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Abstract 

The increasing interest towards the synthesis and modification of different nanomaterials is 

attributed to their outstanding mechanical, physical and electrical properties that allow their use 

in different fields. In the last decades, novel nanomaterials have been successfully synthesized in 

order to provide materials with improved performances to be employed for water treatment, 

photocatalysis, to replace silicon–based devices in electronics and so on. For example, carbon-

based materials are promising candidates for the fabrication of conductive inks and future non-

volatile memory devices. However, the absence of an eco-sustainable, straightforward and time 

effective process for their production has hindered their large-scale application in electronics.   

The aim of this thesis is to explore alternative synthetic approaches for the synthesis of different 

materials and their structural modification in order to gain a better understanding how the 

processes could be controlled to have desired structure and hence materials with improved 

performances. In particular, laser ablation in liquids (PLA) and electrochemical processes will be 

the focus of this study. 

It has been shown that pulsed laser ablation of carbon materials and TiO2 nanoparticles can be 

used for the synthesis of new materials and/or modification of their structure. The laser ablation 

compared to other common synthetic approaches has many advantages. One of which is the eco-

sustainability of the process, since the synthesis is performed in water without the use or 

production of products harmful for the environment. The second advantage is the versatility of 

the technique that allows the synthesis and modification of different nanomaterials depending on 

the target material employed. In this thesis it will be demonstrated that laser ablation of a 

dispersion of graphene oxide can be employed as a straightforward technique to induce structural 

modifications of the material, i.e. reduction of the graphene oxide sheets and synthesis of 

graphene quantum dots varying laser ablation time and ablation power. The nanomaterials 

obtained can be mixed with silver nanoparticles for the fabrication of hybrid conductive inks, 

which have a resistivity lower than inks made with only silver nanoparticles. The versatility of 

the laser ablation is demonstrated by extending the study to titanium dioxide powders. It will be 

discussed that the laser ablation of TiO2 nanoparticles leads to nanoparticles with different 

crystalline structures. Indeed, with a proper control over the laser ablation parameters, such as 
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ablation time and laser power, it is possible to induce a phase transformation of TiO2 

nanoparticles whether they are dispersed in water or deposited onto a substrate. 

Similar to the laser ablation, the electrochemical processes such as the electrophoretic deposition 

(EPD) allows the synthesis and deposition of different type of materials. In particular, in this 

thesis this technique will be employed for the straightforward synthesis of carbon nanowalls 

(CNWs). These carbon-based materials are usually synthesized by chemical vapor deposition, 

which requires the use of precursor gases and high temperatures and pressures. Whereas, the 

method developed during my research allows a time-effective synthesis of these nanomaterials; 

moreover, the deposition of the CNWs directly onto conductive substrate permits for the first 

time the fabrication of carbon-based resistive switching memory devices. This technique could 

be used for the development on a large scale of this type of devices, whose broad fabrication has 

been hindered due to the complex production mechanisms. Another advantage of the 

electrochemical processes is the possibility of modifying the chemical composition of the 

materials. In this thesis, the anodic oxidation has been used for the first time to oxidize the 

carbon structures obtained by EPD in order to engineer their electrical performances. In 

literature, the anodic oxidation has been used to study the redox processes in electronic devices 

or to increase the electrochemical capacitance of carbon materials, but never as a specific 

technique to tailor the materials properties. As aforementioned EPD, like PLA, is a versatile 

technique and in this study it has been used for the growth of ZnO rods. ZnO rods are usually 

grown by hydrothermal processes, which can be time consuming. In this thesis, the growth of the 

rods has been conducted directly on conductive substrates, which were then patterned for the 

fabrication of electronic devices.  
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 Introduction Chapter 1.

1.1.  Background  

In the last decades, nanomaterials have been in the center of many researches for their 

applications in various fields such as photovoltaics, water treatment, nanoelectronics and so on. 

The development of new approaches for the synthesis, characterization and manipulation of 

these nanomaterials led to an exponential growth of nanotechnology. The methods used for the 

synthesis of nanomaterials can be classified in top-down and bottom-up approaches. In the top-

down methods, the materials are obtained upon size reduction of larger structures, while the use 

of molecular precursors as building blocks for the fabrication of new nanostructures is usually 

referred as bottom-up synthesis.   

The possibility of controlling the structures and the properties of the nanomaterials allowed the 

synthesis of new products with specific properties or designed for specific applications. 

Examples of materials that have attracted the interested of the scientific community are 

graphene-based materials and semiconductors materials such as titanium dioxide (TiO2) and zinc 

oxide (ZnO). The possibility of synthesizing nanomaterials of different size and shapes enables 

their applications in various fields. Graphene, a two-dimensional (2D) sheet of carbon atoms 

with sp
2
 hybridization [1], possesses outstanding properties, which render it a unique material 

that could be employed in several applications [2,3]. Many studies demonstrated that upon 

modification of graphene structure it is possible to obtain graphene-based materials with 

improved chemical, electrical or mechanical properties. These “new” nanomaterials can be 

employed for the design of new electrical devices, such as nanoscale transistors [4], molecular 

sensors [5], fuel cells [6], solar cells [7], electrodes for organic light-emitting diodes (OLEDs) 

[8], membranes for water treatment [9,10], conductive adhesives [11] and inks [12–14] or as 

active layer in resistive memory devices [15]. However, one of the issues limiting the use of 

graphene and graphene-based nanomaterials in current nanotechnology devices is the lack of 

eco-friendly and straightforward methods for the gram scale production of graphene-based 

devices and their structural modification.  

Besides graphene-based materials, other semiconductor materials such as TiO2 and ZnO have 

been used in photocatalysis for the removal of pollutants from wastewaters [16], in photovoltaic 

processes, for the fabrication of solar cells [17], in electronics for the fabrication of resistive 
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memory devices [18], for light emitting diodes and UV photodetectors [19–24]. TiO2 exists in 

three polymorphs, which are rutile, anatase and brookite. Both anatase and rutile are used as 

photocatalyst; however anatase phase has a greater photocatalytic activity [25–27].  It has been 

reported that the use of a mixture made of anatase and rutile as photocatalyst, results more active 

than the pure anatase. Anatase nanoparticles are the main products obtained with the commonly 

used synthetic methods such as sol-gel [28], hydrothermal [29] and solvothermal [30] methods. 

For some applications a high-temperature processes of the anatase nanoparticles are required, 

however, upon heating a phase transformation to rutile occurs. Therefore, it is crucial to have a 

control of the conditions that affect the phase transformation of TiO2. In particular, the phase 

stability of TiO2 has a key role in the design of devices for certain type of applications such as 

gas sensors, and dye-sensitized solar cells. 

1.2.  Objectives 

The motivation for this thesis was to gain a better understanding of the relationship between the 

synthetic methods developed during my doctoral studies and the properties of the materials 

fabricated. This work provides a study on alternative synthetic methods for the synthesis of 

different nanomaterials and it focuses on understanding the mechanisms for the modification and 

improvement of materials’ structure, which can be employed in emerging applications such as 

electronics. From this knowledge, it has been possible to design and develop engineering 

solutions to control the materials composition and improve their mechanical and electrical 

properties. This study can be divided into two parts: 

Part 1: investigation of femtosecond laser ablation of graphite and titanium dioxide (TiO2) as an 

ecofriendly and straightforward technique to induce structural modification of the materials 

ablated. It has been shown that laser ablation is a versatile tool and the study of the process 

mechanisms highlighted that the structure of the fabricated materials can be tailored with a 

proper control over the laser parameters, such as ablation time and laser power.  

Part 2: development of electrochemical processes for the fabrication and improvement of 

resistive switching devices. In this study carbon structures and ZnO rods were fabricated by 

electrophoretic deposition and their electrical performances were tested. The work focused on 

the study of the process-structure and electrical properties relationship of the electrodeposited 
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materials varying their chemical composition and/or under ultraviolet illumination, in order to 

improve their performances. 

1.3. Organization of the thesis 

The thesis is divided into 9 Chapters and the major results are divided in two parts. An overview 

of the research carried out during my doctoral studies cis summarized in the following block 

diagram. 

 

Figure 1: Block Diagram illustrating the research carried out during the doctoral studies. 

 

 

A detailed overview of the contents for each chapters is given below: 

 Chapter 1 describes the motivation, objectives and the organization of the current thesis 

work 

 Chapter 2 contains a literature review of graphene, graphene-based nanomaterials, 

titanium dioxide and zinc oxide nanomaterials. The chapter focuses on the different 

methods employed for the synthesis of these materials and their properties will be outlined.  
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 Chapter 3 will give general information on the main techniques employed for the 

characterization of the nanomaterials mentioned in Chapter 2.  

Part 1: This part is focused on the laser ablation as alternative green and time effective 

technique for the synthesis and modification of nanomaterials’ structure and composition. 

Chapters 4 and 5 will focus on this technique. In particular: 

 Chapter 4 describes the synthesis of graphene quantum dots, which are graphene-based 

nanomaterials, by femtosecond laser ablation of graphene oxide sheets dispersions. Results 

on the fabrication of a conductive ink made mixing the laser-synthesized graphene 

quantum dots with silver nanoparticles will be presented.   

 Chapter 5 will focus on the use of femtosecond laser for the phase transformation of 

titanium dioxide nanoparticles suspended in water and deposited on a conductive substrate. 

Part 2: This part focuses on the electrochemical processes as alternative routes for the synthesis 

of different nanomaterials for their applications in electronics. Chapters 6 and 7 will focus on this 

technique. In particular: 

 Chapter 6 will describe the use of electrophoretic deposition combined with arc discharge 

for the synthesis of carbon-based devices for their application in future non-volatile 

memory devices. In this chapter, it will be shown that anodic oxidation can be used as a 

technique to engineer the chemical composition of the carbon structures synthesized, 

which will enhance their electrical performances.  

 Chapter 7 will focus on the use of cathodic deposition for the growth of ZnO for the 

fabrication of memory devices. The devices show better stability and multilevel current 

amplification upon exposure to ultraviolet light. 

 Chapter 8 reports the main conclusions and outlooks for future investigation 

 Chapter 9 lists the author’s contribution to research 
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 Literature Review Chapter 2.

The focus of this chapter is to give general information on the properties and synthesis of 

graphene, graphene-based nanomaterials, titanium dioxide and zinc oxide nanomaterials. 

2.1.  Graphene and Graphene-Based Nanomaterials  

Carbon possesses an electronic configuration of 1s
2
 2s

2
 2p

2
 with 4 electrons in the valence shell, 

which form three types of hybridization: sp, sp
2
 and sp

3
. Carbon can form different allotropes in 

all dimensions. Diamond and graphite (Figure 2a-b) are the most known allotropes in three-

dimension (3D); however in the last decades various carbon materials with different 

dimensionality have been discovered or produced.  

 

Figure 2: (a) Graphite structure; (b) diamond structure; (c) fullerene structure; (d) carbon nanotube structure and (e) 

graphene structure. From Ref. [31]  © IOP Publishing. Reproduced with permission. All rights reserved. 

In 1985, Kroto and Smalley firstly reported the synthesis of the first zero-dimensional (0-D) 

carbon allotrope, the C60 molecule [32]. The C60 molecule, shown in Figure 2c, consists of 60 

carbon atoms arranged in 20 hexagons and 12 pentagons. Its structure is similar to the geodetic 

domes built by the architect Buckminster Fuller, and for this reason the C60 is also known as 

buckminsterfullerene or simply fullerene. Graphene quantum dots (GQDs) represent another 

example of 0-D carbon allotrope and it will be discussed in section 2.1.3. Examples of one-

dimensional carbon allotropes are carbon nanotubes (CNTs) and polyynes (or carbynes). CNTs, 

shown in Figure 2d, were discovered in 1991 by Ijiima [33] and can be considered as the result 
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of the rolling up of one or more graphene layers, while polyynes discovered in 1967 [34] are 

linear chains of carbon atoms. Graphene, discovered in 2004 [35] represents the carbon allotrope 

in two dimensions (2D), its structure is shown in Figure 2e. 

 Graphene 2.1.1.

Graphene can be defined as a flat monolayer of sp
2
 carbon atoms packed into a 2D honeycomb 

lattice and it can be considered as the basic building block for the fabrication of other carbon 

nanomaterials with different dimensionality. According to this description, fullerenes can be 

considered as the result of the wrapping of graphene, while CNTs are the products of the folding 

of graphene sheets in cylindrical shapes. In a similar way, graphite can be regarded as a 

tridimensional structure obtained from the stacking of several graphene layers along the z-axis, 

where the interlayer forces are of the van der Waals type.  

 

Figure 3: Graphene can be employed as building block for the synthesis of carbon nanostructures with different 

dimensionality . Reproduced from ref. [40] open access article distributed under the Creative Commons Attribution 

License 

Graphene (or “2D graphite”) has been studied since 1947 [36] and widely used for describing 

properties of various carbon-based materials. Graphene was presumed not to exist in the free-

state, being described as an “academic” material and believed to be unstable with respect to the 

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
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formation of curved structures such as soot, fullerenes and nanotubes. This common wisdom was 

disproved in 2004 by the experimental discovery of graphene [35] and other free-standing 2D 

atomic crystals for example, carbon nanowalls [37,38] and boron nitride [39]. These crystals 

could be obtained on top of non-crystalline substrates, in liquid suspension and as suspended 

membranes. Importantly, the 2D crystals were found not only to be continuous but to exhibit 

high crystal quality. 

 

 Graphene Oxide 2.1.2.

The graphene oxide’s structure is still under debate [41], however it is widely accepted that 

graphene oxide can be described as the oxidized form of graphene in which carbon atoms 

possess sp
2
 and sp

3
 hybridization, due to their bonds with hydroxyl and epoxy functionalities 

[42]. In the last years, graphene oxide (GO) has attracted the interest of the scientific community, 

because it offers an alternative cheap way for the production of graphene [43,44]. In particular, 

for certain types of applications, such as energy storage, large quantities of graphene are 

necessary [41]. Gram scale production of graphene oxide can be produced from the oxidation of 

graphite, which will produce graphite oxide, followed by its exfoliation [45], as described in 

Section 2.3.1.3. It was further demonstrated that reduction of graphene oxide can lead to 

graphene oxide with different degree of reduction showing similar electrical, thermal, and 

mechanical properties of pure graphene [41,46].  

 Graphene Quantum Dots 2.1.3.

Graphene quantum dots (GQDs), as mentioned in Section 2.1, are zero-dimensional (0D) 

nanomaterials and they have attracted the attention of many research groups for their outstanding 

properties such as chemical stability, strong luminescence and biocompatibility [47,48]. These 

characteristics make GQDs suitable nanomaterials for the design of different devices in 

electronic [49], bio imaging and photovoltaic applications [50–52]. As a consequence, several 

methods for the production of GQDs have been developed so far with the goal of  producing 

electronic devices, such as transistors, supercapacitors, and sensors [49]. The approaches utilised 

in the fabrication of GQDs can be categorized as top-down or bottom up methods [53]. GQDs 

can be considered small fragments of graphene sheets with dimensions less than 30 nm [54], 
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therefore top-down approaches have involved the hydrothermal and solvothermal cutting of 

graphene oxide (GO) [55,56] sheets, or are derived from the photo-Fenton reaction of GO [57]. 

The resulting GQDs due to the presence of remaining oxygen containing groups are dispersible 

in water and show different colours of luminescence as a function of their sizes [58]. Researchers 

who reported the synthesis of GQDs through bottom-up approaches involved either organic 

synthesis by oxidation of polyphenylene dendritic precursors [59], by pyrolysis of glucose [60] 

or they were obtained from the opening of fullerenes C60 [41,47]. Some of these synthetic 

methods will be discussed in section 2.3.3. 

 Graphene Nanowalls 2.1.4.

Graphene nanowalls (GNWs) are two-dimensional nanomaterials composed of stacked graphene 

layers, which are vertically oriented on a substrate. A schematic of the graphene nanowalls 

structure is shown in Figure 3. GNWs were first synthesized in 1997 by Ando and coworkers 

during an experiment for the fabrication of carbon nanotubes [37]. Graphene nanowalls possess a 

large surface area and due to their unique structure they are good candidates as catalyst supports, 

field emitters, electrochemical capacitors and Li-ion batteries [62–65]. 

 

Figure 4: (a) Schematic view (top) of graphene nanowalls structure obtained from the stacking of many graphene (b) 

layers. 

 GNWs are obtained thorough bottom-up approaches by either plasma-enhanced chemical vapor 

deposition or electric field-assisted laser ablation of graphite [66–69]. Both these techniques will 

be discussed in the following sections.   
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 Carbynes 2.1.5.

Carbynes, 1D carbon allotropes, are linear carbon chains and they exist in two isomeric forms: 

polycumulene and polyynes.  

The difference between the two forms is the conjugation of the carbon atoms. In the 

polycumulene’s structure the carbon atoms are doubly bonded (= 𝐶 = 𝐶 =)𝑛, while polyynes 

have bonded carbon atoms with alternating single and triple bonds (−𝐶 ≡ 𝐶 −)𝑛. The first 

reports on the discovery of carbynes date 1967 [34,70–72], however due to their structure these 

1D carbon allotropes are unstable and tend to be easily oxidized or undergo chain-chain cross-

linking reactions forming more stable 2D graphene-like structures [73,74]. Polyynes or carbynes 

can be obtained from the dehydropolycondensation of acetylene, laser ablation (in vacuum or in 

liquids) of graphite or by arc discharge of graphitic electrodes [75–81]. 

2.2.  Properties of Graphene and its Derivatives 

The outstanding properties of graphene arise from its particular structure. As mentioned before, 

graphene has been defined as a single-two-dimensional hexagonal sheet of carbon atoms (Figure 

5a) composed of two equivalent triangular carbon sublattices. The stacking of several graphene 

layers along the z-direction forms the graphite structure (Figure 5b). Graphene is made of carbon 

atoms with sp
2
 hybridization, where 2s orbitals superimpose with the 2px and 2py orbitals, which lie 

in the graphene plane, are oriented 120º to each other and form the energetically stable and localized 

σ-bonds with the three nearest-neighbor carbon atoms in the honeycomb lattice, as shown in Figure 

5c. The remaining free 2pz orbital for each carbon atom lies perpendicular to the plane and presents π 

symmetry orientation.  

 

Figure 5: (a) Graphene structure; (b) graphite structure as a result of the stacking of graphene layers (c) schematic of the 

in-plane σ bonds and the π orbitals perpendicular to the plane of the graphene sheets. Reproduced from ref. [82] with 

permission of The Royal Society of Chemistry. 

In Figure 6 it is displayed the band structure of graphene, where it is possible to observe that the 

conduction and valence bands touch each other at the so called Dirac point, set at 0 eV.  
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Figure 6: On the left the electronic dispersion in graphene in shown, while on the right  a zoom in of the energy bands 

close to one of the Dirac points is displayed. Reprinted  with permission from ref. [83] by the American Physical Society. 

The absence of a band gap between the conduction and valence bands makes graphene a 

semimetal material or a zero-gap semiconductor [84], which limits its use in nanoelectronics 

[85,86], and for this reason researchers studied different ways to induce a band gap opening of 

graphene by doping [85], chemical functionalization [87,88], and introduction of defects [83]. 

Several study, have demonstrated that an opening of bandgap can be achieved upon reduction of 

graphene oxide [86,89–92] and this is one of the reason for the increasing interest towards the 

synthesis and modification of graphene oxides. Besides the electronic properties, graphene is 

defined as the strongest material ever measured. Lee and coworkers measured the elastic 

properties and intrinsic breaking strength of free-standing monolayer graphene membranes by 

nanoindentation in an AFM and reported a value of Young’s modulus of 1 TPa [93]. Size 

reduction of graphene sheets lead to the formation of graphene quantum dots, as mentioned in 

section 2.1.3. One of the most attractive properties of GQDs is their strong luminescence and 

biocompatibility [60,94,95] that can enable their applications in biology and medical science 

[96]. It was demonstrated that GQDs photoluminescence strongly depends on their dimensions 

and shape [58], in particular GQDs can emit blue [55,97,98], green [95,99,100] and white 

[58,101] photoluminescence.  

2.3.  Synthesis of Graphene and Graphene-based nanomaterials  

In the next paragraphs, some of the methods employed for the synthesis of graphene and 

graphene-based nanomaterials are described. 
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 Synthesis of Graphene 2.3.1.

2.3.1.1. Mechanical Exfoliation 

Graphite can be considered as the result of the stacking of several graphene layers along the z-

axis. The interplanar distance is 0.335 nm, and the carbon atoms in the hexagonal plane are 

covalently bonded, while the forces between the stacked layers are of the van der Waals type. 

This can explain the lubrication properties of graphite and the ease of exfoliation. From this 

consideration, the idea of producing graphene by the exfoliation of graphite aroused. The first 

recognised method employed for the synthesis of graphene was precisely the mechanical 

exfoliation of graphite by scotch tape technique [35]. It has been reported that the force 

necessary to exfoliate graphite and obtain a single-layer of is ~ 300 nN/μm
2
 [102] and this force 

can be overcome by an adhesive tape. In the method employed by Geim and Novoselov, a piece 

of highly oriented pyrolytic graphite (HOPG) was peeled off with a scotch tape. The peeled 

material was then transferred onto a suitable substrate, a substrate of silicon with a certain 

thickness of silicon dioxide. This approach led to the fabrication of graphene films with 

dimensions in the range of ~ 80 μm in length and ~20 μm in width, as shown in Figure 7. 

 

Figure 7: Optical image of graphene sample obtained from mechanical exfoliation of graphite. From ref. [103] reprinted 

with permission from AAAS. 

The mechanical exfoliation of graphite is an inexpensive approach to obtain high quality 

graphene sheets, however a drawback of this technique is the impossibility to obtain a high yield 

required for various investigations and applications. 

2.3.1.2. Chemical Exfoliation 

The idea of obtaining graphene by chemical exfoliation of graphite and graphite oxide is similar 

to the mechanical exfoliation technique. In the chemical exfoliation, in order to weaken the van 
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der Walls forces between the graphene layers and achieve their detachment, intercalating 

compounds, surfactants and chemical functionalization are employed [104] together with 

sonication that helps the exfoliation. The chemical exfoliation of graphitic oxide can be easily 

achieved by sonication in water, due to the presence of the oxygen moieties the interlayer 

distance in GO is larger and this enables the intercalation of water molecules and other 

molecules within the graphene oxide layers [104]. Upon sonication the exfoliation of the 

graphitic oxide is achieved, producing single layer and multilayer of graphene oxide, that results 

dispersible in water [45]. The chemical exfoliation of graphite, compared to the graphite oxide 

one, results more difficult due to the tighter interlayer spacing, to the hydrophobicity of graphene 

sheets that requires the use of surfactants when the exfoliation is performed in water [104]. The 

method proposed by Hernandez of dispersing and sonicating pristine graphite in N-methyl-

pyrrolidone (NMP) appears to provide the best thermodynamic stabilization [104,105].   

2.3.1.3. Synthesis and Reduction of Graphene Oxide 

Graphene can be chemically synthesized from the oxidation of graphite to graphite oxide 

followed by its reduction with different reducing agents [5,41,106–109]. There are different 

methods that can be employed for the oxidation of graphite [41], however the most employed 

one is the Hummers method [110], and in the last years,  this method has been improved [111]. 

Generally, graphite oxide can be obtained mixing graphite with sodium nitrite, sulfuric acid, and 

potassium permanganate. The obtained graphite oxide is then sonicated in order to obtain single and 

few-layers of graphene oxide. The reduction with hydrazine [112], or ascorbic acid [106] or UV-light 

[108] leads then to the synthesis of the reduced graphene oxide.  

 Synthesis of Graphene Quantum Dots 2.3.2.

2.3.2.1. Hydrothermal and Solvothermal Methods 

The most employed methods for the synthesis of GQDs are the hydrothermal and the 

solvothermal cutting of graphene oxide sheets. The hydrothermal cutting of graphene sheets, was 

first reported by Pan in 2010 [55] and the technique was then improved by the same group in 

2012 [99]. Pan and coworkers developed a three-step synthesis of GQDs, where reduction of 

graphene oxide takes place in the first step, followed by a further oxidation of the materials 

obtained. The synthesis of GQDs is obtained after the hydrothermal deoxidization of oxidized 
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sheets synthesized during the second step [99]. The authors pointed out that the temperature at 

which the hydrothermal process takes place, plays a key role in the quality of GQDs synthesized. 

In particular, at low temperature disordered GQDs were obtained [55], while hydrothermal 

treatment at high-temperature led to the production of well-crystallized GQDs showing strong 

green photoluminescence [99]. Blue and green photoluminescent GQDs, where synthesized by 

Zhu and coworkers by a two-step solvothermal process [113]. For the synthesis of GQDs, 

graphene oxide was dispersed in dimethylformamide (DMF) and after sonication, the mixing 

was placed in an autoclave and heated at 200 C for 8h.  

2.3.2.2. Cage-opening of fullerene C60 

Hydrothermal and solvothermal methods belong to the top-down approaches employed for the 

synthesis of GQDs [53]. As mentioned in section 2.1.3, another route for their production is 

trough bottom-up approaches where, atoms or clusters are used as building blocks. Cage-opening 

of fullerenes, belongs to this category of synthetic methods and it has been successfully 

employed for the synthesis of GQDs with well-defined dimensions [54,61]. In particular, since 

fullerenes C60 are employed as starting material, GQDs with average dimensions of ~2-3 nm can 

be obtained [54]. Lu [61] and Chua [54] reported the synthesis of GQDs through a ruthenium 

catalyzed opening of C60 and through a strong oxidation of fullerenes, respectively. The first 

approach requires sophisticated equipment; as a consequence the cage-opening of fullerenes with 

strong oxidation, proposed by Chua is preferable. In their method, Hummers method [110] was 

used to achieve the oxidation and cage-opening of the fullerenes.  

 Synthesis of Graphene Nanowalls 2.3.3.

The main chemical vapor deposition (CVD) approaches employed for the synthesis of GNWs are 

the microwave plasma-enhanced CVD (MWPECVD), the radio-frequency plasma-enhanced 

CVD (rf-PECVD), the hot filament CVD (HFCVD) and the electron beam excited plasma-

enhanced CVD (EBEPECVD). Wu et al, first synthesized the GNWs by MWPECVD employing 

a preheated NiFe-catalyzed substrate in hydrogen plasma and flow gases composed of methane 

(CH4) and hydrogen (H2) [38]. In an another work, the GNWs were obtained without catalyst 

using rf-PECVD assisted by H atom injection and the carbon source gas was made of 

fluorocarbon/hydrogen mixtures (C2F6,CH4, CF4, and CHF3) [68]. Larger production scales of 

the graphene nanowalls have been obtained by HFCVD. In particular, in the work reported by 
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Shang et al, the synthesis of the GNWs is carried out heating a tungsten filament up to 2000-

2200C, which is used to decompose a mixture of hydrocarbons and hydrogen. The 

nanomaterials deposition occurred, at pressure of 1-100 Torr, onto an heated substrate placed at 

~ 5 mm from the filament [114]. Mori and co-workers reported the fabrication of GNWs at lower 

temperatures (570C) by EBEPECVD using a mixture of CH4 and H2 [115]. 

2.4.   Alternative Method for the Synthesis of Graphene-based 

Nanomaterials 

In the previous section, the most employed methods for the synthesis of graphene and graphene-

based nanomaterials have been presented. Except for the mechanical exfoliation of graphite, for 

all the fabrication methods discussed above, the synthesis of graphene and its derivatives is 

achieved by multiple step reactions with strong acids that can be time consuming and harmful for 

the environment and/or involve the use of high pressures and temperatures. Consequently, 

alternative routes for the synthesis of graphene and graphene-based nanomaterials have been 

investigated.  

 Pulsed Laser Ablation 2.4.1.

Pulsed laser ablation technique in the last decades has been successfully employed as a green and 

straightforward technique for the synthesis of different types of nanomaterials (metals, alloys, 

oxides etc.) either in gases or liquid media [116]. Generally, pulsed laser ablation is the process 

of material removal from solid target caused by nano-, pico- and femto-second lasers [117]. The 

product of laser ablation comes directly from the condensation of the plasma plume generated by 

the laser pulse irradiating the surface of the solid target. The ablation mechanism depends on the 

type of material with which the photons are interacting. The ablation mechanisms causing the 

generation of the plasma plume are different for the nanosecond, picosecond and femtosecond 

laser pulses [118]. For the ablation of the nanosecond laser, the material ejection is likely to be 

dominated by thermal processes [118]. Photons will couple into the available electronic or 

vibrational states in the material [119] leading to an electron-electron coupling which results in 

an immediate rise in the electron temperature causing the vaporization of the target. When the 

ablation is induced by ultrashort laser pulses (femtosecond and picosecond), since the pulse 

duration is shorter than the electron- lattice interaction (which is in the order of several 



 

15 

 

picoseconds), the laser energy deposited primarily in the electronic system cannot be transferred 

to the lattice [117]. Consequently, heating, plasma plume formation and material ejection occur 

after the pulse has ended [118]. 

In 1993, Cotton [120] reported the synthesis of colloidal solutions of different metal 

nanoparticles obtained upon laser ablation of pure metal targets submerged in water and other 

solvents. A schematic of the pulsed laser ablation in liquid (PLAL) setup employed by Cotton for 

the synthesis of nanoparticles is shown in Figure 8.  

 

Figure 8: Schematic of the setup employed by Cotton for the synthesis of metal nanoparticles by PLAL. Adapted from 

ref. [120] 

It should be noted that in PLAL, the target, whether a solid or a liquid one, plays a key role in the 

type of nanostructures that can be synthesized [118]. For instance, stable colloids of silver and 

gold nanoparticles can be obtained by ablating silver and gold thin plates in water, respectively 

[121,122]. Moreover, by laser ablation of a graphite target in water and in organic solvents, the 

synthesis of polyynes with 10-16 carbon atoms per chain [123,124] has been achieved.  

2.4.1.1. Graphene from laser exfoliation of graphite 

In 2001 Jeschke [125] reported about the possibility to induce the exfoliation of graphite films by 

femtosecond laser pulses. The theoretical study reported by Jeschke and coworkers, based on 

molecular dynamics simulation, revealed that graphite, due to its layered structure possess two 

different ablation thresholds (Figure 9). The low fluence ablation threshold (0.21 J/cm
2
) being 

below the disruption threshold of the graphite planes leads to the exfoliation of graphite, while at 

higher fluence ablation threshold (0.35 J/cm
2
) bond breaking processes inside the graphite layers 

occur, which lead to the expansion of the structure [125]. 
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Figure 9: (a) high and (b) low fluence ablation thresholds in graphite. Reprinted with permission from ref. [125] by the 

American Physical Society. 

The laser pulse induces strong vibrations of the graphite planes, which lead to collisions of the 

planes, which cause the removal of the planes at the top and at the bottom. This theoretical study 

conducted by Jeschke can be considered as the first model for the exfoliation of graphene 

induced by femtosecond laser ablation. Other theoretical study on the exfoliation of graphite for 

the synthesis of graphene, where then reported in 2008 and 2010 by Carbone [126] and 

Miyamoto [127], respectively. In 2010 Qian et al., reported the synthesis of graphene layers by 

exfoliation of graphite (HOPG) with a nanosecond laser in vacuum [128]. In particular, the 

authors demonstrated that by a proper control of laser fluences different types of carbon 

nanostructures, ranging from amorphous carbon, graphene and thin graphite films can be 

obtained. More recently, Compagnini et al., reported on the synthesis of large sheets of reduced 

graphene oxide (r-GO) by pulsed laser ablation of a graphite target (HOPG) in water using 

pulses from a Nd:YAG laser, with 532 nm as radiation wavelength, 5 nsec pulse duration, and 

operating at 10 Hz repetition rate [129]. Scanning electron miscopy (SEM) and Atomic Force 

microscopy (AFM) images of the laser exfoliated graphene sheets are shown in Figure 10. 
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Figure 10:  (a) low and (b) high magnification SEM images of r-GO layers obtained upon nanosecond laser exfolitiaon of 

HOPG in water; (c) AFM of the detached layer showing a heigth step of 1.56 nm. From ref. [129] © IOP Publishing. 

Reproduced with permission. All rights reserved 

2.4.1.2. Graphene from laser reduction of graphene oxide 

In section 2.3.1.3 it was mentioned that graphene can be obtained upon oxidation of graphite 

followed by its exfoliation and reduction with hydrazine [112], or ascorbic acid [106]. However, 

hydrazine  is toxic and the deoxygenating processes are time consuming and complicated [130]. An 

alternative route, that permits a green and single-step synthesis of graphene is the laser irradiation of 

graphene oxide dispersions reported by Spano` and coworkers[130]. It has been reported that laser 

irradiation of solutions with unfocused laser beam can induce shape and size modification 

[116,131,132]. Spano` demonstrated that upon laser irradiation of graphene oxide dispersion with a 

Nd:YAG laser, with 532 nm as radiation wavelength, 5 nsec pulse duration, and operating at 10 Hz 

repetition rate, it is possible to achieve  the reduction of GO. Moreover, it was shown that the degree 
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of the graphene oxide reduction could be tuned by the time of exposure of the graphene oxide 

dispersions to the laser beam. 

 GNWs by Electric Field-Assisted Laser ablation of Carbon in 2.4.2.

Water 

The CVD methods described in section 2.3.3 are bottom-up approaches, which employ CH4, 

C2H2, C2F6 as building blocks for the growth of the graphene nanowalls. An alternative eco-

friendly and time effective method for the synthesis of these nanomaterials was developed by 

Compagnini and co-workers [69]. The GNWs were synthesized from the electrophoretic 

deposition of polyynes produced by the laser ablation of a graphite target submerged in water. 

