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Abstract 

Cytosine-phosphodiester-guanine oligodeoxynucleotides (CpG-ODN) are nucleotide 

sequence motifs found in the bacterial genome that activate the mammalian innate immune 

response and have been found to boost humoral immunity when used as vaccine adjuvants in 

non-human primates and mice [1, 2]. Although species specific differences exist in the nature of 

the response, CpG-ODN can also activate chicken innate immune cells through the Toll-like 

receptor 21 (TLR 21) and has been found to protect against common bacterial infections in 

chickens such as Escherichia coli (E. coli) in neonatal broiler chicks after spray administration. 

The importance of CpG-ODN application is that the Canadian chicken industry voluntarily 

agreed to withdraw the prophylactic use of Category I antibiotics in poultry, which leaves chicks 

highly susceptible to infection and can result in high mortality rates and large economic losses. 

Owing to the relatively low manufacturing cost, and ease of customization of 

oligonucleotides [3], CpG-ODN administration is a highly attractive strategy against E. coli 

infection in neonatal broiler chicks. Especially because the development of a non-species-

specific E. coli vaccine is difficult due to the genetic variation of E. coli.  

The objective of this thesis was to develop an inhalable nanoparticle CpG-ODN 

formulation that is superior to CpG-ODN on its own. Ultimately, the goal is to develop an 

inhalable nanoparticle carrier that can protect CpG-ODN, enhance innate immune stimulation, 

and prolong the protective effects in broiler chicks. 

In practice, oligonucleotides are highly susceptible to degradation in biological 

environments. Moreover, in the lung, mucociliary clearance and enzymatic clearance play a role 

in preventing optimal immune stimulation and delivery of the vaccine to immune “hot spots”. In 

the human lung, bio-adhesive polymers have shown to improve DNA delivery by increasing 

residence time in mucosal membranes. 

Gemini surfactant nanoparticles (NPs) are a novel nucleic acid delivery system that could 

deliver CpG-ODN to important innate immune activating cells for an optimal immune-protective 

effect. Bio adhesive polymers such as chitosan and polyvinylpyrolidone could also improve 

delivery of DNA to the lung. This work investigated how the physicochemical properties of 

nebulized bio adhesive polymer nanoparticle formulations influence delivery of the vaccine to 
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the avian lung and activation of the innate immune response in comparison to CpG-ODN on its 

own.  

The dicationic gemini surfactants 12-3-12, 16-3-16, and 18-3-18 were used in 

combination with a phospholipid (DPPC), and different bio adhesive polymers to prepare various 

types of hybrid nanoparticles and assess their transfection efficiency in a chicken macrophage 

immortal cell line HD11. The transfection efficiency and toxicity of formulations was measured 

using flow cytometry. All formulations were also assessed in their capability to induce an innate 

immune response in HD11 cells by quantitating nitrite (nitric oxide) production using the Greiss 

assay. Size and zeta potential measurements were carried out using dynamic light scattering and 

fluorescence correlation spectroscopy to correlate physical parameters to transfection efficiency. 

Furthermore, confocal microscopy was used to evaluate cellular uptake after transfection. 

Finally, the biodistribution and ability to elicit a protective innate immune response in 1-day old 

chicks was tested for selected formulations. 

Of the six formulation groups developed in this thesis, gemini surfactant nanoparticles 

(G-NP), gemini-lipid (GL-NP), biopolymer coated gemini-lipid (BGL-NP) formulations, and 

chitosan-gemini (CG-NP) formulations were the most reproducible and stable formulations that 

could increase uptake and retention of CpG-ODN in comparison to naked unformulated CpG-

ODN. These formulations were also able to elicit chicken macrophage activation, and generate 

protective responses in one-day old broiler chicks when challenged with pathogenic E. coli. 
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Chapter 1: Introduction 

Infectious diseases are normally treated with antibiotics. Given the global concern for 

antimicrobial resistance, the CDC, FDA, and WHO have announced the importance of regulating 

and controlling resistance [4]. In the past, the livestock industry has not only used antibiotics for 

treatment purposes, but also as preventative forms of therapy [5]. The problem is that their 

overuse in livestock has been linked to the emergence of antibiotic resistant strains of bacteria 

[6]. Because of this, in 2014, the Canadian poultry industry eliminated preventative use of 

category I antibiotics, those most vital to human health, in chickens. They are further working to 

eliminate category II and III antibiotics. 

Given the elimination of these antibiotics, there is a major concern for Escherichia coli 

(E. coli) infection in broiler chicks. This is a common infection which plagues the modern broiler 

chick industry resulting in rapid loss of chicks and massive economic losses [7]. In order to 

prevent diseases in broilers that are primarily treated and controlled with antibiotics, alternative 

options must be implemented to promote the health and growth of the modern broiler chicken.  

 Vaccination is among the strongest infectious disease prevention strategies in humans. 

Similarly, broiler chickens and layer hens in the poultry industry are subject to intensive 

vaccination procedures that protect them against many infectious diseases [8]. In order to combat 

E. coli infection in chickens especially chicks, a promising alternative includes the 

implementation of large scale immunization with CpG-ODN DNA within poultry farms. 

Vaccination of neonatal broiler chicks with a DNA sequence adjuvant such as CpG-ODN has 

been shown to stimulate the avian immune response and protect against pathological events 

associated with bacterial infection [7].  

By replacing drug therapies in food animals with vaccination, environmental build up and 

residue in food animal products can be reduced [9]. However, due to the large-scale nature of 

food producing facilities, cost effectiveness is also a major consideration. In chickens, 

pulmonary vaccination is attractive because of easy access, the high vascularity and permeability 

[10]. This could be of great importance in the livestock industry where administration of a large 

number of vaccinations could be limited by the availability of the number of trained personnel. 
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Additionally, needle-free vaccination is desirable in terms of safety due to both decreased risk of 

contamination from infected needles and potential irritation from injection [11, 12]. 

Pulmonary vaccine delivery has been widely studied in humans, and although there are 

major differences between the mammalian and avian respiratory systems, similar principles of 

pulmonary delivery apply. For example, the avian respiratory system also has high surface area 

in the gas exchange regions of the lung and the efficiency of respiration is higher than in humans. 

Due to the paucity of research investigating pulmonary vaccine delivery in chickens, the findings 

from mammalian systems will be applied to the present thesis. 

Since most studies have found that mucosal delivery of the antigens alone especially 

DNA, using the pulmonary route is not efficient enough, nanoparticle (NP) technology has been 

applied to vaccine delivery and show potential in veterinary medicine as well [13-16]. NPs, 

defined as structures with at least one dimension in the range of 1-100 nm, recently gained wide 

interest in drug delivery [17]. NP vaccine systems are advantageous since they have the potential 

for limiting adverse effects, providing better stability, and stimulating the immune response 

enough so that adjuvants or repeated administration is not necessary [18]. Additionally, more 

sophisticated designs to incorporate selective targeting by ligand attachment or co-delivery of 

several antigenic components have been emerging. Research from small animal models and 

clinical trials have shown that NP carriers can enhance therapeutic and vaccine action in many 

routes of administration (subcutaneous, intravenous, inhalable, intramuscular) [19-22]. NP 

carriers are thought to protect the active substance from the physiological environment as well as 

aid the interaction between the active substance and its target [22, 23]. In fact, there are a variety 

of nano-pharmaceuticals already available on the market [24]. 

1.1 Motivation 

1.1.1 Need for a prolonged immune response 

The administration of a vaccine or therapeutic via inhalation has presented obstacles in 

the ability to produce a sufficiently high systemic immune response [25]. This has been 

attributed to the nebulization device, the anatomical, and the physiological features in the 

airways [25, 26]. 
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For oligonucleotide vaccines, this effect is potentiated since oligonucleotides are highly 

susceptible to degradation in the lung environment. Although CpG-ODN has proven protective 

against E. coli challenge under experimental conditions, the main challenges include the large 

dosages necessary for an effective response and the rapid degradation and elimination from the 

circulation in vivo [27]. NPs have improved the immune response in comparison to free DNA, 

but research is still in the early stages and there are few links that correlate enhanced 

immunogenicity with protection. Since the immune response is a delicate balance between 

tolerance and protection, if a sufficient amount of immune stimulating oligonucleotide is not 

delivered and processed, immune tolerance rather than immunization occurs that leads to 

ineffective protection against the infectious agent [28]. 

By testing and comparing different types of NP formulations in this project, correlations between 

delivery system components and superior delivery can start to be elucidated. 

1.1.2 Need for a reproducible, easy to manufacture, stable formulation, easy to deliver 

While NP delivery systems show promise in improving delivery by increasing stability of 

its cargo within biological environments and have potential in lowering toxicity, cost and 

manufacturing conditions must also be considered. This is especially important in the poultry 

industry because cost-benefit ratios must be ideal so that administration can be implemented for 

a large number of animals [29]. Since NP formulations (especially with multifunctional 

purposes) introduce added complexity to safety regulations, synthesis, and purification [29, 30], 

an added motivation was to design NP formulations that could easily be manufactured in a short 

period of time without the need for high pressure homogenization. 

  Additionally, the mechanism of delivery was considered in order to avoid labor intensive 

processes of administering individual vaccines [29].  The pulmonary route is ideal since it can 

deliver agents both to the local mucosa and systemically. The formulation as such, could be 

easily applied throughout the chicken life span if necessary. 

1.1.3 Correlating NP composition with delivery status 

Preferred materials used for pulmonary NP delivery systems are lipids and polymers. At 

present, a variety of lipid and polymer based formulations have been synthesized by many 
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groups for effective pulmonary aerosol administration [31-38]. In addition, bio adhesive 

polymers are sometimes added to NP formulations to increase residence time in the lung and 

allow for increased cellular uptake, and therefore lasting gene expression/drug delivery [39]. NP 

formulations show improvement in comparison to naked plasmid or oligonucleotide delivery in 

vitro and in vivo in mice and various livestock animals [33, 39, 40]. However, comparisons 

between different types of formulations have not been explored to a great extent. This thesis, also 

aims to compare a novel cationic gemini surfactant gene delivery system to chitosan and 

phospholipids which have shown potential in lung gene delivery systems [23, 36, 38, 41-45]. 

Hybrid combinations of these NPs will also be compared drawing on the advantage of muco-

adhesion from chitosan and the promotion of cell interaction from phospholipids to determine 

advantages of multifunctional particles. 

1.2 Hypothesis 

The hypothesis is that NPs will improve the transfection (uptake) of CpG-ODN by HD11 chicken 

macrophages and therefore will show increased bio distribution in the lungs after inhalation 

compared to free CpG-ODN and prevent mortality after E. coli challenge in neonatal chickens. 

Further, the composition of the NP (gemini, gemini-phospholipid, gemini-phospholipid-polymer, 

chitosan, gemini-chitosan, chitosan-phospholipid) will directly affect the uptake of CpG-ODN by 

HD11 macrophages, with mucoadhesive chitosan-gemini NPs improving the retention of CpG-

ODN and increasing activation of the innate immune response in HD11 cells.  

1.3 Thesis Objective 

The main objective of the project was to evaluate and compare the delivery of CpG ODN 

2007 into the lungs by bio-adhesive gemini surfactant-phospholipid NPs (BGL-NPs), chitosan 

NPs (C-NPs) and hybrid combinations of chitosan gemini NPs (CG-NPs), and chitosan 

phospholipid NPs (CL-NPs) after inhalation in neonatal chickens. 

This thesis presents the design and development of different NP vaccine formulations using 

a combination of lipid, biopolymer, and gemini surfactants to encapsulate a phosphorothioate-

modified CpG-ODN DNA sequence. By designing different kinds of hybrid NPs, an optimal 

formulation that effectively overcomes the lung environment and reaches the local lung and 
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systemic immune components will ultimately enter and activate immune stimulating chicken 

macrophages. This work aimed to develop a CpG-ODN vaccine formulation that has the 

potential to produce a longer lasting innate immunity to E. coli infection in chicks than CpG-

ODN on its own. It also aimed to produce a reproducible and stable vaccine formulation that can 

be used out in the field.  

With these goals in mind, several features of each of formulation were analyzed. The 

specific endpoints for characterization and evaluating effectiveness are outlined below: 

A. NP preparation and characterization 

(1) Preparation of several gemini, lipid, and polymer formulations by controlled 

manipulation of chemical and physicochemical features that affect gene 

delivery, including: 

a. Bio adhesive polymer composition 

b. Order of assembly of NPs 

(2) Evaluation of size distribution and zeta potential of various formulations 

a. In original (as prepared) form 

b. In different biological buffers and media 

(3) Characterization of NPs by fluorescence correlation spectroscopy 

(4) Characterization of the effect of nebulization on particle properties  

a. Size and zeta potential 

b. CpG-ODN stability 

B. Flow cytometry assessment of CpG-ODN uptake in HD11 macrophage cells  

(1) Evaluation of the uptake of CpG-ODN solution versus CpG-ODN NP 

formulations in the HD11 cells by tracking Alexa Fluor 647 labeled CpG-ODN in 

cell populations 

(2) Evaluation of the toxicity/viability of HD11 cells treated with CpG-ODN NPs 

(3) Evaluation of innate immune activation in HD11 cells following CpG-ODN 

antigen presentation by measuring the extent of nitrite (nitric oxide) production by 

HD11 macrophages following treatment with different NP formulations  

(4) Assessment of CpG-ODN localization by NPs in HD11 cells in vitro: trafficking 

of CpG-ODN NPs within HD11 cells using confocal microscopy 
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C. Confocal microscopic assessment of gene delivery and biodistribution of NP 

formulations in 1-day old chick lungs 

Evaluation of the location and extent of deposition of optimized CpG-ODN NPs in the 

neonatal chicken respiratory tract after inhalation delivery using a nebulization 

chamber. 

D. Evaluation of protection against E. coli infection in neonatal chicks after CpG-

ODN NP formulations in collaboration with University of Saskatchewan 

(1) Evaluation of the protective effect of immunization with CpG-ODN NPs on chick 

survival after challenge with pathogenic E. coli. 

1.4 Thesis Organization 

 

This thesis is divided into five chapters. Chapter 2 presents the necessary background to 

understand the current challenges and breakthroughs in pulmonary NP vaccine formulation 

in veterinary livestock. The application to the avian respiratory system is also discussed. NP 

design considerations for CpG-ODN delivery to the avian lung are discussed in more detail 

and materials applied to DNA-NP delivery systems to overcome the lung barriers are 

discussed. 

Chapter 3 presents the experimental materials and methodology used to develop and 

evaluate the different components of NP formulations. The NP preparation methods are 

discussed as well as how size and zeta potential were evaluated. The design of the in vitro 

evaluation is also discussed as well as how the formulations were evaluated in vivo. 

Chapter 4 presents the results on physical components affecting cellular uptake and lung 

delivery. Also, a look into manufacturing reproducibility and stability are discussed. 

Finally, uptake, immune activation, deposition, and protective effects for each formulation 

are compared.  

Chapter 5 discusses the results and represents the conclusions obtained from this work. The 

limitations are discussed here. Lastly, future directions are proposed to further progress the 

NP formulation into a more commercially viable product.  
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Chapter 2: Background and Literature Review 

This chapter provides an overview of the background together with a detailed discussion 

of the related work found in the literature to explain the specifics of the project. Initially, an 

overview of NP vaccine development targeted to the lung and nasal passageways in livestock 

animals is presented in a written review on the subject [40]. Next characteristics of CpG-ODN 

DNA as a vaccine in chickens is reviewed. Finally, an overview of NP materials used to 

overcome DNA delivery barriers in the human lung and avian respiratory tract are reviewed.  

2.1 Application of nanotechnology in pulmonary veterinary vaccines 

NP delivery systems applied to therapeutics and vaccines have been gaining momentum 

in human medicine, with a variety of nanopharmaceuticals already available in the market [24]. 

However, evidence of NP delivery systems in veterinary medicine is also emerging in the 

livestock industry. Specifically, applications of NP delivery systems for pulmonary delivery are 

promising for improving delivery at a large scale in a cost-effective manner.  

In this section, a review of emerging applications for NP vaccine delivery via the 

respiratory route in a variety of livestock animals is presented next to give an overview of the 

progress in veterinary research. This section was recently published in the journal of Drug 

Delivery and Translational Research  Veterinary vaccine nanotechnology: Pulmonary and nasal 

delivery in livestock, Calderon-nieva et al. [40]. 

Veterinary vaccine development has several similarities with human vaccine 

development to improve the overall health and well-being of species. However, veterinary goals 

lean more towards feasible large-scale administration methods and low cost- high benefit 

immunization. Since the respiratory mucosa is easily accessible and most infectious agents begin 

their infection cycle at the mucosa, immunization through the respiratory route has been a highly 

attractive vaccine delivery strategy against infectious diseases. Additionally, vaccines 

administered via the respiratory mucosa could lower costs by removing the need of trained 

medical personnel, and lowering doses yet achieving similar or increased immune stimulation. 

The respiratory route often brings challenges in antigen delivery efficiency with enough potency 

to induce immunity. Nanoparticle (NP) technology has been shown to enhance immune 

activation by producing higher antibody titers and protection. Although specific mechanisms 
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between NPs and biological membranes are still under investigation, physical parameters such as 

particle size and shape, as well as biological tissue distribution including muco-ciliary clearance 

influence the protection and delivery of antigens to the site of action and uptake by target cells. 

For respiratory delivery, various biomaterials such as muco-adhesive polymers, lipids and 

polysaccharides have shown enhanced antibody production or protection in comparison to 

antigen alone. This review presents promising NPs administered via the nasal or pulmonary 

routes for veterinary applications specifically focusing on livestock animals including poultry.  

2.1.1 Veterinary vaccine nanotechnology: Pulmonary and nasal delivery in livestock 

animals [40] 

Vaccination is a powerful tool for the prevention and control of infectious diseases [17].  

In humans, vaccination has made the eradication of small pox possible, with polio soon to follow 

[17]. Despite these tremendous advances in human health intervention, several infectious 

diseases are still high burdens for the global economy and public health [46]. Zoonoses accounts 

for 60% of all infectious human pathogens that have a possibility to cause pandemics [47]. The 

farm/livestock industry is a major source of zoonotic potential where animals are in constant 

close proximity providing greater opportunity for viral mutation, or bacterial gene transfer which 

can be transferred directly to humans after consumption. Perhaps one of the most feared zoonotic 

infectious diseases is avian influenza, which could be prevented quickly and specifically, if a 

universal synthetic vaccine  was available [18]. 

As such, not only does veterinary vaccination in livestock aim to prevent and control 

animal diseases, it also aims to prevent disease in food animals to avoid zoonosis or infection in 

human consumers and improve the efficiency of production of food animals [9]. For example, by 

replacing drug therapies in food animals with vaccination, environmental build up and residue in 

food animal products can be reduced [9]. However, due to the large-scale nature of food 

producing facilities, cost effectiveness is also a major consideration. Non-economical vaccines 

will not likely be widely adopted if cheaper alternative treatments are available [9]. While human 

vaccination also aims for cost-effective vaccines, individual health and well-being is a stronger 

consideration for compliance. 
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Current licensed vaccines in both livestock and humans are derived from live, modified, 

attenuated or killed vaccines [8, 48] . Unfortunately, attenuation is an expensive long process. 

Live vaccines also have the potential to revert to virulence and are not recommended for the 

immune-compromised [49]. Another drawback of vaccines is that they likely require an adjuvant 

and must be administered by needle, which requires trained personnel and proper disposal [21]. 

Some vaccinations even require multiple doses of vaccine to induce a sufficient immune 

response against the agent [18]. 

On the other hand, needle-free nasal vaccination and pulmonary vaccination is attractive 

because of easy access, the high vascularity and permeability, and limited metabolism in the 

nasal cavity [10]. This could be of great importance in the livestock industry where 

administration of a large number of vaccinations could be limited by the availability of the 

number of trained personnel. Additionally, needle-free vaccination is significant in terms of 

safety due to both decreased risk of contamination from infected needles and potential irritation 

from injection [11, 12]. In fact, the pulmonary route of vaccination has been around since the 

1950’s during the development of an aerosol New Castle Disease vaccine in chickens, which is 

now widely used [50, 51]. In ruminants, aside from averting first pass metabolism and the 

rumen, the respiratory mucosal surfaces of an organism not only have the potential to initiate 

immunity at the local site of administration, but also systemically due to the close proximity of 

the blood-lung barrier [13]. There is already evidence that immunization via the respiratory tract 

not only produces high local immune responses [11, 52] but also provides high systemic mucosal 

immunity in mice and non-human primates [11, 53]. This is especially important as many 

infectious diseases such as Influenza, Escherichia coli (E. coli) and Mycobacterium tuberculosis 

(MTb) are able to initiate their infectious process at mucosal surfaces [13].  

In practice, both pulmonary and nasal delivery have highlighted biological challenges 

that can prevent the proper delivery of vaccine to the lung. In mammals, particles delivered via 

the nasal or pulmonary route can be lost to the oropharynx because of the turbulent air flow and 

continuous branching and narrowing of the airways [28, 54]. However, synchronic inhalation 

seems to improve loss by bypassing the esophagus [28]. Additionally, the mucociliary blanket in 

the upper airways and the nasal cavity is designed to constantly clear particles [10, 19, 28]. 

While there are some recognized anatomical differences between large livestock animals and a 

complete anatomical dissimilarity with the avian lung (poultry), the mucociliary blanket is 
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present in all of these species. The loss of particles delivered to the target site via inhalation in 

the air sacs of the avian system is also a concern despite their unidirectional air flow [55].  

 Even if particles are able to bypass mucociliary clearance barriers, the lower respiratory 

passageways are also not lacking in clearance mechanisms. Alveolar components and lysozymes 

can break down products near the blood-epithelial barrier in mammals [28]. Although the 

presence of immune cells in the lung is favorable to vaccine applications, the formation of 

tolerance or rapid clearance of a particle via innate immunity could hinder immune activation 

[28].  

In order to improve vaccine potency and achieve needle-free delivery, nanotechnology 

has been incorporated into vaccine research [17]. More specifically, delivery of nanoparticle 

vaccines via the nasal or pulmonary (inhalable) route has become highly attractive. While most 

studies have found that mucosal delivery of the antigens alone using the pulmonary route is not 

efficient enough, Nanoparticle (NP) systems have been found to greatly improve delivery 

through the mucosa of the pulmonary system in humans and show potential in veterinary 

medicine as well [13-16]. NPs are defined as structures with at least one dimension in the range 

of 1-100 nm, that have been widely applied to drug delivery [17]. In vaccine delivery, “nano” 

platforms have mainly focused on developing delivery vehicles for vaccine antigens, but some 

materials such as the biopolymer chitosan have shown vaccine adjuvant properties [56, 57]. 

These systems are advantageous since they have the potential for limited adverse side effects, 

better stability, and may also stimulate the immune response enough so that adjuvants or 

repeated administration is not necessary [18]. Additionally, more sophisticated designs to 

incorporate selective targeting by ligand attachment or co-delivery of several antigenic 

components have been emerging. 

The application of nanotechnology in veterinary vaccination is still in early stages. Some 

of the knowledge in this regard is available from small animal models used for human vaccine 

development. In fact, nanotechnology has been adapted to enhance the performance of the 

delivery of therapeutics in several areas like lung cancer and cystic fibrosis. Combined with 

nanotechnology, needle-free mucosal immunization can ease vaccination in the food production 

and livestock industry while ensuring sufficient protection against diseases which could cause 

serious economic losses on the farm. Several NP delivery vehicles have already been tested in 
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livestock veterinary vaccine development in order to achieve needle-free vaccination for mass 

immunization [8, 13, 14, 16, 58-60].  

The advantages of vaccination via the pulmonary route as well as the feasibility of 

implementing such vaccination methods out in the field will be explored in this review. 

Additionally, the research and application of nanotechnology for inhalation or nasal vaccine 

developments in livestock, and especially poultry, will be discussed as an important aspect of 

protection for animals in the food chain and link to human safety.  

2.1.1.1 Availability of devices for vaccine delivery via inhalation or nasal delivery and mass 

administration 

Mucosal drug administration via the pulmonary route has been well established in 

humans for a long period of time for respiratory diseases such as asthma and chronic obstructive 

pulmonary disease (COPD) [61]. In fact, nebulizers and dry powder inhalers are standard aerosol 

devices designed to administer drugs via inhalation in humans [25]. Specific aerosol devices for 

drug delivery to the lung in veterinary species have not been described in livestock but metered 

dose inhalers for companion animals do exist including the AeroKat for cats, AeroDawg for 

dogs, and the AeroHippus for equine species (Trudell Medical International). The delivery of 

aerosol therapeutics may be more difficult in animals as one cannot teach them to take controlled 

breaths when using inhalers or nebulizers [62]. On the other hand, nasal administration may be a 

better option for larger animals.  

Inhaler or nasal devices specific to vaccine administration have not been developed. 

However, nasal or inhalable vaccines are attractive in humans for needle fearing individuals and 

children. Furthermore, inhalable or nasal vaccines are attractive strategies for mass immunization 

in livestock and humans. Depending on farm size, animal handling for vaccine administration 

could add to the already labour intensive nature of the food production industry [63].  

Vaccine administration via intramuscular or subcutaneous injection is still the standard 

today even though an intranasal (i.n.) vaccine against bovine respiratory disease (PMHIN) 

released by Merck in 2014 exists for cattle, and spray vaccination also exists in the poultry 

industry [8]. Especially, administration via a parenteral route ensures high bioavailability and 

drug absorption that can be accurately predicted, in contrast to nasal or inhalation administration 
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where absorption at the systemic level or amount lost at the oropharynx is not easily measured.  

As a result, veterinary syringes are designed to administer repeat-injections to aid farmers in 

administering multiple dosages of a vaccine without having to draw the vaccine formulation into 

the syringe each time prior to vaccination of the animal (Allflex).  

 Among needle-free delivery devices for livestock, there are controlled release devices 

available for oral administration which are made of nylon or permeable materials [64] . The oral 

devices filled with drug can either have high density or expand upon entering the rumen to avoid 

regurgitation and ensure long term release of drug [64, 65]. Intravaginal devices similar to 

human intrauterine devices are also available mainly for hormonal, fertility, and anti-helminthic 

drugs, but not vaccine administration [64]. In the poultry sector, non-invasive approaches to 

vaccine administration seem to focus on oral or ophthalmic routes [65]. Drugs incorporated into 

skin tags and ear tags are also available [65]. Coarse spray vaccines in the poultry sector are 

designed for administration to the eye and upper respiratory tract and these can be easily 

administered through automation at the hatchery [66].  

The complications involved in the design of inhalable controlled release devices or 

products results from the variation in physiology of animal species. For example, in food 

producing animals or livestock, there are two categories of species: the ruminants and the avian. 

Aside from the obvious differences that exist between the avian and mammalian respiratory 

system, interspecies differences also exist [63]. The result is differences in rates of 

biotransformation, differences in breathing pattern, and tissue distributions [63]. The 

consequence of the species differences is that each vaccine delivery system proposed must be 

specifically designed for a particular species [65]. 

 Additionally, the administration approach is not only dependent on the type of animal but 

also on their housing facilities. For instance, in poultry, aerosol administration may be practical 

due to the close proximity and smaller housing facilities. Additionally, their smaller size and 

unidirectional airflow through their lung may favour deposition of aerosol vaccines in their 

respiratory tract. For example, an inactivated influenza vaccine has been shown to induce 

protection against lethal influenza challenge in chickens [67]. However, an influenza vaccine for 

example may not be desirable environmentally as an aerosol due to its zoonotic potential. In 

ruminants, due to their large body structure and nature of housing it may be more difficult to use 
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inhalable sprays that achieve proper dosing. However, if devices were designed specifically for 

inhalation or direct intranasal application for felines, dogs and horses, these might be 

incorporated into their upkeep. With all aspects considered, mucosal immunization could replace 

the hazardous potential of needle administration. 

2.1.1.2 Current nano-pharmaceuticals in the market 

 Research from small animal models and clinical trials have shown that NP carriers can 

enhance therapeutic and vaccine action in many routes of administration (subcutaneous, 

intravenous, inhalable, intramuscular) [19-22]. NP carriers are thought to protect the active 

substance from the physiological environment as well as aid the interaction between the active 

substance and its target. In fact, there are a variety of nano-pharmaceuticals already available on 

the market [24]. The available nano-pharmaceuticals are mainly used to encapsulate cancer 

drugs. However, there is one nano-vaccine available in Switzerland for influenza. Other NP 

drugs carry anti-fungal and hormone replacement active ingredients. The approved NP 

pharmaceuticals are formulated from lipid, surfactant, polymer, metal materials, and even viral 

components with the ability to carry not only active molecules, but proteins as well [24]. This 

encompasses the variety of NPs that can be created and the versatility of applications and 

packages that they can hold. 

 Absent from this list, are any approved particles designed for pulmonary or nasal 

administration. Although the use of human aerosol devices has improved to deliver greater 

amounts of dose to the lung, achieving systemic delivery is still suboptimal [25]. Yet, in terms of 

vaccine application, dosing is critical to proper immune stimulation. A suboptimal dose may 

induce tolerance or no immune stimulation at all. On the other-hand over dose could result in 

detrimental immune stimulation. Regardless, the design of NPs for drug, gene, protein, and 

vaccine delivery via the airways is currently an exciting research field. 

2.1.1.3 Physical and biological parameters involved in aerosol delivery 

The fate of particles entering the airways is dependent on three aerodynamic properties: 

impaction, sedimentation, and diffusion. Whether or not a particle settles in the respiratory 

system by impaction, sedimentation or diffusion depends on the particle size distribution 
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generated by the delivery device and the type of breathing pattern during inhalation of the dose 

[25, 26]. Upon inhalation of a deep forceful breath, particles greater than 1 m tend to impact as 

their higher density and momentum prevent it from changing direction if there is a change in 

airflow pattern. In the airways, these larger particles (3-6 m) get trapped in the pharynx, mouth 

or the mucus of the trachea, which results in them being removed by swallowing [68, 69]. Upon 

slower air velocity or a slower breathing pattern, particles between 1-5 m (NPs) in size tend to 

settle in the smaller airways and respiratory bronchioles by sedimentation (gravity), since their 

residence time within the lung increases [69]. Also, NPs have better chance of reaching the 

bronchioles and respiratory mucosa in the lower airways [26]. The smallest NPs less than 0.5 m 

tend to deposit in the alveolar spaces resulting from Brownian motion [26, 69, 70].  Though, 

these smaller particles tend to get exhaled but if less than 34 nm in size, they enter the blood 

stream and are cleared via renal filtration [71]. Since systemic immune activation is critical to 

initiating cell mediated immune responses, targeting to the alveolar region at the interface of the 

blood-air boundary is highly desirable for a NP vaccine.  

Since aerosols can be dry powders, liquid suspensions or liquid solutions, the type of 

formulation is also important in the development of aerosol vaccines. The final vaccine 

formulation must be compatible with the device chosen to administer the vaccine. For example, 

if a multi-dosing inhaler device is used, the interaction of the formulation with the holding 

chamber must be considered to ensure consistent dosing after every administration [25]. If a 

nebulizer is chosen, the NP formulation designed must be a liquid to allow the output to generate 

small droplets. Furthermore, different types of nebulizers are only compatible with certain types 

of formulations. For instance, ultrasonic nebulizers which generate aerosol droplets using high 

energy soundwaves are ineffective in nebulising more viscous solutions such as suspensions or 

liposomes [25]. But, vibrating mesh or plate nebulizers which physically break up the liquid into 

smaller droplets work very efficiently for suspensions or liposomes [25].  

 Unlike the aerosol delivery to the lung, the nasal cavity is a lot smaller and the 

aerodynamics does not play as large a role in deposition of particles. In nasal delivery, the goal 

of systemic vaccination is to reach the respiratory region. The respiratory region of the nasal 

cavity containing nasal turbinates have a high surface area and create turbulent air flow to allow 

better contact between the inhaled air and the mucosal surface. Nasal turbinates are in close 
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proximity to blood vessels. Additionally, the mucosal associated lymphoid tissue in the nose 

(nasal associated lymphoid tissue (NALT)) that is separated from the epithelial barrier containing 

the mucociliary blanket is the main target of mucosal vaccination in the nose. 

The first physiological barrier in the nose is a mucociliary layer that clears entering 

particles which then go to the back of the throat and oesophagus to get cleared by the digestive 

system [54]. Furthermore, enzymatic activity within the nasal cavity mucus is a concern to drug 

delivery [19]. Perhaps the most important factor that affects particle delivery in the nasal 

mucosa, is actually membrane permeability. Large polar molecules do not pass through the 

epithelial cell membrane easily and must be accompanied by absorption enhancers such as bile 

salts and phospholipids to change the permeability of the epithelial cell layer [54].  

2.1.1.4 Potential for enhanced pulmonary and nasal immune stimulation with various 

nanomaterials 

In vaccine delivery, direct interaction between an adjuvant and an antigen presenting cell 

is critical to immune activation. Therefore, the interaction of NPs at the cellular level is very 

important to understanding mechanisms of NP adjuvanticity. Chitosan NP sizes around 400 - 

1000 nm have been reported to elicit higher serum immunoglobulin A (IgA) levels than 3000 nm 

NPs [72, 73]. However, PLGA NPs around 1000 nm have also been found to induce stronger 

serum Immunoglobulin G (IgG) than 200 nm or 500 nm particles after i.n. immunization.  At the 

cellular level NP size, surface charge, and surface morphology are known to influence the uptake 

and trafficking by pulmonary antigen presenting cells [74]. For example, it was found that 50 nm 

polystyrene particles are taken up by alveolar and non-alveolar macrophages, B-cells and 

dendritic cells in the lung, but only by dendritic cells in the lung-draining lymph nodes (inguinal, 

mesenteric and mediastinal) [75]. The surface charge of a particle can also influence type of cells 

recruited to the site of action. In fact, hydrogel rod shaped cationic particles have been found to 

associate with dendritic cell subtypes while alveolar macrophages were found to preferentially 

take up negatively charged particles [74, 75].  

