
Abstract—A distributed estimation approach based on opinion
dynamics is proposed to enhance the reliability of vehicle corners’
velocity estimates, which are obtained by an unscented Kalman
filter. The corners’ estimates from a Kalman observer, which
is formed by integrating the model-based and kinematic-based
velocity estimation approaches, are utilized as opinions with
different levels of confidence in the developed algorithm. More
reliable estimates robust to disturbances and time delay are
achieved via solving a convex optimization problem. Road tests
confirm the robustness of the methods independent of the pow-
ertrain configuration on surfaces with various friction conditions
in pure and combined-slip maneuvers, which are arduous for the
current vehicle state estimators.

Keywords—Opinion dynamics, distributed estimation, unscented
Kalman filter, robust observer design

I. INTRODUCTION

Developing a robust estimation structure to operate the
available sensor data in production vehicles is a dominant
objective of the car manufacturers. In this direction, reliable
vehicle state estimation, which can benefit from cooperative
and distributed estimation in intelligent transportation systems
[1], at a reasonable cost, is essential for proper functioning of
active safety systems in current vehicles.

The literature implemented two methods to estimated
longitudinal and lateral velocity velocities: model-based and
kinematic-based approaches. The model-based approach inte-
grates measured longitudinal/lateral accelerations and uses tire
forces to correct the estimation, but needs model parameters
and surface friction. An EKF is employed for both longitudinal
and lateral model-based vehicle state estimations in [2]–[4];
an EKF with smooth variable structure is also utilized in [5]
to estimate lateral velocities and sideslip angles. Employing
unscented Kalman filter (UKF), [6] and [7] propose different
methods for estimation of the lateral and longitudinal veloc-
ities using knowledge of the road condition and tire model
parameters, respectively. The approach in [8] applies a sliding-
mode observer for the velocity estimation and an EKF for
estimation of the Burckhardt tire model’s friction parameter.
A model-based vehicle lateral state estimator is developed in
[9] using a yaw rate gyroscope, a forward-looking monocular
camera, an a priori map of road superelevation and temporally
previewed lane geometry. On the other hand, the kinematic
method uses acceleration and the yaw rate measurements from
an inertial measurement unit (IMU) and estimates the vehicle
velocities employing Kalman-based [10], [11], or nonlinear
[12] observers. This method does not employ a tire model,
but instead the sensors bias and noise should be identified
precisely to have a reliable estimation. Two low-cost GPS
receivers for the lateral velocity estimation is utilized in [13]
and the the low update rate issue of conventional GPS receivers
is compensated by combining the IMU and GPS data using an
extended Kalman filter (EKF). [14] proposed a vehicle state
estimator by combining data of magnetometer, GPS, and IMU

and utilizing a stochastic filter integrated on the Kalman filter
to reject disturbances in the magnetometer.

Reliable vehicle state estimation using conventional sensor
measurement without using road friction information is desir-
able. Such a reliable estimator with corner-based structure is
proposed in [15]. However, the developed observer is required
to be augmented with a module to address reliability of the
estimation setup. The proposed module is inspired by the
opinion dynamics model [16], [17]. A four-node network
is considered, whose members are four corners of the ve-
hicle with estimated states as their opinions, each having
a confidence level based on the corresponding corner’s slip
condition. A distributed estimation scheme is employed for
the corners’ states, estimated by a Kalman-based observer, to
refine estimates and make them closer to that of the high-
confidence corner.

The unscented Kalman filter estimator, which provides
corners’ estimates as input to the opinion dynamics, is first
discussed in section II. The distributed estimation algorithm
based on opinion dynamics is proposed in section III to provide
velocities at corners and vehicle’s CG using a reliability
measure. Road experiments used to evaluate and verify the
proposed approach on different road frictions and with various
traction configurations are provided Section IV. Section V
presents the conclusions.

