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Abstract

As pointed out by many researchers in the last few decades, differential equations with fractional (non-integer)
order differential operators, in comparison with classical integer order ones, have apparent advantages in modelling
mechanical and electrical properties of various real materials, e.g. polymers, and in some other fields. The stability
and control of Caputo fractional order systems (systems of ordinary differential equations with fractional order differ-
ential operators of Caputo type) will be focused in this thesis. Our studies begin with Caputo fractional order linear
systems, for which, three frequency-domain designs: pole placement, internal model principle and model matching,
are developed to make the controlled systems bounded-input bounded-output stable, disturbance rejective and im-
plementable, respectively. For these designs, fractional order polynomials are systematically defined and their root
distribution, coprimeness, properness and ρ − κ polynomials are well explored. We next move to Caputo fractional
order nonlinear systems, of which the fundamental theory including the continuation and smoothness of solutions is
developed; the diffusive realizations are shown to be equivalent with the systems; and the Lyapunov-like functions
based on the realizations prove to be well-defined. This paves the way to stability analysis. The smoothness property
of solutions suffices to yield a simple estimation for the Caputo fractional order derivative of any quadratic Lyapunov
function, which together with the continuation leads to our results on Lyapunov stability, while the Lyapunov-like
function contributes to our results on external stability. These stability results are then applied to H∞ control, and
finally extended to Caputo fractional order hybrid systems.
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Chapter 1

Introduction

1.1 Motivation

In the last few decades, engineers and scientists have developed new models based on fractional order differential
equations, which have been applied successfully, e.g. in material science ( modelling of the behaviour of viscoelastic
materials [32], relaxation and reaction kinetics of polymers [33]), fractal theory (modelling of the dynamical pro-
cesses in self-similar and porous structures [34], advection and dispersion of solutes in natural porous or fractured
media [35]), and psychology (modelling of the behavior of human beings based on memories [36, 37]). As explained
in Remark 6.4 [1], fractional order operators are a very natural tool to model memory-dependent phenomena. They
provide an excellent instrument for the description of memory and hereditary properties of various materials and pro-
cesses, which endows fractional order models, in comparison with classical integer order ones, apparent advantages
in modelling mechanical and electrical properties of real materials, e.g. polymers, and in many other fields [2].

There are mainly two types of fractional order derivatives (generalizations of dn f (t)/dtn to the case n < {1, 2, ...}):
the Riemann-Liouville fractional order derivative and the Caputo fractional order derivative. The former concept is the
historically first. However, the initial conditions of ordinary differential equations with Riemann-Liouville fractional
order derivatives involve the limit values of the Riemann-Liouville fractional order derivatives at the lower terminals
[2]. In practical applications, these values are frequently not available, and it may not even be clear what their
physical meaning is [38]. In other words, there is no known physical interpretation for such types of initial conditions
[2]. Thus, the solutions of these initial value problems are practically useless [2]. To avoid this practical difficulty,
Caputo proposed the so-called Caputo fractional order derivative in 1967, so that the initial conditions for ordinary
differential equations with Caputo fractional order derivatives take on the same form as for integer order differential
equations, i.e. have known physical interpretations [39]. Nevertheless, the mathematical theory in this area seems to
be still lagging behind the needs of those practical applications. In the thesis, we intend to complement the theory
centering on Caputo fractional order systems (systems of ordinary differential equations with Caputo fractional order
derivatives), and their stability and control.
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Figure 1.1: Design of control systems.

As the simplest type of systems, Caputo fractional order linear systems have aroused much interest in the past two
decades, especially in the area of control. D. Matignon studied the bounded-input bounded-output (BIBO) stability in
1998 [5]. One year later, I. Podlubny proposed the fractional order (PIλDµ) controller [40], and I. Petras and L. Dorak
introduced the frequency method [41]. In the new century, M. Karimi-Ghartemani, F. Merrikh-Bayat and H. Rasouli
made some new theoretical progresses, see [6, 42, 43]. Except for those results in theory, Caputo fractional order
linear control systems (Caputo fractional order linear systems with control inputs) also have had various practical
applications: control of magnetic fluxes [43], DC motors [12, 44], and electrical radiators [45, 46, 47]. As appearing
in these mentioned references, Caputo fractional order linear control systems, just like most of control systems, can
be formulated as shown in Figure 1.1 referred from [9], in which the plant and the reference signal r(t) are given, and
the control u(t) (or an overall system) is to be designed so that the plant output y(t) will follow as closely as possible
the reference signal. In order to avoid outputs blowing up, to reject disturbance, and to well implement systems by
hardware, e.g. circuits, designed control systems are required to be stable (at least BIBO stable), disturbance rejec-
tive and implementable in practice. For these basic requirements of different aspects, the corresponding frequency
methods (or designs in frequency domain): pole placement, internal model principle and model matching have been
introduced, respectively. The pole placement is a method employed in feedback control system theory to place the
closed-loop poles of a plant in pre-determined (desired) locations in the s-plane [48]. For disturbance rejection, the
internal model principle, in which the internal model supplies closed-loop transmission zeros which cancel the unsta-
ble poles of the disturbance and reference signals, was introduced by B.A. Francis and W.M. Wonham in 1976 [49].
In 1987, C.T. Chen proposed the concept of implementable transfer function: an overall transfer function that can be
implemented under four constrains - properness of compensators, well posedness, total stability and no plant leak-
age, and introduced the two-degrees-of-freedom configuration model matching to realize the implementable transfer
functions [10].

As discussed above, the pole placement, internal model principle and model matching for integer order linear
control systems have been well investigated [48, 49, 10]. However, these design problems still remain open for
Caputo fractional order linear control systems. A Caputo fractional order linear control system, in the frequency
domain, is given by a transfer function - a quotient of two fractional order polynomials. For example, consider a well-
known fractional order control system [45], 0.8 C

0 D2.2
t y(t)+0.5 C

0 D0.9
t y(t)+y(t) = u(t) with zero initial condition, where

u, y denotes the control input, output, and CD denotes the Caputo fractional order derivative. The Laplace transform
of the derivative with zero initial condition has the form: L [C

0 Dα
t x(t)] = sαX(s), where s denotes the variable in the

frequency domain and the capital letter X denotes the Laplace transform function of x, see page 106 in [2]. It follows
that the transfer function of the system is G(s) = Y(s)/U(s) = 1/(0.8s2.2 + 0.5s0.9 + 1), which is a ratio of fractional
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order polynomials. The fractional order polynomials are defined on the Riemann surface (for more about the Riemann
surface, see page 171 in [7]), unlike regular complex polynomials forming transfer functions of integer order linear
control systems, only defined on the complex plane. This difference essentially complicates the fractional-version of
those three frequency-domain designs. As far as we know, M. Karimi-Ghartemani and F. Merrikh-Bayat, in 2008,
proposed the definition of fractional order polynomial with fractional degree and explored the distribution of roots
of fractional order polynomials on the Riemann surface. Based on this, they further investigated the internal model
principle [6]. But it is not constructive, i.e. they did not give an algorithm to design the internal model for a specific
control system. There may be two main reasons for this limitation. First, advanced definitions related to fractional
order polynomials, such as fractional order basis, kth corresponding polynomial and relative fractional degree, and
their related properties including root distribution, coprimeness, properness and ρ−κ polynomial, which are necessary
to realize pole placement and design internal model constructively, had not been proposed and explored. Second,
the pole placement for Caputo fractional order linear control systems, which is necessary for the internal model
principle (because the internal model principle requires not only that the internal model includes the least common
denominator of all unstable poles but also that the poles of the whole system are placed at desired locations), had not
been investigated. In 2013, F. Merrikh-Bayat studied isolatedly (without pole placement, internal model principle and
model matching) fractional order unstable pole-zero cancellation [42]. In 2015, H. Rasouli etc. proposed an algorithm
for the fractional-version pole placement under an implicit assumption that their Diophantine equations were solvable
(i.e. without sufficient condition) [43]. As for the fractional-version model matching, we can not find related results.

The Lyapunov stability of Caputo fractional order nonlinear systems has not been fully investigated yet as well,
even though there have been some results. Some criteria of Lyapunov stability for Caputo fractional order nonlinear
nonautonomous scalar systems were proposed in [1]. As the most important tool to investigate Lyapunov stability, the
Lyapunov direct method for fractional order nonautonomous systems was presented in [21, 22]. However, it is not very
easy to apply this method in practice. Since the fractional order derivative of any quadratic Lyapunov function is an
infinite series even if the solution (or the state variable) involved in this function is analytic in t [1], it seems difficult to
prove this fractional order derivative to be negative definite as required by the method. In order to apply the Lyapunov
direct method or investigate the Lyapunov stability, some authors proposed special functionals [50, 51], while some
others assumed the boundedness condition of the fractional order derivative [52, 53]. However, the problem has
not been really solved. Up to 2014, Aguila-Camacho etc., assuming that the solution is differentiable, proposed
an inequality to estimate the Caputo fractional derivative of a quadratic Lyapunov function, which provided a new
thought to overcome the difficulty, see [16]. But, in general, even if the vector field function is infinitely many times
differentiable, the derivative of the solution of a Caputo fractional order system may go to infinity at the initial time,
i.e. the solution is not certainly differentiable. For example, the non-differentiable function x given by x(t) = t1/2 is
the unique solution of the Caputo fractional order differential equation C

0 D1/2
t x(t) = Γ(3/2) with x(0) = 0, in which the

vector field function f = Γ(3/2) is analytic, see page 116 in [1]. Unfortunately, this imperfect point has been always
overlooked and the proposed inequality has been directly used in over one hundred research articles, e.g. [54, 55, 56].
Except for the difficulty in applying, there is another problem in the fractional Lyapunov direct method. Without any
results available on the continuation of solutions to Caputo fractional order systems, the method implicitly assumes
a direct consequence of the continuation: boundedness suffices global existence. Specifically, in [21, 22], only local
Lipschitz conditions are assumed but Laplace transforms of Lyapunov functions involving solutions are taken. From
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this discussion, we may have noticed that those two problems of the Lyapunov direct method for Caputo fractional
order systems originally arise from the lack of results on the continuation and smoothness of solutions.

As well known, the continuation of solutions is an indispensable part of the fundamental theory of differential
equations, because it tells us the tendency of solutions - a solution of a given differential equation with continuous
vector field function will tend to the boundary of the function’s domain. As such, it is important for investigating the
global existence and Lyapunov stability of solutions. Without the knowledge of continuation, we would have to first
assume the global Lipschitz condition to guarantee the global existence, when studying the Lyapunov stability by the
Lyapunov direct method. Naturally, all these are the same for Caputo fractional order differential equations. There
have been many local existence and uniqueness results for Caputo fractional order differential equations, of which
some were systematically presented, see Section 6.1, 6.2 in [1] and Section 3.5.1 in [4]. Compared to local ones,
fewer global results have appeared, see Corollary 6.4, 6.7, 6.9 in [1], and [57], where comparison, global Lipschitz,
and global Lipschitz like conditions are assumed. As far as we know, no global existence result has been derived from
the general continuation of solutions yet. Up to 2016, Li and Sarwar proposed a continuation result for a scalar Caputo
fractional order differential equation whose vector field function is define on (0,∞) × R [19]. As what we have read,
all these results on the existence, uniqueness and continuation of solutions are only for scalar differential equations
with zero initial time. Those for systems are all omitted and left to readers. Moreover, no general continuation result
like the well-known continuation theorem for ordinary differential equations is developed.

It is common sense that the solutions to ordinary differential equations are differentiable (or smooth) if the vector
field functions are continuous. However, this is not the case for the solutions to Caputo fractional order differential
equations. In the example mentioned at the bottom of the last page, the solution x(t) = t1/2 is not differentiable (at t =

0), even though the vector field function f = Γ(3/2) is analytic. Here an interesting question for the smoothness of the
solution to a Caputo fractional order differential equation with a sufficiently smooth vector field function (on the right-
hand side of the equation) arises. This is a core question for the convergence analysis of numerical solutions to weakly
singular integral equations [14], and for the Lyapunov stability analysis of Caputo fractional order systems since the
smoothness property could be used to derive an estimation for the Caputo fractional order derivative of any quadratic
Lyapunov function. However, only few papers delved into this question. In 1971, Miller and Feldstein in [58] studied
the differential properties of solutions to nonlinear integral equations of the form: x(t) = f (t) +

∫ t
0 a(t − s)g(s, x(s))ds,

0 ≤ t ≤ T , where f (t) and g(t, x) are smooth functions, a(t) ∈ C(0,T ] ∩ L1(0,T ) but a(t) may become unbounded
as t → 0. Let a(t) = tα−1, α > 0, then it satisfies the smoothness condition and x(t) may be considered as a solution
on [0,T ] to a Caputo fractional order differential equation. With some additional assumptions on g and a, and an
assumption of global existence of solution on [0,T ], it was proven that x(t) ∈ C[0,T ] ∩ C1(0,T ]. In 1999, Brunner,
Pedas and Vainikko in [59] investigated the smoothness of solutions to nonlinear weakly singular Volterra equations
that may be considered as Caputo fractional order differential equations when the weakly singular kernels are taken
to be the convolution kernels appearing in the equivalent integral equations of Caputo fractional order differential
equations. They applied the smoothness results from [15] to prove that the solutions belong to a space of special
smooth functions. In 2014, Pedas and Tamme in [14] worked on the smoothness properties of solutions to nonlinear
fractional differential equations. Following a similar idea (of the fixed point theorem) to [15], they concluded that the
solutions are in the same space of special smooth functions as the one mentioned above. We find that these results are
only for scalar equations with fixed initial time 0, in which the existence of solutions on some intervals is assumed.

4



There is no result available on the differential properties of local and global solutions to systems of Caputo fractional
order differential equations with arbitrary initial time.

Similar to Lyapunov stability (called internal stability for linear systems) that describes the insensitivity of the
solution x of a dynamical system to small changes in its initial condition x0, external stability measures the reflection
on the output y of a control system with zero initial condition from its input u by an L2 norm inequality ||y||L2 ≤ γ||u||L2 ,
where γ is called the L2 gain [23]. In other words, if every input u ∈ L2 of a control system generates a zero-state
output y ∈ L2, then the control system is externally stable. External stability plays a special role in system analysis
because it is natural to work with square integrable signals which can be viewed as finite energy signals [60]. As
well known, if one thinks of u(t) as current or voltage, then uT (t)u(t) is proportional to the instantaneous power of
the signal, and its integral over all time is a measure of the energy content of the signal. There are many control
problems related to the L2 norm inequality (external stability) for integer order control systems such as H∞ control
[61], disturbance attenuation [62] and L2 gain analysis [63]. For fractional order linear control systems, there are
already some results in this area such as H∞ control [64], Lp norm finiteness property [65] and H2 norm computation
[66]. However, it is rare to see related results for fractional order nonlinear control systems. As far as we consider,
this is mainly because it is not easy to involve the vector field function into the proof of the L2 norm inequality,
through the Caputo fractional order derivative of an usual Lyapunov function V . For integer order nonlinear control
systems, we can just integrate the both sides of yT (t)y(t) − γ2uT (t)u(t) + V̇(t) ≤ 0 from 0 to ∞, e.g. see (26) in [67].
But after replacing V̇ by C

0 Dα
t V(t), we cannot easily do it any more. One the one hand, to derive an estimation of

C
0 Dα

t V(t), assumptions more than continuity should have been imposed on u(t). On the other hand, it is hard to deal
with the improper integral of C

0 Dα
t V(t). Fortunately, the diffusive realization presented in [24] and the Lyapunov-like

function proposed in [25] provide us an inspiration to solve this problem, even though the equivalence between Caputo
fractional order control systems and their diffusive realizations, and the existence of the Lyapunov-like function both
need to be proven.

This thesis is motivated by all those mentioned theory deficiencies in our research area, and organized according
to the order that they have been introduced. In Chapter 2, after necessary preliminaries, we first systematically define
fractional order polynomials and investigate their root distribution, coprimeness, properness and ρ − κ polynomials,
then develop the fractional-version of three frequency-domain designs: pole placement, internal model principle and
model matching. In Chapter 3, the fundamental theory of Caputo fractional order systems with arbitrary initial time
including the continuation and smoothness of solutions is first developed. Then the smoothness part is used to derive
an estimation for the Caputo fractional order derivative of a general quadratic Lyapunov function, which together with
the continuation part solves the Lyapunov stability problem for Caputo fractional order nonlinear systems. On the
other hand, the equivalence between Caputo fractional order nonlinear control systems and their diffusive realizations,
and the existence of the Lyapunov-like functions based on the realizations, are both proven, which solve the external
stability problem for Caputo fractional order nonlinear control systems. Finally, these results of two aspects are
applied to H∞. In Chapter 4, the results on the Lyapunov and external stability for Caputo fractional order nonlinear
systems are extended for Caputo fractional order hybrid systems. In Chapter 5, conclusions and future work are
summarized.

5



1.2 An Example Application

To illustrate the application of fractional order differential equations, we introduce a realistic example of modelling
mechanical property of real materials.

The traditional way to describe the behaviour of certain materials under the influence of external forces, specif-
ically, the relation between stress (tension) σ and strain (deformation) ε, uses the laws of Hooke and Newton. If we
are dealing with elastic solid, Hooke’s law

σ(t) = Eε(t), (1.1)

where E is the modulus of elasticity of the material, is the method of our choice. If the object is viscous fluid, then
Newton’s law

σ(t) = ηD1ε(t), (1.2)

where η is the viscosity of the material and D1 denotes the first order differential operator, can be applied. There
are various ordinary linear models such as Maxwell, Voigt, Zener and Kelvin, representing different series or parallel
combinations of Hooke and Newton type units, of which a general form can be given by [4],

n∑
k=0

akDkσ(t) =

m∑
k=0

bkDkε(t).

However, as summarized in [4], these classical models did not adjust themselves well to the behaviour demonstrated
by many viscoelastic materials. The so-called viscoelastic materials, e.g. polymers, exhibit a behaviour somewhere
between the pure viscous fluid and the pure elastic solid [1].

In 1971, Caputo and Mainardi proposed the following model based on four parameters [68],

σ(t) + b C
0 Dα

t σ(t) = E0ε(t) + E1
C
0 Dα

t ε(t), (1.3)

where 0 < α < 1 and CD denotes the Caputo fractional order derivative. Fifteen years later, Bagley and Torvik
consolidated this as the definitive model with the following restrictions

E0 ≥ 0, E1 > 0, b ≥ 0; E1 ≥ bE0.

and also showed experimentally that this model is in close agreement with the behaviour of over one hundred and
fifty viscoelastic materials [69]. Let b = 0 and E0 = 0, then (1.3) becomes

σ(t) = E1
C
0 Dα

t ε(t). (1.4)

As we observe, the equation (1.4) ”interpolates” between (1.1) (that may be considered as σ(t) = ED0ε(t)) and (1.2).

In fact, (1.4) with E1 =
√

Eη and α = 1/2 is equivalent to the self-similar (fractal) tree model for viscoelastic
materials shown in Figure 1.2, where springs and pistons represent the elastic and viscous properties of the materials
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Figure 1.2: Self-similar tree model for viscoelastic materials

respectively, and the modulus of each spring and the viscosity of fluid in each piston are E and η, respectively. Now
we begin to show this equivalence. Taking the Laplace transform of (1.1), and (1.2) with ε(0) = 0 yields,

GE(s) =
L [ε(t)]
L [σ(t)]

=
1
E
,Gη(s) =

L [ε(t)]
L [σ(t)]

=
1
sη
.

Then the transfer function of each spring GE and piston Gη is 1/E and 1/(sη), respectively. There are two facts useful
for the derivation of a total transfer function of a series or parallel combination of these elastic and viscous units. In
any series branch, the stress on each component of the branch is equal; in any two parallel branches with the same
terminals, the strain of each branch is equal. Let Gn denote the total transfer function of the tree that has n levels of
branches, then

G1 =
1

1
GE

+ 1
Gη

, G2 =
1

1
GE+G1

+ 1
Gη+G1

, G3 =
1

1
GE+G2

+ 1
Gη+G2

, ... .

Thus, the total transfer function of the tree shown in Figure 1.2, G = limn→∞Gn. On the other hand, due to the self-
similar nature of the tree: any part of the tree from any branching point to ”infinity” is identical to the whole tree (for
a definition of self-similarity, see page 34-41, 349-350 in [34]),

G =
1

1
GE+G + 1

Gη+G

.

Therefore,

G =
√

GEGη =
1
√

Eη
s−

1
2 .

In the time domain,
σ(t) =

√
Eη C

0 D
1
2
t ε(t).

7



Chapter 2

Linear System

To design Caputo fractional order linear control systems in the frequency domain, as required to be BIBO stable,
disturbance rejective and implementable, the fractional-version pole placement, internal model principle and model
matching are developed in this chapter.

As introduced in Chapter 1, the pole placement is a method employed in feedback control system theory to place
the closed-loop poles of a plant in pre-determined locations in the s-plane. Referring to Figure 2.1, it is, for a given
plant G(s), to design the compensator C(s) such that all poles of the closed-loop control system are placed in desired
locations out of the closed right half plane of the principal sheet of the Riemann surface, i.e. the overall system is
BIBO stable.

As we know, in the internal model principle, the internal model supplies closed-loop transmission zeros which
cancel the unstable poles of the disturbance and reference signals. In Figure 2.2, the internal model is a block 1/φ(s)
inserted inside the loop, between the input terminal of the reference r (and feedback) and that of the plant G(s), of
which the denominator φ(s) includes the least common denominator of the unstable poles of the disturbance w and
reference r such that the output component excited by the disturbance yw(t) → 0 and the output component excited
by the reference yr(t) → r then the output y(t) → r, as t → ∞, i.e. the effect of the disturbance w(t) will be rejected
and the output y(t) will approach the reference r asymptotically, as desired.

We consider the two-degrees-of-freedom configuration model matching to realize implementable transfer func-
tions. That is: given a plant with transfer function G(s) and given a desired overall transfer function Go(s), to find a
proper compensator with two inputs and one output C(s) such that the closed-loop transfer function of every possible
input-output pair is proper and BIBO stable, see Figure 2.3.

Before coming to these three cores, it is necessary to first give a definition for fractional integral, differential
operators and Mittag-Leffler functions, and an introduction to BIBO stability. As a prerequisite for the pole place-
ment, internal model principle and model matching, fractional order polynomials and their properties including root
distribution, coprimeness and properness are well defined and explored. Especially, for the internal model principle,
ρ − κ polynomials are proposed with a constructive algorithm to formulate the fractional-version internal model.
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2.1 Preliminaries

Now we are in a position to give a first definition for fractional integral and differential operators, and an introduction
to Caputo fractional order linear systems and BIBO stability.

2.1.1 Fractional Calculus

The uniform formula of a fractional integral with γ > 0 is defined on L1[a, b] by

aD
−γ
t f (t) =

1
Γ(γ)

∫ t

a

f (τ)
(t − τ)1−γ dτ, a ≤ t ≤ b,

where Γ(·) denotes the Gamma function, which converges in the right half of the complex plane [1].

For an arbitrary positive real fractional (non-integer) number q, the Riemann-Liouville and Caputo fractional
derivatives are defined respectively as

R
a Dq

t f (t) = D[q]+1[aD
−([q]−q+1)
t f (t)];

C
a Dq

t f (t) = aD
−([q]−q+1)
t [D[q]+1 f (t)],

where [q] stands for the integer part of q; D, RD and CD denote the first-order derivative, Riemann-Liouville and
Caputo fractional derivatives respectively [1].

If f ∈ AC[q]+1[a, b] (the set of functions with absolutely continuous derivative of order [q]), then the fractional
derivatives R

a Dq
t f and C

a Dq
t f exist almost everywhere on [a, b] [1]. In particular, for 0 < q < 1, R

a Dq
t f and C

a Dq
t f exist

almost everywhere on [a, b] if f ∈ AC[a, b].

One important property of integer order integral operators is preserved as follows, see Theorem 2.2 in [1].

Theorem 2.1.1. [1] Let p, q ≥ 0 and f ∈ L1[a, b]. Then aD
−p
t aD

−q
t f = aD

−(p+q)
t f holds almost everywhere on [a, b].

If additionally f ∈ C[a, b] or p + q ≥ 1, then the identity holds everywhere on [a, b].

When it comes to the composition of fractional integrals and Caputo fractional derivatives, we find that the Caputo
derivative is a left inverse of the fractional integral as stated in the following theorem, see Theorem 3.7 in [1].

Theorem 2.1.2. [1] If f is continuous and q ≥ 0, then C
a Dq

t aD
−q
t f = f .

In general, it turns out that the Laplace transform is an extremely useful tool for the analysis of linear differential
equations. More precisely, that is the foundation of frequency analysis. Here we introduce the Laplace transform of
the Caputo fractional order derivative, see the following theorem originated from Theorem 7.1 in [1].

Theorem 2.1.3. [1] Assume that f : [0,∞) → R is such that the Laplace transform L f = F(s) exists on [s0,∞)
with some s0 ∈ R. Then for s > max{0, s0}, L [C

0 Dq
t f (t)] = sqF(s) −

∑[q]
k=1 sq−k f (k−1)(0).
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2.1.2 System Solution

As the exponential function, ez, in the theory of integer order linear differential equations, the Mittag-Leffler function
plays a similar and important role in fractional order linear systems, see Theorem 2.1.4. The Mittag-Leffler function
is defined by

Eα(z) =

∞∑
k=0

zk

Γ(kα + 1)
,

where α > 0 and z ∈ C is a complex number. The Mittag-Leffler function with two parameters is defined by

Eα, β(z) =

∞∑
k=0

zk

Γ(kα + β)
,

where β > 0. For all z ∈ C, Eα, β is convergent, i.e. Eα, β is an entire function [1]. For β = 1, Eα,1(z) = Eα(z). In
particular, E1,1(z) = ez.

The Laplace transform of the Mittag-Leffler function (multiplied by the power function) with two parameters is

L [tβ−1Eα, β(−ztα)] =
sα−β

sα + z
, Re(s) > |z|

1
α ,

where t, s are the variables in the time domain and frequency domain, respectively, and Re(s) denotes the real part of
s [2].

Now we are ready to introduce the Caputo fractional order linear control system and its solution as follows. In
fact, there are already some results on solutions to linear systems, e.g. [1] pp.135, [3] pp.43 and [4] pp.323. However,
the first one here is only for scalar differential equations with zero initial time, while the latter two are derived by using
the Laplace transform without an assumption of continuity imposed on inputs. As we can see below, the continuity
assumption is necessary.

Theorem 2.1.4. Assume u ∈ (C[t0, t0 + c],Rl), then the Caputo fractional order linear control system
C
t0 Dα

t x = Ax + Bu
y = Cx + Du
x(k)(t)|t=t0 = x0,k, k = 0, 1, 2, ...,m,

(2.1)

where m < α < m + 1, m ∈ {0, 1, 2, ...}, x ∈ Rn and y ∈ Rp, has a unique solution x(t) ∈ Cm[t0, t0 + c] and

x(t) =

m∑
k=0

{t0D
−k
t Eα[A(t − t0)α]}x0,k +

∫ t

t0
(t − τ)α−1Eα,α[A(t − τ)α]Bu(τ)dτ.

Proof. Clearly, the uniqueness is trivial. We then show that the given solution satisfies the system equation. According
to the definitions of the fractional integral and Mittag-Leffler function,

t0D
−k
t Eα[A(t − t0)α] =t0D

−k
t

∞∑
j=0

A j(t − t0) jα

Γ( jα + 1)
=

∞∑
j=0

A j(t − t0) jα+k

Γ( jα + k + 1)
.
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Then

C
t0 Dα

t {t0D
−k
t Eα[A(t − t0)α]} = C

t0 Dα
t [
∞∑
j=0

A j(t − t0) jα+k

Γ( jα + k + 1)
] =t0D

−(m+1−α)
t Dm+1[

∞∑
j=0

A j(t − t0) jα+k

Γ( jα + k + 1)
]

= t0D
−(m+1−α)
t [

∞∑
j=1

A j(t − t0) jα+k−m−1

Γ( jα + k − m)
] =

∞∑
j=1

A j(t − t0)( j−1)α+k

Γ[( j − 1)α + k + 1]

= A
∞∑
j=0

A j(t − t0) jα+k

Γ( jα + k + 1)
= A t0D

−k
t Eα[A(t − t0)α].

The convolution term of the solution can be rewritten as∫ t

t0
(t − τ)α−1Eα,α[A(t − τ)α]Bu(τ)dτ =

∫ t

t0
(t − τ)α−1[

∞∑
j=0

A j(t − τ) jα

Γ( jα + α)
]Bu(τ)dτ

=

∞∑
j=0

A j 1
Γ[( j + 1)α]

∫ t

t0

Bu(τ)
(t − τ)1−( j+1)α dτ

=

∞∑
j=0

A j
t0D

−( j+1)α
t Bu(t).

Due to u(t) ∈ C[t0, t0 + c], according to Theorem 2.1.1 and 2.1.2,

C
t0 Dα

t {

∫ t

t0
(t − τ)α−1Eα,α[A(t − τ)α]Bu(τ)dτ} =

∞∑
j=0

A j C
t0 Dα

t [t0D
−( j+1)α
t Bu(t)] =

∞∑
j=0

A j
t0D

− jα
t Bu(t)

= Bu(t) + A
∞∑
j=1

A j−1
t0D

−[( j−1)+1]α
t Bu(t)

= Bu(t) + A
∞∑
j=0

A j
t0D

−( j+1)α
t Bu(t)

= A
∫ t

t0
(t − τ)α−1Eα,α[A(t − τ)α]Bu(τ)dτ + Bu.

Next we shall show that the solution satisfies the initial condition. Trivially,

Di
t0D

−k
t Eα[A(t − t0)α]|t=t0=

{
t0D

−(k−i)
t Eα[A(t − t0)α]|t=t0 = 0, i < k;

Eα[A(t − t0)α]|t=t0 = 1, i = k.

For i > k, 1 ≤ i − k ≤ m and

Di
t0D

−k
t Eα[A(t−t0)α] = Di−kEα[A(t−t0)α] = Di−k

∞∑
j=0

A j(t − t0) jα

Γ( jα + 1)
=

∞∑
j=1

A j(t − t0) jα−i+k

Γ( jα + 1 − i + k)
.
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As t = t0, it equals 0. Thus, for i = 0, 1, ...,m, we have Di ∑m
k=0{t0D

−k
t Eα[A(t − t0)α]}x0,k = x0,i as t = t0, and it is

continuous on [t0, t0 + c]. Moreover,

Di
∫ t

t0
(t − τ)α−1Eα,α[A(t − τ)α]Bu(τ)dτ = Di

∞∑
j=0

A j
t0D

−( j+1)α
t Bu(t) =

∞∑
j=0

A j
t0D

−[( j+1)α−i]
t Bu(t).

Since u(t) is continuous on [t0, t0 + c], D−[( j+1)α−i]
t Bu(t) is continuous on [t0, t0 + c], and

t0D
−[( j+1)α−i]
t Bu(t) =

1
Γ[( j + 1)α − i]

∫ t

t0

Bu(τ)
(t − τ)1−[( j+1)α−i] dτ ≤

||B||1 maxt0≤t≤t0+c ||u(t)||1
Γ[( j + 1)α − i][( j + 1)α − i]

(t − t0).

Thus, Di
∫ t

t0
(t − τ)α−1Eα,α[A(t − τ)α]Bu(τ)dτ = 0, as t = t0. Therefore, x(t) ∈ Cm[t0, t0 + c] and x(k)(t)|t=t0 = x0,k, k =

0, 1, 2, ...,m. �

The time-domain linear control system (2.1) can be also represented by its transfer function in frequency domain.
Assume that the Laplace transform of u(t) exists. Taking the Laplace transform in (2.1) with t0 = 0 and x0,k = 0 for
each k, we derive

L [y(t)] = G(s)L [u(t)],

where G(s) = C(sαI − A)−1B + D is called the system transfer function. By Cramer’s Rule,

G(s) =
C adj(sαI − A)B

det(sαI − A)
+ D.

Moreover, it follows from the Laplace transform equation that

y(t) = g(t) ∗ u(t) =

∫ t

0
g(t − τ)u(τ)dτ,

where g(t) = L −1[G(s)]. On the other hand, according to Theorem 2.1.4,

y(t) = C
∫ t

0
(t − τ)α−1Eα,α[A(t − τ)α]Bu(τ)dτ + Du(t).

Thus,
g(t) = Ctα−1Eα,α(Atα)B + Dδ(t),

where δ denotes the Dirac delta function. As we see, g(t) is also the impulse response of the control system (2.1), i.e.
the output of (2.1) as u(t) = δ(t) and x0,k = 0, for k = 0, 1, 2, ...,m.

Let l = p = 1, then (2.1) becomes a single-input-single-output (SISO) system that will be the object of investi-
gation for the pole placement, internal model principle and model matching later in this chapter. In this case, G is a
ratio of two fractional order polynomials.
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2.1.3 BIBO Stability

Based on the presented preliminaries, we are in the position to introduce the BIBO stability, and a theorem referred
from [5] for SISO systems.

Definition 2.1.1. A system is said to be BIBO stable if every bounded input excites a bounded zero-state output.

Note that an input u(t) is said to be bounded if there exists a constant uc such that |u(t)| ≤ uc for all t ≥ 0. Moreover,
as well known, a system is BIBO stable if and only if its impulse response is absolutely integrable on [0,∞).

Theorem 2.1.5. [5] A transfer function G(s) = Q(sα)/P(sα), where P, Q are coprime polynomials and 0 < α < 1
is the fractional order, is BIBO stable, if and only if |arg{σ}| > απ/2, where σ is any complex number such that
P(σ) = 0.

As immediate consequences of the BIBO stability theorem, the following two corollaries will be employed in
our frequency-domain designs later. The terminologies: proper, coprime and Riemmann surface, appearing in the
corollaries, will be introduced in the next section.

Corollary 2.1.1. A proper transfer function G(s) = Q(s
1
q )/P(s

1
q ), where P, Q are coprime polynomials and q ∈ Z+

({1, 2, ...}), is BIBO stable, if and only if |arg{ω}| > π/(2q), where ω is any complex number such that P(ω) = 0.

Proof. The proof is similar to that of Theorem 2.1.5 in [5]. According to the partial fraction decomposition, the
transfer function has the form:

G(s) = d +

r∑
i=1

vi∑
j=1

ci j

(ω − ωi) j = d +

r∑
i=1

vi∑
j=1

ci j

(s
1
q − ωi) j

, (2.2)

where d ∈ R, ci j ∈ C and ωi ∈ C. Then the impulse response can be expressed by the generalized Mittag-Leffler func-
tion [5] as g(t) = dδ(t) +

∑r
i=1

∑vi
j=1ci jE

∗ j
1
q

(ωi, t). According to Theorem 2.17 in [5], it follows from |arg{ωi}| > π/(2q)

that as t → ∞, the generalized function is equivalent to the following

E∗ j
1
q

(ωi, t) ∼
1
q

Γ(1 − 1
q )

j(−ωi)−1− jt−1− 1
q .

Thus,
∫ ∞

0 |g(t)|dt < ∞. This completes the proof. �

Corollary 2.1.2. A proper transfer function G(s) = Q(s
1
q )/P(s

1
q ), where P, Q are coprime polynomials and q ∈ Z+, is

BIBO stable, if and only if P(s
1
q ) = 0 has no roots in the closed right half plane of the principal sheet of the Riemann

surface.

Proof. The roots of P(s
1
q ) = 0 are those s ∈ C such that (s

1
q − ωi) = 0, where ωi denotes the same one appearing

in (2.2). According to Lemma 2.2.1 and Remark 2.2.3, (s
1
q − ωi) = 0 has one root |ωi|

qe jq∠ωi , where ∠ω is defined
as the angle of any ω ∈ C, −π/q<∠ω ≤ 2π − π/q, in the closed right half plane of the principal sheet, if and only if
−π/(2q) ≤ ∠ωi ≤ π/(2q), i.e. |arg{ωi}| ≤ π/(2q). As we see, the condition here is equivalent to that of Corollary 2.1.1.
Therefore, the conclusion follows. �
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2.2 Fractional Order Polynomial

A fractional order linear control system, in frequency domain, can be given by its transfer function consisting of frac-
tional order polynomials. For the frequency analyses: pole placement, internal model principle and model matching,
it is necessary to first focus on the fractional order polynomials and their root distribution, coprimeness, properness
and ρ − κ polynomials. We now begin to define the so-called fractional order polynomials.

Definition 2.2.1. The function
P(s) = ansαn + an−1sαn−1 + ... + a1sα1 + a0

is defined as a fractional order polynomial, if αi ∈ Q
+ (the set of positive rational numbers), for i = 1, 2, ..., n and

ai ∈ R, for i = 0, 1, ..., n [6].

Let pi/qi = αi, where pi, qi ∈ Z
+ are coprime, for i = 1, 2, ..., n (if αi ∈ Z

+ for some i, qi := 1) and let q be the
least common multiple (lcm) of q1, q2,...,qn, then

P(s) = an(s
1
q )un + an−1(s

1
q )un−1 + ... + a1(s

1
q )u1 + a0.

The fractional degree (fdeg) of P(s) with respect to 1/q is defined as [6]

fdeg 1
q
{P(s)} := max{u1, u2, ..., un},

where 1/q is defined as the fractional order basis of P(s).

The kth corresponding polynomial of P(s) with respect to s
1
kq is defined as

Pk(s
1
kq ) := an(s

1
kq )kun + an−1(s

1
kq )kun−1 + ... + a1(s

1
kq )ku1 + a0,

where k ∈ Z+ and the domain of s is the Riemann surface (where the origin is a branch point and the branch cut is
assumed at R− (the negative half of the real axis), see page 171 in [7]) of kq sheets.

The relative fractional degree (rfdeg) of P(s) with respect to 1/(kq) is defined as

rfdeg 1
kq
{P(s)} := k max{u1, u2, ..., un},

where 1/(kq) is defined as the kth corresponding fractional order basis of P(s).

Remark 2.2.1. The kq sheets of the Riemann surface are determined by

s = |s|e jφ,

where (2m + 1)π < φ ≤ (2m + 3)π,m = −1, 0, ..., kq− 2. In particular, the case of m = −1 is the principal (first) sheet.
For the mapping λ = s

1
kq , these sheets become the regions of the plane λ defined by

λ = |λ|e jθ,

where (2m + 1)π/(kq) < θ ≤ (2m + 3)π/(kq), also see page 19 in [3].
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Remark 2.2.2. Let λ = s
1
kq , then Pk(λ) is a regular polynomial of degree rfdeg 1

kq
{P(s)} in terms of variable λ and

Pk(λ) = P(s). In particular, P1(s
1
q ) has the same form as P(s). Moreover, P(s) is even a regular polynomial in terms

of s (defined on the complex plane), if αi ∈ Z
+ for all i.

2.2.1 Root Distribution

As one of the most important properties of the just defined fractional order polynomials, root distribution determines
the BIBO stability as discussed in Subsection 2.1.3. Now a useful lemma is first stated for the introduction to the root
distribution.

Lemma 2.2.1. For any ω ∈ C, the equation (s
1
kq )k −ω = 0 has k roots in kq sheets of the Riemann surface, |ω|qe jq∠ω,

|ω|qe jq∠ωe j2qπ, ..., |ω|qe jq∠ωe j2q(k−1)π, where ∠ω is defined as the angle of ω, −π/q<∠ω ≤ 2π − π/q.

Proof. For any ω ∈ C, −π < arg{ω} ≤ π. First consider the case: −π/q < arg{ω} ≤ π. It follows from the equation
that

(s
1
kq − |ω|

1
k e j arg{ω}

k )(s
1
kq − |ω|

1
k e j arg{ω}+2π

k )...(s
1
kq − |ω|

1
k e j arg{ω}+2(k−1)π

k ) = 0.

Then the k roots are |ω|qe jq arg{ω}, |ω|qe jq arg{ω}e j2qπ, ..., |ω|qe jq arg{ω}e j2q(k−1)π. Since q arg{ω} +2q(k−1)π ∈ (−π+2q(k−
1)π, (2kq − q)π] ⊆ (−π, (2kq − 1)π], all roots are, as defined, in the kq sheets of the Riemann surface. Thus, in this
case, let ∠ω = arg{ω}, then the conclusion follows.

Then consider the case: −π < arg{ω} ≤ −π/q. Following the proof for the previous case, we derive the angle of
roots as q arg{ω}+ 2q(m− 1)π ∈ (−qπ+ 2q(m− 1)π,−π+ 2q(m− 1)π], m = 1, 2, ..., k. When m = 1, the angle belongs
to (−qπ,−π]. The corresponding root is not in the Riemann surface. Thus, in this case, we can not directly use arg{ω}.
Let ∠ω = arg{ω} + 2π, then π < ∠ω ≤ 2π − π/q and the k roots are |ω|qe jq∠ω, |ω|qe jq∠ωe j2qπ, ..., |ω|qe jq∠ωe j2q(k−1)π.
Since q∠ω+ 2q(k−1)π ∈ (qπ+ 2q(k−1)π, (2kq−1)π] ⊆ (−π, (2kq−1)π], all roots are in the kq sheets of the Riemann
surface. �

Remark 2.2.3. The root |ω|qe jq∠ωe j2q(m−1)π, m = 1, 2, ..., k, is in the [(m−1)q + i]th sheet, where i ∈ Z+ and 1 ≤ i ≤ q,
if and only if −π/q + (i − 1)2π/q < ∠ω ≤ π/q + (i − 1)2π/q. In particular, the root |ω|qe jq∠ω is in the closed right half
plane of the principal sheet if and only if −π/(2q) ≤ ∠ω ≤ π/(2q).

Based on the lemma above, we can deduce a further result about the root distribution as follows.

Property 2.2.1. If P(s) is a fractional order polynomial of fdeg 1
q
{P(s)} = n, then the equation Pk(s

1
kq ) = 0 has kn roots

in kq sheets of the Riemann surface. Moreover, the locations of the roots in the [(m−1)q+1]th, [(m−1)q+2]th, ...,mqth
sheets for each m = 2, 3, ..., k, are the same as the locations of those in the 1st, 2rd, ..., qth sheets, respectively.

Proof. Since fdeg 1
q
{P(s)} = n, the general form of P1(s

1
q ) is as

P1(s
1
q ) = an(s

1
q )n + an−1(s

1
q )n−1 + ... + a1(s

1
q ) + a0,
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where an , 0. Let $ = s
1
q , then

P1($) = an$
n + an−1$

n−1 + ... + a1$ + a0,

which is a regular polynomial of degree n. Thus, the equation P1($) = 0 has n roots: $1, $2, ..., $n, i.e.

(s
1
q −$1)(s

1
q −$2)...(s

1
q −$n) = 0.

Consider −π/q < ∠$i ≤ 2π − π/q, for i = 1, 2, ..., n, then according to Lemma 2.2.1, the equation above P1(s
1
q ) = 0

has n roots: |$1|
qe jq∠$1 , |$2|

qe jq∠$2 , ..., |$n|
qe jq∠$n (or ($1)q, ($2)q, ..., ($n)q) in the Riemann surface of q sheets.

