
Infeasible Primal-Dual Interior Point Algorit hms 

for Solving Optimal Power Flow Problems 

Xihui Yan 

A t hesis 

presented to the University of Waterloo 

in fiilfilment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Electrical Engineering 

Waterloo, Ontario, Canada, 1997 

@Xihui Yan 1997 



National Lilbrary 1+1 ofcimada 
Bibliithëque nationaie 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Sem'ces services bibliographiques 
395 W e i T i  Street 395. Ne WeGngtal 
OlEarmdN K 1 A W  dCtawabN K I A W  
Canada Canada 

The author has gcanted a non- 
exclusive licence allowing the 
National Lihary of Canada to 
reproduce, loan, distriiute or sell 
copies of M e r  thesis by any means 
and in any fomi or format, m a h g  

The author retains ownership of the 
copyright m hisrna thesis. Neither 
the thesis nor substautial exttacts 
fiom it may be printed or otherwise 
reproduced with the author's 
permission. 

L'auteur a accordé une licence non 
e x c I ~ v e  permettant a la 
Bibliothèqe nationale du Canada de 
reproduire, prêter, distri'buerou 
vendre des copies de sa thèse de 
cpeiqye d è r e  et sous qyeIqye 
fonne que ce soit pour mettre des 
exemplaires de cette thèse à la 
disposition des personnes intéressées. 

L'auteur conserve la propriété du 
droit d'auteur qui protège sa thèse. Ni 
h thèse ni des d t s  substantiels de 
celleci ne doivent être imprimés ou 
autrement reproduits sans son 
autorisation. 



The University of Waterloo requires the signatures of all persons nsing or ph+ 

tocopying this thesis. Please sign belon, and give address and date. 



Abstract 

Many applications in powa system operations and planning need efficient o p  

timization methods to solve large-scale problems witkin a sliott period of time. 

This reqnirement is even more pronounced for real-time controls where fast solu- 

tion speed is most important. As a major on-line application, the OPF problem is 

concerned with using mathematical programming methods to determine a secure 

and economic operating condition of power s ys tems. The main objective of this se- 

search is , t kerefore, to develop and sys tematically evahate advanced interior point 

met kods for the efficient and diable OPF solutions. 

In this tkesis, the OPF problem is formulated as a constrained nonlinear pro- 

gram in terms of all control/state variables, considering both power balance equality 

and security inequality constraints. Tao par t idar  OPF cases are studied in detail, 

namely, the real and reactive power dispatch problems. The minimization of pro- 

duction cost is considered as the objective in real power dispatek problems; while 

for reactive power dispatch problems, the objective funetion is the transmission 

active power losses to be minimired during the optimization process. 

Successive linear programming is used to deal with the nonlinearity of the un- 

derlying problems. Consequently, the nonlinear OPF problem is linearized as a 

sequenee of linear sub-problems, which are in turn solved by nsing interior point 

methods. To better suit the application of interior point methods, the sparse Iinear 



formulations are derived for both real and reactive power dispatch problems, based 

on decouple and couple load flow models, respectively. 

The study of interios point methods is concentrated on infeasible primal-dual 

path-folloaring methods. The derivations of two variants in this class of methods are 

presented in detail, namely, the infeasible primal-dud and the predic tor-correct or 

primal-dual algorithms. Both algorithms are extended for a more general hear 

programming problem, considering lower and upper bounds for special needs in o u  

applications. The search directions produced by these algorithms are analyzed to 

better understand the characteristics of interior point methods under research. 

To explore the M potential of interior point methods for power engineering 

problems, intensive study has focused on ail issues that influence the algorithm 

performance, such as the adjustment of barrier parameter, the determiiiation of 

Newton step length and the initial point, and the use of multiple corrector steps. 

Practical issues related to successive hearization procedure are also investigated, 

including the choice of the linear step size and the tolerances for linear programming 

as weil as for OPF procedwe. Th& dec ts  on OPF performance are evaluated. 

As the results of these investigations, several heuristics are proposed to rednce 

the number of iterations and to Save computational work in every iteration. Ex- 

tensive numerical erperiments have demonstrated t hat the OPF solution speed 

can be significantly improved by customizing algorithm parameters to the specific 

applications under concern. Finally, the use of sparse techniques is investigated in 

developing fast and robust interior point codes. Test r e d t s  on large-scale problems 

have confirmed the efficiency and reliability of the algorithms. 
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Glossary 

The fo1lowing abbreviations are fiequently used in the text of the thesis: 

AC 

DC 

IPM 

KKT 

LP 

NLP 

OPF 

PDIPA 

P C-PDIPA 

QP 
RPD 

SCED 

SLf 

Alternathg Current 

Direct Current 

Interior Point Method 

Kanish-Knhn-Tucker necessary conditions 

Linear Programming 

NonLinear Programming 

Optimal Power Flow 

Primai-Dual Intexior Point Algorithm 

Predictor-Corrector Primal-Dual Interior Point Algorit hm 

Quadratic Programming 

Reactive Powet Dispatch 

Se&ty-Cons trained Economic Dispatch 

Successive Linear Programming 
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Chapter 1 

Introduction 

The fundamental mission of a power system is to provide consumers with sust ained, 

diable and cost-efficient electrical energy- In order to adueve this goal, system 

operators need to constantly adjust various controls such as generation outputs, 

transformer tap ratios, etc., to assure the continuons economic and secnre system 

operations. This is a difficult task that relies highly on the optimal power flow 

(OPF) function at power system control centers [15]. The OPF procedure consists 

of using mathematical methodology to find the optimal operation of a power system 

under feasibility and seenrity constraints. It h a  been considered as a basic tool for 

determining secure and economic operating conditions of power systems- 

The optimal power flow problem can be traced back as eady as 1920's when eco- 

nomic allocation of generation was the only concern [47]. The economic operation 

of power systems was achieved by dividing loads among a d a b l e  genaator units 

such that th& inmemental generation costs are equd. This was a rather simple 

problem where only operating limits on real powa generations were considered and 

the effect of system losses was either neglected or appmximated by penalty factors 



caldated fiom the loss formula or load flow Jacobian mattir [96]. 

As power systems became increasingly large and complex, the security became 

an important issue, which requires more detded system models. On the otha hand, 

the evolution of digital cornputers made such detded modeluig become possible. 

In 1962, Carpentier for the fust time established the OPF problem on a rigorous 

mathematical base [14]. He fo rda ted  it as a constrained nonlineat programming 

problem and derived its optimality conditions using the Kuhn-Tucker theorem. In 

Iiis formdation, the OPF problem is expressed in t enns  of aU control and state 

variables, with both network and s e d t y  constraints. The objective b c t i o n  can 

be total generation cost or transmission losses, depending on a specific application. 

In the past three decades, various optimization techniques have been proposed 

to solve the OPF problems. Tkey range fiom impnived mathematical techniques 

to more efficient problem formulations [l6, 82, 221. According to different models 

in use, the OPF methods can be dassified as non-compact methods w h e  network 

sparsity is retained, or compact ones in which the state variables are expressed in 

t e rms  of control variables using various sensitivities. Based on the applied math- 

ematical optimization, the OPF methods can be categorized as Nonlinear Pro- 

gramming (NLP ), Successive Linear Progr;rmming (SLP ) , and Non-conventional 

techniques. A brief review on the OPF developments is provided next. 

The gradient methods, using only kst-order information, were initidy used for 

the solution of OPF problems [14,24]. These methods are characterized by slow and 

unreliable convergence. Soon after, the quadratic programming (QP) approaches 

were proposed, which use the second-order derivatives to improve the convergence 

of the gradient methods. Th& distinct feahire is that they use the Quasi-Newton 

process to iteratively approximate the Hessian matrix and, thus, avoid the difficulty 

in expiicitly calctdating the second derivatives of the load flow eqaations [49, 771. 



However, the reduced Hessian so created is dense, which may make these methods 

too slow as the numba of control variables becomes very large. 

As the demand for faster and more stable techniques grew, a more accurate 

representation of the second-orda information became essential. Lagrangian tech- 

niques with the exact Hessian matn* regained engineers' interest. Although these 

methods were proposed as earlier as 19609s, few were either reliable and fast until 

Sun et  al. [84] introdaced a Newton approach combined with Lagrangian techniques 

and penalty hinetions. With efficient data structure and sparse techniques, Sun% 

algoritkm became very attractive and succesfi at the tirne. The major diflidty 

in this algori th development tmned ont to be the efficient identification of binding 

inequality constraints. 

Recently, the linear programming (LP) tecliniques have been proposed to solve 

the OPF problem [4, 821. These methods are based on the linearization of OPF 

conshaints and the objective funetion. An incremental model is created and a 

proper LP method is applied. As the linear model gives satisfactory results only 

in a small neighborhood arou~d the base point, a successive refinement procedure 

is usuaily needed to improve the accaracy of the solution. Despite this, many 

applications have proved that linear programming methods are computationdy 

very efficient and reliable with ease of handling inequality constraints. Tkey appear 

to be a good compromise between solution speed and acearacy [BO, 81,981. Linear 

programming wiil be employed in this thesis as the solution method for nonltiear 

OPF problems. 

The popdarity of linear programming approaches is &O due to Karmarkar's 

papa on an interior point method [51]. His main idea is to solve a cons trained prob- 

lem as a sequence of uncons trained sub-problems based on t hree theoretical corn- 

ponents (971: Fiacco k McCormick's logarithmic bauier method for opthkation 



with ineqnalities, Lagrange's method for opthization wïth equalities, and New- 

ton's method for solving the nonlinear eqnations of Karnsh-Kuhn-Tucker (KKT) 

optknality conditions. With their nice polynominal comp1exity plus computationd 

efficiency, interior point methods have proved much f s t e r  than the traditional sim- 

plex methods for large-scale problems, and have become a candidate for many ap- 

plications [3,61,57]. Th& promishg resdts in recent OPF applications [94,97,45] 

have also motivated the m e n t  thesis research. 

As OPF algorithms became faster and their on-IUie applications became re- 

alistic, techniques for OPF solution tracking, after system topology andior load 

changes, were developed and applied. Parametric linear or quadratic programming 

and the continuation method are just a few examples of these techniques 115, 501. 

In the meantirne, non-conventional methods mch as fbzy  modeling and control 

gave very interesthg applications, introdncing a uew dimension for OPF research 

and developments [l, 661. Curent OPF algorithms and cornputer programs demon- 

strate speed and complexity never seen before. Yet , numerical stability, flexibility 

in applications, and real-tirne capabilities are still an issue. 

1.1 Motivation 

This thesis is concerned with the potential application of interior point methods 

in the successive h e a r  solution of optimal power %ow problems. More specifidy, 

the main objective of this research is to develop and systematically evaluate the 

infeasible primal-dual path-followiag algorithms for the efficient solution of real and 

reactive power dispatch problems. Although interior point methods have received 

intensive stndy and achieved significant developments, there are still several qnes- 

tions that deserve more researeh to fnrther improve the paformance of the methods. 



CHAPTER 1- INTRODUCTION 

Tkese issues include how to dpamically adjust the b&er parameta and Newton 

step length, how to effectively choose an initial point to rednce the nnmber of i ta-  

ations for the specine type of problems, and how to explore the problem-dependent 

data structure to solve linear system of eqnations more efEciently. In order to ex- 

ploit the full computationd potential of interior point methods for power system 

optimization problems, it is essential to investigate all issues that influence the per- 

formance of the algorithms. The folloning provides the motivation underlying the 

present thesis. 

rn The critical need for a fast and diable solution of large-scale optimization 

problems in power system operations , especially in real-time controls . 

O The curent successfd applications and experience on nsing h e a r  program- 

ming to solve various nonlinear power engineering problems. 

O The attractive properties of linear programming methods in terms of the 

solution efficiency and reliability. 

O The large-scde problem solving capability of interior point methods due to 

their polynominal complexity and computational efnciency, as evidenced by 

the encouraging results in many applications. 

O The reality that the linear programming method based on infeasible primal- 

dual pat h-following algorithms has not been systematically evaluated in power 

sys tem applications. 

O The lack of thorough investigation and andysis on various implementation 

issues of interior point methods for power engineering problems. 



The performance of the algorithms is dosely related to several factors mch as 

barrier parameter, initial point, Newton step length, etc. Therefore, castornie- 

h g  these factors to a speeinc application can possibly speed up convergence. 

To the author's knowledge, the idinence of linear step size and convergence 

tolerances on interior point algorithms as ad as SLP procedure has not been 

thoronghly investigated. 

0 In power enpineering, the systematical evaluation of advanced simplex teck- 

niques and the cornparison of th& relative performance witk interior point 

methods have not been done yet. 

1.2 Outline 

Chaptet 1 starts by introducing background materials about the OPF problem. 

Recent developments in OPF techniques are briefly reviewed. Based on this in- 

formation, the motivation is given to carry on the proposed researeh. Then, the 

outline of the thesis is described and the author's contributions are snmmarized, 

In Chopter 2, the OPF problem is formulated as a constrained nonlinear program 

in terms of d control and state variables, considering both power balance equality 

and security inequality constraints. Two particdar cases of OPF problems are 

studied in detail, including secuity-constrained economic dispatch (SCED) and 

minimum transmission active-powa loss reactive power dispatch (RPD) problems. 

The sparse linear f o d a t i o n s  for both SCED and RPD problems are derived based 

on the decouple and complete load flow models, respectively. An iterative strategy 

is described to refme the successive linear solutions of OPF problems. 



The interior point methods are presented in Chapter 3, where a brief review 

of th& recent progress is indnded. Then, tao advanced interior point methods 

are s tudied in detail, i.e., infeasibie primal-dual algorithm and predictor-corrector 

primal-daal algorithm. The complete derivations for both algorithms are provided, 

incorporating lower and upper bonnds to meet o u  special requkements. The corn- 

mon features as well as individual characteristics of the algorithms are analyized. 

The important issues assoüated with their implementations are discussed, inclnding 

the choices of Newton step size, banier parameta, initial point, and so on. 

Chaptet 4 presents experimental results of the real and reactive power dispatch 

problems nsing the proposed interior point algorithms. Detailed investigation is 

condocted on those implementation issues to ednate  th& impact on the perfor- 

mance of the algorithms. Also, practical issues related to successive h e a r  pro- 

gra.mming are studied in detail, including the adjustments of linear step size and 

stopping criteria. In addition, the use of sparse matrix techniques is considered to 

improve the computational efficiency and reliability. 

In Chapter 5, numerical experience on using advanced featnres of a state-of-the 

art simplex code is presented. The recent developments in the simplex tecknology 

are tkoroughly investigated, su& as preprocessing, scaling, crashiag, steepest-edge 

pricings and so on. Their infLuence on large-scale real and reactive power dispatch 

problems are eduated. Then, the cornparison of relative perf'omance between 

this simplex code and a predictor-corrector primal-dual interior point algorith is 

conducted, and the numericd results on 118 to 2124 bas systems are discussed. 

For testing algorithms, Chapter 6 describes an efficient technique to create large- 

scale realistic network data. Findy, Chapter 7 sllmmarizes the conclusions of this 

work and provides recommendations for fùttue research. 



1.3 Contributions 

To the author's knowledge, the main contribution of this thesis has been the d e  

velopment and systematic evalnation of advanced interior point methods for the 

snccessive linear solution of optimal power flow problems. This contribution in- 

dudes the following aspects: 

1. The detailed derivation and numerical analysis of the infeusible ptimal-dual 

and the p~edictor-corrector ptimal-duul algorithms, where bo th lower and u p  

per botmds are considaed for special needs in OPF applications. 

2. A thorough investigation of the prïmal-dual algorithm on sach implementa- 

tion issues as the clioices of Newton step size, barrier parameter, and initial 

point. The proposed heuris tic strategies of adap tively changing these param- 

eters have proved very effective in speedhg up convergence. 

3. Intensive study on the predictor-corrector algorithm has been carried out to 

evaluate the influence of b k e r  parameter, initial point, multiple correctors. 

The ideas of mstomizing these parameters to OPF applications have improved 

the algorithm performance dramatically. 

4. The practical issues associated with the successive linear programming (SLP) 

have been investigated to evaluate th& impact on the interior point dg* 

nthm as well as SLP procedure. Extensive numerical experirnents have shown 

that the proper adjustments of linear step size and tolerances are crucial for 

achieving fast solution speed white maintaining solution acmacy. 

5. The bottleneck of interior point methods is to repeatedly solve the Newton 

equations for search directions. The use of sparse mahix techniques for such 
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eqaations has been investigated, which condudes that the nonnal equation 

method can produce fast and diable solution. 

6. The recent developments in simplex technology ha9 been investigated to eval- 

aate th& impact on power engineering problems. Cornparison between the 

state-of-the-art simplex code and advanced intaior point dgorithms has been 

conduced on large-scale OPF problems. 

7. An &dent technique has been developed to create realistic network data of 

different size, topology, and sparsity for testing algorithms. 



Chapter 2 

Optimal Power Flow Problem 

2.1 Introduction 

The operator of a power system is constantly facing the problem of adjusting a 

set of its variables, su& as generator power output and terminal voltage, in order 

to assure the continued economic and secure operation of the system. This is a 

very diff idt  task that is usually done through the optimal power fiow function 

perfocmed by cornputers at utiüty control centers [15]. An optimal power flow 

procedure determines the optimal steady-state operation of a power system so as 

to minimize a chosen objective fnnetion and satisfy certain physical and operating 

constraints. The dectiveness of such a control fnnction is not only dependent on 

the appropriate problem formulation but &O on the effiuency of mathematical 

programming techniques. 

This chapter describes the optimal power flow problem and its general solution 

procedure. The optimal power flow problem is formdated as a constrained non- 

linear program in terms of all power system control and state variables [14]. Its 
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constraints inchde power balance equality and secmity inequality constraints. In 

order to tednce the problem size and complexity, the optimal power flow problem 

is decomposed into the real and ~ c t i v e  power dispatch problems based on the de- 

couphg effects between the real powa/phase angle and the reactive powerfvoltage 

magnitude [77]. In this thesis, two parti& cases of optimal power flow problems 

are studied: (i) the se&ty-constrained economic dispatch; and (ii) the minimum 

real-power transmission loss reactive power dispatch. 

In a security-constrained economic dispatch, the total generation cost is mini- 

mized by reschednling the generator real power outputs while keeping the real power 

balance and security constraints satisfied. Since the impact of voltage magnitudes 

on the real power schednling is negiigible, a simplified DC load flow model is used 

to improve the solution efficiency. In the case of a reactive power dispatch, the 

total real-power losses are mhimïzed by adjusting the generator terminal voltage, 

transformer tap ratios and shunt susceptance. At the same tirne, the realfreactive 

power balance and security constraints are reinforced. Due to its highly nonlinear 

nature and strong coupling beheen voltage and phase angles, the reactive power 

scheduling is simdated by an AC load flow model to improve its solution accuracy. 

Linear programming has been widely used in solving nonlinear power system 

optimization probLems. It has been shom th& the linear appmach is reliable, fast 

and saniaently accurate in most applications [82]. Hence, a linearization method 

is applied in this thesis to deal with the nonlinear optimal powa flow problems. 

