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Abstract

Many applications in power system operations and planning need efficient op-
timization methods to solve large-scale problems within a short period of time.
This requirement is even more pronounced for real-time controls where fast solu-
tion speed is most important. As a major on-line application, the OPF problem is
concerned with using mathematical programming methods to determine a secure
and economic operating condition of power systems. The main objective of this re-
search is, therefore, to develop and systematically evaluate advanced interior point

methods for the efficient and reliable OPF solutions.

In this thesis, the OPF problem is formulated as a constrained nonlinear pro-
gram in terms of all control/state variables, considering both power balance equality
and security inequality constraints. Two particular OPF cases are studied in detail,
namely, the real and reactive power dispatch problems. The minimization of pro-
duction cost is considered as the objective in real power dispatch problems; while
for reactive power dispatch problems, the objective function is the transmission

active power losses to be minimized during the optimization process.

Successive linear programming is used to deal with the nonlinearity of the un-
derlying problems. Consequently, the nonlinear OPF problem is linearized as a
sequence of linear sub-problems, which are in turn solved by using interior point

methods. To better suit the application of interior point methods, the sparse linear

iv



formulations are derived for both real and reactive power dispatch problems, based

on decouple and couple load flow models, respectively.

The study of interior point methods is concentrated on infeasible primal-dual
path-following methods. The derivations of two variants in this class of methods are
presented in detail, namely, the infeasible primal-dual and the predictor-corrector
primal-dual algorithms. Both algorithms are extended for a more general linear
programming problem, considering lower and upper bounds for special needs in our
applications. The search directions produced by these algorithms are analyzed to

better understand the characteristics of interior point methods under research.

To explore the full potential of interior point methods for power engineering
problems, intensive study has focused on all issues that influence the algorithm
performance, such as the adjustment of barrier parameter, the determination of
Newton step length and the initial point, and the use of multiple corrector steps.
Practical issues related to successive linearization procedure are also investigated,
including the choice of the linear step size and the tolerances for linear programming
as well as for OPF procedure. Their effects on OPF performance are evaluated.

As the results of these investigations, several heuristics are proposed to reduce
the number of iterations and to save computational work in every iteration. Ex-
tensive numerical experiments have demonstrated that the OPF solution speed
can be significantly improved by customizing algorithm parameters to the specific
applications under concern. Finally, the use of sparse techniques is investigated in
developing fast and robust interior point codes. Test results on large-scale problems
have confirmed the efficiency and reliability of the algorithms.
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Glossary

The following abbreviations are frequently used in the text of the thesis:

AC
DC

IPM

KKT

LP

NLP

OPF
PDIPA
PC-PDIPA
QP

RPD
SCED

SLP

Alternating Current

Direct Current

Interior Point Method
Karush-Kuhn-Tucker necessary conditions
Linear Programming

NonLinear Programming

Optimal Power Flow

Primal-Dual Interior Point Algorithm
Predictor-Corrector Primal-Dual Interior Point Algorithm
Quadratic Programming

Reactive Power Dispatch
Security-Constrained Economic Dispatch

Successive Linear Programming
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Chapter 1

Introduction

The fundamental mission of a power system is to provide consumers with sustained,
reliable and cost-efficient electrical energy. In order to achieve this goal, system
operators need to constantly adjust various controls such as generation outputs,
transformer tap ratios, etc., to assure the continuous economic and secure system
operations. This is a difficult task that relies highly on the optimal power flow
(OPF) function at power system control centers [15]. The OPF procedure consists
of using mathematical methodology to find the optimal operation of a power system
under feasibility and security constraints. It has been considered as a basic tool for

determining secure and economic operating conditions of power systems.

The optimal power flow problem can be traced back as early as 1920’s when eco-
nomic allocation of generation was the only concern [47]. The economic operation
of power systems was achieved by dividing loads among available generator units
such that their incremental generation costs are equal. This was a rather simple
problem where only operating limits on real power generations were considered and

the effect of system losses was either neglected or approximated by penalty factors
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calculated from the loss formula or load flow Jacobian matrix [96].

As power systems became increasingly large and complex, the security became
an important issue, which requires more detailed system models. On the other hand,
the evolution of digital computers made such detailed modeling become possible.
In 1962, Carpentier for the first time established the OPF problem on a rigorous
mathematical base [14]. He formulated it as a constrained nonlinear programming
problem and derived its optimality conditions using the Kuhn-Tucker theorem. In
his formulation, the OPF problem is expressed in terms of all control and state
variables, with both network and security constraints. The objective function can

be total generation cost or transmission losses, depending on a specific application.

In the past three decades, various optimization techniques have been proposed
to solve the OPF problems. They range from improved mathematical techniques
to more efficient problem formulations [16, 82, 22]. According to different models
in use, the OPF methods can be classified as non-compact methods where network
sparsity is retained, or compact ones in which the state variables are expressed in
terms of control variables using various sensitivities. Based on the applied math-
ematical optimization, the OPF methods can be categorized as Nonlinear Pro-
gramming (NLP), Successive Linear Programming (SLP), and Non-conventional

techniques. A brief review on the OPF developments is provided next.

The gradient methods, using only first-order information, were initially used for
the solution of OPF problems [14, 24]. These methods are characterized by slow and
unreliable convergence. Soon after, the quadratic programming (QP) approaches
were proposed, which use the second-order derivatives to improve the convergence
of the gradient methods. Their distinct feature is that they use the Quasi-Newton
process to iteratively approximate the Hessian matrix and, thus, avoid the difficulty
in explicitly calculating the second derivatives of the load flow equations [49, 77].
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However, the reduced Hessian so created is dense, which may make these methods

too slow as the number of control variables becomes very large.

As the demand for faster and more stable techniques grew, a more accurate
representation of the second-order information became essential. Lagrangian tech-
niques with the exact Hessian matrix regained engineers’ interest. Although these
methods were proposed as earlier as 1960’s, few were either reliable and fast until
Sun et al. [84] introduced a Newton approach combined with Lagrangian techniques
and penalty functions. With efficient data structure and sparse techniques, Sun’s
algorithm became very attractive and successful at the time. The major difficulty
in this algorithm development turned out to be the efficient identification of binding

inequality constraints.

Recently, the linear programming (LP) techniques have been proposed to solve
the OPF problem [4, 82]. These methods are based on the linearization of OPF
constraints and the objective function. An incremental model is created and a
proper LP method is applied. As the linear model gives satisfactory results only
in a small neighborhood around the base point, a successive refinement procedure
is usually needed to improve the accuracy of the solution. Despite this, many
applications have proved that linear programming methods are computationally
very efficient and reliable with ease of handling inequality constraints. They appear
to be a good compromise between solution speed and accuracy [80, 81, 98]. Linear
programming will be employed in this thesis as the solution method for nonlinear
OPF problems.

The popularity of linear programming approaches is also due to Karmarkar’s
paper on an interior point method [51]. His main idea is to solve a constrained prob-
lem as a sequence of unconstrained sub-problems based on three theoretical com-

ponents [97]: Fiacco & McCormick’s logarithmic barrier method for optimization
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with inequalities, Lagrange’s method for optimization with equalities, and New-
ton’s method for solving the nonlinear equations of Karush-Kuhn-Tucker (KKT)
optimality conditions. With their nice polynominal complexity plus computational
efficiency, interior point methods have proved much faster than the traditional sim-
plex methods for large-scale problems, and have become a candidate for many ap-
plications [3, 61, 57]. Their promising results in recent OPF applications [94, 97, 45]

have also motivated the current thesis research.

As OPF algorithms became faster and their on-line applications became re-
alistic, techniques for OPF solution tracking, after system topology and/or load
changes, were developed and applied. Parametric linear or quadratic programming
and the continuation method are just a few examples of these techniques [15, 50].
In the meantime, non-conventional methods such as fuzzy modeling and control
gave very interesting applications, introducing a new dimension for OPF research
and developments [1, 66]. Current OPF algorithms and computer programs demon-
strate speed and complexity never seen before. Yet, numerical stability, flexibility

in applications, and real-time capabilities are still an issue.

1.1 Motivation

This thesis is concerned with the potential application of interior point methods
in the successive linear solution of optimal power flow problems. More specifically,
the main objective of this research is to develop and systematically evaluate the
infeasible primal-dual path-following algorithms for the efficient solution of real and
reactive power dispatch problems. Although interior point methods have received
intensive study and achieved significant developments, there are still several ques-

tions that deserve more research to further improve the performance of the methods.
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These issues include how to dynamically adjust the barrier parameter and Newton
step length, how to effectively choose an initial point to reduce the number of iter-
ations for the specific type of problems, and how to explore the problem-dependent
data structure to solve linear system of equations more efficiently. In order to ex-
ploit the full computational potential of interior point methods for power system
optimization problems, it is essential to investigate all issues that influence the per-
formance of the algorithms. The following provides the motivation underlying the

present thesis.

o The critical need for a fast and reliable solution of large-scale optimization

problems in power system operations, especially in real-time controls.

e The current successful applications and experience on using linear program-

ming to solve various nonlinear power engineering problems.

e The attractive properties of linear programming methods in terms of the

solution efficiency and reliability.

e The large-scale problem solving capability of interior point methods due to
their polynominal complexity and computational efficiency, as evidenced by

the encouraging results in many applications.

o The reality that the linear programming method based on infeasible primal-
dual path-following algorithms has not been systematically evaluated in power

system applications.

e The lack of thorough investigation and analysis on various implementation

issues of interior point methods for power engineering problems.
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e The performance of the algorithms is closely related to several factors such as
barrier parameter, initial point, Newton step length, etc. Therefore, customiz-

ing these factors to a specific application can possibly speed up convergence.

e To the author’s knowledge, the influence of linear step size and convergence
tolerances on interior point algorithms as well as SLP procedure has not been

thoroughly investigated.

e In power engineering, the systematical evaluation of advanced simplex tech-
niques and the comparison of their relative performance with interior point

methods have not been done yet.

1.2 Outline

Chapter 1 starts by introducing background materials about the OPF problem.
Recent developments in OPF techniques are briefly reviewed. Based on this in-
formation, the motivation is given to carry on the proposed research. Then, the

outline of the thesis is described and the author’s contributions are summarized.

In Chapter 2, the OPF problem is formulated as a constrained nonlinear program
in terms of all control and state variables, considering both power balance equality
and security inequality constraints. Two particular cases of OPF problems are
studied in detail, including security-constrained economic dispatch (SCED) and
minimum transmission active-power loss reactive power dispatch (RPD) problems.
The sparse linear formulations for both SCED and RPD problems are derived based
on the decouple and complete load flow models, respectively. An iterative strategy

is described to refine the successive linear solutions of OPF problems.
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The interior point methods are presented in Chapter 3, where a brief review
of their recent progress is included. Then, two advanced interior point methods
are studied in detail, i.e., infeasible primal-dual algorithm and predictor-corrector
primal-dual algorithm. The complete derivations for both algorithms are provided,
incorporating lower and upper bounds to meet our special requirements. The com-
mon features as well as individual characteristics of the algorithms are analyized.
The important issues associated with their implementations are discussed, including

the choices of Newton step size, barrier parameter, initial point, and so on.

Chapter { presents experimental results of the real and reactive power dispatch
problems using the proposed interior point algorithms. Detailed investigation is
conducted on those implementation issues to evaluate their impact on the perfor-
mance of the algorithms. Also, practical issues related to successive linear pro-
gramming are studied in detail, including the adjustments of linear step size and
stopping criteria. In addition, the use of sparse matrix techniques is considered to

improve the computational efficiency and reliability.

In Chapter 5, numerical experience on using advanced features of a state-of-the-
art simplex code is presented. The recent developments in the simplex technology
are thoroughly investigated, such as preprocessing, scaling, crashing, steepest-edge
pricings and so on. Their influence on large-scale real and reactive power dispatch
problems are evaluated. Then, the comparison of relative performance between
this simplex code and a predictor-corrector primal-dual interior point algorithm is

conducted, and the numerical results on 118 to 2124 bus systems are discussed.

For testing algorithms, Chapter 6 describes an efficient technique to create large-
scale realistic network data. Finally, Chapter 7 summarizes the conclusions of this

work and provides recommendations for future research.
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1.3 Contributions

To the author’s knowledge, the main contribution of this thesis has been the de-
velopment and systematic evaluation of advanced interior point methods for the
successive linear solution of optimal power flow problems. This contribution in-

cludes the following aspects:

1. The detailed derivation and numerical analysis of the infeasible primal-dual
and the predictor-corrector primal-dual algorithms, where both lower and up-

per bounds are considered for special needs in OPF applications.

2. A thorough investigation of the primal-dual algorithm on such implementa-
tion issues as the choices of Newton step size, barrier parameter, and initial
point. The proposed heuristic strategies of adaptively changing these param-

eters have proved very effective in speeding up convergence.

3. Intensive study on the predictor-corrector algorithm has been carried out to
evaluate the influence of barrier parameter, initial point, multiple correctors.
The ideas of customizing these parameters to OPF applications have improved

the algorithm performance dramatically.

4. The practical issues associated with the successive linear programming (SLP)
have been investigated to evaluate their impact on the interior point algo-
rithm as well as SLP procedure. Extensive numerical experiments have shown
that the proper adjustments of linear step size and tolerances are crucial for

achieving fast solution speed while maintaining solution accuracy.

5. The bottleneck of interior point methods is to repeatedly solve the Newton

equations for search directions. The use of sparse matrix techniques for such
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equations has been investigated, which concludes that the normal equation

method can produce fast and reliable solution.

6. The recent developments in simplex technology has been investigated to eval-
unate their impact on power engineering problems. Comparison between the
state-of-the-art simplex code and advanced interior point algorithms has been
conduced on large-scale OPF problems.

7. An efficient technique has been developed to create realistic network data of
different size, topology, and sparsity for testing algorithms.



Chapter 2

Optimal Power Flow Problem

2.1 Introduction

The operator of a power system is constantly facing the problem of adjusting a
set of its variables, such as generator power output and terminal voltage, in order
to assure the continued economic and secure operation of the system. This is a
very difficult task that is usually done through the optimal power flow function
performed by computers at utility control centers [15]. An optimal power flow
procedure determines the optimal steady-state operation of a power system so as
to minimize a chosen objective function and satisfy certain physical and operating
constraints. The effectiveness of such a control function is not only dependent on
the appropriate problem formulation but also on the efficiency of mathematical
programming techniques.

This chapter describes the optimal power flow problem and its general solution
procedure. The optimal power flow problem is formulated as a constrained non-

linear program in terms of all power system control and state variables [14]. Its

10
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constraints include power balance equality and security inequality constraints. In
order to reduce the problem size and complexity, the optimal power flow problem
is decomposed into the real and reactive power dispatch problems based on the de-
coupling effects between the real power/phase angle and the reactive power/voltage
magnitude [77]. In this thesis, two particular cases of optimal power flow problems
are studied: (i) the security-constrained economic dispatch; and (ii) the minimum

real-power transmission loss reactive power dispatch.

In a security-constrained economic dispatch, the total generation cost is mini-
mized by rescheduling the generator real power outputs while keeping the real power
balance and security constraints satisfied. Since the impact of voltage magnitudes
on the real power scheduling is negligible, a simplified DC load flow model is used
to improve the solution efficiency. In the case of a reactive power dispatch, the
total real-power losses are minimized by adjusting the generator terminal voltage,
transformer tap ratios and shunt susceptance. At the same time, the real/reactive
power balance and security constraints are reinforced. Due to its highly nonlinear
nature and strong coupling between voltage and phase angles, the reactive power

scheduling is simulated by an AC load flow model to improve its solution accuracy.

Linear programming has been widely used in solving nonlinear power system
optimization problems. It has been shown that the linear approach is reliable, fast
and sufficiently accurate in most applications [82]. Hence, a linearization method
is applied in this thesis to deal with the nonlinear optimal power flow problems.
Consequently, each of the above real and reactive power dispatch problems are
solved as a sequence of linear sub-problems which, in turn, are solved by linear
programming methods. To reduce the computational burden, the sparse linear

techniques are used for the solution of each linear sub-problem.
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2.2 General Problem Formulation

The optimal power flow (OPF) is to maintain the optimal steady state operation
of a power system by adjusting a set of control variables while satisfying certain
operating and security constraints. It is a typical nonlinear programming problem

that can be mathematically expressed as

min f(z)

subject to
g(z) =0 (2.1)
hi < h(z) < hy

n<z<z,

This problem is formulated in terms of all power system control and state vari-
ables (z) which comprise real/reactive power generations, phase shifters, shunt
susceptance, transformer taps, and voltage angles and magnitudes. The equality
constraints g(z) = 0 stands for the power balance equations while the inequality
constraints are physical and operational limits. The objective function f(z) is usu-
ally the total power generation cost or the power system losses, depending on the

application.

Due to the size and complexity of the problem, it is a common practice to de-
compose the optimal power flow problem into real and reactive power problems
(77, 18]. This decomposition is based on decoupling the effects of real power/phase
angle from reactive power/voltage magnitude. Each of the problems can be ap-
proximated by a linear or quadratic programming model and solved by an iterative
scheme to a desired accuracy. In the next section, two particular cases of optimal
power flow problems are discussed, i.e., the security-constrained economic dispatch,

and the minimum real-power transmission losses reactive-power dispatch.
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2.2.1 Security-Constrained Economic Dispatch

In the security-constrained economic dispatch the real power outputs of generators
are to be determined by minimizing the total operating cost subject to the power
balance equality constraints, the security inequality constraints, and the generator
operating limits on real power output. The reactive power controls, such as gen-
erator terminal voltages, shunt susceptance and transformer taps, are assumed to
be fixed. By eliminating the effect of voltage magnitudes, the real power dispatch
problem is formulated as follows:

min 3°2%, Ce(Por)

subject to

YkE, Por = Pp + Pr(0) (2.2)

Fmin < F(8) < Fma=

P < Pg < Pge=

where
n;, — the total number of buses;
ng — the number of generators;
n; — the number of transmission lines;
Pg — an ng x 1 vector of real-power generations;
Ci. — the production cost ($/hr) of the k-th generator;
Pp — the total real-power demand;
P; — the total real-power network losses;
F — an n; x 1 vector of transmission line flows;

6 — an ny % 1 vector of voltage phase angles;

Superindices min and maz stand for the lower and upper limits of relevant

variables. Note that in formulation (2.2) the generation cost Ci(Pgr) is expressed as
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either a piecewise linear or quadratic function of real power generations; the network
losses Pr(6) and the branch flow F(#) are the nonlinear and nonconvex functions of
voltage angles. Note also that the real power balance equation is in a compact form
which can be replaced by a set of the real power load flow equations. Depending
on which form the power balance equation takes, the resulting formulation is called
either a compact modeling or a sparse modeling [15]. In this thesis the sparse
formulation is used to solve the real power dispatch problem because it is more

suitable to the application of the interior point methods, as shown in Chapter 3.

2.2.2 Reactive Power Dispatch

In the reactive power dispatch the real power generations (except on the slack bus)
are assumed fixed. The reactive power controls, such as generator terminal voltages,
shunt susceptance and transformer taps are to be determined by minimizing the
total system losses, subject to the load flow equality constraints, the operating
limits on voltages and reactive power generations, and the physical limits on shunt

susceptance and transformer tap positions. The problem can be formulated as

min Pp(Qg,t, b, V, 6)
subject to

Q(Qe,t,5,,V,0) =0

P(Qg,t,b,,V,0) =0

Fmin < F(V,0) < Fmee (2.3)

QE™ < Qe < Q&=

ymin LV L Yma=

byn < b, < bpe=

it < ¢ < pmaz
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where
n, — the number of shunt susceptance;
n; — the number of tap-changing transformers;
Py — the total real-power network losses;
Q¢ — an ng-vector of reactive-power generations;
V' — an m;-vector of bus voltage magnitudes;
b, — an n,-vector of shunt susceptance;
t — an n-vector of transformer tap ratios;
8 — an ng-vector of voltage phase angles;

P, @ — (ny — 1)-vectors of power flow equations;

The rest of the parameters are the same as those in the last section. It should be
pointed out that the reactive power balance equations in (2.3) are different from the
conventional load flow equations, because in the former case the control variables
are to be determined, whereas in the latter case most of them are assigned a given
value. Another notable point is that the system losses is a nonlinear and nonconvex
function of bus voltages. Moreover, the loss function has a strong coupling between
voltage and phase angles. As a result, the reactive power dispatch problem is

relatively difficult to solve, comparing to its real power counterpart.