This conclusion can be seen in [6]. There is also a similar statement for the second part of the property but no proof
available. It follows from the relation between Pk(s

1
kq ) and P1(s

1
q ) that Pk(s

1
kq ) = 0 is the same as

[(s
1
kq )k −$1][(s

1
kq )k −$2]...[(s

1
kq )k −$n] = 0.

According to Lemma 2.2.1, the equation above has kn roots in kq sheets of the Riemann surface.

Specifically, the (im)th (i = 1, 2, ..., n,m = 1, 2, ..., k) root of Pk(s
1
kq ) = 0 is

sim = |$i|
qe jq∠$ie2q(m−1)π. (2.3)

It follows that s11, s21, ..., sn1 are in the first q sheets (1st, 2rd, ..., qth sheets) since ∠si1 = q∠$i ∈ (−π, (2q − 1)π],
while s1m, s2m, ..., snm are in the mth q sheets ([(m − 1)q + 1]th, [(m − 1)q + 2]th, ...,mqth sheets) since ∠sim = q∠$i ∈

(−π + 2q(m − 1)π, (2qm − 1)π]. And the locations of s1m, s2m, ..., snm in the mth q sheets are the same as those of
s11, s21, ..., sn1 in the first q sheets, because the angle difference between si1 and sim is 2q(m − 1)π. �

It follows from (2.3) that si1 = ($i)q for each i=1, 2, ..., n. This implies that the roots of Pk(s
1
kq ) = 0 in the first q

sheets of Pk’s Riemann surface are the same as those of P1(s
1
q ) = 0 in P1’s Riemann surface of q sheets so that the

roots of Pk(s
1
kq ) = 0 in the principal sheet are the same as those of P1(s

1
q ) = 0 in the principal sheet. Thus, we have

the following remark.

Remark 2.2.4. s0 is a root of P1(s
1
q ) = 0 in the closed right half plane of the principal sheet if and only if s0 is a root

of Pk(s
1
kq ) = 0 in the closed right half plane of the principal sheet.

2.2.2 Coprimeness

In frequency-domain design, we usually need to consider the cancellations of zeros and poles, which makes it neces-
sary to discuss coprimeness of the fractional order polynomials. We first give its definition.

Definition 2.2.2. Fractional order polynomials P(s), Q(s) with fractional order bases 1/q1, 1/q2, respectively, are
defined to be coprime, if polynomials Pk1(λ), Qk2(λ), where λ = s

1
q , q = lcm{q1, q2}, k1 = q/q1 and k2 = q/q2, are

coprime.
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The following lemma provides the necessary and sufficient conditions for two fractional order polynomials to be
coprime.

Lemma 2.2.2. Fractional order polynomials P(s), Q(s) with fractional order bases 1/q1, 1/q2, respectively, are
coprime, if and only if for any l ∈ Z+, Pk1(λ), Qk2(λ), where λ = s

1
l q , q = lcm{q1, q2}, k1 = lq/q1 and k2 = lq/q2, are

coprime.

Proof. (Necessity) Let ω = s
1
q , then

Q(s)
P(s)

=
(ω − b1)(ω − b2)...(ω − bm)
(ω − a1)(ω − a2)...(ω − an)

, (2.4)

where m, n are the relative fractional degrees of Q(s), P(s), respectively, with respect to 1/q. And ai , b j for all
i = 1, 2, ..., n, j = 1, 2, ...,m, since P(s), Q(s) are coprime. It follows from ω = λl and Remark 2.2.2 that

Qk2(λ)
Pk1(λ)

=
Q(s)
P(s)

=
(λl − b1)(λl − b2)...(λl − bm)
(λl − a1)(λl − a2)...(λl − an)

.

For the sake of contradiction, assume that Pk1(λ), Qk2(λ) are not coprime, i.e. for some i, j, there exists λ0 ∈ C such
that

(λl − b j)
(λl − ai)

=
(λ − λ0)(λl−1 + ...)
(λ − λ0)(λl−1 + ...)

.

Then it follows that ai = (λ0)l = b j, which contradicts ai , b j for all i, j. Therefore, Pk1(λ), Qk2(λ) are coprime.

(Sufficiency) Assume P(s), Q(s) are not coprime, then in (2.4), ai=b j for some i, j, so that Pk1(λ) and Qk2(λ) have
common term λl − ai (or λl − b j). Therefore, Pk1(λ), Qk2(λ) are not coprime. By the law of contrapositive, if Pk1(λ),
Qk2(λ) are coprime, then P(s), Q(s) are coprime. �

Remark 2.2.5. If the fractional order polynomial R(s) is coprime to fractional order polynomials P(s) and Q(s), then
R(s) is coprime to P(s)Q(s). Let 1/q1, 1/q2, 1/q3 denote the fractional order bases of P(s),Q(s),R(s), q = lcm{q1, q2,

q3}, ki = q/qi (i = 1, 2, 3) and λ = s
1
q , then according to Lemma 2.2.2, Rk3(λ) is coprime to Pk1(λ) and Qk2(λ). Thus,

Rk3(λ) is coprime to Pk1(λ)Qk2(λ). Let T (s) = P(s)Q(s), then Pk1(λ)Qk2(λ) = Tk(λ) for some k ∈ Z+. According to
Lemma 2.2.2, R(s) is coprime to T (s).

2.2.3 Properness

Properness is an important property of transfer functions comprised by fractional order polynomials. For why, we
shall discuss after giving its definition.

Definition 2.2.3. The fractional order transfer function G(s) = Q(s)/P(s), where P(s), Q(s) are fractional order
polynomials with fractional order bases 1/q1, 1/q2, respectively, is defined to be proper (or strictly proper), if
rfdeg 1

q
{Q(s)} ≤ rfdeg 1

q
{P(s)} (or rfdeg 1

q
{Q(s)} < rfdeg 1

q
{P(s)}), where q = lcm{q1, q2}.
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Remark 2.2.6. The implementation of improper fractional order transfer functions requires pure differentiators. Let
λ = s

1
q , then according to the polynomial long division,

G(s) =

Q q
q2

(λ)

P q
q1

(λ)
= T (λ) +

R(λ)
P q

q1
(λ)

,

where T (λ), R(λ) are polynomials of λ and deg{T (λ)} = rfdeg 1
q
{Q(s)} − rfdeg 1

q
{P(s)} ≥ 1. It follows from Table 1 in

[8] that all approximations (approximate rational transfer functions) of H(s) = 1/sm for different m (in increments of
0.1) are strictly proper. Thus, the approximation of G(s) is improper. According to the discussion in page 283 of [9],
the implementation of improper rational transfer functions involves pure differentiators.

Remark 2.2.7. Improper fractional order transfer functions amplify high-frequency noise. Let s = jω, then as ω →
∞, |T [( jω)

1
q ]| → ∞, |R[( jω)

1
q ]/P 1

q
[( jω)

1
q ]| → 0 or some other constants, such that |G( jω)| → ∞.

Since the pure differentiator is generally unstable and is not available in practice, see [10], and high-frequency
noise often exists in real world, see page 15 of [9], improper fractional order transfer functions, according to the two
remarks above, need to be practically avoided.

2.2.4 ρ − κ Polynomial

Now we propose the definition of ρ−κ polynomial that will be used to formulate the fractional-version internal model.

Definition 2.2.4. Given a fractional order polynomial P(s) with fdeg 1
q1
{P(s)} = n and k roots in the closed right half

plane of the principal sheet, as following

P(s) = P1(s
1

q1 ) = (s
1

q1 − ω1)(s
1

q1 − ω2)...(s
1

q1 − ωk−l1)(s
1

q1 )l1(s
1

q1 − ωk+1)(s
1

q1 − ωk+2)...(s
1

q1 − ωn),

where ωi , 0 and |arg{ωi}| ≤ π/(2q1) for i = 1, 2, ..., k− l1; |arg{ωi}| > π/(2q1) for i = k +1, k +2, ..., n. The fractional
order polynomial Q(s), as following

Q(s) = (s
1

q2 −$1)(s
1

q2 −$2)...(s
1

q2 −$k−l1)(s
1

q2 )l2 ,

where |arg{$i}| ≤ π/(2q2) for i = 1, 2, ..., k− l1, is defined as the ρ− κ (ρ = l1/q1− l2/q2, κ = q1/q2) polynomial of the
roots, in the closed right half plane of the principal sheet, of P(s), if ρ < 1 and$i = |ωi|

κe jκ arg{ωi} for i = 1, 2, ..., k−l1.

Remark 2.2.8. All coefficients of Q(s) are real such that Q(s) is naturally a fractional order polynomial. Assume
ω1 ∈ C, then its conjugate ω∗1 ∈ {ω2, ω3, ..., ωk−l1} (named as ω2), because complex roots appear in conjugate pairs,
and |arg{ωi}| ≤ π/(2q1). Due to $i = |ωi|

κe jκ arg{ωi}, $1 = |ω1|
κe jκ arg{ω1}, $2 = |ω2|

κe jκ arg{ω2} = |ω1|
κe− jκ arg{ω1}. It

follows, $2 = $∗1. Thus, complex numbers in {$1, $2, ..., $k−l1} also appear in conjugate pairs. This suffices.

The following lemma shows the root distribution of the denominator in the fraction simplified from Q(s)/P(s).
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Lemma 2.2.3. If the fractional order polynomial Q(s) is a ρ− κ polynomial of the roots, in the closed right half plane
of the principal sheet, of a fractional order polynomial P(s), then

Q(s)
P(s)

=
N(s)

sρD(s)
,

where N(s), D(s) are fractional order polynomials and D(s) has no roots in the closed right half plane of the principal
sheet.

Proof. For convenience, the same parameters as in Definition 2.2.4, for P(s) and Q(s), are considered. Let q be a
multiple of q1, q2, and k1 = q/q1, k2 = q/q2, then for i = 1, 2, ..., k − l1,

s
1

q1 − ωi = (s
1
q )k1 − ωi = (s

1
q − |ωi|

1
k1 e j arg{ωi}

k1 )(s
1
q − |ωi|

1
k1 e j arg{ωi}+2π

k1 )... (s
1
q − |ωi|

1
k1 e j arg{ωi}+(k1−1)2π

k1 ),

s
1

q2 −$i = (s
1
q )k2 −$i = (s

1
q − |$i|

1
k2 e j arg{$i}

k2 )(s
1
q − |$i|

1
k2 e j arg{$i}+2π

k2 )... (s
1
q − |$i|

1
k2 e j arg{$i}+(k2−1)2π

k2 ).

Since $i = |ωi|
κe jκ arg{ωi}, κ = q1/q2 = k2/k1, then

|ωi|
1

k1 e j arg{ωi}
k1 = |$i|

1
k2 e j arg{$i}

k2 .

For simplicity, let ω̂im = |ωi|
1

k1 e j arg{ωi}+(m−1)2π
k1 and $̂im = |$i|

1
k2 e j arg{$i}+(m−1)2π

k2 , then

s
1

q2 −$i

s
1

q1 − ωi

=
(s

1
q − $̂i2)(s

1
q − $̂i3)...(s

1
q − $̂ik2)

(s
1
q − ω̂i2)(s

1
q − ω̂i3)...(s

1
q − ω̂ik1)

.

According to Lemma 2.2.1 and Remark 2.2.3, the roots remaining in the denominator of s
1

q2−$i/s
1

q1− ωi are
|ωi|

q1e jq1 arg{ωi}e j2q1π, |ωi|
q1e jq1 arg{ωi}e j2q12π, ..., |ωi|

q1e jq1 arg{ωi}e j2q1(k1−1))π, in the (q1+1)th, (2q1+1)th, ..., [(k1−1)q1+1]th
sheet, respectively, because |arg{ωi}| ≤ π/(2q1) and ∠ωi = arg{ωi}. Thus, the roots remaining in the denominator of
s

1
q2 −$i/s

1
q1 − ωi, i = 1, 2, ..., k − l1, are not in the closed right half plane of the principal sheet.

According to Lemma 2.2.1 and Remark 2.2.3, the roots of s
1

q1 − ωi = 0, i = k + 1, k + 2, ..., n, are also not in the
closed right half plane of the principle sheet, due to |arg{ωi}| > π/(2q1).

Let D(s) = [
∏k−l1

i=1
∏k1

m=2(s
1
q − ω̂im)]

∏n
i=k+1(s

1
q1 − ωi) and N(s) =

∏k−l1
i=1

∏k2
m=2(s

1
q − $̂im), then Q(s)/P(s) = N(s)

/[sρD(s)], where ρ = l1/q1 − l2/q2 < 1, and D(s) has no roots in the closed right half plane of the principal sheet.

In the following, we show that all coefficients of D(s) and N(s) are real such that D(s), N(s) are fractional order
polynomials as defined.

If ωi ∈ R, for some i = 1, 2, ..., k − l1, then ω̂i1 ∈ R (and $i ∈ R). Since complex roots appear in conjugate pairs,
complex elements in {ω̂i2, ω̂i3, ..., ω̂ik1} are in conjugate pairs. Thus, the coefficients of

∏k1
m=2(s

1
q − ω̂im) are real. In

the same way, coefficients of
∏k2

m=2(s
1
q − $̂im) are real.
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If ωi ∈ C, for some i = 1, 2, ..., k − l1, according to Remark 2.2.8, then ω∗i ∈ {ω1, ω2, ..., ωk−l1} (named as ω j),

and $i, $ j are conjugate. Thus, ω̂i1, ω̂ j1 are conjugate as well. In (s
1

q2 −$i)(s
1

q2 −$ j)/ [(s
1

q1 − ωi)(s
1

q1 − ω j)] (its all

coefficients are real), (s
1
q − ω̂i1) (s

1
q − ω̂ j1) (its coefficients are also real) will be canceled. Therefore, all coefficients

of
∏k1

m=2(s
1
q − ω̂im)

∏k1
m=2 (s

1
q − ω̂ jm) and

∏k2
m=2(s

1
q − $̂im)

∏k2
m=2(s

1
q − $̂ jm) are real.

Consequently, all coefficients of N(s) are real. Since complex numbers in {ω1, ω2, ..., ωk−l1} appear in conjugate

pairs, all coefficients of
∏k−l1

i=1 (s
1

q1 −ωi) are real, so are coefficients of
∏n

i=k+1(s
1

q1 −ωi). Therefore, all coefficients of
D(s) are also real. �

Remark 2.2.9. If the fractional order polynomial Q(s) is a ρ − κ polynomial of the roots, in the closed right half
plane of the principal sheet, of P(s)R(s), where P(s) and R(s) are fractional order polynomials, then for some certain
constants ρp, ρr ≤ ρ, Q(s)/P(s) = Np(s)/[sρp Dp(s)] and Q(s)/R(s) = Nr(s)/[sρr Dr(s)], where Np(s), Dp(s), Nr(s)
and Dr(s) are fractional order polynomials, and Dp(s) and Dr(s) have no roots in the closed right half plane of the
principal sheet. This is straightforward from the lemma.

Here we introduce a lemma cited from [9] that will be applied to solve equations involving the fractional order
polynomials in our designs later.

Lemma 2.2.4. [9], pp.273-275. Given coprime polynomials D(s) and N(s) with deg{N(s)} < deg{D(s)} = n. Let
m ≥ n − 1, then for any polynomial F(s) of degree (n + m), there exist polynomial solutions A(s) and B(s) with
deg{B(s)} ≤ deg{A(s)} = m for the equation A(s)D(s) + B(s)N(s) = F(s).

2.3 Frequency-Domain Designs

In this section, we shall develop the designs in frequency domain: pole placement, internal model principle and model
matching.

2.3.1 Pole Placement

We first state the following theorem to demonstrate how to arbitrarily assign an overall fractional order polynomial
with constraints in terms of coprimeness and properness.

Theorem 2.3.1. Given coprime fractional order polynomials D(s) = D1(s
1

qD ) and N(s) = N1(s
1

qN ) with

rfdeg 1
qG
{N(s)} < rfdeg 1

qG
{D(s)} = n,

where qG = lcm{qD, qN}. For any fractional order polynomial F(s) = F∗(s
1

qF∗ ), where qF∗ denotes a corresponding
fractional order basis of F(s), with

rfdeg 1
qF∗
{F(s)} ≥ 2n

qF∗

qG
−

qF∗

σ
,
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where σ is a certain constant, σ ≥ lcm{qG, qF∗}, there exist fractional order polynomial solutions A(s) and B(s) with

rfdeg 1
q
{B(s)} ≤ rfdeg 1

q
{A(s)},

where q denotes lcm{qG, qF∗}, for the equation A(s)D(s) + B(s)N(s) = F(s).

Proof. It is given that
rfdeg 1

q
{N(s)} < rfdeg 1

q
{D(s)} = n

q
qG

(2.5)

and
rfdeg 1

q
{F(s)} ≥ 2n

q
qG
−

q
σ
. (2.6)

Since D(s),N(s) are coprime, according to Lemma 2.2.2, D q
qD

(λ), N q
qN

(λ), where λ = s
1
q , are coprime. It follows

from (2.5) and (2.6) that

deg{N q
qN

(λ)} < deg{D q
qD

(λ)} = n
q

qG
, deg{F q

qF∗
(λ)} ≥ 2n

q
qG
−

q
σ
.

According to Lemma 2.2.4, there exist polynomial solutions Â(λ), B̂(λ) with

deg{B̂(λ)} ≤ deg{Â(λ)} = deg{F q
qF∗

(λ)} − deg{D q
qD

(λ)}

such that Â(λ)D q
qD

(λ) + B̂(λ)N q
qN

(λ) = F q
qF∗

(λ), because σ ≥ q, deg{Â(λ)} ≥ deg{D q
qD

(λ)} −1. Let A(s) = Â(λ) and

B(s) = B̂(λ), then A(s), B(s) are the fractional order polynomial solutions. �

Remark 2.3.1. The fractional order bases of A(s), B(s) may be not 1/q. In fact, it is not easy to preassign the
fractional order bases as A(s)= A1(s

1
qA ), B(s)=B1(s

1
qB ). Let q denote lcm{qA, qB, qG, qF∗}, if σ≥q, it follows (from the

same proof) that the polynomial solutions (exist) are Â(s
1
q ), B̂(s

1
q ), where q is only a common multiple of qA and qB.

Remark 2.3.2. It follows from [9] pp.273-275 that the solutions A(s) (or Â(λ)), B(s) (or B̂(λ)) can be derived. Let
nD = deg{D q

qD
(λ)}, nA = deg{F q

qF∗
(λ)} − nD, then

D q
qD

(λ) = D0 + D1λ + ... + DnDλ
nD ,DnD , 0,

N q
qN

(λ) = N0 + N1λ + ... + NnDλ
nD ,

Â(λ) = A0 + A1λ + ... + AnAλ
nA ,

B̂(λ) = B0 + B1λ + ... + BnAλ
nA ,

F q
qF∗

(λ) = F0 + F1λ + ... + FnD+nAλ
nD+nA ,

where all coefficients are real constants, not necessarily nonzero.
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Figure 2.1: Unity-feedback configuration for pole placement.

Substitute into Â(λ)D q
qD

(λ) + B̂(λ)N q
qN

(λ) = F q
qF∗

(λ), then [A0 B0 A1 B1 ... AnA BnA]S = [F0 F1 ... FnD+nA], where

S is 2(nA + 1) × (nD + nA + 1) as following

S :=



D0 D1 ... DnD 0 ... 0
N0 N1 ... NnD 0 ... 0
... ... ... ... ... ... ...

0 D0 ... DnD−1 DnD ... 0
0 N0 ... NnD−1 NnD ... 0
... ... ... ... ... ... ...
...

...
...

...
...

... ... ... ... ... ... ...

0 0 ... 0 D0 ... DnD

0 0 ... 0 N0 ... NnD



.

Since nA ≥ nD − 1 and D q
qD

(λ), N q
qN

(λ) are coprime, as discussed in [9], S has full column rank. Thus, Â(λ) and

B̂(λ) (are unique if nA = nD − 1; are not unique if nA > nD − 1) always exist, and are derivable from the algebraic
equation.

It is now ready to present the theorem for the design of the fractional-version pole placement.

Theorem 2.3.2. Consider the unity-feedback configuration shown in Figure 2.1. The plant is described by a strictly
proper transfer function G(s) = N(s)/D(s), where D(s), N(s) are coprime, and D(s) = D1(s

1
qD ) and N(s) = N1(s

1
qN )

with
rfdeg 1

qG
{N(s)} < rfdeg 1

qG
{D(s)} = n,

where qG = lcm{qD, qN}. For any desired fractional order polynomial F(s) = F∗(s
1

qF∗ ) with

fdeg{F(s)} ≥ 2n
qF∗

qG
−

qF∗

σ
,

where σ is a certain constant, σ ≥ lcm{qG, qF∗}, there exists a proper compensator C(s) = B(s)/A(s) with

rfdeg 1
q
{B(s)} ≤ rfdeg 1

q
{A(s)},
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Figure 2.2: Unity-feedback configuration for internal model principle.

where q denotes lcm{qG, qF∗}, such that the overall transfer function equals

Gr→y(s) =
pN(s)B(s)

A(s)D(s) + B(s)N(s)
=

pN(s)B(s)
F(s)

.

Proof. It follows straightforwardly from Theorem 2.3.1. Note that C(s) is derivable from Remark 2.3.2. �

2.3.2 Internal Model Principle

Based on the results on the fractional-version pole placement and ρ−κ polynomial, we then state the fractional-version
internal model principle.

Theorem 2.3.3. Consider the unity-feedback configuration shown in Figure 2.2. The plant is described by a strictly
proper transfer function G(s) = N(s)/D(s), where D(s), N(s) are coprime fractional order polynomials. The reference
signal r(t) and disturbance w(t) are modeled as R(s) = Nr(s)/Dr(s) and W(s) = Nw(s)/Dw(s). Let φ(s) be a ρ − κ
polynomial of the roots, in the closed right half plane of the principal sheet, of the fractional order polynomial
Dr(s)Dw(s). If φ(s) and N(s) are coprime, then there exists a proper compensator such that the output y(t) will track
r(t) and reject w(t) both asymptotically and robustly.

Proof. Let D̄(s) = D(s)φ(s), then
rfdeg 1

qḠ
{N(s)} < rfdeg 1

qḠ
{D̄(s)} = n̄

where qḠ = lcm{qD̄, qN}, because G(s) is strictly proper. Since N(s) is coprime to D(s) and φ(s), according to Remark
2.2.5, D̄(s), N(s) are coprime. According to Theorem 2.3.2, for any desired fractional order polynomial F(s) (has no
roots in the closed right half plane of the principal sheet) with

rfdeg 1
qF∗
{F(s)} ≥ 2n̄

qF∗

qḠ
−

qF∗

σ̄
,

where σ̄ ≥ lcm{qḠ, qF∗}, there exist fractional order polynomial solutions A(s) and B(s) with

rfdeg 1
q̄
{B(s)} ≤ rfdeg 1

q̄
{A(s)}, (2.7)
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where q̄ denotes lcm{qḠ, qF∗}, for the equation A(s)D̄(s) + B(s)N(s) = F(s). Claim that the compensator, as shown in
Figure 2.2,

C(s) =
B(s)

A(s)φ(s)
,

then the compensator is proper due to (2.7). Compute the transfer function from w to y,

Gw→y(s) =
G(s)

1 + C(s)G(s)
=

N(s)A(s)φ(s)
A(s)D(s)φ(s) + B(s)N(s)

=
N(s)A(s)φ(s)

F(s)
.

According to Lemma 2.2.3 and Remark 2.2.9, then the Laplace transform of yw(t) (the output excited by w(t))

Yw(s) = Gw→y(s)W(s) =
N(s)A(s)φ(s)

F(s)
Nw(s)
Dw(s)

=
N(s)A(s)Nw(s)

F(s)
N̂w(s)

sρw D̂w(s)
, (2.8)

where ρw ≤ ρ < 1, D̂w(s), N̂w(s) are fractional order polynomials and D̂w(s) has no roots in the closed right half plane
of the principal sheet, because φ(s) is a ρ − κ polynomial of the roots, in the closed right half plane of the principal
sheet, of the fractional order polynomial Dr(s)Dw(s).

According to the final value theorem proposed in [6], it follows that

lim
t→∞

yw(t) = lim
s→0

sYw(s) = lim
s→0

N(s)A(s)Nw(s)
F(s)

N̂w(s)
D̂w(s)

s1−ρw = 0. (2.9)

Alternatively, it follows from (2.8) that

Yw(s) =
N(s)A(s)Nw(s)N̂w(s)

(s
1
q − ω1)(s

1
q − ω2)...(s

1
q − ωk−qρw)(s

1
q )qρw

(2.10)

where 1/q, k are the fractional order basis, fractional degree of F(s)sρw D̂w(s) and |arg{ωi}| > π/(2q) for i = 1, 2, ...,
k − qρw. Taking the inverse Laplace transform of (2.10), then we can conclude that yw(t) consists of the generalized
Mittag-Leffler functions E∗ j

1
q

(ωi, t), 1 ≤ j ≤ k − qρw and t ρw−1. According to Theorem 2.17 in [5],

lim
t→∞
|E∗ j

1
q

(ωi, t))| = lim
t→∞

1
q

Γ(1 − 1
q )

j |(−ωi)−1− j |t−1− 1
q = 0. (2.11)

Thus, limt→∞ yw(t) = 0, i.e. the output excited by w(t) is asymptotically suppressed.

Next we compute the Laplace transforms of yr(t) (the output excited by r(t)) and e(t) := r(t) − yr(t) as following

Yr(s) = Gr→y(s)R(s) =
B(s)N(s)

F(s)
Nr(s)
Dr(s)

, E(s) = R(s) − Yr(s) =
A(s)D(s)φ(s)

F(s)
Nr(s)
Dr(s)

.
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Figure 2.3: Two-degrees-of-freedom configuration for model matching.

Following the same processes as (2.8)-(2.9) or (2.8), (2.10)-(2.11), we can conclude, limt→∞ e(t) = limt→∞ r(t) −
yr(t) = 0. Since y(t) = yr(t) + yw(t), y(t) → r(t) as t → ∞. This shows the asymptotic tracking and disturbance
rejection.

As we see, even if the parameters of D(s),N(s), A(s) and B(s) change, as long as all the roots of F(s) remain
outside of the closed right half plane of the principal sheet, and the roots in the closed right half plane of the principal
sheet of Dr(s) and Dw(s) are canceled by φ(s) with ρw, ρr < 1, the output y(t) will still track r(t) and reject w(t)
asymptotically. This shows the robustness. �

2.3.3 Model Matching

Now we are in the right position to work on our last frequency-domain design: the fractional-version model matching.

Theorem 2.3.4. Consider the two-degrees-of-freedom configuration shown in Figure 2.3. Given a plant described
by a strictly proper transfer function G(s) = N(s)/D(s), where D(s), N(s) are coprime fractional order polynomials.
For a given overall transfer function (from r to y) Go(s) = E(s)/F(s), where E(s), F(s) are coprime fractional order
polynomials, there exists a proper compensator with two inputs and one output C(s) = [1/A(s)][L(s) − M(s)], where
A(s), L(s) and M(s) are fractional order polynomials, such that the closed-loop transfer function of every possible
input (r, n1, n2, n3, n4)-output (v, u, f , y, g) pair is proper and BIBO stable, if and only if

1. F(s) has no roots in the closed right half plane of the principal sheet;

2. rfdeg 1
q
{F(s)} − rfdeg 1

q
{E(s)} ≥ rfdeg 1

q
{D(s)} − rfdeg 1

q
{N(s)}, where q = lcm{qD, qN , qE , qF}, and 1/qD, 1/qN ,

1/qE and 1/qF denote the fractional order bases of D(s), N(s), E(s) and F(s), respectively;

3. E(s) = Q(s)R(s), where Q(s) is a ρ − κ, ρ ≤ 0, polynomial of the roots, in the closed right half plane of the
principal sheet, of N(s), and R(s) is the rest of E(s).

25



Proof. (Sufficiency) First (referring to Procedure 9.1 in [9]) show that there exist A(s), L(s) and M(s) such that
L(s)/A(s),−M(s)/A(s) are proper and

E(s)
F(s)

=
L(s)N(s)

A(s)D(s) + M(s)N(s)
.

To find A(s), L(s) and M(s), consider

L̂(λ)N q
qN

(λ)

Â(λ)D q
qD

(λ) + M̂(λ)N q
qN

(λ)
=

E q
qE

(λ)N q
qN

(λ)

F q
qF

(λ)N q
qN

(λ)
=

Ē(λ)N q
qN

(λ)

F̄(λ)
, (2.12)

where λ = s
1
q , Ē(λ)/F̄(λ) = E q

qE
(λ)/[F q

qF
(λ)N q

qN
(λ)], and Ē(λ), F̄(λ) are coprime. Here, we may just consider to

set L̂(λ) = Ē(λ) and solve Â(λ), M̂(λ) from F̄(λ) = Â(λ)D q
qD

(λ) + M̂(λ)N q
qN

(λ). However, proper solutions may

not exist due to the possibility that deg{F̄(λ)} is not sufficiently high. To avoid this possibility, we introduce an
arbitrary fractional order polynomial (without roots in the closed right half plane of the principal sheet) F̃(λ) such that
deg{F̄(λ)F̃(λ)} ≥ 2 deg{D q

qD
(λ)} − 1. Now rewrite (2.12) as

L̂(λ)N q
qN

(λ)

Â(λ)D q
qD

(λ) + M̂(λ)N q
qN

(λ)
=

Ē(λ)F̃(λ)N q
qN

(λ)

F̄(λ)F̃(λ)
. (2.13)

Set L̂(λ) = Ē(λ)F̃(λ) and F̄(λ)F̃(λ) = Â(λ)D q
qD

(λ) + M̂(λ)N q
qN

(λ), according to Lemma 2.2.4 and Remark 2.3.2, we

then derive Â(λ), M̂(λ) with deg{M̂(λ)} ≤ deg{Â(λ)}. It follows from condition 2) and (2.13) that

deg{F̄(λ)F̃(λ)} − deg{L̂(λ)} − deg{N q
qN

(λ)} ≥ deg{D q
qD

(λ)} − deg{N q
qN

(λ)}.

This implies
deg{L̂(λ)} ≤ deg{F̄(λ)F̃(λ)} − deg{D q

qD
(λ)} = deg{Â(λ)}.

Let A(s) = Â(λ), L(s) = L̂(λ) and M(s) = M̂(λ), then the existence of the proper compensator is shown.

Second show that the closed-loop transfer function of every possible input-output pair is proper. According to the
Mason’s Gain Formula [11], transfer functions (the signs of which are ignored) of input-output pairs are

1

1 +
M(s)
A(s) G(s)

,

L(s)
A(s)

1 +
M(s)
A(s) G(s)

,

M(s)
A(s)

1 +
M(s)
A(s) G(s)

,
G(s)

1 +
M(s)
A(s) G(s)

,

L(s)
A(s)G(s)

1 +
M(s)
A(s) G(s)

,

M(s)
A(s) G(s)

1 +
M(s)
A(s) G(s)

. (2.14)

Since M(s)/A(s) is proper and G(s) is strictly proper, then lims→∞[M(s)/A(s)]G(s) = 0. Because L(s)/A(s) is also
proper, it is easy to see that all the transfer functions approach constants as s goes to∞. This implies the properness.

Third show that the closed-loop transfer function of every possible input-output pair is BIBO stable. According
to Lemma 2.2.3, it follows from condition 3) that

E(s)N(s)
F(s)N(s)

=
s−ρQ̂(s)R(s)

N̂(s)
N(s)
F(s)

,
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where Q̂(s), N̂(s) are fractional order polynomials and N̂(s) has no roots in the closed right half plane of the principal
sheet. It follows from condition 1) that N̂(s)F(s) has no roots in the closed right half plane of the principal sheet so
that F̄(s

1
q ) has no roots in the closed right half plane of the principal sheet. Thus, A(s)D(s) + M(s)N(s) = F̄(s

1
q )F̃(s

1
q )

has no roots in the closed right half plane of the principal sheet. Substitute G(s) = N(s)/D(s) into those transfer
functions, then according to Corollary 2.1.2, the BIBO stability follows.

(Necessity) Condition 1) follows from the BIBO stability of Go(s). The properness and BIBO stability of
Gr→u(s) = Go(s)/G(s)= E(s)D(s)/[F(s)N(s)] imply condition 2) and 3), respectively. �

Corollary 2.3.1. The conclusion in Theorem 2.3.4 holds if and only if Go(s) is BIBO stable, and Go(s)/G(s) is proper
and BIBO stable.

Proof. It is straightforward that three conditions in Theorem 2.3.4 are equivalent to the conditions in this corollary. �

Remark 2.3.3. There is no need to concern the properness of the three blocks contained in dash in Figure 2.3.
They are implemented as an integrated block-C(s) which has two inputs (r, g) and one output (v), see Figure 9.5
in [9]. These blocks are only used to indicate the relation between r, g and v but not independently implemented.
In fact, C(s)’s two components L(s)/A(s), −M(s)/A(s) are proper. Moreover, as discussed in [9], pp.291-292, the
configuration shown in Figure 2.3 is better than other two-degrees-of-freedom configurations for model matching.

2.4 Illustrative Examples

In this section, two examples for the applications of the pole placement, internal model principle and model matching
are provided.

Example 2.4.1. Consider the unity-feedback configuration in Figure 2.2 with G(s) = 1/(s1/3 + 1). Design a proper
compensator C(s) = B(s)/[A(s)φ(s)] such that the output y(t) will track any step reference input r(t) = a and reject the
generalized Mittag-Leffler type disturbance w(t) = bE∗11

3
(1, t), with unknown constants a and b, both asymptotically

and robustly.

First of all, we investigate the existence of C(s). The Laplace transforms of r(t) and w(t) are a/s and b/(s1/3 − 1),
respectively. It follows that Dr(s) = s, Dw(s) = s1/3 − 1 and Dr(s)Dw(s) = (s1/3 − 1)s. According to Definition
2.2.4, we can select φ(s) = (s1/3 − 1)s1/3 such that φ(s) is a ρ − κ (where ρ = 2/3 < 1 and κ = 1) polynomial of
the roots, in the closed right half plane of the principal sheet, of Dr(s)Dw(s). Since φ(s) and N(s) = 1 are coprime,
according to Theorem 2.3.3, there exists A(s), B(s) such that C(s) will be proper and y(t) will track r(t) and reject w(t)
asymptotically and robustly.

Next we try to derive A(s), B(s). Let D̄(s) = D(s)φ(s) = (s1/3 + 1)(s1/3 − 1)s1/3, then rdeg 1
3
{D̄(s)} = 3. Since

D̄(s) and N(s) are coprime, according to Theorem 2.3.1, for any F(s) with corresponding fractional order basis 1/3
and rfdeg 1

3
{F(s)} ≥ 6 − 3/σ, where σ is a certain constant and σ ≥ 3, there exists a proper compensator B(s)/A(s)
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such that A(s)D̄(s) + B(s)N(s) = F(s). For the existence, we can select σ = 3 and then rfdeg 1
3
{F(s)} = 5. Now we are

ready to select F(s). Choose F(s) = (s1/3 + 1)5, then 1/qF = 1/3, and according to Remark 2.2.3 and Property 2.2.1,
F(s) has no roots in the closed right half plane of the principle sheet, since ∠ − 1 = π.

Now we follow Remark 2.3.2 to derive A(s) and B(s). Let λ = s1/3, then D̄1(λ) = λ3 − λ, N3(λ) = 1, F1(λ) = λ5 +

5λ4 +10λ3 +10λ2 +5λ+1. Clearly, nA = deg{F1(λ)}−nD̄ = 2. Let Â(λ) = A0 +A1λ+A2λ
2 and B̂(λ) = B0 +B1λ+B2λ

2,
then [A0 B0 A1 B1 A2 B2]S = [1 5 10 10 5 1], where

S =



0 −1 0 1 0 0
1 0 0 0 0 0
0 0 −1 0 1 0
0 1 0 0 0 0
0 0 0 −1 0 1
0 0 1 0 0 0


.

Since D̄(s) and N(s) are coprime, S has full column rank then has inverse. The solution is [11 1 5 16 1 15]. Thus,
A(s) = s2/3 + 5s1/3 + 11 and B(s) = 15s2/3 + 16s1/3 + 1. Obviously, C(s) is proper, as desired.

Then confirm that y(t) will track r(t) and reject w(t), i.e. y(t) → r(t) and yw(t) → 0. It follows from the block
diagram Figure 2.2,

Yw(s) =
b(s

2
3 + 5s

1
3 + 11)s

1
3

(s
1
3 + 1)5

, E(s) = R(s) − Yr(s) =
a(s

2
3 + 5s

1
3 + 11)(s

1
3 − 1)

(s
1
3 + 1)4s

2
3

.

It is easy to see, ρw = −1/3 < 1 and ρr = 2/3 < 1. According to the final value theorem in [6], yw(t) → 0 and e(t) =

r(t) − yr(t)→ 0. Thus, y(t)→ r(t).

As we see, even if the parameters of D(s),N(s), A(s) and B(s) change, as long as all the roots of F(s) remain
outside of the closed right half plane of the principal sheet, and the roots in the closed right half plane of the principal
sheet of Dr(s) and Dw(s) are cancelled by φ(s) with ρw, ρr < 1, the output y(t) will still track r(t) and reject w(t)
asymptotically. This guarantees the robustness. So far, the design has been completed.

Example 2.4.2. Consider the two-degrees-of-freedom configuration in Figure 2.3 with G(s) = 0.08/[s(0.05s + 1)]
(DC motor). Match Go(s) = (0.05s+1)/(0.05s2.5 + s1.5 +0.05s+1). This stable overall transfer function (system) can
asymptotically track the unit step reference with desired overshoot and settling time, and has desired phase margin
45◦ and infinite gain margin, see [12].

We first apply Theorem 2.3.4 to check the feasibility of matching, i.e. the existence of C(s). Go(s) can be
simplified to Go(s) = 1/(s3/2 + 1). Let E(s) = 1 and F(s) = s3/2 + 1 = (s1/2 + 1)[s1/2 − (1/2 + j

√
3/2)][s1/2 − (1/2 −

j
√

3/2)], then E(s), F(s) are coprime. Since ∠−1 = π, ∠(1/2 + j
√

3/2) = π/3 and ∠(1/2− j
√

3/2) = −π/3, it follows
from Remark 2.2.3 and Property 2.2.1 that F(s) has no roots in the closed right half plane of the principal sheet. Thus,
condition 1) in the theorem is satisfied. However, condition 2) is not satisfied, since rfdeg 1

2
{F(s)} − rfdeg 1

2
{E(s)} =

3 < 4 = rfdeg 1
2
{D(s)}− rfdeg 1

2
{N(s)}. Therefore, Go(s) can not be matched.
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The failure of condition 2) leads to the fact that the transfer function from the reference (the constant block) to the
input of the DC motor, see Fig.12 in [12],

Gr→u(s) =
0.03125s3 + 1.25s2 + 12.5s
0.05s2.5 + s1.5 + 0.05s + 1

is improper. As analyzed in Remark 2.2.7, once some high-frequency noise appears in the constant block, the input
of the DC motor would blow up then damage the motor.

In order to illustrate the model matching, we may consider to modify the plant transfer function in Example 2.4.2
as G(s) = 0.08/[s0.5(0.05s + 1)], while keep Go(s) the same. Then condition 2) is satisfied. As for condition 3), it is
also satisfied with ρ = 0. Therefore, for this G(s), there exists a proper compensator with two inputs and one output
C(s) = (1/A(s))[L(s) −M(s)] such that the overall transfer function is Go(s), and the closed-loop transfer function of
every possible input (r, n1, n2, n3, n4)-output (v, u, f , y, g) pair is proper and BIBO stable.

In the following, we follow the proof of Theorem 2.3.4 to find A(s), L(s) and M(s). Let λ = s
1
q , q = 2, then

E2(λ) = 1, F1(λ) = λ3 +1, N2(λ) = 2/25 and D1(λ) = λ(1/20λ2 +1). It follows that Ē(λ) = 1 and F̄(λ) = 2/25(λ3 +1).
Since deg{F̄(λ)} < 2deg{D1(λ)} − 1, we need to introduce F̃(λ) (without roots in the closed right half plane of the
principal sheet) such that deg{F̄(λ)F̃(λ)} ≥ 2deg{D1(λ)} − 1. We can select F̃(λ) = 1/4(λ + 1)2, then set L̂(λ) =

Ē(λ)F̃(λ) (i.e. L(s) = 1/4s + 1/2s1/2 + 1/4) and F̄(λ)F̃(λ) = Â(λ)D1(λ) + M̂(λ)N2(λ), where F̄(λ)F̃(λ) = 1/50(λ5

+2λ4 + λ3 + λ2 + 2λ + 1).

Now we follow Remark 2.3.2 to derive Â(λ) and M̂(λ). As we see, nA = deg{F̄(λ)F̃(λ)} − deg{D1(λ)} = 2. Let
Â(λ) = A0 + A1λ + A2λ

2 and M̂(λ) = M0 + M1λ + M2λ
2, then [A0 M0 A1 M1 A2 M2]S = 1/50[1 2 1 1 2 1], where

S =



0 1 0 1
20 0 0

2
25 0 0 0 0 0
0 0 1 0 1

20 0
0 2

25 0 0 0 0
0 0 0 1 0 1

20
0 0 2

25 0 0 0


.

The solution is [−38/5 1/4 4/5 191/2 2/5 − 39/4]. Thus, A(s) = 2/5s + 4/5s1/2 − 38/5, and M(s) = −39/4s +

191/2s1/2 + 1/4. Since both L(s)/A(s) and −M(s)/A(s) are proper, C(s) is proper.

Finally, we confirm that the overall transfer function is 1/(s3/2 + 1), and the closed-loop transfer function of every
possible input-output pair is proper and BIBO stable. It follows from the block diagram Figure 2.3, the overall transfer
function

Go(s) =
L(s)N(s)

A(s)D(s) + M(s)N(s)
.

Substitute the derived A(s), L(s) and M(s) into the equation above, we can derive Go(s) = 1/(s3/2 + 1). Since C(s) is
really proper, all transfer functions, see (2.14), of possible input-output pairs are proper. And since all those transfer
functions have the same denominator A(s)D(s) + M(s)N(s) = F̄(s1/2)F̃(s1/2) = 1/50(s5/2 + 2s2 + s3/2 + s + 2s1/2 + 1),
of which no root is in the closed right half plane of the principal sheet, they are all BIBO stable. This completes the
model matching.
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Chapter 3

Nonlinear System

This chapter focuses on the Lyapunov and external stability of Caputo fractional order nonlinear systems. As we
know, Lyapunov stability describes the behavior of system solutions for t → ∞. It seems necessary to specially study
the global existence of solutions before analyzing Lyapunov stability. However, this is not the case. We may consider
a direct consequence of the continuation of solutions: a bounded Lyapunov function already incidentally implies the
global existence. Another prerequisite for the analysis of fractional Lyapunov stability is the smoothness of solutions.
The differential property of solutions to Caputo fractional order systems suffices to yield a simple estimation for the
Caputo fractional order derivative of any quadratic Lyapunov function. Thus, for the fractional Lyapunov stability,
we shall review the existence and uniqueness, and develop the continuation and smoothness, of the solution to the
following general system of Caputo fractional order differential equations{ C

t0 Dα
t x = f (t, x)

x(k)(t)|t=t0 = x0, k, k = 0, ...,m,
(3.1)

where CD denotes the Caputo fractional derivative; m < α < m + 1, m ∈ {0, 1, 2, ...}; f defined on some open set
D ⊆ R × Rn is the given vector field function; and x0,k ∈ R

n is the initial value vector.