Consequently, each of the above real and reactive power dispatch problems are 

solved as a sequence of linear sub-probiems which, in tani, are solved by linear 

programming methods. To reduce the computationd burden, the sparse linear 

techniques are nsed for the solution of each linear sub-problem. 
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2.2 GeneralProblem Formulation 

The optimal power fiow (OPF) is to maintain the optimal steady state operation 

of a power system by adjusting a set of control variables while satisfying certain 

operating and security constraints. It is a typical nonlinear pmgramming problem 

that can be mathematically expressed as 

This problem is fo rda ted  in terms of aIl power system control and state vari- 

ables (x) which comprise reallreactive power generations, phase shifters, shnnt 

susceptance, transformer taps, and voltage angles and magnitudes. The equality 

constraints g ( x )  = O stands for the power balance equations while the inequality 

constraints are physical and operational limits. The objective fanetion f (2) is usu- 

ally the total power generation cost or the power system losses, depending on the 

application. 

Due to the size and complexity of the problem, it is a common practice to d e  

compose the optimal power flow problem into real and reactive power problems 

[77, 181. This decomposition is based on decoupling the effects of real power/phase 

angle fkom reactive power/voltage magnitude. Each of the problems c m  be ap- 

proximated by a linear or quadratic programming mode1 and solved by an itaative 

scheme to a desired accuracy. In the next section, two p a r t i c h  cases of optimal 

power flow problems are discussed, i.e., the security-constrained economic dispatch, 

and the minimum real-power transmission losses reactive-power dispatch. 
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2.2.1 Security-Constrained Economic Dispatch 

ki the secnrity-constrained economic dispatch the reai power outputs of genaators 

are to be detamtied by miniminng the total operating cost subject to the power 

balance eqnality constraints, the security inequality constraints, and the generator 

operating b i t s  on real power output. The reactive power controls, such as gen- 

erator terminal voltages, shunt susceptance and transformer taps, are assumed to 

be fixed. By eliminafing the d e c t  of voltage magnitudes, the real power dispatch 

problem is formulated as follows: 

where 

nb - the total number of buses; 

nc - the number of generators; 

ni - the number of transmission lines; 

Po - an no x 1 vector of rd-power generations; 

4 - the production cost ($/hr) of the k-th generator; 

PD - the total real-power demand; 

PL - the total real-power network losses; 

F - an nt x 1 vector of transmission line flows; 

9 - an nb x 1 vector of voltage phase angles; 

Superindices min and mux stand for the Iowa and apper limits of relevant 

variables. Note that in formulation (2.2) the generation cost Ck(PGk) is expressed as 
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either a piecewise linear or quadratic fnnction of real power genaations; the network 

losses PL (6) and the branch flow F (6) are the nonlinear and nonconver fnnetions of 

voltage angles. Note JO that the real power balance equation is in a compact form 

which can be replaced by a set of the r d  power load flow eqnations. Depending 

on which form the power balance eqnation takes, the redting formulation is called 

either a compact modeling or a sparse modeiing [15]. In this thesis the sparse 

formulation is used to solve the reaI power dispatch problem becanse it is more 

suitable to the application of the interior point methods, as s h  in Chapter 3. 

2.2.2 Reactive Power Dispatch 

Iu the reactive power dispatch the real power generations (except on the slack bus) 

are assumed h e d .  The reactive power controh, such as generator termina voltages, 

shunt susceptance and transformer taps are to be determined by mïnimiziag the 

total system losses, subject to the load flow equality constraints, the operating 

limits on voltages and reactive power generations, and the plysical Iimits on shunt 

susceptance and transformer tap positions. The problem can be formulated as 
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where 

n, - the nnmber of s h ~ t  susceptance; 

nt - the nnmber of tapchanging trandormers; 

Pt - the total seal-power network losses; 

QG - an novector of reactivepower generations; 

V - an nb-vector of bus voltage magnitudes; 

b, - an n.-vector of shunt susceptance; 

t - an nt-vector of transformer tap ratios; 

0 - an nb-vector of voltage phase angles; 

P, Q - (nb - 1)-vectors of power flow equations; 

The rest of the parameters are the same as those in the last section. It should be 

pointed out that the reactive power balance equations in (2.3) are different fkom the 

conventional load flow equations, because in the former case the control variables 

are to be determined, whereas in the latter case most of tkem are assigned a given 

value. Anotker notable point is that the system losses is a nonlinear and nonconvex 

huiction of bus voltages. Moreover, the loss fnnction has a strong coupling between 

voltage and phase angles. As a resdt, the reactive power dispatch problem is 

relatively dinicdt to solve, comparing to its red  power counterpart . 

In order to remove the phase angle conpling, some suggestions have been made 

to transfonn the state variables in terms of the control variables, based on various 

sensitivity models [74]. However, the caldations of those sensitivities usually in- 

volve the compatation of an inverse matrix which is not trivial task for a largescale 

problem. Also, any changes in the system configuration will resdt in the complete 

recalculations of aU parameters. In addition, due to some simpMcation made in 

the model, the results may not be accurate enough. To avoid these difficulties, 
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the original formnktion (2.3) is used in this thesis for the solution of the reactive 

power dispatch problem. Since this formaktion is very sparse, it allows varions 

sparse techniques to be used to exploit the problem data structure. 

2.3 Linear Security-Constrained Economic 

Dispat ch 

In the security-cons trained economic dispat ch ( SCED ) the minimixation of the total 

production cost is accomplished by regulating the real power ontputs of generators. 

It is a nonlinear problem in nature that can be solved through successive h e a r  

programming. In this section, a linear model for the SCED problem is derived. 

To reduce the problem size withoat afkting the solution accuracy, the following 

assnmptions are used during the linearkation: 

All reactive power controls are kept constant and, therefore, are not consid- 

ered in the hear  model. These controls include generator terminal voltages, 

transformer taps, and switchable shunt susceptance. 

The dianges in the voltage magnitude and reactive power due to the real 

power controls are considered negligible. 

Consequently, the linear real power dispatch model involves only the variables of 

real power generations and voltage phase angles. Its constraints include the real 

power balance equalities, the line flow securîty inequalities, and the operating limits 

on real power generations. In addition, a step length Limit is imposed on phase 

angle changes to assure the validity of the Iinear model. The detailed fondation 

is described in the following subsections. 
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2.3.1 Generation Cost Objective Function 

The objective fanction of the se&ty-mnstrained economic dispatch is the total 

generation cost which is the snmmation of the cost hvolved by all generators. The 

production cost of each generator can be q r e s s e d  as a quadratic fnnction of its 

real power generation[46]: 

wkere PGk is the real power output of the k-th generator; and the scdar oc, bk, 

and ck are the coefficients of the constant, hst-order, and second-order terms, 

respectively. By Werentiating equation (2.4) with respect to the real power output, 

the linear incremental cost h c t i o n  will be 

Finally, the total incremental cost of the problem becomes 

where nc is the number of generators in a power system. 

2.3.2 Real-Power Balance Constraints 

In the steady-state operation of a power system, the real and reactive power balance 

must be maintained, which means that at .any t h e  the power generations meet 

all load demands plus the network losses. This balance condition should also be 

satigfied in determining the optimd operating state of the system. The power 

balance condition is usnally desdbed by the following load flow equations [46]: 
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where Gii7 Gijl B, and Bij are elements of the real and imaginary parts of the 

bas admittance matrix Y = G + jB; K7 5, Oi and Bi are the magnitudes and 

phase angles of the voltages at bus i and j ,  respectively; Pi and Qi are the real and 

reactive powet injections at bus i. The symbol j E i under the sammation sign 

refers to a l l  the buses ( j )  that are connected to bus i. 

In the sectuity-constrained economic dispatch problem, since the changes in the 

voltage and reactive power are negligible, only the real power balance eqnations 

(2.7) are considered as the equality constraints. Notice that the power injection Pi 

is dehed as the generation minus the load on the bus i; thns, equation (2.7) can 

be rewritten as 

where Pa and P' are the real power generation and the load demand at bus i, 

respectively ( Pa = O for a nongeneration bus). Considering power generations 

and phase angles are iinknown variables and aIl other variables are constant, the 

linear incremental mode1 of the powa balance equation (2.9) can be derived fiom 

i t s fis border Taylor expansion: 

wkere H is the patt of Jacobian matrix, whose elements are dehed  as following: 
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2.3.3 Real-Power Security Constraints 

The security constraint refers to the thermal ratings of the transmission lines. These 

thermal limits should not be violated in order to keep the system operating safey. 

Therefore, the actnal power flows on transmission lines shodd be restricted bdow 

the above limits: 

where 4 and Fl- are the line flow and thermal rating of the 2-th transmission 

line. The braneh flow Fc is the fonction of the voltages and phase angles on its h o  

comecting buses. It can be derived fiom the a eqnivalent circuit of the transmission 

Line and expressed as follows: 

and 

where subscript i and k are the two terminal buses of the 1-th transmission Iiiie; 

gik and bik are the real and imaginary parts of the series admit tance, and bG is the 

kalf shunt susceptance of the line. Neglecting the changes in voltages and reactive 

p owers, the fis t-order Taylor expansion of equation (2.14) is 
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Finally, the linear incrementd form of hinctional constrauit (2.13) becomes 

where A F ~ ~ ~ ~  = -F - F<O) 
A&-= = 3y= - F?); 

and FI(O) is the line flow at the murent linearization point for the real poner dispatch 

problem. 

2.3.4 Sumrnary of Linear SCED Formulation 

The linear formulation of the semrity-constrained economic dispatch problem can 

now be explicitly stated as follows: 

snbject to 

where the components of the vectors are dehed as 

A& is the variation of the voltage phase angle at bus i. 

APGk is the variation of the real power generation at bus k. 

ci, is the incremental cost coefficient of generator k, which is detamined by (2.5). 

Hii, HG are the coefficients of power balance constrahts, given by (2.11 - 2.12). 
wii, wij are the coefficients of secnrity constraints, defined by (2.18 - 2.19). 

The above formulation is ob tained based on the use of the DC load flow model* 
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2.4 Linear Reactive Power Dispatch 

In the reactive power dispatch the minimisation of total network losses is accom- 

plished by controllhg gaierator terminal voltages, shunt susceptance and trans- 

former tap ratios. It is the nonheat and nonconvex problem which can be solved 

by using lhear programming method. Unlike the real power schedallig, the reac- 

tive power scheduling is more difEcult to solve due to its highly nonluiear nature 

and strong couphg between the voltage and phase angle. In order to simplify 

the problem without s a d c i n g  its solution accuracy, the following assumptions are 

used in deriving the linear reactive power dispatch model: 

O The real power controls, i.e., the generator real powa ontpnts, are kept fixed 

except for the generation on the slack bus. Therefore, they are not considered 

as variables in the linear model. 

The changes in the real power flow directly caused by the reactive power 

controls can be ignored. These controls inchde shunt susceptance and trans- 

former tap ratios. 

The second assumption is made because of the fact that, after the real power 

scheduling has been done, the real power flow is determined. In this case, the trans- 

mission losses are m d y  caused by the reactive power flow on the network. The 

reactive power dispat ch reduces the transmission losses by bet ter docating reactive 

power sources, which improves the system voltage profiles and, thus, eliminates the 

iuuiecessary reactive circulation in the network. As a r e d t ,  the reactive controls 

have lit tle impact on the real power disfxibations. Based on the above assumptions, 

the detailed linear formulation is derived as follows. 



2.4.1 Real-Power Tkansmission Loss Objective Fûnction 

The objective fanction of the reactive powa dispatch is the total real-power trans- 

mission losses dissipated in a power nehrork. Since the powa losses are defhed as 

the total generations m i n a s  the total loads of the system, it can be evahated by 

adding all the bas real power injections [96]: 

where PL is the total real power losses of the system; Pi is the real power injection at 

bus i, which is defined as the generation minns the load on that bus. By substitnting 

Pi with equation (2.7), the real power losses can be expressed in t m s  of bus 

voltages and phase angles: 

Note that for a given bus i, the items with subscript i j  in 

- 0i)l) (2.23) 

its inner sirmmation 

of equation (2.23) are related to a transmission component between bus i and bus 

j. Similarly, for bus j, there are &O the same items with subscript ji, except that 

the phase angle order is reversed. Therefore, the cos items are retained but the sin 

items are canceled by each other. As a resdt, equation (2.23) is reduced to 

By differentiating equation (2.24) with respect to the voltage and phase angle, 

the linear incremental loss fiinction can be obtained as  
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where 

2.4.2 Real/Reactive-Power Balance Constraints 

Althoagh real power dianges caased by reactive controis can be neglected, the real 

power balance eqnations still need to be satisfied due to the variation in voltages 

and phase angles. Thdore,  both real and reactive power balance equations are 

considered in the reactive power dispatch problem. 

Real Power Balance Constraints 

The linear form of real power balance conshaints can be derived in a similar way as 

the case in the security-constrained economic dispatch, except that voltage changes 

have to be considered. In addition, since the real power generations are kept con- 

stant, they are not induded in the linear model. Consequently, the real power 

balance equation (2.9) cm be linearized as 

HA0 + NAV = O (2.28) 

where H and N are the part of Jacobian ma* the elements of H are dehed  by 

(2.11)-(2.12); and the elements of N are caldated as foliows: 

ap; 
Nij = -- - Ci- [GG COS(@; - 9 j )  + BG sin(& - 6 j ) ]  a 6  



Readive Power Balance Constraints 

The reactive power balance constraint is more cornplex than its real power counter- 

part, becanse it eontains not only voltages and phase angles but also the reactive 

controls, such as reactive power generations, mitchable shunt susceptance and t a p  

changing trandormers. Its complete formulation can be obtained by extending the 

reactive power load 0ow eqnation (2.8) to inchde all the above variables: 

where Qa and Qu are the reactive power generation and load at bus i, respec- 

tively. Qs; and QTi are the reactive powa consumptions that are determined by 

shunt susceptance bL and transformer tap-ratios ti- The linear incremental form of 

the reactive power balance equation is then ob t ained by differentiating the above 

equation(2.31) with respect to all variables: 

JAB + LAV - AQG + SAb. + TAt = O (2.32) 

where J and L are the part of Jacobian matrix. Th& elements can be derived 

Born (2.8) as the derivatives of the reactive power injection versus the phase angle 

or the voltage, 
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And S is a diagonal ma& whose elements are the reactive power sensitivities with 

respect to the changes in the mîtchable VAR source: 

The elements of the matrix T are the sensitivities of the reactive power change 

with respect to the transformer tap change. They can be derived from its a equiv- 

dent circuit. Assuming a transformer is connected betaeen bus i and j with tap 

ratio t; and admittance gij + jbij, its basic reactive power equation can be expressed 

as 

where QTi and QTj are the reactive power going into the transformer &orn its two 

terminal buses. Then, the reactive power sensitivity with respect to the tap diange 

is obtained by differentiating the above equations against the transformer tap ratio: 

2.4.3 Reactive-Power Security Constraints 

The secunty constraints on branch flows can be derived from the line flow equations 

presented in Section 2.3.3. However, sinee the real power controis are not changed, 

the real power flow can be assumed constant. Thmefore, only reactive power flows 

are considered in the secnrity constraints. In addition, due to their conpling effect, 

both voltage and phase angle become variables in these constraints. 
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Neglecting the changes in real power flows, the first-order Taylor expansion of 

line flow equation (2.14) is 

where m-, m k ,  4 and dk are the line 0ow sensitivity coefficients with respect to 

the changes in the phase angle and voltage. They are caldated by differentiating 

equation (2.14) and (2.16) against phase angle and voltage, respectively, 

Finally, the hear inmemental form of fnnctional comtraint (2.13) becomes 

where hfirnin = -F~- - F?) 
A FI"" = Fi- - F,'"; 

and Ffo) is the h e  flow at the curre11t linearizakion point for the reactive power 

dispatch problem. 



CHAPTER 2- OPTIMAL POWER FLOW PROBLEM 

2.4.4 Summary of Linear RPD Formulation 

The hear problem fordat ion for the minimum transmission loss reactive power 

dispatch can then be presented as follows: 

min $A6 + ~ A V  

snbject to 

HA8 + NAV = O 

JAB + LAV - AQc + SAbs + TAt = O 
 nain < M N  + DAV 5 AF- (2.48) 

AQgn 5 Ago AQ- 

AVm" 5 AV 5 AV- 

~ b p  5 ~b~ ~ b y =  
&nain 5 A t  5 At- 

where the components of the vectors are deked as 

A AK are the variations of the voltage magnitude and phase angle at  bus i. 

AQGk is the change of the reactive power generation at bus k. 

Abaj is the variation of the shunt VAR source at bus j. 

Atk is the tapratio change of the transformer at bus k. 

c,k, are the loss sensitivity coefficients with respect to the voltage and angle 

changes at bus k. They are determined by (2.26 - 2.27). 

H, N, J, L are the sub-Jacobian matrices whose elements are the coeficients of 

power balance constraints, given by (2.11 - 2.12), (2.29 - 2.30), and (2.33 - 2.36). 

S, T are the reactive power sensitivity matrices with respeck to the changes in VAR 

sources and transformer taps, determined by (2.37) and (2.40 - 2.41) 

M, D are the line flow sensitivity matrices; th& element are coeficients of security 

inequality constraints, defined by (2.43 - 2.44) and (2.45 - 2.46). 
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2.5 General Iterative Solution S trategy 

We have presented the linear formulation for the real and reactive power dispatch 

problems, in particular, the sectuity-constrained economic dispatch (SCED) and 

the m.ïnîznum transmission loss reactive power dispatch (RPD) problems. For the 

SCED problem, a deconpled load flow model is used to reduce the problem size and, 

therefore, improve the solution efncieney. As a resalt, the hear SCED formulation 

involves ody the variables of real power generations and phase angles. The problem 

constraints considered inclnde the real power baiance equations as well as the real 

power security constraùits on the transmission h e  flows. 

For the RPD problem, howeva, a hill load flow model is adopted to deal with its 

highly nonlinear nature and strong phase-angle conpling. Some simplifications are 

made to reduce the computational work without sacrificing the accnracy. Conse- 

quently, the linear RPD problem is formdated in terms of dl reactive power controls 

plus voltages and phase angles. Both reai and reactive power balance conditions 

are used as the equality constraints. Also, the reactive power security constraints 

are included to relieve the overloading of transmission lines. The distinct feature 

of the above linear formulations is that the networt sparsity is retained. Therefore, 

various sparse techniques c m  be used to explore the problem data stracture. 

Due to their nonlinear objective fandion and constraints, both the SCED and 

RPD problems are nonlinear programming problems. The linear formulations pre- 

sented above are only approximations to the original problems. The MLidity of these 

models is limited to a small region around a given operating point. Therefore, an 

iterative procedure is required to update the system operating point as w d  as the 

linear models used in the problem formulation. Then, a sequence of the problem 

solutions can be attempted to determine the op tha l  solution for the original non- 
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linear programming problem. Li the meanthe, a power flow solution should be 

obtained at every iteration to update the m e n t  system operating status. 

