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ABSTRACT 

This thesis outlines a framework to model to aid the development and utilization of 

transformation induced plasticity (TRIP) assisted multiphase steels in the automotive industry for 

light weighting applications. Automakers rely on accurate characterization and prediction of sheet 

metal formability to implement these materials into the structure successfully.  They rely on 

accurate numerical models for predicting and evaluating sheet formability compared to the costly 

experimental method. However, predictive modeling of TRIP steel in formability is difficult due 

to the combination of dislocation and transformation mechanisms occurring during deformation 

for various strain paths. This research is aimed to provide a tool to quickly and accurately capture 

the micro and macro mechanical response of TRIP assisted steels, as well as calculating the 

forming limit diagram used in evaluating formability. 

This thesis presents a rate-dependent Taylor type elasto-viscoplastic crystal plasticity 

model with a micro-mechanics based transformation criteria to simulate the mechanical response 

of TRIP steel. A new stress-based transformation criterion, based on the micromechanics of habit-

plane interaction, was developed to initiate transformation.  This model inherently captures the 

triaxiality effect of martensite through the accumulated shear strain on slip systems. Simulations 

are calibrated and compared to experimental measurements of Duplex Stainless Steel (DSS). 

Simulations of single crystal and polycrystalline aggregates show that although high Schmid factor 

habit planes were favourable for transformation, competition exists between the lower Schmid 

factor dislocation planes that generate higher elastic stress needed for transformation. The 

calibrated model is then used to predict the forming limit diagram using the Marciniak-Kuczynski 

approach.  The mechanism of transforming from low strength austenite to high strength martensite 

showed enhanced formability by at least 20% compared to without transformation. This is 

achieved by the TRIP mechanism suppressing localization at critical moments during deformation.  

However, the single variant martensite selection scheme had a negligible influence on formability 

predictions. Through a parametric study of the transformation criteria, formability can be enhanced 

on the biaxial regime by up to 13% over the baseline DSS material.  Conversely, poor control of 

the transformation parameters could lead to a reduction of 50% in formability.  The results 

highlight the importance of a physics based simulation to utilize TRIP assisted steels fully. 
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1  INTRODUCTION 

Government mandated carbon footprint and fuel economy targets for highway vehicles in 

the form of Combined Average Fuel Economy (CAFE) standards have been encouraging vehicle 

mass reduction developments. Enacted by the United States Congress in 1975, CAFE’s purpose 

was to reduce energy consumption by increasing the fuel economy of cars and light trucks in North 

America [1]. There are several ways to improve fuel economy:  

1) Improvement of aerodynamics by reducing drag. 

2) Improve drivetrain efficiency such that more energy is converted to forward motion. 

3) Reduce the weight of the vehicle.  

Studies have shown that only 12-15% of the energy in fuels overcome the forces that resist forward 

motion, of these, vehicle weight most significantly affects inertial and rolling resistance forces [2]. 

A 10% reduction in vehicle weight yields 5-6% improvement in fuel economy [2]. After CAFE’s 

implementation, the adjusted fuel economy of vehicles immediately increased by 70% (seen in 

Figure 1) through drastic vehicle weight reduction programs. However, manufacturers are ever 

challenged to balance demand for increasing fuel economy expectations with more progressive 

standards in government standards in vehicle safety, such as the National Highway Traffic Safety 

Administration (NHTSA) and European New Car Assessment Program (Euro NCAP) [3], and 

vehicle performance. 

 
Figure 1: Vehicle Mass, Horsepower and Fuel Economy from 1975-2016 [4] 
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Automakers have been accomplishing the goal of vehicle lightweighting by reducing the 

body in white mass [5] through the intelligent use of new and advanced light weight alloys [6] [7] 

[8] [9] [10], composites [11] [12] and high strength steels [13] [14] [15]. Advanced High Strength 

Steel (AHSS) has been used to achieve weight savings by replacing conventional steel components 

that are strength limited, such as the roof structure, B-pillars, bumpers, with thinner gauges of 

steels with higher strength.  Furthermore, additional weight savings with AHSS has been achieved 

by further stretching the material to yield a higher thickness reduction throughout a component 

during manufacturing. Since the early 1980s, the automotive industry has accelerated the 

development of AHSS to exploit their benefits and capabilities fully. AHSS includes dual phase 

(DP) steel [16] [17] [18] [19] [20], transformation induced plasticity steel [21] [22] [23] [24] [25] 

[26] [27] [28], complex phase steels [29] [30], hot stamping steels [31] [32] [33] [34] [35],  

twinning induced plasticity (TWIP) steels [36] [37] [38] [39] and Quench and Partitioning (Q&P) 

steels [40] [41] [42]. “TRansformation Induced Plasticity (TRIP)” steels were developed to take 

advantage of the transformation of austenite to martensite induced by deformation. Steels 

exhibiting the TRIP deformation mechanism offer increased strength and increased elongation 

[43]. Due to these characteristics of TRIP steels, it is an excellent candidate to reduce the weight 

of formability limited components on a vehicle. To utilize these materials, the development of 

accurate simulation tools is critical to its successful deployment in the automotive industry. The 

focal area of this research contributes to the development of a predictive simulation tool that can 

capture the TRIP mechanism for multiphase AHSS under deformation. 

 Two classifications of modeling techniques have been developed to simulate the 

mechanical response of steels: phenomenological based macro-scale plasticity and micro-scale 

polycrystalline plasticity. A macro-scale plasticity model approximates the physical behavior of 

the material via mathematical equations of various functionalities that depend on the application. 

The micro-scale polycrystalline plasticity model, also known as crystal plasticity, is a physics-

based model, which computes the crystallographic slip resulting from dislocation glide on 

individual crystal lattices with the highest atomic density [44]. The cumulative sum of all the 

different crystal orientations comprises the texture of the overall material. Initial texture bias 

naturally gives rise to anisotropy due to the readily available slip systems in specific directions. 

Upon initiation of dislocation glide, the crystal lattice will shear and accumulate. During the 

deformation process, the orientation of the crystals will change due to rotation, leading to an 
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evolution of the microstructure and anisotropy. In a material like steel, the main deformation 

mechanism is dislocation glide at room temperature, which is a fairly well understood mechanism. 

However, the TRIP mechanism observed in AHSS is complex and still requires substantial 

attention to capture the macro and micro-mechanical behavior in simulations of large deformation, 

let alone predict the formability of these materials. 

The objective of the present work is the development of micro-scale predictive simulation 

tool to capture the TRIP mechanism from austenite to martensite in multiphase AHSS to enable 

its use vehicle light weighting strategies. The proposed transformation framework will take 

advantage of the micro-scale physics and trigger transformation based on an evolving 

transformation criteria that can be related to several physical phenomena observed in experiments. 

The successful implementation of the proposed model will then be used to simulate the mechanical 

response of a duplex stainless TRIP steel (65% ferrite, 35% austenite).  Once calibrated, the 

Marciniak and Kuczynski (MK) [45] framework will be used to calculate forming limit diagrams 

(FLDs) to evaluate formability of this TRIP-assisted steel. The transformation criteria will be 

varied, and its effect on the FLD will be studied in detail to provide insight into the formability 

characteristics of AHSS that exhibit the TRIP effect. 

This thesis is structured as follows: In Chapter 2, the background of AHSS and the physics 

of the TRIP effect is presented. A review on crystal plasticity micromechanical modeling and the 

various transformation criteria currently existing in literature is presented.  Sheet metal forming 

techniques for TRIP assisted steels are also presented in this chapter. Chapter 3 identifies the scope 

and objective of the research. Chapter 4 details the constitutive model of the elasto-viscoplastic 

Taylor type crystal plasticity model, the selected transformation criteria, and the numerical 

implementation of the proposed framework. Chapter 5 presents the Marciniak and Kuczynski 

(MK) [45] framework for calculating forming limit diagrams. Chapter 6 presents the calibration 

process of the mechanical properties and experimental measurements for the TRIP-assisted steel 

used in this study.  In Chapter 7, simulations of single crystal textures, which highlight the 

transformation mechanism, are presented.  Simulations of the polycrystalline response for different 

strain paths is also presented.  Finally, simulations and parametric studies of formability are 

presented. Chapter 8 presents a summary of the key conclusions and a list of future works to 

improve upon this framework.  
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2 BACKGROUND AND LITERATURE REVIEW 

2.1 Advanced High Strength Steel 

The need for automakers to satisfy customer demands and government mandates for fuel 

efficient vehicles has accelerated research and development into lightweight vehicles structures. 