In order to remove the phase angle coupling, some suggestions have been made
to transform the state variables in terms of the control variables, based on various
sensitivity models [74]. However, the calculations of those sensitivities usually in-
volve the computation of an inverse matrix which is not trivial task for a large-scale
problem. Also, any changes in the system configuration will result in the complete
recalculations of all parameters. In addition, due to some simplification made in

the model, the results may not be accurate enough. To avoid these difficulties,
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the original formulation (2.3) is used in this thesis for the solution of the reactive
power dispatch problem. Since this formulation is very sparse, it allows various
sparse techniques to be used to exploit the problem data structure.

2.3 Linear Security-Constrained Economic

Dispatch

In the security-constrained economic dispatch (SCED) the minimization of the total
production cost is accomplished by regulating the real power outputs of generators.
It is a nonlinear problem in nature that can be solved through successive linear
programming. In this section, a linear model for the SCED problem is derived.
To reduce the problem size without affecting the solution accuracy, the following

assumptions are used during the linearization:

e All reactive power controls are kept constant and, therefore, are not consid-
ered in the linear model. These controls include generator terminal voltages,

transformer taps, and switchable shunt susceptance.

e The changes in the voltage magnitude and reactive power due to the real

power controls are considered negligible.

Consequently, the linear real power dispatch model involves only the variables of
real power generations and voltage phase angles. Its constraints include the real
power balance equalities, the line flow security inequalities, and the operating limits
on real power generations. In addition, a step length limit is imposed on phase
angle changes to assure the validity of the linear model. The detailed formulation

is described in the following subsections.
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2.3.1 Generation Cost Objective Function

The objective function of the security-constrained economic dispatch is the total
generation cost which is the summation of the cost involved by all generators. The
production cost of each generator can be expressed as a quadratic function of its

real power generation[46]:
Ck(PGk) =ap + b * Pgr +cp * Pék (2.4)

where Pgy is the real power output of the k-th generator; and the scalar ag, by,
and ¢ are the coefficients of the constant, first-order, and second-order terms,
respectively. By differentiating equation (2.4) with respect to the real power output,
the linear incremental cost function will be

ACr(APgr) = (bi + 2 * cr ¥ Por)APgy (2.5)

Finally, the total incremental cost of the problem becomes

ne

AC(AP) = Z(b" +2%cp * Pak)APGk (2.6)
k=1

where n¢ is the number of generators in a power system.

2.3.2 Real-Power Balance Constraints

In the steady-state operation of a power system, the real and reactive power balance
must be maintained, which means that at any time the power generations meet
all load demands plus the network losses. This balance condition should also be
satisfied in determining the optimal operating state of the system. The power

balance condition is usually described by the following load flow equations [46]:
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P: = V!Ga+ Vi) Vj[Gijcos(6; — 0;) + Bysin(6; — 0;)] i=1,...,my (2.7)
jes
Q; = -—V:—zB,'{ + ‘/iz I’j[G;j sin(ﬂ.- - 95) - B,'j COS(G; — 05)] 1=1,..., n5(2.8)
jei

where Gy, G;ij, Bi and B;; are elements of the real and imaginary parts of the
bus admittance matrix Y = G + jB; V;, V;, 0; and 6; are the magnitudes and
phase angles of the voltages at bus ¢ and j, respectively; P; and Q; are the real and
reactive power injections at bus i. The symbol j € 7 under the summation sign

refers to all the buses (j) that are connected to bus :.

In the security-constrained economic dispatch problem, since the changes in the
voltage and reactive power are negligible, only the real power balance equations
(2.7) are considered as the equality constraints. Notice that the power injection P;
is defined as the generation minus the load on the bus i; thus, equation (2.7) can
be rewritten as

V2Gi + V; ) V;[Gijcos(8; — 6;) + B;jsin(6; — ;)] — Pai + Pri =0 (2.9)

J€i
where Pg; and Pj; are the real power generation and the load demand at bus 2,
respectively ( Pg; = 0 for a nongeneration bus). Considering power generations
and phase angles are unknown variables and all other variables are constant, the
linear incremental model of the power balance equation (2.9) can be derived from

its first-order Taylor expansion:
HAG — APz =0 (2.10)

where H is the part of Jacobian matrix, whose elements are defined as following:

fIi‘ = 31;' = K E I’j[-G;j sin(0,~ b 0_,-) + B;j cos(0,» bl 05)] (2.11)
J jei
OP; .
Hy = oo= = V.V;[G;jsin(6; — 65) — Bijcos(d; — 6;)] (2.12)

59,
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2.3.3 Real-Power Security Constraints

The security constraint refers to the thermal ratings of the transmission lines. These
thermal limits should not be violated in order to keep the system operating safely.
Therefore, the actual power flows on transmission lines should be restricted below
the above limits:

IRl <FM= or —Fr=<R<F™  1=12...m (2.13)

where F; and F{™** are the line flow and thermal rating of the I-th transmission
line. The branch flow Fj is the function of the voltages and phase angles on its two
connecting buses. It can be derived from the 7 equivalent circuit of the transmission

line and expressed as follows:

Fi= P +@Q} (2-14)

and

P = V2gu — ViVi[gi cos(8; — Or) + by sin(8; — 6i)] (2.15)
Q: = —V2(bi + bix) ~ V:Vie[gir sin(6; — 0x) — b cos(8; — 6:)]  (2.16)
where subscript 7 and k are the two terminal buses of the /-th transmission line;
gix and by are the real and imaginary parts of the series admittance, and b; is the

half shunt susceptance of the line. Neglecting the changes in voltages and reactive
powers, the first-order Taylor expansion of equation (2.14) is

Fi = F© + w;A6; + w,. Al (2.17)
where
1 OB . (0)
wy = }?5;55" = ViVilgix sin(6; — 0e) — bix cos(8; — 6i)]/ Fy (2.18)
W = 1_oh = —V;-n[g;k Sin(a,' - 01‘) — b cos(0,- - Ok)]/F‘,(o) (2.19)

7 56
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Finally, the linear incremental form of functional constraint (2.13) becomes
AF™™ < wiAb; + weAG < AF™* (2.20)

where AF™" = —Fpa= .
AR = Fpos - R,
and F,(o) is the line flow at the current linearization point for the real power dispatch

problem.

2.3.4 Summary of Linear SCED Formulation

The linear formulation of the security-constrained economic dispatch problem can

now be explicitly stated as follows:

min cTAPg

subject to
HAO — APz =0
AF™™ < WAS < AF™=
APZ" < APz < APRe=
Ad™" < AG < Af™e=

(2.21)

where the components of the vectors are defined as

Af; is the variation of the voltage phase angle at bus :.

APg; is the variation of the real power generation at bus k.

¢k is the incremental cost coefficient of generator k, which is determined by (2.5).
H;, H;; are the coefficients of power balance constraints, given by (2.11 - 2.12).
wi;, wi; are the coefficients of security constraints, defined by (2.18 - 2.19).

The above formulation is obtained based on the use of the DC load flow model.
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2.4 Linear Reactive Power Dispatch

In the reactive power dispatch the minimization of total network losses is accom-
plished by controlling generator terminal voltages, shunt susceptance and trans-
former tap ratios. It is the nonlinear and nonconvex problem which can be solved
by using linear programming method. Unlike the real power scheduling, the reac-
tive power scheduling is more difficult to solve due to its highly nonlinear nature
and strong coupling between the voltage and phase angle. In order to simplify
the problem without sacrificing its solution accuracy, the following assumptions are

used in deriving the linear reactive power dispatch model:

e The real power controls, i.e., the generator real power outputs, are kept fixed
except for the generation on the slack bus. Therefore, they are not considered

as variables in the linear model.

e The changes in the real power flow directly caused by the reactive power
controls can be ignored. These controls include shunt susceptance and trans-

former tap ratios.

The second assumption is made because of the fact that, after the real power
scheduling has been done, the real power flow is determined. In this case, the trans-
mission losses are mainly caused by the reactive power flow on the network. The
reactive power dispatch reduces the transmission losses by better allocating reactive
power sources, which improves the system voltage profiles and, thus, eliminates the
unnecessary reactive circulation in the network. As a result, the reactive controls
have little impact on the real power distributions. Based on the above assumptions,

the detailed linear formulation is derived as follows.
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2.4.1 Real-Power Transmission Loss Objective Function

The objective function of the reactive power dispatch is the total real-power trans-
mission losses dissipated in a power network. Since the power losses are defined as
the total generations minus the total loads of the system, it can be evaluated by
adding all the bus real power injections [96]:

n
PL=) P (2.22)
=1

where Py, is the total real power losses of the system; P; is the real power injection at
bus ¢, which is defined as the generation minus the load on that bus. By substituting
P; with equation (2.7), the real power losses can be expressed in terms of bus

voltages and phase angles:

1y
Pp =) {V?Gi + V;Y_ Vi[Gij cos(6; — 6;) + Bijsin(6; — 6;)]} (2.23)
i=1 jEi

Note that for a given bus i, the items with subscript ¢j in its inner summation
of equation (2.23) are related to a transmission component between bus z and bus
j. Similarly, for bus j, there are also the same items with subscript ji, except that
the phase angle order is reversed. Therefore, the cos items are retained but the sin

items are canceled by each other. As a result, equation (2.23) is reduced to

ny
P, = Z[V?G;; + V,z V,’G{,’ cos(a,' - 3_,)] (2.24)
=1 JE

By differentiating equation (2.24) with respect to the voltage and phase angle,

the linear incremental loss function can be obtained as

AP, =cTA8+ cTAV (2.25)
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where
3 J-Gt-
aPr,
Cu = = 2ViG;; + 2 V;Gi;j cos(0; — 6;) (2.27)
% jei

2.4.2 Real/Reactive-Power Balance Constraints

Although real power changes caused by reactive controls can be neglected, the real
power balance equations still need to be satisfied due to the variation in voltages
and phase angles. Therefore, both real and reactive power balance equations are

considered in the reactive power dispatch problem.

Real Power Balance Constraints

The linear form of real power balance constraints can be derived in a similar way as
the case in the security-constrained economic dispatch, except that voltage changes
have to be considered. In addition, since the real power generations are kept con-
stant, they are not included in the linear model. Consequently, the real power

balance equation (2.9) can be linearized as
HAO + NAV =0 (2.28)

where H and N are the part of Jacobian matrix; the elements of H are defined by
(2.11)-(2.12); and the elements of N are calculated as follows:

OF; .

N = 6‘/: = 2V.G; + % ‘G[G.J cos(O; - 0,’) + B,'j sm(ﬂ,- - 0,')] (2.29)
dP; .

Ni; = o = Vi[Gsjcos(8; — 8;) + Bijsin(6; — 6;)] (2.30)

9V;
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Reactive Power Balance Constraints

The reactive power balance constraint is more complex than its real power counter-
part, because it contains not only voltages and phase angles but also the reactive
controls, such as reactive power generations, switchable shunt susceptance and tap-
changing transformers. Its complete formulation can be obtained by extending the
reactive power load flow equation (2.8) to include all the above variables:

~V2Bi + V: Y V;[Gijsin(8; — 6;) — B;; cos(6; — 6;)]+

Jj€i

—Qci + Qri + Qsi(bai) + Qri(ts) =0  i=1,2,...,n; (2.31)

where Qg; and Qr; are the reactive power generation and load at bus 7, respec-
tively. Qs; and Qr; are the reactive power consumptions that are determined by
shunt susceptance b,; and transformer tap-ratios ¢;. The linear incremental form of
the reactive power balance equation is then obtained by differentiating the above

equation(2.31) with respect to all variables:
JAG + LAV — AQe + SAb, + TAt =0 (2.32)

where J and L are the part of Jacobian matrix. Their elements can be derived
from (2.8) as the derivatives of the reactive power injection versus the phase angle

or the voltage,

Q

Qs

Ta = g =W Ze: V;[G:; cos(8; ~ 6;) + B;; sin(8; — 65)] (2.33)
t J' {3

aQ: .

Jij = 29, = ~V;V;[G:; cos(8: — 8;) + Bijsin(8; — 6;)] (2.34)
3Q:

Li = ‘a'% =-2V;B; + g V,[G,, sin(o,' - 9_,’) - B.-j cos(a,' - 0,‘)] (2.35)

JE€s

3Q: :

Lij = = K[G;, Slll(Oi - 0,') - B"j 008(0.’ - 0,)] (2.36)

v;
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And S is a diagonal matrix whose elements are the reactive power sensitivities with
respect to the changes in the switchable VAR source:

= %0s —V2Ab,; (2.37)

Si= G

The elements of the matrix T are the sensitivities of the reactive power change
with respect to the transformer tap change. They can be derived from its 7 equiv-
alent circuit. Assuming a transformer is connected between bus i and j with tap
ratio ¢; and admittance g;; + jb;;, its basic reactive power equation can be expressed

as

Qr:i = —V2by/t? — ViVj[gsjsin(6; — 8;) — by cos(6; — 8;)]/t:  (2.38)
Qr; = —V}bi; + ViVj{gijsin(6; — 6;) + bi; cos(6; — 6;)]/t: (2.39)

where Q7; and Qr; are the reactive power going into the transformer from its two
terminal buses. Then, the reactive power sensitivity with respect to the tap change

is obtained by differentiating the above equations against the transformer tap ratio:

I = QBQ% = 2V%bi; /1] + ViVj[gijsin(8: — 8;) — bi; cos(6: — 6;)]/t} (2.40)
dQr; .
T = g: = —~ViV;lgijsin(6; - 6;) + b;; cos(6; — 8;)\/¢} (2.41)

2.4.3 Reactive-Power Security Constraints

The security constraints on branch flows can be derived from the line fiow equations
presented in Section 2.3.3. However, since the real power controls are not changed,
the real power flow can be assumed constant. Therefore, only reactive power flows
are considered in the security constraints. In addition, due to their coupling effect,

both voltage and phase angle become variables in these constraints.
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Neglecting the changes in real power flows, the first-order Taylor expansion of
line flow equation (2.14) is

Fi = F® + miA6; + mu A6, + dAV; + di AV, (2.42)

where m;, mg, d; and di are the line flow sensitivity coeflicients with respect to
the changes in the phase angle and voltage. They are calculated by differentiating
equation (2.14) and (2.16) against phase angle and voltage, respectively,

i A %% = —ViVilga cos(8: — 6) + bu sin(6; — 0)]/F®  (2.43)
1 80, . ©
SO T Vi Vi[gie cos(8; — Oi) + bix sin(6; — 6x)]/ Fy (2.44)

& =~ %%% = {—2Vi(bs + by) +
—Vi[gie sin(8; — 6k) — b cos(8; — 6:)[}/ F®  (2.45)
d =~ F;ﬁg_% = —Vilgie sin(6; — 0c) — b cos(8; — 8)|/F"  (2.46)

Finally, the linear incremental form of functional constraint (2.13) becomes
AF™" < miA0; + mpAby + L;AV: + d AV < AF™ (2.47)

where AFR™™ = _fmaz __ )
AF™* = Fma=z _ FI(O)§
and F,(O) is the line flow at the current linearization point for the reactive power

dispatch problem.
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2.4.4 Summary of Linear RPD Formulation

The linear problem formulation for the minimum transmission loss reactive power

dispatch can then be presented as follows:

min ¢ A6 + cTAV
subject to
HA8+ NAV =0
JAO + LAV — AQg + SAb, +TAt =0
AF™" < MA8 + DAV < AF™e= (2.48)
AQE™ < AQg < AQE™
AV™™ < AV < AYmes
Ab™™ < Ab, < AbT®
At™" < At < At™e=

where the components of the vectors are defined as

Af;, AV; are the variations of the voltage magnitude and phase angle at bus 1.
AQgr is the change of the reactive power generation at bus k.

Ab,; is the variation of the shunt VAR source at bus j.

Aty is the tap-ratio change of the transformer at bus k.

Cuk, Cor aTe the loss sensitivity coefficients with respect to the voltage and angle
changes at bus k. They are determined by (2.26 - 2.27).

H,N,J,L are the sub-Jacobian matrices whose elements are the coeflicients of
power balance constraints, given by (2.11 - 2.12), (2.29 - 2.30), and (2.33 - 2.36).
S, T are the reactive power sensitivity matrices with respect to the changes in VAR
sources and transformer taps, determined by (2.37) and (2.40 - 2.41)

M, D are the line flow sensitivity matrices; their element are coefficients of security

inequality constraints, defined by (2.43 - 2.44) and (2.45 - 2.46).
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2.5 General Iterative Solution Strategy

We have presented the linear formulation for the real and reactive power dispatch
problems, in particular, the security-constrained economic dispatch (SCED) and
the minimum transmission loss reactive power dispatch (RPD) problems. For the
SCED problem, a decoupled load flow model is used to reduce the problem size and,
therefore, improve the solution efficiency. As a result, the linear SCED formulation
involves only the variables of real power generations and phase angles. The problem
constraints considered include the real power balance equations as well as the real

power security constraints on the transmission line flows.

For the RPD problem, however, a full load flow model is adopted to deal with its
highly nonlinear nature and strong phase-angle coupling. Some simplifications are
made to reduce the computational work without sacrificing the accuracy. Conse-
quently, the linear RPD problem is formulated in terms of all reactive power controls
plus voltages and phase angles. Both real and reactive power balance conditions
are used as the equality constraints. Also, the reactive power security constraints
are included to relieve the overloading of transmission lines. The distinct feature
of the above linear formulations is that the network sparsity is retained. Therefore,

various sparse techniques can be used to explore the problem data structure.

Due to their nonlinear objective function and constraints, both the SCED and
RPD problems are nonlinear programming problems. The linear formulations pre-
sented above are only approximations to the original problems. The validity of these
models is limited to a small region around a given operating point. Therefore, an
iterative procedure is required to update the system operating point as well as the
linear models used in the problem formulation. Then, a sequence of the problem

solutions can be attempted to determine the optimal solution for the original non-
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linear programming problem. In the meantime, a power flow solution should be

obtained at every iteration to update the current system operating status.

Note that since the real power dispatch has more economic benefits than its
reactive power counterpart does, a practical way is to make the economic generation
scheduling first and then do the reactive power scheduling. This common practice
is also followed in our solution strategy, i.e., the SCED problem is solved and, then,
followed by the RPD problem. Each of these nonlinear problems is solved using
the above successive linear programming procedure. The iterative steps involved

are described briefly as follows.

step 1 Input the network data such as transmission line and transformer parame-

ters, the generation and load at each bus, etc.

step 2 Run a load flow program to set up an initial operating point or update the

current operating point.

step 3 Check the feasibility and optimality conditions. If the convergence is achieved,

then stop; otherwise proceed to the next step.

step 4 Formulate the linear model of the optimal power flow problem by using
either decoupled or full load flow equations. A step length limit is imposed
on the variation of each variable to assure the validity of the model.

step 5 Solve the linear sub-problem by using the advanced interior point algo-
rithms described in Chapter 3. If the sub-problem is found infeasible, then

the original problem is considered infeasible and the execution stops.

step 6 Once the optimal solution of the sub-problem is obtained, the set of system
control variables are updated and then go back to step 2.