The polyynes were used as the building blocks for the growth of the GNWs. In particular, once 

the polyynes are transported to the cathode by the electric field, due to their tendency to undergo 

crosslink reactions [73,74] they start to form more stable sp
2
 carbon structure, which grow 

perpendicular to the electrode’s surface leading to the formation of the GNWs. 

2.5.  Semiconductor nanomaterials: Titanium Dioxide and Zinc Oxide  

Titanium dioxide (TiO2) and zinc oxide (ZnO) materials are wide bandgap semiconductors, 

which due to their chemical stability, non-toxicity have been widely employed in photocatalysis, 

photovoltaics and memristors devices [18–21,133–137]. In the following paragraphs it will be 

discussed about the structure, the properties and the synthesis methods of these materials. 

 TiO2 2.5.1.

TiO2 is an n-type semiconductor and in nature exists in three crystalline polymorphs, which are 

anatase, brookite and rutile. Due to the differences in their lattice structures [138], TiO2 

polymorphs possess different bandgap values. In particular, anatase and brookite have a bandgap 

of 3.2 eV and 2.96 eV, respectively, while rutile’s bandgap is 3.0 eV [139]. Anatase has a greater 

photocatalytic activity compared to rutile; therefore, it is the most used polymorph for 

photocatalysis. In the past years, it has been demonstrated that a higher photocatalytic activity is 

reached when anatase is mixed with rutile in certain proportions, in particular P25 Aeroxide
TM

, 

which is made of 70% of anatase and 30% of rutile, is an example [138,139]. 
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 ZnO 2.5.2.

ZnO is a wide gap semiconductor (3.7 eV) and it has three main crystal structures: hexagonal 

wurtzite, zinc-blende and cubic rock salt. The latest structure is not very common since it is 

stable at pressure as high as 2GPa. Most of the ZnO structures possess the hexagonal wurtzite 

structure, since it is the most thermodynamically stable structure under ambient conditions [140]. 

ZnO structures have outstanding mechanical, electrical and optical properties [141]. In particular, 

ZnO materials are very sensitive to UV light and they are good candidates for light emitting 

diodes, photovoltaic and UV photodetectors applications [19–24]. Depending on the synthetic 

approach, ZnO materials with different morphologies can be obtained. Examples of ZnO 

structures are nanorods, nanoflowers, nanoplates, nanotubes and so on [140]. 

2.6.  Synthesis of TiO2 

TiO2 nanomaterials can be obtained by several methods and depending on the synthetic methods 

and experimental conditions it is possible to obtain TiO2 nanoparticles, nanowires, nanorods and 

so on. In the following sections, the most employed methods for their production will be 

described. 

 Hydrothermal Synthesis 2.6.1.

TiO2 nanoparticles and nanowires can be obtained by the hydrothermal method [18,142,143]. In 

particular, for the synthesis of anatase and rutile nanoparticles, Cheng and coworkers employed 

titanium tetrachloride (TiCl4) as stating material in an alkaline solution [142]. It was reported 

that, depending on the TiCl4 concentration, pH of the solution and temperature TiO2 

nanoparticles with different phases can be produced. In particular, at higher values of pH anatase 

particles were obtained, while higher acidity is in favor of rutile ones. The temperature during 

the synthesis influences the size of the particles, it was reported that grain size decreases 

lowering the temperature, however agglomeration of the grains occurs [142].  

TiO2 nanowires can be grown via hydrothermal route, on titanium foil followed by heat 

treatment as reported by Hu and coworkers [143]. The synthesis was performed in an autoclave 

with a solution of sodium hydroxide (NaOH) and other organic solvents. The products obtained 

were titanate nanowires, which after heat treatment at 700 C were transformed into TiO2 anatase 

phase. 
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 Sol-gel Method 2.6.2.

The sol-gel method is employed for the synthesis of TiO2 nanoparticles or films. In a typical sol-

gel synthesis of TiO2, an alkoxide titanium precursor in an alcohol solvent and water is 

hydrolyzed to titanium hydroxide. The obtained sol is transformed in a solid gel by 

polymerization reactions, which lead to the formation of Ti-O-Ti condensed bridge [28,144–

146]. TiO2 nanoparticles with different phase can be obtained varying the calcination 

temperature. For example in the work presented by Azizi and coworkers, it was reported that at a 

calcination of 400 C anatase nanoparticles were obtained, at 500 C a mixture of anatase and 

rutile particles were synthesized, while increasing the temperature the nanoparticles were in the 

rutile phase [145].  

 Laser Ablation of Titanium Target 2.6.3.

Anatase TiO2 nanoparticles can be obtained by pulsed laser ablation in water of a titanium metal 

plate. In the study performed by Liang and coworkers, spherical anatase nanoparticles with an 

average diameter of 3 nm were obtained upon ablation of a titanium target in water with the third 

harmonic (355 nm) of Nd:YAG laser [147]. The experiments were performed also in aqueous 

solutions of ionic surfactant in order to improve the stability of the colloidal suspensions. 

Anatase and rutile nanoparticles were obtained through laser ablation of metal titanium in water, 

using a continuous wave (CW) ytterbium doped fiber laser (Yb:YAG) operating at 1075 nm 

wavelength [148]. It was found that most of the nanoparticles were in the rutile phase, this 

because the particles ablated with CW laser are subjected to higher temperature, which promotes 

a phase transformation from the metastable anatase phase to the more stable rutile [148]. In 

another work, it was demonstrated that the crystalline phase of TiO2 nanoparticles can be 

controlled varying the focusing conditions and the ablation fluence during the PLA [149]. In 

particular, rutile nanoparticles were obtained at high fluence at focus, while under defocused 

condition and at lower fluence the nanoparticles were in anatase phase [149]. 

2.7.  Synthesis of ZnO 

ZnO materials can occur in one (1D), two (2D) and three (3D) dimensional structures. Examples 

of 1D ZnO structures are nanorods, nanowires, while nanoplates and nanopellets are example of 

2D ZnO nanomaterials. The most common 3D ZnO structures are the ZnO nanoflowers 
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[140,150]. As aforementioned, depending on the synthetic conditions ZnO structures with the 

above different dimensionality can be obtained.  

 Hydrothermal Synthesis 2.7.1.

The hydrothermal method allows the synthesis of ZnO structures with different morphologies 

[151]. ZnO nanoparticles have been synthesised after placing an aqueous solution of zinc nitrate 

hexahydrate [Zn(NO3)2·6H2O], at pH 7.5, in autoclave at 120C and post-annealing at 80C 

[152]. A two-step hydrothermal route has been employed for the growth of ZnO rods in a neutral 

solution of zinc nitrate and methamine. In particular, in the first step of the synthesis a ZnO film 

was RF sputter on an ITO substrate, followed by the hydrothermal growth of the rods, with a 

wurtzite structure [153]. Regarding nanoflowers ZnO structures, it was reported that the 

hydrothermal synthesis using aqueous solutions of zinc acetate dehydrate and sodium hydroxide 

at 90C led to flower-like structures composed of hexagonal ZnO rods [151]. 

 Electrochemical Method 2.7.2.

ZnO rods and ZnO films have been synthesized by electrochemical routes. Several researchers 

have reported the synthesis of ZnO rods via electrophoretic route employing ZnO seed layer 

obtained by radio frequency magnetron sputtering systems or by hydrothermal method [154–

157]. For instance, Park and coworkers employed an hydrothermal-electrochemical method for 

the growth of the ZnO rods [155,158]. The ZnO seed layer for the growth of the nanorods was 

deposited by atomic layer deposition and it served as the working electrode. A platinum sheet 

was employed as counter electrode, while the reference electrode was a silver–silver chloride 

(Ag/AgCl) electrode. The electrochemical growth of the nanorods was achieved placing the three 

electrodes in a solution of zinc nitrate at 90C in autoclave [158]. Similarly, Miao et al. reported 

the synthesis of ZnO films by electrophoretic deposition of ZnO colloidal suspensions. The 

authors performed the electrophoretic deposition of the ZnO nanoparticles employing a platinum 

sheet as the cathode, and ITO conductive glass as anode. It was reported the morphology and the 

microstructure of the deposited films and the possibility of having crack-free, and smooth films 

depends on several parameters, such as applied voltage, deposition time and suspension 

concentration [154].  
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2.8.  Summary 

From the above literature review, it is clear that graphene-based nanomaterials and 

semiconductors materials such as TiO2 and ZnO are promising materials for the fabrication of 

electronic devices, devices for bioimaging, photovoltaic applications and UV photodetectors. 

The main synthetic methods of these nanomaterials have been presented, together with the 

description of alternative and less common methods such as the laser ablation and the 

electrochemical methods. The advantages of these alternative methods compared to the 

conventional fabrication processes are the possibility to achieve the synthesis and/or 

modification of different type of nanomaterials in an eco-friendly and time-effective way.  

The following goals have been identified to be reached in the present study:  

1) Experimental study of pulsed laser ablation of graphene oxide dispersions (Chapter 

4) and TiO2 nanoparticles (Chapter 5) as technique for their structural modification. 

The fabrication mechanisms will be studied in order to gain a better understanding 

how the processes can be controlled to induce specific structural modification of the 

materials to be employed in different applications. In particular, the laser modified 

graphene nanomaterials will be employed for the preparation of a conductive hybrid 

ink, when mixed with silver nanoparticles (Chapter 4). In Chapter 5, it will be shown 

that laser ablation can be used to induce and control the phase transformation of 

TiO2 nanoparticles, which can be used in photocatalysis. The overall study relies on 

the sustainability of the laser ablation technique, since it involves the use of water as 

medium where to conduct modification of the nanomaterials involved, and on its 

time effectiveness, since PLA enables the synthesis/modification of nanomaterials in 

shorter time than other chemical approaches, like hydrothermal processes. 

2) Experimental study on the synthesis of various materials by electrochemical process 

for the fabrication of memory devices. The work will focus on studying the resistive 

switching mechanisms of the devices fabricated and how the devices’ electrical 

performances can be improved by engineering their chemical composition. In 

Chapter 6 will be discussed the resistive switching behaviour of carbon structures 

obtained by electrophoretic deposition and the improvement of their electrical 

performances by electrochemical oxidation. Chapter 7 investigates the electrical 
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performances, under ultraviolet (UV) light exposure, of ZnO rods produced by 

electrochemical process. This is the first study on the UV induced multilevel current 

amplification of ZnO rods memory devices. 
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 Characterization Methodologies Chapter 3.

3.1.  Optical Microscope 

Optical microscope has been a cheap and non-destructive technique for the detection of single 

layer and multilayer graphene sheets deposited on a suitable substrate. It should be noticed that 

the identification of graphene layers by an optical microscope is possible only due to the 

different optical contrast between the graphene and the substrate, that arises from the interference 

of the reflected light beams at the air-to-graphene, graphene-to-dielectric, and (in the case of thin 

dielectric films) dielectric-to-substrate interfaces [159]. Consequently, a good identification of 

graphene layers can be achieved when graphene is deposited onto a silicon wafer with a layer of 

silicon dioxide (SiO2) 300 nm thick [160]. Moreover,  Blake demonstrated that not only the 

thickness of the substrate plays a key role in the identification of the graphene, but also the 

incident light [161].  

 

Figure 11:  (a) Graphene layers deposited on 300 nm SiO2 imaged with white light, (b) green light and (c) graphene 

sample on 200 nm SiO2 imaged with white light. The top and bottom panels represents the flakes shown in (a) and (c) 

illuminated with different bandpass filters. Reprinted from ref. [161], with the permission of AIP Publishing. 
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Indeed, when graphene layers are deposited onto 200 nm of SiO2 and imaged by white light, 

their detection was not possible, while when the same samples were imaged with blue light, 

graphene samples were visible. 

3.2. Raman Spectroscopy 

 Graphene-based materials 3.2.1.

Raman spectroscopy is the most employed method for the characterization of carbon based 

materials. In particular, carbon-based nanomaterials possess unique Raman features, such as 

peak position, intensity and shape of the bands. From an accurate analysis of these characteristics 

it is possible to distinguish and characterize the different types of carbon allotropes [162–164]. 

Investigation of graphene by Raman spectroscopy permits the determination of the number of 

layers that compose the graphene samples and the study of defects present within the graphene 

structure [165–167]. In Figure 12a is displayed the typical Raman spectrum of a single defect 

free layer of graphene, and it is possible to notice that it is characterized by the presence of two 

main bands: the G band located at 1580 cm
-1

 and the 2D band at 2700 cm
-1

. The presence of 

defects within the graphene structure can be monitored by the presence of a third band, the D 

peak at 1350 cm
-1

. From the analysis of the intensity and shape of these bands it is possible to 

have information about the number of layers of graphene in the sample and the quality of 

graphene. Ferrari and coworkers [167] show that the evolution of the shape of the 2D band with 

the thickness (number of layers) of the graphene samples can be employed for the determination 

of the number of graphene layers. In particular, it was observed that a single layer of graphene is 

characterized by a sharp 2D band, with intensity higher than the G band. The Raman spectrum of 

a bilayer graphene is recognized by a broadening of the 2D band with intensity comparable to the 

G band. Upon increase of the number of graphene layers in the sample investigate, the Raman 

spectrum resembles the Raman spectrum of graphite. In Figure 12a the Raman spectra of 

graphite and graphene is shown, while in Figure 12b the evolution of the shape of the 2D band 

with the increase of the number of layers is displayed [167]. 
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Figure 12: (a) Raman spectra of graphite and graphene; (b) evolution of the 2D increasing the number of graphene layers. 

Adapted from ref. [167]. 

The Raman spectrum of GO differs from the one of graphene. In particular, in the Raman spectra 

of GO, the intensities of the G band at 1600 cm
-1

 and the D band at 1367 cm
-1

, are higher than 

the 2D band, as shown in Figure 13. Moreover, due to the presence of epoxy and hydroxyl 

groups a broadening of the G band is detected [168].  The 2D band appears at 2730 cm
-1

 and the 

other two combinational modes D+G at 2964 cm
-1

 and the 2G band at 3200cm
-1

 are visible. 

 

Figure 13: Raman spectrum of graphene oxide (GO). Adapted from ref. [169] open access article distributed under the 

Creative Commons CC-BY License http://creativecommons.org/ 

  

http://creativecommons.org/
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 TiO2 3.2.2.

In section 2.5.1, it has been discussed that three crystalline structures are possible for titanium 

dioxide: anatase, rutile and brookite. Raman spectroscopy, allows to distinguish between these 

different phases, since each of them has a characteristic Raman spectrum [139,170–172]. In 

particular, anatase is characterized by four Raman active modes at 144 cm
-1

 corresponding to Eg, 

399 cm
-1

 (B1g), 513 cm
-1

 (A1g) and the peak at 639 cm
-1

 corresponding to Eg. Rutile phase 

possesses three peaks at 143 cm
-1

 (B1g), 447 cm
-1

 (Eg) and the peak at 612 cm
-1

 (A1g), while  

brookite has 36 Raman active modes (9 A1g + 9 B1g + 9 B2g + 9 B3g) [171–174]. It has been 

reported that, Raman spectroscopy of titanium dioxide can be employed for the monitoring of the 

phase transformation of TiO2 and its stoichiometry upon annealing or laser treatment, since the 

Raman active Eg modes are sensitive to oxygen deficiency, which will lead to a shift and 

broadening of these lines [139,170–172,174,175].  

 ZnO 3.2.3.

The Raman active modes of ZnO are A1 + 2E2 + E1, where the modes A1 and E1 have different 

frequencies for the transvers-optical (TO) and longitudinal-optical phonons (LO). The E2 mode 

has two frequencies; one associated with the oxygen atoms E2(high), while the other one, 

E2(low), is associated with the Zn sublattice [176]. The frequencies of these Raman active 

phonon modes for ZnO bulk are: 102 cm
-1

 corresponding to the E2 (low) mode, 379 cm
-1

 to A1 

(TO), 410 cm
-1

 to E1 (TO), 439 cm
-1

 to E2 (high), 574 cm
-1

 corresponds to the A1 (LO) and the 

591 cm
-1

 to E1 (LO). It has been reported that these frequencies modes shift when ZnO 

nanostructures are analyzed and the position of the peaks varies depending on their morphology 

and size [176–178]. 

3.3. Atomic Force Microscopy (AFM) 

The number of layer and the morphology of graphene samples can be investigated by Atomic 

Force Microscopy (AFM). In graphene samples, the number of graphene layers is determined by 

the height profile of the samples and considering that the interlayer distance in graphite is 0.35 

nm. For the determination of number of layers in graphene oxide samples, it should be 

considered that the interlayer distance is greater than in graphene, due to the presence of oxygen 

groups; interlayer distance values of 0.75 and 1 nm have been reported for GO[89].  
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3.4.  Scanning Electron Microscopy (SEM) 

The morphology of graphene and graphene oxide can be studied by SEM. This technique can be 

employed as well for the determination of the number of layers. In particular, Hiura [179] 

reported a linear relationship between the number of graphene layers and the secondary electron 

intensity from the sample investigated. 

3.5. Transmission Electron Microscopy (TEM) 

 Graphene-based nanomaterials 3.5.1.

TEM can be employed to either observe morphological features in graphene and graphene-based 

nanomaterials or to determine the number of graphene layers. This because, the edges of the 

graphene films have the tendency to fold back, and this allow a cross sectional view of the films. 

These edges can be observed by TEM leading to an accurate calculation of the number of layers at 

multiple locations on the films. 

 

Figure 14: High-resolution TEM showing single-, three- , and four-layer graphene sheets. Adapted with permission from 

ref. [180] Copyright 2017 American Chemical Society. 

Previous TEM studies conducted on graphene, have reported about the possibility of 

characterizing structural defects, in terms of mono-or multi-vacancies within the graphene plane, 

as shown in Figure 15 [181–183]. 
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Figure 15: Defects detected in graphene by TEM. Adapted with permission from ref.[183] Copyright 2017 American 

Chemical Society. 

 TiO2 3.5.2.

The crystalline structure analysis of TiO2 can be achieved by high resolution TEM (HRTEM). In 

particular, comparing the values of the interplanar distances obtained from the analysis of the 

HRTEM images with the crystallographic data of anatase, rutile and brookite it is possible to 

identify the different TiO2 phases [148]. As an example, it has been reported that rutile 

nanoparticles have a d-spacing of 0.32 nm along the {110} family planes, while for the anatase 

ones is 0.35 nm along {101} [139].  

 ZnO 3.5.3.

The crystallinity of ZnO nanostructures, the growth direction of ZnO rods and the particles size 

con be investigated by TEM [184–186]. The crystallinity of the samples is confirmed by a d-

spacing of 0.26  0.05 nm between adjacent lattice planes, which corresponds to the distance 

between (002) planes in the ZnO wurtzite structure. This lattice spacing confirms as well the 

[0001] as the preferential growth direction of ZnO rods and nanowires [185,187]. 
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 Single-step synthesis of graphene quantum dots by femtosecond Chapter 4.

laser ablation of graphene oxide dispersions
[250]

 

Overview 

In this chapter, we investigated the femtosecond laser ablation of graphene oxide (GO) 

dispersions, as a technique for the straightforward and environmentally friendly synthesis of 

graphene quantum dots (GQDs). With proper control of laser ablation parameters, such as 

ablation time and laser power, it is possible to produce GQDs with average sizes of 2-5 nm, 

emitting a blue luminescence at 410 nm. We tested the feasibility of the synthesized GQDs as 

materials for electronic devices by aerosol-jet printing of an ink that is a mixture of the water 

dispersion of laser synthesized GQDs and silver nanoparticle dispersion, which resulted in lower 

resistivity of the final printed patterns. Preliminary results showed that femtosecond laser 

synthesized GQDs can be mixed with silver nanoparticles dispersion to fabricate a hybrid 

material, which can be employed in printing electronic devices by either printing patterns that are 

more conductive and/or reducing costs of the ink by decreasing the concentration of silver 

nanoparticles (Ag NPs) in the ink.  

4.1.  Introduction 

Graphene, a two-dimensional (2D) sheet of sp
2
-hybridized carbon atoms, was discovered in 2004 

[35] and since then several approaches have been developed for its synthesis [180]-[188]. The 

increasing interest in graphene is to be attributed to its outstanding properties that render it one of 

the most promising materials for many applications [2], [3]. It was demonstrated by several 

research groups that modification of the graphene structure can improve its properties and lead to 

the production of new types of graphene-based materials, which can be employed for the 

manufacture of nanoscale transistors [4], molecular sensors [5], fuel cells [6], solar cells [7], 

electrodes for organic light-emitting diodes (OLEDs) [8], water treatment devices [10],[9]  and 

conductive adhesives [11]. Among the many graphene-based materials that can be produced, 

graphene quantum dots (GQDs) which are zero-dimensional (0D) nanomaterials, have recently 

drawn the attention of many research groups for their outstanding properties such as chemical 

stability, strong luminescence and biocompatibility [47,48]. All these characteristics render 

GQDs suitable nanomaterials for electronic devices [49], devices for bioimaging and 
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photovoltaic applications [50–52]. Therefore, several methods for the production of GQDs have 

been developed so far with the goal of  producing electronic devices, such as transistors, 

supercapacitors, and sensors [49]. The methodologies utilised in the fabrication of GQDs can be 

categorized top-down or bottom up approaches [53]. GQDs can be considered as small fragments 

of graphene sheets with dimensions less than 30 nm [54] so top-down approaches have involved 

the hydrothermal and solvothermal cutting of graphene oxide (GO) [55,56] sheets, strong acid-

assisted cleavage of carbon nanomaterials [189] or are derived from the photo-Fenton reaction of 

GO [57]. The resulting GQDs due to the presence of remaining oxygen containing groups are 

dispersible in water and show different colours of  luminescence as a function of their sizes [58]. 

Researchers who reported the synthesis of GQDs through bottom-up approaches involved either 

organic synthesis by oxidation of polyphenylene dendritic precursors [59] or obtained from the 

opening of fullerenes C60 [54],[61]. Many GQDs synthesis methods have been developed, 

however these methods are often time consuming, requiring more than 10 hours and multiple 

steps [55,189,190]. Additionally, these procedures are not environmentally friendly processes 

due to the use of strong acids, organic solvents, and high temperatures and pressures; a direct, 

simple and green process for the production of GQDs is still absent. 

The novelty of this study relies on the development of an ecofriendly and straightforward process 

for the sole production of GQDs by femtosecond (fs) laser ablation of GO dispersions in water. 

Compared to the methods cited above, our process is environmentally friendly, since the 

synthesis is performed in water without the use of any chemicals. Furthermore, the ablation 

process is not time consuming, namely the production of GQDs is achieved in a single-step 

within a time window ranging from 15 to 60 minutes, depending on the laser parameters 

employed.  Generally speaking, pulsed laser ablation in liquids (PLAL) is a powerful technique 

that permits the synthesis of different nanostructures. For example, stable colloids of silver and 

gold nanoparticles are obtained by ablating silver and gold thin plates in water, respectively 

[121], [191]. It should be stressed that the nature of the target, whether a solid or a liquid one, 

plays a key role in the type of nanostructures  synthesized [118]. In literature, several groups 

successfully demonstrated the synthesis of carbon quantum dots (CQDs) by nanosecond laser 

ablation of nano-carbon in organic solvents [192], by nanosecond and femtosecond laser ablation 

of graphite powders dispersed in polyethylene glycol [193–195]. More recently luminescence 
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CQDs were synthesized upon laser irradiation of a solution of toluene, as carbon precursor [196] 

and by laser ablation in imidazolium ionic liquids [197] 

In our previous work [198], we proved that upon fs laser ablation of a graphite target (HOPG), it 

is possible to obtain porous graphene sheets as primary products and GQDs as secondary 

products. However, it was not possible to have reliable control over the GQDs production or 

their separation from porous graphene.  

In this study, we report the optimization of the developed process for the GQDs production 

employing GO dispersions as a starting material. To our knowledge, this is the first time that 

dispersions of GO are ablated with a fs laser for the primary synthesis of GQDs. Recently, only 

one other group has reported about the possibility of synthesizing different nanostructures by 

nanosecond laser ablation of GO dispersions as  a starting material [199]. It is well-known 

[129,198] that the laser pulse duration employed for PLAL, such as femtosecond, picosecond 

and nanosecond lasers, plays a key role in the type of nanomaterials synthesized due to the 

different ablation mechanisms [200].  

Additionally, we have demonstrated that with the optimization of laser parameters, such as 

ablation power and ablation time it is possible to achieve the synthesis of high quality GQDs in a 

simple manner. These GQDs were implemented as a conductive ink for printable circuits and we 

have shown that the laser treated GQDs dispersions mixed with silver nanoparticles (AgNPs) can 

be used, without any further purification, as a highly conductive and cost-effective ink for 

printed electronic devices compared to traditional AgNPs. To date, some reports show attempts 

towards developing more cost effective inks for printed electronics through decreasing the 

concentration of AgNPs by adding graphene sheets [12–14,201]. Graphene can enhance the 

charge transfer in AgNPs printed patterns or increase their conductivity [13,201]. Therefore, the 

addition of the laser synthesized water-based GQDs dispersion to AgNPs ink can result in 

cheaper or more conductive printable inks. 

4.2.  Experimental 

 GQDs synthesis 4.2.1.

GO dispersion with a concentration of 500 mg/L in deionized water was purchased from 

Graphene Supermarket supplier. The concentration of the dispersions employed was 10 mg L
-1

 

and was obtained by dilution of the purchased dispersion with deionized water and it was 
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employed as received without any further modification. The femtosecond laser ablation 

experiments were achieved employing a Ti-sapphire laser (Coherent, Inc.) with wavelength of 

800 nm, repetition rate of 1 kHz and pulse duration of 35 fs with Gaussian beam distribution. The 

experiments were carried out at two different laser powers: 1.3 W (fluence = 25.87 J/cm
2
) and 

2.4 W (fluence = 47.77 J/cm
2
). In our experimental setup a fixed volume of GO 10 mg L

-1
 

dispersion was placed in a beaker and the laser ablation was performed from the top in order to 

avoid laser reflections through the glass walls. A scheme of the experimental setup is shown in 

Figure 16.  

 

Figure 16:  Picture of the laser ablation setup. Reproduced from ref. [202]  by permission of The Royal Society of 

Chemistry 

The laser beam was focused inside the dispersion at 5 millimeter from the liquid-air interface, 

and a magnetic stirrer was used to maintain a constant agitation of the dispersion during each 

experiment. The stirrer was kept far from the area of the focus beam in order to avoid the 

ablation of the magnetic stirrer, due to reflections. The GO dispersions, for each laser power 

chosen, were ablated at different times, 5, 15, 30 and 60 minutes. For each ablation time a new 

dispersion of GO 10 mg L
-1

 was employed to avoid a change of the concentration of the 

dispersion that could be caused by removal of the aliquots during the experiments.  

 Separation of the GQDs  4.2.2.

The GQDs were separated from the reduced GO sheets through dialysis. In particular, a cellulose 

ester dialysis tube (Spectrum Labs Biotech CE Dialysis, 10 mm flat-width) with a Molecular 

Weight Cut-Off (MWCO) of 50kD was used. A 12 mm weighted dialysis tubing closure was 

clipped onto the bottom end of the dialysis tube A 1 mL solution containing laser processed GO 
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sheets with GQDs were pipetted into the dialysis tube and the remaining end was clipped with a 

non-weighted closure. The dialysis bag was placed in a beaker containing 100 mL of ultrapure 

water.  The solutions were dialysed for 24 hours under magnetic stirring, in which GQDs diffuse 

out of the dialysis membrane into the bulk solution while GO sheets are retained in the bag. The 

GQDs solutions outside the dialysed bags were used for the TEM analysis and quantum yield 

efficiency measurements. 

 Preparation of the hybrid ink and of the hybrid ink printed 4.2.3.

patterns  

In order to develop the GQDs@AgNP ink compatible with an aerosol-jet printing system, a 

Cabot AgNP (45-55 wt%.) solution (Cabot Superior Micro Powders in ethylene glycol 

(C2H4(OH)2) and other compatible alcohols, Albuquerque, USA) was mixed with GQDs 

dispersion obtained after 30 min of laser ablation, without any further treatment, in a volume 

ratio of 1:3. The ink was then printed using the aerosol-jet printing system. To print 

GQDs@AgNP patterns with the width around 45 µm, sheath gas flow rate, atomizer flow rate, 

and ultrasonic atomizer power in the aerosol-jet printer were kept fixed at 50 ccm, 15 ccm, and 

46 V, respectively. The patterns were printed with a speed of 0.2 mm/s. After printing the 

patterns with 4 deposition layers, the samples were left in the oven at temperatures of 180°C for 

30 min in order to sinter the AgNPs and remove all the solvents from the ink. 

 Temperature profile simulation method  4.2.4.

A two temperature model was employed to model the electronic and atomic temperature of the 

water molecules during laser irradiation and after the laser pulse until these two temperatures 

reach equilibrium conditions.  

For this purpose, the simulation domain was proposed as a 10 m ×10 m ×10 m cube. At the 

center of the simulation domain, another 300 nm × 300 nm × 300 nm cube was designed for laser 

irradiation. The central cube was divided to a 1×10
4 

cubic mesh.  The initial time step of this 

simulation was set to be one femtosecond with defined boundary conditions, in which the 

electronic and atomic temperatures of the outer surface of simulation domains were kept constant 

at 20C during simulation. The energy of laser was homogenously distributed throughout the 

central meshed cube for 35 femtosecond. To find the temperature evolution, the governing 
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equations for this simulation (Equations 1 and 2) were simultaneously solved by finite element 

method and the time evolution of the electronic and atomic temperatures was calculated.  

𝐶𝑒(𝑇)
𝜕

𝜕𝑡
𝑇𝑒(𝒓, 𝑡) = ∇ ∙ (𝑘𝑒∇𝑇𝑒(𝒓, 𝑡)) − 𝑔(𝑇𝑒(𝒓, 𝑡) − 𝑇𝐴(𝒓, 𝑡)) + 𝑆(𝒓, 𝑡)     (1) 

𝐶𝐴(𝑇)
𝜕

𝜕𝑡
𝑇𝐴(𝒓, 𝑡) = 𝑘𝐴∇

2𝑇𝐴(𝒓, 𝑡) − 𝑔(𝑇𝐴(𝒓, 𝑡) − 𝑇𝑒(𝒓, 𝑡))                            (2) 

A specific term has been added to these two couple heat transfer equations to model energy 

transfer from electrons to atoms. In Equations (1) and (2), r is position and t is time, 𝑇𝑒 and 𝑇𝐴  

are electronic and atomic temperatures, 𝐶𝑒 and 𝐶𝐴 are electronic and atomic heat capacity, 𝑘𝑒 and 

𝑘𝐴 are electronic and atomic heat transfer coefficients,  𝑆(𝒓, 𝑡)  is energy source, and g is the 

electron-phonon interaction coefficient. 𝑆(𝒓, 𝑡) is considered a uniform distribution of energy 

and has a user-defined efficiency for the laser pulse absorption in a medium, in this case, water. 

The atomic parameters are available from literature [203], while the electronic ones are 

estimated. In this study, we assumed that 𝐶𝑒 =100×𝑇𝑒 (𝐽𝑚
−3𝑘−1),  𝑘𝑒=𝑘𝐴𝑇𝑒/𝑇𝐴 , and g=1×10

16
 

(𝑊𝑚−3𝐾−1)[204]. The parameters employed for the two-temperature model heat transfer 

equations are listed in Table 1. 

Table 1: Parameters of two-temperature model heat transfer equation. Reproduced from ref. [202]  by permission of The 

Royal Society of Chemistry 

 

 Instrumentation 4.2.5.

For the SEM, AFM, XPS and Raman characterizations, drops of GO and laser treated 

dispersions were drop casted onto a substrate of silicon with a layer of SiO2 ~300 nm in 

thickness. SEM analyses have been performed using a ZEISS LEO 1550 FE-SEM at an 

accelerating voltage of 5 kV. The GO and laser treated dispersions morphology was investigated 
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with an atomic force microscope (Parks system NSOM model). X-ray photoelectron 

spectroscopy (XPS) analysis was carried out using a multi-technique ultra- high vacuum imaging 

XPS microprobe spectrometer (Thermo VG Scientific ESCALab 250) with a monochromatic Al-

Ka 1486.6 eV X-ray source. The spectrometer was calibrated by Au 4f7/2 (binding energy of 

84.0 eV) with respect to the Fermi level. The chamber vacuum level was maintained below 2x10
-

10
 Torr.  Raman spectra were measured using a Renishaw micro-Raman spectrometer with a 

He/Ne laser at an excitation wavelength of 632.8 nm. HRTEM observation was conducted using 

a JEOL 2010F at the Canadian Centre for Electron Microscopy (Hamilton, Ontario, Canada).  

TEM samples were prepared by drop casting the dispersions onto lacey carbon grids and holey 

carbon copper grids (dialyzed solutions). Photoluminescence analyses were carried with a Carry 

Eclipse Instrument. The dispersions were scanned with different excitation wavelength from 260 

nm to 400 nm in emission mode. The hybrid ink GQDs@AgNP was printed with an aerosol-jet 

printing system (Aerosol Jet technology, Optomec
® 

Inc., Albuquerque, USA), and the printed 

patterns were heat treated in an oven (1100 Box Furnace, Lindberg/Blue M, Asheville, USA). A 

two-point probe station (M150 Measurement Platform, Cascade Microtech®, Beaverton, USA) 

and an atomic force microscopy (AFM) (Dimension 3100 AFM, Nanoscope Software, Veeco 

Instruments Inc., Plainview, NY, USA) were used to measure resistance and thickness of the 

printed patterns, respectively. 