The steel industry and automakers are attempting to replace low alloy carbon steel with thinner 

gauge high strength steel to reduce the mass throughout the vehicle in a manner that satisfies a 

wide range of safety and performance targets [46]. Advanced High Strength Steels (AHSS) is a 

new and ever evolving classification of high strength steel that has been developed to satisfy the 

needs of the auto industry. There exist different generations of AHSS for use in the auto industry, 

which are classified by their alloying elements and manufacturing process technologies. In each 

of these generations, there are trade-offs between the tensile strength and elongation strain to 

failure. Figure 2 presents a graphical representation of the various grades of AHSS that highlights 

this trade-off between tensile strength and elongation.   

 

Figure 2: Steel Strength vs Elongation Chart [47] 

First generation AHSS employs a variety of alloying elements and processing technologies to 

achieve microstructure control of different phases, such as austenite, bainite, ferrite, and 

martensite, where each phase has a trade-off concerning strength, ductility and mechanical 

properties. By tailoring the microstructure, a wide variety of first generation AHSS can be 

achieved (i.e. dual phase (DP) steel [48], complex phase (CP) steel [49], martensitic steels and 
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transformation induced plasticity (TRIP) steels [50]). Second generation AHSS use high volume 

fractions of manganese to supress stacking fault energy during alloying, yielding a heavy austenite 

microstructure. Instead of the classical dislocation slip mechanism, the low stacking fault energy 

results in crystals undergoing a large and abrupt rotation, known as twinning. Steels exhibiting this 

behavior are known as twinning induced plasticity (TWIP) steel, these materials demonstrate 

incredible strain hardening and uniform elongation strain to failure due to the twining deformation 

mechanism [51]. However, the incorporation of the manganese alloying element is often too 

expensive for the implementation of a mass-produced commercial vehicle. The recently developed 

third generation AHSS uses a quench and partition (Q&P) technique to finely distribute and temper 

martensite upon an austenite matrix, thus achieving a combination of high strength and ductility. 

Currently, further developments are enhancing the capabilities of third generation AHSS steel; 

however, their full potential has yet to be realized. As such, research in the advancement of steel 

requires the development at several stages including the initial alloy chemical composition and the 

processing techniques to achieve the desired microstructural configuration. 

2.1.1 Alloying Elements 

The mechanical properties of steel can vary dramatically based on the chemical composition 

of the alloying elements. These alloying elements affect the formations of carbides through the 

microstructure that alters the motion of dislocations throughout the grains of a material. Although 

a significant amount of literature has been dedicated to studying the effects of various steel 

compositions [52] [53], this current study is limited to the discussion of alloying elements about 

austenite (𝛾) and ferrite (𝛼) stabilizers. By adding stabilizing elements to the chemistry, the 

equilibrium phase diagram for the final phase composition of austenite and ferrite can be modified 

accordingly: 

• 𝛾 −stabilizer, expanding the 𝛾 −field, and encouraging the formation of austenite over 

wider composition limits. 

• 𝛼 −stabilizer, contracting the 𝛾 −field, and encouraging the formation of ferrite over wider 

composition limits.  
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The effects of the stabilizers on the equilibrium diagram depend on some degree of the 

electronic structure of the alloying element, which is reflected in their relative positions in the 

periodic classification. Figure 3 presents the classification of stabilizers and their effects on the 

phase diagram. These stabilizers are classified into the following four categories: 

Figure 3: Effects of alloying (a) Open 𝛄 - field; (b) expanded 𝛄 - field; (c) closed 𝛄 - field; (d) contracted 𝛄 - field [54] 

Type 1: Open 𝛾 −field (Ni, Mn, Co, inert metals such as Pt): These alloying elements 

widens the temperature range for stable austenite by depressing the 𝛼 − 𝛾 transformation and 

raising the 𝛾 − 𝛼 transformation. Both Ni and Mn, if added in sufficient concentration, eliminate 

the body center cubic 𝛼 −iron phase and replace it, down to RT, with the 𝛾 −phase. 

Type 2: Expanded 𝛾 −field (C, N, Cu, Zn, Au): Carbon and nitrogen are the most important 

elements in this group. The 𝛾 −phase field is expanded, but its range of existence is cut short. The 

expansion of the 𝛾 −phase by carbon, and nitrogen, underlies the heat treatment of steels, by 

allowing formation of solid solution (of austenite). 

Type 3: Closed 𝛾 −field (Si, Al, Be, P, Ti, V, Mo, Cr): Many elements restrict the formation 

of 𝛾 −iron causing the 𝛾 −area of the diagram to contract. This encourages the formation of ferrite. 

One result is that the 𝛿 − and 𝛼 − phase fields become continuous, such that they not amenable to 

the normal heat treatments involving cooling through the 𝛾/𝛼 phase transformation. 

Type 4: Contracted 𝛾 −field (B, Ta, Zr, Nb): The 𝛾 −loop is strongly contracted, but is 

accompanied by compound formation.  
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2.1.2 Equilibrium Phase Transformation 

Over the years, steel manufacturers have generated an enormous database for processing 

conditions of steel that are dependent on the initial chemical composition. The equilibrium phase 

diagram was initially developed to characterize the physical state of single substances over a range 

of temperature and pressures. However, adaptations of the phase diagram were used to characterize 

steel microstructure at varying chemical compositions through a binary mixture plot [55]. The 

most commonly used diagram for steel making is the Iron-Iron carbide phase diagram, where iron-

carbon phase combinations are characterized. For steels with more complex chemistries, a carbon 

equivalent can be calculated that relates the combined effects of different alloying elements used 

to an equivalent amount of carbon. 

Figure 4 presents a typical iron-carbon phase diagram under equilibrium conditions. 

Several regions signify the various phase and phase combinations of austenite (𝛾-Fe), ferrite (𝛼-

Fe), cementite (𝐹𝑒F𝐶) and graphite that can be achieved through uniform cooling of the bulk 

mixture. This cooling allows diffusion of the carbon content throughout the material to achieve 

the lowest energy state. Thus, the diagram can be used to calculate the resulting phase composition 

based on distances from various regions on the diagram. 

 

Figure 4: Iron - carbon phase diagram [56] 
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2.1.3 Time Temperature Transformation 

In the equilibrium phase transformation, the cooling schedule is often over a sufficiently 

long period to allow for the equilibrium of the alloy mixture at the lowest energy state. However, 

during various cooling schedules, the individual phase can deviate from equilibrium to arrive at a 

unique phase. Once cooled to a lower temperature, the energy of the lattice atoms will be too low 

for diffusion to establish equilibrium and thus, preserves the metastable phase [52]. These 

metastable phases include austenite, bainite, martensite and pearlite. This introduces a time 

temperature transformation (TTT) phenomenon that allows steel to adopt more complex 

microstructures through careful control of the cooling rate and temperature. 

 

Figure 5: TTT diagram for steels [56] 

Figure 5 presents a typical TTT diagram of steel. The TTT diagram describes the conditions 

where metastable phases can be obtained with constant cooling rates during a controlled quenching 

process. Over time, further processing technology improvements explored holding the material at 

different temperatures and cooling rates to generate more complex microstructures [57]. To form 

martensite, the material is typically cooled very rapidly (quenched) from a high temperature where 

austenite is stable. Due to the time constraint nature of the quenching process, a diffusion-less 

transformation occurs where the resultant phase takes on the chemical composition of the parent 
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phase. With this quenching technique, steel phases with unique chemical compositions, as well as 

unique mechanical properties, are obtained at RT. 