Chapter 3

Interior Point Methods

3.1 Introduction

In the successive linear solution of the optimal power flow problem presented in
Chapter 2, the most intensive computation part is the repeated solution of sub-
linear programming problems. Therefore, to reduce the overall solution time it is
essential to use an efficient mathematical programming method. In the last decade,
interior point methods have become a viable alternative to the simplex method for
solving large sparse linear programming problems [73, 93, 98]. It has been shown
that an interior point algorithm not only has polynominal-time complexity bat is
extremely efficient in practical computations [51, 59]. Thus, interior point methods

are used in this thesis to solve sub-linear optimal power flow problems.

The interior point method differs fundamentally from the simplex method in
the way they solve a linear programming (LP) problem. The simplex method finds
the optimal solution by moving from vertex to vertex along the boundary of the

feasible region, which leads to an increasing number of iterations as problem size

30
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optimal point XS
simplex method
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interior point - 4

method X

feasible region
Figure 3.1: Searching approaches of simplex and interior point methods

increases. In contrast, an interior point method solves an LP problem by taking a
path through the interior of the feasible region. This results in a remarkable speed
up to approach the optimal point. Figure 3.1 illustrates the different approaches

used by these two methods in searching for an optimal solution.

This chapter describes interior point methods (IPMs) for the solution of the
optimal power flow problems (OPF). Firstly, the recent developments in the theory
and implementation of the IPMs are briefly reviewed. It is intended to show that,
among the various IPMs, the primal-dual path following method is one of the
best IPM found so far. Then, two advanced versions of the primal-dual methods
are studied in detail, namely, the infeasible primal-dual [89] and the predictor-
corrector primal-dual path following [60] methods. Both algorithms are extended
to incorporate lower and upper bounds for special needs in OPF problems. In
addition, several important issues closely related to their efficient implementations
are discussed, including the adjustment of barrier parameter, the determination of
the Newton step length and the initial point, and the improvement of the search
direction accuracy. Some heuristics of customizing these parameters to the OPF

problems are proposed to reduce the number of iterations and computational time.
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3.2 Development of Interior Point Methods

For decades, the simplex method proposed by Dantzig in 1947 has been the most
widely used algorithm for solving linear programming problems. However, due to
its vertex following property, the solaution time of the simplex method may grow
exponentially for some specifically-constructed problems (see Klee and Minty [54]).
This has motivated researchers to develop a linear programming method with the
lower combinatorial complexity. In 1978, Khachiyan first developed a polynominal
algorithm by applying the ellipsoid method of Shor et al. to linear programming
[63]. Although his method can not compete with the simplex method practically,

it indeed has significant theoretical implications for combinatorial optimization.

In 1984, Karmarkar [51] introduced his projective algorithm which not only
had a polynominal time property but was much faster than the simplex method in
practice. His method is called interior point method because it searches an optimal
point through the interior of the feasible region. Since then, a substantial number
of contributions have been made towards the theoretical analysis and practical
implementations of the interior point method and its many variants. These variants
can be classified into four categories: projective methods, affine scaling methods,

potential reduction methods, and path following methods.

3.2.1 Projective Methods

Projective methods stem from Karmarkar’s projective method [51]. His method is

based on two fundamental ideas:

o If the current solution is near the center of the feasible region, then it would

get closer to the optimal solution by moving in the steepest descent direction
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of the objective function.

e The solution space can be transformed so as to place the current solation
point near the center of the transformed feasible region. Without changing
the problem in any essential way, such a transformation can be done by using

an appropriate type of projective transformations.

By formulating a linear programming (LP) problem as a special canonical form,
Karmarkar assumed that its optimal value is known, which is very restrictive. He
later relaxed this assumption by using a lower bound to estimate the optimal value,
and updating the lower bound at each iteration. Todd and Burrell proposed a
method to obtain the lower bound from the dual problem [88]. Karmarkar’s algo-
rithm requires O(nL) iterations, where n is the number of variables and L is the
number of bits required to record the problem. Each iteration involves the calcu-
lation of a projection step which, in turn, needs O(n®) arithmetic operations. He
proposed the idea of inexact projection that leads to an average reduction of O(y/n)
in the worst case bound, resulting in O(n??%) arithmetic operations per iteration.
Gay also applied the same idea to the dual problem [34]. Anstreicher developed
a combined phase I - phase II projective algorithm to relax the initial feasibility
assumption [9]. Nevertheless, all of these algorithms need to convert a standard LP
problem to Karmarkar's canonical form which causes some loss of sparsity. More-
over, they require to estimate the lower bound of the optimal value and to do the

nonlinear projective transformation at every iteration [59].

3.2.2 Affine Scaling Methods

Affine Scaling methods were originally proposed by Dikin in 1967 [23], and later
studied by several researchers. Barnes [10] and Vanderbei et al [91] proposed a pri-
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mal affine scaling method as a variant of Karmarkar’s projective method. Adler et
al. suggested applying the affine scaling method to the dual problem, resulting in a
dual affine scaling method [3]. Both methods do not require Karmarkar’s canonical
form and can work on the general linear programming problem. Moreover, they use
a linear transformation rather than the costly nonlinear projective transformation.
The global convergence of the affine scaling methods has been proved by several
researchers [23, 10, 91]. Although there has been no evidence of polynominal com-
plexity for this class of algorithms, the algorithms perform practically quite well
(2, 3]. The main disadvantage of the affine scaling methods is that, since they do
not have the centering direction to keep variables far away from the boundary, a
small step size must be imposed to avoid numerical instability. This often causes

the algorithms to take more iterations [61].

3.2.3 Potential Reduction Methods

Potential Reduction method was first proposed by Todd and Ye [87]. Their method
adopts Karmarkar’s idea of using an appropriate potential function to measure the
progress of an algorithm but avoids applying expensive projective transformation
at each iteration. The method also uses the idea of affine scaling method to reduce
the potential function by searching along the projected gradient of the potential
function. Therefore, the potential reduction method has the features of both pro-
jective methods and affine-scaling methods. However, in order to determine the
optimal step size, a line search has to be carried out at every iteration, which can
be costly in computations. The potential reduction methods were later studied by
several researchers including Ye [104], Freund [30], Gonzaga [43], Anstreicher (8],
etc. For this class of methods, the best complexity achieved so far is O(y/nL) itera-
tions [87]. Nevertheless, their computational performance highly relys on a proper
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potential function as well as an efficient line search algorithm.

3.2.4 Path Following (Logarithmic Barrier) Methods

Path Following methods are based on applying Newton's method to follow the cen-
tral path of the feasible region. This central path is formed by the optimal solutions
of a family of problems defined by a logarithmic barrier function. The logarithmic
barrier function approach is attributed to Frisch [31] and is studied in detail by
Fiacco and McCormick [28] for nonlinear optimization. The notion of central tra-
jectories was proposed by Karmarkar [51] and has been studied extensively by Bayer
and Lagarais [11], and Megiddo and Shub [63]. Megiddo suggested applying the log-
arithmic barrier method to the primal and dual problems simultaneously [64]. His
idea was developed by Kojima et al. into a primal-dual path following algorithm
which requires O(nL) iterations [55]. Later, Monteiro and Adler [69] improved
Kojima et al.’s results by using ideas of Gonzaga [42] and Karmarkar [51] to ob-
tain a primal-dual algorithm which requires O(y/nL) iterations, the best worst-case
complexity to date. Since then, several variants of the primal-dual path following
method have been proposed and extensively studied, including the primal-dual algo-
rithms of McShane [61] and Lustig et al. [57], the Predictor-Corrector algorithms
of Mizuno et al. [67] and Mehrotra [65], and the infeasible algorithms of Zhang
[105], Mizuno [68] and Vanderbei [89].

The distinctive features of the path following methods come from several aspects
[59]: (a) following the central path allows the algorithms to take a large step toward
the optimal point; (b) applying Newton direction produces quadratic convergence
speed; and (c) using different step lengths in primal and dual space results in
fast convergence. As a result, this class of methods performs extremely well in
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practice, comparing favorably to other interior point methods (7, 61]. Since these
methods not only have the best polynominal complexity but are computationally
most efficient, they have been chosen in this thesis to solve the optimal power flow
problems. In the following sections, their two advanced versions are presented in
detail, namely, the infeasible primal-dual path following algorithm and its predictor-

corrector variant.

3.3 An Infeasible Primal-Dual Algorithm

The infeasible primal-dual interior point algorithm (PDIPA) is based on the one-
phase primal-dual path following method [89]. The original algorithm operates
on linear programming (LP) problems that have only upper bounds. Since in the
sub-linear optimal power flow (OPF) problem all variables are subject to the low
and upper limits, we make an extension so that the algorithm can handle a general
LP problem with both lower and upper bounds. Such an LP problem is normally

formulated in the standard form as,

min ¢’z
subject to Az =b (3.1)
[<z<u

where c is n-vector cost-coefficients; z is n-vector of unknowns; A is m xn constraint
matrix; b is m-vector right-hand-sides; { and u are n-vector lower and upper bounds;
n and m are the number of variables and equalities, respectively. It is obvious that
the linear OPF formulations (2.21) and (2.48) comply with the above form except
for the “functional constraints”: AF™" < wTAf < AF™=. We replace such a

constraint with an equality constraint plus a bound constraint by introducing a
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new variable Ady,
TAG—AG; =0
e (32)

AFnlrmn S Aof S Aﬂm

Thus, it is possible to transform the LP OPF problem into the exact form of (3.1).

The basic concept of the primal-dual path following method is to solve a con-
strained optimization problem as a sequence of unconstrained problems. Its theo-
retical foundation consists of three important parts [97]: logarithmic barrier method
for optimization with inequalities, Lagrange’s method for optimization with equal-
ities, and Newton’s method for solving the nonlinear equations of Karush-Kuhn-
Tucker (KKT) first-order necessary conditions. Based on these observations, the
infeasible primal-dual path following algorithm for LP problem (3.1) can be derived
as follows. By introducing slack variables s and v to convert the bound constraints

into equality constraints, the LP problem (3.1) is rewritten as

min Tz
subject to Az =0
z—v=I (3.3)
zT+s=u

v>20,s>0

Its dual problem is:
max by —uTw+ T2
subject to ATy ~w+z=c¢ (3.4)
z20w>0

where y is an m-vector of dual variables; z and w are n-vectors of dual slack
variables. It is assumed that the constraint matrix A has full row rank, and that

both primal and dual problems are feasible and have bounded solutions.
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Applying the barrier method to the primal problem (3.3) to eliminate the in-
equality constraints by incorporating them into a logarithmic barrier term that is
appended to the objective function, the original problem is converted to a sequence

of problems parameterized by the barrier parameter y, i.e.,

min  Tz—p(Th,lnv; + 7, Ins;)
subject to Az =0b

(3.5)
z—v=I1
z+s8s=u
The Lagrangian function associated with (3.5) is,
L(zav, $Y,z2,w, “) = cTz - ;z(Zlnv,' + Zlnsj) - yT(Az - b)
i=1 j=1
2Tz —v - +wT(z+s—u) (3.6)

where x> 0 and is monotonically reduced toward zero as the algorithm iterations
progress. Accordingly, the solutions to the above family of problems define the
central path of the pair of primal and dual problems (3.3 - 3.4), and finally converge

to the optimal solution of the original constrained problem as g — 0.

For a given yu, the solution of (3.5) is a stationary point of (3.6) which is defined
by the Karush-Kuhn-Tucker (KKT) first-order necessary conditions,

Az = b
z—v = [
z+s ©

3.7)

SWe = pe
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where e denotes the n-vector of ones, and capital letters S, W, V, and Z denote the
diagonal matrices with the diagonal elements s;, w;,v;, and z;, respectively. Note
that the first four of the above equations are linear and represent the primal and
dual feasibility conditions. The last two equations are nonlinear and depend on
the barrier parameter y. They become the complementary conditions when x = 0,

which together with the feasibility constraints provides optimality of the solution.

The primal-dual path following method does not solve the above nonlinear KK'T
equations exactly. Rather, it applies the one-step Newton method to find the search
directions, which yields the following linear equations:

AAz = r;
Az —Av = 7
Az+As = r, (3.8)
ATAy—-Aw+Az = 1,
SAw+WAs = pe— SWe
VAz+ZAv = pe—ViZe
where
r. = b— Az (3.9)
n o=l-z+v (3.10)
Tw = 4—Z—3S§ (3.11)
and ry, = c—ATy+w~z (3.12)

denote the residuals of the primal and dual infeasibility (the violations of the pri-
mal and dual feasibility constraints), respectively. Since the infeasible primal-dual
method does not require feasible points during the optimization process, the above

residuals may not be zero. This is the major difference between the infeasible and
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feasible variants of the path following method. As will be mentioned in a later

section, these nonzero items result in a feasibility component in the final search

direction. The solution of linear equations (3.8) can be proved to be

Ay = (ADAT)Y(r.+ ADp)
Az = D(ATAy-))
As = r,— Az
(3.13)
Av = Az - Tl
Aw = o—-S"'WAs
Az = vy-V~1ZAv
where
D = (S"'‘W+Vv-12)!
= r,4+(c—79)—= (S~ Wr,+V~12Zr
p w + ( 7)—( T 1) (3.14)
o = uSle—w
vy = pVle—=2
The new point is then defined by,
T &€ T+aAz
v & v+ oplv
&= A
$ E STl (3.15)
y < y+ady
z & z4+a3Az
w & w+adw

where o, and a4 are respective step lengths in the primal and dual spaces chosen to

assure the nonnegativity of the primal and dual slack variables (v, s, z, w). Since

this new point (3.15) is an approximate solution of the KKT condition (3.7), it

resides in a certain neighborhood of the central path for a given z. As u decreases to
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zero, this point approaches the optimal solution of (3.1) by approximately following
the central path of the feasible region [{89].

In summary, the infeasible primal-dual path following algorithm can now be
described quite simply. Start with any initial point satisfying v,s,w,z > 0 and
with u > 0, we apply one Newton step to equation (3.7) to find a point closer
to the central path. We then let this new point be the current point, reduce u
appropriately and start over again until primal and dual feasibility is attained and

the duality gap is smaller than a predetermined tolerance.

3.3.1 Stopping Criteria

The above algorithm terminates when the following feasibility and optimality con-
ditions are satisfied [57]. The feasibility conditions are expressed in terms of the
relative primal feasibility,

16— Az]
— < 3.16
T5fel = (3.16)
the bound feasibility,
=2+ 0]
< e 3.17
T+lel ol S ¢ (3.17)
e — = — s
< € 3.18
T+al+ sl = ¢ (3.18)
and the dual feasibility
e — ATy +w — 2
<e€ 3.19
Lol + Tl e = (3.19)
The optimality condition is defined as the relative duality gap:
[Tz — (bTy — uTw + IT2)|| (3.20)

1+ 6Ty —uTw+ 1Tzl — o
where || -|] is I-norm. The €; and ¢, are the feasibility and optimality tolerances,
defined by 10™? where p is the number of digits accuracy in the solution.
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3.3.2 Search Directions

In order to more closely examine the infeasible primal-dual path following algo-
rithm, it is helpful to express its search direction (3.13) in terms of the gradient of
the cost function ¢, the barrier parameter u, and the infeasibility residuals r.. By
defining P, as the orthogonal projection matrix onto the null space of A,

Py, =D — DAT(ADAT)'AD (3.21)
the search direction for primal variables z can be decomposed as

Az = —Pyc-— PA(S—I - V"l)pe +
[DAT(ADAT) 'r, + Po(S™'Wr, + V' 2Zr)] (3.22)

where 7, r,, and r; are the residuals of primal infeasibility defined by (3.9 - 3.11).

The first term of the search direction (3.22) is called the affine direction which is
the projection of the steepest descent of the cost faunction. Since the affine direction
aligns in the null space of A, it reduces the cost function while preserving the current
primal feasibility status. The second term is the centering direction that forces the
next point z + Az away from the boundary of the feasible region (s =0, v = 0) so
that a large step can be taken in an effort to get more reduction in the cost fanction.
Since the centering direction is also in the null space of A, it does not change the
degree of primal infeasibility of the current point. The third term is associated with
the residuals of primal and bound infeasibility, and, therefore, is called feasibility
direction which drives the current point towards the feasible region. It is interesting
to note that with the orthogonal projection P, the bound feasibility r; and r, are
improved without affecting primal feasibility r,. Due to the presence of the above
three directions, the infeasible primal-dual path following method searches for the
optimal point by improving the feasibility and optimality simultaneously.
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Note that when the current point is feasible, all infeasibility residuals become
zero (i.e., Tz = r; = r, = 0). In this case, there is no feasibility direction. The
resulting search direction contains the affine and centering components, which yields
the feasible primal-dual path following algorithm. Furthermore, if 4 = 0, then the
search direction consists of only the affine direction. Consequently, the algorithm
becomes the primal-dual affine-scaling method. Therefore, the feasible primal-dual
path following and affine scaling algorithms are just special cases and can be derived
from the infeasible path following algorithm directly.

A similar analysis can be done on the search direction for dual variables y,

resulting in the following decomposition consisting of three components,

Ay = (ADAT)'[b— AD(S"*‘Wu+ V2] +
(ADAT)'AD(S5' — V')ue + (ADAT)*ADr, (3.23)

where 7, is the residual of dual infeasibility defined by (3.12). Each component of
the above search direction (3.23) corresponds to the affine, centering and feasibility
direction in the dual space, respectively.

In the following sections, several issues that are critical to the successful imple-
mentation of the infeasible primal-dual algorithm are discussed in detail, including
the determination of the Newton step size a, the adjustment of the barrier param-

eter u, and the choice of an initial point zg.

3.3.3 Step Length «

One advantage of the primal-dual method is that it allows separate step lengths in
the primal and dual spaces, as shown in (3.15). This has been proven highly efficient

in practice, significantly reducing the number of iterations to convergence [61].
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The step lengths a, and ay are determined in such a way that the nonnegativity
conditions on the variables (v, s) and (z,w} are preserved, respectively. This is done

through the following ratio test:

= mi in (-3 _ 3% A :
a, = xmn{l, ‘611%1?"( Av;' "As;’ Av,<0,As,<0)} (3-24)

- O . . | i .
ag = mm{ , ﬂlg_xgn( Az Buwy Az; <0,Aw,<0)} (3.25)

where 8 € (0, 1) is a scalar factor chosen to prevent nonnegative variables from being
zero and, therefore, avoid hitting a boundary. In our computational experience, we
initially set 8 = 0.95, and then aggressively increase it to 8 = 0.9995 when the
primal and dual infeasibility is less than a certain tolerance (say 10~2). This has

proved more efficient than using a constant value (as suggested in [89]).

3.3.4 Barrier Parameter u

A crucial step in the infeasible primal-dual path following algorithm is the choice of
the barrier parameter g. In linear programming, several schemes are proposed to
choose u. They are either based on the duality gap [57, 61] or the complementary
gap of the LP problem [59, 89]. In our implementation, we use the complementary
gap because it is directly related to g in (3.7). By pre-multiplying both sides of the
last two equations of (3.7) by vector e, and adding the resultant equations, we get

vTz+8Tw=2nu (3.26)
or
vTz + sTw
p=—a (3.21)

It is obvious that equation (3.27) gives a measure of “4” value for the current point.

The theory behind the path following method requires that barrier parameter u
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must approach zero as the iterations progress. Therefore, the new value of “u”
should be substantially less than the current value. Following the idea in [89] but
including lower bounds, we choose

Tz 4 sTw

p=2A 2n

(3.28)

where A = 0.1 unless the primal objective value is less than the dual objective value
(which could happen when the primal and dual feasibility has not been achieved);
in that case, we boost p by setting A = 10. In [89], the author suggests using
A = 2; however, we find that such a value is not large enough to prevent the above

phenomena from repeating which slows down convergence.