Note that since the real power dispatch has more economic bendts than its 

reactive power cotlfltqart does, a practical way is to make the economic generation 

schednling f i r s t  and then do the reactive power scheduling. This common practice 

is also followed in ow solution strategy, Le., the SCED problem is solved and, then, 

followed by the RPD problem. Each of these nonhear problems is solved using 

the above successive linear programming procednre. The iterative steps involved 

are described bridy as follows. 

step 1 Input the network data sach as transmission line and transformer parame- 

t as ,  the generation and load at each bus, etc. 

step 2 Run a load flow program to set op an initial operating point or update the 

m e n t  opaating point. 

step 3 Check the feasibility and optimality conditions. Ifthe convergence is achieved, 

then stop; otherwise proceed to the next step. 

step 4 Formulate the linear model of the optimal power flow problem by using 

either decoupled or fidl load flow equations. A step Iength limit is imposed 

on the variation of each variable to assure the validity of the model. 

step 5 Solve the linear sub-problem by using the advanced interior point dg* 

n t h m ~  described in Chapter 3. If the sub-problem is found infeasible, then 

the original problem is considered infeasible and the execution stops. 

step 6 Once the optimal solution of the sub-problem is obtained, the set of system 

control variables are updated and then go back to step 2. 



Chapter 3 

Interior Point Met hods 

3.1 Introduction 

Iu the successive linear solution of the optimal power fIow problem presented in 

Chapter 2, the most intensive computation part is the repeated solution of sub- 

linear programming problems. Thedore, to reduce the overall solution tirne it is 

essential to use an escient mathematical programming method. In the last decade, 

interior point methods have become a viable alternative to the simplex method for 

solving large sparse linear programming problems [73, 93, 981. It has been skown 

tkat an interior point algorithm not only has polynominal-time complexity but is 

extremely efficient in practical computations [5 1, 591. Thus, intenor point me thods 

are ased in this thesis to solve sub-linear optimal power flow problems. 

The interior point method dSers fiindamentaDy fiom the simplex method in 

the way they solve a iinear programming (LP) problem. The simplex method h d s  

the optimal solution by moving from vertex to vertex dong the bouadary of the 

feasible region, whieh leads to an increasing number of iterations as problem size 



Figure 3.1: Searchuig approaches of simplex and interior point methods 

inmeases. In contrast, an interior point method solves an LP problem by taking a 

path t h g h  the interior of the feasible region. This tesults in a remarkable speed 

up to approach the optimal point. Figure 3.1 illustrates the different approaches 

used by these hKo methods in searchiag for an optimal solution. 

This chapter describes interior point methods (IPMs) for the solution of the 

optimal power flow problems (OPF). Firstly, the recent developments in the theory 

and implementation of the IPMs are briefly reviewed. It is intended to show that, 

among the various IPMs, the primal-dual path following method is one of the 

best IPM found so far. Then, two advanced versions of the primai-dual methods 

are studied in detail, namely, the ideasible primal-dual [89] and the predictor- 

corrector primal-dual path following [60] methods. Both algorithms are extended 

to incorporate lower and upper bounds for special needs in OPF problems. IR 

addition, several important issues closely related to their efficient implementations 

are discussed, including the adjustment of barrier parameter, the determination of 

the Newton step length and the initial point, and the improvement of the search 

direction accuracy- Some heuristics of castomiwng these parameters to the OPF 

probiems are proposed to rednce the namba of iterations and computational tirne. 
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3.2 Development of Interior Point Met hods 

For decades, the simplex method proposed by Dantzig in 1947 has been the most 

wïdely used algorithm for solving linear programming problems. However, due to 

its vertex followhg property, the solation time of the simplex method may grow 

exponentially for some spedically-constnicted problems (see Klee and Mine  [54]). 

This has motivated reseacchers to develop a Iinear programming method with the 

lower combinatorial complexity. In 1978, Khachiyan first developed a polynominal 

aigoritkm by applying the ellipsoid method of SLor et al. to hear programming 

[53]. Althouph his method can not compete with the simp1ex method practically, 

it indeed haf significant theoretid implications for combinatorial optimization. 

In 1984, Karmarkar [51] introduced his projective algorithm which not only 

had a polynominal time property but was much fagter than the simplex method in 

practice. His method is called in t eeor  point rnethod because it searches an optimal 

point through the interior of the feasible region. Since then, a substantial number 

of contributions have b e n  made towards the theoreticai analysis and practical 

implementations of the interior point method and its many variants. These variants 

can be dassXed into four categories: projective methods, afine scaling methods, 

potentiul reductàon methods, and path folloving methods. 

3.2.1 Projective Methods 

Projective methods stem fiom Karmarltar's projective method [SI]. His method is 

based on two fiindamental ideas: 

If the cnrrent solution is near the center of the feasible region, then it would 

get doser to the optimal solution by moving in the steepest descent direction 
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of the objective fnnction. 

The solution space can be t r d o r m e d  so as to place the m e n t  solation 

point near the center of the tradonned feasible region. Without changing 

the problem in any essential way, mch a transformation can be done by k g  

an appropriate type of projective transformations. 

By formulating a lin- progranunhg (LP) problem as a special canonical form, 

Karmarkar assumed that its optimal value is hown, which is very restrictive. He 

later relaxed this assumption by using a lower bound to estimate the optimal value, 

and updating the lower bound at each iteration. Todd and Burrell proposed a 

method to obtain the lower bound from the dual problem [88]. Karmarkar's algo- 

nthm reqnires O(nL) iterations, where R is the number of variables and L is the 

number of bits required to record the problem. Each iteration involves the calcu- 

lation of a projection step wlüch, in t m ,  needs 0(n3) arithmetic operatiom. He 

proposed the idea of inexact projection that leads to an average reduction of O(m 

in the worst case bonnd, resulting in 0(n2") arithmetic operations per iteration. 

Gay also applied the same idea to the dnal problem [34]. Anstreicher developed 

a combined phase 1 - phase II projective algorithm to relax the initial feasibility 

assumption [9]. Nevertheless, ali of these algorithms need to convert a standard LP 

problem to KarmarkarTs canonid form wkich causes some loss of sparsity. More- 

over, they reqnire to estimate the Iowa bomd of the optimal value and to do the 

nonlinear projective transformation at every iteration [59]. 

3.2.2 Afflne Scaling Methods 

Afine Scaling methods were origindy proposed by Dikin in 1967 [23], and later 

studied by several researchers. Baraes [IO] and Vinderbei et al 1911 proposed a pri- 



mal afine scaling method as a variant of Karmarkar's projective method. Adler et 

al. suggested applying the affine scaling method to the dual problem, redting in a 

dual afine scaling method [3]. Both methods do not require Karxnai:karYs canonical 

fonn and can work on the general h e a r  programming problem. Moreover, they use 

a linear t r d o m a t i o n  rather than the costly nonlinmu projective transformation. 

The global convergence of the a f h e  scaling methods has been proved by several 

researchers [23, 10, 911. Although thae has been no evidence of polynominal corn- 

plexity for this class of algorithms, the algorithms perform practically quite well 

[2, 31. The main disadvantage of the affine scaling methods is that, since they do 

not have the centering direction to keep variables far away fiom the boundary, a 

amd step size must be imposed to avoid numerical instability. This ofken causes 

the algorithms to take more iterations [61]. 

3.2.3 Potential Reduction Methods 

Potential Reduction method was fist proposed by Todd and Ye [87]. Thei. method 

adopts Karmarkar's idea of using an appropriate potential function to measare the 

progress of an algorithm but avoids applying expensive projective transformation 

at each iteration. The method &O uses the idea of afline scaling method to reduce 

the potential fnnction by searching dong the projected gradient of the potential 

huiction. Therefore, the potential reduction method has the features of both pro- 

jective methods and affinescalhg methods. However, in orda to determine the 

optimal step size, a line search ha9 to be carrïed ont at every iteration, which can 

be costly in compntations. The potential reduction methods were later studied by 

several researchers including Ye [104], Ekeund [30], Gonzaga [43], Anstreicher (81, 

etc. For this class of methods, the best complexity achieved so fat is 0 ( f i L )  itera- 

tions [87]. Nevertheless, their compntational performance highly relys on a propa 
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potential fanction as well as an efEcient üne s e a d  algorithm. 

3.2.4 Path Following (Logarithmic Barrier) Met hods 

Path Following methods are based on applying Newton's method to follow the cen- 

tral path of the feasible region. This central path is formed by the optimal solutions 

of a family of problems defined by a logarithmic b& fanetion. The logarithmic 

bamier hinction approach is attribnted to E s c h  [31] and is studied in detail by 

Fiacco and McCormick [28] for nonlinear optimization. The notion of central ha- 

jectories was proposed by Karmarkar [54 and has been studied extensively by Bayer 

and Lagarais [Il], and Megiddo and Shnb [63]. Megiddo suggested applying the log- 

arithmic barrier method to the prima1 and dnal problems simultaneously [64]. His 

idea was developed by Kojima et al. into a primai-dual path following algorithm 

wkich requires O(nL) iterations [55]. Later, Monteiro and Adler [69] improved 

Kojima et aL7s results by using ideas of Gonzaga [42] and Karmarkar [51] to ob- 

tain a ptimal-dual algorithm which reqnires O ( 6 L )  iterations, the bes t worskcase 

cornplexity to date. Since then, several variants of the primal-dual patk followkig 

method have been proposed and extensively studied, including the primal-dual algo- 

rithms of McShane [61] and Lustig et al. [57], the Predictor-Corrector algorithms 

of Mizuno e t  al. [67] and Mehrotra [65], and the infeasible algorithms of Zhang 

[los], Mizuno [68] and Vanderbei [89]. 

The distinctive features of the path fouowing methods corne fiom several aspects 

[59]: (a) following the central path dows the algorithms to take a large step toward 

the optimal point; (b) applying Newton direction produces quadratic convergence 

speed; and (c )  using different step lengths in prima1 and dual space results in 

fast convergence. As a resdt, this class of methods pedorms extremely well in 
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practice, comparing favorably to other interior point methods [7, 611. Since these 

methods not only have the best polynominal compiePty but are compatationally 

most &eient, they have been chosen in this thesis to solve the optimal power flow 

problems. In the following sections, their h o  advanced versions are presented in 

det ail, namely, the infeasible primal-dual path following algorithm and it s predic tor- 

correct or variant. 

3.3 An Infeasible Primal-Dual Algorithm 

The infeasible primal-dual interior point algorithm (PDIPA) is based on the one- 

phase primal-dud path following method [89]. The original algorithm operates 

on linear programming (LP) problems that have only upper bounds. Since in the 

sub-linear optimal power flow (OPF) problem all variables are subject to the low 

and upper limits, we make an extension so that the algorithm can handle a general 

LP problem with both lower and upper bomds. Such an LP problem is normdy 

formdated in the standard form as, 

min cTx 

subject to Az = b 

I ~ z ~ u  

where c is n-vector cost-coefficients; z is n-vector of nnhiowns; A is m xn constraint 

matru; b is m-vector right-hand-sides; I and u are n-vector lower and upper bounds; 

n and rn are the number of variables and equalities, respectivdy. It is obvious that 

the linear OPF formulations (2.21) and (2.48) comply with the above form except 

for the Ufanctional constaints": A & ~ ~ ~  W ~ A B  5 A&"-. W e  replace such a 

constraint with an equality constraint plus a bound conshaint by introdncing a 
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new variable ABr, 

Thus, it is possible to transfonn the LP OPF problem into the exact form of (3.1). 

The basic concept of the primal-dual path foilowing method is to solve a con- 

strained optimization problem as a sequence of nnconshained problems. Its th- 

retical foundation consists of three important parts [gr]: logarithmic barzk method 

for optimization with inequalities, Lagrange's method for optimization with equal- 

ities, and Newton's method for solving the nonlinear equations of Karnsh-Kahn- 

Tucker (KKT) first-order necessary conditions. Based on these observations, the 

infeasible primal-dual path following algorithm for LP problem (3.1) can be derived 

as follows. By introducing slads variables s and v to convert the botmd constraints 

into eqnality constraints, the LP problem (3.1) is rewritten as 

Its dual problem is: 

min cTz 

subject to Ax = b 

2 - v = I  

max bTy-uTw+Fz  

subject to - w + r  = c 

x i o , w > o  

where y is an m-vector of dual variables; z aud w are n-vectors of dual da& 

variables. It is assumed that the constraint matrix A has fbll row rank, and that 

both primai and dual problems are feasible and Lave bounded solutions. 
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Applying the b& method to the primal problem (3.3) to eliminate the in- 

equality constraints by hcorporating them into a logarithmic bamier term that is 

appended to the objective fiinction, the original problem is converted to a sequence 

of problems parameterized by the bamer parameter p, Le., 

min C*Z - ~ ( ~ ~ = i  I n ~ j  + x;=,h~~) 
subject to Az = b 

2 - v = l  

x + s = u  

The Lagrangian fanction associated with (3.5) is, 

where p > O and is monotonically reduced toward zero as the algorithm iterations 

progress. Accordingly, the solutions to the above family of problems define the 

central path of the pair of primal and dual problems (3.3 - 3.4), and finally converge 

to the optimal solution of the original constrained problem as p + 0. 

For a given p, the solution of (3.5) is a stationary point of (3.6) which is defined 

b y the Karnsh-Knhn-Tuch (KKT) fks t-order necessary conditions, 

2-2) = 1 

x + s  = u 

A T y - W + Z  = c 

SWe = pe 

VZe = pe  
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where e denotes the n-vector of ones, and capital lettas S, W, V, and Z denote the 

diagonal matnees aith the diagonal elements s j ,  wj, v j ,  and zj, respectively. Note 

that the f ~ s t  four of the above equations are lin- and teptesent the primal and 

dual fkbi l i ty  conditions. The last two equations are nonlinear and depend on 

the barrier parameter p. They become the complementary conditions when p = 0, 

which together with the feasibilty constraints provides optimality of the solution. 

The primai-dual path foilowing method does not solve the above nonlinear KKT 

equations exactly. Ratlier, it applies the one-step Newton method to find the search 

directions, which yields the following linear eqnations: 

AAz = r, 

Az- AU = rt 

A z + A s  = TU 

A = A ~ - A W + A Z  = TV 

SAw+ WAs = pe - S W e  

VAr+ZAv = pe - V Z e  

where 

r, = b-Ax 

Tl = 1 - X + V  

ru = 21-2-5 

and r, = c - A ~ ~ + w - z  

denote the residuals of the primal and dual ideasibility (the violations of the pri- 

mal and dual feasibility constraints), respectively. Since the infeasible primal-dual 

method does not require feasible points during the optimization process, the above 

residuais may not be zero. This is the major diffaence between the infeasible and 
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feasible variants of the path following method. As aiu be mentioned in a later 

section, these nonzero items r e d t  in a feasibility component in the final search 

direction. The solution of linear equations (3.8) can be proved to be 

wbere 

The new point is then defined by, 

wliere 4 and a , ~  are respective step lengtks in the primal and dual spaces chosen to 

assure the nonnegativity of the primal and dnal slack variables (v ,  s, r,  y). Since 

tkis new point (3.15) is an approximate solution of the KKT condition (3.7), it 

resides in a certain neighborhood of the central path for a given p. As p demeases to 
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zero, this point approaches the optimal solution of (3.1) by approximately following 

the central path of the feasible region [89]. 

In snmmary, the infeasible primal-dual path folloaing algorithm can non be 

described quite simply. Start with any initial point satisfying v ,  J, w,  z 2 O and 

with p > O, we apply one Newton step to equation (3.7) to find a point closer 

to the central path. We then let this new point be the m e n t  point, reduce p 

approprïately and start over again until prima1 and dud  feasibility is attained and 

the duality gap is smaller than a predetermined tolaance. 

The above algorithm terminates when the following feasibility and optimality con- 

ditions are satisfied [57]. The feasibility conditions are expressed in terms of the 

relative prima1 feasibility, 

the bound feasibility, 

and the dual feasibility 

The optimality condition is defined as the relative duality gap: 

where II II is 1-nom. The EI and 6 are the feasibility and optimality tolerances, 

defined by 10' where p is the numba of digits acniracy in the solution. 



3.3.2 Search Directions 

In order to more dosely examine the infeasible primat-daal path folloaing aigo- 

rithrn, it is helpful to express its search direction (3.13) in terms of the gradient of 

the cost fnnction c, the barrier parameter p, and the infeôsibiüty residuals r,. By 

defining PA as the orthogonal projection ma* onto the ndl space of A, 

the search direction for primal variables z can be decomposed as 

where r,, ru, and Tl are the residuals of primd iafeasibility defined by (3.9 - 3.11). 
The &st term of the search direction (3.22) is c d e d  the af ine  di~ection which is 

the projection of the steepest descent of the cost huiction. Since the f i e  direction 

aligns in the n d  space of A, it reduces the cost fnnetion while preserving the current 

primal feasibility status. The second term is the centeRng direction that forces the 

next point x + AI away from the botmdary of the feasible region (s = O, v = O) so 

that a large step can be taken in an effort to get more reduction in the cost function. 

Since the centering direction is &O in the n d  space of A, it does not &ange the 

degree of primd ideasibility of the canent point. The third term is associated with 

the residuals of primal and bound ideasibility, and, therefore, is cded f e ~ ~ b i l i t y  

direction which drives the current point towards the feasible region. It is interes ting 

to note that with the orthogonal projection PA the bound feasibility TL and Tu are 

improved without &thg ptimal feasibility r,. Due to the presence of the above 

three directions, the infeasible primal-dnal path following method searches for the 

optimal point by improving the feasibility and optimality simaltanmusly. 



Note that when the cmrent point is feasible, dl infeasibility residuals become 

zero (i.e., T, = rl = ru = O). In this case, there is no feaPbility direction. The 

resdting search direction contains the afnne and centering components, which yîeids 

the feasible primalanal path folIowing algorithm. Eùrthermore, if p = O, then the 

search direction consïsts of only the a fbe  direction. Consequently, the aigorithm 

becomes the primal-dual afûne-scaling method. Therefbre, the feasible prima-dual 

path following and afnne scaling algorithms are just special cases and can be derived 

hom the Uifeasible path following algorithm directly. 

A similar analysis can be done on the search direction for dual variables y, 

resulting in the foUowing decomposition consisting of three components, 

ay = ( A D A ~ ) - ' [ ~  - m(s-'WU + rLzz)] + 
(AD A*)-'AD(s-' - V - ' ) p  + (AL)A*)-'ADT, (3.23) 

where r, is the residual of dual infeasibility defined by (3.12). Each component of 

the above search direction (3.23) corresponds to the affine, centering and feasibility 

direction in the dual space, respectively. 

In t h  fouowing sections, several issues that are critical to the sttccessfd impie- 

mentation of the infeasible primal-dual algorithm are dismssed in detail, includiug 

the determination of the Newton step size a, the adjustment of the banier param- 

eter p, and the choice of an initial point xo. 

3.3.3 Step Length a 

One advantage of the primai-dual method is that it allows separate step lengths in 

the prima1 and dual spaces, as shown in (3.15). This has been proven highly efficient 

in practice, sigdcantly reducing the number of iterations to convergence [61]. 



The step lengths o, and ad are determined in sach a way that the nonnegativity 

conditions on the variables (v, s) and (2, w )  are preserved, respectively. This is done 

throagh the fonowing ratio test: 

where /3 E (0 , l )  is a scalar factor chosen to prevent nonnegative vatiables fkom being 

zero and, thedore, avoid hitting a bonndary. In oar compntational experience, we 

initidy set p = 0.95, and then aggressively ùimease it to f l  = 0.9995 when the 

prima1 and dnal ideasibility is less than a certain tolerance (say 1W2). This has 

proved more efficient than using a constant value (as suggested in [89]). 

