their k = 0 energy is offset from the other p orbitals by such a
value so that they are assumed to be uncoupled from the rest of the orbitals in a first

approximation. This is known as the 4x4 LK approximation.
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It is assumed that the energy gap between the s and p orbitals is large enough that
any coupling between them is negligible. Therefore, the conduction band electrons are
completely described by the s-orbitals and can once again be modeled with the parabolic
approximation and have solutions using equations (2.4) and (2.5). The k - p expansion of

the 4x4 LK Hamiltonian for the valence bands under consideration is

P+@Q -S R 0
—S* P-Q 0 R (28)
R* 0 P-Q S '
0 Rt S+ P+qQ
where )
Iy 2 2 2
P = k k k
Qmo ( X + Yy + Z)
h272 2 2 2
= -2
Q o, (k2 + k; k2)
h2 2 2 -
R= o [=\/(3)7 (B — 2) + i2v/37sk, b,
2m,
h2
S = B3 (ky —ik,) K, (2.9)
mO

The Luttinger coefficients (7;2,3) can be determined from expressions similar to that of
the effective mass, but there are standard well documented experimental values that are
normally used. These are listed in Appendix A.

An example of energy dispersion for this case is shown in figure 2.2. The different bands
are labeled by their properties. The bands |3/2,£3/2 > are called heavy-holes (HH) and
13/2,£1/2 > are the light holes (LH) because in the case when k, = k, = 0 (momentum
transverse to the growth direction) the Hamiltonian is parabolic and the HH effective mass

(deduced from the band’s curvature) is greater than the LH effective mass.

Mixed Compounds

The eigen-solutions above apply to any semiconductor material. Normally however, the

parameters such as effective mass and Luttinger coefficients are only given for ”pure com-
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Conduction Band

Ec(0)
k

z E

EAO)

Heavy Holes ( |3/2,3/2> , |3/2,-3/2>)

Light Holes ( |3/2,1/2>, |3/2,-1/2>)

Valence Band

Figure 2.2: Band Dispersions for the First Conduction Band in the Parabolic Model and
the First Four Valence Bands in the LK Model

pounds”. That is GaAs, InP, GaP and InAs in the cases required here. For mixed com-
pounds such as InGaAsP, which is shorthand for In, Ga;_, As, P;_,, the common practice

is to interpolate all parameters except for band-gap by the formula

P(A,Bi_,C,Di_,) = wyP(AC)+ (1 —z)(1 —y)P(BD)
+ (1 —-2)yP(BC)+z(1—y)P(AD) (2.10)

where P represents some physical property other than band-gap. For the band-gap, this
interpolation is not sufficient, what is required is to actually solve equations (Z3) and
(28) for the compound of interest. This has been done and phenomenological curve-fitted
expressions of these are commonly used [25] [46]. For InGaAsP the band-gap energy is

often given by [25]

E,(z,y) = 1.35+0.642z — 1.101y + 0.758z” + 0.101y?
— 0.159zy — 0.282%y + 0.109zy?eV (2.11)
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2.1.2 Heterostructures

The previous section discussed the eigenvalue problem of a single layer. The actual devices
however, have a heterostructure with multiple layers. It is necessary to determine the eigen-
solutions of the heterostructure. A simple schematic of some layers of a heterostructure

with the pertinent parameters is shown in figure 2.3.

layer i layer i+1
m; M
i Y1
Zi
7

Figure 2.3: Schematic of two Layers of the Heterostructure

Effective Mass Theory
Parabolic

Effective mass theory [12], neglecting spin-orbit interactions, shows that the eigenfunction
of the Hamiltonian for a heterostructure is no longer given by equation (2.2)) for a single

layer, but can be replaced by

etkLxL
U (5) = F(2) ) 212
where F),(z) is the envelope function and is the solution of
n o
— + V(2)| Fu(z) = E,F,(2) (2.13)

2mi(2) d2?
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where V(z) = E,(0;2), the band-edge potential of each layer. The effective mass and
band-edge potential have been given a z-dependence for future convenience. If z is within

the position of layer i in figure 2.3, then mj (2) = m;, ; and V(z) = E,;(0).

LK

When the spin-orbit interaction is included, a similar procedure to the parabolic method

can be employed. The effective mass theory in this case gives the eigenfunction solution

eikJ_'XJ_

Yn(r) = Xa: Fa(z)ﬁua,o(r) (2.14)

where the envelope functions are the solutions of

P+Q+V =S R 0 Fy/s Fy/s

St P-Q+V 0 R Fip | _p| Fir

Rt 0 P-Q+V S F_yi F_yi

0 RY St P+Q+V || Fop F_y)s
(2.15)

Each of the terms has a z dependence. Similarly to the parabolic case of the position
dependent effective mass. The P, Q, S, and R terms incorporate now position dependent
Luttinger coefficients. The total spin index of 3/2 has been dropped for simplicity as all

these subbands have it.

Band offsets

Effective mass theory requires knowledge of the portions of the bandgap energies given
to the conduction and valence bands. Unfortunately data provided is only for the total
(conduction plus hole) band-gap. For a single layer this was not a problem. For the
heterostructure however, it can make a large difference to the structure’s potential profile
as shown in figure 2.4. How a layer’s bandgap is positioned with respect to the other layers
is given by their band offsets which is labeled by A;,, for each layer in figure 2.4[12, 25].
It is therefore required too have a theory to determine these offsets.

A common approximation for the offsets is A./E, ~ 0.7 for AlGaAs materials and

A./E, ~ 0.4 for InGaAsP materials. There are also complicated semi-empirical formulas
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layer i layer i+1

it 1)

m

DV,i—H

Ei+10)

Figure 2.4: Potential Profile for two Layers of the Heterostructure of Figure 2.3

employed such as model-solid theory[12, K] and Harrison’s model[51, 25]. Often tables are

simply referenced from data generated for these models[25].

Strain

A technique that is very important in band-structure engineering is the introduction of
strain. This is caused by placing a semiconductor layer next to another layer with a different
lattice constant. Assuming the lattice mismatch is not large enough to cause dislocations,
an extra stress will be introduced in the system given by the Coulomb relations between
strain and perpendicular stress. This is incorporated into the model by adding a stress-
energy tensor to the Hamiltonian. For uniaxial strain this results in a modification of the

Hamiltonian for the conduction band as[12]
H — H+0E,, 0E. = a.(c45 + €yy +€22) (2.16)
and for the valence bands this is accomplished by replacing the terms in the Hamiltonian

P5P+P,Q—Q+0Q. (2.17)
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b
PE = _av(gasa: + Eyy + 522) ) Qa = _5(5:0:0 + Eyy — 2522)

where
€z = Egy = (a — a,) €az = 2—0126
TTr - 2z — TT
vy a ) Cll

a, is the lattice constant of the substrate (size of the unit cell, data shown in Appendix A)

(2.18)

and a is the lattice constant of the layer. Cis, C; are the coulomb coefficients. Figures
2.5 a-c show how the strain changes the band dispersion. Looking at the band-edge LK
Hamiltonian, that the band-gaps will be different for the light holes and heavy holes.

R
NN AN

LH  HH LH  HH

Compression a>a No strain a=ag Tension a<a

a b c

o

Figure 2.5: The Sketch of Conduction and Valence Band Dispersions for Three Different

Strains

Ee—un(z,y) = Ey(z,y) + 0Ec(x,y) — 6Exn(z,y) (2.19)
and
Ee_ru(z,y) = Eg(x,y) + 0E:(z,y) — 0ELu(x,y) (2.20)

where §E, is the modification in equation (2.16) and

0Eyg = —P. — Q. , 0By = —P. + Q-
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2.1.3 Numerical Methods for Eigen-solutions

This section will discuss the numerical methods used to solve equations (2.13) and (2.15)).

Parabolic

This is handled by a simple finite difference method and then solved with matrix methods.
It is assumed the wave-functions have periodic boundary conditions. The Hamiltonian of
equation (2I3) will not be Hermitian in the finite difference approximation. In order to
ensure the Hermicity of the Hamiltonian which must be the case [52] and therefore the
realness of the eigen-values some of the terms must be modified so that they will retain
their Hermicity in the numerical formulation. This is accomplished by making the following
replacements [53):

0? 0 0 0

A(z)@ — aA(z)% , A(z)=— —

LK

This can also be done by finite difference methods, but it was found to be more convenient
and less time consuming to solve using a plane-wave expansion[53]. To begin, expand the

following variables in a Fourier series

n=N iKnz n=2N iKn2 n=2N iKn2

Fa(z) = Z fa,neﬁa VV(Z) = Z Vu,n% ) Vz(z) = Z f)/i,n% (221)

n=—2N

where K, = 2 and o = {3/2,1/2,—1/2,—3/2} Substituting this into equation (215,

e—an/z

L
multiplying by [ N and using orthogonality relations gives
0

[Ez'/z] [=Swn] - [Bwa] 0] - [f3/2.0] [f3/2.0]
=St [Ev] 00 (Raad || [fien) [Fio]

™| =(E-E, ’ 2.22
we) 00 2] sl || o | e |2
0 [RR) [sn) [me] | L F-ay2.]
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where
Ez’/z = Pn’n + Qn’n =+ Vn’n , E1/2 = Pn n Qn’n —+ Vn’n

n'n

The brackets around each term in the plane wave expanded LK Hamiltonian indicate that

each is a matrix in n,n’. These have elements
Pn’n - Vl,n’fn(ki + k; + Kn’Kn) + PE

Qun = Yo —n (kg + ki — 2K Kn) + Q-
S = V3Ys (ke — iky) (Ku + Ky)
Rum = —V3%an (k2 — k2) + 12V 373 _n ko,
Vipn = Vo' 5 Vjnm = Vjn—n
The terms [f,,] are column vectors of the components of the envelope functions and n, n’
go from —N — N, the smallest number that will give accurate results. To find the

total eigen-functions, diagonalize equation (Z.22) to get the m' envelope eigen-function

[ fa,n,(m)]. The complete eigen-function is then

m(kL,T) Z Fra(my€ " g (r) e (2.23)

2.2 Electromagnetic Waveguides

In addition to the carrier confining properties, the structures also have wave-guiding proper-
ties due to the different refractive indices of each layer. These are an important component
of the semiconductor laser as it is necessary for mode stability and improves the overlap
with the carrier wave-functions. The electric and magnetic fields will be derived here from
the source-free Maxwell’s equations. The laser is not source-free, but this makes a very
convenient basis to expand the later Maxwell’s equations with sources.

Maxwell’s equations for source free time-harmonic equations are[12] [54]

V x E° = —iwp,H° (2.24)

V x H? = iwe ,cE’ (2.25)



21

where w is the radian frequency, ¢ = n? is the relative permitivity. The superscript o
denotes these as source-free (homogeneous) solutions. In general, the electric and magnetic
fields will be of the form

Eeo(r,t) = Y ES(x t) , HO(e,) = 3 HES(x, )

w,B w,B
ez’ﬁeriwt

1) = 2P () o (2.26)
ei,Bx-i—iwt

op (1) = higGus(2) (2.27)

VST
where « denotes the coordinate directions, f is the propagation constant, S is the area
normal to the z direction and T is a large length of time (for normalization purposes).
For the structures of interest, y dependence can be neglected. The functions F,3(z) and
Gp(z) are normalized functions to describe the dependence in the transverse direction. It
is the purpose of this section to derive these functions as well as determine the propagation
constant. This will be accomplished by using a propagation matrix method for the TE
and TM modes (to be defined).

2.2.1 TE Modes

In the TE mode, E*® = E** = HY> = 0. Substituting equations (2.26) and (2.27) into
—iB’z—H'u’t

and then multiplying by [ dedydt“——— gives
VST

a o - xo
geff]ﬁFwﬂ(z) = —iwpohg3Gus(2) (2.28)
a o - o
wﬂoghwﬂGwﬁ(Z’) =7 [62 — w2u0506] eff)ﬁFwﬁ(z) (2.29)

There are many ways to solve this, the method used here is based on [55]. Define two new
functions U(2) = e/3F,5(2) and V(2) = wuohl3Gup(2) then equations (Z.28) and (Z29)

can be rewritten as p
%U(z) = —iV(2) (2.30)
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d o
EV(Z’) = —ik“U(2) (2.31)

where k2 = w?ji,e,e — 3% The solutions of this are of the form

U(z) = Ae "(z72) 4 Beir(z—2) (2.32)

V(z) = Ce z7%) 4 peirlzz) (2.33)

They are written in this form because it is assumed the values at z = z, are known. The
solution will be written in reference to this. Substitute equations (Z32) and (233) into
equations (2.30) and (231) so that equation (2:33) can be written as

V(z) = kAe 2 _ g Bein(z-20) (2.34)
The value at z, is then
U(z,) = A+ B, V(z) =rkA—kB (2.35)

Equations (2.32) and (2.34]) are rearranged to solve for A and B. In matrix form this is

U(zo) | | coslr(z —2)]  Lsin[k(z — 2,)] U(2)
Viz) | [ iksinfk(z — z,)]  cos[k(z — z,)] V(2) (2.36)
or inverting,
Uz) | cos[k(z — 2)]  —Lsin[k(z — 2,)] Ulz,)
Viz) | [ —iksin[k(z — 2,)]  cos[k(z — 2,)] V(z) (2.37)

Equation (2.37) is the propagation matrix solution.
The above work is for a single type of material and must be generalized to a multi-layer

structure as shown on figure 2.6. Make the replacements

U(z) = Ui(z) , V(2) = Vi(2)

2 2 2 2
K™ — K = W loEoEi —
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layer ¢ [+1 ' 2 |
Constant
Constant substrote
cladding
-— —
Z{“)C_]f ﬂ I (lzm (I L4, =4
C Z, oz 7, !
0 it1, Io % «—

Figure 2.6: A Schematic Representation of a Multi-Layer Dielectric Structure

where the subscript ¢ denotes each layer. Using equation (Z37) in this generalization, with
known values at z1,, values of the fields up to position z;, can be determined. Since the

transverse components of the electric and magnetic fields are continuous across boundary

at 21,
w@»]: mwm]:[ coslri(z1, = 21,)] =5 sinlr (21, — 21,)] mww]
Va(22,) Vi(zi,) —ifysinfki (21, — 21,)]  cos[(k1(21, — 21,)] Vi(z,)

This can then be applied to find the values in the next layer. In general, U and V at a

position z; in layer ¢ are given by

Ui(2) . i _ Ui(21,) | M M2 Uy (21,)
V;(Zz) _J-I_IIMJ V1(Z1o) ] B [mm mog V1(Z1o) ] (2‘38)
where .
cos[k;(z; — 2j,)] —-Lsin[k;(z; — 2;,)] Ui(zj,)
M, = " .
/ [4wmw¢%—%n cosl(i3 (35 — 2, W@»] (239

and for j <, use z; = zj,.
The first and last layers are known as the substrate and cladding. For a waveguide,

these layers are chosen such that there are guided modes (the dielectric constant in these
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layers is greater). Therefore, the electric field decays exponentially out of the boundaries
of these layers. Let z; = 0 and z,. is at the interface between the cladding and the second

last layer. The wave-functions will then behave as

Us(z) = Age™® | Vi(z) = iasAe™® 2 <0 (2.40)

Uy(z) = Ace @E72) | Vi(2) = i Ae %) 2> 4, (2.41)

where o; = \/|k?|. The second terms in these equations comes from using equation (2.32).
By equation (2.38)) the relation between the cladding and substrate fields is

Ay = my Age™(B17%10) Lo A e (B2 (2.42)

—ie A, = Mg Age @1 10) 4ompoar Age @B 710) (2.43)

With the appropriate values of m;;. Combining these two equations and eliminating the

common factors gives the relation
iozcmu + Q.M — Moy + ia5m22 =0 (244)

The only unknown in this equation is the propagation constant. Once the propagation
constant has been found, the fields can be determined. For convenience, start with the
assumption that A; = 1. It doesn’t matter what value is chosen as the fields will be
normalized in the end. With the knowledge of propagation constant, all that is necessary
now is to apply the propagation matrix of equation (2.38) to find U(z) and V'(z). Finally,
substitute these back into the relations for the electric and magnetic fields. Normalizing
will then give F,5(2) and Gug(2).

2.2.2 TM modes

These are very similar to the TE modes. In this case, the components of the field that are

zero are H" . H?*° and EY°. Define the functions

U(z) = hZ%Gwﬁ(z) , V(2) = weoegzFlp(2) (2.45)

all equations will then be the same as for the TE modes if the replacement x — —% is

made.
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2.3 Summary

This chapter describes some standard basic theory used in later chapters for both the
conventional and Wigner model. The major points covered are the calculation of the band
dispersion relations and eigenfunctions from band-gap properties and the electromagnetic

envelope functions from the dielectric properties of various structures.



Part 1

Conventional

26
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The conventional model refers to methods that are often used to describe the character-
istics of lasers and SOA’s. In this part, aspects of the conventional models will be discussed.
These break down into two main areas. The first is known as the spectral properties. This
deals with calculations of properties that are approximated as equilibrium functionals of
the carrier density such as gain, spectral line-width and spontaneous emission. In actuality,
the system is not in equilibrium, but it is assumed that these functions will not be greatly
affected by this. The spectral property of interest in the work is the amplitude gain. The
second main area is referred to as the dynamical properties. These are assumed not to be
in equilibrium and will describe how the carriers vary as a function of injected current.
This area will also calculate the light output of the laser.

These two areas can be used in conjunction with each other because the major input
required for the dynamical model is the gain as a function of carrier density. Often however,
the dynamical model will just use a simple approximation of the gain to speed calculations.

In chapter 5, both cases will be shown.



Chapter 3
(Gain

The gain describes how the amplitude of the power changes as a function of time. It is the

term g, in the formula
P, = P,,e%! (3.1)

Where « refers to the laser mode and P,, is the power’s initial value which can also be
determined with the gain and some other key parameters (discussed in chapter 4). This will
be derived for the TE and TM modes of a QW laser or SOA and is calculated by finding
the first-order perturbation of the electric and magnetic fields due to the interactions with
the electrons and holes. It will be required to solve Maxwell’s equations to determine the
models of the laser and the Heisenberg’s equation for the density matrix to first order for
the perturbing interaction of carriers and the light field.

The derivation here differs from most in that it does not require a definition of an active
layer, a region where all lasing interaction occurs[I7] [18] [19]. It is roughly the size of the
QW but corrections must be be added to take into account the incomplete confinement
of carriers to the well. The freedom not to define an active layer is important for coupled
quantum wells where the exact active regions are difficult to determine because of carrier
leakage into the barriers. This model is a generalization of Aversa and lizuka’s model for

QW lasers in the parabolic approximation[17].

28
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3.1 Maxwell’s Equations for Active Modes

Maxwell’s Equations for a system that is not source-free are

0*E(r, 1) OE(r,t) 0*P(r, t)

2 —
VZE(r,t) = p.e(2) RIE + oo 5 + Lo ETE (3.2)
0*H(r, t) OH(r, 1) OP(r, 1)
2 _ ) Y )
VH(r,t) = poe(2) 9 + 11,0 g V x g (3.3)

where P is the polarization. For a TE field, V - P = 0 exactly and for a TM field, the
approximation V - P & 0 is commonly used [I7]. The term o accounts for the losses. The

interaction with the carriers is incorporated by the polarization which is calculated below.

3.2 Polarization

The polarization density is related to the macroscopic current density by

OP(r,t)
ot

There are other methods that can be used to define the polarization, but this method will

= J(r, %) (3.4)

prove to be useful here because it will enable a definition of the polarization in terms of

the momentum matrix elements which are well-defined for the various LK bands.

3.2.1 Current Density

The macroscopic current density can be related to the microscopic expectation value by

I(r,t) =< j(x,)) >= > <alp®)|8 >< Bli)|a >= " pap(isalr)  (35)
a,8 a,8
where a and 3 represent states in the system, p(t) is the density matrix operator. To first

order, the microscopic current operator j(r) is[52]

ﬂﬂ:QZJMr><ﬂ+h><ﬂm (3.6)

where p = ¢AV is the momentum operator.
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Optical polarization is due to the transitions between bands, specifically between con-
duction and valence bands the intra-band transitions are not of interest because they are
not close in energy to the laser light output. Therefore, the only components of the macro-

scopic current required are the off-diagonal components

I(,1) =Y (pe()ve(r) + pue(D)ies(r)) (3.7)

c,v

where ¢, v denote the states in the conduction and valence bands. In this case, these can
be simplified to (Appendix C)

Jue(r) = mi <wvlplr ><rle> | jeu(r) = mi < ¢lr ><r|plv > (3.8)

o o

3.2.2 Density Matrix Evolution

The general equation for the evolution of the density matrix from Heisenberg’s equation

of motion is[52]

dp i
2= " H 3.9
or = 7 »H (3.9)
From equation (3.7, the required off-diagonal components are to first order[12, [15]
_apa, t Z Z 0 0 ’ 1

The diagonal elements are assumed to be close to equilibrium and therefore do not need

to be solved by this equation. They are modeled by the equilibrium Fermi distribution

P20 = fa= m, E is the Fermi energy. The perturbed part of the Hamiltonian
’ e

is the electromagnetic interaction in the Coulomb gauge (V - A = 0)

H. (1) =< o H'|j >= —mi/dBrA(r,t)- <alplr ><r|g > (3.11)

o

where A(r) is the vector potential.
A common technique that will be used throughout the chapter as well as in later
chapters is to expand time-dependent variables into the relatively few modes of interest.

twt

X(r,t) ~ wa(r,t)% (3.12)
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where X (r, ?) is some time-dependent function. This is not a complete Fourier expansion so
that there will still be some time dependence of the coefficients x,(r, t) however, this time
dependence is assumed to be slow compared to the time variation of the exponential term
in equation (BI2). This technique will be referred to as expanding in the slowly varying
components. T is some time that is large compared to 27/w but z,(r,t) is approximately
constant over this time[T5].

The vector potential A(r,t) is expanded into slowly varying components, i.e. A(r,t) ~

S au(r,t) e\l;ft. If the off-diagonal densities used in equation (B.10) are also expanded into
w/

slowly varying components, then substituting equation ([B.I1)) into (3.10) and multiplying
T2
byt { , dt¢ ﬁt will give the approximate relation

. (Ba = By + hw +ih/7)(fa = [3)

ofwl(t) = aBwlt 3.13
P By ( ) (Ea . Elﬁ + hCU)2 + h2/7—2 B, ( ) ( )
between the slowly-varying quantities
, q 3 eiwt
Hopo(t) = ——— [ d’ray(rt) <alplr ><x|f > pagel(t) = ﬁpa,ﬁ(t)dt

The optical transitions of interest will have an energy close to the band-gap energy

(hw ~ E. — E,) so that, the only non-negligible terms for the density matrix are

_ (E. — Ey, — hw +ih/T)(fe — fo) o —iwt
)= a12>:0 (E. — B, — hw)? + h?/72 Hepp () JT (3.14)
poe®) =Y (By — B, — hw — ih/7)(f, — f.) 70 pitt )

(B, — B, — hw)2 + h*/72 VT

The gain of equation (B.J]) will eventually have real and imaginary components. The real

w>0

part will determine the change in the amplitude of the power and this is the term of primary
concern here. For this part of the gain, it can be shown that only the terms with ifa/7 will
survive (all that is required is to keep all terms throughout the derivation to see this). For
convenience then, all the other terms will be ignored.

Substituting equations (B.I4)) and (BI5)) into equation (30) gives the current
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ih(fe— fo)/T ) e Wt ) et ]
I(r,t) = H., ()% —j.—H. ()=
=0 c;o (Ee — B, — hw)? + 1?72 S VT eul ) e

Z Zh(fc - fu)/T q2
(B, — By — hw)2 + 1* /12 m2y/T

c,v,w>0
— [[ #*ra_ (v, t)- < c|r' ><¥'|p|v >] < v|p|r >< r|e > e (3.16)
— [[ @r'a,(r',t)- < v|p|r’ ><1'|c >] < c|r ><r|p|v > ™! '
3.2.3 Polarization Component

Recall that the polarization is related to the current by equation (B.4]). It will be required
in the following section to find the slowly varying component of the polarization p,(r) =

t+T/2 . t+T/2 .
i \/ﬁ P(r,t). Multiplying equations (3.4) and BI6) by [ dt“ —~* and equating them
1=T/2 t=T/2

gives a relation for the slowly varying components of the polarlzamon

v Z Zh fc fv)/T (]2
(B, — By — hw)2 + 1 /12 m2y/T

pw =

cvw>0

<cr' ><r’ >l < >< >
% /d3r'aw(r',t) . [ C|I‘ ,I‘ |p|Ul ] U|p|I‘ I'|C (317)
+[<v|p|t ><1'|e >] < c|r >< r|p|v >

3.3 TE, TM modes and Power

The gain will be more precisely defined shortly. For now, an argument based on the power
from the Poynting vector is used[12) b4] to simplify the analysis by reducing the number
of equations from [32) and (B3) that are necessary to solve. The power intensity of the

laser is determined by using the complex Poynting vector
S(r,t) = E(r,t) x H*(r, t) (3.18)
Of interest here is the x component as this is the direction of output from the laser facets.

