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Abstract  

 

 The act of reaching to grasp an object serves as a primary method of interaction with 

the surrounding environment. Therefore, it is important to understand the association between 

perceptual sensitivity to object form and the corresponding movement kinematics.  As such, 

the objective of this study was to examine the association between the enhancement in 

perceptual sensitivity to object form and reach to grasp performance. Thirty visually healthy 

participants were tested in two experimental tests: a psychophysical test to establish 

perceptual sensitivity to object form, and a motor task to measure the kinematics of a reach to 

grasp movement. A method of constant stimuli was used to assess perceptual sensitivity for 

two shape perception tasks: radial frequency (RF) and motion defined form (MDF). The main 

outcome measures were the perceptual threshold (i.e., accuracy) and just noticeable difference 

(JND). The motor task consisted of a reach to grasp task where movement kinematics were 

quantified using 3 measures: maximum grip aperture (MGA), time in deceleration (TID), and 

time grasping (TIG). Both perceptual tasks, and the kinematic task were performed during 

binocular and monocular viewing. It was hypothesised that the magnitude of binocular 

advantage (i.e., the improvement in performance during binocular compared to monocular 

viewing) found for the perceptual tasks will be positively associated with a binocular advantage 

during the reach to grasp task. Results showed a significant binocular advantage for both 

perceptual tasks, as well as the kinematic measures of the reach to grasp task, which is 

consistent with previous literature. In contrast to the hypothesis, there were no significant 

associations between the magnitude of binocular advantage found in the perceptual tasks and 

reach to grasp performance. These findings indicate that binocular information appears to be 

processed independently for shape perception and movement execution. This is consistent with 

the notion of separate ventral and dorsal streams being involved in processing binocular signals 

for the purpose of perception and action. However, it is important to note that limitations of 

this study may contribute to the lack of perceptual-reach to grasp association. 
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1.0 Literature Review 

1.1 Introduction  

 

Reaching to grasp an object is a common goal directed movement in everyday life. On 

average, we handle approximately 142 objects per day, excluding structural items such as 

handles, taps, and light switches (Zucotti, 2015). The number of reach to grasp actions 

drastically increases if structural items, multiple handling of the same objects, and a more 

reliable method than self-reporting were included. The quantity of reach to grasp actions 

performed on any given day demonstrate its importance in everyday function. In addition, the 

quality of reach to grasp movements is also important in the successful completion of everyday 

tasks. The quality of this movement refers to the accuracy, precision, and efficiency of the 

movement. For example, a shaky and hesitant reach towards a coffee mug followed by a mis-

grasp causing the contents to spill is unfavorable. In certain occupations, accurate and precise 

reach to grasp movements are absolute requirements as in the case of a surgeon whereby the 

allowable margin of error is low and the consequences of mistakes are high. For example, 

laparoscopic surgeries are usually performed through small incisions of 0.5 – 1.5 cm, far away 

from the site of surgery, yielding a demand for highly precise and controlled reach to grasp 

movements (Mir et al., 2011). Although reach to grasp movements are diverse in terms of 

amplitude, speed, and goal, they can all be described by similar phases of movement (Elliot et 

al., 2010). Figure 1 is a framework that outlines the sensorimotor processing stages during the 

performance of a visually guided reach to grasp movement, which will form the focus of this 

literature review. 

 

 
Figure 1. Framework: components of a visually guided reach to grasp movement 
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Prior to the beginning of any visually guided reach to grasp movement, vision captures 

information regarding the object’s intrinsic and extrinsic properties (Goodale et al, 1994; 

Monaco et al., 2015). Intrinsic properties are those that are native to the object itself, namely 

shape/form, size, texture, and mass. Extrinsic properties of the object include spatial location 

and orientation. Different viewing conditions such as binocular and monocular viewing have 

been shown to elicit differences in the perception of object features, such that an advantage 

can be associated with the former viewing condition (Blake and Fox, 1973; Servos and Goodale, 

1994; Melmoth and Grant, 2006). This perceptual advantage is captured and quantified through 

higher sensitivity to changes in object features during discrimination tasks. For example, 

binocular viewing conditions elicit a lower threshold for object form discrimination, suggesting 

that binocular observers are able to accurately perceive smaller changes in object form (Steeves 

et al., 2004; Hayward et al., 2011). This binocular advantage is found consistently amongst the 

visually healthy population, but the magnitude varies between individuals (Loftus, Servos, and 

Goodale, 2004).  

The internal representation of the visual scene is modulated by the sensitivity of the visual 

system in detecting object features (Intraub, Morelli, and Gagnier, 2015). This internal 

representation, consisting of intrinsic and extrinsic properties of the object, provides 

information for motor planning (Bootsma et al., 1994; Korneev, Kurganskii, 2014). Information 

from different modalities is integrated to obtain a complete representation of environment 

(Sober and Sabes, 2003). Proprioceptive information regarding the location and configuration 

of the limbs along with the previously mentioned visual input all contribute to this process 

(Hansen et al., 2006).  

 The motor plan is carried out by sending efference signals to the appropriate motor units. A 

forward internal model in the CNS uses a copy of the efference to predict the expected sensory 

consequences, and the next state of the limb (Miall and Wolpert, 1996; Wolpert, 2005). 

Therefore, the forward internal model can be used to adjust movements prior to receiving 

sensory feedback from the environment. Upon the availability of actual sensory feedback, the 

predicted sensory feedback is compared to that of the actual, and adjustments are made during 

movement execution to minimize error. This is known as the closed loop online control, which 
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utilizes sensory feedback from both the visual and somatosensory systems to adjust the 

kinematics of the limb in motion (Proteau and Masson, 1997; Saunders and Knill, 2003; Hansen 

et al., 2007). This adjustment is done continuously online to enhance movement accuracy and 

precision, while adhering to movement goals. The availability and quality of visual input has 

been shown to modulate the characteristics of this closed loop of online control, ultimately 

affecting the performance of the reach to grasp task (Mendoza et al., 2006; Grierson and Elliot, 

2009). More accurate information available from the visual system, during binocular viewing 

compared to monocular viewing, has been shown to improve the planning and execution of 

movements via higher peak acceleration and peak velocity, decreased variability of limb 

trajectory, decreased time spent in grasp phase, lower end point variability, and quicker overall 

movement time (Servos and Goodale, 1994; Jackson et al., 2010; Melmoth and Grant, 2006; 

Read et al., 2012).  

To summarize, separate studies have shown that perceptual sensitivity to object form is 

greater during binocular viewing (Steeves et al., 2004; Hayward et al., 2011), and that visually 

guided movements are performed more efficiently (Servos and Goodale, 1994; Melmoth and 

Grant, 2006). However, it is currently unknown whether increased sensitivity to object features 

is directly associated with improved motor planning and execution. Therefore, this thesis will 

address this gap in current knowledge and assess the relationship between visual sensitivity to 

object form and the performance of reach to grasp. To do so, the manipulation of viewing 

condition will be introduced to the perceptual and motor tasks. The elicited binocular 

advantage will provide an opportunity to assess the relationship of the degree of 

enhancements between the perceptual and tasks. Given the importance and regularity of reach 

to grasp in both leisure and professional aspects of life, understanding factors that modulate its 

performance can benefit the approach to completing these tasks optimally. The following 

literature review will provide a comprehensive synthesis of the current knowledge on 3 topics: 

1) Object form perception, 2) Contribution of vision on reach to grasp movement 3) Interaction 

between perception and action.  
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1.2 Object Form Perception 

1.2.1 Neural structures in object form perception  

Visually encoding an object’s intrinsic and extrinsic features has been proposed to occur 

through two pathways: the ventral “what” and dorsal “how” pathways (Goodale and Milner, 

1992; Goodale et al., 1994; Whitwell, Milner, and Goodale, 2014). The ventral stream is 

responsible for perceptual identification of objects. As such, the perception of object form 

projects through the ventral pathway in the absence of a subsequent goal directed movement 

(Goodale et al., 1994). Object feature encoding begins at the retina as the light initiates the 

transduction process at the photoreceptors and undergoes primary processing in the primary 

visual cortex (V1) to decode spatial features, such as spatial frequency, orientation, disparity 

and color. This information is further processed in the extra-striate cortex where neurons 

respond to increasingly complex shapes to extract a more global organization of the scene 

(Lamme and Roelfsema, 2000). V2 cells are tuned to similar properties as V1, but are 

modulated by more complex properties such as illusory contours and figure/background 

seggregation. Area V3 has been suggested to have a role in global motion processing and 

projects dorsally to the posterior parietal cortex (PPC) and ventrally to the inferotemporal 

cortex (TE). Area V4 receives strong feedforward input from V2, and is tuned to intermediately 

complex object features such as shape and form, but not faces and tools as those are processed 

in the TE. Entry to the ventral stream begins at region V4, and projects along the temporal lobe 

to multiple regions including inferior temporal areas TEO and TE, and temporal polar area TG. 

Additionally, the lateral occipital area (LO) located within the ventral stream has shown to be 

involved with object recognition (Grill-Spector, 2003). fMRI studies further showed LO 

activation for object form irrespective of how they are defined (motion, texture, or luminance 

contrast) (Grill-Spector et al., 1998). Moreover, LO appeared to code for overall object form, 

rather than local features (Kourzi and Kanwisher, 2001). In summary, structures in the ventral 

stream play a fundamental role in the perception of object form. 

 

1.2.2 Quantifying object form perception  

The sensitivity to object form perception can be measured quantitatively using 
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psychophysical methods. Two types of stimuli, radial frequencies (RF) and motion defined form 

(MDF), have been used to study the sensitivity of the visual system to object form (Giaschi et 

al., 1997; Wilkinson et al., 1998). RF form is perceived as a function of contour contrast while 

MDF utilizes motion contrast. By manipulating the contour (RF) and motion (MDF) of the object 

under different viewing conditions (binocular/monocular) and measuring the changes in 

sensitivity (threshold and just noticeable difference (JND), a relationship can be established 

between the viewing condition and perceptual performance. This information can provide 

insight about the contribution of binocular vision to the perception of object shape.  

 

1.2.2.1 Radial Frequency (RF) stimulus  

Radial frequencies are circular shapes with systematic deformations. These 

deformations are defined by sinusoidal modulations of the radius. Deformations can be 

changed based on phase, amplitude, and frequency. Figure 3 is an example of a radial 

frequency with amplitude and radial frequency properties labelled.  

 
Figure 2. Highlighting properties of radial frequency shape (Altered Based on Wilkinson, Wilson, and 
Habak, 1997) 

 

A study that recorded responses from 103 neurons in area V4 of anesthetized primates 

demonstrated that RF shapes activate a subset of these neurons (Gallant et al., 1993). These V4 

neurons project directly to neurons in the TE cortex, making the perception of radial 

frequencies predominantly a function of the ventral stream of visual processing (Wang et al., 

1999). Given this, RF shapes have been used to measure sensitivity to global object form under 

various conditions: curvature, luminance, and contour contrast (Wilkinson, Wilson, and Habak, 

1997; Steeves et al., 2003; Bell et al., 2006). Determining the perceptual sensitivity towards 
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changes in these properties provides insight into the neural mechanisms involved in encoding 

of object shape. For example, manipulating the amplitude provides a measure of the sensitivity 

of the visual system to curvature, and studies have shown that RF shapes elicit reproducible 

thresholds between individuals. The RF stimulus provides insight into global feature perception 

by manipulating local features. It has been shown that discrimination of object curvature based 

on changes in amplitude is within the hyperacuity range. Differences as low as 2-4 sec of arc in 

radial deformation can be detected while viewing binocularly (Wilkinson, Wilson, and Habak, 

1997). Further studies have found that observers are sensitive to slight RFs deformations 

(approx. 1% of radius) with accuracy up to 90% within just 167 ms (Wilkinson et al., 1998). One 

explanation for the high sensitivity to RF shapes may be evolutionary in nature. The 

development of the ventral stream is thought to be biased towards naturally occurring objects 

such that they are perceived with higher sensitivity. Since curves are commonly found in 

natural objects, the perceptual system might be finely tuned to discriminating them 

(Biederman, 1987). Therefore, the RF stimulus provides a useful probe for studying the 

mechanisms involved in object form perception. 

 

1.2.2.2 Effect of viewing condition on RF form perception 

 Separate studies have used the RF shapes to assess object form discrimination under 

different viewing conditions and contrast levels. Monocular viewing conditions elicited higher 

thresholds (i.e., lower sensitivity) for form perception as compared to binocular viewing 

conditions. This was consistent under different contrast conditions (6.25%, 12.5%, 25%, 100%) 

(Steeves et al., 2003); however, the binocular advantage was largest at lower contrast levels. 

For example, during the monocular viewing condition the amplitude threshold was 

approximately 20% higher in comparison to binocular viewing. At 100% contrast, the difference 

in threshold between viewing conditions was only ~5% (Steeves et al., 2003). It appears that 

binocular advantage is more apparent when the visual system is challenged during lower 

contrast.  

The number of cycles within the RF shape does not affect the sensitivity to form 

perception. Similar sensitivity to changes in deformations of RFs shapes with 3 – 24 cycles was 
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found for both binocular and monocular viewing conditions (Wilkinson et al., 1998). Previous 

studies using RF shapes have provided insight about the potential effects of shape properties 

on behavioural performance. Thus, the RF could be an ideal stimulus to be implemented in 

related studies as experimenters are able to adjust its properties to test different hypotheses.  

 

1.2.2.3 Motion Defined Form (MDF) stimulus  

Motion defined form is a stimulus used to determine the sensitivity to global shape 

perception through motion of dots. Stimuli are composed of an array of dots whereby the 

target form is defined by dots moving in one coherent direction. The dots outside of the target 

form move in the opposite direction. Under circumstances where 100% of the dots in the target 

and background are moving in opposite direction, the form of the object can be easily 

perceived. As this condition is not challenging to the visual system enough to test for 

perceptual thresholds, the dot coherence is often adjusted, such that a previous experiment 

found binocular thresholds to be approximately 10-15% among participants aged 18-31 

(Hayward et al., 2011). Dot coherence represents the percentage of dots in the stimulus target 

moving in a coherent direction. For example, a dot coherence of 50% means that 50% of the 

dots in the target form are moving to the right while the remaining dots are moving randomly. 

Movement speed of the dots can also be manipulated to obtain different effects. 