II. CORNERS’ STATE ESTIMATION BY UNSCENTED
KALMAN FILTER

The kinematic approach is combined with the tire’s internal
states at each corner in [15] to estimate longitudinal speed and
to tackle uncertain model parameters and measurement noises.
Because of the dynamics in its internal state, the lumped
LuGre model [18], [19] has been selected and combined
with the kinematics (accelerations at each corner) to estimate
longitudinal velocity. The combined-slip LuGre model relates
the longitudinal/lateral internal state z̄i for i ∈ {x, y} as
˙̄zi = vri − C0iz̄i − κiRe|ω|z̄i where C0i =

||M2
cvr||σ0i

g(vr)µ2
ci

,
the rubber stiffness for longitudinal and lateral directions is
σ0i, and Mc = [µcx 0; 0 µcy]. The relative velocity vector
vr = [vrx vry]T includes longitudinal and lateral relative
velocities vrx = Reω − vxt and vry = −vyt where vxt
and vyt are velocities in the tire coordinates. The vehicle
stability is explored with the pure and combined-slip LuGre
tire models in [20]. The force distribution along the patch line
is represented by parameter κi. The transient region between
the Coulomb and static friction in the combined-slip tire model
is represented by g(vr). Replacing the road friction term
−C0xz̄x of the LuGre model with the bounded uncertainty
w1 related to the road friction condition, one can rewrite the
LuGre longitudinal state dynamics as follows:

˙̄zx = vrx − κxRe|ω|z̄x + w1. (1)
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The final form of the normalized longitudinal force µx of the
averaged lumped LuGre model at each corner yields µx =
σ0z̄x + σ1 ˙̄zx + σ2vrx where the rubber damping and relative
viscous damping are denoted by σ1x and σ2x, respectively. The
derivatives of the relative velocities have also sensor noises and
bias [21]:

v̇rx = Reω̇ − v̇xt + w2, (2)

in which the wheel’s rotational acceleration is denoted by ω̇
and v̇xt represents the projected longitudinal acceleration of the
wheel’s center in the tire coordinates. The term w2 shows the
deviation of the measured relative acceleration Reω̇− v̇xt from
v̇rx because of measurement noises. Combining the model-
based states (1) and kinematic-based states (2), the proposed
approach in [15] estimates relative velocities at each corner for
ω > 0 by the following linear parameter-varying system with
the longitudinal states x = [z̄x vrx ˙̄zx]T :

ẋ = Ac(t)x +Bcu + wp

y = Ccx + wm (3)

in which Bc = [0 1 1]T , the estimation input is u =
Reω̇ − v̇xt, the output y = µx is the normalized longitudinal
force, which can be obtained from road friction-independent
approaches using nonlinear and sliding mode observers [22]–
[24], Kalman-based estimation [25], [26], and unknown input
observers [27]–[29]. The measurement and process noises are
denoted by wm and wp = [w1 w2 w̄1]T , respectively, with
uncertainties w̄1 in the derivative of the longitudinal tire state.
The output matrix is Cc = [σ0x σ2x σ1x]T , and Ac(t) is
defined by:

Ac(t) =

−κxReω 1 0

0 0 0

−κxReω̇ 0 −κxReω

 (4)

The system (3) is a linear time-varying system with determin-
istic parameters, wheel speed and wheel acceleration. Uniform
detectability and stabilizability conditions are investigated in
the Appendix to check the stability of the proposed velocity
estimators for known zero/nonzero initial states and complete
uncertainty of the initial-state statistics.

Theorem 1: There exists a state estimator such as Kalman
filter with bounded error covariance for the time-variant system
(3) with deterministic time-varying parameters and known/
uncertain initial state and covariance.

Proof: The proof is provided in Section VI.

Consequently, the estimator (3) is observable and it is
feasible to estimate the tire internal states z̄x and the relative
velocities vrx by a Kalman-based observer such as UKF [30],
[31] with any known or stochastic initial covariance matrix at
each corner j where j ∈ {fL, fR, rL, rR} shows the front-left,
front-right, rear-left, and rear-right tires, respectively. The UKF
employs a transformation, which introduces the Sigma vectors
Σ ∈ RN̄×2N̄+1 (N̄ is the length of the state vectors) around
x, to include the nonlinear and non-Gaussian characteristics of
the system that was a challenge for the longitudinal velocity
estimation in [15]. Algorithm 1 shows the state estimation steps
using the UKF. The square root factorization of the covariance
matrix Pk−1 is obtained by Cholesky decomposition at each
time step k. Spread of the sigma points far from the mean

Algorithm 1 UKF State Estimation
// systems: (3)
xk+1 = F(xk,uk, %pk), yk = G(xk, %pk)