S¥(r,t) = EY(r,t)H**(r,t) — E*(r,t)H*(r, t) (3.19)
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For the TE modes only the £Y H** term is non-zero because £ = (. The Maxwell equation

0
VXE=—-—B 3.20
5 (3.20)
and the assumption of negligible variation in the y direction gives the relation
0 0
— P~ —p—H* — H®* «c EY 3.21
oz Hor = (3:21)

Therefore it is only necessary to solve for the gain of the EY component to describe the
power output of the TE mode. Similarly, for the TM mode, the power is —FE* HY* and by
the relation

0
VxH=—=D 3.22
o (3.22)
again with no variation in the y direction,
3Hy—g(sEZ) — E* o« HY (3.23)
or Ot '

Therefore it is only necessary to solve for the gain of the HY component to describe power
output of the TM mode.

3.4 TE Modes

To solve for the y component of equation (B.2) the field is expanded in the orthonormal
basis of the passive modes of equation (2:26)

ei,Bx-i—iwt

B (r,1) = 3 elp(t) Fus(2)
%; VST

where (3 is the propagation constant of the passive modes described in section 2.2. The term

(3.24)

egﬂ (t) is the slowly varying component of the TE field in the passive modes of equation
(2228). The y component of the polarization will also be expanded in these modes

6zﬁm+zwt

PY(r,t) = pYs(t) Flup(2) —— (3.25)

Since €” 5(t) and Y 5(t) are slowly varying, only terms up to the first derivative will be kept.

Actually, only the zeroth order component of pff}ﬁ(t) will be kept because the polarization
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is already assumed to be small. Substituting these into equation (3.2)) and performing the

derivatives gives

. iBx+iwt
g;pm@wwm+Wﬁ@w%Ew@]i@Te%m
eiwt-l-iﬁa: ) ) )
— Z WF%B(Z) (1102 (2) (2iwef’uﬁ) + o0 (ef{)ﬂ + iweiﬁ) — flow pffjﬁ] (3.26)

wp
For functions in z, the over-dot signifies a derivative wrt z. In time, an over-dot signifies a
derivative wrt time. Two over-dots signify the second derivative.
The LHS of equation (B.20) is just the source-free homogeneous equation and hence is
zero. Multiplying the RHS by

t+T/2 L Bt
dtd®rF*(z),, (3.27)
[ [ e o
t—T/2 0
reduces this to
e’ 5 (£2iw + 0) + iowe — w’ply =0 (3.28)

where £ = [ dz|F,5(2)|?c(2) It is assumed 0? << w?&* (low losses) so that equation (3:28)

can be rearranged to

o o e y w o y
MN—GE%wJ%V(%—Eﬁ%ﬂ (3.29)

If the last term of equation (3.2) is written as g/ e’ ,/2 then the solution to equation
(B:29) would be

_ (a+u)t/2 . g . g
elg(t) = elly(O)el T o =2 (F —iT-) (3.30)

Expanding EY and H? into the slowly-varying and passive mode basis, it can be shown

from equation (B:2I) that the components are related by

oe(t) = —els(t)
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If this is substituted into equation (B.19), the power is

<S>(T) =) —(els(D))?

wp

— Z 2,(= atgl )T (3_31)

which is of the form of equation (B.I)) so that the term g7} is the power gain of this mode.
The term « represents the losses.

The purpose of this section is to find the relation between e ;(t) and p4(t) so that the
above definition of ¢F can then be made. Again, only the amplitude component of the
gain will be considered and thus only the real part of g/ is used.

To find the relation between e 4(t) and pls(t), equation (BIT) is analyzed. This is

multiplied by fd?’er/B(z)e:/lgm

—zﬁ:v
p“”ﬁ( ) wm2 Z (E.— E, — hw + h2/72 '

<clr ><r'|pYlv >< v|pYr >< >
+ < vplt! ><t|e >< c|r >< r|pY|v >

The only non-zero component of the vector potential is a? because E = —%A in the
Coulomb gauge.

The vector potential is also expanded into the previously discussed passive mode basis
al(r,t) =) Fw,g(z)ﬁag,ﬁ(t) (3.33)
so that equation (3.32)) becomes
L at) = e 1) /d3d3’ Fo5()F;
pw,ﬁ( ) wmQTS' Z E E . hw)2 —|—h2/7'2 ra-r %: B (Z) wﬁ(z)

- <clt' ><r'|pY|lv >< v|pYlr ><rlc >
e~ Bz tifs’ o ﬁ/(t){ C| |p |U U|p | |C } (334)

+ < v|p!|t! ><rt'|e >< clr ><r|pY|v >



36

The states ¢, v are now written more explicitly as {n, k., s.} and {n,,k, ,a}. where s,
are the two S-spin states of the conduction band and « are the LK subbands. Using the
expansions for these states from equations (ZI2) and (Z23) so that equation (334) can be

written as

v hq” (fo.(ke) — fu, (ko))
pw’ﬁ(t)__wmgTS?’L Z (B, (k.) — E,, (k,) — hw)? + h? /72

(3.35)

ncyn’vka7k’U
X /d3rd3r’ZFw,ﬁ/(z’)Fjﬁ(z)ei(ﬂ'm'ﬁw)afi’ﬁ,(t)
ﬂ/

cx () i(ky—k 1Ky 2!
Fc(z)e(“ o)X’ giKm Jrma nv)
c —i(ky—ke)x ,—iK, 12
n

X E Py Pl <5, ”(Z)e( © o (n )
Sc,al” s, Ccx i(ky — zK 123
m,m’ o, ,s¢,s. +FTLC (2)6 ’ \ f
c —i(ky —ke)x' ,—iKp 2
XFTLC (Z )e ’ ‘ " fm,a:(nv)

o hq® (fre(ke) = fu, (ko))
~ wm2rlL Z (B, (k.) — E,, (k,) — hw)? + 7?72

Ne,Moy Ke, Ky

/ dzdz’ ZFw o () Fos(2)al 4 (t)

X Z py py,* , FC*( ) Ko fm anvFﬂC,c(z)e_ZK ' m/ anvéﬁﬂ 6kv;kc -8
se,at sl o Fﬁ:( ) iK,, ,me’,a nanc( ) —iK 2 f;l anv(Sﬁﬁ 5kv,kc+,3’

m,m’ ,a,a’,sc,s.
where p! = [ d’ru} (r)p?ul(r) are the momentum matrix elements shown in Appendix

cell
A.

The photon momentum () is negligible compared to the carrier momentum so that

the common approximation k. ~ k, = k (known as k conservation) is used. This simplifies

equation (330)) to

(fne (&) = fu, (R 32 DY L5 Fimam) (K[

hq2 m,o,s
Y =—— : st 3.36
Pls(t) wm2r Z (E,.(k) — E,, (k) — hw)? + h? /72 au,s(1) (3:36)

Ne,Ny,k

where )
1Kz

VL

e

1 = [ dFas R
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Substituting the momentum matrix elements of Appendix A into the absolute value
term of equation (B.36) and averaging over the azimuthal angle (¢) in the plane of the
QW’s[12] reduces this term to

> My

[0}

Z Incmfm a,( nc)(k)

m

2
X MY ~ P?X these are described in Appendix

where, near the band-edge MY Cil/Q

A.

i3/2 ~

3.4.1 TE Power Gain

In the Coulomb gauge, the relation between electric field and vector potential is E(r,t) =
_8A(r,t)

57~ which gives a relation between the slowly varying components in this basis

ens(t) = —iwag,(t) (3.37)

w

ethr 7
t) = F,3(z a’ (t)=——F,3(2 e’ (t 3.38
)= 3 Fasle) 1) = = s 0 3.39)
so that equation (3.35) can be written as

(fue (k) = fu, () 32 ME| S I55" finan) (K)

Pl 4(t) = —iCy Y (En. (k) — Ea (k) — ;Z,)g Ry el 5(t)  (3.39)

where C, =
Substituting this into equation (3.26]) then gives the gain

e ) B R S M S I o ()
o I B

. This is the desired relation between e 5(t) and p,s(t).

wm2

(3.40)
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3.5 TM Modes

The derivation of the TM gain follows similar arguments to the TE gain except for some
technical differences. The relation that will be important for this mode is the y component
of equation (B3). The field is expanded in this orthonormal passive mode basis

eiﬁeriwt

= gﬁ: h%ﬁ(t)Gwﬁ (Z) \/S—T

(3.41)

Similar to the TE method, h,(t) is the slowly varying magnetic field component in the
basis of equation (2.27) In this case, both the 2 and z components of the polarization are
needed which are in this basis

piBTivt

* = %ﬁ:pgﬁ(t)Gwﬁ(z) \/S—T

(3.42)

where a = z, z. These are substituted into equation (3.3) to get terms up to first derivative

and then multiplied by
t+T/2

—zwt iBx G*
/ / 5(2) (3.43)
6(2‘)
t—T/2
to get

: ' < Gop >
hY t:—Lh‘y t—LZ t wh T o(t 3.44
“’ﬁ( ) 2 <eGup > “’ﬂ( ) 210 < eGup >p"”3( )+ 2wty < eGyp >p"”3( ) | )

where < f >= [ Gg(ﬁz()z)f(z)dz. The factor G} /e is used instead of G} due to the
orthogonality relations of magnetic fields (Appendix B). Using a similar argument to the
TE modes, the last two terms or equation (3.44) will be written as g/ 3! /2. The relation
of equation(8.23) and the Poynting vector shows that the TM power gain is g. 3’
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From equation (B.I7), the components of the polarization in this basis are

_ (fe = 1) // 3 G?Zﬁ e
Pusll) = wmz Z (E.— E, — hw)? + h*/72 ar VS

% /d3r'aw(r’,t) ) < clt' >< r'|p|lv >< v|p|r >< r|c >
+ <vlpr' >< r'le >< c|r >< r|plv >

5. 1 / / ey Gonl?)
meTSZ (E, — E, — hw)? + h*/ 72 ar ZGWW £(2)

< ><r >< ><rle >
% /dar,awﬁ’ (I'I,t) . C|I‘ r |p|U U|p|I‘ I‘|C (345)
+ <wlplt >< r'le >< ¢|r >< r|p|v >

where the vector potential in this basis is
eiﬁx
a,(r,t) = Z Gw,g(z)ﬁaw,ﬁ(t) (3.46)

B

The electron and hole basis are once again written explicitly and are expanded as

equations (2.I2) and (2:23))
fnc( ) = fn, (k)

Y t —
Pus(t) wmQTS = — B, (k) — hw)? + h*/72
X ) Z M’Y 2R€ |:‘]:7,}6n Ne Kﬁzézvnc] f;’anvfmanu (347)

where

G* (Z) e~ K2 eisz’
JUB = /dz wh EF° K< = /dz'Gw 2 Fe(
m'nyne 5(2) \/E nc( ) m'nyne ,3( ) \/Z nc( )

The azimuthal angle (¢) has again been integrated over and v = (z,z) denotes the

polarization directions. The only non-zero matrix elements near the band-edge are[12]

Mfil/2 = 2P2 Mcle:l/2 = 1P2 Mévi3/2 - %P)zf
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3.5.1 TM Power Gain

Similar to the TE method, the vector potential is written in terms of the TM fields. This
is a bit more subtle than the relations for the TE field. Start with the Maxwell relation[54]
pH =V x A. In vector notation, the TM mode reduces to

0 0,A* — 9,Av —0, A
po | HY | = | 0,47 — 9,47 | = | 9,47 — 9,4° (3.48)
0 0, AV — 9, A® 0, AV

The last equality in (B48)) is from the assumption that there is no variation in the field
in the y direction. This equation implies AY = f(¢) (some function with time dependence
only) since all the partial derivatives of this component vanish. By gauge freedom, the
function A’ = A + V(—vf(t)) also satisfies Maxwell’s equations so that AY = 0 in this
gauge.

Next, from the relation Vx H=J + §,(¢E) = J — £(0? A + 0,V ), the approximations

are then made
—O0,HY(t) = —c(2)0} A" (t) , 0,HY(t) ~ —c(2)07 A*(t) (3.49)
In terms of the TM passive mode basis being used, these relations can be written as

el y

<G> B )
Cw2<eG > WP

hs(t)  age(t)

-, (1) (3.50)

af]ﬁ (t) =

Substituting these into (3.47) gives the required relation between pfs(t), ps(t) and hf,(t)
and therefore using this in equation (3.44)) leads to the TM power gain

(oo () = fu,(K)) X2 Re |0, K.

C, P2
TM 0+ X
Yo = 2,2 Z 2 (3.51)
fo < eG >2 WS o (E,, (k) — E,, (k) — iw)? + i /72
. 262 <G >? . < G >2
X Z fm’,cmv fm,anv ? - 6 - Z fm’,anv fm,cmv 9
a==£1/2 a=%£3/2
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3.6 Ab-initio approximations

There are various other effects that must be taken into account for an accurate simulation.
Unfortunately, they cannot be incorporated consistently into this simplified model and
require a more detailed derivation. The results from a more detailed model are therefore
added into this model in an approximate ab-initio manner. This section will discuss some
of these effects.

3.6.1 Electrostatic Interactions

The method presented to find the electron and hole wave-functions does not take into
account what can be a significant effect, especially for InGaAsP based structures. The
potential wells in the structure will cause charge carriers to be concentrated around them.
This concentration of charged carriers will modify the potential due to their electrostatic
interactions. To account for this Schrodinger’s equation needs to be solved simultaneously
with Poisson’s equation[2T] (56, 57]. There are various techniques to do this, the method
used here will be referred to as the self-consistency method.

To start with, Poisson’s equation is

a% {6(3)%(]5(2)] = —n(2) (3.52)

where p(z) is the total charge density which is a sum of the conduction band electrons,
valence band holes and the total doping (the dopants will contribute a magnitude of one
charge only)

p(z) = q(n(z) — p(2) + Np(2)) (3.53)
The term £(z) is the dielectric permitivity and ¢(z) is the electrostatic potential generated
by the charge distribution and it is assumed to vanish at the ends of the heterostructure.
It has been found numerically that it is sufficient to use only the parabolic approximation
for both electrons and holes when considering electrostatic effects. This is because the
density is most dependent on carriers very near the band-edge. In the parabolic model, it
can be shown that the carrier densities can be written as[21] 58]

ou(e) = KT (Z mt |Fo(2) 2 In {1 +exp <%>D (3.54)

wh?
n



42

The symbol « represents the conduction, HH (LK 3/2,£3/2) and LH (LK 3/2,£1/2) bands.
E/ is the conduction band Fermi-level and Elf{H = E{ g is the hole Fermi-level. These are
determined by standard methods[58] and m?, is the average effective mass for the particular
band, which will be taken as approximately the effective mass in the wells since most of
the carriers are confined there. The term F%(z) is the band’s envelope function determined
by the parabolic method of equation (ZI3).

The self-consistency method is as follows. Let Vy(o)(z) = V,(2), 7 = ¢, v, the original
heterostructure potential found using band-offset and effective mass theory. One uses
these potentials in equation (2:I3) to find the envelope functions. These are substituted
into equation (3.54)) to solve for the carrier densities. Substitute these into equation (B.53))
and then (8.52) and update the potential
Vi) = Vi?(2) + g (2)

v

Use these new values of the potential to recalculate the envelope functions, density and

updated potential. Repeat this process until

/ ) Ve s
Vi (2)

where ¢ is some convergence criteria and 1 < 1 is a factor to assist numerically in the

convergence.

3.6.2 Non-Markovian distribution

The model used so far describes a non-Markovian system. That is, a system which at time
t is not affected by the system at time ¢ — t. In reality interactions such as scattering
interactions are slightly time-retarded and will therefore have time-delayed effects. The
simplest accounting of these time-delayed effects will be examined.

First, note that a system with no scattering interactions can be incorporated into the
model by taking the limit of 7 — oo in equations (B.40) and (B.5I). A definition of the
Dirac-delta function of use here is[59]

c—0 (3.55)
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Using this relation, these two gain formula’s can be shown to give the same results as a
derivation of gain from Fermi’s golden rule[12]. This is essentially the gain formulas used
here but with the term #2/72 replaced by 0(Ag) where Ay = E, (k) — E,, (k) — hw.
Thus, the incorporation of the Markovian scattering used can be viewed as convolving the

no-scattering gain results with a Lorentzian

h/T
in2
A2 + 772

The incorporation of non-Markovian scattering is approached analogously by using a non-
Markovian scattering function in place of the Markovian scattering Lorentzian L. It can be
shown[18] T9] that the simplest non-Markovian function that can be used is the Maxwellian

function

2
O(Ay) =\ e A2 (3.56)

This is a simplified from [19] by assuming the scattering time for the electrons and holes

are the same and k independent.

3.6.3 Many-Body Effects

There are additional effects due to the coulombic interactions between the electrons and
the holes. The general method to calculate these is by including the interactions into
the Hamiltonian of equation (3.9) to determine the effects on the density matrix which
will therefore lead to changes in the polarization and the gain. The Coulombic effects
are examined in detail in the Greens function calculation in Appendix E although this is
only for parabolic bands. These calculations will be referenced to show how the density
matrix of equation (B.10) is affected by these interactions. These will be extended to the
multi-band model used in this section by simply replacing the terms used in Appendix E
with the multi-band equivalent[I8]. As this is a more phenomenological model, it will just
be pointed out here what each effect corresponds to and the common approximations that

are used to incorporate it.
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Band-gap renormalization (BGR)

Equation (6.89) shows how the transition energy is renormalized by the so-called screened
exchange. Another energy renormalization term called the coulomb-hole renormalization
is not readily apparent from this equation. It is due to the fact that screening processes
affect the hole effective mass but the data for the hole effective mass is usually given for
the low-density limit. This effect must therefore be added in. Equations (4.48) and (4.49)
of [44] are formulas that can be used for this. A phenomenological approximation to this
model is to use the relation [60, 44] de ~ BN'/3 where 3 is known as the BGR factor and
N is the average carrier density in the well. The BGR factor is often taken from tabulated
values or as a fitting parameter. Alternatively, (4.48) and (4.49) can be used to calculate
[ at a known value of N and this is assumed to remain constant.

In the gain calculations done here, the independent variable is N so BGR is approxi-
mated by adding the calculated de to F, in the well. It is assumed the LH and HH bands

have the same parameter.

Coulombic Enhancement

Coulombic enhancement is due to the renormalization of the Rabi frequency (for example
the last term in equation (6.88))). This is approximated by convolving the gain equation
with an extra broadening function[18| 19, 20, [60]

1
e (3.57)
1 — ¢n,n, (k)
where
1 eh
An;,n, (k\l) = v Zv’nc,nv,nv,nc(|k” - q|||)(fnc (q\l) — fry (q\l))@(Ak) (3'58)
q
The term
ver o (q /dzdz Fer(2)eEme =Kz £ FE(2) s o m
cylbv,ylby,lte ” m;a 6quA ( ) f ) 7( ) c( )f 5 ,( v)
(3.59)

is the overlap of the carrier wave-functions and the coulombic interaction. This term must
be used because the calculations here are for LK bands and not the parabolic bands of the

Appendix. Evaluation of this factor is shown in [I§].
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An example of the qualitative dependence of gain on photon energy is shown in figure 3.1.
For the no-scattering curve, there is no gain below fiw = E,,;, = E.1(0) — F,;(0) and this

is the energy of maximum gain. This is because the gain is proportional to

and E),;, of figure 3.1 is the lowest energy that will satisfy this. It will also give the greatest
difference for f,,.(k)— f.,(k). Physically this means that below this energy separation there
are no electrons and holes to recombine and it is also the energy of greatest occupation
number. The energy hw = Eyup = Enc(Kmaz) — Env(Kmae) 1s the largest energy where
the gain will be be positive. Beyond this the gain will be negative (absorption) because

fne(k) — fuo(k) is negative (there are more valence electrons than conduction electrons).

No Scattering
------------------------------ Non-Markovian Scattering
e Markovian Scattering

Gain

5
____

Energy

Figure 3.1: A Representation of Gain Versus Photon Energy for a QW Laser for the Cases

of No Scattering, Markovian Scattering and Non-Markovian Scattering

Recall that the Fermi functions are also dependent on the carrier density so that the

higher the carrier density, the more states will be involved in the stimulated emission. Thus



46

the next interband transition n. — n,; will become involved in the gain when f, (0) —
fnv;(0) > 0 barring omission due to symmetry considerations of the momentum overlap
integral of Appendix A.

Figure 3.1 also shows how scattering broadens the gain curves. For Markovian scatter-
ing, the gain can actually drop below zero at energies less than F,,;,. This is an unphysical
effect that is corrected by using the non-Markovian scattering function. The Coulombic
interactions affect the curves in two ways. The band-gap renormalization will shift these

curves horizontally and the scattering will contribute to further broadening.

3.7 Summary

This chapter describes calculation of the spectral property of amplitude gain in the conven-
tional model. There are many similar formulas that are used for this quantity |18 [19, 25].
The author has generalized a method used by Aversa [17] by extending this to non-parabolic
bands. The TE and TM modal gain equations derived use the plane-wave expansion of
the Luttinger-Kohn approximation for the valence bands as described in Chapter 2. The
purpose of the modified version of gain is for a description that does not depend on the
definition of an "active region” in the laser structure, a benefit when examining the coupled
quantum wells of Chapter 5. Included ab-initio are terms for Coulombic scattering and

energy renormalizations deduced by other authors.



Chapter 4
Dynamics

In this chapter the kinetic and transport properties of the laser will be examined. The
problem to be solved is determining the photon power output given an input, in this case,
an injection current. What will be discussed here are the simplest models used. These are

highly phenomenological and are deduced from more complex models.

4.1 Rate-Equations

A very common model used is the rate equation model[12] 22}, 23, 24]. The main advantage
of this model is it’s simplicity and the speed of the numerical calculations arising from it.
The disadvantage is the large number of fitting parameters involved (which necessitates
some experimental input or approximations) as well as the simplifications of the physi-
cal processes involved. For predicting the properties of a known laser at different input
parameters or of a laser of very similar construction it can be quite useful.

A schematic of a MQW using this model is shown in figure 4.1. The electrons and
holes are described in an approximate way by lumping them into various groups localized
over certain regions. These groupings are not accurately enough modeled to be considered
density distributions but average carrier densities within these regions. Ng are the electrons
localized around the separate confinement heterostructure (SCH) region (a certain region
of layers used for confining the EM field around the heterostructure), this is where electrons

injected by the injection current density (J) will enter the system. Ni(3) are electrons that

47
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Figure 4.1: A Schematic Representation of the Carriers and Parameters Involved in the
Rate Equation Model

are localized around the active region but have energy above the potential well. The
superscript (3) is used to imply that they are free to move in all 3 dimensions. Ni(Z)
represents carriers that are localized around the active region but, due to various processes,
have lost energy and have ”fallen” into the well. The superscript (2) implies that they are
no longer free to move in all 3 directions but only in the 2 in the plane of the well. The
subscript ¢ for both of these carrier types refers to the well they are localized around.
The holes can be described similarly however, they generally have faster overall transport
times which means the electron densities are the limiting factors. Often, as done here,
only electron transport is explicitly modeled with the assumption that enough holes will
localize around the wells to satisfy local charge neutrality. The electrons are then simply
referred to as carriers.

The various physical processes that describe how the carriers move from one region to

another are modeled by time constants shown schematically in figure 4.1 and mathemati-
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cally in the rate equations of equations (4.1l to (£.8)[22] 23] 24] [61].

dNg J 1 1
=2 _ No|— 4.1
dt qLg 5 (Tds * Tn(NS)> ( )
AN®  NsLs 51 1 1 N®  NO
— _N — 4= 4.2
dt Tdst ! Td N Te * Tn(N1(3) " Td * Te ( )
OF (1,1, 1\ 0 s
dt '\n = T (NP) T Te 1+ €S, '
for i=2,nwells-1
AN e (21 ! + N + Nk + N (4.4)
dt ! Td Te T ( N 2(3) ) Td Td Te
2 2
sz'(Q) _ —N~(2) z + i + 1 + Nz'(f)l + Ni(+)1 + Nz'(g) . Ugg(Ni(Q)aw)Sw (4 5)
dt ¢ T Te Tn(NZ(2) Tt Tt Te o 1+ ESw ‘
AN 11 1 N® N3
= ~N¥ (— +—+ & ) ey (4.6)
Td Te Tn(Nmu) Td Te

dNZ) 11 1 N® NGB N w)S,
— _N® (—+—+7)> 4 nw=l oy - Vg9 (Niw, w) (4.7)
T;

dt AT T g, (2) T Te 1+e€S,
and
dSw Sw — (2) Sw
= Fl N 5 - RS w 48
dt 1+ eS, Zz_l U9 (NI ) - T PR, (48)

Transport between Ng and the various Ni(g) is by diffusion and are characterized by the
diffusion times 74, and 74. Transport between Ni(?’) and Ni(Z) happens by various energy

loss and gain processes such as phonon and carrier-carrier interactions, these are modeled
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by the capture time 7. and escape time 7,. Transport between the various Ni@) occur by
quantum tunneling and are described by the tunneling time 7;.