Developmental studies have found object form perception for slow velocities to mature later in 

life, suggesting that it is more challenging to the visual system to process slowly moving stimuli 

(Hayward et al., 2011). Increased thresholds were also found in healthy observers as well as 

those with abnormal binocular vision for stimuli presented at slow velocities (Giaschi et al., 

1992). 

  Neurons that are sensitive to direction of motion have been found as early as areas V1, 

V2, and V3 in primate studies (Deo Yeo and Van Essen, 1985; Hawken et al., 1988). The middle 

temporal area (MT), a region of the extrastriate cortex receives input from the early visual 

areas and is largely tuned to the speed and direction of moving stimuli (Dubner and Zeki, 1971; 

Maunsell and Van Essen, 1983). Within MT, local visual motion signals are integrated into global 

motion of complex objects (Movshon et al., 1985). Furthermore, presentation of MDF stimulus 
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has also shown to active neurons in the medial superior temporal area (MST), which receives 

input from MT and then projects into the parietal area 7a (Allman et al., 1985). With lower dot 

coherence, increased activation of these areas would be expected as they facilitate the 

perception of contrasting motion. In humans, MT neurons respond to motion defined shapes, 

and it is thought that MT is a major structure involved in the processing of the MDF stimulus 

(Alleman et al., 1985; Saito et al., 1986; Tanaka et al., 1986). 

Motion perception has been associated with dorsal stream function, but recent research 

has found more complex interactions between the two pathways (Freud et al., 2016). fMRI 

studies have determined parallel activations in both ventral and dorsal streams with the 

presentation of MDF stimuli (Wang et al., 1999). Dorsal motion specific middle temporal area 

(MT)/V5, as well as ventral fusiform gyrus (FG) and inferior temporal gyrus (TG) are 

simultaneously activated with the motion defined form stimulus. As motion stimulus alone 

activates only the MT/V5 areas, it appears the addition of form perception with a motion 

detection task requires interaction between the ventral and dorsal streams (Rainville and 

Wilson, 2003).   

 

1.2.2.4 Effect of viewing condition on MDF perception 

Although MDF has not been used in previous literature to specifically assess differences 

in performance between binocular/monocular viewing conditions, there are studies that 

demonstrate enhanced binocular performance compared to other conditions. For example, a 

binocular advantage for the perception of object form as a function of dot coherence was 

found for dot velocity of 0.1 deg/s in a group of visually health participants compared to 

amblyopic group (Hayward et al., 2011). A separate study found MDF thresholds to be lower in 

healthy binocular control subjects as compared to a group of patients with parieto-temporal 

lesions (Regan et al., 1992). Monocular performance on the MDF task has not been directly 

compared to binocular performance in visually normal subjects, although the binocular 

advantage compared to visually affected groups indicates that binocular vision is important for 

the performance of this task. As such, decreased sensitivity to MDF would be expected for 

monocular viewing compared to binocular viewing.   
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1.2.3 Neural mechanism for enhanced binocular performance in object form perception  

 Previous studies have demonstrated binocular viewing of RF and MDF stimuli to result in 

greater perceptual sensitivity to object form. Additionally, the combination of information from 

both eyes has been shown to enhance visual acuity, contrast sensitivity, brightness perception, 

pattern recognition, and depth perception (Steinman and Garzia, 2000). As the process in which 

this binocular summation occurs is still an active area of research, concepts such as probability 

and neural summation can provide some insight (Frisen and Lindblom, 1987).  Probability 

summation explains the binocular enhancement in perceptual performance to be due to 

greater probability of detection, having two independent sets of information (Steinman and 

Garzia, 2000). Further experiments demonstrated that optimal summation occurred when 

corresponding points on the two retinas were stimulated with the same target and when 

presentation occurred simultaneously (or within 100ms) (Matin, 1960). This neural summation 

combines input from the two eyes to strengthen neural signal (Campbell and Green, 1965). 

Binocular neurons (neurons activated by stimuli presented in either eye) are found in striate 

cortex (V1), extrastriate cortex (V2), ventral extrastriate cortex (V4), dorsal extrastriate area 

(V5/MT), medial superior temporal area (MST), anterior intraparietal area (AIP), and a 

collection of areas in the anterior inferotemporal cortex (IT) (Steinman and Garzia, 2000). As 

these neurons are found in structures of both the ventral and dorsal streams, a contribution of 

binocular vision to both perception and action is expected.  

 

1.3 Contribution of Vision to Reach to Grasp Performance    

1.3.1 Neural substrates 

Visual information about object properties and environmental context is extracted to 

formulate a motor plan according to one’s behavioural goals. Vision is an essential modality to 

connect the external features of the environment with the internal plans to interact with it. A 

separate pathway in the dorsal stream of visual processing was shown to be involved in 

processing of object features that undergo sensorimotor transformations for visually guided 

actions (Goodale et al., 1994). The dorsal stream shares a common pathway with the ventral 

pathway in the visual cortex, but branches out at area V5/MT (middle temporal area) to project 
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to various surrounding areas. Connective pathways have been identified with V3A, MST (medial 

superior temporal area), FST (fundus of the superior temporal area), and multiple parietal 

regions. Some parietal regions include the lateral, medial, and anterior intraparietal areas LIP, 

MIP, and AIP. These pathways ultimately terminate in dorsal lateral regions of the prefrontal 

cortex (DLPFC).   

Physiological evidence demonstrates the role of dorsal stream neurons in transforming 

visual information into appropriate motor movements. Primate neuroimaging studies have 

shown lateral intraparietal areas (LIP) to play a primary role in visual control of saccadic eye 

movements, anterior intraparietal areas (AIP) to be involved with visual control of grasping 

movements, and medial intraparietal areas (MIP) and parietal-occipital sulcus (V6A) to be 

engaged during visual control of reaching (Anderson and Buneo, 2003; Sakata , 2003). These 

different areas have been also shown to interact during the performance of different 

visuomotor tasks; for example, V6A is involved in the visual control of both reaching and 

grasping. Human fMRI studies have found AIP to also be activated for both reaching and 

grasping (Culham et al., 2003). More specifically, this AIP activation was found to be smaller 

when removing the grasping component from the movement (Culham et al., 2003). This 

demonstrates a particular role of AIP in controlling grasping.  

Recent findings have demonstrated heterogeneity of the dorsal pathway in terms of 

neural representations (Kravitz et al., 2011). During visually guided tasks, posterior areas of the 

dorsal stream are more sensitive to gaze-centered representations of objects location and 

features (Roth and Zohary, 2015), while anterior areas, which are closer to motor cortex, are 

more sensitive to movement related information (Gallivan et al., 2013). In addition to this 

anterior-posterior gradient, the dorsal stream may also be mapped in the medial–lateral axis. 

More posterior–medial areas (V7, IPS1–2) are strongly connected to early visual cortex 

(Stepniewska et al., 2016) and ventral structures (Kravitz et al., 2011), representing more 

perceptual properties of the input. Conversely, the anterior-lateral part of the dorsal pathway 

(AIP) is connected to the sensorimotor system and coupled to motor regions, contributing to 

visuomotor behaviors (Roth and Zohary, 2015). These findings support the contribution of the 

dorsal stream in transforming visual representations into motor representations. 
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1.3.2 Effects of object intrinsic and extrinsic properties on reach to grasp  

Object intrinsic and extrinsic properties directly influence motor planning of reach to 

grasp movements (Monaco et al., 2015). The reach and grasp phases are affected differently by 

intrinsic and extrinsic properties (Paulignan et al., 1997; Frey, McCarty, and Keen, 2004; 

Seegelke and Hughes, 2015). The reach phase is most affected by the extrinsic features of the 

object. Varying the distance and orientation of the object would cause changes in the speed 

and direction of the trajectory in the reach phase, respectively. Object intrinsic features 

modulate the grasping phase (Marteniuk et al., 1990; Bootsma et al, 1994; Paulignan et al., 

1997). For example, grasp aperture and finger closing kinematics also been shown to be 

affected by movement goals and texture/mass respectively (Flatters et al., 2012).  

 Grasp aperture, a vector between the thumb and index finger, proportionally mirrors 

the circumference or form of the object such that a larger object elicit a larger grip aperture 

(Paulignan et al., 1991). Although grasp aperture to object circumference ratios vary between 

participants, the general finding of larger grasp apertures for larger objects remains consistent. 

This effect is diminished with monocular viewing as larger grasp apertures have been 

demonstrated (Melmoth and Grant, 2006). The size and shape of the object is also modulated 

by grasp type. Interestingly, modulation of grasp type also alters the reach component 

(Marteniuk et al., 1990; Jakobson and Goodale, 1991; Bootsma et al, 1994), and vice versa 

(Jakobson and Goodale 1991; Chieffi and Gentilucci, 1993); suggesting interaction between the 

2 components of the reach to grasp movement. 

Extrinsic properties such as location of the target object in depth influence the reach 

phase kinematics. Objects located further in depth elicit higher acceleration, such that the 

entire movement time remains approximately consistent when compared to a closer located 

object (Paulignan et al., 1997; Bae, Choi, Armstrong, 2008). Object location along the azimuth 

also influences the reach phase by modulating the trajectory direction towards the object. The 

orientation of the object has been also shown to influence the spatial configuration of the index 

finger and thumb during grasp, as well as time spent grasping and transport duration (Paulun, 

Gegenfurtner, and Goodale, 2016). Finally, wrist postures are influenced by object orientation 

(Bae, Choi, Armstrong, 2008). To summarize, experimental findings provide evidence to show 
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that object intrinsic and extrinsic features significantly affect movement kinematics; however, 

reach to grasp performance can also be influenced by movement goals, which is discussed next. 

Beyond the intrinsic and extrinsic properties of the object, goal of the movement also 

influences reach to grasp kinematics. The goal of movement has been shown to influence reach 

to grasp strategies (Rosenbaum et al., 2012). A phenomenon called end state comfort has been 

widely supported (Rosenbaum et al., 1990, 1992, 1993, 1996), whereby performers utilize 

grasping strategies that facilitate a comfortable end position at the end of object manipulation 

while forfeiting comfort in grasping the object at the beginning of the manipulation. Studies 

that involve the grasping of glasses (cups) have been used to demonstrate the human tendency 

for end state comfort (Cohen and Rosenbaum, 2004). In situations where the risk of error is 

heightened as in the case of a more fragile or precious target object, performers utilize a more 

conservative reach to grasp strategy (Flatters et al., 2011). Longer time is spent in deceleration 

during the reach phase, and grasping time is longer. When participants were instructed to not 

drop the target object following transport to a different location, an increase in force applied by 

the grasp was demonstrated (Flatters et al., 2011). This suggests that movement goals and 

motivations also modulate reach to grasp performance in addition to the physical intrinsic and 

extrinsic properties of the target object.  

 

1.3.3 Reach to grasp movement planning and control 

The reach to grasp movement is characterized by two phases (Woodworth, 1899; 

Jeannerod, 1984; Elliot et al., 2001; Elliot et al., 2010). The reach phase is defined between the 

onset of the hand movement towards the object to when the hand is within the vicinity of the 

target. The grasp phase is defined from the end of the reach phase to contact with the object. 

These two phases are thought to be independent, but do interact.  For example, the 

performance of reaching has been shown to be influenced by the grasping phase, such that an 

unexpected shift of grasping strategy during the movement elicited modifications to reaching 

(Castiello, Bennett, and Paulignan, 1992). These online corrections to the reach and grasp 

movement occur continuously and contribute to the overall performance of the task. 
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The quality of the initial motor plan and the ability to engage in online control processes 

both contribute to the overall accuracy and precision of the reach to grasp task. Research has 

shown that optimal outcomes are embedded into the motor plan. These optimal outcomes 

include considerations for safety, energy expenditure, as well as time available for corrections. 

Previous studies have shown that end-point distribution of the primary reaching movement 

typically undershoots the target object (Worringham, 1991; Engelbrecht, Berthier, and 

O’Sullivan, 2003; Elliot et al., 2004). With practice, the amount of deviation decreases towards 

the location of the target object, minimizing the spatial gap (Pratt and Abrams, 1996; Khan, 

Frank, and Goodman, 1998; Elliot et al., 2004). This is thought to occur because overshooting 

the target is costly in terms of energy and time, as the limb is required to overcome inertia and 

reverse movement direction (Elliot et al., 2004; Elliot, Hansen, and Grierson, 2009). In contrast, 

undershooting takes up less time and energy, while also being a safer strategy, as in the case of 

reaching for a potentially dangerous target (i.e., a hot pot). Similar findings have been found for 

maximum grasp aperture measure (MGA). Participants tend to employ an aperture 2-3 times 

the width of the target object to optimize the outcome (Paulignan et al., 1991). Approaching 

the object with a grasp aperture larger rather than smaller relative to the target object is both 

energetically and temporally more favorable in terms of adjustment. Should a grasp aperture 

be smaller than required by the object, additional time and energy would be required to open 

the grasp aperture to make the proper adjustments. As such, kinematic measures, such as the 

initial reach trajectory and maximum grasp aperture, can be used as proxy measures for the 

initial motor plan. 

During reach to grasp trials where vision is available, performers exhibit an 

asymmetrical velocity profile in which more time is spent after peak velocity (Hansen et al., 

2006). This type of velocity profile is associated with the utilization of visual feedback for limb 

control (Elliot et al., 2001). With practice, performers achieve peak velocity earlier, and thus 

spend more time in the deceleration phase near the target object (Elliot et al., 1995; Khan and 

Franks, 2000). This suggests more time is available to make corrective adjustments near the 

object. During trials where the availability of vision is unexpected by the subject, a kinematic 

profile that is more symmetrical is employed such that equal time is spent before and after 
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peak velocity (Elliot and Allard, 1985; Hansen et al., 2006). This strategy is thought to resemble 

reaching without visual feedback and it is associated with longer response times. The kinematic 

changes due to the manipulation of visual input suggest that movement planning and control 

are dependent on availability of visual feedback (Elliot et al., 2010). 

 

1.3.4    Movement control model: impulse and limb target control 

Up to this point, the primary movement has been described to have very limited online 

control, but it is important to note that this segment of the movement is not entirely ballistic in 

nature. There is evidence for early online control within the primary movement (Proteau and 

Masson, 1997; Hansen et al., 2007; Saunders and Kill, 2003). A model of goal directed aiming 

suggests 2 main types of feedback-based regulation: impulse and limb-target control (Grierson 

and Elliot 2008; Grierson, Gonzalez, and Elliot, 2009; Elliot et al., 2010). Impulse control refers 

to the control that occurs early during the primary movement. Limb-target control refers to the 

control that fine tunes the transport of the hand as it is approaching the target object. 