3.3.5 Initial Point z,

The important feature of the infeasible primal-dual path following algorithm is that
no initial feasible point is required. However, the primal and dual slack variables
(v, 8, z, w) must be strictly positive. There are many sophisticated ways to produce
such a starting point [61, 57, 60, 89]. Our numerical experiments show that the
approach in [89] is slightly better than the others. Following the ideas in [89] but

making some revision, we set z initially as:
z = 108z (3.29)

where the vector Z and scalar 8 are defined as
1

_ llblj+1
b= qaz+ 330

where A; is the j-th column of constraint matrix A and || - || is the I-norm. If

any component z; > 51;—"’-, then this component is reset to 5—?—“— The primal slack
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vectors (v, 8) are first set to satisfy bound constraints v =z — [l and s =u — z but
then modified so that any v; (s;) that is less than one is reset to one. The dual
vector y is simply set to zero. The dual slack vector (z) is initialized as follows. If
¢; < 0, then z; is set to one; otherwise is set to c; + 1. The dual surplus vector w
is initialized to meet the dual feasibility constraints: w = ATy + z — ¢ (note that
y = 0). In the above equations, we use the I-norm instead of 2-norm [89] because

our numerical test shows that the former is much better than the latter.

3.3.6 The PDIPA Algorithm

Based on the above description, the infeasible primal-dual interior point algorithm
(PDIPA) can be stated as follows:

step 1 Set an initial point zo and yo using the procedure described in Section 3.3.5

so that sg,vo, wg, 2o > 0, and initialize the iteration count k& = 0;

step 2 Check feasibility and optimality conditions (3.16 - 3.20).
If they are satisfied, then stop; otherwise, go to the next step.

step 3 Adjust the barrier parameter u* using (3.28);

step 4 Compute the search direction Az*, As*, Av*, Ay*, Aw*, AzZF
by solving the normal equation (3.13);

step 5 Find step sizes af, of € (0,1) from the ratio test (3.24 - 3.25);
step 6 Update the current point z*, s, v*, y*, w*, z* from (3.15).

step 7 Set k = k + 1 and go to step 2.



CHAPTER 3. INTERIOR POINT METHODS 47

3.4 A Predictor-Corrector Primal-Dual Algorithm

The infeasible primal-dual algorithm presented in Section 3.3 is based on applying
one step of Newton’s method to find an approximation solution to the Karush-
Kuhn-Tucker conditions (3.7). As a result, the solution at each iteration contains
only the first-order information of the primal and dual center trajectory. To im-
prove the algorithm performance, an obvious idea is to introduce the higher-order
information to more closely follow the central path. The first higher-order method
is due to the work of Karmarkar et al. [52]. They developed a power series vari-
ant of a dual affine-scaling method. Following their idea, Mehrotra [65] introduced
an efficient higher-order predictor-corrector primal-dual algorithm which uses the
second-order derivatives to approximate the primal-dual trajectory. His method

was later extended by Lustig et al. [60] and proved the most efficient in practice.

The predictor-corrector algorithm presented in this section is built on the work
of Mehrotra [65] and Lustig et al. [60] but extended to incorporate both lower and
upper bound for optimal power flow (OPF) problems. Since in their implementa-
tions the important algorithm parameters such as the barrier parameter and the
initial point are chosen based on a wide spectrum of problems, their approaches may
not be suitable to our particular application. To identify the better parameter set-
ting for the OPF problems, extensive numerical experiments have been conducted
to investigate the impact of those parameters on the solution efficiency. Some
heuristics of adaptively adjusting the barrier parameter and effectively choosing
the initial point are proposed to reduce the number of iterations as well as solution

time. The detailed description of the algorithm is provided next.

Like the infeasible primal-dual algorithm, the predictor-corrector primal-dual
interior point algorithm (PC-PDIPA) is also derived from the KKT first-order nec-
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essary conditions (3.7). However, instead of applying Newton’'s method to the

nonlinear equations (3.7) to generate correction terms to the current estimate, we

substitute the new point into (3.7) directly, yielding

Alz+Az) = b

(z+Az)—(v+4Av) =

(z+Az)+(s+As) = u

(3.32)

ATy +Ay) - (w+Aw) +(z+Az) = ¢
(S+AS)(W+AW)e = pe

(V +AV)(Z + AZ)e

]

pe

where AV, AZ, AS and AW are diagonal matrices having the diagonal elements

Av;, Az;, As;, and Aw;, respectively. By simple algebraic manipulation, the above

equation (3.32) is reduced to the equivalent system:

AAz

Az — Av

Az + As

ATAy — Aw + Az

SAw +WAs =
= pe—VZe— AVAZe

VAz+ ZAv

= T

= 1

Ty

(3.33)

Ty

pe—SWe—- ASAWe

where the r,,r,r, and 7, are the residuals of the primal and dual infeasibility,

defined by

L]
Tu

and Ty

b— Az (3.34)
l—-z+v (3.35)
©u—z—3 (3.36)
c—-ATy+w—z (3.37)
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Note that equation (3.33) is almost identical to Newton equation (3.8) except for
the right hand sides of (3.33) that contain the additional nonlinear terms ASAW
and AVAZ. This is the major difference between the predictor-corrector method
and the pure primal-dual method. Since these nonlinear terms are unknown, the
step Az, Av, As, Ay, Az, Aw can not be solved explicitly from (3.33). To determine
a step approximately satisfying (3.33), we apply Mehrotra’s predictor and corrector
scheme. In the predictor step, we drop the g and the nonlinear terms and, then,
solve the defining equations for a primal-dual affine direction:

AAz = 1,
Az —-Av = 7
A+ A5 = 1, (3.38)
ATAy-Aw+Az = 1,
SAw+WAs = —SWe
VAz+ZAv = —VZe
The solution can be found as
Aj = (ADAT)(r.+ ADp)
Az = D(ATA§ -p)
A = r,— Az (3.39)
At = Azxz—n
A = —w-—S'WAS
Az = —z-V-1ZAd
where
D = (ST'\W+Vv-1Z)t (3.40)

p = ry—w+z—~(V1Z2r+ S5 Wr,)
In the corrector step, we use the affine direction in two different ways: (a) to
approximate the nonlinear terms in the right-hand sides of (3.33); and (b) to dy-

namically estimate the barrier parameter u [see Section 3.4.1]. Once the estimates



CHAPTER 3. INTERIOR POINT METHODS 50

of nonlinear terms and parameter g are determined, the actual search direction

(Az, Av, As, Ay, Az, Aw) are obtained by solving the following linear equations:

AAz = 7,
Az—-Av = 1n
Az +As = r,
THas =T (3.41)
ATAy - Aw+ Az = 1,
SAw+WAs = pe— SWe—ASAWe
VAz+Z0v = pe—VZe—AVAZe
The final solution thus become,
Ay = (ADAT)(r.+ ADp)
Az = D(ATAy—-1)
A = u A
T TwT A% (3.42)
Av = Az —1

Aw = oq—w-—-SWAs
Az = 0—2z—V1ZAv
where o
o = S Y u—-ASAW)e
o2 = Vl(u—-AVAZ)e (3.43)
n = ptoy—o;

Comparing the final solution (3.42) with the affine solution (3.39), we found
that both predictor and corrector steps use the same factorization of the matrix
(ADAT). Therefore, the additional work of the predictor-corrector method is in
the extra forward and backward substitution to compute the affine direction (plus
the extra ratio test to estimate u [see Section 3.4.1]). However, what is gained from

this extra work is approximate second-order information concerning the central
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trajectory from the current estimate to the optimal point as u is varied continuously.

With the actual search direction (3.42), the current point is updated by,

T
v

S

3.4.1 Step Length a

&=
=

L A

z + oAz
v+ aAv
s +apAs
y +aqly
z+4+ agAz

w + agAw

(3-44)

Again, the step lengths a, and a4 are chosen to preserve nonnegativity conditions

on the slack variables v, s, z, w. This is done by first determining the maximum

possible step sizes in the primal and dual space,

O mn h | 3

a” 1$5<n” Av;' As;

= . Zj wj

ag = min{-— -
lSJSn{ Az,- ’ A‘lv,' ’

and then reducing them slightly with a factor 8 € (0,1),

op

aq

min{l, 8 &}
min{la B &d}

X A‘U_.,' < O,As_.; < 0}

Az; < 0,Aw; < 0}

(3.45)

(3.46)

(3.47)
(3.48)

to ensure that the new point is strictly positive. Unlike the pure primal-dual al-

gorithm, however, the predictor-corrector algorithm can take a longer step to get

much closer to the boundary because its search direction contains the higher-order

information of the central trajectory. With the use of large factor 8 = 0.99995,
the algorithm works extremely well [60]. This result has also been verified by our

numerical experience.
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3.4.2 Barrier Parameter p

One of Mehrotra’s contributions is to use the affine direction to dynamically esti-
mate the barrier parameter y. He suggested testing the possible reduction in the

complementary gap that would result from a step in the affine direction,
ég = (v + G AD)T (2 + &gAZ2) + (s + 6, A3)T (w + GaA W) (3.49)

where &, and &4 are the steps that would actually be taken if the primal-dual affine
direction (3.39) were used; they are determined by the standard ratio test (3.45 -
3.48). Generalized to include lower and upper bounds, Mehrotra’s estimate for u

is then defined by
N 2 -
- 9 ) (¥
k= (sz + sTw) ( n ) (3.50)

which chooses u to be small when good progress (a large decrease in complemen-
tarity) can be made in the affine direction, and chooses u to be large when the
affine direction produces little improvement. This is justified by the fact that poor
progress in the affine direction generally indicates the need for more centering and

hence a large value of u [60].

Lustig et al. found that choosing p according to (3.50) can result in numerically
unstable systems as the optimum is approached on poorly conditioned problems
[59]. Thus, they initially define g by using Mehrotra’s estimate (3.50) when the
current complementary gap satisfies (v7z + sTw) > 1, and then switch to (3.51)

p ="z 4 sTw)/$(n) (3.51)

where

n? if n <5000
¢(n) = . (352)
n*? if n > 5000
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when the complementary gap satisfies (vTz + sTw) < 1. Based on their compu-
tational experience, Lustig et al. claim that their g estimate strategy is totally
satisfactory and much more stable than always using Mehrotra’s method (3.50).

When solving optimal power flow problems, however, we found such a choice
may slow down the reduction of the duality gap once the primal and dual feasi-
bility is attained. Therefore, we use the feasibility condition (3.53), rather than
complementary gap, to determine whether (3.50) or (3.51) should be employed.
Our numerical results have also confirmed that using feasibility condition helps
improve convergence by fast reducing the duality gap [see Section 4.3.1].

~ { ég®/(vTz + sTw)?n  if infeasible (a) (3.53)

| @Tz+sTw)/(n) otherwise (5)

3.4.3 Initial Point z,

The predictor-corrector method can start from any infeasible point as long as primal
and dual slack variables (v, s, z, w) are strictly positive. However, as pointed out by
Lustig et al. [60], the predictor-corrector algorithm is quite sensitive to the initial
guess of the optimal solution. They found that for problems with small upper
bounds setting the initial point to satisfy bound feasibility can cause computational
instability. Therefore, they devise a starting point such that its slack variables are
larger than a certain threshold. Based on their numerical test on a wide spectrum
of Netlib problems [33], Lustig et al. concluded that a relative large initial estimate
works best for the predictor-corrector method. Following the way described in [60]

but extending to include lower bound, we define the primal and dual thresholds as

L = max{—lr%ignij, 100, |[b]{/100} (3-54)
& = 1+ (3.55)
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where # = AT(AAT)~'b and || -|| is the [; norm. Then, for each j =1,---,n, choose

the initial primal variables z, v and s as

Z; = &
v; = max(,z; — ;) (3.56)
s; = max(§;,u; — zj)

For the dual variables, we set y = 0, and the pairs z and w to satisfy dual feasibility

condition,
zi=ci+&, wi=§ ife>0
zi=&, wi=—¢+& f—£<¢<0 (3.57)

zj =—cj, wij=-2¢; ifc;<—&

Considering our particular applications with b = 0, the recommended thresholds
would be § =100 and & =1 + ||¢||. As will be shown later by our computational
results, these values do not produce the best performance for the optimal power
flow problems. In order to identify the most suitable values, it is necessary to try
the thresholds with different magnitudes and evaluate their impact on solution effi-
ciency. To achieve this, we propose the following scheme to change the thresholds:

& = &100 (3.58)
& = 1+&ll (3.59)

where £; is the user-specified parameter.

Note that the thresholds defined by (3.58 - 3.59) have two distinct features:
(1) they start from the values recommended by Lustig et al. and, thus, make
use of their extensive numerical experience; and (2) by changing the parameter
&3, the relative magnitudes of both primal and dual initial points can be adjusted
effectively. We have found that changing either primal or dual threshold alone
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will produce unsatisfactory results. Therefore, we introduce the parameter §; to
balance the primal and dual thresholds. This has been proved to be very effective

in computation.

3.4.4 Multiple Corrector Steps

One may recall that in the primal-dual method the Karush-Kuhn-Tucker (KKT)
necessary condition (3.7) is a set of nonlinear equations, whose solutions define the
cen(:x:al path of the linear program (3.3) as u varies continuously. Due to the nonlin-
earity, its accurate solution requires an iterative process which is time-consuming.
Fortunately, it has been theoretically proven that the algorithm does not need to
exactly follow the central path in order to converge to the optimal solution. Rather,
it only needs to be within a certain neighborhood of the central path by approxi-
mately solving (3.7) through one-step Newton method [44]. The predictor-corrector
scheme is superior to the one-step Newton method in that, by predicting the non-
linear terms in (3.33) followed by the corrector step, its search directions contain

second-order information of the primal and dual central trajectory.

The predictor step is responsible for optimization by reducing the primal and
dual infeasibility and duality gap. The corrector step keeps the current iterate
away from the boundary of the feasible region (thus close to the central path [44]) to
improve the chance for a long step to be made in the next iteration. Both steps need
to solve the same large, spatse linear system for different right-hand sides. Assuming
that a direct method is used, each iteration involves one factorization and two
forward/backward solutions. Since the factorization phase is computationally much
more expensive than the solution phase, a natural idea is to reuse the factorization in

several iterations [51] or, equivalently, to repeat several forward/backward solutions
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to guess a better next point [65]. This has led to the introduction of high-order

terms when computing search directions.

The predictor-corrector algorithm presented above can easily be extended to a
higher-order power series by continuing to substitute at each step the Av, As, Az, Aw
found by solving (3.41) back into its right-hind side so that the algorithm is using
multiple corrections. The motivation of using multiple corrector steps is to improve
the centrality of the next point so as to increase the step sizes in the primal and
dual space. It is believed that the complementary gap will be sufficiently reduced
if a long step along a primal-dual affine direction is made [38]. Therefore, driving
the primal-dual point as close to the central path as possible is an investment that
is expected to pay off in the ability to make a larger step in the next iteration.

In fact, multiple corrector steps do improve the convergence by reducing the
number of iterations [60]. However, since each corrector step involves one extra
forward/backward solution, the overall solution time may not be reduced. There-
fore, the additional computational cost incurred by multiple corrector steps should
be justified by the offset work due to a reduction in the number of iterations. In
general, the maximum number of corrections the algorithm is encouraged to make
depends on the ratio of the efforts to solve and to factorize the KKT system [38].
The harder the factorization, the more advantageous the higher-order corrections

might prove to be.

To investigate the impact of using higher-order trajectory information on the so-
lution efficiency for optimal power flow problems, we have also considered applying
the multiple corrector steps to improve the approximation of the search directions.
However, our experience shows that for small problems, due to the reasons ex-
plained above, the algorithm is not as efficient as the case of using one-corrector

step. In addition, the algorithm exhibits the unstable behavior due to numerical
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difficulty when solving ill-conditioned problems with some small bound constraints.

Therefore, in our implementation only one-corrector step is adopted.

3.4.5 The PC-PDIPA Algorithm

Based on the above detailed description, the predictor-corrector primal-dual interior

point algorithm (PC-PDIPA) can be stated as follows:

step 1 Set an initial point zq, so, v, Yo, Wo, Zo, using (3.56 - 3.57);

and initialize the iteration count k = 0;

step 2 Check feasibility and optimality conditions (3.16 - 3.20).

If they are satisfied, then stop; otherwise, proceed to next step.

step 3 Predictor:
compute the affine direction Az*, As* Ad*, Aj*, Ak, Az*

by factorizing and solving the normal equation (3.39);

step 4 Corrector:
(a) adjust the barrier parameter u* according to (3.53);
(b) substitute As*, A%* and Aw*, Az* into the right-hand side of (3.42);
(c) compute the actual search direction: Az*, As®, Avk, Ay*, Aw®, AzF

by a forward and backward substitution using factors produced in step 3;
step 5 Find step sizes af, af € (0,1) from the ratio test (3.45 - 3.48);
step 6 Update the current point z*, s, v*, y*, w*, z* from (3.44).

"step 7 Set k =k + 1 and go to step 2.
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3.5 Summary

The recent developments of interior point methods have been reviewed with the
conclusion that the most efficient interior point method found so far is the primal-
dual path following (or logarithmic barrier) method. Due to its best polynominal
complexity and computational efficiency, the algorithm has been chosen as the solu-
tion method for optimal power flow problems. The two advanced variants, namely,
the infeasible primal-duel and the predictor-corrector primal-dual algorithms have
been presented in detail. Both the algorithms are extended to incorporate lower

and upper bounds for special needs in our particular applications.

Several issues closely related to the efficient implementation are discussed in
detail, including the adjustment of barrier parameter and the determination of step
length and initial point. Some heuristics of adaptively changing these parameters
are proposed to improve the performance of the algorithms. For the infeasible
primal-dual algorithm, these improvements are represented by: (1) an aggressive
step increasing strategy based on feasibility condition; (2) the proper boost of the
barrier parameter u for preventing negative duality gap; and (3) a refined initial
point procedure. For the predictor-corrector algorithm, these enhancements are
reflected in the following aspects: (1) a heuristic adjustment of barrier parameter
based on feasibility condition; (2) an improved approach to balance the primal and
dual initial point and to effectively adjust their relative magnitudes.

The major advantage shared by these two algorithm resides on the fact that it
is not required to have an initial feasible point to start the algorithms. Instead,
the feasibility is attained during the process as optimality is approached. Their
common feature is to approximately follow the central path of the feasible region

with the only difference in that the former uses the first-order while the latter
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uses the second-order information to approximate the primal and dual centering
trajectory. Therefore, they can take a large step along the search direction to speed
up cost reduction. In addition, using separate step lengths in the primal and the
dual space also help convergence by fast achieving primal and dual feasibility.



Chapter 4

Experimental Results

4.1 Introduction

This chapter presents numerical results on the use of advanced interior point meth-
ods for the solution of optimal power flow (OPF) problems. It is intended to
show that the performance of interior point methods can be significantly improved
through customizing algorithm parameters to the specific problems under study. To
this end, several important issues closely related to the efficient implementation are
investigated to evaluate their impact on the solution efficiency. These issues include
the adjustments of the barrier parameter and Newton step length, the choice of an
initial point and tolerance, and the use of sparse matrix techniques for solving the
search direction. In addition, practical issues such as the choice of linear step sizes
and convergence criteria are also examined and their influence on the behavior of
interior point methods as well as successive linear programming is evaluated. Based
on extensive numerical experiments, several heuristics are proposed to reduce the

number of iterations and to save computational work in every iteration.
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For testing and comparing purposes, both the infeasible primal-dual and the
predictor-corrector primal-dual algorithms have been implemented in a C program
and compiled with the -O2 option. These algorithms are used to solve two particu-
lar cases of OPF problems: (1) the security-constrained economic dispatch (SCED);
and (2) the reactive power dispatch (RPD) problems. In the case of SCED prob-
lems, the generation cost is minimized by controlling the real power generations,
whereas in the RPD problems the total real-power transmission losses are reduced
by adjusting all reactive power controls such as the generator terminal voltages,
the switchable shunt susceptance and the transformer tap ratios. Each problem is
formulated by using the sparse linear model presented in Chapter 2. Then, a succes-
sive linear programming (SLP) solution strategy that uses the proposed algorithms

is applied to the nonlinear problem until a desired accuracy is achieved.