The lasing process occurs when electrons and holes recombine via EM interactions in
the active regions. This interaction is modeled by the term vggw(Ni(z)), the group velocity
times the material gain. The material gain can be related to the previous chapter which
actually calculated the modal gain by the relation gw,matmal(Ni(z)) = gw,modal(Ni(Q))/Fi,w

where

Lfle(Z)IZdz

r,,==—
[ 1Eu(2)] dz
L.

(4.9)
is the optical confinement factor (essentially the fraction of the electric field around the
active region that will interact with the carriers). E,(z) represents the transverse passive
envelope function F, g(z) or G 5(2) of equations (2.26) and (2.27). The symbol L, is the
total length of the structure and L; is the length of each well. It is assumed there is only
a single longitudinal mode.

Spontaneous emission is incorporated explicitly into the equation for photon density by
the term SR, , which is the spontaneous emission factor (amount of spontaneous emission
entering the lasing mode [12]) multiplied by the spontaneous emission rate for each mode.
The spontaneous emission rate is actually carrier dependent and can be related to the gain
coefficient by [12] R, = vyng, where

1
1+ c(hw—AF)/kpT

Map (4.10)

where AF is the separation of the quasi-Fermi levels between the electron and hole (which
can be estimated using their average densities in the well).

The material gain does not represent the true power gain, but the gain of a QW (in
an MQW or SQW structure) which is independent of the optical confinement factor[12]
and coupling effects between other wells . The well’s modal gain is then the material gain
of the well times it’s confinement factor (calculated for the various wells using equation
(Z9)). This saves time in the calculations as it is now not required to calculated the gain
of the entire structure, which is very time consuming, but just a single well and it’s local
surroundings. This approximation is only valid if the wells don’t interact appreciably with

each other (as examined in chapter 5).
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Since the gain calculations implicitly assume the carriers to be in an equilibrium distri-
bution, a temperature will have to be assumed. Often the material gain is calculated from

a simple phenomenological approximation such as
g(N) = g,In(N/N"™) (4.11)

where g, is a gain factor and N is the threshold carrier density (the carrier density where
the gain balances the losses to give zero photon output). The gain is multiplied by group
velocity to convert from gain/distance to gain/time. There are various losses in the system

which are incorporated by the 7,, time constants, determined by the formula[20]

1
A+ BN + CN? + Dy, N*5

Tn

(4.12)

These are the linear and bimolecular radiative and non-radiative terms A and B which in-
cludes spontaneous emission, the Auger recombination coefficient C' and the carrier leakage
coefficient Djqr. There are commonly tabulated values that are used[20].

Lg is the SCH length, € is the gain saturation coefficient which accounts for spectral hole
burning, the fact that it is mainly carriers around a certain energy that will recombine for
lasing and thus will become depleted faster than the average number of carriers. 7, is the

photon lifetime which is related to mirror losses and intrinsic absorption by the equation

1 1 1
— = i+ —=In— 4.13
- vg<a —|—LnR2> ( )
R is the refractive index of the facets (assumed to be the same on each side).
The rate equations above are often referred to as being multi-modal as they are the
sum over different photon frequency modes. For a Fabry-Perot laser these are [61]

mc
= — =0,1,2... 4.14
w QLTLeff’ mn T ( )

where n.sy is the effective refractive index of the cavity. Often the rate equation model will
only use a single mode because the laser is designed such that only one mode has positive
gain. Notice that the first and last wells equations have been separated from the wells in
between. This is because the edge wells only interact with one adjacent well and the first

well is the only one that interacts with the SCH region.
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4.1.1 Analysis

Some of the methods of analysis of the rate equations will be presented.

Steady-State

Assume the system starts in equilibrium (no current applied, no photon output). If a
constant current density is applied, there will be an initial transient spike of photon out-
put. In time the system will settle (all transient oscillations die out) to constant photon
output (and constant densities for the various carriers). This final state is known as the
steady-state. The steady-state can be solved quite easily as all time derivatives in the rate
equations vanish. A (non-linear) matrix method can then be used to solve equations (Z.Tl)
to (4.8). From now on, the steady-state solutions of these equations will have an extra
subscript of 70” appended to them.

An important term to extract is the steady state photon density. This is when

S(UO

Tp

=TT GSwo 2:: Livgg(N;”,w) — + BRsp (4.15)
By rearranging this equation, assuming ¢ is small, and taking the appropriate root from

the quadratic equation gives the photon density as

Spo = b Rsp“’ (4.16)

Zg( zo? )_EBRSPW)

This is a very important result as it shows that without spontaneous emission, there is no
photon density. Spontaneous emission is required for lasing to commence. This will come
up again in later chapters.

The rate equations find the carrier and photon densities given an input current density.
The important results to extract from this are the threshold current, gain-current and and
power-current relations. The threshold current is the current at which the light output is
zero and anything above this current will give positive light output. It is desirable to have
the threshold current as low as possible.

The calculations of the previous chapter show the relation between gain and average
carrier density (equations (B.40) and (3.51))) where the Fermi levels can be written in terms
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of carrier density. However, in experiments, what is actually measured is the gain-input
current relationship. The steady-state rate equations can convert between these two rela-
tionships because they relate the current input to carrier density. Comparing experimental
and theoretical gain-current relations, it is possible to fit the various parameters in the

rate equations. An example of this is presented in chapter 5.

Small-signal

Of interest is the response of the system to an oscillating input. This can be used in a
qualitative way to determine the best frequency or time response of the system. Starting
from the steady-state, a small, periodic modulation j to the steady-state input current
density is applied[12, 22 23] [24]

J=J,+ je (4.17)

this will result in small deviations to the carrier and photon densities of the form
X ~ X, + ze™ (4.18)

where X, represents the steady-state solutions to the respective densities in equations (4.1])
- (Z8) and x are the resulting small-signal amplitudes of these densities. It is assumed
that all the densities will have the same periodic form.

The rate equations to first order will be

| j 11
One = 2 _ 4.19
s qLS " <7_ds * Tn(NSo> ( )
(3) (2)
ngl 1 1 1 n n
on = tsks o (L1, L) m (4.20)
Tds Ly Td Te Tn( 1o ) Td Te
(2) (3)
. 1 1 1 n n
an?) = —n?) —+ —+ N 2+
Tt Te  1,(Ny) Tt Te
Uggl(NfQ)aW)Swo Ugg(N1(2)7w)5w
Z 0 4 Z 0 (4.21)

1 + GSwo (1 + 6Su)o)2
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The information obtained from this is primarily quality factors, an engineering term for
making qualitative comparisons between two systems. Some of these parameters are the
modulation response, 3dB bandwidth, resonant frequency and damping factor. The idea is
to design a system that has the highest of the first three parameters and lowest damping
factor possible. The modulation response is defined as

s(€2)

response = ‘—‘ (4.27)

7 (€2)

An example of a modulation response is shown in figure 4.2. It shows the 3dB and resonant
frequencies.
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Figure 4.2: A Representation of the Modulation Response for a QW Laser Found from
Small-signal Analysis of the Rate Equation Model

It is helpful to examine a simplified model of the laser. Assume there is only one well
and there is now only one carrier type that the current injects into and also recombines

for the lasing process. This would form a simple set of rate equations[12]

dN _J N wg(N)S

27 4.28
dt gd T 1+€S ( )

dS Tovgg(N)S S
—_ IV =2 R, 4.29

dt 1+eS Tp ARy (4.29)

Here there are no time-constants but a loss term described by 7. In this case the steady-

state solution for photon density is

_ 6R,
%= Ty (N) - iR, (4:30)

Tp

proceeding with a small-signal analysis, the modulation response can be shown to be

approximately
2 2 4
@ F (I L, (4.31)
3(Q) qd ) (2 =QF)% + 2
where g
O ~ v,9'(N)=> (4.32)

Tp
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1
v ~ 873 <Tp + veg ) Q2 + - (4.33)

/
Y

So this simple model has a damped harmonic oscillator form. Numerically, it is noted that
the modulation response of the more complicated model is also very similar in form to
that of a damped harmonic oscillator. This gives very important information as the more
complicated system will qualitatively have similar parameter dependencies on differential
gain and loss terms. It is because of this similarity that the damping coefficient (y) and
resonant frequency have been defined for the modulation response. They are determined
by fitting equation (Z3T)) as close as possible to the modulation response of figure 4.2 by
varying €2, and v. Note that the resonant frequency is proportional to the square root
of the differential gain. This is a very important relation as it is one of the major design

parameters for modulation response. Also, the 3dB cutoff occurs at
(Qap — O2)? + Qpn” = 20, (4.34)
and the maximum bandwidth is when
202 = 2 (4.35)

Therefore there is a major emphasis to increase differential gain and reduce losses. In
fact, it is one of the main benefits of quantum well lasers that they have a much higher

differential gain than bulk or simple heterojunction lasers.

4.1.2 Numerical Method

The methods for solving the steady-state and small-signal equations are quite simple.
These are a set of coupled non-linear equations. A multi-dimension Newton’s iteration
method is used to solve for the steady-state. Sometimes a convergence factor is introduced
for stability because it is non-linear due to the gain and 7,,. The small-signal case is even
simpler as it is linearized and can therefore be solved by normal matrix methods once the

inputs from the steady-state are obtained.



57

4.2 Carrier heating model

A deficiency of the rate equation model is the absence of any consideration of the carrier
energies other than very generally by dividing the carriers into the classes of 2-D and 3-
D. This is inaccurate because the gain is actually dependent on the carrier energy. The
carrier heating model[26] adds extra rate equations to describe the energies of the carriers.
This is based on the idea that the carrier transport processes will also involve an exchange
of energies. For example, if a 3-D carrier is captured by a 2-D well, some of the energy
difference between these two levels will be added to the 2-D carriers to increase it’s average
energy density. Another part of this energy will be radiated away (extra phenomenological
parameters are used to determine these). To simplify matters more, it will be assumed that
the carriers are all in local ”quasi-equilibrium” so that instead of energies, temperatures
can be used. From the gain calculations of the previous chapter it is assumed that the
carriers are in equilibrium at a certain temperature. The general procedure will then be
to include temperature rate equations into the model. This will be done by first writing
the more intuitive energy rate equations and then converting these to temperature rate
equations.

In this model, the rate equations of equations (4.1l) to (4.8) will be the same except each
of the carrier densities will now be dependent on temperature 7; were the index ¢ indicates
the well or SCH region. It is assumed that the temperatures for the carriers above the
well and in the SCH region remain constant so the only varying temperatures are for the

carriers in the well. The rate equations for the energy density of the carriers in the wells
(U;(T;)) are[206]

2 e n2 2 3
@ _ _N® <E£)>_<E£)>_E£) +N2()<E(2)>—N1()<E(C)>
dt ' Tt Te Tn2 Tt 2 Te !

Ny T , U(T)) — U, (T
ngg( 1 )7 l’w)Sw<E§ t) >—|—hwvgozf5w+ 1( 1) 1( L)
1+65w TL

(4.36)
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1+ GSUJ Tr,
where many new parameters have been used. These are the average energy of the carriers
(€) >, the
average energy loss due to recombination in the well < Ei(nz) >, the average energy gain

in the well < Ei(Z) >, the average energy loss due to escape from the well < E

13
due to capture in the well < EZ-(C) >, the average energy loss due to stimulated emission in

the well < EZ-(St) > and the coefficient of facet heating oy which is due to photons being

re-absorbed into the media to cause carrier heating. The energy wishes to equilibrate itself

Ui(T3)—Ui(TL)
TL

time constant that governs this which is mainly due to phonon interactions.

with its surroundings (the lattice temperature) thus the loss term , Tr, 1s the
Since the carriers in the well are in equilibrium, the average energy density in the well
can be shown to be

Fi(n;
Ui(Ty) = NP kgT; iy )(2) (4.39)
Fo(mi) + N,"E; .

where
0

Falw) = T(n+1) 0/ 1+ Jexp(y — x)dy

is the Fermi-Dirac integral[12], E;. is the conduction band energy, and 7, = (Erf” -
E; )/ ksT, Ef;l is the Fermi-level of electrons in the ith well. So that

%: @) Fi(n) S Em)Foa(n)
o = Nk [F[)(m)*”’( F2(m) 1)} (4.40)
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and

7 — kT
oN® PR ()

)

+Ei. (4.41)
From the definition of a total differential,

dU; U dNP oU; dT;
dt 3Nf2) dt oT, dt

the relation between the energy rate equations and temperature rate equations is

dl;  (0U; - av;  ou; dNi(Q) (4.42)
dt  \ 9T, dt 3Nz~(2) dt '

The well carrier rate equations in (E1)) to (1), equations (Z36) to (38), (E40), and (EAT)
can then be substituted into equation (442]) to get rate equations for the temperatures
and therefore a complete set of equations for the carrier heating model.

The analysis for this model is similar to the rate equation model. The steady-state
and small-signal analysis can be performed on this set of equations to again extract terms
like the modulation response and bandwidth. This set of equations describes the system
more accurately, but has introduced more phenomenological parameters in the different
energy exchange terms. These are actually quite difficult to determine, which limits the
usefulness of this model. An example of this model is shown in chapter 5. It has estimated
parameters that are varied to examine their effects and is basically used just to demonstrate

the importance of these effects.

4.3 Summary

This chapter describes calculations of the dynamic properties for the conventional model
of the laser. The equations shown are a summary of others’ work [12, 22, [26] for the rate
equation and carrier heating models. The dynamical calculations require a formula for
gain which can be the relations of Chapter 3 or a simple approximation. The next chapter

will show numerical results for the spectral and dynamical calculations.



Chapter 5
Examples

In this chapter some research will be presented that uses the theory of the conventional

model.

5.1 Effect of well coupling on the TE modal gain

A double QW system is analyzed for the effect of well-coupling on the TE gain with
electrostatic effects included[21I]. The structure simulated consists of two 5 nm QW’s with
a separation barrier of varying length (AL) between them and 500 nm fixed barriers on
either side for the SCH. All barriers are InGaAsP with a band-gap of 1.1um. The cladding
and substrate surrounding the structure are InP. The wells are also InGaAsP. The wells and
barriers are lattice matched to InP so there is no strain in the system. The composition of
the wells is chosen so that the maximum gain occurs around 1.55um (this is an approximate
relation because the energy at maximum gain will change depending on carrier density and
separation barrier width, see figure 5.3).

The description above is a common way to define the semiconductor layers. Instead of
giving the x and y composition of each InGaAsP layer, it is more intuitive for readers to
see them in terms of the parameters of band-gap and strain. Equation (2.11]) and (2.18)
with a, being the lattice size of InP and a given by the interpolation formula (ZI0) define
two equations with the two unknowns x and y that can be solved. The structure given this

description is represented in the table below

60
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Layer || Material Thickness(nm)

1 InP 700"

2 Ing.74Gag.26 ASo.56Po.aa | 500

3 Ing 53Gag.a7As 5

4 Ing 74Gag.26Aso56P0.44 | AL

5 Ing 53Gag.arAs 5

6 Ing.74Gag.26 ASo.56Po.aa | 500

7 InP 700"

0.6

—— Self-consistent
—————— Not Self-consistent

(V)
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Heterostructure Potential
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Figure 5.1: The Potential Profile of a DQW Laser Structure with and without Electrostatic
Effects Using the Parameters of the Above Table. This is at Average Well Carrier Density
4.5%10'8 /em?.

Figure 5.1 shows how the self-consistent electrostatic effects modify the original het-
erostructure potential, it modifies the system so as to move it closer to local charge
neutrality[56]. This modification causes more conduction electrons and fewer holes to
be confined within the wells (figure 5.2). Since conduction electrons are normally the lim-
iting factor to gain, the higher confinement of electrons in the wells results in larger gain
amplitude (figures 5.3, 5.4).
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Holes = —~_ —— - Not Self-consistent

Electrons

Density (x10"/cm)
@
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Figure 5.2: Density of Electrons and Holes in the DQW Laser Structure of Fig 5.1 with
and without Electrostatic Effects. This is at Average Well Carrier Density 4.5x10'® /cm3.

Electrostatic effects also cause the photon energy dependence of gain to change. As
noted by others[62], varying separation barrier widths will change the relative strength of
each subband transition. Evidence of different subband transitions is apparent when there
is a large change in the energy of the peak gain or local peaks. Electrostatics modifies the
potential profile and consequently the relative transition strengths. Therefore, the gain
versus photon energy will depend on the well separation and electrostatics as shown in
figure 5.3. In figure 5.4 the maximum gain is significantly larger for the electrostatic case
for most barrier widths. As well, the barrier separation for minimum gain is smaller when
electrostatics is included. This can be explained by figure 5.3, where it is apparent that the
dominant transition has changed between the 1.0 and 2.0 nm barriers when electrostatics
is included, but not when there are no electrostatics included.

The effects discussed have a large practical importance. The coupling and electrostatics
modify the maximum gain in both amplitude and position of the maximum. These are
important considerations on the design of an efficient laser. Also, it can be determined the

minimum separation barrier width above which the gain will remain relatively uniform,
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Figure 5.3: TE Modal Gain versus Photon Energy for two Barrier Widths (AL) for the
DQW Laser in Fig. 5.1 with and without Electrostatic Effects. This is at Average Well

Carrier Density 4.5x10'%/cm?®.
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Figure 5.4: Maximum Modal Gain Versus Barrier Width for the DQW Laser of Fig 5.1
with and without Electrostatic Effects.

which can be used to estimate how large barriers must be for the coupling effects to be
negligible. An accurate model of the DQW will therefore have to take into account coupling

and electrostatic effects.

5.2 Polarization dependence of delta-strained SOA’s

SOA’s are a key element for optical switching and signal processing[13, 14] 15, 16, 63].
They have the advantages of a wide gain bandwidth and ease of integrability into photonic
integrated circuits. The major disadvantage is the polarization sensitivity. That is, the
TE and TM gain of the SOA can differ significantly. This can be a serious problem if the
input polarization cannot be tightly controlled.

There is ongoing research to design a SOA structure that has less polarization sensitiv-
ity. This subject has been analyzed by several groups using combinations of tensile and /or
compressive strain in wells and/or barriers[13, [14]. By adjusting the ratio of the number of

tensile and compressively strained wells, the TE and TM gains can be matched. Recently
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a new method of achieving insensitivity in MQW structures has been proposed[15} [16] by
adding a thin layer of GaAs (known as a delta-strain layer) to an otherwise unstrained
system.

The structure to be simulated has the layers shown in the table

Layer || Material Thickness(nm)

1 InP 50

2 Ing.72Gag.asAsg.61Po.39 | 10

3 Ing.47Gag 53P AL

4 GaAs 0.9

5 Ing 47Gag 3P 13.2-AL

6 Ing.72Gag.2sAsp1Po39 | 10

7 InP o0

A delta layer (the GaAs layer which has significantly different lattice size than the
other layers) is placed in one large well to effectively make two wells. The positioning of
the delta layer is variable (AL). The purpose of varying this position is to determine where
the best position for polarization independence is. The heterostructure for the delta layer
positioned in the center is shown in figure 5.5.

Figure 5.6 shows the valence band dispersion for two positions of the delta layer. The
energy is measured with respect to the well band-edge. The band dispersion plays a
significant role because changes in the positions of the HH and LH subbands will change
which mode is the dominant transition. This can be seen in the momentum matrix elements
of Appendix A. For the TE mode, the HH transition is dominant and for the TM transition
the LH transitions is dominant (although the HH is still quite significant). The TE and
TM modal gain for these two positions are shown in figs 5.7 and 5.8.

In this case, electrostatic effects do not play a significant role as can be seen in figure
5.9. This is because the GaAs barrier potential is so much higher than the electrostatic

modification to the heterostructure shown in fig 5.5.
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Figure 5.5: Potential Profile of Delta-Strained SOA with the Delta Layer at the Center of
the Well.
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Figure 5.6: Valence Band Dispersion for the first HH and LH Subbands of the SOA for

two Different Delta Layer Positions.
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TE and TM modal gain for non-self-consistent
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Figure 5.7: TE Modal Gain Versus Photon Energy for the SOA at Delta Layer Position
AL = 3.3nm from the Left of the Well (no Electrostatic Effects).
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Figure 5.8: TE and TM Modal Gain Versus Photon Energy of the SOA for Delta Layer
Position AL = 3.3nm from the Left of the Well with and without Electrostatic Effects.
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5.3 Comparison of Classical and Tunneling Injection
Schemes in QW Lasers

One of the problems that exists in the present generation of MQW lasers is related to
the current injection scheme and is generally termed as carrier transport effects[22] 23]
24]. These transport effects are the diffusion in the SCH and the capture-escape in the
well regions. It is believed that carrier transport can severely reduce the modulation
bandwidth[4] 64] 65].

One possible solution to the carrier transport problem is to consider a different mech-
anism of carrier injection into the wells based on resonant and non-resonant tunneling
instead of carrier capture by energy loss interactions. This mechanism is currently applied
to other semiconductor devices such as the resonant tunneling diode. In this case carriers
will thermalize in the SCH region and then tunnel into the first QW. This has benefits
because thermalization in the SCH region is faster than in the well region because it is
larger and therefore there are more energy states available which means a higher proba-
bility of scattering. Also, the quantum tunneling time 7;5; through the tunneling barrier
is of the order of 10 times faster than the traditional capture time 7.. Since the carriers
are more likely thermalizing in the SCH region, the temperature within the well region is
lower which will mean lower losses and a higher probability of carriers being around the
lasing energy (lower spectral hole burning ¢).

The tunneling mechanism of injection in a SQW laser was recently proposed|4], [64] 65].
Those devices have been successfully fabricated. Some of the improvements observed with
these devices are a significant reduction of the Auger coefficient (which implies longer 7,, in
the rate equations) due to the lower temperature of carriers within the wells. Also, there
will be an increase in the modulation bandwidth due to the shorter injection times into
the wells.

Comparisons will be made between two MQW designs called here classical injection
(CI) and tunneling injection (TI). The CI laser has been shown already in figure 4.1, the
TT laser is similar but an extra tunneling barrier is added as shown in figure 5.9.

The analysis will be done with the rate equation model and the characteristic that will

be examined is the modulation response. The modulation response of a MQW TI laser



69

(1-f)

v

0
scH L—

Well 1 2 3 4
Figure 5.9: Schematic of the Tunneling Injection Laser Heterostructure

will be simulated using the small signal rate equations. These will be compared with the
modulation response of a comparable CI laser (the same structure as figure 5.10 but with
the tunneling barrier removed). A fraction parameter (f) has been introduced to model the
fraction of carriers injected by tunneling into the first confined region of the first well and
by tunneling and diffusion into the first unconfined region of the first well. Pure TI(CI)
injection is when f = 1(0) and injection schemes ”in between” when 0 < f < 1. The f =0
case gives the same equations from chapter 4. To incorporate this fraction parameter, the
rate equations (1)) to (E3]) must be slightly modified to account for this extra injection

mechanism. N ; . . .
s
2 - - _N 1— f)— — 5.1
dt qLS’ 5 <( f)Tds * ths - Tn(NS)> ( )
dN® NsLs (1 1 1 N® N®
—(1— _ R 5.2
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In this case it is assumed that there is only one frequency mode for the laser and the gain is
given by the simplified model of equation (4I1]). A steady-state and small signal analysis
can then be performed on the rate equations.

It may be asked why complicate matters by adding in one more term? Due to the
large number of fitting parameters already present, it would be possible to change the
existing parameters of the classical model (namely by reducing 7.) to model any response
desired. The purpose of the extra parameter is that tunneling time is considered to be
significantly different from the capture time. As such, any modifications to the parameters
of the classical model to obtain the tunneling results is deemed too unphysical. This new
parameter is expected to model the system more accurately.

The number of wells was chosen to be four. The cavity length and stripe width were
200 and 3 pm. It is assumed that the electrodes as shown in fig 1.1 have the same cross-
sectional area so that these dimensions give the area of the laser perpendicular to the
injection direction. The injection current I can then be found from the injection current
density by I = (200um)(3um).J. The tunneling time through the tunneling barrier was
taken as 2ps, the capture times were 20ps, the SCH length 100mm and gain suppression
coefficient ¢ = 1.7 x 107!". These parameters are taken directly from [4] as it is these
experimental results that the model is being compared to. The average length in each well
was H.4nm and instead of calculation the optical confinement factors it was approximated
as 0.01875 for each well. The photon lifetime was inferred from their results to be 2ps and
standard values for the group velocity and the threshold carrier density of 8.5 x 10° ¢cm/s
and 1.5210'%/ecm?® were chosen.