 Size Distribution Analysis 4.2.6.

Size distribution analysis was conducted using TEM images and particle count was conducted on 

ImageJ on a manual basis. The raw data was processed and a range of values were automatically 

binned – that is, the entire range  of values was converted into specific intervals – using 

OriginPro 8 software, which automatically counts how many values fall into the interval. A 

Gaussian distribution was fitted and the mean (𝒙̅𝒔𝒕𝒅), standard deviation (𝝈𝒔𝒕𝒅), and coefficient 

of determination (R
2
) was obtained. The mean (𝒙̅𝒂𝒃𝒔) and mean absolute deviation (𝝈𝒂𝒃𝒔) was 

also determined using the raw distribution data. The absolute values and Gaussian fit were 

tabulated in Table 2. All values reported in the discussion refer to the values obtained from the 

Gaussian fit; the absolute values from the raw distribution were calculated for reference. 
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Table 2: Absolute and Gaussian fit values for GQDs obtained at 1.3 W and 2.4W at four ablation time points: 5, 15, 30, 

and 60 minutes. Reproduced from ref. [202]  by permission of The Royal Society of Chemistry 

 

*𝑥̅𝑎𝑏𝑠 is the mean, 𝜎𝑎𝑏𝑠 is the mean absolute deviation, 𝑥̅𝑠𝑡𝑑   is the mean of the Gaussian fit, 𝜎𝑠𝑡𝑑 is the standard 

deviation, and R
2
 is the coefficient of determination  

 Quantum Yield Measurements  4.2.7.

Anthracene in ethanol (QY 30%) was chosen as the reference standard. The quantum yield of the 

dialyzed GQDs dispersions obtained at different laser ablation time was calculated according to 

Equation 3 [205]: 

Ф = Ф𝑠𝑡(𝐼/𝐼𝑠𝑡)𝑥(𝜂
2/𝜂𝑠𝑡

2 )𝑥(𝐴𝑠𝑡/𝐴)     (3) 

Where Φ is the quantum yield, I is the measured integrated emission intensity, η is the refractive 

index of the solvent (1.36 for anthracene and 1.33 for GQDs in water) and A is the optical 

density. The subscript “st” was used to indicate the reference standard with a known quantum 

yield. The excitation wavelength was 300 nm.  

 Calculation of the resistivity of the printed patterns  4.2.8.

The resistivity of the printed GQDs@AgNP and AgNP patterns was calculated according to the 

Equation (4): 

R=ρL/A         (4) 

Where ρ is the resistivity, L is the length which is the distance between the probe tips, R is the 

resistance measured by a two-probe station and A is area which is given by the width multiplied 

by the thickness of the patterns measured by AFM. 
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4.3.  Results and Discussion 

 Morphology of fs laser processed GO dispersions at low power 4.3.1.

Dispersions of GO in water were ablated with a fs laser at different ablation times and laser 

power to study how these parameters effect the type of materials obtained and consequently to 

optimize the process for the synthesis of GQDs. The experiments were performed in such a way 

that after the dispersions were ablated for the established time, a certain volume of the laser 

treated dispersions was collected for further characterization. The morphology and structure of 

the initial GO dispersion were investigated prior to the laser ablation by atomic force microscopy 

(AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-

VIS spectroscopy and X-ray photoelectron spectroscopy (XPS), in order to have a clear 

understanding of the modifications induced upon laser treatment. In Figure 17(a-b), the 

topography of GO sheets together with the height profile, Figure 17c, is displayed. From the 

AFM analysis, the GO dispersion that was deposited on the substrate and dried at room 

temperature appeared folded on top of each other. However, it was possible to detect a single 

layer covered with another GO layer thus forming a bi-layer structure. This was established from 

the magnification of the area highlighted with a dashed rectangle in Figure 17a and from the 

section profile along the white line shown in Figure 17b. The height profile displayed in Figure 

17c shows a double step profile with  identical heights of ~1.020 nm,  which indicates that the 

height of a single GO sheets in our dispersion is ~1 nm. This value is in agreement with the 

height value reported for a monolayer GO [89]. The random stacked structure of GO layers was 

further confirmed by SEM analysis. In Figure 17d, different free-standing layers are shown with 

sizes in the range of few micrometers lying on each other. Some of the GO layers did not appear 

flat since some ripples were seen either in the AFM (Figure 17a) or in the SEM images (i.e. right 

corner of Figure 17d, which was attributed to the deposition procedure onto the Si/SiO2 

substrate. As discussed in Section 4.2.1, the laser ablation experiments performed at the two 

different powers were carried out without interruption for 5, 15, 30 and 60 minutes. 
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Figure 17: : a) AFM image of GO sheets deposited onto the Si/SiO2 substrate; b) magnification of the area highlighted 

with a dash rectangular in panel a); c) section profile along the white line in panel b); d) SEM image of GO sheets. 

Reproduced from ref. [202]  by permission of The Royal Society of Chemistry  

For the AFM, SEM and XPS characterization, the laser treated dispersions were drop casted onto 

Si substrates with a 300 nm SiO2 passivation layer. In Figure 18, the SEM images of the 

dispersions obtained at 1.3 W after 5 min (Figure 18a), 15 min (Figure 18b), 30 min (Figure 18c) 

and 60 min (Figure 18d) of laser ablation are shown. From the comparison with the SEM image 

of non-treated GO dispersion (Figure 17d), it was possible to establish that structural 

modifications of the sheets started to occur within the first 5 minutes of laser ablation as shown 
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in Figure 18a, which depicts small fragmentized sheets that were distributed randomly along 

with larger sheets over the substrate. 

 

Figure 18: SEM images of GO dispersion after (a) 5, (b-b1) 15, (c-c1) 30 and (d-d1) 60 minutes of laser ablation. 

Reproduced from ref. [202]  by permission of The Royal Society of Chemistry 

It is evident that an ablation time of 5 minutes is not enough to induce a consistent modification 

of the sheets. Figure 18b shows how the increase of laser treatment time up to 15 minutes 

resulted in the formation of particles, which were found mostly on top of the larger sheets or 

small sheet fragments with well-defined edges. Dispersions obtained after 30 and 60 minutes of 

PLA showed significant changes. In particular, it was observed that after 30 minutes the sheets 

were fully covered by particles and the edges of the sheets appeared smoothed and, in some 

cases, were not easily distinguishable. Many of those particles were also found irregularly spread 
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throughout the substrate. After 60 minutes of laser ablation, particles were detected with an 

average size of 100 nm, larger than those found after 30 minutes of ablation. The particles were 

randomly dispersed in the entire sample; however, some of them were agglomerated. It should be 

noted that some sheets were still visible, though they appeared smaller in size with undefined 

borders compared to the sheets detected in the samples at lower ablation times.  

The morphology of the laser treated solution was investigated by AFM. In Figure 19, the AFM 

images of the dispersion after laser ablation are shown.  

 

Figure 19: AFM images of the GO dispersions after (a) 5 minutes. (b) 15 minutes, (c) 30 minutes and (d) 60 minutes of 

laser ablation; (e) and (f) height profiles of image (c) and (d) respectively. Reproduced from ref. [202]  by permission of 

The Royal Society of Chemistry  

The analysis results are in agreement with the SEM images, namely at a longer ablation time, the 

GO sheets are covered by clusters of nanoparticles, as shown in Figure 19(c-d). The height 

profile displayed Figure 19e showed that the nanoparticles obtained after 30 minutes of laser 

treatment have an average height of 34 nm, however when the time of ablation is extended to 60 
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minutes, particles with a height of 80-120 nm were detected and start to agglomerate when 

increasing the ablation time. In order to investigate the structure of the particle obtained, the 

laser-treated dispersions and the untreated one were characterized by TEM. Figure 20, depicts 

the low magnification and HR TEM images relative to the non-treated GO (a, b) and the GO 

dispersions ablated at 1.3W for 5 (c, d) and 15 (e, f) minutes, respectively.  

  

Figure 20: TEM images of a) non-treated GO solution and GO solution after (c)  5 minutes and (e) 15 minutes of laser 

ablation. In panel (b) HRTEM image of the non-modified GO sheets shows an interlayer d-spacing of 0.375 nm, which is 

larger than that of the graphite due to the presence of oxygen/containing groups. HR images (d) and (f), show the 

presence of few graphene quantum dots within the graphene oxide sheets after 5 and 15 minutes of laser treatment, 

respectively. Reproduced from ref. [202]  by permission of The Royal Society of Chemistry  
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The interlayer spacing of the non-modified GO (Figure 20 (b) was found to be 0.375 nm, which 

is bigger than the value reported for bulk graphite, due to the presence of oxygen containing 

groups within the layers that increase the d-spacing [55]. As observed by SEM analysis, the GO 

sheets started to undergo structural modification after 5 minutes of laser treatment; however, 

graphene sheets with sharp edges were still detected after 15 minutes of ablation. HRTEM 

images of dispersions at 5 and 15 minutes of ablation show the presence of GQDs on GO sheets 

(Figure 20d and f) where GQDs possess a lattice spacing of 0.21 nm. This value of d-spacing 

agrees with that reported in the literature for a monolayer graphene [181], while the d-spacing 

calculated in carbon quantum dots is 0.35 nm, which is attributed to graphite-like layers [192]. 

Therefore, this result highlights that upon laser ablation of the GO dispersion the sheets 

underwent a reduction processes that caused the synthesis of these nanomaterials, which can be 

defined as graphene quantum dots. The average diameter of the GQDs found after 5 minutes of 

laser treatment was 1.67  0.062 nm based on size distribution analysis in Figure 21a, whereas 

after 15 minutes the average diameter of GQDs was 1.82  0.098 nm (Figure 21b).  
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Figure 21: Raw and (2) binned size distribution of GQDs after (a) 5 minutes, (b) 15 minutes, (c) 30 minutes and (d) 60 

minutes of laser ablation at 1.3W. Reproduced from ref. [202]  by permission of The Royal Society of Chemistry  
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Further modification of the sheets took place after 30 minutes of PLA as seen from Figure 22a.  

In particular, the particles detected in the SEM image and shown in Figure 18c were clusters of 

nanostructures within the sheets.  

 

Figure 22: a) TEM image of GO sheets after 30 minutes of laser ablation, in the inset GQDs can be seen embedded in the 

residual GO sheets; b) HRTEM image of a GQDs and its relative FFT image showing a d-spacing of 0.21nm. Reproduced 

from ref. [202]  by permission of The Royal Society of Chemistry  
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HRTEM analysis of these clusters, inset of Figure 22a, revealed the presence of some GQDs 

embedded in matrices, which we hypothesized are damaged and reduced GO sheets. Figure 22b 

shows the Fast Fourier Transform (FFT) taken from the high resolution image, which 

demonstrates the symmetry of hexagonal structure with an inter-planar d-spacing of 0.21 nm, 

typical of a monolayer of graphene [181]. The size distribution in Figure 21c suggests that the 

average size of the GQDs is 2.1 1.9 nm, albeit GQDs much smaller and bigger than the average 

were detected. The standard deviation for this sample was much larger than at other laser 

ablation times TEM analysis of the dispersion after 60 minutes (Figure 23a) showed the 

complete modification of the GO sheets that were smaller in size compared to those ablated at 

shorter times and it was not possible to observe well-defined borders.  

 

Figure 23: a) TEM overview of the GO sheets after 60 minutes of laser treatment; b) high magnification image of the 

corrugated sheets displaying several GQDs; c) two GQDs joined (highlighted in yellow) together. Reproduced from ref. 

[202]  by permission of The Royal Society of Chemistry  

Within the modified sheets, some black clusters of ~90 nm in size were detected as already 

identified by AFM and SEM characterization. High magnification images showed that after 60 
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minutes, there were more GQDs enclosed in the sheets compared to the sample at lower ablation 

time (Figure 23b). From the size distribution in Figure 21 (d), when compared to the GQDs 

produced at lower ablation time, most of the dots produced after one hour of laser treatment are 

3.5  1.0 nm in size; however, GQDs of 6 nm and 1.8 nm were found as well. The analysis 

performed on the black clusters revealed the presence of some GQDs with a crystalline elongated 

structure. We hypothesized that these structures may have originated from the joining of the 

GQDs upon laser treatment. In Figure 23c, joined GQDs have been highlighted with a yellow 

circle. Recently, the joining of graphene sheets under ultrafast laser irradiation has been 

demonstrated based on molecular dynamics simulations [206].  The study demonstrated that the 

dynamic thermal expansion and the dynamic fluctuation out of the plane provided the “driving 

power” for the possible joining process of the graphene sheets side-by side or out-of-plane, 

respectively [206]. The authors stated that in order to realize a joint between two graphene 

sheets, the presence of dangling bonds is necessary at the edges of the sheets. Based on this 

study, it was hypothesized that with 60 minutes of laser ablation, some GQDs might possess the 

right position relative to each other to be joined together. While the joining of graphene sheets 

has been reported either theoretically or experimentally using a CO2 laser [207], no evidence of 

joints between GQDs has been demonstrated so far. However, more investigations are needed to 

determine the possibility of joining of GQDs at longer ablation times. 

In order to separate the GQDs from the reduced GO sheets in which they are embedded, we 

dialysed the laser treated dispersions. The HRTEM image of the dispersion obtained after 30 

minutes of laser treatment after dialysis is shown in Figure 24. For TEM analysis, drops of the 

dispersion were deposited onto holey carbon copper grids.  GQDs were successfully separated by 

the reduced graphene sheets and the d-spacing was 0.21 nm.  
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Figure 24: HRTEM image of dialysed GQDs dispersion obtained after 30 minutes of laser ablation. Reproduced from ref. 

[202]  by permission of The Royal Society of Chemistry  

 Mechanism of GQDs formation on femtosecond laser ablated GO 4.3.2.

The mechanism for the formation of the GQDs can be ascribed to a combination of effects 

induced directly and indirectly by the fs laser ablation process. Of note is that water is not 

completely transparent to laser irradiation and, especially when shorter laser pulses are used, a 

part of energy is absorbed by water [208]. The energy of the laser is absorbed by electrons and 

then transferred to the water molecules [209]. The time scale of the energy transfer from 

electrons to atoms is around one order of magnitude larger than the duration of the fs laser pulse 

[209–211]. Consequently, in fs laser, electronic and atomic temperatures are not in equilibrium 

with each other. This phenomenon can be simulated by two temperature model (described in 

Section 4.2.4) in which, the heat transfer equations are used to express the electronic and atomic 

temperature as a function of time, position, initial temperature and heat input to the system [212–

214]. Equations 1 and 2 were simultaneously solved by finite element method to find time 

evolution of the electronic and atomic temperatures. Figure 25a demonstrates the electronic 

(solid line) and atomic temperature (dashed line) changes during and after an initial laser pulse, 

simulated using an absorption efficiency of 20%.    
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Figure 25: a) Electronic (solid line) and atomic temperature (dashed line) change during and after a 35 fs sec laser pulse; 

(b) peak atomic temperature (solid line) and average atomic temperature change for a 90 minute fs sec laser irradiation 

simulation. Reproduced from ref. [202]  by permission of The Royal Society of Chemistry  

During one fs pulse, the electronic temperature will increase rapidly above 6000°C and start to 

decrease immediately after the pulse, while the atomic temperature will increase to 177°C. After 

15 ps, the electronic and atomic temperatures become equal and the system is in equilibrium as 

shown in Figure 25a. When the system reaches this equilibrium condition, conventional heat 

transfer takes place and the temperature distribution can be found by solving a conduction heat 
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transfer problem [215]. To find the overall temperature of the system over a long irradiation 

time, in this case 90 minutes, a multiscale heat transfer simulation was designed. In the 

simulation, the temperature profile of the meshes, which were irradiated by the laser, was 

simulated by a two-temperature model for 15ps followed by a conduction heat transfer up to 

1ms. Afterwards, a temperature profile was obtained from the central meshes of the simulation 

domain, the section irradiated by laser; this temperature profile was then applied to the system to 

find the temperature evolution for a larger time scale (90 minutes). The electronic heat transfer 

coefficient 𝑘𝑒 was calculated at each time step; for changes greater than 10%, the proposed 

temperature profile was recalculated for every 1 ms.  Figure 25b displays the peak temperature 

(solid line) of the central mesh and the average temperature (dash line) of the irradiated meshes 

of the simulation domain. During the entire duration of fs laser ablation, 60 minutes in our 

experiments, the peak atomic temperature reached was around 210°C (Figure 25b). During the 

laser pulse irradiation (Figure 25a) the electronic temperature of the system increases due to the 

higher kinetic energy of the electrons and can be excited to higher energy states. This excitation 

may lead to the breakdown of the chemical bonds in water leading to the generation of the 

reactive species, such as H•, O• and HO• radicals, as shown in Equation 5 [198,216].  

6𝐻2𝑂
𝐹𝑒𝑚𝑡𝑜𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑠𝑒𝑟
→              8𝐻∎ + 2𝑂∎ + 4𝐻𝑂∎    (5) 

6𝐻2𝑂
𝐹𝑒𝑚𝑡𝑜𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑠𝑒𝑟
→              4𝐻2 + 𝑂2 + 2𝐻2𝑂2     (6) 

The recombination of these radicals leads to the formation of H2, O2 and H2O2 (Equation 6) and 

heat energy, which will increase the peak atomic temperature to approximately 200°C, initiating 

the processes responsible for the synthesis of GQDs. These processes include: 1) the oxidation of 

sp
2
 carbon atoms to sp

3
 carbon atoms due to the presence of H2O2 (Equation 6); 2) the O2(g), 

formed by photo-dissociation reactions induced by fs ablation (Equation 6), react with the sp
3
 

carbon atoms of GO sheets, in a way similar to the coal gasification of solid carbon; and 3) the 

reduction and fragmentation of GO sheets due to the removal of carbon atoms as CO2(g) and 

CO(g), as demonstrated in our previous work [198]. These three steps for the formation of the 

GQDs can be summarized with the following schematic. 
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Figure 26: Schematic for the formation of the GQDs. In the first step the sp2 carbon atoms are oxidized to sp3 by the H2O2 

formed during the water breakdown induced by fs ablation; in the second step the sp3 carbon atoms are converted to CO2 

upon reaction with O2 generated by fs ablation. In the final step the reduction and fragmentation of the GO sheets due to 

the formation of CO2 lead to the synthesis of GQDs   

The water breakdown which generates O2 or H2O2 and the peak atomic temperature reached 

during the laser ablation are responsible for the synthesis of the GQDs, through a mechanism 

similar to the hydrothermal cutting of GO sheets [55,217], which does not involve the use of 

strong oxidizers. Consequently, we succeeded in the optimization of the laser ablation of 

graphene oxide dispersions as top-down approach for the solely synthesis of GQDs.  

In order to investigate the chemical composition of the dispersions at different ablation time, 

XPS analysis of the samples was performed before and after the laser treatment. The results are 

presented in Figure 27.  

Figure 27a shows the XPS spectrum of the untreated GO dispersion, where the C1s peak has 

been fitted to four components which are located at 284.50 eV, attributed to the fraction of sp
2
 

carbon atoms (C=C); 286.60 eV and 285.67 eV to (C-O-C) and (C-OH) groups, respectively; and 

288.30 eV ascribed to (O-C=O) groups [41,218,219]. The composition of the XPS spectra 

contained 62.83% of C1s and 37.17 % of O1s. From the comparison of the XPS spectra obtained 

analysing the dispersion at increasing laser ablation time from 5 min (Figure 27b) up to 60 min 

(Figure 27e), it is evident that the reduction of the GO dispersion is occurring during the laser 

ablation process. This result was consistent with the d spacing of 0.21 nm, typical of graphene 

monolayer, obtained from TEM analysis (Figure 20 and Figure 22b). 
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Figure 27: XPS of GO solution before (a) and after PLA at 1.3W for (b) 5, (c) 15, (d) 30 and (e) 60 minutes respectively. 

Reproduced from ref. [202]  by permission of The Royal Society of Chemistry  

The deconvolutions of the XPS spectra, summarized in Table 3, showed that the percentage of 

the sp
2
 carbon atoms fraction (peak at 284.50 eV) increased from 47.03% up to 84.70% after 60 

minutes of ablation due to  the restoring of the aromatic graphene structure as a consequence of 

the reduction of the GO sheets induced by the laser ablation process. 

Table 3: Chemical composition of the dispersions before and after the laser treatment calculated from the deconvolutions 

of the relative XPS spectra. Reproduced from ref. [202]  by permission of The Royal Society of Chemistry  

 

However, together with an increase of C=C percentage there was a slight increase of the 

percentage of hydroxyl groups and (C=O)-OH groups, peaks at 285.37 eV and 288.30 eV, 

respectively. We hypothesized that these groups were due to residual oxygen-containing groups 
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of the GO sheets and they were bonded to the edges of the GQDs making the GQDs dispersible 

in water.  

 GO dispersion defect density as a function of laser ablation time 4.3.3.

The Raman spectra of GO dispersions before and after the laser ablation are shown in Figure 28. 

The most prominent features in graphene-based materials are the D peak at 1328 cm
-1

 and the G 

band at 1598 cm
-1

. The peak intensity ratio, ID/IG, is commonly used for the characterization of 

disorder in carbon-based materials. Here, it was found that the ID/IG ratio increased from 1.43 of 

GO up to 1.53 after 15 minutes of laser ablation of the GO dispersions. This behaviour is usually 

attributed to the decrease in size of the graphitic domains together with an increase in the number 

of sp
2
 domains [220], and is indicative of a “low” defect regime. The increase of sp

2
 was 

confirmed by the XPS analysis, as described previously. After 15 minutes of laser ablation the 

percentage of sp
2
 carbon atoms increased from 47.03% to 65.12% (Table 3) because of the 

reduction of GO sheets and the formation of the GQDs upon laser treatment. 

 

Figure 28: Raman spectra of GO dispersion before (black spectrum) and after 5 minutes (light blue line), 15 minutes 

(purple line), 30 minutes (green line), and 60 minutes (dark blue line) of laser ablation. Reproduced from ref. [202]  by 

permission of The Royal Society of Chemistry  

However, after 30 minutes of laser ablation the intensity ratio ID/IG decreased to 1.38 and reaches 

the value of 1.29 after 60 minutes of laser treatment. This regime is indicated as “high” defect 

density regime, in which the intensity ratio ID/IG starts to decrease on increasing the defect 

density [221,222]. Recently, Kim and coworkers [223] reported that the Raman-scattering in 

GQDs was a function of their sizes. It was shown, that for GQDs with an average size of 5 nm 

the value of ID/IG was 1.3, which is in good agreement with the 3.6 nm average size detected in 



 

55 

 

the samples obtained after 60 minutes of laser treatment. It was also observed a blue shift of the 

G peak increasing the laser ablation time. It has been demonstrated by Kim [224], that a shift of 

the G peak at higher wavenumber can be interrelated to an increase of the GQDs diameters. 

From the size distribution analysis shown in Figure 21, an increase of the GQDs diameters 

occurs increasing the laser ablation time, which explains the shift of the G peak observed in the 

Raman spectra displayed in Figure 28.  

 GQDs nanostructure dependence on laser type and frequency 4.3.4.

Recently, T.N. Lin and coworkers [199] reported the synthesis of different nanostructures by 

laser ablation of GO dispersions. Similarly to our results, T.N. Lin observed a reduction of the 

GO with the laser ablation time, while we observed the formation of GQDs and the reduction of 

the GO. It should be noted that Lin and coworkers used a nanosecond laser with a wavelength of 

415 nm, while an fs laser (λ=800nm) was used in our work. As mentioned previously, due to the 

different physical ablation mechanisms induced by nanosecond laser and femtosecond laser it is 

possible to produce different nanomaterials employing the same starting material. In particular, 

as discussed in Section 4.3.2, upon fs laser ablation the water breakdown occurs which generate 

H2, O2 and H2O2, which lead to the fragmentation of the GO sheets, i.e. synthesis of the GQDs. 

The water breakdown does not occur upon ns laser ablation, and this might be the reason why 

GQDs are obtained using the fs laser. The laser pulse duration plays a key role in the synthesis of 

the GQDs. The reduction of the GO occurred either with the ns laser or the fs laser; therefore it is 

independent from the laser pulse duration and laser wavelength. The novelty of this work 

consists in the demonstration that, GQDs can be produced by femtosecond laser ablation of GO 

and their synthesis can be attributed to the different pulse duration.  

 Effect of high laser power (2.4 W) on the morphology of GO 4.3.5.

dispersions 

In this study, we demonstrated that with a proper control of ablation time it is possible to obtain 

high quality GQDs in a green and single-step process. However, the laser ablation power should 

also be considered. In order to study the effects of the laser power, we performed the 

experiments at higher (2.4W) power maintaining the same ablation time (i.e. 5, 15, 30 and 60 
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minutes). In Figure 29, TEM images of the dispersions obtained after 5 (a), 15 (b1,2), 30 (c1,2) and 

60 (d1,2) minutes of ablation at 2.4W,  are displayed.   

 

Figure 29: TEM images of dispersions obtained performing PLA at 2.4 W for 5 (a), 15 (b1,2), 30 (c1,2), and 60 (d1,2) 

minutes. Reproduced from ref. [202]  by permission of The Royal Society of Chemistry  

It was observed that at higher power, in the same way as the experiment performed at 1.3W, 5 

minutes of laser ablation were not enough to induce strong modifications of the sheets. However, 

a different behaviour was found for the dispersions ablated for longer time. In particular, as 
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shown in Figure 29b1-b2, after 15 minutes of PLA many GQDs were found. In Figure 30b, the 

size distribution of the GQDs after 15 minutes of laser ablation is shown. The average size of the 

GQDs obtained was 2.3 0.6 nm, which was larger than the average size of GQDs obtained after 

15 minutes of PLA at lower power.  

 

Figure 30: (1) Raw and (2) binned size distribution Size distribution of the GQDs obtained at 2.4W after (a) 5, (b) 15, (c) 

30, and (d) 60 minutes of laser ablation. Reproduced from ref. [202]  by permission of The Royal Society of Chemistry   
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The dispersion ablated for 30 minutes showed an increase of size of the particles up to 3.0  0.7 

nm (Figure 30b). A further increase of the ablation time up to 60 minutes resulted in the 

formation of a second type of nanostructure together with GQDs. Noteworthy, the average size 

of GQDs synthesized after 60 minutes was found to be 3.0 ± 0.4, which has less variance  than 

GQDs obtained after 30 min of laser ablation. A trend of the average GQDs’ size as function of 

laser power is shown in n Figure 31. At a lower ablation power (1.3W) the average size increases 

slowly with the ablation power and for higher laser ablation power (2.4W) the GQDs’ size 

rapidly increases after 15 minutes of PLA reaching a value of 3.0 ± 0.7 nm after 30 minutes. The 

resulting GQDs had a larger mean size and lower variance than the one synthesized at the same 

ablation time but at lower power (2.1  1.9 nm). After 1 hour of ablation at 2.4 W the average 

size did not change, staying at 3.0  0.4 nm.  Generally, the GQDs size distribution increased as 

the laser ablation time increased at both laser powers until 30 minutes of ablation. The GQDs 

size distribution lowered at an ablation time of 60 min due to formation of other nanostructures.   

 

Figure 31: GQDs diameter as a function of the laser ablation time at different laser ablation powers using (a) absolute 

values and (b) Gaussian fit values from binned size distribution. Reproduced from ref. [202]  by permission of The Royal 

Society of Chemistry 

After 60 minutes of laser ablation at 2.4W, tubular nanostructures were detected; they were 

analyzed by SEM and TEM and the results are displayed in Figure 32a-b, respectively. The 

HRTEM image (inset of Figure 32b) showed that the tubular structures were made of an 

assembly of sheets that contained some GQDs. The formation of these structures is not quite 

clear and further investigation needs to be conducted on these systems.  
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Figure 32: a) SEM image of the solution after 60 minutes of ablation at 2.4W. Some tubular structures are observable 

within the damaged sheets; b) TEM and HRTEM (inset) images of the tubular structures. These structures are made up 

of folded sheets where some GQDs are found to be embedded in. Reproduced from ref. [202]  by permission of The Royal 

Society of Chemistry  

The shape of these materials was similar to the ones reported by Lin and coworkers [199], after 

nanosecond irradiation of GO dispersion. The authors described those materials as irregular GO 

sheets; however, no explanation for their formation has been given yet.  

 Photoluminescence of femtosecond laser processed GO 4.3.6.

dispersions 

One of the most intriguing properties of GQDs is their luminescence. Many studies have 

demonstrated that GQDs photoluminescence (PL) depends on many parameters, including size, 

shape, and surface states [58,225–227]. As a consequence, the PL behaviour of GQDs can be 

tuned and these nanomaterials can show blue and green PL [189]. In Figure 33, PL spectra of the 

GQDs dispersion obtained after 30 minutes of ablation at 1.3W are displayed. The PL behaviour 

is excitation-dependent [227], and a strong peak at 410 nm (blue emission) was obtained 

employing an excitation wavelength of 300 nm. It was found that the emission wavelength of 

these GQDs was lower than the one reported by other groups [228],[229]. 

According to the quantum confinement effect (QCE) of conjugated π-domains in GQDs, when 

the size of sp
2
 domains gets smaller, there is a blue shift of the PL energies [225]. 
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Figure 33: PL spectra of GQDs dispersion obtained after 30 minutes of laser ablation of GO sheets. The GQDs showed a 

strong emission peak at 410nm with an excitation wavelength of 300 nm. Reproduced from ref. [202]  by permission of 

The Royal Society of Chemistry  

Since the dimensions of the GQDs we synthesized at different laser ablation time range between 

1.5 nm and 4 nm in size, we hypothesized that this might be the reason for the emission at 410 

nm. The dispersions obtained after 5, 15 and 60 minutes of ablation, showed a strong emission 

peak at ~410 nm with an excitation wavelength of 300 nm, however the only difference was the 

PL intensity of the emission peak. In particular, the emission peak of the dispersion obtained 

after 5 min of laser ablation was found to be more intense than that of the other dispersions. This 

is due to the fact that, after 5 min of laser ablation, the GO sheets undergo reduction leading to 

the removal of oxygen containing groups and formation of new sp
2
 islands as reported in Table 

3.  The percentage of the sp
2
 carbon atoms fraction (peak at 284.5 eV) increased from 47.03% up 

to 58.04%. Moreover, it was reported that a relative intensity increase of the emission peak could 

be attributed to the intrinsic PL of graphene fragments [230], confirming that a reduction of GO 

sheets is occurring in the first 5 minutes of laser ablation. There was a decrease in the intensity of 

the PL peak upon further laser ablation. It has been reported that the π–π stacking between 

graphene and GQDs can lead to the luminescence quenching of GQDs by graphene [231]. Upon 

increasing the laser ablation time, a reduction of the GO sheets takes place and the percentage of 
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the sp
2
 carbon atoms fraction increased from 47.03% up to 84.70% as shown in Table 3. The 

GQDs were embedded in reduced graphene sheets (Figure 22) and it was hypothesized that the 

decrease of PL intensity may be due to the π–π stacking between graphene and GQDs as the 

ablation time was increased. The PL spectra obtained at 300 nm excitation wavelength of the 

GQDs dispersion at different ablation time is displayed in Figure 34.  

 

Figure 34: PL spectra of GQDs solutions obtained after 5, 15, 30 and 60 minutes of laser ablation of GO. The PL spectra 

were recorded at an excitation wavelength of 300 nm. The laser treated solutions showed blue luminescence at 410 nm, 

while the starting GO did not show any luminescence. Reproduced from ref. [202]  by permission of The Royal Society of 

Chemistry  

We investigated the optical efficiency of the GQDs obtained at 1.3W at different laser ablation 

time, measuring the quantum yield efficiency (QY) of the dialyzed dispersions. For the QY 

measurements, anthracene in ethanol was used as reference (QY 30%). The QY calculated for 

the dialysed dispersion obtained after 30 minutes of laser ablation is 2.10%. It is widely known 

that the quantum yield of GQDs is affected by different factors, such as size, fabrication method, 

doping, surface chemistry [47,232,233], however a value of QY of 2% was reported for 

unpassivated GQDs [234]. Consequently, the QY of 2.10% we calculated for the GQDs obtained 

after 30 minutes may be ascribed to the novel fabrication method and to the unpassivation of the 
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synthesized GQDs. An image of the dispersion’s luminescence obtained after 30 minutes of 

ablation at 1.3W after dialysis compared with pure water, is shown in Figure 35. 

 

Figure 35: Photographs of (a) water and (b) dialysed GQDs dispersion obtained after 30 minutes of laser ablation at 1.3W 

under 365 nm UV light Reproduced from ref. [202]  by permission of The Royal Society of Chemistry  

 Application: Conductive ink using GQDs in GO dispersion 4.3.7.

In order to investigate the performance of the unpurified  femtosecond laser synthesized  GQDs 

from the initial GO dispersion as candidate materials for electronic applications, a hybrid ink of 

GQDs and silver nanoparticles (GQDs@AgNP ink) was developed to be compatible with an 

aerosol-jet printing system. In particular, an AgNPs solution was mixed with GQDs dispersion 

obtained after 30 min of laser oblation, without any further purification, in a volume ratio of 1:3. 

Details on the aerosol-jet printing system have been already reported in previous publications of 

the authors [235,236]. After printing the patterns with 4 deposition layers, the samples were left 

in the oven at temperatures of 180°C for 30 min in order to sinter the AgNPs and remove all the 

solvents from the ink.  The resistivity of the printed GQDs@AgNP patterns was calculated using 

the resistance and thickness of the printed patterns measured by a two-probe station and an AFM, 

respectively. For comparison, we calculated the resistivity of the AgNPs printed patterns, which 

were prepared with the same procedure employed for the hybrid ink, i.e. 4 deposition layers. The 

results obtained are listed in Table 4, while the optical and SEM images of the AgNP and 

GQDs@AgNP printed patterns are shown in Figure 36.  