The above numerical tests are conducted on power systems of various sizes,
ranging from 118 to 2124 buses, whose specifications are listed in Table 4.1. For
each test system, the SCED problem is solved first, followed by the RPD problem.
Table 4.2 provides detailed information about each problem, including the number
of constraints (rows), variables (columns), and nonzeros in the constraint matrix
A, nonzeros in the normal matrix ADAT as well as in its Cholesky factor L (note
that the Cholesky factor is computed after the normal matrix is reordered using
the minimum degree heuristic). To evaluate the performance of the algorithms,
both running time and total iterations are reported here. However, in the SLP
based method there are two types of iterations: the outer-loop (SLP) iterations for
linearization process, and the inner-loop (LP) iterations for solving each linear sub-
problem. Depending on the testing purpose, either or both iterations are provided.
Accordingly, computational time corresponds to the relevant type of iterations. The
results presented in this chapter are obtained on a SUN SPARCstation 2.
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Table 4.1: Specifications of test power systems

Buses | Lines | Transformers | Shunts | Generators | Compensators
118 170 9 14 18 54
236 343 18 28 36 108
354 | 519 27 42 54 162
708 | 1082 54 84 108 324
1062 | 1602 81 126 162 486
2124 | 3210 162 252 324 972
Table 4.2: Statistical data for the test cases
Constraint | Nonzeros | Nonzeros | Nonzeros
Case matrix A in A |in ADAT in L
SCED-118 119 x 136 490 570 953
SCED-236 238 x 273 993 1176 2197
SCED-354 357 x 410 1502 1812 3603
SCED-T708 719 x 825 3073 3770 10779
SCED-1062 | 1079 x 1237 4631 5797 19280
SCED-2124 | 2150 x 2473 9263 11667 39014
RPD-118 235 x 305 1944 2327 3749
RPD-236 471 x 612 3952 4845 8289
RPD-354 707 x 918 5983 7481 13825
RPD-708 1417 x 1839 12207 15509 41880
RPD-1062 | 2127 x 2333 18004 23903 77019
RPD-2124 | 4247 x 5505 36853 48107 157824
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4.2 Results with The PDIPA Algorithm

In this study, the infeasible primal-dual interior point algorithm (PDIPA) is tested
on the SCED and RPD problems. To investigate the impact of dynamically ad-
justing the algorithm parameters on the performance for OPF problems, a linear
sub-problem for each case is solved using the PDIPA algorithm. Both the number
of iterations and solution time reported here are referred to those required by the
algorithm to solve one linear sub-problem. From a rigorous mathematical point of
view, it is necessary to use a higher standard of stopping criteria to more precisely
reflect the effects of different parameter settings. Therefore, a small convergence
tolerance € = 1072 is employed for the feasibility and optimality criteria so that all
sub-problems are solved to eight significant digits accuracy.

4.2.1 Influence of Different Parameters

At the beginning, the approaches recommended by [89] are used to choose all al-
gorithm parameters, i.e., the step reduction factor G is set to 0.95; the barrier
parameter p is determined by formula (3.28) with A = 0.1, which is boosted to
A = 2 whenever duality gap becomes negative; and the initial point is chosen ac-
cording to (3.29-3.31) using the 2-norm. Table 4.3 shows the iterative process of
the generation cost minimization for the 236-bus system. The data listed include
the primal and dual objective functions, the absolute value of the duality gap, the
absolute values of the primal, bound and dual infeasibility. From these results,

several observations can be made as follows.

o It is found that when the feasibility of solutions has not been attained, the

duality gap can be negative if the barrier parameter u is decreased too much.
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Table 4.3: Convergence process of PDIPA algorithm on SCED-236 problem

64

o

iter Objective Duality I;f_easibility

primal dual gap primal bounds dual
0 | 2.0070194e+04 1.1614238e+04 8.4560e+03 1.22e+02 1.33e+02 0.00e+00
1 | 2.4029642¢+04 1.8386536e+04  5.6431e+03  5.37e+01 5.88e4+01  2.48e-10
2 | 2.4046782e+04 2.0158588¢+04  3.8882¢+03  5.26e+01 5.76e+01  3.12e-10
3 | 2.4186226e+04 2.1842698e+04  2.3435¢+03  4.89e+01 5.35e4+01 4.6le-10
4 | 2.5006269e+04 2.4603435e+04  4.0283e+02  3.49e+01 3.82e+01 4.68e-10
5| 2.5227610e+04 2.5209867e+04  1.7744e+01  2.95e+01 3.23e+01 4.53e-10
6 | 2.5514791e+04 2.5788947e+04 2.34¢+01  2.56e+01  5.36e-10
7 | 2.5783130e+04 2.5253805e-+04  5.2933e+02  1.90e+01 2.08e+01 6.35¢-10
8 | 2.6097649e+04 2.5871020e+04  2.2663e+02  1.35e+01 1.48e4+01  6.75e-10
9 | 2.6411559e+04 2.6168703e+04  2.4286e+02  8.08e+00 8.84e+00 7.12e-10
10 | 2.6489089e+04 2.6535316e+04 6.77¢+00 7.41e+00 7.14e-10
11 | 2.6630313e+04 2.5917455¢+04  7.1286e+02  4.81e+00 5.26e+00 7.17e-10
12 | 2.6687111e+04 2.6380988e+04  3.0612e+02  3.88e+00 4.25e+00 7.93e-10
13 | 2.6787934e+04 2.6691460e+04  9.6475e+01  2.25e+00 2.46e+00 6.64e-10
14 | 2.6858961e+04 2.6839844e+04 1.9117e+01  1.23e+00 1.35¢+00 7.70e-10
15 | 2.6901829e+04 2.6899931e+04  1.8976e+00  6.58e-01  7.20e-01  7.48e-10
16 | 2.6905160e+04 2.6939038¢+04 [-3.3878e+01] 6.14e-01 6.72¢-01  7.89e-10
17 | 2.6955533e+04 2.6914418e+04  4.1115e+01  3.07e-02  3.36e-02  8.59e-10
18 | 2.6954365e+04 2.6948029e+04  6.3357e+00  2.42¢-03  2.65e-03  8.76e-10
19 | 2.6954048e+04 2.6953104e+04  9.4369¢-01  1.21e-04 1.33e-04  7.59-10
20 | 2.6953998e+04 2.6953860e+04  1.3807e-01  6.06e-06 6.63e-06  7.39e-10
21 | 2.6953990e+04 2.6953970e+04  2.0083e-02  3.03¢-07 3.32¢-07  6.85e-10
22 | 2.6953989e+04 2.6953986e+04  2.9151e-03  1.52¢-08  1.66e-08  7.83e-10
23 | 2.6053989e+04 2.6953989e+04  4.2286e-04  7.81e-10  8.20e-10  7.57¢-10
24 | 2.6953989e+04 2.6953989¢-+04  6.1309¢-05  1.20e-10 4.15e-11  8.24e-10
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The remedy for alleviating such a situation is to boost g in order to increase
the centrality of the next point. However, the side effect of doing so is to
cause an even larger duality gap which has to be reduced in the subsequent
iterations. Therefore, if u is not boosted large enough, the negative duality
gap can occur repeatedly and result in slow convergence, as shown by the

data in the boxes.

o The second observation is that a large initial duality gap may also contribute
to slow convergence, as shown by the bold data in the first row of the table.
This is because, from the duality theory, the duality gap eventually has to be
reduced to sufficiently small. Therefore, a large initial gap may need more
iterations to decrease. In general, a large duality gap usually results from a
large initial point. If a relative small initial guess is adopted, the algorithm
may need less iteration efforts to convergence. This is also justified by the
fact that in the linearization method the variables are incremental. Thus, its

optimal solution is small in magnitude.

¢ The third observation is that the step reduction factor § = 0.95 may be too
conservative once the feasibility condition is satisfied, which may restrict the
progress toward optimality and, therefore, need more iterations to reach the

optimal solution.

To improve the performance of the PDIPA algorithm for our particular appli-
cations, the approaches of [89] are modified in the following three aspects:

A. The step reduction factor is initially set to 0.95 and then aggressively increased
to 0.9995 once the infeasibility is less than a certain tolerance (say, ¢, < 1072).
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B. A small initial point is chosen by using the I-norm instead of 2-norm to reduce

the initial duality gap.

C. The barrier parameter u is properly boosted by setting A = 10 to avoid repeat-
edly occurring of negative duality gap.

Figure 4.1 shows the effects of using our improved approaches to set algorithm
parameters, where case A uses only the above first modification; case A+B is the
combination of the above modifications A and B; and A+B+C is the case which
incorporates all three modifications. From the results it is clear that our proposed
strategies significantly improve the performance of the PDIPA algorithm, reducing
the number of iterations over 30% (from 24 to 16).

Table 4.4 and Table 4.5 compare the computational results of the algorithm
when this is applied to the SCED and RPD problems, respectively, where the

O: no any improvement

A: dynamically changing o
B: refining initial x.

C: properly boosting u

30~

Rerations

254
20-
154
10+
5-
0 T T
o A A+B

A+B+C

Figure 4.1: Effects of modified approaches on iterations for SCED-236 problem
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Table 4.4: Computational results for SCED problems

PDIPAO I PDIPA1
Cases iterations | time(seconds) | iterations | time(seconds)
SCED-236 23 1.07 16 0.78
SCED-354 24 1.85 17 1.33
SCED-708 24 5.28 20 4.48
SCED-1062 28 13.05 25 11.48
SCED-2124 36 39.88 31 33.97

Table 4.5: Computational results for RPD problems

PDIPAO PDIPA1
Cases iterations | time(seconds) | iterations | time(seconds)
RPD-236 22 4.43 21 4.20
RPD-354 23 7.87 23 7.82
RPD-708 28 34.45 27 33.10
RPD-1062 32 92.90 30 87.08
RPD-2124 45 317.94 41 288.01

PDIPAO version stands for the algorithm with the parameter settings recommended
by [89]; and the PDIPA1 version means the algorithm using our dynamic adjust-
ments described in the above paragraph. For all the test cases, both versions
converge to the same solutions, which are given in Tables 4.8 and 4.9. For the
SCED problems, the results in Table 4.4 show that our version PDIPA1 improves
the algorithm performance, reducing iterations by 10% ~ 30% and saving solution
time by 12% ~ 28%. Similarly, as shown by Table 4.5, our version PDIPA1 also pro-
duces better performance on RPD problems though the results are less significant
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than the case of the SCED problems. This is because RPD problems are different
from SCED problems in nature. Further study may be necessary to find better
parameter settings for RPD problems. In summary, the success of our algorithm
comes out of three factors: (1) improving the initial point; (2) properly boosting
the barrier parameter u to prevent repeatedly occurring of negative duality gap;
(3) increasing step lengths (ap, ag) with the progress of feasibility to maximize the
reduction of the duality gap.

4.2.2 Influence of Different Stopping Criteria

As pointed out earlier, to evaluate the impact of different parameter settings more
accurately, a very small tolerance ¢ = 10~® is adopted when conducting the above
tests. Practically, however, it is not necessary to use such high convergence criteria
since the linear models are only approximations to the nonlinear problems. There-
fore, the optimization process can be terminated much eatlier by using a relative
large tolerance. To see how different stop criteria influence the PDIPA algorithm,
Tables 4.6 and 4.7 compare the iteration number and running time obtained by the
use of two tolerances values: € = 1072 and ¢ = 10~*. The results show that for
both the SCED and the RPD problems, another 13% ~ 26% reduction in iteration
count and CPU time can be achieved by employing the large tolerance ¢ = 1074.
On the other hand, using relative lower accuracy makes little difference in the ob-
tained solutions, as demonstrated in Tables 4.8 and 4.9. For the SCED problems,
the maximum relative error is 1.28E-5, with most cases less than 2.0E-6; while
for the RPD problems, the maximum relative error is 1.77E-5. Thus, the extra

computational efforts due to a small tolerance is not justified in practice.
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Table 4.6: Effects of different tolerance for SCED problems

e=10"8 e=10"*

Cases iterations | time(seconds) | iterations | time(seconds)
SCED-236 16 0.78 12 0.60
SCED-354 17 1.33 13 1.03
SCED-708 20 4.48 15 3.47
SCED-1062 25 11.48 20 9.40
SCED-2124 3 33.97 27 29.45

Table 4.7: Effects of different tolerance for RPD problems

e=10"% e=10"4
Cases iterations | time(seconds) | iterations | time(seconds)
RPD-236 21 4.20 16 3.32
RPD-354 23 7.82 18 6.28
RPD-708 27 33.10 21 26.42
RPD-1062 30 87.08 24 70.18
RPD-2124 41 288.01 30 211.45
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CHAPTER 4. EXPERIMENTAL RESULTS

Objective function ($/hr.)

Cases e=10"% e=10"*
SCED-236 | 2.6953989E+4 | 2.6954050E+4
SCED-354 | 4.0407611E+4 | 4.0407906E+4
SCED-708 | 8.1020767E+4 | 8.1019724E+4
SCED-1062 | 1.2097146E+5 | 1.2097233E+5
SCED-2124 | 2.4155489E+5 | 2.4155533E+5

Table 4.9: Minimum losses with different tolerance

Objective function (x100MW)
Cases e=10"% e=10"*
RPD-236 | 1.9032970 1.9033201
RPD-354 | 2.7673168 2.7673646
RPD-708 | 5.4090000 5.4090343
RPD-1062 | 7.9158772 7.9159350
RPD-2124 | 16.164108 16.164394
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4.2.3 Summary

The infeasible primal-dual interior point algorithm PDIPA has been implemented
and tested on the large-scale optimal power flow problems. Several important is-
sues, such as the choices of Newton step length, initial point, and barrier parameter,
are addressed and investigated. These parameters are critical for successful imple-
mentation of the algorithm. Some suggestions of customizing the above parameters
for OPF problems are given to exploit the full potential of the interior point method

as applied to the power system optimization problems. These ideas include:

o Aggressively increasing Newton step size based on feasibility condition to

maximize the possible reduction of the objective function.

o Properly boosting the barrier parameter to prevent the negative duality gap

and, therefore, smoothing the optimization process.

o Refining the starting point by adopting a relatively small initial point in order
to reduce the initial duality gap.

e Employing a relatively large convergence tolerance for feasibility and opti-

mality conditions in order to save unnecessary computational work.

Numerical results on 236- to 2124-bus test systems suggest that the above pro-
posed ideas are very effective for improving the performance of the algorithm, sig-

nificantly reducing the number of iterations as well as solution time.
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4.3 Results with The PC-PDIPA Algorithm

The promising results with the PDIPA algorithin encourage us to carry on further
studies on a more advanced interior point method—the predictor-corrector primal-
dual interior point algorithm (PC-PDIPA). Since the predictor-corrector variant is
quite different from the pure primal-dual algorithm discussed earlier, all important
implementation issues related to the algorithm should be thoroughly investigated.
These issues include the adjustment of barrier parameter, the determination of
initial point, and the use of multiple corrector steps. Again, a small tolerance € =
1072 is used for the feasibility and optimality criteria (3.16 - 3.20) in order to more
precisely reflect the impact of different parameter settings. Numerical experiments
are conducted on the same set of test problems. For each case, both total iterations

and running time are reported to evaluate the algorithm performance.

4.3.1 Effects of Barrier Parameter

Initially, as suggested by [60], we use the complementary gap condition to choose
the way of computing the barrier parameter g. That is, we use (3.53a) when
vTz + sTw > 1; and (3.53b) otherwise. Table 4.10 shows the statistics of iteration
counts required by the algorithm, where Column 2 is the number of iterations when
primal infeasibility is less than 10~%; Column 3 is the number of iterations to satisfy
dual feasibility condition; and Column 4 is the iteration count when the duality gap
is less than 1. Finally, Column 5 is the total iterations for solving the problems.
From the results, it can be seen that, for all cases (except SCED-708), feasibility is
attained at the very beginning of the optimization process, taking less than 34% of
the total iterations. The algorithm spends over 90% of the iterations to reduce the
duality gap to less than 1. From there on, it takes only very little efforts to reach
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Table 4.10: Iteration counts at different stages

Feasibility | Duality gap | Optimality
Cases Primal | Dual (<1)
SCED-236 2 0 10 10
SCED-354 2 0 11 12
SCED-708 10 0 18 20
SCED-1062 8 0 24 25
SCED-2124 2 0 32 33

the optimality condition. All of these indicate two facts: (1) using formula (3.53a)
to compute u is effective for obtaining feasibility but may slow down reduction
of the duality gap once feasibility is achieved; (2) in this case, however, formula
(3.53b) is more efficient to reduce the duality gap.

Instead of using the complementary gap, we use the feasibility condition to
change the way of computing u, as shown in (3.53), i.e., when infeasibility is less
than 10~¢, we switch from (3.53a) to (3.53b). Table 4.11 compares the number

Table 4.11: Effects of u adjustment strategies

Criteria
Cases Complementarity Feasibility
SCED-236 10 10
SCED-354 12 11
SCED-708 20 20
SCED-1062 25 20
SCED-2124 33 27
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of iterations required by using these two strategies. The results shows that our
strategy that uses the feasibility criterion outperforms the other one by reducing
the iterations up to 20%. In addition, it seems that the larger the problem, the

more the savings.

4.3.2 Effects of Initial Points

Unlike the pure primal-dual method, the predictor-corrector method is quite sensi-
tive to the starting point. In [60], based on extensive numerical experiments, Lustig
et al. conclude that the primal and slack variables should be set above a certain
threshold to avoid numerical instability, and that a relative large initial estimate
works best with the predictor-corrector algorithm. However, our experience shows
that this does not apply to the OPF problems. To show how the magnitudes of
initial points affect the algorithm, we use different values of £; in (3.58 - 3.59). Note
that in [60] Equations (3.58) and (3.59) are defined as & = 100 and &; =1 + |||,
respectively. We introduce §; in the above equations to balance the thresholds &;
and £; for the primal and dual variables. This proves much more effective than
changing either £ or £ alone. Starting with the values suggested in [60], which
correspond to the case & = 1, we reduce £3 by a factor of 10 until the negative
effects appear. Table 4.12 shows the results in terms of the number of iterations,
where the last row lists the summations of iterations for all cases using the same
value of &3. It is obvious that a small threshold, i.e., a small initial point is preferred
for the OPF problems. The best results are given in the case when & = 0.01, where
the iterations are reduced by 20 ~ 30%, comparing to the case of {3 = 1. Also, this

improvement grows with problem size.

The success of using small initial point for SCED problems may result from two
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Table 4.12: Effects of different initial points

E:ses &LG=1 & =01 & =0.01 | & =0.001
SCED-236 10 9 8 10
SCED-354 11 11 10 11
SCED-708 20 18 12 12
SCED-1062 20 20 15 19
SCED-2124 27 30 16 24
Summation 88 88 61 76

reasons. (1) In the linearization method, incremental variables are restricted within
certain limits to ensure the validity of a linear model. The solution of such an LP
problem is usually small in values. Therefore, it may be helpful to start with a
small initial point, hopefully to get closer to the solution. (2) Balancing the primal
and the dual thresholds results in small initial complementary gap which requires
less computational efforts to reduce it (we found that in this case the initial gap is

reduced at least by a factor of 10).