Normally the tunneling time 745 is << 1ps however, this parameter is meant to approx-
imate the time of traversal over and through the tunneling barrier into the first unconfined
state hence it will be < 2ps so it was chosen as 1ps (actually this time had little effect
on the results due to the large capture time). The escape time is in the ns range so for
simplicity was chosen as 1ns, this also had little effect on the results. The diffusion and
tunneling time between the wells had little effect on the results so they were taken to be
the same as those used for the tunneling barrier. The results were highly dependent on
the final two parameters of gain coefficient and carrier loss time in the wells, g, and 7,

these were chosen to fit the threshold current (the current when S, from the steady-state
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solution is zero) and maximum modulation response of the experimental values. The best
match to experimental results was when 7,, = 1.3ns (taken the same for all well densities)
and g, = 3800/cm.

The 3dB bandwidth versus current injection for a range of tunneling injection fractions
(f) is shown in figure 5.11 for a SQW laser and in figure 5.12 for a 4QW laser. Comparing
these two figures shows that the 3dB bandwidth increases as the number of wells increase.
It is also seen that the greater the fraction of tunneling injection, the greater the bandwidth.

The discrepancy between the fractions increases as the current increases.
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Figure 5.10: 3dB Bandwidth Versus Injection Current for an SQW Laser with and without
Tunneling Effects. This is Found Using Small-signal Analysis of the Rate Equations.

Zhang et al[4] found that for a 4 QW TT laser, the 3dB frequency was 76GHz. In these
simulations for f=1, the 3dB bandwidth was found to be 70GHz. The threshold current
for all values of f was relatively constant as 3.0mA which is the same as the experimental
result. The average differential gain in the wells was 2.0 x 10~ *cm? and the experimental
result was 1.86 x 10~ ¢m?. In figure 5.12 it is clearly demonstrated that the modulation
response increases as f increases. Figure 5.13 shows that the modulation response also

increases as injected current increases.
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Figure 5.11: 3dB Bandwidth Versus Injection Current for a 4QW Laser with and without
Tunneling Effects. This is Found Using Small-signal Analysis of the Rate Equations.
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5.4 TE Modal Gain: Theory and Experiment

The purpose of this model is to estimate the parameters used in the conventional method
by fitting the results obtained by the theory to some experimental data[66]. Of particular
interest is the carrier leakage coefficient (Djeqr) of equation (£IZ). Calculations for the
TE modal gain in a 4-well QW laser were performed and compared to experiment. In this
case the gain calculations of chapter 3 and the rate equation calculations of chapter 4 were
used together for a self-consistent solution.

In the rate equations, the input is the injection current and the output are the various
carrier and photon densities. The steady-state rate equations are solved by a Newton’s
iterative method. It is impractical to recalculate the gain at each iteration using the
updated guesses for the carrier and photon densities. Instead, gain is calculated at a
number of carrier densities that will cover the range of densities the Newton’s iteration will
use. This range was determined by trial and error. The gain at these various points will
then be used as a basis for interpolation to find gain for any density within the appropriate
range. For increased generality, the gain is also on calculated at a range of photon energies
and then interpolated for arbitrary energy within this range. Therefore the input of gain
into the rate equations is a surface map versus density and energy. From equation (4.9)
it can be seen that the confinement factor depends on w therefore it is interpolated also,
which happens to be be almost linear.

For a 4-well system, it is computationally impractical to calculate the gain for a fully
coupled system. Fortunately the wells are separated by large enough barriers that the
coupling effects are small (see figure 5.4) and so the calculations can be simplified by
calculating the material gain for a SQW laser and assuming the material gain is the same
for each in the 4-well laser. As discussed in 4.1, the modal gain for each well will be
different since the confinement factor will change for the wells. Therefore, the total modal

gain as a function of injection current will be a sum of the modal gains for each well

Gtotal (Ia w) - Z Fz (w)gnet(Ni(?)a w) (54)

where Ni(f) symbolizes the value of the densities found in the rate equations for this injection

current.
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The structure is shown in the table below

Layer || Type Material Thickness(nm)
1 Cladding | InP 00
2 Barrier IngsGagoAsg75Po2s | 10
3 Well Ing sGag.2Asp.a3Pos7 | 5
4 Barrier Ing.sGag.2As.75P0.25 | 10
5 Well Ing.sGag.2AS.43Po.57 | 5
6 Barrier IngsGagoAsg75Po2s | 10
7 Well Ing sGag.2Asp.a3Pos7 | 5
8 Barrier Ing.sGag.2As.75P0.25 | 10
9 Well Ing.sGag.2AS.43Po.57 | 5

10 Barrier IngsGagoAsg75Po2s | 10
11 Substrate | InP 00

This model has many phenomenological parameters that must be fitted. These param-
eters are from both the gain calculations and rate equations. The parameters needed to fit
various aspects of the gain curves are § (band renormalization coefficient) for position of
gain maximum, the time constants 7. = 4ps, 7. = 3ns, 7, = 8ps, T4 = Tsq = Tps of the well
equations as well as A(SCH:3x107 /s, Well:1x10°/s), C(SCH:0, Well:1.25x 10~ *m5/s) and
Dieqr to fit the amplitude. In order to calculate the gain correctly for different currents it is
especially important to find appropriate Auger and leakage coefficients. The values chosen
for the leakage coefficient correspond to leakage currents of approximately 2.5mA in the
SCH region and 0.7mA in the wells. The intrinsic loss term (=~ 30.0/¢md—750.01 /(mAcm))
where I is the injection current is used to get the appropriate offset for the net gain[25].
The B coefficient can be determined by the relationships between the gain, spontaneous
emission rate and this coefficient (equations (30) and (33) of [25]).

Figure 5.16 shows the experimental and theoretical total modal gain for this laser.
Figures 5.17 and 5.18 show how important the leakage term is to the gain, in figure 5.17
all parameters are kept the same as those used in figure 5.16 except the leakage terms are

set to zero. In figure 5.18 the best fit is attempted without using leakage effects.
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Figure 5.15: Experimental and Theoretically Fitted Modal Gain Versus Photon Energy for
Three Injection Currents. All Parameters are Varied (Within Physical Reason) for Best
Fit.
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Figure 5.16: Experimental and Theoretically Modal Gain Versus Photon Energy for Three
Injection Currents. All Parameters are the Same as Fig 5.15 Except the Leakage has been
Ignored.
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Figure 5.17: Experimental and Theoretical Modal Gain Versus Photon Energy for Three

Injection Currents. All Parameters are Varied, Carrier Leakage has been Ignored.

5.5 Modulation Response in the Carrier Heating Model

This model demonstrates how increasing the carrier capture energy (< Ei(c) > in section
4.2) leads to an increase in the temperature of the carriers in the well[67]. If the energy
loss time of the carriers (77) is decreased, this will lead to a reduction of the carrier
temperatures. Actual values of this are shown in the table below for an injection current
of 20mA.

< E© > (eV) | 7p(ps) || AverageTemperature(K) | ThresholdCurrent(mA)

0.13 1 308 2.64

320 2.66

5 335 2.68

10 365 2.72

15 391 2.75

0.026 3 301 2.62

10 305 2.63
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For the higher < E(® > there is a significant change in the temperature and threshold
current dependence of 7. For the lower < E(© > this is not so critical.
The modulation responses for the < E© > and 7, at 20mA are show in figures 5.19

and 5.20 and shows a decreasing modulation response to the increasing temperatures.
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Figure 5.18: Modulation Response Versus Frequency at 20mA Injection Current and Var-
ious < B > 7,. This is found from Small-signal Analysis of the Carrier Heating Model

5.6 Summary

This chapter presents the author’s original numerical calculations for spectral and dynam-
ical properties of various lasers and semiconductor optical amplifiers. The rate-equation
model of the tunneling injection laser in section 5.2 has a new parameter introduced by

the author to describe the fraction of carriers injected into the well by tunneling injection.
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Figure 5.19: Modulation Response Versus Frequency at 20mA Injection Current with

< B >=0.13eV and various 7. This is found from Small-signal Analysis of the Carrier
Heating Model.
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Wigner Function Theory
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This part will describe the derivation and use of the Wigner functions and quantum
Boltzmann equation (QBE) that describe their evolution. Chapter 6 will derive the Wigner
functions and the QBE starting from two-particle non-equilibrium Greens functions and
Dyson’s equations. Chapter 7 discuss the implementation of these equations and a sample

calculation using this model.



Chapter 6

Deriving the Quantum Boltzmann

Equation

The goal of this chapter is to derive the quantum Boltzmann equations. There are various
approaches that can be used to derive them. A common starting point (which is actu-
ally simpler than the method to be presented) is density matrix theory and Heisenberg’s
equation of motion (becomes the Loiuville-von Neuman equation) [29] 43] which can be
transformed to the QBEs. This is a convenient method to use if all interactions in the
system are ”simple” (classical interactions or scattering modeled by Fermi’s golden rule).
When the interactions become more complicated such as more detailed phonon or Coulom-
bic interactions, the density matrix method is unsatisfying because the new interactions
can be difficult to define. In Greens function theory, it is always possible to add in new
interactions in a straightforward manner by adding more self-energy terms. The model
used in this work is intended to be a general method to derive the QBEs for all types of

interactions and we therefore start with the Greens function theory.

83
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6.1 Greens Functions

6.1.1 Real-Time Greens Functions

Physically, the systems being analyzed are clearly not in equilibrium (even if they are in
steady-state). A potential is applied across the electrodes which causes carriers to move and
recombine. The standard zero-temperature Greens functions are therefore not sufficient
for this system. To model a system not in equilibrium, the real-time Greens functions on
a Schwinger-Keldysh contour (figure 6.1) are used[27} [68]. The purpose of using this time
contour is because in non-equilibrium, it is not possible to define a final state of the system
beforehand.

Figure 6.1: A Representation of the Keldysh Time Contour used for Real-Time Greens

Functions

The time 7 can be set to go to infinity. The cost of using this time contour is the
necessity to use more than one Greens function. There are various ways of doing this[27,
30, [32] which are essentially equivalent. The method used here will be to use six Greens

functions which are the advanced G¢, retarded G, time-ordered G, anti time-ordered G*
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and G< and G~ which have no name. These are defined as
67 (@1,az) = = (9le0)i* o2))
G<($1,$2) = %<1/;+($2)7J)($1)>
G (1,32) = =2 Ot — 1) (1) (22))

G (21, 72) = —%@(E —t) <1/3(5E1)1/3+(ff2)>
Gt(fL'l, 1‘2) @(tl — t2)G> (IL’1, IL'Q) + @(tg — tl)G< (IL‘1, 1‘2)
GE(IL’l,Iz) = @(tz - tl)G> (IL’I, IL'Q) + @(tl - tz)G< (1'1,1'2) (61)

where 2 = (r,t) and ¢* () and ¢)(z) are the particle creation and annihilation operators.
These Greens functions are defined on different sections of the time contour, four of

these are represented in figure 6.2. The other two Greens functions are related by

<
G! t G
X—X ) X >
6
>
—x > t:

Figure 6.2: The Representation of the Various Real-Time Greens Functions on the Keldysh
Time Contour

G=G"-G=G"-G,6"=G"-G =G<-¢" (6.2)

so that the six Greens functions are not mutually independent. It is possible to use less
Greens functions, but this set is convenient because the matrix representation of Craig[27,
69]
~ Gt T1,T2 —G< T1,T2
G(.’L’l, IL'Q) == >( ) f( ) (63)
G7(21,12) —G'(21,22)
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is formally similar to the zero temperature Dyson’s equations and also has a Wick’s decom-
position (the standard decomposition method to reduce the many-particle Greens functions
that arise in the perturbation expansion to a combination of single-particle Greens func-
tions). Once the Dyson equations have been sufficiently defined and simplified for this
matrix, G* and G will be written in terms of G<, G> and G" by equation (62) because
of further simplifications that can be applied in this form.
The Greens function G< has a special importance as it is the one used to calculate the
expectation values of a one-particle operator (O(z)¢ (z)i(z)) is given by[27, 28]
j / Fry lim O(21)G< (21, ) (6.4)

To2—T1

The limit is used in case the operator is not continuous.

6.1.2 Dyson’s Equations

In the Greens function method, all interactions can be incorporated by the self-energies.
They can be used as a basis of a perturbative expansion by choosing the order of self-
energies which are included (eg, only keeping the single phonon interaction). For a self-
consistent solution, it is actually the minimum irreducible self-energies that are used[28]
(and only a subset of these are chosen in the Hartree-Fock approximation) but they will
just be referred to as the self-energies. The total self-energy is the sum over the self-energies
for each type of interaction so that they can be examined separately. It can be shown that
the self-energies also have relations like equation (6.2)[27].
These can also be written in Craig’s matrix form[27, 69]

Et(l'l,l'z) —E<(IL'1,I2) ]

S(21, x3) = (6.5)

E>(x1,x2) —Et_(l’l,.ib'g)

The perturbation expansion for the real-time Greens functions matrix using these self-

energies are Dyson’s equations|[27, [34]

and

dx4G (21, 23) (xg,, x4)C~¥O(x4, Tg) (6.7)

é(l‘l,l'g) Il,fL'Q +/dl‘3/dl’4G IL'1,.'L'3 E(I3,$4)é($4,$2) (66)
G(l‘l,l'g) é l’l,l’g + dx /
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where G, is the Greens function solution for an unperturbed system. Equations (6.6) and
(E7) could be solved by a massive self-consistency operation. This is not practical. Instead,
perform the following steps:

i) Operate on equation (6.0) by iha% — H,(ry) to get

[Zha% - HO(I'I):| é(l‘l,])g) == h(54(]}1 - l'z)j—l- h/dl’gi(l‘l, 1'3)@(1'3, IL'Q) (68)
1
ii) Operate on equation (6.7) by —ih(% — H,(rs) to get

{—zh% - Ho(rQ)] Gz, m3) = ho* (@) — 22) ] + h/dxgé(xl,xg)i(xg,@) (6.9)

iii) Subtract equation (69) from (E.8)
(o 2] 2
G(xl,xg)E(xg,xg)

it (57 + o) (Hale) = Hfe))| G =1 [
(6.10)

where H,(r) is the unperturbed Hamiltonian (which has only r dependence) and the rela-

tion

[mail - Ho(xl)] Go(1, 29) = [—m% - H(,(@)] o1, 29) = ho* (w1 — o) (6.11)

I is the identity matrix in this space. Equation (6:I0) is the Dyson equation that is required

to solve.

6.1.3 Expansions into the Band Basis

The equations in the previous section will be expanded in terms of the periodic functions

in the Bloch basis. The creation and annihilation operators in terms of that for each band

Zu Zu i (6.12)

where u;(r) is a normalized function periodic in the unit cell and ¢t /4 is the creation/annihilation

are

operator for an electron in this band. Because of this, the Greens functions can also be
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expanded into this basis as

é(xl,xQ):Zui(rl) ( )é (.’L’l,]}z) (613)

i’j

where G ; can be written with elements similar to equation (6.I) such as

Gy, 22) = —3 (a(n) B (22)) (6.14)

The self-energies will also be expanded into this basis as.

~

S(wr,m) = Y ui(ry)u] (r2) Sy (w1, 22) (6.15)

1]

Substituting equations (6.13)) and (6.15) into (610),
L[ 0 9, .
|:Zh <a—tl + 3—752> — (H (I‘l :| ZU,Z I'1 3 I'2 '/(l‘l,xg)

= h/dx3 Z xl’x3)“z (rl)u '(I‘S)G" g (23, D2)um (r3)uf (1)

it gl g (fl?l, .’L'?,)U/l (rl)u /(r3)2 5" (.’L'?,,ZL'Q)Ul” (r3)u i’ (r)

(6.16)

It is important to recognize that the Greens functions and self-energies are slowly varying
over the distance of the unit cells because of the definitions of the expansions. Therefore
multiplying equation (616) by [ uf(ri)u;(r2)d*rid®rad’rs reduces this to

Q

. 0 0
|:Zh (8—t1 + a—t2> — (Hi(l‘l :| ZG ZL‘l,l’Q

:h/dxgz
=

where H;(r) is the unperturbed energy for the i* band. The effective mass theory implies

g’ ($1,$3)Gj’,j($3,$2)

b K 6.17
G (1'1,1'3)2]'/,]'(1‘3,1'2) ( )

the relation
hZ
2m?

i

H;(r) = -+ Vi(r) (6.18)

where V;(r) again is the potential profile constructed from the band-gaps and band-offsets
of each layer of the structure.
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Equation (6.I7) is an important form because it allows definitions of Greens functions
for different bands. The diagonal (i = j) Greens functions can be used to determine the
properties of the carriers for the various bands such as the conduction (i = ¢) or valence
(i = v) band densities. The off-diagonal (i # j) Greens functions will be shown to be used
to determine the polarization functions. Therefore, with equation (6I7) a model of the
coupling between carriers and the polarizations can be obtained which will form a basis for
modelling the system. These relations will be shown in later sections after the transition

to the Wigner function model.

6.1.4 Self-Energies

Dyson’s equation in the format used requires the interactions to be expressed in terms of
the self-energies. The self-energies used in this thesis are listed here with more detail in
the Appendices.

Classical Single Particle Interactions

The classical interaction written in second-quantization form is

V(l"l, y) = V(21)8* () — 5U2)7/;(331)7/;+(5U2) (6.19)
where V(z1) is a general classical interaction potential. The delta function in time is
because classical interactions like this are assumed to act instantaneously in time (no
retardation effects). In this work, the classical interaction is used to describe both an
applied potential bias as well as the electromagnetic interactions. It is also often used to
for the heterostructure potential as well[32] instead of incorporating it into H; as done
here.

The general self-energy for any classical single particle interaction is[32]

(w1, 1) = %f&(xl o)V (a1) (6.20)

Substituting this into (G.I5]) results in the classical self-energy

f]i,j(xl,:@) = ﬁf54(x1 — 1) /d3r1uf(r)uj(r)V(r1,t1) (6.21)
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Slowly Varying Applied Potential

For a slowly varying applied bias potential V(x) = VP (x), the potential can be moved
out of the integral over the unit cell in equation (621) to simplify this self-energy to

1-
E’-l’p-p(xl, 372) = ﬁjé(xl — $2)5ijvapp(r1, tl) (622)
This slowly varying applied potential includes the applied bias and the modifications of

the heterostructure due to electrostatic effects.

Classical Electromagnetic Interaction

The classical electromagnetic interaction is written as V(x) = —eE(r, t)-r where the electric
field E is assumed to be slowly varying. This is a different form than the electromagnetic
interaction used in Chapter 3 (ep-A). In this part it is more convenient to have expressions
for E because of the well-known Greens function expansions of the electric field discussed
in section 6.3. Substituting this into equation (G.2I]) gives

. 1-
EEJM = _5154(551 — x3)d;; - E(ry, 1) (6.23)

where d;; = e [ d®ruf(r)u;(r)r is the interband polarization. This is the basis of the lasing
action and since the system is designed to be operating around the band-gap, it is assumed
this is negligible when ¢ = j.

Note that since a classical interaction is being used for the electromagnetic field, there
will be consequences because the important effect of spontaneous emission cannot be mod-
eled by this. Recall from equation (ZI6) the photon output is directly proportional to
spontaneous emission. Without it, the lasing action cannot start. It will have to be added
ab initio in an accurate manner. This is done with the Quantum Langevin equations in a

later section.

Phonon Interactions

In this case it is assumed that the phonons are unconfined and are therefore described by

plane-waves. The electron phonon interaction in second quantization form is[27, 28]

HPM(1y, ) = 0(x1 — 22)p(a1) 0 (1) 0 (2) (6.24)
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where é(xl) is the quantization of the potential that arises from the oscillation in the
crystal. This is defined in Appendix D in the Frolich coupling model. The interaction
is assumed to be instantaneous (no phonon drag). The self-energies in the matrix repre-

sentation and in the band basis resulting from this interaction are (Appendix D, [27, [34])

GEJ(ZUI,J}Q)Dt(l’l,l'Q) —G;j($1,l'2)D<(ZU1,l'2)

iff;on(l'l,lé) =1 N > i t
’ Gij(wr, w2) D7 (21, w9) =G (w1, 22) D' (1, 72)

(6.25)
D% are the phonon Greens functions which, in this notation contain the Frolich coupling
coefficients. These phonon Greens functions are for the longitudinal optical type (LO) as
all others have weaker interactions with carriers[7()]. They are assumed to be in equilibrium
because LO phonons quickly equilibrate by decaying into acoustic phonons and propagating
away from the active regions. The expressions for D® of use here are shown in the Appendix
D.

Coulomb Interaction

The Coulombic interaction is a two-particle interaction expressed in second-quantization

form as

o an,) = SO [ e @) Vil — i) (620

82
[r1—r2les
the quasi-static Hartree-Fock approximation (also referred to as the random phase approx-

in

where V;(|r; —ro|) is the scattering-renormalized Coulomb interaction potential

imation). The symbol & is the dielectric constant incorporating scattering effects using
the plasmon-pole approximation.

This gives the self energy (Appendix E)

Seoul(gy, 29) = .

(6.27)

The terms Cf;(z1,29) are shown in Appendix E.
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Dyson’s equation

Substituting the self-energy terms of section 6.1.4 into equation (6.17) gives the Dyson

equation

in (5 + ai) - (B (e0) — B (12)] Gy 01,22

= Z |:Vapp IL‘1 '(1‘1, IL'Q) - éi,j’(xla "L'Q)Vﬂgp(l'g)]
_Z (i B(21)G (w1, 22) — G (1, 2)dy15 - Elw)|

+h/d£32 Ephon xl,ib'g GN’]‘IJ‘(ZL'?,,JTQ) — éi,j/(xl,:vg)f)?,}f;n(xg,xg)]
+h/dﬂ?32 ECOUZ .ﬁUl,.iUg GN’j/,j(afg,,ZUZ) — éi,j/(afl,lUg)i??j;l(a?g,xg)] (628)

The terms for the phonon and coulomb interactions are not expanded yet here due to their

length, they will be shown in greater detail after some approximations and reductions.

6.2 Wigner Functions

In this section the Wigner functions and their corresponding evolution equations will be
derived. This is essentially just a change of the independent variables used in the Greens
functions, self-energies and Dyson equations and then the application of the Markovian
approximation. The Wigner functions are then related to the < and = Greens functions
by the Kadanoff-Baym Ansatz[30, B5]. The QBE describes the evolution of the Wigner
functions and it is derived from the Dyson equations by applying the various variable

transformations and approximations.

6.2.1 Change of Variables

The Greens functions and self-energies used so far are of the form f[i,j(xl,xg) where H

represents either G or . A new set of variables is defined called the center of mass (CM)
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variables,
i t t t
T: 1+2,t:t1—t2 :>t1:T+§,t2:T—§ (629)
r;+ry r r
R = 5 , T =I) — Iy :>I'1:R—|—§,I'2:R—§ (630)

The rationale for this is that for a spatially homogeneous system in equilibrium, the time
and position dependence is only on ¢ and r. It is therefore a convenient form for the
boundary conditions which are approximated being in equilibrium. The Greens functions
and self-energies are thus rewritten with this variable dependence as I:Im' (r,R,t,T). Next,
H is Fourier transformed to a function that has independent variables which correspond
to phase space in the classical limit. This transformation is known as the Wigner-Weyl

transformation and is given by

—i(k-r—wt)
~ (& ~
Hi,j(k,R,T,w)://dtd?*rWHi,j(r,R,t,T) (6.31)

6.2.2 Kadanoff-Baym Ansatz (KBA)

The set of four coupled Greens functions in the real time model is prohibitive to solve. It
is very desirable to reduce the number of Greens functions that are required[35]. To reduce
this, recall that the G< Greens function is the Greens function of most interest here[27, 32].
Thus it will be attempted to find the minimal amount of equations required to determine
it. When examining this Greens function it is apparent that the functions of G>, G* and
G? are also required. However, equation (62) shows that both G* and G can be written
in terms of G<, G~ and G". Therefore to solve for G< it is also necessary to solve for G~
and G". The purpose of the KBA is to uncouple this dependence.