Contradictory theories between the correlation of size and immune activation are likely 

due to the different particles that have been directly characterized for NP-adjuvant-cellular 

interactions in vitro.  Additionally, orientation of the antigen within or on the surface of the 

particle could influence the mechanism of antigen presentation [73, 76]. Theoretically, 
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nanoparticle drug therapies are thought to reduce dosing frequency due to the increased 

accumulation of drug per particle at specific sites [70]. Similarly, in vaccine delivery NPs can be 

made to carry several antigens at once. This is advantageous since it more closely mimics real 

pathogens which stimulate the immune system through recognition of various antigens.  

Further emerging advantages of NP vaccines involve cell specific targeting by antibody 

or small molecule conjugation to the surface of the particle [70, 77-81]. Particle functionalization 

and targeting toward certain environments, tissues, cells, and even intracellular components 

could greatly enhance the stimulation of the immune response and reduce clinical signs of 

disease. The NP systems that have been applied to vaccinology and also tested in food producing 

veterinary species are discussed below. 

2.1.1.5 Vaccine platforms against livestock and poultry diseases 

 While research on nasal or pulmonary vaccine delivery options for humans is quite 

extensive, for food animals and especially large animal livestock, delivery methods are much 

more limited. Inhalable vaccine delivery is preferred in the chicken industry, whereas nasal 

vaccine delivery is more applied to ruminants in livestock. The following sections are focused on 

veterinary species with developments in the ruminant and poultry industry separately mentioned. 

2.1.1.6 The poultry industry 

The poultry industry mostly consists of turkeys, broiler chickens and layer hens. Most 

studies of inhalable or nasal delivery focus on broiler chickens, although there are a few studies 

in turkeys and layer hens. As mentioned previously, broilers and layer hens are subject to 

intensive vaccination against many infectious diseases [8]. As a matter of fact, spray vaccination 

in poultry is standard against New Castle Disease virus (NDV) and Infectious Bronchitis Virus. 

However, spray vaccination in this regard refers to 100-200 m liquid particles which do not 

specifically target inhalation but also seem to induce immunity through ocular, oral, and nasal 

mucosas. There is a grey area in the definition of spray vaccination in the literature to whether a 

spray drier is used versus a liquid spray generator or a nebulizer. However, the commonality of 

the three devices is that they all generate aerosols in which inhalation plays a role in the 

generation of immunity via the pulmonary or nasal mucosa. In this regard, this paper will state 
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whether a dry or liquid spray formulation was administered and if mentioned, whether 

nebulization was used to generate the vaccine formulation.  

The two major pathogens targeted for NP immunization are NDV and influenza, 

although, vaccination against E. coli and Salmonella have also been investigated using NP 

carriers [7, 14, 27, 82, 83]. Studies of microparticle inhalable vaccines or nasal vaccines do exist 

in poultry, although there are few studies comparing the two delivery routes directly or the 

performance of the microparticle versus nanoparticle formulations. The preliminary studies will 

be described below. 

Nasal vaccination using NPs in chickens has been tested against NDV and influenza 

using chitosan [83], liposome [84], and liposome-polymer particles [60]. Polymeric chitosan 

particles have been an attractive NP vaccine platform because of biocompatibility, mucoadhesive 

and permeating properties [28]. Additionally chitosan itself is thought to have adjuvant-like 

properties which could enhance immune stimulation [85]. In a study comparing chitosan and 

calcium phosphate particles, it was shown that both particles carrying inactivated NDV produced 

high antibody titers in blood and mucosa [83]. However, the chitosan particles performed better 

than calcium phosphate particles against NDV lethal challenge [83]. It is of note that the 

protection study involved three immunizations prior to challenge, and no physical 

characterization of the particles was stated.  

Liposomal carriers are among the most characterized in the nanotechnology field. 

Conventional liposomes are lipid structures formed by one or more bilayers of amphiphilic lipids 

and they are thought to cross through epithelial barriers [19]. Liposomes are not immune-

stimulatory themselves, however they have been found to induce higher IgA and IgG titers after  

immunization [19]. The charge of the liposome based on lipid composition has also been found 

to be important after i.n. immunization [19]. Both positively and negatively charged liposomes 

have been reported to be immune-stimulating [19].  The effect of liposome surface charge has 

been tested in chickens in efforts to improve the antigenicity of formalin-inactivated NDV after 

i.n. immunization [84]. Three differentially charged liposomes composed of phosphatidylcholine 

(PC), phosphatidylserine (PS), and stearylamine (SA) were tested for their ability to elicit 

mucosal and systemic humoral responses. Interestingly, the neutral liposome made with PC 

induced the highest secretory IgA and systemic humoral responses and protection against 
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challenge. The co-administration of LPS with the vaccine NP formulation further enhanced 

vaccine efficacy. The effectiveness of the PC liposome formulation was attributed to the fact that 

the transition temperature of the liposome is closer to the chicken body temperature than the 

others. Additionally, the head group was thought to play an important role in the recognition of 

APCs, but the mechanism is not known [84]. 

Since mucoadhesive polymers are thought to improve residence time in mucosal tissues, 

the addition of tremella or xanthan gum to liposome vaccine formulations containing inactivated 

influenza H5N3 were tested as i.n. vaccines [60]. The multilamillar mucoadhesive liposome 

vesicles induced higher immune response than the virus alone and liposome without the polymer. 

Additionally, the lower viscosity xanthan gum particle increased the efficiency of nasal vaccine 

delivery, which suggests that there may be a critical viscosity in which the formulation becomes 

too thick to effectively release the antigen to the nasal mucosal tissues despite the longer 

residence time in the nasal mucosa. 

Aside from nasal NP vaccine delivery systems, a variety of studies have investigated 

nebulized or spray-dried vaccines in chickens. Both are inhalable formulations, but unlike 

nebulization that produces liquid inhalable particles, spray vaccines can involve transforming 

liquid to a dried inhalable powder. The final product is an inhalable dry spray. They are highly 

attractive for immunization via the lung because they are stable and tend to be delivered 

efficiently [28]. In humans, spray vaccines against influenza and tuberculosis have been tested 

[86-89]. In fact, an inhalable dry powder measles vaccine has undergone a phase 1 clinical trial 

and was proven to be safe and produced high levels of measles antibody [90]. In chickens, coarse 

spray vaccination has performed better in comparison to drinking water after challenge of 

Salmonella enteritidis strain and reduced colonization and shedding of bacteria [91]. Moreover, 

coarse spray administration of liposomes carrying inactivated avian pathogenic E. coli (APEC) 

showed protection against lethal E. coli challenge [92]. 

NP vaccine formulations have been most commonly tested against E. coli infection, 

particularly with synthetic CpG-ODN adjuvants. Nanoparticle formulations containing CpG-

ODNs have been found to protect against several diseases in mice [93, 94], and E. coli and 

Salmonella in chickens [7, 14, 27, 42, 82, 95, 96]. However, these particle platforms are not 

delivered via the pulmonary route, yet they are effective against lethal E. coli challenge via in 
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ovo, intramuscular, and subcutaneous routes. Our group is investigating NPs for the pulmonary 

route of vaccination in broilers which present an easier vaccination method at the industrial scale 

[97-99].  

Specific NP vaccination studies in chickens are sparse, however there is investigations of 

NP vaccines administered via the spray route [100, 101]. These studies have found that spray 

vaccines provide local and topical treatment in air sacs [102]. Some particle deposition studies 

can give clues about the characteristics of particle uptake to aid the design of optimal NP vaccine 

delivery systems. In order to establish local drug levels in the lung and air sacs, it has been found 

that particles less than 3 µm are able to bypass the mucociliary transport [103]. However, larger 

particles deposit in the upper airways, particularly the tracheal bifurcation [103, 104]. Particle 

deposition is also dependent on age and it was shown that in comparison to 2 and 4 week old 

broilers, 1-day old chicks contained more >3 µm particles in the nose and eyes and in the lower 

respiratory tract, while 1-3 µm particles deposited less compared to older chickens [104].  

Interestingly, one study compared i.n. and spray administration against protection of 

infectious bronchitis virus using the commercial adjuvant Montanide [105]. Montanide can be 

used with a variety of veterinary antigens and it can come in NP, polymer, or oil-in-water 

formulations. In comparison to a non-adjuvanted commercial vaccine, it was found that both the 

NP and polymer technology of Montanide was better than the oil emulsion. However, i.n. 

immunization seemed to perform better than spray immunization and the polymer adjuvant 

performed best in spray form. Like the factors involved in nebulization of NPs and drugs in 

humans, the delivery of aerosol vaccines in chickens could be dependent on the device output 

and the interaction between the NP and the device itself. This is perhaps why the controlled 

administration of the i.n. formulation performed the best. However, there are no investigations of 

the interactions between vaccine formulations and coarse spray or nebulization devices for 

chickens.  

2.1.1.7 Pulmonary and nasal vaccines in ruminants 

 From the literature, it can be concluded that nasal delivery of vaccines is preferred over 

aerosol delivery in the ruminants due to the lack of NP applications tested via inhalation. NP and 

in some cases microparticle delivery systems have been developed and tested in mainly the ovine 
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(sheep) and bovine (cattle) species. Initially, the sequence of vaccine development begins with 

testing small animal models, and testing parenteral administration prior to mucosal application in 

the target species. However, some studies have formulated NP vaccines and tested directly in the 

large animal model. Among these is one of the most commonly used vaccine viral vectors, 

adenovirus. Adenoviral vectors have been widely used in research for human vaccination against 

tuberculosis, HIV, and other respiratory diseases [106-111]. Since adenovirus is a species-

specific virus that naturally infects the respiratory tract, it has been extensively studied for 

pulmonary and nasal administration. Additionally, they have the ability to infect both dividing 

and non-dividing cells, capacity to package large foreign genes, elicit strong antigen specific T 

cell responses, are relatively easy to produce recombinant virus, and they lack virulence [112]. 

Even concerns with integration and safety profile of viral vectors have faded [11, 52]. 

 The Human Adenovirus 5 vector has been used to immunize cattle intranasally against 

Bovine Herpes Virus 1 (BHV-1) and was able to produce a specific antibody response stronger 

than the commercially available live attenuated vaccine. It also clinically protected cattle after 

challenge with high infectious dose of BHV-1 [113]. Due to safety concerns regarding zoonosis 

with using human viral vectors in domestic animals, bovine adenovirus 3 (BAdV-3) a natural 

non-pathogenic virus has been modified specifically for a vaccine delivery vehicle for cattle 

[112, 114]. Although primarily tested in cotton rats, BAdV-3 has been used to incorporate 

bovine specific viral antigens against BHV-1 or Bovine Respiratory Syncytial virus (BRSV) 

[112, 114]. After  immunization, antibodies specific against both viral antigens were detected in 

the sera and nasal secretions of the rats [115]. Additionally, the co-expression of two viral 

antigens by BAdV-3 required less viral titer to induce the same quantity of antibody expression 

than BAdV-3 expressing either BHV-1 or BRSV antigens. It is suggested that the co-expression 

of two antigens may be more economically favorable than individual antigen expression [115]. 

The cotton rat is considered a suitable animal model for cattle. However, BAdV-3 has also been 

developed further as a BHV-1 vaccine expressing the cytokine Interleukin 6 (IL-6) to reduce 

viral shedding in cattle [116], which was not achieved with the sole expression of BHV-1 

glycoprotein gD despite clinical protection in cattle after challenge [117]. The IL-6 did not 

improve protection or immune response in this investigation, but it was suggested that IL-6 may 
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not be enough to influence the mucosal immune response in calves and other potent adjuvants 

could be used to reduce viral shedding. 

Immune Stimulating Complexes (ISCOMs) have also been developed to vaccinate 

against BHV-1 in calves [118]. Traditionally, ISCOMs are a 40 nm cage like structure held 

together by hydrophobic interactions between saponin and lipids [56]. However, for the BHV-1 

vaccine, the ISCOM (30-35 nm) was made of glycoside Quil A, a plant adjuvant, which formed 

a honeycomb structure with BHV-1 viral membrane proteins. The ISCOM adjuvant NP vaccine 

produced higher antibody response and resulted in better protection than the available 

commercial attenuated vaccine. It is important to note that the ISCOM was administered through 

intramuscular injection and resulted in protection against viral challenge. Note, ISCOMs are 

known to be particularly strong mucosal adjuvants similar to parenteral and subcutaneous 

influenza vaccination and have resulted in higher IgA in serum, lung and nasal washings [119, 

120]. It would be interesting to determine whether the BHV-1 ISCOM vaccine would perform 

better at lower dosing than intramuscular injection and compare it to the commercial attenuated 

vaccine.  

 Polymer particles are among the most popular vaccine formulations in ruminants. 

However, a variety of the polymer particle vaccines developed have not been NPs but are in the 

microparticle size range (>1 m). Despite the main populations of particles in the 1-2 m size 

range, BHV-1 vaccine loaded chitosan microparticles have been shown to be effectively taken up 

by bovine kidney cells, from both spray dried and gel chitosan microparticle formulations [58].  

Chitosan microparticles are frequently used as i.n. vaccine delivery vehicles for cattle and 

sheep [58, 121]. However, they have mainly been studied for their ability to induce local and 

systemic humoral antibody responses, and not necessarily have been tested for inducing 

protection. In sheep, spray-dried chitosan microspheres containing a polymeric protein antigen 

(BLSOmp31) decorating the surface were able to induce local and systemic immune response 

after three i.n. immunizations over 40 days [121]. The microspheres produced a biphasic release 

of the antigen and were able to induce a nasal immune response despite the lower mucin 

adhesion with protein loaded particles versus blank chitosan particles. Although this was just a 

preliminary study, it would have been interesting to see if blank chitosan microparticles would 

also induce a slight immune response in sheep. 
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There is evidence of effectiveness using chitosan NP vaccines which have been prepared 

for  immunization against Foot and Mouth Disease in livestock [122]. Unlike traditional 

chitosan, this group used fungal chitosan derived from a fungal cell wall since it can produce 

higher yields, has low molecular weight, and high degree of deacetylation [122]. The low 

molecular weight and high degree of acetylation is found to influence chitosan particle formation 

towards more stable complexes [123]. Since guinea pigs are a suitable animal model for cloven 

hoofed animals (pigs, cattle, sheep), the extent of the immune response was measured through 

antibody titer measurements from serum, intestinal tract and broncho-alveolar tissues after 

delivery of whole virus to the nasal tissue in guinea pigs [122]. All the particles compared ranged 

in size from 220-280 nm with low polydispersity index, unlike the commercial chitosan NPs 

which had the largest size. In comparison to vaccine delivery with just virus, all formulations 

(including commercially derived chitosan) produced higher IgG titers in sera over time. Even the 

systemic immune response produced by NPs was comparable to the traditional intraperitoneal 

alum-inactivated virus vaccine and nasal IgA produced from the NP vaccines was also higher in 

comparison to the injected vaccine. Effective mucosal IgA production was also seen in the 

intestinal mucosa, which was not produced from intraperitoneal injection with alum-FMD-v 

vaccine. It would also be interesting to compare the gel chitosan formulation [124] with the 

chitosan NP  formulation to determine which would stimulate stronger immune responses. 

  Immunization with other mucoadhesive polymers like alginate have also been tested in 

the cattle species but only to determine whether alginate micro-particles can produce local 

immune responses [125]. The particles carried pig serum albumin as an antigen but were not 

geared to any specific disease. Since the alginate microparticle study aimed to compare the oral 

versus i.n. route of administration, the particles formed were mainly under 5 m to optimize 

delivery. However, the study was only able to conclude that immunization with alginate 

microparticles may be plausible with both nasal and oral administration to provide specific 

immune responses against other antigens.  

 Other polymer particles that have been used to determine if they can enhance the immune 

response of vaccines in bovine and ovine species are poly(d, l-lactide-co-glycolide) (PLG) and 

polylactic-co-glycolic acid (PLGA). PLG particles were carrying SAG1 surface antigen from a 

Toxoplasma gondii tachyzoite [126]. These particles were under 2 m and polydisperse, but with 
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more than 60% of the population being NPs. Antigen was present both inside the particle and 

adsorbed to the surface upon particle formation. After three i.n. immunizations over 2 weeks, 

there was evidence of consistent local IgA in comparison to the soluble antigen, however, the 

formulation failed to protect against oocyst challenge. Addition of cholera toxin to the PLG-

SAG1 particle also didn’t seem to improve the immune response significantly. In this particular 

study, even IgG production in the nasal mucosa and serum was very low, which is in contrast to 

previous studies in mice [126].  

 Perhaps a more insightful report compares the immune response created by a commercial 

vaccine against the Bovine parainfluenza 3 virus respiratory pathogen in dairy calves to the same 

vaccine formulated in PLGA NPs (225 nm, -22.7 mV) [16]. Unlike the commercial vaccine, the 

PLGA vaccine elicited greater IgA response in the mucus which persisted over the whole study 

period. The serum IgG response was also similar to the commercial vaccine but appeared to be 

more of a sustained release of antigen due to transient antibody production. It would be 

interesting to see in the future how the release profile of the antigen correlates with protection 

against respiratory disease in comparison to the commercial vaccine, as this platform also 

produced IgG to a comparable level of that of the commercial vaccine. 

2.1.1.8 Conclusions and future directions 

 The pulmonary route of vaccination is promising for eliciting effective immune 

responses. Although many researchers are investigating pulmonary vaccines of human disease it 

is important to remember that vaccinating livestock and food producing animals is also important 

to prevent animal and zoonotic pathogens. The development of veterinary vaccines is highly 

dependent on cost-benefit ratio. However, this should not limit the major aim of veterinary 

vaccines of ensuring the health of animals and herd immunity. While the nasal and pulmonary 

route of vaccine administration has not quite made it to the market in humans, the use of NP 

delivery systems can help enhance vaccine effectiveness and help to ensure better delivery 

through devices that are specifically tailored for each species. In fact, materials that overcome 

delivery barriers determined from human findings have been translated into investigations of 

vehicles in livestock and poultry vaccines. Studies of nasal immunization with NP systems are 

common in both ruminants and chickens, however, data involving spray or nebulization of 
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vaccines is lacking. It is expected that both research and translation of pulmonary vaccine 

delivery using NPs in livestock and poultry will be rapidly expanding. 
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Table 1 Nasal and pulmonary nanoparticle and microparticle vaccines in development for livestock and 

poultry 

Nanoparticle 

Type 
Composition Antigen Species 

Delivery 

Route 
Efficacy Ref 

Polymeric 

Poly(d, l -lactide-co-

glycolide) (PLG) 

polyvinyl alcohol 

microparticle and 

60% nanoparticle mix 

Toxoplasma 

gondii 

Tachyzoite 

protein 

extract: SAG1 

 

Cholera Toxin 

(CT) 

Ovine 

(sheep) 
i.n. 

Systemic and local immune 

response. 

Consistent and higher IgA in 

nasal secretions and serum 

than soluble antigen. 

Not clear whether CT 

improved immune response 

in comparison to PLG-SAG1 

alone. 

[126] 

Polymeric 

Poly lactic-co-

glycolic acid (PLGA) 

 

Bovine 

parainfluenza 

3 virus 

(BPI3V) 

proteins 

 

Dairy 

calves 

(bovine) 

i.n. 

Enhanced and sustained 

mucosal IgA response 

compared to i.n. modified 

live virus commercial 

vaccine. 

[16] 

Liposome- 

mucoadhesive 

polymer 

Phosphatidylcholine 

(PC) (zwittterionic) 

and tremella or 

xanthan gum 

Inactivated 

influenza 

H5N3 

SPF 

Leghorn 

chicken 

i.n. 

Mucoadhesive liposome 

vesicles induced higher 

immune response than the 

virus alone and liposome 

without the polymer. 

Viscosity affects vaccine 

efficacy. 

[60] 

Polymeric Chitosan 
Inactivated 

NDV 

Broiler 

chicken, 

layer hens 

i.n. 

Increased IgA humoral 

response in layers, not 

broilers. 

[83] 

Liposome 

Phosphatidylcholine 

(PC) (zwittterionic); 

Phosphatidylserine 

(PS) (-ve) or 

Stearylamine (SA) 

(+ve) 

Formalin 

inactivated 

NDV 

SPF 

Leghorn 

chicken 

i.n. 

PC induced the highest 

secretory IgA and systemic 

humoral responses. 

LPS co-administration 

increased vaccine efficacy. 

[84] 

Liposome 

Hydrogenated 

soybean 

phospholipids 

Inactivated 

APEC strain 

KAI-2, O-78 

SPF 

Chicken 

Coarse 

Spray 

 

Eye 

drop 

Reduction in the number of 

challenged bacteria and 

clinical signs, was observed 

in chickens after a challenge 

with APEC. 

[92] 
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Nanoparticle 

Type 
Composition Antigen Species 

Delivery 

Route 
Efficacy Ref 

Montanide 

IMS adjuvant 

NP 

Unknown 
Live 

IBV 

SPF 

Chicken 

(also 

commercial

ly used in 

all farm 

animals) 

i.n. 

 

Coarse 

Spray 

Better than non-adjuvanted 

vaccine and montanide oil-

in-water emulsion. 

i.n. administration performed 

better than coarse spray. 

[105] 

Adenovirus BAdV-3 

Bovine 

specific viral 

antigens: 

BHV-1 

glycoprotein 

gD, BRSV 

IL-6 

Bovine 

(cattle) 
i.n. 

Induces antigen specific 

immune responses. 

Co-expression of different 

vaccine antigens seems to 

produces similar response 

with lower viral titer. 

[112, 

114] 

[115] 

ISCOMs Glycoside Quil A 

BHV-1 viral 

membrane 

proteins 

Bovine 

(calves) 
i.m. 

Better protection than 

commercial attenuated 

vaccine and higher antibody 

response produced. 

[118] 

Polymeric 

Chitosan spray-dried 

microparticle with 

recombinant 

polymeric protein 

antigen (BLSOmp31) 

Brucellosis 
Ovine 

(sheep) 
i.n. 

Induced local and systemic 

immune response in sheep, 

biphasic release of antigen 

from microsphere. 

[121] 

Polymeric Fungal chitosan 

Foot and 

Mouth disease 

whole virus 

Guinea pig i.n. 

Higher IgG production in 

comparison to vaccination 

with virus alone. 

Systemic immune response 

comparable to traditional 

intra peritoneal alum-

inactivated virus vaccine, 

IgA production resulting 

from NP vaccine was higher 

than alum inactivated viral 

vaccine. 

[122] 
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Figure 1 Comparative schematic diagram of the anatomical and immunological features of mammalian and 

avian respiratory system with respect to vaccine administration. Also shown is the size-dependent deposition 

pattern of aerosol droplets and the relevance of novel vaccine design involving nanoparticle carriers for 

antigens and adjuvants within aerosol droplets.  

Inhalation of particles >5 µm results in inertial impaction in the large airways and are mainly 

cleared by mucociliary mechanisms in the trachea of both species which are swallowed.  The 

main trend of deposition in both species is that smaller 1-5 µm particles have the ability to 

penetrate deeper into the lungs, either the alveoli or air capillary, i.e. the blood-air interface. In 

birds aerosol particles of <1 µm have been shown to deposit in the cranial thoracic air sacs, and 

even smaller <0.1 µm particles can deposit in the caudal thoracic air sacs of birds although the 

fate of these particles is not well known. [103, 127-131] 

Unlike the mammalian lung, the avian lung lacks the constant surveillance of foreign particles by 

resident macrophages but they are rapidly recruited upon stimulation. The presence of BALT at 

the junctions of the primary and caudal secondary bronchi in the avian lung may aid in immune 

stimulation and lymphocyte recruitment. In the mammalian lung BALT forms after activation of 

the immune system and the possibility of inducing tolerance over immune activation is a 

consequence of constant surveillance by lung macrophages present in the tissue and in the 

alveoli.  

Nanoparticles can be released from aerosol droplets in the alveoli and translocate to the lymph 

nodes and/or blood vessels. This was shown in mammalian (mouse) models. [102] Since in avian 

species the blood-air interface epithelium is 60% thinner than the mammalian epithelium, it is 

anticipated that the delivery of nanoparticle vaccines to the systemic circulation is also possible.   
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2.2 Pulmonary delivery of CpG-ODN in broiler chickens 

CpG-ODN is a DNA sequence that can be used as a vaccine to prevent infectious 

diseases. In general, DNA vaccination involves introducing nucleic acid to host cells where it 

can produce short-term expression of a target antigen so that immune cells (antigen presenting 

cells) can initiate an immune response [132]. Ultimately, a nucleic acid vaccine aims to produce 

long-term immune memory by initiating antigen presentation to eventually produce long term-

cellular immunity. DNA vaccines have the ability to provide targeted immune responses and 

deliver prophylactic and therapeutic vaccines [133, 134]. However, synthetic and DNA vaccines 

have generally not produced strong enough immune responses in clinical trials [1, 17, 20, 21, 

49]. DNA vaccines such as CpG-ODN in broiler chickens have become an attractive approach 

because they are easy to design, manipulate, manufacture, cheaper, and fairly stable at room 

temperature [3]. They have also proven to be generally safe in human patients and some are 

approved in veterinary species such as horses and dogs  [3]. 

2.2.1 Mechanism of CpG-ODN innate immune stimulation 

Unlike conventional DNA vaccines, CpG-ODN does not require expression of a target 

antigen prior to initiating an immune response. CpG-ODN are unmethylated DNA sequence 

motifs already present in bacterial DNA that are automatically recognized by pattern recognition 

receptors in the mammalian and avian innate immune systems [135]. As such, CpG-ODN is an 

antigen that activates the innate immune system. Three types of CpG-ODN classes exist, and can 

activate murine and human immune cells (Table 2). 
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Table 2 Classes of CpG-ODN identified to activate the human immune system 

CpG-ODN Type Sequence Example Structure 
Immunostimulatory 

Activity 

Class A (D-type) 

5’-

ggGGGACGA:TCGTCgggggg-

3 

(ODN 2216) 

Phosphorothioate/phosphodiester 

mix 

Single CpG motif 

CpG motif flanked by 

palindromic sequence 

(underlined) 

3’ poly-G tail 

Plasmatoid dendritic cells 

Class B (K-type) 

5’-tcgtcgttttgtcgttttgtcgtt-3’ 

(ODN 2006) 

Phosphorothioate backbone 

Multiple CpG motifs (bold) 

Plasmatoid dendritic cells 

and B cells 

Class C 

5’-tcgtcgttttcggcgc:gcgccg-3’ 

(ODN 2395) 

Phosphorothioate backbone 

Palindromic CpG motifs 

(underlined) 

B cells 

 

Mechanisms of innate immune stimulation by CpG-ODN has been more widely studied 

in mammalian cells lines because it can be used as a vaccine adjuvant and is currently being 

tested as an adjuvant in hundreds of clinical trials, with no major concerns for safety issues [1]. 

In mammals, CpG-ODN is known to activate Toll-like Receptor 9 (TLR 9), which chickens 

(avian) do not express. 

 However, CpG-ODN can still stimulate avian macrophages, dendritic cells and B cells in 

neonatal chicks [136, 137]. Mechanistically, CpG-ODN in chickens stimulates TLR 21, the 

functional homolog of TLR 9 [138-140], but has also been found to stimulate TLR 15 depending 

on CpG class [141, 142]. As with human TLR 9, TLR 21 is located intracellularly in the 

endoplasmic reticulum [139, 140, 143]. The expression of TLR 21 in chickens has also been 

identified in the Bursa of fabricus, spleen, non-lymphoid tissues including mucosal areas like 

lung and small intestine as well as skin, kidneys, brain, and liver [140]. 

Although specific mechanisms of CpG-ODN innate immune activation have not been 

fully identified, certain cytokines are characteristic upon TLR 21 stimulation by CpG-ODN. It 

has been found that stimulation of both the chicken cell line HD11 and peripheral blood 

mononuclear cells with CpG-ODN results in the generation of nitric oxide and IL-1𝛽 [144-146]. 

Additionally, studies have found that activation of chicken immune cells also produce IL-6, IL-
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12, and IFN-, which induce a predominant T-helper 1 (Th1) immune response [137, 145, 147]. 

Further characterization of the signal transduction events still must be elucidated. Nonetheless, 

there is evidence that immune activation by CpG-ODN is dependent on clathrin endocytosis and 

the binding to heat shock protein 90 subtype 𝛼 (HSP-90𝛼) (involved in activating ERK2 and 

PI3K signaling pathways) for full activation [136]. Mechanisms that have been identified so far 

in CpG-ODN activation are shown in Figure 2. 

 

 

Figure 2 Mechanisms of CpG-ODN immune activation in the avian immune system 

 

Of the three types CpG-ODN classes that exist, not all are able to stimulate chicken 

macrophages and the specific motif exhibits differences in the strength of activation and cytokine 

expression in the chicken immune system [144, 147]. Additionally, the modification of the 

phosphodiester bond in the DNA backbone to phosphorothioate by replacing the non-bridging 

oxygen with a sulfur atom also seems to increase stimulation [144, 147] (Figure 3).  
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Figure 3 Depiction of phosphorothioate modification in DNA sequences 

Phosphorothioate modification of DNA phosphodiester linkage (left) to phosphorothioate linkage (right). 

 

Of the three classes of CpG-ODN, Type B 2006 which activates human macrophages 

also stimulates HD11 cells and PBMCs [136, 137, 146]. Additionally, CpG 2007 type B which is 

active in porcine and bovine immune cells has also activated HD11 cells (Figure 4) [136, 137]. 

The sequence GTC GTT has been shown to increase activation in human cells as well as the 

avian HD11 cell line [147]. 

 

 

Figure 4 CpG-ODN sequences known to stimulate avian species.  
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2.2.2 Evidence of protective effect against bacterial infection in chickens 

Due to the innate immune stimulating abilities of CpG-ODN in chicken macrophages and 

peripheral blood mononuclear cell (PBMCs), its administration prior to detrimental bacterial 

infection by Salmonella and E. coli has been tested for antimicrobial and protective capabilities 

in chickens. Since the production of nitric oxide in macrophages is an innate immune mechanism 

that has bactericidal activity, the intracellular killing of Salmonella enteriditis (SE) was tested 

after stimulation with CpG-ODN [146]. Ultimately, nitric oxide generation in HD11 cells led to 

reduced bacterial counts in cells, which is important for the health of humans, who are 

susceptible to SE infection.  

Further study has proven that CpG-ODN is able to prevent septicemia by S. typhimurium, 

which causes high mortality in neonatal chickens after in ovo and intramuscular (I.M.) 

administration [82]. Additionally, the immune response generated after administration of 

synthetic CpG-ODN 2007 adjuvant alone, has also protected neonatal chicks against infectious 

bronchitis virus and E. coli infection [7, 27, 82, 96, 148]. Moreover, the protection from E. coli 

infection has been established via various routes of administration: subcutaneous, I.M. and in ovo 

(chicken egg embryo) [7, 27, 82, 96, 148]. Of these studies, doses from 1-50 µg per bird have 

been examined and dosing has been given over different days of the chicken lifespan to test the 

length of immunity [7, 82, 96]. A dose of 50 µg per bird was able to protect birds against 

pathology and lower bacterial cell counts after in ovo and I.M. administration, with 50 µg per 

bird showing similar protection to 10 µg per bird I.M. against E. coli infection, but not 

salmonella septicemia in neonatal chicks [7, 82]. The 50 µg per bird dose has also protected 

adult birds at 22 days of age after administering the dose 3-6 days before challenge [96]. In each 

of these studies, it was concluded that the response to CpG-ODN treatment can last 3-6 days.   

The proof of concept for using CpG-ODN as a vaccine to prevent common bacterial (E. 

coli) infection during the first week of life has been established from these studies, and 

phosphorothioated CpG-ODN 2007 is the main sequence being used in vivo. However, the 

question of long term immunity is still being defined in order to expand use of CpG-ODN 

throughout the bird lifespan without too many repeated immunizations while avoiding 

detrimental developmental effects. The use of a common veterinary antigen Emulsigen® has 
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been tested to determine improvement of CpG-ODN stimulation in terms of protection, but there 

was not a significant difference in protection [7]. To improve on this, the idea of NP technology 

to enhance long-term immunity, or develop slow release systems is beginning to emerge. 

2.2.3 Role of delivery systems in improving protection of neonatal chicks 

The development of new adjuvants and vaccine formulations to increase immunogenicity 

of subunit and protein vaccines has been an area of research that involves the development of 

particulate antigens such as liposomes and emulsions. The advantages of these delivery systems 

including enhanced innate immune stimulation has been tested in the chicken E. coli infection 

model.  

The first test of this was using Emulsigen® as previously mentioned. However, further 

investigation compared several types of particulate delivery systems including 

polyphosphazenes, liposomes, cationic lipid, and Emulsigen® for their ability to enhance 

protection and prolong innate immunity generated against E. coli challenge after in ovo 

administration [14]. Interestingly, the polyphosphazene PCPP was the only formulation to 

improve survival, lower bacterial count, and lower the clinical score in comparison to 

unformulated (naked CpG-ODN). However, it was not able to prolong the duration of protection 

of neonatal chicks against E. coli.  