For the external stability, we shall consider to use the Lyapunov-like function, instead of the quadratic Lyapunov
function as usual. Without certain assumptions imposed on the inputs u(t) of Caputo fractional order nonlinear control
systems, we cannot derive an estimation for the Caputo fractional order derivative of a quadratic Lyapunov function
so that it is difficult to involve the vector field function into the proof of the L2 norm inequality (for external stability),
through the Caputo fractional order derivative of the usual quadratic Lyapunov function V , i.e. by immediately
integrating the both sides of yT (t)y(t)−γ2uT (t)u(t)+ C

0 Dα
t V ≤ 0 from 0 to∞. Fortunately, the Lyapunov-like function,

as we shall see, works well. We shall first prove the equivalence between the control systems and their diffusive
realizations, and then demonstrate the Lyapunov-like functions based on the realizations well-defined.

These stability results will be applied to H∞ control that requires the controlled system without disturbance input
to be (Lyapunov) asymptotically stable and the controlled system with disturbance to be externally stable from the
disturbance to the output.
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3.1 Existence and Uniqueness

Theorem 3.1.1. (Existence). Assume that f is continuous on the closed set S̄ = {(t, x) : t ∈ [t0, t0 + a], ||x −
∑m

k=0(t −
t0)kx0,k/k!||1 ≤ b}, for some a > 0, b > 0 such that S̄ ⊂ D. Then (3.1) has a solution x(t) ∈ C[t0, t0 + h], where
h = min{a, [bΓ(α + 1)/M]1/α} and M = max(t,x)∈S̄ || f (t, x)||1.

Theorem 3.1.2. (Uniqueness). Assume that f is continuous in t and Lipschitz in x on the closed set S̄ . Then (3.1)
has a unique solution x(t) ∈ C[t0, t0 + h].

Remark 3.1.1. Assume the hypothesis of Theorem 3.1.1, except that the set S̄ is taken to be S̄ g = {(t, x) : t ∈ [t0, t0 +

a], x ∈ Rn}. Moreover, assume that there exist constants λ1 ≥ 0, λ2 ≥ 0 and 0 ≤ µ < 1 such that || f (t, x)||1 ≤ λ1+λ2||x||
µ
1

for any (t, x) ∈ S̄ g, then (3.1) has a solution x(t) ∈ C[t0, t0 + a]. Or assume that there exists a constant L > 0 such that
|| f (t, x) − f (t, y)||1 ≤ L||x − y||1, for any (t, x), (t, y) ∈ S̄ g, then (3.1) has a unique solution x(t) ∈ C[t0, t0 + a]. Here the
parameter a may be taken as +∞.

Lemma 3.1.1. Assume the hypothesis of Theorem 3.1.1. Then x(t) ∈ C[t0, t0 + h] is a solution of (3.1) if and only if it
is a solution of the Volterra integral equation of the second kind

x(t) =

m∑
k=0

(t − t0)k

k!
x0,k +

1
Γ(α)

∫ t

t0
(t − τ)α−1 f (τ, x(τ))dτ.

Theorem 3.1.1, Theorem 3.1.2 and Lemma 3.1.1 are respectively extended from Theorem 6.1, Theorem 6.5 and
Lemma 6.2 in [1], according to Remark 6.1 in [1]. In fact, the proofs for these extensions are the same as the
corresponding ones in [1] with the following replacements: the scalar real space R, the initial time 0 and the absolute
norm | · | are taken to be Rn, t0 and || · ||1, respectively. The adaption of || · ||1 here is to be consistent with Section 3.3.

3.2 Continuation

Let x(t) be a solution of (3.1) on an interval J = [t0, t0 + h] (or [t0, t0 + h)). By a continuation of x(t), we mean an
extension x̃(t) of x(t) to a larger interval J̃ = [t0, t0 + h̃] (or [t0, t0 + h̃)), where h̃ > h, such that x̃(t) is a solution of
(3.1) on J̃ and x̃(t) = x(t) on J. If it is not possible to extend J, then x(t) is called non-continuable. In this case, the
interval J is called a maximal interval of existence for x(t). At first, we introduce the following preliminaries.

Definition 3.2.1. Let F ⊆ (C[a, b],Rn), then F is called

i. uniformly bounded, if there exists an M > 0 such that for all f ∈ F and all t ∈ [a, b], || f (t)||1 ≤ M;

ii. equicontinuous, if for any ε > 0, there exists a δ > 0 such that for all f ∈ F and all t1, t2 ∈ [a, b] with |t1−t2| < δ,
|| f (t1) − f (t2)||1 < ε.

31



Definition 3.2.2. Let (X, d) be a metric space. The set U ⊆ X is called relatively compact in X, if the closure of U is
a compact subset of X.

Theorem 3.2.1. (Arzelà-Ascoli). Let V⊆ (C[a, b],Rn), be equipped with norm || · ||1,∞, where ||x||1,∞:=maxt∈[a,b]||x(t)||1.
If V is uniformly bounded and equicontinuous, then V is relatively compact in C[a, b].

Theorem 3.2.2. (Schauder’s Fixed Point Theorem). Let (X, d) be a complete metric space. If W is a closed convex
subset of X and T:W→W is a mapping such that {T x : x∈W} is relatively compact in X, then T has a fixed point in W.

The theorems above may be found in many books, e.g. [1], pp.230. Now we can state our continuation theorem.

Theorem 3.2.3. Assume f ∈ C(D,Rn). If x(t) is a solution of (3.1) on some interval, then it can be extended over
a maximal interval of existence. Moreover, if [t0, β) is a maximal interval of existence, then (t, x(t)) tends to the
boundary of D as t → β−.

Proof. According to Theorem 3.1.1, the continuity of f on S̄ ⊂ D suffices that (3.1) has a solution x(t) ∈ C[t0, t0 + h],
and (t, x(t)) ∈ S̄ for t ∈ [t0, t0 + h]. Choose a sequence Dn of open sets in D such that ∪∞n=1Dn = D, D̄n is bounded and
D̄n ⊂ Dn+1 for n = 1, 2..., then there exists N > 0 such that n > N implies S̄ ⊂ Dn.

We shall start to show that there is an extension of x(t) to an interval [t0, t0 + h + he] for some he > 0, by using
Schauder’s Fixed Point Theorem. Define the following operator

(T x̂)(t) = z(t) +
1

Γ(α)

∫ t

t0+h
(t − τ)α−1 f (τ, x̂(τ))dτ, t ∈ [t0 + h, t0 + h + he],

where z(t) =
∑m

k=0 (t − t0)kx0,k/k! + [1/Γ(α)]
∫ t0+h

t0
(t − τ)α−1 f (τ, x(τ))dτ, and x̂ ∈ A. Here the domain of the operator

A := {y ∈ C[t0 + h, t0 + h + he] : ||y(t) − z(t)||1,∞, A ≤ be}, where ||y||1,∞, A := maxt∈[t0+h, t0+h+he] ||y(t)||1 and be = Mnhαe
/Γ(α + 1), Mn := max(t,x)∈D̄n

|| f (t, x)||1. It can be shown as follows that A is closed and convex. Suppose {yn} ⊂ A
and limn→∞ yn= y∗, then y∗ ∈ C[t0 + h, t0 + h + he], due to the completeness of the space of continuous functions on
[t0 + h, t0 + h + he], equipped with the norm defined above. Moreover,

||y∗(t) − z(t)||1,∞, A ≤ ||y∗(t) − yn(t)||1,∞, A + ||yn(t) − z(t)||1,∞, A = ||y∗(t) − yn(t)||1,∞, A + be.

Take the limit as n → ∞, then ||y∗(t) − z(t)||1,∞, A ≤ be. Thus, y∗ ∈ A. This proves that A is closed. Let y3(t) =

θy1(t) + (1 − θ)y2(t), where y1, y2 ∈ A and θ ∈ [0, 1]. Then

||y3(t) − z(t)||1,∞, A = ||θ[y1(t) − z(t)] + (1 − θ)[y2(t) − z(t)]||1,∞, A ≤ θbe + (1 − θ)be = be.

Thus, y3 ∈ A, then A is convex. Moreover, for any (t, y(t)), where t ∈ [t0 + h, t0 + h + he] and y ∈ A, |t− t0| ≤ h + he and

||y(t) −
m∑

k=0

(t − t0)k

k!
x0,k||1 = ||y(t) − z(t) + z(t) −

m∑
k=0

(t − t0)k

k!
x0,k||1

≤ be +
M

Γ(α)

∫ t0+h

t0
(t − τ)α−1dτ

≤ be +
M

Γ(α + 1)
(h + he)α.
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As he → 0, |t− t0| ≤ h ≤ a and ||y(t)−
∑m

k=0 (t − t0)kx0,k/k!||1 ≤ b. Thus, for a sufficiently small he, (t, y(t)) ∈ Dn ⊂ D̄n,
n > N, where t ∈ [t0 + h, t0 + h + he] and y ∈ A.

We first show that for any x̂ ∈ A, T x̂ ∈ A. For any t0 + h ≤ t1 ≤ t2 ≤ t0 + h + he,

||
1

Γ(α)

∫ t0+h

t0
(t1 − τ)α−1 f (τ, x(τ))dτ −

1
Γ(α)

∫ t0+h

t0
(t2 − τ)α−1 f (τ, x(τ))dτ||1

=
1

Γ(α)
||

∫ t0+h

t0
[(t1 − τ)α−1 − (t2 − τ)α−1] f (τ, x(τ))dτ||1

≤
M

Γ(α + 1)

{
(t2 − t0 − h)α − (t1 − t0 − h)α + (t1 − t0)α − (t2 − t0)α if α < 1
(t1 − t0 − h)α − (t2 − t0 − h)α + (t2 − t0)α − (t1 − t0)α if α > 1

, (3.2)

and for all x̂ ∈ A,

||
1

Γ(α)

∫ t1

t0+h
(t1 − τ)α−1 f (τ, x̂(τ))dτ −

1
Γ(α)

∫ t2

t0+h
(t2 − τ)α−1 f (τ, x̂(τ))dτ||1

=
1

Γ(α)
||

∫ t1

t0+h
[(t1 − τ)α−1 − (t2 − τ)α−1] f (τ, x̂(τ))dτ −

∫ t2

t1
(t2 − τ)α−1 f (τ, x̂(τ))dτ||1

≤
Mn

Γ(α)
[
∫ t1

t0+h
|(t1 − τ)α−1 − (t2 − τ)α−1|dτ +

∫ t2

t1
(t2 − τ)α−1dτ]

=
Mn

Γ(α + 1)

{
2(t2 − t1)α + (t1 − t0 − h)α − (t2 − t0 − h)α if α < 1
(t2 − t0 − h)α − (t1 − t0 − h)α if α > 1

. (3.3)

As we see, the two differences both converge to zero, as t1 → t2. Thus, z(t) ∈ C[t0 + h, t0 + h + he], and (T x̂)(t) ∈
C[t0 + h, t0 + h + he]. For all x̂ ∈ A,

||(T x̂)(t) − z(t)||1 =
1

Γ(α)
||

∫ t

t0+h
(t − τ)α−1 f (τ, x̂(τ))dτ||1 ≤

Mn

Γ(α)

∫ t

t0+h
(t − τ)α−1dτ ≤

Mn

Γ(α + 1)
hαe = be.

Thus, (T x̂) ∈ A, for all x̂ ∈ A.

Second show that T (A) := {T x̂ : x̂ ∈ A} is precompact. According to Arzelà-Ascoli Theorem, we need to prove
that T (A) is uniformly bounded and equicontinuous. For any x̂ ∈ A,

||T x̂(t)||1 ≤ ||z||1,∞, A +
1

Γ(α)

∫ t

t0+h
(t − τ)α−1|| f (τ, x̂(τ))||1dτ ≤ ||z||1,∞, A +

Mn

Γ(α + 1)
hαe .

Thus, the uniform boundedness is proven. It follows from (3.2) and (3.3) that for all x̂ ∈ A and any t0 + h ≤ t1 ≤ t2 ≤
t0 + h + he,

||(T x̂)(t1) − (T x̂)(t2)||1 ≤
m∑

k=0

||x0,k||1

k!
[(t2 − t0)k − (t1 − t0)k] +

M0,n

Γ(α + 1)

{
2(t2 − t1)α + (t1 − t0)α − (t2 − t0)α if α < 1
(t2 − t0)α − (t1 − t0)α if α > 1
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≤ ||x0,1||1(t2 − t1) +

m∑
k=2

||x0,k||1

k!
[(t2 − t0)k − (t1 − t0)k] +

M0,n

Γ(α + 1)

{
2(t2 − t1)α if α < 1
(t2 − t0)α − (t1 − t0)α if α > 1

= ||x0,1||1(t2 − t1) +

m∑
k=2

||x0,k||1

k!
k(ξk − t0)k−1(t2 − t1) +

M0,n

Γ(α + 1)

{
2(t2 − t1)α if α < 1
α(ξα − t0)α−1(t2 − t1) if α > 1

≤ ||x0,1||1(t2 − t1) +

m∑
k=2

||x0,k||1

k!
k(h + he)k−1(t2 − t1) +

M0,n

Γ(α + 1)

{
2(t2 − t1)α if α < 1
α(h + he)α−1(t2 − t1) if α > 1

,

where Mo,n := max{M,Mn}, and ξk, ξα ∈ [t2, t1] are the ”mean” points appearing in the application of the Mean Value
Theorem to (t − t0)k, (t − t0)α, respectively. Thus, for |t1 − t2| < δ,

||(T x̂)(t1) − (T x̂)(t2)||1 ≤ ||x0,1||1δ +

m∑
k=2

||x0,k||1

k!
k(h + he)k−1δ +

M0,n

Γ(α + 1)

{
2δα if α < 1
α(h + he)α−1δ if α > 1

.

This proves the equicontinuity.

According to the Schauder’s Fixed Point Theorem, T has a fixed point x̂∗ ∈ A. Thus, for t ∈ [t0 + h, t0 + h + he],

x̂∗(t) = (T x̂∗)(t) = z(t) +
1

Γ(α)

∫ t

t0+h
(t − τ)α−1 f (τ, x̂∗(τ))dτ =

m∑
k=0

(t − t0)k

k!
x0,k +

1
Γ(α)

∫ t0+h

t0
(t − τ)α−1 f (τ, x(τ))dτ

+
1

Γ(α)

∫ t

t0+h
(t − τ)α−1 f (τ, x̂∗(τ))dτ.

Since |
∫ t

t0+h(t − τ)α−1 f (τ, x̂∗(τ))dτ| ≤ Mn(t − t0 − h)α/α,
∫ t

t0+h(t − τ)α−1 f (τ, x̂∗(τ))dτ=0, as t = t0 + h. Thus, x̂∗(t0 + h)=

x(t0 + h). Let x̃(t) =

{
x(t) if t ∈ [t0, t0 + h]
x̂∗(t) if t ∈ [t0 + h, t0 + h + he]

, then x̃(t) ∈ C[t0, t0 + h + he] and

x̃(t) =

m∑
k=0

(t − t0)k

k!
x0,k +

1
Γ(α)

∫ t

t0
(t − τ)α−1 f (τ, x̃(τ))dτ, t ∈ [t0 + h, t0 + h + he].

Thus,

x̃(t) =

m∑
k=0

(t − t0)k

k!
x0,k +

1
Γ(α)

∫ t

t0
(t − τ)α−1 f (τ, x̃(τ))dτ, t ∈ [t0, t0 + h + he].

According to Lemma 3.1.1, x̃(t) is a solution to (3.1) on [t0, t0+h+he]. Therefore, x(t) can be extended to [t0, t0+h+he].

Since D̄n is compact, we can continue this extension process finite times to get an extension of x(t) to [t0, hn] such
that (hn, x(hn)) < D̄n. Similarly, for Dn+1, n > N, there exists hn+1 such that the solution has an extension to [t0, hn+1]
and (hn+1, x(hn+1)) < D̄n+1. As we see, {hn} is a monotone increasing sequence. Let β = limn→∞ hn, then β ≤ ∞. Thus,
x(t) has been extended to [t0, β) and cannot be extended further, since the sequence {(hn, x(hn))} is either unbounded or
has a limit point on the boundary of D. Therefore, the solution can be extended over its maximal interval of existence
[t0, β).
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If β = ∞, then (t, x(t)) tends to the boundary of D, due to t → ∞, as t → β−.

If β < ∞, we shall prove the theorem by contradiction. Suppose that (t, x(t)) does not tend to the boundary of D
as t → β. Then there exists an open bounded set U with Ū ⊂ D and a constant γ ∈ [t0, β) such that (t, x(t)) ∈ U,
for all t ∈ [γ, β). Moreover, there exists a closed and bounded set V̄ ⊂ D such that (t, x(t)) ∈ V̄ , for all t ∈ [t0, γ].
We shall first show that limt→β− x(t) exists, i.e. limt→β− x(t) = x(β−). Let MŪ,V̄ = max(t,x)∈Ū∪V̄ || f (t, x)||1, then for any
t0 ≤ t1 ≤ t2 < β,

||x(t1) − x(t2)||1 = ||

m∑
k=0

(t1 − t0)k

k!
x0,k +

1
Γ(α)

∫ t1

t0
(t − τ)α−1 f (τ, x(τ))dτ −

m∑
k=0

(t2 − t0)k

k!
x0,k

+
1

Γ(α)

∫ t2

t0
(t − τ)α−1 f (τ, x(τ))dτ||1

≤ ||x0,1||1(t2 − t1) +

m∑
k=2

||x0,k||1

k!
k β k−1(t2 − t1) +

MŪ,V̄

Γ(α + 1)

{
2(t2 − t1)α if α < 1
αβα−1(t2 − t1) if α > 1

.

Thus, x(t) is uniformly continuous on [t0, β). Thus, limt→β− x(t) = x(β−) exists. Since Ū is closed, (β, x(β−)) ∈ Ū. Let
x(β) = x(β−), then x(t) ∈ C[t0, β] and f (t, x(t)) ∈ C[t0, β] so that the integral

∫ t
t0

(t − τ)α−1 f (τ, x(τ))dτ ∈ C[t0, β]. For
t ∈ [t0, β),

x(t) =

m∑
k=0

(t − t0)k

k!
x0,k +

1
Γ(α)

∫ t

t0
(t − τ)α−1 f (τ, x(τ))dτ.

Taking the limit as t → β−, then we know that x(t) satisfies (3.1) at t = β. Thus, (3.1) has a solution x(t) ∈ C[t0, β]. Let
W̄ = Ū ∪ V̄ , then W̄ ⊂ D, and (t, x(t)) ∈ W̄ for t ∈ [t0, β]. As we did before, we can extend the solution to [t0, β + hε]
for some hε > 0. This contradicts with the claim that [t0, β) is the maximal interval of existence. Therefore, in this
case, (t, x(t)) also tends to the boundary of D as t → β−. The proof is complete. �

The following corollary gives some useful consequences of the continuation theorem.

Corollary 3.2.1. Assume f ∈ C(D,Rn), where D = [0,∞) × Rn. If x(t) is a solution of (3.1) on a maximal interval of
existence J = [t0, β), then

i. either β = ∞ or limt→β− sup ||x(t)||1 = ∞;

ii. β = ∞, if for any γ > t0, x(t) is bounded on J ∩ [t0, γ).

Proof. i. According to Theorem 3.2.3, as t → β−, (t, x(t)) tends to the boundary of [0,∞)×Rn. Thus, either β = ∞ or
limt→β− sup ||x(t)||1 = ∞.

ii. If x(t) is bounded on J ∩ [t0, γ), for any γ > t0, then limt→β− sup ||x(t)||1 < ∞, for any β < ∞. It follows from i
that β = ∞. �
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3.3 Smoothness

The differential properties of local and global solutions to systems of Caputo fractional order differential equations
are examined in this section. Suggesting that the solutions belong to a space of special smooth functions whose
derivatives may not exist at initial time but grow describably nearby.

3.3.1 Preliminaries

Here the derivative formula for a composite function with a vector argument, and preliminaries about complete s-
paces, nonempty and closed sets for the application of contraction mapping theorem, are introduced through three
corresponding lemmas.

Lemma 3.3.1. Assume that all the necessary derivatives are defined, then for any integer i ≥ 1,

di

dti f (t, x(t)) =
∑

0

∑
1

...
∑

i

i!∏i
j=1( j!)k j

∏i
j=1

∏n
l=0 v jl!


∂k

∂tu0∂x1
u1 ...∂xnun f1(t, x(t))
∂k

∂tu0∂x1
u1 ...∂xnun f2(t, x(t))

...
∂k

∂tu0∂x1
u1 ...∂xnun fn(t, x(t))


i∏

j=1

[x( j)
1 (t)]v j1[x( j)

2 (t)]v j2 ...[x( j)
n (t)]v jn ,

where f (t, x(t)) = [ f1(t, x(t)), f2(t, x(t)), ..., fn(t, x(t))]T , x(t) = [x1(t), x2(t), ..., xn(t)]T ; the respective sums are over all
nonnegative integer solutions of the following Diophantine equations∑

0

→ k1 + 2k2 + ... + iki = i,∑
1

→ v10 + v11 + ... + v1n = k1,∑
2

→ v20 + v21 + ... + v2n = k2,

...∑
i

→ vi0 + vi1 + ... + vin = ki;

v20 = v30 = ... = vi0 = 0; ul = v1l + v2l + ... + vil, for l = 0, 1, ..., n; and k = u0 + u1 + ... + un = k1 + k2 + ... + ki.

Proof. Consider t as the number zero element of the vector argument, then the conclusion follows straightforwardly
from the unique theorem in [13]. �

Proposition 3.3.1. In Lemma 3.3.1, u0, u1, ..., un are all possible nonnegative integers such that 1 ≤ u0+u1+...+un ≤ i,
except, for i ≥ 2, u0 = 1, 2, ..., i − 1, u1 = u2 = ... = un = 0.
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Proof. Let u0 +u1 + ...+un < 1, then k = u0 +u1 + ...+un = 0 so that k j = 0, j = 1, 2, ..., i, and i = k1 +2k2 + ...+ iki = 0,
which is not true. Similarly, let u0 + u1 + ... + un > i, then k1 + k2 + ... + ki > i so that k1 + 2k2 + ... + iki > i, which is
also not the case. Thus, 1 ≤ u0 + u1 + ... + un ≤ i.

If i = 1, let u0 = ū0, u1 = ū1, ..., un = ūn, where ū0, ū1, ..., ūn are any nonnegative integers such that ū0+ū1+...+ūn =

1, then k1 = 1 and other k’s are 0. Thus, we can select a solution: v10 = ū0, v11 = ū1, ..., v1n = ūn, and other v’s are 0.

If i ≥ 2, let u0 = i and u1 = u2 = ... = un = 0, then we can select v10 = i and other v’s as 0. Let u0 = ū0, u1 = ū1,
..., un = ūn, where ū0, ū1, ..., ūn are any nonnegative integers and not all the latter n ones are 0 such that ū0 + ū1+

... + ūn = j, 1 ≤ j ≤ i and i ≥ 2. If j = i, then k1 = i and other k’s are 0. Thus, we can select a solution: v10 = ū0,
v11 = ū1, ..., v1n = ūn, and other v’s are 0. If j ≤ i − 1, for k1 + 2k2 + ... + iki = i and k1 + k2 + ... + ki = j, there always
exists a solution k1 = j − 1, k2 = 0, ..., ki− j = 0, ki−( j−1) = 1, ki− j+2 = 0, ..., ki = 0. In this solution, k1 + ki−( j−1) = j >
ū0 so that we can select v10 = v̄10 ≤ k1 and v[i−( j−1)] 0 = v̄[i−( j−1)] 0 = 0 such that v10 + v[i−( j−1)] 0 = ū0. Similarly, k1− v̄10
+ki−( j−1) − v̄[i−( j−1)] 0 = j − ū0 ≥ ū1 so that we can select v11 = v̄11 ≤ k1 − v̄10 and v[i−( j−1)] 1 = v̄[i−( j−1)] 1 ≤ ki−( j−1)−

v̄[i−( j−1)] 0 such that v11 + v[i−( j−1)] 1 = ū1. Keep doing this, we know, k1 −
∑l=n−1

l=0 v̄1l + ki−( j−1) −
∑l=n−1

l=0 v̄[i−( j−1)] l = j−∑l=n−1
l=0 ūl = ūn so that we can select v1n = v̄1n = k1 −

∑l=n−1
l=0 v̄1l and v[i−( j−1)] n = v̄[i−( j−1)] n = ki−( j−1) −

∑l=n−1
l=0 v̄[i−( j−1)] l

such that v1n + v[i−( j−1)] n = ūn. Therefore, there always exist solutions, except, for i ≥ 2, u0 = 1, 2, ..., i − 1, u1 = u2 =

... = un = 0.

For i ≥ 2, let u0 = j, j = 1, 2, ..., i − 1, and u1 = u2 = ... = un = 0, then v10 = j and other v’s are 0 so that
i = k1 + 2k2 + ...+ iki = k1 = j. This is not true. Thus, for the ”except” cases, there is no solutions for the Diophantine
equations. �

Lemma 3.3.2. (Cq,m,ν(t1, t2], || · ||1,q,m,ν) is complete, where Cq,m,ν(t1, t2] (q = {m + 1,m + 2, ...}, ν ∈ [1 − (α − m), 1))
is the set of functions x: [t1, t2] → Rn which are m times continuously differentiable on [t1, t2]; q times continuously
differentiable on (t1, t2] and ||x(i)(t)||1 ≤ c(t− t1)1−ν−(i−m), t ∈ (t1, t2], i = m+1,m+2, ..., q, and c is a positive constant;
and ||x||1,q,m,ν = ||x||1,∞ +

∑m
i=1 ||x

(i)||1,∞ +
∑q

i=m+1 supt∈(t1,t2](t − t1)ν−1+(i−m)||x(i)(t)||1.

Proof. Suppose that {xu} is an arbitrary Cauchy sequence in (Cq,m,ν(t1, t2], || · ||1,q,m,ν), then for any ε > 0, there exists
U > 0 such that u, v > U implies

||xu − xv||1,q,m,ν = ||xu − xv||1,∞ +

m∑
i=1

||x(i)
u − x(i)

v ||1,∞ +

q∑
i=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(i−m)||x(i)
u (t) − x(i)

v (t)||1

= max
t∈[t1,t2]

||xu(t) − xv(t)||1 +

m∑
i=1

max
t∈[t1,t2]

||x(i)
u (t) − x(i)

v (t)||1 +

q∑
i=m+1

sup
t∈(t1,t2]

||(t − t1)ν−1+(i−m)[x(i)
u (t) − x(i)

v (t)]||1

< ε.

Now fix t ∈ [t1, t2], then {xu(t)}, {x(i)
u (t)} (i = 1, 2, ...,m) are both Cauchy sequences in Rn. Similarly, fix t ∈ (t1, t2],

then {(t − t1)ν−1+(i−m)x(i)
u (t)} (i = m + 1,m + 2, ..., q) is a Cauchy sequence in Rn as well. Thus, there exist x(t), x(i)(t)

and (t − t1)ν−1+(i−m)x(i)(t) such that xu(t) → x(t), x(i)
u (t) → x(i)(t) and (t − t1)ν−1+(i−m)x(i)

u (t) → (t − t1)ν−1+(i−m)x(i)(t) as
u→ ∞. This well defines x(t), x(i)(t) for t ∈ [t1, t2], and (t − t1)ν−1+(i−m)x(i)(t) for t ∈ (t1, t2].
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Let v→ ∞, then for all t ∈ [t1, t2], ||xu(t)−x(t)||1 ≤ ε, ||x
(i)
u (t)−x(i)(t)||1 ≤ ε; for all t ∈ (t1, t2], ||(t−t1)ν−1+(i−m)x(i)

u (t)−
(t−t1)ν−1+(i−m)x(i)(t)||1 ≤ ε. As we see, {xu(t)}, {x(i)

u (t)} and {(t−t1)ν−1+(i−m)x(i)
u (t)} converge uniformly to x(t), x(i)(t) and

(t − t1)ν−1+(i−m)x(i)(t), respectively. Thus, x(t), x(i)(t) are continuous on [t1, t2], and (t − t1)ν−1+(i−m)x(i)(t) is continuous
on (t1, t2]. Moreover, for all t ∈ (t1, t2],

||(t − t1)ν−1+(i−m)x(i)(t)||1 ≤ ||(t − t1)ν−1+(i−m)x(i)(t) − (t − t1)ν−1+(i−m)x(i)
u (t)||1 + ||(t − t1)ν−1+(i−m)x(i)

u (t)||1 < ε + c.

It follows from the arbitrariness of ε, (t− t1)ν−1+(i−m)||x(i)(t)||1 ≤ c. Thus, x(t) is m times continuously differentiable on
[t1, t2] and for i = m + 1, ..., q, ||x(i)(t)||1 ≤ c(t − t1)1−ν−(i−m), t ∈ (t1, t2], i.e. x(t) ∈ Cq,m,ν(t1, t2]. Obviously, for u > U,
||xu − x||1,q,m,ν < (q + 1)ε, which implies ||xu − x||1,q,m,ν → 0 as u→ ∞. Therefore, {xu} converges to x. �

Lemma 3.3.3. B = {x ∈ Cq,m,ν(t1, t2] : ||x−
∑m

k=0(t − t0)kx0,k/k!||1,∞,B ≤ b and ||x||1,q,m,ν,B ≤ c} is nonempty and closed
such that (B, || · ||1,q,m,ν,B) is nonempty and complete, where ||x||1,q,m,ν,B = (W + 1)||x||1,∞,B +

∑m
i=1 ||x

(i)||1,∞,B +
∑q

i=m+1
supt∈(t1,t2] (t − t1)ν−1+(i−m)||x(i)(t)||1 (W is a positive constant), t0 ≤ t1 < t2 ≤ t0 + h, c > (W + 1)

∑m
k=0 hk||x0,k||1/k! +∑m

i=1
∑m

k=i hk−i||x0,k||1/(k − i)!, and t2 − t1 is sufficiently small.

Proof. Let x(t) =
∑m

k=0(t − t0)kx0,k/k! + ε(t − t1)1−ν+m + o[(t − t1)1−ν+m], where ε is a sufficiently small constant, then
||x(t) −

∑m
k=0(t − t0)kx0,k/k!||1,∞,B ≤ |ε|n(t2 − t1)1−ν+m + o[(t2 − t1)1−ν+m] ≤ b and

||x(t)||1,q,m,ν = (W + 1)||x(t)||1,∞,B +

m∑
i=1

||x(i)(t)||1,∞,B +

q∑
i=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(i−m)||x(i)(t)||1

≤ (W + 1){
m∑

k=0

(t2 − t0)k

k!
||x0,k||1 + |ε|n(t2 − t1)1−ν+m + o[(t2 − t1)1−ν+m]}

+

m∑
i=1

m∑
k=1

(t2 − t0)k−i

(k − i)!
||x0,k||1 + |ε|n(1 − ν + m)...(1 − ν + m − i + 1)(t2 − t1)1−ν+m−i + o[(t2 − t1)1−ν+m−i]

+

q∑
i=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(i−m){|ε |n|(1 − ν + m)...(1 − ν + m − i + 1)|(t − t1)1−ν+m−i + o[(t − t1)1−ν+m−i]}

≤ (W + 1){
m∑

k=0

hk

k!
||x0,k||1 + |ε|n(t2 − t1)1−ν+m + o[(t2 − t1)1−ν+m]}

+

m∑
i=1

m∑
k=1

hk−i

(k − i)!
||x0,k||1 + |ε|n(1 − ν + m)...(1 − ν + m − i + 1)(t2 − t1)1−ν+m−i + o[(t2 − t1)1−ν+m−i]

+

q∑
i=m+1

|ε|n|(1 − ν + m)...(1 − ν + m − i + 1)| +
q∑

i=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(i−m)o[(t − t1)1−ν+m−i]

≤ c.

Thus, x(t) ∈ B and B is nonempty.
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According to Lemma 3.3.2, (Cq,m,ν(t1, t2], ||·||1,q,m,ν,B) is complete, due to ||x||1,q,m,ν ≤ ||x||1,q,m,ν,B ≤ (W+1)||x||1,q,m,ν.
Suppose that {xu} ⊂ {x ∈ Cq,m,ν(t1, t2] : ||x−

∑m
k=0(t−t0)kx0,k/k!||1,∞,B ≤ b} and limu→∞ xu = x, then {xu} ⊂ Cq,m,ν(t1, t2]

and limu→∞ ||xu− x||1,q,m,ν,B = 0. Thus, x ∈ Cq,m,ν(t1, t2] and limu→∞ ||xu− x||1,∞,B = 0. For any u, ||x−
∑m

k=0(t− t0)kx0,k
/k!||1,∞,B ≤ ||x− xu||1,∞,B + ||xu−

∑m
k=0(t− t0)kx0,k/k!||1,∞,B. Then ||x−

∑m
k=0(t− t0)kx0,k/k!||1,∞,B ≤ limu→∞ ||x− xu||1,∞,B +

limu→∞ ||xu −
∑m

k=0(t − t0)kx0,k/k!||1,∞,B ≤ b. Thus, the limit of sequence remains in the set so that {x ∈ Cq,m,ν(t1, t2] :
||x −

∑m
k=0(t − t0)kx0,k/k!||1,∞,B ≤ b} is closed. Since {x ∈ Cq,m,ν(t1, t2] : ||x||1,q,m,ν,B ≤ c} is also closed, B is a closed set

in (Cq,m,ν(t1, t2], || · ||1,q,m,ν,B). Therefore, (B, || · ||1,q,m,ν,B) is complete. �

3.3.2 Local Smoothness

The smoothness property of local solutions is focused in this subsection. The following main theorem for local
smoothness is the combination of Theorem 3.3.2 (0 < α < 1) and Theorem 3.3.3 (α > 1).

Theorem 3.3.1. Assume that f is continuous in t and x on S̄ , and q−m times continuously differentiable with respect
to t and x on S = {(t, x) : t ∈ (t0, t0+a], ||x−

∑m
k=0(t−t0)kx0,k/k!||1 ≤ b}, and there exist constants ν ∈ [1−(α−m), 1), Md

and Ld such that, for any (t, x) ∈ S and all possible nonnegative integers u0, u1, ..., un with 1 ≤ u0 +u1 + ...+un ≤ q−m,

||
∂u0+u1+...+un

∂tu0∂x1u1 ...∂xn
un

f (t, x)||1 ≤ Md

{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

; (3.4)

and for any (t, x), (t, y) ∈ S and those u0, u1, ..., un with u0 + u1 + ... + un = q − m,

||
∂q−m

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂q−m

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ Ld ||x − y||1
{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

. (3.5)

Then (3.1) has a unique solution x(t) ∈ Cq,m,ν(t0, t0 + h].

Remark 3.3.1. If q = m, i.e. only the continuity of f on S̄ is assumed, then it follows from the part of proof of
Theorem 3.3.3 before (3.19) that (3.1) has a solution x(t) ∈ Cm[t0, t0 + h].

Remark 3.3.2. It follows from the part of proof below (3.13) that (3.5) is satisfied if for any (t, x), (t, y) ∈ S , l =

1, 2, ..., n and those u0, u1, ..., un with u0 + u1 + ... + un = q − m,

||
∂q−m+1

∂tu0∂x1u1 ...∂xl
ul+1...∂xn

un
f (t, x)||1 ≤

1
n

Ld

{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

.

The ”if” part in (3.4) and (3.5) can be removed as in the following corollary. Since involving parts of the proofs
for Theorem 3.3.2 and 3.3.3, the proof for this corollary will be given at the end of this subsection.

Corollary 3.3.1. Assume that f is q − m times continuously differentiable on S̄ , and there exists a constant Ld such
that, for any (t, x), (t, y) ∈ S̄ and all possible nonnegative integers u0, u1, ..., un with u0 + u1 + ... + un = q − m,

||
∂q−m

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂q−m

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ Ld ||x − y||1. (3.6)

Then (3.1) has a unique solution x(t) ∈ Cq,m,1−(α−m)(t0, t0 + h].
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Corollary 3.3.2. Assume that f is q −m + 1 times continuously differentiable on S̄ . Then (3.1) has a unique solution
x(t) ∈ Cq,m,1−(α−m)(t0, t0 + h].

Proof. It follows straightforwardly from Corollary 3.3.1. �

Now we state the local smoothness theorem for 0 < α < 1. It will be proven by using the contraction mapping
theorem.

Theorem 3.3.2. Let 0 < α < 1. Assume that f is continuous in t and x on S̄ , and q times continuously differentiable
with respect to t and x on S = {(t, x) : t ∈ (t0, t0 + a], ||x − x0,0||1 ≤ b}, and there exist constants ν ∈ [1 − α, 1), Md and
Ld such that, for any (t, x) ∈ S and all possible nonnegative integers u0, u1, ..., un with 1 ≤ u0 + u1 + ... + un ≤ q,

||
∂u0+u1+...+un

∂tu0∂x1u1 ...∂xn
un

f (t, x)||1 ≤ Md

{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

; (3.7)

and for any (t, x), (t, y) ∈ S and those u0, u1, ..., un with u0 + u1 + ... + un = q,

||
∂q

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂q

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ Ld ||x − y||1
{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

. (3.8)

Then (3.1) has a unique solution x(t) ∈ Cq,ν(t0, t0 + h].

Proof. Since f is continuous on S̄ , according to Theorem 3.1.1, (3.1) has a continuous solution on [t0, t0 + h]. Let
x∗(t) denote this solution, then x∗(t) ∈ C[t0, t0 + h], and according to Lemma 3.1.1,

x∗(t) = x0,0 +
1

Γ(α)

∫ t

t0
(t − τ)α−1 f (τ, x∗(τ))dτ, t ∈ [t0, t0 + h].

Referring to [14], we fix two arbitrary different points in [t0, t0 + h] and let t2 denote the larger one, t1 the other one,
then t0 ≤ t1 < t2 ≤ t0 + h. Consider the following integral equation

x(t) = (T x)(t) + z(t), t ∈ (t1, t2], (3.9)

where

(T x)(t) =
1

Γ(α)

∫ t

t1
(t − τ)α−1 f (τ, x(τ))dτ, t ∈ (t1, t2],

and

z(t) = x0,0 +
1

Γ(α)

∫ t1

t0
(t − τ)α−1 f (τ, x∗(τ))dτ, t ∈ (t1, t2].

As observed, x∗(t), t ∈ (t1, t2] is a solution to (3.9). We shall show that (3.9) is uniquely solvable on (t1, t2] and the
solution is in Cq,ν(t1, t2]. Since t1, t2 are arbitrary, as we shall see, this finally proves x∗(t) ∈ Cq,ν(t0, t0 + h].
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Another important observation is z(t) ∈ Cq,v(t1, t2]. For t1 ≤ s1 ≤ s2 ≤ t2,

||z(s1) − z(s2)||1 =
1

Γ(α)
||

∫ t1

t0
(s1 − τ)α−1 f (τ, x∗(τ))dτ −

∫ t1

t0
(s2 − τ)α−1 f (τ, x∗(τ))dτ||1

=
1

Γ(α)
||

∫ t1

t0
[(s1 − τ)α−1 − (s2 − τ)α−1] f (τ, x∗(τ))dτ||1

≤
1

Γ(α)

∫ t1

t0
|(s1 − τ)α−1 − (s2 − τ)α−1| || f (τ, x∗(τ))||1dτ

≤
M

Γ(α)

∫ t1

t0
(s1 − τ)α−1 − (s2 − τ)α−1dτ

=
M

Γ(α)α
[(s2 − t1)α − (s1 − t1)α + (s1 − t0)α − (s2 − t0)α].

As s1 → s2, ||z(s1) − z(s2)||1 → 0, which implies z(t) ∈ C[t1, t2]. In z(t), t , τ and f (τ, x∗(τ)) is continuous so that
(t − τ)α−1 f (τ, x∗(τ)) is continuous and its partial derivatives with respect to t are also continuous. Thus, we have

z(i)(t) =
(α − 1)...(α − i)

Γ(α)

∫ t1

t0
(t − τ)α−1−i f (τ, x∗(τ))dτ, t ∈ (t1, t2], i = 1, 2, ..., q,

which is continuous. Moreover, for sufficiently small t2 − t1 such that t − t1 < 1, we estimate

||z(i)(t)||1 ≤ |
(α − 1)...(α − i)

Γ(α)
|

∫ t1

t0
(t − τ)α−1−i|| f (τ, x∗(τ))||1dτ

≤ |
(α − 1)...(α − i)

Γ(α)
|M

∫ t1

t0
(t − τ)α−1−idτ

= |
(α − 1)...(α − i)

Γ(α)
|M
−1
α − i

[(t − t1)α−i − (t − t0)α−i]

≤ |
(α − 1)...(α − i + 1)

Γ(α)
|M(t − t1)1−ν−i, t ∈ (t1, t2], i = 1, 2, ..., q.

Therefore, z(t) ∈ Cq,ν(t1, t2].

Define (S x)(t) = (T x)(t) + z(t), t ∈ (t1, t2]. We shall show that S maps the closed ball B = {x ∈ Cq,ν(t1, t2] : ||x−
x0,0||1,∞,B ≤ b and ||x||1,q,ν,B ≤ c}, where, referring to [15], ||x||1,q,ν,B = (W + 1)||x||1,∞,B +

∑q
i=1 supt∈(t1,t2](t − t1)ν−1+i×

||x(i)(t)||1, W > max{
∑q

i=1 cT,i,
∑q

i=1 cS ,i,1,1} and c > cz + W, into itself. Here cz denotes the right hand side (constant)
of the following inequality

||z||1,q,ν,B ≤ (W + 1)[||x0,0||1 +
Mhα

Γ(α + 1)
] +

q∑
i=1

|(α − 1)...(α − i + 1)|M
Γ(α)

.

According to Lemma 3.3.3, B equipped with || · ||1,q,ν,B is nonempty and closed such that it is complete.
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For any x ∈ B, t1 ≤ s1 ≤ s2 ≤ t2,

||(T x)(s1) − (T x)(s2)||1 =
1

Γ(α)
||

∫ s1

t1
(s1 − τ)α−1 f (τ, x(τ))dτ −

∫ s2

t1
(s2 − τ)α−1 f (τ, x(τ))dτ||1

=
1

Γ(α)
||

∫ s1

t1
[(s1 − τ)α−1 − (s2 − τ)α−1] f (τ, x(τ))dτ −

∫ s2

s1

(s2 − τ)α−1 f (τ, x(τ))dτ||1

≤
1

Γ(α)
{||

∫ s1

t1
[(s1 − τ)α−1 − (s2 − τ)α−1] f (τ, x(τ))dτ||1 + ||

∫ s2

s1

(s2 − τ)α−1 f (τ, x(τ))dτ||1}

≤
1

Γ(α)
{

∫ s1

t1
[(s1 − τ)α−1 − (s2 − τ)α−1]|| f (τ, x(τ))||1dτ +

∫ s2

s1

(s2 − τ)α−1|| f (τ, x(τ))||1dτ}

≤
M

Γ(α)
[
∫ s1

t1
(s1 − τ)α−1 − (s2 − τ)α−1dτ +

∫ s2

s1

(s2 − τ)α−1dτ]

=
M

Γ(α + 1)
[2(s2 − s1)α + (s1 − t1)α − (s2 − t1)α].