Σk−1 = [x̂k−1 x̂k−1+τ̄
√

Pk−1 x̂k−1−τ̄
√

Pk−1],Σ ∈ RN̄×2N̄+1

Σk|k−1 = F(Σk−1,uk−1)
Λk|k−1 = G(Σk|k−1,Σk−1)
// prediction of the mean, output, and covariance:
x̂mk =

∑2N
i=0W

m
i Σi,k|k−1

ŷmk =
∑2N

i=0W
m
i Λi,k|k−1

Pmk =
∑2N

i=0W
c
i (Σi,k|k−1 − x̂mk)(Σi,k|k−1 − x̂mk)T +Qk

// modified covariance matrices:
Px̃k ỹ[k] =

∑2N
i=0W

c
i (Σi,k|k−1 − x̂mk)(Λi,k|k−1 − ŷmk)T

Pỹk ỹk =
∑2N

i=0W
c
i (Λi,k|k−1 − ŷmk)(Λi,k|k−1 − ŷmk)T +Rk

// state and covariance update:
Kk = Px̃k ỹkP−1

ỹk ỹk
x̂k = x̂mk +Kk(yk − ŷmk)
Pk = Pmk −KkPỹk ỹkK

T
k

values of states are shown by the scalar τ̄ =
√
N̄ + η̄, where

η̄ is the compound scaling parameter η̄ = ε̄2N̄ − N̄ and
ε̄ =

√
3/N̄ . The weighting parameters W c

i ,W
m
i are defined

by W c
i = Wm

i = 1
2 (N̄ + η̄) for all sets i ∈ {1, 2, . . . , 2N̄}

and W c
0 = η̄

N̄+η̄
+ 1− ε̄2 + β̄,Wm

0 = η̄
N̄+η̄

for i = 0 with the
parameter β̄ = 2. The estimated relative velocities v̂rxj

at each
corner j from (3) are used for calculation of the corresponding
values in the tire coordinates as vxtj = Reωj−v̂rxj

. The longi-
tudinal speed at each corner in the vehicle’s body coordinates
is calculated by vxj

= vxtj cos δ−vytj sin δ with δ as steering
angle at front tires. Corners’ opinion φ ∈ R4 are defined by
(5) using the mapped longitudinal velocities to CG and longi-
tudinal velocity estimates vx = [vxfL

vxfR
vxrL

vxrR
]T

at corners

φ = vx +
r

2
T, (5)

where the measured yaw rate is denoted by r and the elements
of φ are the mapped velocities from corner j to the vehicle’s
CG, i.e., φj(t). Front and rear track widths Tf , Tr are elements
of T as in T = [−Tf Tf − Tr Tr]

T .

Longitudinal velocity estimates are less reliable in high-
slip conditions due to less confidence in longitudinal force
estimates µx (as the output) in (3). To address this issue,
a robust distributed algorithm based on opinion dynamics is
developed in this study which implements mapped corners’
velocities to CG, φj(t), and self-confidence of corners to their
opinion, Wj > 0, based on the slip condition. Slip ratio is
calculated at each corner using λ̄j =

Reωj−vxtj

max{Reω,vxtj
} and is

employed to show the level of confidence of the mapped corner
velocities to the CG as (6) with constants k1x, k2x > 0

Wj = k1x(k2x − |λ̄j |), (6)

which confirms low reliance on corners with high-slip con-
ditions. All corners’ levels of confidence can be represented
as a diagonal matrix W = diag{WfL,WfR,WrL,WrR} for
longitudinal estimates.

III. DISTRIBUTED ESTIMATION BY OPINION DYNAMICS

The selected Kalman-based velocity estimator at each
corner and the confidence level based on the slip condition
were introduced in the previous section. This section focuses



on a distributed estimation approach robust to disturbances and
delays to reach a reliable consensus among corner estimates.
Corner estimated velocities are mapped to CG and denoted
by the opinions φj(t) with confidence level Wj which is
a monotonic decreasing function of the slip ratio λ̄j . The
proposed dynamics for each opinion (in the longitudinal and
lateral direction) is in the following form

φ̇k(t) =
∑
j∈Nk

(φk(t)− φj(t))−Wj(φk(t)− φk(0)), (7)

where Nk is the set of the neighbors of the k-th corner.
Equation (7) in vector form changes to (8) with φ(t) ∈ R4

for all states and y(t) as the output of interest.