A more recent study incorporates two different formulations of CpG-ODN DNA which 

take into consideration advances in gene therapy and delivery. In this study, four formulations 

categorized into single walled carbon nanotubes and lipid surfactant formulations were 

administered in ovo to compare whether they improved survival of chicks in comparison to 

unformulated CpG-ODN [27]. Once again, the formulations improved the survival of chicks and 

lowered the bacterial counts in comparison to naked CpG-ODN. However, there were 

differences in the formulations. The lipid-gemini surfactant formulation seemed to perform better 

than the gemini surfactant only formulation. However, direct comparison is not possible as 

different derivatives of cationic surfactants were used in each formulation. It was concluded that 

the delivery system was important to achieve protection of neonatal chicks but further 
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characterization and optimization of the formulations and understanding the mechanism of CpG-

ODN immune stimulation is still required. 

2.3 Mucosal vaccination via inhalation 

  The delivery of therapeutics to local respiratory tissues via aerosols has been well 

established and is a standard non-invasive therapy for the treatment of local respiratory diseases 

such as asthma and chronic obstructive pulmonary disease in humans [149]. For vaccine 

delivery, this route is attractive because it is non-invasive and suitable for mass administration. 

Additionally, the respiratory mucosal surfaces of an organism not only have the potential to 

initiate immunity at the local site of administration, but also systemically due to the close 

proximity and large surface areas of the blood-lung barrier [13]. There is already evidence that 

immunization via the respiratory tract not only produces high local immune responses [11, 52] 

but also provides high systemic mucosal immunity in mice and non-human primates [11, 53]. 

Another advantage is that since infectious diseases including E. coli in poultry can initiate their 

infectious process at mucosal surfaces, more delivery of the DNA vaccine at the site of infection 

could produce a stronger immune response, and initiate immune memory [13, 150].  

2.3.1 Challenges involved in therapeutic and DNA delivery to the lung 

The focus of aerosol delivery has been on new technologies to improve formulation 

characteristics and the delivery devices to produce more efficient delivery and deposition deeper 

in the lung [149]. In humans, the mechanisms of particle deposition in the lung have been 

extensively studied and inhalable drugs used today have achieved further drug delivery to the 

deeper airways [151]. There is paucity of studies of avian particle deposition in the airways, but 

there is some data available related to airway dynamics.  

2.3.1.1 Delivery Devices 

A variety of devices exist to deliver inhalable drugs to the respiratory system in humans. 

These include metered dose inhalers (pressurized and breath actuated), dry powder inhalers, and 

nebulizers [152]. Each type aerosol device delivers drug to the respiratory system differently and 

contains specific factors that affect drug deposition within the lung. Since the delivery of CpG-
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ODN to chicks uses a nebulization device in this project, the main focus will be on compression 

nebulizers.  

Nebulizers generate aerosols by generating small droplets from a liquid solution or 

suspension by jet nebulization or ultrasonic sound waves [152]. Jet nebulizers particularly break 

up liquid into a fine mist by using compressed gas flow. The large droplets are impinged upon 

baffles which are positioned in the path of the aerosol in order to further reduce the particle size 

of the exiting aerosol and deliver fine mist [152, 153] (Figure 5). Each nebulizer performs 

differently due to design, flow, pressure, tubing, and whether compressed gas or an electrical 

compressor is used [152]. 

 

 

 

Figure 5 Mechanism of liquid to aerosol formation by a compressor jet nebulizer 

 

Aerosol devices directly influence the size of particles delivered to the respiratory system 

and produce a heterogeneous population of aerosol droplets [151]. Due to the large variation of 

drug deposition from nebulizers and the relatively low drug delivery compared to other devices 

[152], many have studied formulation characteristics and device configurations to improve 

delivery to the lung [154-156]. The type of excipients used in a formulation can affect size 
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output of aerosol particles generated, which directly affects what area the particle gets delivered 

in the respiratory tract [157, 158]. If a nebulizer is chosen, the NP formulation designed must 

have low viscosity to allow the output to generate small droplets. Furthermore, different types of 

nebulizers are only compatible with certain types of formulations. For instance, ultrasonic 

nebulizers which generate aerosol droplets using high energy soundwaves are ineffective in 

nebulizing more viscous solutions such as suspensions or liposomes [25]. But, vibrating mesh or 

plate nebulizers which physically break up the liquid into smaller droplets work very efficiently 

for suspensions or liposomes [25].  

As mentioned previously, broiler chickens and layer hens are subject to intensive 

vaccination against many infectious diseases [8]. In fact, spray vaccination in poultry (chicken, 

turkey) is standard against New Castle Disease virus (NDV) and Infectious Bronchitis Virus. 

However, spray vaccination in this regard refers to 100-200 m liquid particles which do not 

specifically target inhalation but also seem to induce immunity through ocular, oral, and nasal 

mucosas. The definition of spray vaccination is not specifically defined in literature in terms of 

whether a spray drier is used versus a liquid spray generator or a nebulizer. However, the 

interconnection of the three devices is that they generate inhalable aerosols that play a role in the 

generation of immunity via the pulmonary mucosa.  

What has not been collectively studied, are effects of nebulization on the stability of 

DNA formulations. 

2.3.1.2 Airway mechanics 

The localization of particles in the human lung has been widely studied. After inhalation 

of aerosol particles, their aerodynamic properties guide the mode of deposition in the lung: 

impaction, sedimentation, and diffusion. The particle size distribution, delivery device, and the 

type of breathing pattern during inhalation of the dose influence whether the particle deposits in 

the respiratory system by impaction, sedimentation or diffusion [25, 26]. Upon inhalation of a 

deep forceful breath, particles greater than 1 m tend to impact as their higher density and 

momentum prevent it from changing direction if there is a change in airflow pattern. In the 

airways, these larger particles (3-6 m) get trapped in the pharynx, mouth or the mucus of the 

trachea, which results in them being removed by swallowing [68, 69]. Upon slower air velocity 
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or a slower breathing pattern, particles between 1-5 m tend to settle in the smaller airways and 

respiratory bronchioles by sedimentation (gravity), since their residence time within the lung 

increases [69]. Also, similar particles have better chance of reaching the bronchioles and 

respiratory mucosa in the lower airways [26]. The smallest particles less than 0.5 m tend to 

deposit in the alveolar spaces resulting from Brownian motion [26, 69, 70].  Though, these 

smaller particles tend to get exhaled but if less than 34 nm in size, they enter the blood stream 

and are cleared via renal filtration [71]. Since systemic immune activation is critical to initiating 

cell mediated immune responses, targeting to the alveolar region at the interface of the blood-air 

boundary is highly desirable for a vaccine. 

 Although the theory of aerodynamics can be applied to chickens, the specific particle 

sizes and deposition cannot be extrapolated since the avian respiratory system is significantly 

different than the mammalian system in terms of lung structure and air flow. 

In chickens, the upper respiratory tract consists of the very long trachea which splits at 

the syrinx into two extra-pulmonary primary bronchi each going to a lung and its associated air 

sacs [159] (see Figure 6). Unlike the mammalian lung, the avian lung has a very rigid structure 

due to the constant unidirectional flow of air driven by the air sacs [159]. During inspiration air 

flows from the trachea into the primary bronchi and into the caudal air sacs (Figure 6A). 

Expiration drives air from the caudal air sacs through the lung (Figure 6B) into the cranial air 

sacs (Figure 6C) which then gets expired out through the trachea [160]. 

The parabronchi provide a large area for gas exchange and is surrounded by blood and air 

capillaries [161]. In comparison to the anatomy of the mammalian respiratory system, the avian 

respiratory system is more efficient with larger surface area as the blood comes in contact with 

air capillaries [161]. The air-blood capillary interface is approximately 60% thinner than the 

mammalian interface, which means it is highly efficient but may predispose birds to 

environmental irritants and pathogens [159]. This could be advantageous when delivering a 

vaccine through inhalation.  
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Figure 6 Structure and direction of air flow in the avian respiratory system 

Components of the avian respiratory system are outlined. Arrows indicate direction of air flow through inspiration 

and expiration. Air is inhaled and passes through the trachea and primary bronchi to the abdominal and caudal air 

sacs (A). Air sacs push air through the lung upwards through the parabronchi (B) toward the trachea and into the 

clavicular and cranial air sacs (C). Air sacs push air back out through the trachea during expiration. [131, 160-162] 

 

Most studies of aerosol delivery focus on broiler chickens, although there are a few 

studies in turkeys and layer hens. In order to establish local drug levels in the lung and air sacs, it 

has been found that particles less than 3 µm are able to bypass the mucociliary transport [103]. 

However, larger particles deposit in the upper airways, particularly the tracheal bifurcation [103, 

104]. The advantage of NP formulation, is that the aerosol droplet particles can contain large 

amounts of individual NPs which can bypass the upper airways and get to the lung and closer to 

the circulation while depositing a greater amount of the therapeutic. Particle deposition is also 

dependent on age and it was shown that in comparison to 2 and 4 week old broilers, 1-day old 

chicks contained more >3 µm particles in the nose and eyes and in the lower respiratory tract, 1-

3 µm deposited less than older chickens [104]. For smaller sized or NPs, aerosol particles of <1 

µm have been shown to deposit in the cranial thoracic air sacs, which in a sense is advantageous 

because it means the particles passed through the lung. Even smaller <0.1 µm particles can 

deposit in the caudal thoracic air sacs of birds although the fate of these particles is not well 

known [103, 127-131]. 
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Biological Parameters 

 In both the avian and mammalian respiratory system, a major barrier to particle and DNA 

entry is the ciliated epithelium and mucus producing goblet cells lining the upper respiratory 

tract [149, 159]. In combination, these two factors are termed as muco-ciliary clearance. Muco-

ciliary clearance traps and moves particles up to the esophagus to be swallowed, or exhaled out. 

It also prevents diffusion through the mucosal barrier and can decrease particle residence time in 

the lung and lower the delivery of DNA/nucleic acid into the deeper airways [163]. In humans 

mucocilliary clearance lines the trachea until the secondary bronchi and in avians, it is also found 

in the primary bronchi and roots of the secondary bronchi [159]. In a way, it is the primary 

barrier which pulmonary DNA and drug delivery must overcome in order to effectively transport 

them to the deeper airways, retain genes to the underlying epithelial layer and maximize 

retention in the lung.  

In humans, localization of gene delivery to the deep lungs and alveoli is required to 

achieve effective immunization because it allows access to immune cells. Covering the epithelial 

cells of the peripheral deep lungs is the pulmonary surfactant also called alveolar lining fluid 

[164].  Pulmonary surfactant may also have an effect on the stability of the vaccine formulation 

and the delivery of the DNA to the lung. However, the surfactant layer also contains components 

involved in the immune response such as Surfactant Protein A (SP-A) and alveolar macrophages 

which can quickly clear foreign particulates [165, 166]. The active phagocytic nature of 

macrophages however is advantageous in vaccine applications for eliciting immune activation.  

In the avian respiratory system, mechanisms of immunity within the lung parenchyma are 

still under investigation. However, phagocytosis is a major mechanism in reaction to foreign 

particulates. A major difference between mammals and avians is that resident macrophages are 

not found in the avian respiratory system. Instead, macrophages quickly migrate into respiratory 

organs upon immune stimulation [159, 162]. This means that in the case of an inhalable NP 

formulation, the NP must stay in the lung environment long enough to recruit macrophages and 

other professional antigen presenting cells. Proteins and the environment of the lower respiratory 

system in the chicken respiratory tract would also play a role in vaccine formulation 
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compatibility, release, and degradation, however mechanisms of antigen uptake, processing and 

presentation are not completely elucidated [167].  

Development of an inhalable vaccine requires an optimal delivery system to maximize 

antigen delivery to target cells in the body. In order to develop a delivery system suitable for 

CpG-ODN delivery to the avian lung, the size and characteristics of the particle must be taken 

into account. Since the target for innate immune activation is the avian macrophage, particles 

targeted to the lung are necessary to promote a protective immune response. Meanwhile, the 

immune system is a delicate balance between immune activation and tolerance, a sufficient 

delivery of antigen must be achieved to elicit an immune response that also initiates immune 

memory. Cellular uptake by macrophages and other antigen presenting cells may not be a hurdle 

for DNA vaccination, but the lack of retention of the antigen may prevent the ability for antigen 

presenting cells to process and stimulate long lasting immunity, Due to the differences between 

the avian and mammalian systems aerodynamics, particle sizes and cellular interactions that 

improve delivery in the mammalian system do not necessarily apply to the avian system and 

therefore must be optimized for effective pulmonary vaccine delivery. 

2.3.2 Non-viral nanoparticles to improve gene delivery to the lung  

In efforts to improve nucleic acid delivery to the lung, NP delivery vectors have been 

modified to pass the mucosal barrier, overcome clearance mechanisms, and reach the deeper 

lungs. Although gene delivery using viral vectors has resulted in increased success, safety 

concerns have pushed for research using non-viral vectors including biocompatible lipids, 

polymers, and surfactants. DNA delivery using a non-viral vector involves forming DNA 

complexes by the electrostatic interaction of cationic lipids, surfactants or polymers and the 

negatively charged phosphate groups in DNA (Figure 7) [23, 44].  
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Figure 7 Representation of nanoparticle formation with DNA and cationic non-viral gene delivery vectors 

Examples of DNA nanoparticles formed by complexation with cationic lipids, surfactants and polymers 

 

The main advantage is that they are able to protect nucleic acids from degradation by 

nucleases in the physiological environment, which could increase delivery at the site of action 

[23]. But now, NPs have been tailored to their application by varying composition, size, shape, 

and surface properties [134]. The result is improved uptake by target cells by increasing binding 

affinity with target cells, increased deposition to the target site, reduced off target accumulation, 

extended delivery, and increased drug/therapeutic stability [168, 169]. Although most 

investigations have been conducted mainly in mammalian models, similar strategies can be 

adopted for optimizing delivery vehicles for CpG-ODN delivery in chickens. 

 Despite low efficiency with single component NPs, strategies including using muco-

adhesive or bio-adhesive materials such as polyethylene glycol (PEG), carboxymethylcellulose, 

polyacrylic acid, and chitosan have been used  for mucoadhesive formulation development [170]. 

Because of the “interfacial molecular attractive forces amongst the surfaces of the biological 

substrate and the natural or synthetic polymers” [170], the mucoadhesive polymers increase 

residence time of the particulate delivery system and enhance uptake of the biodegradable 

particulate vaccine at the mucosal surface [170, 171] 

A variety of bio adhesive polymers exist, and some have been applied to pulmonary 

delivery of nucleic acids. Some groups have synthesized PLGA and chitosan based particles to 
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improve mucoadhesion in attempts to avoid clearance by mucociliary transport, improve transit 

time, and promote gene localisation to the lung epithelial cells [172, 173]. Furthermore, 

improvement of gene delivery to the lungs has been achieved using viscoelastic gels like 

carboxymethylcellulose to improve residence time in the airways and reduce mucociliary 

clearance. When 0.5% carboxymethylcellulose was complexed with lipid GL67A (gold standard 

for human pulmonary delivery) there was an increase in gene expression compared to GL67A 

alone to the nasal epithelium of mice [174]. Based on theories behind mucoadhesion and 

investigations in mammals, bio adhesive polymers could also be applied to the delivery system 

for and inhalable CpG-ODN vaccine in broilers. 

Recent studies have adopted localization of gene delivery to the lower airways including 

the alveolar macrophages, alveolar type II cells, and lung smooth muscle cells [175-177]. 

Commonly used delivery systems are polymers, including chitosan, PEI, and PLGA based NPs. 

Indeed, polymer systems seem most promising for targeting the lower airways and promoting 

gene delivery. For example, PEI based polymers have been complexed with plasmid DNA and 

applied nasally in mice to test a mucosal vaccine priming strategy [178]. This study compared 

deacetylated PEI (dPEI) to lipid based carrier DOPE/DOTAP/Squalene (DDS), dPEI was found 

to be less toxic, produce a stronger antigen specific humoral response (Cd4+T cell response), and 

protect against influenza challenge [178]. More current studies involve using several different 

types of components like lipids and polymers or different types of polymer combinations to 

create NPs with improved delivery, safety, and uptake. For example, PLGA polymer containing 

PEI moieties on its surface for DNA complexation was tested in vivo for a prime boost with 

Mycobacterium tuberculosis vaccine [179]. After comparing endotracheal aerosol to 

intramuscular immunization, aerosol administration produced a higher proliferative response in 

splenocytes and T cells, and IFN production after re-stimulation of cells with MTb hypoxic 

lysate. This result confirmed that the non-invasive aerosol administration improved localized 

pulmonary delivery compared to intramuscular injection [179].  

2.4 Gemini surfactants gene delivery systems 

Efforts to drive gene therapy to the clinic has resulted in the synthesis of a large number of 

cationic materials to improve transfection efficiency and optimize targeting to specific cell types 

[180]. A variety of rate limiting steps are involved in the gene delivery process including the 
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interaction between particle and cell surface, internalization of the particle, and the release of the 

nucleic acid from the delivery vehicle to allow for cell processing [180]. Among the variety of 

cationic molecules synthesized for gene delivery, gemini surfactants are a relatively new class of 

amphiphilic molecules which have been typically shown to be useful transfection agents [181].  

Gemini surfactants contain two hydrophobic tails and two hydrophilic head groups linked by 

a spacer group [182]. Gemini compounds can be tailored as a delivery platform by varying 

hydrophobic chain length, hydrophilic head groups and spacer groups, which could improve the 

transfection efficiency of the nucleic acid to the cell [183]. An example of one structure is 

gemini 12-3-12 that is made up of a positively charged quaternary ammonium linked to a 12-

carbon chain. This is in turn linked to an identical molecule by a 3-carbon spacer (Figure 8). 

Names of quaternary ammonium gemini surfactants are designated as m-s-m corresponding to 

tail 1 length – spacer length - tail 2 length. These surfactants can self-assemble into a range of 

structures including micellar to inverted micellar or bilayer structures depending on molecular 

modifications [184]. The molecular structure of gemini surfactants also influences the 

physiochemical properties. The advantages of gemini surfactant physiochemical properties  

include lower critical micellar concentration (CMC), better ability to reduce surface tension and 

higher solubilisation power [185]. Due to their ability to be easily modified, having lower CMC 

values, and solubilisation power, benefits include minimizing in vivo concentration which could 

reduce toxicity risks and costs [185].  
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Figure 8 General structure of a gemini surfactant (A) and the 12-3-12 gemini surfactant (B) 

The general structure of gemini surfactants (A) are composed of two amphiphilic molecules connected by a spacer 

group (s). Each amphiphilic molecule contains a polar head group (H) and two hydrophobic tail groups. This work 

used gemini surfactants consisting of quaternary ammonium groups as the polar head group, with a carbon tail (m), 

and carbon chain spacer (s). A representative example of gemini 12-3-12 (B) composed of a 12-carbon tail length 

and 3-carbon spacer is also shown (m=12, s=3).  

 

Aside from NP systems physically delivering DNA to the target site, formulation uniformity, 

morphology, compaction and release are also important indicators of NP formulation 

effectiveness. A formulation must compact and package DNA effectively to create complexes 

with certain sizes and morphology, protect from degradation and undergo phase changes to 

efficiently release contents at the target site [184]. Gemini surfactant complexes have been 

shown to be advantageous to meet these requirements and with further modifications can be 

tailored to specific delivery sites [184].  

Our group has used gemini delivery systems to improve gene delivery in culture and animal 

models for topical administration in dermal and ocular applications [182, 186, 187]. Applications 

of gemini delivery systems could also be expanded to mucosal gene delivery. In fact, recently 

amino-acid substituted gemini delivery systems have been created for vaginal mucosal gene 

delivery [45]. Therefore, gemini delivery systems also show potential for delivering DNA to the 

respiratory mucosa and surpassing clearance mechanisms to be able to reach the lung in order to 

activate the innate immune system for optimal immune-protective vaccines. 
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2.5 Chitosan gene delivery systems 

Chitosan polymer is another cationic molecule that has been used to form NPs for a wide 

variety of applications including lung and nasal delivery owing to its mucoadhesive properties 

and biocompatibility [188]. Recently, use of chitosan has expanded to several gene delivery 

applications. The molecular structure of chitosan is made up of repeating D-glucosamine and N-

acetyl-D-glucosamine units linked via (1-4) glycosidic bonds (Figure 9). Every deacetylated unit 

of chitosan contains a primary amine group with a pKa around 6.5 that becomes positively 

charged in acidic media such as acetic acid [41]. Chitosan is a weak base, rendering it insoluble 

in neutral and alkaline pH media [41]. In fact, its low solubility limits using simple chitosan-

DNA NPs for gene delivery. 

 

 

 

Figure 9 Chitosan Polymer structure (in acidic pH) 

Chitosan polymer made up of repeating monomers of D-glucosamine and N-acetyl-D-glucosamine units linked via 

(1-4) glycosidic bonds (n). Dissolving in acidic media results in protonation (red) of amine groups. 

 

Despite limitations, several factors are involved in chitosan NP complexation and its 

effectiveness in the gene delivery process has been widely studied. First, the MW of chitosan 

influences the size of NP complexes formed. On one hand the NP size decreased upon 

decreasing chitosan MW from 213 kDa to 48 kDa, but further decrease to 17 kDa and 10 kDa 

resulted in an increase in particle size [189]. The correlation between size and transfection 

efficiency has also been explored, although it is influenced by the particular cell line [190]. 

Generally, smaller chitosan NP sizes made from 20 kDa to 200 kDa chitosan resulted in greater 

transfection efficiency compared to 480 kDa chitosan NPs. However, there is a delicate balance 
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between MW and stability of the NP: higher MW chitosans improve NP stability while lower 

MW weight chitosans don’t form as stable complexes. The result is slower or delayed expression 

by larger MW chitosan NPs and faster or premature release of DNA prior to entering the cell 

using low MW chitosan NPs [41, 188, 190, 191].  

A second factor that influences gene delivery is the degree of deacetylation (DD) of 

chitosan. The DD is a measure of the percentage of deacetylated primary amine groups along the 

polymer chain. In other words, it determines the positive charge density when chitosan is 

dissolved in acidic conditions [41]. The DD determines how well the polymer can form stable 

complexes with DNA and higher DD results in more stable complexes with smaller NP size that 

can transfect target cells [191]. Whereas a DD >65% is sufficient for plasmid DNA 

complexation, a DD >80% may be more important for shorter siRNA oligonucleotide binding 

and stability [192].  

A final major important factor involves the N/P ratio, which is also an important factor 

for all cationic gene delivery systems. The N/P ratio is measure of the number of positive 

charges per DNA phosphate. This is known to influence the outer charge of the particle (zeta 

potential) that impacts the stability of the particle. A higher N/P ratio indicates higher 

concentration of chitosan that could assist release of the DNA out of the endosome. Yet, if too 

low, the transfection efficiency may decrease [190, 191]. The N/P ratio also affects the size of 

the NP and structural shape. In fact, N/P ratios ranging from 5-10 have been effective for cell 

transfection of plasmid DNA, and ratios as high as 150 reported to be superior for siRNA [193-

196]. 
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Chapter 3: Materials and methods 

3.1 CpG-ODN Characterization and Labeling 

3.1.1 CpG-ODN stability: Ultra Performance Liquid Chromatography (UPLC) 

CpG-ODN phosphorothioated double stranded DNA oligonucleotide was provided by Dr. 

Susantha Gomis (University of Saskatchewan) obtained from Merial Canada Inc. (now part of 

Boehringer Ingelheim); eurofins mwg/operon 7596610 CpG 2007; melting temperature 60.8℃ 

mw: 7056.5; 547 OD; desalted; dry; 12/18/12. 5’-TCGTCGTTGTCGTT-3’. 

UPLC separation of CpG-ODN was performed with reverse phase liquid chromatography (H-

class Bio ACQUITY, Waters). Mobile phases consisted of hexafluoroisopropanol (HFIP) >99% 

(Sigma-Aldrich Canada Co., Oakville, Ontario, Canada), and triethylamine (TEA) HPLC grade 

(Millipore Sigma, Billerica, Massachusetts, United States). CpG-ODN was dissolved in 

biotechnology grade water and 2 L of the sample was injected into the column (XBridge OST 

C18, Waters) at a flow rate of 0.2 mL/min. Gradient separation from 45% to 90% of mobile 

phase A (50% Methanol in 400mM HFIP/16mM TEA) in mobile phase B (400mM HFIP, 16mM 

TEA) was completed in 10 minutes. The CpG-ODN was detected at a retention time of 3.4 

minutes using the PDA detector at 260 nm. 

Preparation method of mobile phases can be seen in the table below.  

 

Table 3 Preparation of TEA/HFIP mobile phase for separation by UPLC 

Mobile Phase A: 16 mM TEA plus 400 mM HFIP aqueous buffer final pH ~7.9 

Ingredient Molecular 

Weight 

Concentration in 

Buffer 

Density Amount per 

1L 

Amount 

per 500 mL 

HFIP 168.04 g/mol 400 mM 1.596 g/mL 42.1 mL 21.5 mL 

TEA 101.19 g/mol 16 mM 0.726 g/mL 2.2 mL* 1.1 mL* 

(26 drops) 

MilliQ 

Water 

   955.7 mL 477.4 mL 

*Note: 22-26 drops of glass Pasteur Pipet = 1 mL, i.e. 24 drops=1 mL 
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To prepare mobile phase A: HFIP was added to milliQ water while mixing for at least 5 minutes 

with magnetic stir bar at speed 4 until well mixed. TEA was slowly added dropwise one at a time 

via glass pipet while mixing for 5 minutes until contents were completely solubilized and no 

immiscible bubbles were visible. Mobile Phase B consisted of 50% methanol and 50% 16 mM 

TEA 400 mM HFIP solvent. TEA/HFIP solvent was divided into two halves. To one half, 50% 

methanol was added in parts while mixing for 5 minutes. 

3.1.2 Labeling CpG-ODN Oligonucleotide with Alexa Fluor A647 

The nucleotide was labeled using the Ulysis™ Alexa Fluor™ 647 Nucleic Acid Labeling Kit 

(Life Technologies, Burlington, Ontario, Canada) according to manufacturer’s instructions at a 

labeling ratio of 100 g per labeling reaction. Briefly, CpG-ODN DNA was reconstituted in 

sterile biotechnology grade water (Fisher Bioreagents, Fair Lawn, New Jersey, USA) and was 

incubated with labeling reagent in an 80°C water bath for 15 minutes. The reaction was stopped 

by plunging reaction tube into an ice bath. DNA mixture was purified by spin column 

centrifugation at 14000 g using Amicon ultracentrifuge filters (3kD cut-off) from Millipore 

Corporation (Billerica, MA, USA). 

3.1.2.1 Labeling Efficiency Calculation 

Labeling efficiency was determined by determining the ratio of base to dye using the equation: 

𝐵𝑎𝑠𝑒: 𝐷𝑦𝑒 =  
(𝐴𝑛𝑢𝑐𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑 × ℇ𝐴𝑙𝑒𝑥𝑎 𝐹𝑙𝑢𝑜𝑟 467)

(𝐴𝐴𝑙𝑒𝑥𝑎 𝐹𝑙𝑢𝑜𝑟 647 ×  ℇ𝑛𝑢𝑐𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑)
 

Where Anucleic acid and AAlexa Fluor 647 are the absorbance measured at 260 nm and 650 nm 

respectively. The extinction coefficients for nucleic acid and Cy5 dye were previously 

determined to the values 𝜀Alexa Fluor 647 = 239000; 𝜀nucleic acid= 6600.  
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3.2 Nanoparticle Preparation and Characterization 

Several types of NP formulations were prepared: gemini only (G-NPs), gemini-phospholipid 

(GL-NP), gemini-phospholipid-biopolymer (BGL-NP), phospholipid-chitosan (CL-NP), 

chitosan-gemini (CG-NP), chitosan (C-NP), hyaluronic acid (HA-NP), and chitosan-sodium 

alginate (CA-NP). The G12L-NP (no biopolymer) and PVP 10,000 BG12L-NP (PVP 10,000 

polymer coating) were the starting point previously designed and tested in our group.  

The following excipients and materials were used in formulation development. Solvents used 

included autoclaved MilliQ water (prepared in house) and biotech grade water (Fisher 

Bioreagents) used to dissolve polymers and CpG-ODN, respectively. The selected polymers 

included polyvinylpyrrolidone (PVP), MW 10,000, PVP 10,000; Kollidon® 25 ); PVP, MW 

40,000, PVP 40,000 (Sigma Aldrich, St. Louis, Missouri, USA) ); Avicel RC-591 sodium 

carboxymethylcellulose (CMCNa) (FMC Biopolymer, Philadelphia, Pennsylvania, USA); 

chitosan low MW 50-190 kDa, 75-85% deacetylated (Sigma Aldrich); chitosan 2.5 kDa, 

Creative PEGWorks (Chapel Hill, North Carolina, USA); PROTANAL® CR 8133 (sodium 

alginate), (FMC Biopolymer); hyaluronic acid (Creative PEGWorks); mPEG-DSPE (Creative 

PEGWorks); propylene glycol USP, (PG) (Spectrum Laboratory Products Inc., Gardena, 

California, USA); polyethylene glycol 400 N.F. (PEG 400)  (Spectrum Laboratory Products Inc.) 