As s1 → s2, ||(T x)(s1) − (T x)(s2)||1 → 0, which implies (T x)(t) ∈ C[t1, t2]. This together with z(t) ∈ C[t1, t2] suffices
(S x)(t) ∈ C[t1, t2]. Moreover, for any x ∈ B,

||(S x)(t) − x0,0||1,∞,B =
1

Γ(α)
max

t∈[t1,t2]
||

∫ t

t1
(t − τ)α−1 f (τ, x(τ))dτ +

∫ t1

t0
(t − τ)α−1 f (τ, x∗(τ))dτ||1

≤
1

Γ(α)
max

t∈[t1,t2]
[
∫ t

t1
(t − τ)α−1|| f (τ, x(τ))||1dτ +

∫ t1

t0
(t − τ)α−1|| f (τ, x∗(τ))||1dτ]

≤
M

Γ(α)
max

t∈[t1,t2]
[
∫ t

t1
(t − τ)α−1dτ +

∫ t1

t0
(t − τ)α−1dτ]

=
M

Γ(α)
max

t∈[t1,t2]

∫ t

t0
(t − τ)α−1dτ

≤
M

Γ(α)
max

t∈[t1,t2]

1
α

(t − t0)α

≤
M

Γ(α + 1)
hα

≤ b, t ∈ [t1, t2].

We need to further show that for any x ∈ B, (S x)(t) ∈ Cq,ν(t1, t2] and ||(S x)(t)||1,q,ν,B ≤ c. In order to differentiate
(T x)(t), we referring to [14], let s(t) = t1 + (t − t1)/2, then rewrite (T x)(t) as

(T x)(t) = (T1x)(t) + (T2x)(t),

where

(T1x)(t) =
1

Γ(α)

∫ s(t)

t1
(t − τ)α−1 f (τ, x(τ))dτ, t ∈ (t1, t2],
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and

(T2x)(t) =
1

Γ(α)

∫ t

s(t)
(t − τ)α−1 f (τ, x(τ))dτ, t ∈ (t1, t2].

In (T1x)(t), t , τ due to t > s(t) so that (t − τ)α−1 f (τ, x(τ)) is continuous and its partial derivatives with respect to
t are also continuous. Thus, for t ∈ (t1, t2],

(T1x)′(t) =
α − 1
Γ(α)

∫ s(t)

t1
(t − τ)α−2 f (τ, (x(τ))dτ +

1
Γ(α)2α

(t − t1)α−1 f (τ, x(τ))|τ=s(t)

= c1

∫ s(t)

t1
(t − τ)α−1−1 f (τ, (x(τ))dτ + c10(t − t1)α−1+0 f (τ, x(τ))|τ=s(t),

and

(T1x)′′(t) = c1(α − 2)
∫ s(t)

t1
(t − τ)α−3 f (τ, (x(τ))dτ + c1

1
2α−1 (t − t1)α−2 f (τ, x(τ))|τ=s(t)

+ c10(α − 1)(t − t1)α−2 f (τ, x(τ))|τ=s(t) + c10
1
2

(t − t1)α−1 d f (τ, x(τ))
dτ

∣∣∣∣∣
τ=s(t)

= c2

∫ s(t)

t1
(t − τ)α−2−1 f (τ, (x(τ))dτ + c20(t − t1)α−2+0 f (τ, x(τ))|τ=s(t) + c21(t − t1)α−2+1 d f (τ, x(τ))

dτ

∣∣∣∣∣
τ=s(t)

= c2

∫ s(t)

t1
(t − τ)α−2−1 f (τ, (x(τ))dτ +

2−1∑
j=0

c2 j(t − t1)α−2+ j d j

dτ j f (τ, x(τ))|τ=s(t).

Let (T1x)(i−1)(t) = ci−1
∫ s(t)

t1
(t − τ)α−(i−1)−1 f (τ, (x(τ))dτ +

∑(i−1)−1
j=0 c(i−1) j(t − t1)α−(i−1)+ j d j

dτ j f (τ, x(τ))|τ=s(t), i ≥ 2, then

(T1x)(i)(t) = ci−1(α − i)
∫ s(t)

t1
(t − τ)α−i−1 f (τ, (x(τ))dτ + ci−1

1
2α−(i−1) (t − t1)α−i f (τ, x(τ))|τ=s(t)

+

(i−1)−1∑
j=0

c(i−1) j[α − (i − 1) + j](t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t)

+

(i−1)−1∑
j=0

c(i−1) j
1
2

(t − t1)α−i+( j+1) d j+1

dτ j+1 f (τ, x(τ))|τ=s(t)

= ci−1(α − i)
∫ s(t)

t1
(t − τ)α−i−1 f (τ, (x(τ))dτ + ci−1

1
2α−(i−1) (t − t1)α−i f (τ, x(τ))|τ=s(t)

+

(i−1)−1∑
j=0

c(i−1) j[α − (i − 1) + j](t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t)

+ c(i−1)(i−2)
1
2

(t − t1)α−i+(i−1) di−1

dτi−1 f (τ, x(τ))|τ=s(t) +

(i−1)−2∑
j=0

c(i−1) j
1
2

(t − t1)α−i+( j+1) d j+1

dτ j+1 f (τ, x(τ))|τ=s(t)

43



= ci−1(α − i)
∫ s(t)

t1
(t − τ)α−i−1 f (τ, (x(τ))dτ +

(i−1)−1∑
j=0

c(i−1) j[α − (i − 1) + j](t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t)

+

(i−1)−1∑
k=0

{ ci−1
1

2α−(i−1) , k = 0
c(i−1)(k−1)

1
2 , k > 0

× (t − t1)α−i+k dk

dτk f (τ, x(τ))|τ=s(t) + c(i−1)(i−2)
1
2

(t − t1)α−i+(i−1) di−1

dτi−1 f (τ, x(τ))|τ=s(t)

= ci

∫ s(t)

t1
(t − τ)α−i−1 f (τ, (x(τ))dτ +

i−1∑
j=0

ci j(t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t).

Therefore, we derive

(T1x)(i)(t) = ci

∫ s(t)

t1
(t − τ)α−i−1 f (τ, (x(τ))dτ +

i−1∑
j=0

ci j(t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t), t ∈ (t1, t2], i = 1, 2, ..., q. (3.10)

Since x ∈ B (so that (τ, x(τ)) ∈ S ,τ ∈ (t1, t2]) and f (t, x) is q times continuously differentiable on S , according to Lem-
ma 3.3.1, d j f (τ, x(τ))/dτ j|τ=s(t), t ∈ (t1, t2], j = 1, 2, ..., q − 1, is always continuous. Moreover, (t − τ)α−i−1 f (τ, (x(τ))
is continuous due to t > s(t) implied by t > t1. Thus, (T1x)(i)(t) ∈ C(t1, t2], i = 1, 2, ..., q.

As we see, (T2x)(t) is an improper integral so that we can not directly differentiate it. By using the smoothness of
f , we first rewrite it as

(T2x)(t) =
1

Γ(α)

∫ t

s(t)
(t − τ)α−1 f (τ, x(τ))dτ =

−1
Γ(α)α

∫ t

s(t)
f (τ, x(τ))d(t − τ)α

=
−1

Γ(α)α
[ f (τ, x(τ))(t − τ)α

∣∣∣τ=t
τ=s(t) −

∫ t

s(t)
(t − τ)α

d f (τ, x(τ))
dτ

dτ]

=
1

Γ(α)α

∫ t

s(t)
(t − τ)α

d f (τ, x(τ))
dτ

dτ +
1

Γ(α)α2α
(t − t1)α f (τ, x(τ))|τ=s(t), t ∈ (t1, t2].

For any t ∈ (t1, t2], there exists t∗ such that t1 < t∗ < s(t) < t, then∫ t

s(t)
(t − τ)α

d f (τ, x(τ))
dτ

dτ =

∫ t

t∗
(t − τ)α

d f (τ, x(τ))
dτ

dτ −
∫ s(t)

t∗
(t − τ)α

d f (τ, x(τ))
dτ

dτ

= Γ(α + 1) t∗D
−(α+1)
t [

d f (t, x(t))
dt

] −
∫ s(t)

t∗
(t − τ)α

d f (τ, x(τ))
dτ

dτ.

Since x ∈ B and f (t, x) is q times continously differentiable on S , dif (t, x(t))/dti is continuous on [t∗, t2]. According
to Theorem 2.1.1 and (1.1) in [1],

d
dt t∗D

−(α+1)
t [

d f (t, x(t))
dt

] =
d
dt t∗D

−1
t t∗D

−α
t [

d f (t, x(t))
dt

] = t∗D
−α
t [

d f (t, x(t))
dt

] =
1

Γ(α)

∫ t

t∗
(t − τ)α−1 d f (τ, x(τ))

dτ
dτ.
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It is clear that (t − τ)αdi f (τ, x(τ))/dτi is continuous on [t∗, s(t)] and its partial derivative with respect to t, α(t −
τ)α−1di f (τ, x(τ))/dτi, is also continuous on [t∗, s(t)] due to t > s(t) > t∗. By the Leibniz integral rule,

d
dt

∫ s(t)

t∗
(t − τ)α

d f (τ, x(τ))
dτ

dτ = α

∫ s(t)

t∗
(t − τ)α−1 d f (τ, x(τ))

dτ
dτ +

1
2α+1 (t − t1)α

d f (τ, x(τ))
dτ

|τ=s(t).

Thus, for t ∈ (t1, t2],

(T2x)′(t) =
1

Γ(α)

∫ t

s(t)
(t − τ)α−1 d f (τ, x(τ))

dτ
dτ +

−1
Γ(α)α2α+1 (t − t1)α

d f (τ, x(τ))
dτ

∣∣∣∣∣
τ=s(t)

+
1

Γ(α)2α
(t − t1)α−1 f (τ, x(τ))|τ=s(t) +

1
Γ(α)α2α+1 (t − t1)α

d f (τ, x(τ))
dτ

∣∣∣∣∣
τ=s(t)

= d1

∫ t

s(t)
(t − τ)α−1 d f (τ, x(τ))

dτ
dτ + d10(t − t1)α−1+0 f (τ, x(τ))|τ=s(t)

= d1
−1
α

∫ t

s(t)

d f (τ, x(τ))
dτ

d(t − τ)α + d10(t − t1)α−1 f (τ, x(τ))|τ=s(t)

= d1
−1
α

[
d f (τ, x(τ))

dτ
(t − τ)α

∣∣∣τ=t
τ=s(t) −

∫ t

s(t)
(t − τ)α

d2 f (τ, x(τ))
dτ2 dτ] + d10(t − t1)α−1 f (τ, x(τ))|τ=s(t)

= d1
1
α

[
1
2α

(t − t1)α
d f (τ, x(τ))

dτ

∣∣∣∣∣
τ=s(t)

+

∫ t

s(t)
(t − τ)α

d2 f (τ, x(τ))
dτ2 dτ] + d10(t − t1)α−1 f (τ, x(τ))|τ=s(t)

= d1
1
α

∫ t

s(t)
(t − τ)α

d2 f (τ, x(τ))
dτ2 dτ + d1

1
α2α

(t − t1)α
d f (τ, x(τ))

dτ

∣∣∣∣∣
τ=s(t)

+ d10(t − t1)α−1 f (τ, x(τ))|τ=s(t),

(T2x)′′(t) = d1

∫ t

s(t)
(t − τ)α−1 d2 f (τ, x(τ))

dτ2 dτ + d1
−1

α2α+1 (t − t1)α
d2 f (τ, x(τ))

dτ2

∣∣∣∣∣
τ=s(t)

+ d1
1
2α

(t − t1)α−1 d f (τ, x(τ))
dτ

∣∣∣∣∣
τ=s(t)

+ d1
1

α2α+1 (t − t1)α
d2 f (τ, x(τ))

dτ2

∣∣∣∣∣
τ=s(t)

+ d10
1

α − 1
(t − t1)α−2 f (τ, x(τ))|τ=s(t) + d10

1
2

(t − t1)α−1 d f (τ, x(τ))
dτ

∣∣∣∣∣
τ=s(t)

= d1

∫ t

s(t)
(t − τ)α−1 d2 f (τ, x(τ))

dτ2 dτ + d20(t − t1)α−2+0 f (τ, x(τ))|τ=s(t) + d21(t − t1)α−2+1 d f (τ, x(τ))
dτ

∣∣∣∣∣
τ=s(t)

.

Let (T2x)(i−1)(t) = d1
∫ t

s(t)(t − τ)α−1 di−1 f (τ,x(τ))
dτi−1 dτ +

∑(i−1)−1
j=0 d(i−1) j(t − t1)α−(i−1)+ j d j

dτ j f (τ, x(τ))|τ=s(t), i ≥ 2, then

(T2x)(i−1)(t) = d1
−1
α

∫ t

s(t)

di−1

dτi−1 f (τ, x(τ))d(t − τ)α +

(i−1)−1∑
j=0

d(i−1) j(t − t1)α−(i−1)+ j d j

dτ j f (τ, x(τ))|τ=s(t)

= d1
1
α

∫ t

s(t)
(t − τ)α

di

dτi f (τ, x(τ))dτ + d1
1
α2α

(t − t1)α
di−1

dτi−1 f (τ, x(τ))|τ=s(t) +

(i−1)−1∑
j=0

d(i−1) j(t − t1)α−(i−1)+ j d j

dτ j f (τ, x(τ))|τ=s(t),

45



(T2x)(i)(t) = d1

∫ t

s(t)
(t − τ)α−1 di

dτi f (τ, x(τ))dτ − d1
1

α2α+1 (t − t1)α
di

dτi f (τ, x(τ))|τ=s(t)

+ d1
1
2α

(t − t1)α−1 di−1

dτi−1 f (τ, x(τ))|τ=s(t) + d1
1

α2α+1 (t − t1)α
di

dτi f (τ, x(τ))|τ=s(t)

+

(i−1)−1∑
j=0

d(i−1) j[α − (i − 1) + j](t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t)

+

(i−1)−1∑
j=0

d(i−1) j
1
2

(t − t1)α−(i−1)+ j d j+1

dτ j+1 f (τ, x(τ))|τ=s(t)

= d1

∫ t

s(t)
(t − τ)α−1 di

dτi f (τ, x(τ))dτ + d1
1
2α

(t − t1)α−1 di−1

dτi−1 f (τ, x(τ))|τ=s(t)

+

(i−1)−1∑
j=0

d(i−1) j[α − (i − 1) + j](t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t)

+ d(i−1)(i−2)
1
2

(t − t1)α−1 di−1

dτi−1 f (τ, x(τ))|τ=s(t) +

(i−1)−2∑
j=0

d(i−1) j
1
2

(t − t1)α−(i−1)+ j d j+1

dτ j+1 f (τ, x(τ))|τ=s(t)

= d1

∫ t

s(t)
(t − τ)α−1 di

dτi f (τ, x(τ))dτ +

(i−1)−1∑
j=0

d(i−1) j[α − (i − 1) + j](t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t)

+

(i−1)−1∑
k=1

d(i−1)(k−1)
1
2

(t − t1)α−i+k dk

dτk f (τ, x(τ))|τ=s(t) + di(i−1)(t − t1)α−i+(i−1) di−1

dτi−1 f (τ, x(τ))|τ=s(t)

= d1

∫ t

s(t)
(t − τ)α−1 di

dτi f (τ, x(τ))dτ +

i−1∑
j=0

di j(t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t).

Therefore,

(T2x)(i)(t) = d1

∫ t

s(t)
(t − τ)α−1 di

dτi f (τ, x(τ))dτ+

i−1∑
j=0

di j(t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t), t ∈ (t1, t2], i = 1, 2, ..., q. (3.11)

For i = 1, 2, ..., q− 1, we can use the partial integration, like we do for (T2x)(i−1)(t), to easily see (T2x)(i)(t) ∈ C(t1, t2].
But we can not do that again for i = q, since f (τ, x(τ)) is not q + 1 times continuously differentiable.

Nevertheless, we can still show (T2x)(q)(t) ∈ C(t1, t2] as follows. As we see, the sum term of (T2x)(q)(t) is obvi-
ously continuous on (t1, t2]. We only need to show the continuity of its integral term. According to Lemma 3.3.1 and
Proposition 3.3.1,

i∑
j=1

(1 − ν − j)(v j1 + v j2 + ... + v jn) =

i∑
j=1

(1 − ν − j)(k j − v j0) ≥
i∑

j=1

− j(k j − v j0) = −i +

i∑
j=1

j v j0 = −i + u0,
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especially,
∑i

j=1(1 − ν − j)(v j1 + v j2 + ... + v jn) =
∑i

j=1(1−ν− j)k j = −i+(1−ν)
∑i

j=1 k j = −i+(1−ν)
∑n

l=0 ul ≥ 1−ν−i,
if u0 = 0. Moreover, for a single i ≥ 2, ∂k f (t, x(t))/∂tu0∂xu1

1 ...∂xun
n with u0 = 1, 2, ..., i − 1, u1 = u2 = ... = un = 0, will

not appear in the expression of di f (t, x(t))/dti. However, as we shall see, di f (t, x(t))/dti for each i = 1, 2, ...q, will
be involved in the proof, which makes ∂k f (t, x(t))/∂tu0∂xu1

1 ...∂xun
n with all possible nonnegative integers u0, u1, ..., un

such that 1 ≤ u0 + u1 + ... + un ≤ q appear. Thus, we need that (3.7) holds for all these possible cases. It follows from
(3.7), for sufficiently small t2 − t1 such that τ − t1 < 1,

||
di

dτi f (τ, x(τ))||1=||
∑

0

∑
1

...
∑

i

i!∏i
j=1( j!)k j

∏i
j=1

∏n
l=0 v jl!

∂k

∂τu0∂x1u1...∂xn
un

f (τ, x(τ))
i∏

j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2...[x( j)
n (τ)]v jn ||1

≤
∑

0

∑
1

...
∑

i

ci,k,n,v Md

{1 if u0 = 0
(τ − t0)1−ν−u0 if u0 ≥ 1

× c
∑i

j=1 v j1+v j2+...+v jn (τ − t1)
∑i

j=1(1−ν− j)(v j1+v j2+...+v jn)

≤
∑

0

∑
1

...
∑

i

c̃i,k,n,v Md

{(τ − t1)1−ν−i if u0 = 0
(τ − t0)1−ν−u0(τ − t1)−i+u0 if u0 ≥ 1

=
∑

0

∑
1

...
∑

i

c̃i,k,n,v Md

{(τ − t1)1−ν−i if u0 = 0
(τ − t1)1−ν−i if u0 ≥ 1

≤ c f ,i(τ − t1)1−ν−i, τ ∈ (t1, t2], i = 1, 2, ..., q,

where c f ,i is independent of t1 and t2. For t1 < s1 ≤ s2 ≤ t2, s1 − s(s2) = (s1 − s2 + s1 − t1)/2 > 0 if s2 is sufficiently
close to s1. In this situation,

||

∫ s1

s(s1)
(s1 − τ)α−1 di

dτi f (τ, x(τ))dτ −
∫ s2

s(s2)
(s2 − τ)α−1 di

dτi f (τ, x(τ))dτ||1

= ||

∫ s(s2)

s(s1)
(s1 − τ)α−1 di

dτi f (τ, x(τ))dτ+

∫ s1

s(s2)
[(s1 − τ)α−1 − (s2 − τ)α−1]

di

dτi f (τ, x(τ))dτ −
∫ s2

s1

(s2 − τ)α−1 di

dτi f (τ, x(τ))dτ||1

≤

∫ s(s2)

s(s1)
(s1− τ)α−1||

di

dτi f (τ, x(τ))||1dτ+

∫ s1

s(s2)
[(s1− τ)α−1− (s2 − τ)α−1]||

di

dτi f (τ, x(τ))||1dτ+

∫ s2

s1

(s2− τ)α−1||
di

dτi f (τ, x(τ))||1dτ

≤ c f ,i

{∫ s(s2)

s(s1)
(s1 − τ)α−1(τ − t1)1−ν−idτ +

∫ s1

s(s2)
[(s1 − τ)α−1 − (s2 − τ)α−1](τ − t1)1−ν−i dτ +

∫ s2

s1

(s2 − τ)α−1(τ − t1)1−ν−idτ
}

≤ c f ,i

{∫ s(s2)

s(s1)
(s1 − τ)α−1dτ [s(s1) − t1]1−ν−i +

∫ s1

s(s2)
[(s1 − τ)α−1 − (s2 − τ)α−1] dτ [s(s2) − t1]1−ν−i

+

∫ s2

s1

(s2 − τ)α−1dτ (s1 − t1)1−ν−i
}

≤ c f ,i

{∫ s(s2)

s(s1)
(s1 − τ)α−1dτ [s(s1) − t1]1−ν−i +

∫ s1

s(s2)
[(s1 − τ)α−1 − (s2 − τ)α−1] dτ [s(s1) − t1]1−ν−i

+

∫ s2

s1

(s2 − τ)α−1dτ (s1 − t1)1−ν−i
}
.
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Fix s1 and let s2 → s1, then ||
∫ s1

s(s1)(s1 − τ)α−1di f (τ, x(τ))/dτidτ −
∫ s2

s(s2)(s2 − τ)α−1di f (τ, x(τ))/dτidτ||1 → 0, which
implies that the integral term of (T2x)(q)(t) is also continuous on (t1, t2]. Thus, (T2x)(q)(t) ∈ C(t1, t2].

Therefore, for any x ∈ B, (T x)(i)(t) ∈ C(t1, t2], i = 1, 2, ..., q. Moreover, for sufficiently small t2 − t1 such that
t − t1 < 1,

||(T x)(i)(t)||1 = ||(T1x)(i)(t) + (T2x)(i)(t)||1

= ||ci

∫ s(t)

t1
(t − τ)α−i−1 f (τ, (x(τ))dτ +

i−1∑
j=0

ci j(t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t)

+ d1

∫ t

s(t)
(t − τ)α−1 di

dτi f (τ, x(τ))dτ +

i−1∑
j=0

di j(t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t)||1

= ||ci

∫ s(t)

t1
(t − τ)α−i−1 f (τ, (x(τ))dτ+ d1

∫ t

s(t)
(t − τ)α−1 di

dτi f (τ, x(τ))dτ+

i−1∑
j=0

ei j(t − t1)α−i+ j d j

dτ j f (τ, x(τ))|τ=s(t)||1

≤ |ci|

∫ s(t)

t1
(t − τ)α−i−1|| f (τ, (x(τ))||1dτ + d1

∫ t

s(t)
(t − τ)α−1||

di

dτi f (τ, x(τ))||1dτ

+

i−1∑
j=1

|ei j|(t − t1)α−i+ j||
d j

dτ j f (τ, x(τ))|τ=s(t)||1 + |ei0|(t − t1)α−i|| f (τ, x(τ))|τ=s(t)||1

≤ |ci|M
∫ s(t)

t1
(t − τ)α−i−1dτ + d1c f ,i

∫ t

s(t)
(t − τ)α−1(τ − t1)1−ν−idτ +

i−1∑
j=1

|ei j|c f , j(t − t1)α−i+ j(
t − t1

2
)1−ν− j

+ |ei0|M(t − t1)α−i

≤ |ci|M(
t − t1

2
)α−i + d1c f ,i

−1
α

[(t − τ)α(τ − t1)1−ν−i|τ=t
τ=s(t) − (1 − ν − i)

∫ t

s(t)
(t − τ)α(τ − t1)1−ν−i−1dτ]

+

i−1∑
j=1

|ei j|c f , j2ν−1+ j(t − t1)α+1−ν−i + |ei0|M(t − t1)α−i

≤ |ci|M(
t − t1

2
)α−i+ d1c f ,i

1
α

[(
t − t1

2
)α+1−ν−i+ (1− ν − i)(

t − t1
2

)α+1−ν−i]+
i−1∑
j=1

|ei j|c f , j2ν−1+ j(t − t1)α+1−ν−i

+ |ei0|M(t − t1)α−i

= cT,i(t − t1)α−i + cT,i,1(t − t1)α+1−ν−i

≤ cT,i(t − t1)1−ν−i + cT,i,1(t − t1)α+1−ν−i, t ∈ (t1, t2], i = 1, 2, ..., q.

where cT,i := |ci|M/2α−i + |ei0|M. Thus, (T x)(t) ∈ Cq,ν(t1, t2]. This together with z(t) ∈ Cq,ν(t1, t2] implies that for any
x ∈ B, (S x)(t) ∈ Cq,ν(t1, t2].
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In the following, we shall show that for any x ∈ B, ||(S x)(t)||1,q,ν,B ≤ c so that (S x)(t) ∈ B. For any x ∈ B, t ∈ (t1, t2]
and sufficiently small t2 − t1,

||(T x)(t)||1,∞,B =
1

Γ(α)
||

∫ t

t1
(t−τ)α−1 f (τ, x(τ))dτ ||1,∞,B ≤

1
Γ(α)

∫ t

t1
(t−τ)α−1|| f (τ, x(τ))||1,∞,B dτ ≤

M
Γ(α + 1)

(t2 − t1)1−ν,

then

||(S x)(t)||1,q,ν,B = (W + 1)||(S x)(t)||1,∞,B +

q∑
i=1

sup
t∈(t1,t2]

(t − t1)ν−1+i||(S x)(i)(t)||1

≤ (W + 1)||(T x)(t)||1,∞,B + (W + 1)||z(t)||1,∞,B +

q∑
i=1

sup
t∈(t1,t2]

(t − t1)ν−1+i||z(i)(t)||1

+

q∑
i=1

sup
t∈(t1,t2]

(t − t1)ν−1+i||(T x)(i)(t)||1

≤ ||z||1,q,ν,B + (W + 1)
M

Γ(α + 1)
(t2 − t1)1−ν +

q∑
i=1

cT,i +

q∑
i=1

cT,i,1(t2 − t1)1−ν.

Thus, ||(S x)(t)||1,q,ν,B ≤ c. This results in (S x)(t) ∈ B, for any x ∈ B.

In the next, we shall show that S is a contraction mapping on B. At first, we shall show that for any (t, x), (t, y) ∈ S
and all possible nonnegative integers u0, u1, ..., un with u0 + u1 + ... + un ≤ q,

||
∂u0+u1+...+un

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂u0+u1+...+un

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ max{nMd, Ld} ||x − y||1
{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

. (3.12)

Let u0 + u1 + ...+ un = 1 and u0 = 0, then it follows from (3.7) that for any (t, x) ∈ S and l, r = 1, 2, ..., n, |∂ fr(t, x)/∂xl|

≤ Md. According to the generalized mean value theorem, for any (t, x), (t, y) ∈ S , (t, w) ∈ S , where w = y + θ(x − y),
θ ∈ [0, 1], then

|| f (t, x) − f (t, y)||1 = ||

∫ 1

0
D f (t, w)dθ(x − y)||1 ≤

∫ 1

0
||D f (t, w)||1dθ||(x − y)||1 ≤ nMd ||x − y||1,

where D f denotes the Jacobian matrix of f . This implies limt→t+0
|| f (t, x) − f (t, y)||1 ≤ nMd ||x − y||1. Since f is

continuous on S̄ , || f (t0, x) − f (t0, y)||1 ≤ nMd ||x − y||1. Thus, for any (t, x), (t, y) ∈ S̄ ,

|| f (t, x) − f (t, y)||1 ≤ nMd ||x − y||1. (3.13)

Let u0 + u1 + ... + un = i, 1 ≤ i ≤ q − 1, then it follows from (3.7) that for any (t, x) ∈ S and l, r = 1, 2, ..., n,

|
∂i+1

∂tu0∂x1u1 ... xl
ul+1... ∂xn

un
fr(t, x)| ≤ Md

{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

.
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According to the mean value theorem, for any (t, x), (t, y) ∈ S ,

||
∂i

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂i

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 = ||

∫ 1

0
D(

∂i

∂tu0∂w1u1 ...∂wn
un

f )(t, w)dθ(x − y)||1

≤

∫ 1

0
||D(

∂i

∂tu0∂w1u1 ...∂wn
un

f )(t, w)||1dθ||(x − y)||1

≤ nMd ||x − y||1
{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

.

This together with (3.8) and (3.13) proves (3.12). Therefore, for any x, y ∈ B and τ ∈ (t1, t2], (τ, x(τ)), (τ, y(τ)) ∈ S so
that for all possible nonnegative integers u0, u1, ..., un with u0 + u1 + ... + un ≤ q,

||
∂u0+u1+...+un

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ)) −
∂u0+u1+...+un

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))||1 ≤ max{nMd, Ld} ||x(τ) − y(τ)||1
{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

.

(3.14)
Especially, it follows from (3.13) that for any x, y ∈ B and τ ∈ [t1, t2],

|| f (τ, x(τ)) − f (τ, y(τ))||1 ≤ nMd ||x(τ) − y(τ)||1. (3.15)

It follows from (3.15) that for any x, y ∈ B, t ∈ [t1, t2] and t2 − t1 < 1,

||(S x)(t) − (S y)(t)||1,∞,B = ||(T x)(t) − (Ty)(t)||1,∞,B

≤
1

Γ(α)
max

t∈[t1,t2]
||

∫ t

t1
(t − τ)α−1 f (τ, x(τ)) − f (τ, y(τ))dτ||1

≤
1

Γ(α)
max

t∈[t1,t2]

∫ t

t1
(t − τ)α−1|| f (τ, x(τ)) − f (τ, y(τ))||1dτ

≤
1

Γ(α)
max

t∈[t1,t2]

∫ t

t1
(t − τ)α−1nMd ||x(τ) − y(τ)||1dτ

≤
nMd

Γ(α)
max

t∈[t1,t2]

∫ t

t1
(t − τ)α−1dτ||x(t) − y(t)||1,∞,B

≤
nMd

Γ(α + 1)
(t2 − t1)1−ν||x(t) − y(t)||1,∞,B.

According to Lemma 3.3.1, for any x, y ∈ B and τ ∈ (t1, t2],

||
di

dτi [ f (τ, (x(τ)) − f (τ, (y(τ))]||1 = ||
∑

0

∑
1

...
∑

i

ci,k,n,v

{
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i∏

j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

−
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))
i∏

j=1

[y( j)
1 (τ)]v j1[y( j)

2 (τ)]v j2 ...[y( j)
n (τ)]v jn

}
||1.
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Minus and plus one term as follows, then a factor [x(i)
n (τ) − y(i)

n (τ)] appears, and after a common y(i)
n (τ) is factored out

the power of x(i)
n (τ) and y(i)

n (τ) behind the multiplication sign in the inner braces is reduced by one.

||
∑

0

∑
1

...
∑

i

ci,k,n,v

{
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

× [x(i)
1 (τ)]vi1[x(i)

2 (τ)]vi2 ...[x(i)
n (τ)]vin−1x(i)

n (τ) −
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

× [x(i)
1 (τ)]vi1[x(i)

2 (τ)]vi2 ...[x(i)
n (τ)]vin−1y(i)

n (τ) +
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

× [x(i)
1 (τ)]vi1[x(i)

2 (τ)]vi2 ...[x(i)
n (τ)]vin−1y(i)

n (τ) −
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))
i−1∏
j=1

[y( j)
1 (τ)]v j1[y( j)

2 (τ)]v j2 ...[y( j)
n (τ)]v jn

× [y(i)
1 (τ)]vi1[y(i)

2 (τ)]vi2 ...[y(i)
n (τ)]vin−1y(i)

n (τ)
}
||1

= ||
∑

0

∑
1

...
∑

i

ci,k,n,v

{
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

× [x(i)
1 (τ)]vi1[x(i)

2 (τ)]vi2 ...[x(i)
n (τ)]vin−1[x(i)

n (τ) − y(i)
n (τ)]

+ y(i)
n (τ)

{
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn × [x(i)

1 (τ)]vi1[x(i)
2 (τ)]vi2 ...[x(i)

n (τ)]vin−1

−
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))
i−1∏
j=1

[y( j)
1 (τ)]v j1[y( j)

2 (τ)]v j2 ...[y( j)
n (τ)]v jn × [y(i)

1 (τ)]vi1[y(i)
2 (τ)]vi2 ...[y(i)

n (τ)]vin−1
}}
||1.

Keep doing this till the power of x(i)
n (τ) and y(i)

n (τ) there is reduced to zero, then repeat the similar process for x(i)
n−1(τ)

and y(i)
n−1(τ) as following,

||
∑

0

∑
1

...
∑

i

ci,k,n,v

{ vin−1∑
l=0

[y(i)
n (τ)]l ∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

× [x(i)
1 (τ)]vi1[x(i)

2 (τ)]vi2 ...[x(i)
n (τ)]vin−1−l[x(i)

n (τ) − y(i)
n (τ)]

+ [y(i)
n (τ)]vin

{
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn × [x(i)

1 (τ)]vi1[x(i)
2 (τ)]vi2 ...[x(i)

n−1(τ)]vi (n−1)

−
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))
i−1∏
j=1

[y( j)
1 (τ)]v j1[y( j)

2 (τ)]v j2 ...[y( j)
n (τ)]v jn × [y(i)

1 (τ)]vi1[y(i)
2 (τ)]vi2 ...[y(i)

n−1(τ)]vi(n−1)

}}
||1
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= ||
∑

0

∑
1

...
∑

i

ci,k,n,v

{ vin−1∑
l=0

[y(i)
n (τ)]l ∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

× [x(i)
1 (τ)]vi1[x(i)

2 (τ)]vi2 ...[x(i)
n (τ)]vin−1−l[x(i)

n (τ) − y(i)
n (τ)]

+ [y(i)
n (τ)]vin

{ vi(n−1)−1∑
l=0

[y(i)
n−1(τ)]l ∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

× [x(i)
1 (τ)]vi1[x(i)

2 (τ)]vi2 ...[x(i)
n−1(τ)]vi (n−1)−1−l[x(i)

n−1(τ) − y(i)
n−1(τ)]

+ [y(i)
n−1(τ)]vi(n−1)

{
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1 ...[x( j)

n (τ)]v jn × [x(i)
1 (τ)]vi1[x(i)

2 (τ)]vi2 ...[x(i)
n−2(τ)]vi (n−2)

−
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))
i−1∏
j=1

[y( j)
1 (τ)]v j1[y( j)

2 (τ)]v j2 ...[y( j)
n (τ)]v jn × [y(i)

1 (τ)]vi1[y(i)
2 (τ)]vi2 ...[y(i)

n−2(τ)]vi(n−2)

}}}
||1.

Continue the similar processes for x(i)
n−2(τ) and y(i)

n−2(τ), ..., x(i)
1 (τ) and y(i)

1 (τ), till the power of all these behind the
multiplication sign in the inmost braces is reduced to zero, then the above becomes

||
∑

0

∑
1

...
∑

i

ci,k,n,v

{ n∑
r=1

[y(i)
r+1(τ)]vi(r+1)[y(i)

r+2(τ)]vi(r+2) ...[y(i)
n (τ)]vin

vir−1∑
l=0

[y(i)
r (τ)]l ∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))

×

i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn × [x(i)

1 (τ)]vi1[x(i)
2 (τ)]vi2 ...[x(i)

r (τ)]vir−1−l[x(i)
r (τ) − y(i)

r (τ)]

+ [y(i)
1 (τ)]vi1[y(i)

2 (τ)]vi2 ...[y(i)
n (τ)]vin

{
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

−
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))
i−1∏
j=1

[y( j)
1 (τ)]v j1[y( j)

2 (τ)]v j2 ...[y( j)
n (τ)]v jn

}}
||1.

As we observe, after these processes, the upper index of the product operator in the inner braces above is reduced by
one. We now repeat these processes again so that the index is reduced by one more, see the following,

||
∑

0

∑
1

...
∑

i

ci,k,n,v

{ n∑
r=1

[y(i)
r+1(τ)]vi(r+1)[y(i)

r+2(τ)]vi(r+2) ...[y(i)
n (τ)]vin

vir−1∑
l=0

[y(i)
r (τ)]l ∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))

×

i−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn × [x(i)

1 (τ)]vi1[x(i)
2 (τ)]vi2 ...[x(i)

r (τ)]vir−1−l[x(i)
r (τ) − y(i)

r (τ)]

+ [y(i)
1 (τ)]vi1[y(i)

2 (τ)]vi2 ...[y(i)
n (τ)]vin

{ n∑
r=1

[y(i−1)
r+1 (τ)]v(i−1)(r+1)[y(i−1)

r+2 (τ)]v(i−1)(r+2) ...[y(i−1)
n (τ)]v(i−1)n
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×

v(i−1)r−1∑
l=0

[y(i−1)
r (τ)]l ∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−2∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

× [x(i−1)
1 (τ)]v(i−1)1[x(i−1)

2 (τ)]v(i−1)2 ...[x(i−1)
r (τ)]v(i−1)r−1−l[x(i−1)

r (τ) − y(i−1)
r (τ)]

+ [y(i−1)
1 (τ)]v(i−1)1[y(i−1)

2 (τ)]v(i−1)2 ...[y(i−1)
n (τ)]v(i−1)n

{
∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i−2∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn

−
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))
i−2∏
j=1

[y( j)
1 (τ)]v j1[y( j)

2 (τ)]v j2 ...[y( j)
n (τ)]v jn

}}}
||1.

Continue repeating those processes, till the index there is reduced to zero. Then the above can be further rewritten as
following

||
∑

0

∑
1

...
∑

i

ci,k,n,v

{ i∑
o=1

i∏
p=o+1

[y(p)
1 (τ)]vp1[y(p)

2 (τ)]vp2 ...[y(p)
n (τ)]vpn

n∑
r=1

[y(o)
r+1(τ)]vo(r+1)[y(o)

r+2(τ)]vo(r+2) ...[y(o)
n (τ)]von

×

vor−1∑
l=0

[y(o)
r (τ)]l ∂k

∂τu0∂x1u1...∂xn
un

f (τ, x(τ))
o−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn[x(o)

1 (τ)]vo1[x(o)
2 (τ)]vo2 ...[x(o)

r (τ)]vor−1−l

× [x(o)
r (τ) − y(o)

r (τ)]

+

i∏
g=1

[y(g)
1 (τ)]vg1[y(g)

2 (τ)]vg2 ...[y(g)
n (τ)]vgn[

∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ)) −
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))]
}
||1.

Now it is ready to apply the inequality (3.14). For any x, y ∈ B, τ ∈ (t1, t2] and sufficiently small t2 − t1 such that
τ − t1 < 1,

||
di

dτi [ f (τ, (x(τ)) − f (τ, (y(τ))]||1

≤
∑

0

∑
1

...
∑

i

ci,k,n,v

{ i∑
o=1

i∏
p=o+1

|[y(p)
1 (τ)]vp1[y(p)

2 (τ)]vp2 ...[y(p)
n (τ)]vpn |

n∑
r=1

|[y(o)
r+1(τ)]vo(r+1)[y(o)

r+2(τ)]vo(r+2) ...[y(o)
n (τ)]von |

×

vor−1∑
l=0

|[y(o)
r (τ)]l| ||

∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))||1
o−1∏
j=1

|[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn |

× |[x(o)
1 (τ)]vo1[x(o)

2 (τ)]vo2 ...[x(o)
r (τ)]vor−1−l| |[x(o)

r (τ) − y(o)
r (τ)]|

+

i∏
g=1

|[y(g)
1 (τ)]vg1[y(g)

2 (τ)]vg2 ...[y(g)
n (τ)]vgn | ||[

∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ)) −
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))]||1
}
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≤
∑

0

∑
1

...
∑

i

ci,k,n,v

{
c−1+

∑i
p=1 vp1+vp2+...+vpn

i∑
o=1

(τ − t1)
∑i

p=o+1(1−ν−p)(vp1+vp2+...+vpn)
n∑

r=1

(τ − t1)(1−ν−o)(vo(r+1)+vo(r+2)+...+von)

×

vor−1∑
l=0

(τ − t1)(1−ν−o)lMd

{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

× (τ − t1)
∑o−1

j=1 (1−ν− j)(v j1+v j2+...+v jn)

× (τ − t1)(1−ν−o)[(vo1+vo2+...+vo(r−1))+vor−1−l]|[x(o)
r (τ) − y(o)

r (τ)]|

+ c
∑i
g=1 vg1+vg2+...+vgn(τ − t1)

∑i
g=1(1−ν−g)(vg1+vg2+...+vgn) max{nMd, Ld} ||x(τ) − y(τ)||1

{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

}
=

∑
0

∑
1

...
∑

i

c̄i,k,n,v

{ i∑
o=1

(τ− t1)−(1−ν−o)+
∑i

p=1(1−ν−p)(vp1+vp2+...+vpn)
n∑

r=1

vor |[x(o)
r (τ) − y(o)

r (τ)]|Md

{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

+ (τ − t1)
∑i
g=1(1−ν−g)(vg1+vg2+...+vgn) max{nMd, Ld} ||x(τ) − y(τ)||1

{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

}
≤

∑
0

∑
1

...
∑

i

c̄i,k,n,v

{ i∑
o=1

ko||[x(o)(τ) − y(o)(τ)]||1Md

{
(τ − t1)−(1−ν−o)−i+(1−ν)

∑i
p=1 kp if u0 = 0

(τ − t1)−(1−ν−o)−i+u0(τ− t0)1−ν−u0 if u0 ≥ 1

+ max{nMd, Ld} ||x(τ) − y(τ)||1
{
(τ − t1)−i+(1−ν)

∑i
g=1 kg if u0 = 0

(τ − t1)−i+u0(τ− t0)1−ν−u0 if u0 ≥ 1

}
≤

∑
c̄i,k,n,v

{Md
∑i

o=1 ko(τ − t1)o−i ||[x(o)(τ) − y(o)(τ)]||1 + (τ − t1)1−ν−i max{nMd, Ld} ||x(τ) − y(τ)||1 if u0 = 0
Md

∑i
o=1 ko(τ − t1)o−i ||[x(o)

r (τ) − y(o)
r (τ)]||1 + (τ − t1)1−ν−i max{nMd, Ld} ||x(τ) − y(τ)||1 if u0 ≥ 1

≤
∑

c̄i,k,n,v[Mdk
i∑

o=1

(τ − t1)o−i||x(o)(τ) − y(o)(τ)||1 + (τ − t1)1−ν−i max{nMd, Ld} ||x(τ) − y(τ)||1]

≤ c f ,i,1(τ − t1)1−ν−i||x(τ) − y(τ)||1 + c f ,i,2

i∑
o=1

(τ − t1)o−i||x(o)(τ) − y(o)(τ)||1,

where c f ,i,1 and c f ,i,2 are both independent of t1 and t2. Then for any x, y ∈ B, t ∈ (t1, t2] and sufficiently small t2 − t1
such that t − t1 < 1,

(t − t1)ν−1+i||(S x)(i)(t) − (S y)(i)(t)||1 = (t − t1)ν−1+i||(T x)(i)(t) − (Ty)(i)(t)||1

= (t − t1)ν−1+i||ci

∫ s(t)

t1
(t − τ)α−i−1[ f (τ, (x(τ)) − f (τ, (y(τ))]dτ + d1

∫ t

s(t)
(t − τ)α−1 di

dτi [ f (τ, (x(τ)) − f (τ, (y(τ))]dτ

+

i−1∑
j=0

ei j(t − t1)α−i+ j d j

dτ j [ f (τ, (x(τ)) − f (τ, (y(τ))]|τ=s(t)||1

≤ (t − t1)ν−1+i{|ci|

∫ s(t)

t1
(t −τ)α−i−1||[ f (τ, (x(τ)) − f (τ, (y(τ))]||1dτ + d1

∫ t

s(t)
(t − τ)α−1||

di

dτi [ f (τ, (x(τ)) − f (τ, (y(τ))]||1dτ
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+

i−1∑
j=1

|ei j|(t − t1)α−i+ j||
d j

dτ j [ f (τ, (x(τ)) − f (τ, (y(τ))]|τ=s(t)||1 + |ei0|(t − t1)α−i||[ f (τ, (x(τ)) − f (τ, (y(τ))]|τ=s(t)||1}

≤ (t − t1)ν−1+i{|ci|nMd

∫ s(t)

t1
(t − τ)α−i−1||x(τ) − y(τ)||1dτ + |ei0|nMd(t − t1)α−i||[(x(τ) − y(τ)]|τ=s(t)||1

+ d1

∫ t

s(t)
(t − τ)α−1[c f ,i,1(τ − t1)1−ν−i||x(τ) − y(τ)||1 + c f ,i,2

i∑
o=1

(τ − t1)o−i||x(o)(τ) − y(o)(τ)||1]dτ

+

i−1∑
j=1

|ei j|(t − t1)α−i+ j[c f , j,1(τ − t1)1−ν− j||x(τ) − y(τ)||1 + c f , j,2

j∑
o=1

(τ − t1)o− j||x(o)(τ) − y(o)(τ)||1]|τ=s(t)}

≤ |ci|nMd

∫ s(t)

t1
(t − τ)α−i−1(t − t1)ν−1+idτ||x(t) − y(t)||1,∞,B + |ei0|nMd(t − t1)α+ν−1||(x(t) − y(t)||1,∞,B

+ d1 c f ,i,1

∫ t

s(t)
(t − τ)α−1(τ − t1)1−ν−i(t − t1)ν−1+idτ||x(t) − y(t)||1,∞,B

+ d1 c f ,i,2

∫ t

s(t)
(t − τ)α−1(t − t1)ν−1+i(τ − t1)1−ν−i

i∑
o=1

(τ − t1)ν−1+o||x(o)(τ) − y(o)(τ)||1dτ

+

i−1∑
j=1

|ei j|c f , j,1(t − t1)α−i+ j(
t − t1

2
)1−ν− j(t − t1)ν−1+i||x(t) − y(t)||1,∞,B

+

i−1∑
j=1

|ei j|c f , j,2(t − t1)α+ν−1+ j(
t − t1

2
)1−ν− j

j∑
o=1

[s(t) − t1]ν−1+o||x(o)(s(t)) − y(o)(s(t))||1

≤ |ci|nMd2−α+i||x(t) − y(t)||1,∞,B + |ei0|nMd ||(x(t) − y(t)||1,∞,B + d1 c f ,i,1
1
α

2−α+ν−1+i(t − t1)1−ν||x(t) − y(t)||1,∞,B

+ d1 c f ,i,2
1
α

2−α+ν−1+i(t − t1)1−ν
q∑

o=1

sup
t∈(t1,t2]

(t − t1)ν−1+o||x(o)(t) − y(o)(t)||1

+

i−1∑
j=1

|ei j|c f , j,12ν−1+ j(t − t1)1−ν||x(t) − y(t)||1,∞,B

+

i−1∑
j=1

|ei j|c f , j,22ν−1+ j(t − t1)1−ν
q∑

o=1

sup
t∈(t1,t2]

(t − t1)ν−1+o||x(o)(t) − y(o)(t)||1

= [cS ,i,1,1 + cS ,i,1,2 (t − t1)1−ν]||x(t) − y(t)||1,∞,B + cS ,i,2 (t − t1)1−ν
q∑

o=1

sup
t∈(t1,t2]

(t − t1)ν−1+o||x(o)(t) − y(o)(t)||1,

where cS ,i,1,1 := |ci|nMd2−α+i + |ei0|nMd.