 

63 

 

  

Figure 36: Optical image of (a) AgNPs printed patterns and (b) GQDs@AgNP printed patterns; (c) and (d) SEM images 

of AgNPs and GQDs@AgNP patterns, respectively. Reproduced from ref. [202]  by permission of The Royal Society of 

Chemistry  

The results indicate that the calculated resistivity of the GQDs@AgNP patterns is two times less 

than the resistivity of the AgNP patterns. Moreover, it shows that the GQDs, as the connectors 

between the AgNPs, can improve the movement of the electrons [14]. The calculated resistivity 

of the composite pattern is two orders of magnitude of that of printed graphene sheets from  

work published elsewhere by E. Jabari [237,238]. The graphene sheets have higher resistivity 

due to contact resistance between graphene sheets that are aggregated causing increased number 

of edges and random joints. Recently, Meschi and co-workers demonstrated that the use of 

graphene as filler in electrically conductive adhesive (ECA) decreased the percolation threshold 

of silver content from 40 wt% to 10%, improving the electrical conductivity of ECA [11].  
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Table 4: Electrical properties of the aerosol-jet printed patterns from different inks. Reproduced from ref. [202]  by 

permission of The Royal Society of Chemistry 

 

Therefore, for the first time we demonstrated that adding the as-prepared laser-ablated dispersion 

of GQDs to AgNP ink could either increase the conductivity of the AgNPs inks or decrease their 

cost by reducing the required concentration of the AgNPs in the ink. 

4.4.  Summary 

In this chapter, we have reported the development of a straightforward, eco-friendly and time-

effective process for the synthesis of GQDs by fs laser ablation of GO dispersions. Compared to 

the other synthetic methods of GQDs (strong acid-assisted cleavage of carbon nanomaterials 

[189] or derived from the photo-Fenton reaction of GO [57]), our process is environmentally 

friendly, since the synthesis is performed in water without the use of any chemicals. 

Furthermore, the ablation process is not time consuming, namely the production of GQDs is 

achieved in a single-step within a time window ranging from 15 to 60 minutes, depending on the 

laser parameters employed. It has been demonstrated that with a control over the ablation time 

and laser power is possible to modify the structure of these graphene-based nanomaterials. In 

particular, through the study of the relationship between these two key parameters and the 

structure of the GQDs, it has been found that nanomaterials with different size and nanostructure 

could be obtained. The laser synthesized GQDs possess a blue luminesce and the calculated QY 

of 2% is similar to the one reported for the unpassivated GQDs. Moreover, for the first time we 

demonstrated that the GQDs synthesised by femtosecond laser ablation of GO can be employed 

for the fabrication of a hybrid conductive ink. The developing of more cost effective inks is 

nowadays in the focus of many research groups and the preliminary results reported in this study 

[237,238] 
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revealed that the resistivity of the hybrid ink (GQDs@AgNPs) patterns resulted to be two times 

lower than the resistivity of the pure AgNP printed patterns. We can conclude that the 

advantages of the method presented here, are the possibility of synthesizing and modifying 

GQDs in a straightforward and green route, and that the dispersion of GQDs, mixed without any 

further purification, with silver nanoparticles can be employed as conductive ink. In particular, 

the resistivity measurements showed that the addition of the laser synthesised water-based GQDs 

dispersion to AgNPs ink can result in cheaper or more conductive printable inks. 
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 Phase Transformation of TiO2 Nanoparticles by Femtosecond Chapter 5.

Laser Ablation in Aqueous Solutions and Deposition on Conductive 

Substrates
[139]

   

Overview 

In this chapter, we will discuss the femtosecond laser ablation of titanium dioxide nanoparticles. 

The focus of this study is to demonstrate that laser ablation is a versatile technique for the 

synthesis and modification of different materials. In particular, besides the synthesis of graphene 

quantum dots (Chapter 4), laser ablation can be used for the phase engineering of TiO2 

nanoparticles with a proper control over the laser parameters. Moreover, it is observed that laser 

ablation time is a key parameter allowing the bandgap engineering of TiO2 nanoparticles, since it 

was found that upon increase of the ablation time of the TiO2 dispersion in water a bandgap 

widening occurred. 

5.1.  Introduction  

The pulsed laser ablation in liquids has been widely employed in the ablation of titanium targets 

for the synthesis of TiO2 nanomaterials with different shape, size and phases [239–245] 

depending on the laser parameters employed such as the laser wavelength [175,242,246], laser 

pulse energy [243,245,247,248] and the type of liquid medium employed [147,240,242,249]. 

Titanium dioxide has been extensively researched for its photocatalytic properties and 

applications. In 1972, Fujishima and Honda reported the splitting of water under illumination 

using a rutile TiO2 photoanode and Pt counter electrode [250]. Since then, due to its chemical 

stability, low cost, and non-toxicity, TiO2 has been used in a wide range of applications such as 

removing conventional and emerging organic contaminants in water [16,251], photocatalytic 

[134,252–256] processes, sensor devices [135,257], and solar cells [17,258]. In Section 2.5.1, we 

described the three crystalline polymorphs being rutile, anatase and brookite.  

Under ambient conditions, rutile is the most stable crystal phase in bulk, while the other two 

polymorphs are considered as metastable phases, and upon heating an irreversible phase 

transformation to rutile occurs [259]. Several studies demonstrated that the particle sizes play a 

key role in the determination of phase stability [138,260]. For particle sizes less than 11 nm, 

anatase will be the most thermodynamically stable phase, while for dimensions between 11-35 
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nm, brookite is the most stable phase. When the sizes are greater than 35 nm, rutile is the most 

stable phase [138]. In Section 2.6 we described that anatase nanoparticles may be obtained using 

several processes, which include sol-gel [28], hydrothermal [29] and solvothermal [30] methods. 

Heat treatment of these nanoparticles will produce rutile nanoparticles at a specific phase 

transformation temperature. 

The possibility to control the conditions that affect the phase transformation is important. The 

phase stability of titania has a key role in the design of electronic devices because the properties 

and the performance of these materials may be affected [261,262] by the alteration of the 

crystalline phase [261,263]. It is commonly believed that the reason for the phase transformation 

from anatase to rutile should be attributed to the increase in the particle size induced by the 

sintering process that takes place at elevated temperatures [260]. However, more studies should 

be done in order to better understand the physical and chemical processes involved in the phase 

transformation, as well as the mechanisms to promote or inhibit it [264–267]. 

In this work we studied the phase-transformation of a dispersion of TiO2 (P25, AerodixdeTM) 

induced by femtosecond laser ablation under two conditions: (i) in aqueous solution and (ii) 

deposited on fluoride-doped tin oxide (FTO) substrate. To the best of our knowledge, few studies 

have been performed on the effects of the femtosecond laser ablation of a dispersion of TiO2 in 

water. For instance, in a recent report it was studied the ablation of rutile powder in water with a 

femtosecond laser [268] which led to the formation of rutile, anatase and brookite nanoparticles 

[268]. It has been also reported the laser ablation of TiO2 powders with a YAG:Nd3+ solid state 

laser [269], where the powders were deposited onto a glass substrate and then laser ablated in air. 

In the study presented here, we report on the phase-transformation of TiO2 nanoparticles by 

femtosecond ablation of P25 either as a suspension or deposited by electrophoretic deposition on 

FTO glass. The results of the experiments carried out showed that the laser ablation process of 

the P25 suspension in water induces the phase transformation from anatase to rutile and back 

again to anatase increasing the ablation time. Moreover, the bandgap of the material can be 

controlled, leading to the possibility of employing PLA of TiO2 for bandgap engineering. 

Ablation of the deposited P25 on FTO resulted in transformation from anatase to rutile phase of 

the patterned area, making this technique suitable for laser patterning. Rutile, a higher refractive 

crystal phase, can scatter light more efficiently than anatase, and this opens the possibility of 
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using these patterned substrate in various applications such as silicon solar cells, energy-

harvesting devices, and dye-sensitized solar cells (DSSC) [270,271]. 

5.2.  Experimental 

 Laser ablation of TiO2 in water 5.2.1.

A schematic of the setup employed for the laser ablation experiments is shown in Figure 37.  

 

Figure 37: Schematic of femtosecond laser ablation experiment setup consisting of (A) optical table, (B) Ti-sapphire laser, 

(C) mirror system, (D) focusing lens, (E) container containing stir bar and TiO2 solution, and (F) stir plate. Reproduced 

from ref. [139]  by permission of The Royal Society of Chemistry 

In our experiments, 10 mg of P25 powder (Aeroxide
TM

) was suspended in 10 ml of water and 

stirred with a magnetic stirrer for the entire duration of the experiments. Femtosecond laser 

ablation experiments were conducted using a Ti-sapphire laser (Coherent, Inc.) with a 

wavelength of 800 nm, repetition rate of 1 kHz, and pulse duration of 35 fs with Gaussian beam 

distribution. The laser ablation experiments were performed from the top in order to avoid laser 

reflections through the glass walls. The laser beam (80 μm in diameter) was focused inside the 

TiO2 dispersion at 5 mm from the dispersion-air interface. The experiments were carried out at a 

power of 1.3 W (25.8 J/cm
2
) and at different laser ablation times, in order to study the laser 

effects on the TiO2 crystal structure as a function of the ablation time.The P25 dispersions were 

ablated for 5, 15, 30, 60, 90 and 120 minutes and then the resulting ablated suspensions were 

characterized. Scanning electron microscopy (SEM) images of the dispersion deposited onto 

silicon substrate were taken using a ZEISS LEO 1550 FE-SEM at an accelerating voltage of 10 

kV. The crystal phase and structure of the ablated material was investigated by Raman 
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spectroscopy and transmission electron microscopy (TEM). Raman spectra were measured using 

a Renishaw micro-Raman spectrometer with a He/Ne laser at an excitation wavelength of 632.8 

nm. HRTEM observation was conducted using a JEOL 2010F at the Canadian Centre for 

Electron Microscopy (Hamilton, Ontario, Canada). The TEM samples were prepared by drop 

casting the dispersions onto lacey carbon grids. Ultraviolet-visible (UV-VIS) analysis of the laser 

ablated dispersions was carried out with a Shimidazu UV-2100 PC spectrophotometer over a 

spectral range of 190–600 nm. 

 Deposition of TiO2 onto FTO substrates (P25/FTO) 5.2.2.

TiO2 films were fabricated by electrophoretic deposition of P25 on fluoride-doped tin oxide 

(FTO) glass, followed by annealing. The TiO2 dispersion was made by dispersing 1 g of P25 

nanoparticles in 250 mL ethanol, 15 mL acetylacetone, 4 mL acetone, 2 mL water, and 27 mg 

iodine[272]. The dispersion was sonicated for 30 min and stirred for 1 hour. FTO glass (MTI 

Corp, 1” x 3” x 2.2 mm, TEC 7, R: 12-14 ohm/sq.) was used as a support and cathode for TiO2 

deposition, while a titanium sheet was used as the anode. The cathode and anode were connected 

to a DC voltage supply and immersed in the aforementioned TiO2 dispersion. The electrophoretic 

deposition was conducted at a constant voltage of 30 V for 60 seconds and deposited onto 1”x1” 

of the FTO glass. The P25 deposited FTO substrate was dried in air and then heat-treated at 

450
o
C to improve adhesion. 

 Laser patterning of TiO2 on FTO substrate 5.2.3.

The patterning of P25 deposited on FTO substrate was performed using the Ti-sapphire laser 

system described in 5.2.1 and the setup was configured to pattern the substrate on a motorized 

stage controlled via computer, the experimental setup schematic used is shown in Figure 38. The 

sample was placed on a 2 axis stepper motor stage and a 5 cm line was patterned focusing the 

laser (80 μm in diameter) on the substrate at a speed of 1.5 mm/s. In total, 8 lines were patterned 

at increasing laser powers. 
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Figure 38: Schematic of femtosecond laser ablation setup for laser patterning consisting of (A) optical table, (B) Ti-

sapphire laser, (C) mechanical shutter, (D) neutral density filter, (E) focusing lens, (F) patterned substrate, (G) motorized 

stage, and (H) computer. Reproduced from ref. [139]  by permission of The Royal Society of Chemistry 

5.3. Results and discussion 

 TiO2 phase transformation upon laser ablation in water 5.3.1.

The laser ablation study of the TiO2 nanoparticles was conducted by increasing the ablation time. 

After 15 minutes of irradiation the color of the dispersions changed from white (as-purchased 

P25 Aeroxide
TM

) to blue. The color change can be attributed to the formation of Ti
3+

 species that 

will lead to the formation of rutile TiO2 nanoparticles [240,268]. The mechanisms underlying the 

formation of TiO2 nanoparticles upon laser ablation of a Ti target have been widely discussed. 

The mechanism may be summarized in three steps, in which (1) the high temperature and 

pressure generated by the laser-matter interaction will produce a plasma plume; (2) the plasma 

plume undergoes ultrasonic adiabatic expansion, which causes a rapid cooling of the plume and 

formation of titanium clusters; and (3) the titanium ions and clusters react with water molecules 

at the interfacial region between plasma and liquid, leading to the formation of rutile 

nanoparticles.[240,242,273] 

Increasing the ablation time to 120 minutes led to dispersions that were less blue in intensity. In 

order to investigate whether a structural modification of the P25 nanoparticles was occurring 

during the laser ablation, the ablated dispersions were investigated using Raman spectroscopy  

which is widely used for the characterization of TiO2 polymorphs since it allows to distinguish 

between the different phases of TiO2 [170,172,174]. The most prominent Raman features of 

anatase are the peaks centered at 144 cm
-1

 (Eg), 197 cm
-1

 (Eg), 399 cm
-1

 (B1g), 513 cm
-1

 (A1g), 
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519 cm
-1

 (B1g), and 639 cm
-1

 (Eg), while the Raman active modes of rutile phase are at 143 cm
−1

 

(B1g), 447 cm
−1

 (Eg), 612 cm
−1

(A1g) and 826 cm
−1

 (B2g)[274]. The Raman spectrum of P25 

possesses peaks containing the anatase and rutile phases, since it is made of 70-75% of anatase 

and 30-25% of rutile phases. The main peaks are centered at 636 cm
-1

 (Eg), 515 cm
-1

 (B1g), 

443.17 cm
−1

 (Eg), and 394.52 cm
-1

 (B1g). It has been reported that, Raman spectroscopy can be 

employed for the monitoring of the phase transformation of TiO2 and its stoichiometry upon 

annealing or laser treatment, since the Raman active Eg modes are sensitive to oxygen 

deficiency, which will lead to a shift and broadening of these lines [139,170–172,174,175]. In 

this study, Raman analysis was performed after depositing the laser treated dispersions onto glass 

slides and letting them dry in air under ambient conditions. The acquired spectra are shown in 

Figure 39 and compared to commercial anatase, rutile and P25 powders. The laser-treated 

samples are compared to the as-received P25 in aqueous solution. After 5 minutes of laser 

treatment of dispersed P25, the peak centered at 636.4 cm
-1

 blue-shifted by 1.59 cm
-1

. From the 

comparison of the Raman spectra, structural modification of P25 started to take place after 15 

minutes of laser ablation, as depicted from the spectrum (purple line), which depicts peak 

shifting in Figure 39. In particular, a blue-shift of 11.11 cm
-1

 of the Raman mode at 636.4 cm
-1

 

was detected along with the peak broadening. Additionally, the intensity of the peak at 515.06 

cm
-1

 decreased, while the intensity of the peak at 443.17 cm
-1

 increased and blue-shifted by 2.65 

cm
-1

. The peak at 394.52 cm
-1

 red-shifted by 8.73 cm
-1

 and the intensity of the peak decreased. 

The two peaks at 394.52 cm
-1

 and 443.17 cm
-1

 are relative to the Raman active modes (B1g) and 

(Eg) of anatase and rutile phases, respectively, and are of note. After 15 minutes of laser 

treatment, these two peaks give rise to a unique peak and the spectrum results to be similar to the 

Raman spectrum of rutile, suggesting a phase transformation from mainly anatase to mainly 

rutile nanoparticles. This evidence is further supported if we take into consideration the earlier 

observation of the color change of the dispersion to blue, which is attributed to the formation of 

rutile nanoparticles [240,268]. This result is in agreement with the mechanisms occurring during 

the laser ablation of titanium dioxide discussed earlier, which cause the formation of a plume 

containing titanium ions which upon expansion and successive cooling will form titanium 

clusters leading to the formation of rutile nanoparticles. The phase transformation to rutile is 

more apparent after 30 minutes of laser ablation, in which a peak shift to 614.98 cm
-1

 occurs, 

which is within the  reported for rutile (611 cm
-1

). 
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Figure 39: Raman spectra of P25 dispersions after 5, 15, 30, 60, and 120 minutes of laser ablation. For comparison, 

Raman spectra of anatase, rutile and P25 as purchased powders have been included. Reproduced from ref. [139]  by 

permission of The Royal Society of Chemistry 

Furthermore, the intensity of the peak at 511 cm
-1 

decreases and the separation between the two 

peaks at 394.52 cm
-1

 and 443.17 cm
-1

 is reduced compared to the P25 treated for 15 minutes. 

When the laser ablation is performed for 60 minutes, a redshift of 11.9 cm
-1

 occurred and the 

peak center was found at 626.88 cm
-1

, the intensity of the peak at 511.89 cm
-1

 increased, and the 

separation between the two peaks at 397.7 cm
-1

 and 441.31 cm
-1

 is more evident. This suggests 

of the TiO2 nanoparticles are of mixed phase composition containing rutile and anatase. It should 

be noted that the existence of a mixed phase upon laser ablation of Ti target has been already 

reported by Tian et al. and it is a consequence of the rapid change of temperature and pressure 

during ablation [275]. The increasing of the laser ablation time up to 90 minutes causes either a 

decrease of the intensity of the band of rutile phase at 437 cm
-1

, or increase of the band intensity 

relative to the anatase phase at 394.52 cm
-1

. This indicates that the predominant phase of the 

nanoparticles is the anatase one. After 120 minutes of laser ablation there is a clear phase 

transformation to anatase occurred. In literature, the ratio of the integrated Raman peak intensity 

of the peak of rutile at 447 cm
-1

 to that of anatase at 399 cm
-1

 is used for the measure of the 

weight ratio of rutile to anatase [276,277]. Figure 40, depicts the integrated Raman peak intensity 
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ratio as function of laser ablation time in order to visualize the anatase-to-rutile and rutile-to-

anatase conversion as a function of laser ablation time.  The commercial P25 and the 

nanoparticles ablated for 5 minutes showed a I446/I396 ratio of 0.2 indicating the presence of 

mostly crystalline anatase, which is in agreement with the recorded Raman spectra and with the 

I446/I396 value reported in literature [278].  

Increasing the ablation time causes an increase of the I446/I396 ratio to 1.1 which can be related to 

the formation of rutile nanoparticles. After 60 minutes of laser ablation, the I446/I396 reaches 1.8 

indicating that the nanoparticles produced were predominantly rutile, which has been already 

demonstrated by the Raman spectrum analysis. The increase of the ablation time up to two hours 

introduced a phase transformation from rutile to anatase and this can be seen as a decrease in the 

I446/I396 ratio to 0.8 after 90 minutes and to 0.2 after 120 min, which is the value recorded for the 

un-treated P25, where anatase is the predominant phase. 

 

Figure 40: Integrated Raman peak intensity ratio as a function of laser ablation time of P25 dispersion. After 5 minutes of 

laser ablation the nanoparticles are in the anatase form (red circle), while after 20 minutes the transformation to rutile 

starts to occur (green circle). After 60 minutes of laser ablation the particles transformed to rutile (blue circle), however 

increasing the ablation time (90 min), the particles start to transform to anatase (green circle) and after 120 minutes the 

particles possess anatase phase (red circle). Reproduced from ref. [139]  by permission of The Royal Society of Chemistry 

The trend shown in Figure 40 is in agreement with the information obtained from the Raman 

spectrum analysis, in which one hour of laser ablation of P25 nanoparticles induces the 
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formation of rutile nanoparticles; however, for prolonged ablation times a phase transformation 

to anatase takes place. 

As previously described, the laser ablation in water causes the melting of the material and the 

generation of a plasma plume, which contains atoms, molecules, electrons, ions, and expands 

into the surrounding liquid, cools down and finally lead to the formation of the nanoparticles. It 

was reported from Koshizaki et al. that spherical nanoparticles are obtained when laser ablation 

is performed in a liquid environment [132]. The phase transformation from rutile to anatase is 

thermodynamically irreversible, however when the sizes of the particles decrease the phase 

stability reverses [138]. This is corroborated by studies  that have reported about the size 

reduction of nanoparticles upon laser irradiation of nanoparticles using an unfocused laser beam 

[131,132]. On the basis of the current literature and on the experimental results, we hypothesize 

that upon laser ablation of P25 aqueous suspension with a focused laser, two events might occur 

which lead to the phase transformation from rutile to anatase nanoparticles. The first process 

involves the generation of spherical particles from a localized volume that is ablated from as-

received P25 nanoparticles that appear square-like. Only the TiO2 nanoparticles that cross the 

focus will melt and upon cooling spherical particles start to form. The formation of spherical 

particles is shown in Figure 41(a-g), which represent the nanoparticles obtained at different 

ablation time.  
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Figure 41: TEM images of P25 powders before (a) and after 5 (b), 15 (c), 30 (d), 60 (e), 90 (f) and 120 (g) minutes of laser 

ablation. Reproduced from ref. [139]  by permission of The Royal Society of Chemistry 

The second process that occurs is a decrease in the size of spherical nanoparticles with laser 

ablation time. As previously stated, a decrease in size of the nanoparticles could reverse the 

phase stability and this could be the reason for the transformation of rutile nanoparticles to 

anatase nanoparticles. The mechanism underlying the decrease in size could be explained if we 

consider that during the laser ablation not all the particles dispersed in the solution will cross the 

laser focus, consequently most of them will be irradiated by the laser causing the size reduction 

[279–281]. The decrease of the nanoparticles size can be attributed to fragmentation [273] that 

occurs during the laser treatment. Alnassar et al. reported about the decrease of size as a function 

of the pulse energy [273], but it is also time-dependent [280]. 

A schematic of the two events is shown in Figure 42. 
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Figure 42: Schematic illustrating the two events responsible for the formation of spherical rutile nanoparticle in the 

focused area and the formation of smaller anatase particle in the irraditaed area 

We observed that, after 15 and 30 minutes of PLA, there are more particles that have a size 

above 30 nm and it has been reported that when TiO2 particles are bigger than 35 nm, the rutile 

phase is thermodynamically more stable than the anatase phase. In Figure 43 and Figure 44, are 

shown the HRTEM images with the d-spacing profiles of the samples at different ablation time.  

From the analysis of the d-spacing it was confirmed that after 15 and 30 minutes of laser 

ablation, the particles are mainly rutile with a d-spacing of 0.32 nm (110) plane, as shown in 

Figure 43(c-d) respectively. This result is in accordance with the Raman analysis which showed 

an increase of the rutile phase after 30 minutes of laser processing. Increasing the ablation time 

to 60 minutes led the formation of particles with diameters over 35 nm, however smaller 

particles with diameters in the range of 9-20 nm are abundant. These particles are in the anatase 

form with a d spacing of 0.35 nm (101) plane, as showed from the HRTEM images in Figure 

44b, however rutile nanoparticles are also present (Figure 44a). 
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Figure 43: HRTEM images of TiO2 powder with d-spacing profiles (a) before laser ablation and after (b) 5, (c) 15, and (d) 

30 min of laser ablation. Reproduced from ref. [139]  by permission of The Royal Society of Chemistry  
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Figure 44: HRTEM images of TiO2 powder with d-spacing profiles after (a, b) 60, (c) 90, and (d) 120 min of laser ablation. 

Reproduced from ref. [139]  by permission of The Royal Society of Chemistry 
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The coexistence of the small anatase particles and the bigger rutile ones can be explained on the 

basis of the two events that we hypothesized are occurring during the laser ablation process. The 

first event leads to the formation of the rutile nanoparticles with diameters of 35 nm, while the 

irradiation causes the size decreasing and reverse of the phase stability, leading to a broadening 

of the size distribution. After 90 and 120 minutes of laser ablation the nanoparticles formed have 

a similar dimensions of the nanoparticles obtained after one hour of laser ablation, but there is 

evidence that anatase nanoparticles have been produced, as shown by the HRTEM image in 

Figure 44d and confirmed by Raman spectroscopy. From these results, it is evident that the laser 

ablation of P25 induced the formation of rutile particles mixed with smaller anatase 

nanoparticles. The size distribution analysis was conducted on the HRTEM images for laser 

ablated samples from 0 min to 120 min (Figure 45). One-way ANOVA statistics were conducted 

on P25 samples (Table 5). All laser ablated P25 samples showed a significant increase in 

diameter (p < 0.01) compared to the untreated P25 sample. In general, increasing irradiation time 

did not increase the diameter significantly. However, when the irradiation time was increased to 

120 min, the diameter was higher than P25 samples irradiated at 5 min (p=0.003) and 90 min 

(p=0.0121). 
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Figure 45: Size distribution of P25 aqueous suspensions laser treated at: (a) 0 min, (b) 5 min, (c) 15 min, (d) 30 min, (e) 60 

min, (f) 90 min, and (g) 120 min. (h) P25 diameter as a function of laser irradiation time. Reproduced from ref. [139]  by 

permission of The Royal Society of Chemistry 
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Table 5: One-Way ANOVA p-value post-hoc tests (OriginPro, α=0.05) for laser-treated P25. Reproduced from ref. [139]  

by permission of The Royal Society of Chemistry 

A B p-value Significance (α=0.05) 

5min 0min 0.0073 YES 

15min 0min <0.0001 YES 

15min 5min 0.2111 NO 

30min 0min <0.0001 YES 

30min 5min 0.7137 NO 

30min 15min 0.9825 NO 

60min 15min <0.0001 YES 

60min 5min 0.2967 NO 

60min 15min 1.0000 NO 

60min 30min 0.9951 NO 

90min 0min 0.0015 YES 

90min 5min 0.9996 NO 

90min 15min 0.4441 NO 

90min 30min 0.9180 NO 

90min 60min 0.5610 NO 

120min 0min <0.0001 YES 

120min 5min 0.0027 YES 

120min 15min 0.7711 NO 

120min 30min 0.2558 NO 

120min 60min 0.6631 NO 

120min 90min 0.0121 YES 

*
Post-hoc tests (multiple comparisons) were conducted when a statistical significance was detected using Holm-

Sidak method with overall statistical significance level of 0.05. 

In order to confirm the polymorphism and crystallinity of the laser treated P25 dispersions, we 

performed the XRD analysis of the samples before and after 5 and 60 minutes of laser ablation. 

The results are displayed in Figure 46. 
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Figure 46: XRD analysis of the as prepared P25 dispersion and f-after laser treatment. Reproduced from ref. [139]  by 

permission of The Royal Society of Chemistry 

After laser treatment the dispersions showed the presence of both phases (anatase and rutile), as 

demonstrated by Raman spectroscopy and HRTEM analysis. The degree of crystallinity was 

calculated using the ratio of the intensity (IA/IR) of the strongest anatase reflection to the 

strongest rutile reflection, (101) and (110) respectively [282]. The equation employed is given 

below [282]. 

𝑋𝐶 =
1

1+1.265(
𝐼𝑅
𝐼𝐴
)
× 100 [%]       (1) 

The as prepared dispersion and the ones laser treated for 5 and 60 minutes, have degree of 

crystallinity equal to 85.98%, 89.14% and 82.31%, respectively. It can be observed that the laser 

treatment did not change the level of crystallinity of the materials and the polymorphism is still 

present. 

The energy bandgap of the ablated dispersions were investigated. The optical bandgap of TiO2 

nanoparticles was calculated using Tauc’s law in which the direct band gap and indirect band 

gap follow the Equations (2) and (3), respectively [274]: 

(αh)  (h-Egap)
1/2       

(2) 



 

83 

 

(αh)  (h-Egap)
2       

(3) 

where α is the absorption coefficient, h the Planck’s constant,   is the frequency and Egap is the 

energy bandgap. As reported in literature, anatase is an indirect band gap semiconductor and the 

energy band gap value of 3.2 eV is attributed to Г3→X1b transition [274]. Figure 47a, it is shown 

that the normalized UV-Vis spectra of the TiO2 suspensions ablated at different ablation times. 

 

Figure 47: (a) UV-Vis of TiO2 suspension ablated at different ablation time; (b) Plot of (αh)2 versus photon energy for 

direct transition and (inset) plot of energy bandgap values as a function of ablation time. Reproduced from ref. [139]  by 

permission of The Royal Society of Chemistry 

Based on our absorption results the plots of (αh)
1/2 

versus photon energy, for indirect 

transitions, displayed no linear relationships. However, when the spectral data were plotted as 

(αh)
2
 versus photon energy, a linear relationship was obtained, suggesting the occurrence of a 

direct band transition in an indirect bandgap semiconductor [283]. 

In Figure 47b, the Tauc plot is shown. The energy bandgap (Egap) values of the solutions ablated 

at different times have been obtained by extrapolation to α=0, and the inset plot of the energy 

bandgap as a function of the laser ablation time is shown. The Egap values are reported in Table 

6. 

Table 6: Energy gap values as a function of laser ablation time. Reproduced from ref. [139]  by permission of The Royal 

Society of Chemistry 

Laser Ablation Time (min) Direct Energy Bandgap (αh)
2
 

0 3.2 eV 

5 3.35 eV 

15 3.7 eV 

30 3.85 eV 

60 3.9 eV 



 

84 

 

It was found that increasing the ablation time, an increase in the direct energy bandgap occurred. 

Based on the study carried out by Nath [274], the energy band gap value of 3.8 eV of TiO2 

nanoparticles after 60 minutes of laser ablation,  may be attributed to either the direct interband 

transition of rutile phase or to a decrease in size of the TiO2 nanoparticles [284]. This result is in 

accordance with both Raman and TEM results, which showed the phase transformation from 

anatase to rutile and particle size decrease occurred after 60 minutes of laser ablation. 

With proper control of the ablation time, it is possible to synthesize TiO2 nanoparticles with 

different sizes or induce phase transformations, which lead to TiO2 nanoparticles with different 

values of energy bandgap. This opens the possibility of using PLA as technique for bandgap 

engineering of TiO2, such as its use in future electronic devices [285,286].  

 Laser ablation of P25/FTO  substrates 5.3.2.

Femtosecond laser ablation was performed on P25/FTO substrates in order to compare the 

results from the ablation of P25 carried out in an aqueous dispersion with the ablation of P25 

deposited on a substrate. The experiments were performed varying the laser power in order to 

study the phase transformation as a function of the laser power and in total 8 lines were 

patterned, as shown in Figure 48.  

 

Figure 48: (a) Top-bottom view and (b) surface profile of P25/ FTO contained femtosecond laser produced lines of 

varying power. Reproduced from ref. [139]  by permission of The Royal Society of Chemistry 

The eight lines, 1.5 cm long, were ablated at powers of 2.0, 7.0, 10, 19, 26, 38, 82, and 122 mW 

(Figure 48b). The estimated fluence was calculated using the following Equation (4): 

𝐹 =
𝑃

1000𝐻𝑧 × 𝜋𝑟2
        (4) 
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where P is the power (W) and r is the radius of the beam spot (cm). The beam diameter is 80 μm 

and the estimated fluences tested were 39.8, 139.3, 204.9, 378.0, 517.3, 756.0, 1600, and 2700 

mJ cm
-2

. In Figure 48a, lines from 3 to 8 (L3-L8) depict TiO2 that is completely removed due to 

spallation from the femtosecond laser ablation process and only FTO glass remains on the 

surface, as can be seen from the surface profile (Figure 48b). The lines patterned at powers of 2.0 

and 7.0 mW (L1-L2) showed no removal of TiO2, suggesting that lower powers are preferable in 

order to achieve the laser patterning of the P25 on FTO/glass. The line 2 (L2) was then 

characterized by SEM and Raman in order to determine the morphological and crystal phase 

changes of TiO2 after the laser interaction. 

In Figure 49, SEM images of the non-laser patterned (a, b, and c) and laser patterned (d, e, and f) 

regions of P25 onto FTO are shown. The electrophoretic deposition of P25 onto FTO did not 

form a uniform layer of P25; instead some cracks are clearly visible, as shown in Figure 49a. 

This occurs when the deposition layer is thick.  

 

Figure 49: SEM images of (a-c) non-patterned and (d-f) laser patterned P25 on FTO. Reproduced from ref. [139]  by 

permission of The Royal Society of Chemistry 

A closer look at the untreated P25 film in Figure 49b reveals the presence of a porous-like 

structure. Upon laser irradiation of the P25 film, a structural change occurs, but the conductive 

substrate did not interfere with the absorption processes. Pseudo-spherical nanoparticles with 

sizes of 100-300 nm are formed (Figure 49f), which are much larger particles than the non-
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treated regions (Figure 49c) in which average particle size are 21 ± 5 nm. The formation of larger 

particles can be understood considering the underlying ablation mechanisms discussed earlier. In 

particular, due to the laser-matter interaction, the local increase of temperature and pressure will 

take place leading to the melting and coalescence of the material and production of larger 

nanoparticles [175,241,245]. In order to study the effects of the laser patterning on the crystal 

phase of the P25, Raman line mapping was performed perpendicularly from the ablated line. 