2.1.4 Crystal Arrangements of Steels 

Several critical micromechanical phases in steels are inherently composed of many 

repeating atom arrangements called “lattice cell” structures. Common lattice arrangements are 

cubic, body-centered cubic (BCC), body-centered tetragonal (BCT) and face-centered cubic (FCC) 

seen in Figure 6. Austenite in steels takes the FCC lattice arrangement, while ferrite is observed 

as BCC. On the other hand, martensite has been observed in BCC and BCT variants, depending 

on the parent phase alloying element. 

   
Body Center Cubic 

(BCC) 
Body Center Tetragonal 

(BCT) 
Face Center Cubic 

(FCC) 
   

Figure 6: Cubic lattice orientations BCC, BCT and FCC 

2.1.4.1 BCC vs BCT Martensite 
Due to the generality of martensite to describe any phase formed by diffusion-less 

transformation, it is necessary to differentiate between the variations of martensite formed in steels. 

Olson and Cohen [58] noted that martensitic variants formed a tetragonal structure caused by 

lattice distortions of interstitial atoms or the ordering of substitutional atoms (either long or short 

range) in the parent body center cubic phase. Figure 7 presents a visual representation of iron-

carbon system lattice cells distorting the parent lattice. Depending on alloying content and 

temperature, martensite transformation in Fe-Pd alloys can result in three possible lattice 

orientations: FCC, BCT, and face center tetragonal (FCT) [59]. Substantial amounts of certain 

alloying elements have been shown to alter the resultant martensite lattice cell. Watanabe and 
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Wayman summarized the findings on martensite structure in Fe-Al-C alloy systems and noted that 

the addition of 7% aluminum and 2% carbon resulted in high martensite tetragonality [60], while 

alloying elements such as nickel [61] and platinum [62] had no effect on tetragonality resulting in 

BCC martensite. Cayron [63] acknowledged the existence of both BCC and BCT martensite, 

however the majority of transformation models assumes the final martensite to take the BCC form.  

 

Figure 7: FCC, BCC, BCT Iron-carbon systems [64] 

2.1.4.2 Texture 
Crystallite aggregates consist of grains, each of which has its own orientation. The 

distribution of these orientations is usually not random. Amalgam of many grains that represents 

the microstructure of the material and its orientation represents what is called the “texture”. A 

crystallographic orientation can be represented in 3-dimensional Bunge Euler space (𝜑I,Φ, 𝜑L). 

Furthermore, texture can be represented as a 2-dimensional projection called a pole figure for a 

given projection (i.e. {100}). Figure 8 presents a standard projection of a pole figure with the 

goniometer set for {100} reflections.  

 

Figure 8: Pole figure of a single crystal with goniometer set for {100} [65] 
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Another method to represent the 3-dimensional Bunge Euler space is using an orientation 

density function (ODF). A cube is used to represent the entire orientation space and slices through 

the 𝜑L direction is used for analysis, a sample orientation space and ODF plot is shown in Figure 

9. 

 

Figure 9: 3D orientation space and ODF slices at 5° slices of the 𝝋𝟐 direction of a FCC Cu texture [66] 

2.2 Transformation Induced Plasticity (TRIP) Steels 

Martensite remains one of the greatest technological advancements in steels where it can 

confer an outstanding combination of strength and toughness. However, high volume fractions of 

martensite often makes the steel brittle and necessitates a tempering treatment to allow carbon to 

diffuse for enhancing ductility. Transformation induced plasticity (TRIP) steel is a unique 

classification of First Generation AHSS where metastable austenite transforms into martensite 

upon mechanical deformation [67] [68]. Many other materials are now known to exhibit the same 

type of solid-state phase transformation, known as martensite transformation [67]. Taking 

advantage of the TRIP mechanism, TRIP steels often offer substantially higher work hardening 

rates, tensile strength and strain elongation when compared to conventional high strength steel and 

other AHSS, demonstrated in Figure 10. These combinations of mechanical properties elect TRIP 
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steel as an excellent candidate for vehicle structures that require high strength yet flexibility to be 

formed into complex geometries such as bumper supports, frame rails, roof rails, crash box, B 

pillar, and seat frames [69]. 

 

Figure 10: HSLA 350, DP 350 and TRIP 350 Stress Strain Curves [47] 

TRIP steels use austenite stabilizers (i.e., carbon) and carbide suppressers (i.e., silicon and 

aluminum) to retain carbon content within the austenite phase. The addition of nickel and 

manganese are also common alloying elements in fully austenitic TRIP steels. The processing 

temperature history of TRIP steel will be dependent on the desired volume fraction of ferrite and 

retained austenite. Figure 11 presents a typical temperature process control and the steps are 

summarized as follows: 

Step 1: Heat up the steel and hold above eutectoid temperature for fully austenitic 

microstructure. If some ferrite is desired, a temperature between ferrite start (AC3) and 

eutectoid (AC1) temperature can be used. 

Step 2: Rapidly cool to an intermediate temperature above the Martensite-Start temperature 

(Ms) to avoid the formation of unwanted phases. 
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Step 3: Continuously vary the cooling to RT to partially transform some austenite into 

bainite to achieve the desired composition. 

 
Figure 11: TRIP steel processing temperature history, resulting in ferrite, bainite, retained austenite and martensite [70] 

2.2.1 Thermodynamics of Transformation Induced Plasticity 

The underlying driving force of martensite transformation is a thermodynamics 

consideration. Evaluating phase composition from an energy standpoint, the differentiation of 

various phases is due to the assumption of the lowest energy state of the material. The energy level 

of various phases changes with temperature.  When a temperature threshold, 𝑇O, is reached, the 

stability of one phase becomes more favourable; however, this is usually not enough to cause 

transformation. Some form of energy input, Δ𝐺RS→U, is necessary to trigger transformation, 

commonly seen as undercooling to martensite start temperature 𝑀W, or superheating to austenizing 

temperature,	𝐴W, as seen in Figure 12. 
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Figure 12: Chemical free energy vs temperature of 𝜸 and 𝜶′ phases 

Kaufman and Cohen (1958) [71] developed a thermodynamic model for martensite 

transformation in steels of varying chemical composition and a large range of temperatures. 

Chemical driving force equations were summarized from an extensive database of experimental 

works. The model presents, Δ𝐺RS→U, a difference in free energy between, 𝐺U, free energy of 

austenite and, 𝐺RS, free energy of martensite, often referred to as the stability of austenite, all of 

which varies with temperature. Tabulated values for various alloying elements in iron-alloy binary 

systems are presented in the paper, which can be summed together with respect to their weight 

percentage for an iron-alloy. 

 𝐺U − 𝐺RS = Δ𝐺RS→U ( 2.1 ) 

Perlade, Bouaziz and Furnemont (2003) [72], used an energy based model similar to that 

of Kaufman and Cohen [71] 

 Δ𝐺RS→U = 	Δ𝐺YZO +
𝜕ΔG
𝜕𝜎 𝜎U ( 2.2 ) 
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where, Δ𝐺RS→U, transformation driving force is split into, Δ𝐺YZO, chemical and, _`a
_Y

𝜎U, 

mechanical contributions. They incorporated the effects of grain size into the model and were 

successful in capturing the martensite evolution trends during deformation. The physical 

phenomenon of latent heat of transformation is caused by, Δ𝐺RS→U, energy difference released 

during transformation. The latent heat of transformation releases a substantial amount of energy 

that contributes to local heating of the transformed region. Rusinek and Klepaczko (2009) 

experimentally showed a temperature rise of more than 100℃ in quasi-static tensile tests of TRIP 

800 steels, due to both plastic work and latent heat of transformation [73]. 