Lipids used included 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (Sigma Aldrich); 

Phospholipon 100H, Nattermann, Batch # 92000300, Identification # 13052; NBD-PC (Avanti® 

Polar Lipids, Inc., Alabaster, Alabama, USA);  

Gemini surfactants included three first generation compounds (without modification): Gemini 

12-3-12 (manufactured in house Lot #:120804-3); Gemini 16-3-16 (manufactured in house Lot 

#:280404); Gemini 18-3-18 (manufactured in house Lot #:070606-3) 

Other excipients used were acetic acid (Sigma Aldrich); sodium hydroxide (Sigma Aldrich); 

phosphate buffered saline, pH 7.4 (prepared in house); Tris-EDTA, TE buffer (Thermo Fisher 

Scientific, Rockford, Illinois, USA)  
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Table 4 Gemini-phospholipid NP formulations (G12L-NPs, BG12L-NPs) 

Formulation code Formulation components Concentration in final formulation 

G12L-NP (PEG 400) 

 

DPPC 

Gemini surfactant 12-3-12 

PEG400 

Water 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 

PVP 10,000 BG12L-NP (PEG 400) 

DPPC 

Gemini surfactant 12-3-12 

PEG400 

PVP 10,000 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 

PVP Kollidon 25 BG12L-NP (PEG 

400) 

DPPC 

Gemini surfactant 12-3-12 

PEG400 

PVP Kollidon 25 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 

PVP 40,000 BG12L-NP (PEG 400) 

DPPC 

Gemini surfactant 12-3-12 

PEG400 

PVP 40,000 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 

CMCNa BG12L-NP (PEG 400) 

DPPC 

Gemini surfactant 12-3-12 

PEG400 

CMCNa 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 

G12L-NP (PG) 

DPPC 

Gemini surfactant 12-3-12 

Propylene glycol 

Water 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 

PVP 10,000 BG12L-NP (PG) 

DPPC 

Gemini surfactant 12-3-12 

Propylene glycol 

PVP 10,000 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 

PVP Kollidon 25 BG12L-NP (PG) 

DPPC 

Gemini surfactant 12-3-12 

Propylene glycol 

PVP Kollidon 25 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 
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Formulation code Formulation components Concentration in final formulation 

PVP 40,000 BG12L-NP (PG) 

DPPC 

Gemini surfactant 12-3-12 

Propylene glycol 

PVP 40,000 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 

CMCNa BG12L-NP (PG) 

DPPC 

Gemini surfactant 12-3-12 

Propylene glycol 

CMCNa 

CpG Solution 

10 mg/mL 

2.2 mg/mL 

10 mg/mL 

4.87 mg/mL 

1 mg/mL 

*CpG-ODN was dissolved in biotech grade water with a final concentration of 4 mg/mL 

 

Table 5 Lipid-gemini PEG hybrid NP formulations 

Formulation code 
Formulation 

components 

Concentration in 

final formulation 

7a 

DPPC 

mPEG-DSPE 

Gemini 12-3-12 

CpG-ODN 

Sterile water 

10 mg/mL 

1mg/mL 

2.2 mg/mL 

1 mg/mL 

q.s. to 1mL 

 

Table 6 Chitosan Lipid NP formulations (CL-NPs) 

Formulation 

code 

Formulation 

components 

Concentration in 

final formulation 

CL-NP 

(T5) 

Phospholipon 100H 

Propylene Glycol 

Chitosan 

CpG-ODN 

4M NaOH 

Sterile Water 

25 mg/mL 

25 mg/mL 

2.2 mg/mL 

1 mg/mL 

q.s. to pH 5.2 

q.s. to 1 mL 

*Low MW Chitosan (50-190 kDa) was dissolved in acetic acid prior to use in formulations (0.1% chitosan solution in 1% acetic 

acid, pH 3.4) 
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Table 7 Gemini CpG-ODN NP Complexes (G-NPs) 

Formulation 

code 
Formulation components 

Concentration in 

final formulation 

G12-NP 

(11, 11R) 

Gemini 12-3-12 

CpG-ODN 

1.65 mg/mL 

1 mg/mL 

G16-NP 

(14) 

Gemini 16-3-16 

CpG-ODN 

1.65 mg/mL 

1 mg/mL 

G18-NP 

(15) 

Gemini 18-3-18 

CpG-ODN 

1.65 mg/mL 

1 mg/mL 

*Gemini powder was dissolved in sterile molecular grade water. Starting concentration of gemini solutions were 2.2 mg/mL, 

CpG-ODN starting concentration was 4 mg/mL 

 

Table 8 Chitosan Nanoparticles (C-NPs) 

Formulation code 
Formulation 

components 

Concentration in 

final formulation 

0.1% Low MW C-NP 

(10, 10d) 

CpG-ODN 

0.1% Chitosan 

50KDa stock solution 

in 1% acetic acid 

1 mg/mL 

7.22 mg/mL 

1% ultra-low MW C-

NP 

(16) 

CpG-ODN 

1% Chitosan 2.5k 

MW stock solution in 

1% acetic acid 

1mg/mL 

7.5 mg/mL 

1% ultra-low MW C-

NP 

(1f) 

CpG-ODN 

1.5% Chitosan 2.5K 

stock solution in 1% 

acetic acid 

1 mg/mL 

10 mg/mL 

 

*CpG-ODN was dissolved in biotech grade water at 4 mg/mL prior, final formulations had a pH range of 3.5-4.2 
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Table 9 Second generation chitosan NP formulations (CG-NPs) 

Formulation 

code 
Formulation components 

Concentration 

in final 

formulation 

0.1% CG12-NP 

(11b-12) 

Gemini 12-3-12 

CpG-ODN 

0.1% Chitosan stock solution 

0.44 mg/mL 

1 mg/mL 

0.55 mg/mL 

0.1% CG12-NP TE 

(11b-TE) 

Gemini 12-3-12 

CpG-ODN in TE buffer 

0.1% Chitosan stock solution 

0.44 mg/mL 

1 mg/mL 

0.55 mg/mL 

0.1% CG16-NP 

(11b-16) 

Gemini 16-3-16 

CpG-ODN 

0.1% Chitosan stock solution 

0.44 mg/mL 

1 mg/mL 

0.55 mg/mL 

0.1% CG18-NP 

(11b-18) 

Gemini 18-3-18 

CpG-ODN 

0.1% Chitosan stock solution 

0.44 mg/mL 

1 mg/mL 

0.55 mg/mL 

1% CG12-NP 

(11d-12) 

Gemini 12-3-12 

CpG-ODN 

1% Chitosan in 1% acetic acid 

pH 4.0 

0.44 mg/mL 

1 mg/mL 

5.5 mg/mL 

 

1% CG16-NP 

(11d-16) 

Gemini 16-3-16 

CpG-ODN 

1% Chitosan stock solution 

0.44 mg/mL 

1 mg/mL 

5.5 mg/mL 

1% CG18-NP 

(11d-18) 

Gemini 18-3-18 

CpG-ODN 

1% Chitosan stock solution 

0.44 mg/mL 

1 mg/mL 

5.5 mg/mL 

2% CG12-NP 

(11f-12) 

Gemini 12-3-12 

CpG-ODN 

2% Chitosan stock solution 

0.44 mg/mL 

1 mg/mL 

11 mg/mL 

2% CG16-NP 

(11f-16) 

Gemini 16-3-16 

CpG-ODN 

2% Chitosan stock solution 

0.44 mg/mL 

1 mg/mL 

11 mg/mL 

2% CG18-NP 

(11f-18) 

Gemini 18-3-18 

CpG-ODN 

2% Chitosan stock solution 

0.44 mg/mL 

1 mg/mL 

11 mg/mL 

0.1% CG12-NP 

PBS 

(11e-12) 

Gemini 12-3-12 

CpG-ODN 

0.1% Chitosan stock solution 

Phosphate buffered Saline 

0.44 mg/mL 

1 mg/mL 

0.4 mg/mL 

150 µL/mL 

0.1% CG16-NP 

PBS 

(11e-16) 

Gemini 16-3-16 

CpG-ODN 

0.1% Chitosan stock solution 

Phosphate buffered Saline 

0.44 mg/mL 

1 mg/mL 

0.4 mg/mL 

150 µL/mL 
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Formulation 

code 
Formulation components 

Concentration 

in final 

formulation 

0.1% CG18-NP 

PBS 

(11e-18) 

Gemini 18-3-18 

CpG-ODN 

0.1% Chitosan stock solution 

Phosphate buffered Saline 

0.44 mg/mL 

1 mg/mL 

0.4 mg/mL 

150 µL/mL 

*gemini was dissolved in sterile MilliQ water at 2.2 mg/mL, CpG-ODN was dissolved in biotech grade water at 4 mg/mL. 

Chitosan was dissolved in 1% v/v acetic acid (stock solution). 0.1% chitosan solution pH: 3.15, 1% chitosan solution pH: 4.0, 2% 

chitosan solution pH: 4.48. 

 

Table 10 Sodium Alginate NP formulations 

Formulation code 
Formulation 

components 

Concentration in 

final formulation 

AC-NP 

(3-1b) 

Sodium Alginate 

CpG-ODN 

1.5% Chitosan 2.5k 

stock solution 

0.044 mg/mL 

1 mg/mL 

10 mg/mL 

 

A-NP 

(13a) 

CpG-ODN  

Sodium alginate 

1mg/mL 

3.3 mg/mL 

AG12-NP 

(13b-12) 

Gemini 12-3-12 

CpG-ODN 

Sodium Alginate 

0.44 mg/mL 

1 mg/mL 

2.42 mg/mL 

AG16-NP 

(13b-16) 

Gemini 16-3-16 

CpG-ODN 

Sodium Alginate 

0.44 mg/mL 

1 mg/mL 

2.42 mg/mL 

AG18-NP 

(13b-18) 

Gemini 18-3-18 

CpG-ODN 

Sodium Alginate 

0.44 mg/mL 

1 mg/mL 

2.42 mg/mL 

*Chitosan was dissolved in 1% v/v acetic acid (stock solution). Sodium alginate was dissolved in sterile milliQ water at 

4.4mg/mL. Gemini was dissolved in sterile MilliQ water at 2.2 mg/mL. CpG-ODN was dissolved in biotech grade water at 4 

mg/mL 
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Table 11 Hyaluronic Acid NP formulations 

Formulation code Formulation components 
Concentration in final 

formulation 

1c 

0.01% Hyaluronic Acid 

CpG-ODN 

1.5% Chitosan 2.5k solution 

0.01 mg/mL 

1 mg/mL 

10 mg/mL 

12 
CpG-ODN 

0.01% Hyaluronic acid 

1mg/mL  

0.5mg/mL 

12a 

CpG-ODN 

0.01% Hyaluronic Acid 

0.1% Chitosan solution 

1 mg/mL 

0.025 mg/mL 

0.5 mg/mL 

12aTE 

CpG-ODN in TE 

0.01% Hyaluronic Acid 

0.1% Chitosan solution 

1 mg/mL 

0.025 mg/mL 

0.5 mg/mL 

* Hyaluronic acid was dissolved in sterile milliQ water (m/v). 0.1% Chitosan stock solution (m/v) consists of low MW chitosan 

dissolved in 1% acetic acid (v/v) pH 3.15. 1.5% Chitosan stock solution (m/v) consists of ultra-low MW chitosan dissolved in 1% 

acetic acid (v/v). 

 

Formulations were prepared with non-labeled CpG-ODN for characterization purposes and with 

Alexa Fluor 647 labeled CpG-ODN for further in vitro and in vivo experiments. For blank 

particles formulations, CpG-ODN solution was replaced with sterile water. 

3.2.1 Gemini Phospholipid Nanoparticle Preparation (G12L-NPs) 

DPPC and the appropriate gemini surfactant, were weighed in a glass scintillation vial. 

The excipient (PEG400 or PG) was weighed and added to the lipid and surfactant. The contents 

were heated in a 75C water bath and vortex mixed intermittently with heating until all 

ingredients were uniformly mixed (lipid phase) (Table 4). 

3.2.1.1 Variation of biopolymer 

Polymer solutions were dissolved in sterile MilliQ water. Each biopolymer was diluted as 

a stock solution of 100 mg in 15 mL water. The polymer solution (or water for non-biopolymer 

formulation) was heated to 40C and added to the lipid phase and vortex mixed and heated 

intermittently in a 75C water bath until the mixture was homogeneous and uniform until there 
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were no visible particles. The solution was cooled to 40C and CpG-ODN was added to the 

vesicles and vortex mixed and warmed intermittently until formulation was translucent, uniform 

and there were no visible particles. Final formulation was bath sonicated for 5 minutes to evenly 

distribute particles. 

3.2.2 Gemini CpG-ODN NP complexes (G-NPs) 

Gemini 12-3-12, 16-3-16, 18-3-18 solutions were also prepared in MilliQ water at room 

temperature, with the exception of gemini 16-3-16 and 18-3-18 which were heated briefly to 

60C in order to uniformly dissolve.  

CpG-ODN lyophilized powder was reconstituted using sterile biotech grade water to 

make a stock solution of 4 mg/mL. Appropriate volumes of the stock solution were used for the 

formulations. The final CpG-ODN concentration in the NP formulations was 1 mg/mL, unless 

otherwise noted.  

Gemini complexes with CpG-ODN were formed at room temperature by the addition of 

CpG-ODN solution to gemini solution while stirring with magnetic stir bar at 900 rpm. NP 

complexes were sonicated for 10 minutes or until the formulation was translucent (Table 7). 

3.2.3 Chitosan NP Preparation 

3.2.3.1 Stock solution preparation 

Different chitosan polymer quantities were dissolved in 1% v/v acetic acid in order to 

produce Chitosan NPs. Three different chitosan concentrations were tested. 0.1%, 1%, 2% m/v. 

All NP preparation was performed at room temperature. 

Gemini 12-3-12, 16-3-16, 18-3-18 solutions were also prepared in MilliQ water at room 

temperature, with the exception of gemini 16-3-16 and 18-3-18 which were heated at 60C in 

order to uniformly dissolve.  

CpG-ODN stock solution was made at 4 mg/mL so that the final CpG-ODN 

concentration in the NP formulation was 1 mg/mL. 
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3.2.3.2 Chitosan only NPs (C-NPs) 

Two different MW chitosan polymers were used to make C-NPs. A low MW chitosan 

50-90 kDa based on viscosity and an ultra-low MW chitosan of 2.5k. For formulation of CpG-

ODN with low MW chitosan, the CpG-ODN solution was first added to a scintillation vial while 

stirring with a magnetic stir bar. The chitosan solution was added dropwise to CpG-ODN 

solution while stirring at 900 rpm for 10 minutes. NPs were bath sonicated for 2 minutes and 

returned to stirring overnight (~20 hours) until uniform translucent uniform slightly turbid 

solution was observed. 

A higher 1% w/v chitosan solution was also used to develop chitosan-CpG-ODN NPs, 

however uniform NP dispersion was not achieved due to clumping within the solution.  

The ultra-low MW chitosan was formulated in the same manner, without the overnight 

stir (Table 8). 

3.2.3.3 Chitosan – gemini NPs (CG-NPs) 

Stock solutions of 50-90 KDa chitosan (low MW, Sigma) were prepared in 1% acetic 

acid. The stock solution of CpG-ODN (4 mg/mL in sterile water) was added to the gemini 

solution, swirled to mix and vortexed intermittently at room temperature. The complex was then 

bath sonicated 25 minutes at room temperature. The corresponding chitosan solution was added 

as the final component, dropwise to the CpG-ODN- gemini complex while mixing with a 

magnetic stir bar at 1000 rpm. The mixing was continued for 15 minutes until a uniform milky 

solution was formed. The NPs were further bath sonicated at room temperature for 10 minutes to 

ensure uniform NP formation. For formulations with PBS, the PBS was added after complex 

formation (Table 9). 

3.2.4 Sodium alginate, hyaluronic acid NP preparation 

Stock solutions of sodium alginate and hyaluronic acid were prepared in sterile MilliQ water.  
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3.2.4.1 Sodium alginate particles 

Sodium alginate solution was added to CpG-ODN solution and vortexed to mix evenly 

(A-NPs). For chitosan-sodium alginate formulation (AC-NPs), ultra-low MW (2.5k) chitosan 

solution was added at once and vortexed to mix until a uniform solution was observed (Table 

10). 

3.2.4.2 Sodium alginate- gemini particles (AG-NPs) 

Gemini – CpG-ODN complexes were first formed by adding CpG-ODN solution to 

gemini 12-3-12, 16-3-16, or 18-3-18 solutions. Mixture was vortexed until a translucent uniform 

solution was observed. Appropriate volume of sodium alginate solution was added to the gemini 

– CpG-ODN complexes and vortexed to mix until a uniform mixture was observed (Table 10). 

3.2.4.3 Hyaluronic acid-chitosan particles (HAC-NPs) 

Appropriate volume of hyaluronic acid solution was added to CpG-ODN solution and the 

clear solution was vortexed to mix. The corresponding volume of low MW 50-90 kDa chitosan 

solution was added dropwise with intermittent vortexing. The solution was bath sonicated at 

40°C for 10 minutes until a translucent uniform solution was produced (Table 11).  

3.2.5 Assessment of particle size, polydispersity and zeta potential 

 Size (hydrodynamic diameter), polydispersity index and zeta () potential measurements 

were carried out on all particle formulations. Aliquots of 100 L and 1000 L of each 

formulation were prepared for size and zeta potential measurements, respectively. Measurements 

were performed using the Nano ZS Zetasizer (Malvern Instruments, Worcestershire, UK) which 

measures the hydrodynamic diameter of particles using dynamic light scattering (DLS). 

Measurements were carried out in triplicates for each condition. Z-average values as expression 

of mean particle size are considered valid for samples with a PDI index < 0.5 (according to 

manufacturer’s protocol). 



 59 

3.2.6 Assessment of DNA packing into particle (Fluorescence Correlation Spectroscopy)  

FCS measurements were performed on a Zeiss LSM 710 confocal laser scanning 

microscope (CLSM) with Confocor 3 system (Zeiss, Jenna, DE). NPs were prepared with Alexa 

Fluor 647 labeled CpG-ODN DNA. Alexa Fluor 647 was excited by a 633 nm He-Ne laser at 

approximately 50 W and reflected by a dichroic beam splitter (488/633) and focused 200 nm 

into the sample through a 40x Zeiss Apochromat NA 1.2 water-immersion objective lens. 

Emission spectra were collected through a 580 nm long-pass filter and recorded by an avalanche 

photodiode detector (APD). A 45 M (1 Au) pinhole blocked out-of-focus emission. The lateral 

radius of the focal volume for the 633nm laser was determined by a calibration dye (Cy5-NHS-

ester) to be 590 nm. FCS measurements were carried out in 150 L volumes of diluted GL-NPs 

and BGL-NPs in a 4 well CELLview coverslips (Grenier-Bio One, Frickenhausen, DE). NP 

samples were prepared in triplicate for FCS and measurements were taken for 3 s, forty times for 

each sample. Calibration of the system was performed with a 1.25 nM Cy5 solution.  

3.2.6.1 FCS data analysis 

The count rate gathered from the avalanche photo detector was used to determine the  

autocorrelation function (ACF) as described previously [197]. A three-dimensional Gaussian 

excitation intensity distribution was assumed and the free diffusion of a single species was 

calculated using the formula below: 

Where N is the mean number of molecules in the excitation volume, S is the ratio 

between the equatorial and axial radii of the focal volume, and d is defined as the characteristic 

diffusion time of the particle. Diffusion coefficients (D) were determined using the Stokes-

Einstein equation below. 

𝐷 =  
𝜔ℛ2 

4𝜏𝑑
 

where R is the lateral radius of focal volume experimentally determined by measuring 

the diffusion time of calibration (dCy5) with the known diffusion coefficient of Cy5-NHS ester 

(3.2 x 10-6 cm2/s. d for the sample is obtained from the fitted autocorrelation function.  
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3.3 Testing the nanoparticle delivery vehicle in a chicken macrophage cell model 

3.3.1 CpG-ODN uptake assay in the HD11 cell line 

As avian macrophages are thought to be a major player in CpG-ODN immune 

stimulation and have been found to be recruited to the avian lung during infection with avian 

pathogenic E. coli (APEC), they were used for an in vitro screening model of nanoparticle 

formulations prepared. HD11 chicken macrophages are derived from chicken hematopoietic cell 

line transformed by avian myelocytomatosis virus strain MC29 (replication defective leukemia 

virus). It is a heterogeneous non-adherent cell population containing mainly round hybridoma 

like cells (HD11) and a small population of long fibroblast cells [198, 199]. The HD11 cell line 

has been widely used for studying chicken immune mechanisms. 

3.3.1.1 Cell culture and dose application 

HD11 cell culture: Chicken macrophages HD11 (kindly provided by Dr. S. Gomis) were 

grown in suspension culture. HD11 cells were cultured in T75 flasks with RPMI 1640 media 

with L-glutamine (basic media) (HyClone™, GE Healthcare Life Sciences, Logan, Utah) 

supplemented with 10% FBS and 1:1000 gentamicin (complete media). Cells were grown to 

confluency 5x105 cells /ml and passaged every 2 days. 

Cell dosing: 

HD11 cells (P7-20) were removed from flask and placed in a 50mL conical tube. Cells 

were centrifuged using the Sorvall Legent RT centrifuge (ThermoFisher) at 200g for 5 minutes, 

the supernatant was discarded and the cells were re-suspended in RPMI 1640 media with L-

glutamine (basic media). Cells were counted using a hemocytometer with light microscopy 

(VistaVision inverted light microscope, VWR international, model#: 82026-630) with Trypan 

blue stain (Life Technologies) and seeded into a non-treated 96-well U-bottom plate at 30,000 

cells per well and suspended in 250 µL basic media. 

Cells were transfected in triplicate using a dose of 1 µg CpG-ODN per well (1 µL of 

formulation) and incubated at 37°C for 2 hours in basic media. After transfection, plates were 

centrifuged at 400g for 10 minutes and the supernatants were discarded. Cells were re-suspended 
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in 300 µL complete media and placed back in the incubator for 12 hours. After 12-hour 

incubation, cells were centrifuged at 400g for 10 minutes and 150 µL of supernatants were 

transferred to a 96-well clear bottom plate pre-filled with 130 µL sterile water for the Greiss 

assay. The rest of the supernatants were discarded. Three hundred µL of complete media was 

added to each well, the cells were re-suspended, and incubated further for 12 hours. 

At the end of the second 12-hour incubation (total = 24 hours) cells were centrifuged at 

400g for 10 minutes and 150 µL of supernatant from each well was collected and transferred to a 

clear bottom glass 96-well plate with each well pre-filled with 130 µL sterile water for the Greiss 

assay. 

The remaining cell supernatants were discarded and cells were re-suspended in 250 µL of 

PBS mixed with either MitoTracker™ Green FM (Life Technologies), or Calcein AM (Life 

Technologies) cell viability stain for flow cytometry. 

3.3.1.2 Fluorescence set up of flow cytometry 

The CpG-ODN NP uptake and toxicity of various prepared NPs were assessed using the 

Attune® Acoustic Focusing Flow Cytometer (Applied Biosystems, Life Technologies, Carlsbad, 

California, USA). Assessment of CpG-ODN uptake was recorded by measuring fluorescence 

associated with the Alexa Fluor 647 label following stimulation. The viability was assessed after 

measuring the fluorescence associated with a viability dye (shown below). The CpG-ODN 

uptake was calculated based on the percentage of viable cells that exhibited a fluorescence signal 

above the threshold signal. The threshold value was determined based on the background 

fluorescence of untreated cells. 

Statistical Analysis of CpG-ODN uptake 

Statistical analysis was performed using the GraphPad Prism software (GraphPad 

Software, La Jolla, CA, USA). Two-way ANOVA in conjunction with Tukey post hoc tests were 

used to analyze CpG-uptake for multi-variable analysis. A p-value of less than 0.05 was 

considered as statistically significant. 
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3.3.2 Assessment of NP’s toxicity in HD11 cells  

Cell viability after stimulation with different CpG-ODN NP formulations was assessed 

by measuring viability fluorescence following treatment with MitoTracker™ Green FM. 

Viability stain was carried out as per manufacturer’s protocol. Briefly, cells were treated with 

PBS containing MitoTracker™ Green FM at a concentration of 100 nM per well. Cells were 

incubated at 37C for 15 minutes prior to reading fluorescent output using flow cytometry. 

For certain formulations, cell viability was also assessed with Calcein AM cell permeant 

viability dye from the LIVE/DEAD® viability/cytotoxicity kit (Life Technologies). Briefly, 

calcein AM stock solution was diluted 80-fold in high quality anhydrous dimethyl sulfoxide 

(DMSO) (Fluka, Honeywell) and added to PBS warmed at 37°C so that 2 µL of diluted calcein 

AM was added per well. The cells were incubated under dark conditions for 20 minutes at room 

temperature prior to reading fluorescence output by flow cytometry. 

3.3.3 Assessment of immune activation in HD11 cells: Greiss Assay 

Immune activation of macrophages was assessed at 12 and 24 hours after HD11 

stimulation with CpG-ODN for 2 hours. Nitrite concentration produced by cells treated with the 

various NP formulations was measured in triplicate using the standard Greiss Assay Kit (Life 

Technologies). The assay was carried out as per manufacturer’s protocol. Briefly, after 12 hours 

post stimulation, cells were centrifuged at 400g for 10 minutes and 150 µL of supernatant from 

each well was collected in a separate glass bottom microplate. A 130 µL aliquot of MilliQ water 

was added to each sample. Greiss assay reagents for cell supernatants were prepared at a 1:1 

ratio of kit component A to B. Twenty µL of Greiss reagent (components A+B) was added to 

each well and the plate was incubated for 30 minutes at room temperature, in the biosafety 

cabinet under dark conditions. Absorbance at 548 nm was read using a microplate reader and 

nitrite concentration was assessed using a nitrite standard curve (1-100 M). 

3.3.3.1 Statistical Analysis of immune stimulation 

Statistical analysis was performed using the GraphPad Prism software (GraphPad 

Software, La Jolla, CA, USA). Two-way ANOVA in conjunction with Tukey post hoc tests were 
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used to analyze nitrite production for multi-variable analysis. A p-value of less than 0.05 was 

considered as statistically significant. 

3.3.4 Localization of CpG-ODN during immune stimulation: Confocal imaging 

Based on findings from in vitro experiments and formulation development, selected 

formulations were chosen for further study including confocal imaging and testing formulation 

stability after nebulization. 

 To determine localization of DNA upon transfection of HD11 macrophages at the cellular 

level, fluorescence imaging of Alexa Fluor 647 CpG-ODN was performed using the Zeiss 710 

CLSM (Carl Zeiss, Oberkochen, Germany). HD11 cells were transfected as mentioned above 

and uptake of CpG-ODN NPs were imaged after 2 and 24 hours post stimulation containing 

labeled CpG-ODN with Alexa Fluor 647 only. Thirty µL of PBS was aliquoted into a 96-well 

glass bottom cell culture treated microplate. Twenty µL of suspension cell culture was 

transferred to the 96-well glass bottom cell culture plate and stained with 1 µL VybrantTM CM-

Dil cell membrane stain (Life Technologies). Cells were incubated for 20 minutes at 37ºC prior 

to viewing in the microscope. 

3.3.5 Nebulization model for testing formulation stability and functionality 

Selected NP formulations were nebulized using the Med-Pro Compressor Nebulizer (AMG 

Medical Inc., Montreal, Quebec, Canada). One mL of NP formulations was placed in the 

chamber and a 4mL glass scintillation vial was placed upside down into the nebulizer holder. 

The formulation was nebulized for 2 minutes. The nebulizer was turned off and the nebulized 

formulation was collected from the glass vial and the medication holder (Figure 10). Analysis of 

nebulized formulations was performed using DLS for measuring size and ζ potential.  

 



 64 

 

Figure 10 Experimental setup for nebulized NP collection for physicochemical characterization and in vitro 

testing 

3.4 Assessing delivery and effectiveness of CpG-ODN nanoparticles in a live chick 

model 

This experiment was completed in collaboration with Dr. S. Gomis and his group, at the 

University of Saskatchewan. The purpose of this experiment was to investigate biodistribution 

patterns and the improvement in protection of CpG-ODN against E. coli challenge resulting from 

NP formulations in 1-day old chicks.  

3.4.1 Animals and in vivo experimental design 

Neonatal 1-day old broiler chicks were randomly assigned to different experimental 

groups: I) saline negative control (2 chicks), II) chicks nebulized with naked CpG-ODN (5 

animals for biodistribution assessment, 40 birds for E. coli challenge protection), III) chicks 

nebulized with selected CpG-ODN formulations (5 animals for biodistribution assessment, 40 

birds for E. coli challenge protection).  

3.4.2 CpG-ODN NPs preparation for biodistribution and protection assessment 

Selected formulations for protection assessment were prepared as previously mentioned. 

For formulations for assessing biodistribution, CpG-ODN containing 12.5% of CpG-ODN 

labeled with Alexa Fluor 647 was used as a tag to identify distribution within the respiratory 

tract. Additionally, the particles themselves were also labeled with 5% fluorescent lipid: Oregon 

Green™ 488 1,2-dihexadecanoyl-sn-Glycero-3-phosphoethanolamine (DHPE) Lipid (Life 
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Technologies) or 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-

glycero-3-phosphocholine (NBD-PC) lipid (Avanti Polar Lipids Inc.) for gemini- phospholipid 

formulations. For formulations containing chitosan, 2% of fluorescent Fluorescein isothiocyanate 

(FITC)-chitosan (synthesized in house, see section 3.5.2.1) was used as a tag. The formulations 

were prepared so that chicks were nebulized with a dose of 100 µL of formulation containing 

100 µg CpG-ODN per chick. 

3.4.2.1 Chitosan-FITC Synthesis  

A labeling method modified from Huang et. al, 2004 was used to prepare FITC 

conjugated chitosan polymer [200]. Stock solutions of FITC (Sigma Aldrich) in methanol (2 

mg/mL) and 1% w/v low MW 50-190 kDa chitosan in 0.1 M acetic acid were prepared. Ten mL 

of dehydrated methanol (HPLC-grade, Fisher), 5mL of FITC in methanol, and 10 mL of the 1% 

chitosan in acetic acid was mixed and incubate at room temperature in the dark for 3 hours. After 

incubation, 10mL of 0.2M NaOH was added to precipitate the polymer and the mixture was 

inverted to mix. The chitosan mixture was centrifuged at 20000g for 30 minutes and the 

supernatant was removed. 10mL of 70:30 v/v of methanol:water was used to wash the chitosan 

and the solution was subsequently centrifuged at 20,000g for 10 minutes. The chitosan was 

washed until there was no yellow color in the supernatant. After washing, the chitosan was 

dissolved in 0.1 M acetic acid and all traces of free FITC label were removed by dialysis in 

MilliQ water. The FITC-chitosan was lyophilized in a glass scintillation vial overnight. 

3.4.3 Experimental design for in vivo pulmonary delivery of NP formulations 

On the day of hatch, formulation doses were administered by nebulization (Med-Pro 

Compressor Nebulizer) to commercial 1-day old broiler chicks in a nebulization chamber (Figure 

11). 
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Figure 11 Experimental set-up for the administration of CpG-ODN NP formulations via nebulization in 1-day 

old chicks 

Groups of 1-day old commercial broiler chicks were nebulized in an acrylic chamber for 

15 minutes with a dose of 100µg/100 µL per chick. Chicks nebulized with fluorescent 

formulations were sacrificed at 2 and 24 hours post nebulization (Table 12). 

For the biodistribution assessment, chicks were euthanized at 2 hours (n=5) and 24 hours 

(n=5) post nebulization. The respiratory organs were harvested at each time point for each 

formulation. The trachea, syrinx, and lung respiratory organs were isolated and snap frozen in 

optimal cutting temperature (OCT) compound (Thermo scientific, Waltham, MA, USA), 

ensuring right orientation for longitudinal lung sections after harvesting (Figure 12). Tissues 

were stored at -80ºC until they were sectioned. 80 µm tissue sections were sectioned with a cryo-

stat and observed by CLSM at appropriate excitation and emission wavelengths for Alexa Fluor 

647, NBD-PC, Oregon Green 488 and FITC to determine localization of NP and CpG-ODN 

within the chick respiratory tract. 

 

Figure 12 Lung tissue orientation in cryo-mold for biodistribution assessment 

Lung tissue of chicks was placed in cryo-mold for sequential longitudinal sections throughout the lung tissue. 

Acrylic chamber = 

0.036m3

Tubing and 

mask

Compressor 

nebulizer

Intrapulmonary Administration of CpG-ODN 

to neonatal broiler chicks
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Table 12 Experimental design of in vivo biodistribution experiment 

 
Treatment/ Number of 

animals 

Tissue collection 

(post nebulization) 
Analysis 

Experiment 1 

Code: 3F 

G12L-NP 

n=10 

15 min. n= 5 

2h n=5 
confocal microscopy 

Code: 4F 

PVP 10,000 BG12L-NP 

n=10 

15 min. n= 5 

2h n=5 
confocal microscopy 

Experiment 2 

Code: F-CpG 

Naked CpG-ODN 

n=10 

2h n= 5 

24h n=5 
confocal microscopy 

Code: 11 

G12-NP 

n=10 

2h n= 5 

24h n=5 
confocal microscopy 

Code: 11d-12 

1%CG12-NP 

n=10 

2h n= 5 

24h n=5 
confocal microscopy 

Code: 11d-16 

1%CG16-NP 

n=10 

2h n= 5 

24h n=5 
confocal microscopy 

Experiment 3 

Code: 3F 

G12L-NP 

n=10 

2h n= 5 

24h n=5 
confocal microscopy 

Code: 4F 

PVP 10,000 BG12L-NP 

n=10 

2h n= 5 

24h n=5 
confocal microscopy 

Code: T5 

CL-NP 

n=10 

2h n= 5 

24h n=5 
confocal microscopy 

Code: F10 

C-NP 

n=10 

2h n= 5 

24h n=5 
confocal microscopy 

 

3.4.4 Experimental design for in vivo protection experiments in 1-day old chicks 

For protection studies against lethal E. coli infection, non-fluorescent formulations were 

administered to chicks on the day of hatch (n=40 per group). The chicks were challenged with E. 

coli at 2 days after immunization and another group at 5 days after immunization for each 

formulation. Chicks were monitored and evaluated for clinical signs of E. coli infection and 

survival after challenge and sections from euthanized birds were sectioned for histopathological 

analysis. A summary of the animal assignment to groups is provided below (Table 13). 
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Table 13 Experimental design of in vivo protection experiment against lethal E. coli challenge 

 
Treatment/ Number of 

animals 

Day of Challenge 

(post admin.) 
Analysis 

Experiment 1 

Code: PU-CpG12 (with PVP) 

BG12L-NP 

Day 2 
Clinical Monitoring, 

Histopathology 

Code: PU-CpG16 (with PVP) 

BG16L-NP 

Code: PU-CpG18 (with PVP) 

BG18L-NP 

Experiment 2 

Code: PU-CpG12P (with PVP) 

PVP BG12L-NP 

Day 3 
Clinical Monitoring, 

Histopathology Code: PU-CpG12M (with 

CMCNa) 

CMCNa BG12L-NP 

 

Experiment 3 

Code: 11 

G12-NP  

Day 2 

 

 

 

Clinical Monitoring, 

Histopathology 

 

 

Code: 11d-12 

1% CG12-NP 

Code: 11d-16 

1% CG16-NP 

Experiment 4 

Code: 11 

G12-NP 
 

Day 4 

 

 

Clinical Monitoring, 

Histopathology 

Code: 11-d-12 

1% CG12-NP 

Code: PU-CpG12P (with PVP) 

PVP 10,000 BG12L-NP 
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Chapter 4 – Results 

4.1 UPLC method development 

A UPLC method suitable to analyze CpG-ODN in solution and in NP formulations was 

developed by modifying and optimizing a previous method [201]. The gradient developed (see 

Materials and Methods and Figure 13) provided a retention time of 3.4 minutes for CpG-ODN. A 

standard curve for detection of CpG-ODN by detection at 260 nm was generated for the 

concentration range of 0.125 – 4 µg CpG-ODN in triplicate with R2= 0.99881. The limit of 

detection (LOD) and quantification (LOQ) were calculated based on the equations below: 

𝐿𝑂𝐷 =
3.3𝜎

𝑠𝑙𝑜𝑝𝑒
 and 𝐿𝑂𝑄 =

10 𝜎

𝑠𝑙𝑜𝑝𝑒
 

where σ is the standard deviation of the residuals taken from the regression line, and slope is 

estimated from the curve. 

The LOD was equivalent to 0.19 µg/µL and the LOQ was 0.57 µg/µL. 

 

Figure 13 UPLC chromatogram of unlabelled naked CpG-ODN for standard curve generation from 0.125 µg 

– 4 µg CpG-ODN  

A) UPLC Chromatogram of CpG-ODN separation and standard curve (B), n=3 for each concentration.  

Mobile Phase A: 50% Methanol in 

400mM HFIP/16 mM TEA

Mobile Phase B: 400mM HFIP/16 

mM TEA

Gradient: 45% A- 90% A

Column: OST C18

PDA Detection: 260 nm

Gradient Time: 10 mins

Retention time: 3.4 minutes

y = 5E+06x + 2862.6

R² = 0.99881
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4.2 Nanoparticle characterization 

4.2.1 Particle characterization by Zetasizer  

Particle size for all formulations was measured and reported as Z-average diameter (n=3). The 

corresponding size distribution profile by intensity is shown in Appendix Figure 58 - Figure 68. 