3.3.4 Barrier Parameter p 

A  ruc ci al step in the infeasible primal-dual path following algorithm is the choice of 

the b& parameter p. In linear programmingt several schemes are proposed to 

choose p. They are either based on the duality gap [57, 611 or the complementary 

gap of the LP problem [59,89]. In onr implementation, we use the complementary 

gap because it is directly related to p in (3.7). By pre-multiplying both sides of the 

last two equations of (3.7) by vector eT, and adding the resdtant equations, we get 

It is obvious that equation (3.27) gives a measure of "pn value for the current point. 

The theory behind the path following method requit- that bamier parameta p 



must approach zero as the itaations progress. T h d o r e ,  the new value of 2" 
should be mbstantidy less than the m e n t  value. Following the idea in [89] but 

including lower bounds, we choose 

where A = 0.1 d e s  the primd objective vahe is less than the dnd ob jective value 

(which codd happen when the primal and dual feasibility has not been aehieved); 

in tkat case, we boost p by setting A = 10. ki [89], the author suggests using 

X = 2; however, we îmd that such a d u e  is not large enoagh to prevent the above 

phenornena fiom repeating which slows down convergence. 

3.3.5 Initial Point xo 

The important feature of the infeasible primsl-dual path following algorithm is that 

no initial feasible point is reqnired. However, the primal and dual sladr variables 

(v, s, z, w )  must be strictly positive. T h e  are many sophisticated ways to produce 

such a starting point (61, 57, 60, 891- Our numerical experiments show that the 

approach in [89] is slightly better than the others. Following the ideas in (891 but 

making some revision, we set z initially as: 

where the vector E and scalar p are dehed as 

where Ai is the j-th column of constraint ma& A and II - 11 is the 1 - n o m  If 
1-+u- 1 -+u any component zj > y, then this component is reset to v. The p r h d  slack 
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vectors (v,  s) are k s t  set to satisfy boand constraints v = z - 1 and s = u - r but 

then modiûed so that any v j  (si)  that is less than one is reset to one. The daal 

vector y is simply set to zero. The dud slads vector (2) is initialized as foUows. If 

ci < O, then ri is set to one; otherwise is set to q + 1. The dual surplus vector w 

is initialized to meet the dual fkbi l i ty  constraints: w = ~ * y  + r - c (note that 

y = O). In the above eqnations, we use the l-nonn instead of 2-nom [89] because 

oar numericd test shows that the former is mu& better than the latter. 

3.3.6 The PDIPA Algorithm 

B ased on the above description, the ideasible prima-dual interior point algorit hm 

(PDIPA) can be stated as follows: 

step 1 Set an Uutial point zo and y0 using the procedure described in Section 3.3.5 

so that so, vo, wo, za > 0, and initialize the iteration count k = 0; 

step 2 Check feasibility and optimality conditions (3.16 - 3.20). 

If they are satisfied, then stop; otherarise, go to the next step. 

step 3 Adjnst the barri- parameter using (3.28); 

step 4 Compute the search direction Ask, Ask, Auk, ~ y ~ ,  Awk, Ark 

by solving the normal equation (3.13); 

step 5 Find step &es a:, 4 E (O, 1) fkom the ratio test (3.24 - 3.25); 

step 6 Update the current point zk, sk, vk, wk, zk kom (3.15). 

step 7 Set k = k + 1 and go to step 2. 



3.4 A Predictor-Corrector Primal-Dual Algorithm 

The infeasible primal-dual algorithm presented in Section 3.3 is based on applying 

one step of Newton's method to h d  an approximation solution to the Kamsh- 

Kuhn-Tucker conditions (3.7). As a result, the solution at each iteration contains 

ody the fust-order information of the primal and dual center trajectory. To im- 

prove the algorithm performance, an obvious idea is to introduce the higher-order 

information to more closely follow the central path. The first Iugher-order method 

is due to the work of Kannarlcar et  al. [52]. Tkey developed a power series vari- 

ant of a dual affine-s&g method. Following their idea, Mehrotra [65] introduced 

an efficient higher-order predictor-corrector primaLdual algorithm which uses the 

second-order derivatives to a p p r o d a t e  the primaklnd trajectory. His method 

was later extended by Lustig et al. [60] and proved the mos t efficient in practice. 

The predictor-corrector aigorithm presented in this section is built on the work 

of Mehrotra [65] and Lnstig et al. [60] but extended to incorporate both lower and 

upper bound for optimal power flow (OPF) problems. Since in th& implementa- 

tions the important algorithm parameters such as the barrie. parameter and the 

initial point are chosen based on a wide spectrum of problems, theV approaches may 

not be suitable to ont parti& application. To identm the better parameter set- 

ting for the OPF problems, extensive numerical experiments have been conducted 

to investigate the impact of those parameters on the solution efficiency. Some 

heuristics of adaptively adjusting the b& parameter and effectively choosing 

the initial point are proposed to reduce the number of iterations as well as solution 

t h e .  The detailed description of the algorithm is provided next. 

Like the infeasible primal-dual dgorithm, the predictor-corrector ptimal-dual 

interior point algorithm (PGPDIPA) is ais0 derived from the KKT ftst-order nec- 



essary conditions (3.7). However, instead of applying Newton's method to the 

nonlinear eqaations (3.7) to generate correction terms to the cnrrent estimate, we 

substitnte the new point into (3.7) directly, yielding 

A ( x  +Az)  = b 

(z + Ax) - (v + Au) = 1 

(z + Az) + (s + As) = u 

+ A ~ )  - (W + AW) + ( Z  + AZ) = 

(S+AS)(W+AW)e = pe 

(V +AV)(Z+ AZ)e = pe 

where AV, AZ, A S  and AW are diagonal matrices having the diagonal elements 

Avj7 Azj, Asj, and Awj, respectively. By simple algebraic manipulation, the above 

equation (3.32) is reduced to the equident system: 

AAx = r, 

As -Au = 1-1 

Ax + A s  = ru 

A ~ A ~  - AW + AZ = 3 

SAw + WAs = pe - SWe - ASAWe 

VAz + ZAv = pe - V Z e  - AVAZe 

where the r,, rl, ru and r, are the residuals of the primal and dual infeasibility, 

defined by 

r, = b-Aa: (3 -34) 

Tt = 1 - 2 + v  

Tu = 2L-2-23 

and r, = C - A = ~ + W - Z  



Note that equation (3.33) is almost identical to Newton equation (3.8) except for 

the nght hand sides of (3.33) that contain the additional nodhear terms ASAW 

and AVAZ. This is the major clifference between the pcedictor-corrector method 

and the pare primal-dual method. Since these nonlinear: tams are unknown, the 

step Az, Av, As, Ay, At, Aw can not be solved explicitly fkom (3.33). To detamine 

a s tep approximately satisfying (3.33), we apply Mehrotra's pndictor and cowector 

scheme. In the predictor step, we &op the p and the nonlinear terms and, then, 

solve the defining equations for a primd-dual af6ne direction: 

AA5 = r, 

A - A  = Tl 

A%+ AS = ru 

A ~ A $ - A G + A ;  = r, 

SAG+WAS = -SWe 

VAZ+ ZAB = -VZe 

The solution can be found as 

AG = (ADA~)-=(T,+ADP) 

AS = D ( A ~ A ~  - p )  

A8 = T, - A5 
A = A2 -rl 

Azô = -w-S-'WAS 

A i  = -2-V-'ZAC 

where 

In the cowector step, ne use the afnne direction in two different ways: (a) to 

approxixnate the nonlinear terms in the right-hand sides of (3.33); and (b) to dy- 

namically estimate the barrier parameter p [see Section 3.4.11. Once the estimates 
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of nonlinear terms and parameter p are determined, the actnal search direction 

(Ax, Au, As, Ay, Ar, Aw) are obtained by solving the following lin- eqnations: 

AAz = T, 

Az- Au = ri 

A z + A s  = T, 

A * A ~ - A W + A I  = ry 

SAw + WAs = pe - SWe - A ~ A W ~  

VAr + ZAv = pe - V Z e  - A?A& 

The h a 1  solution thus become, 

where 

Cornparhg the final solution (3.42) with the afnne solution (3.39), we found 

that both predictor and corrector steps use the same factorization of the matrix 

( A D A ~ ) .  Therefore, the additional work of the predictor-corrector method is in 

the extra forarard and backward substitution to compute the afnne direction (plus 

the extra ratio test to estimate p [see Section 3.4.11). However, what is gained fiom 

this extra work is approximate second-order information conceming the central 



trajectory fiPm the curent estimate to the optimal point as p is varied continuously. 

With the actual search direction (3.42), the m e n t  point is updated by, 

3.4.1 Step Length a 

Again, the step lengths 4 and ad are chosen to preserve nonnegativity conditions 

on the slack variables v ,  s, z, W .  This is done by first determinhg the maximum 

possible step sizes in the prima1 and dual space, 

aiid tken reducing them slightly with a factor P E (0, l), 

to ensure that the new point is strictly positive. Uiilike the pure primal-dual al- 

gorithm, however, the predictor-corrector algorithm can take a longer step to get 

mnch doser to the boundary because its search direction contains the higher-order 

information of the central trajectory. With the use of large factor P = 0.99995, 

the algorithm works extremely well [60]. This r e d t  ha9 &O been v d e d  by o u  

numerical experience. 



3.4.2 Barrier Parameter p 

One of Mehrotra's contributions is to use the affine direction to dynamically esti- 

mate the barrk parameter p. He suggested testing the possible reduction in the 

complementary gap that would result fiom a step in the afnne direction, 

where 4 and âd are the steps that would actually be taken i f  the primal-dual affme 

direction (3.39) were used; they are determined by the standard ratio test (3.45 - 
3.48). Generalized to include lower and upper b o d ,  Mekrotra's estimate for p 

is then defined by 

wkich chooses C( to be s m d  when good progress (a lazge decrease in complemen- 

tarie) can be made in the afbe  direction, and chooses p to be large when the 

affine direction produces Little improvement. This is justified by the fact that poor 

progress in the f i e  direction generally indicates the need for more c e n t k g  and 

kence a large value of p [60]. 

Lustig et  al. found that choosing p according to (3.50) can result in nnmericdy 

unstable systems as the optimum is approached on poorly conditioned problems 

[59]. Thus, they initially define p by using Mehrotra7s estimate (3.50) when the 

current complementary gap satisfies (vTt + aTw) > 1, and then switch to (3.51) 

w here 
n2 i f n  5 5000 

n3/* if n > 5000 



when the complementary gap satisfies (vTz + sTw) < 1. Based on th& compu- 

tational experience, Lustig et al. daim that th& p estimate strategy is totally 

satisfactory and much more stable than aiways using Meluotra's method (3.50). 

When solving optimal power flow problems, however, ne  foand such a choice 

may slow d o m  the rednction of the duality gap once the prima1 and dual feasi- 

bility is attained. Thaefore, we use the feasibility condition (3.53), rather than 

compiementary gap, to determine whether (3.50) or (3.51) should be employed. 

Our nmrmical resdts have &O coaficmed that using feasibility condition lielps 

Mprove convergence by fast redacing the dnality gap [see Section 4.3.11. 

3.4.3 Initial Point xo 

The predictor-corrector method can start from any infeasible point as long as primal 

and dual slack variables (v ,  s, t, w )  are strictly positive. Eowever, as poiiited out by 

Lustig et al. [6O], the predictor-corrector algorithm is quite sensitive to the initial 

pess  of the optimal solution. They fonnd that for problems with s m d  npper 

bounds setting the initial point to satisfy bound feasibiliity can cause cornputational 

instability. Therefore, they devise a starting point such that its slack variables are 

larger than a certain threshold. Based on th& numerical test on a wide spectnim 

of Netlib problems [33], Lustig e t  al. concluded that a relative large initial estimate 

works best for the predictor-corrector method. Following the way described in [60] 

but extending to include lower boand, we define the prima1 and dual thresholds as 
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where 2 = A ~ ( A A ~ ) - ' ~  and II - II is the Il nom. Then, for each j = 1, - - - , n, choose 

the initial primal variables z, v and a as 

For the dual variables, we set y = 0, and the pairs z and w to satisfy dual feasibility 

Considering our particdar applications with L = 0, the recommended thresholds 

would be 6 = 100 and & = 1 f Ilcll. As will be shoum later by our compntational 

results, these values do not produce the best performance for the optimal power 

flow problems. In order to identify the most suitable values, it is necessary to try 

the thresholds with diaaent magnitudes and evaluate th& impact on solution effi- 

ciency. To a&eve this, we propose the following scheme to change the thresholds: 

where & is the user-specified parameter. 

Note that the thresholds dehed  by (3.58 - 3.59) have two distinct featares: 

(1) tkey start fiom the values recommended by Lustig et  al. and, thns, make 

use of their extensive numerid experience; and (2) by changing the parameter 

&, the relative magnitudes of both prima1 and dual initial points can be adjusted 

aectively. We have found that changing ei tha  prima1 or dual threshold done 



WU prodnce ansatisfactory results. Therefore, we introdnce the parameta b to 

balance the primal and dual thresholds. This ha9 been proved to be very aective 

in computation. 

3.4.4 Multiple Corrector Steps 

One may recall that in the primal-dud method the Kanish-Kuhn-Tucker (KKT) 

necessary condition (3.7) is a set of nonlinear equations, whose solutions dehe  the 

central path of the linear program (3.3) as p varies continuoasly. Due to the nonlin- 

earity, its accurate solution reqnires an iterative process which is time-consuming. 

Fortunately, it has been theoreticdy proven that the algoritkm does not need to 

exactly follow the central path in order to converge to the optimal solution. Rather, 

it only needs to be w i t h  a certain neigkborhood of the central path by approxi- 

mately solving (3.7) throngh one-step Newton method [44]. The predictor-corrector 

scheme is superior to the one-step Newton method in that, by predicting the non- 

linear terms in (3.33) followed by the corrector step, its s e a d  directions contain 

second-order information of the primal and dual central trajectory. 

The predictor step is responsible for optimization by reducing the primd and 

dual infeasibility and duality gap. The corrector step keeps the canent iterate 

away from the boandary of the feasible region (thns close to the central path [44]) to 

improve the chance for a long step to be made in the next iteration. Both steps need 

to solve the same large, sparse linear system for difilerent ri&-hand sides. Assuming 

that a direct method is used, each iteration involves one factorization and two 

forward/backward solutions. Since the factorization phase is compatationally much 

more expensive than the solution phase, a n a t d  idea is to reuse the factorization in 

several iterations [51] or, equivalently, to repeat several forward/backward solutions 
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to guess a be t ta  next point [65]. This ha9 led to the introduction of high-order 

t e n n s  when compnting search directions. 

The predictor-corrector algorithm presented above can e d y  be extended to a 

higher-orda power series by continuhg to substitute at each step the Au, As, Az, Aw 

found by solving (3.41) back into its right-hind side so that the algorithm is using 

multiple corrections. The motivation of using multiple corrector steps is to improve 

the centrality of the next point so as to increase the step &es in the prima1 and 

dual space. It is believed that the complementary gap will be d c i e n t l y  reduced 

if a long step dong a primal-dual afnne direction is made [38]. Therefore, driving 

the primal-dnal point as close to the central path as possible is an Uivestment that 

is expected to pay off in t h  ability to make a larger step in the next iteration. 

In fact, multiple corrector steps do improve the convergence by redncing the 

number of iterations [60]. However, since each corrector step involves one extra 

forward/backward solution, the overd solution tirne may not be reduced. There- 

fore, the additional computational cost incurred by multiple corrector steps shodd 

be justified by the offset work due to a reduction in the number of iterations. In 

general, the maximum namber of corrections the algorithm is encouraged to make 

depends on the ratio of the efforts to solve and to factorize the KKT system [38]. 

The harder the factorization, the more advantageous the higher-order corrections 

might prove to be. 

To investigate the impact of using higher-order trajectory information on the s e  

lution eficiency for optimal power flow problems, we have &O considered applying 

the multiple corrector steps to improve the approximation of the search directions. 

However, our experience shows that for small problems, due to the reasons ex- 

plained above, the algorithm is not as efficient as the case of using one-corrector 

step. In addition, the algorithm exhibits the unstable behavior due to numerical 



difficulty when solving a-conditioned problems with some s m d  bound constraints. 

Therehe, in oar implementation only one-correetor step is adop ted. 

3.4.5 The PC-PDIPA Algorithm 

Based on the above detailed description, the predictor-corrector primal-dual interior 

point aigorithm (PGPDIF'A) can be stated as follows: 

step 1 Set an initial point x0, soi voY yo, w0, ZO? wing (3.56 - 3.57); 

and initialize the iteration connt k = O; 

step 2 Check feasibility and optimality conditions (3.16 - 3.20). 

If they are satided, then stop; otheraise, proceed to next step. 

step 3 Predictor: 

compute the afnne direction Aik, Aik, hf k ,  Agk, A6jkY 

by factorizing and solving the normal equation (3 -39); 

step 4 Corrector: 

(a) adjust the barrier parameter 1<L according to (3.53); 

(b) substitute Aik, A Û ~  and A&&, Aik into the nght-hand side of (3.42); 

(c) compute the actual search direction: ~ 2 ~ ,  AS*, Avk, Ayky Awb, hzk 

by a forward and backward substitution using factors produced in step 3; 

step 5 Find step sizes a:, ai E (O, 1) fkom the ratio test (3.45 - 3.48); 

step 6 Update the carrent point zk, sk, vk, yk, wk, zk fkom (3.44). 

step 7 Set k = le + 1 and go to step 2. 



CHAPTER 3- INTERlOR POINT METaODS 

The recent developments of interior point methods have been reviewed with the 

conclusion that the most eficient interior point method fotmd so fat is the primd 

dual path follotmng (or logarz'thmic bamier) method. Due to its best polynominal 

complexity and computational efficiency, the algorithm ha9 been chosen as the solu- 

tion method for optimal power flow problems. The two advanced variants, namely, 

the inf easible primal-dual and the predictor-corrector primai- dual algonthnts have 

been presented in detail. Both the dgorithms are extended to incorporate lower 

and upper bounds for special needs in our parti& applications. 

S e v d  issues closely related to the efficient implementation are discussed in 

de t ail, including the adjus tment of b k e r  paramet er and the de t ermination of s t ep 

length and initial point. Some heuristics of adaptively changing these parameters 

are proposed to improve the performance of the algorithms. For the infeasible 

prima-dual dgorithm, these improvements are represented by: (1) an aggressive 

step increasing strategy based on feasibility condition; (2) the proper boost of the 

barrier parameter p for preventing negative dnality gap; and (3) a refined initial 

point procedure. For the predictor-corrector dgorithm, these enliancements are 

reflected in the following aspects: (1) a heuristic adjastment of barrier parameter 

based on feasibility condition; (2) an improved approach to balance the prima1 and 

dual initial point and to effectiveiy adjust th& relative magnitudes. 