φ̇(t) = −L̄φ(t) + Wφ(0),

y(t) = φ(t), (8)

where L̄ = L+ W in which L is the (positive semi-definite)
Laplacian matrix and W is a (positive definite) confidence
level matrix. Consequently, L̄ will be a positive definite matrix.
The communication graph is a complete graph since each
corner can communicate with other three ones. Thus, L̄ yields

L̄ =


3 +WfL −1 −1 −1

−1 3 +WfR −1 −1

−1 −1 3 +WrL −1

−1 −1 −1 3 +WrR

 . (9)

The complete graph with corners’ longitudinal velocity es-
timates, structure of the developed distributed estimation
scheme, and the hardware layout for real-time implementation
are illustrated in Fig. (1).
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Fig. 1: (a) Complete graph (b) Distributed estimation by
opinion dynamics and hardware layout

The following proposition shows how the steady-state value
of opinion dynamics (8) is inside the convex hull of the
longitudinal estimator’s initial opinions.

Proposition 1: The states in opinion dynamics (8) asymp-
totically converge to a convex combination of the initial
opinions.

Proof: The steady-state opinion for the longitudinal and
lateral direction is

φ̄ = L̄−1Wφ(0). (10)

Having L1 = 0 results in (L̄ −W)1 = 0 that yields L̄1 =
W1. Left multiplying both sides by L̄−1, we get L̄−1W1 =
1. This shows that L̄−1W is a row stochastic matrix and (10)
converges to some convex combinations of the elements of
φ(0).

Remark 1: Based on Proposition 1, the steady-state modes
of the corners’ opinion converge to some points inside the con-
vex hull of the initial opinion; hence, the variation of corners’
opinion decreases during the opinion dynamics. Moreover,
final opinion values become closer to the ones with higher
confidence level.

Due to the existence of disturbances Ω(t) and time delay
τ (caused by low-pass filters applied to signals ω̇, v̇xt and
measured accelerations), (8) can be written as

φ̇(t) = −L̄φ(t− τ) + Wφ(0) + Ω(t). (11)

The following lemmas discuss the stability of dynamics (8) un-
der time delay and its H∞ robustness to external disturbances.

Lemma 1 ( [32]): The system H∞ norm of the dynamics
(8) is 1

λ1(L̄)
.

Lemma 2 ( [33]): The opinion dynamics (11) is asymp-
totically stable in the presence of constant time delay τ ∈
[0, τmax] if and only if

τmax <
π

2λ4(L̄)
. (12)

Lemmas 1 and 2 reveal that the robustness of (8) depends
on the smallest and largest eigenvalues of L̄. According to
Lemmas 1 and 2, there exists a trade-off in choosing high
gains (confidence values) to meet both robustness metrics to
disturbances and time delay. Increasing λ1(L̄) (increasing ro-
bustness to disturbance) results in increasing λ4(L̄) (decreasing
robustness to time delay), and vice versa. In order to tackle
this problem, confidence matrices W should be chosen such
that both robustness requirements are satisfied to a certain
level. More formally, the following optimization problem is
introduced:

minimize
W

J(W) = −λ1(L̄)

subject to λ4(L̄) ≤ γ,
Wj ∈ [Wjmin ,Wjmax ],

(13)

for some γ, where Wjmin
,Wjmax

> 0 are determined based
on the slip condition of the corresponding corner and (6).
Here γ is a design parameter which represents the inherent
existing delay in the state estimator setup due to filtering. We
know that the spectral radius of a positive definite matrix is
a convex function and its smallest eigenvalue is a concave
function of the matrix elements. Hence, the above problem is a
convex problem and has a unique optimal solution. In practice
and road experiments, signals are used in discrete-time. The
discretization of the continuous-time systems discussed here
is done by the step-invariance method [34], because of its
precision and response characteristics. In this direction, the



Algorithm 2 Opinion Dynamics for State Est.
// Inputs: Each j corner’s mapped velocities to CG, φj(0), and its slip
ratio λ̄j for the longitudinal directions
Constraints:
Define γ and assign [Wjmin

,Wjmax ] and to each corner j based on λ̄j ,
Optimization:
Solve optimization problem (13) to get W for the longitudinal and states,
Dynamic incorporation
Compute φ̄ = L̄−1Wφ(0) having L̄ for the longitudinal states from (9),
Updating corners’ states:
Remap φ̄j values to corresponding corners to get vxj (t) (for the traction
and stability control systems),
// Output: vxj (t), φ̄j .

velocity estimators and the opinion dynamics are implemented
in the discrete-time.