55



Therefore,

||(S x)(t) − (S y)(t)||1,q,ν,B = (W + 1)||(S x)(t) − (S y)(t)||1,∞,B +

q∑
i=1

sup
t∈(t1,t2]

(t − t1)ν−1+i||(S x)(i)(t) − (S y)(i)(t)||1

≤ (W + 1)
nMd

Γ(α + 1)
(t2 − t1)1−ν||x(t) − y(t)||1,∞,B +

q∑
i=1

{[cS ,i,1,1 + cS ,i,1,2 (t2 − t1)1−ν]||x(t) − y(t)||1,∞,B

+ cS ,i,2 (t2 − t1)1−ν
q∑

o=1

sup
t∈(t1,t2]

(t − t1)ν−1+o||x(o)(t) − y(o)(t)||1}

= [
∑q

i=1 cS ,i,1,1

W + 1
+

nMd

Γ(α + 1)
(t2 − t1)1−ν +

∑q
i=1 cS ,i,1,2

W + 1
(t2 − t1)1−ν](W + 1)||x(t) − y(t)||1,∞,B

+

q∑
i=1

cS ,i,2 (t2 − t1)1−ν
q∑

o=1

sup
t∈(t1,t2]

(t − t1)ν−1+o||x(o)(t) − y(o)(t)||1.

As we see, there exists sufficiently small t2 − t1 such that ||(S x)(t) − (S y)(t)||1,q,ν,B ≤ λ||x(t) − y(t)||1,q,ν,B, for some
0 < λ < 1. Then S is a contraction mapping on B. According to the contraction mapping theorem, S has a unique
fixed point in B, i.e. the equation (3.9) has a unique solution in B. Thus, this solution coincides with x∗(t), t ∈ (t1, t2].
Therefore, x∗(t) ∈ Cq,ν(t1, t2].

Finally, we shall show x∗(t) ∈ Cq,ν(t0, t0 + h], by the arbitrariness of t1 and t2, see also [14]. Since all parameters
are independent of t1 and t2, we can use a uniform δ to denote t2 − t1, i.e. δ = t2 − t1. First select t1 = t0, then
x∗(t) ∈ Cq,ν(t0, t0 + δ]. Then for any t ∈ (t0 + δ, t0 + h], select t2 = t. It follows from x∗(t) ∈ B ⊂ Cq,ν(t1, t2] that x∗(t)
is q times differentiable at t2 and ||x(i)

∗ (t2)||1 ≤ c(t2 − t1)1−ν−i = cδ1−ν−i, i = 1, 2, ..., q. Thus, for all t ∈ (t0 + δ, t0 + h],
x∗ is q times differentiable at t and ||x(i)

∗ (t)||1 ≤ cδ1−ν−i ≤ c[δ(t − t0)/h]1−ν−i = c(δ/h)1−ν−i(t − t0)1−ν−i, i = 1, 2, ..., q.
Therefore, x∗(t) ∈ Cq,ν(t0, t0 + h]. This completes the proof. �

In the next, we move to the local smoothness theorem for α > 1. The proof is similar to but more generalized than
that of Theorem 3.3.2 (0 < α < 1).

Theorem 3.3.3. Let α > 1. Assume that f is continuous in t and x on S̄ , and q − m times continuously differentiable
with respect to t and x on S = {(t, x) : t ∈ (t0, t0 + a], ||x −

∑m
k=0(t − t0)kx0,k/k!||1 ≤ b}, and there exist constants

ν ∈ [1 − (α − m), 1), Md and Ld such that, for any (t, x) ∈ S and all possible nonnegative integers u0, u1, ..., un with
1 ≤ u0 + u1 + ... + un ≤ q − m,

||
∂u0+u1+...+un

∂tu0∂x1u1 ...∂xn
un

f (t, x)||1 ≤ Md

{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

; (3.16)

and for any (t, x), (t, y) ∈ S and those u0, u1, ..., un with u0 + u1 + ... + un = q − m,

||
∂q−m

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂q−m

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ Ld ||x − y||1
{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

. (3.17)

Then (3.1) has a unique solution x(t) ∈ Cq,m,ν(t0, t0 + h].
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Proof. Since f is continuous on S̄ , according to Theorem 3.1.1, (3.1) has a continuous solution on [t0, t0 + h]. Let
x∗(t) denote this solution, then x∗(t) ∈ C[t0, t0 + h], and according to Lemma 3.1.1,

x∗(t) =

m∑
k=0

(t − t0)k

k!
x0,k +

1
Γ(α)

∫ t

t0
(t − τ)α−1 f (τ, x∗(τ))dτ, t ∈ [t0, t0 + h].

Fix two arbitrary different points in [t0, t0 + h]: t1, t2 such that t0 ≤ t1 < t2 ≤ t0 + h, then consider the integral equation

x(t) = (T x)(t) + z(t), t ∈ (t1, t2], (3.18)

where

(T x)(t) =
1

Γ(α)

∫ t

t1
(t − τ)α−1 f (τ, x(τ))dτ, t ∈ (t1, t2],

and

z(t) =

m∑
k=0

(t − t0)k

k!
x0,k +

1
Γ(α)

∫ t1

t0
(t − τ)α−1 f (τ, x∗(τ))dτ, t ∈ (t1, t2].

Clearly, x∗(t), t ∈ (t1, t2] is a solution to (3.18).

We now begin to show z(t) ∈ Cq,m,v(t1, t2]. For i = 1, 2, ...,m − 1, α − i − 1 > 0 so that

z(i)(t) =

m∑
k=i

(t − t0)k−i

(k − i)!
x0,k +

(α − 1)...(α − i)
Γ(α)

∫ t1

t0
(t − τ)α−i−1 f (τ, x∗(τ))dτ,

is continuous on [t1, t2]. For i = m and any t1 ≤ s1 ≤ s2 ≤ t2,

||z(m)(s1) − z(m)(s2)||1 =
(α − 1)...(α − m + 1)M

Γ(α)
[(s2 − t1)α−m − (s1 − t1)α−m + (s1 − t0)α−m − (s2 − t0)α−m]

As s1 → s2, ||z(s1) − z(s2)||1 → 0 due to α > m. Thus, z(t) ∈ Cm[t1, t2]. For i = m + 1,m + 2, ..., q,

z(i)(t) =
(α − 1)...(α − i)

Γ(α)

∫ t1

t0
(t − τ)α−i−1 f (τ, x∗(τ))dτ, t ∈ (t1, t2],

which is continuous due to t , τ. Thus, for sufficiently small t2 − t1 such that t − t1 < 1, we can estimate

||z(i)(t)||1 ≤ |
(α − 1)...(α − i + 1)

Γ(α)
|M(t − t1)1−ν−(i−m), t ∈ (t1, t2], i = m + 1, ..., q.

Therefore, z(t) ∈ Cq,m,ν(t1, t2].

Define (S x)(t) = (T x)(t) + z(t), t ∈ (t1, t2]. We shall show that S maps the following closed ball

B = {x ∈ Cq,m,ν(t1, t2] : ||x −
m∑

k=0

(t − t0)kx0,k/k!||1,∞,B ≤ b and ||x||1,q,m,ν,B ≤ c},
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where ||x||1,q,m,ν,B = (W +1)||x||1,∞,B +
∑m

i=1 ||x
(i)||1,∞,B +

∑q
i=m+1 supt∈(t1,t2](t− t1)ν−1+(i−m)||x(i)(t)||1, W> max{

∑q
i=m+1 cT,i,∑q

i=m+1 cS ,i,1,1} and c > cz + W, into itself. Here cz denotes the right hand side (constant) of the following inequality

||z||1,q,m,ν,B ≤ (W + 1)[
m∑

k=0

hk

k!
||x0,k||1 +

Mhα

Γ(α)α
] +

m∑
i=1

[
m∑

k=i

hk−i

(k − i)!
||x0,k||1 +

(α − 1)...(α − i + 1)Mhα−i

Γ(α)
]

+

q∑
i=m+1

|(α − 1)...(α − i + 1)|M
Γ(α)

.

According to Lemma 3.3.3, B equipped with || · ||1,q,m,ν,B is nonempty and complete.

For i = 1, 2, ...,m − 1, α − i − 1 > 0 so that

(T x)(i)(t) =
(α − 1)...(α − i)

Γ(α)

∫ t

t1
(t − τ)α−i−1 f (τ, x(τ))dτ,

is continuous on [t1, t2]. For i = m and any x ∈ B, t1 ≤ s1 ≤ s2 ≤ t2,

||(T x)(m)(s1) − (T x)(m)(s2)||1 ≤
(α − 1)...(α − m + 1)M

Γ(α)
[(s1 − t1)α−m − (s2 − t1)α−m + 2(s2 − s1)α−m]. (3.19)

As s1 → s2, ||(T x)(s1) − (T x)(s2)||1 → 0 due to α > m. Thus, (T x)(t) ∈ Cm[t1, t2]. Moreover, for any x ∈ B,

||(S x)(t) −
m∑

k=0

(t − t0)k

k!
x0,k||1,∞,B ≤ b, t ∈ [t1, t2]. (3.20)

We need to further show that for any x ∈ B, (S x)(t) ∈ Cq,m,ν(t1, t2] and ||(S x)(t)||1,q,m,ν,B ≤ c. Let s(t) = t1+

(t − t1)/2, then for i = m + 1,m + 2, ..., q,

(T x)(i)(t) =
(α − 1)...(α − m)

Γ(α)
di′

dti′

∫ t

t1
(t − τ)α−m−1 f (τ, x(τ))dτ

= (α − 1)...(α − m)[(Tm1x)(i′)(t) + (Tm2x)(i′)(t)], t ∈ (t1, t2], i′ = 1, ..., q − m,

where

(Tm1x)(t) =
1

Γ(α)

∫ s(t)

t1
(t − τ)α−m−1 f (τ, x(τ))dτ, t ∈ (t1, t2],

and

(Tm2x)(t) =
1

Γ(α)

∫ t

s(t)
(t − τ)α−m−1 f (τ, x(τ))dτ, t ∈ (t1, t2].

We can derive

(Tm1x)(i′)(t) = ci′

∫ s(t)

t1
(t−τ)α−m−i′−1 f (τ, (x(τ))dτ+

i′−1∑
j′=0

ci′j′(t − t1)α−m−i′+ j′ d j′

dτ j′ f (τ, x(τ))|τ=s(t), t ∈ (t1, t2], i′ = 1, ..., q−m.
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Since x ∈ B (then (τ, x(τ)) ∈ S ,τ ∈ (t1, t2]) and f (t, x) is q − m times continuously differentiable on S , according to
Lemma 3.3.1, d j′ f (τ, x(τ))/dτ j′ |τ=s(t), t ∈ (t1, t2], i′ = 1, 2, ..., q−m, is continuous. Moreover, (t− τ)α−m−i′−1 f (τ, (x(τ))
is continuous due to t > s(t) implied by t > t1. Thus, (Tm1x)(i′)(t) ∈ C(t1, t2], i′ = 1, 2, ..., q − m. Also, we can derive

(Tm2x)(i′)(t) = d1′

∫ t

s(t)
(t−τ)α−m−1 di′

dτi′ f (τ, x(τ))dτ+
i′−1∑
j′=0

di′j′(t − t1)α−m−i′+ j′ d j′

dτ j′ f (τ, x(τ))|τ=s(t), t ∈ (t1, t2], i′ = 1, ..., q−m.

For i′ = 1, 2, ..., q − m − 1, we can easily conclude (T2mx)(i′)(t) ∈ C(t1, t2], by the integration by parts and the
differentiability of di′ f (τ, x(τ))/dτi′ . But this does not work for i′ = q − m, because f (τ, x(τ)) is not q − m + 1 times
continuously differentiable. In (T2mx)(q−m)(t), the sum term is obviously continuous on (t1, t2]. Thus, we only need to
show that the integral term is also continuous on (t1, t2]. For sufficiently small t2 − t1 such that τ − t1 < 1, if i′ ≤ m,

||
di′

dτi′ f (τ, x(τ))||1=||
∑

0

∑
1

...
∑

i′

i′!∏i′
j=1( j!)k j

∏i′
j=1

∏n
l=0v jl!

∂k

∂τu0∂x1u1...∂xn
un

f (τ, x(τ))
i′∏

j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2...[x( j)
n (τ)]v jn ||1

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v Md

{1 if u0 = 0
(τ − t0)1−ν−u0 if u0 ≥ 1

× c
∑i′

j=1 v j1+v j2+...+v jn

≤
∑

0

∑
1

...
∑

i′
c̃i′,k,n,v Md(τ − t0)1−ν−i′

≤ c f ,i′(τ − t1)1−ν−i′ , τ ∈ (t1, t2];

if i′ ≥ m + 1, according to Lemma 3.3.1 and Proposition 3.3.1,

i′∑
j=m+1

[1 − ν − ( j − m)](v j1 + ... + v jn) ≥
i′∑

j=m+1

− j(k j − v j0) =

i′∑
j=m+1

− jk j + jv j0 +

m∑
j=1

− jk j + jk j ≥ −i′ + u0,

especially,
∑i′

j=m+1[1 − ν − ( j − m)](v j1 + ... + v jn) =
∑i′

j=m+1[1 − ν − ( j − m)]k j =
∑i′

j=m+1(1 − ν)k j +
∑m

j=1(1 − ν)k j −∑i′
j=m+1( j − m)k j −

∑m
j=1(1 − ν)k j ≥ 1 − ν −

∑i′
j=1 jk j = 1 − ν − i′ if u0 = 0, then

||
di′

dτi′ f (τ, x(τ))||1=||
∑

0

∑
1

...
∑

i′

i′!∏i′
j=1( j!)k j

∏i′
j=1

∏n
l=0v jl!

∂k

∂τu0∂x1u1...∂xn
un

f (τ, x(τ))
i′∏

j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2...[x( j)
n (τ)]v jn ||1

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v Md

{1 if u0 = 0
(τ − t0)1−ν−u0 if u0 ≥ 1

× c
∑i′

j=1 v j1+v j2+...+v jn(τ − t1)
∑i′

j=m+1[1−ν−( j−m)](v j1+v j2+...+v jn)

≤
∑

0

∑
1

...
∑

i

c̃i′,k,n,v Md

{(τ − t1)1−ν−i′ if u0 = 0
(τ − t0)1−ν−u0(τ − t1)−i′+u0 if u0 ≥ 1

=
∑

0

∑
1

...
∑

i

c̃i′,k,n,v Md

{(τ − t1)1−ν−i′ if u0 = 0
(τ − t1)1−ν−i′ if u0 ≥ 1

≤ c f ,i′(τ − t1)1−ν−i′ , τ ∈ (t1, t2].
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Thus, for sufficiently small t2−t1 such that τ−t1 < 1, ||di′ f (τ, x(τ))/dτi′ ||1 ≤ c f ,i′(τ−t1)1−ν−i′ , τ ∈ (t1, t2], i′ = 1, ..., q−m,
where c f ,i′ is independent of t1 and t2. For t1 < s1 ≤ s2 ≤ t2, s1 − s(s2) = (s1 − s2 + s1 − t1)/2 > 0 if s2 is sufficiently
close to s1. In this situation,

||

∫ s1

s(s1)
(s1 − τ)α−m−1 di′

dτi′ f (τ, x(τ))dτ −
∫ s2

s(s2)
(s2 − τ)α−m−1 di′

dτi′ f (τ, x(τ))dτ||1

≤ c f ,i′

{ ∫ s(s2)

s(s1)
(s1 − τ)α−m−1dτ [s(s1) − t1]1−ν−i′ +

∫ s1

s(s2)
[(s1 − τ)α−m−1 − (s2 − τ)α−m−1] dτ [s(s1) − t1]1−ν−i′

+

∫ s2

s1

(s2 − τ)α−m−1dτ (s1 − t1)1−ν−i′
}
.

Fix s1 and let s2 → s1, then ||
∫ s1

s(s1)(s1 − τ)α−m−1di′ f (τ, x(τ))/dτi′dτ −
∫ s2

s(s2)(s2 − τ)α−m−1di′ f (τ, x(τ))/dτi′dτ||1 → 0.
This implies that the integral term of (Tm2x)(q−m)(t) is also continuous on (t1, t2]. Thus, (Tm2x)(q−m)(t) ∈ C(t1, t2].

Therefore, for any x ∈ B, (T x)(i)(t) ∈ C(t1, t2], i = m + 1,m + 2, ..., q. Moreover, for sufficiently small t2 − t1 such
that t − t1 < 1,

||(T x)(i)(t)||1 = (α − 1)...(α − m)||(Tm1x)(i′)(t) + (Tm2x)(i′)(t)||1

≤ (α − 1)...(α − m) [cTm,i′ (t − t1)α−m−i′ + cTm,i′,1 (t − t1)α−m+1−ν−i′]

≤ cT,i(t − t1)1−ν−(i−m) + cT,i,1(t − t1)α−m+1−ν−(i−m), t ∈ (t1, t2], i = m + 1, ..., q,

where cT,i := (α − 1)...(α − m)(|ci′ |M/2α−m−i′ + |ei′0|M). Thus, (T x)(t) ∈ Cq,m,ν(t1, t2]. This together with z(t) ∈
Cq,m,ν(t1, t2] implies that for any x ∈ B, (S x)(t) ∈ Cq,m,ν(t1, t2]. For any x ∈ B, t ∈ (t1, t2] and sufficiently small t2 − t1,

||(T x)(t)||1,∞,B ≤
M

Γ(α + 1)
(t2 − t1)1−ν+m,

||(T x)(i)(t)||1,∞,B ≤
(α − 1)...(α − i + 1)M

Γ(α)
(t2 − t1)1−ν−i+m, i = 1, ...,m,

then

||(S x)(t)||1,q,m,ν,B = (W + 1)||(S x)(t)||1,∞,B +

m∑
i=1

||(S x)(i)(t)||1,∞,B +

q∑
i=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(i−m)||(S x)(i)(t)||1

≤ (W + 1)||(T x)(t)||1,∞,B + (W + 1)||z(t)||1,∞,B +

m∑
i=1

||(T x)(i)(t)||1,∞,B +

m∑
i=1

||z(i)(t)||1,∞,B

+

q∑
i=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(i−m)||(T x)(i)(t)||1 +

q∑
i=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(i−m)||z(i)(t)||1

≤ (W + 1)
M

Γ(α+1)
(t2 − t1)1−ν+m+

m∑
i=1

(α − 1)...(α − i + 1)M
Γ(α)

(t2 − t1)1−ν−i+m+ ||z||1,q,m,ν,B +

q∑
i=m+1

cT,i+

q∑
i=m+1

cT,i,1(t2 − t1)1−ν.
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Thus, ||(S x)(t)||1,q,m,ν,B ≤ c. It then turns out, (S x)(t) ∈ B, for any x ∈ B.

In the next, we shall show that S is a contraction mapping on B. It follows from (3.16) and (3.17), for any x, y ∈ B
and τ ∈ (t1, t2], (τ, x(τ)), (τ, y(τ)) ∈ S so that for all possible nonnegative integers u0, u1, ..., un with u0 + u1 + ...+ un ≤

q − m,

||
∂u0+u1+...+un

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ)) −
∂u0+u1+...+un

∂tu0∂y1u1 ...∂yn
un

f (τ, y(τ))||1≤ max{nMd, Ld} ||x(τ) − y(τ)||1
{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

,

(3.21)
especially,

|| f (τ, x(τ)) − f (τ, y(τ))||1≤ nMd ||x(τ) − y(τ)||1. (3.22)

It follows from (3.22) that for any x, y ∈ B, t ∈ [t1, t2] and t2 − t1 < 1,

||(S x)(t) − (S y)(t)||1,∞,B = ||(T x)(t) − (Ty)(t)||1,∞,B ≤
nMd

Γ(α + 1)
(t2 − t1)1−ν+m||x(t) − y(t)||1,∞,B,

and

||(S x)(i)(t) − (S y)(i)(t)||1,∞,B = ||(T x)(i)(t) − (Ty)(i)(t)||1,∞,B

≤
(α − 1)...(α − i + 1)nMd

Γ(α)
(t2 − t1)1−ν−i+m||x(t) − y(t)||1,∞,B, i = 1, ...,m.

It follows from (3.21) that for any x, y ∈ B, τ ∈ (t1, t2] and sufficiently small t2 − t1 such that τ − t1 < 1, if i′ ≤ m,

||
di′

dτi′ [ f (τ, (x(τ)) − f (τ, (y(τ))]||1

= ||
∑

0

∑
1

...
∑

i′
ci′,k,n,v

{ i′∑
o=1

i′∏
p=o+1

[y(p)
1 (τ)]vp1[y(p)

2 (τ)]vp2 ...[y(p)
n (τ)]vpn

n∑
r=1

[y(o)
r+1(τ)]vo(r+1)[y(o)

r+2(τ)]vo(r+2) ...[y(o)
n (τ)]von

×

vor−1∑
l=0

[y(o)
r (τ)]l ∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
o−1∏
j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn[x(o)

1 (τ)]vo1[x(o)
2 (τ)]vo2 ...[x(o)

r (τ)]vor−1−l

× [x(o)
r (τ) − y(o)

r (τ)]

+

i′∏
g=1

[y(g)
1 (τ)]vg1[y(g)

2 (τ)]vg2 ...[y(g)
n (τ)]vgn[

∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ)) −
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))]
}
||1

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v

{ i′∑
o=1

i′∏
p=o+1

|[y(p)
1 (τ)]vp1[y(p)

2 (τ)]vp2 ...[y(p)
n (τ)]vpn |

n∑
r=1

|[y(o)
r+1(τ)]vo(r+1)[y(o)

r+2(τ)]vo(r+2) ...[y(o)
n (τ)]von |

×

vor−1∑
l=0

|[y(o)
r (τ)]l| ||

∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))||1
o−1∏
j=1

|[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn |
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× |[x(o)
1 (τ)]vo1[x(o)

2 (τ)]vo2 ...[x(o)
r (τ)]vor−1−l| |[x(o)

r (τ) − y(o)
r (τ)]|

+

i′∏
g=1

|[y(g)
1 (τ)]vg1[y(g)

2 (τ)]vg2 ...[y(g)
n (τ)]vgn | ||[

∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ)) −
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))]||1
}

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v

{ i′∑
o=1

i′∏
p=o+1

(||y(p)||1,∞,B)vp1+...+vpn

n∑
r=1

(||y(o)||1,∞,B)vo(r+1)+...+von

vor−1∑
l=0

(||y(o)||1,∞,B)l

× Md

{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

×

o−1∏
j=1

(||x( j)||1,∞,B)v j1+...+v jn × (||x(o)||1,∞,B)vo1+...+vo(r−1)+vor−1−l|[x(o)
r (τ) − y(o)

r (τ)]|

+

i′∏
g=1

(||y(g)||1,∞,B)vg1+...+vgn max{nMd, Ld} ||x(τ) − y(τ)||1
{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

}

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v

{
c−1+

∑i′
p=1 vp1+...+vpn

i′∑
o=1

Md

{1 if u0 = 0
(τ − t0)1−ν−u0 if u0 ≥ 1

×

n∑
r=1

vor−1∑
l=0

|[x(o)
r (τ) − y(o)

r (τ)]|

+ c
∑i′
g=1 vg1+...+vgn max{nMd, Ld} ||x(τ) − y(τ)||1

{1 if u0 = 0
(τ − t0)1−ν−u0 if u0 ≥ 1

}
≤

∑
0

∑
1

...
∑

i′
c̄i′,k,n,v

{ i′∑
o=1

(τ − t1)1−ν−i′ ||x(o)(τ) − y(o)(τ)||1 + (τ − t1)1−ν−i′ ||x(τ) − y(τ)||1
}

≤ c f ,i′,1(τ − t1)1−ν−i′ ||x(τ) − y(τ)||1 + c f ,i′,2

i′∑
o=1

(τ − t1)1−ν−i′ ||x(o)(τ) − y(o)(τ)||1;

if i′ ≥ m + 1,

||
di′

dτi′ [ f (τ, (x(τ)) − f (τ, (y(τ))]||1

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v

{ i′∑
o=1

i′∏
p=o+1

|[y(p)
1 (τ)]vp1[y(p)

2 (τ)]vp2 ...[y(p)
n (τ)]vpn |

n∑
r=1

|[y(o)
r+1(τ)]vo(r+1)[y(o)

r+2(τ)]vo(r+2) ...[y(o)
n (τ)]von |

×

vor−1∑
l=0

|[y(o)
r (τ)]l| ||

∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))||1
o−1∏
j=1

|[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn |

× |[x(o)
1 (τ)]vo1[x(o)

2 (τ)]vo2 ...[x(o)
r (τ)]vor−1−l| |[x(o)

r (τ) − y(o)
r (τ)]|

+

i′∏
g=1

|[y(g)
1 (τ)]vg1[y(g)

2 (τ)]vg2 ...[y(g)
n (τ)]vgn | ||[

∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ)) −
∂k

∂τu0∂y1u1 ...∂yn
un

f (τ, y(τ))]||1
}

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v

{ m∑
o=1

m∏
p=o+1

(||y(p)||1,∞,B)vp1+...+vpnc
∑i′

p=m+1 vp1+...+vpn(τ − t1)
∑i′

p=m+1[1−ν−(p−m)](vp1+...+vpn)
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×

n∑
r=1

(||y(o)||1,∞,B)vo(r+1)+...+von

vor−1∑
l=0

(||y(o)||1,∞,B)lMd

{1 if u0 = 0
(τ − t0)1−ν−u0 if u0 ≥ 1

×

o−1∏
j=1

(||x( j)||1,∞,B)v j1+...+v jn

× (||x(o)||1,∞,B)vo1+...+vor−1−l|[x(o)
r (τ)−y(o)

r (τ)]| +
i′∑

o=m+1

c
∑i′

p=o+1 vp1+...+vpn(τ − t1)
∑i′

p=o+1[1−ν−(p−m)](vp1+...+vpn)

×

n∑
r=1

cvo(r+1)+...+von(τ−t1)[1−ν−(o−m)](vo(r+1)+...+von)
vor−1∑
l=0

cl(τ − t1)[1−ν−(o−m)]l Md

{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

×

m∏
j=1

(||x( j)||1,∞,B)v j1+...+v jnc
∑o−1

j=m+1 v j1+...+v jn(τ−t1)
∑o−1

j=m+1[1−v−( j−m)](v j1+...+v jn)cvo1+...+vor−1−l(τ−t1)[1−ν−(o−m)](vo1+...+vor−1−l)

× |[x(o)
r (τ) − y(o)

r (τ)]| +
m∏
g=1

(||y(g)||1,∞,B)vg1+...+vgnc
∑i′
g=m+1 vg1+...+vgn(τ − t1)

∑i′
g=m+1[1−ν−(g−m)](vg1+...+vgn)

×max{nMd, Ld}||x(τ) − y(τ)||1
{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

}
≤

∑
0

∑
1

...
∑

i′
ci′,k,n,v

{
c−1+

∑i′
p=1 vp1+...+vpn

m∑
o=1

(τ − t1)
∑i′

p=m+1[1−ν−(p−m)](vp1+...+vpn)Md

{1 if u0 = 0
(τ − t0)1−ν−u0 if u0 ≥ 1

×

n∑
r=1

vor−1∑
l=0

|[x(o)
r (τ) − y(o)

r (τ)]| + c−1+
∑i′

p=1vp1+...+vpn

i′∑
o=m+1

(τ − t1)−[1−ν−(o−m)]+
∑i′

p=m+1[1−ν−(p−m)](vp1+...+vpn)

× Md

{1 if u0 = 0
(τ−t0)1−ν−u0 if u0 ≥ 1

×

n∑
r=1

vor−1∑
l=0

|[x(o)
r (τ) − y(o)

r (τ)]| + c
∑i′
g=1 vg1+...+vgn(τ − t1)

∑i′
g=m+1[1−ν−(g−m)](vg1+...+vgn)

×max{nMd, Ld}||x(τ) − y(τ)||1
{1 if u0 = 0
(τ− t0)1−ν−u0 if u0 ≥ 1

}
≤

∑
0

∑
1

...
∑

i′
c̄i′,k,n,v

{ m∑
o=1

(τ−t1)1−ν−i′||x(o)(τ)−y(o)(τ)||1+

i′∑
o=m+1

(τ−t1)(o−m)−i′||x(o)(τ)−y(o)(τ)||1+ (τ−t1)1−ν−i′||x(τ)−y(τ)||1
}

≤c f ,i′,1(τ− t1)1−ν−i′ ||x(τ) −y(τ)||1+ c f ,i′,2

m∑
o=1

(τ− t1)1−ν−i′ ||x(o)(τ)− y(o)(τ)||1+ c f ,i′,3

i′∑
o=m+1

(τ− t1)(o−m)−i′ ||x(o)(τ) −y(o)(τ)||1.

As we see, c f ,i′,1, c f ,i′,2 and c f ,i′,3 are all independent of t1 and t2 in both cases. Now it is ready to estimate (t −
t1)ν−1+(i−m)||(S x)(i)(t) − (S y)(i)(t)||1. If i′ ≤ m,

(t − t1)ν−1+(i−m)||(S x)(i)(t) − (S y)(i)(t)||1 = (t − t1)ν−1+(i−m)||(T x)(i)(t) − (Ty)(i)(t)||1

= (t − t1)ν−1+i′(α − 1)...(α − m)||(Tm1x)(i′)(t) + (Tm2x)(i′)(t) − (Tm1y)(i′)(t) − (Tm2y)(i′)(t)||1

= (α − 1)...(α − m)(t − t1)ν−1+i′ ||ci′

∫ s(t)

t1
(t − τ)α−m−i′−1[ f (τ, (x(τ)) − f (τ, (y(τ))]dτ
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+ d1′

∫ t

s(t)
(t − τ)α−m−1 di′

dτi′ [ f (τ, (x(τ)) − f (τ, (y(τ))]dτ +

i′−1∑
j′=0

ei′ j′(t − t1)α−m−i′+ j′ d j′

dτ j′ [ f (τ, (x(τ)) − f (τ, (y(τ))]|τ=s(t)||1

≤ (t− t1)ν−1+i′{|c̄i′ |

∫ s(t)

t1
(t − τ)α−m−i′−1||[ f (τ, (x(τ))− f (τ, (y(τ))]||1dτ + d̄1′

∫ t

s(t)
(t − τ)α−m−1||

di′

dτi′ [ f (τ, (x(τ)) − f (τ, (y(τ))]||1dτ

+

i′−1∑
j′=1

|ēi′ j′ |(t−t1)α−m−i′+ j′ ||
d j′

dτ j′ [ f (τ, (x(τ))− f (τ, (y(τ))]|τ=s(t)||1 + |ēi′0|(t−t1)α−m−i′ ||[ f (τ, (x(τ))− f (τ, (y(τ))]|τ=s(t)||1}

≤ (t − t1)ν−1+i′{|c̄i′ |nMd

∫ s(t)

t1
(t − τ)α−m−i′−1||x(τ) − y(τ)||1dτ + |ēi′0|nMd(t − t1)α−m−i′ ||[(x(τ) − y(τ)]|τ=s(t)||1

+ d̄1′

∫ t

s(t)
(t − τ)α−m−1[c f ,i′,1(τ − t1)1−ν−i′ ||x(τ) − y(τ)||1 + c f ,i′,2

i′∑
o=1

(τ − t1)1−ν−i′ ||x(o)(τ) − y(o)(τ)||1]dτ

+

i′−1∑
j′=1

|ēi′ j′ |(t − t1)α−m−i′+ j′[c f , j′,1(τ − t1)1−ν− j′ ||x(τ) − y(τ)||1 + c f , j′,2

j′∑
o=1

(τ − t1)1−ν− j′ ||x(o)(τ) − y(o)(τ)||1]|τ=s(t)}

≤ |c̄i′ |nMd

∫ s(t)

t1
(t − τ)α−m−i′−1(t − t1)ν−1+i′dτ||x(t) − y(t)||1,∞,B + |ēi′0|nMd(t − t1)α−m+ν−1||(x(t) − y(t)||1,∞,B

+ d̄1′ c f ,i′,1

∫ t

s(t)
(t − τ)α−m−1(τ − t1)1−ν−i′(t − t1)ν−1+i′dτ||x(t) − y(t)||1,∞,B

+ d̄1′ c f ,i′,2

∫ t

s(t)
(t − τ)α−m−1(t − t1)ν−1+i′(τ − t1)1−ν−i′

i′∑
o=1

||x(o)(τ) − y(o)(τ)||1dτ

+

i′−1∑
j′=1

|ēi′ j′ |c f , j′,1(t − t1)α−m−i′+ j′(
t − t1

2
)1−ν− j′(t − t1)ν−1+i′ ||x(t) − y(t)||1,∞,B

+

i′−1∑
j′=1

|ēi′ j′ |c f , j′,2(t − t1)α−m−i′+ j′(
t − t1

2
)1−ν− j′(t − t1)ν−1+i′

j′∑
o=1

||x(o)(s(t)) − y(o)(s(t))||1

≤ |c̄i′ |nMd2−α+m+i′ ||x(t) − y(t)||1,∞,B + |ēi′0|nMd ||(x(t) − y(t)||1,∞,B + d̄1′ c f ,i′,1
2−α+m+ν−1+i′

α − m
(t − t1)1−ν||x(t) − y(t)||1,∞,B

+ d̄1′ c f ,i′,2
2−α+m+ν−1+i′

α − m
(t − t1)1−ν

i′∑
o=1

||x(o)(t) − y(o)(t)||1,∞,B +

i′−1∑
j′=1

|ēi′ j′ |c f , j′,12ν−1+ j′(t − t1)1−ν||x(t) − y(t)||1,∞,B

+

i′−1∑
j′=1

|ēi′ j′ |c f , j′,22ν−1+ j′(t − t1)1−ν
j′∑

o=1

||x(o)(t) − y(o)(t)||1,∞,B

= [cS ,i,1,1 + cS ,i,1,2 (t − t1)1−ν]||x(t) − y(t)||1,∞,B + cS ,i,2 (t − t1)1−ν
m∑

o=1

||x(o)(t) − y(o)(t)||1,∞,B, i = m + 1, ..., q,
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where cS ,i,1,1 := |c̄i′ |nMd2−α+m+i′ + |ēi′0|nMd; if i′ ≥ m + 1,

(t − t1)ν−1+(i−m)||(S x)(i)(t) − (S y)(i)(t)||1

≤ (t − t1)ν−1+i′{|c̄i′ |

∫ s(t)

t1
(t−τ)α−m−i′−1||[ f (τ, (x(τ))−f (τ, (y(τ))]||1dτ + d̄1′

∫ t

s(t)
(t−τ)α−m−1||

di′

dτi′ [ f (τ, (x(τ))−f (τ, (y(τ))]||1dτ

+

i′−1∑
j′=1

|ēi′ j′ |(t−t1)α−m−i′+ j′ ||
d j′

dτ j′ [ f (τ, (x(τ))− f (τ, (y(τ))]|τ=s(t)||1 + |ēi′0|(t−t1)α−m−i′ ||[ f (τ, (x(τ))− f (τ, (y(τ))]|τ=s(t)||1}

≤ (t − t1)ν−1+i′{|c̄i′ |nMd

∫ s(t)

t1
(t − τ)α−m−i′−1||x(τ) − y(τ)||1dτ + |ēi′0|nMd(t − t1)α−m−i′ ||[(x(τ) − y(τ)]|τ=s(t)||1

+ d̄1′

∫ t

s(t)
(t − τ)α−m−1[c f ,i′,1(τ − t1)1−ν−i′ ||x(τ) − y(τ)||1 + c f ,i′,2

m∑
o=1

(τ − t1)1−ν−i′ ||x(o)(τ) − y(o)(τ)||1

+ c f ,i′,3

i′∑
o=m+1

(τ − t1)(o−m)−i′ ||x(o)(τ) − y(o)(τ)||1]dτ

+

i′−1∑
j′=1

|ēi′ j′ |(t − t1)α−m−i′+ j′[c f , j′,1(τ − t1)1−ν− j′ ||x(τ) − y(τ)||1 + c f , j′,2

m∑
o=1

(τ − t1)1−ν− j′ ||x(o)(τ) − y(o)(τ)||1

+ c f , j′,3

j′∑
o=m+1

(τ − t1)(o−m)− j′ ||x(o)(τ) − y(o)(τ)||1]|τ=s(t)}

≤ |c̄i′ |nMd

∫ s(t)

t1
(t − τ)α−m−i′−1(t − t1)ν−1+i′dτ||x(t) − y(t)||1,∞,B + |ēi′0|nMd(t − t1)α−m+ν−1||(x(t) − y(t)||1,∞,B

+ d̄1′ c f ,i′,1

∫ t

s(t)
(t − τ)α−m−1(τ − t1)1−ν−i′(t − t1)ν−1+i′dτ||x(t) − y(t)||1,∞,B

+ d̄1′ c f ,i′,2

∫ t

s(t)
(t − τ)α−m−1(t − t1)ν−1+i′(τ − t1)1−ν−i′

m∑
o=1

||x(o)(τ) − y(o)(τ)||1dτ

+ d̄1′ c f ,i′,3

∫ t

s(t)
(t − τ)α−m−1(t − t1)ν−1+i′(τ − t1)1−ν−i′

i′∑
o=m+1

(τ − t1)ν−1+(o−m)||x(o)(τ) − y(o)(τ)||1dτ

+

i′−1∑
j′=1

|ēi′ j′ |c f , j′,1(t − t1)α−m−i′+ j′(
t − t1

2
)1−ν− j′(t − t1)ν−1+i′ ||x(t) − y(t)||1,∞,B

+

i′−1∑
j′=1

|ēi′ j′ |c f , j′,2(t − t1)α−m−i′+ j′(
t − t1

2
)1−ν− j′(t − t1)ν−1+i′

m∑
o=1

||x(o)(s(t)) − y(o)(s(t))||1

+

i′−1∑
j′=1

|ēi′ j′ |c f , j′,3(t − t1)α−m+ν−1+ j′(
t − t1

2
)1−ν− j′

j′∑
o=m+1

[s(t) − t1]ν−1+(o−m)||x(o)(s(t)) − y(o)(s(t))||1
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≤ |c̄i′ |nMd2−α+m+i′ ||x(t) − y(t)||1,∞,B + |ēi′0|nMd ||(x(t) − y(t)||1,∞,B + d̄1′ c f ,i′,1
2−α+m+ν−1+i′

α − m
(t − t1)1−ν||x(t) − y(t)||1,∞,B

+ d̄1′ c f ,i′,2
2−α+m+ν−1+i′

α − m
(t − t1)1−ν

m∑
o=1

||x(o)(t) − y(o)(t)||1,∞,B

+ d̄1′ c f ,i′,3
2−α+m+ν−1+i′

α − m
(t − t1)1−ν

i′∑
o=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(o−m)||x(o)(t) − y(o)(t)||1

+

i′−1∑
j′=1

|ēi′ j′ |c f , j′,12ν−1+ j′(t − t1)1−ν||x(t) − y(t)||1,∞,B +

i′−1∑
j′=1

|ēi′ j′ |c f , j′,22ν−1+ j′(t − t1)1−ν
m∑

o=1

||x(o)(t) − y(o)(t)||1,∞,B

+

i′−1∑
j′=1

|ēi′ j′ |c f , j′,32ν−1+ j′(t − t1)1−ν
j′∑

o=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(o−m)||x(o)(t) − y(o)(t)||1

= [cS ,i,1,1 + cS ,i,1,2 (t − t1)1−ν]||x(t) − y(t)||1,∞,B + cS ,i,2 (t − t1)1−ν
m∑

o=1

||x(o)(t) − y(o)(t)||1,∞,B

+ cS ,i,3 (t − t1)1−ν
q∑

o=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(o−m)||x(o)(t) − y(o)(t)||1, i = m + 1, ..., q,

where cS ,i,1,1 := |c̄i′ |nMd2−α+m+i′ + |ēi′0|nMd. Thus,

||(S x)(t) − (S y)(t)||1,q,m,ν,B

= (W + 1)||(S x)(t) − (S y)(t)||1,∞,B +

m∑
i=1

||(S x)(i)(t) − (S y)(i)(t)||1,∞,B +

q∑
i=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(i−m)||(S x)(i)(t) − (S y)(i)(t)||1

≤ (W + 1)
nMd

Γ(α + 1)
(t2 − t1)1−ν+m||x(t) − y(t)||1,∞,B +

m∑
i=1

(α − 1)...(α − i + 1)nMd

Γ(α)
(t2 − t1)1−ν−i+m||x(t) − y(t)||1,∞,B

+

q∑
i=m+1

{[cS ,i,1,1 + cS ,i,1,2 (t2 − t1)1−ν]||x(t) − y(t)||1,∞,B + cS ,i,2 (t2 − t1)1−ν
m∑

o=1

||x(o)(t) − y(o)(t)||1,∞,B

+ cS ,i,3(t2 − t1)1−ν
q∑

o=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(o−m)||x(o)(t) − y(o)(t)||1}

= [
nMd

Γ(α + 1)
(t2 − t1)1−ν+m +

1
W + 1

m∑
i=1

(α − 1)...(α − i + 1)nMd

Γ(α)
(t2 − t1)1−ν−i+m +

∑q
i=m+1 cS ,i,1,1

W + 1

+

∑q
i=m+1 cS ,i,1,2

W + 1
(t2 − t1)1−ν](W + 1)||x(t) − y(t)||1,∞,B +

q∑
i=m+1

cS ,i,2(t2 − t1)1−ν
m∑

o=1

||x(o)(t) − y(o)(t)||1,∞,B

+

q∑
i=m+1

cS ,i,3 (t2 − t1)1−ν
q∑

o=m+1

sup
t∈(t1,t2]

(t − t1)ν−1+(o−m)||x(o)(t) − y(o)(t)||1.
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We can select t2 − t1 sufficiently small such that ||(S x)(t)− (S y)(t)||1,q,m,ν,B ≤ λ||x(t)− y(t)||1,q,m,ν,B, for some 0 < λ < 1,
then S is a contraction mapping on B. Thus, S has a unique fixed point in B, i.e. the equation (3.18) has a unique
solution in B. Thus, the solution coincides with x∗(t) on (t1, t2]. Therefore, x∗(t) ∈ Cq,m,ν(t1, t2].