The major advantage shared by these two algorithm resides on the fact that it 

is not required to have an initial feasible point to statt the algorithms. Instead, 

the feasibility is attained during the process as optimaüty is approached. Their 

cornmon feature is to approltimately follow the central path of the feasible region 

with the only Merence in that the former uses the tirst-order while the latter 
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mes the second-order information to approxhate the primd and dual centering 

trajectory. Therefore, they can take a large step dong the search direction to speed 

op cost rednction. In addition, using separate step lengths in the prima1 and the 

dual space also help convergence by fast achieving prima and dual feasibility. 



Chapter 4 

Experiment al Result s 

4.1 Introduction 

This chapter presents numerical results on the use of advanced interior point meth- 

ods for the solution of optimal power flow (OPF) problems. It is intended to 

show that the performance of interior point methods can be signScBntly improved 

throagli customizing algorithm parameters to the specific problems under study. To 

this end, several important issues closely related to the efficient implementation are 

investigated to evahate th& impact on the solution efaciency. These issues include 

the adjustments of the barrier parameter and Newton step length, the choice of an 

initial point and tolerance, and the use of sparse matrix techniques for solving the 

search direction. In addition, practical issues such as the choice of linear step sizes 

and convergence criteria are also examuied and th& influence on the behavior of 

interior point methods as well as successive linear programming is evaluated. Based 

on extensive numerical experiments, several heuristics are proposed to reduce the 

number of iterations and to Save computational work in every iteration. 



For tesking and comparing pnrposes, both the Weasible primal-dud and the 

predictor-corrector primal-dual algorithms have been implemented in a C program 

and compiled with the -02 option. These algonthms are used to solve two partica- 

lar cases of OPF problems: (1) the secmity-constrained economic dispatch (SCED); 

and (2) the reactive powa dispatch (RPD) problems. In the case of SCED prob- 

lems, the generation cost is minimiled by controIling the real power generations, 

whereas in the RPD problems the total real-power transmission losses are reduced 

by adjusting all reactive power controls such as the generator terminal voltages, 

the switchable shunt susceptance and the transformer tap ratios. Each problem is 

formtdated by using the sparse linear model presented in Chapter 2. Then, a succes- 

sive h e a r  programming (SLP) solution strategy that uses the proposed algorithms 

is applied to the nonlinear problem until a desired accuracy is achieved. 

The above numerical tests are conducted on power systems of varions sizes, 

ranging kom 118 to 2124 buses. whose spewfications are listed in Table 4.1. For 

each test system, the SCED problem is solved first, followed by the RPD problem. 

Table 4.2 provides detailed information about each problem, including the nurnber 

of constraints (rows), variables (columns), and nonzeros in the constraint matrix 

A, nonzeros in the normal matrix ADAT as well as in its Cholesky factor L (note 

that the Cholesky factor is computed after the normal matru is reordered nsing 

the minimum degree heuristic). To evaluate the performance of the algorithms, 

both rnnning tirne and total iterations are reported here. However, in the SLP 

based method there are two types of iterations: the outer-loop (SLP) iterations for 

hearization process, and the inner-loop (LP) iterations for solving each linear sub- 

problem. Depending on the testing purpose, either or both iterations are provided. 

Accordingly, computational tirne corresponds to the relevant type of iterations. The 

resdts presented in this chapter are obtained on a SUN SPARCstation 2. 



Table 4.1: SpecScations of test powa systems 

Buses Shunts Compensators 

Table 4.2: Statisticd data for the test cases 

Cons traint 

matrix A 

- - 

Nonzeros 

in A 

Nonzeros 

in L 

953 

2197 

3603 

10779 

19280 

39014 

3749 

8289 

13825 

41880 

77019 

157824 

Case 



4.2 Results with The PDIPA Algorithm 

In this study, the infeasible primal-dual interior point algorithm (PDIPA) is tested 

on the SCED and RPD problems. To investigate the impact of dynamieally ad- 

justing the algorithm parametas on the performance for OPF problems, a linear 

sub-problem for each c a e  is solved using the PDIPA algorithm. Both the number 

of iterations and solution time reported here are referred to those requked by the 

algorithm to solve one linear sub-problem. Ekom a rigorons mathematical point of 

view, it is necessary to use a higha standard of stopping criteria to more precisely 

reflect the effects of different parameter settings. Therefore, a small convergence 

tolerance E = IO-' is employed for the feasibility and optimality criteria so that all 

sub-problems are solved to eight significant digits acctuacy. 

4.2.1 Influence of DiEerent Parameters 

At the beginning, the approaches recommended by [89] are ased to choose all al- 

gorithm parameters, i.e., the step reduction factor @ is set to 0.95; the barrier 

parameter p is determined by f o d a  (3.28) with X = 0.1, which is boosted to 

A = 2 whenever duality gap becomes negative; and the initial point is chosen ac- 

cording to (3.29-3.31) using the 2-nom. Table 4.3 shows the iterative process of 

the generation cost mjnimization for the 236-bus system. The data listed include 

the prLnal and dual objective hctions,  the absolute value of the duality gap, the 

absolute values of the primal, bound and dual ùifeasibility. From these results, 

several observations can be made as follows. 

0 It is found that wken the feasibility of solutions has not been attained, the 

dnality gap can be negative if the barrier parameter p is decreased too much. 



Table 4.3: Convergence process of PDIPA algorithm on SCED-236 problem 

Objective Duality 



The remedy for alleviating snch a situation is to boost p in order to increase 

the centrality of the next point. However, the side etfect of doing so is to 

cause an even larger duality gap which has to be reduced in the subsequent 

iterations. T h d o r e ,  if p is not boosted large enough, the negative duaity 

gap can occar repeatedly and resdt in slow convergence, as shown by the 

data in the boxes. 

The second observation is that a large initial duality gap may also contribute 

to slow convergence, as shown by the bold data in the fust row of the table. 

This is because, fiom the duatity theory, the dnality gap eventually has to be 

reduced to snfficiently small. Therefore, a large initial gap may need more 

iterations to decrease. In general, a large duality gap nsually resdts fkom a 

large initial point. If a relative s m d  initial gness is adopted, t h  algori th 

may need less iteration efforts to convergence. This is also justified by the 

fact that in the linearization method the variables are incremental. Thus, its 

optimal solution is small in magnitude. 

a The t k d  observation is that the step reduction factor P = 0.95 may be too 

conservative once the feasïbility condition is satisfied, which may restrict the 

pmgress toward optimality and, tkerefore, need more iterations to reack the 

optimal solution. 

To improve the performance of the PDIPA algonthm for our particular appli- 

cations, the approaches of [89] are modified in the following three aspects: 

A. The step reduction factor is initially set to 0.95 and then aggressively increased 

to 0.9995 once the infeasibility is less than a certain tolerance (say, y IOw2). 



B. A srnaIl initial point is chosen by using the l-nonn instead of 2 l i o n n  to reduce 

the initial duality gap. 

C. The barrier parameta p is properly boosted by setting A = 10 to avoid repeat- 

edly ocenrruig of negative duality gap. 

Figure 4.1 shows the effects of ashg otu improved approaches to set algorithm 

parameters, where case A uses only the above first modification; case A+B is the 

combination of the above modifications A and B; and A+B+C is the case whieh 

incorporates all three modaications. Rom the results it is clear that our proposed 

s trategies significantly improve the performance of the PDIPA algori th,  reduchg 

the nnmber of iterations over 30% (fiom 24 to 16). 

Table 4.4 and Table 4.5 compare the computational results of the algorithm 

when tlris is applied to the SCED and RPD problems, respectively, where the 

Figure 4.1: Effects of modified approaclies on iterations for SCED-236 problem 



Table 4.4: Compntational results for SCED problems 

1 1 PDIPAO 1 PDIPAl 

Table 4.5: Compatationd results for RPD problems 

Cases 

S CED-236 

SCED-354 

S CED-708 

SCED-1062 

S CED-2 124 

PDIPAO 1 PDIPAl 1 

PDIPAO version stands for the algorithm with the parameter set tings recommended 

by [89]; and the PDIPAl version means the algorithm using OUI dynamic adjast- 

ments desaibed in the above paragraph. For all the test cases, both versions 

converge to the same solutions, which are given in Tables 4.8 and 4.9. For the 

SCED problems, the results in Table 4.4 show that o u  version PDLPAl Mproves 

the algorithm performance, reducing iterations by 10% - 30% and saving solution 

time by 12% .- 28%. Similady, as shown by Table 4.5, our version PDIPAl &O pro- 

duces better pdormance on RPD problems thongh the results are less significant 

iterations 

16 

17 

20 

25 

31 

iterations 

23 

24 

24 

28 

36 

Cases 

RPD-236 

RPD-354 

RPD-708 

RPD-1062 

RPD-2124 

time(seconds) 

1-07 

1.85 

5.28 

13.05 

39.88 

i t erations 

22 

23 

28 

32 

45 

iterations 

21 

23 

27 

30 

41 

time(seconds ) 

4.43 

7.87 

34.45 

92.90 

317.94 

time(seconds ) 

4.20 

7.82 

33.10 

87.08 

288.01 



than the case of the SCED problems. This is because RPD problems are Mixent 

from SCED problems ia nature. Fnrther study may be necessary to h d  better 

parameter settings for RPD problems. Ln summary, the success of onr algorithm 

cornes out of thme factors: (1) improving the initial point; (2) properly boosting 

the barrier parameter p to prevent repeatedly occarring of negative duality gap; 

(3) increasing step lengths (a+, ad) with the progcess of feasibility to m;urimize the 

reduction of the dnality gap. 

4.2.2 Influence of DifFerent Stopping Criteria 

As pointed out earlier, to evaluate the impact of different parameter settings more 

accurately, a very small tolerance c = IO-' is adopted when conductiug the above 

tests. Practically, however, it is not necessary to use such high convergence criteria 

since the linear models are only approximations to the nonlinear problems. There- 

fore, the optimization process can be terminated mach earlier by using a relative 

large tolerance. To see how different stop criteria influence the PDIPA algorithrn, 

Tables 4.6 and 4.7 compare the iteration number and running t h e  obtained by the 

use of two tolerances values: e = 10'~ and e = IO-? The results show that for 

both the SCED and the RPD problems, another 13% - 26% reduction in iteration 

count and CPU t h e  can be achieved by employing the large tolerance a = 

On the other hand, nsing relative lowa accuracy maLes little diffaence in the ob- 

tained solutions, as demonstrated in Tables 4.8 and 4.9. For the SCED problems, 

the maximum relative emor is 1.28E5, with most cases less than 2.OE6; wlde 

for the RPD problems, the machum relative -or is 1.77E-5. Tkus, the extra 

computationd efforts due to a s m d  tolerance is not justified in practice. 



Table 4.6: Enects of difkrent tolaance for SCED problems 

iterations 

S CED-236 

Table 4.7: Effects of difFizrent tolerance for RPD problems 

1 
Cases 

RPD-236 

RPD-354 

RPD-708 

RPD-1062 

RPD-2124 

E = 

iterations 1 time(seconds) 
= 104 

iterations 1 time(seconds) 



Table 4.8: Minimum cost with different tolerance 

Cases 

SCED-236 

SCED-354 

SCED-708 

SCED-1062 

SCED-2124 

Table 4.9: Minimum Iosses with different tolerance 

1 Objective fnnction ( x  100MW) 

Cases 

RPD-236 

RPD-354 

RPD-708 

RPD-1062 

RPD-2124 

E = 10'~ 

1.9032970 

2.7673168 

5.4090000 

7.9158772 

16.164108 



The infeasible primal-dnal interior point algorithm PDIPA has been implemented 

and tested on the large-sale optimal power flow problems. Several important is- 

sues, such as the choices of Newton step length, initial point, and b& parameter, 

are addressed and investigated. These parameters are critical for successfd impk- 

mentation of the algorithm. Some suggestions of castomizing the above parameters 

for OPF problems are given to exploit the fidl potential of the interior point metkod 

as applied to the power system optimization problems. These ideas inclde: 

a Aggressively increasing Newton step size based on feasibüity condition to 

rnaximize the possible reduction of the objective hc t ion .  

a Properly boosting the b& parameter to prevent the negative duality gap 

and, therefore, smoothing the optimization process. 

a Refining the starting point by adopting a relatively small initial point in order 

to reduce the initial duality gap. 

a Employing a relativeiy large convergence tolerance for feasibility and opti- 

mality conditions in order to Save unnecessary compntational work. 

Numerical results on 236- to 2124-bus test systems suggest that the above pr* 

posed i d e s  are very effective for improving the performance of the algorithm, sig- 

nificantly reducing the number of iterations as well as solution t h e .  



4.3 Results with The PC-PDIPA Algorithm 

The promising results with the PDIPA algorithm encourage as to carry on fnrther 

stndies on a more advanced interior pokit method-the predictor-corrector primal- 

dual interior point dgorithm (PCPDIPA). Since the predictor-corrector variant is 

quite different fiom the pure primaCdnal algorithm discussed earlier, all important 

implementation issues related to the algorithm shouid be thoroughly investigated. 

T kese issues include the adjus t ment of b a n k  parameta, the determination of 

initial point, and the use of multiple corrector steps. Again, a s m d  tolerance e = 

IO-' is used for the feasibility and optimality criteria (3.16 - 3.20) in order to more 

precisely reflect the impact of different parameter settings. Numerical experiments 

are condncted on the same set of test problems. For each case, both total iterations 

and rnnning t h e  are reported to evaluate the algorithm performance. 

4.3.1 Effects of Barrier Parameter 

Initially, as suggested by [60], we use the complementary gap condition to choose 

the way of computing the b e e r  parameter p. That is, we use (3.53a) when 

vTz + sTw > 1; and (3.53b) otherwise. Table 4.10 shows the statistics of iteration 

connts required by the algorith, where Colnmn 2 is the number of iterations when 

primal infeasibility is less than IO-'; Column 3 is the namber of iterations to s a t i e  

dual feasibility condition; and Column 4 is the iteration connt when the duality gap 

is less than 1. Findy, Colamn 5 is the total iterations for solving the problems. 

From the results, it can be seen that, for all cases (except SCED-708), feasibility is 

attained at the very beginning of the optimization process, taking less than 34% of 

the total iterations. The algorithm spends over 90% of the iterations to reduce the 

duality gap to less than 1. From there on, it takes only very little efforts to reach 



Table 4.10: Iteration counts at different stages 

- - - - - - -- - - . . - - 

the optimahty condition. AI1 of these indicate two facts: (1) using formula (3 -53a) 

to compate p is effective for obtaining feasibility but may slow down reduction 

of the duality gap once feasibility is achieved; (2) in this case, however, formala 

(3.53b) is more efficient to reduce the dnality gap. 

Instead of using the complementary gap, we use the feasibility condition to 

change the way of computing p, as shown in (3.53), i.e., when infeasibility is less 

than we switch fiom (3.53a) to (3.53b). Table 4.11 compares the number 

Cases 

SCED-236 

SCED-354 

S CED-708 

SCED-1062 

Table 4.11: Effects of p adjustment strategies 

I Criteria 

1 SCED-2124 1 2 1 O 1 32 1 33 1 

FeaSibility Dnality gap 

( < 1 ) 
10 

11 

18 

24 

Primal 

2 

2 

10 

8 

Op timality 

10 

12 

20 

25 

Dnai 

O 

O 

O 

O 



of iterations reqaired by using these two strategies. The r e d t s  shows that our 

strategy that uses the feasibility criterion outperforms the other one by reducing 

the iterations up to 20%. In addition, it seems that the larger the problem, the 

more the savings. 

4.3.2 Effects of Initial Points 

Unlike the pure primal-dual method, the predictor-corrector method is quite sensi- 

tive to the s tarting point. ki [60], based on extensive numerical experiments, Lnstig 

et d conclude that the prima1 and sla& variables shodd be set above a certain 

threshold to avoid numaical instability, and that a relative large initial estimate 

works bes t wit h the predictor-corrector dgorithm. However, our experience shows 

that this does not apply to the OPF problems. To show how the magnitudes of 

initial points affect the dgorithm, we use different values of & in (3.58 - 3.59). Note 

that in [60] Equations (3.58) and (3.59) are defined as & = 100 and ta = 1 + IIcII, 
respectively. We introduce & in the above eqaations to balance the thresholds cl 
and 6 for the prîmal and dual variables. This proves mu& more effective than 

changing either & or & alone. Starting with the values suggested in [60], which 

correspond to the case 6 = 1, we reduce & by a factor of 10 until the negative 

efFects appear. Table 4.12 shows the results in terms of the number of iterations, 

where the last row Iists the summations of iterations for all cases using the same 

value of 6. It is obvious that a srnaIl threshold, i.e., a small initial point is prefmed 

for the OPF problems. The best results are given in the case when & = 0.01, where 

the iterations are reduced by 20 - 30%, comparing to the case of = 1. Also, this 

improvement grows with problem size. 

The success of using s m d  initia point for SCED problems may result from two 



Table 4.12: Eneets of daferent initiai points 

reasons. (1) In the linearization method, inmemental variables are restrïcted within 

certain limits to ensure the validity of a linear model. The solution of such an LP 

problem is nsudy small in values. T h d o r e ,  it may be Lelpfd to start with a 

s m d  initial point, kopefidly to get doser to the solution. (2) Balancing the prima1 

and the dual thresholds results in small initial complementary gap wkich requires 

less computationd efforts to reduce it (we found tkat in this case the initial gap is 

reduced at least by a factor of 10). 

Now, we demonstrate the overd effects of o u .  proposed ideas, Le., adaptively 

adjusting the bameT parameter based on the feasibility condition and custoniiziug 

the initial point by applying s m d  and balanced thresholds. Figure 4.2 compares 

the number of iterations required by using two versions of the predictor-corrector 

algorithm, where PGPDIPAO uses the approaeh described in [60] to set the param- 

eters, and PGPDIPAl is the version using out suggestions. F'rom the rebults, one 

can see that as the problem size inmeases, the iterations reqaired by PGPDIPAl 

are reduced dramatically (by np to 50%). Table 4.13 shows the running times for 

the tested problems, from which a similar condusion can be drawn in terms of 

compntational tirne. 

Cases 

S CED-236 

SCED-354 

S CED-708 

SCED-1062 

SCED-2124 

Snmmation 

& = 0.01 

8 

10 

12 

15 

16 

61 

t 3  = 1 

IO 

II 

20 

20 

27 

88 

& = 0.001 

1@ 

LI 

12 

19 

24 

76 

6 ,  = 0.1 

9 

11 

18 

20 

30 

88 



Figure 4.2: Overd dects  on iteration connts 

Table 4.13: Overd dects  on computationd t h e  
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4.3.3 Effects of Multi-Corrector Steps 

As mentioned in Chapter 3., the primd-dual interior point algorithm needs to 

solve Newton equations to find search directions at every itaation, which involves 

the numerical factorization of a linear system, followed by the forward/baehaard 

solutions. Because the factorization phase is more compntationally intensive than 

the solution phase, we hope to Save computational work by re-nsing such expensive 

factors in several forward/backward solutions. The benefit of doing so is that the 

search direction d l  cont ain the high-or der information of the central trajectory 

and, hence, increase the centrality of the next point. Eventually, we expect to take 

large steps to reduee the total iterations (therefore, the namber of factorizatioiis). 

This is the main idea of the higlier-order prknal-dual methods. 