Algorithm 2 and Figure 1-b provide the detail and general
structure of the utilized opinion dynamics. To validate the
longitudinal velocity estimator with the proposed opinion dy-
namics, an RT2500 6-axis GPS system is used. The measured
accelerations, yaw rate, wheel speed, and steering angle are
inputs to the corner-based velocity estimator. Real-time acqui-
sition and processing of sensory information and the developed
algorithm is done using the dSPACE R© MicroAutobox with
CAN-bus communication. The dSPACE compiles measure-
ments for estimators and controllers in MATLAB/Simulink.
The sampling frequency the experiment is set to be 200 [Hz].

IV. RESULTS AND DISCUSSION

To validate the proposed distributed state estimation algo-
rithm on an electrified instrumented SUV, road experiments
are conducted on surfaces with various friction conditions and
in different maneuvers. Experimental results are provided in
this section. The vehicle specifications are: wheel’s moment
of inertia Iw = 1.7 kgm2, mass m = 2045 kg, moment of
inertia Iz = 4161 kgm2, and front/rear track widths Tf =
1.59, Tr = 1.58 m. Constants for the confidence level in (6)
for the road experiments are k1x = 25 and k2x = 1. For the
velocity estimator, the load distribution factor is κx = 7.6,
the rubber stiffness and damping are σ0x = 658 1/m and
σ1x = 0.75 s/m, respectively, and the relative viscous damping
is σ2x = 0.0018. The distributed opinion dynamics scheme on
the Kalman-based longitudinal state estimator is examined in a
severe launch on an icy surface and the results are illustrated
in Fig. 2 for the AWD powertrain configuration. The wheel
peripheral translational velocity, “Wheel Periph.”, increases
drastically for all four wheels due to high wheel speed on the
icy surface, but the estimated wheel center velocity is accurate
when compared to the measured one by GPS.

Coping with model uncertainties and time delay, the un-
scented Kalman filter and the optimized corners’ final confi-
dence levels lead to the observed smooth and accurate velocity
estimation at corners for such highly slippery surface with
µ ≈ 0.25. To check the performance of the augmented
Kalman-based state estimator by the robust distributed esti-
mation scheme in a laterally-excited maneuver, a lane-change
scenario with RWD powertrain configuration is conducted
on a surface covered with packed snow, µ ≈ 0.4, and the
longitudinal velocity estimation results are provided in Fig. 3.
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Fig. 2: Estimated velocities for AWD, accel./brake on ice.
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Fig. 3: Estimated velocities for RWD, LC on snow.

Several rises and drops in the “Wheel Periph.” velocity
compared to the measured wheel center velocity, “Meas.”, are
observed at each corner due to high-slip cases, but the de-
veloped state estimator, “Wheel Cent.”, with the incorporated
robust opinion dynamics exhibit good performance even for
such laterally-excited maneuver on snow with RWD traction
configuration.

Combined-slip maneuvers are demanding for model-based
vehicle state estimators because of several model’s contributing
parameters and the road friction coefficient, which are un-
known in practice. A combined-slip acceleration-in-turn (AiT),
in which the capacity of a tire in longitudinal/lateral directions
reduces due to high slip in another direction, is done for the
test vehicle with RWD configuration and results are illustrated
in Figure 4. The test is performed on wet sealed asphalt
with µ ≈ 0.45. The measured longitudinal/lateral accelerations
together with the wheel speed at each corner are provided in
Fig. 4 to show the high-slip and arduous characteristics of the
maneuver.
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Fig. 4: Estimated velocities for RWD, AiT on wet sealer.

Figure 4 demonstrates good performance of distributed
state estimator (based on the opinion dynamics) to handle
combined-slip conditions despite several high-slip cases near
t = 2 and t = 3.4 s for right tires due to the load transfer to
the left side and reduced tire capacities.