4.2.1.1 Effect of biopolymer and other excipients on the size and zeta potential of G12L-NPs 

and BG12L-NPs 

 The size range of all G12L-NP particles, including biopolymer coated G12L-NPs 

(BG12L-NPs) complexed with CpG-ODN ranged from 160 – 250 nm.  This represents a large 

increase in size from vesicles un-complexed with CpG-ODN that were under 20 nm in size 

(Table 14). The one exception is the BG12L-NP formulated with CMCNa which decreased in 

size upon complexation with CpG-ODN in PEG 400 excipient. However, due to a high 

polydispersity index >0.5, the average diameter of the vesicles is not representative of the 

particle population. The effect of changing the excipient from PEG400 to PG to form gemini 

phospholipid vesicles decreases the size of G12L-NPs and BG12L-NPs blank particles. Although 

the change in size is limited to a maximum of 4 nm difference.  

 The addition of a biopolymer coating to G12L-NPs did not have a significant effect on 

the size of the particles formulated in both PEG 400 and PG excipients. All formulations with the 

exception of those formulated with PVP Kollidon 25 and CMCNa polymers had a PDI of ~0.2, 

indicating that the size distribution of particles within the formulation was relatively uniform. 
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Table 14 Z-average hydrodynamic diameter and PDI measurements of gemini 12-3-12 phospholipid particles 

with and without CpG-ODN complexation*  

Formulation Measurement 
PEG 400 blank 

particles 

PEG400 

Final 

Formulation 

PG blank 

particles 

PG 

Final 

Formulation 

G12L-NP 

n= 3 

Size (nm) ± S.D. 11.2 ± 0.1 161.7 ± 15.8 9.9 ± 0.1 194.9 ± 8.4 

PDI ± S.D. 0.258 ± 0.003 0.211 ± 0.005 0.186 ± 0.022 0.185 ± 0.019 

PVP 10,000 

BG12L-NP 

n= 3 

Size (nm) ± S.D. 12.5 ± 0.1 173.0 ± 1.5 11.6 ± 0.3 177.1 ± 22.3 

PDI ± S.D. 0.171 ± 0.006 0.256 ± 0.013 0.150 ± 0.014 0.703 ± 0.035 

PVP 

Kollidon25 

BG12L-NP 

n= 3 

Size (nm) ± S.D. 17.5 ± 0.2 250.2 ± 85.3 13.4 ± 0.3 177.9 ± 8.8 

PDI ± S.D. 0.154 ± 0.006 0.620 ± 0.077 0.198 ± 0.003 0.236 ± 0.031 

PVP40000 

BG12L-NP 

n= 3 

Size (nm) ± S.D. 14.2 ± 0.2 172.5 ± 4.4 12.4 ± 0.2 213.2 ± 16.6 

PDI ± S.D. 0.183 ± 0.008 0.178 ± 0.01 0.202 ± 0.007 0.225 ± 0.031 

CMCNa 

BG12L-NP 

n= 3 

Size (nm) ± S.D. 616.4 ± 170.8 174.7 ± 9.0 1.3 ± 1.5 139.8 ± 5.5 

PDI ± S.D. 0.705 ± 0.018 0.226 ± 0.020 0.775 ± 0.043 0.236 ± 0.024 

* Note: size distribution curves shown in the appendix, Figure 58, Figure 59, Figure 60 

 

Upon complexation with CpG-ODN, the zeta potential of the original particles decreases 

indicating complexation with negatively charged CpG-ODN DNA. The zeta potential of the 

G12L-NP (+53.2 mV) is the highest in comparison to all other formulated BG12L-NPs, and 

relatively similar to un-complexed G12L-NP. Since a zeta potential above +30 mV indicates 

colloidal stability, this formulation is highly stable. Interestingly, the BG12L-NP formulated with 

PVP Kollidon 25 polymer in both excipients has a zeta potential bordering +20 mV, which could 

indicate a less stable formulation. Overall, the zeta potential of final formulations in PEG400 

excipient is higher than those formulated with PG. This effect is most evident for the G12L-NP 

and PVP 10,000 BG12L-NP. 
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Table 15 ζ potential measurements of empty gemini 12-3-12 phospholipid and CpG-ODN complexed with 

different biopolymers using PEG400 excipient or PG excipient  

 

 
Mean ζ potential (mV) ± S.D. 

 PEG 400 PG 

Formulation code 

Gemini-

phospholipid 

vesicles 

Final 

formulation 

(with CpG) 

Gemini-

phospholipid 

vesicles 

Final formulation 

(with CpG) 

G12L-NP + 48.1 ± 11.6 + 53.2 ± 1.0 + 32.8 ± 5.8 + 35.7 ± 0.2 

PVP 10,000 

BG12L-NP 
+ 33.1 ± 15.7 + 42.8 ± 0.4 + 39.8 ± 1.6 + 28.9 ± 0.9 

PVP Kollidon 25 

BG12L-NP 
+ 29.8 ± 6.0 + 23.8 ± 1.6 + 36.9 ± 3.4 + 22.1 ± 2.7 

PVP 40,000 

BG12L-NP 
+ 63.2 ± 3.6 + 34.4 ± 1.2 + 39.4 ± 3.3 + 31.8 ± 4.0 

CMCNa  

BG12L-NP 
+ 41.0 ± 12.3 + 36.4 ± 2.5 + 38.8 ± 0.2 + 33.7 ± 0.9 

*pH range of 6.6-7 corresponds to pH of formulation at the time of zeta potential measurement  

Values expressed as mean ± S.D.; n=3 

 

4.2.1.2 Gemini nanoparticle characterization (G-NPs) 

Since the positively charged quaternary ammonium groups of gemini surfactants can 

complex with DNA to form particles, CpG-ODN – gemini complexes were characterized. 

Characterization of gemini-CpG-ODN complexes was also important in order to compare hybrid 

NP formulations (CG-NPs) to gemini surfactant NPs.  

The sizes of complexes formed with first generation gemini surfactant with three 

different tail lengths (12,16,18) are shown in Table 16. The average diameter of G-NPs increased 

proportionally from 175.2 nm, 290.5 nm, to 1429 nm corresponding with increasing tail length 

from 12, 16, 18 respectively. However, gemini 18-3-18 formed microparticles with a very 

polydisperse distribution (PDI > 0.5) unlike gemini 12-3-12 and 16-3-16 which had relatively 

uniform size populations. 

As the spontaneous formation of micelles occurs above the CMC for each gemini 

surfactant, and the concentration of gemini was above this value in the final complex 

formulations, the particle distribution of gemini micelles alone was measured. The size 
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distribution of all gemini micelles are very polydisperse, therefore the average diameter is not 

representative of the population. It can be seen that upon complexation of CpG-ODN, the 

particle distribution becomes more uniform with the exception of gemini 18-3-18.  

 

Table 16 Z-Average hydrodynamic diameter and PDI measurements of three different gemini-CpG-ODN 

complexes and gemini micelles 

 

Sample  Formulation Code Measurement Gemini micelles 
Final Formulation  

(with CpG-ODN) 

gemini 12-3-12 G12-NP 

Size (nm) ± S.D. 

 

PDI ± S.D. 

298.4 ± 164.1 175.2 ± 2.6 

0.446 ± 0.087 0.249 ± 0.016 

gemini 16-3-16 G16-NP 

Size (nm) ± S.D. 

 

PDI ± S.D. 

86.8 ± 4.1 290.5 ± 8.2 

0.555 ± 0.128 0.299 ± 0.021 

gemini 18-3-18 G18-NP 

Size (nm) ± S.D. 

 

PDI ± S.D. 

292.2 ± 26.1 

 

0.560 ± 0.063 

1429 ± 219.2 

0.954 ± 0.056 

* Note: size distribution curves shown in Appendix Figure 61  

Values expressed as mean ± S.D.; n=3 

  

Complexation of CpG-ODN with gemini surfactant resulted in the formation of stable 

particles since all had a zeta potential above the +30mV threshold (Table 17). The zeta potential 

increased with longer gemini tail length with gemini 18-3-18 having the highest zeta potential 

corresponding to +54.9mV. Additionally, gemini surfactant micelles also exhibited > +30mV 

zeta potential indicating the colloidal stability of the gemini aggregates.  
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Table 17 ζ potential measurements of gemini micelles and G-NPs  

 

  Mean ζ potential (mV) ± S.D. 

Sample Formulation code Gemini micelles 
Final formulation 

(with CpG-ODN) 

gemini 12-3-12 G12-NP +42.2 ± 4.6 + 35.2 ± 1.1 

gemini 16-3-16 G16-NP + 48.4 ± 1.1 + 41.8 ± 1.1 

gemini 18-3-18 G18-NP + 38.9 ± 1.7 + 54.9 ± 6.1 

* pH range of 6-6.5 corresponds to pH of formulation at the time of zeta potential measurement 

Values expressed as mean ± S.D.; n=3. 

 

4.2.1.3 Chitosan Nanoparticles (C-NPs) 

The ability of chitosan to spontaneously form NP with CpG-ODN DNA upon mixing was 

also tested in order to be able to compare against hybrid (CG-NPs) NPs. Since other investigators 

have found that low molecular weight chitosans can result in more stable chitosan NP 

formulations in vitro, two ranges of low molecular weight chitosans were applied to NP 

formulation in this project. Moreover, the chitosan concentration was tailored for NP formation 

with each size range to prevent aggregation during the preparation process.  

The low MW C-NP and 1% ultra-low MW C-NP both formed relatively uniform NPs 

with sizes closer to the micron range (1566 nm and 965.1 nm, respectively). However, the 1.5% 

ultra-low MW C-NP formed much larger particles with higher polydispersity and inconsistent 

size distribution. As such, this formulation was not further investigated.  
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Table 18 Z-Average hydrodynamic diameter and PDI of chitosan-CpG-ODN complexes* 

 

Sample  Formulation code Measurement 
Final formulation  

(with CpG-ODN) 

0.1% Chitosan low M.W. 

(50-90 KDa) 
0.1% low MW C-NP 

Size (nm) ± S.D. 

PDI ± S.D. 

1566 ± 10.6 

0.227 ± 0.024 

1% Ultra low M.W 

chitosan (2.5 KDa) 

1% ultra-low MW  

C-NP 

Size (nm) ± S.D. 

PDI ± S.D. 

965.1 ± 33.7 

0.239 ± 0.191 

1.5 % Ultra low M.W 

chitosan (2.5 KDa) 

1.5% ultra low MW  

C-NP 

Size (nm) ± S.D. 

PDI ± S.D. 

3099.7 ± 162.2 

0.374 ± 0.137 

* Note: size distribution curves shown in Appendix Figure 62 

Values expressed as mean ± S.D.; n=3 

 

Despite the larger particle size, both C-NP formulations maintained colloidal stability as 

both had zeta potential above +30mV.  A higher zeta potential was seen when CpG-ODN was 

complexed with low MW chitosan versus ultra-low MW chitosan. 

 

Table 19 Zeta Potential of chitosan-CpG-ODN complexes  

 

Sample Formulation code 𝛇 Potential (mV) ± S.D. 

0.1% Chitosan low M.W. (50-90 

KDa) 
0.1% low MW C-NP + 52.5 ± 2.2 

1% Ultra low M.W chitosan (2.5 

KDa) 

1% ultra-low MW  

C-NP 
+ 44.3 ± 1.5 

*pH range of 3.5-4 corresponds to pH of formulation at the time of zeta potential measurement.  

Values expressed as mean ± S.D.; n=3 

 

4.2.1.4 Characterization of chitosan-gemini-CpG-ODN complexes (CG-NPs)  

In comparison to gemini-CpG-ODN (G-NPs) complexes, the addition of the chitosan 

biopolymer significantly increased the size of the final formulation. For gemini 12-3-12 the size 

of the CpG-ODN gemini complex is ~180 nm. However, upon addition of 0.1% chitosan the 

formulation size increased to ~900 nm (Table 20). The size increased proportionally with 
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increasing chitosan concentration in the formulation and the addition of 1% chitosan resulted in a 

microparticle formulation. The incorporation of 2% chitosan resulted in a PDI > 0.5 indicating a 

highly disperse population with sizes above the upper limit of the Zetasizer size range (6 

micron). This may be due to the higher viscosity of the chitosan solution. 

Due to the influence of pH on transfection efficiency by chitosan NPs in vitro, a buffering 

component was added to the formulation preparation to determine whether it would affect 

transfection in HD11 cells. Due to the nature of complexation resulting from ionic interactions in 

NPs formulated in this research, incorporating the salt buffer component into the formulation 

affected the size and polydispersity, as electrolytes affect the ionic charge on chitosan and the 

natural complexation of gemini with negatively charged CpG-ODN. Certainly, a higher size 

polydispersity due to lower colloidal stability is observed when formulating CG-NPs with DNA 

dissolved in TE buffer in comparison to DNA dissolved in water. In contrast, the addition of PBS 

buffer after gemini-CPG-ODN-chitosan complexation resulted in a more uniform size 

distribution, although still more polydisperse than the formulations without any buffer 

component (Appendix, Figure 64). 

Size measurements of blank NPs were also obtained for comparison purposes (Table 20). 

However, the results were very inconsistent with variable size distributions as PDIs were also 

highly variable. These phenomena can be seen in the Appendix, Figure 63 and Figure 65. 
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Table 20 Z-Average hydrodynamic diameter and PDI measurements of Chitosan gemini 12-3-12 

nanoparticles with different chitosan concentrations 

 

Sample  
Formulation 

code 
Measurement Particle 

Final 

formulation  

(with CpG-

ODN) 

0.1% chitosan 0.1% CG12-NP 
Size (nm) ± S.D. 277.2 ± 20.4 897.7 ± 26.7 

PDI ± S.D. 0.928 ± 0.107 0.359 ± 0.037 

1% chitosan 1% CG12-NP 
Size (nm) ± S.D. 3195.3 ± 387.8 2199.7 ± 126.2 

PDI ± S.D. 0.376 ± 0.104 0.225 ± 0.095 

2% chitosan* 2% CG12-NP 
Size (nm) ± S.D. 11409.3 ± 2138.1 13700 ± 5392.6 

PDI ± S.D. 0.886 ± 0.198 0.704 ± 0.177 

0.1% chitosan 

TE 

0.1% CG12-NP 

TE 

Size (nm) ± S.D. 365.9 ± 31.9 884.5 ± 48.4 

PDI ± S.D. 0.905 ± 0.165 0.569 ± 0.06 

0.1% chitosan 

PBS 

0.1% CG12-NP 

PBS 

Size (nm) ± S.D. 233.3 ± 78.2 545.7 ± 7.6 

PDI ± S.D. 0.438 ± 0.171 0.399 ± 0.019 

*Size exceeds upper size limit of Zetasizer. 

Values expressed as mean ± S.D.; n=3. Size distribution curves are shown in the Appendix, Figure 63 and Figure 64. 

 

 

The same pattern of increasing size with increasing chitosan concentration was seen for 

CG16-NPs (Table 21). Once again addition of the 2% chitosan to gemini-CpG-ODN complexes 

resulted in large aggregates. 
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Table 21 Z-Average hydrodynamic diameter and PDI measurements of chitosan gemini 16-3-16 nanoparticles 

with different chitosan concentrations 

 

Sample  Formulation code Measurement Particle 
Final formulation 

(with CpG-ODN)  

0.1% chitosan 0.1% CG16-NP 
Size (nm) ± S.D. 

PDI ± S.D. 

355.4 ± 48.1 

0.946 ± 0.009 

820.3 ± 58.8 

0.380 ± 0.157 

1% chitosan 1% CG16-NP 
Size (nm) ± S.D. 

PDI ± S.D. 

5919.7 ± 361.3 

0.442 ± 0.174 

3748.3 ± 269.5 

0.138 ± 0.053 

Sample  Formulation code Measurement Particle 
Final formulation 

(with CpG-ODN)  

2% chitosan* 2% CG16-NP 
Size (nm) ± S.D. 

PDI ± S.D.± S.D. 

10071.7 ± 748.6 

0.655 ± 0.187 

17433.7 ± 7227.4 

0.454 ± 0.113 

0.1% chitosan PBS 0.1% CG16-NP PBS 
Size (nm) ± S.D. 

PDI ± S.D. 

421 ± 27.1 

0.912 ± 0.116 

532.3 ± 17.6 

0.382 ± 0.027 

*Size exceeds upper size limit of Zetasizer.  

Values expressed as mean ± S.D.; n=3. Size distribution curves shown in Appendix, Figure 64 and Figure 66 

 

 

Unlike the CG12-NPs and CG16-NPs, incorporation of 0.1% chitosan into G18-NP resulted 

in a smaller particle size (from 1429 nm to 750.6 nm) compared to G12-NPs (Table 16, Table 22). 

Additionally, the size distribution became more uniform (PDI = 0.256).  

Similar to CG12-NPs and CG16-NPs, increasing the chitosan concentration in CG-NPs 

also increased the size and polydispersity. Also, adding PBS buffer after complex formation 

again reduced the size of the NPs but increased the polydispersity like the CG12-NPs and CG16-

NPs. 
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Table 22 Z-average hydrodynamic diameter and PDI measurements of chitosan gemini 18-3-18 nanoparticles 

with different chitosan concentrations 

 

Sample  Formulation code 
 

Measurement Particles 
Final formulation 

(with CpG-ODN)  

0.1% chitosan 0.1% CG18-NP 
 Size (nm) ± S.D. 

PDI ± S.D. 

1193.6 ± 266.6 

0.966 ± 0.059 

750.6 ± 34.4 

0.256 ± 0.037 

1% chitosan 1% CG18-NP 
 Size (nm) ± S.D. 7027.3 ± 1194.5 5406 ± 800.5 

 PDI ± S.D. 0.879 ± 0.120 0.430 ± 0.112 

2% chitosan 2% CG18-NP 
 Size (nm) ± S.D. 5845.7 ± 920.6 9777.3 ± 907.3 

 PDI ± S.D. 0.909 ± 0.158 0.311 ± 0.057 

0.1% chitosan PBS 0.1% CG18-NP PBS 
 Size (nm) ± S.D. 225 ± 19.2 543.5 ± 20.7 

 PDI ± S.D. 0.881 ± 0.160 0.451 ± 0.026 

*Size exceeds upper size limit of Zetasizer. 

Values expressed as mean ± S.D.; n=3. Size distribution curves shown in Appendix Figure 64 and 66. 

 

Overall, the chitosan concentration was the main factor affecting size distribution of CG-

NPs. A proportional increase in size was seen with increasing chitosan concentration, with a 

more variable size distribution and size exceeding the upper size limit of the Zetasizer detector at 

2% chitosan (Figure 14). The gemini tail length did not significantly affect the size at different 

chitosan concentrations except at 2% chitosan. 
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Figure 14 Effect of increasing chitosan concentration on size distribution of gemini-CpG-ODN complexes  

Z-average of hydrodynamic diameter measured by DLS is presented for G-NPs and CG-NPs. Each group represents 

NP formulations with different gemini tail length: 12-3-12, 16-3-16, 18-3-18. Error bars represent S.D., n=3. 

 

 All CG-NPs had a zeta potential above +30mV. Increasing chitosan concentration by a 

factor of 10 resulted in an increase of zeta potential from +40mV to 61.3 mV, +54.1mV to +62.2 

mV, +50mV to +58.8mV for gemini 12-3-12, gemini 16-3-16, and gemini 18-3-18 respectively. 

However, the increase from 1% to 2% chitosan did not increase zeta potential of final 

formulations significantly.  

The addition of a buffer component to the formulation also affected the zeta potential of 

formulations with equivalent chitosan concentration. Addition of a buffer prior to complex 

formation decreased the final particle zeta potential from +40mV to +31.3 mV, which can be 

directly compared given the similar pH range. Adding the PBS buffer post complexation also 

decreased the zeta potential from +40mV to +38.6 mV. However, increase in the pH of the 

formulation after PBS addition could explain the slight decrease in zeta potential (Table 23).  

 

  

0%
 C

hito
sa

n

0.
1%

 C
hito

sa
n

0.
1%

 C
hito

sa
n P

B
S

1%
 C

hito
sa

n

2%
 C

hito
sa

n
0

500

1000

1500

2000

5000

10000

15000

20000

Percent Chitosan

D
ia

m
e
te

r 
(n

m
)

12-3-12

16-3-16

18-3-18



 81 

Table 23 Average ζ potential of chitosan- gemini NPs formulated with three different gemini tail lengths at 

increasing chitosan concentrations 

 
Gemini 12-3-12 Gemini 16-3-16 Gemini 18-3-18 

 
Mean ζ potential (mV) ± S.D. 

Percent Chitosan 

Final 

Formulation 

(with CpG-ODN) 

pH Range 

Final 

Formulation 

(with CpG-

ODN) 

pH Range 

Final 

Formulation 

(with CpG-

ODN) 

pH 

Range 

0.1%chitosan 
(0.1% CG-NP) 

+40.0 ± 0.2 3.31-3.38 +54.1 ± 0.7 3.28-3.37 +50.0 ± 0.6 
3.29- 

3.38 

1% chitosan 
(1% CG-NP) 

+61.3 ± 0.5 4.24-4.4 +62.2 ± 2.2 4.17- 4.33 +58.8 ± 0.9 4.21-4.31 

2% chitosan 
(2% CG-NP) 

+60.0 ± 0.6 4.74-4.84 +59.0 ± 0.7 4.7-4.8 +60.5 ± 0.8 4.73 

0.1%chitosan 
PBS 

(0.1% CG-NP 

PBS) 

+38.6 ± 1.38 3.54-3.61 +41.4 ± 3.1 3.52-3.62 +48.3 ± 0.6 3.52-3.62 

0.1%chitosan TE 
(0.1% CG-NP TE) 

+31.3 ± 1.6 3.24-3.34 
    

*pH range corresponds to the pH of the formulation at the time of zeta potential measurement  

 

Due to the self-assembly of gemini surfactant, it was interesting to determine the zeta 

potential of chitosan and gemini NPs. It is important to note that gemini 12-3-12 was below its 

CMC in the formulation which, could explain the difference in zeta potential in comparison to 

16-3-16 and 18-3-18. Once again, it can be determined that the 1% and 2% chitosan have the 

most dramatic effect of increasing the zeta potential in comparison to 0% chitosan for the three 

different gemini tail lengths (Figure 15).  
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Figure 15 Change in zeta potential of CG-NPs with increasing chitosan concentration of blank particles and 

final CG-NP formulations complexed with CpG-ODN 

Zeta potential measurements of blank NPs (A) and final NPs complexed with CpG-ODN (B). Formulation of blank 

particles was carried out by substituting CpG-ODN solution with sterile water. pH of formulation medium ranged 

from 6.28 to 6.35 for 0% chitosan, 3.16-3.48 for 0.1% chitosan, 3.43-3.68 for 0.1% chitosan PBS, 3.2-3.4 for 0.1% 

chitosan TE, 4.12-4.49 for 1% chitosan, 4.62-4.87 for 2% chitosan. Error bars represent mean ± S.D., n=3. 

 

4.2.1.5 Characterization of CL-NP formulation 

 Substitution of the cationic gemini component from GL-NPs for cationic chitosan in CL-

NPs resulted in an increase of particle size distribution from ~160 nm to 1060.9 nm (Table 24). 

Unlike the GL-NP, the zeta potential of the CL-NP was less than +30mV at +12.7mV, which 

could indicate an overall lower colloidal stability (Table 24). 
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Table 24 Z-average hydrodynamic diameter and average ζ potential of CL-NPs  

 

Measurement 
Final formulation 

(with CpG-ODN) 

Size (nm) ± S.D. 

PDI ± S.D. 

1060.9 ± 54.3 

0.244 ± 0.179 

ζ potential (mV)* +12.7 ± 0.8 

*Formulation had pH 5.2 at the time of zeta potential measurement 

Values expressed as mean ± S.D.; n=3. Size distribution curves are shown in the Appendix, Figure 68 

 

 

4.2.2 Effect of biological conditions on particle size and zeta potential 

 Due to the nature of the electrostatic forces involved in the complexation and release of 

CpG-ODN with chitosan and gemini components of the NPs formulated in this work, changes in 

size and zeta potential of selected formulations in different media that are more closely 

representative of the biological environment were also tested. Overall, the zeta potential 

decreased with increasing pH of biological media, corresponding to saline, basic media and 

complete media. All particles with the exception of the CL-NP formulation, decreased to zeta 

potential ~0mV in RPMI 1640 cell culture media supplemented with 10% FBS proteins (Figure 

16).  

 The change in hydrodynamic diameter of NPs varied depending on the type of 

formulation (Figure 16). For G12-NP, G12L-NP, and BG12L-NP formulated with PVP 10,000, 

size increased to the µM size range in saline, PBS, and basic media, which may indicate 

aggregation. It is notable that particle size of the G12-NP formulation in 10% FBS RPMI 1640 

media is similar to the size measured in water and its non-dilute state. For CG-NP formulations, 

particle size decreased upon dilution in all buffers including water, yet still in the µm size range. 

Unlike the other formulations, the CL-NP formulation maintained similar size range in all 

buffers except basic RPMI 1640 media, which may indicate aggregation (Figure 16).  
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Figure 16 Changes in Z-average hydrodynamic diameter and zeta potential of NPs in different biological 

media  

Formulations representative from each category were chosen for buffer characterization. Measurements were carried 

out in dilutions of CpG-ODN NP formulations in different biological media (1:20). Mean ± S.D. n=3. Bars represent 

Z-average hydrodynamic diameter and dot plots correspond to zeta potential values. pH of particle dilutions in PBS, 

basic RPMI 1640 media, and 10% FBS RPMI 1640 media ranges from 7-8.31. pH of G12-NPs, G12L-NPs, and 

BG12L-NPs range from 6.0 – 7.7 in its non-dilute form, water, and 0.9% saline.  pH of C-NPs and CG-NPs ranges 

from 4.1 – 5 in its non-dilute form, water, and 0.9% saline. pH of CL-NP ranges from 4.75 - 5.2 in its non-dilute 

form, water, and 0.9% saline.  
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4.2.3 Particle reproducibility 

The preparation method for each particle was evaluated by determining batch to batch 

differences in NP hydrodynamic diameter. The preparation of blank G12L-NP and BG12L-NP 

vesicles in both PEG400 and PG excipients were very reproducible, giving similar sizes at each 

separate preparation (Figure 17 A,B). Only PVP Kollidon 25 and CMCNa BG12L-NPs produced 

variable sizes for each preparation. Upon complexation with CpG-ODN, PEG400 excipient 

(Figure 17 C) resulted in more consistent NP formulation than PG (Figure 17 D). Variability of 

PVP Kollidon 25 and CMCNa BG12L-NPs also translated into the final formulation and G12L-

NP and PVP10,000 BG12L-NP generated the most consistent formulations. 

 G12-NPs produced the most consistent particles from batch to batch (Figure 17 E) and 

was more consistent than the C-NP formulations (Figure 17 F). Unlike the other three types of 

formulations CG-NPs were more variable batch to batch (Figure 17 G, H, I) and 1% CG16-NPs 

(Figure 17 H) were more reproducible than 1% CG12-NPs (Figure 17 G).  

 

 

Figure 17 Batch to batch reproducibility of Z-average diameter of NPs in 8 categories of formulations  

Compilation of Z-average hydrodynamic diameter measurements from repeat batches of NPs. Mean ± S.D., n= 3 
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4.2.4 Particle size stability of G12L-NPs and BG12L-NPs 

In order to gain insight about the long-term stability of NPs, size distribution of blank 

GL-NPs was monitored over 30 days of storage at 4C to identify changes in NP size, 

aggregation and sedimentation. Blank G12L-NPs and BG12L-NPs showed a similar size 

distribution throughout the 30-day period (Figure 18). The only exception was the blank BG12L-

NP formulated with biopolymer PVP Kollidon 25 and PEG 400 excipient, which showed 

variable particle size and aggregation by day 15 of storage at 4°C (Figure 18 A).  

Upon complexation with CpG-ODN, the particle size over the 30-day period was more 

variable especially with the NPs formulated in PEG400 excipient. The change in size ranged 

from 200 nm to 350 nm by the end of the 30-day period. Of the PEG 400 formulations, PVP 

10,000 BG12L-NP aggregated the least ranging from 200 nm at day 1 to 280 nm by day 30. The 

NPs formulated with PG showed similar size over the 30-day period. 

 

 

Figure 18 G12L-NP and BG12L-NP size stability at 4C, over a 30-day period. Particle size of blank NPs and 

CpG-complexed NPs are shown 
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It is also important to note the PDI over the 30-day storage period since it gives insight 

into NP aggregation and formulation uniformity (Figure 19). The blank G12-NPs and BG12-NPs 

had more uniform PDIs and only PVP Kollidon 25 BG12-NP in PEG 400 had variable 

polydispersity over the time period. Final formulations had much more variable polydispersity 

and were above the 0.5 threshold of the Zetasizer by day 15.  

 

 

Figure 19 Change in the polydispersity index of G12L-NP and BG12L-NP formulations over a 30-day period at 

4°C.  
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GL-NPs and BGL-NPs were formulated in a two-step process: the first step is the 

formation of gemini- neutral phospholipid (DPPC) – neutral polymer vesicles followed by the 

spontaneous complexation of CpG-ODN oligonucleotides. This assembly process was monitored 

by tracking the fluorescently labeled CpG-ODN. The diffusion coefficient of the CpG-ODN 

oligonucleotides was 1.61±0.07 ×10-12 m2/s. The autocorrelation curves for Alexa Fluor 647 

CpG-ODN (Figure 20A) were fitted using a one-component free diffusion model. The 

concentration of CpG-ODN was normalized to 0.6 ng/µL so that any shifts in the FCS profiles of 

plasmid were due to interaction with other components during the assembly of NPs. 

 By looking at the raw photon stream from the avalanche photodiode detector (APD) for 

the naked CpG-ODN, one can see differences in comparison to the other formulations. Naked 

CpG-ODN count rates equilibrated at an average baseline around 100 kHz. Upon complexation 

with the gemini phospholipid vesicles, the count rate shows higher fluctuations with higher count 

rates in both excipients (Figure 20, Figure 21).  

 Complexation of CpG-ODN with GL-NPs shifted the autocorrelation curves in 

comparison to naked CpG-ODN. With the exception of PVP 40,000 BGL-NP, all polymers 

caused an upward translation in the autocorrelation curve (Figure 22 A).  This upward shift 

indicates a decrease in the number of molecules and a decrease in the number of individual 

fluorophores passing through the fixed focal volume. This is most pronounced for PVP Kollidon 

25 BGL-NP in PEG 400 (Figure 22 A) and PVP 10,000 BGL-NP in PG (Figure 22 C). The next 

change in the autocorrelation curve was a shift to the right which indicates a shift in diffusion 

time (Figure 22 B, D). The diffusion coefficients for each formulation are listed in Table 25. In 

the PEG 400 formulations, the diffusion coefficient increased with increasing polymer size, this 

effect was not seen in the PG formulations. The diffusion coefficients of each formulation were 

relatively similar and the calculated size range was in agreement with size measurements 

gathered from dynamic light scattering.  

 The number of CpG-ODN molecules per NP were also estimated by comparing the 

intensity histograms of free CpG-ODN to the NP formulations. The average number of CpG-

ODN per particle was estimated based on average individual counts per particle (kHz) divided by 

average individual counts of CpG-ODN (Figure 23). As determined by DLS, PVP 40,000 and 

CMCNa resulted in non-uniform CpG-ODN complexation given the range of 0 - 129 and 0 - 
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429.6 CpG-ODN/NP as measured by FCS in PEG400 excipient. However, PVP 10,000 BG12L-

NP in PEG 400 excipient seemed to be able to complex a range of 1-11 CpG-ODN molecules 

per NP. The calculated median CpG-ODN numbers per particle were as follows: PEG400 

excipient: G12L-NP = 1.1; PVP 10,000 BG12L-NP = 1.8; PVP Kollidon 25 BG12L-NP = 2.0; PVP 

40,000 BG12L-NP = 0.8 and CMCNa BG12L-NP = 1.3. PG excipient: G12L-NP = 2.1; PVP 

10,000 BG12L-NP = 1.1; PVP Kollidon 25 BG12L-NP = 1.0; PVP 40,000 BG12L-NP = 0.81 and 

CMCNa BG12L-NP = 0.7. All mean, median, and range values of number of CpG-ODN per NP 

are presented in Table 26. 
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Table 25 Diffusion coefficients of GL-NPs and BGL-NPs prepared with PEG 400 and PG 400 excipients. 

Particles size determined by FCS using the Stokes Einstein Equation 

 

Polymer 

PEG 400 PG 

Mean 

diffusion 

coefficient 

(10-11 m2/s) 

Mean 

Diameter 

(nm) 

CV% 

Mean 

diffusion 

coefficient 

(10-11 m2/s) 

Mean 

Diameter 

(nm) 

CV% 

None 1.38 178.6 22.34 1.13 216.6 9.80 

PVP 

10,000 
1.41 172.6 2.05 1.10 221.5 6.78 

PVP 
Kollidon 25 

1.80 136.5 13.09 1.15 211.8 9.69 

PVP 

40,000 
2.04 119.9 4.39 1.62 171.0 78.22 

CMCNa 2.14 116.1 19.25 1.52 163.0 21.33 

 

Table 26 Mean, median, and range of number of CpG-ODN molecules per NP prepared with PEG 400 and 

PG excipients.  