Impulse control occurs very early after the onset of movement. An internal feedforward 

model in which an efference copy simulates the movement in the CNS is activated with the 

generation of efference signals (Elliot et al., 2010). This process allows for corrections to be 

made to the initial motor plan prior to the availability of sensory feedback. Following 

movement onset, impulse control can be demonstrated through corrective movements made 

based on visual and somatosensory feedback.  Perturbations induced prior to peak velocity 

using visually elicited illusions of movement velocity have demonstrated that subjects modulate 

their velocity to account for the misperception (Proteau and Masson, 1997). These corrections 

were made to the primary movement that has previously been thought to be completely 

ballistic approximately 100ms following the perturbation. (Saunders and Knill, 2003; Hansen et 

al., 2007).  Corrections to these early perturbations demonstrate an example of impulse control 

based on visual and proprioceptive sensory feedback.  

As the hand approaches the object following peak deceleration, limb-target control is 

thought to occur (Saunders and Knill, 2003). Increased processing time and available sensory 

information during late target control allows corrections to be made more accurately and 
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precisely. As such, limb- target control works to fine tune the trajectory and velocity of the 

hand to the target object based on location, form, and orientation.  

Movement control during reach to grasp is a continuous process such that impulse and 

limb- target control are closely related; for example, adjustments made early in the movement 

influence those made later (Elliot et al., 2010). A related study has shown early visual feedback 

well in advance of limb peak velocity enhances later online control (Trembley et al., 2016). In 

addition, the provision of visual feedback as soon as peak velocity or at 25% of the movement 

time is adequate for online corrections to be made in the deceleration phase. These findings 

provide evidence for a strong contribution of vision to early online control. Given this, it is 

possible that the quality of the visual feedback plays a role in the quality of this impulse control. 

As monocular viewing lacks binocular summation and disparity, visual information regarding 

object features and its location becomes less certain. By consequence, it should be expected 

that corrections will be less efficient during monocular viewing, which will elicit goal directed 

aiming movements with more symmetrical velocity profile and greater endpoint variability.  

In summary, goal directed aiming movements are controlled by multiple processes to 

ensure that accuracy and precision are achieved. The primary movement transports the hand 

within close proximity of the object whereby more time is spent in deceleration to undergo 

limb-target adjustments. Online control occurs continuously from the onset to the end of 

movement. The planning and online control processes are sensitive to manipulations of both 

the object intrinsic and extrinsic properties as well as viewing conditions, which will be 

reviewed in the next section. 

 

1.3.5  Effect of viewing condition on reach to grasp performance 

As vision is critical for the planning and control of reach to grasp, the binocular 

advantage seen in perceptual tasks also exists for the performance of upper limb movements. 

Endpoint variability, time spent in various phases, and accuracy to target have all been used as 

measures to quantify the performance of reach to grasp performance (Servos, Goodale, and 

Jakobson, 1991; Servos and Goodale, 1994; Melmoth and Grant, 2006; Jackson et al., 2010). 
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This section will discuss the kinematic differences between binocular and monocular viewing 

conditions.   

Time to movement onset is a measure of the reaction time of a reach to grasp 

movement. Reaction times are quicker under binocular viewing and highlights binocular 

advantage for movement planning (Servos et al., 1992; Wakayama et al., 2010). The binocular 

advantage in reaction time may be related to the increased quality of the visual input for 

perception of reach distance, direction, and object features. Movement duration is the time 

between movement onset and movement completion, which provides insight as to the 

efficiency of the reach to grasp task. A longer movement time during monocular viewing for the 

same reach to grasp task may be a result of increased uncertainty of the initial motor plan and 

the application of online adjustments (Melmoth and Grant, 2006; Jackson et al., 2010).  

Peak velocity and time to peak velocity can further explain the increased movement 

time as monocular viewing conditions are associated with lower peak velocity and acceleration. 

Peak velocity is achieved approximately at 30-40% of the movement during the reach phase. A 

slower reach to the object during monocular viewing may suggest hesitancy that allows for 

more time to correct for errors in trajectory (Servos, Goodale, and Jakobson, 1991). This 

increased uncertainty in the reach phase under monocular condition is also associated with a 

larger maximum grasp aperture measure (Melmoth and Grant, 2006). The lack of visual cues 

such as disparity and summation during monocular viewing causes a less accurate and precise 

internal representation, in which the motor plan is derived. As such, larger margin of error is 

embedded into the movement for online corrections upon the availability of more visual and 

somatosensory information.   

Time in deceleration of the reach to grasp movement is an indicator of online 

adjustments when approaching the target object. Peak deceleration occurs at approximately 

75-80 % of movement time and is found to be lower during monocular as compared to 

binocular viewing (Servos, Goodale, and Jakobson, 1991). A lower peak deceleration and longer 

time spent in deceleration indicates a more gradual approach to the target, providing the 

performer with more time to make adjustments. This increased time in deceleration can be 

interpreted as a more conservative strategy (Servos and Goodale, 1994). This strategy provides 
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the performer with more time for adjustments to movement trajectory due to the increased 

error in the visual perception of object intrinsic and extrinsic features (Servos, Goodale, and 

Jakobson, 1991; Jackson et al., 1997).  

The grasping component is the time in which the fingers are closing around the object. A 

longer grasping phase has been demonstrated during monocular viewing. A longer grasp 

application allows for more adjustment opportunities, which could be due to a less accurate 

encoding of object features because of lack of disparity during monocular viewing. Upon 

contact, performers tend to be asked to manipulate the object in a certain manner. The quality 

of this manipulation can be measured quantitatively using the time spent in contact with the 

object. Again, this measure has been shown to be higher in monocular viewing conditions with 

the possible explanation that upon contact, more adjustments to finger contact location and 

force application/control are required to ensure optimal object transport. As end point 

variability of finger contact location on the object has shown to be greater in monocular reach 

to grasp, more adjustments are required to obtain a reliable grasp (Read et al., 2012). 

In summary, the most drastic differences in kinematics between binocular and 

monocular conditions occur later in the movement during deceleration and grasping (Servos 

and Goodale, 1994; Watt and Bradshaw, 2000). Longer movement time during monocular 

viewing is due to lower peak velocities and longer time spent in deceleration, and this 

contributes to the increase in movement time (Watt and Bradshaw, 2000). During this time, the 

fingers and hand are adjusted within the proximity of the object to make an appropriate grasp. 

As both the hand and object are located in central foveal vision, this phase is highly modulated 

by the quality and availability of visual feedback (Watt and Bradshaw, 2000).  

 

1.3.6 Neural mechanisms for enhanced binocular reach to grasp 

Dorsal stream structures were found to be involved in the perception of disparity 

through random dot stereogram. The perception of disparity has been shown to elicit activation 

of dorsal areas V7, MT, dorsal intraparietal sulcus anterior (DIPSA) and medial (DIPSM (Minini, 

Parker, Bridge, 2010). When comparing the neural responses to disparity in the ventral stream, 

dorsal stream, and early visual areas, it was found the neural activity in the dorsal structures 
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(V3A, V7, MT) was significantly greater (Minini, Parker, Bridge, 2010). Ventral structures (V4, 

LO1, LO2) were found to be activated throughout various disparities (0.1 - 0.7⁰ visual angle), 

however showed no differences in BOLD response. These studies suggest that the dorsal 

stream, along its occipital and parietal branches contribute to the perception of disparity.  

Given the role of the dorsal stream in reach to grasp, it would be expected that the availability 

of disparity during binocular viewing to contribute to the enhanced kinematic performance.  

The detriments in reach to grasp performance during monocular viewing could result 

from the lack of binocular cues such as vergence and disparity (Marrota et al., 1995). 

Computation of reaching distance was shown to be dependent on vergence (Melmoth et al., 

2007). In contrast, scaling of grasp and the finger configuration were shown to be dependent 

on disparity (Mon-Williams and Dijkerman, 1999). As both of these cues are unavailable during 

monocular viewing, the visual system increasingly relies on monocular pictorial cues and 

motion parallax to compute reach distance (Marrota, Kruyer, and Goodale, 1998). The 

increased reliance on pictorial cues elicits an increased activation of ventral stream structures 

such as LO (Verhagen et al., 2008). Pictorial cues such as height in the visual scene and familiar 

size have been shown to be used in the planning and control of grasping, but only during 

monocular conditions (Marotta and Goodale, 1999). For optimal performance in movement 

planning and execution, however, the availability of both binocular and monocular cues is 

required.   

 

1.4 Interaction Between Perceptual and Motor Performance 

1.4.1 Neural interaction between ventral and dorsal streams  

Historically, the two streams of visual processing have been described as separate, but 

new research suggests more complex interactions during object form perception and during 

visually-guided reach to grasp (Freud, Plaut, and Behrmann, 2016). The ventral and dorsal 

streams have been identified based on neuroanatomy (Ungerleider and Mishkin, 1982); 

however, it is important to note the interaction between the streams. The dorsal and ventral 

streams have been found to project to shared regions within the superior temporal sulcus (STS) 

and prefrontal cortex (Baizer et al., 1991; Distler et al., 1993). Regions such as areas IPa and TEa 



19 
 

in the rostral STS, MT, and prefrontal cortex have been identified to receive converging inputs 

from both streams (Distler et al., 1993). Projections to these common regions suggest 

communication between the two visual processing streams. As such, the segregation of the 

input between the two pathways is not as clear as previously thought (Cloutman, 2013).  

Research has shown numerous anatomical cross-connections to be mapped between 

the two pathways; most notably, between inferior parietal and inferior temporal areas. For 

example, ventral TE has been found to have direct projections with dorsal stream areas V3A, 

MT, MST, FST, and LIP (Baizer et al., 1991; Distler et al., 1993; Webster et al., 1994). Retrograde 

tracer fluids have detected a connection between TE with intraparietal sulcus and prefrontal 

cortex in a primate study (Borra et al., 2010). Diffusion imaging studies have revealed white 

matter tracts between the MT gyrus (MTG) and supramarginal gyrus in the context of tool use 

(Ramayya et al., 2010). Alternatively, projections from ventral V4 have been mapped to dorsal 

stream region MT, as well as FST and LIP (Felleman and Van Essen, 1991; Ungerleider, Galkin, 

Desimone, & Gattass, 2008). The inter-connectivity between the dorsal and ventral streams 

have also been found to be reciprocal (Lamme, Super, and Spekreijse, 1990; Felleman and Van 

Essen, 1991; Distler et al., 1993; Nassi and Callaway, 2009; Rosa et al., 2009; Pollen, 2011). For 

example, transcranial magnetic stimulation applied to parietal areas (dorsal stream) has elicited 

responses in MTG and fusiform gyri (ventral stream), and vice versa (Zanon et al., 2010). 

Together, these findings demonstrate the connections between the two streams of visual 

processing, and suggest bidirectional communication is available and active. Despite this, the 

functional roles of the cross-connection between the two streams during movement tasks are 

still unclear.   

 

1.4.2 Physiological and behavioural support for ventral-dorsal interaction 

Along with the communication between the ventral and dorsal streams, object 

perception, thought to be a ventral process, has been shown to elicit dorsal activity (Freud et 

al., 2016). Object representations within the dorsal stream have been shown to be dissociable 

in terms of neural response time from those generated in the ventral stream. Primate studies 

have demonstrated that presentation of 3D objects generates neural responses in the dorsal 
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stream with shorter latencies as compared to the ventral stream (Srivastava et al., 2009). 

Similar event related potential (ERP) studies in humans have shown early responses in parietal 

regions (dorsal stream) within 120ms of 3D stimuli presentation followed by ventral activation 

at 380 ms (Sim et al., 2015). These findings undermine the possibility of dorsal object 

representations are a result of the cascade projections from the ventral stream, but instead a 

parallel process. 

Dorsal stream activity has been shown to contribute to the performance of object form 

perception. Lesion studies have shown patients with affected ventral stream retain some 

perceptual sensitivity to 3D structural object representation, as reflected by similar behavioural 

sensitivity as healthy controls. This finding was paired with blood-oxygen level-dependent 

(BOLD) responses in the dorsal stream in the absence of a ventral response in the patient group 

(Freud et al., 2015). Moreover, residual sensitivity to structural information was found in a 

patient with extensive bilateral ventral lesions who was perceptually impaired (James, 2003). 

Additionally, the fMRI profile of patient DF, a patient with extensive ventral damage, reveals 

dorsal object-selectivity in response to natural objects compared with scrambled versions of 

object (James, 2003). These findings suggest that a dorsal stream representation of objects can 

contribute to behavioural performance in object form perception, in the absence of an intact 

ventral stream. 

 

Similar effect has also been demonstrated by dorsal lesion studies that tested 

performance of global form perception, in both humans and primates (Lestou et al., 2014; 

Gillebert et al., 2015; Murphy et al., 2016). Patients with posterior parietal lesions exhibit 

reduced sensitivity towards 3D objects that were defined by monocular cues (ventral process) 

(Valna, 1989). Furthermore, deactivation of the dorsal areas led to perceptual impairments 

related to 3D binocular disparity perception, as well as decreased ventral inferotemporal 

activation (Van Dromme, et al., 2016). These studies provide insight about the contributions of 

the dorsal stream to object perception, with a particular significance in the perception of 3D 

structure under binocular and monocular conditions. 



21 
 

To summarize, both visual processing streams can contribute to object form perception. 

The ventral stream has an established functional role in object perception and recognition 

while the dorsal stream is also involved, in addition to its established role in spatial and 

visuomotor control. This is supported by ventral lesion studies where dorsal stream activation 

has been linked to the retention of perceptual sensitivity to object features. Direct and indirect 

neural connections between the two streams further highlight an interaction. Object form 

perception appears to be a complex process, such that more research is required to establish 

insight into the functional role of the interaction between the two visual streams on 

behavioural performance. 