To check the performance of the distributed state estimator
in combined-slip conditions with another traction configuration
and on friction-varying surfaces, another acceleration-in-turn
with transitions from wet sealer to dry asphalt is done and the
estimation outcomes are shown in Fig. 5. The implemented
robust opinion dynamics on the outcomes of the Kalman-based
longitudinal velocity estimator shows consistent results with
FWD traction configuration even with changes in the road
friction condition.
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Fig. 5: Estimated velocities for FWD, AiT on wet sealer.

Figure 5 demonstrates good performance of the estimator
validated by the measurement from an accurate GPS at the ve-
hicle’s CG. In spite of rises in corners’ wheel speed due to the

slippery surface and reduction in tire capacities, the developed
algorithm shows reliable longitudinal speed estimates.

V. CONCLUSION

A distributed estimation algorithm based on opinion dy-
namics is presented in this article to increase the reliability
of a Kalman-based vehicle velocity estimator. Utilizing an
unscented Kalman filter on an integrated model-based and
kinematic-based state estimation scheme, the proposed velocity
observer provides velocity at corners and the level of con-
fidence characterised by the magnitude of slip ratio of that
particular corner. The mapped corners’ velocity to CG was
interpreted as the opinion of that corner in a linear time-
invariant dynamical system to attenuate the effect of distur-
bances and time delay in real-time implementation. Improved
estimated states, which are closer to the network element(s)
with the highest confidence level, are remapped to each corner
to make the overall estimation setup performing more reliably.
To validate the approach, several road experiments have been
conducted on surface with various friction conditions and in
normal and harsh driving scenarios.

VI. APPENDIX

Proof of Theorem 1: The time-variant longitudinal state
estimator (3) is discretized by the step-invariance method
in which the discrete-time system has the output matrix
Cd = Cc and state/input matrices A = eAc(t)Ts , B =∫ Ts

0
eAc(t)τBc(t)dτ . The discrete-time form yields:

xk+1 = Akxk +Bkuk + %pk
yk = Ckxk + %mk, (A1)

with process and measurement uncertainties %pk, %mk, which
have the covariances Qk = E[%pk, %pk

T ], Rk = E[%mk, %mk
T ],

accordingly. Process and measurement noises are assumed
to be uncorrelated E[%pk, %

T
mk] = 0. Uniform detectability

leads to bounded error covariance. The stochastic observability,
stability and convergence of the state mean, and bounds on
error covariance of the Kalman estimator on LTV systems,
such as that in the discretized form of (3), were studied in
[35]–[37].

Lemma 3: [35], [37] With the known initial
state/covariance and uniform detectability of [Ak, Ck] in
(A1) with process and measurement noise covariances
Qk, Rk, there exists a state estimator such as the Kalman
having bounded error covariance. Furthermore, stabilizability
of the pair [Ak, Ḡk] leads to exponential stability of the
Kalman estimator, where Ḡk is an appropriate matrix
obtained by Qk = ḠkḠ

T
k .

According to Lemma 3, the detectability condition is checked
and satisfied for the discrete-time form of the proposed esti-
mators (3). The bounded error covariance and stability of the
Kalman estimator for systems with completely uncertain initial
covariance/states is investigated in [38]. The following Lemma
addresses the stochastic initial state condition.

Lemma 4: [38] The Kalman estimator on the system (A1)
with an error covariance matrix and stochastic initial state
P0|−1 = ψI, ψ ∈ R+ is stochastically observable if the



conditions (A2) holds for a finite time tf and for tk ≥ tf
with the predefined bound σ̄b:

σ̄max(Mf ) = 0, σ̄max(Nk+1) < σ̄b, (A2)

where M,N are obtained from a modified Riccati equation
as provided in [15].

The two criteria (A2) are examined using Q = 3−3I3×3 and
R̄x = 0.0015 for the longitudinal velocity estimators and met
with the model parameters provided in section IV in various
driving scenarios and road conditions. For all performed road
experiments σ̄max(Mf ) converges to zero after at most 0.029 s
and σ̄b = 3.4. Therefore, the Kalman observer is stable even
if the scalar ψ has infinite values.
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