The predictor-corrector algorithm can be easily extended to the higher-order 

metkod by applying multiple corrector steps. Each corrector step involves an extra 

forward/backarard solution and an extra ratio test. To see how multiple correctors 

affect the algorithm performance on optimal power flow problems, Table 4.14 shows 

the results in terms of the number of iterations and solution time reqaired when 

different corrector steps are taken, where u- - * means no result is obtained due 

to numericd diüiculty. It  is fonnd that the algorithm using more than one corrector 

shows an unstable behavior. For example, when applying two correctors on psob- 

lem SCED-354 and RPD-118 the algorithm encounters an ill-conditioning problem. 

Despite this fact, using multiple conector steps do reduce iterations. Generally, 

the more corrector steps are used, the less iterations reqnired. In terms of solution 

time, however, the results are q& Mixent. In this case, the best clioice of the 

number of corrector steps varies fiom problem to problem, as shown by the data 

in bold font. For most problems the algorithm applying one conector produces the 



Table 4.14: EEects of ushg multiple corrector steps 

no remit obtained due to numerical dialcuity 

best timing performance even though it takes more iterations. This is becanse each 

corrector step needs additional computation work, which may not be paid off by 

the savings due to less iterations. Consequentially, the overd  solution time may 

not be reduced. 

One may notice that Table 4.14 presents ody the results of small problems. In 

fact, we have conducted the same test on large problems. However, our experience 

shows that using any more than one corrector on these problems will encounta 

numerical ~Wcuity. Closely examining the linear system nsed for solving search 

directions (3.41), we fonnd that two factors infiuence the condition of the system: 

the constraint matrix A and the diagonal scaling matrix D = (S-lW + V-'2)-'. 

Poor condition of any of these matrices will cause namexical difficulty. In the solu- 

tion of large problems, we found that both factors contribute to the ill-conditioned 

h e m  system. Fustly, the constraint matrices of all large problems s&er fiom poor 

conditioning (> IO4). Secondy, the use of multiple correctors not only increases 



the centrsüty but &O enforces the feasibility. For those variables with s m d  bound 

constraints, this aill result in very s m d  s j  andlot vj  (large d u e  of Ilsj =d/or 

l / v j )  and, thns, worsen the condition of ma* D. ConsequentLy, the entire linear 

system is severely ill-conditioned, which causes the algorithm nsing multiple correc- 

tors to break dom. Rom the above discussion, ne conclude that for oar partidar 

problems, the algorithm that uses multiple conectors is not as efFu5ent and stable 

as the case that employs one conector. Tkerdore, in our implementation only one 

corrector step is adopted. 

4.3.4 Cornparison with the PDIPA algorithm 

As a final note, we compare relative efficiency of the predictor-correct algoritkm PG 

PDIPA with the pure primal-daal interior point algorithm PDIPA. In this study, 

the convergence tolerance for feasibiiity and optimaMy conditions is also set to 

E =  IO-^. For all test problems, both algorithms converge to the same solutions 

with eight sigdicant digits. Figure 4.3 compares the number of iterations reqnked 

by PDIPA and PC-PDIPA algorithms when solving SCED problems. The resdts 

show that the predictor-corrector algorithm PGPDIPA converges much faster than 

the pure primal-dnal algorithm PDIPA, taking 40% - 50% less iterations as com- 

pared to the latter. Table 4.15 shows the computational time reqnired by botk 

algorithms, where the PGPDIPA algorithm needs 20% to 40% less CPU time than 

the PDIPA algorithm. The amount of time (iteration) reductions depends on the 

problem size; the larger the problem, the more the reduction. One may notice that 

the time savings of the PGPDIPA are not as large as the savings in iterations. 

This is because in every iteration the predictor-corrector algorithm needs an extra 

forward/backaard solution to compute the affine direction and an extra ratio test 

to estimate the barrier parameter p. 



size of probîern 

Figure 4.3: Comparison of the numba of iterations on SCED problems 

Table 4.15: Comparison of solution time on SCED problems 

Cases 

S CED-236 

SCED-354 

SCED-708 

SCED-1062 

SCED-2124 

ratio (%) 
PC-PDIPA 

PDIPA 

68% 

80% 

78% 

76% 

61% 

time (seconds) 

PDIPA 

0.78 

1.33 

4.48 

11-48 

33.97 

PCPDIpA 

0.53 

1.07 

3.50 

8.73 

20.87 



Figure 4.4: Comparison of the nurnber of iterations on RPD problems 

Table 4.16: Comparison of solution time on RPD problems 

Cases time (seconds) 1 ratio (%) 

RPD-236 

RPD-354 

RPD-708 

RPD-1062 

RPD-2124 

L 

PDIPA 

4.20 

7.82 

33.10 

87.08 

288.01 

PGpDIPA PC-PD'PA 
PDIPA 



The performance cornparisons between the PCPDIPA and PDIPA algorithms 

are &O conducted on the RPD problems, as shown in Figure 4.4, whae the 

predictor-corrector algorithm PGPDIPA is over twice as fast as the pure primal- 

dual algorithm PDIPA, requiring less than half the iterations of the latta. With 

regard to solution time, as shown in Table 4.16, the PGPDIPA algorithm still 

outperforms the PDIPA algorithm, saving computational t h e  by 20% - 45%. In 

addition, the superiority of the PCPDIPA algorithm over the PDIPA algorithm 

becornes more evident as the problem size grows. 

The predictor-corrector primal-dual algorithm has been implemented and tes ted 

on real and reactive power dispatch problems. Those issues closely related to its 

efficient implementation, such as the adjutment of barrier parameter, the determi- 

nation of initial point, and the use of multiple corrector steps, are investigated to 

evaluate th& impact on the optimal power flow problems. Numerical experiments 

on 118 to 2124-bus systems demonstrate that these issues are critical to the per- 

formance of the algorithm. Some ideas are proposed to improve the solution speed. 

Based on our numerical results, several conclusions can be drawn as follows: 

Using the feasibility condition to adjnst the way of computing the barrier 

parameter can save the total iterations by fast reducing the duality gap. 

Cnstomizing the initial points, by adopting relative small and bdanced prima 

and dual thresholds, significantly reduces the number of iterations. 

Combining the above h o  strategies shows very promising results, reducing 

both iterations and computational time by up to 50%. The larger the system, 



the more the savings. 

a The effectiveness of multiple correctors is dependent on the problem condi- 

tioning. As fat as the test problems are concenied, asing multiple corrector 

steps is not as efficient and stable as applying one corrector step. 

a The n d e r  of iterations reqnired by the algorithm is not sensitive to the 

problem size. The dg0rith.m is numericdly reliable. 

Cornparison with the pare primai-dnal interior point method is also conducted. 

The resdts reconfirm the superiority of the predictor-corrector method. 



4.4 Improvements of OPF Solution Efficiency 

In Section 4.2 and 4.3, we have conducted numerical experiments on the pure 

primal-dud and the predictor-corrector primal-dual algorithms for solving real and 

reactive power dispatch problems. Our emphasis has concentrated on how to im- 

prove the performance of the algonthms by castomizing the algorithm parameters 

to the optimal power %ow (OPF) problems. We have aIso shown that the predictor- 

corrector method is snperior to the pure primal-dual method, about twice as fast 

as the latter. Now, we are ready to move forward to other practical issues that 

are directly associated with the successive linear programming (SLP) solution of 

OPF problems. W e  will discuss how to use sparse matrix techniques for an effi- 

cient solution of large-scale linear equations, which is needed in almost any interior 

point method. Then, we uill demonstrate how to determine linear step sizes and 

inner/outer-loop convergence tolerances to reduce the total OPF iterations and 

Save computational work in every iteration. Because of its better perfomance, the 

predictor-corrector algorithm P GPDIPA is used in the foilowing stady. 

4.4.1 Sparse Matrix Techniques 

The computational bottle-ne& of the primal-dual intecior point algorithms is the 

need to repeatedly solve the Newton eqnations (3.8) for the search directions. The 

solution methods for su& equations can  be classilied as either the augmented equa- 

tion method [45,97] or the nomal equation method [59,89]. In our implementation 

(see equations (3.13)), we use the latter becaase it is numerically more stable due 

to its positivedefinite matrix ADAT. Moreova, it needs to compnte and store 

only half of the LU factorization due to symmetry. Farthermore, since only the 

diagonal matrix D changes from iteration to iteration, the structures of ADA* and 
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its LU factors remai. h e d  and thus ean be re-used daring the optimisation pro- 

cess. However, the major difEdty associated with the direct factorization is that 

many fill-in's d be generated dnrkig Gawsian eümination. The common practice 

is to use a henristic to reorder the matrix so that fül-in's can be signiscantly re- 

duced. We foiIow this practice by applying the most popalar heuristic-minimum 

degree ordmng. Then, a symbolic factorization is conducted to create a static data 

structure for the Cholesky factors. Since the ma& structure is k e d  through the 

itezations, the ordering and symbolk andysis are done only once. Finally, the 

numerical factorbation is camied out at every iteration in an efficient way [26, 361. 

To exaxuine the relative efficiency of the normal eqnation method in so lhg  

the Newton eqnations, Table 4.17 shows the total CPU time requised to solve 

one sob-linear programming problem for a l l  cases. The results are obtained by 

using PGPDIPA algofith with the tolerance set to c = 10% Table 4.17 also 

indudes the time percentage spent on various tasks in the direct solution of normal 

eqaations, such as the formation of matrix A D A ~ ,  the minimum degree ordering, 

the syrnbolic and numericd factorization, and the forward and backward solutions. 

It is obvions that among these ta& the most tirne-consuming part is the numerical 

factorization, taking up to 77% of entire solution tirne. The larger the problem, 

the more time this part needs. On the contrary, all other tasks require relative less 

t h e  with the common characteristic that their sharings decrease constantly as the 

problem size increases; for instance, forming normal matrix ADAT takes 6 ko 15% 

of the solution tirne; forward/backward solutions take a similar percentage, m d  

5 - 15%; ordering and symbolic factorizing are the least computationai intensive 

parts, requiring only 5 - 6% of the total tirne. To give an idea of how mu& time 

is spent in each iteration, Table 4.17 provides this information in the 1 s t  column 

where in the SCED problems, the average solution time per iteration is less than 



Table 4.17: Percentage of time spent in certain snbroatines (%) 

Case 

SCED-236 

SCED-354 

S CED-708 

S CED-1062 

S CED-2124 

RPD-236 

RPD-354 

RPD-708 

RPD-1062 

RPD-2124 

Form 

A D A ~  

MMD 

orderhg Soln tion 

1.3 

15.2 

11-1 

8.9 

7.5 

Time (sec) 

total aver- 

2 seconds. For the RPD problems this timing in most cases is less than 4 seconds, 

while for the largest problem RPD-2124 it kakes less than 8 seconds to solve the 

normal equations of 5,000 row/colamn with 157,824 nonzeros. 

4.4.2 Linear Step Sizes A 

In the successive linear programming (SLP) procedure, inmemental variables at 

every itaation mast be restricted within certain limits to ensure the validity of 

a linear mode1 and convergence of the procedure. These iimits (linear step sizes) 

have large influence on the SLP solution process. Figure 4.5 shows how hear step 

sizes affect the convetgence behavior of the SCED-118 problem, where Case 2 uses 

a relative small step of 20 MW, and Case 3 employs a large step of 60 MW. It is 



clear that, initially? using a large step ske dramatically speeds np reduction in the 

cost fûnction. However, after reachùig a certain stage, continuousiy applying large 

steps cause an oscillatory behavior. Such phenornena can be eliminated by redncing 

the step size wheneva an increase in cost fnnction is observed. Nevertheless, the 

step size should not be reduced too mnch so as to cause either slow dom or f&e 

convergence. It shotdd be larga than a certain threshold. Thecefore, we have 

devised a dynamic adjustment scheme to adaptively change the linear step size. 

We start with a large step and then reduce it in half whenever the cost bct ion 

begins to increase, until the step size reaches a certain threshold. The use of tliis 

heuristic significantly reduces the number of iterations, as shown by Case 1 w k e  a 

step size of 60 MW is initidy nsed and then gradudy reduced to 20 MW. Figure 

4.6 shows the infiuence of the h e a r  step sizes for the RPD-118 problem, where a 

similar convergence behavior is observed except that the step sizes used in this case 

are much srn* than those on the SCED-118 problem. 

Table 4.18 shows the convergence results of the SCED-118 and the RPD-118 

problems using our heuristic with different initial step sizes. It is obvions that 

starting with relative large steps plus proper step adjustments generally improve 

the convergence of SLP process. Notice that in the above results, the tliresholds for 

SCED and RPD problems are chosen as 20 MW and 5 MVAR based on our numer- 

icd experiments. The smder threshold for the RPD problems is due to the higkly 

nonlinear nature of the problems. With regard to sub-linear programming, our 

experience shows that the predictor-corrector algorithm PGPDIPA is less sensitive 

to the bounds (determined by the iinear step size). For instance, in the SCED-118 

problem, t h e  is only one LP iteration difference when step sizes of 60 MW and 

20 MW are used, respectively. Notice also that in conducting the above study both 

SLP and LP (onter and inner-loop) to1erances are set to IOw3. 
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Figure 4.5: The solution process of SCED-118 problem 

Case 1 
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Figure 4.6: The solution process of RPD-118 problem 
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Table 4.18: EXects of using different initiai step &es A 

MG 

AB = 15" 

60 MW 

20 MW 

10 MW 

4.4.3 Tolerance for Sub-Linea. Programming: e 

SLP 

iterations 

8 

13 

21 

AQG, AV 
A8 = 7.5" 

In the successive linear programming (SLP) method, each linear snb-problem (LP) 

is solved by the PCPDIPA dgorithm, based on feasibility and optimality criteria 

E which determine the accuracy of the LP solution. In the early stage of the SLP 

SLP 

iterations 

process, as LP solutions are far fkom the optimal solution of a nonlinear problem 

(NLP), it is not necessary to solve LP problems very accurately. However, as linear 

points approach the optimal solution, we may wish to use smalla tolerance to 

get more accurate LP solutions. Motivated by this fact, we develop a kenristic of 

dynamicdy changing LP tolerance s to achieve proper acenracy on the different 

stages of the SLP process. As shown in the following resdts, this technique is very 

effective to reduce computational efforts without sacrifice of accaracy. Figure 4.7 

and 4.8 show how tolerance E affects the LP iterations for SCED-118 and RPD-118 

problems, respectively, where "Fixed E means that c is set to 10-~ througkout 

SLP procedure; and "Changing r" is the case where Q is initially set to IO-', and 

then reduced by half at every SLP iteration until r < IO-'. In both cases the OPF 

tolerance is set to 6 = 10-~. As we expected, in the early stage the LP iterations of 
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SLP ïtemtions 

Figure 4.7: LP/SLP iterations for S CED-118 problem 

1 2 3 4 5 6 7 8 

SLP bntionr 

Figure 4.8: LP/SLP iterations for RPD-118 problen 



Table 4.19: Eneets of changing LP tolaance c 

I I 1 Total LP/SLP itaations ( CPU time 

"Changing 2' are much lower thau that of " Fixed P ;  and they gradndy inaease 

with the denease of E ,  as the SLP process approaches the solution of the nonhear 

OPF problems. 

Table 4.19 compares the total LP/SLP iterations required by using the above 

two scliemes. The listing &O indudes the time saving (%) tkat is achieved by 

"Ckanging P.  It can be seen that the proposed heuristic is mu& faster than the 

case of "Fixed c", saving 24 --. 52% in both LP iterations and solution time. In 

addition, it is found that using the proposed technique not only reduces the snb-LP 

iterations bat also reduces the SLP iterations, as shown in Figure 4.8, though the 

reason for such phenornenon is unclear so far. 

4.4.4 Tolerance for Optimal Power Flow: 6 

One advantage of the SLP based methods is that the optimization process can be 

terminated at an earfier stage, based on the user-specified to1erance 6. This can 

be done because the power flow equations are satided at every linearïzation step; 

any sub-hear programming solution can be considered as a sub-optimal solution. 

W e  exploit this featate and show that the algorithm pecfonnance can be further 



SLP lterations 

Figure 4.9: OPF solution progress of ll&bus sys tem 

improved. Figure 4.9 shows the relative objective reduction of SCED-118 and RPD- 

118 problems as the SLP iterations proceed, where the OPF tolerance d is set to 

10-~. One can see tliat objective values decrease rapidly (about 90%) in the first 3 

iterations and then slow down reduction for the subsequent iterations . Therefote, 

in situations where accurate solutions are not reqnired, the SLP process c m  be 

terminated at  an early stage by either =g the miurimnm number of iterations or 

using a relative large tolerance 6. In this study, we use the latter because it can 

better control the solution accuracy. Table 4.20 compares the nnmber of SLP iter- 

ations and running time obtained by using two different OPF tolaances: b = 

and b = IO-'. For all tested problems, around 50% savings in iterations and CPU 

time are acltieved by using the larger toletance, 6 = Besides, employing a 

relative low accuracy is &O jus tified fkom a practical point of view since extra com- 

putational efforts due to smail tolerance produce little improvement in the optimal 



solutions, as demonstrated by the results in Table 4.21 whae the maximum relative 

error is 0.74%. 

Table 4.20: SLP iterations and time (seconds) with different 6 

iterations 1 time (sec) Cases 

SCED-118 

SCED-1062 

RPD-118 

RPD-1062 

iterations 

8 

8 

6 

7 

Table 4.21: OPF solutions with diffizent tolerânce 6 

t h e  (sec) 

1.85 

42.99 

3.55 

187.16 

- 

Cases 

SCED-118 

SCED-1062 

RPD-118 

RPD-1062 

minimum cost ($/hr)/ losses (MW) 

6 = 

13695 

122998 

97-00 

811.80 

6 = IO-* 

13784 

123718 

97.27 

817-78 

enor (%) 

0.65% 

0.59% 

0.28% 

0.74% 



The efficient predictor-corrector primal-dual interior point algorithm PGPDIPA 

has b e n  successfdly applied in the seqnential linear solutions of real and reactive 

power dispatch problems. Practical aspects related to the successive linear pro- 

gramming (SLP ) are t horoughly inves tigat ed, snch as the de terminat ion of Ikiear 

step sizes and oute./inner-Ioop stopping criteria Th& impacts on the convergence 

behavior of the PGPDIPA algorithm as well as SLP procedures are evahated. Nu- 

merical experiments indicate that these factors are crucial to the performance of 

SLP-based optimal power flow metkods. Some heuristics of adaptively changing 

the linear step size and tolerances are proposed in order to accelerate the conver- 

gence of the SLP method, and to reduce the computational work of every iteration. 

Test results on the 118-bus and 1062-bus systems show that these ideas are very 

effective, saving np to 50% iterations and computational tirne. 

The major computational work of almost any interior point method is the need 

to repeatedly solve a set of linear equations for the Newton search directions. The 

comput ational time reqaired for solving sach linear equations can be prohibitively 

higk for a very large-scale problem. Therefore, it is essential to explore sparsity at 

every stage by applying varioas sparse matrix techniques. In addition, numerical 

reliability should also be considered with high priority when developing a robust 

algorithm. In onr implementations, the nomal  equation method is selected as the 

solution method due to its numerical stability. The sparsity methods are extensively 

used in all aspects involved in its solution procedure, including the formation of 

normal equation ADA*, the application of miiiimum degree ordering, symbolic and 

numerical factorization, and forward and backward solutions. Numerical resdts on 

large-scale power systems have verified its efficiency and reliability. 