Polymer 

PEG 400 PG 

Mean 

#CpG-

ODN per 

NP 

Median 

#CpG-

ODN per 

NP 

Range of 

#CpG-

ODN per 

NP 

Mean 

#CpG-

ODN per 

NP 

Median 

#CpG-

ODN per 

NP 

Range of 

#CpG-

ODN per 

NP 

None 1.13 1.1 0.9-1.5 2.82 2.1 0.66-24.8 

PVP 

10,000 
2.03 1.8 0.6-11 1.14 1.1 0.9-2 

PVP 
Kollidon 25 

2.33 2.0 0.8-17.76 1.00 1.0 0.75-1.58 

PVP 

40,000 
4.31 0.8 0.3-129.1 3.50 0.81 0.33-133.8 

CMCNa 7.34 1.3 0.2-429.6 0.81 0.7 0-6.19 

The number of CpG-ODN molecules per NP was estimated by comparing the FCS intensity histograms of free CpG-

ODN to the NP formulations. The average number of CpG-ODN per particle was estimated based on average 

individual counts per particle (kHz) divided by average individual counts of CpG-ODN. 
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Figure 20 Raw intensity count rates for G12L-NPs and BG12L-NPs formulated in PEG 400 excipient 

Count rate measurements for naked CpG-ODN, G12L-NP (no biopolymer), and BG12L-NPs with their corresponding 

polymer.  
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Figure 21 Raw intensity count rates for G12L-NPs and BG12L-NPs formulated in PG excipient 

Count rate measurements for naked CpG-ODN, G12L-NP (no biopolymer), and BG12L-NPs with their corresponding 

polymer. 
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Figure 22 ACF of naked CpG-ODN and G12L-NPs and BG12L-NPs formulated inPEG 400 and PG excipient 
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Figure 23 Estimation of number of CpG-ODN molecules per G12L-NP and BG12L-NP particles based on 

average individual counts per particle (kHz) divided by average individual counts of CpG-ODN (100 kHz and 

200 kHz, for PEG400 (A) and PG (B) excipient formulations, respectively) n=40 runs. Median CpG-ODN 

number per particle: A) G12L-NP = 1.1; PVP 10,000 BG12L-NP = 1.8; PVP Kollidon 25 BG12L-NP = 2.0; PVP 

40,000 BG12L-NP = 0.8 and CMCNa BG12L-NP = 1.3. B) G12L-NP = 2.1; PVP 10,000 BG12L-NP = 1.1; PVP 

Kollidon 25 BG12L-NP = 1.0; PVP 40,000 BG12L-NP = 0.81 and CMCNa BG12L-NP = 0.7. Range of CpG-ODN 

number per particle are presented in Table 26. 
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4.3 Assessing NPs as an effective CpG-ODN delivery vehicle in HD11 chicken 

macrophage cells 

4.3.1 Uptake of naked CpG-ODN in HD11 macrophages 

Since CpG-ODN uptake by avian immune cells is dependent on CpG-ODN sequence and 

cell type, HD11 cells were incubated with varying quantities of free or naked CpG-ODN for 

varying time points ranging from 1-4 hours. The percentage of cells with CpG-ODN uptake as 

detected by the Alexa Fluor 647 fluorescent label was determined at the end of each stimulation 

time point (Figure 24). Cellular uptake was dose and time dependent between 0.1-20 g of CpG-

ODN, reaching 50% uptake at 20 g dose after 4 hours of stimulation. The percentage of cells 

containing CpG-ODN increased significantly from 2-4 hours of stimulation for higher quantities 

of CpG-ODN (1 - 20 g) in comparison to stimulation from 1 to 2 hours. Since identifiable 

differences in CpG-ODN uptake at different quantities was evident after 4-hour incubation, 

dosing cells for 4 hours was chosen for preliminary NP uptake experiments. 

 

  

Figure 24 Dose and time dependent uptake of naked CpG-ODN in HD11 macrophages  

HD11 macrophages were incubated with increasing quantities of naked CpG-ODN labeled with Alexa Fluor 647 at 

different stimulation times. CpG-ODN uptake was determined by the percentage of fluorescent cells at the end of 

each time point (n=3). Error bars represent mean ± S.D. 
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4.3.2 Evaluating the capacity of G12L-NPs and BG12L-NPs to improve uptake of CpG-ODN 

in HD11 chicken macrophages 

To determine whether G12L-NPs and BG12L-NPs could enhance CpG-ODN uptake in 

comparison to naked CpG-ODN, HD11 macrophages were stimulated with increasing doses of 

CpG-ODN NPs and naked CpG-ODN for 4 hours. The first formulations tested for method 

development were two formulations previously tested in vivo: G12L-NP (no biopolymer) and 

PVP 10,000 BG12L-NP (PVP 10,000 polymer coating). After 4 hours of dosing, G12L-NPs and 

PVP 10,000 BG12L-NPs were able to significantly increase the number of HD11 macrophages 

containing CpG-ODN in comparison to naked CpG-ODN (Figure 25). In fact, it only took the 

equivalent of 0.5 g of both CpG-ODN NPs to reach near 100% cell uptake. Conversely, it took 

5 g of naked CpG-ODN to reach 50% uptake and 10 g of naked CpG-ODN to reach a 

comparable level of uptake associated with G12L-NPs and BG12L-NPs. The PVP 10,000 

biopolymer component of the BG12L-NP performed similar to the G12L-NP without biopolymer 

also reaching near 100% cell uptake at 1 g CpG-ODN dose. It was only at the lower CpG-ODN 

quantities of 0.1 and 0.5 g, that the biopolymer seemed to slightly decrease the amount of CpG-

ODN uptake in HD11 macrophages after 4-hour stimulation.  

 

Figure 25 Assessment of CpG-ODN uptake after 4 hours dosing associated with G12LP-NPs and BG12LP-NPs 

in comparison to naked CpG-ODN  

HD11 cells were incubated with CpG-ODN formulations in RPMI 1640 media for 4 hours and % CpG-ODN uptake 

was measured immediately after incubation, n=3. Error bars represent mean ± S.D. Statistically significant 

differences between experimental groups were determined by two-way ANOVA with Tukey’s multiple 

comparison test. Statistics were performed between naked CpG-ODN and formulations at each dose where * p < 

0.05, **** p < 0.0001. 
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Since there was a significant difference in CpG-ODN uptake observed after dosing with 

NP formulations for 4 hours in comparison to naked CpG-ODN, the extent of CpG-ODN uptake 

in cells dosed with NP formulations for different amounts of time over 4 hours was also tested.  

One g CpG-ODN was used for dosing cells at each time point and was evaluated. CpG-

ODN uptake was detectable at all dosing times from 1-4 hours (Figure 26 A). Like the previous 

experiment, all formulations again significantly improved uptake of CpG-ODN in HD11 cells at 

all time points compared to stimulation with naked CpG-ODN (Figure 26 A). Additionally, the 

PVP 10,000 BG12L-NP formulation in this experiment produced more uptake at all time points 

than the G12L-NP formulation without biopolymer. It also performed better in comparison to 

CMCNa BG12L-NP after 2 and 4 hours of dosing. Time of dosing had a minimal effect on uptake 

and was mainly evident comparing dosing of 1 and 4 hours (Figure 26B). 

 

Figure 26 Time dependent uptake of CpG-ODN after dosing with G12L-NPs and BG12L-NPs in comparison to 

naked CpG-ODN DNA 

HD11 cells were incubated with 1 µg CpG-ODN and dosed for 1, 2 and 4 hours. CpG-ODN uptake was measured 

immediately after dosing (n= 3) (A). The same data is transposed in B to outline changes in CpG-ODN uptake 

resulting from the increase of dosing time. Error bars represent mean ± S.D. Statistically significant differences 

between experimental groups were determined by two-way ANOVA with Tukey’s multiple comparison test. 

Statistics were performed between naked CpG-ODN and formulations at each dose where * p < 0.05, **p<0.001, 

***p=0.001 **** p < 0.0001. 
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4.3.3 Evaluating the capacity of G12L-NPs and BG12L-NPs to improve CpG-ODN retention 

in HD11 macrophages 

As one of the goals of formulating CpG-ODN is to extend effects of immune stimulation, 

the   retention of CpG-ODN 24 hours post dosing with G12L-NPs and BG12L-NPs was also 

evaluated in HD11 cells. Retention, refers to whether CpG-ODN can still be detected 24 hours 

later in cells after the initial dosing for 2 hours. An incubation time of 2 hours was chosen since 

time had minimal effect on CpG-ODN uptake over a 4-hour time period and had near 100% 

cellular uptake as previously stated (Figure 26).  

New G12L-NP and BG12L-NP formulations using 4 different biopolymers of different 

molecular weights (PVP 10,000; PVP Kollidon 25; PVP 40,000, CMCNa), formulated in 2 

different excipients (PEG 400, PG) were tested for their ability to retain CpG-ODN within cells. 

All G12L-NPs and BG12L-NPs resulted in significantly higher retention of CpG-ODN uptake 24 

hours after initial dosing for 2 hours in comparison to naked CpG-ODN, ≧30% versus 10%, 

respectively (Figure 27). Moreover, the PVP 10,000 BG12L-NP formulation which has the lowest 

MW of the polymers, resulted in the highest retention of CpG-ODN uptake in comparison to the 

other formulations. PVP 10,000 BG12L-NP formulated in PEG 400 did perform significantly 

better than PVP Kollidon 25 BG12L-NP in PEG 400 and the G12L-NP in PG. However, PVP 

10,000 BG12L-NP resulted in similar CpG-ODN uptake in comparison to G12L-NP without 

biopolymer (Figure 27). Using PEG400 versus PG excipient did not significantly affect the 

retention of CpG-ODN in the different formulations.  
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Figure 27 Retention of CpG-ODN in HD11 macrophages 24 hours after initial cell dosing with G12L-NPs and 

BG12L-NPs in different excipients 

HD11 cells were incubated with 1 µg CpG-ODN and dosed for 2 hours followed by removal of media, and CpG-

ODN uptake was measured 24 hours later, after media removal. Error bars represent mean ± S.D. (n=3). 

Statistically significant differences between experimental groups were determined by two-way ANOVA with 

Tukey’s multiple comparison test. Statistics were performed between naked CpG-ODN and formulations, where 

* p < 0.05, **p=0.0013, ***p=0.001 **** p < 0.0001. 

 

4.3.4 Evaluating the capacity of G-NPs and CG-NPs to improve retention of CpG-ODN in 
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chitosan concentration significantly improved retention proportionally in comparison to naked 

CpG-ODN.  

 

 

Figure 28 Evaluation of the effect of increasing chitosan concentration in CG-NPs on the retention of CpG-

ODN-gemini complexes 24 hours post initial dosing 

HD11 cells were incubated with 1 µg CpG-ODN and dosed for 2 hours followed by removal of media, and CpG-

ODN uptake was measured 24 hours later, after media removal. CG-NPs formulated with gemini 12-3-12 (A), 

gemini 16-3-16 (B), and gemini 18-3-18 (C) are compared to their G-NP equivalent. Error bars represent mean ± 

S.D., (n=3). Statistically significant differences between experimental groups were determined by two-way 

ANOVA with Tukey’s multiple comparison test. Statistics were performed between naked CpG-ODN and 

formulations, where * p < 0.05, **p <0.01, ***p <0.001 **** p < 0.0001. Statistics present directly above error 

bars show significance in comparison to naked CpG-ODN. 

 

4.3.5 Evaluating the retention of CpG-ODN in HD11 cells transfected with C-NPs 

Ultra-low MW chitosan (2.5kDa) and low MW chitosan (55-90 kDa) were also 

formulated to form C-NP complexes given that positively charged amine groups of chitosan in 

acidic media complexes simultaneously with DNA to form NPs. Neither C-NPs significantly 

improved CpG-ODN retention 24 hours post dosing in comparison to naked CpG-ODN and 

there was high variability in the percentage of cells still containing CpG-ODN (Figure 29). 

However, the 2.5k C-NP performed marginally better compared to the 0.1% 55-90 kDa C-NP. 
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Figure 29 Evaluation of the effect of chitosan molecular weight on the retention of C-NPs 24 hours post initial 

dosing 

HD11 cells were incubated with 1 µg CpG-ODN and dosed for 2 hours followed by removal of media. CpG-ODN 

uptake was measured 24 hours later, after media removal. Error bars represent mean ± S.D., (n= 3). 

 

4.3.6 Evaluation of the capacity of CL-NPs to improve uptake and retention of CpG-ODN 

in HD11 macrophages 

 Unlike other formulations CL-NP did not improve CpG-ODN uptake in HD11 

macrophage cells. The relative uptake was under 10% at 2 and 24 hours post dosing (Figure 30). 

In contrast, ~40% of cells were transfected with naked CpG-ODN after 2 hours of dosing. 

 

Figure 30 Effect of CL-NP on CpG-ODN uptake after 2 hours of dosing and retention 24 hours post dosing  

HD11 cells were incubated with 1 µg CpG-ODN for 2 hours followed by removal of media, and CpG-ODN uptake 

was measured after 2 hours of dosing and 24 hours later, after dosing. Error bars represent mean ± S.D., (n= 3).  

Statistically significant differences between experimental groups were determined by two-way ANOVA with 

Tukey’s multiple comparison test. Statistics were performed between naked CpG-ODN and formulations, where 

**** p < 0.0001. Statistics present directly above error bars show significance in comparison to CL-NPs and 

untreated cells at 2 hours post dosing. 
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4.4 Effect of CpG-ODN and NP complexation on immune stimulation in HD11 

macrophages 

4.4.1 Effect of Naked CpG-ODN dose on the extent of immune stimulation 

To investigate the correlation between cellular CpG-ODN uptake and innate immune 

activation in HD11 macrophages, the concentration of nitrite produced in macrophages was 

measured. Nitrite production is a standard result from CpG-ODN stimulation in the avian innate 

immune system and indirectly measures nitric oxide production, which results in bactericidal 

activity. Since there was evidence of CpG-ODN uptake up to 4 hours of CpG-ODN dosing, 

nitrite levels were measured after stimulation (incubation) of HD11 macrophages for 1, 2, and 4 

hours with naked CpG-ODN (Figure 31). No significant levels of nitrite production were 

detectable with 0.05-1 g CpG-ODN over the four hours. However, the concentration of nitrite 

produced with 5 and 20 g CpG-ODN was significantly higher than untreated cells after 4 hours 

of stimulation (Figure 31).  

 

Figure 31 Comparison of nitrite production in HD11 macrophages after stimulation with increasing 

quantities of CpG-ODN for 1, 2, and 4 hours. 

Nitrite concentration in HD11 macrophage cell supernatants were measured using the standard Greiss Assay as an 

indication of macrophage activation. HD11 cells were stimulated with 5 different concentrations of naked CpG-

ODN for 3 different time points: 1, 2, 4 hours. Error bars represent mean ± S.D., (n=3). Statistically significant 

differences between experimental groups were determined by two-way ANOVA with Tukey’s multiple 

comparison test. Statistics were performed between untreated cells and naked CpG-ODN, as well as between 

quantities and time where **** p < 0.0001. Statistical values present directly above error bars represent significant 

differences in comparison to untreated cells. 
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Due to the relatively low concentration of nitrite produced after 4 hours of stimulation 

with reasonable quantities of naked CpG-ODN (up to 20 µg), the extent of immune stimulation 

24 hours after dosing with increasing quantities of naked CpG-ODN was also determined. The 

extent of immune stimulation was low for the first 4 hours post incubation (Figure 32), similar to 

the previous data. However, at 24 hours post incubation, all CpG-ODN doses ranging from 0.05 

- 20 g produced nitrite levels higher than unstimulated cells (Figure 32A). The amount of nitrite 

produced at 24 hours was similar within the range of 0.05-20 g (Figure 32B). 

 

Figure 32 Comparison of nitrite production in HD11 macrophages after stimulation with increasing 

concentration of CpG-ODN for 2 hours.  

The nitrite concentration produced after two hours of cell incubation with CpG-ODN concentrations ranging from 

0.05 - 20 g was measured over 24 hours using the standard Greiss Assay (A). Nitrite produced at 24 hours with 

different concentrations is also shown (B). Cell supernatant was collected at each time point. Values expressed 

represent mean ± S.D. (n=3).  

 

4.4.2 Comparison of innate immune stimulation from G12L-NPs and BG12L-NPs to naked 

CpG-ODN 

In order to determine whether G12L-NPs and BG12L-NPs had an effect on macrophage 

activation, the extent of immune stimulation produced by G12L-NPs and BG12L-NPs were 

compared to immune stimulation with naked CpG-ODN only. The equivalent of 0.1 g CpG 

ODN formulated with NPs was incubated with HD11 cells for 2 hours and nitrite was measured 

at 1, 4 and 24 hours. Once again, no significant nitrite production occurred before 24 hours. 
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ODN whereas the formulations containing biopolymers showed a significant lower effect (Figure 

33 A,B). The delivery of NPs without CpG-ODN (blank NPs), were also tested to determine 

whether they had stimulatory effects on their own. However, no significant stimulatory effect on 

HD11 macrophages occurred from NP formulations compared to naked CpG-ODN even after 24 

hours (Figure 33 C,D). 

 

Figure 33 Comparison of immune stimulation between naked CpG-ODN, G12L-NPs, and BG12L-NPs 

formulations 

Extent of nitrite production in HD11 macrophages after 2-hour stimulation with 0.1 g naked CpG-ODN and 

complexed with G12L-NPs, PVP 10,000 BG12L-NPs, and CMCNa BG12L-NPs. Particles were formulated as 

previously described. Nitrite production over 24 hours was monitored in HD11 cells after incubation with CpG-

ODN complexed with NPs (A) and blank NPs (C). The extent of production at 24 hours for both instances was 

compared (B,D). Values expressed represent mean ± S.D., (n=3).  Statistically significant differences between 

experimental groups were determined by one-way ANOVA with Tukey’s multiple comparison test. Statistics 

were performed between untreated cells and cells dosed with CpG-ODN NP formulations, where **** p < 

0.0001, *p < 0.05. Statistical values present directly above error bars represent significant differences in comparison 

to untreated cells. 
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4.4.3 Effect of dispersion excipient on immune stimulation 

After 2-hour incubation with formulations containing the equivalent of 1 g CpG-ODN, 

the absolute nitrite concentration produced in HD11 macrophages was measured after 24 hours 

and compared to nitrite produced by naked CpG-ODN. After 24 hours, PVP 10,000 and PVP 

Kollidon 25 BG12L-NP formulations in PEG 400 excipient produced increased nitrite levels in 

comparison to naked CpG-ODN and G12L-NP (Figure 34A). For G12L-NP and BG12L-NP 

formulations in PG excipient, none performed better than formulations with PEG400 and only 

PVP Kollidon 25 and CMCNa BG12L-NP produced nitrite levels comparable to naked CpG-

ODN (Figure 34B). Stimulation with G12L-NPs and BG12L-NPs not complexed with CpG-ODN 

(blank controls) once again did not produce any significant nitrite after 24 hours (Figure 34 C,D). 
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Figure 34 Comparison of nitrite production 24 hours post stimulation with G12L-NP and BG12L-NP 

formulations in PEG400 or PG excipients and naked CpG-ODN 

Nitrite production in HD11 macrophage cells 24 hours post stimulation with 1 g CpG-ODN in all formulations was 

measured using the standard Greiss assay. NP formulations were prepared as described for gemini phospholipid 

formulations. Nitrite production by G12L-NPs, BG12L-NPs formulated with PEG400 excipient (A) and formulated 

with PG excipient (B). Blank G12L-NPs, BG12L-NPs formulated with PEG400 excipient (C) and formulated with PG 

excipient (D) were used as blank controls. Values are expressed as mean ± S.D. (n = 4). Statistically significant 

differences between experimental groups were determined by two-way ANOVA with Tukey’s multiple 

comparison test. Statistics were performed between untreated cells and cells dosed with CpG-ODN NP 

formulations, where **** p < 0.0001, ***p < 0.001, *p < 0.05. 
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4.4.4 Effect of G-NPs on macrophage activation and nitrite production 

The influence of G-NPs on the ability of HD11 macrophages to produce nitrite was 

investigated in comparison to naked CpG-ODN. The nitrite production after 2 hours of 

stimulation with 1 g CpG-ODN was measured 12 and 24 hours post stimulation. Nitrite levels 

produced 24 hours post stimulation were higher in comparison to nitrite concentration at 12 

hours (Figure 35). However, nitrite levels produced from cells stimulated with formulations 

changed in relation to naked CpG-ODN from 12 to 24 hours post dosing. At 12 hours, all the 

formulations induced greater nitrite than unstimulated cells, with the G18-NP producing more 

nitrite than naked CpG-ODN (Figure 35A). At 24 hours, nitrite levels produced by formulations 

were lower in comparison to naked CpG-ODN (Figure 35B). In particular, G12-NP formulation 

produced the least nitrite in comparison to G16-NP and G18-NP. Blank G-NPs did not induce 

nitrite production in comparison to unstimulated cells at 12 and 24 hours (Figure 35 A,B). 
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Figure 35 Comparison of nitrite production at 12 and 24 hours post stimulation with G-NPs complexed with 

CpG-ODN and blank gemini micelles 

Nitrite production in HD11 macrophages was measured at 12 and 24 hours post stimulation with G-NPs and blank 

gemini micelles using the standard Greiss assay. Blank gemini micelles were added equivalent to the quantity that 

would be contained with 1 g G-NPs. NP formulations were prepared as described previously. Nitrite production at 

12 hours (A) and 24 hours (B). Values expressed represent mean ± S.D., (n=3). Statistically significant differences 

between experimental groups were determined by two-way ANOVA with Tukey’s multiple comparison test. 

Statistics were performed between untreated cells and cells dosed with CpG-ODN NP formulations, where **** 

p < 0.0001, ***p < 0.001, *p < 0.05. Statistical values present directly above error bars represent significant 

differences in comparison to untreated cells. 

4.4.5 Effect of C-NPs on macrophage activation and nitrite production 

 The influence of C-NPs on the ability of HD11 macrophages to produce nitrite was 

investigated in comparison to naked CpG-ODN. First, the effect of chitosan excipient on nitrite 

production was evaluated after 2 hours of stimulation at 12 and 24 post stimulation. Both 

chitosan solutions stimulated nitrite production in HD11 cells to some degree 12 hours later 

(Figure 36A). Nitrite production by C-NPs both at 12 and 24-hour time points was similar to 

naked CpG-ODN (Figure 36 A,B).  
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Figure 36 Stimulation of HD11 chicken macrophages with C-NPs in comparison to naked CpG-ODN  

Nitrite production in HD11 macrophages was measured at 12 and 24 hours post stimulation with C-NPs and 

chitosan solution using the standard Greiss assay. Chitosan solution was added equivalent to the chitosan quantity 

that would be contained in the C-NPs 1 µg dose. NP formulations were prepared as described previously. Nitrite 

production is shown at 12 hours (A) and 24 hours (B). Values expressed represent mean ± S.D., (n=3). Statistically 

significant differences between experimental groups were determined by two-way ANOVA with Tukey’s 

multiple comparison test. Statistics were performed between untreated cells and cells dosed with CpG-ODN NP 

formulations, where ***p < 0.001, *p < 0.05. 

 

4.4.6 Effect of CG-NPs on macrophage activation and nitrite production 
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decreasing trend with increasing chitosan concentration at 24 hours for all gemini surfactants.  
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Figure 37 Stimulation of HD11 chicken macrophages with CG-NPs in comparison to naked CpG-ODN at 12 

and 24 hours post dosing 

Nitrite production in HD11 macrophages was measured at 12 and 24 hours post stimulation with CG-NPs using the 

standard Greiss assay. NP formulations were prepared as described previously. Cells were dosed with 1 µg CpG-

ODN. Nitrite production at 12 hours and 24 hours resulting from CG12-NPs (A), CG16-NPs (B), and CG18-NPs (C). 

Values expressed represent mean ± S.D., (n=3). Statistically significant differences between experimental groups 

were determined by two-way ANOVA with Tukey’s multiple comparison test. Statistics were performed 

between untreated cells and cells dosed with CpG-ODN NP formulations, where ***p < 0.001, **p < 0.01, *p < 

0.05. 

 

4.4.7 Effect of CL-NPs on macrophage activation and nitrite production 

Despite the low level of CpG-ODN uptake, transfection with CL-NPs still resulted in an 

increase in nitrite production in comparison to untreated cells (Figure 38). Nitrite production 

resulting from CL-NP transfection was similar to nitrite production resulting from naked CpG-

ODN. 
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Figure 38 Stimulation of HD11 chicken macrophages with CL-NPs in comparison to naked CpG-ODN at 12 

and 24 hours post dosing. 

Nitrite production in HD11 macrophages was measured at 12 and 24 hours post stimulation with CL-NPs using the 

standard Greiss assay. NP formulations were prepared as described previously. Cells were dosed with 1 µg CpG-

ODN. Values expressed represent mean ± S.D. (n=3). Statistically significant differences between experimental 

groups were determined by two-way ANOVA with Tukey’s multiple comparison test. Statistics were performed 

between untreated cells and cells dosed with CpG-ODN NP formulations, where ****p < 0.0001, **p < 0.01. 

Statistical values present directly above error bars represent significant differences in comparison to untreated cells. 

 

4.5 Assessment of HD11 cell toxicity after CpG-ODN NP stimulation 

4.5.1 Viability in HD11 cells after naked CpG-ODN stimulation 

CpG-ODN has been deemed as a safe adjuvant and is being tested in human clinical trials 

[135, 202]. In order to determine the viability of HD11 cells after naked CpG-ODN stimulation 

and compare it to HD11 cells stimulated with CpG-ODN NPs, the viability of cells was 

measured with Calcein AM. The viability of HD11 cells remained above 90% after 1, 2, and 4 

hours of stimulation across all CpG-ODN quantities (Figure 39).  
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Figure 39 Viability of HD11 chicken macrophages after stimulation with naked CpG-ODN. Values expressed 

as mean ± S.D. (n=3). 

Cell viability after stimulation with 1 g CpG-ODN for 4 hours was measured using Calcein AM. 

 

4.5.2 Cell Viability and Mitochondrial Activity after NP transfection 

4.5.2.1 Gemini 12-3-12 phospholipid formulations maintain high mitochondrial activity  

Considering previous evidence of changes in membrane permeability after gemini NP 

transfection [203], NP toxicity was also investigated using the viability dye MitoTracker Green 

FM that measures active mitochondrial activity in cells versus Calcein AM, which is dependent 

on membrane integrity. The effect of NP formulations on viability of HD11 macrophages was 

investigated. The viability was first investigated after stimulation with the G12L-NPs formulated 

in PEG 400, including the addition of PVP 10,000 and CMCNa to the BG12L-NPs (Figure 40). 

All formulations decreased the viability of HD11 cells at all time points significantly in 

comparison to untreated cells and cells stimulated with naked CpG-ODN when stained with 

Calcein AM cell permeability dye. The overall trend was that cell viability decreased over the 

period of 4 hours for all formulations, with the G12L-NPs formulation having better viability than 

both BG12L-NPs. The PVP 10,000 BG12L-NPs however, produced variable results at 2 hours of 

stimulation. 
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Figure 40 Viability of HD11 macrophages after stimulation with different G12L-NP and BG12L-NP 

formulations in comparison to naked CpG-ODN.  

Cell viability after stimulation with 1 g CpG-ODN NPs from 1-4 hours was measured using Calcein AM viability 

dye. Values expressed as mean ± S.D, n=3. 

 

In contrast, MitoTracker Green FM viability dye produced significantly different viability 

results. After 4 hours of stimulation, all formulations maintained high mitochondrial activity and 

had near 100% viability similar to untreated cells and cells stimulated with naked CpG-ODN 

(Figure 41). At 4 hours, the viability measured using Calcein AM showed that cells treated with 

G12L-NPs appear to have higher viability in comparison to both BG12L-NPs, although the overall 

viability was low for all formulations.  

 

Figure 41 Comparison of cell viability measured by Calcein AM and MitoTracker Green FM viability dyes 

after 4 hours stimulation with G12L-NP and BG12L-NP formulations 

Viability of HD11 chicken macrophages after 4 hours of stimulation with G12L-NPs and BG12L-NPs complexed 

with 1 g CpG-ODN was measured using two different viability dyes: MitoTracker Green FM and Calcein AM. 

Viability was measured immediately after stimulation. Values expressed represent mean ± S.D. (n=3). Statistically 

significant differences between experimental groups were determined by two-way ANOVA with Tukey’s 

multiple comparison test. Statistics were performed between untreated cells and cells dosed with NP 

formulations, where ****p < 0.0001, ***p < 0.001. 

0 1 2 3 4 5
0

25

50

75

100

Time (hours)

P
e
rc

e
n

t 
(%

) 
V

ia
b

le
 C

e
ll
s

Untreated

Naked CpG-ODN

G12L-NP

PVP 10,000 BG12L-NP

CMCNa BG12L-NP

U
ntr

ea
te

d c
el

ls

N
ak

ed
 C

pG
-O

D
N

G 12
L-N

P

P
VP 1

0,
00

0 
B
G 12

L-N
P

C
M

C
N
a 

B
G 12

L-N
P

0

25

50

75

100

Formulation

P
e
rc

e
n

t 
(%

) 
V

ia
b

le
 C

e
ll
s

Calcein AM

MitoTracker Green

***

****

***



 114 

The viability of HD11 chicken macrophages was also measured 24 hours after initial 

dosing, to determine whether cells maintained overall health while processing CpG-ODN. 

Additionally, the viability of cells transfected with blank NP formulations without CpG-ODN 

was measured after 24 hours after initial dosing.  

Once again G12L-NPs and BG12L-NPs in both excipients (PEG400 and PG) maintained 

high mitochondrial activity comparable to cells stimulated with naked CpG-ODN and untreated 

cells. They all maintained a viability above 95% (Figure 42 A,B). The same viability was also 

maintained when cells were stimulated with blank G12L-NPs and BG12L-NPs.  

However, when measuring cell viability as a function of cell permeability and activity 

using calcein AM, the viability of the cells stimulated with naked CpG-ODN, G12L-NPs, and 

BG12L-NPs was around 50% after 24 hours unlike untreated cells which maintained near 100% 

viability (Figure 42 C,D). In contrast, cells transfected with blank NPs had lower viability 

(<20%) than CpG-ODN NP formulations and naked CpG-ODN for all formulations (Figure 42 

C,D). 
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Figure 42 Comparison of viability in HD11 macrophages stimulated with G12L-NPs, BG12L-NPs, and blank 

NP formulations measured by two mechanistically different viability dyes 24 hours post stimulation. 

Viability of HD11 cells measured by MitoTracker green (A, B) was compared to HD11 cell viability measured by 

calcein AM (C, D). 1 g CpG-ODN was used to stimulated all samples for 2 hours. Viability was measured 24 

hours post stimulation. Values expressed represent mean ± S.D. (n=3). 

 

4.5.2.2 HD11 cell viability after transfection with G-NPs  

Due to possible transient membrane changes resulting from NP transfection, 

mitochondrial activity was used to monitor cell viability for subsequent formulations. After 

transfection with G-NPs and gemini micelles (blank NP), cells showed near 100% viability 24 

hours after initial cell dosing (Figure 43). 
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Figure 43 Evaluation of HD11 cell viability 24 hours after transfection with G-NPs and blank gemini NPs by 

mitochondrial activity.  

Cells were dosed with NP formulations complexed with 1µg CpG-ODN for 2 hours. Cell viability was measured 24 

hours post dosing using MitoTracker Green FM viability stain. Values are expressed as mean ± S.D. (n=3). 

 

4.5.2.3 HD11 cell viability after transfection with C-NPs 

After transfection with C-NPs no difference in viability was observed in comparison to untreated 

cells and naked CpG-ODN (Figure 44). Neither MW of chitosan were harmful to cells. 

 

Figure 44 Evaluation of HD11 cell viability 24 hours after transfection with C-NPs and blank chitosan 

solution by mitochondrial activity. 

Cells were dosed with NP formulations complexed with 1µg CpG-ODN for 2 hours. Cell viability was measured 24 

hours post dosing using MitoTracker Green FM viability stain. Values are expressed as mean ± S.D. (n=3). 
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4.5.2.4 HD11 cell viability after transfection with CG-NPs  

Similar to the other NPs, all CG-NPs were compatible with HD11 macrophages with 

approximately 100% viability 24 hours post stimulation similar to naked CpG-ODN and 

untreated cells (Figure 45 A-C). Chitosan concentration or gemini tail length did not significantly 

alter the percentage of viable cells. Cells dosed with blank NP formulations also maintained near 

100% viability.  

 

Figure 45 HD11 cell viability 24 hours after transfection with CG-NPs and blank CG-NP formulations  

Cells were dosed with NP formulations complexed with 1µg CpG-ODN for 2 hours. Cell viability was measured 24 

hours post dosing using MitoTracker Green FM viability stain. Values are expressed as mean ± S.D. (n=3). 

 

4.5.2.5 HD11 cell viability after transfection with CL-NPs 

Unlike other formulations, CL-NPs were very toxic to HD11 cells. A low percentage of 

the cell population had mitochondrial activity at 2 and 24 hours post dosing in comparison to 

untreated cells and cells transfected with naked CpG-ODN (Figure 46A). In fact, the flow 

cytometry scatter data revealed a high density of cells having lower cell forward and side scatter, 

as well as a dramatic increase in the number of events indicative of a high presence of cellular 

debris (Figure 46B).  
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Figure 46 HD11 cell viability 2 and 24 hours after transfection with CpG-ODN CL-NPs 

Cells were dosed with NP formulations complexed with 1µg CpG-ODN for 2 hours. Cell viability was measured 

directly after dosing (2 hours) and 24 hours post dosing using MitoTracker Green FM viability stain. Values are 

expressed as mean ± S.D. (n=3). 