For a homogeneous system in equilibrium, the following relations are exact[27],

G<(k,w) = iA(k, w)np(k) (6.32)
G~ (k,w) = —iA(k,w)[1 — np(k)] (6.33)
where np(k) is the Fermi-Dirac function and A(k,w) = —2ImG" (k,w), which is known as

the spectral density function.
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The KBA is based on the assumption that as interactions and structure are added, the
functions become T and R dependent, but in a way that they are slow as compared to ¢
and r. In general, the relation like equation (6.32) for arbitrary systems would have to be

written in the position-time coordinates as
G<(x1,x2) = iA(l’l,ZUg)f(ZUg,lvg) (634)

Just looking at the time coordinates now for simplicity, equation (6.60) shows that the
Wigner-Weyl transformation can be written in the form
eiw(t+ts) ts t

/dtdt?,WA(T +5 t)B(T — 2 t3) (6.35)
It is also assumed that the functions will decay in their time-difference coordinates due to
equilibrating scatterings in the system. Because they are quickly varying and decaying,
this can approximately be written as

eiw(t+ts)

/ ity G AT )BT 1) = (20) AT, w)B(T.) (6.36)

This is essentially the Markovian approximation (and the zeroth order gradient expansion

to be discussed). A similar relation holds for the position variables. Thus equation (6.34))

is approximated in the transformed coordinates as

G<(kR,w,T)~iAk R,wT)f(k R,T) (6.37)

G”(k,R,w,T) = —iAk,R,w, T)[1 — f(k,R,T)] (6.38)
The function f(k, R, T) is the Wigner function which is assumed to have no w dependence
because np doesn’t. This is the famous KBA[30)] and reduces the coupling in the set of
equations from G<, G~ and G" to just f and G".

To simplify this even more, it is assumed the retarded Greens function remain relatively
unchanged from a homogeneous system in equilibrium and are therefore approximated by
their equilibrium values[27, B0]. This assumption changes the spectral broadening slightly
which can be compensated for by the inclusion of a scattering time to be discussed.

Oig (6.39)

Gk w) = ————
0] W — f;k —|—Z77
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where 7 is a vanishingly small number to assist in convergence. When this is placed in an
integral, complex analysis states that this can be replaced by
0i,j

_ Eik
h

—imd(w — 2Ky (6.40)

G (k,w) = Pr » :

where Pr denotes the principal value and ¢,k is the band’s energy (including band-edge).
The KBA ansatz consists of the following approximations when expanded in the band
basis[30]

G5k R,w,T) =i [GI5(k,w)G(k, R, T) — G5k, r, T)G35 (k,w)] (6.41)
G7;(kR,w,T) =i [Gii(k,w)G7;(k R, T) - G7;(k, R, T)G}7 (k,w)] (6.42)
where p
0y
G (kR.T)= [ —G(kRwT) (6.43)

In this case the spectral function is
A jkw) =1 (Gf";(k, w) — G;f’j*(k, w)) (6.44)

Note that when i=j, the spectral density becomes —2Im(G7%(k,w)) as used previously.
From equation (6.2)),

G7i(kR,w,T) = Gi(k, R,w, T) — i (k) (6.45)
Multiplying equation (6.45) by [ (‘21—‘;) gives

which is because of the relationship [ (‘;—;’)Ai,j(k,w) = 1 ( substitute equation (6.40) into

(644) and multiply by [ (‘21—‘;)) The KBA can therefore be written as
Gk R, w, T) ~idij(k,w) fi,(k R, T) (6.47)

and
Gk Rw T) =il (kw) (fi;(k,R,T) - 1) (6.48)

where f; ;(k,R,T) = —iG7;(k, R, T) are the Wigner functions in the band basis.
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6.2.3 QBE

The QBE is the evolution of the Wigner function as derived from Dyson’s equation ([6.28)
for G<. The following steps are performed to obtain the Wigner functions and the QBE

from G< and Dyson’s equations:

1.

Isolate the Dyson equation for the < component, write G* and G in terms of G<,
G~ and G" using equation (6.2)).

Change to the CM variables of (6.29) and then write the functions in terms of the

Wigner-Weyl transformed functions by applying the inverse transformation of equa-
tion (63T).
dtd®r ,—i(k-r—wt)

Multiply the Dyson equation by [ on2 € to express this equation completely

in the Wigner coordinates.

Apply the KBA to write G< and G~ in terms of f and G"

. Assume G" takes the form of equation (639).

Multiply the equation by —% f g—‘;r’. The —% is for convenience, f ‘;—‘;r’ is the Marko-

vian approximation which will remove the A; ;(K,w) terms when there is a linear

dependence on this.

Each term in equation (6.28) will be examined to see the effects of the above steps.

LHS

The LHS of equation (6.28) for the G< term in the CM coordinates is

ViR +35) — £-Vi,,
zha% — ( ( 2) 2m£2 R2+ /2) ij(r,R, £,7) (6.49)
B (VJ(R - %) - W;VR_I-/Q)

Which can be written as, after applying steps 2 to 6 and some algebra

? J 3 J

o ik [ 1 1 , V& ho(1 1
a5 (o o) (€8 5 (o)X V] dutemm)

7

h(2m)3

[ Wil K R) < V(0 - K R)) fy (0B T) (6.50)
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where

Vi(k,R) = 2 / PPR'e R R (R (6.51)

For simplicity, this derivation assumes the effective mass is constant. For a spatially varying
effective mass, more technical detail is required[71]. The derivation involves some straight-
forward Fourier transforms and is shown in Appendix F. These terms can be replaced by

the varying ones if so desired.

Applied potential

This looks very similar to the heterostructure potential part of the LHS above except the

potential now has a time dependence. Applying steps 1 to 5 gives

eZQT 31,/ V;'app(k - klaRa Q)Gifj(klaRaw - %7T)
dQ——— 5773 d’k e 0 app 1 (6.52)
( 7T) Gi,j(k7R7w+ 27T)‘/j (k kaRa Q)
where or
V7 (k,R,Q) = / AT —— o / PR e ®R-RIV(R' T) (6.53)
Applying step 6 to this will reduce it to
- f dQeiQTh(QﬂZ.-)WQ f dgk, [V;japp(k - kla R7 Q) - V;'app (k, - k7 R7 Q)] fi,j(kl7 R7 T) (6 54)
——h(;;r)g [&K [V (k - K, R, T) - V" —k,R,T)] f;;(K,R,T) '
Electromagnetic term
Expand the electric field as
o~ i(QT-k-R)
ER,T) = / dei*kWE(k, Q) (6.55)

so that steps 1 to 6 will reduce this term to

—iQT U 31,/ ik 'R )f] J(R k — kl/2 )
/dQe h(2r)? /dk Z[ f” k+k’/2 R,T)d,, - E(K, Q) (6.36)
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It has a similar time dependence to the applied potential term. The k' variable corresponds
to the photon wavenumber. Since photon momentum (%k’) is assumed to be negligible

compared to the electron momentum (k conservation again), this can be approximated as

= Z i - B(R,T) fjr;(k, R, T) — fi 5 (k, R, T)dy; - E(R, T)] (6.57)

Gradient Expansion

The transformation for the phonon and Coulombic terms in Dyson’s equations into the
QBE is more difficult due to the complicated forms of these self-energies. This means

integrals arising from terms like

/(;7326_i(k'R_‘”t)/dargé(xl,xg)f](xg,xg) (6.58)

cannot be reduced and so would have to be evaluated numerically. This is very undesirable
because of the large amount of time involved. To simplify this, a perturbative method for

these terms is used called the gradient ezpansion[27, [32].

Consider first a simpler expression just for the time variables f 1/2 e“tdts A(ty, t3) B(ts, ta)-
In the CM coordinates this is

e Wt T +t)2 +t3 T —1t/2+1t3
/dtdtg(%)l/QA( 5 ,T+t/2—t3)B(#,—T+t/2+t3) (6.59)

Make the replacements t3 — t3 — T +t/2 and then ¢t — ¢ + t3 to simplify this to

6 tw(t+t3) t3 t
/dtdt3 CoLE A(T + 2 t)B(T — 5,153) (6.60)

Expand this into a Taylor series

it eiw(t+ts) 1 8 nAT 8 mBT 1

and use the Fourier relation

/ dHn O (f) = (—z%)n / dte=1C (1) (6.62)
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to get

St (2 () a0 () () wn]

n,m

There exists a similar method for the position variables except for the sign change in
equation (6.62)) so that the term

[

can be written as

Ni $1,5U3) i, (5U3,l"2) (6.64)
G ZUl,afg)E (273,.1'2)

> [L(ii,j' (k, R, w, T)Gjr;(K,R,w,T)) — L(éi,j'(k,R,w,T)ij',j(k,R,w,T))] (6.65)

!

j
where

1
LAk R,w,T)Bk,R,w,T)) =[] D ST T ¥ (6.66)

a na,Ma

[(a(a) aza)ma <6ia)na A(K,R,w,T)] K—a(a)aga)na <aia>ma B(K,R,w,T)]

and o = 1 to 4 is an index for the sets of variables x = {X,Y, Z, T}, 7 = {k;, ky, k., w},

Na, M, are integers from zero to the order of approximation and a(a) = —1 for a =

1,2,3 and 1 for &« = 4 (to account for the sign difference between the position and time
expansions). The function L is a linear function. It is apparent that the zeroth order
approximation is simply

>[S00 (K, R, w, )Gy (K R, 0,T) = G (K, Ry, T) Sy (K, Ryw, T) | (6.67)

I
The zeroth order approximation is equivalent to the Markovian approximation in position
and time. This accounts for step 1 to 3 of 6.2.3.

Since it is only required that G< be solved for in the Dyson equation, only the <

component of equation (6.65) is needed. By matrix multiplication, this is

t < < it t < <yt
Z L [EZ,]IG_],,] - Ei,j,Gj,,j - Gi,jlzj/’j + Gi,j’E]”,j (668)
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This expansion can now be applied to find the phonon and Coulombic terms in the QBE
derivation. In all the work following, only the Oth order contributions will be kept (a

Markovian approximation).

Phonons

Using the relations of equation (6.25]), the phonon terms and applying steps 1 to 3 of the

procedure to convert to the QBE, these terms can be written as

2’y

]'I

phon,< < > < phon,<  ~phon,>
Ei,j’ (Gj’,j’ Gj’,j’) Gi,j’(zj’,j Ej’,j )

6.69)
phon,r ~n< < phon,r phon,< ~r phon,< ( .
Ty Gy~ GpXyy T i Gy = Gl Ey

where each Greens function and self-energy is in the Wigner coordinates (k, R,w,T). The
self-energies for phonons in the Wigner coordinates are shown in Appendix D. Applying
steps 4 to 6 on equation (6.69) results in the phonon contribution to the QBE as

|:Z;;i; (ka q, wL)fi,j’(ka Ra T) - fi,j’ (qa Ra T)Z;;?],(qa ka wL)

_/dil Z] +i Z VB(]akalaqa VwL)fZ,]’(qaRaT)f]’,](kaRaT) (670)
! v==+1 _VB(ja qaiaka VwL)fi,j'(kaRaT)fj’,j(qaRaT)

Coulombic Interactions

Using equation (E.68) and the Coulombic self-energy of (E.7), the < component of the

Dyson equation can be written as

> letGs,+ G, (6.71)

5!

J

Where C7; is defined in Appendix E. Applying steps 1 to 6 gives the QBE contribution of

this term as

' R fr (KR T) = fia (6K, R T fri (R, T
l Z / d3k,‘/s,k—k, fl:] ( 7R7 )f] :]( 7R7 ) fl:] ( 7R7 )f] a]( 7R7 ) (672)
h o —fij#(k,R,T)

where V; x_y is defined in Appendix E.
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QBE

Putting all these components together gives the QBE

0 ih 1 V2 7

2. un o YR) g (R, T

3T+ 2 [mf;( 4 ) m;‘,}r VR f]( Y )
—/L’k' (Vi(k — K, R) — V(K — &, R)) f (K, R, T)
- Zh(2’ﬂ')3 13 ) 13 Y 2Y) Y Y

P
n / , VP (k — K R, T) — V(K — k, R, T)] fo;(K, R, T) (6.73)
ih(2m)3 ’

1
+ﬁ Z [dij' -E(R, T)fj':j (k,R,T) - fi,j’(kﬂ R, T)dj'j -E(R,T)]
jl

[Z;;{J, (ka q, wL)fi,j’ (k7 R7 T) - fi,j’ (qa Ra T)Z;;{], (qa k7 wL)
3 . .
_/dq ; +i Z VB(]akalaqa VWL)fiyj’(q, R7 T)fj',j(k7 R7 T)
v==+1 —Z/B(j, k; i; q, VwL)fi,j’(ka R; T)fj’,j(qa R7 T)

=5 / PRV ) i OB (R T) = fiy (K. R T) [y (k. R, T)
g —fijzi(k, R, T)

1 1 1
where ml’] = <m’.‘ + m
(2

From now on, the applied potential and heterostructure potential terms will be com-
bined into a single classical potential term V'(k,R,T) = Vi(k,R) + V" (k,R, T)

6.2.4 Rotating Wave Approximation

The rotating wave approximation is a common technique used to separate the quickly and
slowly varying functions in time T[72]. This idea has been seen already in chapter 3 when
the slowly varying quantities were used. Examining equation (6.73), it is apparent that if
there are no external interactions except for a constant band-gap from the heterostructure

term, the equation for f; ; can be written as

)
Zha—T — (€6ix — €x) —€ij| fij(k,T)=0 (6.74)



102

where kinetic energy is represented by €;x and the constant band-gap by €;;. Equation
(674) has the solution

Fig(,T) = fij(k, 0)e ()T (6.75)

Note that, although the oscillating part of equation (6.75) is dependent on momentum,
the most significant factor comes from the band-gap component because €; x — € << €.
Therefore the off-diagonal components will be considered quickly varying and the diagonal
components will be relatively slowly varying.

When interactions are incorporated into the system, the Wigner functions will change,
but they will still oscillate close to the resonance frequency 7% = % + 6€2. where 09 is
a small additional term added for reasons discussed below. Therefore the general solution
of (6.73) can be approximated as

fii (&R, T) = fi;(k, R, T)e "5 (6.76)

where f” is the slow moving component. The diagonal components have f;; ~ fu because
they are already slowly varying.

Assume that the device to be simulated will be operating around a single optical fre-
quency §1,,. In practice, the laser will be designed so that it’s operating frequency will be
at maximum gain. This means it will be very close to (but not exactly at) the band-gap
frequency as was seen in Chapter 3. The exact frequency of the oscillation is the aforemen-
tioned resonance frequency between the conduction and valence band (2, = .%). The

electric field can then be separated into slow and fast varying components
E(R,T) ~ EF(R,T)e” " t E7(R,T)e " (6.77)
Therefore, the Wigner functions will be of the form
for, R, T) = foo(k, R, T)e™ T | f, (K, R,T) = foolk, R, T)e'" | f.~ fi; (6.78)

The approximations of equations (6.77) and (6.78)) are substituted into equation (6.73)

and analyzed for each combination of i,j.
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For the i=j=c term this is

o h
[a_:r + oK VR] foe(k, R, T)
&Pk , . ,
:/m(gﬂ)g (Vi(k =X ,R) - V/(kK' ~ k,R)) fo.(K, R, T) (6.79)

fue(k, R, T)ei%7d,, - (EF(R, T)e~ %" + B (R, T)ei%")
—fou(k, R, T)e 0 Td,, - (E*(R,T)e T + E~ (R, T)e%T)

( 3\

Zo¢(k, g, wr) fe ok, R, T) = feolq, R, T) Z8¢(q, k, wi)
+Z50(k, g, wr) fen(k, R, T)e™ "
—few (a, R, T)eimoPTZz?:g(qv k,wr)
- /d3q % v (B(e, k, ¢, q,vwr) — B*(¢,k, ¢,q, vwr)) >
oy % foel@, R T) a6 R, T)
v==1 | +vB(e k¢, qvwr) feo(q, R, T) fo ok, R, T)
\ —vB*(¢,k, ¢, q,vwr) feo(k, R, T) fuc(q, R, T)

) cv kaRaT 'ucklaRaT - Jco klaRaT vckaRaT
+%/d3k,%’kk,{f,( Vel RT) = foo (K B T) foe )}

i
h

_fc,'u (k7 R7 T)
T+1
Equation (6.79) is multiplied by [ dT" where 7 = é: . The slowly varying components
T—71 P

have negligible change over this time, while any components with terms of "% n =
+1, =+ 2... will average to zero. This is the rotating wave approximation and gives the

simplification
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[6 h

or
d3k’

B / ih(27)?

+% [fv,c(ka R7 T)dcv - E+ (R7 T) -

;

—/d3q<

\

(‘/;t(k o klv R) -

[Z2¢(k, qywp) fee(k, R, T) —

] Jeok, R, T)

‘/;t(kl -k R)) fc,c(k,a Ra T)

fC,U(kﬁ R7 T)dvc -E (R, T)]

fc,c(qa Ra T)Zc C(qa k wL)]
v (B(e, k, ¢, q,vwr) — B*(¢,k, ¢, q, vwr))
X feeld, R, T) feo(k,R,T)
+vB(e, k, ¢, q,vwr) feo(d, R, T) fo.c(k, R, T)
—vB* (Ca ka ¢ q, l/wL)fc,v(ka R7 T)fv,c(q7 R7 T)

/

(6.80)

by [ PVopcse {Feall R ool RT) = £y (KR ) (. R D))

It has been assumed that the time dependence of the applied potential is slow compared

7. The term %dw -E*(R,T) is commonly referred to as the Rabi frequency.

Similarly, i=j=v is

[;T h ]fuu(kRT)
-/ % (Vilk —K,R) = V(K — K, R)) fuu(K, R, T)

+% [fc,v (k7 R7 T)dvc - Ei (R7 T) -

;

_/dgq% +i Y,

v==+1

\

h

(220 (k, dywi) fou(k, R, T) —

f’U,C (k7 R7 T) dcv ) E+(R, T)]

fv,v (qa Ra T)ZU U(qa k wL)]
7k7U7q7 l/wL) - B*(U,k,U,q, l/wL))

X fou(a, R, T) fon(k, R, T)
+vB(v,k,v,q,vw) foc(q, R, T) feu(k, R, T)
_VB*(Ua ka v, q, VwL)fv,C(ka Ra T)fc,v(qa Ra T)

v(B(v

)

(6.81)

~

)

b [ PRV ol R D) € RT) = foK R D) o (kR T))

For the i=c, j=v term, substitute the expansions of (6.78) into (6.73) again, cancel out

a factor of e=#%rT

and then make the rotating wave approximation,



) Kl i (., Vi 1
57t {m (- 2) + e Va | )
_ [ _T¥ (VK — K, R) - V(K -k R)) for (K, R, T) (6.82)
ih(2m)3 2 ¢ 7 ° ’ R '
+%dcv ) E+(R7 T) (f’u,'u (k7 R7 T) - fc,c(k7 R7 T))
( )

v==+1

\

o / PRV, o {

Similarly i=v, j=c is

o ih[ 1 [, V% i
{3—T T {m?}fc (k - T) N m?}fEk | VR” foclls R, T)
:/ PK (Vik —X,R) - V/(k' — k,R)) f,.(K,R,T) (6.83)
ih(2m)3 VY ) c ) velX, B, -
+%dvc E"(R,T) (fooK, R, T) — f,,(k, R, T))
)

v==1

[

|: Zgjg(ka qa, wL)fc,v(ka Ra T) - fczv(q’ R’ T)Zgjg

vB(v,k, c,q,vwy) (

—vB(v,q, ¢k, vwr)

fc,'u (k7 R7 T) (f’u,'u (kla R7 T) - fC,C(kla R7 T) - 1)
+fc,v(kla R7 T) (fc,c(ka R; T) - fv,v(k; R7 T))

|: Zg:cc(ka qa, wL)fU,c(ka R7 T) - fv,c(qa R7 T)Zg’c

vB(c,k,v,q,vwy) (

—vB(e,q,v,k, vwy) <

(akwr) |
feeld, R T) feo (R, T)
~fe@ R T) fo(k, R T)
foell, R, T) fo(a, R, T)
~fe(l, R, T) fr (@, R, T)

}

w(a, k, wr) ]
fou(@ R, T) foc(k, R, T)
—foeld, R, T) feo(k, R, T)
fow(& R T) foe(a, R, T)
—fock, R, T) fee(a, R, T)

)
)]

)
)]

foek, R, T) (fee(K, R, T) — fuo(K,R,T)+ 1)
+fo K, R, T) (fonk,R,T) — fec(k,R,T))

o / PRV, j e { }

An extra manipulation had to be made to arrive at the +1 term on the second last
line of equation (6.83). This follows the argument of Schéfer and Truesch, and Binder and
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Koch[30} 73] where any zero-excitation effects due to the coulomb interaction (non-zero
terms for the coulombic contribution when f.. = 0 and f,, = 1) have to be subtracted

because they are already included in the effective mass of the Hamiltonian.

Additional Comments

All remaining phonon terms in the off-diagonal equations are of the form

B(c, k, v,k vwy) o<

- (6.84)

wa+%+§(’“——’“'2)+z§

me

or the conjugate. Since €., >> hwry, these terms will be small and hence they will from
now on be neglected.

Since the electric field being considered is classical, the relation E() = E()* is true. It
can then be shown that f,. = f by applying the complex conjugate to equation (6.82) to
show that f7 satisfies equation (6.83) as well. Therefore, from now on f,. will be replaced
by fr and equation (6.83) will be neglected.

The coulombic terms are often incorporated into the evolution equations as renormalization

terms. That is, the QBE’s are rewritten as

or

h

k- VR] feelk,R,T)

0
or — m;
k
/ (VA — K, R) — V(K - k,R)) f. (K, R,T) (6.85)
ih
i [f5( k R T)Q(k, R, T) — fo.(k, R, T)Q}"(k, R, T)]
2560k, &, wi) ook R T) = ool R Z0(a k,wr)] )
v (B(e,k, ¢,q,vwy) — B*(¢,k, ¢,q,vwy))
—/d3q< | % foe(@ R, T) foo(k, R, T) >
v=1 | +vB(ck,c,q,vwr)fen(q, R, T)f7,(k, R, T)
—vB*(c,k,c,q,vwr) feo(k, R, T) cv(q, R, T) | |

e
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and

h

my,
d*k’
ih(2m)3

fen(k R, T)QL (K, R, T) — fo(k R, 7}k R, T)]

([ [Z00(k, qywr) ook, R, T) = foo(a, R, 1) Z00 (q, kywr)] )
v(B(v,k,v,q,vwr) — B*(v,k,v,q, vwr))

_ / Fal s % fou(@ Ry T) fun(k, R, T)
v=%1 +VB(U,k,U,q, l/wL)f* (qa Ra T)fc,v(k7 R? T)

c,v

—vB*(v,k,v,q,vwr) 7, (k, R, T) feo(q, R, T) ] )

_|_

k- vR:| f'u,v (k7 R7 T)

Sl

|

(V/(k —K,R) - V/(kK — k,R)) f,,(K,R,T) (6.86)

+1

—

~”

and

0 h{ 1 Vi 1
= _0 wr(k.R.T) + — 2_ R k- k,R,T
|:6T Wigp +ZWR( ,R, )"— 5 |:sz (k 4 ) + o VR:|:| fc,v( 7R7 )

c,v

- / ihcél;rl)?’ (Vi —1¥.R) ~ V(K ~ k,R)) foo (K, R, T) (6.87)

+iQh (&R, T) (foo(k, R, T) = foo(k, R, T))

Where

1
QLk,R,T) = ﬁdw -EN(R,T) + / k' Vo 1o foo (K, R, T) (6.88)

is known as the renormalized Rabi frequency and
hwr(k,R,T) = /d?’k'VS,kkf (foo X, R,T) — fo (K, R, T)—1) (6.89)

is the renormalization to the transition energy.

In section 3.6.3 the renormalization factors included the coulomb-hole energy. This has
not been incorporated here yet because the effective masses are taken as their screened
values. During a practical calculation, this will have to be added in if the masses used are

the unscreened values.
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6.3 Electric Field

The Quantum Boltzmann equation as derived so far is incomplete because there are not
yet expressions for the electric field. In this section, it will be shown how the electric field

and Wigner functions are related. This will give a fully self-consistent model.

6.3.1 Macroscopic Polarization
The energy density of a system is described by[54]
W(T) = / ¢’RE(R,T)-D(R,T) (6.90)
where the displacement is
D®R,T) =E(R,T) + P, (R,T) - P,(R,T) (6.91)

The polarization has been separated into two components, the resonant and non-resonant.
The non-resonant polarization (P,,.) is the background polarization that generally exists in
the material. It is known as non-resonant because it is not at the frequency of the laser light.
It is assumed to have a linear relationship to the electric field (P,,.(R,T) = x(R)E(R,T))
The resonant polarization (P,) is the polarization resonant with the laser light. This is
negative because the polarization is induced. This is what controls the gain and is related
to the Wigner functions. To see this, from (6.90) the energy density due to the resonant

polarization is
SW(T) = — / d*RE(r,T)-P.(R,T) (6.92)

The electromagnetic interaction has a perturbation energy R - E so that the energy

density can also be written as, using the relation between G< and the expectation value
in equation (6.4)),

SW(T) = —i/d3ReR-E(R,T)G<(X,X)

— _i/di*ReR-E(R,T)Zui(R)u;(R)Gij(X,X)

1]

Q

1
gzdji'/d?’f{d?’kE(R, T)fi;(k,R,T) (6.93)
Z’J
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Note the Wigner function used here is before the rotating wave approximation has been
made, which will be applied shortly.
From the equality of equations (692) and (E93) the identification

1
P,(R,T) = —— D dji- / P’k f; j(k, R, T) (6.94)
i,

can then be made. This is a very important result as it relates the off-diagonal Wigner
functions to the macroscopic Polarization and therefore the electric field can be related to

the Wigner functions through Maxwell’s equations.