 

1.4.3 Link between object form perception and reach to grasp  

Visually guided reach to grasp involves both streams of visual processing, but relies 

more on the dorsal stream (Goodale and Milner, 1992; Culham et al., 2003). However, object 

form perception in the ventral stream works in conjunction to benefit reach to grasp 

performance. Although lesion studies provide evidence for separate pathways, there are 

interactions between the two streams (Wang et al., 1999; Goodale and Milner, 1992; Cloutman, 

2012; Zacharious, Klatzky, and Behrmann, 2013). As previously discussed, fMRI studies have 

shown the grasping component to elicit higher activations in the anterior intraparietal cortex 

(AIP) than reaching (Culham et al., 2003). As grasping relies heavily on visual processing of 

object features, the increase in AIP activation suggests that it has a role in object form 

computations required for pre-shaping of the hand. When depth information from pictorial 

cues becomes more important during monocular viewing, ventral stream area LO activation 

was found to be coupled with dorsal area AIP and ventral premotor area (PMv) (Verhagen et 

al., 2008). This suggests a ventral contribution to the dorsal stream in movement planning and 

execution, when reach to grasp relies on pictorial information. Theses results support the 

notion that computation of object properties for grasping occurs in both ventral and dorsal 

stream  

Although the dorsal stream is able to process and execute relatively simple visuomotor 

tasks independently, as demonstrated by lesion studies, the integration of the ventral stream is 
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required for completing more complex behavioural responses (Creem and Proffitt, 2001). 

Experimental scenarios are often limited to simple reach to grasp tasks towards standardized 

objects and therefore, elicit a greater dorsal stream response due to the lack of semantic 

demand. For reach to grasp tasks toward objects of meaning (tools, valuable, etc), dorsal 

stream provides information regarding object location and orientation in relation to the 

performer, while the ventral stream processes information related object recognition and 

semantics (Cloutman, 2012). Ultimately, the interaction between both streams of processing 

allows the object to be picked up and used more efficiently. The interaction between the two 

streams during movement execution is highlighted in a study that overloaded the ventral 

semantic or dorsal visuospatial system alternately and assessed reach to grasp performance 

towards familiar tools (Creem and Proffitt, 2001). Tools such as toothbrush, hammer, and forks 

were presented with the handles away from the performer. When neither stream was 

overloaded, performers were able to accurately grasp and pick up the tools in a congruent 

manner to which they are typically used, despite assuming an awkward positioning of the hand: 

a phenomenon coined end state comfort. When the ventral stream was overloaded with a 

concurrent semantic task, performers were still able to accurately grasp the objects, but not in 

a manner appropriate for their use. This suggests the interaction of the ventral and dorsal 

stream to not only accurately grasp the object (dorsal visuospatial), but also consider semantics 

(ventral recognition) to optimize performance after the grasp. According to this logic, more 

complex reach to grasp tasks whereby a goal exists following reaching and grasping the object 

will rely on both, the dorsal and ventral streams.  

The interaction between the two visual processing streams can also be studied by looking 

at relative improvements in perceptual and reach to grasp task performance. In other words, 

does greater performance in object form perception, a function of the ventral stream, lead to 

improved reach to grasp performance, a function of the dorsal stream? Although this effect has 

not been studied directly, separate studies in perception and reach to grasp under 

binocular/monocular viewing conditions may provide some insight (Loftus, Servos, and 

Goodale, 2004; Jackson et al, 2010; Keefe, Hibbard, an Watt, 2010). Reach to grasp 

performance is more accurate and precise under binocular conditions. Similarly, perceptual 
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object recognition tasks also are improved under binocular viewing as compared with 

monocular.  This highlights a gap in literature and warrants further inquiry to directly study the 

association between perception and action.  

 

1.5 Gap in Literature and Rationale for Research 

Vision has an important role in the planning and controlling of reach to grasp 

movements. It has been established that reach to grasp performance is influenced by the 

quality of visual input in both the planning and online control stage. More specifically, binocular 

viewing elicits less variability, faster speeds, and greater accuracy in reach to grasp 

performance. Separate research has examined the visual system’s sensitivity to perceiving 

object form and found a binocular advantage (Steeves et al., 2003). It is possible that the 

improved performance of reach to grasp under binocular vision is linked to the enhanced ability 

to perceive object features. Previously discussed evidence of the interaction between the 

perceptual ventral and action oriented dorsal streams provides further support that a 

perceptual-kinematic relationship is possible. Manipulation of viewing condition has been 

shown to elicit a reliable and significant binocular advantage in both perceptual and reach to 

grasp tasks. Therefore, the manipulation of viewing condition allows the assessment of the 

relationship between improvements in object shape perception and reach to grasp 

performance during binocular viewing. The findings of this association would further probe the 

ventral-dorsal interaction and potentially demonstrate a relationship between perception and 

action. This research study will implement a two-part experiment whereby part one will assess 

the binocular advantage in object form perception, and part two will assess that of the reach to 

grasp task.  

 

1.6 Research Objective 

The main objective of the proposed research is to assess the association between the 

enhancements in observer’s perceptual sensitivity to object form and reach to grasp 

performance. 
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1.7 Research Question 

Is enhanced sensitivity (i.e., lower perceptual threshold and JND) to object form 

perception during binocular viewing positively associated with enhanced kinematic 

performance of a precision reach to grasp task?  

 

1.8 Hypothesis 

Binocular advantage in object form perception (demonstrated by lower threshold and JND) 

will be positively associated with binocular advantage in reach to grasp performance, as 

demonstrated by the following kinematic outcome measures:  

1) Maximum grasp aperture 2) Time in deceleration 3) Time in grasping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

2.0 Investigating the Association Between Enhancements in Perceptual Sensitivity to Object 

Form and Reach to Grasp Performance 

2.1 Methods 

2.1.1   Participants 

Thirty visually healthy participants (16 females, 14 males, mean age 21.3 SD= 2.3) were 

included in the study. Participants had 20/20 visual acuity and a stereoacuity of 40 seconds of 

arc or better. Hand dominance was self reported by the participant, all were right hand 

dominant. Eye dominance was assessed using the Miles test in which participants are asked to 

look at a small object 5 meters away. Twenty-six participants were right eye dominant and 4 

were left eye dominant. The study’s protocol was approved by the University of Waterloo 

Research Ethics Committee. Participants signed a written consent prior to participating.  

2.1.2    Experimental design   

This study consisted of two sections: two psychophysical tests to measure sensitivity to 

object form perception, and a reach to grasp task to measure movement kinematics. Each test 

was performed under binocular and monocular viewing conditions. Monocular viewing 

conditions were implemented by covering the non-dominant eye with a translucent eye patch. 

A translucent material was selected over an opaque one to minimize binocular rivalry effects. 

Binocular rivalry can affect perceptual performance that involves identifying small changes to 

target objects/shapes, especially given the short duration of stimulus presentation in the 

psychophysical approach (Steeves et al., 2004).  

During the initial assessment portion of the study, visual acuity was measured using 

Bailey’s vision chart. Stereoacuity was measured using a “Stereogram” App on the Apple I-pod 

Touch. This App requires participants to wear red-cyan 3D glasses to identify which of two 

circles (consisting of random dots) that appear to be protruding from the screen. Using a 

staircase protocol, a perceptual threshold in terms of seconds of arc was determined. An 

additional standard clinical test was also used to measure stereoacuity (Preschool Randot 

Stereo Test). A brief questionnaire consisting of standard demographic questions (age, sex, 
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hand dominance), brief health history (visual/ physical/ neurological impairments) was also 

administered.  

Following the assessment, participants performed the psychophysical tests. A method of 

constant stimulus (MOCS) protocol was used to determine the thresholds and just noticeable 

difference (JND) for two perceptual tasks: radial frequency (RF) and motion defined form 

(MDF). The kinematics section of the study was implemented next whereby participants 

performed a reach to grasp task in various experimental conditions (described in the next 

section). All tasks were performed binocularly and monocularly with the dominant eye. Figure 

A1 in the appendix outlines the entire experimental design. These tasks were performed in this 

order for all participants, while the order of viewing condition for each task was randomized.  

2.1.3    Materials and procedures 

Psychophysical tests to assess sensitivity to object form  

All psychophysical measurements were completed using the VPixx system. Stimuli were 

presented on the 27” VPixx monitor with resolution of 1920x1080p and refresh rate of 120 Hz. 

A chin rest was used to ensure that stimuli were presented at eye level. The viewing distance 

was 90cm and 250cm for the RF and MDF stimuli, respectively. For monocular viewing 

conditions, the non-dominant eye was covered using a clear filter eye patch that allows input of 

light, but not form.  

A staircase method and a method of constant stimuli were the two psychophysical tests 

used to asses the accuracy and precision of perceptual judgements using two tasks: 1) RF, and 

2) MDF. Each task was first performed using the staircase method to find the approximate 

perceptual threshold. Then, a method of constant stimuli (MOCS) was used with test values of 

stimulus intensity centered around the threshold obtained from the method of limits. 

Radial Frequency Stimulus 

 As illustrated in Figure 3, every trial began with a fixation on a crosshair (0.5 x 0.5⁰), 

which was presented for 0.3 seconds, and followed by the RF stimulus (radius of 0.5⁰) 

presented for 0.158 seconds. Using a two-alternative forced choice paradigm, participants were 
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instructed to identify if the presented stimulus is a perfect circle. Participants selected between 

two possible responses (yes/no) by pressing keys on the keyboard. The same stimulus and 

sequence were used for both staircase and MOCS protocols. 

 
Figure 3. RF stimulus presentation 

 

The properties of the RF stimulus are summarized in Table 1. The parameters remained 

constant between trials except for the amplitude (experimental manipulation) and phase.  A 

phase manipulation involves rotating the RF shape about a certain angle, which was done to 

reduce learning effects from viewing similar shapes across 240 trials.   

Table 1. RF properties 

Property Value 

Frequency 5 

Amplitude Manipulated 

Phase 0, 30, 60, 90⁰ 

Radius 0.5⁰ 

Band sigma 0.056 

 

Motion Defined Form Stimulus  

The sequence of stimulus presentation is outlined in figure 4. Upon pressing the space 

key on a keyboard to initiate the trial, a fixation crosshair (0.5⁰X0.5⁰) was presented for 0.150 s 

followed by the MDF stimulus for 0.642 s. The object was a vertical or horizontal rectangle (size 

1⁰x 2⁰ of visual angle). The object form was defined using a contrast of motion between the 
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dots in the background and foreground. Both vertical and horizontal rectangles were presented 

randomly, such that half of the total trials consisted of each.  

 
Figure 4. MDF stimulus presentation 
 

Specific to the MDF stimulus is the change in the instructions between the staircase and 

MOCS protocols. In the staircase protocol participants were asked to respond whether or not 

they perceived a vertical rectangle. In the MDF protocol, participants were asked if they 

perceived a horizontal or vertical rectangle. There is a possibility that the change in the 

instructions for perceptual task may alter the perceptual threshold. This is especially true if 

there is a difference in the threshold between perceiving vertical and horizontal rectangles. As 

previous studies have not specifically looked into in this, a brief pilot study consisting of 3 

participants was implemented. The findings suggest that the mean threshold (i.e. % dot 

coherence) for perceiving vertical rectangles was comparable to that of horizontal rectangle. 

The difference in instructions was implemented to maintain the up/down single presentation 

design of the staircase protocol. The following table 2 highlights the properties of the MDF 

stimulus. 

Table 2. MDF properties 

Properties Values 
Dot density 170 dots/⁰ 

Dot coherence Manipulated (%) 

Size of dots 0.022⁰ diameter 

Background dot velocity +/- 0.1⁰/s 

Foreground dot velocity  -/+ 0.1⁰/s (opposing background 
direction) 

Orientation of Form Vertical (2⁰x1⁰) & Horizontal (1⁰x2⁰) 

Dot life time 77 frames 
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Staircase Protocol for RF and MDF 

An identical up/down single presentation staircase test was used to approximate the 

mean threshold for both RF and MDF stimuli. For this protocol, a single stimulus was presented 

and participants made a yes/no perceptual judgement by pressing one of two keys on a 

keyboard. With every 2 correct responses, the manipulated variable or stimulus intensity 

decreased eliciting a more difficult perceptual judgement in the following trial. After a single 

incorrect response, the stimulus intensity increased which elicits an easier perceptual 

judgement. The maximum value of amplitude for the RF stimulus was set to a value of 0.05 (5% 

of the radius). At this value, RF shapes are easily perceivable under both viewing conditions.  

The maximum value of coherence for the MDF stimulus was set to 100%. The step sizes for 

changing stimulus intensity were set to 0.1 in a logarithmic scale for both RF and MDF staircase 

protocols. The staircase protocol was terminated either after 6 reversals or the completion of 

100 trials. The mean threshold was defined as the average stimulus intensity from the final 4 

reversals. The data from the staircase were visually inspected following each test to ensure the 

quality of the staircase psychometric curve. 

 
Figure 5. Typical data from staircase protocol with threshold (line) and reversals (arrows) highlighted 

 

MOCS Protocol for RF and MDF  

The mean threshold value from the staircase protocol was used to estimate the 

perceptual threshold of the observer to changes in amplitude (RF) and motion coherence 

(MDF). A more accurate measurement of this threshold can be obtained using a method of 

constant stimulus. As such, the threshold from the staircase was taken as a middle stimulus 
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intensity for the subsequent 2AFC MOCS protocol. The 4 other stimulus intensities during the 

MOCS protocol were determined based on the standard deviation (SD), such that the stimulus 

intensities were +/- 0.5 and +/-1 SD. Figure A2 in the appendix outlines the sampling scheme 

that were implemented for the MOCS protocol. The red dot indicates the threshold value from 

the staircase protocol and the blue dots represent the calculated test values. The location of 

the estimated threshold as well as JND are highlighted.  

The MOCS protocol for both RF and MDF stimuli consisted of 5 test values where each 

was presented 48 times in a fully randomized method for a total 240 trials. It has been shown 

that a total trial of 240 provides a reliable estimate of thresholds and slopes for this sampling 

scheme where test values are concentrated about the threshold (Wichmann and Hill, 2001). A 

logistic function was used to fit the psychometric curve. The fit of the curve was analyzed with 

the Chi-Square Goodness of Fit test. The threshold was defined as the stimulus intensity at 

which 75% of responses were correct. The precision of the perceptual measurement is assessed 

by the just noticeable difference (JND), which is the minimal perceivable change in intensity of 

the participant. This value will be taken as the difference in stimulus intensity between the 

threshold and at the 50% correct point (25% away from the threshold). The 50% correct point 

represents an approximate chance perception, or a guess, while the threshold represents the 

minimal perceivable stimulus intensity. The difference between these two values provides a 

measure of the smallest perceivable change in stimulus intensity that can be reliably 

detected/discriminated. Both the threshold and JND value together provide a description of the 

overall perceptual accuracy and precision of the participant.  