 

4.5.3 Particle uptake assessment using flow cytometry light scatter 

Transfection of HD11 cells with NP formulations directly changed cellular complexity 

and size when measured for scatter. Forward scatter (FSC) is a measure of overall cell size while 

side scatter (SSC) can provide information on internal cellular structures and cell complexity 

(granularity) [204]. Cell populations with decreased FSC and SSC (closer to the bottom left 

corner of a scatter plot) often comprise debris and dead necrotic cells. 

Since SSC can give an insight into cellular toxicity following particle uptake, changes in 

SSC between different formulations were compared. After cellular uptake of all formulations 

including naked CpG-ODN, there was an increase in SSC in comparison to untreated cells 

(Figure 47). An increase in SSC has been shown to enhance light reflection and refraction 

correlated with protein crosslinking and nuclear/cytoplasmic, which could indicate cellular 

apoptosis [205]. However, increase in SSC has also been associated with changes in light 

reflection caused by particle uptake [204]. Unlike G-NPs, G12L-NPs, and BG12L-NPs, CG-NP 

formulations resulted in more similar FSC to naked CpG-ODN, but an increase in SSC, which 

could reflect this particle uptake phenomenon in a more viable cell population.  

 Most formulations also resulted in a decrease in FSC of the HD11 cell population, 

prominently seen after G-NP transfection (Figure 47 D, E). The increase in chitosan 

U
ntr

ea
te

d

N
ak

ed
 C

pG
-O

D
N

C
L-N

P

0

25

50

75

100

Formulation

%
 V

ia
b

le
 C

e
ll
s

2 hours

24 hours

A B



 119 

concentration of CG12-NPs, CG16-NPs, and CG18-NPs from 0.1 – 2 % also appears to shift an 

increasing percentage of the cell population to the left as a result of lower FSC (Figure 47 I, L, 

O). 

Transfection of cells with G12L-NPs and BG12L-NPs also resulted in a dramatic change in 

cell scatter. Cells transfected with G12L-NPs had decreased FSC similar to G-NPs, and CG-NPs 

(Figure 47P). However, the addition of the biopolymer coating corresponding to PVP 10,000 

BG12L-NPs and CMCNa BG12L-NPs appeared to result in a larger proportion of the cell 

population with increased SSC without the decrease in FSC in comparison to cells transfected 

with G12L-NPs (Figure 47 Q, R).  
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Figure 47 Flow cytometry scatter plots of HD11 chicken macrophages 24 hours post stimulation with C-NPs, 

G-NPs, CG-NPs, G12L-NPs, and BG12L-NPs. 

Comparison of the change in cell scattering following naked CpG-ODN and NP uptake 24 hours post stimulation in 

HD11 chicken macrophages. Figures A-F show scattering of untreated, naked CpG-ODN, G-NPs, and C-NPs. 

Figures G-O show the scattering of CG-NPs with increasing chitosan concentration, and P-R represent scattering 

after G12L-NP and BG12L-NP uptake. 15,000 events are shown in each plot. 
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Interestingly, there were differences between some of the cell populations treated with 

blank NP formulations (without CpG-ODN). After transfection with blank 0.1% C-NP, cells 

looked very similar to untreated cells (Figure 48 C). For G-NP formulations, G12-NP and G16-NP 

treatment decreased SSC (Figure 48 D, E) while G18-NP had no effect on SSC (Figure 48 F). 

Chitosan concentration of blank CG-NP particle formulations did not affect FSC and SSC 

in comparison to untreated cells. However, blank gemini 12-3-12 formulations (G12-NPs), 

generated a cell population highly concentrated towards the lower left corner of the grid (Figure 

48 G, H, I).  

The FSC and SSC profile in cells transfected with blank G12L-NPs and BG12L-NPs 

resulted in changed in scatter depending on the biopolymer used. Both G12L-NPs and CMCNa 

BG12L-NPs resulted in a cell population with decreased FSC. At the same time, the presence of a 

cell population having higher SSC while maintaining similar FSC corresponding to C-NPS, and 

CG-NPs was lost (Figure 48 P, R). However, cells transfected with PVP 10,000 BG12L-NPs 

provided a similar scatter profile to untreated cells and CG-NPs (Figure 48 Q). 
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Figure 48 Flow cytometry scatter plots of HD11 chicken macrophages 24 hours post stimulation with blank 

C-NPs, G-NPs, CG-NPs, G12L-NPs, and BG12L-NPs. 

Comparison of the change in cell scattering following naked CpG-ODN and blank NP uptake 24 hours post 

stimulation in HD11 chicken macrophages. Figures A-F show scattering of untreated, naked CpG-ODN, G-NPs, and 

C-NPs. Figures G-O show the scattering of CG-NPs with increasing chitosan concentration, and P-R represent 

scattering after G12L-NP and BG12L-NP uptake. 15,000 events are shown in each plot. 
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4.6 Effect of nebulization on particle characteristics and in vitro performance 

 Selected formulations based on CpG-ODN uptake, ease and reproducibility of 

formulation, were tested in vitro after nebulization and compared to non-nebulized formulations. 

Nebulization had no effect on particle characteristics as the average hydrodynamic diameter and 

zeta potential were very similar before and after nebulization for all formulations (Figure 49 A, 

B). The in vitro performance of nebulized formulations was also similar with respect to CpG-

ODN uptake, nitrite production, and viability at 2 and 24 hours in comparison to non-nebulized 

formulations (Figure 49 C-H).  
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Figure 49 Effect of nebulization on physicochemical characteristics and performance of NP formulations.  

NP formulations were nebulized with a compressor nebulizer and subsequently collected for characterization and 

testing in vitro in HD11 cells. Differences in Z-average hydrodynamic diameter size (A), zeta potential (B) and 

effect on CpG-ODN uptake (C, D), nitrite production (E, F), and viability (G, H) in HD11 cells were compared to 

non-nebulized formulations. Effects nebulization on CpG-ODN uptake, nitrite production, and viability were 

measured 2 hours post dosing and 24 hours post dosing. Values expressed represent mean ± S.D., n=3. 
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4.7 Cellular CpG-ODN localization post transfection  

The localization of Alexa Fluor 647 labeled CpG-ODN during transfection of HD11 cells 

was tracked by confocal microscopy immediately after dosing for 2 hours (Figure 50), and 24 

hours after dosing (Figure 51). Cells were labeled with Vybrant™ green Dil cell membrane dye 

(green) in order to determine whether CpG-ODN was membrane bound or intracellular.  

 Two hours after transfection with naked CpG-ODN (pink) it was evident that the CpG-

ODN was surrounding the cell membrane. However, cells transfected with G12L-NPs and 

BG12L-NPs showed CpG-ODN bound to the cell membrane and inside the cells. G12-NPs and 

CG12-NPs show CpG-ODN also interacting with the cell membrane, but no CpG-ODN was 

visible within the cytoplasm of the cells, as opposed to G12L-NP and BG12L-NP treated cells, 

which showed intracellular CpG-ODN. After treatment with each of these NPs, cell morphology 

noticeably changed. Transfection with the CL-NP formulation was the most toxic to cells, as a 

significant amount of cellular debris was present after 2 hours of dosing. These morphological 

observations were consistent with the results of flow cytometry which detected an increase in 

cellular debris and changes in cell size and granularity. 
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Figure 50 Localization of CpG-ODN uptake in HD11 cells transfected with naked CpG-ODN and NP 

formulations 2 hours post dosing 

HD11 cells were transfected with NPs containing Alexa Fluor 647 labelled CpG-ODN for 2 hours. Cell membrane 

was stained with Vybrant™ green Dil for localization (green). Images were taken immediately after 2-hour dosing 

and evaluated for presence of red fluorescence resulting from CpG-ODN (pink).  

 

Twenty-four hours after initial dosing, CpG-ODN was intracellularly located with all NP 

formulations (Figure 51). The confocal microscopic images confirm intracellular CpG-ODN 

uptake and reveal that the cells recovered from the initial toxic effects at the 2-hour time point 

(see Figure 50, versus Figure 51). Additionally, the G12-NP formulation appears to result in the 

most significant amount of CpG-ODN retention. In G12-NP treated cells, CpG-ODN is present 

throughout the cellular cytoplasm in comparison to other formulations and naked CpG-ODN, 

which had only concentrated areas of CpG-ODN within the cytoplasm.  
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Figure 51 Localization of CpG-ODN uptake in HD11 cells transfected with naked CpG-ODN and NP 

formulations 24 hours post dosing. 

HD11 cells were transfected with NPs containing Alexa Fluor 647 labelled CpG-ODN for 2 hours. Cell media was 

replaced and cell membrane was stained with Vybrant™ green Dil for localization 24 hours later (green). Images 

were taken 24 hours post dosing and evaluated for presence of red fluorescence resulting from CpG-ODN (pink).  

 

4.8 In vivo biodistribution of CpG-ODN NP formulations versus naked CpG-ODN 

solution 

 NPs were selected for in vivo evaluation based on physicochemical properties and in vitro 

data. One formulation from each different type of NP was evaluated with the exception of C-

NPs, since they were inferior to G-NPs, G12L-NPs, BG12L-NPs, and CG-NPs based on CpG-

ODN uptake and retention in vitro studies. The formulation from each group was chosen based 

on colloidal stability, ease of formulation, and highest retention, and uptake. 

Two separate biodistribution experiments were performed over the course of this work. In 

the first set of experiments the biodistribution of G12L-NP and BG12L-NP formulations after 2 

hours of NP administration in the chick respiratory tract were compared. Since G12L-NPs and 

PVP 10,000 BG12L-NPs in PEG 400 excipient were the most uniform, had > +40mV zeta 

potential, were stable over a 20-day period, reproducible, and increased uptake and retention of 

CpG-ODN, they were chosen for biodistribution in chick lungs. The objective of the first 

experiment was to determine the extent of short term biodistribution (2 hours post nebulization) 
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in different areas of the chick respiratory tract. Formulations were tagged with NBD-PC lipid for 

detecting NP distribution. Serial cross sections along the chick respiratory tract were cut and 

examined for evidence of NP deposition. After two hours of dosing, particles (green) could be 

identified in the tracheal epithelium near the lumen (Figure 52). Particles were also present in the 

top of the lung cranially located near the lumen primary bronchi in the cranial lung (Figure 52). 

Here, distinct cluster areas of fluorescence were present. Towards the middle of the lung, distinct 

areas of fluorescence were seen among the bronchi. Sections caudally located in the lung were 

also examined for evidence of particle deposition, although minimal particle deposition was 

observed. A summary of areas of the lung were particles were located is shown in Table 27. 
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Table 27 Summary of evidence of particle distribution in the respiratory tract of day old chicks post 

nebulization with G12L-NPs and PVP 10,000 BG12L-NPs 

Lung sections of birds were imaged using CLSM. Particles were labelled with fluorescent NBD-PC lipid tag for 

detection in the respiratory tract. Description of observations are outlined. 

 

  

Saline Control 120 no immediate signs 5 2/2

Saline Control 120

some signs of 

autofluorescence, some 

chondrocyte cell structures 

(stained images)

2 1 (bird control 2)

PVP 10,000 BG12L-NP 15 chondrocytes within trachea 16 5/5

PVP 10,000 BG12L-NP 15
mucosal lining of trachea near 

lumen
1 2/5

PVP 10,000 BG12L-NP 120 chondrocytes within trachea 15 4/5

PVP 10,000 BG12L-NP 120
mucosal lining of trachea near 

lumen
6 2/5

G12L-NP 15 chondrocytes within trachea 13 4/5

G12L-NP 15
mucosal lining of trachea near 

lumen
2 3/5

G12L-NP 120 chondrocytes within trachea 8 4/5

G12L-NP 120
mucosal lining of trachea near 

lumen
3 3/5

Saline Control 120 no immediate signs 12 2/2

Saline Control 120
some signs of autofluorescence 

(diffuse)
5

2/2 (only in bird control 2 top 

lung section 1)

PVP 10,000 BG12L-NP 15 within primary bronchus tissue 12 3/5

PVP 10,000 BG12L-NP 15 within lung tissue 3

PVP 10,000 BG12L-NP 120
within primary bronchus 

mucosal  tissue 
24 22 3/5

G12L-NP 15
Primary bronchus (diffuse 

fluorescence)
11 9 3/5

G12L-NP 120 13 12 1/4

Saline Control 120
no immediate sign, faint 

autofluorescence
7 7 2/2

PVP 10,000 BG12L-NP 15
tissue between bronchi 

(scattered)
7 5 4/5

PVP 10,000 BG12L-NP 120
fluorescent areas near bronchi 

lumen
21 20 3/5

G12L-NP 15

lung tissue near 

bronchi/parabronchi? 

(scattered/diffuse)

12 2/5

G12L-NP 15

lung tissue near 

bronchi/parabronchi? 

(localized)

10 3/5

G12L-NP 120

lung tissue near 

bronchi/parabronchi? 

(scattered/diffuse)

9 2/5

G12L-NP 120

lung tissue near 

bronchi/parabronchi? 

(localized)

7 3/5

Saline Control 120 no immediate signs 22 18 1/1

PVP 10,000 BG12L-NP 15
fluorescent areas near bronchi 

lumen (very faint, rare)
13 4 1/2

G12L-NP 15 autofluorescence? 1 1 1/1

G12L-NP 120

lung tissue near 

bronchi/parabronchi? 

(scattered/diffuse)

1 1 1/1

17

23

14

10

20

27

18

16

17

Mid lung

Lower Lung

Top Lung

Tracheal bifurcation

Section Nanoparticle Type Time Point (minutes) Area of particle deposition
# of birds it occurred in/ total 

# birds analyzed
Total Number of Images # of times present 
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 After evidence of NP deposition within different areas of the chick respiratory tract, the 

main objective of the second biodistribution experiment was to better identify interactions 

between NP and CpG-ODN association once in the biological lung environment. Formulations 

with dual labelling of CpG-ODN and the polymer/lipid component of the NP were formulated: 

G12-NPs of which only CpG-ODN was labelled (red); 1% CG12-NP and 1% CG16-NP 

formulations that contained labelled chitosan to tag the NP (green) and labelled CpG-ODN (red); 

and labelled naked CpG-ODN (red). Tissues were screened for NP and CpG-ODN co-

localization at 2 hours post administration. Sections were cut longitudinally along the chick lung 

so that the top face of the section represented the cranial lung and the bottom the caudal lung. All 

images are representative of sections toward the longitudinal middle of the lung near the primary 

bronchi (Figure 53). Alexa Fluor 647 labelled CpG-ODN (red) could be detected in distinct 

patterns along the airspaces of the lung. Naked CpG-ODN appeared to have an even distribution 

throughout the longitudinal face of the lung with accumulation of CpG-ODN near the lumen of 

the air spaces. Birds nebulized with 1% CG16-NPs also displayed a similar distribution pattern to 

naked CpG-ODN with signs of CpG-ODN nearer to the cranial face of the lung.  

Birds nebulized with 1% CG12-NPs had NPs present nearer to the caudal region of the 

lung, but less accumulation was found in comparison to 1% CG16-NPs. Furthermore, evidence of 

particle and CpG-ODN co-localization existed in 1% CG12-NPs whereas free CpG-ODN seemed 

to have been released in sections of birds nebulized with 1% CG16-NPs. As the gemini 

component of G12-NPs cannot be labelled, only CpG-ODN was labelled in this formulation. 

Limited CpG-ODN deposited in the sections observed, and there was a high degree of green 

auto-fluorescence present in these sections, which resulted in appearance of yellow particles. 
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Figure 52 Biodistribution of G12L-NPs and PVP 10,000 BG12L-NPs in the respiratory tract of 1-day old chicks 

2 hours post nebulization 

1-day old chicks were nebulized in a chamber for 15 minutes with selected NP formulation. Respiratory tract tissues 

including the trachea and lung were isolated 2 hours post nebulization. NP formulations were labeled with NBD-PC 

lipid (green).  
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Figure 53 Biodistribution of naked CpG-ODN, G12-NPs, 1% CG12-NPs and PVP 10,000 BG12L-NPs in the 

respiratory tract of 1-day old chicks 2 hours post nebulization 

1-day old chicks were nebulized in a chamber for 15 minutes with corresponding NP formulation. The chick lung 

was isolated 2 hours post nebulization. NP formulations were labeled with FITC-chitosan (green) and Alexa Fluor 

647 CpG-ODN (red).  
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4.9 Evaluation of protection against E. coli challenge 

NP formulations that were able to elicit innate immune activation, i.e. retain the highest 

in vitro uptake after 24 hours of dosing, and maintain reproducible formulation characteristics 

were chosen to evaluate the extent of protection in 1-day old chicks. Over the course of this 

work, several in vivo experiments were conducted to evaluate formulations in a step by step 

manner (Figure 54). Data shown is the result of combined challenge with high and low E. coli 

dose for clarity. 

In the first experiment, the effect of gemini-tail length on BGL-NPs efficacy was 

evaluated. BGL-NPs constructed with gemini 12-3-12 and 16-3-16 resulted in 90% survival and 

reduced combined clinical score, whereas naked CpG-ODN and gemini 18-3-18 BGL-NPs 

produced about 75% survival rate. The saline control was at a 40% survival rate using a 2-day 

post-treatment challenge protocol (Figure 54 A).  

In the next experiment, the biopolymer of BGL-NPs was evaluated. Both PVP and 

CMCNa polymers had similar effects in improving survival and clinical score compared to 

naked CpG-ODN and saline control (60% survival for each polymer group vs. 40% for naked 

CpG-ODN and saline, respectively) (Figure 54 B). These survival scores are lower compared to 

the first experiment, which is attributed to the timing of the challenge (3 days vs 2 days post-

treatment in the previous experiment).  

Given enhanced retention, G12-NPs, 1% CG12-NPs, and 1% CG16-NPs were also tested 

for their ability to improve bird survival after infection. All three NP formulations were able to 

enhance bird survival in comparison to the saline control (Figure 54 C). The effect of gemini tail 

length of 1% CG-NPs on percent survival was not significant (both about 65% survival rate). In 

comparison, G12-NPs provided about 80% survival rate. However, this was similar to naked 

CpG-ODN using a 2-day post-treatment challenge protocol. The saline control was at a 40% 

survival rate. 

The final protection experiment had two objectives. The first, was to test whether NP 

formulations would increase the length of time that CpG-ODN was effective. The second, was to 

evaluate which NP formulation (G12-NPs, 1% CG12-NP, PVP 10,000 BG12L-NP) would result in 

higher bird survival rates. Birds treated with G12-NPs had somewhat higher percent survival and 

lowest cumulative clinical score in comparison to other formulations (Figure 54 D). However, 
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this was not significantly different from the PVP 10,000 BG12L-NP or naked CpG-ODN. 

Interestingly, the distilled water control also showed high survival similar to birds treated with 

G12-NPs and higher than birds treated with naked CpG-ODN, therefore this experiment is 

inconclusive.  
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Figure 54 In vivo protection of neonatal chicks from E. coli challenge after intrapulmonary treatment with 

CpG-ODN in various NP delivery systems. Protection was evaluated by measuring chick survival and 

monitoring clinical signs (combined clinical score, CCS). The in vivo screening selected delivery systems are 

shown. NP formulations were nebulized with Medpro compressor nebulizer to groups of 1-day old chicks 

followed by challenge with E. coli. Over time the protocol underwent some modifications to reflect the 

knowledge learned from previous experiments. These improvements are indicated within each experimental 

description below. 

A) Screening of BGL-NPs to compare the effect of gemini structure on efficacy. Gemini surfactants 12-3-12, 

16-3-16 and 18-3-18 were evaluated with PVP Kollidon 25 as the biopolymer. Neonatal broiler chicks were 

given CpG-ODN solution or NP formulations by nebulization at the age of day 1. Chicks were challenged 

with two lethal doses of E. coli 2 days post CpG-ODN administration. Data were collected on daily 

mortality, bacteriological scoring and daily clinical scoring. CpG-ODN dose was 100µg/ 100µL/bird; 

n=40; challenge was performed with E. coli 1X105CFU/ bird on Day 2 after treatment. 

B) Screening of BGL-NPs to compare the effect of two different biopolymers on efficacy. Gemini surfactants 

12-3-12 with two different biopolymers (PVP and CMCNa) were evaluated. Neonatal broiler chicks were 

given CpG-ODN solution or NP formulations by nebulization at the age of day 1. Data were collected on 

daily mortality, bacteriological scoring and daily clinical scoring. CpG-ODN dose was 100µg/ 100µL/bird; 

n=40; challenge was performed with E. coli 1X105CFU/ bird on Day 3 after treatment. 

C) Evaluation of G-NPs (12-3-12) and 1% CG NPs prepared with gemini surfactant 12-3-12 or 16-3-16. 

Neonatal broiler chicks were given CpG-ODN solution or NP formulations by nebulization at the age of 

day 1. Data were collected on daily mortality, bacteriological scoring and daily clinical scoring. CpG-ODN 

dose was 100µg/ 100µL/bird; n=40; challenge was performed with E. coli 1X105CFU/ bird on Day 2 after 

treatment. 

D) Evaluation of G-NPs (12-3-12) and CG12-NPs prepared with gemini surfactant 12-3-12 and BG12L-NPs 

(12-3-12). The effect of time of challenge after administration was evaluated: E. coli challenge 4 days post 

CpG-ODN administration. Neonatal broiler chicks were given CpG-ODN solution or NP formulations by 

nebulization at the age of day 1. Data were collected on daily mortality, bacteriological scoring and daily 

clinical scoring. CpG-ODN dose was 100µg/ 100µL/bird; n=40; challenge was performed with E. coli 

1X105CFU/ bird on Day 4 after treatment. 
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Chapter 5: Discussion 

In the fields of drug, DNA, and protein delivery, NPs have continually shown to improve 

cellular uptake, improve the biological stability of their cargo, and improve delivery to the 

therapeutic target site [24]. Based on previous work in this laboratory, gemini NP delivery 

systems have improved DNA delivery in vitro and in vivo in comparison to naked DNA for skin, 

ocular, and mucosal applications [45, 182, 184, 187, 206]. As such, a gemini NP delivery system 

was employed for a CpG-ODN vaccine in attempt to improve the stimulation of innate immunity 

and protective properties of CpG-ODN in broiler chicks against bacterial infection such as E. 

coli. Previous studies have proven that CpG-ODN is a protective vaccine against E. coli infection 

and other bacterial infections common in broilers [7, 27, 82, 96]. Moreover, the incorporation of 

CpG-ODN in NPs has improved the protective effects of CpG-ODN in broiler chicks in vivo 

through subcutaneous and in ovo routes of vaccination [14, 27]. By developing a novel gemini-

biopolymer NP delivery system, it was expected that improved delivery and immune stimulation 

will occur in broiler chicks via the pulmonary route, a cost-effective immunization method in 

poultry. In fact, previous studies conducted by our group have solidified this theory and the 

gemini NP formulation previously tested (G12L-NPs, PVP BG12L-NPs) was used as a starting 

point of characterizing physicochemical aspects of CpG-ODN nanoparticles, and their 

effectiveness in vitro and in vivo. Since macrophages migrate into the chicken respiratory system 

upon recognition of foreign pathogens and act as antigen presenting cells to induce an innate 

immune response, the chicken macrophage cell line HD11 was chosen to investigate immune-

stimulatory properties of the CpG-ODN NP vaccines formulated in this project. 

NP modification is a popular method to improve gene delivery by lipid and polymer 

based NPs that have shown limited gene transfection in vivo. Techniques to achieve superior 

multifunctional NPs include chemical modification of materials, antibody/aptamer conjugation, 

peptide functionalization, and multi-material incorporation. This project pioneered several hybrid 

NP formulations made up of different classes of biocompatible materials, a much simpler method 

than chemical modification. Hybrid NPs in this project were tested in a chicken cellular model 

and evaluated for their ability to improve transfection (uptake) and innate immune stimulation of 

the oligonucleotide CpG-ODN in comparison to naked CpG-ODN and non-hybrid NP 

counterparts. For each of the 6 types of NP groups investigated (G12L-NPs, BG12L-NPs, G-NPs, 
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C-NPs, CG-NPs, CL-NPs), characterization was undertaken based on reproducibility, colloidal 

stability, and manufacturing capacity. In this study, PVP 10,000 BG12L-NPs and G12-NPs were 

able to successfully improve uptake of CpG-ODN in comparison to naked CpG-ODN by HD11 

macrophages and improve the length of time cells were associated with CpG-ODN (retained). 

Moreover, the different NP groups were characterized and compared in their ability to improve 

transfection in vivo. 

5.1 Characterization of nanoparticle formulations 

 First generation gemini surfactants (general structure m-s-m) with a spacer length of s=3 

(12-3-12 and 16-3-16), have been shown previously to be effective transfection agents in vitro in 

comparison to first generation surfactants with longer spacers (n= 4-16) [206]. Since one of the 

goals of this project was to develop a formulation that could be easily scalable to large-batch 

manufacturing, gemini 12-3-12 was chosen over gemini 16-3-16 and 18-3-18 for formulation of 

G12L-NPs and BG12L-NPs due to its solubility at room temperature. The first parameter 

monitored was the effect of PVP biopolymer MW on the size and zeta potential of the BG12L-

NPs formulated in PEG400, of which a derivative had been previously tested in vivo. The MW of 

the polymer did not affect the size of the particles, and gave a relatively uniform size distribution 

around 200 nm. Since formulation preparation for the G12L-NPs/BG12L-NPs particles involved 

formation of blank NP vesicles prior to CpG-ODN addition, the diameter of the blank NPs was 

also measured prior to complexing with CpG-ODN. Once again, the polymer did not influence 

particle size with any of the blank NPs, all were about15-20 nm.  

 The most problematic formulations were the PVP Kollidon 25 BG12L-NPs and CMCNa 

BG12L-NPs. Use of these two polymers resulted in high batch to batch particle size distribution 

variability. Problems with formulation uniformity were most likely due to the fact that Kollidon 

25 is a mixture of soluble and insoluble PVP molecules of different grades. Furthermore, 

CMCNa requires high shear for proper dispersion (FMC Biopolymer), which is undesirable for 

large scale manufacturing in comparison to the PVP 10,000 and 40,000 polymers which easily 

mix into solution.  

 Of the ten formulations tested, the G12L-NP and PVP 10,000 BG12L-NP formulations in 

PEG 400 excipient were subjected to further testing owing to reproducibility of particle size from 
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bath to batch.  They also had a positive zeta potential (+53.2 and +42.8 mV, respectively), well 

above the +30 mV threshold for colloidal stability [207].  

 G-NPs were also tested to compare the basic micellar NP with the lipid and polymeric 

hybrid components (G12L-NPs/BG12L-NPs and CG-NPs, respectively). Interestingly, gemini 12-

3-12 complexed with CpG-ODN (G12-NP) resulted in NPs with similar size distribution to G12L-

NPs and BG12L-NPs (175.2, 161.7, 173.0 nm, respectively). Increasing tail length of the gemini 

surfactant affected the size and zeta potential of G-NPs which has also been previously observed 

in plasmid-gemini complexation with a charge ratio (+/-) 10:1 [208]. Similar to plasmid-gemini 

complexes, an increase in zeta potential with increasing tail length of G-NPs was observed. The 

change was not as dramatic and all were above the +30 mV threshold. Unlike the plasmid-gemini 

complexation, an increase in size with increasing gemini tail length was observed with CpG-

ODN oligonucleotides. However, the difference may be attributed to the 5:1 charge ratio used in 

this project, which is half of the charge ratio used for plasmid-gemini complexation (10:1). Once 

again, the gemini 12-3-12 molecule was chosen for further study due to its easy incorporation 

into formulations and for comparative purposes to G12L-NPs and BG12L-NPs.  

 Of the C-NPs tested, two types of low molecular weight chitosan were used with a 

relatively high DD since these characteristics have been reported as factors that improve gene 

transfection [188, 190, 194, 200]. The ultra-low molecular weight chitosan (2.5k) produced 

smaller NPs in comparison to the low molecular weight chitosan (50-90k), similar to previous 

observations in [41, 200]. However, unlike other investigations, the size of C-NPs in this project 

were in the micron size range, not in the NP size range of <1000 nm. This is not likely due to 

incomplete formation of complexes and low stability, as has been previously reported when a 

low charge ratio is used for complexation of DNA-chitosan particles [41, 191], as the high zeta 

potential of C-NPs in this project indicated colloidal stability. Instead, perhaps particle 

aggregation occurred which resulted in the sedimentation of the formulation over time.  

 Although chitosan is very biocompatible promising gene delivery vector, its low 

solubility in neutral environments affects its stability of NP delivery upon entering biological 

systems. Its incorporation into gemini delivery systems was tested as a means to improve 

stability in biological media and improve transfection. Increasing chitosan concentration was the 

main factor influencing the final size and zeta potential of the CG-NPs to increase, but gave very 
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polydisperse populations and micron sized particles. All CG-NPs were stable colloids in acidic 

conditions (pH 3.3-4.8). However, 1% CG12-NP and 1% CG16-NP were chosen for further 

characterization due to lower PDI indexes (<0.3) indicating more uniform formulations.  

 The final type of formulation investigated was the CL-NP formulation. Similar to C-NPs 

and CG-NPs, CG-NPs had a size of ~1 µm. However, in contrast to C-NPs and CG-NPs, it had a 

low zeta potential (+12.7 mV) which indicated a formulation with low stability. Nevertheless, it 

was still tested in vitro in order to compare its performance with G12L-NPs.  

In this work, particle characterization was done by DLS for determination of the 

hydrodynamic radius of NPs. Hydrodynamic radius assumes a spherical shape. However, 

previous studies with gemini NPs and ODNs have shown that complexation of gemini 12-3-12 

with ODNs results in a particle that is loosely packed and organizes into an ellipsoid shape that 

resembles a multi-layered sandwich [209]. NPs made of chitosan polymer have also shown to 

vary in shape depending on the chitosan MW and N/P ratio [194]. Given the hybrid nanoparticles 

presented in this work using combinations of gemini surfactant and chitosan with ODNs, the NPs 

may not be structurally spherical. Therefore, the hydrodynamic radius may not be the best 

indicator of NP size. Perhaps other methods such as TEM may give insight into more conclusive 

NP structures and sizes that could explain transfection efficiencies. 

5.1.1 NP Characterization in biological buffers 

 An important aspect of NP delivery systems is the ability to maintain stability within the 

biological environment in order to provide protection against enzymatic degradation prior to 

reaching the target site. Upon entering the biological environment, proteins have been found to 

easily adsorb to NPs and form a protein corona which in turn affects clearance, biodistribution, 

and toxicity [210]. In terms of vaccine development, the protein-NP interactions could also affect 

antigen presentation. Yet, most analyses characterize size and zeta potential of NP formulations 

in its prepared state. Characterization of NPs in biological media could give insight into their 

behavior upon entering biological environments. As such, the selected NP formulations were 

measured for size and zeta potential in four different buffers resembling the biological 

environment.  
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 The zeta potential for all groups of formulations (G-NPs, G12L-NPs/BG12L-NPs, C-NPs, 

CG-NPs, CL-NPs) in all biological media decreased below +20 mV. This indicated a decrease in 

stability of formulations upon entering the biological environment. For C-NPs and CG-NPs, low 

zeta potential could coincide with decreased solubility of chitosan in the neutral medium as has 

been previously discovered [188, 211]. All chitosan based formulations were essentially neutral 

in basic media and 10% FBS supplemented RPMI 1640 complete media which is in agreement 

with previous studies and could affect particle stability and their efficacy in vivo [41, 188]. 

Unlike the chitosan formulations, the G12L-NPs and PVP 10,000 BG12L-NPs maintained a 

positive charge around +10 mV which could help improve transfection and retention, which will 

be later discussed. 

 Dilution of NP formulations in biological buffer also affected size distribution in 

comparison to their as-prepared state. The G12L-NPs and PVP 10,000 BG12L-NPs increased in 

size in saline, PBS, basic RPMI 1640 media and 10% FBS supplemented RPMI 1640. This could 

be explained by aggregation and protein adsorption in complete media due to their low positive 

charge (lower repulsive forces). In contrast, the CG-NPs decreased in size. This phenomenon has 

been previously observed in chitosan NPs and was attributed to the decreased solubility of 

chitosan in neutral environments that increases condensation of chitosan chains and results in a 

decrease of particle size [211]. Despite the incorporation of gemini surfactant into the hybrid 

CG-NPs, the same phenomenon was observed. Whether gemini surfactant improved the 

solubility of chitosan based NP formulations remains to be determined.  

5.1.2 Particle size stability after long term storage at 4°C 

 In this work, the design of a NP delivery system for CpG-ODN aimed to produce a 

commercially viable pharmaceutical product. Long term stability is an important factor for 

manufacturing, inventory and consumer use of a successful pharmaceutical product. Preliminary 

investigations of long-term stability of formulations were monitored for insight into product 

shelf-life. In this project, PEG400 and PG were used as excipients to provide a proper medium 

for G12L-NP/BG12L-NP formation but also because both are used in a variety of pharmaceutical 

formulations as stabilizing agents [212]. The size of nanoparticles during storage for one month 

at 4ºC was investigated for G12L-NPs and BG12L-NPs. During the storage period, the vesicles 

without CpG-ODN complexation maintained similar size in PEG400 and PG excipients with the 
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exception of PVP 10,000 BG12L-NPs. PVP 10,000 BG12L-NPs fluctuated in size but stayed 

relatively the same over the first 10 days, then increased in size slightly at 15 days. Final CpG-

ODN complexed formulations had a slight increase in size over the thirty-day period as well. An 

increase in size could correspond to aggregation and dissociation of lipoplexes which in turn 

could affect and decrease biological activity and transfection efficiency as has been previously 

reported [213-215]. The variable polydispersity could also be a result of this factor. 