It is well known through the experimental work of Angel [34] that AISI 304 stainless steel 

(which is a TRIP steel) is very sensitive to temperature. At 22℃ the generated volume fraction of 

martensite is nearly half of the same experiment conducted at 0℃. At a temperature of 50℃, the 

TRIP phenomenon is nearly eliminated. Olson and Cohen theorized that chemical driving force 

and stacking fault energy plays a critical role in understanding this difference [26]. 

Stacking fault energy (SFE) is a thermodynamic calculation of surface [74] [75] and 

volume free energy [76]. Lecroisey and Pineau [77] showed that the SFE of a material could be 

modified by chemical composition and temperature. Preference to accommodate deformation 

through TRIP instead of other deformation mechanisms is studied and related back to stacking 

fault energy (SFE). Shockley partial dislocations formed on low SFE FCC phase introduces 

embryos for martensite and sites for twinning [58] [78] [79]. Increasing stacking faults offer 

potential initiation points for dislocation slip and therefore becomes more favourable deformation 

mechanism as SFE increases. 

2.2.2 Mechanics of Transformation Induced Plasticity 

The nature of TRIP takes place when metastable retained austenite transforms to martensite 

under deformation. This transformation at the lattice level distorts the FCC structure of austenite 

into a BCC structure of martensite through a shear mechanism and is at the origin of the 

crystallographic theories of martensite transformation. 
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2.2.2.1 Bain	and	Dunkirk	Orientation	for	Martensite	Formation	

Bain and Dunkirk [80] proposed a distortion that allows an FCC lattice to be transformed 

into a BCC lattice through an intermediate BCT lattice. Figure 13 presents two FCC base cells that 

are side by side with the BCT cell highlighted in between. Although one variant of martensite is 

presented, Wechsler et al. [81] have shown that up to 24 unique possible variants of martensite 

could develop within the parent phase. Patel and Cohen [82] incepted the idea of a preferred 

martensite variant formation due to a maximum mechanical driving force. This concept of 

preferred martensite variants was later reinforced by Magee [83] for preferred variants in iron-

based alloys. 

 

Figure 13: Bain distortion - FCC to BCT to BCC transformation. 

By choosing the ½ [110]𝛾, ½ [110]𝛾 and [001]𝛾 directions as new reference frame, a BCC 

lattice is achieved by expanding the first two vectors by 12.6% and contracting the third by 20.3%. 

Depending on the material and the lattice parameters, the volume increases by 1%-4% when 

transformation takes place. The shape change necessary to accommodate martensite 

transformation is an invariant plane strain on a plane with a unit normal 	𝑝 ∶ 	 𝛾∗ = 	𝑝I	𝑝L	𝑝F	 , 

and a displacement in the unit direction 	𝛾 ∶ 	 𝑑	 = 	𝑑I	𝑑L	𝑑F	  of magnitude 𝜂. The terms 𝛾 and 

𝛾∗ define the real and reciprocal bases of the austenite [84] [85]. The deformation can be 

represented by a matrix 𝑷 for austenite. 

 𝑷 =
1 + 𝜂𝑑I𝑝I 𝜂𝑑I𝑝L 𝜂𝑑I𝑝F
𝜂𝑑L𝑝I 1 + 𝜂𝑑L𝑝L 𝜂𝑑L𝑝F
𝜂𝑑F𝑝I 𝜂𝑑F𝑝L 1 + 𝜂𝑑F𝑝F

	 ( 2.3 ) 
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2.2.2.2 Habit	Planes	and	Fault	Bands	for	Martensite	Formation	

In the context of this thesis, habit planes are the planes of a crystal that are the product of 

transformation [86]. Habit planes were first determined in the 1930s from optical microscopy on 

martensite plates that formed in monocrystalline austenite. Scheil [87] proposed that shear stress 

on the habit planes is the mechanism that activated martensite transformation in austenite.  

Table 1: FCC fault band systems 

𝜶 Fault band systems 𝜶 Fault band systems 𝜶 Fault band systems 
1 112 	⨂	 111  5 121 	⨂	 111  9 211 	⨂	 111  
2 112 	⨂	 111  6 121 	⨂	 111  10 211 	⨂	 111  
3 112 	⨂	 111  7 121 	⨂	 111  11 211 	⨂	 111  
4 112 	⨂	 111  8 121 	⨂	 111  12 211 	⨂	 111  

 

 A shear dislocation on the habit plane in the [111] direction is called fault bands. The FCC 

crystal has a total of 12 fault band systems, which are summarized in Table 1. The intersection of 

fault bands from different habit planes creates a highly favorable site for the formation of 

martensite. The intersection line of the two shear or glide bands is a location of very high strain 

concentration that helps to distort the 60° of the (110)U plane (Figure 14 a). and b).) into the 70.5° 

of the (111)R plane (Figure 14 c). and d).). Borgers and Burgers [88] visually represented the 

process needed to obtain BCC cell from an FCC lattice matrix shown in Figure 14. 

 
Figure 14: Bain correspondence between FCC and BCC lattice a). and c). FCC lattice with BCT cell in heavy lines. b). 

and d). compressed FCC lattice with BCC cell in heavy lines. 
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2.2.2.3 Orientation	Relationship	Due	to	Martensite	Transformation	

Understanding the crystal lattice relationship between austenite and martensite is an 

important and necessary component in accurately modeling the micromechanics of martensite 

transformation. Martensite transformation follows a rigid nature resulting in a fixed orientation 

relationship (OR) with respect to the parent 𝛾-phase through a rotation. A significant effort has 

been made through the years to understand, measure and develop models to capture this rotation. 

Through the study of OR, experimental techniques have been developed to identify between 𝛼- 

ferrite and 𝛼′-martensite by analyzing orientation of nearby parent 𝛾-austenite phase [89]. Bain 

and Dunkirk [80] first proposed a model to capture the OR of martensite. However, when 

compared with measurements from X-ray diffraction, the proposed OR model deviated by more 

than 10° from the experimental measurements. In the 1930s, with the use of X-ray diffraction, 

researchers have experimentally determined several additional ORs such as Kurdjumov-Sachs [89] 

and Nishiyama-Wassermann [90] [91]. Using transmission electron microscopy (TEM) diffraction 

in the 1950s, ORs such as Greninger-Troiano [92] and Pitsch [93] are observed. More recently 

Miyamoto et al. [94] determined a precise average OR from Electron Back Scatter Diffraction 

(EBSD) measurements. Table 2 presents a summary of these relationships. 

Table 2: Summary of orientation relationships observed in martensite 

Orientation Relationship Plane Direction 

Bain-Dunkirk [80] {010}	𝛾 || {010}	𝛼 <001>	𝛾 || <101>	𝛼 

Kurdjumov-Sachs [89] {111}	𝛾 || {110}	𝛼 <110>	𝛾 || <111>	𝛼 

Nishiyama-Wassermann [90] [91] {111}	𝛾 || {110}	𝛼 <011>	𝛾 || <001>	𝛼 

Greninger-Troiano [92] {111}	𝛾 at 1°|| {110}	𝛼 <121>	𝛾 at 2°|| [110]	𝛼 

Pitsch [93]: {001}	𝛾 || {101}	𝛼, <110>	𝛾 || <111>	𝛼 
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2.3 Constitutive	Modeling	of	TRIP	Steel	

Constitutive modeling of TRIP steel can be separated into two sections: the elastic-plastic 

behaviour and martensite transformation. The successful coupling of these two concepts is the 

minimum requirement of a martensitic transformation induced plasticity model.  

2.3.1 Elastic-Plastic Behaviour of TRIP Steel 

Two major classifications of modeling the elastic-plastic behaviour of metals, such as TRIP 

steel, exist in literautre: phenomenological plasticity and crystal plasticity. 