Reach to Grasp Experimental Design 

Participants were instrumented with two small infrared markers placed on the index 

finger and thumb of the dominant hand. The Optotrak system was calibrated using a 

standardized calibration probe to define the coordinate system as follows: x-axis (azimuth), y-

axis (elevation), z-axis (depth). Participants performed a reach to grasp while upper limb 

kinematics were recorded using the Optotrak system at a sampling frequency of 500 Hz.  
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Figure 6. Optorak Camera (Left) and Marker placement (right)  
 

 Reach to Grasp Task Procedure  

Participants performed one practice trial for each of the 9 reaching conditions, prior to 

the beginning the experimental trials. This practice was included to familiarize participants to 

the task. Objects included in this study were cylinders with a fixed height of 3 cm and a 

diameter of 0.5 cm, 1 cm, and 1.5 cm. Objects were placed at the participant’s midline at 3 

different distances in depth: 40cm, 42cm, and 44cm. Three reaching distances and object sizes 

were implemented to control for the learning effects that come with repetition of the same 

movement. Each of the 9 reaching conditions (3 x 3 experimental design) was repeated 10 

times per viewing condition for a total of 180 trials. The order of viewing conditions was 

randomized among participants.  

Participants were seated with their head supported by a chin rest when performing the 

task. Participants began the trial with their eyes closed, and their index and thumb at a 

standardized start position located 10 cm directly in front of the participants. The cylinder was 

placed on a curved surface to increase the demand for accuracy and precision. A verbal cue was 

used as a go signal, and participants were asked to open their eyes and complete the reach to 

grasp task (i.e. grasp the cylinder and transport it to a different location on a platform located 

closer to the body (Figure 7) as fast as possible while maintaining accuracy. Specifically, after 

grasping, the object was transported and placed into 1 of 3 stencils that outlined the 

circumference of the shape. Figure A3 in the appendix outlines the components of this reach to 

grasp task. 
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In addition to the 90 trials per viewing conditions, 27 “scaling trials” were included. 

These 27 trials consisted of 3 trials under each reaching condition (3 x 9). During these scaling 

trials, participants scaled/matched their grasp aperture to the width of the target object. 

Participants were given the instruction to fixate on the object and not their hand. Adjustments 

to the grasp aperture were allowed during the 4 seconds of motion tracking. These scaling trials 

were implemented as a proxy measure of direct sensori-motor transformation of shape 

perception in absence of reach to grasp movement. This proxy measure will provide a 

perceptual-kinematic baseline such that inferences can be made on how introducing a reach to 

grasp movement influence this relationship.  With these scaling trials, a total of 234 trials were 

initally recorded and analyzed using motion tracking during this section of the experiment. 

 

Experimental Setup 

  

Figure 7. Experimental set up of reach to grasp task  
 
Data reduction 

Trials were excluded and repeated when the target object was dropped at any time 

during the reach to grasp task. In addition, the visibility of the infrared markers for both 

markers were required to be 100% throughout the reach and grasp portion of the entire task. 

Data were collected as raw marker position from the calibrated origin. A low pass second order 

Butterworth filter with a cut-off frequency of 10 Hz was used to process the raw data. All trials 
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were screened visually for missing data and artefacts. Kinematic calculations such as velocity 

and maximum grasp aperture were obtained using a custom Matlab script. 

Scaling Grasp Aperture (SGA) 

Scaling grasp aperture was recorded in place of maximum grasp aperture during “scaling 

trials”, and was taken as the average of 3 average grasp aperture values between 1200-1300 

ms, 1400-1500ms, and 1700-1800ms intervals. Averages of three time intervals in the 

movement were taken due to the continuous adjustments made on grasp apertures by the 

participants throughout the 4 seconds of motion tracking. Participants predominantly 

employed one of two strategies for scaling grasp aperture. One was to begin with a larger 

aperture to which adjustments are made to decrease its size, and the other was to begin with a 

smaller aperture followed by adjustments to increase its size. All scaling trials were visually 

analyzed to ensure that the intervals reflected a stable scaling grasp aperture, one that is at the 

end of major adjustments. Although there was no official quantitative criterion for a stable 

scaling grasp aperture, the standard deviation within this interval will be reported in the 

analysis to provide insight on the degree of adjustments.  

Maximum Grasp Aperture (MGA) 

Grasp aperture was calculated as the difference of the vector between the finger and 

thumb marker. During reach to grasp trials, the MGA was determined to be the maximal peak 

in grip aperture prior to contact with the object during the reach component of the task. This 

measure has been shown in previous studies to be modulated by viewing condition, such that 

monocular viewing elicits a greater MGA (Servos, Goodale, and Jakobson, 1991; Jackson et al., 

1997; Jackson et al., 2010).  

Time in Deceleration (TID) 

 Time spent in deceleration was calculated as the time between maximum reach velocity 

and end of the approach phase. The end of the approach phase is typically defined as a velocity 

<100 mm/s towards the object. This criterion has been used in previous literature as a proxy 

measure of the end of the reach movement (Gnanaseelan, Gonzalez, and Niechwiej-Szwedo, 
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2014; Elliot et al., 2006; Glazebrook et al., 2009). Data from the finger was used for this 

calculation.  

Time in Grasping (TIG) 

 Time spent in grasping was calculated as the time between the end of approach (as 

defined previously) and the beginning of the object transport phase defined as a velocity of 20 

mm/s in the opposite direction (Gnanaseelan, Gonzalez, and Niechwiej-Szwedo, 2014). Without 

the use of a force transducer on the object, grasping time was estimated as the time in 

between approach to the object and its subsequent transport. Data from the thumb, instead of 

the finger were used for this 20 mm/s threshold. While grasping, the finger travels beyond 

object and then returns in the opposite direction to make contact. This returning movement is 

in the same direction as object transport and, at times, surpasses the 20 mm/s threshold. This 

causes the determination of the beginning of object transport to be inaccurately early (prior to 

even making contact with the object). Using thumb data alleviates this issue as the thumb 

moves towards the object without any returning movement during grasping. 

2.2 Results 

 The goal of this thesis was to assess the association between perceptual and motor 

performance. Viewing condition was manipulated to challenge the perceptual and motor 

systems, and to establish an association in response to the manipulation. It was hypothesized 

that greater sensitivity to shape perception (threshold and JND) during binocular viewing will be 

positively correlated with the binocular enhancement in reach to grasp performance, as 

reflected by the selected kinematic outcome measures (SGA, MGA, TID, TIG). The enhancement 

in the perceptual and reach to grasp tasks was quantified using a binocular advantage defined 

by the following formula: 

 Binocular Advantage = Monocular Measure / Binocular Measure 

A value greater than one suggests enhanced binocular performance, such that larger ratios 

suggest a larger binocular advantage.  
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The results are presented in two sections. The first section shows the results for the 

perceptual and reach to grasp measures, and highlights the binocular advantage obtained in 

each task separately. With the binocular advantage quantified for both tasks in the first section, 

the second section shows the correlation analysis between enhancements in the perceptual 

and reach to grasp tasks. The purpose of the second section is to assess the perceptual-action 

association, and to ultimately probe the possible interaction between the ventral and dorsal 

streams of visual processing.  

2.2.1    Binocular advantage in perceptual measures 

 This section presents the binocular advantage for the threshold and JND measures 

obtained from the RF and MDF tasks. Thresholds and JNDs were calculated from a 

psychometric function that was fit using a logistic regression. Pearson’s Chi2 test confirmed that 

the logistic model fit the data of all participants (30/30) in the RF task, and 25/30 participants in 

the MDF task. Three (out of five) excluded participants in the MDF task were due to insufficient 

responses in the psychophysical test (not being able to reach at least 75% correct in either 

viewing condition). The other two exclusions were due to insufficient goodness of fit. The 

individual psychometric functions, as well as results from the Chi2 analysis for both viewing 

conditions are included in appendices A4/A5 and A6/A7 for the RF and MDF task, respectively.  

Radial Frequency (RF) 

 The psychometric functions for binocular and monocular viewing for a single participant 

is demonstrated in figure 8. The rightward shift of the monocular function demonstrates a 

higher threshold, thereby lower sensitivity to object form. Four out of 30 participants did not 

demonstrate lower sensitivity during monocular viewing. Figure 9 demonstrates the 

psychometric functions of a participant that did not demonstrate this binocular advantage.  
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Figure 8. Psychometric functions of 
participant demonstrating binocular 
advantage for RF stimulus 

 

Figure 9. Psychometric functions of 
participant not demonstrating binocular 
advantage for RF stimulus 

 

 The mean perceptual threshold was 1.16% (SD= 0.35) and 1.34% (SD=0.44) for binocular 

and monocular viewing, respectively. The mean JND was 0.21% (SD=0.05) and 0.28% (SD=0.12) 

for binocular and monocular viewing conditions, respectively. For boxplots showing the RF 

threshold and JND measures within each viewing condition, refer to appendix A8. A one-way 

repeated measure ANOVA showed that the effect of viewing condition was significant such that 

a binocular advantage was demonstrated for both measures (threshold: F(1,29)= 21.22, 

p<0.001, JND: F(1,29)=10.9, p=0.0026). The calculated binocular advantage for the threshold 

and JND was 1.16 (SD= 0.21) and 1.39 (SD= 0.58) respectively. Figure 8 shows the binocular 

advantage for the RF threshold and JND, with the solid line indicating equal performance in 

both viewing conditions.  

 
Figure 10.  Boxplot outlining RF binocular advantage ratios for threshold and JND 
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Motion Defined Form (MDF) 

 The psychometric functions for binocular and monocular viewing for a single participant 

is demonstrated in figure 11. The rightward shift of the monocular function demonstrates a 

higher threshold, thereby lower sensitivity to object form. Seven out of 25 participants did not 

demonstrate lower sensitivity during monocular viewing. Figure 12 demonstrates the 

psychometric functions of a participant that did not demonstrate this binocular advantage. 

 

Figure 11. Psychometric functions of 
participant demonstrating binocular 
advantage for MDF stimulus 

 

Figure 12. Psychometric functions of 
participant not demonstrating binocular 
advantage for MDF stimulus 

 

 The mean thresholds for binocular and monocular viewing were 25% (SD=7.6) and 

32.1% (SD= 11.95) respectively. The mean JND were 19.5% (SD=7.4) and 22.7% (SD=12.24) for 

binocular and monocular conditions respectively. For boxplots showing MDF threshold and JND 

in each viewing condition, refer to appendix A8. A one-way repeated measures ANOVA showed 

that the effect of viewing condition was significant for both threshold and JND, such that a 

binocular advantage was demonstrated for both measures (threshold: F(1,24)=11.05, p=0.0026, 

JND: F(1,24) = 4.28, p=0.49). The threshold and JND binocular advantage ratio was 1.36 (SD= 

0.52) and 1.22 (SD=0.48), respectively. Figure 9 highlights the binocular advantage in terms of 

MDF threshold and JND, with the solid line indicating equal performance in both viewing 

conditions.  
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Figure 13. Boxplot outlining MDF binocular advantage ratios for threshold and JND 

2.2.2    Binocular advantage for kinematic measures 

Kinematic Data Reduction 

Data reduction included the removal of reach to grasp trials that were missing kinematic 

data during the reach to grasp movement. Through visual examination of the velocity profile, a 

total of 327 (6%) reach to grasp trials were removed due to missing data.  More specifically, a 

total of 91 binocular and 236 monocular trials were removed. The data from 29/30 participants 

were included in the following analysis as at least 75% of their trials were intact. Data from one 

participant was excluded as 48% of trials consisted of missing data.  A similar data reduction 

process was implemented for the scaling trials, whereby the scaling grasp aperture was 

measured. The dataset from one participant was excluded due to inconsistency of marker 

visibility during motion tracking. As such, data from 29/30 participants were analysed for the 

scaling trials. Additionally, 100% of the data from these participants were included as there was 

no missing trials. 

Normality of mean kinematic measures (scaling grasp aperture, max. grasp aperture, 

time in deceleration, and time in grasping) was evaluated using the Shapiro-Wilk test. The 

distributions were found to be normal for all measures during both viewing conditions. These 

mean measures were used to calculate the binocular advantage ratio. The distributions of these 

binocular advantage values were also found to be normal. Refer to appendices A9/A10 for the 
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normal plots (histogram and probability plot) of mean binocular and monocular kinematic 

measures and appendix A11 for the normal plots of the binocular advantage ratios. 

Sample of Kinematic Data 

 Displacement, velocity, and grasp aperture measures were plotted throughout the 

movement for the extraction of the kinematic outcome measures. Figure 14 demonstrates 

kinematic graphs for a typical reach to grasp trial in terms of displacement (depth axis), velocity 

(depth axis), and grasp aperture.   

 

Figure 14. Position, velocity, and grasp aperture graphs for a typical reach to grasp trial 

Scaling Grasp Aperture (SGA) 

 The scaling grasp aperture measure was calculated as the average across three 

consecutive 100ms intervals in the scaling trials (1200-1500ms). The grasp aperture was visually 

examined, per trial, to ensure that no significant adjustments were still being made in the span 

of these intervals. The mean standard deviation within the measured interval was 0.27mm 

(binocular: 0.29mm; monocular: 0.25mm). This value suggests that no major adjustments to the 

grasp aperture were made in the span of the 300 ms interval. The mean scaling grasp aperture 

were 43.3mm (SD=8.07) and 45.67mm (SD=8.55) for binocular and monocular conditions, 
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respectively. A one-way repeated measure ANOVA analysis showed that the effect of the 

viewing condition manipulation was significant on mean scaling grasp aperture (F (1,28=10.10, 

p=0.0037), such that a smaller grasp aperture was found during binocular viewing. A mean 

binocular advantage ratio of 1.06 (SD=0.09) was found for SGA.   

 Figure 15 demonstrates the distribution of SGA measures across trials of the scaling task 

during binocular and monocular viewing for a single participant. Figure 16 demonstrates the 

distribution of mean SGA measures for all participants between the two viewing condition.   