6.3.2 Maxwell’s equations

The evolution of a TE field, assuming no current flows in the transverse direction is

2

{uoa(R)% — VQ] ER,T) =

2

_MOWPT(Ra T) (6.95)

where the polarization is separated into the resonant and non-resonant parts. The non-
resonant part is included in the dielectric constant by ¢(R) = 1 + x(R). It is simpler to

solve this in frequency space so make the transformation

0T 0T
ER,T)= Q———ER,Q), P T) = Q———-P Q .
(R,T) /d OoLE (R,Q), P,(R,T) /d OoLE (R, Q) (6.96)
Equation (6.95)) in this space is
[V? + Qpe(R)] E(R, Q) = —11,Q°P, (R, Q) (6.97)

The difficulty with solving this equation is that the resonant polarization can be quite
complicated, as evident in equation (6.94). To solve when the polarization is arbitrary,
another Greens function method will be used. This is the electromagnetic Greens function,

which is the solution of

[V? + Que(R)] G"MR,R,Q) = #(R - R) (6.98)
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so that the electric field is then
E(R,Q) = / PRG™M(R, R, Q) [-p.°P (R, Q)] (6.99)

_ Mo 3 EM 2 3
— %Zd,ﬁ/d R'G"M(R,R/,Q)Q /d kfi;(k,R,Q)  (6.100)
7’7]

where equation (694) has been used in the last line and the Wigner function is Fourier
transformed as in equation (6.96). This is the general relation between the electric field
and the Wigner functions. The electromagnetic Greens functions in frequency space were

chosen as there are already known solutions for this for the structures under consideration.

Fabry-Perot (FP) Cavity

The FP cavity is a standard structure, it consists of two partially reflecting mirrors placed
perpendicular to the direction of optical propagation. The dielectric is constant along this
direction and therefore a simple resonant cavity is formed. This cavity has been implicitly

used in chapter 3 and is shown in figure (6.3).

-
Heterostructure

Figure 6.3: A Schematic Representation of a Fabry-Perot Laser Cavity

The electromagnetic Greens function for the FP cavity has standard solutions|74, [75), [76]

GP(R R ) = 3 g (X, 0) 2222000l ) = 3 X, X (2,2,

n

(6.101)
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The variation in the Y direction has been neglected as it is assumed in this direction it
is an infinite waveguide. The subscript n denotes the transverse mode solution which is

determined by annotating the solutions of the one-dimensional waveguide problem

2
[% + 92%5(2)} On0(Z) = ky gbnn(Z) (6.102)

Which has been solved in Chapter 2. The denominator in (EI01) is for normalization.
Since the transverse modes are orthogonal, this gives an equation for the one-dimensional
Greens function[74, [75]

d2
{W + kiﬂ} g (X, X',Q) =6(X — X') (6.103)

which has solutions

(X, X', Q) = Zrna(X)Zpna(X)O(X — X’%V+ Zrna XN Z1na(X)O(X' — X)
n,$2

(6.104)
where Z1 ,,q is the solution of the homogeneous equation which satisfies the boundary con-
dition at the left laser facet and Zg ¢ is the solution that satisfies the boundary condition

at the right laser facet. The denominator is the Wronskian which is defined by

d d
Wn’Q - ZL,n’Q (X) d—XZR’nQ (X) - ZR’n,Q (X) d—XZL’n’Q (X) (6105)

For the first mode of the Fabry-Perot cavity extending from X=0 to X=L with reflectivities
r1 and ro, these have the solutions

Zpoo(X) = riefonX 4 emhoaX -7, o(X) =1y [eRonX 4 ppetonl=0](6.106)

Woa = 2ikeq [1 — rirge* oo’ (6.107)

Distributed Feedback (DFB) Cavity

Another common cavity design is a DFB cavity. It gives a sharper spectral resolution than
the FP cavity. Instead of the dielectric being constant in the field propagation direction,
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a periodic grating structure is formed in one or more of the layers. A schematic of this is
shown in figure 6.4 by the solid lines. An exact solution of this problem is quite complicated
so that usually perturbation method in de(X, Z) (the difference between dielectric over the
grating structure and the ”average” as shown in figure 6.4 by the dashed line) is used such
as the coupled wave solutions[(7]. Instead of this method, a Greens function solution will
be used. Note that the average structure of figure 6.4 is just a FP cavity, therefore, the
DFB Greens function can be considered a perturbation on the Greens function solution of
the FP structure.

| Dx2)

—

-
Heterostructure

Figure 6.4: A Schematic Representation of a DFB Laser Cavity

Let e(X, Z) = ¢,(Z) + 6e(X, Z) where ¢, is the dielectric profile of a FP type cavity as
shown in figure 6.3 and figure 6.4 by the dashed lines and d¢ is the perturbation to this to
modify this structure to a DFB as shown in figure 6.4 by the solid lines. The unperturbed

Greens function GEZM is thus the solution to
(V2 + Qe (R)] GEM(R, R, Q) = (R — R) (6.108)
and is determined in the above section. The first order perturbation to this is then|[76]
G"M(R,R,Q) =GP (R, R, Q) + GF" (R, R/, Q) (6.109)
where

GEM(R,R,Q) = — / PR'GEM(R,R", Q)0e(R")GEM(R", R/, Q) (6.110)
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6.3.3 Rotating Wave Components

The above section shows how to determine the electric field E from the Wigner functions.
Now, it is required to show the relation between the slowly vary components E*, E~ and
fc,v and fv,c. The relation is a bit subtle because these are not straight Fourier transforms.

A time dependent function A(7) is expanded into Fourier components A(£2) as well as

the slowly rotating components A(T')

A(T) = /dQ(Z;WA(Q) ~ A(T)e T (6.111)

Q, is the frequency about which the function is peaked. Multiply equation ([G.I11) by
T+t ) , ~ »

[ dT'5-e"T" where 7 = %27 and n>>1 but small enough such that A(T +7) ~ A(T) to
T—T1

get the approximate relation

T+

A(T) ~ / A W / dT'e 2T | 4(Q) = / dQg(9,9Q,, T)A(Q)  (6.112)

T—1

It is not necessary to explicitly evaluate the term in the square brackets, simply call it
9(2,9,,T) and note that it is a function that is sharply peaked around €.
All of the slowly varying electric field and Wigner functions used have this form and

can therefore be expanded as
E*(R,T) ~ /ng(Q,Qop,T)E(R, Q)
E-(R,T) ~ / 0Qg(Q, =, T)E(R, Q)
Furlk R T) % [ d829(82. 90, T) ol R,
foe(k,R,T) = / dQg(Q, —Qop, T) foe(k, R, Q) (6.113)

The terms E~ and f, . are being kept instead of simply using the complex conjugates of E*
and f., because of a key piece of information about the electromagnetic Greens function

to be explained at the end of this section.
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Substituting the relations in equation (6.99)) into the above expansions of the fields

gives
ET(R,T) = 5— dQ0%g(2, Qyp, T) / cR'GFM(R,R/, Q)
™
« / Pk (e fon(k, R, Q) + doy foe (K, R, ) (6.114)

but Q? and GFM(R, R/, ) are much slower varying functions in Q than g(,Q,,,T) and
fij(k,R,T) so that this can be approximately written as

oS
E*(R,T) ~ ”—ﬁp / PR'GPM (R, R',Q,,) / dQ9(,Q,,,T)
« / K (dye fon(k, R, Q) + doo foe (k, R, ) (6.115)
Since f., is peaked around €2,,, whereas f, . is peaked around —(2,,, this can be approxi-
mated as
Ke% .
ET(R,T) = % / PR'GEFM(R, R/, Q) / d*kd,. f..(k, R, T) (6.116)
s
similarly,
- MOQZP 3n/EM / 3 r ’
E R, T)= 2—/d R'G (R,R,Qop)/d kd,, f,.(k,R,T) (6.117)
s

where the relation G (R, R/, Q,,) = G"Y (R, R/, —Q,,) has been used (which comes out
of section 6.3.2). Equations (6.I16) and (6.117) can then be substituted into equations
(E80) to (6.83) to couple the electric field with the QBE.

Equation (6IT7) might be cause for concern because the relation E* = E~* implies

from equation (6.116) that

oS ~
E"(R,T)= % / PR'G"M*(R, R/, Q) / d’kd., f7,(k, R, T) (6.118)

T
Since GFM £ GFM* when comparing equations (6.117) and (6I18) it would seem f, . #
fo, which was asserted previously. However, it can be shown that the complex conjugate of
the electromagnetic Greens functions also satisfies the equations and boundary conditions
of the FP and DFB structures. This means it is acceptable to replace GFM* by GFM
because they’ll both yield the same expectation values. Thus the relation f., = f; . still
holds.
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6.4 The Electron-Hole Representation

The conduction-valence band representation has been convenient to use to derive the QBE.
However in practice, the conduction-hole band representation is preferable because doping
is given in terms of donors and acceptors which are free conduction electrons and holes.
Thus the boundary conditions, which will be related to the doping are more convenient to
formulate in terms of holes. This is accomplished by replacing the valence band Wigner
function with a hole band Wigner function.

These are related by[44]

foo(&, R, T) =1 = frun(=k,R,T) (6.119)

Where fj,,(—k,R,T) is the hole band Wigner function. Note that the momentum indice
is the opposite sign because the valence and hole creation and annihilation operators in

the momentum representation are related by[43] [44] 28]

It can be shown that the hole creation and annihilation operators also obey the commuta-
tion relations[28] and hence are an equivalent method of describing the system. Therefore
the Greens functions and Wigner functions can be defined in this representation.
Substituting the relations of (6.119) into equations (6.80) to (6.82) as well as using the
relations between the electric field and Wigner functions gives the equations in the hole

representation
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o h
oT

*
mC

B / Ak’
] inh(27)3

k- VR:| fc,c(ka R7 T)

(V!/(k -k ,R)-V/(K' - k,R)) f..(K,R,T)

[ R D)y, B (R.T) — £2,(k B T)dy, - B (R.T)

—/d3q<

?

+

St |

0

A
+ﬁ[

[

i

\

_|_

I~

;

\

/ KV, 0 {fen( R T) [, (K R T) — fun(K, R T) 2,06, R, T)}

oI  m

[P
B / ih(2m)3
fc*,h (k7 R’? T)dCh ' E+(R7 T) - fc,h (k7 R7 T) zh -ET (R7 T)]

(=20 e q.w0) a6 R D) + frnla, R D) 2 )| )

*
h

[ch,’cc(k7 q,wr) feo(k, R, T) — fec(a, R, T)ch:cc((b k, WL)]
v (B(e, k, ¢,q,vwr) — B*(¢,k, ¢,q, vwr))
X feeld, R, T) feo(k, R, T)
+VB(07 k7 ¢ q, VwL)fc,h(qa R; T)fc*,h(ka R7 T)

—vB* (¢, k, ¢, q,vwr) fen (&, R, T) f21,(q, R, T)

C

+i Y.

v==+1

k- VR] fun(k, R, T)

(Vik —K,R) - V/(kK' — k,R)) fn(k,R,T)

v(B(h,k, h,q,vwr) — B*(h,k, h,q,vwr))
th,h(q.7 R7 T)fh,h(k7 R7 T)

+1
V:Zil +VB(h7k7 h’a q, l/wL)fc*,h(qa Ra T)fc,h(ka Ra T)

_VB*(h’a k7 h7 q, VwL) c*,h,(ka R7 T)fc,h(q7 R7 T)

(6.121)

~

)

(6.122)

~”

)

/ dgk,‘/;,k—k’ {fc*,h (ka Ra T) fc,h (kla R7 T) - fc*,h,(kla Ra T) fc,h, (ka Ra T)}
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0 h| i Vi 1

— QA = | —= (K- R k- n(kR, T

oT ! p+2 m’é}i( 4 >+mz’h Ve|| fer(k, R, T)
—/ L3 (V!(k—K,R)+ V(K —k,R)) fon(k,R,T) (6.123)
- Zh(271')3 c ) h ) c,h ) ) .

iy BHRT) (1~ falk R.T) — foo(k R, T)

i 31,/ fc,h(kv R, T) (_fh,h(k,a R, T) - fc,c(kla R, T))
+h/dk%&k{+AAMRJUMAhRJU+ﬁAhRJU—U}

where f., = fon, Vi = =Vjl, mj, = —m,, and |d|* = d,, - d¥,. The f,; functions have also
simply been redefined so that they are fj, (k, R, T) instead of f; ,(—k,R,T"). The phonon
terms have indices v replaced by h which signifies that any components within these terms
that depend on m, will be replaced by —m,,. It can be shown that all terms of the form

> [ d*aIm(B(i,q,i,k, vwy)) will cancel by virtue of some relations of the Dirac-delta
v==+1
functions. This reduces the number of phonon terms when the hole replacement is made.

6.5 Higher Order Scattering

The Hartree-Fock approximation to the Phonon and Coulombic scattering ignores the
higher order processes. These are usually incorporated by assuming they generally con-
tribute in a form that can be modeled by the relaxation time approximation in classical
Boltzmann scattering[30] 31} 44].

0 fii
or

L[ fid
[ k[

=— d*kfi; — f] (6.124)
coll Ti

for the diagonal components where f¢? is the equilibrium Wigner function, which is nor-
mally found by calculating the Wigner functions (excluding scattering) at zero-bias poten-

tial. For the off-diagonal components, the term used is

afc,h - _ fc,h
aT coll Tch

(6.125)
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This is because in equilibrium the off-diagonal components don’t exist. The symbol 7;
is the relaxation time for the diagonal Wigner function components, 7., is the relaxation

TCJFTT’L. These times can also be used to

time of the off-diagonal component given by 7., =
include the other phenomenological effects used in the conventional model.

The time constants describe a further factor of irreversibility in the system (recall the
system is already irreversible by virtue of the boundary conditions). The scattering pro-
cesses cause a decay in the non-equilibrium Wigner functions and a drive to the equilibrium
state (f;f;-] for diagonal, 0 for off-diagonal). The shorter the scattering time, the closer to
equilibrium the system will be. In the numerical example that follows, the scattering times
are such that there is some broadening because of it, but the system is still in a highly

non-equilibrium state.

6.6 Spontaneous Emission

If equations (6.121) to (6.123)) are solved simultaneously, it is quickly realized that f., =0
for vanishing boundary conditions. Thus there is no polarization and no electric field. The
reason for this is because spontaneous emission, which is critical to start the lasing process,
is not yet accounted for since the electric field was treated classically. It must therefore be
added to complete the model.

Equation (6.123) can be represented schematically as
e

Teh

0
a_ch,h = - + Lfc,h (6126)

where L represents all other terms that operate on f.;. A semi-classical method to add
spontaneous emission is to consider it a random force originating from the vacuum fluc-
tuations. A random force of this type can be accounted for in this case using Langevin
theory by adding a random fluctuating force F. ) to equation (6.126)) to get[44, 78]

a . fc,h
a_T fc,h — o

This force has zero mean when averaged over the vacuum fluctuations. The diffusion

+ Lfen+ Fep (6.127)

coefficient (D) is related to the correlation of the random fluctuations by

<F} &R F,, (kR ¢ >=6(—1)0"(R—R)2D.4(k,R,1) (6.128)
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It is estimated by making the identification of equation (6.127) with semi-classical laser

theories. This will give an approximate diffusion coefficient relation[44]

Do ~ Jeclun (6.129)

Te,h

To solve equation (6.126) simultaneously with equations (6.I12I) and (6.122) it is re-
quired to solve these equations a large number of times using F,; as Gaussian random

variable and then taking a statistical average of the solutions. This is a very time consum-

ing method, in the next section a method will be shown to avoid this.

6.7 Summary

This chapter describes the general quantum Boltzmann equations for the QW laser derived
from non-equilibrium Greens function theory. Various manipulations have been performed
which are schematically represented in the flow chart below.

The concepts and components used in this chapter are not original. However, to the
author’s knowledge the QBE combined with the electromagnetic Greens functions and
spontaneous emission have not been performed before. Wigner function modelling is more
commonly used for resonant tunneling diodes than active laser devices. Including the
electromagnetic coupling to the model introduces off-diagonal Wigner functions that we
have not seen modeled in this way before. The phonon terms in equation (6.73)) also have
new components due to the off-diagonal Wigner functions. In addition, we have not seen
an electromagnetic Greens function of the DFB cavity described as a perturbation of the
Fabry-Perot cavity as shown in section 6.3, but it is a quite straightforward extension of
the FP Greens function and therefore likely to not be original.

Although this chapter ends with a complete model of the QW laser in the QBE formu-
lation, it is still not practical to numerically solve on a computer. The next chapter will

apply some simplifying approximations to the QBE for practical calculations.
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Chapter 7

Solving the QBE and a Sample

Solution

In this chapter, an example will be given of how to solve the Wigner functions for a

certain structure. In this case, the system will be solved for steady-state (all T dependence

vanishes) and phonon, coulombic interactions will only be accounted for in the decay

constants.

7.1 Linear and Non-Linear Polarization

It is convenient to separate the off-diagonal Wigner function into ”linear” and ”non-linear”

components[43]. Essentially, this is an approximation where the off-diagonal Wigner func-

tion can be split into terms weakly varying in k-space and those quickly varying.

and

. hl i V2 1
—ZQOp + 5 z; (k’z — T) + mz;bk * vR fc,h:l(ka R)
= /ﬂ (Vt(k — k' R)+ Vt(k' -k R)) fenai(K',R) (7.1)
- 27L(27r)3 c ) h ) c,h:l ) .
) (kR
+idy B R) - JomlR)
h Tch

121
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. hl i \ 1
[—ZQop + 5 zj,; <k2 - T) + mz;lk : vR fc,h:nl(ka R)
:/ﬂ (Vi(k — K, R) + V(K — k,R)) fopm(K',R) (7.2)

Zh(271')3 c ) h ) c,h:nl ) :
1

+ﬁdch -E"(R) (—fun(k,R) — foo(k,R))

C,L:M k7 R
- f e 71_( ) + Fc,h(ka R)

ch

It is assumed the linear Wigner function f, ;. changes slowly with position so that these
derivatives can be removed and the random F, will only apply to the non-linear part. It
may seem contradictory to have a random force in the steady-state solutions but as Chow,
Koch and Sargent argue[44] this term results in an operator that decays exponentially in
time (7.5) which gives a noise spectrum, but slowly varying quantities such as f.,; are
not sensitive to this.

The most significant contributions to the linear term will be within the well region.
Equation (7)) can then be approximately written as
d. - E*(R)O(2)

h2k2 ih
T T Ech — h 2y, —
ZmC,h ¢ op

Teh

fena(k,R) ~ (7.3)

where €., is the band-gap in the well and O(Z) is just a function that is 1 within the well
region and 0 elsewhere.

From equation (6.94)), the macroscopic resonant polarization is

PI(R) = —5 -y [ K ([l R) + fonns (K R)) = PLR) + PL(R) (7

r r:nl

Thus using equation (Z3), the linear part of the resonant polarization is

2
PR = 2D [ 79

: 2 2ﬁ—lf++5ch_thp_L

m.p Tch

The linear susceptibility is defined as
oz

W) = [eroatiez) = i [ a2 (7.6)

gt T Ecn — Pldop — 7

c.h Tch
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X1(Z) can then be added to the system’s dielectric € = € — x; /27 which is incorporated into

the electromagnetic analysis of section 6.3. So that the electric field can be expressed as

IU’OQgpdzh

E* (R) = 2T

/ PR EK'GEM (R, R, Qop) fenm (K, R) (7.7)
where GPM( R, R/, Q,,) is a new electromagnetic Greens function found using € in place of
¢ in equation (6.98)). The terms for the components of this electromagnetic Greens function
GFM(R,R') = §(X, X', Q0p)3(Z, Z', Q) are found similarly to the components of the FP
cavity of section 6.3.2 but with € in place of e.

Substituting equation (7)) back into (T3] gives

,uoﬂgp

i Xl(ka Z) / d3R,d3k,éEM (Ra Rla Qop)fc,h:nl(kla R,) (78)

fc,h:l(k7 R) -
Substituting equation (Z8) into equations (E12T)), (6122) and (Z2) gives

|:+i*k * vR:| fc,c(k7 R)
m

c

A3k’
= — — (VHk—-K.R)-VH{K —k.R cck'R 7.9
/m(%)gu R)— V(K — K, R)) foe(K,R) (7.9)
Z’/LOQE;D|d|2
- 1
2mh (7.10)

[ fernm(kR) + x1(k, Z) [ PR/ PKG"M (R, R, Qyp) o (K R’)]
([ ERPKG (R R, Q) foon (€ R)|
~[Foren 0 R) + xu(k, 2) [ PRIPKGE (R, R, Q) gt (K, R, )]
[ PREK G (RR, Qup) fepnt (K, R |

1T fAkR)
o [T ER S R

/dgk”fc,c(k”; R) - fc,c(ka R):|
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{ "y VR] fan(k.R)
my,

N / z’hcézly{rlﬁ (Vilk — K\ R) = Vi(k' — k R)) fun (K, R) (7.11)

i1, |d?
— X
2mh
[ ferm(&R) +x1(k, Z) [ PR PGP (R, R, Qp) fenmi (K, R’)]
[ | PR G (R, R, Qp) fopim (K, R’)]
= [fepn(k,R) + xi(k, Z) deR’dgkléEM(Ra R', Qop) fepeni (K, RI)]
([ PREKEE (R R, Q) fopent (K. R)|
1 [ }f,qh(kaR)
| [ @K fr% (K, R)

/ K" fn (K", R) — frn(k, R)]

and

, h| i V2 1
—ZQOp + 5 z; <k2 — TR> + z’zk * vR fc,h:nl(ka R)
= /ﬂ (VI(k - K ,R)+ V(K — k,R)) formu(k R) (7.12)
Zh(27T)3 c ) h ) c,h:nl ) .
iMOQgp|d|2/ 3/ 131/ ~EM fhh(k R)
—— P | PR PKCE(R, R, Q) fonm(k', R’ A
2h ( ) o (I, R) +foo(k,R)
C n k7R
_f o ;_( ) + Fc,h(ka R)
ch

7.2 Reducing Dimensionality

To reduce computation time of the Wigner functions of equations (6E121)) to (GI23) ap-
proximations will be made so that there are no transverse directions in the independent
variables. That is, it is desirable to remove the (X,Y) and (k;,k,) dependence. The

subsections below will use various approximations to accomplish this.
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7.2.1 Position

In the Y-direction, there is very little variation as the semiconductor layers are homoge-
neous and no cavity modes are formed in this direction. Therefore all Y-dependence will
be removed. The X-direction is a bit more complicated because this is the direction of
propagation of the electric field and, as has been shown there is therefore an X dependence
on the polarization P and by equation (£.94)) there is then an X dependence for f,,.

From here on, only the fundamental mode (n=0) will be considered. When the cavity
is near an oscillating mode the one-dimensional Greens function of equation (6.I03) can
be approximated as[74, [75]

_Zra(X)Zpa(X')

Substituting this into equation (6.99)),

Zea8) 2ol 300t (7, 77, 0) -, 02 PR, D)) = Z1.0(X)E(Z,9)

ER,Q) = / dX'dZ’

Wq
(7.14)
where
/ /ZRQ(XI) ~EM ! 2 !
B(2,Q) = [ dX'dz' 2257 (2, 2/, 9) -, P(R, Q) (7.15)
Q

Recall that the functions are peaked around €2,, so that the approximate relation E(R,T’)
Z1,0,,(X) can be used. Equations (6.95) and (6.94) then also imply fon(k,R,T) =
Z1,00,(X) fen(k, Z,T). From here on, the Q,, term will be dropped.