The Raman line mapping is shown in Figure 50a, while in Figure 50b the Raman spectra of the 

region outside the laser patterned (black spectrum) and in the middle of the laser patterned area 

(red spectrum) are shown. The phase transformation tends towards rutile upon laser patterning of 

P25 on FTO. In particular, the non-patterned P25 Raman spectrum (Figure 50b black spectrum) 

shows the characteristic anatase peaks at 143 cm
-1

, 395 cm
-1

, 511 cm
-1

, and 630 cm
-1

. 

 

Figure 50: (a) Raman mapping line of the laser patterned P25 on FTO, (b) Raman spectra of the area outside (black 

spectrum) and inside (red spectrum) the laser patterned area. Reproduced from ref. [139]  by permission of The Royal 

Society of Chemistry 

From the Raman scan line analysis, Figure 50a, it can be seen that approaching the ablated center 

of the laser patterned line, a redshift in the 143 cm
-1

 peak occurs, and the overall spectrum shifts 

towards rutile-like spectrum (red). At the ablated center of the laser patterned line, broadened 

peaks start to appear at 421 cm
-1

 and 616 cm
-1

, and anatase peaks at 421 cm
-1

, 395 cm
-1

 and 630 

cm
-1

 are suppressed, confirming that phase transformation of P25 to a rutile-like phase occurs 

along with increasing particle size in the laser affected area. It has been reported that phase 

transformation of TiO2 crystal rutile to anatase can occur upon femtosecond laser irradiation 

[241,245], however in order to achieve the transformation high temperatures and pressures are 
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required. In our case, when the P25 substrate is irradiated in air the power employed during the 

laser pattering is not high enough to trigger the phase transformation to anatase. Therefore, the 

laser patterning induces a local increase of temperature and pressure that leads to the melting and 

coalescence of the material and production of larger rutile nanoparticles [175,241,245]. 

The rutile phase has a higher refraction of index (n=2.9) and can scatter light more efficiently 

than the anatase phase (n=2.4) [287–289]. This phase transformation obtained by laser patterning 

of TiO2 films on FTO with a femtosecond laser, can open the possibility of using femtosecond 

laser patterned substrates in various applications such as light trapping layers in silicon solar 

cells, energy-harvesting devices, and dye-sensitized solar cells (DSSC) [270,271]. From these 

results, it is clear that femtosecond laser can be used to pattern TiO2 films and by thermodynamic 

phase transformation, changing the crystal phase from anatase to rutile. The cross sectional 

profile and depth of these ablated zones can be controlled by varying the power, ablation time, 

scanning speed, and focus spot size. 

5.4.  Summary 

In this chapter we studied the effects of femtosecond laser ablation of P25 powders dispersed in 

water and electrophoretic deposited onto a FTO conductive substrate. 

1) The experiments indicated that when laser ablation is performed in water, depending 

on the laser ablation time, it is possible to induce a phase transformation of the P25 

nanoparticles from anatase to rutile and then back to anatase. Although, the phase 

transformation from rutile to anatase is thermodynamically impossible, when the 

sizes of the nanoparticles decrease, a change in the phase stability occurs. In 

particular, for particle sizes less than 11 nm, anatase will be the most 

thermodynamically stable phase. When the sizes are greater than 35 nm, rutile will 

result the most stable phase. At short ablation times, the particles size increased to 

slightly larger particle. After prolonged laser exposure up to 2 hours, the particles 

size start to decrease and consequently anatase particles were formed.  

2) Together with phase transformation of the TiO2 nanoparticles, an increase of energy 

band gap upon increase of the laser ablation time occurred. Through the 

investigation of the effects of the laser ablation on the TiO2 structure, it has been 
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found that the size of the nanoparticles could be controlled by varying the laser 

ablation time. These results highlight the possibility of using the laser ablation of 

TiO2 as a tool for the bandgap engineering of these nanomaterials, which can be 

potentially employed in photocatalysis. 

3) Phase transformation also occurs upon laser of P25 powder deposited onto FTO 

glass. Preliminary results showed that P25 powder can be patterned and due to phase 

transformation to rutile, the patterned areas possess a higher refraction index leading 

to the possibility of using these patterned substrates for the fabrication of light 

trapping layers. 
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 Carbon Materials for Next Generation Resistive Switching Chapter 6.

Memory Devices
[15]

 

Overview 

In the following chapter, is reported the study on the synthesis and modification of carbon-based 

memory devices by electrochemical processes. The aim of this study is to demonstrate that the 

electrophoretic deposition of carbon nanomaterials is an alternative straightforward and time 

effective technique for the fabrication of carbon-based devices, which can be employed as future 

non-volatile memory devices. The fabrication process we developed could overcome the current 

complex fabrication process of this type of memory devices, which impede their large-scale 

development. For the first time we reported about the resistive switching behavior of a new type 

of device made of carbon nanostructures electrophoretic-deposited on fluorine-doped tin oxide 

(FTO) substrate. This new device shows a forming-free bipolar resistive switching behavior, 

with a low operating voltage of 2 V and long retention time (5x10
4
 s). The obtained results 

demonstrate the good reproducibility of the device's production process. The study of the 

resistive switching mechanisms of the fabricated carbon-based devices highlighted a relationship 

between chemical composition and electrical properties. It has been demonstrated that the 

device's electrical performances can be engineered with a control over fabrication process, which 

allows tailoring the materials’ structure and composition. In particular, it has been shown for the 

first time that electrochemical oxidation is an engineering solution for the specific modification 

of the electrophoretic-deposited carbon structures.  The oxidation of the carbon materials 

resulted to improve their electrical performances enabling multilevel current amplification 

behavior. 

6.1.  Introduction 

Currently, much attention is being paid to resistive switching random access memory (RRAM) 

devices as alternatives for the next generation of non-volatile memories. The most common 

structure of a RRAM device consists of an insulator/semiconductor layer sandwiched between 

two metallic electrodes, a schematic of a typical RRAM device is shown in Figure 51a .  
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Figure 51: (a) Schematic of a typical RRAM device, (b) I-V curve typical of a bipolar resistive switching device 

The resistive switching (RS) behavior in this type of device is due to a resistance change between 

high resistance state (HRS) and low resistance state (LRS) when a voltage across the electrodes 

is applied [290–295]. Bipolar switching devices display a characteristic hysteresis loop in their 

current-voltage curves, as displayed in Figure 51b. Initially the device is in its high-resistance 

state (OFF) and it is switched (SET) into a low-resistance state (ON) applying a certain voltage. 

The RESET into the OFF state takes place at reversed voltage polarity.  

Different types of RRAM have been fabricated based on the different chemical composition of 

the insulator/semiconductor layer and the different type of electrodes used. The materials that 

have been used for RRAM devices span from perovskites to transition metal oxides such as 

TiO2, NiO, and ZnO to chalcogenides and recently organic dielectric materials have been used 

[18,296–308]. Carbon materials, such as graphene oxide (GO) [309,310], reduced graphene 

oxide (rGO) [311,312] and carbon nanotubes (CNTs) [313,314] are attracting growing interest in 

nanoelectronics as alternatives to traditional silicon-based electronics due to their unique 

electrical characteristics, optical transparency and flexibility [315–318]. It has been reported that 

tetrahedral amorphous carbon films, graphene oxide and carbon nanotubes show resistive 

switching behavior, opening the possibility for their application for next-generation non-volatile 

memory devices [314,319–324], due to their high operation speed and scalability [309,325–327]. 

The underlying resistive switching mechanisms in RRAM devices depend on how the electron 

transport takes place in the sandwiched structure, which can be attributed to a large variety of 

physical and/or chemical phenomena. The mechanisms can be divided depending on whether the 
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dominant contribution derives from a thermal, an ionic or an electronic effect [328,329]. It has 

been widely demonstrated that the presence of lattice defects in the switching layer plays a key 

role in the resistive switching performance of the RRAM devices [329]. The most common 

resistive switching mechanisms proposed in the current literature are: formation and rupture of 

conductive filaments induced by redox reactions [312,330], Schottky emission, space-charge-

limited conduction (SCLC) controlled by the presence of defects in the materials, i.e. oxygen 

vacancies, which create charge-carrier traps, Pool-Frenkel emission [331–333], and trap-assisted 

tunneling where the RS originates from the electronic charge injection and/or charge 

displacements effects [290,292,293,328,334,335]. Recently, Ageev and coworkers published an 

interesting study on the resistive switching behavior of vertically aligned carbon nanotubes (VA 

CNT) under scanning tunneling microscopy (STM), induced by a distortion of the nanotubes 

upon the application of a voltage [313,314]. It was reported that the resistance ratio between the 

HRS and LRS was voltage dependent and reached 25 when 8 V was applied to the STM 

probe/VA CNT. However, no further studies on the main electrical performance parameters (i.e. 

endurance, retention time) have been carried out on VA CNT. In this connection, carbon 

nanowalls (CNWs) are two-dimensional nanomaterials made of graphene layers that instead of 

being rolled up as in VA CNT; they are vertically stacked onto a substrate leading to the 

formation of graphene “walls” [336]. These nanomaterials possess the characteristic properties of 

graphene together with unique characteristics induced by the presence of sharp edges and high 

surface area, which enable CNWs to be employed as field emitters, catalyst support, capacitors 

and in Li-ion battery fabrication [62,64,65,337–339]. Moreover, it is well known that graphene-

like systems possess high electrical conductivity along the basal plane, and the CNWs, due to 

their perpendicular orientation structure, possess an enhanced electrical conductivity compared 

to graphene which promises to be employed for devices fabrication [340]. To the best of our 

knowledge, no studies have been performed on whether CNWs can be employed for the 

application of memory devices. In this study, we report for the first time the resistive switching 

behavior of a new type of device made of electrophoretic-deposited CNWs on FTO substrates. 

As aforementioned, carbon-based RRAM are promising candidates for non-volatile memory 

applications [309–312,318,332,333,341], however, one of the disadvantages that hamper their 

development on a large scale is their fabrication processes, which involve high temperatures and 

pressures and the use of chemicals harmful for the environment [317]. Consequently, a new, 
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simple, fast, cost effective and eco-friendly method for the fabrication of carbon-based 

electronics is needed in order to enable their broad production. The study presented here, shows 

that CNWs devices can be fabricated by electrophoretic deposition of a solution of polyynes 

obtained by arc discharge on FTO substrates. This resulted to be a straightforward, time effective 

and green approach for the fabrication of carbon-based devices. The Al/CNWs/FTO device 

shows a forming-free bipolar RS behavior, with a low operating voltage of 2 V and long 

retention time (510
4
s). The results demonstrate the good reproducibility of the device’s 

production and that the electrical performances can be tailored with a systematic control of the 

fabrication parameters. In particular, the electrical properties of the carbon-based devices could 

be improved if a control over the chemical composition of the carbon material is performed. 

Preliminary results suggested that the electrochemical oxidation of the electrophoretic-deposited 

carbon structures lead to a device with improved electrical performances. The electrochemical 

treatment has been widely used as a technique to study the redox processes involved in the 

resistive switching mechanisms of different types of RRAM [342–344] and to increase the 

electrochemical capacitance of carbon materials by the introduction, on the surface of materials, 

of oxygen functional groups at room temperature [345,346]. To our best knowledge, it has not 

been used as a tool to improve the electrical performances of carbon-based RRAM devices. 

Here, we demonstrate that with a proper control over the chemical composition of the carbon 

materials by electrochemical route it is possible to engineer their structure in order to improve 

their electrical performances, confirming their potential as a resistive switching material. 

Moreover, we demonstrate that, since the material we synthesized is easier to obtain than the 

widely used GO, this approach can be helpful for the large-scale development of carbon-based 

memory devices and can be extent to be used to tailor the chemical composition of other carbon 

materials such as graphene, carbon nanotubes and so on.  

6.2.  Experimental 

The carbon nanowalls were obtained upon electrophoretic deposition of a solution of polyynes, 

which are linear carbon chains containing sp-carbon atoms [347]. The polyynes acted as building 

blocks for the fabrication of the carbon nanowalls and a similar fabrication method has been 

already published employing polyynes obtained by laser ablation of a graphite target and then 
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deposited by electrophoresis [69]. The details about the synthesis of polyynes and their EPD for 

the synthesis of the CNWs are given below. 

Synthesis of the polyynes: In this work the polyynes were obtained by arc discharge in water 

between two graphite electrodes having a diameter of 10 mm and length 70 mm [81,347,348].  

 

Figure 52: (a) Arc discharge setup employed for the synthesis of polyynes. The arc discharge was maintained between two 

graphite electrodes for 10 minutes; (b) UV-VIS spectrum of polyynes obtained upon arc discharge of two graphite 

electrodes in water. Reprinted from [15], with permission from Elsevier 

The arc discharge between the electrodes was maintained for 10 minutes at a voltage of 30 V. In 

Figure 52a the picture of the arc discharge setup is displayed while in Figure 52b is shown the 

UV/VIS spectrum of the obtained polyynes. In particular, polyynes containing 6, 8 and 10 

carbon atoms per chain were produced [349]. 

Synthesis and deposition of the carbon nanowalls: The polyynes solution was transferred in a 

glass beaker and two pieces of FTO/glass substrate were used as electrodes and submerged in the 

polyynes solution. The distance between the two electrodes during the electrophoretic deposition 

was kept at 5 mm. The FTO substrates, with a resistance of ~10  sq
-1

, before the polyynes 

deposition and fabrication of the CNWs, were cleaned in acetone, ethanol and isopropyl alcohol 

respectively and dried under nitrogen gas flow. The CNWs deposition occurred at the cathode 

upon application of a voltage of 30 V at the electrodes for 1 hour. The CNWs/FTO substrate was 

then annealed at 150C for 1 h in Argon gas, in order to remove the trapped water. Three types 

of heat treatments of the CNWs have been carried out: heat treatment at 150C in argon, in air 

and in argon followed by heat treatment in air.  

Fabrication of the memory device: Al top electrodes with 100 nm thickness and 1 mm diameter 

were deposited by an e-beam evaporation process on the CNWs surface. 
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 Instrumentation 6.2.1.

Scanning Electron Microscopy (SEM) analyses have been performed using a ZEISS LEO 1550 

FE-SEM at an accelerating voltage of 5 kV. The X-ray photoelectron spectroscopy (XPS) 

analysis was carried out using a multi-technique ultra- high vacuum imaging XPS microprobe 

spectrometer (Thermo VG Scientific ESCALab 250) with a monochromatic Al-Ka 1486.6 eV X-

ray source. The spectrometer was calibrated by Au 4f7/2 (binding energy of 84.0 eV) with 

respect to the Fermi level. The chamber vacuum level was maintained below 2x10
-10

 Torr. The 

carbon nanowalls were analyzed using a Renishaw In Via micro-Raman spectrometer, 

employing an excitation laser with a wavelength of 633 nm, and the spectra were acquired with a 

50x objective at a laser power of 0.1 mW. HRTEM observation was conducted using a JEOL 

2010F at the Canadian Centre for Electron Microscopy (Hamilton, Ontario, Canada). TEM 

samples were prepared by scratching the samples onto lacey carbon grids. Electrical 

measurements have been performed with a Keithley 2602A source meter at ambient conditions. 

6.3.  Results and Discussion  

The new CNWs-memory devices were fabricated in three steps using arc discharge and 

electrophoretic deposition (EPD) for the synthesis and deposition of CNWs on FTO substrate, 

respectively. Arc discharge in water of two graphite electrodes was employed for the production 

of a solution of polyynes, which are linear carbon chains of sp-carbon atoms [81,347,348]. These 

nanomaterials were then used as building blocks for the synthesis of the CNWs; indeed polyynes 

have a strong tendency to interchain crosslinking. The EPD was used for the synthesis/deposition 

of CNWs on FTO substrate, since it has been demonstrated as an excellent method to deposit 

carbon nanomaterials for forming free RRAM devices [327]. FTO substrates were used as 

electrodes and immersed in the polyynes solution. Upon application of the electric field, the 

polyynes are transported at the cathode and undergo interchain crosslinking reactions leading to 

the formation of hexagonal-graphene like sp
2
 carbon structures perpendicular to the electrode’s 

surface, i.e. the CNWs [74,350]. After heat treatment in Argon at 150 C for 1 hour, the final 

step of the fabrication process was the deposition of Al top electrodes on the CNWs/FTO 

substrate by e-beam evaporation. The production method we developed is more user-friendly, 

cost-effective and eco-friendly compared to the current fabrication methods employed for the 

synthesis of carbon-based electronic devices, since no high temperatures or high pressures and 
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poisonous chemicals are needed [317]. Figure 53a displays a schematic of the structure of the 

Al/CNWs/FTO devices fabricated, while in Figure 53b a schematic of the EPD process is 

displayed.  

 

Figure 53: (a) Schematic design of the structure of the Al/CNWs/FTO device, (b) schematic of the apparatus for the EPD 

of polyynes in order to obtain the CNWs. Reprinted from [15], with permission from Elsevier 

The top-view SEM image of the CNWs obtained after the EPD of polyynes on FTO substrate is 

shown in Figure 54a, which confirmed that the CNWs are uniformly distributed over the 

substrate area.  

In Figure 54b is displayed the magnified SEM image of the CNWs. The SEM images show the 

typical morphology of the carbon nanowalls, where the branched 2-dimensional carbon sheets 

are clearly shown. 

Figure 54c presents the C1s XPS spectrum of the electrophoretic fabricated CNWs. The C1s 

peak was fitted using a Gaussian-Lorentzian curve to four components in which the peak located 

at 284.35 eV indicates the presence of sp
2
 carbon atoms (C=C), the peak at 285.04 eV is 

attributed to sp
3
 carbon atoms (C-C), while the peaks at 286.03 eV and 287.87 eV can be 

ascribed to (C-OH) and (-O-C=O) groups respectively [69,351]. As shown in the inset in Figure 

54c, the percentage of sp
2
 carbon atoms is 56.46 %, while the ratio relative to sp

3
 carbon atoms is 

19.01 %, due to the presence of defect sites or edges [352]. The presence of 10.34 % of hydroxyl 

groups and 14.19 % of (-O-C=O) groups also suggest that a mild oxidation of the carbon 

nanowalls occurs during the fabrication process. The formation of defects and presence of 



 

97 

 

oxygen-containing groups upon fabrication of CNWs by EPD is crucial for the resistive 

switching behavior of the device [328,329]. The CNWs were analyzed by Raman spectroscopy 

with an excitation wavelength of 633 nm and the relative spectrum is displayed in Figure 54d. 

 

Figure 54: a) SEM image of the surface morphology of the CNWs prepared by EPD of polyynes. b) Magnification of the 

CNWs surface morphology. c) C1s XPS and (d) Raman spectrum of the CNWs. Reprinted from [15], with permission 

from Elsevier 

It is possible to notice, that the Raman spectrum obtained is the one characteristic of CNWs, as 

reported by Kurita and Wang [353,354]. In particular, it can be observed the characteristic D 

band originated by the presence of defects and the G band, which arises from the in-plane 

vibration of sp
2
 carbon atoms. As reported by Kurita [353], the narrow G band (~37 cm

-1
) is due 

to the presence of nanowalls made of small crystallites with high degree of graphitization. In 

addition to these bands, a weak band is also observed corresponding to D’ band originated by the 

presence of disorder. The length of the carbon nanowalls can be correlated to the ID/IG ratio, 

since it increases with decreasing the CNWs [353]. The ID/IG ratio of the CNWs is 0.95 (see 

Table 7) and based on the literature the length of our CNWs should be around 1.8 μm [353]. It is 

also reported that a decrease of the ID/IG ratio occurs upon addition of  O2 [66,354]. From Figure 
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54b it is possible to notice that the CNWs are smaller in length than 1.8 μm, therefore the low 

ID/IG ratio could be attributed to the presence of oxygen groups which induce a mild oxidation of 

the CNWs. 

Table 7: CNWs band positions and ID/IG ratio. Reprinted from [15], with permission from Elsevier 

 

From the TEM results displayed in Figure 55it is possible to notice that, the CNWs are made of 

8-10 graphene layers with a d-spacing of 0.34 nm, which is the interlayer distance in graphite.  

 

Figure 55: (a) TEM image of the CNWS and (b) HRTEM of the carbon nanowalls displaying an interlayer distance of 

0.34 nm, which is the d-spacing of graphite. Reprinted from [15], with permission from Elsevier.  

These results together with the SEM and Raman analysis, confirm the synthesis of carbon 

nanowalls. The electrical performance of the fabricated Al/CNWs/FTO devices was investigated 

by applying the sweep voltages of 0V → 2V → 0V→ -2V → 0V. Figure 56a demonstrates the 

typical bipolar resistive switching behavior of the new developed device obtained under direct 

sweeping operations for 1 and 150 cycles. It was found that the Al/CNWs/FTO device was 

initially in the LRS and the device maintained this state during the voltage sweeping from 0 to 

2V. The reason might be due to the dominance of sp
2
 carbon atoms over the sp

3
, providing high 

 

 D band G band D’ band ID/IG 

Position 1324 cm
-1

 1572 cm
-1

 1607 cm
-1

 

0.95 
Width 

(FWHM) 
53 37 20 
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conducting channels in the CNWs [310], as confirmed by XPS study in Figure 54c. Moreover, as 

aforementioned, the vertical orientation of the CNWs parallel to the electrons flow causes a 

higher conductivity [340], leading to the initial LRS in our I-V current response. The device 

switches to the HRS during the voltage sweeping from 2 V to 0 V, which means that the RESET 

process occurs. The HRS remained after the negative voltage was applied until the negative 

voltage is high enough to transition the device from HRS to LRS. It should be noted that the 

resistive switching performance for our devices does not require the commonly used 

electroforming step [310], desirable for the ReRAM devices due to the simplifying electrical 

operation. 

 

Figure 56: a) I-V curve of Al/CNWs/FTO device for first and 150 cycles of voltage sweeping. Arrows and numbers 

indicate the direction and sequence for the I–V scan. b) Endurance results of the device for over 150 cycles at 0.4V. c) 

Retention result over 5104 seconds at a read voltage of 0.4V. Reprinted from [15], with permission from Elsevier 

We have observed that the I-V curve obtained after 150 cycles is different from the one obtained 

after only one cycle and we hypothesize this could be attributed to a rearrangement of the oxygen 
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atoms in the CNWs structure induced by the first voltage sweep. The reset and set currents 

slightly changed after the first cycle and stabilized with increasing the number of cycles. After 

150 cycles it was still possible to distinguish the LRS and HRS, suggesting that this new type of 

device could be employed as RRAM in future memory devices. The results of the cycling 

performance are shown in Figure 56b at the read voltage of 0.4V. Over 150 cycles we found that 

the difference between the LRS and HRS firstly decreased but the difference remained constant 

with increase in the number of cycles probably as a consequence of the stabilization of CNWs 

structure, suggesting a promising durability of the new device. Figure 56c shows the retention 

results measured at room temperature. Over the time period of 510
4
 seconds, the currents for 

HRS and LRS, respectively measured at 0.4 V were stable, confirming the non-volatile nature of 

the device. 

It is important to explore the origin of the RS effect in this new type of CNWs-based device. 

Based on the type of the dielectric layer sandwiched between the electrodes, the RS behavior has 

been explained with different types of mechanisms [292,295,334]. In order to study the RS 

mechanism in our device, the I-V curves have been fitted to the different mechanisms and among 

them, we found that the trap-controlled SCLC mechanism, which is controlled by the presence of 

defects, best fit our device. The structural defects are related to the following mechanism for the 

formation of the CNWs upon EPD of polyynes. As aforementioned, polyynes are characterized 

by an extremely high reactivity with oxygen and a strong tendency to interchain crosslinking. 

Therefore, when polyynes are transported at the surface of electrode upon application of the 

electric field, interchain crosslinking reactions occur leading to the synthesis/deposition of 

CNWs [74,350]. The deposition process and the crosslinking reactions might lead to the 

formation of defective carbon structures (pentagon rings) with missing carbon atoms, which 

results in the formation of defect sites in the CNWs. The presence of defect sites and oxygen is 

confirmed by the observation of the peak at 285.04 eV attributed to sp
3
 carbon atoms (related to 

the presence of defect sites) and the peaks at 286.03 eV and 287.87 eV (related to oxygen 

containing carbon groups), as seen in the XPS spectrum in Figure 54c. Therefore, we 

hypothesize that due to the presence of structural defects and oxygen in the CNWs, the RS effect 

observed in our new device can be explained with the trap-controlled SCLC mechanism. In order 

to verify this hypothesis, we replotted the I-V curves of the device heat treated in argon in 

double-logarithmic scale as shown in Figure 57.  
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Figure 57: SCLC I-V characteristics of the Al/CNWs/FTO device plotted in double-logarithmic scale for the a) postive 

and b) negative bias. Reprinted from [15], with permission from Elsevier 

The I-V curve characteristic of trap-controlled SCLC can be easily recognized since the HRS 

consists of three portions: (i) Ohmic region (I  V) observed at low field; (ii) the Child’s Law 

region (I  V
2
); (iii) steep current increase observed at high field [334].  

It can be seen that the I-V curves are in agreement with the trap-controlled SCLC mechanism. In 

particular, under positive voltage the LRS follows the Ohm’s law conduction mechanism with a 

slope ~1, i.e., current varies linearly with applied voltage, while the HRS consists of two regions. 

At low voltage the current conduction follows the Ohm’s law with a slope of ~1 and at higher 

voltage the Child’s law conduction mechanism is dominant, suggesting that the switching 

mechanism is controlled by the trap-controlled SCLC. The slope value is lower than the one 

reported for the Child’s law mechanism, however lower slope values have been recorded in case 

of conjugated polymers and CNWs are made of conjugated carbon atoms [355]. Under negative 

voltage, the LRS was found to follow the Ohm’s law, while the HRS showed three regions: at 

low voltage the conduction mechanism followed the Ohm’s law with a slope of 1. The 

intermediate region represents the transition between Ohm’s and Child’s law conduction 

mechanisms [356]. The third region with slope 2.9 was seen to correspond to the Child’s law 

region [356].  

From the above results, we determined that the initial state of the device is LRS due to: (i) 

existence of defects sites, i.e. oxygen vacancies, which act as trap centers for the electrons and 

(ii) the perpendicular orientation of the CNWs on the FTO substrate, which enhances the 

electrical conductivity. Therefore, upon the application of a positive bias the electrons could flow 

along the filled oxygen vacancies from the bottom FTO electrode to the top Al electrode without 
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the requirement of a forming step. Upon the application of negative bias, a de-trapping process 

of electrons from the oxygen vacancies occurs, which causes the device to transition from LRS 

to HRS. A schematic of the RS mechanism is shown in Figure 58. 

 

Figure 58: Schematic showing the RS mechanism of the Al/CNWs/FTO device. (a) The LRS after applying a positive bias. 

The electrons flow along the filled oxygen vacancies from the bottom FTO electrode to the top Al electrode without the 

requirement of a forming step. (b) Transitioning from LRS to HRS caused by a de-trapping process of electrons from the 

oxygen vacancies upon application of a negative bias. Reprinted from [15], with permission from Elsevier 

These preliminary results indicated that the morphology of CNWs plays a key role in the 

electrical performance of the device. In particular, we showed that the presence of defects sites, 

i.e. oxygen vacancies, is vital for the RS behavior of the CNWs based devices. Therefore, it was 

of interest to try to engineer the concentrations of defects in the CNWs structure and study how 

the RS performance is affected. Heat treatment of carbon nanomaterials is a way that can be 

employed for the modulation of oxygen containing groups [46], which might affect the RS 

behavior. Therefore, after 1 hour of deposition of CNWs by EPD on FTO substrate, the substrate 

was heat treated at 150 C in air at ambient pressure. The electrical performance was then 

investigated and compared to the sample heat treated in argon at 150 C. In Figure 59 are shown 

the I-V characteristics of the device heat treated in air under the voltage sweep of 2V. 

Figure 59a shows that the RS behavior is similar to the device heat treated in argon, with the 

device initially in the LRS state. 
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Figure 59: a) Resistive switching characteristic after 1 and 20 cycles of the Al/CNWs/FTO device heat treated in air. b)  C 

1s XPS spectrum of the CNWs heat treated in air. Reprinted from [15], with permission from Elsevier 

Noteworthy, the LRS/HRS ratio after one voltage sweep at 2 V was higher for the sample heat 

treated in air than the one heat treated in argon (LRS/HRS of 7 and 3 respectively at the read 

voltage of 0.4V); however, the device did not show a good endurability. In particular, after few 

cycles the device became unstable and the LRS and HRS became undistinguishable, as displayed 

in Figure 59a. Clearly, this demonstrates that the heat treatment conditions after the deposition 

process play a key role in the stability of the device. The reason for the instability of the device 

might be the presence of a higher percentage of sp
2
 carbon atoms and a lower percentage of 

oxygen containing carbon groups after the treatment in air atmosphere. In Figure 59b the XPS 

spectrum of C1s is displayed together with the atomic percentages (inset) of carbon atoms and 

carbon groups detected in the sample. It was found that compared to the XPS spectrum of the 

sample heat treated in argon (Figure 54c), in the sample treated in air the percentage of sp
2
 

carbon atoms increased by ~ 24%, while the percentage of hydroxyl groups and carboxyl groups 

were 7.54% and 4.42%, respectively. This result suggests, supported by the current literature, 

that the heat treatment in air at 150 C induced a reduction of the CNWs [357], leading to a 

restoration of the sp
2
 hybridization and a decrease in the oxygen containing groups. The heat 

treatment in air leads to more conductive and less defective CNWs in term of oxygen containing 

groups compared to the CNWs heat treated in argon and this could be the reason for the 

instability of the device. In particular, as aforementioned, the presence of defects, i.e. oxygen 

vacancies, plays a key role in the RS behavior of our device and the fact that the heat treatment 
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in air led to CNWs with less content of oxygen and higher content of sp
2
 carbon atoms might 

affect the RS behavior. This result leads us to the hypothesis that the fabrication of CNWs with a 

smaller percentage of sp
2
 carbon atoms and higher percentage of oxygen containing carbon 

groups could lead to more stable devices [310].  

In order to confirm our hypothesis a preliminary experiment was carried out with heat treatment 

of the CNWs first in argon, in order to remove the trapped water molecules, followed by heat 

treatment in air at 150C. In Figure 60a, the I-V characteristics after sweeping a voltage of 2 V 

for 1 cycle and after 20 cycles are displayed. We noticed that after one cycle the LRS/HRS ratio 

reached a value of 9, however the device was not very stable and after few cycles the LRS and 

HRS collapsed. The retention experiment carried out at a voltage of 0.2 V showed that the device 

was able to maintain the LRS and HRS up to 2000 seconds with a ratio of ~10. Compared to the 

device heat treated only in argon and only in air, we found that the new type of heat treatment 

increased the LRS/HRS ratio but it did not result in an increase of stability in terms of 

endurability of the device. The XPS analysis (Figure 60c) showed that the heat treatment in 

argon and in air increased the sp
2
 percentage compared to the CNWs heat treated only in argon, 

as well as the percentage of oxygen containing groups. From these preliminary results, we can 

assess that the control of the content of sp
2
 carbon atoms and oxygen groups is crucial for the 

stability of the CNWs device. In particular, on one side a higher content of sp
2
 carbon atoms 

leads to devices with a higher LRS/HRS ratio, which promise to be employed for the fabrication 

of high-density memory devices [295]. On the other side it seems that the increase of sp
2
 carbon 

atoms together with the decrease of oxygen containing groups affect the RS behavior due to a 

decrease in the concentration of charge-carrier traps, which are vital for the RS behavior. 
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Figure 60: a) I-V characteristics after 1 and 20 cycles at a sweeping voltage of 2 V. b) retention of the device at 0.2 V. c) 

XPS spectrum of C 1s. Reprinted from [15], with permission from Elsevier 

Therefore, our hypothesis is that highly oxidized carbon nanowalls, with a lower percentage of 

sp
2
 carbon atoms might be employed for the fabrication of more stable memory devices. 

For the first time we demonstrated the resistive switching behavior of a new type of device made 

of carbon nanowalls on FTO substrates via EPD. The electrical measurements indicate that the 

Al/CNWs/FTO device shows a forming-free bipolar RS behavior, with a low operating voltage 

of 2 V and long retention time (510
4
s), confirming the non-volatile nature of the device. It has 

been demonstrated that oxygen vacancies play a key role in the resistive switching mechanism of 

this type of device acting as traps for the electrons. Indeed, the RS effect has been attributed to 

the trap-controlled SCLC mechanism. The fabrication method of CNWs by EPD is worthy of 

attention. Here we demonstrated that arc discharge in water followed by EPD can be employed 

for the synthesis of CNWs under environmentally friendly and timesaving conditions. It is clear 

that the device is still in its early stage of development, and we found out that heat treatment of 
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the deposited layer of CNWs plays a key role in the stability of the device. In particular, based on 

the experiments we found a dependence of the stability of the device on the oxygen content in 

CNWs. Therefore, we hypothesize that higher oxygen content might lead to much more stable 

electrical performance and with proper control of this parameter, this new type of materials can 

be employed for non-volatile memory devices and other carbon-based electronics. 

Consequently, we performed new experiments were, after EPD of carbon structures (Cs) on FTO 

substrates, we studied the effect of the anodic oxidation on the electrical performances of the 

carbon-based devices.  

6.4.  Synthesis of the Cs 

The Cs were prepared following the procedure described in Section 0 and 0. However, the 

deposition of the Cs on FTO was performed for 2 hours at a voltage of 30 V and current of 0.01 

A. The Cs obtained at the cathode (Cs@FTO) were let dry at room temperature. 

6.5.  Electrochemical oxidation of the Cs 

The as-prepared Cs@FTO samples were oxidized through anodic oxidation applying a potential 

in the range of [0-0.8] V vs. a saturated calomel electrode (S.C.E.) in 1 M sodium sulfate 

(Na2SO4) aqueous solution at room temperature. The electrochemical oxidation was carried out 

using a potentiostat/galvanostat (Gamry Potentiostat, Series 300) with a scan rate of 20 mV/s. 