             Binocular                        Monocular 

 

Figure 15. Distribution of binocular and 
monocular SGA values for single participant 

 

 

Figure 16. Distribution of binocular and 
monocular mean SGA values for entire sample 

Overall Reach to Grasp Performance 

 A one-way repeated measures ANOVA analysis showed that reach to grasp movements 

were performed significantly slower during monocular viewing (F (1,28=102.94, p<0.0001). The 

mean duration of the reach to grasp movement was 876 ms (SD=138) and 1133 ms (SD=202) 

during binocular and monocular viewing respectively. Additionally, Chi2 analysis showed 

differences in the number of objects dropped during each viewing condition (X2= 174.78, df=29, 

p<0.0001). A mean of 0.41(SD=0.68) and 6.5 (SD=3.4) object drops were observed respectively. 

This suggests less effective performance during monocular viewing. Overall reach to grasp 

performance appears to be enhanced during binocular viewing, as demonstrated through 

movement duration and number of objects dropped.   
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Maximum Grasp Aperture (MGA)  

 A one-way repeated measures ANOVA analysis showed maximum grasp aperture to be 

smaller during binocular viewing (F (1,28)=204.75, p<0.001). The mean MGA was 71 mm 

(SD=9mm) and 88.4mm (SD=11.22mm) for binocular and monocular viewing, respectively. The 

binocular advantage was 1.25 (SD=0.10). The results from this study demonstrated that 

participants tend to employ a larger MGA when approaching an object during monocular 

viewing.  

 Figure 17 demonstrates the distribution of MGA across reach to grasp trials during 

binocular and monocular viewing for a single participant. Figure 18 demonstrates the 

distribution of mean MGA across all participants between the two viewing conditions. 

             Binocular                        Monocular 

 

Figure 17. Distribution of binocular and 
monocular MGA values for single 
participant 

 

 

Figure 18. Distribution of binocular and 
monocular mean MGA values for entire 
sample 

 

Time in Deceleration (TID) 

 A one-way repeated measures ANOVA analysis showed that time in deceleration was 

significantly longer during monocular viewing (F(1,28)=80.54, p<0.001). The TID was 331 ms 

(SD=61.4ms) and 405 ms (SD=68ms) during binocular and monocular viewing, respectively. This 

suggests that on average, participants spend approximately 74ms longer in deceleration when 

viewing monocularly. The mean binocular advantage for TID was 1.24 (SD=0.15).  
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 Figure 19 demonstrates the distribution of TID across reach to grasp trials during 

binocular and monocular viewing for a single participant. Figure 20 demonstrates the 

distribution of mean TID across all participants between the two viewing conditions. 

             Binocular                        Monocular 

 

Figure 19. Distribution of binocular and 
monocular TID values for single participant 

 

 

Figure 20. Distribution of binocular and 
monocular mean TID values for entire sample 

 

Time in Grasping (TIG) 

 A one-way repeated measures ANOVA analysis showed the effect of viewing condition 

to be significant, such that longer time in grasping was found during monocular viewing 

(F(1,28)= 86.31, p<0.0001). The mean TIG was 178 ms (SD=47.3ms) and 363.8 ms (SD=111.1ms) 

for binocular and monocular viewing, respectively. On average, participants spend 

approximately 186 ms longer in grasping phase during monocular viewing. The binocular 

advantage for TIG was 2.12 (SD=0.68).  

 Figure 21 demonstrates the distribution of TIG across reach to grasp trials during 

binocular and monocular viewing for a single participant. Figure 21 demonstrates the 

distribution of mean TIG across all participants between the two viewing conditions. 
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Kinematics – Summary 

 The 4 kinematic outcome measures (SGA, MGA, TID, and TIG) all demonstrated a 

binocular advantage. The mean binocular advantage for these measures is shown in Figure 23.  

 
Figure 23. Binocular advantage ratios of kinematic outcome measures 
  

Thus far in the analysis section, a binocular advantage has been demonstrated for both 

perceptual tasks (RF and MDF) and all 4 kinematic outcome measures in the reach to grasp task 

(SGA, MGA, TID, TIG). This demonstrates that the tasks and outcome measures used in this 

study were sensitive to the manipulation of the viewing condition. For boxplots highlighting the 

actual values of the kinematic measures during binocular and monocular viewing, refer to 

             Binocular                        Monocular 

 

Figure 21.  Distribution of binocular and 
monocular TIG values for single participant 

 

 

Figure 22.  Distribution of binocular and 
monocular mean TIG values for entire sample 
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appendix A12. The established binocular advantage ratios are important for answering the 

research question, “is enhanced sensitivity to object shape positively correlated with enhanced 

reach to grasp performance”. As binocular vision was shown to enhance performance on both 

tasks, the second section of the analysis will focus on the association of the enhancement in 

perceptual and reach to grasp task performance. 

2.2.3    Perceptual – kinematic correlation 

 This section presents the results from a correlation analysis between the binocular 

advantage found for the performance of the perceptual and kinematic tasks. As not all of the 

correlations are graphically presented, refer to A13 (RF) and A14 (MDF) in the appendices for 

plots of all perceptual-kinematic binocular advantage correlations. Additionally, the correlation 

between actual perceptual thresholds/JNDs with the kinematics measures within each viewing 

condition are reported in appendix A15 (RF) and A16 (MDF). 

Radial Frequency (RF) – Kinematic Outcome Measures (SGA, MGA, TID, TIG) 

Radial Frequency (RF) – Scaling Grasp Aperture (SGA) correlation  

A Pearson correlation demonstrated no significant correlation between the binocular 

advantage for RF threshold and scaling grasp aperture (r=-0.21, p=0.28). This suggests that 

enhancement in RF shape perception was not significantly associated with an enhancement in 

scaling grasp aperture. No significant association was detected between the RF JND and scaling 

grasp aperture (r=-0.07, p=0.72). As such, results show that perceptual precision of shape does 

not relate to the scaling grasp aperture.  

 

Radial Frequency (RF) – Maximum Grasp Aperture (MGA) Correlation 

The binocular advantage in terms of RF threshold was not significantly associated with 

maximum grasp aperture (r=-0.36, p=0.053). No significant association was detected between 

binocular advantages of RF JND and maximum grasp aperture (r=-0.26, p=0.17). As such, there 

appears to be no relationship between perceptual precision of object shape with maximum 
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grasp aperture. Figure 11 and 12 highlights the association between binocular advantage for RF 

shape perception and maximum grasp aperture in terms of threshold and JND.  

  

Figure 24. Association between RF Threshold 
and MGA binocular advantage ratio 

Figure 25. Association between RF JND and 
MGA binocular advantage ratio 

      

Radial Frequency (RF) – Time in Deceleration (TID) Correlation 

No significant correlation was found between the binocular advantages in RF accuracy 

and precision measures and time in deceleration of the reach to grasp. This finding was 

consistent for both RF threshold (r=0.06, p=0.76), and JND (r=0.22, p=0.25). This suggests that 

enhanced RF shape perception during binocular viewing is not associated with shorter time in 

deceleration during the reach to grasp task.  

 

Radial Frequency (RF) – Time in Grasping (TIG) Correlation 

 No significant correlation was found between the binocular advantages in RF shape 

perception and time in grasping. This finding was consistent for both RF threshold (r=0.001, 

p=0.99), and JND (r=0.02, p=0.92). The lack of relationships suggests the improvements in 

performance during binocular viewing are unrelated, such that the enhancement of RF shape 

perception does not influence the time in grasping of reach to grasp. Table 3 outlines a 

summary of the correlation coefficients between binocular advantages in RF performance with 

kinematic measures in reach to grasp. 
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Table 3. Pearson correlation coefficients of binocular advantage of RF- kinematic measures  

 RF Threshold RF JND 

SGA r=-0.21, p=0.28 r=-0.07, p=0.72 

MGA r=-0.36, p=0.053 r=-0.26, p=0.17 

TID r=0.06, p=0.76 r=0.22, p=0.25 

TIG r=0.001, p=0.99 r=0.02, p=0.92 

 

Motion Defined Form (MDF) – Kinematic Outcome Measures (SGA, MGA, TID, TIG) 

Motion Defined Form (MDF) – Scaling Grasp Aperture (SGA) Correlation 

 Pearson correlation analyses showed no association between the binocular advantages 

of MDF shape perception and scaling grasp aperture during scaling trials in terms of accuracy 

(r=-0.18, p=0.41) and precision (r=-0.37, p=0.07). The enhancement in object shape perception 

appears to be unrelated to the enhancements in scaling of the grasp aperture. Figure 13-14 

highlights this relationship for both the threshold and JND.  

 

 

Figure 26. Association between MDF 
Threshold and SGA binocular advantage ratio 

Figure 27. Association between MDF JND and 
SGA binocular advantage ratio 

 

Motion Defined Form (MDF) – Maximum Grasp Aperture (MGA) Correlation 

No significant association was found between binocular advantage of MDF shape 

perception and maximum grasp aperture. This finding was consistent for both MDF threshold 

(r=-0.003, p= 0.99), and JND (r=-0.1, p=0.63). The lack of relationship suggests that the 
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enhancement of MDF shape perception is unrelated to the enhancements of the maximum 

grasp aperture during reach to grasp. 

 

Motion Defined Form (MDF) – Time in Deceleration (TID) Correlation 

 Binocular advantages between MDF shape perception did not correlate with time in 

deceleration during reach to grasp in terms of both threshold (r=-0.12, p=0.57) and JND (r=-

0.06, p=0.77). This suggests that the enhancement in MDF shape perception is not significantly 

related to in the duration of the deceleration phase.  

 Motion Defined Form (MDF) – Time in Grasping (TIG) Correlation 

 No correlation was found between the binocular advantages of MDF shape perception 

and time in grasping. This finding was consistent for MDF threshold (r=0.17, p=0.42) and JND 

(r=0.14, p=0.50). The lack of relationships suggests that the enhancement MDF shape 

perception was not significantly related to more efficient grasping movement. Table 4 

summarizes the Pearson correlation coefficient found between binocular advantages in MDF 

threshold and JND with the reach to grasp kinematic measures. 

Table 4. Pearson correlation coefficients of binocular advantage of MDF- kinematic measures  

 MDF Threshold MDF JND 

SGA r=-0.18, p=0.41 r=-0.37, p=0.075 

MGA r=-0.003, p= 0.99 r=-0.1, p=0.63 

TID r=-0.12, p=0.57 r=-0.06, p=0.77 

TIG r=0.17, p=0.42 r=0.14, p=0.50 

 

2.3    Discussion 

 The objective of this study was to assess the association between enhancements in 

perceptual sensitivity to object form and the kinematic performance of a precision reach to 

grasp task. The data first demonstrated that binocular viewing was associated with enhanced 

performance in object shape perception (both RF and MDF stimulus), and reach to grasp 

kinematics. This finding is in line with previous research which found a binocular advantage 

during the performance of the RF task (Steeves et al., 2003), and the reach to grasp task (Servos 
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and Goodale, 1994; Jackson et al., 1997; Read et al., 2012). Previous literature has not explicitly 

tested the monocular performance in the MDF task, but it has been shown that performance is 

enhanced in healthy controls compared to observers with abnormal binocular vision (Hayward 

et al., 2010). The binocular advantage in perceptual and reach to grasp performance provided 

an opportunity for assessing the association of relative enhancements between the two tasks. 

This ultimately provided a probe into the interaction between the ventral and dorsal streams of 

visual processing.  

 The findings of this study provided no evidence for an association between the 

magnitude of the binocular advantage found in perceptual and kinematic measures. 

Specifically, this study demonstrates that enhanced perception of object form is not associated 

with enhancement in reach to grasp, as the hypotheses remained unsupported. Ultimately, the 

probe (viewing condition) used in this study was unable to show an interaction between the 

ventral and dorsal streams of visual processing. As such, the lack of relationship supports the 

notion that binocular advantage is found independently in the ventral perceptual and dorsal-

action pathways.  

2.3.1    Methodological considerations – perceptual and reach to grasp tasks  

 The hypotheses for this study were developed based on a theoretical framework that 

suggested enhancement of visual perception could be associated with improved reach to grasp 

performance. After all, numerous separate studies have found the quality and availability of 

visual input to influence perceptual judgements and reach to grasp performance. However, 

previous literature did not examine the correlation of performance among the perceptual tasks 

and the reach to grasp task. The perceptual stimuli used in this study, radial frequency (RF) and 

motion defined form (MDF), were selected because they rely on different neural substrates, 

and involve different mechanisms that lead to a binocular advantage. Therefore, using these 

perceptual tasks could have provided some insight about the mechanisms underlying the 

binocular advantage. 

The RF and MDF stimuli have both been used to elucidate the mechanisms involved in 

object shape perception; however, they differ in the level of neural processing involved. The RF 
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stimulus has been shown to elicit neural responses in extrastriate areas V2d, V3d, V3AB, V4 and 

the intraparietal sulcus area IPS0 (Salmela, Henriksson, Vanni, 2016). The activation of area LO 

was also found; however, its activation was not specific to the RF stimulus. Additionally, the 

modulation of RF shape amplitude did not affect responses in the higher areas involved in 

visual processing (IPS0 and LO) (Salmela, Henriksson, Vanni, 2016). Given these results, early 

and mid-level visual areas are the neural correlates of RF shape perception.  

With regards to the mechanism that is involved in eliciting the binocular advantage, 

binocular neurons are found in these early-mid areas (V1, V2, V4, MT), as well as the higher 

processing areas (MST/IPS/IT) in both ventral and dorsal streams (Steinman and Garzia, 2000). 

It has been proposed that binocular summation is the main mechanism underlying the 

enhancement of perceptual sensitivity for the RF task (Steeves et al., 2003). Binocular 

summation refers to the combination of inputs from the two eyes which strengthens the neural 

signals and the probability of detection, while reducing background noise (Campbell and Green, 

1965).  