At resonance, k,L ~ nm so that W =~ 2ik,(1 — r?) and

L L

/ X Zn(X) Zu(X) ~ [ + 1)L | / X Z0(X) Z0(X) ~ 20 (7.16)
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L
Equation (7.9) is multiplied by [ %X to remove the X-dependence
0

k| ek 2)
-/ hd(l;r) (Ve = K, 2) = VK, = b2, 2) feelK', 2) (7.17)

P2 dErL(L + 1)
2mhk,(1 — r?)
[ enmi(k, Z) + ZExi(k, Z) [ dZ'd°K G5 (Z, 2", Qop) fe i (K Z’)]
[[dZ' W G"M(Z, 7', Qop) fepm (K, Z")]
— [Fenmille, 2) + Exi(k, 2) [ @2 PRGN (Z, 7', ) feems(K, 2, '
[ dZ' PR GEM(Z, Z', Qop) fepera(K', 21)]

/ d3k”fc,c(k”7 Z) - fCaC(k’ Z):|

1 fak, 2)
T, 2)

where
V;'(k R) 2 3R/, —2ik:(R'—R) ! 2 / 1, —2ik. (Z'— V;(kz Z)
) — 7 - _ VA ik (Z'—-2Z)y ) Zl _ T\ A)
Grp - (n) / @R ViR) =G5 | dZe WilZ) =—5;
(7.18)

This is because the applied and heterostructure potentials only vary in the Z direction.
The term |d[* is the magnitude of the interband polarization (d.d},). It is assumed that
the X component of the Vg is small compared to the other terms as the variation over the

cavity length is much slower than variation in the 7 direction.
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Similarly, equation ([C.I]) is averaged to

[ h aaz] fun(k, Z)
N / md(l;f;) (Vi (ke = K. 2) = Vi (KL = k2. 2)) fun(K', Z) (7.19)

Q2 d]*rL(1 +r?)
21hky(1 — r?)

[ Fonnt(k, Z) + 2Ly (k, Z) [ dZ'dPK G (Z, 7', Qup) fopit (K, Z’)] ’
([ dZ' KGN (Z, Z', Qo) o (K, Z1)]

_ fc,ml(k Z) + 2Ly (k, Z) [ dZ'dK' 55N (Z, 7', Q) fc,hml(k',z',)]

[ dZ’d3k’ GEM(Z, 2", Qop) fenem (K, Z)] |

i “(k,Z
1 AGED) )/d?’k”fh,h(k”az) — Inn(k, Z)

ey K[ 7

The terms f..(k,Z) and f,,(k, Z) denote the averages of these Wigner functions over the

X direction.
Equation (6:I23) is multiplied by f 5.z Z0(X) to remove the X dependence

o, 1 i 0
- o —_——— | - —k,— Kk, 7
ZQOP + 9 mz}; <k 4 aZZ) mzjb kz 07 fc,h.nl( ) )
dk!, . . , ,
iy (Ve e = o 2) + Vi(K, — k2, 2)) fepemi (K Z) (7.20)
op|d|2TL

= oryr ZI 3kl~EM Z ZI Q . k/ Z, - k Z k Z
27rhk0(1—r2)/d K G2, 7', Qop) fenm(K', Z7) [fe.o(K, Z) + frn(k, Z)]

i d3k/Vvs L fc,h:nl(ka Z) (_fh,h(kla Z) - fc,c(kla Z))
+h / ke { +fc,h:nl(kla Z) (fc,c(ka Z) + fh,h(k7 Z) - 1)

c,nin k? Z
Jepm(k, Z) Rk, 7)
Tch
In this equation, the diagonal elements f;;(k, R) have been replaced by their X-averages.

The force F, ) is assumed to have the same position dependence as f. pni-
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7.2.2 Momentum

Since there is little structure in the X-Y directions, it is assumed that the Wigner functions
in momentum space in these directions will be similar to an equilibrium distribution[29].

Therefore the approximation for the Wigner functions is made[29]

h26

1=

hzﬁ iy (7.21)

WL
fii(k, Z) = fii(ks, Z)2mNije” "2 Ay =
This is a normalized Maxwellian distribution that is peaked around k% = 0

Substituting these relations into equations (ZI7) to (Z20), multiplying them by [ d*k;
and performing any integrals of the form [ d’°k’| and [ d’q, reduces them to

k] fehn )
_/mcik,)(vt(k K, 2) = VK, = ke, Z)) feelk, Z) (7.22)

Q2 |d|*rL(1 + r?)
2mhky(1 — r?)
e, 2) + 2xilks, 2) [ dZ'AK.G7(Z, 2", Qap) fepmi(L, 2]
[[dZ'dK.g"M(Z, Z', Qop) fepmi (K, Z)]°
- [fc,h:nl(kza Z) 2TLXZ kZa f d3zldkl EM(Za Zla Qop)fc,h:nl(klza Zla ):|
([ dZ'dk,gPM(Z, 2", Qo) fepim (KL, Z)]

Z) /dszc,c(kzaz) - fc,c(kzaZ)

1 et (ks, Z)
T e
fdk’ 0
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{mi;‘bkza%] fon(kz, Z)
- HZZ;)(‘ﬁ(kz"k;fZ) Vi(K, = k2, 2)) fon(k;, Z) (7.23)

Q2 |d2rL(1 + r2)
ok (1 — 12)

[epn(ke, 2) + Foxi(he, Z) [ dZ'dR.GE(Z, 2", Q) fepon (K, 2]

_ [ dZ'dK,GPYM (2, Z', Qop) fepemi (K, Z1)]

- c,h:nl k'z,Z 2TLXZ k'z,Z dZI k, gPM Za Zlago fch:nl klazla
L ) /4 ] z

([ dZ'dk,G"M(Z, Z', Qop) fepmi (KL, Z7)]°

1 [ fek, 2)
I fdl:'h (k. Z)/dkgfh’h(k;,’Z)_fh,h(kz,Z)

and
ih 1 1 0? 7 0
4D -~ — ko= | | form(ks, Z
—illyp T m, < 4322> miy, 07 fesin (k. 2)
:/ dk, (Viks = kL Z) + Vi (K, = ko, Z)) fep(KL, Z) (7.24)
ih(2m) V¢ g 2 e
Q2 |d]*rL
- dZ'dK.3(Z, 7" Qo) fer (K Z) [foclly, Z k,, Z
S [ A2 (2.7 ) oK Z) el 2) + o 2)
[ ’ fc,h:nl(kza Z) (_fh,h(k;a Z) - fc,c(kfza Z))
+= [ dk,Vxw ,
g +fc,h:nl(kz7 Z) (fc,c(kza Z) + fh,h(kza Z) - 1)
c,n:n kZ7Z
_f’h. l( ) +Fc,h(kzaz)
Tch
where x;(k., Z) = [ k. xi(k, Z)
The term 52
k2
I'=27)\, / PPk K e A = (7;3/2

ch
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is negligible. It is assumed that the random force will also have a similar momentum

dependence.

7.3 Spontaneous Emission

Instead of solving equation (7.24)) many times for the random force and then taking the
statistical average, it is desirable to solve this only once incorporating this force in an aver-
age way. Unfortunately, this force has zero mean. However, notice that what is important
in equations (Z.22)) and (Z.23) is not actually fen(k., Z) but f7,(k}, Z') fen(kz, Z). Tt can
be also be shown that[44], [70]

< finam(kl, Z' ) Fop(ko, Z) >= 0(k, — k.)0(Z — Z") Do (K, Z)
fc,c(kza Z)fh,h(k27 Z) (725)

Teh

~ 8k, — K)5(Z — Z')

Therefore define a new function p(k,, Z) = [ dk.dZ'f} cnent(Kyy Z') feneni (K2, Z) which can be
substituted into equations (7.22)) and ([Z.23) to get

k| etk 2)
/ zhd(lgﬂ) (Ve (ke = k2, 2) = V(K. = k2, 2)) feol K, 2) (7.26)
M09§p|d|27“L(1 + TZ)g [p(kz, Z) + 2rLgXl de’dk' (k' Z/)]
2nfiko(L=12) | = |p* (., Z) + By, 2) [ B2 (K, 2]

PL[ )

dk" . o(K", Z) = furlks, Z
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and

ho 0

—kz— kz,Z

[m}‘b aZ] fua )

—/ It (Vi (ks — K, Z) = Vi (K, — k2, 2)) fun(K., 2) (7.27)
Zh(Qﬂ') h 2 h h,h .
Q2 |d]rL(1 +1?)§ [p*(kz,Z) + 2Ly k2, 2) de’dk;p*(k;,Z’)]
2nhko(L=17) |~ |p(k., Z) + BEyi(ky, ) [ & Z'ak.p(K,, 7',)]

eq I{,' Z
—|— 1 [fd]:/h( k/)Z) /dk'z'fh’h(k;’,Z) — fanlks, Z)

It was verified numerically that to a very high degree of accuracy, the Z component of

the electromagnetic Greens function (§(Z, Z’,€,,)) is approximately constant over the
heterostructure being used. It is thus replaced by an average term labelled g
Equation (Z.24) is then multiplied by [ dk,dZ'f, (K}, Z') to give the equation

th | 1 1 0? i P
—iQ), — K2 = _ L ko 7
18op + 5 mz;}: ( z 4322> mzjb EYA »( )
dk, . . o /
ih(2m) (Ve (ke = k2, Z) + Vi(K; = k=, 2)) p(F., Z) (7.28)
Qopldl*rLg

_W/dz'dk;p(k;,zf) [feelks, Z) + frn(ks, Z)]

o Pk, Z) (= (kL. Z) = feolkL, Z))
+h/ﬂw“*{+M@zﬂﬁﬂhm+ﬁﬂmzyq)}

_p(kZa Z) + fc,c(k:m Z)fh,h(kza Z)

Tch Teh

The random fluctuation has been replaced by the average over the vacuum. Also, use has
been made of the following fact: for a general function in two variables f(z,y) that satisfies
the relation

@y ) Loy f(2,y) = 6(x —2")o(y — y')D(z,y)
the function P(x,y) = [da'dy' f*(«',y') f(x,y) will satisfy the relation

Ll‘,yp(xa y) = D(:L‘, y)
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Equations (7.26), (C.27) and (7.28) are the final results for this model. With these,
the operating characteristics of interest can be determined simply from the input applied
potential, heterostructure, cavity structure and the time constants 7., 7, and 7.,.

To summarize, equation (7.26) describes the conduction band Wigner functions under
various effects. The second row of this equation describes the total potential, which is the
combined heterostructure, applied bias and electrostatic (to be discussed in more detail
shortly) effects. The third row describes the interaction with a classical electric field using
the approximation of separating the polarization into linear and non-linear components..
The fourth row is a phenomenological approximation for the phonon and Coulombic effects.
These can be expanded in more detail as shown in equation (6.I21) if desired. Equation
([C27) is similar except that it describes the holes.

Equation ([Z28) describes the evolution of a function that is related to the non-linear off-
diagonal components. The first row describes kinetic effects. As with the previous equation
second and third lines describe the total potential and classical electric field interactions.
The fourth row has a phenomenological term for the phonon and Coulombic scattering as
well as a term for spontaneous emission.

These equations will be solved in the next section for a sample case to demonstrate
some of the numerical techniques involved as well as some of the information that can be

extracted.

7.4 Numerical Method

This section discusses the numerical implementation of equations (7.26) to (Z.28). This is
solved in a manner similar to those used to solve the Wigner functions of resonant tunneling
diodes[29, 31].

7.4.1 Grid

The simulated region is discreetized according to the grid shown in figure 7.1 [29]. It is
discreetized this way to take advantage of the equilibrium incoming and outgoing boundary

conditions that can be assumed if the boundaries are far enough away from any structure.
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L.

Figure 7.1: A Representation of the Grid Wigner Functions are Discreetized upon for
Numerical Solutions

On this grid, the Wigner functions are discreetized as [29, [31]
fkey Z) = f(kn, Zin) = f(n,m) (7.29)
where f is any one of the Wigner functions. The grid position variable is
Zm =mA,, m=0..N,, N,=L/A, (7.30)

the momentum are discreetized as

N +1 s

The choice of A, is motivated by the desire to avoid k, = 0 and to satisfy the Fourier
completeness relation which implies that this discreet model exactly satisfies the continuity

equation for the diagonal Wigner functions[29)].

7.4.2 Center Upwind Finite Difference

From figure 7.1 there are the two types of carriers, outgoing (k, > 0) and incoming (k, < 0).
The discreetization will be different for each type of carrier in order to incorporate boundary

conditions correctly. Outgoing carriers will depend on the left boundary condition and
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incoming carriers will depend on the right boundary condition. For the first derivative

discreetize as [31]

g 24, = 7.32
Oz f(m72,n)74f(2nAz:1,n)+3f(m,n) n N ( )

0 —f(m+2,n)+4f(m+1,n)—3f(m,n) < N,
(2, K.) = { !

and second derivatives

82 f(m+4,n)—8f(m+3,n)+22f(m+2,n)—24f(m+1,n)+9f(m,n) n < Ny
2 f(z K.) = o =2 (7.33)
9527 VB 2] T f(m—4,n)—8f(m—3,n)+22f(m=2,n)=24f (m—1,n)+9f(m,n) Nj :
z A2 n>5
Ny/2
The integrals over momentum are converted to sums as > the integral in position
TLZ*N}C/2+1

N
for the EM contribution will be > because the functions vanish outside this region.

Integrals are replaced by sums in the usual way. For the integral of the potential terms
like
Va(kz7 Z) = 2\/\dZI€_ikz(ZI_Z)Va(ZI)

this must be replaced by the discreetized version
Ny./2
Va(n7 m) -9 Z e—iAkAZ(m’—m)Va(m/)
m!'=—Nj,/2+1
because it is a finite Fourier transform.
There will be cases when m’ — m is outside the region of calculation. It is found to be

sufficient to just use the value of the potential at the boundary [29).

7.4.3 Boundary Conditions

A benefit of the Wigner functions that has been mentioned is the simplicity of the boundary

conditions. The diagonal components at the Boundaries are Fermi functions averaged over

k. [29, 31 33, B
0 mekpT —1 ([ n2k2 0
=— 1 — L te,—E! 34
+exp<kBT<2me+6 e(Lz )))] (7.34)

>
ek, 0,2 = 1
ool < L, ) mh? !
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and

> 0 mpkgT
k., 0, = |
Jin < L, ) wh? o

+1 [ hk? 0
1 ~ z — B/ 7.35

0
where &, is the band-edge potential and E7( I ) are the Fermi energies at Z = 0 and L,.

z
L, is the length of the structure. Since the boundaries are assumed to be in equilibrium,

there really is only one Fermi level for each side [12] but E/ and E! will be with respect to
different energies. The Fermi levels are found by knowledge of the doping in the system,
equation (B:54) and the knowledge that the total density in (B:53) is zero in equilibrium.
As discussed in the next section, the carrier densities will change at each iteration thus the
Fermi levels must be recalculated for each iteration.

The off-diagonal component p(k,, Z) can cause problems due to reflections at the bound-
aries. One solution to overcome this is to use absorbing boundary conditions [79]. This was
done by setting periodic boundary conditions and adding an imaginary component to the

heterostructure for the off-diagonal components for positions at and past the boundaries.

7.4.4 Self-Consistency

As with the conventional model, electrostatics has the effect of modifying the potential
profile. A method similar to 3.6.1 must be used where the heterostructure potential is
recalculated after each iteration. However, in this case the carrier density is not determined

from equation (3:54) but by using the Wigner functions with

pa(z) = % faalk,2) = n(i) = faaln,m) (7.36)

The boundary conditions for the potential ¢(Z) in Poisson’s equation are the band offset
plus the Fermi-level at each end [12]. The first guess at the total potential term (V¢ =
V + VP) is the flat-band heterostructure offsets (V') added to a linear-varying applied
potential VP  That is, for VP the applied bias is added to the Fermi-level difference.
This is taken as the potential difference between the left and right side of the structure.

A straight-line is then drawn between these two points and this line gives the initial guess
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at the applied potential of each point along the structure. Each iteration will then update
Vvt

7.5 Example

A structure that is similar to that by Tsuchiya and Miyoshi [33] (which was for electron
and hole transport with no field coupling) is used for sample calculations to demonstrate
the computational utility and as for comparisons to some of their calculations. This is
more of a test system than a realistic situation. This is a system that consists of 5 layers,
two barrier layers of 15 nm length and Ing 70Gag.25AS.61Po.39 composition and a 7 nm well
with composition Ing70Gag47As. The outer cladding and substrate were taken to be 20um
InP layers. These are required in order to get confined electric field modes. The grid-
size is chosen to be A, = 0.5nm and then the appropriate momentum grid is found from
equation (Z.3T]). This will be referred to later as the normal grid-size. The effective mass
was constant across the system and were m, = 0.05m,, m; = 0.48m, where m, is the bare
electron mass. The band offset was estimated using the relation A./E, = 0.4. Dielectric
constants for each layer were found by the interpolation formula and data in Appendix A.
The structure is n-doped (introduction of impurity donor atoms) in the left barrier and
p-doped (introduction of impurity acceptor atoms) in the right barrier both at magnitude
5% 10 /ecm®. The doping will affect the Fermi levels of these layers in such a way to prevent
current flow until a potential bias counteracting this is applied. For example, figure 7.2
shows how the doping affects the potential profile when no bias is applied and figure 7.3

shows the effect on the structure when a bias is applied.

7.5.1 Power Out

One of the expectation values that can be found using the Wigner function has been shown
already. That being the carrier density. Another that can be found is the power output.
Here, it will be solved for the TE mode. Once again, the power is given using the Poynting
Vector S = E x H*. Maxwell’s equation

V xE=—0;H" (7.37)
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implies H* will be proportional to E*. In the rotating wave approximation, the Poynting
vector can then be written as S = ET x H™ + E- x H™*. The positive and negative
frequency components will give the same power output so that this can be rewritten as
S = 2E* x H™* therefore it is only required to work with E*.

From ([Z37)
—0EY-
H = —— 0 7.38
| v (7.38)
OxEy

The Poynting vector then propagating in the X-direction is
i
SY = M—wE;aXE; (7.39)

Recall By (R = Z(X)FE5-(Z) so that

Z0(X) [0x Zp(X)])" = ik:[(1 — r®) — i2r sin(2k, X)] (7.40)
thus "
SX = Q [i2r sin(kox)0(1 — r?)] |ESH(Z) (7.41)
I
At the boundaries X=0,L so that this gives the power out as
2k
S = a1 = )| (742

The factor of 2 is introduced for the = components. Using equation (6.110) there is the

relation ) .
_ MQopdc,h,Y [1 + T2]Lcavg
27 iko[1 — 1?]

Which gives the Poynting vector

EE(Z) dk.dZ' fopm (K., Z') (7.43)

2k [1 — 2] |2y (1 + 7] Leanii | .
5 = LQ a2 e [ K2 26,2 [ 2ol 2)
op 0
ORI 1 L2,
et T / dk.dZp(k., Z) (7.44)

where the real part of k, is taken. This will give the power density. To get the total power,
multiply this by the cross-sectional area perpendicular to X (Ly Lyz). The field is assumed
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constant in the Y direction so L, is just the stripe width. Lz must be found with a bit
more care. This is the direction of the electric field envelope. To approximate the length
to use in the direction, the FWHM of this function will be taken.

1.6+ —— Bias=0V

————— Bias=1.05V

1.3+
0.9+
0.6

0.3+

Potential Energy (eV)

0.0+
-0.3+

-0.6

0 5 10 15 20 25 30 35
Position (nm)

Figure 7.2: The Total Potential (Heterostructure Plus Applied Bias Plus Electrostatic
Effects) of the Laser of Applied Biases 0 and 1.05V. No Electromagnetic Coupling.

Figures 7.2 and 7.3 show the total potential (V) that the carriers experience (het-
erostructure, Fermi potentials due to doping, applied potential bias and electrostatic ef-
fects) when uncoupled from the electric field. This is found by summing all these potentials
after the system has reached self-consistency. At zero bias, the potential is such that no
carriers can localize around the well as seen in figure 7.4. The application of the bias will
tend to flatten the band. The flatter the potential the more carriers there are localized
around the well as shown in figures 7.5 and 7.6 which give the densities for the correspond-
ing potentials in 7.2 and 7.3. This is how the concentration of carriers is controlled in this
system. The hole concentrations shown in figure 7.6 are not smooth in the well region
because there is more than one confined mode energy in the well[33]. From here, it can
be seen why the flat-band approximation used in the conventional model is not completely

accurate. Note that the results presented are not identical to the ones in [33] because this
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Figure 7.3: The Total Potential (Heterostructure Plus Applied Bias Plus Electrostatic
Effects) of the Laser of Applied Biases 1.00 and 1.05V. No Electromagnetic Coupling.

solution does not have varying effective masses or the light-hole band.

Figures 7.7 and 7.8 show the Wigner functions for the case of 1.00 V bias applied across
the structure. Once again, these look very much like phase-space distributions but they
are not exactly due to Heisenberg uncertainty [29].

When the electric field is coupled to the system, some of the carriers will recombine
and emit light. This can be seen in figures 7.9 and 7.10 where the concentration in the
well is lower when electric field coupling is included. This causes the power output of
figure 7.11. It can be seen that the power increases with increasing bias and has a resonant
frequency near the band-gap energy. In this case, there is an energy shift between the two
biases (compare this to figure 5.15) this is because coulombic renormalizations have not
been included in this example which shift the energy. This is not exactly the gain found
in the conventional model(indeed, gain is just an approximation that the power will be of
a simple exponential form), but there is a close relationship between steady-state power
and gain as can be seen by equation(d.I6). This approximation could be used if one is

interested in estimating a gain of the system.
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Figure 7.4: Concentration of the Electrons and Holes at Zero Applied Bias
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Figure 7.5: Electron Concentrations in the Laser Structure for Applied Potential Bias 1.00
and 1.05V. No Electromagnetic Coupling.
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Figure 7.6: Hole Concentrations in the Laser Structure for Applied Potential Bias 1.00 and
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Figure 7.7: Electron Wigner Function for Bias 1.00V. No Electromagnetic Coupling.
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Figure 7.9: Electron Concentrations for Applied Bias 1.05V with and without Electromag-
netic Coupling at Photon Energy 0.775 eV
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Figure 7.10: Hole Concentrations for Applied Bias 1.05V with and without Electromagnetic
Coupling at Photon Energy 0.775 eV
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One can get a power-current relationship from the method as well since the current can

be found with the formula

Ja(Z) = ga / e ks, 2) (7.45)

2T My

where ¢, is the charge of this carrier type. Since the system is not in equilibrium,, the
current will not be constant across the structure. This is shown in figure 7.12. It can be
seen from this graph that this structure is not very efficient and has high electron leakage
current (the relatively straight part of the graphs) and requires high injection currents (the
spikes near the well) for lasing. This is interesting because in order to increase efficiency
by lowering leakage current, this model will be very useful in determining a structure to
do this.
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----- Bias = 1.00V
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Figure 7.12: Electron and Hole Current in the Structure at Applied Potential Biases 1.00
and 1.05V. No Electromagnetic Coupling.
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7.6 Errors

There are two major types of errors for these calculations. The first is due to the numerical
methods and grid-size used. The errors due to the numerical differentiation will be of
the order Az? (that was the purpose of using center difference methods) and numerical
integration of the order Az. The system is too complicated to give an analytic estimate
of the errors, but a numerical estimate is shown in figures 7.13 and 7.14 by calculating
the concentrations of the electrons and holes in a system uncoupled with the EM field
and a grid twice as fine as the normal grid-size. These calculations are compared to the
calculations on the normal grid-size. As can be deduced from these figures, the error is

small enough that the physical effects of EM coupling are not within this range of error.

S —
] ——— Normal Grid-size
————— 2xFine Grid-size
5
4
S |
=2
=37
£
S
CIEJ 2 4
S
1 4000 NI T === eem -
O T T T T T T T
(0] 5 10 15 20 25 30 35

Position (Nnm)

Figure 7.13: Electron Concentrations at Two Grid-sizes, the Normal Grid-size and one 2X

as fine. The Applied Potential Bias is 1.05V and there is no Electromagnetic Coupling.

The second group of even more difficult to quantify errors are due to the physical ap-
proximations made to arrive at the QBE and the reduction for computational practicality.
In particular the approximations of the phonon and Coulombic scattering will be the major

sources of error. More intensive calculations with greater details of these interactions will
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Figure 7.14: Hole Concentrations at Two Grid-sizes, the Normal Grid-size and one 2X as

fine. The Applied Potential Bias is 1.05V and there is no Electromagnetic Coupling.

reduce these errors. To numerically determine the magnitudes of these errors, it will be
necessary to compare the results obtained with this model to some experimental results.

This will be done in the future when a more realistic heterostructure is modeled.

7.7 Summary

This chapter begins with specific simplifications to the general QBE of chapter 6 to arrive
at a computationally practical set of equations. There are three major reductions made to
the equations of chapter 6. The polarization is separated into linear and non-linear polar-
ization. The purpose of this separation is so that the next approximation, the reduction
in dimensionality can be performed. The final manipulation is to define a new function
based on the off-diagonal Wigner functions that would allow spontaneous emission to be
incorporated in an average way. The first manipulation has been used by others [43], the
second manipulation contains approximations made before (diagonal Wigner function mo-

mentum [29]). The last manipulation has not been seen before by the author but builds on
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some known relations of Langevin theory. The chapter concludes with some original sam-
ple calculations of this set of equations for a structure simplified from [33]. The numerical

techniques for the diagonal Wigner functions are quite common.



Chapter 8

Conclusions

8.1 Conventional Model

A model of the quantum well laser has been derived using conventional methods. This
model includes the spectral property of gain and dynamic properties of photon density and
carrier densities. These can be used together for a complete model or can be calculated
separately. Included in the gain calculations are the effects of electrostatic and Coulombic
renormalization.