2.3.1.1 Phenomenological	Plasticity	

Phenomenological-based plasticity models are derived from fitting a mathematical 

function, called a yield function, to experimentally observed data. Yield functions can be selected 

based on desired their functionality and complexity These yield functions include: the simple 

quadratic isotropic Von Mises [95], quadratic anisotropic Hill (1948) [96], non-quadratic isotropic 

Hosford (1972) [97] and the Barlat and co-workers [98] [99] [100] [101]. Several common flow 

stress hardening models such as Power Law hardening [102], Voce [103] hardening law, Cowper-

Symonds [104] rate sensitive model and the Johnson-Cook [105] rate sensitive and temperature 

sensitive model have been incorporated into phenomenological plastic to simulate TRIP steel [106] 

[107] [108]. The availability of various mathematical functions is capable of capturing the material 

behavioural trend, but they do not have to have a physical basis. Furthermore, limited 

phenomenological models are able to capture evolving micro-structural detail during deformation 

[109]. 

2.3.1.2 Crystal	Plasticity	

Another framework used to model TRIP steels is crystal plasticity, the underlying 

assumptions are that crystals permanently deform primarily due to the movement of atoms through 

dislocations. Taylor [44] explained this concept as shearing of different rows of atoms of a crystal, 

visually represented in Figure 15. These dislocations appear locally in small regions and continue 

to grow throughout the grains. Shear stress along the direction of the gliding plane of the 

dislocation, known as the resolved shear stress, supplies the driving force to cause dislocations to 

glide. Crystallographic slip is an anisotropic deformation where large dislocation occurs on certain 

planes (slip planes) in certain directions (slip directions). Dislocations usually occurs in the planes 
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and directions of the lattice cell with the maximum atomic density. However, this is not always 

true. 

 

Figure 15: Dislocation slip along a row of atoms [44] 

The mechanics of slip deformation is governed by the critical shear stress known as 

Schmid’s Law [110], which serves as an initial microscopic yield criterion for single crystals. 

Schmid’s Law states that in crystals of a given material under constant condition, extensive slip 

occurs when the resolved shear stress, 𝜏(R), attains a critical value described as following 

 𝜏(R) = 𝑃no
(R)𝜎no = 𝜏p

(R) ( 2.4 ) 

where 𝜎no is the stress state acting on a crystal, 𝜏p
(R) is the yield strength of system 𝛼, and 𝑃no

(R), 

also known as the Schmid tensor is expressed as 

 𝑃no
(R) =

1
2 𝑠n

R 𝑚o
R + 𝑚n

R 𝑠o
R  ( 2.5 ) 

where 𝑠n
R  and 𝑚o

R  are components of slip direction vector 𝒔	 𝜶  and slip plane normal 𝒎	
𝜶 , 

respectively of system 𝛼. From here, Asaro and Needleman [111] developed an elastic-plastic, rate 

dependent polycrystalline model accounting for deformation within the individual crystals by only 

crystallographic slip. 

Relating the microscopic scale phenomena of single crystal plasticity to the macroscopic 

scale of polycrystal deformation requires a homogenization (or averaging) scheme. Assumptions 

are made on the stresses and strains in the polycrystal and polycrystal response that gives rise to 

different schemes, such as the Sachs’ model, Taylor assumption, relaxed constraint model and self-
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consistent schemes. These averaging schemes allow for efficient calculations of crystal plasticity 

through some assumptions. 

2.3.1.2.1 Sach’s	Model	
One of the earliest polycrystal models was the Sachs’ model [112], where it was assumed 

that only one slip system operates in each grain. In this model, each grain is subjected to the same 

stress state, which is also the macroscopic stress and is taken to be a state of uniaxial tension. The 

model was refined by Kochendorfer [113] by the stipulation that each grain was subjected to the 

same stretch. Bishop and Hill [114] [115] pointed out individual grains having identical strain 

hardening amongst the polycrystal. 

 𝜎
𝜏 =

𝑑𝛾
𝑑𝜀 = 𝑀 ( 2.6 ) 

where 𝜎 and 𝑑𝜀 are the axial stress in a grain and the macroscopic aggregate strain increment 

respectively, 𝜏 and 𝑑𝛾 are the shear strength and slip system shear strain increment, and 𝑀 is the 

orientation factor tht depends only on geometry and in particular on the relationship between the 

loading axis and the crystal slip systems. The limitation of the Sachs’ model, is that stress and 

strain continuity across grain boundary is violated. Equilibrium of the stresses cannot be 

established across grain boundaries and it, is not feasible to maintain compatibility amongst all 

grains.  

2.3.1.2.2 Taylor’s	Model	
In order to overcome the objections to Sachs’ model, Taylor proposed another method of 

modeling polycrystals [116]. Taylor observed experimentally the micrograph of the cross section 

of a copper drawn wire and noticed that all the grains were elongated in the direction of extension 

and contracted in the two perpendicular directions. Taylor concluded that the strain field 

throughout the polycrystal was homogenous. The implication of this assumption is that individual 

grains are under the same deformation strain as the polycrystal. Stress is consistent within grains, 

however, can differ from other grains. As such, the Taylor assumption can have limitations in the 

case of multi-phase materials and non-homogeneous deformations [117]. However, this still 

remains an active point of contention in the scientific community [118] [119].  
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The Taylor assumption developed through the study of copper polycrystals under uniaxial 

tension can be summarized by two relationships: 

a) Each grain in a polycrystal experiences the same strain as the polycrystal 

 𝜀vwxny = 𝜀xvvwz	 ( 2.7 ) 

b) Macroscopic stress of a polycrystal is the average stresses of all single constituent crystals 

 𝜎xvvwz =
𝜎vwxny
𝑁

|

vwxnyZI

 ( 2.8 ) 

2.3.1.2.3 Relaxed	Constraints	Models	
Honneff and Mecking [120] made modifications to the Taylor model, called a method of 

“relaxed constraints”. Later, Canova et al. [121] extended this formulation to account for material 

texture effects. The fundamental assumption is that when grains reorient and take on distorted 

shapes, identified by large aspect ratios of the principal lengths, it is possible to partially relax the 

strict compatibility requirements imposed in the Taylor model. Non-uniform deformations are 

observed to occur at the grain boundaries, which accommodates the incompatibilities implied by 

the non-imposed strain components. 

2.3.1.2.4 Self-Consistent	Schemes	
The self-consistent method proposed by Kröner [122], Budiansky and Wu [123], and Hill 

[124] is developed based on Eshelby’s model [125]. This approach attempts to account for grain 

interaction by considering each grain to be an ellipsoidal inclusion embedded in an infinite 

homogeneous matrix. The overall moduli of the polycrystal is determined as an average of all 

grains. The constraint imposed by the matrix on a grain can be estimated with the aid of Eshelby’s 

solution for an elastic inclusion. 

2.3.1.2.5 Crystal	Plasticity	Finite	Element	Method	(CPFEM)	
Crystal Plasticity Finite Element Method (CPFEM) is first implemented as a generalized 

Taylor-type polycrystal constitutive model with a fully implicit time-integration scheme into a user 

defined material model in ABAQUS by Kalidindi et al. [126]. The goal of this model is to study 

the stress-strain response and the crystallographic texture evolution of polycrystalline FCC copper 
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during plane-strain forging. Subsequent development of the model into finite element was 

implemented. Inal et al. [127] used this model and studied forming of FCC polycrystalline sheets. 

Rossiter et al. [128] implemented the crystal plasticity scheme with an explicit time-integration 

scheme into a user defined material model in LS-DYNA. Developments of dislocation density 

based model [129] and mechanical twinning models [130] [131] have also been implemented into 

in CPFEM. Cyr et al. [132] incorporated the dependence of various material hardening parameters 

with respect to temperature into CPFEM to study aluminum alloys at elevated temperatures. 

2.3.1.3 Slip	Systems		

In the FCC lattice structure, the symmetric structuring of the atoms results in twelve slip 

systems, 111 [110] family of slip systems was initially derived from studying pure Cu single 

crystals. The FCC lattice conforms to the close pack plane rule where all twelve slip systems are 

slipping on the highest atomic density planes. The available slip systems of the FCC crystal are 

summarized in Table 3. 