The performance of the MDF task has been shown to require both ventral and dorsal 

pathways (Regan et al., 1992). Neuroanatomical findings show an interconnected network, 

including areas V1-V4-IT and V1-MT-MST/7a, activated during discrimination of complex MDF 

shapes. In addition, patients with damage in either ventral or dorsal stream structures had 

reduced sensitivity to MDF stimuli (Regan et al., 1992). The processing of MDF stimulus occurs 

at higher levels of processing, whereby visual cues such as object form and motion detection 

converge (Regan et al., 1992). The processing of MDF involves a hierarchal process, beginning 

with 1) direction-specific detection of local motion 2) detection of form defined by equal and 

opposite speeds 3) spatial discrimination and recognition of MDF (Braddick et al., 1978; Regan, 

1982; Regan and Beverly, 1983). For the perception of a simple MDF stimulus (i.e., a single bar), 

neurons in MT have shown to be largely activated, providing a physiological basis for the 

detection of MDF (Tanaka et al., 1986). For complex shapes (alphabet letters), increased 

activation of area TE was detected, suggesting that the ventral stream contributes to the 

recognition of MDF (Van Essen et al., 1990).  
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Whereas the binocular advantage found for the RF stimulus was mainly attributed to 

binocular summation, the binocular advantage in MDF perception additionally relies on 

binocular disparity. The activated dorsal structures (V3A, V7, MT) during MDF perception have 

neurons whose responses are modulated by binocular disparity.  When comparing the response 

to disparity of the ventral stream, dorsal stream, and early visual areas, it was found that the 

activity of dorsal structures (V3A, V7, MT) was significantly greater (Minini, Parker, Bridge, 

2010). Additionally, the responses in V7, MT, dorsal intraparietal sulcus anterior (DIPSA) and 

medial (DIPSM) increase with the degree of disparity (up to 0.7⁰) (Minini, Parker, Bridge, 2010). 

Furthermore, all neurons in area MT are binocular and contributes to the integration of motion 

and disparity signals (Bradley, Qian, and Anderson,1995). The lack of binocular disparity input 

during development is associated with reduced sensitivity to motion in MT neurons 

(Ungerleider and Mishkin, 1979; Tyschen and Lisberger, 1986). To summarize, binocular 

disparity contributes to the binocular advantage found for the MDF task. 

Given the objective of this research was to probe the interaction between ventral and 

dorsal streams, the reach to grasp task was used in this experiment to probe dorsal 

performance. The contributions of the ventral and dorsal streams to the reach to grasp task is 

currently a topic of debate, mainly between two models: the perception-action model 

suggesting the movement to be strictly a dorsal task, and the planning/control model that 

suggest ventral involvement during action planning. Despite the differences, both models agree 

that late movement control, such as target-limb control and grasping depend on processing in 

the dorsal stream. Target-limb control during reach has been shown to specifically activate the 

superior parietal occipital cortex (SPOC), while the grasp component was controlled by the 

anterior parietal sulcus (AIP); both of which are dorsal structures (Culham et al., 2003; Filimon 

et al., 2009). Evidence of ventral contribution to the early phases of the reach to grasp task was 

demonstrated by a study which found that the Ebbinghaus illusion influenced grasp formation. 

The maximum effect of the illusion was found to be approximately at 40% of the movement, 

with decreasing effect as the movement progressed (Glover and Dixon, 2002). As the ventral 

perceptual stream was also shown to be sensitive to this illusion, it was suggested that the 

ventral stream of processing is involved in grasp formation in the early part of the movement 
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(proxy measure of planning). Therefore, the current study was designed to test the hypothesis 

that an enhanced perceptual sensitivity to object form would be associated with enhanced 

grasp formation in a reach to grasp task. The results showed a significant binocular advantage 

for both the perceptual and reach to grasp kinematic measures; however, the main hypotheses 

were not supported. Therefore, the lack of association suggests that binocular cues influence 

each of the pathways separately, supporting independence between the ventral and dorsal 

streams in this context.   

2.3.2    Binocular advantage as a probe for ventral-dorsal interaction 

The enhancements were generated by manipulation of viewing condition, such that a 

binocular advantage was demonstrated for all tasks and measures.  This binocular advantage 

was quantified as a ratio between the monocular and binocular conditions; therefore, the ratio 

provides information regarding the relative difference in performances between viewing 

conditions. Using the binocular advantage ratio as a measure of enhancement has many 

strengths. Firstly, it takes into account the performance under both viewing conditions using a 

single measure. This is essential, given the research question involves the association between 

the relative changes in performance during monocular and binocular viewing. Secondly, the 

ratio controls for individual variability between viewing conditions. Effects such as lapse in 

attention and learning/familiarization have a smaller influence on a ratio measure as compared 

to actual measures. Lastly, the ratio is not influenced by the various reach to grasp conditions (3 

object size x object distance, no interaction) included in the experiment to increase difficulty 

and randomization. These manipulations were introduced to increase the difficulty of the task, 

but they were not the goal of this investigation. Finally, the binocular advantage ratio has been 

used extensively in previous perceptual studies to describe enhanced binocular performance, 

under the term binocular summation ratio. (Blake and Fox, 1972; Cogan, Silverman, and 

Sekuler, 1928; Wakayam et al., 2011). For example, visual acuity has been found to have a 

binocular summation ratio of 1.18 in a young visually healthy population (Gagnon and Kline, 

2003), and the binocular summation ratio for contrast sensitivity ranges between 1.3 – 2.7 

depending on stimulus presentation parameters (Cogan, Silverman, and Sekuluer, 1982; 

Gagnon and Kline, 2003). To summarize, the ratio takes into account the relative enhancements 
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in perceptual and reach to grasp performance, and is a suitable measure for probing the 

ventral-dorsal interaction using the manipulation of viewing condition. 

Using binocular advantage, however, does not provide information regarding how the 

difference in performance came to be. For example, a large ratio could be a result of 1) 

substantially better binocular performance with normal monocular performance or 2) normal 

binocular performance with substantially worse monocular performance. This would be a 

limitation if the aim of this study was to assess the contribution of binocular vision to the 

perceptual-kinematic relationship; however, this is not the case. Instead, this study uses 

viewing condition as a manipulation, and assess the correlation between the degree of 

improvement. As such, the magnitude of enhancement in perceptual and kinematic 

performance between viewing condition is significant, and not the relationship between actual 

measures within each viewing condition.  

Although the findings of this study focused only on the correlation between the 

perceptual and kinematic binocular advantage, correlations of the actual measures within each 

viewing condition were also analyzed to supplement these findings. In addition to the previous 

listed strengths of using a binocular advantage, there are several drawbacks of correlating 

actual measures within each viewing condition. Firstly, the correlations between actual 

measures would be isolated within each viewing condition, and unable to capture the relative 

enhancements from the manipulation across the perceptual and kinematic tasks. As the 

objective of this study was to probe the interaction between ventral-dorsal streams, binocular 

advantage was selected as the main outcome measure. Additionally, the association of actual 

perceptual and kinematic measures within each viewing condition would involve 32 

correlations. The number of correlations can lead to increased familywise error rate due to a 

multiple comparison problem, causing false positive results. Using the binocular advantage as 

the main outcome reduced the number of correlations in half, decreasing the probability of a 

familywise error rate. Given the reasons above, binocular advantage was selected as the main 

measure to evaluate the degree of association between ventral-perceptual and dorsal-action 

tasks. 
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2.3.3    Behavioural explanations for findings 

Greater sensitivity to object form does not appear to enhance reach to grasp 

performance in terms of grasp aperture, or the time spent in reach deceleration and grasping. 

This supports the notion of limited ventral contribution in motor control of a reach to grasp 

task. The lack of relationship found in this study supports the perception-action model outlined 

by Goodale and Milner, which proposes separate visual pathways for object perception and 

movement control. Different neural computations are required for perception and action. For 

example, vision for action requires the computation of intrinsic and extrinsic properties of the 

object with respect to the intended hand that will be used to execute the reach to grasp 

movement. Specifically, the dorsal stream computes absolute size and shape of objects as well 

as its egocentric location for movement planning and execution (Thaler and Goodale, 2010). In 

contrast, visual information about objects for perceptual tasks is computed in a different way.  

Specifically, the ventral stream encodes size, orientation, and location of objects relative to 

each other using a scene-based frame of reference. This provides a perceptual representation 

irrespective of viewpoint that maintains size, shape, and location constancies over time and in 

various viewing conditions. To summarize, the dissociation between ventral and dorsal streams 

may lie within the difference in computations required for the perceptual and action tasks. 

 In addition to the differences in the type of computations required for perception and 

action, the method by which information is encoded is also different. Perception of object 

shape is done in a holistic manner such that individual dimensions cannot be isolated from 

other dimensions of the object (Ganel and Goodale, 2003). For example, perceptual judgement 

of object width is affected by its length dimension (Ganel and Goddale, 2003). Conversely, 

vision for action did not show this tendency as grasping was unaffected by non-relevant 

dimensions, such as length (Ganel and Goodale, 2003). It has been suggested that visual 

information processed in the dorsal stream contains only the relevant dimensions for the goal 

of the movement. As such, the perception in RF and MDF tasks involved the global features of 

the stimuli, whereas only the relevant feature of the target object (width) were encoded during 

the reach to grasp task. This dissociation between the features processed in the perceptual and 

action task may explain the lack of relationship between the binocular advantages. 
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With ample evidence supporting the idea of two separate visual systems, there is also 

research that argues against it, with one of the most notable being the planning/control model 

(Glover, 2004). As the perceptual and kinematic tasks in this study were designed to assess 

ventral-dorsal interaction, this model is important in supporting the rationale for the study. The 

planning/control model suggests that action tasks involve multiple stages of processing, 

beginning with purely perceptual to more dorsal visuomotor control as the movement 

develops. In this line of thought, ventral contribution would be found early in the movement 

(planning), and not late stages (movement control). Time in deceleration (TID) is used in this 

study as a proxy measure for the performance of limb-target control occurring late in the 

movement (Elliot et al., 2010) and time in grasping (TIG) probes the control of the grasping 

phase. Both of these measures occur later in the movement and reflect the quality of visually 

guided movement control. As such, the planning/control model would also suggest time in 

deceleration and grasping measures to be a function of the dorsal stream. This further provides 

reason why enhanced object form perception did not correlate with enhanced movement 

control (TID and TIG). Binocular advantages of reach to grasp planning measures, maximum 

grasp aperture (MGA) and scaling grasp aperture (SGA), also did not significantly correlate with 

perceptual binocular advantage, despite the planning/control model suggesting a ventral 

contribution.  

2.3.4 Neurological/physiological explanation of findings 

The lack of relationship between the perceptual and kinematic measures can be further 

explained by considering findings from neuroimaging studies. Beginning with the ventral 

stream, lateral occipital area (LO) within the ventrolateral part of the occipital cortex has been 

identified to be selectively responsive to different categories of visual stimuli (Grill-Spector et 

al., 1998). These categories include shapes that are defined by differences in motion (MDF), 

texture, or luminance contrast (RF). Additionally, area LO codes for the overall shape of the 

object, rather than local features (Kourtzi and Kanwisher, 2001) and is insensitive to changes in 

viewpoints (James et al., 2002; Valyear et al., 2006). Conversely, area LO does not contribute to 

the programming and online control of reach to grasp movement (Culham, 2004; Cavina-

Pratesi, Goodale, and Culham, 2007). Area LO has been found to be activated non-selectively 
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during reach to grasp tasks, and even during scaling trials (matching grasp aperture to object 

size without reaching). During perceptual judgements of object size, however, LO was found to 

be significantly activated (Cavina-Partesi et al., 2007). These neuroimaging studies suggest that 

the ventral stream contributes to establishing a perceptual representation of the scene and 

identification of the target object, but is not essential for the planning and online control of the 

reach to grasp towards that target object.  

Neuroimaging studies of the dorsal stream also provide support for the lack of 

relationship found between perceptual and kinematic enhancements found in this study. Reach 

to grasp planning and control has been proposed to be a function of complex interaction 

between the lateral intraparietal sulcus (LIP), anterior intraparietal sulcus (AIP) and superior 

occipital cortex/parieto-occipital sulcus (SPOC/V6A) (Goodale, 2010). LIP, AIP, and SPOC are 

involved in the control of voluntary saccadic eye movements, visual control of grasping, and 

visual control of reaching, respectively (Culham, Cavina-Pratesi, and Singhal, 2006; Filimon et 

al., 2009; Cavina-Pratesi et al., 2010). Additional research has found AIP to be differentially 

activated during visually guided reach to grasp, with no selective activation of LO; suggesting 

AIP and associated dorsal networks are able to program and control grasping movements 

independently (Cavina-Pratesi et al., 2007). Similar findings of selective activation during reach 

to grasp movements was found for SPOC (Filimon et al., 2009). Altogether, these findings 

suggest reach to grasp planning and control to be an independent dorsal process. This notion of 

independent ventral-perceptual and dorsal-action streams supports the lack of relationships 

found between the binocular advantages in perceptual and kinematic measures.  

2.3.5    Interpretation of unexpected findings 

Although statistically insignificant, it is important to note that a moderate strength 

negative relationship was found between the RF threshold and MGA (r=-0.36, p=0.053), and 

MDF JND and SGA (r=-0.37, p=0.075). These negative correlations go against the hypotheses, 

and were unexpected as they suggest greater enhancements in perceptual sensitivity to be 

associated with smaller enhancements in reach to grasp planning. On one hand, these findings 

could be a result of performing multiple correlation tests, as the significance decreases when 



56 
 

controlling for the familywise-error rate using the Holm-Bonferroni method (Holm, 1979). The 

inclusion of participants who did not demonstrate a binocular advantage in the perceptual tasks 

for the correlation could have added noise, contributing to the lack of association. On the other 

hand, there could be an underlining mechanism to offer a logical explanation. To provide clarity 

for these questions, the following section will delve into the neural mechanisms involved with 

the RF, MDF, and grasp formation to highlight possible areas of interaction.  

fMRI evidence suggests the control of grasping is mediated by the dorsal stream under 

binocular vision without any additional activity from ventral stream areas during binocular 

viewing (Verhagen et al., 2008). Conversely, ventral stream (V4, LO) contributes to the control 

of grasping during monocular viewing due to the increased reliance on pictorial cues (Verhagen 

et al., 2008). As both shape perception and monocular grasping elicit activation of ventral 

stream structures V4 and LO, the common neural structures provide a physiological basis for a 

possible association between the two tasks during monocular viewing.  

 Formation of grasp during monocular viewing is reliant on perception of pictorial cues 

through ventral stream structures; therefore, it is possible that the formation of grasp to be 

more optimal (more scaled to the size of the object) for those with greater sensitivity (lower 

threshold) during monocular viewing. Better monocular performance in grasp formation would 

decrease the difference in the maximum grasp aperture measures between the two viewing 

conditions, subsequently decreasing the binocular advantage ratio. In essence, the finding that 

enhanced perception is associated with decreased enhancement in maximum/scaling grasp 

aperture could be a result of better monocular grasp formation causing a smaller binocular 

advantage ratio. Support for this explanation would be require a positive association between 

monocular threshold and maximum/scaling grasp aperture.  In contrast to this prediction, 

experimental results did not show a significant positive association between perceptual 

sensitivity and grasp scaling in the monocular condition.  