The experiments were performed in a three-electrode quartz cell with the Cs@FTO sample as 

working electrode, a platinum wire as counter electrode and the S.C.E. as the reference electrode. 

After the electrochemical oxidation, in order to remove salt residues, the oxidized Cs 

(OCs@FTO) were rinsed with deionized water and dried at room temperature. 

6.6.  Results and discussion 

Figure 61a shows the schematic of the three-electrode quartz cell employed for the oxidation of 

the Cs, while Figure 61b displayed the cyclic voltammogram (CV) curve of the Cs@FTO in the 

range [0-0.8] V at a scan rate of 20 mV/s. 

The curve obtained in Figure 61b is independent of substrate material. Thus, the electrochemical 

oxidation of FTO substrate without the Cs deposition showed no oxidation peaks in the [0-0.8] V 

range, as displayed in Figure 61c. Therefore, the changes in the CV shape of the Cs have been 
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attributed to their structural modification, due to the oxidation of their surface. In particular, it is 

possible to notice a peak at a potential of 0.2 V, which is attributed to the formation of hydroxyl 

groups (-OH) upon electrochemical oxidation occurring at carbon defects sites according to the 

following reaction [358,359]: 

𝐶 + 𝐻2𝑂 ↔ 𝐶𝑂𝐻 + 𝐻+ + 𝑒−    E=0.207 V (1) 

𝐶 + 𝐻2𝑂 ↔ 𝐶𝑂 + 2𝐻+ + 2𝑒−    E=0.518 V (2) 

The broad peak in the range of [0.3 - 0.5] V can be attributed to the formation of carbonyl, 

carboxyl (HO-C-C=O-), epoxy (O-C-O) groups at the surface of the Cs [345,359–361]. 

 

Figure 61: (a) Schematic of the three-electrode quartz cell employed for the oxidation of the carbon structures. (b) CV of 

Cs@FTO in 1 M Na2SO4 aqueous solution. the scan rate is 20 mV/s. (c) Electrochemical oxidation of the FTO substrate 

without the deposition of the carbon structures. It is possible to notice that the FTO surface has not been oxidized. 

A schematic of the fabrication and modification process of the CN is displayed in Figure 62(a-c). 

Figure 62a shows the electrodeposition of the polyynes on the FTO substrate, which leads to the 

synthesis of the Cs through a bottom up approach (Figure 62b). 
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.  

Figure 62: (a-b) schematic of the bottom up synthesis of Cs upon deposition of polyynes and (c) electrochemical oxidation 

of the synthesized Cs; (d, f, h) C 1s XPS spectra, SEM and TEM images of the Cs before and (e, g, i) after the 

electrochemical oxidation. In In (h-i) it is possible to notice that the d-spacing of the as-prepared Cs is 0.34 nm, which 

increases to 0.5 nm upon oxidation. 
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In order to confirm the structural modification of the Cs induced by the electrochemical 

oxidation (Figure 62c), we performed XPS, SEM and TEM characterization analysis on the 

samples before and after the oxidation treatment. The results are displayed in Figure 62(d-i). It is 

seen that as a result of the electrochemical oxidation a modification of the chemical composition 

of the Cs occurred. It should be noted, that the as-prepared Cs samples have a mild oxidation, 

probably due to their deposition by EPD [15]. The peak at 284.60 eV is attributed to C=C bonds, 

while the C-C bonds give rise to the peak at ~ 285 eV. The as prepared sample contains hydroxyl 

and epoxy groups and the related peaks are situated at 285.88 eV and 288.57 eV, respectively. 

The electrochemical oxidation, gives rise to the appearance of a new peak at 286.96 eV, which 

can be attributed to the presence of carbonyl group. From the comparison of the XPS spectra 

before (Figure 62d) and after (Figure 62e) the electrochemical treatment, it can be observed a 

decrease of the percentage of sp
2
 carbon atoms attributed to C=C bonds and an increase of the 

percentage of sp
3
 carbon atoms attributed to C-C bonds as a consequence of the oxidation of the 

Cs. Moreover, the percentage of hydroxyl groups and epoxy groups increased together with the 

appearance of the peak attributed to the carbonyl groups. These evidences are in agreement with 

the results obtained from the CV curve in Figure 61b.  

The morphology and structure of the Cs before and after electrochemical treatment was 

investigated by SEM and TEM, as shown in Figure 62f-g and Figure 62h-i, respectively.  

From the characterization analysis, it is possible to notice that the electrochemical oxidation of 

the Cs induced a transformation of the structure. In particular, it was observed that the oxidation 

of the Cs induced a modification of the morphology and an increase of the d-spacing from 0.34 

nm, typical of graphitic structures, to 0.50 nm due to the presence of oxygen groups within the 

graphene layers, as sketched in Figure 62c by the red dots between the layers [362,363].  

The TEM cross section analysis, displayed in Figure 63 and Figure 64 further confirmed the 

oxidation of the Cs. 
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Figure 63: (a) TEM-Cross section of the Al@Cs@FTO device. (b-e) composition maps of Al, C, O and Sn, respectively. 
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Figure 64: (a) TEM-Cross section of the Al@OCs@FTO device. (b-e) composition maps of Al, C, O and Sn, respectively. 

In Figure 65 is displayed the Raman spectra of the samples before and after the electrochemical 

treatment. The main characteristic bands of carbon-based materials are the D band induced by 

defects in the crystalline structure and it is related to the size of the in-plain graphitic (i.e. sp
2
) 

domains [364]. The G band arises from the in-plane vibration mode of sp
2
 carbon atoms, while 2 
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D and D+G bands are originated by second order Raman vibration modes [166,365]. The ID/IG 

and I2D/IG ratio is often used to get information on the presence of defects in the carbon materials 

and it has been reported that the ID/IG and I2D/IG ratio decreases as the crystallinity of the material 

improves [366]. It has been extensively reported the ID/IG ratio can be employed for the 

investigation of the reduction of graphene oxides [9,364,366,367]. 

 

Figure 65: Raman spectra of as-prepared Cs (black curve) and the Cs after electrochemical oxidation (blue curve). 

In particular, upon reduction of the GO the ID/IG ratio increases due to a reduction in the average 

of the sp
2
 domains, since it is inversely proportional to the average size of the sp

2
 domains [364]. 

Conversely, a decrease of the ID/IG is expected in oxidized carbon materials [317]. It is possible 

to notice that upon the electrochemical treatment the ID/IG ratio decreased, thus confirming the 

oxidation of the Cs. This is further supported by the decrease of the I2D/IG ratio from 0.28 to 

0.20, indicating a decrease of sp
2
 domains [346].  

The Al/Cs@FTO and Al/OCs@FTO devices were then fabricated following the procedure 

described in 0, and a schematic of the Al/OCs@FTO device is shown as inset in Figure 66b. The 

electrical performances of the devices were studied applying sweeping voltages of 0V → -2V → 

0V→ 2V → 0V. The Al/Cs@FTO and Al/OCs@FTO devices, after 1 cycle of voltage sweeping 
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showed bipolar resistive switching behavior as can be observed from the current-voltage (I-V) 

curves displayed in Figure 66a. 

 

Figure 66: (a) I-V curve of Al/Cs@FTO and Al/OCs@FTO devices after 1 cycle of voltage sweeping. (b) Endurance of the 

Al/OCs@FTO device for over 50 cycles. (c) Retention results of the Al/OCs@FTO device over 10x103 seconds at a 

reading voltage of -0.4V. (d) Distribution of the SET and RESET voltages of the Al/OCs@FTO device. 

It is possible to notice that the Al/Cs@FTO device is initially in the LRS due to presence of 

higher percentage of sp
2
 carbon atoms, which provide high conductive channels, as already 

reported in our previous study [15]. The device is then switched to the HRS upon application of a 

voltage from -2 V to 0 V. This state is maintained up to 2V, where the RESET process occurs 

and the device is switched again to the LRS state. The I-V curve of the Al/OCs@FTO device is 

different. In particular, the devices are initially in the HRS state, due to the presence of a higher 

percentage of sp
3
 carbon atoms [333] as a result of the electrochemical oxidation and in 

agreement with the XPS spectra in Figure 62(d-e). As the negative voltage increases the devices 

are switched to the ON (LRS) state, which corresponds to the SET process. The ON state is 

maintained upon application of a positive voltage. At 2 V the RESET process occurs and the 
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devices are switched to the OFF (HRS) state. From the comparison of the I-V curves for the 

Al/Cs@FTO and Al/OCs@FTO devices it is possible to notice that the ON/OFF ratio value for 

the device fabricated with the oxidized Cs is ~10
2
 times higher than the Al/Cs@FTO device. It 

was observed that the Al/OCs@FTO device could sustain different sweeping cycles, as displayed 

in Figure 66b; however, a change in the SET and RESET voltages was recorded as shown in 

Figure 66d. This phenomenon can be attributed to the rupture, in different locations, of the 

conductive filaments, as will be discussed later. In Figure 66c the retention characteristics of the 

Al/OCs@FTO device at -0.4V is displayed. The HRS and LRS states can retain up to 1x10
4
 

seconds confirming the non-volatile nature of the Al/OCs@FTO device.  

To better understand the conduction mechanism in the Al/OCs@FTO resistive switching device, 

we fitted the I-V curve of the LRS and HRS in a double logarithmic scale and the results are 

better described by the SCLC mechanism. Figure 67a shows the I-V curves during the SET 

operation, while in Figure 67b the I-V curves during RESET are plotted. Under negative and 

positive voltages the LRS states follow the Ohm’s law conduction mechanism with a slope ~1, 

while the negative and positive HRS states with a slope ~2 are governed by the Child’s law 

conduction mechanism according to the relationship I (V) = αV + βV
2
, which represents the 

SCLC mechanism. These results are in agreement with the current literature regarding GO-based 

RRAM [312,331–333]. From the I-V curves it is possible to notice that the resistive switching 

behavior in the OCs takes place through the formation of conductive filament paths built from 

the oxygen vacancies and structural defects. It should be noted that this type of mechanism has 

been reported by several works [312,368–370]. Therefore the Al/OCs@FTO device can be 

classified as oxygen vacancies based (VO) RRAM [371], where the resistive switching 

mechanism can be described by formation and rupture of oxygen vacancies conductive 

filaments. 
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Figure 67:  I-V curves of Al/OCs@FTO device plotted in a double logarithmic scale under negative (a) and positive (b) 

voltages. 

In Figure 68(a-d), a schematic of the proposed resistive switching mechanism is displayed. As 

recently reported by Pradhan [312] and Sung [326], aluminum has an high affinity to oxygen, 

therefore it reacts with the oxygen ions desorbed from the OCs forming an oxygen-rich region 

near the top electrode. This will induce the creation of oxygen-deficient regions (i.e. oxygen 

vacancies) in the OCs matrix due to the removal of oxygen from the OCs (Figure 68b). This is in 

agreement with the EDS maps displayed in Figure 64(b-e), where it can be observed a higher 

concentration of oxygen in the Al region compared to C region. Due to the difficulties in 

performing XPS analysis after the deposition of the Al top electrode, we could not confirm the 

percentage of oxygen-containing groups remaining in the carbon structures, which requires more 

attention.   

When a negative voltage is applied on the Al top electrode, the oxygen vacancies move towards 

the cathode and they start to be cluster leading to the formation of conductive filaments (Figure 

68c) that will switch the device from the OFF to the ON state, i.e. SET process. During the 

RESET process, the positive bias pushes back the oxygen vacancies [310,312], which lead to the 

breakage of the conductive filaments and consequently the device is switched to the HRS state, 

Figure 68d. It was observed that the SET voltage changed with the number cycles (Figure 66d). 

This might be attributed to the fact that during the RESET process the conductive filaments can 

break at various locations, leading to a distribution of SET voltages. From the electrical 

measurement results, it is evident that the electrochemical oxidation of the Cs enhanced the 

electrical performances. This is because the presence of oxygen functional groups and defects 
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plays a key role in resistive switching behavior in RRAM devices [298,316–

318,330,331,334,372]. 

 

Figure 68: (a) OCs on the bottom electrode.  (b) Pristine Ocs device after depsotion of the Al top electrode.  (c) Drifting of 

the postively charged oxygen vacancies towards the bottom electrode upon application of a negative voltage and 

formation of the conductive filaments wich switch the device ON . (d) During the reset process the oxygen vacancies are 

repelled back from the Al top electrode causing the rupture of the conductive filaments and the switch of the device to the 

OFF state.  
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In order to investigate how the degree of the Cs oxidation influences the electrical performances, 

we fabricated two devices with different electrochemical oxidation/reduction/oxidation cycles. In 

particular the devices were first oxidized applying a voltage in the range [0-0.8] V, then reduced 

by the application of a negative voltage from 0V to -0.8V followed by a further anodic oxidation 

from 0V to 0.8V. The devices were fabricated in a way, that the number of 

oxidation/reduction/oxidation cycles was 3 and 6, respectively. These devices will be referred as 

3OCs and 6OCs, where the number refers to the number of anodic oxidation cycles the device 

undergoes. The XPS spectra of these devices are shown in Figure 69(a-b).  

 

Figure 69: XPS spectrum of the Cs after 3 (a) and 6 (b) oxidation/reduction/oxidation cycles, respectively. (c) I-V curve of 

Al/3OCs@FTO and Al/6OCs@FTO devices after 1 cycle of voltage sweeping. 

In Table 8, the surface concentrations of the Cs before and after electrochemical treatment are 

displayed. It is possible to notice that increasing the cycles of oxidation/reduction/oxidation the 

percentage of sp
2
 carbon atoms increases compared to the Cs oxidized with only one anodic 

oxidation. Furthermore, the percentage of epoxy groups is higher in the OCs compared to the 

3OCs and 6OCs samples. 
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Table 8: Surface composition of the Cs before and after electrochemical treatment. 

 

 

 

 

 

 

The I-V curves of Al/3OCs@FTO and Al/6OCs@FTO devices are displayed in Figure 69c, and 

it is possible to observe that the electrical performances do not improve via increasing the 

number of oxidation/reduction/oxidation. The Al/3OCs@FTO electrical behavior is similar to 

the Al/Cs@FTO device; the device is initially in the LRS due to the higher percentage of sp
2
 

carbon atoms and switch to HRS upon application of a voltage from -2 V to 0 V. However, the 

device cannot maintain the HRS state and switch to LRS upon application of a positive voltage. 

The I-V curves for the 6OCs showed that this device behaves like a resistor, due to the presence 

of a higher concentration of sp
2
 carbon atoms.  

These results highlight that the degree of oxidation of the Cs strongly influences their electrical 

performances, i.e. a higher concentration of sp
3
 carbon atoms together with the presence of 

carbonyl and epoxy groups improved the device’s performances. Therefore, the possibility to 

have a control over the degree of oxidation is necessary for the fabrication of next generation 

RRAM devices.  

In order to extent the study on the role of oxygen content in our materials, we carried out 

preliminary experiments performing the electrochemical oxidation increasing the salt 

concentration from 1M to 3M. In Figure 70a is displayed the XPS spectra of the OCs obtained, 

which will be indicated as 3MOCs. Compared to the OCs XPS spectra in Figure 62e, the 3MOCs 

show a lower percentage of sp
2
 carbon atoms and hydroxyl groups, and a higher percentage of 

carbonyl groups, as reported in the table S1. From the I-V curve displayed in Figure 70b, it is 

possible to notice that compared to device oxidized employing a salt concentration of 1M, the 

Sample C=C (%) C-C (%) C-OH (%) C=O (%) O-C-O (%) 

Cs 70.25 14.70 9.97 // 5.08 

OCs 30.80 39.66 14.41 3.59 11.54 

3OCs 54.58 20.89 15.92 // 8.61 

6OCs 47.28 24.28 13.15 8.04 7.26 

3MOCs 27.49 47.80 9.57 9.02 6.12 
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3MOCs required a higher voltage to switch the device from the OFF state to the ON state. This 

can be attributed to the higher percentage of sp
3
 carbon atoms and carbonyl groups.  

 

Figure 70:  (a) XPS spectra of the 3MOCS, (b) current response under a voltage sweep of 20V, (c) 3 level memory profile 

upon application of 15V and a reset bias of -21V, (d) current response under 32 voltage cycles from 0V  15V 0V. 

Compared to the OCs device, the 3MOCs showed a 3 level current amplification memory effect, 

as can be seen from Figure 70c. Upon application of consecutive biasing of 15V, an 

accumulation of charged defects takes place leading to a current amplification, due to the 

creation of multiple conduction paths, which is known to occur in RRAM devices based on oxide 

materials [299,346]. A reverse erase bias of -21V, disrupts the conduction filaments and the 

device goes back to its original state, allowing a repeatable 3 level current amplification. It was 

observed thirteen-level amplification under continuous excitation with forward voltage cycles, as 

shown in Figure 70d. As the number of cycles increases the saturation of the current occurs and 

it stabilizes reaching a value of ~8E
-4

 A [299]. It is evident from these preliminary results, that 

the electrochemical oxidation of the Cs could be used as a tool to engineer the electrical 

performances of this type of carbon-based devices. In particular, the possibility to control the 

chemical composition of the carbon material could lead to the fabrication of devices with 
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enhanced electrical performances, such as multilevel memory amplification for the storage of 

more than one bit per memory cell [373].  

6.7.  Summary 

In this chapter, it has been demonstrated that electrochemical processes such as the 

electrochemical deposition and the anodic oxidation are straightforward and time-effective ways 

for the synthesis and modification of carbon materials. The ease of the method allows the 

deposition of the carbon materials directly on conductive substrates that have been used as the 

bottom electrodes of the carbon-based devices. The carbon nanowalls showed resistive switching 

behavior and from the study of the RS mechanisms it has been observed that their electrical 

performances can be improved modifying the materials’ structure through a proper control of the 

fabrication process parameters, such as deposition time, heat treatment, and chemical 

composition of the carbon materials. Preliminary results demonstrated a good reproducibility of 

the devices and it has been discussed that the degree of oxidation plays a key role in the electrical 

properties of the devices. It has been determined that the electrochemical oxidation of carbon 

structures can be used to engineer the chemical composition of the Cs. It was observed that a 

proper control over the oxidation degree is vital for the Cs’ resistive switching mechanism, since 

it is originated by the formation of conductive filament paths built from the oxygen vacancies 

and structural defects. The increase of the Cs’ degree of oxidation led to devices with multilevel 

current amplification which enables the storage of more than one bit of information. The ease 

and time effectiveness of the method we developed is an engineering solution for the large-scale 

development of other carbon-based electronics. 
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 UV-induced multilevel current amplification memory effect in Chapter 7.

zinc oxide rods resistive switching devices. 

Overview 

In Chapter 6, it was demonstrated that the electrophoretic deposition of carbon materials could 

be employed as a straightforward and time-effective technique for the fabrication of memory 

devices and for the improvement of their electrical properties. This technique is very versatile 

and it can be used for the deposition of different materials. The aim of the study presented in this 

current chapter is to employ the EPD as the solely technique for the synthesis of ZnO rods for the 

fabrication of resistive switching (RS) devices. As mentioned in Section 2.7.2, electrochemical 

routes have been employed either for the growth of ZnO rods on ZnO films prepared by 

magnetron sputtering or for the deposition of ZnO films where the rods have been grown by 

hydrothermal method [154–157]. In this study, the cathodic deposition of zinc nitrate solution on 

FTO substrates is employed as technique for the synthesis of the ZnO seed layer and for the 

consecutive growth of the ZnO rods. The ZnO rods act as the active layers of the resistive 

memory structure, while the FTO serves as bottom electrode. From the analysis of the electrical 

measurements it has been found that upon exposure of the devices to ultraviolet (UV) light an 

increase of the device’s stability occurs. Moreover, for the first time it has been observed a 

photo-induced multilevel current amplification, which is absent in dark conditions. From the 

study of the RS mechanisms, it has been demonstrated that RS behaviour in these devices can be 

attributed to the presence of conductive filaments composed of oxygen vacancies. The improved 

device’s resistive switching behavior is due to the higher production of oxygen defects generated 

by UV light. The investigation of the photodecay processes carried out on the devices fabricated 

with different electrodes, showed that the nature of the interface metal/ZnO rods affects the 

surface barrier height, which influences the photodecay rate. It is shown that higher relaxation 

constants (slower photodecay rates), lead to the multilevel current amplification behavior which 

is triggered by the UV light. 

7.1. Introduction 

As already presented in Chapter 6, RRAM devices consist of an active layer sandwiched 

between two metallic electrodes (Scheme in Figure 51a). These type of devices rely on the 
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resistance change of the active material under application of an electrical stimulus, from a low 

resistance state (LRS or “ON”) to a high resistance state (HRS or “OFF”) and vice 

versa.[292,293,295,334] When a device is switched from HRS to LRS, the process is referred as 

the SET, while the RESET is the process of switching the device from LRS to HRS. Across the 

years different types of materials have been employed as a dielectric layer: chalcogenides, TiO2, 

NiO, and carbon nanomaterials [15,18,136,304,308,310,324,331,344,356,373–378].  

Among all, ZnO nanostructures, such as ZnO rods, because of their transparency in the visible 

region, low cost, wide direct band gap (3.34 eV), controllable electrical behavior, and chemical 

stability have been employed for the fabrication of different types of RRAM devices [137,379–

385].  In ZnO RRAM devices, depending on the device’s structure, RS effect can operate under 

unipolar and bipolar operation mode, where the SET and RESET processes occurs in the same or 

opposite bias polarity, respectively[386,387]. The resistive switching behavior underlying ZnO 

based RRAM can be attributed to the electrochemical metallization mechanism (ECM) induced 

by the formation and rupture of metallic filaments or to the valence change mechanism (VCM) 

where the conductive filaments are composed of oxygen vacancies defects [383]. Besides the 

resistive switching memories, ZnO nanostructures are very sensitive to UV light and they are 

good candidates for light emitting diodes, photovoltaic and UV photodetectors applications [19–

24]. 

The RS and photoconductivity properties of ZnO nanostructures have been extensively studied, 

however only one group reported about the concurrent study of RS and photoconductivity of 

ZnO devices, in particular the study focused on the photo-stimulated RS in the ZnO rods devices. 

However, the authors did not observe a multilevel current amplification upon exposure of the 

device to ultraviolet light [24]. 

In this study, we investigated the RS mechanisms, in dark and under UV-light exposure, of ZnO 

rods obtained by two-step electrochemical deposition process. The advantages of the 

electrophoretic deposition employed in this study compared to the common hydrothermal and 

sol-gel routes rely on the time-effectiveness of the method [153,388,389]. This technique allows 

the deposition of materials on different type of substrates achieving large scale deposition 

[21,22,150,153,155,388–392]. In literature, several papers reported about the synthesis of ZnO 

seed layers on different type of substrates employing the electrophoretic deposition of an 

aqueous solution of zinc nitrate or ZnO powders [393–396]. Few researchers have reported the 
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synthesis of the ZnO rods via electrophoretic route employing ZnO seed layer obtained by radio 

frequency magnetron sputtering systems [154–157]. The synthesis of both ZnO seed layer and 

ZnO rods through electrophoretic deposition has been reported only by another group, where the 

rods have been deposited on indium indium-doped tin-oxide (ITO) [397]. Here, we will present 

and discuss the results obtained investigating the electrical performances of ZnO rods grown 

through cathodic deposition on FTO and we will discuss the possible mechanism of the 

multilevel current amplification effect induced by UV exposure. The novelty of our study relies 

on the simultaneous study of the photo-multilevel current amplification effect and the improved 

resistive switching behavior of ZnO rods devices under UV light illumination. To the best of our 

knowledge, the multilevel current amplification triggered by the UV light has never been 

reported in ZnO RS devices. 

7.2.  Experimental 

 Deposition of the ZnO seed layer 7.2.1.

The ZnO seed layer was synthesized by electrodeposition approach in a three-electrode quartz 

cell [398–400]. The FTO substrates were purchased from Ossila Company, and they were 

cleaned ultrasonically in isopropanol, ethanol, and acetone, rinsed with deionized water and 

dried with air. A 0.1 M aqueous solution of zinc nitrate hexahydrate [Zn(NO3)2· 6H2O] was used 

as the electrolyte solution and it was kept at 80C during the electrodeposition. The FTO 

substrate was used as working electrode, and the counter electrode was Pt mesh. In order to 

deposit the ZnO seed layer a potential of -1.1 V vs. a saturated calomel electrode (S.C.E.) was 

applied for 1800 seconds. After the deposition of the ZnO layer, the substrate was dried in oven 

at 60C for 1h. 

 Growth of the ZnO rods 7.2.2.

The ZnO rods were grown trough an electrochemical deposition method in a three-electrode 

quartz cell [398]. The electrolyte solution for the growth of the rods was an equimolar (5 mM) 

aqueous solution of [Zn(NO3)2· 6H2O] and hexamethylenetetramine (HMTA, C6H12N4). The 

temperature of the bath was kept at 80C and under continuous stirring. The seeded FTO 

substrate and Pt mesh were the working and the counter electrodes, respectively. The ZnO rods 
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were grown applying a potential of -0.95 V vs. S.C.E. for 1500 seconds. After the synthesis of 

the rods, the substrate was rinsed with deionized water and dried in air. 

 Device fabrication 7.2.3.

Silver paint (High Purity Silver Paint from SPI-SUPPLIES) was used for the fabrication of the 

Ag top electrodes. A mask with patterned holes of 100 μm was attached to the ZnO rods/FTO 

and the silver paint was brushed in order to create the electrodes.  For the preparation of the 

Au/ZnO rods/FTO devices, a mask with patterned holes of 100 μm was applied on the ZnO 

rods/FTO samples and the gold electrodes were deposited by gold sputtering.  

 Instrumentation 7.2.4.

The ZnO seed layer and the ZnO rods were obtained using a Gamry Potentiostat (Series 300). 

The morphology of the rods was investigated by scanning electron microscopy (SEM). It has 

been employed a ZEISS LEO 1550 FE-SEM at an accelerating voltage of 7 kV. The structural 

characterization was investigate with TEM and the analysis has been carried out using a JEOL 

2010F at the Canadian Centre for Electron Microscopy (Hamilton, Ontario, Canada). X-ray 

photoelectron spectroscopy (XPS) analysis was employed to study the surface chemical 

composition analysis and it was performed by using a multi-technique ultra-high vacuum 

imaging XPS microprobe spectrometer (Thermo VG Scientific ESCALab 250) with a 

monochromatic Al-Ka 1486.6 eV X-ray source. The ZnO rods spectrum was acquired with a 50x 

objective and laser wavelength of 633 nm at a power of 0.1 mW. The electrical measurements 

were performed with a Keithley 2602A source meter at ambient conditions. The measurements 

under UV light have been carried out with a UV-LED lamp with a wavelength 365 nm (LED 

Engin, 1 A forward current, 4.1 V forward voltage). 

7.3.  Results and Discussion 

The mechanism for the growth of the ZnO rods thorough electrophoretic deposition has been 

well-reported and it is attributed to the reaction between the Zn
2+

 ions, dissolved in the growth 

solution, with the hydroxide (OH
-
) ions generated upon application of an electric field.  

The reactions involved in the growth of the ZnO rods can be described as follows: 

𝑍𝑛(𝑁𝑂3)2 → 𝑍𝑛
2+ + 2𝑁𝑂3

−       (1) 
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𝑁𝑂3
− + 𝐻2𝑂 + 2𝑒

− → 𝑁𝑂2
− + 2𝑂𝐻−      (2) 

𝑍𝑛2 + 𝑂𝐻− → 𝑍𝑛(𝑂𝐻)2        (3) 

𝑍𝑛(𝑂𝐻)2 → 𝑍𝑛𝑂 + 𝐻2𝑂       (4) 

The HMTA reacting with water provides additional hydroxide ions according to the following 

reactions [156,399,401]: 

𝐶6𝐻12𝑁4 + 6𝐻2𝑂 ⇄ 𝐶𝑂𝐻2 + 4𝑁𝐻3      (5) 

𝑁𝐻3 + 𝐻2𝑂 ⇄ 𝑁𝐻4
+ + 𝑂𝐻−       (6) 

The morphology and the structure of the ZnO rods were analyzed by scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM). Figure 71a, shows the top 

SEM image of the ZnO rods on a seeded FTO substrate, while a magnified SEM image of the 

rods is displayed in Figure 71b.  

 

Figure 71: (a) SEM image of ZnO top surface, (b) magnification of the ZnO rods obtained upon cathodic deposition, (c) 

TEM image of ZnO rods showing good crystallinity demonstrated by SAED analysis (inset), (d) HR-TEM showing the d-

spacing of the ZnO rods 
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It was possible to obtain a homogenous layer of ZnO rods with an average length of ~ 1 μm 

using solely cathodic deposition. In Figure 71(c-d), TEM images of the ZnO rods are displayed. 

The inset of Figure 71c displays the selected area electron diffraction (SAED) pattern of the ZnO 

rods, which confirms their single crystalline nature.  

The high resolution TEM image in Figure 71d, reveals the lattice fringes with a d spacing of 0.26 

nm, which match the inter-spacing of the (002) planes of the ZnO with wurtzite structure,  thus 

confirming the growth direction of the ZnO rods is in the c-axis direction [155,402].Figure 72a 

displays the Raman characterization analysis of the ZnO rods. The main characteristic peaks of 

zinc oxide rods are associated to different vibrational modes. In particular, the peak at 379 cm
-1

 

corresponds to A1, while E1 originates the peak at 410 cm
-1

. The other two Raman active modes 

are the low frequency E2 phonon mode originated from the Zn vibrations, and the peak at 437 

cm
-1

, which corresponds to the high frequency E2 mode due to oxygen atoms in the structure 

[176–178] . It has been reported that the position of the E2 (high) mode shifts towards lower 

frequencies as the amount of oxygen vacancies increases [403]. 

 

Figure 72: (a) Raman spectrum; (b) Zn 2p core-levels and (c) O1s region of the as-grown ZnO rods. 

The position of the E2 (high) peak in the Raman spectrum displayed in Figure 72a is shifted at 

lower frequencies located at 435 cm
-1

, suggesting the presence of oxygen vacancies within the 

ZnO structure. In order to analyze the chemical composition and oxidation state of the ZnO rods, 
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we performed X-ray photoelectron spectroscopy (XPS) analysis. The high-resolution spectra of 

Zn 2p and O1s are shown in Figure 72b and c, respectively. The two peaks located at 1021.51 eV 

and 1044.59 eV are attributed to Zn 2p
3/2

 and Zn 2p
1/2

 of ZnO rods, which indicates a +2 valence 

state of the rods. Moreover, both the peaks were fitted to a single one Gaussian curve and the 

binding energy difference between the two Zn 2p core-levels is 23 eV, which is in agreement 

with the data reported in literature for ZnO rods [137,404,405]. The presence of oxygen 

vacancies and interstitial oxygen defects can be investigated through the chemical state of O 1s 

region [24,137,406]. In Figure 72c, the spectrum of the O 1s region is displayed and the peak 

was fitted to three Gaussian peaks located at (I) 530.25 eV, (II) 531.29 eV and (III) 532.10 eV. 

The peaks at the low and middle binding energies are attributed to O
2-

 ions in the Zn-O bonding 

in the ZnO rods wurtzite structure and to the O
2-

 ions in the oxygen deficient regions, 

respectively. The peak at higher binding energy is associated to chemisorbed oxygen. The very 

strong intensity of the peak at lower binding energy compared to the other two components 

indicates a good crystallinity of the samples, as further confirmed by the SAED pattern in the 

inset of Figure 71c and by the sharp and higher intensity of the E2 (high) Raman peak in Figure 

72a [178,406]. The intensity of the peaks located at middle and high binding energies is 

comparable, indicating the coexistence of oxygen vacancies Vo and chemisorbed oxygen, in 

agreement with previous reports [24,406]. 

In order to study the electrical performances of the ZnO rods, silver contacts were fabricated 

following the procedure described in the Experimental Section. A schematic of the Ag/ZnO 

rods/FTO device is displayed in Figure 73(a-b) as insets.  

The electrical measurements were performed applying a sweeping voltage of 4V at the Ag top 

electrode, while the FTO was grounded. The electrical tests were carried in dark and under UV 

irradiation and the I-V curves are displayed in Figure 73a and b, respectively. In dark conditions, 

the device showed a bipolar resistance switching, however the device was not stable and after 40 

sweeping cycles a decrease of the current occurred. The sweeping direction was 0→ 4V →0→ -

4V, and it was found that the device is initially in the HRS and switched to the LRS during the 

voltage sweeping from 4V to 0V, due to the piling of oxygen vacancies, which creates the 

conductive filaments, as it will be discussed later. The I-V curve of the Ag/ZnO rods/FTO device 

under UV irradiation (inset Figure 73b) is displayed in Figure 73b, and the illumination 

conditions changed the electrical response. In particular, an increase of the measured current was 
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observed together with the improvement of the device’s stability, which could sustain up to 40 

sweeping cycles. 

 

Figure 73: (a) I-V curves of the Ag/ZnO rods/FTO (inset) in dark condition and (b) under UV irradiation with a sweeping 

voltage of 4V for 1 cycle (black curves) and after 40 cycles (red curves). 