Table 3: FCC slip systems 

FCC Slip Systems Plane Direction 
1 

{111} 
[110] 

2 [101] 
3 [011] 
4 

{111} 
[110] 

5 [101] 
6 [011] 
7 

{111} 
[110] 

8 [101] 
9 [011] 
10 

{111} 
[110] 

11 [101] 
12 [011] 
   

The BCC lattice structure has a total of 48 slip systems, {110} [111], {211} [111] and 

{321} [111]. It is important to note that {110} [111] family of slip system has the highest atomic 

density plane. The concept of pencil glide is defined as any plane of the zone defined by the 

operating [111] slip direction might potentially act as slip plane. Taylor and Elam [133] initially 

observed that 𝛼-Fe single crystals deformed at RT with unique slip direction [111], however, there 

was not a single set of slip planes. Subsequently, Gough [134] applied alternating torsional tests 
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to a large 𝛼-Fe single crystal sample and showed {110} [111] is the only active slip system at low 

temperatures. However, upon an increase in temperature, a wavy dislocation line can be seen on 

the sample surface, indicating the activity of a high miller indices system. Fahrenhorst and Schmid 

[135] and Sauerwald and Sossinka [136] showed that slip plane families {110}, {211} and {321} 

could account for slip in 𝛼-Fe single crystal. The significance of these slip planes shows that for 

BCC materials slip does not necessarily occur only on the most densely packed planes. Dislocation 

glide in BCC lattice structure can occur on several slip plane families that do not have to be the 

most densely packed planes. Further developments show that the {321} [111] slip systems are only 

activated at elevated temperatures [137]. Therefore, only 24 slip systems of the BCC lattice 

structure are considered and summarized in Table 4.  

Table 4: BCC slip systems 

BCC Slip 
Systems 

Plane Direction 
BCC Slip 
Systems 

Plane Direction 

1 
{110} 

[111] 13 {211} [111] 

2 [111] 14 {211} [111] 

3 
{110} 

[111] 15 {211} [111] 

4 [111] 16 {211} [111] 

5 
{101} 

[111] 17 {121} [111] 

6 [111] 18 {121} [111] 

7 
{101} 

[111] 19 {121} [111] 

8 [111] 20 {121} [111] 

9 
{011} 

[111] 21 {112} [111] 

10 [111] 22 {112} [111] 

11 
{011} 

[111] 23 {112} [111] 

12 [111] 24 {112} [111] 

 

Materials consisting of both FCC and BCC microstructures will exhibit a combination of 

slip systems in their respective crystal lattice. Slip systems in such a material at RT are summarized 

in Table 5. 
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Table 5: FCC and BCC slip system at room temperature 

Crystal Structure Slip Planes Slip Directions # of Slip Systems 

FCC {111} [110] 12 

BCC 
{110} [111] 12 

{211} [111] 12 

* {321}[111] Not considered at RT [137] 

2.3.2 Modeling of Martensite Transformation 

Several experimental studies have been dedicated to studying stress induced martensite 

transformation from mechanical deformation. Scheil et al. [87] [138] and Wassermann [139] 

presented the first experimental studies in deformation induced martensite transformation in Fe-

Ni alloy steel in the 1930s. Porter and Rosenthal (1959) [140] observed that martensitic 

transformation was proportional to the applied stress. De Jong and Rathenau in the same year 

[141] studied the irreversible length change of a loaded pure iron specimen during temperature 

cycling above and below 𝛾 − 𝛼 transitional temperature. They also reported a linear relationship 

between the load stress and the irreversible elongation.  

Greenwood and Johnson [142] and Magee [83] pioneered the first efforts to model and 

characterize the TRIP effect. Under control of temperature and constant deformation, the total 

strain during deformation induced martensite transformation was formulated as 

 𝜀 = 𝜀z + 𝜀� + 𝜀� + 𝜀�	 ( 2.9 ) 

where 𝜀 is the total strain, 𝜀z is the elastic strain, 𝜀� is the thermal strain, 𝜀� is the transformational 

strain, and 𝜀� is the plastic strain. For elastic-plastic materials like iron based alloys, the 

transformational strain can be decomposed into a volumetric dilation of the product phase and an 

irreversible TRIP strain, 𝜀��, such that 

 𝜀� =
𝛿
3 	𝜉𝑰 +	𝜀

��	 ( 2.10 ) 



 
 

26 

where 𝜉 is the transformational volume change, 𝑰 is the 2nd order identity tensor, 𝛿 is the volume 

of transformation, and the irreversible TRIP strain tensor is defined as 

 𝜀�� =
5
6	
𝛿
𝜎pO
	𝜎 ( 2.11 ) 

with 𝜎pO being the initial yield in the parent phase. Later, Leblond et al. [143] [144] revisited the 

Magee mechanism assuming that the straining mechanism was negligible and the phases were 

ideally plastic. Through this study, a generalized model was proposed for all kinds of applied 

stresses in the case of ideal-plastic phases. 

On a separate front, Patel and Cohen (1953) [82] noticed that variations in applied stress 

change the martensite transformation temperature in Fe-Ni and Fe-Ni-C alloys. Martensite 

transformation temperature is modified by an energy term, calculated from the applied stress on 

the potential habit plane of the parent phase. This energy term, 𝑈, is comprised of, 𝜏𝛾�, the shear 

stress resolved along a potential habit plane times the transformation shear strain, and, 𝜎𝜀�, the 

normal stress resolved perpendicular to the habit plane times the normal component of the 

transformation strain. 

 𝑈 = 	𝜏𝛾� + 𝜎𝜀� ( 2.12 ) 

Fischer (1990) [145] presented an analytical concept for the TRIP strain due to martensitic 

transformation in a specimen subjected to uniaxial stress state, and later for three-axial stress state 

[146]. Berveiller and Fischer [147] conducted a detailed mathematical treatment; however, their 

results seemed to overestimate the orientation effect. Further modeling development, particularly 

into phenomenological, micromechanics and fault band based transformation criteria for stress and 

strain induced TRIP effect, are described in detail. 

2.3.2.1 Phenomenological	Transformation	Criteria	

Multiple studies (i.e. Venables [148], Manganon and Thomas [149], Lecroisey and Pineau 

[77]) have identified intersections of shear-bands within austenite crystalline as the location for 

strain-induced martensite transformation. Using these experimental observations, Olson and 

Cohen [26] proposed a transformation model that related the volume fraction of shear band 
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nucleation sites to martensite phase transformation. They proposed that the volume fraction of 

shear band, 𝑓W�, followed 

 𝑓W� = 1 − exp	(−𝛼	𝜀�)	 ( 2.13 ) 

where 𝛼 is a temperature sensitive constant to describe the shear band generation rate (that is 

related to stacking fault energy and chemical driving force), and 𝜀�, is the plastic strain within the 

austenite crystalline. Assuming shear bands have a constant average volume, 𝑣W�, the number of 

shear bands per unit austenite volume 

 𝑁�W� = 𝑓W�/𝑣W�	 ( 2.14 ) 

Thus, the number of shear bands increases (approximately) linearly with strain until saturation 

occurs. Next, the number of shear-band intersections per austenite unit volume, 𝑁��, can be related 

to the number of shear bands using a Power Law formulation 

 𝑁�� = 𝐾 𝑁�W� �	 ( 2.15 ) 

𝐾 and n can be obtained from quantitative stereology. The incremental increase in the number of 

martensitic embryos produced per unit austenite volume, 𝑑𝑁�R
S, can be related to the incremental 

increase in the number of shear band intersections, 	𝑑𝑁��, such that 

 𝑑𝑁�R
S = 𝑝	𝑑𝑁��	 ( 2.16 ) 

where, 𝑝, is the probability that the shear band intersection will generate a martensitic embryo. 

Finally, Olson and Cohen [26] propose that the volume fraction of martensite transformation, 𝑓xS, 

follows a similar saturation behavior law with respect to the volume fraction of shear bands  

 𝑓xS = 1 − exp −
𝑣RS	𝑝
𝑣W� y 	𝐾 𝑓W� y 	 ( 2.17 ) 

where 𝑣RS is the average volume of martensite within an austenite crystalline. 