Now, we demonstrate the overall effects of our proposed ideas, i.e., adaptively
adjusting the barrier parameter based on the feasibility condition and customizing
the initial point by applying small and balanced thresholds. Figure 4.2 compares
the number of iterations required by using two versions of the predictor-corrector
algorithm, where PC-PDIPAQ uses the approach described in [60] to set the param-
eters, and PC-PDIPAL is the version using our suggestions. From the results, one
can see that as the problem size increases, the iterations required by PC-PDIPA1
are reduced dramatically (by up to 50%). Table 4.13 shows the running times for
the tested problems, from which a similar conclusion can be drawn in terms of

computational time.
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Figure 4.2: Overall effects on iteration counts

Table 4.13: Overall effects on computational time

Cases time (seconds) PC-PDIPAL
PC-PDIPAO0 | PC-PDIPA1 | speedup
SCED-236 0.63 0.53 1.2
SCED-354 1.18 1.07 1.1
SCED-708 5.42 3.50 1.5
SCED-1062 13.85 8.73 1.6
SCED-2124 41.70 20.87 2.0
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4.3.3 Effects of Multi-Corrector Steps

As mentioned in Chapter 3., the primal-dual interior point algorithm needs to
solve Newton equations to find search directions at every iteration, which involves
the numerical factorization of a linear system, followed by the forward/backward
solutions. Because the factorization phase is more computationally intensive than
the solution phase, we hope to save computational work by re-using such expensive
factors in several forward/backward solutions. The benefit of doing so is that the
search direction will contain the high-order information of the central trajectory
and, hence, increase the centrality of the next point. Eventually, we expect to take
large steps to reduce the total iterations (therefore, the number of factorizations).

This is the main idea of the higher-order primal-dual methods.

The predictor-corrector algorithm can be easily extended to the higher-order
method by applying multiple corrector steps. Each corrector step involves an extra
forward/backward solution and an extra ratio test. To see how multiple correctors
affect the algorithm performance on optimal power flow problems, Table 4.14 shows
the results in terms of the number of iterations and solution time required when
different corrector steps are taken, where “— —” means no result is obtained due
to numerical difficulty. It is found that the algorithm using more than one corrector
shows an unstable behavior. For example, when applying two correctors on prob-
lem SCED-354 and RPD-118 the algorithm encounters an ill-conditioning problem.
Despite this fact, using multiple corrector steps do reduce iterations. Generally,
the more corrector steps are used, the less iterations required. In terms of solution
time, however, the results are quite different. In this case, the best choice of the
number of corrector steps varies from problem to problem, as shown by the data

in bold font. For most problems the algorithm applying one corrector produces the
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Table 4.14: Effects of using multiple corrector steps

1 corrector | 2 corrector | 3 corrector | 4 corrector | 5 corrector

Cases tters time | iters time | iters time | iters time | iters time
SCED-118 8 0.23 8 0.30 7 027 — —* 6 0.33
SCED-236 8 0.60 7 0.58 7 0.73 7 0.76 6 0.75
SCED-354 | 10 1.05| — — 8 1.18 8 1.37 6 120
RPD-118 13 162 — — 10 1.60 8 148 7 1.38
RPD-236 13 4.77| 13 543 — — | 12 5.78 9 4.77
RPD-354 13 7.87| 13 848 - - — — | 10 8.87

2¢—" no result obtained due to numerical difficulty

best timing performance even though it takes more iterations. This is because each
corrector step needs additional computation work, which may not be paid off by
the savings due to less iterations. Consequentially, the overall solution time may

not be reduced.

One may notice that Table 4.14 presents only the results of small problems. In
fact, we have conducted the same test on large problems. However, our experience
shows that using any more than one corrector on these problems will encounter
numerical difficulty. Closely examining the linear system used for solving search
directions (3.41), we found that two factors influence the condition of the system:
the constraint matrix A and the diagonal scaling matrix D = (S™'W + V~12Z)"L.
Poor condition of any of these matrices will cause numerical difficulty. In the solu-
tion of large problems, we found that both factors contribute to the ill-conditioned
linear system. Firstly, the constraint matrices of all large problems suffer from poor

conditioning (> 10*). Secondly, the use of multiple correctors not only increases
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the centrality but also enforces the feasibility. For those variables with small bound
constraints, this will result in very small s; and/or v; (large value of 1/s; and/or
1/v;) and, thus, worsen the condition of matrix D. Consequently, the entire linear
system is severely ill-conditioned, which causes the algorithm using multiple correc-
tors to break down. From the above discussion, we conclude that for our particular
problems, the algorithm that uses multiple correctors is not as efficient and stable
as the case that employs one corrector. Therefore, in our implementation only one

corrector step is adopted.

4.3.4 Comparison with the PDIPA algorithm

As a final note, we compare relative efficiency of the predictor-correct algorithm PC-
PDIPA with the pure primal-dual interior point algorithm PDIPA. In this study,
the convergence tolerance for feasibility and optimality conditions is also set to
€ = 1078, For all test problems, both algorithms converge to the same solutions
with eight significant digits. Figure 4.3 compares the number of iterations required
by PDIPA and PC-PDIPA algorithms when solving SCED problems. The results
show that the predictor-corrector algorithm PC-PDIPA converges much faster than
the pure primal-dual algorithm PDIPA, taking 40% ~ 50% less iterations as com-
pared to the latter. Table 4.15 shows the computational time required by both
algorithms, where the PC-PDIPA algorithm needs 20% to 40% less CPU time than
the PDIPA algorithm. The amount of time (iteration) reductions depends on the
problem size; the larger the problem, the more the reduction. One may notice that
the time savings of the PC-PDIPA are not as large as the savings in iterations.
This is because in every iteration the predictor-corrector algorithm needs an extra
forward /backward solution to compute the affine direction and an extra ratio test

to estimate the barrier parameter pu.
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Figure 4.3: Comparison of the number of iterations on SCED problems

Table 4.15: Comparison of solution time on SCED problems

Cases time (seconds) ratio (%)
PDIPA PC-PDIPA | ECZEDIPA
SCED-236 0.78 0.53 68%
SCED-354 1.33 1.07 80%
SCED-708 4.48 3.50 8%
SCED-1062 11.48 8.73 76%
SCED-2124 33.97 20.87 61%
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Figure 4.4: Comparison of the number of iterations on RPD problems

Table 4.16: Comparison of solution time on RPD problems

Cases time (seconds) ratio (%)
PDIPA | PCPDIPA | 2C:EDIPA
RPD-236 4.20 3.27 78%
RPD-354 7.82 5.50 70%
RPD-708 33.10 20.83 63%
RPD-1062 87.08 49.70 57%
RPD-2124 288.01 157.88 55%
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The performance comparisons between the PC-PDIPA and PDIPA algorithms
are also conducted on the RPD problems, as shown in Figure 4.4, where the
predictor-corrector algorithm PC-PDIPA is over twice as fast as the pure primal-
dual algorithm PDIPA, requiring less than half the iterations of the latter. With
regard to solution time, as shown in Table 4.16, the PC-PDIPA algorithm still
outperforms the PDIPA algorithm, saving computational time by 20% ~ 45%. In
addition, the superiority of the PC-PDIPA algorithm over the PDIPA algorithm

becomes more evident as the problem size grows.

4.3.5 Summary

The predictor-corrector primal-dual algorithm has been implemented and tested
on real and reactive power dispatch problems. Those issues closely related to its
efficient implementation, such as the adjustment of barrier parameter, the determi-
nation of initial point, and the use of multiple corrector steps, are investigated to
evaluate their impact on the optimal power flow problems. Numerical experiments
on 118- to 2124-bus systems demonstrate that these issues are critical to the per-
formance of the algorithm. Some ideas are proposed to improve the solution speed.

Based on our numerical results, several conclusions can be drawn as follows:
o Using the feasibility condition to adjust the way of computing the barrier
parameter can save the total iterations by fast reducing the duality gap.

e Customizing the initial points, by adopting relative small and balanced primal
and dual thresholds, significantly reduces the number of iterations.

o Combining the above two strategies shows very promising results, reducing

both iterations and computational time by up to 50%. The larger the system,
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the more the savings.

¢ The effectiveness of multiple correctors is dependent on the problem condi-
tioning. As far as the test problems are concerned, using multiple corrector

steps is not as efficient and stable as applying one corrector step.
e The number of iterations required by the algorithm is not sensitive to the

problem size. The algorithm is numerically reliable.

Comparison with the pure primal-dual interior point method is also conducted.

The results reconfirm the superiority of the predictor-corrector method.
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4.4 Improvements of OPF Solution Efficiency

In Section 4.2 and 4.3, we have conducted numerical experiments on the pure
primal-dual and the predictor-corrector primal-dual algorithms for solving real and
reactive power dispatch problems. Our emphasis has concentrated on how to im-
prove the performance of the algorithms by customizing the algorithm parameters
to the optimal power flow (OPF) problems. We have also shown that the predictor-
corrector method is superior to the pure primal-dual method, about twice as fast
as the latter. Now, we are ready to move forward to other practical issues that
are directly associated with the successive linear programming (SLP) solution of
OPF problems. We will discuss how to use sparse matrix techniques for an effi-
cient solution of large-scale linear equations, which is needed in almost any interior
point method. Then, we will demonstrate how to determine linear step sizes and
inner/outer-loop convergence tolerances to reduce the total OPF iterations and
save computational work in every iteration. Because of its better performance, the

predictor-corrector algorithm PC-PDIPA is used in the following study.

4.4.1 Sparse Matrix Techniques

The computational bottle-neck of the primal-dual interior point algorithms is the
need to repeatedly solve the Newton equations (3.8) for the search directions. The
solution methods for such equations can be classified as either the augmented equa-
tion method [45, 97] or the normal equation method [59, 89]. In our implementation
(see equations (3.13)), we use the latter because it is numerically more stable due
to its positive-definite matrix ADAT. Moreover, it needs to compute and store
only half of the LU factorization due to symmetry. Furthermore, since only the
diagonal matrix D changes from iteration to iteration, the structures of ADAT and
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its LU factors remain fixed and thus can be re-used during the optimization pro-
cess. However, the major difficulty associated with the direct factorization is that
many fill-in’s will be generated during Gaussian elimination. The common practice
is to use a heuristic to reorder the matrix so that fill-in’s can be significantly re-
duced. We follow this practice by applying the most popular heuristic—minimum
degree ordering. Then, a symbolic factorization is conducted to create a static data
structure for the Cholesky factors. Since the matrix structure is fixed through the
iterations, the ordering and symbolic analysis are done only once. Finally, the

numerical factorization is carried out at every iteration in an efficient way [26, 36].

To examine the relative efficiency of the normal equation method in solving
the Newton equations, Table 4.17 shows the total CPU time required to solve
one sub-linear programming problem for all cases. The results are obtained by
using PC-PDIPA algorithm with the tolerance set to e = 10~2. Table 4.17 also
includes the time percentage spent on various tasks in the direct solution of normal
equations, such as the formation of matrix ADAT, the minimum degree ordering,
the symbolic and numerical factorization, and the forward and backward solutions.
It is obvious that among these tasks the most time-consuming part is the numerical
factorization, taking up to 77% of entire solution time. The larger the problem,
the more time this part needs. On the contrary, all other tasks require relative less
time with the common characteristic that their sharings decrease constantly as the
problem size increases; for instance, forming normal matrix ADAT takes 6 to 15%
of the solution time; forward/backward solutions take a similar percentage, around
5 ~ 15%; ordering and symbolic factorizing are the least computational intensive
parts, requiring only 5 ~ 6% of the total time. To give an idea of how much time
is spent in each iteration, Table 4.17 provides this information in the last column

where in the SCED problems, the average solution time per iteration is less than



CHAPTER 4. EXPERIMENTAL RESULTS 86

Table 4.17: Percentage of time spent in certain subroutines (%)

Form | MMD Factorization Time (sec)

Case ADAT | ordering | symbolic | numeric | Solution | total aver.
SCED-236 10.7 2.8 5.6 22.2 1.3 0.6 0.08
SCED-354 15.1 4.5 4.5 30.3 15.2 1.1 0.11
SCED-708 11.1 2.8 3.2 44.4 11.1 3.6 0.30
SCED-1062 5.9 24 2.8 56.6 8.9 84 0.56
SCED-2124 7.5 1.7 2.3 60.4 75 21.2 1.33
RPD-236 13.5 21 21 36.1 4.5 48 0.37
RPD-354 13.7 19 2.1 38.4 5.5 7.9 0.61
RPD-708 12.3 1.8 2.4 63.9 56| 20.8 149
RPD-1062 7.5 1.4 1.8 75.5 55| 49.7 331
RPD-2124 6.3 1.0 1.4 76.8 46 | 1579 17.89

2 seconds. For the RPD problems this timing in most cases is less than 4 seconds,
while for the largest problem RPD-2124 it takes less than 8 seconds to solve the

normal equations of 5,000 row/column with 157,824 nonzeros.

4.4.2 Linear Step Sizes A

In the successive linear programming (SLP) procedure, incremental variables at
every iteration must be restricted within certain limits to ensure the validity of
a linear model and convergence of the procedure. These limits (linear step sizes)
have large influence on the SLP solution process. Figure 4.5 shows how linear step
sizes affect the convergence behavior of the SCED-118 problem, where Case 2 uses

a relative small step of 20 MW, and Case 3 employs a large step of 60 MW. It is
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clear that, initially, using a large step size dramatically speeds up reduction in the
cost function. However, after reaching a certain stage, continuously applying large
steps cause an oscillatory behavior. Such phenomena can be eliminated by reducing
the step size whenever an increase in cost function is observed. Nevertheless, the
step size should not be reduced too much so as to cause either slow down or false
convergence. It should be larger than a certain threshold. Therefore, we have
devised a dynamic adjustment scheme to adaptively change the linear step size.
We start with a large step and then reduce it in half whenever the cost function
begins to increase, until the step size reaches a certain threshold. The use of this
heuristic significantly reduces the number of iterations, as shown by Case 1 where a
step size of 60 MW is initially used and then gradually reduced to 20 MW. Figure
4.6 shows the influence of the linear step sizes for the RPD-118 problem, where a
similar convergence behavior is observed except that the step sizes used in this case

are much smaller than those on the SCED-118 problem.

Table 4.18 shows the convergence results of the SCED-118 and the RPD-118
problems using our heuristic with different initial step sizes. It is obvious that
starting with relative large steps plus proper step adjustments generally improve
the convergence of SLP process. Notice that in the above results, the thresholds for
SCED and RPD problems are chosen as 20 MW and 5§ MVAR based on our numer-
ical experiments. The smaller threshold for the RPD problems is due to the highly
nonlinear nature of the problems. With regard to sub-linear programming, our
experience shows that the predictor-corrector algorithm PC-PDIPA is less sensitive
to the bounds (determined by the linear step size). For instance, in the SCED-118
problem, there is only one LP iteration difference when step sizes of 60 MW and
20 MW are used, respectively. Notice also that in conducting the above study both

SLP and LP (outer and inner-loop) tolerances are set to 10~3.
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Figure 4.6: The solution process of RPD-118 problem
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Table 4.18: Effects of using different initial step sizes A

SCED-118 RPD-118
AFg SLP AQg, AV SLP
A8 = 15° | iterations Ad=175° iterations
60 MW 8 20 MVAR, 10% 8
20 MW 13 10 MVAR, 5% 9
10 MW 21 5 MVAR, 2.5% 13

4.4.3 Tolerance for Sub-Linear Programming: €

In the successive linear programming (SLP) method, each linear sub-problem (LP)
is solved by the PC-PDIPA algorithm, based on feasibility and optimality criteria
€ which determine the accuracy of the LP solution. In the early stage of the SLP
process, as LP solutions are far from the optimal solution of a nonlinear problem
(NLP), it is not necessary to solve LP problems very accurately. However, as linear
points approach the optimal solution, we may wish to use smaller tolerance to
get more accurate LP solutions. Motivated by this fact, we develop a heuristic of
dynamically changing LP tolerance ¢ to achieve proper accuracy on the different
stages of tht-—: SLP process. As shown in the following results, this technique is very
effective to reduce computational efforts without sacrifice of accuracy. Figure 4.7
and 4.8 show how tolerance ¢ affects the LP iterations for SCED-118 and RPD-118
problems, respectively, where “Fixed €¢” means that ¢ is set to 10~2 throughout
SLP procedure; and “Changing €” is the case where ¢ is initially set to 10!, and
then reduced by half at every SLP iteration until ¢ < 10~3. In both cases the OPF
tolerance is set to § = 10~3. As we expected, in the early stage the LP iterations of
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Table 4.19: Effects of changing LP tolerance €

| Total LP/SLP iterations | CPU time
Cases Fixed € Changing € | savings
| SCED-118 59/8 34/8 45%
SCED-1062 81/9 62/8 22%
RPD-118 58/8 28/6 52%
RPD-1062 87/8 56/7 36%

“Changing €” are much lower than that of “ Fixed €”; and they gradually increase
with the decrease of ¢, as the SLP process approaches the solution of the nonlinear
OPF problems.

Table 4.19 compares the total LP/SLP iterations required by using the above
two schemes. The listing also includes the time saving (%) that is achieved by
“Changing €”. It can be seen that the proposed heuristic is much faster than the
case of “Fixed €”, saving 24 ~ 52% in both LP iterations and solution time. In
addition, it is found that using the proposed technique not only reduces the sub-LP
iterations but also reduces the SLP iterations, as shown in Figure 4.8, though the

reason for such phenomenon is unclear so far.

4.4.4 Tolerance for Optimal Power Flow: §

One advantage of the SLP based methods is that the optimization process can be
terminated at an earlier stage, based on the user-specified tolerance 4. This can
be done because the power flow equations are satisfied at every linearization step;
any sub-linear programming solution can be considered as a sub-optimal solution.

We exploit this feature and show that the algorithm performance can be further
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Figure 4.9: OPF solution progress of 118-bus system

improved. Figure 4.9 shows the relative objective reduction of SCED-118 and RPD-
118 problems as the SLP iterations proceed, where the OPF tolerance 4 is set to
1073, One can see that objective values decrease rapidly (about 90%) in the first 3
iterations and then slow down reduction for the subsequent iterations. Therefore,
in situations where accurate solutions are not required, the SLP process can be
terminated at an early stage by either fixing the maximum number of iterations or
using a relative large tolerance 4. In this study, we use the latter because it can
better control the solution accuracy. Table 4.20 compares the number of SLP iter-
ations and running time obtained by using two different OPF tolerances: § = 10~*
and § = 10~2. For all tested problems, around 50% savings in iterations and CPU
time are achieved by using the larger tolerance, § = 10~2. Besides, employing a
relative low accuracy is also justified from a practical point of view since extra com-

putational efforts due to small tolerance produce little improvement in the optimal
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solutions, as demonstrated by the results in Table 4.21 where the maximum relative

error is 0.74%.