Since all parameters are independent of t1 and t2, we can select any t1, t2 with a uniform distance δ, δ = t2 − t1,
on [t0, t0 + h], then it follows, x∗(t) ∈ Cq,m,ν(t1, t2]. We first select t1 = t0, then x∗(t) ∈ Cq,m,ν(t0, t0 + δ]. For any t ∈ (t0
+δ, t0 + h], we select t2 = t, then x∗(t) ∈ Cq,m,ν(t1, t], i.e. x∗ is q times differentiable at t and ||x(i)

∗ (t)||1 ≤ cδ1−ν−(i−m) ≤

c[δ(t − t0)/h]1−ν−(i−m) = c(δ/h)1−ν−(i−m)(t − t0)1−ν−(i−m), i = m + 1,m + 2, ..., q. Therefore, x∗(t) ∈ Cq,m,ν(t0, t0 + h]. �

Proof of Corollary 3.3.1

Proof. Since f is q−m times continuously differentiable on S̄ and S̄ is closed and bounded, there exists Md > 0 such
that for any (t, x) ∈ S and all possible nonnegative integers u0, u1, ..., un with 1 ≤ u0 + u1 + ... + un ≤ q − m,

||
∂u0+u1+...+un

∂tu0∂x1u1 ...∂xn
un

f (t, x)||1 ≤ Md. (3.23)

Compared to (3.4) and (3.5), (3.6) and (3.23) are without the ”if” part. It can be shown as follows that without this
part we can still derive the same estimation for ||di′ f (τ, x(τ))/dτi′ ||1 and ||di′[ f (τ, (x(τ)) − f (τ, (y(τ))]/dτi′ ||1. If i′ ≤ m,

||
di′

dτi′ f (τ, x(τ))||1=||
∑

0

∑
1

...
∑

i′

i′!∏i′
j=1( j!)k j

∏i′
j=1

∏n
l=0 v jl!

∂k

∂τu0∂x1u1 ...∂xn
un

f (τ, x(τ))
i′∏

j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2 ...[x( j)
n (τ)]v jn ||1

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v Md c

∑i′
j=1 v j1+v j2+...+v jn

≤
∑

0

∑
1

...
∑

i′
c̃i′,k,n,v Md(τ − t1)1−ν−i′

≤ c f ,i′(τ − t1)1−ν−i′ ,

and

||
di′

dτi′ [ f (τ, (x(τ)) − f (τ, (y(τ))]||1

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v

{
c−1+

∑i′
p=1 vp1+...+vpn

i′∑
o=1

Md

n∑
r=1

vor−1∑
l=0

|[x(o)
r (τ)−y(o)

r (τ)]| + c
∑i′
g=1 vg1+...+vgn max{nMd, Ld} ||x(τ)−y(τ)||1

}

≤
∑

0

∑
1

...
∑

i′
c̄i′,k,n,v

{ i′∑
o=1

n∑
r=1

|[x(o)
r (τ) − y(o)

r (τ)]| + ||x(τ) − y(τ)||1
}

≤
∑

0

∑
1

...
∑

i′
c̄i′,k,n,v

{ i′∑
o=1

(τ − t1)1−ν−i′||x(o)(τ)− y(o)(τ)||1+ (τ − t1)1−ν−i′ ||x(τ)− y(τ)||1
}

≤ c f ,i′,1(τ − t1)1−ν−i′ ||x(τ) − y(τ)||1 + c f ,i′,2

i′∑
o=1

(τ − t1)1−ν−i′ ||x(o)(τ) − y(o)(τ)||1.
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If i′ ≥ m + 1, according to Lemma 3.3.1 and Proposition 3.3.1,
∑i′

j=m+1[1 − ν − ( j − m)](v j1 + ... + v jn) =
∑i′

j=m+1[1
−ν− ( j−m)]k j =

∑i′
j=m+1(1− ν)k j +

∑m
j=1(1− ν)k j −

∑i′
j=m+1( j−m)k j −

∑m
j=1(1− ν)k j ≥ 1− ν−

∑i′
j=1 jk j = 1− ν− i′,

then

||
di′

dτi′ f (τ, x(τ))||1=||
∑

0

∑
1

...
∑

i′

i′!∏i′
j=1( j!)k j

∏i′
j=1

∏n
l=0 v jl!

∂k

∂τu0∂x1u1...∂xn
un

f (τ, x(τ))
i′∏

j=1

[x( j)
1 (τ)]v j1[x( j)

2 (τ)]v j2...[x( j)
n (τ)]v jn ||1

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v Md c

∑i′
j=1 v j1+v j2+...+v jn(τ − t1)

∑i′
j=m+1[1−ν−( j−m)](v j1+v j2+...+v jn)

≤
∑

0

∑
1

...
∑

i

c̃i′,k,n,v Md(τ − t1)1−ν−i′

≤ c f ,i′(τ − t1)1−ν−i′ ,

and

||
di′

dτi′ [ f (τ, (x(τ)) − f (τ, (y(τ))]||1

≤
∑

0

∑
1

...
∑

i′
ci′,k,n,v

{
c−1+

∑i′
p=1 vp1+...+vpn

m∑
o=1

(τ − t1)
∑i′

p=m+1[1−ν−(p−m)](vp1+...+vpn)Md

n∑
r=1

vor−1∑
l=0

|[x(o)
r (τ) − y(o)

r (τ)]|

+ c−1+
∑i′

p=1vp1+...+vpn

i′∑
o=m+1

(τ − t1)−[1−ν−(o−m)]+
∑i′

p=m+1[1−ν−(p−m)](vp1+...+vpn)Md

n∑
r=1

vor−1∑
l=0

|[x(o)
r (τ) − y(o)

r (τ)]|

+ c
∑i′
g=1 vg1+...+vgn(τ − t1)

∑i′
g=m+1[1−ν−(g−m)](vg1+...+vgn) max{nMd, Ld}||x(τ) − y(τ)||1

}
≤

∑
0

∑
1

...
∑

i′
c̄i′,k,n,v

{ m∑
o=1

(τ − t1)1−ν−i′ ||x(o)(τ) − y(o)(τ)||1 +

i′∑
o=m+1

(τ − t1)(o−m)−i′ ||x(o)(τ) − y(o)(τ)||1

+ (τ − t1)1−ν−i′ ||x(τ) − y(τ)||1
}

≤ c f ,i′,1(τ−t1)1−ν−i′ ||x(τ)−y(τ)||1 + c f ,i′,2

m∑
o=1

(τ−t1)1−ν−i′ ||x(o)(τ) −y(o)(τ)||1 + c f ,i′,3

i′∑
o=m+1

(τ−t1)(o−m)−i′ ||x(o)(τ)−y(o)(τ)||1.

The other part of proof remains the same as that of Theorem 3.3.3. Thus, (3.1) has a unique solution x(t) ∈ Cq,m,ν(t0,
t0 + h]. Note that here ν is arbitrary in [1 − (α − m), 1). Therefore, x(t) ∈ Cq,m,1−(α−m)(t0, t0 + h]. �

3.3.3 Global Smoothness

In this subsection, a main theorem for the smoothness property of global solutions on the full interval [t0, t0 + a] is
first proven, then the continuation results are applied to deduce some useful corollaries for that of solutions on their
maximal interval of existence.
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Theorem 3.3.4. Assume that f is continuous in t and x on S̄ g, and there exist constants λ1 ≥ 0, λ2 ≥ 0 and 0 ≤ µ < 1
such that for any (t, x) ∈ S̄ g,

|| f (t, x)||1 ≤ λ1 + λ2||x||
µ
1 . (3.24)

Moreover, assume that f is q−m times continuously differentiable with respect to t and x on S g = {(t, x) : t ∈ (t0, t0 +

a], x ∈ Rn}, and there exists a constant ν ∈ [1 − (α − m), 1) and monotonically increasing functions ϕ, ψ: [0,∞) →
[0,∞), such that for any (t, x) ∈ S g and all possible nonnegative integers u0, u1, ..., un with 1 ≤ u0 +u1 +...+un ≤ q−m,

||
∂u0+u1+...+un

∂tu0∂x1u1 ...∂xn
un

f (t, x)||1 ≤ ϕ(||x||1)
{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

; (3.25)

and for any (t, x), (t, y) ∈ S g and those u0, u1, ..., un with u0 + u1 + ... + un = q − m,

||
∂q−m

∂tu0∂x1u1 ...∂xn
un

f (t, x)−
∂q−m

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ ψ(max{||x||1, ||y||1}) ||x− y||1
{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

. (3.26)

Then (3.1) has a unique solution x(t) ∈ Cq,m,ν(t0, t0 + a].

Proof. According to Remark 3.1.1, it follows from the continuity of f on S̄ g and (3.24), (3.1) has a continuous solution
on [t0, t0 + a]. The rest of this proof remains the same as the proof of Theorem 3.3.3, except that the closed ball B
is taken to be Bg = {x ∈ Cq,m,ν(t1, t2] : ||x||1,∞,Bg ≤ bg and ||x||1,q,m,ν,Bg ≤ cg}, where bg >

∑m
k=0 ak||x0,k||1/k! + aα[λ1 +

λ2(||x∗||1,∞) µ]/Γ(α + 1), ||x||1,q,m,ν,Bg = (W + 1)||x||1,∞,Bg +
∑m

i=1 ||x
(i)||1,∞,Bg +

∑q
i=m+1 supt∈(t1,t2](t − t1)ν−1+(i−m)||x(i)(t)||1,

W > max{
∑q

i=m+1 cT,i,
∑q

i=m+1 cS ,i,1,1} and cg > cz + W; the inequality (3.20) is replaced by ||(S x)(t)||1,∞,Bg ≤ bg for
sufficiently small t2 − t1; and the parameters h, c, B, S M before (3.19), M in and after (3.19), Md and Ld are replaced
to be a, cg, Bg, S g, λ1 + λ2(||x∗||1,∞) µ, λ1 + λ2b µg , ϕ(bg), and ψ(bg), respectively. �

Remark 3.3.3. If q = m, i.e. only the continuity of f on S̄ and (3.24) are assumed, then (3.1) has a solution
x(t) ∈ Cm[t0, t0 + a].

Remark 3.3.4. If follows from Remark 3.1.1 that the sufficient condition (3.24) for the existence of solution on
[t0, t0 + a] can be replaced by the Lipschitz condtion: there exists a constant L > 0 such that for any (t, x), (t, y) ∈ S̄ g,
|| f (t, x)− f (t, y)||1 ≤ L||x− y||1. Alternatively, we can immediately assume that (3.1) has a solution x(t) ∈ C[t0, t0 + a],
instead of these sufficient conditions for existence.

Remark 3.3.5. It follows that (3.26) is satisfied if for any (t, x), (t, y) ∈ S g, l = 1, 2, ..., n and those u0, u1, ..., un with
u0 + u1 + ... + un = q − m,

||
∂q−m+1

∂tu0∂x1u1 ...∂xl
ul+1...∂xn

un
f (t, x)||1 ≤

1
n
ψ(max{||x||1, ||y||1})

{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

.

As in (3.4) and (3.5) of Theorem 3.3.1, the ”if” part in (3.25) and (3.26) can be also removed, see the followings.
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Corollary 3.3.3. Assume that f is is q − m times continuously differentiable on S̄ g, and there exist constants λ1 ≥ 0,
λ2 ≥ 0 and 0 ≤ µ < 1 such that for any (t, x) ∈ S̄ g,

|| f (t, x)||1 ≤ λ1 + λ2||x||
µ
1 . (3.27)

Moreover, assume that there exists a monotonically increasing function ψ: [0,∞) → [0,∞), such that for any
(t, x), (t, y) ∈ S̄ g and all possible nonnegative integers u0, u1, ..., un with u0 + u1 + ... + un = q − m,

||
∂q−m

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂q−m

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ ψ(max{||x||1, ||y||1}) ||x − y||1. (3.28)

Then (3.1) has a unique solution x(t) ∈ Cq,m,1−(α−m)(t0, t0 + a].

Proof. Since f is q − m times continuously differentiable on S̄ g, then the q − m th order partial derivatives are
continuous on S̄ g. Thus, for all possible nonnegative integers u0, u1, ..., un with 1 ≤ u0 + u1 + ... + un ≤ q − m,
||∂u0+u1+...+un f (t, x)/∂tu0∂x1

u1 ...∂xl
ul ...∂xn

un ||1 is also continuous in t and x on S̄ g. Let ϕ(||x||1) = maxt∈[t0,t0+a], ||y||1≤||x||1
||∂u0+u1+...+un f (t, y)/∂tu0∂y1

u1 ...∂yl
ul ...∂yn

un ||1, then for any (t, x) ∈ S̄ g and all possible nonnegative integers u0, u1, ..., un

with 1 ≤ u0 + u1 + ... + un ≤ q − m,

||
∂u0+u1+...+un

∂tu0∂x1u1 ...∂xn
un

f (t, x)||1 ≤ ϕ(||x||1). (3.29)

Compared to (3.25) and (3.26), (3.28) and (3.29) are without the ”if” part. It can be shown as in the proof of Corollary
3.3.1 (with c, Md and Ld replaced by cg, ϕ(bg) and ψ(bg), respectively) that without this part the estimation for
||di′f (τ, x(τ))/dτi′||1 and ||di′[ f (τ, (x(τ))− f (τ, (y(τ))]/dτi′ ||1 remains the same form. The rest of proof is the same as that
of Theorem 3.3.4. Therefore, (3.1) has a unique solution x(t) ∈ Cq,m,ν(t0, t0 + a], for any ν ∈ [1 − (α − m), 1), i.e.
x(t) ∈ Cq,m,1−(α−m)(t0, t0 + a]. �

By using the continuation results, we can now prove the following corollary that suggests the smoothness property
of solutions on their maximal interval of existence.

Corollary 3.3.4. Let D = [t0, γ) × Rn, where γ ≤ ∞. Assume that f is continuous in t and x on D, and q − m times
continuously differentiable with respect to t and x on (t0, γ) × Rn, and for any η ∈ (t0, γ), there exists a common
constant ν ∈ [1 − (α − m), 1) and corresponding monotonically increasing functions ϕη, ψη: [0,∞) → [0,∞), such
that for any (t, x) ∈ (t0, η] × Rn and all possible nonnegative integers u0, u1, ..., un with 1 ≤ u0 + u1 + ... + un ≤ q −m,

||
∂u0+u1+...+un

∂tu0∂x1u1 ...∂xn
un

f (t, x)||1 ≤ ϕη(||x||1)
{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

; (3.30)

and for any (t, x), (t, y) ∈ (t0, η] × Rn and those u0, u1, ..., un with u0 + u1 + ... + un = q − m,

||
∂q−m

∂tu0∂x1u1 ...∂xn
un

f (t, x)−
∂q−m

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ ψη(max{||x||1, ||y||1}) ||x−y||1
{1 if u0 = 0
(t − t0)1−ν−u0 if u0 ≥ 1

. (3.31)

Then (3.1) has a unique solution x(t) ∈ Cq,m,ν(t0, β), where [t0, β) is the maximal interval of existence for x(t).
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Proof. Since for sufficiently small a, S̄ ⊂ D, then f is continuous in t and x on S̄ , and q − m times continuously
differentiable with respect to t and x on S . Choose a sequence of sets in D: {Dn}, such that ∪∞n=1Dn = D, D̄n is
bounded and D̄n ⊂ Dn+1 for n = 1, 2...,. Then there exists N > 0 such that n > N implies S̄ ⊂ Dn. Clearly, S̄ ⊂ D̄n.
Let D̄n = [t0, γn] × Ω̄n and η = γn, then there exist Md = ϕη(

∑m
k=0 ak||x0,k||1/k + b) and Ld = ψη(

∑m
k=0 ak||x0,k||1/k + b),

such that (3.4) and (3.5) hold for all (t, x), (t, y) ∈ S . According to Theorem 3.3.1, (3.1) has a unique solution
x(t) ∈ Cq,m,ν(t0, t0 + h] and (t, x(t)) ∈ S̄ for t ∈ [t0, t0 + h].

According to Theorem 3.2.3, the solution can be extended out of D̄n, i.e. there exists βn ≤ γn+1 such that
(βn, x̃(βn)) < D̄n, where the extended solution x̃(t) ∈ C[t0, βn] and x̃(t) = x(t), for t ∈ [t0, t0 + h]. According to
Theorem 3.3.4 and Remark 3.3.4, the continuous solution x̃(t) ∈ Cq,m,ν(t0, βn] and it is unique. Similarly, for Dn+1,
n > N, there exists βn+1 ≤ γn+2 such that the solution has a smooth extension to [t0, βn+1] and (βn+1, x̃(βn+1)) < D̄n+1.
Clearly, {βn} is a monotone increasing sequence. Let β = limn→∞ βn, then β ≤ γ. Thus, x(t) has been extended to
[t0, β) and cannot be extended further, since the sequence {(βn, x(βn))} is either unbounded or has a limit point on the
boundary of D. Therefore, the solution and its smoothness can be extended over its maximal interval of existence
[t0, β). �

Note that if β < ∞, there exists a uniform constant c > 0 such that ||x(i)(t)|| ≤ c(t − t0)1−ν−(i−m), i = m + 1, ..., q,
for any t ∈ (t0, β); if β = ∞, there may only exist cd > 0 depending on d such that ||x(i)(t)|| ≤ cd(t − t0)1−ν−(i−m),
t ∈ (t0, d], for each d ∈ (t0,∞). This follows from the end of the proof of Theorem 3.3.2 or 3.3.3, where the constant
c(δ/h)1−ν−(i−m) is bounded for any finite h but blows up as h → ∞. Moreover, the ”if” part in this corollary can be
removed as before, see Corollary 3.3.5.

Corollary 3.3.5. Let D = [t0, γ)×Rn, where γ ≤ ∞. Assume that f is q−m times continuously differentiable on [t0, γ)×
Rn, and for any η ∈ (t0, γ), there exists a corresponding monotonically increasing function ψη: [0,∞)→ [0,∞), such
that for any (t, x), (t, y) ∈ [t0, η]×Rn and all possible nonnegative integers u0, u1, ..., un with u0 + u1 + ...+ un = q−m,

||
∂q−m

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂q−m

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ ψη(max{||x||1, ||y||1}) ||x − y||1. (3.32)

Then (3.1) has a unique solution x(t) ∈ Cq,m,1−(α−m)(t0, β), where [t0, β) is the maximal interval of existence for x(t).

Proof. The proof is the same as that of Corollary 3.3.4, except that Md = ϕη(
∑m

k=0 ak||x0,k||1/k + b) is deleted, and
Theorem 3.3.1, Theorem 3.3.4 are replaced by Corollary 3.3.1, Corollary 3.3.3, respectively. Note that ν changes to
1 − (α − m) in the conclusion, due to its arbitrariness. �

As we shall see in the corollary below, the conditions in the corollary above can be replaced by some stronger
ones.

Corollary 3.3.6. Assume that f is q − m + 1 times continuously differentiable with respect to t and x on [0,∞) × Rn.
Then (3.1) has a unique solution x(t) ∈ Cq,m,1−(α−m)(t0, β), where [t0, β) is the maximal interval of existence for x(t).
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Proof. Since f is q−m+1 times continuously differentiable on [0,∞)×Rn, i.e. the q−m+1th order partial derivatives
are continuous on [0,∞) × Rn, then f is q − m times continuously differentiable on [t0, γ) × Rn. Moreover, for any
η ∈ (t0, γ), the q − m + 1th order partial derivatives are continuous on [t0, η] × Rn. Thus, for all possible nonnegative
integers u0, u1, ..., un with 1 ≤ u0 + u1 + ... + un ≤ q − m + 1, ||∂u0+u1+...+un f (t, x)/∂tu0∂x1

u1 ...∂xl
ul ...∂xn

un ||1 is also
continuous in t and x on [t0, η] × Rn. Let φη(||x||1) = maxt∈[t0,η], ||y||1≤||x||1 ||∂

u0+u1+...+un f (t, y)/∂tu0∂y1
u1 ...∂yl

ul ...∂yn
un ||1,

then for any (t, x) ∈ [t0, η]×Rn and all possible nonnegative integers u0, u1, ..., un with 1 ≤ u0 +u1 + ...+un ≤ q−m+1,

||
∂u0+u1+...+un

∂tu0∂x1u1 ...∂xl
ul ...∂xn

un
f (t, x)||1 ≤ φη(||x||1).

Let u0 + u1 + ... + un = q − m, then it follows that for any (t, x) ∈ [t0, η] × Rn and l, r = 1, 2, ..., n,

|
∂i+1

∂tu0∂x1u1 ... xl
ul+1... ∂xn

un
fr(t, x)| ≤ φη(||x||1).

According to the mean value theorem, for any (t, x), (t, y) ∈ [t0, η] × Rn,

||
∂q−m

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂q−m

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 = ||

∫ 1

0
D(

∂q−m

∂tu0∂w1u1 ...∂wn
un

f )(t, w)dθ(x − y)||1

≤

∫ 1

0
||D(

∂q−m

∂tu0∂w1u1 ...∂wn
un

f )(t, w)||1dθ||(x − y)||1

≤ nφη(max{||x||1, ||y||1})||x − y||1

Let ψη = nφη, then (3.32) is satisfied. According to Corollary 3.3.5, the conclusion follows. �

3.4 Lyapunov Stability

When talking about stability, one is interested in the behavior of solutions for t → ∞. Therefore, we only consider
those initial value problems whose solutions exist on [0,∞), see page 157 in [1]. For Lyapunov stability analysis, the
Caputo fractional order nonautonomous system can be given by [1] as{ C

0 Dα
t x = f (t, x)

x(0) = x0,
(3.33)

where α ∈ (0, 1) and f : G → Rn, G = [0,∞) × Rn.

Definition 3.4.1. The constant x∗ is an equilibrium point of (3.33), if and only if C
0 Dα

t x∗ = f (t, x∗), for any t ≥ 0.

Note that the constant x∗ is an equilibrium point if and only f (t, x∗) = 0 for all t ≥ 0, due to C
0 Dα

t x∗ ≡ 0. Obviously,
it is the same as the definition of equilibrium points of integer order systems. We now, referring to Definition 7.2 in
[1], introduce the stability concepts for (3.33) in the sense of Lyapunov.
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Definition 3.4.2. Assume f (t, 0) ≡ 0 and let x(t) = x(t, x0) denote the solution of (3.33). Then the trivial solution of
(3.33) is said to be

i. stable, if for any ε > 0, there exists a δ > 0 such that ||x0||2 < δ implies ||x(t)||2 < ε, for all t ≥ 0;

ii. asymptotically stable, if it is stable, and there exists a σ > 0 such that ||x0||2 < σ implies limt→∞ ||x(t)||2 = 0.

As we see, the concepts of Lyapunov stability for Caputo fractional order systems are simpler than those for
integer order systems. This is mainly because the initial time of the formers must be the same as that of their fractional
order differential operators so that there is no concept of uniform stability. Next, quadratic Lyapunov functions will
be employed to investigate the Lyapunov stability.

3.4.1 Quadratic Lyapunov Function

Here we work out an estimation for the Caputo fractional order derivative of a general quadratic Lyapunov function
by using the smoothness property of solutions. On this estimation, there are already some results, see [16, 17, 18].
However, in all these results, it was assumed that the x(t) involved in the quadratic Lyapunov function is differentiable.
As illustrated by a counterexample in Introduction, this assumption is not feasible. Fortunately, our smoothness results
enable us to derive the following.

Lemma 3.4.1. Assume:

i. f is continuous in t and x on [0,∞) × Rn;

ii. f is continuously differentiable with respect to t and x on (0,∞) × Rn;

iii. for any h∗ > 0, there exist corresponding monotonically increasing functions ϕh∗ , ψh∗ : [0,∞) → [0,∞), such
that for any (t, x), (t, y) ∈ (0, h∗]×Rn and all possible nonnegative integers u0, u1, ..., un with u0 +u1 + ...+un = 1,

||
∂

∂tu0∂x1u1 ...∂xn
un

f (t, x)||1 ≤ ϕh∗(||x||1)
{1 if u0 = 0
tα−1 if u0 = 1

(3.34)

and

||
∂

∂tu0∂x1u1 ...∂xn
un

f (t, x) −
∂

∂tu0∂y1u1 ...∂yn
un

f (t, y)||1 ≤ ψh∗(max{||x||1, ||y||1}) ||x − y||1
{1 if u0 = 0
tα−1 if u0 = 1

. (3.35)

Then for any n × n positive definite matrix P, C
0 Dα

t [xT (t)Px(t)] ∈ C[0, β) and

C
0 Dα

t [xT (t)Px(t)] ≤ [C
0 D

α

t xT (t)]Px(t) + xT (t)P C
0 D

α

t x(t), (3.36)

for all t ∈ [0, β), where x(t) is the solution of (3.33) and [0, β) is the maximal interval of existence for x(t).
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Proof. According to Corollary 3.3.4, (3.33) has a unique solution x(t) ∈ C1,1−α[0, β). Thus, x(t) ∈ C[0, β) ∩ C1(0, β).
Moreover, if β < ∞, then there exists a uniform constant c > 0 such that ||x′(t)||1 ≤ ctα−1, for any t ∈ (0, β); if β = ∞,
then for each 0 < d < ∞, there exists a constant cd > 0, depending on d, such that ||x′(t)||1 ≤ cd tα−1, for any t ∈ (0, d].
We shall first consider β = ∞, then the conclusion for β < ∞ follows.

For each fixed t ∈ (0,∞), ∆xT (τ)[∆x(τ)]′/(t − τ)α is integrable on any closed subinterval of (0, t), where ∆x(t) =

x(t) − x0, and there exist constants d∆ > t and cd∆
> 0 depending on d∆, such that for τ ∈ (0, t] ⊆ (0, d∆], ||ẋ(τ)||1 ≤

cd∆
τα−1 and |ẋi(τ)| ≤ cd∆

τα−1, i = 1, 2, ..., n, where xT = [x1, x2, ..., xn]. Thus, for any τ ∈ (0, t],∫ τ

0
−cd∆

sα−1ds ≤
∫ τ

0
ẋi(s)ds ≤

∫ τ

0
cd∆

sα−1ds,

so that |xi(τ) − xi(0)| ≤ (cd∆
/α)τα, then ||∆x(τ)||1 ≤ c∆τ

α, c∆ = ncd∆
/α. Thus,∫ t

0

∣∣∣∆xT (τ)P[∆x(τ)]′

(t − τ)α
∣∣∣ dτ≤∫ t

0

||∆x(τ)||1||P||1||[∆x(τ)]′||1
(t − τ)α

dτ ≤ c∆cd∆
||P||1

∫ t

0

τ2α−1

(t − τ)α
dτ = c∆cd∆

||P||1
Γ(1 − α)Γ(2α)

Γ(α + 1)
tα,

so that the improper integral C
0 Dα

t [∆xT (t)P∆x(t)] is absolutely convergent on (0,∞), i.e. C
0 Dα

t [∆xT (t)P∆x(t)] exists
on (0,∞). Moreover, C

0 Dα
0+[∆xT (t)P∆x(t)] exists and it equals zero. Let C

0 Dα
0 [∆xT (t)P∆x(t)] = C

0 Dα
0+[∆xT (t)P∆x(t)],

then C
0 Dα

0 [∆xT (t)P∆x(t)] exists on [0,∞).

For a given δ1 > 0, there exist constants d1 > δ1 and cd1 > 0 depending on d1 such that for any t ∈ (0, δ1], ||ẋ(t)||1
≤ cd1 tα−1, then ||[∆x(t)]′||1 = ||ẋ(t)||1 ≤ cd1 tα−1 and ||∆x(t)||1 ≤ c1tα, c1 = ncd1/α. Therefore, t1, t2 ∈ [0, δ1] implies

| C0 Dα
t1[∆xT (t)P∆x(t)] − C

0 Dα
t2[∆xT (t)P∆x(t)]| =

2
Γ(1 − α)

∣∣∣ ∫ t1

0

∆xT (τ)P[∆x(τ)]′

(t1 − τ)α
dτ −

∫ t2

0

[∆xT (τ)P[∆x(τ)]′

(t2 − τ)α
dτ

∣∣∣
≤

2
Γ(1 − α)

||P||1[
∫ t1

0

||∆x(τ)||1||[∆x(τ)]′||1
(t1 − τ)α

dτ+

∫ t2

0

||∆x(τ)||1||[∆x(τ)]′||1
(t2 − τ)α

dτ]

≤
2

Γ(1 − α)
c1cd1 ||P||1[

∫ t1

0

τ2α−1

(t1 − τ)α
dτ +

∫ t2

0

τ2α−1

(t2 − τ)α
dτ]

=
2

Γ(1 − α)
c1cd1 ||P||1

Γ(1 − α)Γ(2α)
Γ(1 + α)

[tα1 + tα2 ]

≤ 4c1cd1 ||P||1
Γ(2α)

Γ(1 + α)
δα1

= ĉ1δ
α
1 ,

where ĉ1 = 4c1cd1 ||P||1Γ(2α)/Γ(1 + α). We now, referring to (3.2) − (3.3) in [19], have the following statements.

If t0 ∈ [0, δ1/2], then |t − t0| ≤ δ1/2 implies | C0 Dα
t [∆xT (t)P∆x(t)] −C

0 Dα
t0[∆xT (t)P∆x(t)]| ≤ ĉ1δ

α
1 .

If t0 ∈ [δ1/2,∞), for |t − t0| ≤ δ1/2, we only need to consider the case in which t ∈ [δ1/2,∞). For the given t0,
there exists d2 > t0 +δ1/2 and cd2 depending on d2 such that for any t ∈ (0, t0 +δ1/2], ||ẋ(t)||1 ≤ cd2 tα−1 so ||[∆x(t)]′||1 =
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||ẋ(t)||1 ≤ cd2 tα−1 and ||∆x(t)||1 ≤ c2tα, c2 = ncd2/α. Assume t ≥ t0, then∫ t

t0

τ2α−1

(t − τ)α
dτ = max{t2α−1, t 2α−1

0 }

∫ t

t0

1
(t − τ)α

dτ =
1

1 − α
max{t2α−1, t 2α−1

0 }(t − t0)1−α

≤

{ 1
1−α t2α−1

0 ( δ1
2 )1−α if α ∈ (0, 0.5)

1
1−α t2α−1( δ1

2 )1−α if α ∈ [0.5, 1)
≤

{ 1
1−α ( δ1

2 )α if α ∈ (0, 0.5)
1

1−α (t0 +
δ1
2 )2α−1( δ1

2 )1−α if α ∈ [0.5, 1)
,

and ∫ t0

0
τ2α−1[

1
(t0 − τ)α

−
1

(t − τ)α
] dτ =

∫ δ1
2

0
τ2α−1[

1
(t0 − τ)α

−
1

(t − τ)α
] dτ +

∫ t0

δ1
2

τ2α−1[
1

(t0 − τ)α
−

1
(t − τ)α

] dτ

≤

∫ δ1
2

0
τ2α−1[

1
(t0 − τ)α

+
1

(t − τ)α
] dτ + max{t2α−1

0 , (
δ1

2
)2α−1}

∫ t0

δ1
2

1
(t0 − τ)α

−
1

(t − τ)α
dτ

≤ 2
∫ δ1

2

0

τ2α−1

( δ1
2 − τ)α

dτ +
1

1 − α
max{t2α−1

0 , (
δ1

2
)2α−1}[(t − t0)1−α + (t0 −

δ1

2
)1−α − (t −

δ1

2
)1−α]

≤
2Γ(1 − α)Γ(2α)

Γ(α + 1)
(
δ1

2
)α +

1
1 − α

max{t2α−1
0 , (

δ1

2
)2α−1}(

δ1

2
)1−α

≤

{ 1
1−α [( δ1

2 )α +
2Γ(2−α)Γ(2α)

Γ(α+1) ( δ1
2 )α] if α ∈ (0, 0.5)

1
1−α [t2α−1

0 ( δ1
2 )1−α +

2Γ(2−α)Γ(2α)
Γ(α+1) ( δ1

2 )α] if α ∈ [0.5, 1)
,

so that

| C0 Dα
t [∆xT (t)P∆x(t)] − C

0 Dα
t0[∆xT (t)P∆x(t)]| =

2
Γ(1 − α)

∣∣∣ ∫ t

0

∆xT (τ)P[∆x(τ)]′

(t − τ)α
dτ −

∫ t0

0

∆xT (τ)P[∆x(τ)]′

(t0 − τ)α
dτ

∣∣∣
≤

2
Γ(1 − α)

{

∫ t

t0

||∆x(τ)||1||P||1||[∆x(τ)]′||1
(t − τ)α

dτ +

∫ t0

0
||∆x(τ)||1||P||1||[∆x(τ)]′||1[

1
(t0 − τ)α

−
1

(t − τ)α
] dτ}

≤
2

Γ(1 − α)
c2cd2 ||P||1{

∫ t

t0

τ2α−1

(t − τ)α
dτ +

∫ t0

0
τ2α−1[

1
(t0 − τ)α

−
1

(t − τ)α
] dτ}

≤ ĉ21

{
2( δ1

2 )α + ĉ22( δ1
2 )α if α∈ (0, 0.5)

(t0 +
δ1
2 )2α−1( δ1

2 )1−α+t 2α−1
0 ( δ1

2 )1−α+ĉ22( δ1
2 )α if α∈ [0.5, 1)

,

where ĉ21 = 2c2cd2 ||P||1/Γ(2 − α) and ĉ22 = 2Γ(2 − α)Γ(2α)/Γ(α + 1). For t ≤ t0, we can derive the same estimation.

For any given t0 ∈ [0,∞), let d1 = a, d2 = t0 + b, for some constant a > 0, b > 0, then we have fixed cd1 , cd2

furthermore fixed ĉ1, ĉ21. For a sufficiently small ε > 0, δ1 must be also sufficiently small such that ĉ1δ
α
1 < ε and the

right hand side of the inequality above is also less than ε. Thus, δ1 < a, δ1/2 < b so that δ1 < d1 and t0 + δ1/2 < d2.
Then we can derive a constant δ1 = δ1(ε, t0, a, b) such that all these inequalities hold. Let δ = δ1/2, then |t − t0|≤ δ
implies | C0 Dα

t [∆xT (t)P∆x(t)]−C
0 Dα

t0[∆xT (t)P∆x(t)]| < ε. Thus, C
0 Dα

t [∆xT (t)P∆x(t)] ∈ C[0,∞), then C
0 Dα

t [xT (t)Px(t)] ∈
C[0,∞), due to C

0 Dα
t x(t) ∈ C[0,∞).
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For t = 0, (3.36) holds, due to C
0 Dα

0 [∆xT (t)P∆x(t)] = 0.

For t ∈ (0,∞), we can prove (3.36) as follows. According to Caputo’s definition, we have

xT (t)PC
0 Dα

t x(t)−
1
2

C
0 Dα

t [xT (t)Px(t)] =
1

Γ(1 − α)

∫ t

0

[xT (t) − xT (τ)]Pẋ(τ)
(t − τ)α

dτ. (3.37)

Referring to [16], let y(τ) = x(t) − x(τ), then ẏ(τ) = −ẋ(τ). (3.37) can be rewritten as

xT (t)PC
0 Dα

t x(t) −
1
2

C
0 Dα

t [xT (t)Px(t)] = −
1

Γ(1 − α)

∫ t

0

yT (τ)Pẏ(τ)
(t − τ)α

dτ. (3.38)

For any 0 < t1 < t2 < t, yT (τ)Py(τ)/2 and 1/(t − τ)α are continuously differentiable with respect to τ on [t1, t2].
Integrating by parts,∫ t2

t1

yT (τ)Pẏ(τ)
(t − τ)α

dτ =
yT (τ)Py(τ)
2(t − τ)α

∣∣∣
τ=t2
−
yT (τ)Py(τ)
2(t − τ)α

∣∣∣
τ=t1
−

∫ t2

t1

αyT (τ)Py(τ)
2(t − τ)α+1 dτ.

Taking the limit as t1 → 0 and t2 → t, then∫ t

0

yT (τ)Pẏ(τ)
(t − τ)α

dτ = lim
τ→t

yT (τ)Py(τ)
2(t − τ)α

− lim
τ→0

yT (τ)Py(τ)
2(t − τ)α

−

∫ t

0

αyT (τ)Py(τ)
2(t − τ)α+1 dτ (3.39)

holds, if any three of these four terms exist. It follows from (3.38) and the existence of C
0 Dα

t x(t) and C
0 Dα

t [xT(t)Px(t)]
that the left side integral exists. In the following, we shall check the existence of those two limits on the right side.

lim
τ→0

yT (τ)Py(τ)
2(t − τ)α

=
yT (0)Py(0)

2tα
=

[x(t) − x(0)]T P[x(t) − x(0)]
2tα

≥ 0.

Since y(τ)→ 0, (t − τ)α → 0 as τ→ t, and ẏ(τ) = −ẋ(τ) exists due to x(τ) ∈ C1(0,∞), by the L’Hospital rule,

lim
τ→t

yT (τ)Py(τ)
2(t − τ)α

= lim
τ→t

yT (τ)Pẏ(τ)
−α(t − τ)α−1 = 0.

Thus, limτ→t y
T (τ)Py(τ)/[2(t − τ)α] = 0 and limτ→0 y

T (τ)Py(τ)/[2(t − τ)α] ≥ 0, for t ∈ (0,∞). Therefore, (3.39) does
hold such that

∫ t
0αy

T(τ)Py(τ)/[2(t − τ)α+1]dτ is well defined and nonnegative. Then it follows from (3.38) and (3.39)
that C

0 Dα
t [xT (t)Px(t)] ≤ 2xT (t)PC

0 Dα

t x(t), for all t ∈ (0,∞). The proof is completed. �

Remark 3.4.1. According to Corollary 3.3.5 and 3.3.6, the assumptions in Lemma 3.4.1 may be replaced by one of
the two following stronger conditions:

i. f is continuously differentiable on [0,∞) × Rn, and for any h∗ ∈ (0,∞), there exists a corresponding monoton-
ically increasing function ψh∗ : [0,∞) → [0,∞), such that for any (t, x), (t, y) ∈ [0, h∗] × Rn and all possible
nonnegative integers u0, u1, ..., un with u0 + u1 + ... + un = 1,

||
∂

∂tu0∂xu1
1 ...∂xun

n
f (t, x) −

∂

∂tu0∂yu1
1 ...∂y

un
n

f (t, y)||1 ≤ ψh∗(max{||x||1, ||y||1})||x − y||1;

ii. f ∈ C2([0,∞) × Rn).
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3.4.2 Lyapunov Stability Criteria

We can now use the estimation in Lemma 3.4.1 to prove our Lyapunov stability results.

Theorem 3.4.1. Let x = 0 be an equilibrium point for the Caputo fractional order nonautonomous system (3.33).
Assume the hypotheses of Lemma 3.4.1. Then the equilibrium point of system (3.33) is stable if there exist n × n
positive definite matrices P, Q such that for any (t, x) ∈ G,

xT P f (t, x) + f T (t, x)Px ≤ 0, (3.40)

and is asymptotically stable if
xT P f (t, x) + f T (t, x)Px ≤ −xT Qx. (3.41)

Proof. Consider the Lyapunov function candidate V(x) = xT Px, where P is the mentioned positive definite matrix.
According to Lemma 3.4.1, the α order fractional derivative of V along the trajectory of (3.33), C

0 Dα
t V[x(t)] ∈ C[0, β)

and

C
0 Dα

t V[x(t)] ≤ [C
0 D

α

t xT (t)]Px(t) + xT (t)P C
0 D

α

t x(t) = f T (t, x(t))Px(t) + xT (t)P f (t, x(t)),

for all t ∈ [0, β), where [0, β) is the maximal interval of existence for x(t).

If (3.40) holds, then C
0 Dα

t V[x(t)] ≤ 0 so that there exists a nonnegative function rs(t) ∈ C[0, β) such that C
0 Dα

t V[x(t)]
= −rs(t). According to Theorem 2.1.4,

V[x(t)]=V(x0)−
∫ t

0 (t − τ)α−1rs(τ)dτ,

where the convolution above is continuous and nonnegative. Thus, V[x(t)] ≤ V(x0), for all t ∈ [0, β) so that the
solution is bounded. According to Corollary 3.2.1, β = ∞. Thus, for all t ≥ 0, ||x(t)||2 ≤

√
λmax(P)/λmin(P)||x0||2,

where λmax(P), λmin(P) are the maximum, minimum eigenvalues of P. Therefore, the equilibrium point of (3.33) is
stable.