Chapter 5 

Numerical Experience wit h 

Advanced Simplex 

5.1 Introduction 

In the past, the simplex method, as an important linear programming technique, 

was widely used in power system operations and planning [82, 4, 221. Shce its 

introduced by Dantzig in 1947, the simplex method has experienced many im- 

provements. Various simplifications, extensions and refinements have been made 

t O accelerate its solution speed; and cus tom-designed algonthms have been imple- 

mented to exploit speafic problem structures [27, 80, 791. Due to its practicai 

efficiency, simplex has become the dominant linear programming method for abont 

thirty years. However, as problem size keeps increasing, the traditional simplex 

codes may need excessive computation time to solve a problem, which makes tkem 

uncornpetitive as compared to newly developed interior point algorithms [SI, 3,611. 

The break-through developments of the simple* method have taJcen place just 



in recent years when there have been dramatic changes in cornputer hardware and 

soba re  technology. These changes have dowed a wider varîety of simp1ex strate- 

gies to be implemented and much larger problems to be studied in detail [12]. As a 

resdt, signiscant advances in the compatational &ciency of the simplex method 

have been achieved, dramaticallp rednàng both computationd time and the num- 

ber of iterations [13]. These advances on the sirnplex method corne fkom such 

improvements as better crashing basis procedures, better handling of degeneracy, 

bet ter partial pricing, implementation of primal and dnal s teepes t edge algoritluns, 

faster and more stable factorizations, better exploitation of cache memory, and 

better combined phase 1- phase 2 a l g o r i t b  [59]. One of the new simplex codes, 

CPLEX, represents such major improvements in the simplex tedinology. 

The rapid progress in simplex methods has raised the foUowing serions ques- 

tions: how these new techniques affect the solution effiuency for power engineering 

problems; what are their potential application in power system planning and oper- 

ations; and, more importantly, what about th& relative performance as compared 

to advanced interior point algorithms. To our knowledge, these concerns have not 

been sufnciently addressed nor have they been extensively stndied. Therefore, it is 

our belief that there is an urgent need to thoroughly investigate these important 

issues. This chap ter serves su& a purpose by presenting onr numaical experience 

of using the state-of-theart simplex code CPLEX to solve optimal power flow prob- 

lems. The chap ter s tarts by introducing the CPLEX s o h a r e  as well as its varions 

advanced features. Then, numerieal tests on these features are conducted to eval- 

uate their impact on solution t h e  as w d  as iteration count for powr engineering 

problems. Finally, the cornparison of t his simplex codes with a predictor-correc tor 

interior point algorithm is c d  out to identify the advantages of each method. 



The CPLEX software package [19] is designed to solve large and d i f n d t  prob- 

lems whae other hear programming solvers fd or are unacceptably slow. The 

package uses several modified simple* algonthms, induding primal, dnal and net- 

work simplex algorithms, with multiple algorithm options for crashing, pricing and 

factorzation [12]. An optional preprocessor is adable  for problem reduction. Be- 

sides, CPLEX kas many 0 t h  features sneh as advanced basis starting, scaIing 

and so on. Most dgoritkmic parameters can be manudy adjnsted by the user, 

although preset defadts with bdt-in dynamic adjustment oRen provide the best 

performance [19]. 

CPLEX dgonthms solve a general linear programming problem with equality 

and bound constraints. Such a problem can be stated as follows: 

subject to Ax = b 

Since CPLEX treats bound constraints implicitly, its base mat- is of the order 

equal to the number of equality constraints. Therefore, the dimension of cons traint 

matrix A determines the size of the problem. Generallyt a large problem needs more 

solution t h e  than a s m d  one does. CPLEX provides a preprocessor to help rednce 

the problem size. This is achieved by using the Presolver and Aggregator options. 

The Presolver will work to reduce the namber of columns and rows in a problem 

by simplifying, reducing and eliminating redundancies, whereas the Aggregator wil l  

try to eliminate rows by using substitution. CPLEX also has several scaling options 

to overcome possible numericd dificulties during solution process. These scahgs 

are IielpfÙI, especially when a problern is ill-conditioned. 



Ln the solution of simplex methods, one aitical factor to the performance is how 

to construct an initial basis so that the namber of iterations can be reduced. This 

operation is known as "crash". Thae are several crash parameters to bias the way 

in which CPLEX orders vaaiables when selecting an initial 6asis [NI. The essential 

idea h a e  is to construct a sparse and well-behaved basis, with as mach &dom as 

possible, and having as few artifiual variables as possible [U]. One should do some 

expefiments to determine if changiag the crash parameta wdl benefit the problem 

solution efficient y. 

Anotlier critical factor is how to choose a nonbasic variable entering a basis, 

known as "pricingn. CPLEX provides sevad  pricing choices for its primal and dual 

simplex algorithms. For the primal simplex, they inclu.de Reduce-Cost , S teepest- 

Edge, and Devex pricing (Devex cornes fiom the Latin d e u ~ v s  - steep). The 

Reduced-Cos t selects the nonbasic variable t hat has the mos t negative reduce cos t 

[21]; the S teepes t-Edge is a kind of nomolized pricbg, in which the reduced cos ts 

are scaled before selecting the entering variable [35, 131. The Devex can be viewed 

as an approximation to the Steepest-Edge pricing [48]. The pricing strategies for 

the dud simplex include Standard-Dual and variants of the Steepest-Edge [29]. 

To investigate the performance of these advanced features as applied to power 

engineering, we use both the primal and dual simplex algorithms to solve optimal 

power flow problems. The impacts of the preprocessing and scaling are examined 

by t&g them on and off separately. Then, the efFects of warm start versus cold 

start are studied by using advanced bases or the bases conshcted by using the 

CPLEX crash procedures. Also, different pricing techniques such as ReduceCos t , 
Steepest-Edge, and Devex are evaluated in terms of th& relative efficiency. Findy, 

the cornparison of this simplex code with an advanced interior point algorithm is 

conducted to identify the merits of each method. 



5.3 Testing Results on Advanced Features 

In this stndy we consider four power systems of different sizes, ranging from 118 to 

2124 buses [lO3]. The major data for the test systems are listed in Table 5.1. Sev- 

eral cases stndied are shown in Table 5.2, inclnding secnrity-constrained economic 

dispatch (SCED) as well as reactive power digpatch @PD)-minimum active power 

transmission losses. For each test system, the SCED problem is solved first, and 

then followed by the RPD problem. Both computationai time and the nnmber of 

iterations are used to e k a t e  the performance of various features of the simplex 

dgoritluns on power system optimization problems. The results are obtained ou a 

SUN SPARCstation 2 using the CPLEX software version 3.0. 

In CPLEX, there is provision for convagaice tolerance ranging fkom to 

10-~. We have experimented with tolerances of IO-' and 10-~. The results show 

only a s m d  différence in execntion time and the number of iterations. Cornputa- 

tional results shown in the following tables correspond to a convergence tolerance 

of 10% Also, it shotdd be pointed out that in this extensive study, both the prima1 

and the dual simplex algorithm are used to solve the same set of problems. Our 

experience shows that the prîmal simplex is be t ta  than the dual simplex for the 

Table 5.1: Speufications of test power systems 

Buses Lines I Transfomers 

9 

Shunt 

Capacitors 

14 

1 

Generators 

18 

Compensa tors 

54 



Table 5.2: Test cases and problem sizes 

1 Probly Size 1 Nonaems in 1 
- - -  

Variables Problem-S ystem 

SCED-118 

SCED-354 

SCED-1062 

cases studied. Therefore, only the remlts of nsing the primal simplex are presented 

heredter. 

Constraints 

119 

357 

1079 

5 -3.1 Problem Preprocessing 

With default parameter set tings, if there is no advanced s tarting basis, CPLEX will 

h s t  automatically look for opportanities to reduce the size of a problem by using 

its preprocessor - the Presolver and Aggregator options. The impacts of these 

preprocessings can be evaluated by tnrning them on and off. Table 5.3 compares 

the solution times of the primal simplex with and without these preprocessings. 

Note that negative value under "Tirne Savings" column means time increase rather 

than decrease. Also, the table includes the changes in problem sizes before and 

after the preprocessings. 

From Table 5.3, one can see that with the use of the preprocessings, all the 
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Table 5.3: Enect of preprocessing on problem size and solution time (seconds) 

Presolver and Aggregator 

She Reduced 1 Time Savings 

6 rows 7 columns 

18 rows 17 columas 

52 rows 40 coliunnp 

95 rows 71 columns 

9 columns 

22 columns 

64 columns 

130 columns 

problems get some reduction in size. In general, the larger a problem, the more the 

reduction. With regard to the solution t h e ,  the resnlts show that the preprocess- 

ings have aknost no impact on small problems. For large problems, however, two 

types of problems show quite different results. The real power dispatch problems 

get no benefits fiom the preprocessings. Rather, the SCED-2124 problem takes 

even slightly more CPU time, despite of the fact that 95 rows and 71 columns have 

been reduced. On the other hand, the large reactive power dispatch problems, such 

as RPD-1062 and RPD-2124, do benefit fiom these options, reducing the solution 

time by 5% to 10%, respectively. In this case, the krga  the problem, the more the 

time savings. One possible reawn for this is that the preprocessing may change the 

structure of a constraint matrix. Therefore, in certain circumstances the reduced 

problem may become more dificult to solve than the original one. Another reason 

is tkat because the preprocessings involve additional computation work, their use 

may not be justifkd for the problems either not large enough or unable to take 



the advantages of preprocessings. Ekom the above discussions, it follows that the 

impact of the preprocessings varies fiom problem to problem, depending on the size 

and nature of a problem under study. 

5.3.2 Problem ScalUig 

A scaling option is provided to scale the constraint matrix when CPLEX reads a 

problem. This option is mainly used to overcome numericd difnculties that arise 

from the solution process. Therefore, a poorly conditioned problem (such as the 

optimal power flow under a keavy loading condition) may benefit from scaling 

option. Nevertheless, our namerical experience shows that sc&g can not only 

improve numerical stabiüty bat sometimes boost performance sigdlcantly. Table 

5.4 compares the compntationai time obtained with/without scaing, where Column 

2 gives the mahix condition for each problem. The r e d t s  show that using scaling 

Table 5.4: Mect of scaling on solution t h e  (seconds) 

Cases of Matrix A No Yes 

SCED-118 1-67733+3 O .25 0.25 

S CED-354 %58233+3 2.13 1.80 



does improve the performance on all cases (except the s m h t  problem SCED-118). 

The t h e  savings range fiom 12% to 29% with inuease of problem &es. Moreover, 

it is obsaved that problem RPD-2124, that has the worst matrix condition, benefits 

most from scaling. These results indicate that nsing scaüng can help solve optimal 

power flow problems, especially for those problems with poor conditioning. 

5.3.3 Crashing and Advanced Basis Starting 

CPLEX can start either fiom an initial basis constructed throngh its crash proce- 

dure (cold start) or fiom an advanced basis - the solution of a previously solved 

problem (warm start). The warm start feature is extremely nseM when solving 

optimal power %ow problems by successive hear programming (LP). Since each 

subseqaent LP problem is a perturbation of its previous LP problem, the solution 

of a previous linear step can be used as a starting basis for its subsequent linear step. 

Table 5.5 shows the number of iterations required by using cold and warm start, 

respectively, whae "Phase In means the iteratioiis required to satisfy feasibility 

condition and "Total Itern means the iterations to reach optimality. 

Let us first examine the results obtained by using the CPLEX crash procedure, 

which are listed under the "Cold Startn column of Table 5.5. One may notice 

that the total iteration count for each case is roughly equd to the nnmber of 

rows of the constraint matrix in the relevant problem. As mentioned earlier, a 

simplex basis also ha9 the size equal to the number of rows. Thns, the number of 

iterations approimating the size of the simplex base cm be interpreted as a good 

performance. This is because without knowing optimal colnmns in advance, it wi. 

take that many iterations just to pivot in the colnmns of an optimal bais [12]. 

Although the CPLEX crash procedure can be considered efficient, its performance 



Table 5.5: Itaations of simplac wïth cold/warm start 

Cases Phase 1 
. - - -  

Total Iters 

is still uncornpetitive with the wann start, as shown in the following section. 

Now let as compare the relative performance between cold and warm starts. 

From Table 5.5, one can see that, for ail cases, ushg warm start dramatically 

speeds up convergence in achieving feasibility as well as optimality, reducing Phase 

1 iterations by a factor of 5 - 12 and total iterations by a factor of 2. Table 5.6 

compares the computational t h e  of using cold and warm start, where warm start 

saves at least hdf CPU t h e  as compared to cold start. These results show that 

if an advanced basis is available, iterations of simpIex can be reduced signaicantly, 

particularly if the current problem is similar to the previous problem. Therefore, 

whenever s o l h g  the same or similar problems cepeatedly, one should always con- 

sider statting fiom an advanced basis. 
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Table 5.6: Solution time (seconds) of simplex with coldfwarm start 

Cases 

SCED-118 

SCED-354 

S CED-1062 

S CED-2124 

RPD-118 

RPD-354 

RPD-1062 

RPD-2124 

Cold Start 1 Warm Start 

5.3.4 Steepest-Edge Pricing 

Pricing strategies determine the way of how to select a nonbasic variable into basis, 

and are most likely to impact the simplex performance. Table 5.7 snmnarizes 

the iteration counts of the prima1 simplex using three different prieing techniques: 

Reduced-cost, Devex and Steepest-edge. Fkom the results shown in Table 5.7, one 

obvions observation is that , for all test cases, the S teepest-Edge requires the least 

number of iterations to converge, while Reduced-Cost needs the most iterations. In 

the cases of SCED problems, such savings are aronnd 20% - 35%, and for the RPD 

problems are 35% - 45%. These results indicate that the Steepest-Edge provides 

faster convergence tkan the other two pricing techniques. This is due to the fact 

that geometricdy the Reduced-Cost chooses an edge that is "downhilln, i.e., dong 

which the objective fnnction demeases, while the S teepest-Edge selects the edge 



that is "most downhilln, Le., steepest with respect to the objective fimction. As 

the Devex is a variant of the latter using approximations to "most d o a n ,  its 

iterations are between the other two pricings. 

With regard to compatationd time shown in Table 5.8, however, one can see that 

for s m d  or easy problems, such as RPD-118, RPD-354, and all SCED problems, 

there is h o s t  no Merence among these three pricings due to the Iowa number of 

iterations. For the large and hard probIems that takes over thonsands of iterations 

to solve, both Steepest-Edge type pricings outperform the traditional Reduced- 

Cost pricing. In this case, the Devex reqaires the least computational time while 

the Reduced-Cost needs the most. Time savings of the Devex are aroond 15%, as 

compared to the latter. 

The above resdts show that the Steepest-Edge is not necessarily the best in 

terrns of CPU time although its iteration counts are the le& for all cases. On the 

other kand, the Reduced-Cost seems not so bad despite its higher iteration count. 

This is because the former is the most costly in computation while the latter is 

the least expensive. Since for s m d  or easy problems less nnmber of iterations is 

required to get a solution, the overhead per iteration incurred by the Steepest- 

Edge eliminates its savings in redacing the iteration count. However, for large and 

hard problems, as the iteration nnmba is extremely high, the overall work due to 

lower iteration count of Steepest-Edge type pricings is less than that of the higher 

iteration count but cheaper compntation of the Reduced-Cost. Moreover, since the 

Devex has the good features of the Steepest-Edge but substantially reduces the 

computational intensity, it produces the overd best resdts for all tested problems. 



Table 5.7: Enect of pricing techniques on iterations 

I P r i h g  Strategies 

Cases 1 Rednced Cost 1 Devex 1 SLpest Edge 

Table 5.8: Effect of p n M g  techniques on solution time (seconds) 

Cases 1 Rednced Cost 1 Devex 1 Steepest Edge 



5.4 Cornparison with Interior Point Algorithm 

In the last decade, the interior point method has becorne a viable alternative to 

the simplex method due to its compntational &ciency. However, d e  simplex 

methods, interior point methods can not produce an optimal basic solution, Le., 

a basic solution which is both prima1 and dud optimal. Thus, certain informa- 

tion that is usefùi for postsptimality andysis is not available. Moreover, interior 

point methods do not have warm start capability, a v a y  attractive feahw of sim- 

plex methods. Thmefore, it is believed that a good solver shodd combine the 

advantages of both methods [76]. CPLEX provides not only the state-of-the-art 

simplex but an advanced intaior point method - a predictor-corrector primal- 

dual logarithmic-bmier algori t hm (Bank)  [60]. In addition, an efficient 'barrier- 

simplex crossover" [62] is implemented to recover bases fiom (non-basic) solutions 

of the barrier method, and to switch to the simplex method by warm start. Table 

5.9 compares the number of iterations and computational tirne obtained by nsing 

the primal simplex with warm start as well as the b& method with the aossover. 

In general, the resdts are in favor of the barrier with crossover except for the 

small cases (su& as SCED-118, SCED-354, and RPD-118) where the simplex al- 

gorithm is faster than the barrier with crossover in terms of CPU tirne. For the 

large SCED problems tested, both a l g o r i t h  perfonn equally ad; however, for 

large-scde RPD problems like RPD-1062 and RPD-2124, the barrier with crossover 

outperforms the simplex method in both CPU time and total iterations. The former 

requires only 30% - 40% compntational time of the latter. The main reason is that 

the barrîer with crossover algorithm taLes advantage of b&'s fast convergence 

speed, an efficient basis recovery procedure, and simplds warm s tart capabilities. 

Note that in this stady all problems are solved to IO-' accuracy with six significant 



Table 5.9: Cornparison of simpler nith interior point algorithm 

Time (seconds) cases T i i e  

(seconds) 
- 
total - 

9 

11 

16 

25 - 
11 

14 

17 

33 

bamer crossover + total 

digits. Table 5.9 also inchdes other detailed results for b a e r  with crossover, such 

as the crossova the ,  and the iterations and time of b& and sinplex. 

5.5 Summary 

Numaical experience of nsing advanced simplex features is presented for the solu- 

tions of large-scale optimal power flow problems. Some newest advances in oper- 

ation researeli as weil as in sparse matrix techniques are investigated to evaluate 

their impact on the performance of simplex methods for power engineering prob- 

lems. The numerical tests are conducted on power systems whose &es range fkom 

kundred to thousands of buses. Based on our extensive study, several conclusions 

can be &am as follows: 

a The preprocessings, including presolver and aggregator, can reduce the prob- 

lem size and may Save the solution time for large-scale OPF problems. Th& 



effectiveness varies with the sïze and nature of the problems under concern. 

a The scaling can improve numericd stability and sometimes boost simplex 

pdonnance signiscantly. It helps to solve OPF problems, especially for 

those problems wïth poor conditions. 

a Although the crashing can produce an efficient initial basis (cold start), its 

performance is still uncornpetitive as compared to using the advanced ba- 

sis (warm start). Therefore, the use of aashing shodd be avoided d e s s  

absolntely necessary. 

a Using advanced bases (warm start) can redace at least half solution time as 

compared to cold start. Therefore, whenever solving same or similar problems, 

warm start shodd always be considered. 

a Among three pricing techniques, the Devex pricing-a variant of steepest-edge 

- produces the best resdts for al1 test cases, especially for large and dificult 

problems that need many iterations t O reach feasibili ty and op timality. 