Results have been presented for the gain, steady-state power and modulation response
of various lasers. Some of this data has been compared to experiment.

These models are very useful if what is required is to extract parameters or predict
characteristics for a narrow class of lasers when there is some experimental or given data
already available. It can also be used to estimate some quality factors when making slight
modifications to known laser designs and input parameters. They are limited however by

the large amount of phenomenological parameters required.

8.2 Wigner Model

The Wigner function model has been formulated (to the author’s knowledge, for the first

time) as a more rigorous description of the quantum well laser. This model includes in
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a detailed manner phonon, electromagnetic, heterostructure and Coulombic interactions.
Along the way, various simplifications and approximations have been made, these can be
removed if certain aspects or increased details are required. As this model does not rely
so heavily on phenomenological parameters, it can be used as a basis for a more advanced
analysis of the QW laser than the conventional model with enhanced predictive power of
quantum interference effects.

An example is given showing calculation techniques useful to extract data from this
model. A single quantum well laser is modeled and the Wigner functions, carrier concen-
trations, current distribution and steady-state power output are presented. It is a great
benefit that this method utilizes the combination of transport (current) and spectral (power
- gain) properties. There are still practical challenges however, as it is quite numerically
intensive. It is therefore necessary to simplify some of the calculations such as reducing
the number of subbands considered. Methods to shorten the computation time must be

researched.

8.3 Future Directions

The Wigner function model forms a solid basis for a more advanced analysis. Much work
still needs to be done. It is desirable to extend this from two-bands to multi-bands by
incorporating the spin coupling in the Luttinger-Kohn formalism. Other improvements
of interest are more detailed phonon models with confined mode phonons, and varying
effective mass through the structure. Also a significant development to enable this to be a
practical complete model is to couple it with a semi-classical model such as drift-diffusion
for regions far from the active region. When these more detailed effects are taken into
account, the calculations can then be compared to experimental results to test the errors of
various approximations and perform any parameter fitting depending on the simplifications
utilized.
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Appendix A

Glossary of Terms and Data Tables

This section will list some of the variables and parameters used in this thesis. The variables
listed chapter by chapter are those that may be confusing due to similar symbols used to
represent other terms. In this thesis notation following the standard literature was used.

Unfortunately, combining various theories together will sometimes result in an overlap of

symbols.

A.1 Glossary

A.1.1 Chapter 2

V' 1 Volume used in box-normalization.

S : A Term in the 4x4 LK Hamiltonian.

S : Area used in box-normalization. (In context not to be confused with above).
L : Length used in box-normalization.

T : Time used in box-normalization.

m, : Bare electron mass.

vi + The various Luttinger coefficients.

E, : Band-gap

[ : Longitudinal EM field mode.
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A.1.2 Chapter 3

Ja : Modal gain of the « (frequency and longitudinal) mode.
¢ : Dielectric permitivity.

J : Macroscopic current density.

J : Microscopic current density.

A : Electromagnetic vector potential.

T @ Scattering time.

S, S* Vector and x-component of Poynting vector.

A.1.3 Chapter 4

J : Injection current density.

Lg : SCH length.

€ : Spectral hole burning coefficient.

[ : Spontaneous emission coefficient.

S, @ Photon density for w frequency mode.
S : Photon density for a single mode.

L : Cavity length.

T; : Carrier temperature in carrier heating model.

A.1.4 Chapter 6

x; = (r;,t;) : General position and time coordinates.
G : Various real-time Greens functions

O(t) : Step function.

3 ¢ Self-energies.

V@ . Various types of classical potentials.

d;; : Interband polarization.
X = (R, T) : ”Macroscopic” center of mass variables. (see section 6.2.1)
z = (r,t) : "Microscopic” center of mass variables. (see section 6.2.1)
(k,w) Wigner coordinates.

fij + Wigner function.
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¢ : Band-energies used for demonstration purposes in section 6.2.5.

g;; - Band-gap energy between ¢ and j band.

¢ : Dielectric permitivity.

Q2 : Frequency mode.

kn.q @ Propagation constant at nth Longitudinal and 2 frequency modes.
r,r1,r2 : Mirror reflectivities.

A.1.5 Chapter 7

p : Function defined from the off-diagonal Wigner functions in section 7.3.

A.2 Data Tables

In, ,Ga,As,P;_, interpolation:
(GaAs)xy+(InP)(1-x)(1-y)+(InAs)(1-x)y+(GaP)x(1-y)

Quantity GaAs | InAs | InP GaP
Me/ My 0.067 | 0.023 | 0.077 | 0.25
Mpn/ Mo 0.5 0.40 0.60 0.67

m 6.8 204 | 4.95 |4.05
Y 1.9 8.3 1.65 | 0.49
V3 273 | 9.1 2.35 | 1.25

a,(z107%m) || 5.6533 | 6.0584 | 5.8688 | 5.4505

E,(eV) 257 222|207 |222
Cpidyne/cm? || 11.879 | 8.329 | 10.11 | 14.05
Codyne/cm? || 5.376 | 4.526 | 5.61 | 6.203

Band-gap[25] £, = 1.3540.6422 —1.101y+0.7582%2+0.101y* —0.1592y — 0.282%y +0.1092y*
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Momentum Matrix Elements

heavy hole

T

(S 1 1p|3/2,3/2) = — [(cos ¢ — isin ¢z + (sin ¢ + i cos ¢)7] 7
(51 1pl3/2,3/2) =0
(S11pl3/2,-3/2) =0

(S 1|pl3/2,—3/2) = —[(cos ¢ + isin ¢z + (sin ¢ — i cos ¢)y]

x

Sl

light hole
1
(5 1 Ipls/2.1/2) = | 1p.:

x

(S| 1pl3/2,1/2) = [(cos ¢ — isin ¢z + (sin ¢ + i cos ¢)y]

-1
V6
(S1|pl3/2,—1/2) = % [(cos ¢ + isin ¢ + (sin ¢ — i cos )]

(S11p[3/2,-1/2) = \/%Pxi

where P? = m,E,/2, S 1 and S | are the up and down spins for the conduction band

ERells

S

Bloch functions.

q2 Ep
3meo Qgp

Dipole matrix element: |d|? =



Appendix B

Orthogonality of Fields

The optical power density of the field is
]' *
S = §R6[E x H| (B.1)

Thus for modes to be orthogonal, we define the orthogonality condition

/ LB, 5(r,t) x HYy (r,1) o 03 (B.2)

This means that each component of the vector must be orthogonal.
Again, for the TE modes, only the z component of the electric field is non-zero then

using equation (2.:24) the orthogonality condition of equation (B.2) implies

T a *
/d?’rEwyﬂ (I‘)%Ez’ﬁ/(r) 0.8 6/3’61

which implies
/dinﬂ(z)Ezfﬁ,(z) X 0g,p (B.3)

which then can be normalized to get

L
/dZng(Z)F;ﬂ/(Z) X (55,5/ (B4)
0
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For the TM modes, only the y component of the magnetic field is non-zero.

equation (2.25]) we can extract an orthogonality condition from equation (B.2) of

1 0
3 *
/d r%%hﬁﬁ, (r) X Hgﬁ’ (r) X 6[37ﬁl

which implies

HY ,(2)HY, (2
[aa O

£(z)

normalizing gives

[ Gusl(2)Ghy(2)
/dz 6(2’)

o< Og, g

Using



Appendix C

Relations for the Perturbation

Hamiltonian

An argument is made for replacing A - j,, by A - pg in the perturbation Hamiltonian.

The current operator is

Jab = [<alplr ><r|b> + < a|r ><r|p|b >] (C.1)

q
2m,
The wave-functions will be written in the form

<rla>= Z¢g(r)ug(r) (C.2)

where ¢¢ are slowly varying envelope functions and u¢ are quickly varying spin functions.
What is important in the analysis is the integral [d’rA(r,t) - ju , A(r,t) is a slowly
varying function.

Substituting equation (C.2) into (C.I)) gives

[dréy (v) gl () A(r, 1)] -

2m, o7 [f % (< ul|lp| >< rlul > + < ur >< r|p|uf >)

/d3rA(r,t) Jap A

Q
q a* a
~ 2m, Z [dr ¢ (r)dy (r) A(r, 1)] - 2 < [pluz >
~ /d?)I‘A(I-,t) " Pab (CB)
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A number of approximations have been made to get to the last line of equation (C.3]).
On the first line, the fast varying part and the slowly varying part have been separated.
The gradient operator on ¢¢ has been neglected since this will lead to terms related to
the intra-band electromagnetic transitions. The second term on the first line is reduce to
the second term on the second line by using the completeness relation. Thus the last line

shows that the replacement j,, — pgp is valid if it is used in an integral like this.



Appendix D

Phonon Relations

D.1 Self-Energies

The Hamiltonian density for the electron-phonon interaction is H¢ P*(z) = e¢(z) where

¢(z) is the potential induced by the phonons. This is written, with electrons quantized as

H P (21, 2) = ¢(1)5" (11 — m2) 0 (1)) (22)
= ¢(21)8* (1 — 22) Zﬁf(xl)zﬁj(xz)u;‘(rl)uj(rz) (D.1)

The quantized potential due to lattice vibrations is written in terms of the phonon creation

and annihilation operators as

a) = [ dPac My faglt) + i) D2)

e lwroh (1 1 1/2
My=-1">"|———
q | (2m)2 \eo  ewo
This is in the Frolich coupling model and gives the Hamiltonian density

ez =3 / dPqe’ ™ Mo Ag (1) (2); ()t (r)u,(r) (D.3)

0]

where

where Aq = Qg+ dfq in this case, the delta function is removed and the variables are thus

Tl =T =0T.
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The lowest order correction to the Greens function incorporating this perturbation will

be the lowest order connected diagrams

0Gij(wr,m) = — > [ daldaty, < |i(an) HP(2h) HOP ()b (2)| >
connected
S Y [t ad ey Myt et u(6) (D)

connected i1,j1,i2,j2
Xl (v g, (12) < |Ag, (1) Agy (15)] >< i) (@) by, ()5 ()b, () ()] >

Since the periodic u; functions are the only quickly varying functions, they can be removed
from the slowly-varying integral to get the approximate relations of ¢;, ;, and d;,,. To
simplify calculations it is assumed that the phonons remain in equilibrium [29, 32]. The
approximation is because the LLO phonons being analyzed are quickly equilibrated by the
decay into acoustic phonons [26].

If the phonons remain in equilibrium, then
MQ1MQ2 < P|AQ1 (tll)A!h (tIZ) >= _iDP(qla tll - t,2)6(q1 + q2) (D5)

where D”(qy,t; — t) is the phonon Greens function in momentum space (in this case it
includes the coupling coefficients for convenience). The superscript P denotes the various
path ordering. Substituting this into (D.4)) simplifies it to

6G7,] xlaxZ Z Z/d'xld'xZ (xll _:I’JQ)

connected 1,12

X < Pl )5k () i, () 5k () s, (25) 0 (w2) | >
=iy [ dahdwy,D" (2} — 24)Giy, (21, 24) G o (2, 25) G, (2, 72) (D.6)
11,02
where D (2}, 2) = [ d®q e 12 DP (q;, ¢, —#,) and in the last line, only the connected
diagrams have been kept. For simplicity, the type of Greens function (<,> etc ) is not

explicitly labeled, but can be inferred from the time indices. From the last line of equation
(D.6) the path dependences are such that it can be shown

Efgon’o‘(a:l,@) Gy (v1 — 2) D (21, 72), a=<,>,1,1 (D.7)

This is the first order irreducible self-energy for the phonons.
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D.2 Phonon Greens Functions

The phonons are assumed to be plane-wave and in equilibrium. These have known relations|27,
32 [34]
D<(z) = —2'/cl:)’qei“'rM(]2l [(Ng + 1)e™a" + Nye "a'] (D.8)

and
D (z) = —i / d’qe’ " M [(Ng + L)e™™a" + Nge'a'] (D.9)

where wq is the phonon frequency for this momentum. For this interaction it is only
the longitudinal optical (LO) phonons that are significant. A common approximation for
plane-wave LO phonons is that they all have the same frequency (wq = wro). To determine
the advanced and retarded self-energies, the relations of equation (6.2)) for D" must be used
which shows that

D'(z) = —2/d3qeiq'r@(t) sin(wqt) (D.10)
In Wigner space, these are

D<(k,w) = —i(2m)'/? / d’qe’ " M2 [(Ng + 1)6(w — wr) 4+ Neb(w + wp)] (D.11)

and
D> (k,w) = —i(2m)/? / d?’qeiq'rM; [(Ng + 1)d(w + wr) + Ngb(w — wr)] (D.12)

and
D’ (k,w) = ! d*qMZe’ T Qs Q § Q D.13
(aw)——W qiMge Q+i§[(w_ +wr) = 6w —-Q—-wy)] (D.13)
where use has been made of the relationship ©(t) = ﬁ #Qige_mt, ¢ is a vanishingly small

number.

D.3 QBE Terms

Equation (£.69) will require phonon self-energies ¥<, ¥~ and ¥". ¥< and ¥~ are straight-
forward from equation (DD.7) but the relations of (6.2) must be used to find X" which
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1s
S, = Uiy -2y =i{(D"+ DG, + Gy} — i { DG
= i[{D7GL DTG DG

In the Wigner coordinates, this requires functions of the form

« dtdar —i(kr—w @
{D Gﬁfj}(k,R,w,T) / emier=eOpo(e )GY (e, R,1,T)  (D.14)

(27)?

dw'dq
_ D(k — WG T
/ 27)? ( q,w —w')Gy (g, R,w',T)

The terms required are shown below with the relevant Greens functions converted into
Wigner functions using equations (D.10) to (D.13)

1
{D<Gi<,j = W /daqMIz_q [(NL + ]-)Ai,j(qa w + (.UL) + NLAi,j(qa w — wL)]
X fij(@,RT) (D.15)
1
{D>Gi>,j = W /d3qM§_q [(NL + 1)Az-,j(q, w — wL) + NLAZ-,j(q, W+ wL)]
X [fij(a,R,T)—1] (D.16)
r r 6 r r
(D} = o /d3qu G (@ w + wr) — Gly(a,w — w)] (D.17)
{D<Gj,} = 3/2 /d?’qMﬁ (N +1)G}i(qyw +wp) + NGli(qw —wg)]  (D.18)
(065} = G / PaM2_ [Gli(qw+wi) — Gli(aw —wi)] fi(@R.T) (D.19)

Thus the retarded self energy is

r 1 3. 1/2 03,5 (NLGg,i(qv w+w) + (Np+ 1)Gi(q,w — WL))
Yij = (27)3/2 /d aMy_q

+ (Gf (ayw +wr) — G (qw —wy)) fij(a, R, T)
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Substituting these into equation (£.69) and performing the QBE steps of 6.2.3

~(2m )I/Z/d“d?*Mk 3 (D.20)

v==+1
)

A i(k,w)fip(k,R,T) {(NL "‘ )AJ (W + VWL)}
—Aij(q,w)fiy(a,R,T) {(NL + 5 — 5) Ak w+ VWL)}

j/
+ z U {VGz i\, w + rwg } Aj’,j k, (-U)fi,j’(q; R, T)fj',j(k7 R, T)
< 7 ZAZ,] k,(.d {I/G] g’ q7W+VWL }fi,j’(k7R7 T)f]’,](qa Ra T) [

Fidi(6,0) i (G RT) | (N + 5 = ) {6 w + ) = G (a0 + o)} |
—iA; j(q,w) fi;(a, R, T) [ (N, +1 —% {Gri(k,w+vwp) — G j(k,w +wg) } ]

Which can be simplified to

[Z;;{], (ka q, wL)fi,j’(ka R7 T) - fi,j’ (qa Ra T)Z;,’J,;(qa ka wL)
- / dey 2 vy | vBUK G e fiy (@R Ty (R, T) (D.21)
J . .
v==+1 _VB(.]a k7 1,9, l/wL)fi,j’(ka R7 T)f]’,](qa R7 T)

where Z;;{;.(k, q,wr) = W;,J;(k, q,wr,) + 9, ;(k,q) with W5 a commonly used term[37]

3"
il dw 1 14
Wik, quwy) = (2m)2ME_ g Y o (N4 5 = D) Aiy (K, w) A (a0 + vwr)
v==+1
) 1 v . . . )
= Z (N, + g 5) (B(j'.k,j',q,vwr) + B(j,q,1, k, —vwr)) (D.22)
v==+1
and
v . . . .
k q =1 Z { NL + 5 5)[8(]71{727(17 VwL) - B(]akajaqa VwL)]} (D23)
v=+1
with

(2m) 207,

w + wi,k — Wj,q + Zg

B(i,k, j,q,w) = (D.24)

Wik = 5z‘,k/h-



Appendix E

Coulombic Interaction

E.1 Self-Energies

The two-body coulombic interaction Hamiltonian in second quantized form and in position

space is
rreoul _ 6(t1 - Z52) s o N N
H(xq,x9) = T@Z) (r1,61)Y 7 (re, t2)V (|11 — r2|)t(rs, t2)1) (11, 1) (E.1)
0Gij(wr,m0) = — Y [ daldaly < i) H (2}, ) (a)] >
connected

——Z Z /daz:ldar2 t —ty) < |1/21(I1)1/)+(1'1,t ) ;;( Ty, 5)

CoNN 01,51,62,J2

XVl (| — ehl) by, (xh, 85) b, (21, 8)05 (2)| > (E-2)

Vi (r = mal) = [ e ) )V (v - ralus(enu(e)
Q
~ 5i,i/5j,j,V(|r1—r2|) (ES)

This is a common approximation[30] so that equation (E.2) simplifies to

S SOS [ drtael < W) (B e ROV I = e e B ()| >

conn i1,j1
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There are four connected paths, but only two are unique so that this can be written as

b2 [P dPrydsV (Jry — ro|)GEIE vy, 1y, 1, 8)GESS (v, 5, 1), 5)G L2 (), 5, 1h, to)

1,01 J1,J1 11,]
Zly]l
—+ Y [ &rid’rhdsV (| —r2|)GfD“15(r1,t1,r1, §)G% (r], 5,1, 5 )GiS;Q(r’Z,s,rz,tz)
11,91
(E.5)

where the superscripts on the Greens functions denote the various path orderings. The
times t; and t, are fixed when looking at the various component of the perturbation and s
will be on both paths. This is the method used by Mahan[27]. Using this method, it can
be shown that the perturbation will be (shown in Craig’s matrix form[27 69])

Z dgrlldgr;éi,il (1‘1, t1, rllvt)iil,jl (rllata r;at)éjlyj(ré?ta r2vt2) (E6)
11,71
where
- Ct. 0
ECOUl(l‘l, xZ) 0] (271, :Uz) (E?)
0 Ot (371,1'2)
where

3! / « ! !

i > [ @00 (v — r2)Vi(lrr — X|)GS i (x' 1, 1, 1)

Cicfj(l'l, IL'Q) == ﬁé(tl — tg) J' (ES)
—Vi(lr1 — ro|)G7 (1, 2)

where V' has been replaced by V; which is a renormalized potential for screening. In

this case it is found using the quasi-static screening and Hartree-Fock approximations[iﬂ()]

In

(also known as the random-phase approximation) which gives this potential as B r2|€

this approximation the only difference from the screened and unscreened potential is the

dielectric, it will be modeled by the plasmon-pole approximation[44].

E.2 QBE Terms

In the center of mass coordinates, the term in the self-energy is

7: Zfdarléil’jlé(r = 0) (|R+ 5 —Tr |) 3, u(I‘ 0 T+t/2 0)
€35 (0 R T) = 106 =0) 4

—V(|r|) R,r, T +1/2,0)

Zl ]1(

(E.9)
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In the Wigner coordinates this can be written as

N Zf d?)k,dw 6217]1 (|R R,|) 3", //(k, R, w T)
C’ll]l(k,R,w,T) =

. f d3r —zk rV (| |) d3k'dw' zk’ TG (k’, R, C{),, T)

(27r) (2m)2 11,J1
z (57,1,_]1 f Tli,/;)elq (R R’ ‘/L-q’qu”’j” (k’, I',, (,{),, T)
= ) (E.10)
f o) :}/ZV kwGE o (K R, W, T)

where the shorthand d(R’qk’w’) and d(k'w') are used to denote d*R’d*qd*k’dw’ and d*k’dw’.
The potential Vg = [ %e‘iq"’VﬂrD has been used. It is important to note that the
component Vj, which diverges, is canceled by the q = 0 terms from the electron-ion and
ion-ion Coulomb potentials and so will be ignored[44]. Using the random phase approxi-
mation, Vsq = &K—‘L) where the renormalizing coefficient is given in the static plasmon-pole

approximation

1 Wgz 2 2 (]2 th ?
—1-2 221+ ) 4o E.11
€q(w) o2 YaT (g )T 4m, (E11)

where the square of the electron-hole frequency is w?; = 16mNaj(c/h)* m, is the reduced
electron-hole mass, C' is a numerical constant usually taken between 1 and 4 and & is the

inverse static screening length

a=e,h

The values of N and ON/0u will be approximated by averaging over these quantities in
the well region in the case of no light coupling. The chemical potential p is estimated by
approximating the carriers as in equilibrium for this calculation.

The lowest order contribution to the gradient expansion on the < term of equation



(6.68) is then

(2)*h ¥ [
/

-J

d(R'qk’w’
((2737/2 )6
d(k’w’) V

(271-)1/2 S,

RR’

J

Lk R,w, TGS (kR,w, T) + G (k, R, w, T)S (k, R, w, T)]

qZGtu //(k, RI w T)(S
G5 (k,R,w,T)

t !
k*k'Gz‘,j’ (k y R, w' , T)
d(R'qk’w’) gia:(R-R/

(2m)7/2

Wia 2 Ghju (K R, W, T) 650
_Gi<,j’ (k,R,w,T) 7"

d(k'w')
271.)1/2

V k— kIG (k,,R, w’,T)

-

Applying the steps 4-6 of the QBE method in section 6.2.3 gives

(m)' fd3k’Vk Wi fir i (k, R, T)
bigr | e RGN f (K R T)
—2m)Y? [ P Vi w fi (11' R,T)
G5 | G TV S g (€. R,
—2m)"? [ &K Viw [ f ,J(k R, T) — 1]
S i fiit (I, R, T) [ Pk Vi

+ fii(k,R,T)

T) —1]
—fi (&, R, T)

_|_

(2#)1/2
2

Removing the q = 0 components and simplifying, this is

Z(2ﬂ)l/z/d3klvk—kf{

fi,j’ (k7 Ra T)fj’,j(kla R7 T) -
_fz,]’;él(ka Ra T)

fi,j’ (kla R7 T)f]',](k7 R7 T)

5!

J
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(E.13)

}

(E.14)



Appendix F

Spatially Varying Effective Mass

The effective masses in Dyson’s equations can be taken as spatially varying. This is not
too difficult, but leads to extra terms when the QBE steps are taken. The terms that

would have to transformed are shown in equation ([6.49)

h? h?

— V% -V} GSi(r,R,t, T F.1
2m;k (R + I‘/2) vR+r/2 2m; (R _ I‘/2) vRfr/2 i,J (I‘, » Oy ) ( )

where the spatial dependence has been added. The first step when including spatial de-
pendence is to make the equation operators Hermitian, this accomplished by transforming

these terms to
h2
5 [VR+r/2m;f(R +r/2)- VRyr/2 — VR_,./Qm;f (R—r/2)- VR_I./Q] Gifj(r, R,t,T) (F.2)

Some mathematical properties will be shown. From straightforward Fourier transfor-

mations, it can be shown that
/d3r€ik'rA(rhI‘Q)B(rl,I'z) = /d?’qA(k —q,R)B(R,q) (F.3)

where A and B are functions in the original position space on the LHS of this equation

and functions in the Wigner coordinates on the RHS.
: 1
/ d?’re_lk"'VnA(rl, 1'2) = <§VR + Zk) A(k, R) (F4)
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. 1
/d3re_’k'rvr2A(r1, ry) = <§VR - ik) Ak, R) (F.5)
. . 1
/ d’re V2 A(ry, 1) = / d’re TV Ary, o) = <ZV%‘ - k2> Ak, R) (F.6)
/ Pre= T A(r,) = 2 / PR R -R) 4 (R) (F.7)

/d3reik'rA(r2) = Q/dSR'eik'(R’R)A(R') (F.8)

Next define M} (r;) = —+—. Using the relations of equations (F.3)) to (F.8) it can then

m; (r1)
be shown with some manipulation that the terms of equation (E£2) can be written in the

Wigner coordinates as

Ve i(k — q) [} VR +iq]
d3q . iR . Gz<(q7 R,W,T) (Fg)
2(2m)3 1 J
o + (1% 1]
where

M;(k,R) =2 / PP*Rle E®-R)r<(R) (F.10)
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