Angel (1954) [34] experimentally showed that strain-induced transformation behavior of 

sheet AISI 304 stainless steel follows a curve representing a sigmoidal function. The importance 

of the sigmoidal function is that a Gaussian distribution can be used to describe the rate of 

transformation. Olson and Cohen (1975) [26] used this result to verify and explain their model. 
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Modeling the martensite transformation behavior using a parabolic behavior shown by Gerberich 

et al. [150], however, this method did not prove to be popular. 

Stringfellow et al. [151] [152] extended the Olson and Cohen [26] model to include the 

influence of the stress triaxiality, Σ, on transformation driving force parameter, 𝛼, and the 

probability of shear band nucleation, 𝑝(𝑇, Σ). Subsequently, Iwamoto and co-workers [153] [154] 

[155] incorporated strain-rate sensitivity and higher-order thermal sensitivity, such that the 

transformation driving force parameter was cast as 

 𝛼 = (𝛼ITL + 𝛼LT + 𝛼F − 𝛼�Σ)
𝜀(U)
�W�n�

𝜀p

�

	 ( 2.18 ) 

where T is the temperature, 𝑚 is the strain rate sensitivity exponent, 𝛼I, 𝛼L, 𝛼F, 𝛼� are material 

parameters, 𝜀p is a reference strain rate and 𝜀(U)
�W�n� is the strain rate of the austenite phase. Recently, 

Kohar et al. [156] implemented this phenomenological martensite transformation model into a 

commercial finite elements code LS-DYNA to study the effect of TRIP on axial crush components.  

2.3.2.2 Micromechanical	Transformation	Criteria	

A series of literature has been developed from a micromechanical perspective to model the 

transformation phenomenon of strain-induced martensite. Cherkaoui et al. [157] [158] modeled 

the TRIP effect in austenite single crystals with a coupled thermodynamics and micromechanics 

model based on the Greenwood and Johnson [142] and Magee [83] of transformation. In the 

current configuration shown in Figure 16, a single crystal of austenite representative volume 

element (RVE) with volume, 𝑉, temperature, 𝑇, and uniform stress, Σ. 

 

Figure 16: Schematic representation of different microscale mechanisms associated with the RVE [157] 
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Upon some thermo-mechanical loading, 𝑑𝑇, and 𝑑Σ, martensite nucleation and growth of the RVE 

is modeled by the volume fraction rate of martensite, expressed as 

 𝑓� =
1
𝑉 𝑤R� 	𝑛R� 	𝑑𝑆�

	

 ¡
	 ( 2.19 ) 

where 𝑓� is the volume fraction rate, 𝐼 denoting N of 24 crystallographically possible martensite 

variants, 𝑉, volume, 	𝑆�, boundaries, 𝑤R� , the velocity of the boundary and 𝑛R�  are components of 

the unit normal vector of the boundary. The total volume of martensite phase, 𝑉£ is the sum of all 

the individual variants, 𝑉�, of martensite 

 𝑉£ = 𝑉�
|

�ZI

	 ( 2.20 ) 

and the volume of austenite 𝑉¤ is the remainder. 

 𝑉¤ = 𝑉 − 𝑉£	 ( 2.21 ) 

Each variant is characterized by a habit plane normal, 𝑁, direction of transformation, 𝑀, and the 

amplitude, 𝑔, of the transformation strain considered as a material constant. 

 𝜀no�w
� = 𝑔	𝑅no� =

1
2𝑔 𝑀n

�𝑁o� + 𝑀o�𝑁n� 	 ( 2.22 ) 

Total strain due to martensitic transformation is the sum of all variants of martensite. 

 𝜀�w(𝑟) = 𝜀no�w
�𝜃�(𝑟)

|

�ZI

	 ( 2.23 ) 

where 𝜃�(𝑟) are the Heaviside step functions for the different transformed domain defined as 

 𝜃� 𝑟 = 0		𝑖𝑓	𝑟	 ∉ 	𝑉�

1		𝑖𝑓	𝑟	 ∈ 	𝑉�
	 ( 2.24 ) 

The mechanical driving force for martensite transformation is described by, 𝜎¤ ∙ 𝜀�w.  

 𝜎¤ ∙ 𝜀�w = 𝑅 3𝐽L 1 + 𝑘
𝐽F
𝐽L
F/L	 +

1
3
∆𝑉
𝑉 𝐼I	 ( 2.25 ) 
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where	𝐼I is the first invariant of the austenite stress tensor, 𝐽L	and	𝐽F are the second and third 

invariants of the deviatoric stress tensor of austenite respectively, and ∆𝑉/𝑉  is the volume 

change during the martensitic transformation. 𝑅, material parameter corresponding to the 

maximum transformation strain obtained during a loading sequence, and 𝜅 is the transformation 

stress state sensitivity parameter. 

Thermodynamic driving forces acting on the moving boundary point between the product 

and the parent phase has been derived from the Eshelby’s work on the energy momentum tensor. 

As such, the total driving force equation was assumed to follow 

 𝐹 = 𝜎¤ ∙ 𝜀�w − 𝐵 𝑇 − 𝑇O − 𝜅	 ( 2.26 ) 

where, 𝐵, is a material constant, 𝑇O, is the equilibrium temperature, and 𝜅, is the self-internal stress 

contribution. When the driving force exceeds the critical driving force, transformation of the 

domain is allowed. The critical driving force is comprised of three contributions: macroscopic 

contribution, 𝐹�, plastic deformation and thermodynamics contribution, 𝐹��, and geometric 

restrictions, 𝐹µ�, such that 

 𝐹� = 𝐹� + 𝐹�� + 𝐹µ�.	 ( 2.27 ) 

Cherkaoui et al. [159] extended the model to include more explicit relations in the case of simple 

shear loading condition that encourages the transformation of martensite. Kubler et al. [160] later, 

incorporated a new texture evolution regime where the lattice spin of austenite grains is related 

with the slip rate on the slip systems of the two phases, the evolution of martensite volume fraction 

and the overall rotation rate of the grains. Serri and Cherkaoui [161] implemented the 

transformation framework into a commercial finite element code ABAQUS/EXPLICIT to 

simulate the behavior of unstable TRIP steel sheets under forming conditions. 

Using advanced experimental techniques, Choi et al. [162] created a finite element 

simulation of an RVE model of commercial TRIP 800 steel that was created from a scanning 

electron microscopy (SEM) image. Figure 17 presents a schematic of the experimental SEM and 

reconstructed finite element model with individual phases. Individual phase material parameters 

were obtained via synchrotron-based in situ high-energy X-ray diffraction (HEXRD) experiments. 
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Using a similar transformation criterion as Cherkauoi and co-workers, Choi et al. [162] simulated 

martensite evolution and its influence on ductility during large deformation.  

 

Figure 17: Scanning electron microscope image of TRIP 800 steel and the corresponding finite elements mesh [162] 

2.3.2.3 Fault	Band	Transformation	Criteria	

Kim et al. [163] incorporated the fault band system approach into crystal plasticity finite 

element method (CPFEM) with an evolving interaction energy based transformation criterion. 

After every increment, a transformation threshold term, Γ�·, is calculated for every austenite 

crystal defined by 

 Γ�· = C�·I + C�·L ∙ Γx��	 ( 2.28 ) 

where C�·I and C�·L are transformation evolution parameters, and Γx�� is the accumulated shear 

resolved on the habit planes of an austenite crystal. The modification of the transformation 

threshold based on accumulated shear is credited due to the accumulation of stacking faults, 

increasing the barrier to transformation. The accumulated shear on the habit planes is the 

integration of the shear rate over time 
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 Γx�� = 𝛾µR
|

R

�

O

𝑑𝑡	 ( 2.29 ) 

When the energy term, 𝑈n�, of intersecting fault bands exceed that of the 𝛾 − 𝑡𝑜 −

𝛼º	transformation threshold, transformation occurs. 𝑈n� is calculated with the normal stress,	𝛔𝑵, 

dilatational strain, 𝛅, shear stress on the invariant plane,	𝝉, and 𝒔, the shear strain, such that 

 𝑈n� = 𝛔𝑵 ∙ 𝛅	 + 	𝝉 ∙ 𝒔	 ( 2.30 ) 

The fault band system is fixed to the crystal orientation, evolving with crystal texture under 

deformation, therefore capturing the dependence of transformation with respect to texture.  