Although the above options are examined on iudividual basis, the combi- 

nation of those better parameter settings usually produce the overd best 

pedormance. 

a The barrier with crossover, that combines the advantages of both simpler and 

interior point methods, outperforms the simplex method, and may be the best 

choice as far as solution speed and information completmess are concerned. 



Chapter 6 

Creation of Network Data for 

Test ing Algorit hms 

6.1 Introduction 

Power system operation aud planning relies greatly on cornputer s i d a t i o n  pro- 

grams such as load flow, contingeney analysis, state estimation, optimal power 

flow, etc. With the expansion of power networks, many new power system analysis 

algoritluns have been developed to solve problems aith ever increasing size and 

complexity. To evaluate the performance and robustness of the new algor i th ,  

extensive numerical tests should be c d d  out on a large set of power networks of 

various types and sizes. 

In practice, however, it is not easy (or not possible at all in most cases) to 

obtain real nehirork data, especially for very large-scaie systems. These difiicdties 

arise from eit her t echnical or secnrity reasons. Numerical testing, therefore, is often 

restricted to the relatively small IEEE test networks or to a h i t e d  set of special 
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power networks whose data are not avaiiable to the general research commttnity. 

To deviate the difficuity of collecting realistic data, in reference [32] an dg* 

rithm is developed to synthetically generate power networks of arbitrary size and 

complexity. The network is created fiom scratch, and network data are chosen fkom 

a predetermined range. However, as noted by the authors of [32], sach generated 

power networks may face convergence problem dnring load flow m. Ekborate 

adjnstments of the system state and control variables are required, based on a trial 

and error method. For creating a very large power system with thousands of buses, 

the above procedure may take substantial computation t h e  to obtain a load flow 

solution. Therefore, in orda to avoid this problem it is necessary to se& more 

efficient approachs to aeating powa netnorks. 

This chapter presents an efncient technique that adopts a different way to create 

realistic network data. Instead of starting fiom scratch, the technique uses any 

available small power system, such as IEEE 118-bus system, to conshct  a large 

power network. The created network can be of arbitrary size, different topology 

and sparsity. Its network data are obtained directly fiom the small system witk 

only minor modifications. By employing the load flow information of the small 

power system, the created large system has no converge diffidties when solving a 

load flow problem. In this case, elaborate variable adjustments are not required. 

Therefore, the proposed technique is very efficient and robust . Our test results show 

that creating a system of thousands of buses takes only a couple of seconds. This 

technique has been successfidly ased in this thesis for eduating the performance 

of different optimisation methods for optimal power flow problems. Nevertheless, 

it skould also fmd other applications in power system analysis where testing of 

algoritluns is necessary on largescale systems. 
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6.2 Data Specifications in the OPF Problem 

Depmding on th& roles in the problem formulation, the data for OPF purpose 

can be classified into tao categories. The first category contains the basic network 

data for load flow purpose, including the netaork topology, the Iùie parameters, 

and the bas data. The second category covers the data rdated to optimization 

process, such as the physical and operating limits on various system components 

and the coefficients of cost hiactions. To formalate an OPF problem, all the above 

data need to be provided. 

Network topology is a graphie representation of a power network with each node 

standing for a generatorfload bas and with each line representing a transmission 

line/transformer. Its structure is defined by the way how those buses are intercon- 

nected tluough transmission h e s  or transformers. Network topology is of great 

importance because it has large impact on the n e h k  sparsity pattern which, in 

turn, affects compatational work as well as memory requlements. 

The line parameters are the data of transmission lines and transformers. They 

include series resistanee and reactance of a transmission line or a transformer, shunt 

sasceptance of the line, and tap ratio of the transformer. The bus data consist of 

Ioads, real and reactive power generations located at every bus. In addition, each 

bus is assigned one of tkee bus types based on its characteristic: (1) load buses 

- with given real and reactive loads; (2) generation buses - with given voltages 

and real power generations; and (3) slack bus - with its voltage and angle fixed. 

These bus types are used in solving load flow problems. 

The physical and operathg constraints inchde lowa and upper litnits of red 

and reactive power generations, trandormer tap ratios and shunt capacitors, the 

load ratings of transmission line and t rdo rmers ,  and limits on voltage. The 
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objective function is normally expressed in terms of total production cost or total 

real power transmission losses. The former can be represented by a quahatic or 

piecenise linear fanction of real-power generations, whereas the latter is described 

as a nonlinear and nonconvex h c t i o n  of voltages and angles. These data are only 

employed during op timization process. 

In sammary, the f o d a t i o n  of the optimal power flow problem not only needs 

the basic network data, consisting of network topology, Iine parameters, and bus 

data, but &O requires the optimization data, such as component physical/operating 

limits and objective funetion coefficients. 

6.3 The Network-Data Creating Technique 

This section starts desaibing an efficient technique for generating realistic large- 

scale power networks. The emphasis is mainly on creating network data for the 

Optimal Power Flow (OPF) problem. Eowever, the data may also serve to test 

algorithms rdated to 0th- types of power system problems. 

6.3.1 The General Approach 

The main idea behind the proposed technique cornes fiom the fact that a bulk power 

network is asually h e d  by a set of local sub-networls interconnected througk tie 

lines. Therefore, a natural approach to create a largescale powa network is to 

connect existing s m d  nehvorks via transmission lines. To make such a aeated 

network more realistic, the building mb-network should be a true power system 

with real network data. The topology of the aeated system is determined by 

the way how sub-networls are inter-connected. It has signifiant impact on the 
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spatsity pattem of the relevant admittance ma& The sparsity of the network 

is controlled through the nnmbet of tie lines aged between any two related mb- 

networks. Because red  power systems are employed as bnüdmg mb-systems, all 

network data of the created system can be inhaited directly fiom the real sub- 

systems whose data are generally available. With the help of sub-system load flow 

resdts, the created system can easiIy get a meaningfd load flow solution withoat 

many adjustment efforts. So, the proposed technique has the advantages of not 

only reducing computational wotk in the network ereating stage but during the 

load flow ran as well. The following sections provide a detailed description on the 

ab ove technique and its implement ation. 

6.3.2 Network Topology and Sparsity 

Graphicdy, a power netaork consists of nodes and lines. The netwotk topology 

defines kow nodes are connected to each other through h e s  (either transmission 

lines or transformers). However, in the proposed technique, each small network 

is treated as a "node". Accordingly, topology means the way how a set of small 

networks are interconnected. Here, two types of power networks are introduced: 

(1) Block network and (2) Mesh networks. 

Figure 6.1 shows a "Bloclc" power network where each arcle represent a snb- 

network and each line represents a tie h e  that connects two related sub-networks. 

In a Block network, connections are not balanced in the sense that there are more 

links in some areas of the system than in the others. On the contrary, in a "Mesh" 

network the connections are more balanced for the entire system, as demonstrated 

in Figure 6.2. To see how the network topology affects matnx sparsity pattern, 

Figure 6.3 displays nonzero elements of the admittance matrix for block and mesh 
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Figure 6.1: A power network with block structure 

Figure 6.2: A power network with mesh structure 

Figure 6.3: Sparsity patterns of admittance matrix: (a) Block and (b) Mesh 
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networks, respectively. In Figure 6.3 (a), one can observe that the matrix is of a 

"Block" strncture with more elements (connections) insîde each block than areas 

outside blocks. UnliLe the uBlock" network, the "Md" network has an admittance 

matrix whose elements (connections) are d o d y  distrïbnted within a certain 

diagonal band, as shown in Figure 6.3 (b). The folloaùig subsections describe the 

approach to generate both network types and the way to control their sparsity. 

Biock Network 

For sùnplicity and efficiency the block network is built in a recursive mamer. On 

every stage of the creation process, the network to be b d t  on the current step is 

constructed by using the sub-network created in the previous step. To be more 

specific, let us use the IEEE118 system as an initial building snb-network to illus- 

trate this procedure. The algorithm starts by connecting several (say 3) IEEE118 

networks with each other to build a large network; then this newly created network 

is used as a building sub-network to generate a even larger network in the next step. 

This process keeps going until the number of buses or system size reaches the desired 

value. In the above procedure, the number of building sub-networks to be ased in 

each step can be adjusted accoràing to system size and sparsity reqairements. 

Mesh Network 

The approach to creating the mesh network is qaite different. Given a required 

system size (the total number of bases), the algorithm first caldates how many 

building sob-networks are needed based on the size of the sub-network cmently in 

use. Rom this information, a topology ma& is aeated with each element repre- 

senting one sub-network. The dimension of the matrix is then chosen to determine 
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the width of diagonal band for the resulting system (see Figure 6.3 (b)). In the 

meantirne, each topology matrix element is assigned a nnmba which will be used 

later to name a11 buses in the related system. Findy, those sab-networks who 

are neighbors of each other are connected through transmission liaes. It should 

be noted that the configuration among sub-networks can be fartha defmed by 

specifying whether those diagonal related sub-network should be connected. 

Network Sparsity 

The network sparsity refers to the sparsity of a network admittance ma&, which 

is largely iduenced by the total numba of lines and transfonaers in a system. 

Although the network topology can affect the sparsity pattern of the matrix, the 

most effective way to control its sparsity is to increase or decrease transmission lines 

aiid/or tramformers used in a system. In the proposed technique, this objective 

can be achieved by controlling the nnmber of tie lines to be used between any 

two related sub-networks. To make these tie-lines more realistic, their connecting 

locations in the sub-networks are selected throagh a random procedure. 

6.3.3 Network Data Creation 

As mentioned earlier, the large-scale network is created fkom a set of small real 

systems whose data are generally available. Therefore, ai l  data of the created 

network (see in Section 3.2) can be quickly dnplicated from those small systems. 

One does not need to specify any of the data d e s s  he/she wants to make some 

changes for a specific purpose. By using the load flow results of the s m d  system, 

the created systern can easily converge to a load flow solution withoat the need to 

adjust its control variables. As a resdt, this approach not only saves compntational 



time daring the network creation bat also when hding its load flow solution. 

In summary, the technique proposed herein can aeate realistic large-scale power 

networks. It dows the tisec to choose four important parameters: 1) network 

topology, 2) network size, 3) netaork sparsity, and 4) slack bus nnmber. The 

topology of a network to be created is chosen by ninning the relevant algorithm. 

The netaork size is dehed as the numba of buses in the system. The algorïthms 

use this parametet to detamine how many sub-netaorks shodd be used in order to 

create a network of specified size. The sparsity of the mahix is controlled by giving 

the number of tie lines used to connect any two sub-networks. Since, originally, 

each sub-network has its own slack bus, one needs to select one of them as the 

slack bus of the entire system for load flow purpose (the rest of the slack buses 

are changed to generation buses). Once these parameters are given, the algorithm 

d automatically create the desired system without the need of any intervention. 

Findy, the created network data is exported to an ASCII file with a specified 

format (see (1031). 

6.4 Summary 

An efficient technique is presented and implemented to create realistic nehrork data 

for power sys tem analysis. The developed dgorithm can generate large-scale power 

networks with the following features: 

The program can create networks with different network dimension, topology, 

and sparsity. 

The program can use any existing real power system as a building snb-network 

to make the aeation process more productive. 
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a The network data can be inherited directly fkom real subnetwork data with- 

ont the need of many adjustments. 

O All sub-networks are randomly connected and real network data are employed 

to make the created system more realistic. 

O The created network can e d y  get a meaninfi load flow solution with no 

convergence difficulty. 

a There is no limit on the size of the netarork that can be generated. 

Our numericd experiments have verified that this algorithm is fast and robast. It 

has been nsed in this thesis research, and has proved to be a very us& tool for 

testing power system programs. 



Chapter 7 

Conclusions 

The main objective of this thesis has been to research and develop the advanced 

interior point methods for the efficient solution of optimal power flow problems. 

Detailed study has been conducted on the real and reactive power dispatch prob- 

lems, i.e., the security-constrained economic dispatch and the minimum transmis- 

sion active-power loss reactive power dispatch. The successive linear progranunhg 

kas been applied to the underlying nonlinear problems, and the resdting hea r  

sub-problems are solved b y infeasible primal-dual interior point methods. The re- 

search on the infeasible primal-dual algorithms has been oriented to explore their 

Ml potential for power engineering problems. Intensive study has focused on all 

issues that idluence the performance of interior point aigorithms as well as succes- 

sive lineatization procedure. The use of sparse linear formulation and techniques 

has been inves tigated to improve the computational efficiency of the algorithm. 

The linear real power dispatch problem has been formulated based on a decou- 

pled load flow modei to improve solution efiiciency. The resulting hear formulation 

involves the variables of only real power generations and phase angles. The min- 
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imization of total production cost has been employed as the objective fnnction of 

the problem. The sectuity constraints on branch 0ow have been considaed to Iunit 

the real powe~ flow on transmission Iines. On the other hand, the linear reactive 

power dispatch problem ha9 been formulated in terms of alI reactive controls and 

state variables, where a fnll load flow mode1 has been nsed to improve the soh- 

tion accnracy. The total real-powa system losses has been chosen as the objective 

function to be minMized during optimization process. Also, the Limits on branch 

power flow have been considered to s a t i e  security constraints. 

The most elegant interior point methods known so far are the primal-dual path 

folloaring algorithms. They enjoy not only the best theoretical complexity but 

also prove computationally very efficient. Two advanced variants in this class of 

IPMs have been studied in detail, namely, the infeasible primal-dual algorithm 

and the predictor-corrector phal-dual algorithm. The major advantage of these 

algorithms is that an initial feasible point is not reqaired to start the algorithm. The 

feasibility of solutions is attained dnring the process as optimality is approacked. 

Both algorithms share the common feature of approximately following the central 

path of the feasible regions except that the former uses the first-order while the 

latter uses the second-order idormation of the primal-dual trajectory. Therefore, 

they can take large step dong search direction to achieve fast objective reduction. 

The algorithms have been extended to incorporate lowa and upper bounds for 

sp ecial needs in our particular application. 

The detailed study of the primal-dual algorithm has indicated that the choices 

of Newton step sizes, initial point, and b e e r  parameter have large a u e n c e  on 

its performance. The size of Newton step determines how much reduction in the 

objective function can be made in each itaation. A consemative step size may 

res trict the progress toward optimality once feasibility of the solution is at tained. 
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The strategy of aggressively incseasing the step size based on feasibility condition 

can avoid the above problem and speed up convergence. An initial point with large 

magnitude nsaally causes a large initial dnality gap which needs more iteratïon 

efforts to reduce. The refined start point with small magnitudes can help conver- 

gence for problems aith small optimal solutions. The bamer parameter should be 

decreased as iterations progress. However, its over-reduction in the early stage will 

cause negative duality gap and slow convergence. In this circumstance, properly 

boosting the bamer parameter can avoid repeated o c 6 g  of such phenornenon 

and Iience smooth op timization process. 

The investigation of predictor-corrector prïmal-dual algorithm has focused on 

those issues that are critical to its efficient implementation, such as the adjustment 

of barrier parameter, the determination of initial point, and the use of multiple 

corrector steps. Some heuristics have been proposed to customize the aigorithm 

parameters to OUI particular application, induding (1) an improved b& param- 

eter adjusting scheme based on feasibility criterion, and (2) a refmed initial point 

procedure using small and balanced prima1 and dual thtesholds. Test results have 

indicated that the proposed ideas significantly improve the algorithm performance, 

reducing over half iterations and solution tirne. Also, it has been fomd that using 

multiple correct ors generally requins less iterations, but its overd performance is 

not as efficient and stable as using one corrector step, especidy for ill-conditioning 

problems. The cornparison with the pure primal-dnal algorithm has been con- 

ducted, which reconfirms the superiority of the predictor-corrector method. 

The practical issues related to successive linear programming have been thor- 

oughly investigated. The iduence of linear step sizes and LP/OPF stopping cri- 

teria has been evaluated on both real and reactive power dispatch problems. The 

in-depth analysis on these issues has found that the proper adjustments of hear  
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steps and tolerances are crucial for achieving fast solution speed whïle maintainhg 

solution accuracy. The strategy of applying a large initial step plus adaptive step 

reduction improves the convergence behavior of successive linear processes (SLP), 

significantly reducing the SLP iterations. In addition, the idea of employing large 

initial LP tolerance and then gradudy decreaàng its valne as linear points approach 

the optimum can Save computational work in solving each linear sub-problem, dra- 

maticdy reducing the total LP iterations, even improving SLP performance. 

The computational bot tleneck of the interior point algorithm is to solve a large- 

scale system of hear equations at every iteration. Therefore, solution speed and 

numerical stability are tao concerns for developing fast and robnst interior point 

algoritluns. In our implementation, the normal equation met hod has been selected 

as the solution method due to its good n d c a l  cliaracteristics. Sparse techniques 

have been applied to every stage in the solution of normal equations. Test resdts 

on large-scale problems have v d e d  the computational efficiency and reliability of 

out developed int erior point algorit hms . 

As part of this r e s e d ,  the recent developments in the simplex technology 

have been investigated to evaluate their impact on power engineering problems. A 

state-of-art simplex code has been used to solve the large-scale real and reactive 

power dispatch problems. Extensive numerical tests have been conducted on such 

advanced featares as preprocessing, scaüng, crashing, advanced base starting, and 

steepest-edge pricings. OUI experience has shown that these advances do improve 

simplex performance significantly. Their influence varies widely, depending on the 

size and nature of the problem under study. h o ,  test resdts have shown that 

combining the advantages of both simplex and interior point methods may be the 

best choice as far as solution speed and information completeness are concerned. 

FinaIly, an efficient network creating technique bas been developed for testing 
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algorithms. The program can generate realistic network data based on any available 

real system. The aeated netnork can be of different size, topology, and sparsity. 

7.1 Recommendations for Future Research 

The research work presented in this thesis ha9 demonstrated the suc ces^ applica- 

tion of interior point algorithms for optimal power flow problems. It also provides 

the possibility of continued research in the following directions: 

1. It kas been observed that using muitiple correctors can Save itaations re- 

quired by the prima-dnal algorithm, provided that the OPF problems have 

good conditioning. Although such savings has little impact on solution time 

for small size problems, it may bring significant benefit for large-scale prob- 

lems where the numerical factorkation is mueh more expensive than the so- 

lution phase. More detailed investigation is necessary to explore its potential 

application. 

2. An attractive featnre of Simplex method is its warm start capability, which is 

very as& when solving similar problems repeatedly, snch as the successive 

linear solution of OPF problems. So f a ,  thae have been little progress in this 

area of interior point dgorithms, especially for power engineering problems. 

Further study shodd be directed toward exploring the possibility of improving 

the algorithm performance through warm start. 

3. In the circumstance where high solution accuracy is required, ewtending the 

algorithms to nonlinear programming shodd be considered. In this case, 

however, the notmal equation method is not suitable for solving the search 



direction. Other methods snch as argamented equation methods shodd be in- 

vestigated. Without lower and npper bounds on most state variables, speual 

techniques of treating those fkee variables may be required to overcome possi- 

ble numerical difficulties. Other issues such as castomiz'ing barrier parameter 

and initial points for nonlinear problems also need to be investigated. 
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