The measured current under UV exposure was 20 times greater than the current in dark 

conditions. The increase of the conductivity of the Ag/ZnO rods/FTO device upon illumination, 

showed in Figure 73b can be explained as follows. ZnO is a n-type semiconductor extremely 

sensitive to the UV irradiation, and the mechanism for the photoconduction in the nanostructured 

ZnO has been extensively studied [21,23,407–409]. It is well known that in air, oxygen 

molecules chemisorb on ZnO surface and, by capturing the free electrons from the n-type ZnO 

conduction band, are converted to oxygen ions according to the following reaction: 

𝑂2(𝑔) + 𝑒
− → 𝑂2(𝑎𝑑)

−         (7) 

Consequently, a low-conductivity depletion layer is formed near the surface. When the ZnO is 

illuminated by UV irradiation with photon energies above the semiconductor band gap, electron-

hole pairs are photo-generated according to Equation 8: 

ℎ𝜈 → 𝑒− + ℎ+         (8) 

The photo-generated holes migrate to the surface react with the oxygen ions releasing oxygen 

molecules (Equation 9).  

𝑂2(𝑎𝑑)
− + ℎ+ → 𝑂2(𝑔) ↑       (9) 

As a consequence the high-resistance depletion layer is reduced and the unpaired electrons, left 

behind by the photo-generated holes, increase the conductivity under an applied field 

[21,23,24,407,409]. The bipolar resistive switching (RS) behavior of the Ag/ZnO rods/FTO 

device and the increase of the device’s stability upon UV exposure can be explained by the 
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oxygen vacancies conduction mechanism [23,24,137,409]. ZnO possesses intrinsic defects, i.e. 

oxygen vacancies Vo, which are homogeneously distributed in the ZnO nanostructure and the 

presence of these type of defects in our device has been confirmed by XPS analysis shown in 

Figure 72c, where the peak at 531.29eV is associated with O
2-

 ions in the oxygen deficient 

regions [24,410]. A schematic of the resistive switching mechanism of the ZnO rods in dark and 

under UV light is illustrated in Figure 74. Oxygen vacancies are doubly positively charged and 

upon application of a positive bias they drift towards the cathode (FTO bottom electrode) and 

start to connect with each other forming the conductive filaments responsible of the resistance 

switching of the device from HRS to LRS, as shown in Figure 74b.  

 

Figure 74: Resistive switching mechanism of the Ag/ZnOrods/FTO device. (a) Initially the device is in the HRS, upon 

application of an electric field the oxygen vacancies start to pile up (b) and form conductive filaments, which switch the 

device to LRS.  Under UV light illumination (c) more oxygen vacancies are formed, which lead to the formation of 

multiple conductive filaments. At reversed bias (d and e), the conductive filaments are broken and the device returns into 

the OFF state. 

The I-V curves of the device exposed to UV light showed an increase of stability compared to 

the ones obtained in the dark, which may be attributed to the higher production of oxygen defects 

and oxygen ions obtained during UV illumination [411,412]. It has been reported that under UV 

illumination of ZnO oxygen vacancies will be generated [411–414], therefore higher amount of 

defect sites will be present in the illuminated device compared to the one in dark conditions 
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(Figure 74c). The oxygen vacancies drift towards the cathode and they start to connect with each 

other forming multiple conductive filaments (Figure 74c), which are responsible of increase 

stability of the device.[21,23,407,415,416]. At reverse bias, either in dark (Figure 74d) or under 

UV light (Figure 74e), the oxygen vacancies are repelled back from the anode (FTO electrode) 

and as a consequence the conductive filaments are broken switching the device from LRS to 

HRS (Figure 74e) [137,417,418].   

In Figure 75, the I-V curves of the Ag/ZnO rods/FTO device upon application of consecutive 

biasing of 4V under dark conditions and continuous UV irradiation are displayed. Under UV 

illumination (Figure 75a) the device showed a three-level memory current amplification, and 

when a reverse erase bias of -6V is applied the device goes back to its original state, allowing a 

repeatable 3 level current amplification.  

 

Figure 75: (a) 3-level current amplification of the device upon application of 4V and a rest bias of -6 V under UV 

irradiation and (b) in dark condition.  
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We can ascribe the multilevel current amplification of the ZnO device as a consequence of the 

multiple conductive paths created under UV light, which increases the number of oxygen 

vacancies. Indeed, it has been reported that the current amplification is due to the accumulation 

of charged defects[136]. The multilevel current amplification is not occurring under dark 

conditions (Figure 75b). Indeed, at each level the current is constant and the value of current 

reached is ~ 0.06 μA and decreased with the number of cycles. Whereas, under UV light the 

current reached ~ 4 μA, which is two orders of magnitude larger than the one in the dark, and the 

current values for each cycle are reproducible and stable. Despite the memory current 

amplification behavior it is well known to take place in RRAM devices based on oxide 

nanomaterials, it has not been reported to occur in the case of ZnO rods, as demonstrated from 

the results obtained under dark condition (Figure 75b) [299,346]. Generally, the current 

amplification is due to the accumulation of charged defects which lead to the creation of multiple 

conduction paths [136]. Based on the results obtained, the multilevel behavior in our devices is a 

direct consequence of the build-up of the charged defects and of the unpaired electrons left 

behind by the photo-generated holes upon UV irradiation [21,23,24,407,409].    

As aforementioned, in dark conditions a low conductive depletion layer is formed near the ZnO 

surface because the oxygen molecules adsorbed on the ZnO surface are transformed to oxygen 

ions by capturing free electrons from the n-type ZnO surface (Equation 7). However, when the 

ZnO rods are exposed to UV light, electron-hole pairs are photogenerated (Equation 8), which 

leads to a fast increase of the current. The photogenerated holes discharge the adsorbed oxygen 

ions on the surface and the oxygen is desorbed from the ZnO surface leading to a decrease of the 

depletion layer width and to the increase of the current (Equation 9). When the UV light is turned 

off, an increase of the depletion layer’s width occurs and the current value will reach the initial 

value of the dark current. The photo-response rate depends on the concentration of surface 

defects, surface captured oxygen and on the recombination rate of photo-generated electrons-

holes pairs, which are separated by the surface barrier originated by the depletion layer. The 

lower concentration and lower barrier height leads to a faster photorecombination and therefore 

faster photo-response decay [23,419,420]. In order to investigate the photo-response time of our 

devices, we applied a constant positive and negative voltage of 1V to the Ag electrode while the 

FTO is grounded, and we exposed the device to the UV light for 50 minutes. In Figure 76(a-b) 
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the photoresponse performances of the device under positive (a) and negative (b) voltage are 

displayed. 

 

Figure 76: UV photoresponse time of the Ag/ZnO rods/FTO under constant (a) positive and (b) negative voltage. 

The photo-decay process can be fitted with the following exponential relaxation equation: 

𝐼 = 𝐼0 + 𝐴𝑒
−
𝑡

𝜏1 + 𝐵𝑒
−
𝑡

𝜏2       (10) 

where the two relaxation time constant are indicated as 1 and 2. These relaxation time constants 

highlight the presence of two different mechanisms during the decay process, as reported in 

literature [23,421]. The time constant 1 is related to the band-to-band recombination in the bulk, 

while 2 depends on the presence of chemisorbed oxygen and oxygen vacancies, which give rise 

to the persistent photoconductivity in ZnO [23,421–423]. We observed that under a constant 

positive voltage, the time constants are 1= 42 s and 2= 828 s. These values are in agreement 

with those reported in literature [23,421–423], moreover, due to the presence of chemisorbed 

oxygen and oxygen vacancies within the ZnO structure in our device, a long 2 is expected. 

However, when a constant negative voltage is applied, we found higher time constant values. In 

particular, 1 resulted to be 154 s, while 2 is 1953 s. It is evident that, under negative voltage the 

recombination lifetime is increased. As aforementioned, the recombination rate depends on the 

concentration of chemisorbed oxygen, oxygen vacancies and surface potential barrier and is 

independent of voltage polarity. Based on our results, we hypothesize that the slower 

photorecombination rate under constant negative voltage could be attributed to the presence of 

higher concentration of chemisorbed oxygen, which lead to a higher barrier height. It is assumed 

that the Ag/ZnO rods interface is an ohmic contact and ZnO rods/FTO forms a Schottky barrier, 

based on the work function of the electrodes (4.3 eV for Ag and 4.7 eV for FTO) and the ideal 
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Fermi level of ZnO (4.2 eV) [424]. We hypothesize that when a negative voltage is applied, 

during UV illumination the decrease in the high-resistance depletion layer (barrier height) and 

increase of unpaired electrons’ concentration lead to an enhancement of conductivity, as shown 

in Figures 6. However, when the UV irradiation is switched OFF, the Schottky barrier at the 

ZnO/FTO limits the electrons transport. Therefore, more electrons, compared to the case 

applying a positive voltage, will be trapped by the oxygen molecules forming oxygen ions 

(Equation 7), which lead to a higher barrier height (depletion layer’s width) and promoting a 

spatial separation of the electrons and photogenerated holes, which lead to a slower photo-

response [23]. In order to confirm this hypothesis, we fabricated a device with gold electrodes. In 

particular, in the case of Au/ZnO rods/FTO due to the higher work function of Au compared to 

Ag, in this device the Au/ZnO rods interface is assumed to form a sharper Schottky barrier [424]. 

Based on our hypothesis, when a positive voltage is applied to the gold electrode a slower photo-

response is expected due to the higher Schottky barrier at the Au/ZnO rods interface. 

 In Figure 77(a-b) the photoresponse of this device under constant positive and negative voltage 

of 1V are displayed.  

 

Figure 77: UV photoresponse of the Au/ZnO rods/FTO device applying a positive (a) and (b) negative voltage. 

The time constants under positive voltage are 1= 251 s and 2= 1940 s, while for the negative 

voltage the relaxation time constants are 1= 95 s and 2= 600 s. These results are in agreement 

with our hypothesis, thus after switching OFF the UV lamp, the nature of the interface 

metal/ZnO rods affects the concentration of chemisorbed oxygen, which lead to a change in the 

barrier height, resulting in a slower photodecay rate.   
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In order to further investigate the photoresponse we carried out different electrical measurements 

applying a constant negative voltage of -1V to the grounded FTO while turning ON/OFF the UV 

lamp for different time intervals. In Figure 78(a-b) are displayed the variation of the current 

when the device was kept alternatively in dark and under UV irradiation for 5 minutes and 1 

minute, respectively.  

 

Figure 78: (a) Photocurrent response at -1V of the Ag/ZnOrods/FTO device turning ON and OFF the UV lamp with 5 

minutes and (b) 1 min intervals; (c) reproducibility of the photo-induced multilevel current amplification in dark and 

during UV irradiation 

It is possible to notice that after each ON/OFF cycle it is observed a current amplification 

behavior until the saturation is reached. The explanation for this current amplification is to be 

attributed to the long recombination rate. Indeed, as we previously describe, the relaxation time 

constants are much longer than the ON/OFF intervals, therefore the unpaired electrons will 

accumulate and when the lamp is turned back ON, more electrons-holes pair are photogenerated 

and this leads to the current amplification. The current response of our devices under dark and 

UV irradiation conditions is stable and reproducible.  In Figure 78c, it shown that after 4 cycles 
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of ON/OFF with 1 minute intervals, the device was kept in dark condition until the initial dark 

current value is reached. When the ON/OFF cycles are repeated, the current values reached 

under UV illumination are constant and reproducible. 

7.4.  Summary 

For the first time, the multilevel current amplification of ZnO rods induced by UV irradiation has 

been reported. The ZnO rods synthesized by cathodic deposition on seeded FTO substrates were 

used for the fabrication of an Ag/ZnOrods/FTO device and their electrical performances were 

tested in the dark and under UV light. The devices showed a bipolar resistive switching behavior 

due to the presence of intrinsic defects (oxygen vacancies) in the ZnO rods structure. The UV 

illumination, improved the stability of the device and the conductivity was higher than the one 

measured for the devices in dark. This result is in agreement with the current literature; however 

we observed a multilevel current amplification of the device under illumination. Investigations of 

the photodecay mechanisms revealed that the multilevel current amplification behavior is due to 

the slow photoconductivity decay of our devices.  
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 Conclusions and Outlook Chapter 8.

Overview 

In this thesis, alternative synthetic approaches of different materials have been developed. In 

Chapter 4 and Chapter 5, it has been demonstrated that the synthesis of GQDs and the phase 

transformation of TiO2 can be performed in an ecofriendly way through laser ablation in water, 

respectively. Moreover, in Chapter 6 the synthesis of CNWs has been performed by the EPD of a 

solution of polyynes dispersed in water obtained by arc discharge of graphite electrodes in water. 

The advantages and the disadvantages of the explored techniques are summarized in Table 9 . 

The understanding of the processes’ mechanisms was used to control and modify the materials 

structure in order to obtain materials with improved mechanical and/or electrical properties for 

their use in emerging applications. In particular, laser ablation in liquids and electrochemical 

processes were employed as straightforward techniques for the synthesis and modification of 

graphene-based nanomaterials, TiO2 nanoparticles and ZnO rods. Applications of the synthesized 

materials as conductive inks or for the fabrication of next generation memory devices were 

explored. This chapter contains the major conclusions from this work, together with some 

recommendations for future research areas.  

Table 9: Advantages and disadvantages of the explored techniques 

 
Laser Ablation in 
Water 

Electrophoretic 
deposition 

Electrochemical 
Oxidation 

Ecofriendly 
Process    

Straightforward 
process    

Versatile 
Technique    

Equipment Cost 
   

Scaling of the 
Synthetic 

Process 
 

  

Safety of the 
Process    
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8.1. Conclusions 

 Single-step synthesis of graphene quantum dots by femtosecond 8.1.1.

laser ablation of graphene oxide dispersions 

Graphene quantum dots (GQDs) were synthesized for the first time by femtosecond laser 

ablation of GO dispersion. Laser ablation time and laser power are the two key parameters for 

the synthesis of GQDs of different size and different type of nanostructures. Compared to other 

fabrication methods, the approach we used allows the synthesis of the GQDs in an eco-friendly, 

straightforward and time-effective way. Moreover, the obtained GQDs were mixed, without any 

purification, with silver nanoparticles for the fabrication of a hybrid conductive ink 

(GQDs@AgNP) to be used for printing electronic devices. In particular, from the resistivity 

measurements it was found that the GQDs@AgNP ink showed resistivity two orders of 

magnitude that of printed graphene sheets. The GQDs have the potential to be used as material 

for the fabrication of a more conductive and/or reducing costs of conductive inks by decreasing 

the concentration of silver nanoparticles (AgNPs) in the ink. 

 Phase Transformation of TiO2 Nanoparticles by Femtosecond 8.1.2.

Laser Ablation in Aqueous Solutions and Deposition on Conductive 

Substrates 

The laser ablation can be employed not only as a technique to synthesize materials with different 

dimensionality, but it can be used as a tool to induce modification of the material’s structure. In 

particular, the phase transformation of TiO2 nanoparticles dispersed in water and deposited onto 

FTO was explored. From the study it was found that the phase of TiO2 nanoparticles dispersed in 

water can be engineered controlling the ablation time. Short ablation time resulted in the 

formation of larger particles, where rutile phase is the predominant phase. At longer ablation 

times, due to a reduction of the particle sizes, the predominant phase is anatase. The TiO2 

nanoparticles deposited on FTO were transformed to rutile upon laser ablation and it was 

observed that the laser patterned areas possessed a higher refractive index leading to the 

possibility of using these patterned substrates for the fabrication of light trapping layers.  
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 Carbon Materials for Next Generation Resistive Switching 8.1.3.

Memory Devices 

Electrophoretic deposition (EPD) of polyynes obtained by arc discharge in water was used for 

the synthesis of two types of carbon-based devices. One device was made of carbon nanowalls 

(CNWs), obtained after 1 hour of deposition, while the second device was made of carbon 

structures (Cs) obtained after 2 hours of EPD and oxidized by electrochemical oxidation. The 

two types of devices showed bipolar resistive switching (RS) behavior, and from the 

investigation of the RS mechanisms it was found that it is originated by the formation of 

conductive filament paths built from the oxygen vacancies and structural defects. The study 

carried out on the relationship between material’s structure and electrical properties, highlighted 

that the stability and the electrical performances of the carbon-based devices strongly depend on 

their chemical composition. In particular, the oxidized carbon structures showed improved 

electrical performances together with multilevel current amplification effect. The study 

highlights that due to the promising electrical properties of the devices, the ease and time 

effectiveness of the fabrication method and the possibility of controlling the materials structure 

and composition; denotes an engineering solution for the large-scale development of other 

carbon-based electronics.  

 UV-induced multilevel current amplification memory effect in 8.1.4.

zinc oxide rods resistive switching devices 

The multilevel current amplification memory effect in zinc oxide (ZnO) rods resistive switching 

memories under ultraviolet (UV) irradiation is reported. The cathodic deposition of zinc nitrate 

solution on fluorine-doped tin oxide (FTO) substrates is employed as technique for the synthesis 

of the ZnO seed layer and for the consecutive growth of the ZnO rods. The electrical 

performances of the Ag/ZnO rods/FTO device are performed under dark or UV-light exposure. 

The device shows a forming-free bipolar resistive switching behavior under both experimental 

conditions attributed to the presence of conductive filaments composed of oxygen vacancies. 

However, when exposed to UV-light, a multilevel memory behavior is observed. To the best of 

our knowledge, the multilevel memory effect induced by UV-light has never been reported in 

ZnO resistive switching memory devices. From the investigation of the photodecay mechanisms 

and the electrode/metal interface it has been demonstrated that photo-induced multilevel memory 
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behaviour is attributed to the slow photodecay rate of the device. This study opens up the 

possibility of employing this material for the fabrication of resistive random memories for the 

storage of more than one bit per memory cell and for the realization of UV photodetectors. 

8.2.  Outlook 

The following topics are suggested for future research: 

1. Graphene quantum dots (GQDs) obtained by femtosecond laser ablation of GO 

dispersions were mixed with AgNPs for the fabrication of a hybrid ink, which was printed 

with an aerosol-jet printing system. The resistivity of the patterns printed with the hybrid 

GQDs@AGNPs ink was two times less than the resistivity of the AgNP patterns. (Chapter 

4). The AgNPs solution employed has been purchased and the nanoparticles are dispersed in 

ethylene glycol. In order to remove the solvents from the inks and to sinter the AgNPs, the 

printed patterned were heat treated. The focus of this thesis is to develop straightforward, 

eco-friendly and time-effective method for the synthesis and modification of different 

materials. With this in mind, in order to develop greener approach further studies can be 

conducted on the combination of laser modified graphene oxides with laser synthesized and 

joined silver nanoparticles.  

2. EPD was employed as a time-effective technique for the deposition of carbon materials 

(Chapter 6) and for the growth of ZnO rods (Chapter 7) on FTO substrates. From the study 

of the process mechanisms and from the results obtained, it has been assessed 

electrochemical processes can be employed to engineer the chemical composition of carbon 

structures (Chapter 6) to improve and tailor their electrical performances. Further studies 

can be focused on the use of EPD for the deposition of other materials such as boron nitride 

(BN) molybdenum disulfide (MoS2). These materials, like carbon-based materials and ZnO 

rods, are good candidates for their use in electronics. A proposed research is the alternate 

deposition of different 2D dimensional materials of FTO and the study of their electrical 

properties to be employed as memory devices. The electrical properties can be tailored 

varying deposition parameters and chemical composition performing the electrochemical 

oxidation in different solvents. 

3.  
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agreement between you and the RSC (and CCC) concerning this licensing transaction, to the 

exclusion of all other terms and conditions, written or verbal, express or implied (including any 

terms contained in any purchase order, acknowledgment, check endorsement or other writing 

prepared by you). In the event of any conflict between your obligations established by these 

terms and conditions and those established by CCC's Billing and Payment terms and conditions, 

these terms and conditions shall control. 

JURISDICTION 

This license transaction shall be governed by and construed in accordance with the laws of the 

District of Columbia. You hereby agree to submit to the jurisdiction of the courts located in the 

District of Columbia for purposes of resolving any disputes that may arise in connection with 

this licensing transaction. 

LIMITED LICENSE 

The following terms and conditions apply to specific license types: 

Translation 

This permission is granted for non-exclusive world English rights only unless your license was 

granted for translation rights. If you licensed translation rights you may only translate 

http://dx.doi.org/10.1039/DOI
http://dx.doi.org/
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this content into the languages you requested. A professional translator must perform all 

translations and reproduce the content word for word preserving the integrity of the article. 

Intranet 

If the licensed material is being posted on an Intranet, the Intranet is to be password- 

protected and made available only to bona fide students or employees only. All content 

posted to the Intranet must maintain the copyright information line on the bottom of each 

image. You must also fully reference the material and include a hypertext link as specified 

above. 

Copies of Whole Articles 

All copies of whole articles must maintain, if available, the copyright information line on the 

bottom of each page. 

Other Conditions 

v1.2 

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license 

for your reference. No payment is required. 

If you would like to pay for this license now, please remit this license along with yourpayment 

made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced 

within 48 hours of the license date. Payment should be in the form of a check or money order 

referencing your account number and this invoice number {Invoice Number}. Once you 

receive your invoice for this order, you may pay your invoice by credit card. 

Please follow instructions provided at that time. 

Make Payment To: 

Copyright Clearance Center 

29118 Network Place 

Chicago, IL 60673-1291 

For suggestions or comments regarding this order, contact Rightslink Customer Support: 

customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777. 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 
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AMERICAN PHYSICAL SOCIETY LICENSE TERMS AND 

CONDITIONS 

Aug 09, 2017 
 

 
 

 

This Agreement between Dr. Paola Russo ("You") and American Physical Society 

("American Physical Society") consists of your license details and the terms and conditions 

provided by American Physical Society and Copyright Clearance Center. 

 
License Number 4164810017677 

License date Aug 09, 2017 

Licensed Content Publisher American Physical 

Society Licensed Content Publication Reviews of Modern 

Physics 

Licensed Content Title The electronic properties of 

graphene Licensed Content Author A. H. Castro Neto et al. 

Licensed Content Date Jan 14, 

2009 Licensed Content Volume 81 

Type of Use Thesis/Dissertation 

Requestor type Student 

Format Print, Electronic 

Portion image/photo 

Number of images/photos

 

1 requested 

Portion description Figure 3 

Rights for Main product 

Duration of use Life of Current Edition 

Creation of copies for the

 n

o disabled 

With minor editing privileges no 

For distribution to Worldwide 

In the following language(s) Original language of publication 

With incidental promotional 

use 

The lifetime unit quantity of 

new product 

The requesting 

person/organization is: 

Order reference number 

Title of your thesis / 

dissertation 

no 

 
1000 to 4999 

 
Paola Russo 

 
 
 

Development of green synthetic approaches for the potential application 

of carbon and semiconductor nanomaterials for emerging applications 

Expected completion date Feb 2018 

Expected size (number of 

pages) 

250 
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Requestor Location Dr. Paola Russo 

200 University Avenue 

 
 

Waterloo, ON N2L3G1 

Canada 

Attn: Dr. Paola Russo 

Billing Type Invoice 

Billing Address Dr. Paola Russo 

200 University Avenue 

 
 

Waterloo, ON N2L3G1 Canada 

Attn: Dr. Paola Russo 

Total 0.00 CAD 

Terms and Conditions 

 
Terms and Conditions 

The American Physical Society (APS) is pleased to grant the Requestor of this license a non- 

exclusive, non-transferable permission, limited to  [print  and/or  electronic  format, depending 

on what they chose], provided all criteria outlined below are followed. 

1. You must also obtain permission from at least one of the lead authors for each separate 

work, if you haven’t done so already. The author’s name and affiliation can be found on the 

first page of the published Article. 

2. For electronic format permissions, Requestor agrees to provide a hyperlink from the 

reprinted APS material using the source material’s DOI on the web page where the work 

appears. The hyperlink should use the standard DOI resolution URL, http://dx.doi.org 

/{DOI}. The hyperlink may be embedded in the copyright credit line. 

3. For print format permissions, Requestor agrees to print the required copyright credit line 

on the first page where the material appears: "Reprinted (abstract/excerpt/figure) with 

permission from [(FULL REFERENCE CITATION) as follows: Author's Names, APS 

Journal Title, Volume Number, Page Number and Year of Publication.] Copyright  (YEAR) 

by the American Physical Society." 

4. Permission granted in this license is for a one-time use and does not include permission for 

any future editions, updates, databases, formats or other matters. Permission must be sought 

for any additional use. 

5. Use of the material does not and must not imply any endorsement by APS. 

6. Under no circumstance does APS purport or intend to grant permission to reuse materials 

to which it does not hold copyright. It is the requestors sole responsibility to ensure the 

licensed material is original to APS and does not contain the copyright of another entity, and 

that the copyright notice of the figure, photograph, cover or table does not indicate that it   

was reprinted by APS, with permission from another source. 

7. The permission granted herein is personal to the Requestor for the use specified and is not 

transferable  or assignable  without  express written permission of APS. This license may not 

be amended except in writing by APS. 

8. You may not alter, edit or modify the material in any manner. 

9. You may translate the materials only when translation rights have been granted. 

10. You may not use the material for promotional, sales, advertising or marketing purposes. 

11. The foregoing license shall not take effect unless and until APS or its agent, Copyright 

Clearance Center (CCC), receives payment in full in accordance with CCC Billing and 

Payment Terms and Conditions, which are incorporated herein by reference. 

12. Should the terms of this license be violated at any time, APS or CCC may revoke the 

license with no refund to you and seek relief to the fullest extent of the laws of the USA. 

http://dx.doi.org/
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Official written notice will be made using the contact information provided with the 

permission request. Failure to receive such notice will not nullify revocation of the 

permission. 

13. APS reserves all rights not specifically granted herein. 

14. This document, including the CCC Billing and Payment Terms and Conditions, shall be 

the entire agreement between the parties relating to the subject matter hereof. 

Other Terms and Conditions 

Version 1.1 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 
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THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE 

TERMS AND CONDITIONS 

Aug 09, 2017 
 

 
 

 

This Agreement between Dr. Paola Russo ("You") and The American Association for the 

Advancement of Science ("The American Association for the Advancement of Science") 

consists of your license details and the terms and conditions provided by The American 

Association for the Advancement of Science and Copyright Clearance Center. 

 
License Number 4164820897585 

License date Aug 09, 2017 

Licensed Content Publisher The American Association for the Advancement of 

Science Licensed Content Publication Science 

Licensed Content Title Electric Field Effect in Atomically Thin Carbon Films 

Licensed Content Author K. S. Novoselov,A. K. Geim,S. V. Morozov,D. Jiang,Y. Zhang,S. 

V. Dubonos,I. V. Grigorieva,A. A. Firsov 

Licensed Content Date Oct 22, 

2004 Licensed Content Volume 306 

Licensed Content Issue

 569

6 Volume number 306 

Issue number 5696 

Type of Use Thesis / Dissertation 

Requestor type Scientist/individual at a research institution 

Format Print and electronic 

Portion Figure 

Number of figures/tables 1 

Order reference number 

Title of your thesis / 

dissertation 

Development of green synthetic approaches for the potential application 

of carbon and semiconductor nanomaterials for emerging applications 

Expected completion date Feb 

2018 Estimated size(pages) 250 

Requestor Location University of 

Waterloo 200 University Avenue 

 

Waterloo, ON N2L3G1 Canada 

Attn: Dr. Paola Russo 

Billing Type Invoice 

Billing Address Dr. Paola Russo 

200 University Avenue 

 
 

Waterloo, ON N2L3G1 Canada 

Attn: Dr. Paola Russo 

Total 0.00 CAD 

Terms and Conditions 
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American Association for the Advancement of Science TERMS AND CONDITIONS 

Regarding your request, we are pleased to grant you non-exclusive, non-transferable 

permission, to republish the AAAS material identified above in your work identified above, 

subject to the terms and conditions herein. We must be contacted for permission for any uses 

other than those specifically identified in your request above. 

The following credit line must be printed along with the AAAS material: "From [Full 

Reference Citation]. Reprinted with permission from AAAS." 

All required credit lines and notices must be visible any time a user accesses any part of the 

AAAS material and must appear on any printed copies and authorized user might make. 

This permission does not apply to figures / photos / artwork or any other content or materials 

included in your work that are credited to non-AAAS sources. If the requested material is 

sourced to or references non-AAAS sources, you must obtain authorization from that source 

as well before using that material. You agree to hold harmless and indemnify AAAS against 

any claims arising from your use of any content in your work that is credited to non-AAAS 

sources. 

If the AAAS material covered by this permission was published in Science during the years 

1974 - 1994, you must also obtain permission from the author, who may grant or withhold 

permission, and who may or may not charge a fee if permission is granted. See original  article 

for author's address. This condition does not apply to news articles. 

The AAAS material may not be modified or altered except that figures and tables may be 

modified with permission from the author. Author permission for any such changes must be 

secured prior to your use. 

Whenever possible, we ask that electronic uses of the AAAS material permitted herein 

include a hyperlink to the original work on AAAS's website (hyperlink may be embedded in 

the reference citation). 

AAAS material reproduced in your work identified herein must not account for more than 

30% of the total contents of that work. 

AAAS must publish the full paper prior to use of any text. 

AAAS material must not imply any endorsement by the American Association for the 

Advancement of Science. 

This permission is not valid for the use of the AAAS and/or Science logos. 

AAAS makes no representations or warranties as to the accuracy of any information 

contained in the AAAS material covered by this permission, including any warranties of 

merchantability or fitness for a particular purpose. 

If permission fees for this use are waived, please note that AAAS reserves the right to charge 

for reproduction of this material in the future. 

Permission is not valid unless payment is received within sixty (60) days of the issuance of 

this permission. If payment is not received within this time period then all rights granted 

herein shall be revoked and this permission will be considered null and void. 

In the event of breach of any of the terms and conditions herein or any of CCC's Billing and 

Payment terms and conditions, all rights granted herein shall be revoked and this permission 

will be considered null and void. 

AAAS reserves the right to terminate this permission and all rights granted herein at its 

discretion, for any purpose, at any time. In the event that AAAS elects to terminate this 

permission, you will have no further right to publish, publicly perform, publicly display, 

distribute or otherwise use any matter in which the AAAS content had been included, and all 

fees paid hereunder shall be fully refunded to you. Notification of termination will be sent to 

the contact information as supplied by you during the request process and termination shall   

be immediate upon sending the notice. Neither AAAS nor CCC shall be liable for any costs, 

expenses, or damages you may incur as a result of the termination of this permission, beyond 

the refund noted above. 

This Permission may not be amended except by written document signed by both parties. 
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The terms above are applicable to all permissions granted for the use of AAAS material. 

Below you will find additional conditions that apply to your particular type of use. 

FOR A THESIS OR DISSERTATION 

If you are using figure(s)/table(s), permission is granted for use in print and electronic   versions 

of your dissertation or thesis. A full text article may be used in print versions only of a 

dissertation or thesis. 

Permission covers the distribution of your dissertation or thesis on demand by ProQuest / 

UMI, provided the AAAS material covered by this permission remains in situ. 

If you are an Original Author on the AAAS article being reproduced, please refer to your 

License to Publish for rules on reproducing your paper in a dissertation or thesis. 

FOR JOURNALS: 

Permission covers both print and electronic versions of your journal article, however the 

AAAS material may not be used in any manner other than within the context of your article. 

FOR BOOKS/TEXTBOOKS: 

If this license is to reuse figures/tables, then permission is granted for non-exclusive world rights 

in all languages in both print and electronic formats (electronic formats are defined below). 

If this license is to reuse a text excerpt or a full text article, then permission is granted for 

non-exclusive world rights in English only. You have the option of securing either print or 

electronic rights or both, but electronic rights are not automatically granted and do garner 

additional fees. Permission for translations of text excerpts or full text articles into other 

languages must be obtained separately. 

Licenses granted for use of AAAS material in electronic format books/textbooks are valid only 

in cases where the electronic version is equivalent to or substitutes for the print version of the 

book/textbook. The AAAS material reproduced as permitted herein must  remain in  situ and 

must not be exploited separately (for example, if permission covers the use of a full text article, 

the article may not be offered for access or for purchase as a stand-alone unit), except in the 

case of permitted textbook companions as noted below. 

You must include the following notice in any electronic versions, either adjacent to the reprinted 

AAAS material or in the terms and conditions for use of your electronic products: "Readers 

may view, browse, and/or download material for temporary copying purposes only, provided 

these uses are for noncommercial personal purposes. Except as provided by law,   this material 

may not be further reproduced, distributed, transmitted, modified, adapted, performed, 

displayed, published, or sold in whole or in part, without prior written permission from the 

publisher." 

If your book is an academic textbook, permission covers the following companions to your 

textbook, provided such companions are distributed only in conjunction with your textbook at 

no additional cost to the user: 

- Password-protected website 

- Instructor's image CD/DVD and/or PowerPoint resource 

- Student CD/DVD 

All companions must contain instructions to users that the AAAS material may be used for 

non-commercial, classroom purposes only. Any other uses require the prior written 

permission from AAAS. 

If your license is for the use of AAAS Figures/Tables, then the electronic rights granted 

herein permit use of the Licensed Material in any Custom Databases that you distribute the 

electronic versions of your textbook through, so long as the Licensed Material remains within 

the context of a chapter of the title identified in your request and cannot be downloaded by a 

user as an independent image file. 

Rights also extend to copies/files of your Work (as described above) that you are required to 

provide for use by the visually and/or print disabled in compliance with state and federal 
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laws. 

This permission only covers a single edition of your work as identified in your request. 