An alternative explanation for the peculiar findings could be that there is an optimal 

perceptual sensitivity for the control of grasp formation. Deviations from this optimal condition 

would elicit detriments to the control of grasp formation. This idea is purely a speculation 
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based on a “tele-assistance” model developed by Goodale and Humphrey (1998) to explain 

ventral-dorsal interaction. According to this model, the ventral stream processes detailed 

representation of the visual scene to identify the target object and decide on how to interact 

with it, resembling an attention-like process (Goodale and Humphrey, 1998). Once the target 

object has been flagged, visuomotor networks in the dorsal stream are engaged to transform 

the visual information into appropriate coordinates for motor action (Goodale and Humphrey, 

1998). These processes ultimately occur in parallel, each using visual information for different 

purposes. In the context of this model, higher perceptual sensitivity to object shape may cause 

information that is more detailed than required to be encoded, which may complicate the 

transformation of the visual information to the appropriate coordinates for action. Conversely, 

lower perceptual sensitivity may cause a lack of detail in the encoded information, which will 

also negatively influence the transformation into action. As such, an optimal perceptual 

sensitivity may exist that encodes the visual scene with just the right level of detail. It is 

important to note that no evidence of this computational mechanism exists in previous 

literature, as this is strictly speculation to perhaps explore with future research.    

 

2.3.6   Alternative conclusions for lack of perceptual-reach to grasp association  

The lack of association between the perceptual and reach to grasp performance does 

not provide definitive evidence of independence between the ventral and dorsal stream of 

processing. Alternative explanations for this lack of association can be that the methods were 

not sensitive enough to detect an interaction due to limitations in the binocular advantage ratio 

measure and data analysis. Binocular advantage ratios result from multiple levels of data 

processing; therefore, do not capture a detailed representation of the raw data. This provides 

an opportunity for certain aspects of the data to be unreported. For example, a binocular 

advantage ratio above 1 were not demonstrated by four participants on the RF and seven 

participants on MDF tasks. These ratios do not provide insight on the reasons why certain 

participants did not demonstrate a binocular advantage. Moreover, correlating participants 

that did not demonstrate a perceptual binocular advantage with binocular advantages in reach 

to grasp creates noise in the data, which can potentially mask possible associations. 
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Categorizing participants into two groups: one for those that demonstrate binocular advantage 

in both tasks and one for those who do not would ensure that enhancements in perceptual 

performance is indeed being associated with enhancement in reach to grasp performance. As 

such, the lack of relationship between the perceptual and reach to grasp performance can be 

attributed to the limitations of the study instead of being evidence for independent ventral and 

dorsal streams of processing. 

2.3.7    Auxiliary finding 

 When analyzing the association between perceptual and kinematic measures within 

each viewing condition, a statistically significant association was found between the 

performance on the MDF task and maximum grasp aperture (appendix 16). This indicates that 

greater perceptual sensitivity to object form is associated with a more accurate and precise 

scaling of maximum grasp aperture, and that this is consistent across viewing conditions. It is 

important to note this finding is auxiliary, given the objective of this study was to probe the 

association between enhancements in perceptual and reach to grasp performance during 

binocular viewing. It was not the objective of the study to establish the differences in the 

perceptual-kinematic relationship within each viewing condition. As no association was found 

between the binocular advantages of the MDF and reach to grasp task, the enhancements in 

the two tasks appear to be independent. Although out of the scope of this study, the positive 

relationship between perceptual sensitivity and maximum grasp aperture provide some insight 

and indication of a ventral-dorsal interaction. 

2.3.8    Limitations  

 There are several limitations to this study with the main one being the discrepancy 

between the shapes used as the target stimuli in the perceptual task and the target object used 

in the reach to grasp task. Although the RF has been used as a measure for shape perception, it 

more specifically tests for curvature perception. MDF specifically tests for shape perception 

through the perception of moving dots. As neither curvature or moving dots were involved 

during the performance of the reach to grasp task, it becomes a limitation when an association 

is to be made between the performance on the different tasks. Despite this, it is important to 
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note that there are limited methods in measuring perceptual sensitivity to 3D object shape. 

Both RF and MDF stimuli were selected based on the extensive literature suggesting that 

performance on both tasks provides a measure of shape perception (Giaschi et al., 1997; 

Wilkinson et al., 1998). Additionally, both of these tests have shown to be sensitive to viewing 

condition manipulation, which is essential given that the study design was to associate 

binocular advantages in perception and reach to grasp. 

 Additional limitations of this study may be the effect of practice and lapse in attention. 

The experimental design required a total of 234 kinematic trials, and 480 perceptual trials 

across the two viewing conditions. Randomization of object size and distance was implemented 

to control for practice effect in the reach to grasp and scaling trials. The random insertion of 

scaling trials among the reach to grasp trials was implemented to maintain participant 

attention. Additionally, the implementation of an unstable target object surface increased task 

difficulty and novelty, which also served as a method of maintaining participant attention. The 

only control for maintaining participant attention during the psychophysical testing was verbal 

motivation and monitoring for attentiveness performed by the researcher. The conversion of 

measures into binocular advantages provided some control for practice and attentional affects, 

assuming they influence performance in either viewing conditions equally. 

 As mentioned in previous sections, the use of binocular ratio is an oversimplification of 

the quantification of enhancement in performance. It does not provide information as to how 

the enhancement was generated; it simply highlights the difference in performance between 

binocular and monocular viewing conditions. This drawback, however, can be controlled for by 

investigating the perceptual-kinematic correlation within each viewing condition. Doing so 

provides background information on how the binocular advantage was achieved. 

2.3.9    Future research direction 

 The correlation of performance between perceptual and reach to grasp performance is 

a novel approach to probe the interaction between the ventral and dorsal streams of visual 

processing. Future research should incorporate perceptual measurements of 3D objects that 

are more similar to the target object in the reach to grasp task. This will facilitate a more direct 
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comparison of perceptual and kinematic performance. Virtual reality can be used to measure 

sensitivity to 3D shapes to facilitate a more direct comparison. Alternatively, an experimental 

design that includes an amalgamation of both perceptual and reach to grasp task can also 

decrease the gap between the perceptual reach to grasp tasks. For example, a task where 

participants are presented with two slightly different sized objects and asked to reach to grasp 

the smaller one includes both a perceptual and action component. Additionally, the results of 

this study identified several participants who did not demonstrate a binocular advantage in the 

perceptual tasks. Further investigation on reasons why this occurred can potentially provide 

guidance for future studies using these techniques, as well as identify factors that influence 

sensitivity to object form. The implementation of force transducers on the target object will 

allow a more direct measure of time in grasping than the method used in this study. 

Information regarding the forces and points of contact during the grasp will allow insight into 

the contribution of the ventral perceptual system on grasping.  Together, more translatable 

perceptual stimuli, information on movement corrective strategies, and direct measurement of 

the grasping component can provide a deeper understanding of perceptual influence at various 

components of the reach to grasp task. Doing so will further the understanding of the ventral-

dorsal relationship.   

2.4    Conclusion 

 This study was able to replicate the binocular advantages in the perceptual RF and MDF 

tasks, as well as in the selected kinematic measures of the reach to grasp task. No significant 

associations were found between the binocular advantages found in the perceptual and reach 

to grasp tasks. This potentially supports the notion of separate ventral stream for perception 

and dorsal stream for action, suggesting independent processing of binocular information to 

guide perception and action. An alternative explanation for this lack of relationship could be the 

limitations in the binocular advantage ratio measure and data analysis approach used in this 

study. It is possible that the probe utilized in this study was not sensitive enough to investigate 

the ventral-dorsal interaction entirely. As such, it is important to note the limitations when 

discussing its support for independent ventral and dorsal streams. Despite this, the potential 

finding not only benefits our current understanding of visuomotor planning and control, but 
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also provides insight towards the debated topic of ventral-dorsal interaction. Furthermore, 

knowledge about ventral and dorsal processing streams has implications for clinical and 

ergonomics applications. For instance, patients with abnormal binocular vision often have 

concurrent deficits in perception and goal directed action. The notion of independent binocular 

processing in the ventral and dorsal streams suggests that the deficits in perception and action 

should be assessed and treated separately. Results from the current study may also have 

implications in the field of ergonomics. Specifically, improved understanding of ventral-dorsal 

interaction can provide guidance in workstation and tool designs. For example, the notion that 

enhanced perceptual performance does not associate with enhanced reach to grasp 

performance suggests that separate design principles for perceptual and action tasks are 

needed. In conclusion, the lack of association in a binocular advantage between perceptual 

sensitivity to object shape and the performance kinematics of a reach to grasp task provides 

insight into the extent of ventral-dorsal interactions, and may inform future research directions, 

as well as clinical and occupational applications. 
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Appendices 
 

 
Figure A1. Experimental design of proposed study  

 

 
Figure A2. The sampling scheme outlining the test values and the portion of the psychometric function 
they may be testing. Highlighted are the staircase threshold (red) and calculated test values (blue) 
 

 
Figure A3. Sequence of actions during reach to grasp task 
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A4. RF Psychometric functions for all participants during binocular (blue) and monocular (orange) 

viewing. The x and y axis reflect RF amplitude and % correct responses, respectively 
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A5. RF Psychometric Function Chi Squared Goodness of Fit Values 

Participant Binocular RF X2 p value Monocular RF X2 p value 

GB17 1.07 0.899 0.04 0.999 

RA17 1.46 0.834 1.28 0.865 

JC21 0.02 0.999 3.66 0.454 

JL21 2.15 0.708 7.31 0.120 

SA22 0.98 0.913 0.56 0.967 

BN27 0.03 0.999 1.55 0.818 

CJ07 4.52  0.340 5.55 0.235 

GL02 0.51 0.973 1.85 0.763 

CM03 3.91 0.418 0.93 0.920 

AC06 1.65 0.800 0.04 0.999 

KC07 1.68 0.794 3.25 0.517 

DH09 0.35 0.986 0.03 0.999 

ML09 0.92 0.922 0.41 0.982 

SS09 0.66 0.956 5.46 0.243 

SV20 3.83 0.430 0.66 0.956 

EW21 2.48 0.648 7.21 0.125 

CM22 1.88 0.758 0.036 0.999 

AL24 1.49 0.828 0.044 0.999 

KG24 5.42  0.247 0.84 0.933 

YY24 0.62 0.961 5.55 0.235 

CG27 3.75 0.441 0.70 0.951 

CS27 1.56 0.816 5.37 0.251 

MK27 1.72 0.787 0.49 0.974 

AT28 1.07 0.899 1.46 0.834 

KK28 1.52 0.823 0.40 0.982 

SM30 5.40 0.249 1.02 0.907 

BG31 0.36 0.986 0.27 0.992 

JN01 0.31 0.989 0.15 0.997 

TZ01 0.27 0.992 4.97 0.290 

ML07 1.46  0.833 3.47 0.482 
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A6. MDF Psychometric functions for all participants during binocular (blue) and monocular (orange) 

viewing. The x and y axis reflect MDF dot coherence and % correct responses, respectively. Functions 

with an asterisk (*) represent data that was excluded from the analysis 
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A7. MDF Psychometric Function Chi Squared Goodness of Fit Values 

Participant Binocular MDF X2 p value Monocular MDF X2 p value 

GB17 1.67 0.796 2.54 0.637 

RA17 8. 2 0.085 0.46 0.977 

JC21 0.43 0.980 1.03 0.905 

JL21 1.13 0.889 1.86 0.761 

SA22 0.26 0.992 1.52 0.823 

BN27 0.59 0.964 0.54 0.969 

CJ07 0.55 0.968 1.27 0.866 

GL02* 2.58 0.630 0.87 0.929 

CM03 2.08 0.721 4.51 0.341 

AC06 0.95 0.917 0.18 0.996 

KC07 3.31 0.507 1.04 0.904 

DH09 0.40 0.982 0.96 0.916 

ML09 4.58 0.333 0.99 0.911 

SS09 0.15 0.997 2.60 0.627 

SV20 1.23 0.873 3.00 0.558 

EW21 1.89 0.756 3.34 0.503 

CM22 2.91 0.573 1.98 0.739 

AL24 2.71 0.607 0.99 0.911 

KG24 4.06 0.398 1.93 0.749 

YY24 1.32 0.858 1.27 0.866 

CG27* 2.35 0.672 2.17 0.705 

CS27* 1.04 0.904 10.19 0.037 

MK27 1.03 0.905 0.32 0.988 

AT28 0.50  0.973 0.64 0.959 

KK28 1.32 0.858 4.40 0.355 

SM30 1.51 0.825 2.18 0.703 

BG31* 9.75 0.045 11.44 0.022 

JN01 1.53 0.821 3.27 0.514 

TZ01 0.17 0.997 0.62 0.961 

ML07* 0.53 0.971 1.32 0.858 
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A8. Boxplot demonstrating difference in perceptual threshold between viewing conditions for RF and 
MDF tasks 
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A9. Normal plots (histogram and probability plot) along with Shapiro-Wilk statistic for binocular 
kinematic measures 

Measure Shapiro-Wilk Statistic Plot 
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A10. Normal plots (histogram and probability plot) along with Shapiro-Wilk statistic for monocular 
kinematic measures 

Measure Shapiro-Wilk Statistic Plot 
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A11. Normal plots (histogram and probability plot) along with Shapiro-Wilk statistic for binocular 
advantage ratios of the kinematic measures 

Measure Shapiro-Wilk Statistic Plot 
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A12. Boxplots highlighting the differences in kinematic performance during binocular and monocular 
viewing 
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A13. Correlations between binocular advantages in RF perceptual (Threshold/JND) and kinematic 
performance   
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A14. Correlations between binocular advantages in MDF perceptual (Threshold/JND) and kinematic 
performance   
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A15. Correlation between actual RF perceptual (Threshold/JND) and kinematic measures for binocular 
and monocular viewing conditions 
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A16. Correlation between actual MDF perceptual (Threshold/JND) and kinematic measures for binocular 
and monocular viewing conditions 
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