If (3.41) holds, then
C
0 Dα

t V[x(t)] ≤ −µV[x(t)]. (3.42)

where µ = λmin(Q)/λmax(P). Clearly, it follows from the same proof as above that the equilibrium point of system
(3.33) is stable. Due to the global existence and continuity of C

0 Dα
t V[x(t)] and V[x(t)], there exists a nonnegative

function ra(t) ∈ C[0,∞) such that C
0 Dα

t V[x(t)] + ra(t) = −µV[x(t)]. According to Theorem 2.1.4,

V[x(t)]=V(x0)Eα(−µtα)−
∫ t

0 (t − τ)α−1Eα,α[−µ(t − τ)α]ra(τ)dτ.

Since Eα,α(−µtα) is smooth and nonnegative, see [20], the convolution is continuous and nonnegative. Thus, for all
t ≥ 0, V[x(t)] ≤ V(x0)Eα(−µtα). It follows from Theorem 4.6(a) in [1] that limt→∞ Eα(−µtα) = 0. Therefore, the
equilibrium point of (3.33) is asymptotically stable. �
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According to Remark 3.4.1, we have the following usefull corollaries.

Corollary 3.4.1. Let x = 0 be an equilibrium point for the Caputo fractional order nonautonomous system (3.33).
Assume:

i. f is continuously differentiable on [0,∞) × Rn;

ii. for any h∗ ∈ (0,∞), there exists a corresponding monotonically increasing function ψh∗ : [0,∞)→ [0,∞), such
that for any (t, x), (t, y) ∈ [0, h∗]×Rn and all possible nonnegative integers u0, u1, ..., un with u0 +u1 + ...+un = 1,

||
∂

∂tu0∂xu1
1 ...∂xun

n
f (t, x) −

∂

∂tu0∂yu1
1 ...∂y

un
n

f (t, y)||1 ≤ ψh∗(max{||x||1, ||y||1})||x − y||1.

Then the equilibrium point of system (3.33) is stable if there exist n × n positive definite matrices P, Q such that for
any (t, x) ∈ G,

xT P f (t, x) + f T (t, x)Px ≤ 0, (3.43)

and is asymptotically stable if
xT P f (t, x) + f T (t, x)Px ≤ −xT Qx. (3.44)

Corollary 3.4.2. Let x = 0 be an equilibrium point for the Caputo fractional order nonautonomous system (3.33).
Assume f ∈ C2(G). Then the equilibrium point of system (3.33) is stable if there exist n × n positive definite matrices
P, Q such that for any (t, x) ∈ G,

xT P f (t, x) + f T (t, x)Px ≤ 0, (3.45)

and is asymptotically stable if
xT P f (t, x) + f T (t, x)Px ≤ −xT Qx. (3.46)

It follows from Remark 3.4.1 that the proofs of these two corollaries are the same as that of Theorem 3.4.1.

In fact, the inequality (3.42) is the second condition in the fractional Lyapunov direct method presented in [21, 22].
However, for 0 < q < 1,

R
a Dq

t [ f (t)g(t)] = f (t)R
a Dq

t g(t) +

∞∑
k=1

Γ(q + 1)
Γ(k + 1)Γ(q − k + 1)

R
a D

k
t f (t)aD

−(k−q)
t g(t),

C
a Dq

t [ f (t)g(t)] = f (t)C
a Dq

t g(t) +
(t − a)−q

Γ(1 − q)
[ f (t) − f (a)]g(a) +

∞∑
k=1

Γ(q + 1)
Γ(k + 1)Γ(q − k + 1)

C
a D

k
t f (t)aD

−(k−q)
t g(t),

if f and g are analytic in t [1]. Thus, even if we choose the simplest quadratic Lyapunov function V = xT x for
system (3.33) and assume that the solution is analytic (this is not practical), the fractional derivative is an infinite
series as shown above. As we see, it is not very easy to calculate this derivative and make it satisfy (3.42) as required
by the fractional Lyapunov direct method. Fortunately, Lemma 3.4.1 provides a simple estimation for the fractional
derivative, and Theorem 3.4.1 and Corollary 3.4.1, 3.4.2 present simple sufficient conditions for Lyapunov stability
after the smoothness of solutions is guaranteed. All these can be easily checked even by Matlab. These conveniences
can be seen from numerical examples in Section 3.7.
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3.5 External Stability

For external stability analysis, a general control (input forced) system is necessary to be first introduced. Taking the
input into account for (3.33), then it becomes the following Caputo fractional order nonlinear control system

C
0 Dα

t x = f̄ (t, x, u)
y = h(t, x, u)
x(0) = x0,

(3.47)

where f̄ : Gu → R
n, Gu = [0,∞) × Rn × Ωu and Ωu ⊆ R

l is a domain that contains u = 0; h : Gu → R
p; u, y are the

input, output respectively.

Without the explicit presence of u, i.e. u = 0, (3.47) reduces to a so-called unforced system in the form of (3.33).
Now we give the definition of external stability, see more details in [23].

Definition 3.5.1. A system is externally stable (or L2 stable) if, for every input u ∈ L2[0,∞), the zero-state output
y ∈ L2[0,∞).

Note that the L2 gain of an externally stable system is given by γ = supu∈L2,u,0 ||y||L2/||u||L2 . Except for the
assumption u ∈ L2, the input u(t) here is further assumed to be continuous such that the existence of solutions to
(3.47) is guaranteed.

3.5.1 Diffusive Realization

To investigate the external stability of the Caputo fractional order nonlinear control system, we start from proving the
equivalence between (3.47) and its diffusive realization. The so-called diffusive realization, appearing in the following
lemma, is referred from [24].

Lemma 3.5.1. Assume that f̄ is continuous in t and Lipschitz in x and u on Gu, and u ∈ (C[0,∞),Ωu), then there
exists a unique solution to system (3.47) x(t) ∈ C[0,∞) and

x(t) = x0 +

∫ ∞

0
φ(ω, t)dω,

where φ(ω, t) is the solution of the initial value problem ∂φ(ω, t)/∂t = −ωφ(ω, t) + µα(ω) f̄ (t, x(t), u(t)), φ(ω, 0) = 0,
in which µα(ω) = [sin(πα)/π]ω−α and ω ∈ (0,∞).

Proof. Since f̄ (t, x, u) is continuous in t and Lipschitz in both x and u on Gu, and u ∈ (C[0,∞),Ωu), then F(t, x) :=
f̄ (t, x, u(t)) is continuous in t and Lipschitz in x on [0,∞) × Rn. According to Theorem 3.1.1 and Remark 3.1.1, there
exists a unique solution x(t) ∈ C[0,∞) for (3.47). Moreover, according to Lemma 3.1.1, the solution x(t) must be of
the following form

x(t) = x0 +
1

Γ(α)

∫ t

0

F(τ, x(τ))
(t − τ)1−α dτ.
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Referring to [24], x(t) also takes the form of a convolution of F with a power function of t: Pα(t) = tα−1/Γ(α).
That is, x(t) = x0 + Pα(t) ∗ F(t, x(t)). Pα (for t > 0) can be rewritten as

Pα(t) =
1

Γ(α)
1

Γ(1 − α)
Γ(1 − α)

s1−α |s=t =
1

Γ(α)
L [P1−α(ω)]|Re(s)>0,s=t =

1
Γ(α)

∫ ∞

0
e−tω ω−α

Γ(1 − α)
dω

=

∫ ∞

0

1
Γ(α)Γ(1 − α)

ω−αe−ωtdω =

∫ ∞

0

sin(απ)
π

ω−αe−ωtdω =

∫ ∞

0
µα(ω)e−ωtdω.

It follows that

x(t) = x0 +

∫ t

0
F(τ, x(τ))Pα(t − τ)dτ

= x0 +

∫ t

0
F(τ, x(τ))

∫ ∞

0
µα(ω)e−ω(t−τ)dωdτ

= x0 +

∫ t

0

∫ ∞

0
e−ω(t−τ)µα(ω)F(τ, x(τ))dωdτ.

Since e−ω(t−τ)µα(ω)F(τ, x(τ)) is continuous in ω and τ on [ω1, ω2] × [0, t], for any [ω1, ω2] ⊂ (0,∞), then∫ t

0

∫ ω2

ω1

e−ω(t−τ)µα(ω)F(τ, x(τ))dωdτ =

∫ ω2

ω1

∫ t

0
e−ω(t−τ)µα(ω)F(τ, x(τ))dτdω.

Taking the limit as ω1 → 0 and ω2 → ∞, then the limit equation∫ t

0

∫ ∞

0
e−ω(t−τ)µα(ω)F(τ, x(τ))dωdτ =

∫ ∞

0

∫ t

0
e−ω(t−τ)µα(ω)F(τ, x(τ))dτdω, (3.48)

holds, if any one of the limits exists. Due to the existence of x(t) on [0,∞), the right-side limit exists so that (3.48)
holds. Thus,

x(t) = x0 +

∫ ∞

0

∫ t

0
e−ω(t−τ)µα(ω)F(τ, x(τ))dτdω. (3.49)

It follows from the initial value problem (diffusive realization) that

φ(ω, t) =

∫ t

0
e−ω(t−τ)µα(ω) f̄ (τ, x(τ), u(τ))dτ =

∫ t

0
e−ω(t−τ)µα(ω)F(τ, x(τ))dτ.

Therefore, x(t) = x0 +
∫ ∞

0 φ(ω, t)dω, t ∈ [0,∞). �

Remark 3.5.1. The expression of x(t) in Theorem 3.5.1 can be replaced by x(t) = x0 +
∫ ∞

0 µα(ω)φ(ω, t)dω, where
φ(ω, t) is the solution of the initial value problem: ∂φ(ω, t)/∂t = −ωφ(ω, t) + f̄ (t, x(t), u(t)), φ(ω, 0) = 0, and µα(ω) =

[sin(πα)/π]ω−α, ω ∈ (0,∞), because here x(t) = x0 +
∫ ∞

0 µα(ω)
∫ t

0 e−ω(t−τ) f̄ (τ, x(τ), u(τ))dτdω is the same as (3.49).
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3.5.2 Lyapunov-Like Function

We are now ready to introduce the Lyapunov-like function V(t) =
∫ ∞

0 µα(ω)φT (ω, t)Pφ(ω, t) dω. It first appeared in
[25]. As we see, V is an improper integral not like usual Lyapunov functions, e.g. quadratic ones, and V would be
nonnegative if existing. For proving the external stability of the Caputo fractional order nonlinear control system, it
is necessary to first guarantee the existence of V .

Lemma 3.5.2. Assume that f̄ is continuous in t and Lipschitz in x and u on Gu, u ∈ (C[0,∞),Ωu), and x0 = 0, then,

i. for any 0 ≤ T < ∞, V(T ) exists, V(T ) ≥ 0 and

V(T ) ≤
∫ T

0
xT (t)P f̄ (t, x(t), u(t)) + f̄ T (t, x(t), u(t))Px(t)dt;

ii. for any 0 ≤ t < ∞, V̇(t) exists and

V̇(t) ≤ xT (t)P f̄ (t, x(t), u(t)) + f̄ T (t, x(t), u(t))Px(t),

where V(t) =
∫ ∞

0 µα(ω)φT (ω, t)Pφ(ω, t)dω, in which φ(ω, t) is the solution of the initial value problem in Remark 3.5.1

and P is any positive definite matrix; and V̇(t) denotes the ”derivative” function of V such that V(T ) =
∫ T

0 V̇(t)dt.

Proof. i. Since the solution of (3.47) x(t) and f̄ (t, x(t), u(t)) are both continuous on [0,∞), concluded from the as-
sumption, then for any 0 ≤ T < ∞,

∫ T
0 xT (t)P f̄ (t, x(t), u(t))dt exists. According to Lemma 3.5.1 and Remark 3.5.1,

x(t) =

∫ ∞

0
µα(ω)φ(ω, t)dω,

due to x0 = 0. Moreover,

φ(ω, t) =

∫ t

0
e−ω(t−τ) f̄ (τ, x(τ), u(τ))dτ.

Clearly, φ(ω, t) is differentiable in ω and t. Thus, µα(ω)φT (ω, t)P f̄ (t, x(t), u(t)) is continuous in ω and t on [ω1, ω2] ×
[0,T ], for any [ω1, ω2] ⊂ (0,∞). Then,∫ T

0
xT (t)P f̄ (t, x(t), u(t))dt =

∫ T

0

∫ ∞

0
µα(ω)φT (ω, t)P f̄ (t, x(t), u(t))dωdt

=

∫ ∞

0

∫ T

0
µα(ω)φT (ω, t)P f̄ (t, x(t), u(t))dtdω.

Since f̄ (t, x(t), u(t)) is independent of ω, the function f̄ in the integral above f̄ (t, x(t), u(t)) = ∂φ(ω, t)/∂t + ωφ(ω, t),
where ω can be the same as the one in the integral.
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Thus, we have∫ ∞

0

∫ T

0
µα(ω)φT (ω, t)P f̄ (t, x(t), u(t))dtdω =

∫ ∞

0

∫ T

0
µα(ω)φT (ω, t)P[

∂φ(ω, t)
∂t

+ ωφ(ω, t)]dtdω

=

∫ ∞

0

∫ T

0
µα(ω)φT (ω, t)P

∂φ(ω, t)
∂t

dtdω +

∫ ∞

0

∫ T

0
µα(ω)φT (ω, t)Pωφ(ω, t)dtdω

=

∫ ∞

0
µα(ω)

∫ T

0
φT (ω, t)P

∂φ(ω, t)
∂t

dtdω +

∫ ∞

0

∫ T

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dtdω

=
1
2

∫ ∞

0
µα(ω)φT (ω,T )Pφ(ω,T )dω +

∫ ∞

0

∫ T

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dtdω.

Observing the above equation, we can find∫ T

0
µα(ω)φT (ω, t)P f̄ (t, x(t), u(t))dt =

1
2
µα(ω)φT (ω,T )Pφ(ω,T ) +

∫ T

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dt.

All these three terms, exist and are nonnegative for any ω ∈ (0,∞), and are integrable on any [ω1, ω2] ⊂ (0,∞). Thus,
for any ω ∈ (0,∞),

|
1
2
µα(ω)φT (ω,T )Pφ(ω,T )| ≤

∫ T

0
µα(ω)φT (ω, t)P f̄ (t, x(t), u(t))dt.

Since the improper integral of the right-side function (integral) above from 0 to ∞ equals J, the left-side func-
tion is absolutely integrable over (0,∞). Thus, V(T ) exists and V(T ) ≥ 0, for any 0 ≤ T < ∞. It follows that∫ ∞

0

∫ T
0 µα(ω)ωφT (ω, t)Pφ(ω, t)dtdω exists and is nonnegative as well. Therefore, for any 0 ≤ T < ∞,

V(T ) = 2
∫ T

0
xT (t)P f̄ (t, x(t), u(t))dt − 2

∫ ∞

0

∫ T

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dtdω

≤

∫ T

0
xT (t)P f̄ (t, x(t), u(t)) + x(t)P f̄ T (t, x(t), u(t))dt.

ii. V̇(t) can be expressed by

V̇(t) =

∫ ∞

0
µα(ω)

∂φT (ω, t)
∂t

Pφ(ω, t) + µα(ω)φT (ω, t)P
∂φ(ω, t)
∂t

dω

=

∫ ∞

0
µα(ω)[−ωφ(ω, t) + f̄ (t, x(t), u(t))]T Pφ(ω, t)dω +

∫ ∞

0
µα(ω)φT (ω, t)P[−ωφ(ω, t) + f̄ (t, x(t), u(t))]dω

=

∫ ∞

0
−2µα(ω)ωφT (ω, t)Pφ(ω, t)dω +

∫ ∞

0
f̄ T (t, x(t), u(t))Pµα(ω)φ(ω, t)dω +

∫ ∞

0
µα(ω)φT (ω, t)P f̄ (t, x(t), u(t))dω

= −2
∫ ∞

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dω + f̄ T (t, x(t), u(t))P

∫ ∞

0
µα(ω)φ(ω, t)dω + [

∫ ∞

0
µα(ω)φ(ω, t)dω]T P f̄ (t, x(t), u(t))

= −2
∫ ∞

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dω + f̄ T (t, x(t), u(t))Px(t) + xT (t)P f̄ (t, x(t), u(t)).
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It is necessary to check the existence of the improper integral. For any ω2 ∈ (0,∞),∫ ∞

0

∫ T

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dtdω = lim

ω2→∞

∫ ω2

0

∫ T

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dtdω

= lim
ω2→∞

∫ T

0

∫ ω2

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dωdt

=

∫ T

0

∫ ∞

0
µα(ω)ωφT (ω, t)Pφ(ω, t)dωdt.

This implies that
∫ ∞

0 µα(ω)ωφT (ω, t)Pφ(ω, t)dω is an integrable function of t on [0,T ]. Thus, for every fixed t ∈ [0,T ],

the improper integral
∫ ∞

0 µα(ω)ωφT (ω, t)Pφ(ω, t)dω is bounded. Let Φ(W) =
∫ W

0 µα(ω)ωφT (ω, t)Pφ(ω, t)dω, then for
a fixed t ∈ [0,T ], Φ(W) is a bounded and monotonically increasing function on [0,∞). Thus, limW→∞Φ(W) exists,
i.e.

∫ ∞
0 µα(ω)ωφT (ω, t)Pφ(ω, t)dω exists for every t ∈ [0,T ]. Therefore, V̇(t) exists and

V̇(t) ≤ xT (t)P f̄ (t, x(t), u(t)) + f̄ T (t, x(t), u(t))Px(t).

�

3.5.3 External Stability Criterion

Using the diffusive realization and Lyapunov-like function, we can now prove the following external stability criterion.

Theorem 3.5.1. Assume:

i. f̄ (t, x, u) = Ãx + f̃ (t, x, u), where f̃ : Gu → R
n, is continuous in t and Lipschitz in x, u with Lipschitz constants

L f̃ x, L f̃ u respectively, and f̃ (t, 0, 0) ≡ 0;

ii. h(t, x, u) is continuous in t and Lipschitz in x, u on Gu with Lipschitz constants Lhx, Lhu respectively, and
h(t, 0, 0) ≡ 0.

Then the control system (3.47) is externally stable, i.e. ||y||L2 ≤ γ||u||L2 , for any u ∈ (C[0,∞),Ωu)∩ L2[0,∞) under the
zero initial condition, if there exist constants ε f̃ > 0, εh > 1 and an n × n positive definite matrix P such that

2ε f̃ L2
f̃ u + 2εhL2

hu − γ
2 < 0, (3.50)

and ÃT P + PÃ + 2ε f̃ L2
f̃ x

+ 2εhL2
hx P

∗ −ε f̃

 < 0. (3.51)
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Proof. According to Lemma 3.5.2, for any 0 ≤ T < ∞.

0 ≤ V(T ) ≤
∫ T

0 xT (t)P f̄ (t, x(t), u(t)) + f̄ T (t, x(t), u(t))Px(t)dt.

It follows from i and ii that for any ε f̃ , εh > 0,

2ε f̃ L2
f̃ xxT (t)x(t) + 2ε f̃ L2

f̃ uuT (t)u(t) − ε f̃ f̃ T (t, x(t), u(t)) f̃ (t, x(t), u(t)) ≥ 0

and
2εhL2

hxxT (t)x(t) + 2εhL2
huuT (t)u(t) − εhhT (t, x(t), u(t))h(t, x(t), u(t)) ≥ 0.

Then we can derive the following∫ T

0
yT (t)y(t)dt − γ2

∫ T

0
uT (t)u(t)dt + V(T )

≤

∫ T

0
[hT (t, x(t), u(t))h(t, x(t), u(t)) − γ2uT (t)u(t) + xT (t)P f̄ (t, x(t), u(t)) + f̄ T (t, x(t), u(t))Px(t)]dt

≤

∫ T

0
[hT (t, x(t), u(t))h(t, x(t), u(t)) − γ2uT (t)u(t) + xT (t)PÃx(t) + xT (t)P f̃ (t, x(t), u(t)) + xT (t)ÃT Px(t)

+ f̃ T (t, x(t), u(t))Px(t) + 2ε f̃ L2
f̃ xxT (t)x(t) + 2ε f̃ L2

f̃ uuT (t)u(t) − ε f̃ f̃ T (t, x(t), u(t)) f̃ (t, x(t), u(t))

+ 2εhL2
hxxT (t)x(t) + 2εhL2

huuT (t)u(t) − εhhT (t, x(t), u(t))h(t, x(t), u(t))]dt

=

∫ T

0
ηT (t)


(1, 1) P 0 0
∗ −ε f̃ 0 0
∗ ∗ 2ε f̃ L2

f̃ u
+ 2εhL2

hu − γ
2 0

∗ ∗ ∗ 1 − εh

 η(t)dt,

where (1, 1) = ÃT P + PÃ + 2ε f̃ L2
f̃ x

+ 2εhL2
hx and η(t) = [xT (t), f̃ T (t, x(t), uT (t), hT (t)]T .

From (3.50), (3.51) and εh > 1, we know that the large matrix just appearing above, is negative definite. Thus,∫ T

0
yT (t)y(t)dt ≤ γ2

∫ T

0
uT (t)u(t)dt.

Due to the global existence of x(t), it makes sense to take the limit as

lim
T→∞

∫ T

0
yT (t)y(t)dt ≤ lim

T→∞
γ2

∫ T

0
uT (t)u(t)dt.

Due to u ∈ L2[0,∞), the right-side limit exists, then it is bounded. Let Y(T ) =
∫ T

0 yT (t)y(t)dt, then Y(T ) is bounded
and monotonically increasing on [0,∞). Thus, limT→∞ Y(T ) exists, i.e. the left-side limit exists. Therefore, under the
zero initial condition, for any u ∈ L2[0,∞) ∩C[0,∞), y ∈ L2[0,∞) and ||y||L2 ≤ γ||u||L2 . �
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3.6 Application to H∞ Control

Here we consider to apply our results on Lyapunov and external stability to H∞ control. The so-called H∞ control is
named from the H∞ functions defined on the H∞ (Hardy) space (see page 1 in [26]): H∞ := {F : C→ C| F is analytic,
supRe(s)>0 |F(s)| < ∞} equipped with the norm ||F||∞ := supRe(s)>0 |F(s)|. As well known (see page 4 in [27]), transfer
functions for finite dimensional linear control systems are rational functions with real coefficients. We may only focus
on a subset of the H∞ space consisting of real-rational functions: RH∞ ⊂ H∞. In fact, a transfer function F(s) ∈ RH∞
if and only if F is proper (lims→∞ F(s) < ∞) and stable (F has no poles in the closed right half complex plane) [27]. In
this case, ||F||∞ = supω∈R |F( jω)| = supu∈L2,u,0 ||y||L2/||u||L2 , where u, y denotes the input, output of the control system
described by F [23]. Therefore, those linear control systems with real-rational H∞ transfer functions are externally
stable, i.e. every L2 input only excites an L2 zero-state output. If the input is considered as a disturbance, then the
external stability measures the robustness of the zero-state output on the disturbance. It ensures that the zero-state
output excited by the energy-bounded (the square of the L2 norm of a signal can be considered as the energy content
of the signal) disturbance will not blow up. For linear control systems, H∞ control is to find a control such that
the norm of the transfer function from the disturbance (input) ud to the output y (something we want to minimize)
||Fd→y||∞ is minimized, i.e. the the zero-state output excited by disturbance yd is minimized, under the constraint that
the overall system is stabilized, see page 17 in [26]. For nonlinear control systems, they do not have transfer functions
as the linear ones do, but the same name H∞ control is employed for the following control objective: to find a control
such that the controlled system is asymptotically stable when no disturbances are present, and moreover, has finite L2
gain from ud to y, under the zero initial condition (is externally stable from ud to y), see page 6 in [27]. As we see
above, for either linear or nonlinear control systems, H∞ control has the same physical meaning: the H∞ controller
starts to stabilize the system after the energy-bounded disturbance has already decayed to zero, then maintains the
stabilized system to be externally stable from the disturbance to the output such that effect of the disturbance on the
output is attenuated during the steady period. This specializes the practical importance of H∞ control in industrial
environments with noises. However, for Caputo fractional order control systems, the implication of H∞ control may
differ, due to the non-locality or memory of Caputo fractional order derivatives. For more details of ”non-locality”,
see [1], pp.87. We shall elucidate this difference in Example 3.7.3 later.

Consider the input forced system (3.47), with both control input uc and disturbance input ud, of the following
form 

C
0 Dα

t x = Ax + f̂ (t, x, ud) + Buc

y = h(t, x, ud)
x(0) = x0,

(3.52)

where f̂ : Gu → R
n, is twice continuously differentiable with respect to t and x, and Lipschitz in x, ud with Lipschitz

constants L f̂ x, L f̂ d respectively, f̂ (t, 0, 0) ≡ 0; h : Gu → R
p, is continuous in t and Lipschitz in x, u with Lipschitz

constants Lhx, Lhd respectively, h(t, 0, 0) ≡ 0; and ud ∈ (C[0,∞),Ωu) ∩ L2[0,∞).

As introduced, the H∞ control problem is to find a control uc = Kx such that the controlled system without
disturbance: C

0 Dα
t x = Âx + f̂ (t, x, 0), where Â = A + BK, is asymptotically stable, and the controlled system rewritten

as C
0 Dα

t x = Âx + f̂ (t, x, ud), y = h(t, x, ud), with x0 = 0, satisfies ||y||L2 ≤γ||ud ||L2 , for some priori prescribed constant γ.
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Since the origin is an equilibrium point of (3.52) without disturbance, and Âx + f̂ (t, x, 0) ∈ C2([0,∞) × Rn),
according to Corollary 3.4.2, if there exists ε f̂ > 0, P > 0 and Q > 0 such thatPÂ + ÂT P + Q + ε f̂ L2

f̂ X
P

∗ −ε f̂

 < 0, (3.53)

then the controlled system (3.52) without disturbance is asymptotically stable. This is because

xT P[Âx + f̂ (t, x, 0)] + [Âx + f̂ (t, x, 0)]T Px + xT Qx = xT (PÂ + ÂT P + Q)x + xT P f̂ (t, x, 0) + f̂ T (t, x, 0)Px

≤ xT (PÂ + ÂT P + Q)x + xT P f̂ (t, x, 0) + f̂ T (t, x, 0)Px + ε f̂ L2
f̂ x

xT x − ε f̂ f̂ T (t, x, 0) f̂ (t, x, 0)

= [xT , f̂ T (t, x, 0)]

PÂ + ÂT P + Q + ε f̂ L2
f̂ x

P

∗ −ε f̂

 [ x
f̂ (t, x, 0)

]
.

According to Theorem 3.5.1, if there exists ε f̂ > 0, εh > 1 and P > 0 such that
(1, 1) P 0 0
∗ −ε f̂ 0 0
∗ ∗ 2ε f̂ L2

f̂ d
+ 2εhL2

hd − γ
2 0

∗ ∗ ∗ 1 − εh

 < 0, (3.54)

where (1, 1) = ÂT P + PÂ + 2ε f̂ L2
f̂ x

+ 2εhL2
hx, then the controlled system (3.52) with x0 = 0 satisfies ||y||L2 ≤ γ||ud ||L2 .

As we see, (3.54) implies (3.53) with Q := (ε f̂ L2
f̂ x

+ 2εhL2
hx)I. Therefore, the H∞ control goal is achieved if we

can find those parameters such that (3.54) holds. However, there are two nonlinear terms: KT BT P and PBK in (3.54).
We can left multiply diag(P−1, I) and right multiply its transpose to the first 2 × 2 block of the matrix in (3.54), and
let Y = KP−1. According to Schur complement, it then follows,

(1, 1) I P−1 0 0
∗ −ε f̂ 0 0 0
∗ ∗ (3, 3) 0 0
∗ ∗ ∗ 2ε f̂ L2

f̂ d
+ 2εhL2

hd − γ
2 0

∗ ∗ ∗ ∗ 1 − εh


< 0, (3.55)

where (1, 1) = AP−1 + P−1AT + BY + YT BT and (3, 3) = −(2ε f̂ L2
f̂ x

+ 2εhL2
hx)−1, which is equivalent to (3.54), and the

control gain K = YP. Now we can state the following theorem for the H∞ control problem.

Theorem 3.6.1. The control uc = Kx, K = YP, solves the H∞ control problem of system (3.52) if (3.55) holds.

Remark 3.6.1. The assumption on (3.52) that f̂ is twice continuously differentiable with respect to t and x on [0,∞)×
Ω may be weakened as the assumptions on f : i, ii, iii in Lemma 3.4.1; or i, ii in Corollary 3.4.1.
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3.7 Numerical Examples

To illustrate our stability and control results, we shall give three examples with numerical simulations implemented
by the algorithm in [28].

Example 3.7.1. Consider the following Caputo fractional order nonautonomous system{ C
0 Dα

t x = −x + y − ytα
C
0 Dα

t y = −x − y + xtα
. (3.56)

The origin is an equilibrium point of (3.56). Let X = [x, y]T , then the vector field function of (3.56) f (t, X) = [−x+

y−ytα,−x−y+ xtα]T . Clearly, f ∈ C[0,∞)×R2 and f ∈ C1(0,∞)×R2. Moreover, for any (t, X), (t,Y) ∈ (0,∞)×R2,

||
∂

∂t
f (t, X)||1 = (|x| + |y|)αtα−1 = α||X||1tα−1,

||
∂

∂X1
f (t, X)||1 = ||

∂

∂x
f (t, X)||1 = 1 + | − 1 + tα|,

||
∂

∂X2
f (t, X)||1 = ||

∂

∂y
f (t, X)||1 = |1 − tα| + 1;

and
||
∂

∂t
f (t, X) −

∂

∂t
f (t,Y)||1 = α||X − Y ||1tα−1,

||
∂

∂X1
f (t, X) −

∂

∂Y1
f (t,Y)||1 = 0,

||
∂

∂X2
f (t, X) −

∂

∂Y2
f (t,Y)||1 = 0.

Let ϕh∗(||X||1) = α||X||1 + max{(h∗)α, 2} and ψh∗(max{||X||1, ||Y ||1}) = α, then iii in Lemma 3.4.1 is satisfied. Further-
more, XT f (t, X) = −(x2 + y2) = −XT X, for all (t, X) ∈ G. According to Theorem 3.4.1, the equilibrium point (0, 0) is
asymptotically stable.

Now we consider a modification on f . Change the vector field function to f (t, X) = [−x + y − yt,−x − y + xt]T ,
then the origin (0, 0) is still an equilibrium point of (3.56). Moreover, f ∈ C2([0,∞) × R2), and XT f (t, X) = −XT X,
for all (t, X) ∈ G. According to Corollary 3.4.2, the equilibrium point is still asymptotically stable.

The evolutions of system (3.56) and its modified version, with α = 0.6 and (x(0), y(0))= (6, 6), are shown in Figure
3.1a and Figure 3.1b, respectively. As expected from our analysis, the figures show that (0, 0) is asymptotically stable.

Example 3.7.2. Consider the Caputo fractional order Lorenz system
C
0 Dα

t x = σ(y − x)
C
0 Dα

t y = rx − y − xz
C
0 Dα

t z = xy − bz
, (3.57)

where σ, r and b are positive constants.
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(a) States of the original system
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(b) States of the modified system

Figure 3.1: States of the Caputo fractional order nonautonomous systems

According to Definition 3.4.1, for 0 < r ≤ 1 system (3.57) has an unique equilibrium (0, 0, 0); for r > 1 system
(3.57) has three equilibrium points:

(0, 0, 0), (
√

b(r − 1),
√

b(r − 1), r − 1), (−
√

b(r − 1),−
√

b(r − 1), r − 1).

It is clear that the vector field function is twice continuously differentiable on the whole space.

To investigate the Lyapunov stability of the Lorenz system (3.57), we select the positive definite matrix as P =

diag(1/σ, 1, 1), then

XT P f (t, X) + f T (t, X)PX ≤ −2[−(1 + r)xy + x2 + y2 + bz2],

where X = [x, y, z]T and f (t, X) = [σ(y − x), rx − y − xz, xy − bz]T .

If 0 < r < 1, then
XT P f (t, X) + f T (t, X)PX ≤ −c1(x2 + y2 + z2) = −c1XT X,

where c1 = min(2b, 1 − r). According to Corollary 3.4.2, the unique equilibrium (0, 0, 0) is asymptotically stable.

If r = 1, then
XT P f (t, X) + f T (t, X)PX ≤ −2[(x − y)2 + bz2] ≤ 0.

According to Corollary 3.4.2, the unique equilibrium point is stable.

If r > 1, chaos may exist in the Caputo fractional order Lorenz system with appropriate other parameters. To
stabilize the Caputo fractional order Lorenz system in this case, from the analysis above, we only need to add one
control u = kx, k ≤ 1 − r, on the right hand side of the second equation.
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The phase portrait of the Caputo fractional order Lorenz chaos, with σ = 10, r = 28, b = 8/3, fractional order
α = 0.996 and initial condition (x(0), y(0), z(0)) = (6, 6, 6), is shown in Figure 3.2. Note that the fractional order here
must be selected sufficiently close to 1 such that the necessary condition [29], for the existence of chaotic attractor,
is satisfied. As expected, we can observe the chaotic (or chaotic-like) phenomenon. Design a control u = −27.2x,
where k = −27.2 ≤ 1 − r = −27, as required for stabilization, then as shown in Figure 3.3, the system is stabilized.
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Figure 3.2: Phase portrait of the Caputo fractional order Lorenz chaos in x-y-z plane.
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Figure 3.3: States of the controlled Caputo fractional order Lorenz system.
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Example 3.7.3. Consider the Caputo fractional order modified Chua’s circuit
C
0 Dα

t x = a(y − g(ε, x))
C
0 Dα

t y = x − y + z
C
0 Dα

t z = −by
, (3.58)

where g(ε, x), ε ∈ [0, 1], is continuously differentiable in x, and g(ε, 0) = 0, as defined in [30]; a, b are constants. Its

vector form is as C
0 Dα

t X = AX + F(X), where X = [x, y, z]T , A =

0 a 0
1 −1 1
0 −b 0

 and F(X) = [−ag(ε, x), 0, 0]T .

We consider the H∞ control problem of (3.58) with control input uc and disturbance input ud ∈ (C[0,∞),R) ∩
L2[0,∞) of the form: C

0 Dα
t X = AX + F(X) + Buc + Dud, y = CX, X(0) = X0, where uc = KX. This system can be

rewritten in the form consistent with (3.52) as
C
0 Dα

t X = ÂX + f̂ (t, X, ud)
y = h(t, X, ud)
X(0) = X0,

(3.59)

where Â = A + BK, f̂ (t, X, ud) = F(X) + Dud and h(t, X, ud) = CX.

Since g(ε, x) is continuously differentiable; the right and left derivatives of g′(ε, x) exist and bounded for all x,
see [30]; and g(ε, 0) = 0, then f̂ satisfies i and ii as required in Corollary 3.4.1 and f̂ (t, 0, 0) ≡ 0. In addition,
h(t, 0, 0) = C0 = 0 and ud ∈ C[0,∞)∩L2[0,∞). According to Remark 3.6.1, all conditions on f̂ required by Theorem
3.6.1 are satisfied.

We select the Chua’s circuit parameters: α = 0.98, a = 12, b = 17, m0 = −1/7, m1 = 2/7 and ε = 0.5; prescribed
constant: γ = 0.3; arbitrary constants: ε f̂ = 0.01 and εh = 1.01; control matrices: B = I3 (three dimensional identity

matrix), C =
[
1 1 1

]
and D =

[
1 1 1

]T
; disturbance (for simulation):

ud(t) =


10 sin(2πt), 0 ≤ t ≤ 1
0, 1 < t ≤ 2
10 sin(2π(t − 2)), 2 < t ≤ 3
0, t > 3

which is continuous and square integrable on [0,∞) as required. Then L f̂ X = |a|max(|m0|, |m1|) = 24/7, L f̂ d = ||D||2 =
√

3, and LhX = ||C||2 =
√

3. Since h only depends on X, the (3, 3), (4, 4) entries of the matrix in (3.55) can be reduced
to −(2ε f̂ L2

f̂ x
+ εhL2

hx)−1, 2ε f̂ L2
f̂ d
− γ2, respectively. Let L f̂ x = L f̂ X and Lĥx = LĥX , then solve (3.55) with the reduction

by Matlab, we derive

K =

−24.5920 −6.9518 0.1181
−6.0482 −23.5920 8.3445
−0.1181 7.6555 −24.5920

 .
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The phase portrait of the Caputo fractional order modified Chua’s circuit (or the controlled system with uc = 0
and ud = 0) under initial condition (x(0), y(0), z(0)) = (0.2, 0.2, 0.2), is shown in Figure 3.4. It appears to be chaotic,
naturally unstable. As expected, the control uc = KX stabilizes the unstable states, see Figure 3.5, and meanwhile
makes γ(t) = [

∫ t
0 y

2(t)dt]1/2/[
∫ t

0 u2
d(t)dt]1/2, under the zero initial condition, tend to some constant less than γ = 0.3,

see Figure 3.6. Therefore, the control goal has been achieved.
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Figure 3.4: Phase portrait of the Caputo fractional order modified Chua’s circuit in x-y-z plane.
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Figure 3.5: States of the controlled Caputo fractional order modified Chua’s circuit.
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Figure 3.6: L2 gain of the controlled Caputo fractional order modified Chua’s circuit.

With this example, here we explain how the implication of the fractional-version H∞ control differs from that of
the classical one. According to Lemma 3.1.1, the solution of (3.59) can be expressed by

X(t) = X0 +
1

Γ(α)

∫ t

0
(t − τ)α−1[ÂX(τ) + f̂ (t, X(τ), ud(τ))]dτ

= X0 +
1

Γ(α)

∫ 1

0
(t − τ)α−1[ÂX(τ) + f̂ (t, X(τ), 10 sin(2πτ))]dτ +

1
Γ(α)

∫ 2

1
(t − τ)α−1[ÂX(τ) + f̂ (t, X(τ), 0)]dτ

+
1

Γ(α)

∫ 3

2
(t − τ)α−1[ÂX(τ) + f̂ (t, X(τ), 10 sin(2π(τ − 2)))]dτ +

1
Γ(α)

∫ t

3
(t − τ)α−1[ÂX(τ) + f̂ (t, X(τ), 0)]dτ.

In the classical case of H∞ control, i.e. the H∞ control of first order systems as introduced in [26, 27], α = 1, then the
above can be reduced to X(t) = X3 +

∫ t
3 ÂX(τ) + f̂ (t, X(τ), 0)dτ, where X3 = X(3), which is the integral equation of{

Ẋ = ÂX + f̂ (t, X, 0)
X(3) = X3.

The H∞ controller starts to stabilize this controlled system as t = 3. After the state is stabilized, i.e. ||X(t)||1 is driven
sufficiently close to zero, it will maintain the external stability of the stabilized system from possible disturbance to
output. With the emergence and disappearance of possible energy-bounded disturbances, the controller works under
this mechanism automatically and repeatedly. However, in the fractional case, it is only ensured that the H∞ controller
is able to stabilize the system of the following integral form

X(t) = X3 +
1

Γ(α)

∫ t

3
(t − τ)α−1[ÂX(τ) + f̂ (t, X(τ), 0)]dτ.

Those irreducible integrals result from the non-locality of the Caputo fractional derivative in (3.59). It is not straight-
forward to evaluate their effects on the convergence of x(t) to zero.
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Chapter 4

Hybrid System

In this chapter, the results on Lyapunov and external stability for nonlinear systems will be extended for Caputo
fractional order hybrid systems. The hybrid system focused here consists of a family of subsystems and a running
law that determines the switches between these subsystems and the change of the system state at each switching
instant. During the period between any two consecutive switching instants, only one subsystem is active. Thus,
the fundamental results including the existence, uniqueness, continuation and smoothness of solutions to nonlinear
systems in the last chapter are also applicable here so that the Lyapunov stability results can be naturally extended. To
extend the external stability results, we discover that the hybrid system state must be reset at each switching instant.

4.1 System Formulation

For Lyapunov stability analysis, we consider the Caputo fractional order switching nonautonomous system as{ C
tk−1

Dα
t x = fσ(t)(t, x)

x(t0) = x0,
(4.1)

where α ∈ (0, 1), and fσ : [0,∞) × Rn → Rn, in which σ(t) : [t0, t1) ∪ [t1, t2) ∪ ... ∪ [tk−1, tk) ∪ ...→P = {1, 2, ...}, is
the switching signal, and denotes the number of the active subsystem at t, i.e. σ(t) = i, where t ∈ [tk−1, tk) for some
k = 1, 2, ... and i ∈P , means that the subsystem i is active during [tk−1, tk). Here tk, k = 1, 2, ..., with limk→∞ tk = ∞

and 0 < Tmin ≤ tk − tk−1 ≤ Tmax < ∞, is called a switching instant.

Note that the lower bound of the Caputo fractional derivative in (4.1) is updated to tk−1 at each switching instant.
This avoids the effect of the history of solution x(t) from t0 to tk−1 on its future evolution, i.e. x(t), t ≥ tk−1, so that
there is no irreducible integral terms, as those appearing in Example 3.7.3, affecting the Lyapunov stability of (4.1).

Definition 4.1.1. The constant x∗ is an equilibrium point of (4.1), if and only if fσ(t)(t, x∗) = 0, for all t ≥ t0.
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Consider the effect of input on (4.1), then it becomes the following Caputo fractional order switching control
system 

C
tk−1

Dα
t x = f̄σ(t)(t, x, u)

y = hσ(t)(t, x, u)
x(t0) = x0,

(4.2)

where f̄σ : [0,∞) × Rn ×Ωu → R
n, Ωu ⊆ R

l; hσ : [0,∞) × Rn ×Ωu → R
p; u, y are the input, output respectively.

As we shall see in Section 4.3, in order for the external stability of the control system (4.2), it is necessary to reset
its state at each tk as follows 

C
tk−1

Dα
t x = f̄σ(t)(t, x, u), t ∈ [tk−1, tk)

x(tk) = 0
y = hσ(t)(t, x, u)
x(t0) = x0,

(4.3)

where the second equation is equivalent to the difference (impulse) form: ∆x = x(tk) − x(t−k ) = −x(t−k ), t = tk.

4.2 Lyapunov Stability

The concepts of Lyapunov stability for the hybrid system (4.1) are almost the same as that for the nonlinear system
(3.33) in the last chapter, see below.

Definition 4.2.1. Assume fi(t, 0) ≡ 0 for any i ∈ P , and let x(t) = x(t, x0) denote the solution of (4.1). Then the
trivial solution of (4.1) is said to be

i. stable, if for any ε > 0, there exists a δ > 0 such that ||x0||2 < δ implies ||x(t)||2 < ε, for all t ≥ t0;

ii. asymptotically stable, if it is stable, and there exists a σ > 0 such that ||x0||2 < σ implies limt→∞ ||x(t)||2 = 0.

As have done for (3.33), here we still use quadratic Lyapunov functions to study the Lyapunov stability for (4.1).

4.2.1 Quadratic Lyapunov Function

We also first prove an estimation for C
tk−1

Dα
t [xT (t)Px(t)], by using the smoothness property of x(t),.