FOR NEWSLETTERS: 

Permission covers print and/or electronic versions, provided the AAAS material reproduced as 

permitted herein remains in situ and is not exploited separately (for example, if permission 

covers the use of a full text article, the article may not be offered for access or for purchase  as 

a stand-alone unit) 

FOR ANNUAL REPORTS: 

Permission covers print and electronic versions provided the AAAS material reproduced as 

permitted herein remains in situ and is not exploited separately (for example, if permission 

covers the use of a full text article, the article may not be offered for access or for purchase as 

a stand-alone unit) 

FOR PROMOTIONAL/MARKETING USES: 

Permission covers the use of AAAS material in promotional or marketing pieces such as 

information packets, media kits, product slide kits, brochures, or flyers limited to a single   print 

run. The AAAS Material may not be used in any manner which implies endorsement or 

promotion by the American Association for the Advancement of Science (AAAS) or Science 

of any product or service. AAAS does not permit the reproduction of its name, logo or text  on 

promotional literature. 

If permission to use a full text article is permitted, The Science article covered by this 

permission must not be altered in any way. No additional printing may be set onto an article 

copy other than the copyright credit line required above. Any alterations must be approved   in 

advance and in writing by AAAS. This includes, but is not limited to, the placement of 

sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive stickers onto the 

article copies. 

Additionally, article copies must be a freestanding part of any information package (i.e. 

media kit) into which they are inserted. They may not be physically attached to anything, 

such as an advertising insert, or have anything attached to them, such as a sample product. 

Article copies must be easily removable from any kits or informational packages in which 

they are used. The only exception is that article copies may be inserted into three-ring 

binders. 

FOR CORPORATE INTERNAL USE: 

The AAAS material covered by this permission may not be altered in any way. No additional 

printing may be set onto an article copy other than the required credit line. Any alterations must 

be approved in advance and in writing by AAAS. This includes, but is not limited to the 

placement of sponsorship identifiers, trademarks, logos, rubber stamping or self-adhesive 

stickers onto article copies. 

If you are making article copies, copies are restricted to the number indicated in your request and 

must be distributed only to internal employees for internal use. 

If you are using AAAS Material in Presentation Slides, the required credit line must be 

visible on the slide where the AAAS material will be reprinted 

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must 

include the following notice in any electronic versions, either adjacent to the reprinted AAAS 

material or in the terms and conditions for use of your electronic products: "Readers may view, 

browse, and/or download material for temporary copying purposes only, provided these uses 

are for noncommercial personal purposes. Except as provided by law, this  material may not be 

further reproduced, distributed, transmitted, modified, adapted, performed, displayed, 

published, or sold in whole or in part, without prior written permission from the publisher." 

Access to any such CD, DVD, Flash Drive or Web page must be restricted to your 

organization's employees only. 

FOR CME COURSE and SCIENTIFIC SOCIETY MEETINGS: 

Permission is restricted to the particular Course, Seminar, Conference, or Meeting indicated 
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in your request. If this license covers a text excerpt or a Full Text Article, access to the reprinted 

AAAS material must be  restricted to attendees of your event  only (if  you have been granted 

electronic rights for use of a full text article on your website, your website must be password 

protected, or access restricted so that only attendees can access the content on your site). 

If you are using AAAS Material on a CD, DVD, Flash Drive, or the World Wide Web, you must 

include the following notice in any electronic versions, either adjacent to the reprinted AAAS 

material or in the terms and conditions for use of your electronic products: "Readers may view, 

browse, and/or download material for temporary copying purposes only, provided these uses are 

for noncommercial personal purposes. Except as provided by law, this  material may not be 

further reproduced, distributed, transmitted, modified, adapted, performed, displayed, 

published, or sold in whole or in part, without prior written permission from the publisher." 

FOR POLICY REPORTS: 

These rights are granted only to non-profit organizations and/or government agencies. 

Permission covers print and electronic versions of a report, provided the required credit line 

appears in both versions and provided the AAAS material reproduced as permitted herein 

remains in situ and is not exploited separately. 

FOR CLASSROOM PHOTOCOPIES: 

Permission covers distribution in print copy format only. Article copies must be freestanding and 

not part of a course pack. They may not be physically attached to anything or have anything 

attached to them. 

FOR COURSEPACKS OR COURSE WEBSITES: 

These rights cover use of the AAAS material in one class at one institution. Permission is valid 

only for a single semester after which the AAAS material must be removed from the Electronic 

Course website, unless new permission is obtained for an additional semester. If the material is 

to be distributed online, access must be restricted to students and instructors enrolled in that 

particular course by some means of password or access control. 

FOR WEBSITES: 

You must include the following notice in any electronic versions, either adjacent to the reprinted 

AAAS material or in the terms and conditions for use of your electronic products: "Readers may 

view, browse, and/or download material for temporary copying purposes only, provided these 

uses are for noncommercial personal purposes. Except as provided by law, this material may not 

be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, 

published, or sold in whole or in part, without prior written permission from the publisher." 

Permissions for the use of Full Text articles on third party websites are granted on a case by case 

basis and only in cases where access to the AAAS Material is restricted by some means of 

password or access control. Alternately, an E-Print may be purchased through our reprints 

department (brocheleau@rockwaterinc.com). 

REGARDING FULL TEXT ARTICLE USE ON THE WORLD WIDE WEB IF YOU ARE 

AN ‘ORIGINAL AUTHOR’ OF A SCIENCE PAPER 

If you chose "Original Author" as the Requestor Type, you are warranting that you are one of 

authors listed on the License Agreement as a "Licensed content author" or that you are acting 

on that author's behalf to use the Licensed content in a new work that one of the authors listed 

on the License Agreement as a "Licensed content author" has written. 

Original Authors may post the ‘Accepted Version’ of their full text article on their personal  or 

on their University website and not on any other website. The ‘Accepted Version’ is the version 

of the paper accepted for publication by AAAS including changes resulting from peer review 

but prior to AAAS’s copy editing and production (in other words not the AAAS published 

version). 

FOR MOVIES / FILM / TELEVISION: 
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Permission is granted to use, record, film, photograph, and/or tape the AAAS material in 

connection with your program/film and in any medium your program/film may be shown or 

heard, including but not limited to broadcast and cable television, radio, print, world wide web, 

and videocassette. 

The required credit line should run in the program/film's end credits. 

FOR MUSEUM EXHIBITIONS: 

Permission is granted to use the AAAS material as part of a single exhibition for the duration of 

that exhibit. Permission for use of the material in promotional materials for the exhibit must be 

cleared separately with AAAS (please contact us at permissions@aaas.org). 

FOR TRANSLATIONS: 

Translation rights apply only to the language identified in your request summary above.  The 

following disclaimer must appear with your translation, on the first page of the article, after 

the credit line: "This translation is not an official translation by AAAS staff, nor is it endorsed 

by AAAS as accurate. In crucial matters, please refer to the official English- language version 

originally published by AAAS." 

FOR USE ON A COVER: 

Permission is granted to use the AAAS material on the cover of a journal issue, newsletter 

issue, book, textbook, or annual report in print and electronic formats provided the AAAS 

material reproduced as permitted herein remains in situ and is not exploited separately 

By using the AAAS Material identified in your request, you agree to abide by all the terms and 

conditions herein. 

Questions about these terms can be directed to the AAAS Permissions department 

permissions@aaas.org. 

Other Terms and Conditions: v 

2 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 
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Title: Laser Ablation of Metals: A 
New 

Method for Preparing SERS Active Colloids 

Author: John Neddersen, George 

Chumanov, Therese M. Cotton Publication: Applied Spectroscopy Publisher: SAGE 

Publications 

Date: 12/01/1993 

Copyright © 1993, © SAGE Publications 

Logged in as: Paola 

Russo 

Account #: 

3001180108 
 

 

 

Gratis Reuse 
 

Permission is granted at no cost for use of content in a Master's Thesis and/or Doctoral Dissertation. If you 

intend to distribute or sell your Master's Thesis/Doctoral Dissertation to the general public through print or 

website publication, please return to the previous page and select 'Republish in a Book/Journal' or 'Post on 

intranet/password-protected website' to complete your request. 

 

Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 

Comments? We would like to hear from you. E-mail us at customercare@copyright.com 
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AMERICAN PHYSICAL SOCIETY LICENSE TERMS AND 

CONDITIONS 

Aug 09, 2017 
 

 
 

 

This Agreement between Dr. Paola Russo ("You") and American Physical Society 

("American Physical Society") consists of your license details and the terms and conditions 

provided by American Physical Society and Copyright Clearance Center. 

 
License Number 4164840868033 

License date Aug 09, 2017 

Licensed Content Publisher American Physical 

Society Licensed Content Publication Physical Review 

Letters 

Licensed Content Title Theory for the Ultrafast Ablation of Graphite Films 

Licensed Content Author Harald O. Jeschke, Martin E. Garcia, and K. H. 

Bennemann Licensed Content Date Jun 19, 2001 

Licensed Content Volume 87 

Type of Use Thesis/Dissertation 

Requestor type Student 

Format Print, Electronic 

Portion image/photo 

Number of images/photos

 

2 requested 

Portion description Figure 1, Figure 2 

Rights for Main product 

Duration of use Life of Current Edition 

Creation of copies for the

 n

o disabled 

With minor editing privileges no 

For distribution to Worldwide 

In the following language(s) Original language of publication 

With incidental 

promotional use 

The lifetime unit quantity 

of new product 

The requesting 

person/organization is: 

Order reference number 

Title of your thesis / 

dissertation 

no 

 
20000 to 44999 

 
University of Waterloo 

 

 
 

Development of green synthetic approaches for the potential application 

of carbon and semiconductor nanomaterials for emerging applications 

Expected completion date Feb 2018 

Expected size (number 

of pages) 

250 
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Requestor Location Dr. Paola Russo 

200 University Avenue 

 
 

Waterloo, ON N2L3G1 
 

Canada 

Attn: Dr. Paola Russo 

Billing Type Invoice 

Billing Address Dr. Paola Russo 

200 University Avenue 

 
 
 

Total 

Terms and Conditions 

Waterloo, ON N2L3G1 Canada 

Attn: Dr. Paola Russo 

0.00 CAD 
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Terms and Conditions 

The American Physical Society (APS) is pleased to grant the Requestor of this license a non- 

exclusive, non-transferable permission, limited to [print  and/or  electronic  format, depending 

on what they chose], provided all criteria outlined below are followed. 

1. You must also obtain permission from at least one of the lead authors for each separate 

work, if you haven’t done so already. The author’s name and affiliation can be found on the 

first page of the published Article. 

2. For electronic format permissions, Requestor agrees to provide a hyperlink from the 

reprinted APS material using the source material’s DOI on the web page where the work 

appears. The hyperlink should use the standard DOI resolution URL, http://dx.doi.org 

/{DOI}. The hyperlink may be embedded in the copyright credit line. 

3. For print format permissions, Requestor agrees to print the required copyright credit line 

on the first page where the material appears: "Reprinted (abstract/excerpt/figure) with 

permission from [(FULL REFERENCE CITATION) as follows: Author's Names, APS 

Journal Title, Volume Number, Page Number and Year of Publication.] Copyright (YEAR) 

by the American Physical Society." 

4. Permission granted in this license is for a one-time use and does not include permission for 

any future editions, updates, databases, formats or other matters. Permission must be sought 

for any additional use. 

5. Use of the material does not and must not imply any endorsement by APS. 

6. Under no circumstance does APS purport or intend to grant permission to reuse materials 

to which it does not hold copyright. It is the requestors sole responsibility to ensure the 

licensed material is original to APS and does not contain the copyright of another entity, and 

that the copyright notice of the figure, photograph, cover or table does not indicate that it  

was reprinted by APS, with permission from another source. 

7. The permission granted herein is personal to the Requestor for the use specified and is not 

transferable or assignable without express written permission of APS. This license may not   

be amended except in writing by APS. 

8. You may not alter, edit or modify the material in any manner. 

9. You may translate the materials only when translation rights have been granted. 

10. You may not use the material for promotional, sales, advertising or marketing purposes. 

11. The foregoing license shall not take effect unless and until APS or its agent, 

Copyright Clearance Center (CCC), receives payment in full in accordance with CCC 

Billing and Payment Terms and Conditions, which are incorporated herein by reference. 

12. Should the terms of this license be violated at any time, APS or CCC may revoke the 

license with no refund to you and seek relief to the fullest extent of the laws of the USA. 

Official written notice will be made using the contact information provided with the 

permission request. Failure to receive such notice will not nullify revocation of the 

permission. 

13. APS reserves all rights not specifically granted herein. 

14. This document, including the CCC Billing and Payment Terms and Conditions, shall be 

the entire agreement between the parties relating to the subject matter hereof. 

Other Terms and Conditions 

Version 1.1 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 
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Nanotechnology 

Permission type: Republish or display content 

Type of use: Thesis/Dissertation 

 

 
TERMS AND CONDITIONS 

The following terms are individual to this publisher: 

These special terms and conditions are in addition to the standard terms and conditions for CCC’s Republication Service and, 

together with those standard terms and conditions, govern the use of the Works. 

As the “User” you will make all reasonable efforts to contact the author(s) of the article which the Work is to be  reused 

from, to seek consent for your intended use. Contacting one author who is acting expressly as  authorised agent for their 

co-author(s) is acceptable. 

User will reproduce the following wording prominently alongside the Work: 

 

the source of the Work, including author, article title, title of journal, volume number, issue number (if  relevant), page range 

(or first page if this is the only  information  available)  and  date of first  publication.  This  information can be contained in a 

footnote or reference note; and 

a link back to the article (via DOI); and 

if practicable, and IN ALL CASES for new works published under any of the Creative Commons licences, the words “© IOP 

Publishing. Reproduced with permission. All rights reserved” 

Without the express permission of the author(s) and the Rightsholder of the article from which the Work  is  to be reused, 

User shall not use it in any way which, in the opinion of the Rightsholder, could: (i)  distort  or alter the author(s)’ original 

intention(s) and meaning; (ii) be prejudicial to the honour or reputation of the author(s); and/or 

(iii) imply endorsement by the author(s) and/or the Rightsholder. 

This licence does not apply to any article which is credited  to another source and  which does not have the copyright   line ‘© 

IOP Publishing Ltd’. User must check the copyright line of the article from which the Work is to be reused to check that IOP 

Publishing Ltd  has  all  the necessary rights to be able to grant  permission.  User is  solely responsible for identifying and 

obtaining separate licences and permissions from the copyright  owner for reuse of any such third party material/figures which 

the Rightsholder is  not  the  copyright  owner of.  The  Rightsholder shall  not  reimburse any fees which User pays for a 

republication license for such third party content. 

This licence does not apply to any material/figure which  is  credited  to  another  source  in  the  Rightsholder’s publication or 

has been obtained from a third  party.  User must check the Version  of Record  of the article from  which the Work is to be 

reused, to check whether any of the material in  the Work  is  third  party  material.  Third  party citations and/or copyright 

notices and/or permissions statements  may not  be included  in  any other version  of the article from which the Work is to be 

reused and so cannot be relied upon by the User. User is solely responsible for identifying and obtaining separate licences and 

permissions from the copyright  owner  for reuse  of  any  such  third party material/figures where the Rightsholder is  not  the 

copyright owner.  The Rightsholder shall  not  reimburse any fees which User pays for a republication license for such third 

party content. 

User and CCC acknowledge  that  the Rightsholder may, from  time to time, make  changes  or additions  to these special 

terms and conditions without express notification, provided that these shall not apply to permissions already secured and 

paid for by User prior to such change or addition. 

User acknowledges that the Rightsholder (which includes companies within its group and third parties for whom it publishes 

its titles) may make use of personal data collected through the service in the course of their business. 

If User is  the author of the  Work, User may automatically have  the right  to reuse it  under the rights granted  back  when 

User transferred the copyright in the article to the Rightsholder. User should check the copyright form and the relevant author 

rights policy to check whether permission  is  required.  If User is  the author of  the Work  and  does require permission for 

proposed reuse of the Work, User should select ‘Author of requested content’  as  the Requestor Type. The Rightsholder shall 

not reimburse any fees which User pays for a republication license. 

If User is the author of the article which User wishes to reuse in User’s thesis or dissertation, the republication licence covers the 

right to include the Accepted Manuscript version (not  the  Version  of Record)  of the article.  User must include citation details 

and, for online use, a link to the Version of Record of the article on  the Rightsholder’s website.  User may need to obtain 

separate permission for any third  party content  included  within the article.  User must check  this with the copyright owner of 

such third party content. User may not include the article in  a thesis  or dissertation  which is published by ProQuest. Any 

other commercial  use  of  User’s  thesis  or  dissertation  containing  the  article would also need to be expressly notified in 

writing  to the Rightsholder at  the time of  request  and  would  require separate written permission from the Rightsholder. 
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User does not need to request permission for Work  which  has  been  published  under a  CC  BY licence.  User must check the 

Version of Record of the CC BY article from which the Work is to be reused, to check whether any of the  material in the Work is 

third  party material and  so not published under the CC BY licence.   User is solely responsible    for identifying and obtaining 

separate licences and permissions from the copyright  owner for reuse of any such  third party material/figures. The 

Rightsholder shall not reimburse any fees which  User pays  for such  licences  and permissions. 

As well as CCC, the Rightsholder shall have the right to bring any legal action that it deems necessary to enforce its rights 

should it consider that the Work infringes those rights in any way. 

For STM Signatories ONLY (as agreed as part of the STM Guidelines) 

Any licence granted for a particular edition of a Work will apply also to subsequent editions of it and for editions in other 

languages, provided such editions are for the Work as a whole in situ and  do not  involve the separate exploitation of the 

permitted illustrations or excerpts. 

Other Terms and Conditions: 

 

 
STANDARD TERMS AND CONDITIONS 

 

1. Description of Service; Defined Terms. This Republication License enables the User to obtain licenses for 

republication of one or more copyrighted works as described in detail on the relevant Order Confirmation (the 

“Work(s)”). Copyright Clearance Center, Inc. (“CCC”) grants licenses through the Service on behalf of the 

rightsholder identified on the Order Confirmation (the “Rightsholder”). “Republication”, as used herein, generally 

means the inclusion of a Work, in whole or in part, in a new work or works, also as described on the Order 

Confirmation. “User”, as used herein, means the person or entity making such republication. 

2. The terms set forth in the relevant Order Confirmation, and any terms set by the Rightsholder with respect to a 

particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the person 

transacting for a republication license on behalf of the User represents and warrants that he/she/it (a) has been duly 

authorized by the User to accept, and hereby does accept, all such  terms  and  conditions on  behalf of User, and  (b) 

shall inform User of all such terms and conditions. In the event such person is a “freelancer” or other third party 

independent of User and CCC, such party shall be deemed jointly a  “User”  for  purposes  of  these  terms  and 

conditions. In any event, User shall be deemed to have accepted and agreed to all such terms and conditions if User 

republishes the Work in any fashion. 

3. Scope of License; Limitations and Obligations. 

3.1 All Works and all rights therein, including copyright rights, remain the sole and exclusive property of the 

Rightsholder. The license created by the exchange of an Order Confirmation (and/or any invoice) and  payment by  

User of the full amount set forth on that document includes only those rights expressly set forth in the Order 

Confirmation and in these terms and conditions, and conveys no other rights in the Work(s) to User. All rights not 

expressly granted are hereby reserved. 

3.2 General Payment Terms: You may pay by credit card or through an  account  with us payable at  the end  of the 

month. If you and we agree that you may establish a standing account  with  CCC, then  the  following  terms  apply: 

Remit Payment to: Copyright Clearance Center, 29118 Network  Place,  Chicago,  IL 60673-1291.  Payments  Due: 

Invoices are payable upon their delivery to you (or upon our notice to you  that  they are available to you  for 

downloading). After 30  days, outstanding  amounts will  be subject  to a service charge of 1-1/2% per month or, if     

less, the maximum rate allowed by applicable law. Unless  otherwise specifically  set  forth  in  the Order Confirmation  or 

in a separate written agreement signed by CCC, invoices are due and payable on  “net  30”  terms. While User may 

exercise the rights licensed immediately upon issuance  of  the  Order  Confirmation,  the  license  is  automatically 

revoked and is null and void, as if it had never been issued, if complete payment for the license is not received  on a  

timely basis either from User directly or through a payment agent, such as a credit card company. 

3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is “one-time” (including the 

editions and product family specified in  the license), (ii)  is  non-exclusive and  non-transferable and  (iii) is  subject to 

any and all limitations and restrictions  (such as, but not  limited  to, limitations on  duration  of use or circulation) 

included in the Order Confirmation or invoice and/or in these terms  and  conditions. Upon  completion  of the licensed 

use, User shall either secure a  new  permission  for further use of  the  Work(s)  or immediately cease  any  new  use of 

the Work(s) and shall render inaccessible (such as by deleting or by removing or severing links or other locators) any 

further copies of the Work (except for copies  printed  on  paper in  accordance with  this license and  still in  User's  stock 

at the end of such period). 

3.4 In the event that the material for which a republication license is sought includes third party materials (such as 

photographs, illustrations, graphs, inserts and similar materials) which are identified in such material as  having  been 

used by permission, User is responsible for identifying, and seeking  separate  licenses  (under  this  Service  or 

otherwise) for, any of such third party materials;  without  a separate license, such third  party materials may not  be  

used. 

3.5 Use of proper copyright notice for a Work  is  required  as  a condition  of any license granted  under the Service. 

Unless otherwise provided in the Order Confirmation, a proper copyright notice will read substantially as follows: 

“Republished  with  permission  of [Rightsholder’s name], from  [Work's  title, author, volume, edition  number and  year 

of copyright]; permission conveyed through Copyright Clearance Center, Inc. ” Such notice must be provided in a 

reasonably legible font size  and  must  be placed  either immediately adjacent  to the Work  as  used  (for example, as 

part  of a by-line or footnote but not  as  a separate electronic  link)  or in  the place where substantially all  other credits 

or notices for the new work containing the republished Work are located. Failure to include the required notice results 
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in loss to the Rightsholder and CCC, and  the User shall  be liable to pay  liquidated  damages  for each  such  failure equal to 

twice the use fee specified in the Order Confirmation, in addition to the use fee itself and any other fees and charges specified. 

3.6 User may only make alterations to the Work if and  as  expressly  set  forth  in  the  Order  Confirmation.  No Work 

may be used in any way that is defamatory, violates the rights of third parties (including such third parties' rights of 

copyright, privacy, publicity, or other tangible or intangible property), or is otherwise illegal,  sexually  explicit  or 

obscene. In addition, User may not conjoin  a Work with  any other material  that  may result  in  damage to the 

reputation of the Rightsholder. User agrees to inform CCC if it becomes  aware of any infringement of any rights in  a 

Work and to cooperate with any reasonable request of CCC or the Rightsholder in connection therewith. 

4. Indemnity. User hereby indemnifies and agrees to defend the  Rightsholder  and  CCC,  and  their  respective 

employees and directors, against all claims, liability,  damages,  costs  and  expenses,  including  legal  fees  and 

expenses, arising out of any use of a Work beyond  the scope of the rights granted  herein, or any use of a Work which  

has been altered in  any unauthorized  way by User, including  claims of defamation  or infringement of rights of 

copyright, publicity, privacy or other tangible or intangible property. 

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR  THE  RIGHTSHOLDER  BE  LIABLE  FOR  ANY 

DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR 

LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR 

INABILITY TO USE A  WORK, EVEN IF ONE OF THEM HAS BEEN ADVISED OF  THE  POSSIBILITY OF SUCH  DAMAGES.   

In any event, the total liability of the Rightsholder and CCC (including  their respective employees  and  directors)  shall 

not exceed the total  amount actually paid  by User for this license. User assumes full  liability for the actions  and 

omissions of its principals, employees, agents, affiliates, successors and assigns. 

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC  HAS  THE  RIGHT TO GRANT TO 

USER THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC  AND THE  RIGHTSHOLDER  DISCLAIM 

ALL OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING 

WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 

ADDITIONAL RIGHTS MAY BE REQUIRED TO  USE  ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS,  ABSTRACTS, INSERTS 

OR OTHER PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER; 

USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL 

RIGHTS TO GRANT. 

7. Effect  of Breach. Any failure by User to pay  any amount when  due, or any use by User of a Work beyond  the scope  

of the license set forth in the Order Confirmation and/or these terms and conditions, shall be a material breach of the 

license created by the Order Confirmation and these terms and conditions. Any breach not cured within  30  days  of 

written notice thereof shall result in immediate termination  of  such  license  without  further notice. Any unauthorized 

(but licensable)  use of a Work  that  is  terminated  immediately upon notice thereof may be liquidated  by payment of 

the Rightsholder's ordinary license price therefor; any unauthorized (and unlicensable) use that is not terminated 

immediately for any reason (including, for example, because materials containing the Work cannot reasonably  be 

recalled) will be subject to all remedies available at law or in equity, but in no event to a payment of less than three    

times the Rightsholder's ordinary license price for the  most  closely  analogous  licensable  use  plus  Rightsholder's 

and/or CCC's costs and expenses incurred in collecting such payment. 

8. Miscellaneous. 

8.1 User acknowledges that CCC may, from time to time, make changes  or additions  to the Service  or to these  terms 

and conditions, and CCC  reserves  the right  to send  notice to the User by electronic  mail  or otherwise for the purposes 

of notifying User of such changes or additions; provided that any such changes  or additions shall  not  apply to 

permissions already secured and paid for. 

8.2 Use of User-related information collected through the Service is governed by CCC’s privacy policy, available 

online here: http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html. 

8.3 The licensing  transaction  described  in  the Order Confirmation is personal to User. Therefore, User may not assign  

or transfer to any other person (whether a natural person or an organization  of any kind) the license created  by the  

Order Confirmation and these terms and conditions or  any  rights  granted  hereunder;  provided, however, that  User 

may assign such license in its entirety on written notice to CCC in the event of a transfer of all  or substantially all  of 

User’s rights in the new material which includes the Work(s) licensed under this Service. 

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed by the parties. The 

Rightsholder and CCC hereby object to any terms contained in any writing prepared by the User or its principals, 

employees, agents or affiliates and purporting  to govern  or otherwise relate to the licensing  transaction  described  in 

the Order Confirmation, which terms are in any way inconsistent with any terms set forth  in the Order Confirmation  

and/or in these terms and conditions or CCC's standard operating  procedures, whether such  writing  is  prepared  prior 

to, simultaneously with or subsequent to the Order Confirmation, and whether such writing appears on a copy of  the 

Order Confirmation or in a separate instrument. 

8.5 The licensing transaction described in the Order  Confirmation  document  shall  be  governed  by  and  construed 

under the law of the State of New York, USA, without regard to the principles thereof of conflicts of law. Any case, 

controversy, suit, action, or proceeding arising out  of,  in  connection  with,  or  related  to  such  licensing  transaction 

shall be brought, at CCC's sole discretion, in any federal  or state  court  located  in  the County of  New  York, State  of 

New York, USA, or in any federal or state court whose geographical jurisdiction covers the location of the Rightsholder      

set forth in the Order Confirmation. The parties expressly submit to the personal jurisdiction and venue of each  such 

federal or state court.If you have any comments  or  questions  about  the  Service  or  Copyright  Clearance  Center, 

please contact us at 978-750-8400 or send an e-mail to info@copyright.com. 

http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html
mailto:info@copyright.com
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This Agreement between Dr. Paola Russo ("You") and AIP Publishing LLC ("AIP Publishing 

LLC") consists of your license details and the terms and conditions provided by AIP Publishing 

LLC and Copyright Clearance Center. 

 
License Number 4164850725737 

License date Aug 09, 2017 

Licensed Content Publisher AIP Publishing 

LLC 

Licensed Content Publication Applied Physics Letters 

Licensed Content Title Making graphene 

visible 

Licensed Content Author P. Blake, E. W. Hill, A. H. Castro Neto, et 

al Licensed Content Date Aug 6, 2007 

Licensed Content Volume 91 

Licensed Content Issue 6 

Type of Use Thesis/Dissertation 

Requestor type University or Educational Institution 

Format Print and electronic 

Portion Figure/Table 

Number of figures/tables 1 

Title of your thesis / 

dissertation 

Development of green synthetic approaches for the potential application of 

carbon and semiconductor nanomaterials for emerging applications 

Expected completion date Feb 2018 

Estimated size (number of 

pages) 
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Requestor Location University of 

Waterloo 200 University Avenue 

 

Waterloo, ON N2L3G1 Canada 

Attn: Dr. Paola Russo 

Billing Type Invoice 

Billing Address Dr. Paola Russo 

200 University Avenue 

 
 

Waterloo, ON N2L3G1 Canada 

Attn: Dr. Paola Russo 

Total 0.00 CAD 

Terms and Conditions 

AIP Publishing LLC -- Terms and Conditions: Permissions Uses 

 
AIP Publishing hereby grants to you the non-exclusive right and license to use and/or distribute the 

Material according to the use specified in your order, on a one-time basis, for the specified term, with 

a maximum distribution equal to the number that you have ordered. Any links or other content 

accompanying the Material are not the subject of this license. 
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1. You agree to include the following copyright and permission notice with the reproduction of 

the Material:"Reprinted from [FULL CITATION], with the permission of AIP Publishing." For 

an article, the credit line and permission notice must be printed on the first page of the 

article or book chapter. For photographs, covers, or tables, the notice may appear with 

the Material, in a footnote, or in the reference list. 

2. If you have licensed reuse of a figure, photograph, cover, or table, it is your responsibility 

to ensure that the material is original to AIP Publishing and does not contain the 

copyright of another entity, and that the copyright notice of the figure, photograph, 

cover, or table does not indicate that it was reprinted by AIP Publishing, with permission, 

from another source. Under no circumstances does AIP Publishing purport or intend to 

grant permission to reuse material to which it does not hold appropriate rights. 

You may not alter or modify the Material in any manner. You may translate the Material into 

another language only if you have licensed translation rights. You may not use the Material for 

promotional purposes. 

3. The foregoing license shall not take effect unless and until AIP Publishing or its agent, 

Copyright Clearance Center, receives the Payment in accordance with Copyright 

Clearance Center Billing and Payment Terms and Conditions, which are incorporated 

herein by reference. 

4. AIP Publishing or Copyright Clearance Center may, within two business days of granting 

this license, revoke the license for any reason whatsoever, with a full refund payable to 

you. Should you violate the terms of this license at any time, AIP Publishing, or Copyright 

Clearance Center may revoke the license with no refund to you. Notice of such revocation 

will be made using the contact information provided by you. Failure to receive such notice 

will not nullify the revocation. 

5. AIP Publishing makes no representations or warranties with respect to the Material. 

You agree to indemnify and hold harmless AIP Publishing, and their officers, 

directors, employees or agents from and against any and all claims arising out of 

your use of the Material other than as specifically authorized herein. 

6. The permission granted herein is personal to you and is not transferable or 

assignable without the prior written permission of AIP Publishing. This license may not 

be amended except in a writing signed by the party to be charged. 

7. If purchase orders, acknowledgments or check endorsements are issued on any forms 

containing terms and conditions which are inconsistent with these provisions, such 

inconsistent terms and conditions shall be of no force and effect. This document, including 

the CCC Billing and Payment Terms and Conditions, shall be the entire agreement 

between the parties relating to the subject matter hereof. 

This Agreement shall be governed by and construed in accordance with the laws of the State of 

New York.  Both parties hereby submit  to the jurisdiction of the courts of New York  County 

for purposes of resolving any disputes that may arise hereunder. 
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License date Aug 09, 2017 
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Layers Licensed Content Author A. C. Ferrari et al. 

Licensed Content Date Oct 30, 

2006 Licensed Content Volume 97 

Type of Use Thesis/Dissertation 

Requestor type Student 

Format Print, Electronic 

Portion image/photo 

Number of images/photos
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Portion description Figure 2 (a) and (b) 

Rights for Main product 

Duration of use Life of Current Edition 

Creation of copies for the
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With minor editing privileges no 

For distribution to Worldwide 

In the following language(s) Original language of publication 
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use 
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Order reference number 
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dissertation 
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Attn: Dr. Paola Russo 

Billing Type Invoice 

Billing Address Dr. Paola Russo 
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Terms and Conditions 

 
Terms and Conditions 

The American Physical Society (APS) is pleased to grant the Requestor of this license a non- 

exclusive, non-transferable permission, limited to [print  and/or  electronic  format, depending 

on what they chose], provided all criteria outlined below are followed. 

1. You must also obtain permission from at least one of the lead authors for each separate 

work, if you haven’t done so already. The author’s name and affiliation can be found on the 

first page of the published Article. 

2. For electronic format permissions, Requestor agrees to provide a hyperlink from the 

reprinted APS material using the source material’s DOI on the web page where the work 

appears. The hyperlink should use the standard DOI resolution URL, http://dx.doi.org 

/{DOI}. The hyperlink may be embedded in the copyright credit line. 

3. For print format permissions, Requestor agrees to print the required copyright credit line 

on the first page where the material appears: "Reprinted (abstract/excerpt/figure) with 

permission from [(FULL REFERENCE CITATION) as follows: Author's Names, APS 

Journal Title, Volume Number, Page Number and Year of Publication.] Copyright (YEAR) 

by the American Physical Society." 

4. Permission granted in this license is for a one-time use and does not include permission for 

any future editions, updates, databases, formats or other matters. Permission must be sought 

for any additional use. 

5. Use of the material does not and must not imply any endorsement by APS. 

6. Under no circumstance does APS purport or intend to grant permission to reuse materials 

to which it does not hold copyright. It is the requestors sole responsibility to ensure the 

licensed material is original to APS and does not contain the copyright of another entity, and 

that the copyright notice of the figure, photograph, cover or table does not indicate that it  

was reprinted by APS, with permission from another source. 

7. The permission granted herein is personal to the Requestor for the use specified and is not 

transferable or assignable  without express written permission of APS. This license may not  

be amended except in writing by APS. 

8. You may not alter, edit or modify the material in any manner. 

9. You may translate the materials only when translation rights have been granted. 
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