Table 4.20: SLP iterations and time (seconds) with different &

‘ d= 10‘3— d=10"2
Cases iterations | time (sec) | iterations | time (sec)
SCED-118 8 1.85 4 0.80
SCED-1062 8 42.99 4 20.66
RPD-118 6 3.55 4 2.15
RPD-1062 7 187.16 4 103.61

Table 4.21: OPF solutions with different tolerance §

minimum cost ($/hr)/ losses (MW) [
Cases §=10"3 =102 error (%)
SCED-118 13695 13784 0.65%
SCED-1062 122998 123718 0.59%
RPD-118 97.00 97.27 0.28% |
RPD-1062 811.80 817.78 0.74%
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4.4.5 Summary

The efficient predictor-corrector primal-dual interior point algorithm PC-PDIPA
has been successfully applied in the sequential linear solutions of real and reactive
power dispatch problems. Practical aspects related to the successive linear pro-
gramming (SLP) are thoroughly investigated, such as the determination of linear
step sizes and outer/inner-loop stopping criteria. Their impacts on the convergence
behavior of the PC-PDIPA algorithm as well as SLP procedures are evaluated. Nu-
merical experiments indicate that these factors are crucial to the performance of
SLP-based optimal power flow methods. Some heuristics of adaptively changing
the linear step size and tolerances are proposed in order to accelerate the conver-
gence of the SLP method, and to reduce the computational work of every iteration.
Test results on the 118-bus and 1062-bus systems show that these ideas are very

effective, saving up to 50% iterations and computational time.

The major computational work of almost any interior point method is the need
to repeatedly solve a set of linear equations for the Newton search directions. The
computational time required for solving such linear equations can be prohibitively
high for a very large-scale problem. Therefore, it is essential to explore sparsity at
every stage by applying various sparse matrix techniques. In addition, numerical
reliability should also be considered with high priority when developing a robust
algorithm. In our implementations, the normal equation method is selected as the
solution method due to its numerical stability. The sparsity methods are extensively
used in all aspects involved in its solution procedure, including the formation of
normal equation ADA7, the application of minimum degree ordering, symbolic and
numerical factorization, and forward and backward solutions. Numerical results on

large-scale power systems have verified its efficiency and reliability.



Chapter 5

Numerical Experience with

Advanced Simplex

5.1 Introduction

In the past, the simplex method, as an important linear programming technique,
was widely used in power system operations and planning [82, 4, 22]. Since its
introduced by Dantzig in 1947, the simplex method has experienced many im-
provements. Various simplifications, extensions and refinements have been made
to accelerate its solution speed; and custom-designed algorithms have been imple-
mented to exploit specific problem structures [27, 80, 79]. Due to its practical
efficiency, simplex has become the dominant linear programming method for about
thirty years. However, as problem size keeps increasing, the traditional simplex
codes may need excessive computation time to solve a problem, which makes them

uncompetitive as compared to newly developed interior point algorithms [51, 3, 61].

The break-through developments of the simplex method have taken place just

95



CHAPTER 5. NUMERICAL EXPERIENCE WITH ADVANCED ... 96

in recent years when there have been dramatic changes in computer hardware and
software technology. These changes have allowed a wider variety of simplex strate-
gies to be implemented and much larger problems to be studied in detail [12]. Asa
result, significant advances in the computational efficiency of the simplex method
have been achieved, dramatically reducing both computational time and the num-
ber of iterations [13]. These advances on the simplex method come from such
improvements as better crashing basis procedures, better handling of degeneracy,
better partial pricing, implementation of primal and dual steepest edge algorithms,
faster and more stable factorizations, better exploitation of cache memory, and
better combined phase 1- phase 2 algorithms [59]. One of the new simplex codes,

CPLEX, represents such major improvements in the simplex technology.

The rapid progress in simplex methods has raised the following serious ques-
tions: how these new techniques affect the solution efficiency for power engineering
problems; what are their potential application in power system planning and oper-
ations; and, more importantly, what about their relative performance as compared
to advanced interior point algorithms. To our knowledge, these concerns have not
been sufficiently addressed nor have they been extensively studied. Therefore, it is
our belief that there is an urgent need to thoroughly investigate these important
issues. This chapter serves such a purpose by presenting our numerical experience
of using the state-of-the-art simplex code CPLEX to solve optimal power flow prob-
lems. The chapter starts by introducing the CPLEX software as well as its various
advanced features. Then, numerical tests on these features are conducted to eval-
uate their impact on solution time as well as iteration count for power engineering
problems. Finally, the comparison of this simplex codes with a predictor-corrector

interior point algorithm is carried out to identify the advantages of each method.
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5.2 CPLEX™ —The State-of-The-Art Simplex

The CPLEX software package [19] is designed to solve large and difficult prob-
lems where other linear programming solvers fail or are unacceptably slow. The
package uses several modified simplex algorithms, including primal, dual and net-
work simplex algorithms, with multiple algorithm options for crashing, pricing and
factor'zation [12]. An optional preprocessor is available for problem reduction. Be-
sides, CPLEX has many other features such as advanced basis starting, scaling
and so on. Most algorithmic parameters can be manually adjusted by the user,
although preset defaults with built-in dynamic adjustment often provide the best
performance {19].

CPLEX algorithms solve a general linear programming problem with equality

and bound constraints. Such a problem can be stated as follows:

max c'z
subject to Az =b (5.1)

SISZS&;

Since CPLEX treats bound constraints implicitly, its base matrix is of the order
equal to the number of equality constraints. Therefore, the dimension of constraint
matrix A determines the size of the problem. Generally, a large problem needs more
solution time than a small one does. CPLEX provides a preprocessor to help reduce
the problem size. This is achieved by using the Presolver and Aggregator options.
The Presolver will work to reduce the number of columns and rows in a problem
by simplifying, reducing and eliminating redundancies, whereas the Aggregator will
try to eliminate rows by using substitution. CPLEX also has several scaling options
to overcome possible numerical difficulties during solution process. These scalings

are helpful, especially when a problem is ill-conditioned.
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In the solution of simplex methods, one critical factor to the performance is how
to construct an initial basis so that the number of iterations can be reduced. This
operation is known as “crash”. There are several crash parameters to bias the way
in which CPLEX orders variables when selecting an initial basis {19]. The essential
idea here is to construct a sparse and well-behaved basis, with as much freedom as
possible, and having as few artificial variables as possible {12]. One should do some
experiments to determine if changing the crash parameter will benefit the problem

solution efficiency.

Another critical factor is how to choose a nonbasic variable entering a basis,
known as “pricing”. CPLEX provides several pricing choices for its primal and dual
simplex algorithms. For the primal simplex, they include Reduce-Cost, Steepest-
Edge, and Devex pricing (Devex comes from the Latin devezus — steep). The
Reduced-Cost selects the nonbasic variable that has the most negative reduce cost
[21]; the Steepest-Edge is a kind of normalized pricing, in which the reduced costs
are scaled before selecting the entering variable [35, 13]. The Devex can be viewed
as an approximation to the Steepest-Edge pricing [48]. The pricing strategies for
the dual simplex include Standard-Dual and variants of the Steepest-Edge [29].

To investigate the performance of these advanced features as applied to power
engineering, we use both the primal and dual simplex algorithms to solve optimal
power flow problems. The impacts of the preprocessing and scaling are examined
by turning them on and off separately. Then, the effects of warm start versus cold
start are studied by using advanced bases or the bases constructed by using the
CPLEX crash procedures. Also, different pricing techniques such as Reduce-Cost,
Steepest-Edge, and Devex are evaluated in terms of their relative efficiency. Finally,
the comparison of this simplex code with an advanced interior point algorithm is

conducted to identify the merits of each method.
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5.3 Testing Results on Advanced Features

In this study we consider four power systems of different sizes, ranging from 118 to
2124 buses [103]. The major data for the test systems are listed in Table 5.1. Sev-
eral cases studied are shown in Table 5.2, including security-constrained economic
dispatch (SCED) as well as reactive power dispatch (RPD)—minimum active power
transmission losses. For each test system, the SCED problem is solved first, and
then followed by the RPD problem. Both computational time and the number of
iterations are used to evaluate the performance of various features of the simplex
algorithms on power system optimization problems. The results are obtained on a

SUN SPARCstation 2 using the CPLEX software version 3.0.

In CPLEX, there is provision for convergence tolerance ranging from 10~° to
10~*. We have experimented with tolerances of 10~* and 10~%. The results show
only a small difference in execution time and the number of iterations. Computa-
tional results shown in the following tables correspond to a convergence tolerance
of 1076 Also, it should be pointed out that in this extensive study, both the primal
and the dual simplex algorithms are used to solve the same set of problems. Qur

experience shows that the primal simplex is better than the dual simplex for the

Table 5.1: Specifications of test power systems

Buses | Lines | Transformers Shunt Generators | Compensators
Capacitors
118 170 9 14 18 54
354 | 519 27 42 54 162
1062 | 1602 81 126 162 486
2124 | 3210 162 252 324 972
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Table 5.2: Test cases and problem sizes

Problem Size Nonzeros in
Problem-System | Constraints | Variables | Constraints
SCED-118 119 136 490
SCED-354 357 410 1502
SCED-1062 1079 1237 4631
SCED-2124 2150 2473 9263
RPD-118 235 305 1944
RPD-354 707 918 5983
RPD-1062 2127 2333 18004
RPD-2124 4247 5505 36853

cases studied. Therefore, only the results of using the primal simplex are presented

hereafter.

5.3.1 Problem Preprocessing

With default parameter settings, if there is no advanced starting basis, CPLEX will
first automatically look for opportunities to reduce the size of a problem by using
its preprocessor — the Presolver and Aggregator options. The impacts of these
preprocessings can be evaluated by turning them on and off. Table 5.3 compares
the solution times of the primal simplex with and without these preprocessings.
Note that negative value under “Time Savings” column means time increase rather
than decrease. Also, the table includes the changes in problem sizes before and

after the preprocessings.

From Table 5.3, one can see that with the use of the preprocessings, all the
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Table 5.3: Effect of preprocessing on problem size and solution time (seconds)

No Preprocessing Presolver and Aggregator

Cases Problem Size | CPU Time Size Reduced Time Savings
SCED-118 119 x 137 0.25 6 rows 7 columns -0.22
SCED-354 357 x 409 2.13 | 18 rows 17 columns - 0.05
SCED-1062 | 1079 x 1225 24.57 | 52 rows 40 columns + 1.20
SCED-2124 | 2150 x 2449 88.30 | 95 rows 71 columns -4.47
RPD-118 235 x 314 3.15 9 columns - 0.05
RPD-354 707 x 940 22.73 22 columns + 0.68
RPD-1062 2127 x 2818 286.32 64 columns + 14.25
RPD-2124 4247 x 5635 1287.90 130 columns + 121.73

problems get some reduction in size. In general, the larger a problem, the more the
reduction. With regard to the solution time, the results show that the preprocess-
ings have almost no impact on small problems. For large problems, however, two
types of problems show quite different results. The real power dispatch problems
get no benefits from the preprocessings. Rather, the SCED-2124 problem takes
even slightly more CPU time, despite of the fact that 95 rows and 71 columns have
been reduced. On the other hand, the large reactive power dispatch problems, such
as RPD-1062 and RPD-2124, do benefit from these options, reducing the solution
time by 5% to 10%, respectively. In this case, the larger the problem, the more the
time savings. One possible reason for this is that the preprocessing may change the
structure of a constraint matrix. Therefore, in certain circumstances the reduced
problem may become more difficult to solve than the original one. Another reason
is that because the preprocessings involve additional computation work, their use

may not be justified for the problems either not large enough or unable to take
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the advantages of preprocessings. From the above discussions, it follows that the
impact of the preprocessings varies from problem to problem, depending on the size

and nature of a problem under study.

5.3.2 Problem Scaling

A scaling option is provided to scale the constraint matrix when CPLEX reads a
problem. This option is mainly used to overcome numerical difficulties that arise
from the solution process. Therefore, a poorly conditioned problem (such as the
optimal power flow under a heavy loading condition) may benefit from scaling
option. Nevertheless, our numerical experience shows that scaling can not only
improve numerical stability but sometimes boost performance significantly. Table
5.4 compares the computational time obtained with/without scaling, where Column

2 gives the matrix condition for each problem. The results show that using scaling

Table 5.4: Effect of scaling on solution time (seconds)

Condition Number Scaling
Cases of Matrix A No Yes
SCED-118 1.6773E+-3 0.25 0.25
SCED-354 7.5823E+3 2.13 1.80
SCED-1062 2.3725E+4 24.57 20.13
SCED-2124 6.2189E+4 88.30 71.35
RPD-118 8.9232E+3 3.15 2.75
RPD-354 5.6200E+4 22.73 18.88
RPD-1062 1.7601E+5 286.32 | 219.73
RPD-2124 5.4405E+5 1287.90 | 920.45
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does improve the performance on all cases (except the smallest problem SCED-118).
The time savings range from 12% to 29% with increase of problem sizes. Moreover,
it is observed that problem RPD-2124, that has the worst matrix condition, benefits
most from scaling. These results indicate that using scaling can help solve optimal

power flow problems, especially for those problems with poor conditioning.

5.3.3 Crashing and Advanced Basis Starting

CPLEX can start either from an initial basis constructed through its crash proce-
dure (cold start) or from an advanced basis — the solution of a previously solved
problem (warm start). The warm start feature is extremely useful when solving
optimal power flow problems by successive linear programming (LP). Since each
subsequent LP problem is a perturbation of its previous LP problem, the solution
of a previous linear step can be used as a starting basis for its subsequent linear step.
Table 5.5 shows the number of iterations required by using cold and warm start,
respectively, where “Phase I" means the iterations required to satisfy feasibility

condition and “Total Iter” means the iterations to reach optimality.

Let us first examine the results obtained by using the CPLEX crash procedure,
which are listed under the “Cold Start” column of Table 5.5. One may notice
that the total iteration count for each case is roughly equal to the number of
rows of the constraint matrix in the relevant problem. As mentioned earlier, a
simplex basis also has the size equal to the number of rows. Thus, the number of
iterations approximating the size of the simplex base can be interpreted as a good
performance. This is because without knowing optimal columns in advance, it will
take that many iterations just to pivot in the columns of an optimal basis [12].

Although the CPLEX crash procedure can be considered efficient, its performance
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Table 5.5: Iterations of simplex with cold/warm start

Cold Start Warm Start

Cases Phase I | Total Iters | Phase I | Total Iters
SCED-118 32 43 2 12
SCED-354 108 147 16 54
SCED-1062 328 513 48 189
SCED-2124 623 945 99 307
RPD-118 138 214 17 102
RPD-354 387 616 75 309
RPD-1062 1170 2159 204 1033
RPD-2124 2323 4449 450 2207

is still uncompetitive with the warm start, as shown in the following section.

Now let us compare the relative performance between cold and warm starts.
From Table 5.5, one can see that, for all cases, using warm start dramatically
speeds up convergence in achieving feasibility as well as optimality, reducing Phase
I iterations by a factor of 5 ~ 12 and total iterations by a factor of 2. Table 5.6
compares the computational time of using cold and warm start, where warm start
saves at least half CPU time as compared to cold start. These results show that
if an advanced basis is available, iterations of simplex can be reduced significantly,
particularly if the current problem is similar to the previous problem. Therefore,
whenever solving the same or similar problems repeatedly, one should always con-

sider starting from an advanced basis.
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Table 5.6: Solution time (seconds) of simplex with cold/warm start

Cases Cold Start | Warm Start
SCED-118 0.25 0.12
SCED-354 2.13 0.97
SCED-1062 24.57 12.35
SCED-2124 88.30 44.42
RPD-118 2.80 1.23
RPD-354 22.73 9.95
RPD-1062 286.32 134.49
RPD-2124 1287.90 640.51
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5.3.4 Steepest-Edge Pricing

Pricing strategies determine the way of how to select a nonbasic variable into basis,
and are most likely to impact the simplex performance. Table 5.7 summarizes
the iteration counts of the primal simplex using three different pricing techniques:
Reduced-cost, Devex and Steepest-edge. From the results shown in Table 5.7, one
obvious observation is that, for all test cases, the Steepest-Edge requires the least
number of iterations to converge, while Reduced-Cost needs the most iterations. In
the cases of SCED problems, such savings are around 20% ~ 35%, and for the RPD
problems are 35% ~ 45%. These results indicate that the Steepest-Edge provides
faster convergence than the other two pricing techniques. This is due to the fact
that geometrically the Reduced-Cost chooses an edge that is “downhill”, i.e., along
which the objective function decreases, while the Steepest-Edge selects the edge



CHAPTER 5. NUMERICAL EXPERIENCE WITH ADVANCED ... 106

that is “most downhill”, i.e., steepest with respect to the objective function. As
the Devex is a variant of the latter using approximations to “most downhill”, its

iterations are between the other two pricings.

With regard to computational time shown in Table 5.8, however, one can see that
for small or easy problems, such as RPD-118, RPD-354, and all SCED problems,
there is almost no difference among these three pricings due to the lower number of
iterations. For the large and hard problems that takes over thousands of iterations
to solve, both Steepest-Edge type pricings outperform the traditional Reduced-
Cost pricing. In this case, the Devex requires the least computational time while
the Reduced-Cost needs the most. Time savings of the Devex are around 15%, as

compared to the latter.

The above results show that the Steepest-Edge is not necessarily the best in
terms of CPU time although its iteration counts are the least for all cases. On the
other hand, the Reduced-Cost seems not so bad despite its higher iteration count.
This is because the former is the most costly in computation while the latter is
the least expensive. Since for small or easy problems less number of iterations is
required to get a solution, the overhead per iteration incurred by the Steepest-
Edge eliminates its savings in reducing the iteration count. However, for large and
hard problems, as the iteration number is extremely high, the overall work due to
lower iteration count of Steepest-Edge type pricings is less than that of the higher
iteration count but cheaper computation of the Reduced-Cost. Moreover, since the
Devex has the good features of the Steepest-Edge but substantially reduces the
computational intensity, it produces the overall best results for all tested problems.
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Table 5.7: Effect of pricing techniques on iterations

Pricing Strategies

Cases Reduced Cost Devex Steepest Edge
SCED-118 16 16 13
SCED-354 86 72 61
SCED-1062 291 226 188
SCED-2124 502 443 356
RPD-118 111 75 73
RPD-354 392 311 257
RPD-1062 1562 1124 892
RPD-2124 2756 2102 1616

Table 5.8: Effect of pricing techniques on solution time (seconds)

Pricing Strategies

Cases Reduced Cost Devex Steepest Edge
SCED-118 0.13 0.12 0.13
SCED-354 0.88 0.95 1.02
SCED-1062 11.57 10.83 11.72
SCED-2124 43.50 45.33 48.99
RPD-118 1.15 1.07 1.22
RPD-354 10.68 10.83 12.18
RPD-1062 177.72 150.35 172.68
RPD-2124 795.38 669.35 747.13
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5.4 Comparison with Interior Point Algorithm

In the last decade, the interior point method has become a viable alternative to
the simplex method due to its computational efficiency. However, unlike simplex
methods, interior point methods can not produce an optimal basic solution, i.e.,
a basic solution which is both primal and dual optimal. Thus, certain informa-
tion that is useful for post-optimality analysis is not available. Moreover, interior
point methods do not have warm start capability, a very attractive feature of sim-
plex methods. Therefore, it is believed that a good solver should combine the
advantages of both methods [76]. CPLEX provides not only the state-of-the-art
simplex but an advanced interior point method — a predictor-corrector primal-
dual logarithmic-barrier algorithm (Barrier) [60]. In addition, an efficient “barrier-
simplex crossover” [62] is implemented to recover bases from (non-basic) solutions
of the barrier method, and to switch to the simplex method by warm start. Table
5.9 compares the number of iterations and computational time obtained by using

the primal simplex with warm start as well as the barrier method with the crossover.

In general, the results are in favor of the barrier with crossover except for the
small cases (such as SCED-118, SCED-354, and RPD-118) where the simplex al-
gorithm is faster than the barrier with crossover in terms of CPU time. For the
large SCED problems tested, both algorithms perform equally well; however, for
large-scale RPD problems like RPD-1062 and RPD-2124, the barrier with crossover
outperforms the simplex method in both CPU time and total iterations. The former
requires only 30% ~ 40% computational time of the latter. The main reason is that
the barrier with crossover algorithm takes advantage of barrier’s fast convergence
speed, an efficient basis recovery procedure, and simplex’s warm start capabilities.