Lemma 4.2.1. Let x(t) be a function: [tk−1, hk]→ Rn. Assume x(t) ∈C1,1−α(tk−1, hk] and C
tk−1

Dα
t x(t) ∈ C[tk−1, hk], then

C
tk−1

Dα
t [xT (t)Px(t)]∈C[tk−1, hk] and

C
tk−1

Dα
t [xT (t)Px(t)] ≤ [C

tk−1
Dα

t xT (t)]Px(t) + xT (t)P C
tk−1

Dα
t x(t), (4.4)

for all t ∈ [tk−1, hk], where P is any n × n positive definite matrix.
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Proof. It follows from the assumption that x(t) ∈ C[tk−1, hk] ∩ C1(tk−1, hk]. Moreover, there exists a constant c > 0
such that ||x′(t)||1 ≤ c(t − tk−1)α−1, for any t ∈ (tk−1, hk]. Thus, for each fixed t ∈ (tk−1, hk], ∆xT (τ)[∆x(τ)]′/(t − τ)α is
integrable on any closed subinterval of (tk−1, t), where ∆x(t) = x(t) − x(tk−1). Furthermore, for τ ∈ (tk−1, t], ||ẋ(τ)||1 ≤
c(τ − tk−1)α−1 and |ẋi(τ)| ≤ c(τ − tk−1)α−1, i = 1, 2, ..., n, where xT = [x1, x2, ..., xn]. Thus, for any τ ∈ (tk−1, t],∫ τ

tk−1

−c(s − tk−1)α−1ds ≤
∫ τ

tk−1

ẋi(s)ds ≤
∫ τ

tk−1

c(s − tk−1)α−1ds,

so that |xi(τ) − xi(tk−1)| ≤ (c/α)(τ − tk−1)α, then ||∆x(τ)||1 ≤ c∆(τ − tk−1)α, c∆ = nc/α. Thus,∫ t

tk−1

∣∣∣∆xT (τ)P[∆x(τ)]′

(t − τ)α
∣∣∣ dτ ≤ ∫ t

tk−1

||∆x(τ)||1||P||1||[∆x(τ)]′||1
(t − τ)α

dτ

≤ c∆c||P||1

∫ t

tk−1

(τ − tk−1)2α−1

(t − τ)α
dτ

= c∆c||P||1
Γ(1 − α)Γ(2α)

Γ(α + 1)
(t − tk−1)α.

Therefore, the improper integral C
tk−1

Dα
t [∆xT (t)P∆x(t)] is absolutely convergent on (tk−1, hk], i.e. C

tk−1
Dα

t [∆xT (t)P∆x(t)]
exists on (tk−1, hk]. Moreover, C

tk−1
Dα

t+k−1
[∆xT (t)P∆x(t)] exists and it equals zero. This well defines C

tk−1
Dα

t [∆xT (t)P∆x(t)]

at tk−1. It follows that C
tk−1

Dα
tk−1

[∆xT (t)P∆x(t)] exists on [tk−1, hk].

For δ1 ∈ (0, hk − tk−1], t1, t2 ∈ [tk−1, tk−1 + δ1] implies

| Ctk−1
Dα

t1[∆xT (t)P∆x(t)] − C
tk−1

Dα
t2[∆xT (t)P∆x(t)]| =

2
Γ(1 − α)

∣∣∣ ∫ t1

tk−1

∆xT (τ)P[∆x(τ)]′

(t1 − τ)α
dτ −

∫ t2

tk−1

[∆xT (τ)P[∆x(τ)]′

(t2 − τ)α
dτ

∣∣∣
≤

2
Γ(1 − α)

||P||1[
∫ t1

tk−1

||∆x(τ)||1||[∆x(τ)]′||1
(t1 − τ)α

dτ +

∫ t2

tk−1

||∆x(τ)||1||[∆x(τ)]′||1
(t2 − τ)α

dτ]

≤
2

Γ(1 − α)
c∆c||P||1[

∫ t1

tk−1

(τ − tk−1)2α−1

(t1 − τ)α
dτ +

∫ t2

tk−1

(τ − tk−1)2α−1

(t2 − τ)α
dτ]

=
2

Γ(1 − α)
c∆c||P||1

Γ(1 − α)Γ(2α)
Γ(1 + α)

[(t1 − tk−1)α + (t2 − tk−1)α]

≤ 4c∆c||P||1
Γ(2α)

Γ(1 + α)
δα1

= ĉ1δ
α
1 ,

where ĉ1 = 4c∆c||P||1Γ(2α)/Γ(1 + α). Now we are ready to have the following statements.

If t∗ ∈ [tk−1, tk−1+δ1/2], then |t−t∗| ≤ δ1/2 and t ≥ tk−1 together imply | Ctk−1
Dα

t [∆xT (t)P∆x(t)]−C
tk−1

Dα
t∗[∆xT (t)P∆x(t)]|

≤ ĉ1δ
α
1 .

If t∗ ∈ [tk−1 + δ1/2, hk], for |t − t∗| ≤ δ1/2 and tk−1 ≤ t ≤ hk, we only need to consider the case t ∈ [tk−1 + δ1/2, hk].
This is because for t ∈ [tk−1, tk−1 + δ1/2), |t − t∗| ≤ δ1/2 implies t, t∗ ∈ [tk−1, tk−1 + δ1], then | Ctk−1

Dα
t [∆xT (t)P∆x(t)]−

95



C
tk−1

Dα
t∗[∆xT (t)P∆x(t)]| ≤ ĉ1δ

α
1 , which is the same as above. Without loss of generality, assume t ≥ t∗, then∫ t

t∗

(τ − tk−1)2α−1

(t − τ)α
dτ = max{(t − tk−1)2α−1, (t∗ − tk−1) 2α−1}

∫ t

t∗

1
(t − τ)α

dτ

=
1

1 − α
max{(t − tk−1)2α−1, (t∗ − tk−1) 2α−1}(t − t∗)1−α

≤

{ 1
1−α (t∗ − tk−1)2α−1( δ1

2 )1−α if α ∈ (0, 0.5)
1

1−α (t − tk−1)2α−1( δ1
2 )1−α if α ∈ [0.5, 1)

≤

{ 1
1−α ( δ1

2 )α if α ∈ (0, 0.5)
1

1−α (hk − tk−1)2α−1( δ1
2 )1−α if α ∈ [0.5, 1)

;

∫ t∗

tk−1

(τ − tk−1)2α−1[
1

(t∗ − τ)α
−

1
(t − τ)α

] dτ

=

∫ tk−1+
δ1
2

tk−1

(τ − tk−1)2α−1[
1

(t∗ − τ)α
−

1
(t − τ)α

] dτ +

∫ t∗

tk−1+
δ1
2

(τ − tk−1)2α−1[
1

(t∗ − τ)α
−

1
(t − τ)α

] dτ

≤

∫ tk−1+
δ1
2

tk−1

(τ − tk−1)2α−1[
1

(t∗ − τ)α
+

1
(t − τ)α

] dτ + max{(t∗ − tk−1)2α−1, (
δ1

2
)2α−1}

∫ t∗

tk−1+
δ1
2

1
(t∗ − τ)α

−
1

(t − τ)α
dτ

≤ 2
∫ tk−1+

δ1
2

tk−1

(τ − tk−1)2α−1

(tk−1 +
δ1
2 − τ)α

dτ +
1

1 − α
max{(t∗ − tk−1)2α−1, (

δ1

2
)2α−1}

× [(t − t∗)1−α + (t∗ − tk−1 −
δ1

2
)1−α − (t − tk−1 −

δ1

2
)1−α]

≤
2Γ(1 − α)Γ(2α)

Γ(α + 1)
(
δ1

2
)α +

1
1 − α

max{(t∗ − tk−1)2α−1, (
δ1

2
)2α−1}(

δ1

2
)1−α

≤

{ 1
1−α [( δ1

2 )α +
2Γ(2−α)Γ(2α)

Γ(α+1) ( δ1
2 )α] if α ∈ (0, 0.5)

1
1−α [(hk − tk−1)2α−1( δ1

2 )1−α +
2Γ(2−α)Γ(2α)

Γ(α+1) ( δ1
2 )α] if α ∈ [0.5, 1)

,

so that

| Ctk−1
Dα

t [∆xT (t)P∆x(t)] − C
tk−1

Dα
t∗[∆xT (t)P∆x(t)]|

=
2

Γ(1 − α)

∣∣∣ ∫ t

tk−1

∆xT (τ)P[∆x(τ)]′

(t − τ)α
dτ −

∫ t∗

tk−1

∆xT (τ)P[∆x(τ)]′

(t∗ − τ)α
dτ

∣∣∣
≤

2
Γ(1 − α)

{

∫ t

t∗

||∆x(τ)||1||P||1||[∆x(τ)]′||1
(t − τ)α

dτ +

∫ t∗

tk−1

||∆x(τ)||1||P||1||[∆x(τ)]′||1[
1

(t∗ − τ)α
−

1
(t − τ)α

] dτ}

≤
2

Γ(1 − α)
c∆c||P||1{

∫ t

t∗

(τ − tk−1)2α−1

(t − τ)α
dτ +

∫ t∗

tk−1

(τ − tk−1)2α−1[
1

(t∗ − τ)α
−

1
(t − τ)α

] dτ}

≤ ĉ21

{
2( δ1

2 )α + ĉ22( δ1
2 )α if α∈ (0, 0.5)

2(hk − tk−1)2α−1( δ1
2 )1−α + ĉ22( δ1

2 )α if α∈ [0.5, 1)
,
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where ĉ21 = 2c∆c||P||1/Γ(2 − α) and ĉ22 = 2Γ(2 − α)Γ(2α)/Γ(α + 1).

As we see, for any ε > 0, there exists δ1 such that ĉ1δ
α
1 < ε and the right hand side of the inequality above is also

less than ε. Let δ = δ1/2, then for any t∗ ∈ [tk−1, hk], |t−t∗| ≤ δ implies | Ctk−1
Dα

t [∆xT (t)P∆x(t)]−C
tk−1

Dα
t∗[∆xT (t)P∆x(t)]| <

ε. Thus, C
tk−1

Dα
t [∆xT (t)P∆x(t)] ∈ C[tk−1, hk], then C

tk−1
Dα

t [xT (t)Px(t)] ∈ C[tk−1, hk], due to C
tk−1

Dα
t x(t) ∈ C[tk−1, hk].

For t = tk−1, (4.4) holds, due to C
tk−1

Dα
tk−1

[∆xT (t)P∆x(t)] = 0.

For t ∈ (tk−1, hk], we can also prove (4.4). According to Caputo’s definition, we have

xT (t)PC
tk−1

Dα
t x(t)−

1
2

C
tk−1

Dα
t [xT (t)Px(t)]=

1
Γ(1 − α)

∫ t

tk−1

[xT (t) − xT (τ)]Pẋ(τ)
(t − τ)α

dτ. (4.5)

Let y(τ) = x(t) − x(τ), then ẏ(τ) = −ẋ(τ). (4.5) can be rewritten as

xT (t)PC
tk−1

Dα
t x(t) −

1
2

C
tk−1

Dα
t [xT (t)Px(t)] = −

1
Γ(1 − α)

∫ t

tk−1

yT (τ)Pẏ(τ)
(t − τ)α

dτ. (4.6)

For any tk−1 < t1 < t2 < t, yT (τ)Py(τ)/2 and 1/(t − τ)α are continuously differentiable with respect to τ on [t1, t2].
Integrating by parts yields,∫ t2

t1

yT (τ)Pẏ(τ)
(t − τ)α

dτ =
yT (τ)Py(τ)
2(t − τ)α

∣∣∣
τ=t2
−
yT (τ)Py(τ)
2(t − τ)α

∣∣∣
τ=t1
−

∫ t2

t1

αyT (τ)Py(τ)
2(t − τ)α+1 dτ.

We take the limit for t1 → tk−1 and t2 → t, then∫ t

tk−1

yT (τ)Pẏ(τ)
(t − τ)α

dτ = lim
τ→t

yT (τ)Py(τ)
2(t − τ)α

− lim
τ→tk−1

yT (τ)Py(τ)
2(t − τ)α

−

∫ t

tk−1

αyT (τ)Py(τ)
2(t − τ)α+1 dτ (4.7)

holds, if any three of these four terms exist. It follows from (4.6) and the existence of both C
tk−1

Dα
t x(t) and C

tk−1
Dα

t [xT (t)P
x(t)] that the left side integral above exists. In the following, we shall check the existence of those two limits on the
right side.

lim
τ→tk−1

yT (τ)Py(τ)
2(t − τ)α

=
yT (tk−1)Py(tk−1)

2(t − tk−1)α
=

[x(t) − x(tk−1)]T P[x(t) − x(tk−1)]
2(t − tk−1)α

≥ 0.

Since y(τ)→ 0, (t − τ)α → 0 as τ→ t, and ẏ(τ) = −ẋ(τ) exists due to x(τ) ∈ C1(tk−1, hk], by the L’Hospital rule,

lim
τ→t

yT (τ)Py(τ)
2(t − τ)α

= lim
τ→t

yT (τ)Pẏ(τ)
−α(t − τ)α−1 = 0.

Thus, limτ→t y
T (τ)Py(τ)/[2(t − τ)α] = 0 and limτ→tk−1 y

T (τ)Py(τ)/[2(t − τ)α] ≥ 0, for t ∈ (tk−1, hk]. Therefore, (4.7)
holds such that

∫ t
tk−1
αyT (τ)Py(τ)/[2(t − τ)α+1] dτ is well defined and nonnegative. It then follows from (4.6) and (4.7)

that C
tk−1

Dα
t [xT (t)Px(t)]≤ xT (t)P C

tk−1
Dα

t x(t) +C
tk−1

Dα
t xT (t)Px(t), for all t ∈ (tk−1, hk]. �
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4.2.2 Lyapunov Stability Criteria

Based on (4.4), we are then ready to prove our Lyapunov stability criteria for hybrid system (4.1).

Theorem 4.2.1. Let x = 0 be an equilibrium point for the Caputo fractional order switching nonautonomous system
(4.1). Assume:

i. for any i ∈P , fi is continuously differentiable with respect to t and x on [0,∞) × Rn;

ii. for any i ∈P and any h∗ > 0, there exists a monotonically increasing function ψih∗ : [0,∞)→ [0,∞), such that
for any (t, x), (t, y) ∈ [0, h∗] × Rn and all possible nonnegative integers u0, u1, ..., un with u0 + u1 + ... + un = 1,

||
∂

∂tu0∂x1u1 ...∂xn
un

fi(t, x) −
∂

∂tu0∂y1u1 ...∂yn
un

fi(t, y)||1 ≤ ψih∗(max{||x||1, ||y||1}) ||x − y||1.

Then the equilibrium point of system (4.1) is stable if for any i ∈ P , there exist n × n positive definite matrices P, Q
such that for any (t, x) ∈ [0,∞) × Rn,

xT P fi(t, x) + f T
i (t, x)Px ≤ 0, (4.8)

and is asymptotically stable if
xT P fi(t, x) + f T

i (t, x)Px ≤ −xT Qx. (4.9)

Proof. Suppose t ∈ [tk−1, tk) and σ(t) = i. It follows from the continuation result Theorem 3.2.3, i implies that the
solution of (4.1) x(t) exists and is continuous on either [tk−1, tk] or [tk−1, βk), where βk ≤ tk such that limt→β−k

x(t) = ∞.
Moreover, i suffices that fi is continuously differentiable with respect to t and x on [tk−1, tk] × Rn. From ii, for any
(t, x), (t, y) ∈ [tk−1, tk] × Rn and all possible nonnegative integers u0, u1, ..., un with u0 + u1 + ... + un = 1,

||
∂

∂tu0∂x1u1 ...∂xn
un

fi(t, x) −
∂

∂tu0∂y1u1 ...∂yn
un

fi(t, y)||1 ≤ ψitk (max{||x||1, ||y||1}) ||x − y||1.

Thus, according to Corollary 3.3.3 and Remark 3.3.4, the solution of (4.1) is unique on [tk−1, βk) and x(t)|t∈[tk−1,βk) ∈

C1,1−α(tk−1, βk), provided the latter case. Moreover, C
tk−1

Dα
t x(t) ∈ C[tk−1, βk) due to fi ∈ C1[tk−1, tk] × Rn. Consider the

Lyapunov function candidate V(x) = xT Px, then according to Lemma 4.2.1, C
tk−1

Dα
t V[x(t)] ∈ C[tk−1, βk) and

C
tk−1

Dα
t V[x(t)] ≤ xT (t)P fi(t, x(t)) + f T

i (t, x(t))Px(t),

for t ∈ [tk−1, βk).

If (4.8) holds, then C
tk−1

Dα
t V[x(t)] ≤ 0. Thus, there exists a nonnegative function rsi(t) ∈ C[tk−1, βk) such that

C
tk−1

Dα
t V[x(t)] = −rsi(t). According to Theorem 2.1.4,

V[x(t)] = V[x(tk−1)] −
∫ t

tk−1

(t − τ)α−1rsi(τ)dτ, (4.10)
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where the convolution exists and is nonnegative. Thus, V[x(t)] ≤ V[x(tk−1)], for t ∈ [tk−1, βk). This contradicts
limt→β−k

x(t) = ∞. Thus, the unique solution exists on [tk−1, tk] and x(t)|t∈[tk−1,tk] ∈ C1,1−α(tk−1, tk]. Following the similar
derivation, we can conclude that (4.10) with rsi(t) ∈ C[tk−1, tk] holds for all t ∈ [tk−1, tk]. Thus, V[x(t)] ≤ V(x0), for
all t ≥ t0. Therefore, the zero equilibrium point is stable.

If (4.9) holds, then for t ∈ [tk−1, βk),
C
tk−1

Dα
t V[x(t)] ≤ −µV[x(t)], (4.11)

where µ =
λmin(Q)
λmax(P) . Here λmin(Q), λmax(P) denote the minimum, maximum eigenvalues of Q, P, respectively. Clearly,

C
tk−1

Dα
t V[x(t)] ≤ 0. Thus, as shown above, the equilibrium point is stable. Moreover, (4.11) holds for all t ∈ [tk−1, tk].

According to Theorem 2.1.4, for t ∈ [tk−1, tk],

V[x(t)] = V[x(tk−1)]Eα[−µ(t − tk−1)α] −
∫ t

tk−1

(t − τ)α−1Eα,α[−µ(t − τ)α]rai(τ)dτ,

where rai(t) ∈ C[tk−1, tk] is the nonnegative function such that C
tk−1

Dα
t V[x(t)] = −µV[x(t)] − rai(t), and the convolution

exists. Since Eα,α(−µtα) is nonnegative (decreasing and between 0 and 1), see [20], then

V[x(t)] ≤ V[x(tk−1)]Eα[−µ(t − tk−1)α].

Due to 0 < Tmin ≤ tk − tk−1 ≤ Tmax,

V[x(tk)]≤ V[x(tk−1)]Eα[−µ(tk − tk−1)α]≤V[x(tk−1)]Eα(−µTα
min),

which implies that V[x(t)] ≤ V(x0)[Eα(−µTα
min)]k−1, for t ∈ [tk−1, tk). Due to 0 < Eα(−µTα

min) < 1, limt→∞ V[x(t)] = 0.
Therefore, the equilibrium point of (4.1) is asymptotically stable. �

As we see, the key of the proof above is that the solutions of (4.1) have required smoothness property so that
Lemma 4.2.1 is applicable here. Thus, applying our results on the smoothness of solutions, we can have a useful
corollary of the theorem above, see below.

Corollary 4.2.1. Let x = 0 be an equilibrium point for the Caputo fractional order switching nonautonomous system
(4.1). Assume fi ∈ C2([0,∞) × Rn), for any i ∈ P . Then the equilibrium point of system (4.1) is stable if for any
i ∈P , there exist n × n positive definite matrices P, Q such that for any (t, x) ∈ [0,∞) × Rn,

xT P fi(t, x) + f T
i (t, x)Px ≤ 0,

and is asymptotically stable if
xT P fi(t, x) + f T

i (t, x)Px ≤ −xT Qx.

Proof. It follows from Theorem 3.2.3, fi ∈ C2([0,∞)×Rn) for any i ∈P implies that the solution of (4.1) x(t) exists
and is continuous on either [tk−1, tk] or [tk−1, βk), where βk ≤ tk such that limt→β−k

x(t) = ∞. According to Corollary
3.3.6, this assumption also suffices that the solution is unique on [tk−1, βk) and x(t)|t∈[tk−1,βk) ∈ C1,1−α(tk−1, βk), provided
the latter case. The rest of proof straightforwardly follows the proof of Theorem 4.2.1. �
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4.3 External Stability

As for nonlinear control systems in Section 3.5, the Lyapunov-like function will be also used to investigate the external
stability for Caputo fractional order hybrid control systems here. As we can see, the definition of external stability,
Definition 3.5.1, is independent of types of control systems. We shall not introduce it here again.

4.3.1 Lyapunov-Like Function

The properties of the Lyapunov-like function based on the diffusive realization of hybrid control system (4.2) are
shown in the following lemma. We shall see, in the conclusion ii, the Lyapunov-like function involves the system
state at each tk−1, for k ≥ 2.

Lemma 4.3.1. Assume:

i. u : [0,∞)→ Ωu, is continuous;

ii. for any i ∈ P , f̄i is continuous on [0,∞) × Rn × Ωu, and for any h∗ > 0, there exists a constant Lh∗ > 0, such
that for any (t, x, u), (t, y, u) ∈ {(t, x, u) : t ∈ [0, h∗], x ∈ Rn, u ∈ Ωu},

|| f̄i(t, x, u) − f̄i(t, y, u)||1 ≤ Lh∗i||x − y||1.

Then

i. for each k, the solution of switching control system (4.2) x(t) exists and is unique on [tk−1, tk). Moreover,
x(t)|t∈[tk−1,tk) ∈ C[tk−1, tk), and

x(t) = x(tk−1) +

∫ ∞

0
µα(ω)φk−1(ω, t)dω,

where φk−1(ω, t) is the solution of the initial value problem: ∂φk−1(ω, t)/∂t = −ωφk−1(ω, t)+ f̄σ(tk−1)(t, x(t), u(t)),
φk−1(ω, tk−1) = 0; µα(ω) = [sin(πα)/π]ω−α and ω ∈ (0,∞).

ii. for any T ∈ [tk−1, tk), Vk−1(T ) exists, Vk−1(T ) ≥ 0 and

Vk−1(T ) =

∫ T

tk−1

[x(t) − x(tk−1)]T P f̄σ(tk−1)(t, x(t), u(t)) + f̄ T
σ(tk−1)(t, x(t), u(t))P[x(t) − x(tk−1)]dt

− 2
∫ ∞

0

∫ T

0
µα(ω)ωφT

k−1(ω, t)Pφk−1(ω, t)dtdω,

where Vk−1(t) :=
∫ ∞

0 µα(ω)φT
k−1(ω, t)Pφk−1(ω, t)dω, in which φk−1(ω, t) is the solution of the initial value prob-

lem in i above and P is any positive definite matrix.
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Proof. i. Suppose t ∈ [tk−1, tk) and σ(t) = i. It follows from i and ii that f̄i is continuous in t and Lipschitz in x on
[tk−1, tk] × Rn. According to Theorem 3.1.1 and Remark 3.1.1, the solution of (4.2) uniquely exists on [tk−1, tk) and
x(t)|t∈[tk−1,tk) ∈ C[tk−1, tk). According to Lemma 3.1.1, the solution x(t) must be of the following form

x(t) = x(tk−1) +
1

Γ(α)

∫ t

tk−1

f̄i(τ, x(τ), u(τ))
(t − τ)1−α dτ,

for t ∈ [tk−1, tk). Let Pα(t) = tα−1/Γ(α), t > 0, then rewrite it as

Pα(t) =
1

Γ(α)
1

Γ(1 − α)
Γ(1 − α)

s1−α |s=t =
1

Γ(α)
L [P1−α(ω)]|Re(s)>0,s=t =

1
Γ(α)

∫ ∞

0
e−tω ω−α

Γ(1 − α)
dω

=

∫ ∞

0

1
Γ(α)Γ(1 − α)

ω−αe−ωtdω =

∫ ∞

0

sin(απ)
π

ω−αe−ωtdω =

∫ ∞

0
µα(ω)e−ωtdω.

It follows that

x(t) = x(tk−1) +

∫ t

tk−1

f̄i(τ, x(τ), u(τ))Pα(t − τ)dτ

= x(tk−1) +

∫ t

tk−1

f̄i(τ, x(τ), u(τ))
∫ ∞

0
µα(ω)e−ω(t−τ)dωdτ

= x(tk−1) +

∫ t

tk−1

∫ ∞

0
e−ω(t−τ)µα(ω) f̄i(τ, x(τ), u(τ))dωdτ.

For any [ω1, ω2] ⊂ (0,∞), e−ω(t−τ)µα(ω) f̄i(τ, x(τ), u(τ)) is continuous on [ω1, ω2] × [tk−1, t]. Thus,∫ t

tk−1

∫ ω2

ω1

e−ω(t−τ)µα(ω) f̄i(τ, x(τ), u(τ))dωdτ =

∫ ω2

ω1

∫ t

tk−1

e−ω(t−τ)µα(ω) f̄i(τ, x(τ), u(τ))dτdω.

Let ω1 → 0 and ω2 → ∞, then the existence of x(t) on [tk−1, t] suffices that the limit equation above holds. Thus,

x(t) = x(tk−1) +

∫ ∞

0

∫ t

tk−1

e−ω(t−τ)µα(ω) f̄i(τ, x(τ), u(τ))dτdω

= x(tk−1) +

∫ ∞

0
µα(ω)

∫ t

tk−1

e−ω(t−τ) f̄i(τ, x(τ), u(τ))dτdω.

The solution of the initial value problem is

φk−1(ω, t) =

∫ t

tk−1

e−ω(t−τ) f̄i(τ, x(τ), u(τ))dτ.

Therefore, x(t) = x(tk−1) +
∫ ∞

0 µα(ω)φk−1(ω, t)dω, for any t ∈ [tk−1, tk).
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ii. Since both x(t) and f̄σ(tk−1)(t, x(t), u(t)) are continuous on [tk−1, tk), then
∫ T

tk−1
xT (t)P f̄σ(tk−1)(t, x(t), u(t))dt exists,

for any T ∈ [tk−1, tk). Moreover,∫ T

tk−1

xT (t)P f̄σ(tk−1)(t, x(t), u(t))dt =

∫ T

tk−1

xT (tk−1)P f̄i(t, x(t), u(t))dt +

∫ T

tk−1

∫ ∞

0
µα(ω)φT

k−1(ω, t)P f̄i(t, x(t), u(t))dωdt.

Clearly, the double integral exists. Since µα(ω)φT
k−1(ω, t)P f̄i(t, x(t), u(t)) is continuous on [ω1, ω2] × [tk−1,T ] for any

[ω1, ω2] ⊂ (0,∞), then∫ T

tk−1

∫ ω2

ω1

µα(ω)φT
k−1(ω, t)P f̄i(t, x(t), u(t))dωdt =

∫ ω2

ω1

∫ T

tk−1

µα(ω)φT
k−1(ω, t)P f̄i(t, x(t), u(t))dtdω.

Let ω1 → 0 and ω2 → ∞, then the limit equation∫ T

tk−1

∫ ∞

0
µα(ω)φT

k−1(ω, t)P f̄i(t, x(t), u(t))dωdt =

∫ ∞

0

∫ T

tk−1

µα(ω)φT
k−1(ω, t)P f̄i(t, x(t), u(t))dtdω,

holds, since the left side limit exists. Because the function f̄i(t, x(t), u(t)) in the integral above is independent of ω, it
can be replaced by ∂φk−1(ω, t)/∂t + ωφk−1(ω, t), where ω is the same as that of µα(ω) in the integral, see below.∫ ∞

0

∫ T

tk−1

µα(ω)φT
k−1(ω, t)P f̄i(t, x(t), u(t))dtdω =

∫ ∞

0

∫ T

tk−1

µα(ω)φT
k−1(ω, t)P[

∂φk−1(ω, t)
∂t

+ ωφk−1(ω, t)]dtdω

=

∫ ∞

0

∫ T

tk−1

µα(ω)φT
k−1(ω, t)P

∂φk−1(ω, t)
∂t

dtdω +

∫ ∞

0

∫ T

tk−1

µα(ω)φT
k−1(ω, t)Pωφk−1(ω, t)dtdω

=

∫ ∞

0
µα(ω)

∫ T

tk−1

φT
k−1(ω, t)P

∂φk−1(ω, t)
∂t

dtdω +

∫ ∞

0

∫ T

tk−1

µα(ω)ωφT
k−1(ω, t)Pφk−1(ω, t)dtdω

=
1
2

∫ ∞

0
µα(ω)φT

k−1(ω,T )Pφk−1(ω,T )dω +

∫ ∞

0

∫ T

tk−1

µα(ω)ωφT
k−1(ω, t)Pφk−1(ω, t)dtdω.

As we observe, the equation in the conclusion holds, if the two terms on the right side of the equation above both
exist. Another important observation is∫ T

tk−1

µα(ω)φT
k−1(ω, t)P f̄i(t,x(t),u(t))dt =

1
2
µα(ω)φT

k−1(ω,T )Pφk−1(ω,T ) +

∫ T

tk−1

µα(ω)ωφT
k−1(ω, t)Pφk−1(ω, t)dt.

These three terms above, exist and are nonnegative for any ω ∈ (0,∞), and are integrable on any [ω1, ω2] ⊂ (0,∞).
Thus, for any ω ∈ (0,∞),

|
1
2
µα(ω)φT

k−1(ω,T )Pφk−1(ω,T )| ≤
∫ T

tk−1

µα(ω)φT
k−1(ω,t)Pf̄i(t,x(t),u(t))dt.

Since the improper integral of the right-side function of ω above from 0 to∞ exists, the left-side function is absolutely
integrable over (0,∞). Thus, for any T∈ [tk−1, tk), Vk−1(T ) exists and Vk−1(T ) ≥ 0. Then

∫ ∞
0

∫ T
tk−1

µα(ω)ωφT
k−1(ω, t)

Pφk−1(ω, t)dtdω exists and is nonnegative as well. This completes the proof. �
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4.3.2 External Stability Criterion

In order to prove the external stability, the state x(tk−1) involved in the Lyapunov-like function Vk−1(T ) must be
removed. Otherwise, we cannot derive the inequality (4.14). This is why we need to reset the state of (4.2) at each tk.
After reset, (4.2) becomes the reset switching control system (4.3), for which the external stability criterion is stated
as follows.

Theorem 4.3.1. Assume:

i. u : [0,∞)→ Ωu, is continuous;

ii. for any i ∈ P , f̄i(t, x, u) = Ãix + f̃i(t, x, u), where f̃i : [0,∞) × Rn × Ωu → R
n, is continuous in t and Lipschitz

in x, u with Lipschitz constants L f̃ xi, L f̃ ui respectively, and f̃i(t, 0, 0) ≡ 0;

iii. for any i ∈ P , hi(t, x, u) is continuous in t and Lipschitz in x, u on [0,∞) × Rn × Ωu with Lipschitz constants
Lhxi, Lhui respectively, and hi(t, 0, 0) ≡ 0.

Then the reset switching control system (4.3) is externally stable, i.e. ||y||L2 ≤ γ||u||L2 , for u ∈ L2[t0,∞) under the zero
initial condition, if for each i ∈P , there exist constants ε f̃ i > 0, εhi > 1 and a common n × n positive definite matrix
P such that

2ε f̃ iL
2
f̃ ui + 2εhiL2

hui − γ
2 < 0, (4.12)

and ÃT
i P + PÃi + 2ε f̃i L

2
f̃ xi

+ 2εhiL2
hxi P

∗ −ε f̃ i

 < 0. (4.13)

Proof. Suppose t ∈ [tk−1, tk) and σ(t) = i. According to Lemma 4.3.1, for any T ∈ [tk−1, tk), Vk−1 ≥ 0 and

Vk−1(T ) =

∫ T

tk−1

[x(t) − x(tk−1)]T P f̄σ(tk−1)(t, x(t), u(t)) + f̄ T
σ(tk−1)(t, x(t), u(t))P[x(t) − x(tk−1)]dt

− 2
∫ ∞

0

∫ T

0
µα(ω)ωφT

k−1(ω, t)Pφk−1(ω, t)dtdω.

Due to x0 = 0, x(tk) = 0 for each k, and the nonnegativeness of the double integral above, then x(tk−1) = 0 and

Vk−1(T ) ≤
∫ T

tk−1

xT (t)P f̄i(t, x(t), u(t))+ f̄ T
i (t, x(t), u(t))Px(t)dt. (4.14)

Moreover, viewing the proof of Lemma 4.3.1, since x(t) ∈ C[tk−1, tk), and both x(t−k ) and Vk−1(t−k ) exist, the inequality
above also holds at T = t−k .
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It follows from the Lipschitz conditions in ii and iii, for any ε f̃ i, εhi > 0,

2ε f̃ iL
2
f̃ xix

T (t)x(t) + 2ε f̃ iL
2
f̃ uiu

T (t)u(t) − ε f̃ i f̃ T
i (t, x(t), u(t)) f̃i(t, x(t), u(t)) ≥ 0

and
2εhiL2

hxix
T (t)x(t) + 2εhiL2

huiu
T (t)u(t) − εhihT

i (t, x(t), u(t)) hi(t, x(t), u(t)) ≥ 0.

Thus, we have the following,∫ tk

tk−1

yT (t)y(t)dt − γ2
∫ tk

tk−1

uT (t)u(t)dt + Vk−1(t−k )

≤

∫ tk

tk−1

[hT
i (t, x(t), u(t))hi(t, x(t), u(t)) − γ2uT (t)u(t) + xT (t)P f̄i(t, x(t), u(t)) + f̄ T

i (t, x(t), u(t))Px(t)]dt

≤

∫ tk

tk−1

[hT
i (t, x(t), u(t))hi(t, x(t), u(t)) − γ2uT (t)u(t) + xT (t)PÃix(t) + xT (t)P f̃i(t, x(t), u(t)) + xT (t)ÃT

i Px(t)

+ f̃ T
i (t, x(t), u(t))Px(t) + 2ε f̃ iL

2
f̃ xix

T (t)x(t) + 2ε f̃ iL
2
f̃ uiu

T (t)u(t) − ε f̃ i f̃ T
i (t, x(t), u(t)) f̃i(t, x(t), u(t))

+ 2εhiL2
hxix

T (t)x(t) + 2εhiL2
huiu

T (t)u(t) − εhihT
i (t, x(t), u(t))hi(t, x(t), u(t))]dt

=

∫ tk

tk−1

ηT (t)


(1, 1) P 0 0
∗ −ε f̃ i 0 0
∗ ∗ 2ε f̃ iL

2
f̃ ui

+ 2εhiL2
hui − γ

2 0
∗ ∗ ∗ 1 − εhi

η(t)dt,

where (1, 1) = ÃT
i P + PÃi + 2ε f̃ iL

2
f̃ xi

+ 2εhiL2
hxi and η(t) = [xT (t), f̃ T

i (t, x(t), uT (t), hT
i (t)]T . From (4.12), (4.13) and

εhi > 1, we can conclude that the matrix above is negative definite. Thus,∫ tk

tk−1

yT (t)y(t)dt ≤ γ2
∫ tk

tk−1

uT (t)u(t)dt.

This implies ∫ tk

t0
yT (t)y(t)dt ≤ γ2

∫ tk

t0
uT (t)u(t)dt.

Due to the global existence of x(t) concluded from ii, we can take the following limit

lim
tk→∞

∫ tk

t0
yT (t)y(t)dt ≤ lim

tk→∞
γ2

∫ tk

t0
uT (t)u(t)dt.

Therefore, for any continuous (as assumed) u ∈ L2[t0,∞), y ∈ L2[t0,∞) and ||y||L2 ≤ γ||u||L2 , under the zero initial
condition. �
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4.4 Numerical Examples

We shall provide two numerical examples to illustrate the stability results for Caputo fractional order switching
systems. The numerical implementations are also base on the algorithm proposed in [28].

Example 4.4.1. Consider the Caputo fractional order switching nonautonomous system consisting of two following
subsystems

subsystem 1 :
{ C

tk−1
Dα

t x = −x − yt
C
tk−1

Dα
t y = −y + xt

; subsystem 2 :
{ C

tk−1
Dα

t x = −x − xy2t2

C
tk−1

Dα
t y = −y + x2yt2 ,

and the switching signal σ(t) with Tmax = 2 and Tmin = 0.5 shown in Figure 4.1.
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Figure 4.1: Switching signal σ(t) with Tmax = 2 and Tmin = 0.5.

The origin (0, 0) is an equilibrium point of the switching system. Let X = [x, y]T , then f1(t, X) = [−x−yt,−y+xt]T

and f2(t, X) = [−x − xy2t2,−y + x2yt2]T . Clearly, f1 ∈ C2([0,∞) × R2) and f2 ∈ C2([0,∞) × R2). Moreover, for
any (t, X) ∈ [0,∞) × Rn, XT f1(t, X) = −x2 − y2 = −XT X and XT f2(t, X) = −XT X. According to Corollary 4.2.1, the
equilibrium point is asymptotically stable.

The trajectory of the system with α = 0.5 and (x(0), y(0)) = (1,−1) shown in Figure 4.2 verifies the asymptotic
stability.
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Figure 4.2: States of the Caputo fractional order switching nonautonomous system.

Example 4.4.2. Consider the Caputo fractional order reset switching control system consisting of two Caputo frac-
tional order simplest dissipative circuits, see [31],

subsystem 1 :


C
tk−1

Dα
t x = y − g(a, b, x)

C
tk−1

Dα
t y = −β(y + x) + F1u(t)

x(tk) = y(tk) = 0
h1(t, x, y) = x + y

; subsystem 2 :


C
tk−1

Dα
t x = y − g(a, b, x)

C
tk−1

Dα
t y = −β(y + x) + F2u(t)

x(tk) = y(tk) = 0
h2(t, x, y) = x + y

,

where a, b, β, F1 and F2 are constants and g(a, b, x) = bx + 0.5(a − b)(|x + 1| − |x − 1|), and the switching signal σ(t)
with Tmax = 1.5 and Tmin = 0.5 shown in Figure 4.3.

Let X = [x, y]T , then f̄1(t, X, u) = Ã1X + f̃1(t, X, u) and f̄1(t, X, u) = Ã2X + f̃2(t, X, u), where Ã1 = Ã2 =

[
0 1
−β −β

]
,

f̃1(t, X, u) = [g(a, b, x), F1u]T , f̃2(t, X, u) = [g(a, b, x), F2u]T , h1(t, X, u) = [1, 1]X and h2(t, X, u) = [1, 1]X. It follows,
L f̃ X1 = L f̃ X2 = max{|a|, |b|}, L f̃ u1 = |F1|, L f̃ u2 = |F2|, Lhx1 = Lhx2 =

√
2 and Lhu1 = Lhu2 = 0. Moreover, f̃1(t, 0, 0) =

f̃2(t, 0, 0) = 0 and h1(t, 0, 0) = h2(t, 0, 0) = 0.

For simulation, we select the circuit parameters: α = 0.8, β = 5, a = −1.27, b = −0.68, F1 = 0.2 and F2 = 0.25;
prescribed constant: γ = 0.04; arbitrary constants: ε f̃ 1 = ε f̃ 2 = 0.01 and εh1 = εh2 = 1.01; input: u(t) = sin(2πt/3)×
[H(t) − H(t − 3)], where H is the Heaviside function. As required, u ∈ C[0,∞) ∩ L2[0,∞). Using the Matlab LMI
tool box, we find that there exists a positive definite matrix

P =

[
0.0246 0.0125
0.0125 0.0282

]
,
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Figure 4.3: Switching signal σ(t) with Tmax = 1.5 and Tmin = 0.5.

such that both (4.12) and (4.13) hold. According to Theorem 4.3.1, the reset switching control system here is exter-
nally stable.
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Figure 4.4: L2 gain of the Caputo fractional order switching nonautonomous system.

As shown in Figure 4.4, γ(t) = [
∫ t

0 y
2(t)dt]1/2/[

∫ t
0 u2(t)dt]1/2, under the zero initial condition, is really less than

the prescribed γ = 0.04. This validates the theoretical conclusion.
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Chapter 5

Conclusion and Future Research

The studies of three main aspects centering on the stability of Caputo fractional order systems have been presented in
this thesis. They are the frequency-domain designs, fundamental theory and stability analysis.

The frequency-domain designs based on the BIBO stability of Caputo fractional order linear control systems,
including the fractional-version pole placement, internal model principle and model matching, have been developed
in Chapter 2, where fractional order polynomials, and their root distribution, coprimeness, properness and ρ − κ

polynomials, as prerequisites of the designs, have been defined and explored. However, our designs are only for SISO
systems. We may intuitively think of to extend the present results to multiple-input-multiple-output (MIMO) systems.
Moreover, the linear system designs, in fact, are not limited in the frequency domain or in the classical control theory.
That is for why authors developed the modern control theory, by which system properties such as controllability
and observability are used for state-space designs (designs based on state-space equations). Thus, another potential
direction is to develop the fractional-version modern control theory. Recently, there have been some preliminary
results on the fractional-version controllability and observability, see [3].

As for the fundamental theory, we have generalized the existing results on existence and uniqueness of solutions
from Caputo fractional order scalar differential equations with zero initial time to Caputo fractional order systems
with arbitrary initial time, and have developed the continuation and smoothness of solutions to Caputo fractional
order nonlinear systems. The continuation enables us get rid of assumptions for global existence of solutions and
the smoothness suffices to yield simple estimations for Caputo fractional order derivatives of quadratic Lyapunov
functions, which have established the foundation of our research on stability, especially on Lyapunov stability. One
point here deserving attentions is that our global smoothness results are built on those assumptions holding for the
whole state space Rn. This might be reduced to only the domains of vector field functions in the future. If done, it
would complement the fractional-version fundamental theory in the part of smoothness.

It is also a significant research direction for Lyapunov stability analysis, since the reduction would further com-
plete the fractional-version Lyapunov direct method to some extent. Specifically, the Lyapunov stability results of this
thesis on Caputo fractional order nonlinear and hybrid systems could be generalized and localized. When coming to
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the Lyapunov direct method, we may consider to develop the estimations for the Caputo fractional order derivatives of
other positive definite Lyapunov function candidates more than the quadratic ones so that we could use various Lya-
punov function candidates for stability analysis. Besides, we may consider the Lyapunov stability of those systems
with fractional orders larger than one. Except for the Lyapunov stability, we have also studied the external stabili-
ty in the thesis, for which the equivalence between Caputo fractional order (nonlinear and hybrid) control systems
and their diffusive realizations has been proven and the Lyapunov-like functions based on the diffusive realizations
have been also well investigated. As first introduced in Subsection 3.5.1, the diffusive realizations have continuous
frequency from zero to infinity. A potential direction here is that the diffusive realizations might be discretized in
terms of frequency, which would create new ideas for the numerical approximation of Caputo fractional order control
systems. Finally, it would be also meaningful to develop similar realizations and Lyapunov-like functions for those
control systems with larger-than-one fractional orders, then their external stability problems would be solvable.
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