 Monitoring the chitosan formulations over long term storage would also be important, 

especially as they are prepared in acidic media which could affect degradation of the CpG-ODN 

DNA. Although CpG-ODN stability was not greatly explored in this work, a UPLC method was 

developed and can be used in the future for monitoring long term stability. 

5.1.3 Investigation of NP complexation FCS 

 Gemini complexation with plasmid DNA has been studied in our group in the past and in 

such formulations, a phospholipid plays a key role in compaction of plasmid-gemini complexes 

into more uniform and smaller structures [208]. Given the difference in DNA type used for 

formulations in this project (oligonucleotide DNA vs plasmid DNA), and the order of 

manufacturing the GL-NPs, and BGL-NPs, the dynamics of complexation were studied using 

FCS.  

 In this project CpG-ODN DNA was complexed with pre-formed gemini-phospholipid 

vesicles hydrated with water (GL-NPs) or polymer solution in water (BGL-NPs). Additionally, 

both PEG 400 and PG excipients were tested during formulation development. The focus of this 

analysis was on PEG 400 NPs, as these were the formulations carried out through further study. 

In comparison to naked CpG-ODN, the GL-NPs had a relatively heterogeneous population. The 

PVP 10,000 component of the BGL-NP formulation however appeared more uniform. Other 

polymers did not result in such uniform particle populations.  

 The advantage of FCS characterization is that it can estimate the number of CpG-ODN 

molecules per particle with which other NP characterization techniques cannot. Overall, the GL-

NP and BGL-NP vesicles were able to complex a range of 1-20 CpG-ODN molecules per 

particle. When compared to plasmid complexes, fewer number of CpG-ODN molecules were 
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complexed per gemini-phospholipid particle around the same size [208]. This may be related to 

the +/- ratio used, e.g. 2:1 for CpG vs.10:1 for plasmid complexes. 

5.2 Correlation of particle characteristics with cellular uptake 

 One mechanism of immune activation by CpG-ODN in chickens, is through the 

recognition of TLR 21 in chicken macrophages. Similar to its mammalian functional homolog 

TLR 9, TLR 21 receptors are located intracellularly in the endoplasmic reticulum and active in 

the endo-lysosome [143]. Delivery of CpG-ODN into immune cells is an important factor for 

generating a protective innate immune response against infection. As such, the uptake of CpG-

ODN in HD11 chicken macrophages was studied. Previous investigations have established that 

cell type mitigates the amount of DNA transfection (uptake). An optimal NP delivery system that 

is able to transfect one cell line may not exhibit the same transfection results in another [41, 

188]. The transfection ability of naked CpG-ODN in HD11 cells prior to testing NP formulations 

was monitored to establish proper transfection parameters for future experiments. 

CpG-ODN uptake over 4 hours was monitored in HD11 cells at different quantities of 

naked CpG-ODN. G12L-NPs and BG12L-NPs consistently and significantly improved the 

percentage of cells transfected with CpG-ODN in comparison to naked CpG-ODN over the 4 

hours. Moreover, G12L-NPs and BG12L-NPs were able to increase the percentage of cells with 

CpG-ODN uptake within the same time period despite incubation with a lower amount of CpG-

ODN. Additionally, uptake was observed only 1 hour after incubation. Because of this, 

subsequent experiments were executed with a dosing/incubation time of 2 hours with naked 

CpG-ODN and formulations. 

Of the six groups of formulations (G12-L-NPs, BG12-L-NPs, G-NPs, C-NPs, CG-NPs, 

CL-NPs), all were able to improve transfection efficiency with CpG-ODN uptake after 2 hours 

when compared to naked CpG-ODN with the exception of CL-NPs (see Figure 55A). 

Comparatively, all formulations that contained gemini surfactant performed better than C-NP 

and CL-NP formulations without gemini. C-NP was only able to transfect half the cell 

population in comparison to gemini containing formulations. This is not unexpected as previous 

studies have indicated that the low buffering capacity of chitosan can result in low solubility in 

biological media and can limit the success of chitosan NP delivery systems [43]. It is also 

important to note that in this work, transfection refers directly to cellular CpG-ODN uptake, 
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while most other investigations refer to transfection as a function of gene expression—an 

umbrella term that combines uptake of the NP, endosomal escape, and translation. Many 

investigations have attributed low transfection efficiency to inability to escape the endosomal 

compartment. Our study suggests that a major factor of lower transfection by C-NPs is also due 

to its inability to interact with the cell membrane and improve cellular uptake. This work further 

supports theories that chitosan NP delivery systems would perform better with additional 

components that improve stability, solubility, and membrane interaction given that hybrid CG-

NPs were able to improve transfection despite use of a low MW chitosan with sufficient 

deacetylation (>80%).  

Another aspect of this project was also to explore slow or sustained release of CpG-ODN 

for lasting immune activation. As such, the retention of CpG-ODN was also observed 24 hours 

after the removal of transfection media following the initial uptake after 2 hours of treatment 

(Figure 55 B, C). Distinctions between formulations were more easily obtainable when analyzing 

retention of CpG-ODN following transfection. In fact, several formulation groups (HA-NP, A-

NP, DGL-NP) not discussed here were not further investigated since they performed inferior to 

the formulations highlighted in Figure 55 A, B.  

The formulation groups: G12-L-NPs, BG12-L-NPs, G-NPs, and CG-NPs were all able to 

sustain CpG-ODN within the cellular environment up to 24 hours post dosing. G-NPs were best 

at retaining CpG-ODN within HD11 macrophages and had similar percentage of cells with CpG-

ODN at 2 hours and 24 hours. This indicated a high stability of G-NP formulations. Hybrid NP 

groups G12L-NPs, BG12L-NPs, and CG-NPs performed similarly but had a more dramatic 

decrease in percentage of cells retaining CpG-ODN. Given the greater detection of CpG-ODN in 

cells treated with NP formulations, this could indicate a sustained release property from the NPs. 

This sustained release effect could prolong an active innate immune response in vivo. C-NPs and 

CL-NPs were not able to retain a significant amount of CpG-ODN in comparison to naked CpG-

ODN, which is not surprising considering the low uptake efficiency.  
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Figure 55 Overall comparison of CpG-ODN uptake and retention in HD11 cells resulting from transfection 

with different types of NPs  

All formulations were compared in their ability to enhance CpG-ODN uptake in comparison to naked CpG-ODN. 

Best formulations based on method preparation and CpG-ODN uptake were compared at 2 hours post dosing (A) 

and 24 hours post dosing (B). Retained level of CpG-ODN uptake 24 hours post dosing of all formulations 

generated in this project categorized by group are also compared (C). Values expressed represent mean ± S.D., n=3.  

 

Whether or not gene transfection by NPs is successful at the cellular level, has been 

attributed to size and zeta potential. Certain investigations have shown that zeta potential can 

influence cellular association and trafficking. As investigated by Fromen et. al, NPs 

preferentially associate with pulmonary macrophages and dendritic cells dependent on anionic 

versus cationic zeta potential. Anionic NPs associated more with alveolar macrophages, yet 

cationic NPs preferentially associated with dendritic cells and generated chemoattractant 
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production and increased antibody production [74]. Effects of zeta potential on HD11 

macrophage uptake was also explored in this study using NP characterization data in its prepared 

state and in RPMI 1640 basic transfection media (Figure 56). Generally, preparation of 

formulations with 𝜁 potential above +40 mV resulted in higher CpG-ODN uptake (Figure 56A). 

However, characterization of 𝜁 potential in biological buffers mimic the environment of the lung 

more closely. From the data collected in this work, both negative and positively charged NPs 

resulted in high NP uptake corresponding to the G12-NP, G12L-NP, and BG12L-NPs (Figure 

56B). NPs with greater negative charge (1% CG16-NP) in basic media also achieved relatively 

high uptake while near neutral formulations (C-NPs) did not which can be attributed to decreased 

solubility of chitosan at basic pH. It would be interesting to investigate whether the 𝜁 potential 

would influence immune responses with other APCs in the chicken immune system as it 

develops over its relatively short lifespan. 

A relationship between uptake and size distribution was not present. The cells were able 

to take up particles from 150 nm – 4 µM in size with no obvious preference (Figure 56 C, D). 

Similarly, other investigators have found no size dependent uptake in NP vaccine applications 

[216]. Conversely, size of vaccine formulations in mammals has been found to affect trafficking 

through the lymphatic system and sizes greater than 500 nm do not enter initial lymphatic vessels 

[216, 217]. The effect of NP size on CpG-ODN uptake was not seen in an in vitro avian cell 

model, but may have effects related to immune stimulation in vivo.  

Transfection of HD11 cells with blank CG16-NPs, CG18-NPs, PVP 10,000 BG12L-NPs 

suggested that these particles also associate with HD11 cells without uptake because of the 

increase in cell FSC profile, which indicates a larger cell size. Although SSC also increased, the 

effect was not as great as one would expect if there was a large level of uptake and consequently, 

changes in cell granularity. This was not seen in cells transfected with naked CpG-ODN. 

Therefore, the CpG-ODN molecule could play a role in initiating further NP uptake, as CpG-

ODN class B has been associated with activation of cell surface TLR 15 in addition to TLR 21. 

For G18-NP, CG16-NPs, CG18-NPs, PVP 10,000 BG12L-NP the main cell population also showed 

increased SSC, which could indicate uptake of blank NPs.  
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Figure 56 Relationship between size and zeta potential of particles and CpG-ODN uptake  

Comparison of the relationship between NP uptake and zeta potential and NP uptake and hydrodynamic diameter. 

Size and 𝜻 potential of particles was measured in its prepared state (A,C) and in transfection media (RPMI 1640 

basic media) (B,D). Values expressed as mean ± S.D., n=3. 
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This work has established that G-NPs, C-NPs, G12L-NPs, BG12L-NPs, and CG-NPs are 

able to overcome barriers to cellular internalization improve CpG-ODN uptake. Furthermore, 

with the exception of C-NPs, these formulations are able to retain more CpG-ODN 

intracellularly 24 hours post dosing. A high uptake in HD11 cells could translate into an 

improvement in antigen presentation and increased phagocytic activity in antigen presenting 

cells in the chicken immune system. The capacity to retain CpG-ODN could translate into 

extended release vaccine formulations that could promote formation of long-term immunity in 

chickens. From an economic standpoint, increased uptake and retention of CpG-ODN by NPs 

could reduce the amount of CpG-ODN needed in a single vaccine dose and reduce costs.  

5.3 Comparing immune stimulation effects from different nanoparticle formulations 

The relationship between CpG-ODN uptake and NP delivery may not directly translate 

into activation of innate immune stimulation in HD11 cells. Investigations of gene transfection 

by NP delivery systems in mammalian cells have found that barriers to nucleic acid delivery 

include intracellular mechanisms such as endosomal escape and cellular trafficking [218]. Unlike 

other applications of gene delivery systems that require gene translation in the cytoplasm, in 

chickens a CpG-ODN molecule interacts intracellularly with its receptor TLR 21 within the 

endo-lysosome [139, 140]. However, CpG-ODN NP delivery could change intracellular 

trafficking of CpG-ODN within the cell and possibly mask innate immune activation. On the 

other hand, BGL-NPs, G-NPs, and CG-NPs could result in extended release of the CpG-ODN 

antigen and prolong effects of immunity against infection given their high retention capacity. To 

ensure that improved CpG-ODN uptake and retention by NP formulations in this project 

correlated with improved stimulation, activation of HD11 macrophages was also investigated 

post dosing. 

This work provided evidence of enhanced CpG-ODN uptake through flow cytometric 

evaluation and confocal imaging after 2 hours of incubation. However, the level of nitrite (NO) 

production was most evident at 24 hours post stimulation and no significant stimulation was 

measured after four hours of incubation. Similarly, other investigations of CpG-ODN activation 

in HD11 cells have found that NO is not detectable until 24 hours after stimulation and that 4 

hours of stimulation is an optimum time that results in maximum achievable NO production 

when measured 24 hours post dosing [144, 146]. Preliminary CpG-ODN trafficking studies by 
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CLSM in this project suggest that the reason NO isn’t detectable within the first hours of CpG-

ODN incubation is because CpG-ODN is still interacting with the cell membrane at this stage. 

Additionally, endosomal processing is still beginning at this stage since G12L-NPs and PVP 

10,000 BG12L-NPs have some CpG-ODN internalization at this stage, but no NO production.  

There are many examples where NPs in combination with vaccine antigens have 

increased immune stimulation in vivo in a variety of species [14, 35, 42, 58, 83, 85, 119, 121]. Of 

the formulations tested in this project, a significant amount of nitrite production in vitro was 

observed 12 and 24 hours post dosing in relation to untreated cells (Figure 57). In general, nitrite 

concentration doubled from 12 to 24 hours post dosing. Of the 6 formulation groups, PVP 10,000 

BG12L-NPs, C-NPs, and CG-NPs resulted in cells producing the greatest amount of nitrite in 

comparison to untreated cells (Figure 57B). Despite no further nitrite production compared to 

naked CpG-ODN, it is important to note that the phosphorothioate backbone and specific 

sequence of CpG-ODN already enhances innate immune stimulation in comparison to a 

phosphodiester backbone and CpG-ODN sequence with decreased immune stimulating 

properties [145, 147]. Therefore, further enhancement may be limited by the in vitro cellular 

model. 

What is interesting to note is that high 24-hour retention by G12-NPs did not correlate 

with higher nitrite production in comparison to the other formulations. This could be due to 

inhibited or slow release of CpG-ODN formulated with gemini surfactant in cells [139, 219]. The 

slower release could slow interaction with TLR 21. Given the evidence that PVP 10,000 BG12L-

NP and CG-NP result in greater CpG-ODN retention in vitro by CLSM and flow cytometry 

compared to naked CpG-ODN, intracellular processing of CpG-ODN may last longer than the 

24-hour period monitored in this project. In fact, Huang et al. have found that chitosan NPs 

release DNA at a slow rate up to 10 days in vitro depending on MW and DD of chitosan [220]. A 

similar phenomenon could explain limited nitrite production by PVP 10,000 BG12L-NP, CG-NP, 

and G-NPs given that CpG-ODN is still detectable in cells after 24 hours in comparison to naked 

CpG-ODN.  

 Corresponding to other investigations that have measured whether NP delivery systems 

without antigen result in immune stimulation, blank G12L-NPs and BG12L-NPs vesicles 

formulated in this work, also did not result in nitrite production in comparison to untreated cells. 
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Since chitosan has been reported to have adjuvant properties in mammals and chickens [221, 

222], it was surprising that blank chitosan formulations without CpG-ODN formulated in this 

project did not have significant immune enhancing effects in HD11 macrophages at the 24-hour 

time period, although this may be due to dose-dependent effects.  

 Although the Greiss assay is the inexpensive standard, and fairly robust method for 

detecting macrophage activation, it is an indirect endpoint measure of nitric oxide. It has been 

found to easily react with free radical species and give inaccurate results [223]. In this project, 

the toxic CL-NP formulation produced similar nitrite levels to viable cells transfected with NP 

formulations. An antibody detection assay for NF-kB or IFN-Ɣ may be a more accurate 

determination of activated chicken macrophages and hint at specific differences in immune 

activation by different formulations.  

  

Figure 57 Nitrite production in HD11 cells after transfection with CpG-ODN formulations at 12 and 24 hours 

post dosing. 

Nitrite production in HD11 macrophages was measured at 12 (A) and 24 (B) hours post stimulation with CL-NPs 

using the standard Greiss assay. NP formulations were prepared as described previously. Cells were dosed with 1 µg 

CpG-ODN. Values expressed represent mean ± S.D. (n=3). 

 

5.4 Assessment of cellular toxicity after nanoparticle uptake 

 The use of non-viral gene delivery systems for DNA delivery is advantageous over viral 

delivery systems because there is no concern of integration into the cellular genome. Liposomal 

and polymer formulations are also regarded as safer than viral delivery systems. In fact, 

liposomal formulations are approved and available for human use in the market. However, 

cationic liposomes are also known to induce cellular toxicity such as cellular shrinking and 
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vacuolation [224]. Considering gemini’s cationic nature, its low CMC is advantageous in this 

manner as it can form vesicles at a relatively low molar concentration and decrease toxicity. 

Neutral lipids such as DPPC, have also shown to decrease toxicity of gemini surfactant gene 

delivery systems [182]. 

Similar to other investigations which show minimal cellular toxicity from gemini-lipid 

formulations and chitosan NP formulations, G12L-NPs, BG12L-NPs, C-NPs, and CG-NP 

formulations developed in this project were also well tolerated. This is not surprising as 

components of G12L-NPs and BG12L-NPs include PEG excipient, a biocompatible polymer [225] 

and DPPC, found in the lung environment. Chitosan was also chosen as a component of CpG-

ODN NP delivery systems formulated in this project, as it is also a highly biocompatible and 

biodegradable polymer.  

Differences in viability measurements by Calcein AM and MitoTracker Green FM were 

likely due to changes in membrane porosity as has been previously observed in PAM212 

keratinocytes transfected with gemini surfactant formulations [203]. In this study, it was 

concluded that viable mitochondrially active cells also exhibited high membrane porosity as 

membrane changes were evident after CpG-ODN and NP incubation from microscopic 

assessment 2 hours post dosing, and SSC analysis by flow cytometry. Yet, CLSM revealed 

cellular membranes returned to normal after successfully internalizing CpG-ODN. The dramatic 

increase in SSC, indicative of high cell granularity resulting from uptake of CpG-ODN G12L-

NPs, BG12L-NPs, G-NPs, CG-NPs may be the consequence of a high number of endosomes 

within cells containing NPs.  A similar phenomenon has been observed in HeLa cells following 

uptake of polymeric nanoparticles [226]. In contrast, naked CpG-ODN and C-NP transfected 

cells did not have as dramatic a shift due to lower levels of CpG-ODN uptake.  

Lipid NP formulations are known to aid gene delivery through membrane adhesion and 

endocytosis. Since macrophages are highly phagocytic cells, it is not unreasonable that there is a 

high degree of trafficking occurring upon NP interaction that could contribute to membrane 

porosity. This may contribute to Calcein AM leaking out of the cellular environment and could 

explain the low level of viability seen in this experiment. It is also important to note that cells 

transfected with blank G12L-NPs and BG12L-NPs also had low viability when measured by 

Calcein AM. In this project, cellular toxicity caused by NP formulations must be further 
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evaluated, given that the mitochondria is known to play an essential role in apoptosis. An 

important factor involved in apoptosis is the loss of mitochondrial membrane potential [205]. 

There is conflicting evidence regarding the sensitivity of MitoTracker Green dye to 

mitochondrial membrane potential and integrity. A study in 2000 determined that it was 

membrane potential sensitive, yet a more recent study has observed an opposite effect after 

treatment of cells with hydrogen peroxide [227]. Given the role of macrophages in production of 

ROS during innate immune stimulation, further work needs to be done to determine the actual 

viability and apoptotic status of the cellular population transfected with NP formulations, 

perhaps with other more sensitive apoptotic cellular markers.  

5.5 Local lung biodistribution of NPs 

Few investigators have studied the biodistribution of particles within the avian respiratory 

tract after spray vaccination. Of the few studies that exist, spray vaccine particles can provide 

local and topical treatment in air sacs [102]. Additionally, particle deposition in the avian 

respiratory tract is age dependent [102, 131]. In order to establish local drug levels in the lung 

and air sacs, it has been found that particles less than 3 µm are able to bypass the mucociliary 

transport [103]. The nebulizer used in this study theoretically generates 1-5 µM sized aerosol 

droplets as per the manufacturer and therefore should bypass mucociliary transport to a certain 

extent. Evidence of G12L-NP and BG12L-NP deposition was observed in the chick respiratory 

tract 2 hours after nebulization and can confirm that the delivery method effectively administers 

the vaccine to the lung. G12L-NPs and BG12L-NPs deposited in the trachea, the tracheal 

bifurcation, and appeared to diffuse through the connective lung tissue. This is similar to other 

investigations of particle deposition in the avian lung where larger particles deposit in the upper 

airways, particularly the tracheal bifurcation [103, 104].  

In general, extensive in vivo mammalian studies of NP distribution in the lung 

enviroment are performed with more controlled dose administration by intra-tracheal instillation 

or inhaler administration to individual  animals. However, not many groups have attempted to 

investigate whether NPs and DNA dissociate within the lung environment. In this project 

evidence of intact CpG-ODN NPs within the lung environment were found using 1%CG12-NPs 

along the mid lung region. However, 1%CG12-NPs and  1%CG16-NPs mainly appeared to 

dissociate from CpG-ODN within the first 2 hours of being in the lung environment.  
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Infection by E. coli in broiler chickens is commonly associated with pathogenic bacteria 

within the environment that can be inhaled by chicks. Therefore, confirmation of the presence of 

G12L-NP, BG12L-NP, G12-NP, and 1%CG-NP biodistribution in the chick lung confirms delivery 

of the vaccine to the chick respiratory system, and initiation of an immune response at the site of 

infection. A limitation of this project is the relatively uncontrolled dosing in individual chick 

respiratory tracts that prevents direct quantitative comparison of biodistribution by the different 

NP groups. Several birds are nebulized all at once, and therefore it cannot be determined how 

much dose is entering the respiratory tract in each bird. Additionally, particles could deposit on 

other external areas such as the eyes, nasal cavity and body. Although, deposits of vaccine in 

these areas are also thought to contribute to immunity [228].  

Compatibility between the nebulizer and formulations is a key component of efficient 

output and delivery by inhalation. The formulations administered to chicks were chosen based on 

low viscosity. Deposits of naked CpG-ODN in the lungs appeared more even than NP 

formulations. This may be due to the higher viscosity of NP formulations in general. For 

example, it was noted that the nebulizer had difficulty generating an aerosol of the 1%CG12-NP 

formulations, which had comparatively the highest viscosity among the selected formulations, 

and larger particles that settled over time. Since vibrating mesh or plate nebulizers that 

physically break up the liquid into smaller droplets work very efficiently for suspensions or 

liposomes [25], switching from a compressed air nebulization mechanism to the latter may 

improve delivery to chicks for more viscous formulations. 

 Since only short-term particle deposition was observed, further examination of the 

particle deposition at 24 hours post nebulization in the lung and perhaps other organs must be 

carried out to see if the particles are retained within the respiratory tract, and whether they get 

trafficked to other organs.  

5.6 Evaluation of protection in 1-day old chicks against E. coli challenge 

 Applications of NP drugs/vaccines could theoretically reduce dosing frequency due to the 

increased accumulation of drug per particle at specific sites [70]. Evidence of this phenomenon 

was seen in HD11 cellular CpG-ODN uptake studies. Based on CpG-ODN uptake and retention 

data, viability, nebulization compatibility, and cellular toxicity, G12-NPs and BG12L-NPs appear 

the most compatible and effective for the intrapulmonary delivery of CpG-ODN.  
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 Previous investigations of CpG-ODN administration to broiler chicks against E. coli 

challenge have reported that encapsulation with NPs have improved chick survival, decreased 

clinical scores, and lower bacterial colony counts after in ovo administration in comparison to 

naked CpG-ODN [14, 27].  

Using intrapulmonary administration in this project, PVP BGL-NPs were also able to 

enhance protection in chicks against E. coli challenge in comparison to naked CpG-ODN. This is 

advantageous as spray vaccination does not require needle administration and targets mucosal 

immunity which can produce local and systemic effects. In the first NP group tested, gemini tail 

length affected vaccine effectiveness in the following order of effectiveness in protecting chicks: 

12-3-12 ≥ 16-3-16 > 18-3-18.  Subsequently, BG12L-NPs with either PVP or CMCNa showed 

that both biopolymers were equally effective in enhancing survival rates. This may be explained 

by similarities in NP uptake, NO production and particle characteristics. For example, the 

number of CpG-ODN molecules per NP was similar in both types of NP formulations. However, 

the variability in formulation uniformity at the molecular level from manual mixing of CMCNa 

suggests that PVP is a better candidate for our application that must be easily manufactured on a 

large scale. Quantitative measures of antibody and cytokine responses in chicks treated with 

CpG-ODN NPs was not carried out in this work. However, given that other studies in broilers 

have found that encapsulation of vaccines enhances antibody titres [19, 229], it is expected that a 

similar phenomenon may occur from PVP BG12L-NP CpG-ODN delivery. 

 The hybrid 1%CG-NPs group of CpG-NPs did not enhance survival in comparison to the 

BGL-NPs. While chitosan has been highly investigated for its antibacterial properties against 

gram negative and positive bacteria [230-232], and it could be assumed that not only would the 

hybrid formulation initiate innate immune stimulation but aid in bacterial cell killing, this was 

not the case in this project. The lower efficacy of these formulations, however, may be attributed 

to nebulizer incompatibility. As previously mentioned, delivery of 1%CG12-NPs was difficult 

and produced variable results in bird survival in the protection studies.  

 One of the main goals of NP vaccine delivery is to prolong immune activation so that 

immune memory is generated without the need of repeated vaccine administration. As such, in 

the last protection experiment we aimed to compare the top 3 groups of formulations (G12-NPs, 

PVP10,000 BG12L-NPs, and 1%CG12-NPs) in prolonging innate immune stimulation effects of 
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CpG-ODN that have normally last 3-6 days [7, 82, 96]. Challenge was performed on Day four 

post vaccine administration. From the data in this experiment it is not possible to determine 

whether there are any differences between NP formulations and naked CpG as this trial showed 

no protection based on the saline control. Additional trials and specific studies CpG-ODN release 

from NPs may give more insight into the mechanisms of PVP10,000 BG12L-NP interactions with 

immune cells in the lung environment.  

As an overall assessment, the survival experimental settings were designed to gain some 

information about the optimum timing of the challenge and duration of protective effect of the 

naked CpG-ODN and NP formulations in order to help rank formulations and develop an 

understanding of the effect of NP composition on protection. We previously found that naked 

CpG-ODN solution can protect chicks up to 5 days. However the extent of protection decreased 

significantly by Day 4-5 [99], indicating that the later the chicks are challenged with E. coli after 

the vaccination, the lower the rate of survival. 

In the NP screening experiments, we have used Day 2, 3, or 4 post vaccination for 

administering the E. coli challenge. This experimental variable indicated that PVP BGL-NPs 

improved protection of chicks compared to naked CpG-ODN when challenged on Day 2 or 3, 

and appeared similarly low in protecting (although inconclusive) on Day 4 (Fig 54 A, B and D).  

5.7 Future Work 

 Future experiments could enlighten certain aspects of NP delivery that have yet to be 

confirmed. Firstly, cell toxicity resulting from NP transfection must be further characterized with 

apoptotic cell markers to confirm safety of NP formulations. Additionally, since one of the goals 

is to enhance long term immunity against bacterial infection in chicks, other cellular markers of 

immune stimulation should be identified in order to better correlate CpG-ODN uptake with 

increased innate immune stimulation. Other NP internalization characteristics could also be 

explored such as identification of specific phagocytic mechanisms involved in chicken 

macrophage cellular NP uptake so that perhaps NP formulations that are able to enter through 

several mechanisms would be able to better CpG-ODN antigen presentation and receptor 

interaction. 

 Another major future endeavour that should be monitored is specific stability of NP 

formulations by UPLC. Although a method was developed for detection of CpG-ODN in NPs, 
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specific stability studies were not performed. Additionally, correlation between degradation and 

transfection effectiveness should be investigated.  
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Conclusion 

 CpG-ODN DNA is a promising approach to vaccinate vulnerable broiler chicks against 

bacterial infections common to birds such as E. coli infection. Past investigations have shown 

that NP delivery systems can improve protection of chicks in vivo via in ovo routes of 

vaccination [14, 27]. In this project, gemini surfactants, phospholipids and bio adhesive 

polymers, were tested as the foundation for formulation of six types of hybrid NPs for delivering 

CpG-ODN DNA to the respiratory tract of neonatal chicks via nebulization. Optimization of 

polymer concentration and type allowed the determination of promising formulations that 

improved CpG-ODN uptake and retention compared to the naked CpG-ODN in HD11 cells in 

vitro. Additionally, the formulations were able to activate NO production in macrophages, an 

internal mechanism for intracellular bacterial killing. Of the six formulation groups, gemini 

containing formulations G12-NPs, G12L-NPs, PVP 10,000 BG12L-NPs, and 1% CG12,16-NPs were 

the most promising candidates for delivering CpG-ODN vaccine to broiler chicks. All four NP 

types were detected in the chick respiratory tract. This confirms the delivery method, although 

PVP 10,000 BG12L-NPs were able to improve protection against E. coli in chicks with minimal 

toxicity with respect to naked CpG-ODN, while G12-NPs and other hybrid NPs made with 

chitosan polymer did not. In this project, PVP 10,000 BG12L-NPs show potential as vaccine 

candidates for further development into the first inhalable CpG-ODN NP vaccine on the market 

for poultry. 
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Appendix 

A.1 Particle size distribution graphs 

 

Figure 58 Size distribution by intensity for GL-NP blank particles and final CpG-ODN formulations 

formulated in PEG400 (top) and PG (bottom) excipients 
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Figure 59 Size distribution by intensity for BG12L-NP blank particles in PEG400 (left column) and PG (right 

column) excipients 
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Figure 60 Size distribution by intensity for BG12L-NP final formulations in PEG400 (left column) and PG 

(right column) excipients 
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Figure 61 Size distribution by intensity for gemini micelles (left column) and final gemini CpG-ODN 

complexes (right column) 

 

Figure 62 Size distribution by intensity for C-NPs 
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Figure 63 Size distribution by intensity for 0.1% CG-NP blank particles formulated with and without PBS 

and TE buffers 
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Figure 64 Size distribution by intensity for 0.1% CG-NPs formulated with and without PBS and TE buffers 
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Figure 65 Size distribution by intensity for 1% and 2% CG-NP blank particles 

0.1 1 10 100 1000 10000
0

10

20

30

40

Diameter (nm)

In
te

n
s
it

y
 (

P
e
rc

e
n

t)

0.1 1 10 100 1000 10000
0

10

20

30

40

50

Diameter (nm)

In
te

n
s
it

y
 (

P
e
rc

e
n

t)

0.1 1 10 100 1000 10000
0

20

40

60

80

Diameter (nm)

In
te

n
s
it

y
 (

P
e
rc

e
n

t)

0.1 1 10 100 1000 10000
0.0

0.2

0.4

0.6

0.8

1.0

Diameter (nm)

In
te

n
s
it

y
 (

P
e
rc

e
n

t)

0.1 1 10 100 1000 10000
0

20

40

60

80

Diameter (nm)

In
te

n
s
it

y
 (

P
e
rc

e
n

t)

0.1 1 10 100 1000 10000
0

10

20

30

40

Diameter (nm)

In
te

n
s
it

y
 (

P
e
rc

e
n

t)

1% CG12- NP 2% CG12- NP

1% CG16- NP 2% CG16- NP

1% CG18- NP 2% CG18- NP



 184 

 

Figure 66 Size distribution by intensity for 1% and 2% CG-NPs 

 

Figure 67 Size distribution by intensity for AG-NPs of blank particles 
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Figure 68 Size distribution by intensity for CL-NP formulation 

 

Figure 69 Size distribution by intensity for A-NPs and AG-NPs 

 

 

Figure 70 Size distribution by intensity for CHA-NP blank particles 
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Figure 71 Size distribution by intensity for HA-NPs and CHA-NPs 

 

A.2 Retention and viability results from discontinued particles 

 

 

Figure 72 Retention of CpG-ODN uptake 24 hours post stimulation in HD11 macrophages with A-NPs, HA-

NPs, AG-NPs 

HD11 cells were dosed with 1 µg of CpG-ODN Hyaluronic acid (Biopolymer 5) and Sodium Alginate (Biopolymer 

6) hybrid NP formulations and were compared in their ability to enhance CpG-ODN uptake in comparison to naked 

CpG-ODN. Chitosan used for formulation development was low MW chitosan of 50-190 kDa dissolved in 1% 

acetic acid. Retention of CpG-ODN uptake at 24 hours post dosing is shown. Values expressed represent mean ± 

S.D. , n=3.  
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Figure 73 Dose dependent toxicity of G12L-NPs (no biopolymer) and PVP 10,000 (biopolymer 1) BG12L-NPs 

in HD11 chicken macrophages in comparison to naked CpG-ODN stimulation and untreated cells 

HD11 chicken macrophage cells were stimulated with increasing quantities of CpG-ODN G12L-NP and BG12L-NP 

formulations. Cell viability was measured after 4 hours of stimulation using Calcein AM cell permeant dye and 

analyzed using flow cytometry. Fluorescent threshold was determined with untreated unstained cells. Values 

expressed represent mean ± S.D. , n=3.  

 

Figure 74 Cellular toxicity resulting from transfection with HA-NPs, A-NPs and AG-NPs in HD11 chicken 

macrophages 24 hours post stimulation with CpG-ODN NPs 

HD11 cells were dosed with 1 µg of CpG-ODN Hyaluronic acid (Biopolymer 5) and Sodium Alginate (Biopolymer 

6) hybrid NP formulations Chitosan used for formulation development was low MW chitosan of 50-190 kDa 

dissolved in 1% acetic acid. Cell toxicity based on percent viability by MitoTracker Green FM after transfection 

with CpG-ODN NPs 24 hours post dosing is shown. Values expressed represent mean ± S.D. , n=3. 
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