Note that in this study all problems are solved to 10~® accuracy with six significant
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Table 5.9: Comparison of simplex with interior point algorithm

Simplex (warm start) Barrier with Crossover
Cases Iterations Time Iterations Time (seconds)
(seconds) | barrier | simplex | total | barrier | crossover | total
SCED-118 12 0.12 9 0 9 0.47 0.10 0.57
SCED-354 54 0.97 1n 0 11 1.70 0.32 2.03
SCED-1062 189 12.35 16 0 16 | 10.23 230 | 12.58
SCED-2124 307 44.42 23 2 25| 31.57 10.52 | 42.20
RPD-118 102 1.23 11 0 11 1.58 0.50 2.10
RPD-354 309 9.95 14 0 14 6.87 1.77 8.68
RPD-1062 1033 134.49 17 0 17| 41.85 10.62 | 52.63
RPD-2124 2207 640.51 22 11 33 | 120.13 70.63 | 191.08

digits. Table 5.9 also includes other detailed results for barrier with crossover, such

as the crossover time, and the iterations and time of barrier and simplex.

5.5 Summary

Numerical experience of using advanced simplex features is presented for the solu-
tions of large-scale optimal power flow problems. Some newest advances in oper-
ation research as well as in sparse matrix techniques are investigated to evaluate
their impact on the performance of simplex methods for power engineering prob-
lems. The numerical tests are conducted on power systems whose sizes range from
hundred to thousands of buses. Based on our extensive study, several conclusions

can be drawn as follows:

¢ The preprocessings, including presolver and aggregator, can reduce the prob-

lem size and may save the solution time for large-scale OPF problems. Their
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effectiveness varies with the size and nature of the problems under concern.

o The scaling can improve numerical stability and sometimes boost simplex
performance significantly. It helps to solve OPF problems, especially for

those problems with poor conditions.

e Although the crashing can produce an efficient initial basis (cold start), its
performance is still uncompetitive as compared to using the advanced ba-
sis (warm start). Therefore, the use of crashing should be avoided unless
absolutely necessary.

e Using advanced bases (warm start) can reduce at least half solution time as
compared to cold start. Therefore, whenever solving same or similar problems,

warm start should always be considered.

e Among three pricing techniques, the Devex pricing—a variant of steepest-edge
— produces the best results for all test cases, especially for large and difficult
problems that need many iterations to reach feasibility and optimality.

e Although the above options are examined on individual basis, the combi-
nation of those better parameter settings usually produce the overall best

performance.

o The barrier with crossover, that combines the advantages of both simplex and
interior point methods, outperforms the simplex method, and may be the best

choice as far as solution speed and information completeness are concerned.



Chapter 6

Creation of Network Data for

Testing Algorithms

6.1 Introduction

Power system operation and planning relies greatly on computer simulation pro-
grams such as load flow, contingency analysis, state estimation, optimal power
flow, etc. With the expansion of power networks, many new power system analysis
algorithms have been developed to solve problems with ever increasing size and
complexity. To evaluate the performance and robustness of the new algorithms,
extensive numerical tests should be carried out on a large set of power networks of

various types and sizes.

In practice, however, it is not easy (or not possible at all in most cases) to
obtain real network data, especially for very large-scale systems. These difficulties
arise from either technical or security reasons. Numerical testing, therefore, is often

restricted to the relatively small IEEE test networks or to a limited set of special
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power networks whose data are not available to the general research community.

To alleviate the difficulty of collecting realistic data, in reference [32] an algo-
rithm is developed to synthetically generate power networks of arbitrary size and
complexity. The network is created from scratch, and network data are chosen from
a predetermined range. However, as noted by the authors of [32], such generated
power networks may face convergence problem during load flow runs. Elaborate
adjustments of the system state and control variables are required, based on a trial
and error method. For creating a very large power system with thousands of buses,
the above procedure may take substantial computation time to obtain a load flow
solution. Therefore, in order to avoid this problem it is necessary to seek more

efficient approachs to creating power networks.

This chapter presents an efficient technique that adopts a different way to create
realistic network data. Instead of starting from scratch, the technique uses any
available small power system, such as IEEE 118-bus system, to construct a large
power network. The created network can be of arbitrary size, different topology
and sparsity. Its network data are obtained directly from the small system with
only minor modifications. By employing the load flow information of the small
power system, the created large system has no converge difficulties when solving a
load flow problem. In this case, elaborate variable adjustments are not required.
Therefore, the proposed technique is very efficient and robust. OQur test results show
that creating a system of thousands of buses takes only a couple of seconds. This
technique has been successfully used in this thesis for evaluating the performance
of different optimization methods for optimal power flow problems. Nevertheless,
it should also find other applications in power system analysis where testing of

algorithms is necessary on large-scale systems.
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6.2 Data Specifications in the OPF Problem

Depending on their roles in the problem formulation, the data for OPF purpose
can be classified into two categories. The first category contains the basic network
data for load flow purpose, including the network topology, the line parameters,
and the bus data. The second category covers the data related to optimization
process, such as the physical and operating limits on various system components
and the coefficients of cost functions. To formulate an OPF problem, all the above

data need to be provided.

Network topology is a graphic representation of a power network with each node
standing for a generator/load bus and with each line representing a transmission
line/transformer. Its structure is defined by the way how those buses are intercon-
nected through transmission lines or transformers. Network topology is of great
importance because it has large impact on the network sparsity pattern which, in

turn, affects computational work as well as memory requirements.

The line parameters are the data of transmission lines and transformers. They
include series resistance and reactance of a transmission line or a transformer, shunt
susceptance of the line, and tap ratio of the transformer. The bus data consist of
loads, real and reactive power generations located at every bus. In addition, each
bus is assigned one of three bus types based on its characteristic: (1) load buses
— with given real and reactive loads; (2) generation buses — with given voltages
and real power generations; and (3) slack bus — with its voltage and angle fixed.

These bus types are used in solving load flow problems.

The physical and operating constraints include lower and upper limits of real
and reactive power generations, transformer tap ratios and shunt capacitors, the

load ratings of transmission line and transformers, and limits on voltage. The
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objective function is normally expressed in terms of total production cost or total
real power transmission losses. The former can be represented by a quadratic or
piecewise linear function of real-power generations, whereas the latter is described
as a nonlinear and nonconvex function of voltages and angles. These data are only

employed during optimization process.

In summary, the formulation of the optimal power flow problem not only needs
the basic network data, consisting of network topology, line parameters, and bus
data, but also requires the optimization data, such as component physical/operating

limits and objective function coefficients.

6.3 The Network-Data Creating Technique

This section starts describing an efficient technique for generating realistic large-
scale power networks. The emphasis is mainly on creating network data for the
Optimal Power Flow (OPF) problem. However, the data may also serve to test
algorithms related to other types of power system problems.

6.3.1 The General Approach

The main idea behind the proposed technique comes from the fact that a bulk power
network is usually formed by a set of local sub-networks interconnected through tie
lines. Therefore, a natural approach to create a large-scale power network is to
connect existing small networks via transmission lines. To make such a created
network more realistic, the building sub-network should be a true power system
with real network data. The topology of the created system is determined by

the way how sub-networks are inter-connected. It has significant impact on the
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sparsity pattern of the relevant admittance matrix. The sparsity of the network
is controlled through the number of tie lines used between any two related sub-
networks. Because real power systems are employed as building sub-systems, all
network data of the created system can be inherited directly from the real sub-
systems whose data are generally available. With the help of sub-system load flow
results, the created system can easily get a meaningful load flow solution without
many adjustment efforts. So, the proposed technique has the advantages of not
only reducing computational work in the network creating stage but during the
load flow run as well. The following sections provide a detailed description on the

above technique and its implementation.

6.3.2 Network Topology and Sparsity

Graphically, a power network consists of nodes and lines. The network topology
defines how nodes are connected to each other through lines (either transmission
lines or transformers). However, in the proposed technique, each small network
is treated as a “node”. Accordingly, topology means the way how a set of small
networks are interconnected. Here, two types of power networks are introduced:

(1) Block network and (2) Mesh networks.

Figure 6.1 shows a “Block” power network where each circle represent a sub-
network and each line represents a tie line that connects two related sub-networks.
In a Block network, connections are not balanced in the sense that there are more
links in some areas of the system than in the others. On the contrary, in a “Mesh”
network the connections are more balanced for the entire system, as demonstrated
in Figure 6.2. To see how the network topology affects matrix sparsity pattern,
Figure 6.3 displays nonzero elements of the admittance matrix for block and mesh
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Figure 6.1: A power network with block structure

Figure 6.2: A power network with mesh structure
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Figure 6.3: Sparsity patterns of admittance matrix: (a) Block and (b) Mesh



CHAPTER 6. CREATION OF NETWORK DATA FOR TESTING ... 117

networks, respectively. In Figure 6.3 (a), one can observe that the matrix is of a
“Block” structure with more elements (connections) inside each block than areas
outside blocks. Unlike the “Block” network, the “Mesh” network has an admittance
matrix whose elements (connections) are uniformly distributed within a certain
diagonal band, as shown in Figure 6.3 (b). The following subsections describe the
approach to generate both network types and the way to control their sparsity.

Block Network

For simplicity and efficiency the block network is built in a recursive manner. On
every stage of the creation process, the network to be built on the current step is
constructed by using the sub-network created in the previous step. To be more
specific, let us use the IEEE-118 system as an initial building sub-network to illus-
trate this procedure. The algorithm starts by connecting several (say 3) IEEE-118
networks with each other to build a large network; then this newly created network
is used as a building sub-network to generate a even larger network in the next step.
This process keeps going until the number of buses or system size reaches the desired
value. In the above procedure, the number of building sub-networks to be used in

each step can be adjusted according to system size and sparsity requirements.

Mesh Network

The approach to creating the mesh network is quite different. Given a required
system size (the total number of buses), the algorithm first calculates how many
building sub-networks are needed based on the size of the sub-network currently in
use. From this information, a topology matrix is created with each element repre-

senting one sub-network. The dimension of the matrix is then chosen to determine
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the width of diagonal band for the resulting system (see Figure 6.3 (b)). In the
meantime, each topology matrix element is assigned a number which will be used
later to name all buses in the related system. Finally, those sub-networks who
are neighbors of each other are connected through transmission lines. It should
be noted that the configuration among sub-networks can be further defined by
specifying whether those diagonal related sub-network should be connected.

Network Sparsity

The network sparsity refers to the sparsity of a network admittance matrix, which
is largely influenced by the total number of lines and transformers in a system.
Although the network topology can affect the sparsity pattern of the matrix, the
most effective way to control its sparsity is to increase or decrease transmission lines
and/or transformers used in a system. In the proposed technique, this objective
can be achieved by controlling the number of tie lines to be used between any
two related sub-networks. To make these tie-lines more realistic, their connecting

locations in the sub-networks are selected through a random procedure.

6.3.3 Network Data Creation

As mentioned earlier, the large-scale network is created from a set of small real
systems whose data are generally available. Therefore, all data of the created
network (see in Section 3.2) can be quickly duplicated from those small systems.
One does not need to specify any of the data unless he/she wants to make some
changes for a specific purpose. By using the load flow results of the small system,
the created system can easily converge to a load flow solution without the need to

adjust its control variables. As a result, this approach not only saves computational
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time during the network creation but also when finding its load flow solution.

In summary, the technique proposed herein can create realistic large-scale power
networks. It allows the user to choose four important parameters: 1) network
topology, 2) network size, 3) network sparsity, and 4) slack bus number. The
topology of a network to be created is chosen by running the relevant algorithm.
The network size is defined as the number of buses in the system. The algorithms
use this parameter to determine how many sub-networks should be used in order to
create a network of specified size. The sparsity of the matrix is controlled by giving
the number of tie lines used to connect any two sub-networks. Since, originally,
each sub-network has its own slack bus, one needs to select one of them as the
slack bus of the entire system for load flow purpose (the rest of the slack buses
are changed to generation buses). Once these parameters are given, the algorithms
will automatically create the desired system without the need of any intervention.
Finally, the created network data is exported to an ASCII file with a specified
format (see {103]).

6.4 Summary

An efficient technique is presented and implemented to create realistic network data
for power system analysis. The developed algorithm can generate large-scale power

networks with the following features:

e The program can create networks with different network dimension, topology,
and sparsity.

e The program can use any existing real power system as a building sub-network

to make the creation process more productive.
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o The network data can be inherited directly from real sub-network data with-
out the need of many adjustments.

¢ All sub-networks are randomly connected and real network data are employed

to make the created system more realistic.

e The created network can easily get a meaningful load flow solution with no

convergence difficulty.

e There is no limit on the size of the network that can be generated.

Our numerical experiments have verified that this algorithm is fast and robust. It
has been used in this thesis research, and has proved to be a very useful tool for

testing power system programs.



Chapter 7

Conclusions

The main objective of this thesis has been to research and develop the advanced
interior point methods for the efficient solution of optimal power flow problems.
Detailed study has been conducted on the real and reactive power dispatch prob-
lems, i.e., the security-constrained economic dispatch and the minimum transmis-
sion active-power loss reactive power dispatch. The successive linear programming
has been applied to the underlying nonlinear problems, and the resulting linear
sub-problems are solved by infeasible primal-dual interior point methods. The re-
search on the infeasible primal-dual algorithms has been oriented to explore their
full potential for power engineering problems. Intensive study has focused on all
issues that influence the performance of interior point algorithms as well as succes-
sive linearization procedure. The use of sparse linear formulation and techniques

has been investigated to improve the computational efficiency of the algorithms.

The linear real power dispatch problem has been formulated based on a decou-
pled load flow model to improve solution efficiency. The resulting linear formulation

involves the variables of only real power generations and phase angles. The min-
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imization of total production cost has been employed as the objective function of
the problem. The security constraints on branch flow have been considered to limit
the real power flow on transmission lines. On the other hand, the linear reactive
power dispatch problem has been formulated in terms of all reactive controls and
state variables, where a full load flow model has been used to improve the solu-
tion accuracy. The total real-power system losses has been chosen as the objective
function to be minimized during optimization process. Also, the limits on branch

power flow have been considered to satisfy security constraints.

The most elegant interior point methods known so far are the primal-dual path
following algorithms. They enjoy not only the best theoretical complexity but
also prove computationally very efficient. Two advanced variants in this class of
IPMs have been studied in detail, namely, the infeasible primal-dual algorithm
and the predictor-corrector primal-dual algorithm. The major advantage of these
algorithms is that an initial feasible point is not required to start the algorithm. The
feasibility of solutions is attained during the process as optimality is approached.
Both algorithms share the common feature of approximately following the central
path of the feasible regions except that the former uses the first-order while the
latter uses the second-order information of the primal-dual trajectory. Therefore,
they can take large step along search direction to achieve fast objective reduction.
The algorithms have been extended to incorporate lower and upper bounds for

special needs in our particular application.

The detailed study of the primal-dual algorithm has indicated that the choices
of Newton step sizes, initial point, and barrier parameter have large influence on
its performance. The size of Newton step determines how much reduction in the
objective function can be made in each iteration. A conservative step size may

restrict the progress toward optimality once feasibility of the solution is attained.
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The strategy of aggressively increasing the step size based on feasibility condition
can avoid the above problem and speed up convergence. An initial point with large
magnitude usually causes a large initial duality gap which needs more iteration
efforts to reduce. The refined start point with small magnitudes can help conver-
gence for problems with small optimal solutions. The barrier parameter should be
decreased as iterations progress. However, its over-reduction in the early stage will
cause negative duality gap and slow convergence. In this circumstance, properly
boosting the barrier parameter can avoid repeated occurring of such phenomenon

and hence smooth optimization process.

The investigation of predictor-corrector primal-dual algorithm has focused on
those issues that are critical to its efficient implementation, such as the adjustment
of barrier parameter, the determination of initial point, and the use of multiple
corrector steps. Some heuristics have been proposed to customize the algorithm
parameters to our particular application, including (1) an improved barrier param-
eter adjusting scheme based on feasibility criterion, and (2) a refined initial point
procedure using small and balanced primal and dual thresholds. Test results have
indicated that the proposed ideas significantly improve the algorithm performance,
reducing over half iterations and solution time. Also, it has been found that using
multiple correctors generally requires less iterations, but its overall performance is
not as efficient and stable as using one corrector step, especially for ill-conditioning
problems. The comparison with the pure primal-dual algorithm has been con-
ducted, which reconfirms the superiority of the predictor-corrector method.

The practical issues related to successive linear programming have been thor-
oughly investigated. The influence of linear step sizes and LP/OPF stopping cri-
teria has been evaluated on both real and reactive power dispatch problems. The

in-depth analysis on these issues has found that the proper adjustments of linear
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steps and tolerances are crucial for achieving fast solution speed while maintaining
solution accuracy. The strategy of applying a large initial step plus adaptive step
reduction improves the convergence behavior of successive linear processes (SLP),
significantly reducing the SLP iterations. In addition, the idea of employing large
initial LP tolerance and then gradually decreasing its value as linear points approach
the optimum can save computational work in solving each linear sub-problem, dra-

matically reducing the total LP iterations, even improving SLP performance.

The computational bottleneck of the interior point algorithm is to solve a large-
scale system of linear equations at every iteration. Therefore, solution speed and
numerical stability are two concerns for developing fast and robust interior point
algorithms. In our implementation, the normal equation method has been selected
as the solution method due to its good numerical characteristics. Sparse techniques
have been applied to every stage in the solution of normal equations. Test results
on large-scale problems have verified the computational efficiency and reliability of
our developed interior point algorithms.

As part of this research, the recent developments in the simplex technology
have been investigated to evaluate their impact on power engineering problems. A
state-of-art simplex code has been used to solve the large-scale real and reactive
power dispatch problems. Extensive numerical tests have been conducted on such
advanced features as preprocessing, scaling, crashing, advanced base starting, and
steepest-edge pricings. Our experience has shown that these advances do improve
simplex performance significantly. Their influence varies widely, depending on the
size and nature of the problem under study. Also, test results have shown that
combining the advantages of both simplex and interior point methods may be the

best choice as far as solution speed and information completeness are concerned.

Finally, an efficient network creating technique has been developed for testing
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algorithms. The program can generate realistic network data based on any available
real system. The created network can be of different size, topology, and sparsity.

7.1 Recommendations for Future Research

The research work presented in this thesis has demonstrated the successful applica-
tion of interior point algorithms for optimal power flow problems. It also provides

the possibility of continued research in the following directions:

1. It has been observed that nsing multiple correctors can save iterations re-
quired by the primal-dual algorithm, provided that the OPF problems have
good conditioning. Although such savings has little impact on solution time
for small size problems, it may bring significant benefit for large-scale prob-
lems where the numerical factorization is much more expensive than the so-
lution phase. More detailed investigation is necessary to explore its potential

application.

2. An attractive feature of Simplex method is its warm start capability, which is
very useful when solving similar problems repeatedly, such as the successive
linear solution of OPF problems. So far, there have been little progress in this
area of interior point algorithms, especially for power engineering problems.
Further study should be directed toward exploring the possibility of improving
the algorithm performance through warm start.

3. In the circumstance where high solution accuracy is required, extending the
algorithms to nonlinear programming should be considered. In this case,

however, the normal equation method is not suitable for solving the search
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direction. Other methods such as argumented equation methods should be in-
vestigated. Without lower and upper bounds on most state variables, special
techniques of treating those free variables may be required to overcome possi-
ble numerical difficulties. Other issues such as customizing barrier parameter

and initial points for nonlinear problems also need to be investigated.
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