2.3.2.4 Summary	of	Transformation	Criterion	

Table 6 provides a summary of the models for martensite transformation as discussed in 

the previous sections. Although the phenomenological and micromechanics models can be applied 

to a crystal plasticity model, these transformation rules do not directly take into account 

microstructural effects in a manner as outline in the fault band model. However, the fault band 

model cannot be applied to a phenomenological model and requires a crystal plasticity constitutive 

model. 

Table 6: Summary of transformation criterions 

Transformation Criteria Advantages Disadvantages 

Phenomenological Model 
Iwamoto and Tsuta [153] 

[154] 

• Simplest formulation 
• Can be applied to 

phenomenological/crystal 
plasticity constitutive model 

• Transformation rule does not 
account for microscale 
details 

Micromechanics Model 
Serri and Cherkaoui [161]  

• Thermo-mechanically coupled 
• Formulated from Eshelby 

homogenization theory 
• Can be applied to 

phenomenological/crystal 
plasticity constitutive model 

• Transformation rule does not 
account for microscale 
details 

 

Fault Band Model 
Kim et al. [163] 

• Physics based model 
• Utilizes microstructure inputs 
• Texture evolution effects 

 

• Computationally expensive - 
Requires calculations on a 
slip system level through 
crystal plasticity 
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2.4 Forming	Limits	for	Sheet	Metals	

One method of evaluating the formability of sheet metals for use in automotive structures 

is the forming limit diagram (FLD). Keeler and Backofen [164] [165] and Goodwin [166] 

introduced the concept of the FLD to describe the onset of localization of sheet metal. The 

Considere Criterion, which is when the strength increase due to hardening, ¿Y
¿À

, is equal to the stress 

due to thinning, 𝜎, is the criterion used for necking will occur, such that 

 𝑑𝜎
𝑑𝜀 = 𝜎	 ( 2.31 ) 

A forming limit curve (FLC) is a series of points that correspond to the limit strain of the material 

for proportional stretching that ranges between uniaxial and biaxial tension. The proportional 

stretching ratio, 𝜌, is defined as 

 𝜌 =
𝐷LL
𝐷II

=
𝜀LL
𝜀II

,			− 0.5 ≤ 𝜌 ≤ 1.0	 ( 2.32 ) 

where 𝐷no is the symmetric part of the velocity gradient (that are equal to logarithmic strain rates 

𝜀no) and 𝜌 = −0.5 and 𝜌 = 1.0 correspond to uniaxial and equibiaxial stretching respectively. 

 
Figure 18: Sample FLD showing uniaxial tension, plane strain, and equi-biaxial tension 
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Figure 19: Specimen dimensions for FLD generation [167] [168] 

Figure 18 presents the summation of the major and minor strains that form the FLC line of 

an FLD. Forming limit diagrams can be determined by experimentally deforming various 

blank/punch configurations and friction conditions to produce a range of strain states and strain 

paths that mimic industrial settings [169] [170]. Common experimental methods to evaluate 

forming limits of sheet include: Nakazima [171], Marciniak [172], and Erichsen test [173]. These 

testing methods use a punch to deform sheets of various dimensions and notch combinations to 

vary the strain path. Figure 19 presents some common sheet dimensions and combinations required 

for this experimental program. The strain paths obtained with this method is neither proportional 

nor simple. Extensive experimental forming limit work has been conducted for steels exhibiting 

martensite transformation [174] [175] [176] [177] [178] [179] [107]. Talyan et al. [180] presented 

a complete analysis of several austenitic stainless sheets of steel (Type 201, 301 and 304). They 

presented chemical compositions, stress-strain behaviors, Lankford coefficients, martensite 

evolution with respect to strain at different strain rates, temperature evolution and experimental 

FLD. Figure 20 presents a sample of their experimental results. They reported that formability of 
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these austenitic stainless steels was strongly dependent on the coupled phenomenon behaviour of 

martensite transformation with temperature.  

 
Figure 20: AISI 304L stainless steel experimental data (a) stress-strain and martensite volume fraction (b) temperature 

evolution and martensite volume fraction (c) FLD and martensite volume fraction [180] 

2.4.1 Numerical Methods for Determining Forming Limits 

Although FLDs can be generated through experimentation, they are often laborious tasks 

that require significant resources and care to obtain reliable results. As such, analytical and 

computational methods for evaluating formability is an attractive alternative to experimentation. 

Swift (1952) [181] first proposed a method for determining the onset of diffused necking in sheet 

metals assuming a homogenous sheet. He predicted the onset of diffused necking by developing 

an instability criterion based on the maximum load definition under proportional loading. He 

showed that the major limit strain in diffuse necking could be determined as 

 𝜀IÄn�n� =
2𝑛(1 + 𝜌 + 𝜌L)

(𝜌 + 1)(2𝜌L − 𝜌 + 2) ,			− 0.5 ≤ 𝜌 ≤ 1.0	 ( 2.33 ) 

where 𝑛 corresponds to the hardening exponent of the sheet (assuming that the flow stress behavior 

followed a power-law hardening behavior). In the same year, Hill [182] developed a mathematical 

description of homogenous thin sheets explaining the relationship between the r value of the 

material and the angle between the through thickness direction for localized necking.  

Several numerical approaches exist today for evaluating sheet metal formability, the 

Marciniak and Kuczynski (MK) [45] approach is simple yet effective. Hutchinson and Neale 
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(1978) [183] [184] [185] presented a series of works on sheet necking discussing the difference of 

deformation theory and flow theory methods for formability analysis with strain-rate and time 

dependence on the FLD. As such, the MK-approach, today, remains one of the most powerful and 

widely used methods for evaluating formability of sheet metals. 

The MK-approach assumes a geometric or structural non-homogeneity (called an 

imperfection) that initiates and drives an asymptotic localization behavior for sheet metals. The 

fundamental assumption of the existence of imperfections in sheet metal from manufacturing and 

material inhomogeneity drives localization has been experimentally shown to mimic reality by 

Azrin and Backofen [186]. Under proportional stretching, the strain rate inside and outside of the 

imperfection is calculated from a constitutive model, while stress equilibrium is maintained across 

the imperfection. Through the use of a constitutive model, an MK-analysis can be readily extended 

to incorporate sophisticated deformation mechanisms that are observed in newly developed sheet 

metals, such as TRIP steel.  

Since then, the MK analysis has received significant attention and expansion from 

researchers around the world to incorporate additional experimental phenomenon. Stroen and Rice 

[187] studied the effects of yield surface vertices on the FLD using the MK-approach. Bassani et 

al. [188] showed the effect of anisotropy in sheet metal forming limit analysis. Lian et al. [189] 

and Dasappa et al. [190] showed that the yield locus curvature greatly impacts the limit strains 

generated by the MK-approach.  

2.4.2 Crystal Plasticity Based Forming Limit Analysis 

The imperfection parameter is the basis of the MK analysis. However, even a slight 

intrinsic inhomogeneity in the load bearing capacity throughout a deforming sheet can lead to the 

unstable evolution of strain in the weaker regions and subsequently lead to localized necking. A 

significant source of inhomogeneity lies in the microstructure and texture of the material, which 

evolves during mechanical deformation.  

Beginning with a series of Bishop-Hill [114, 115] yield surface calculations of polycrystals, 

Bassani et al. [188], Barlat and co-workers [191] [192] [193] [194] corresponded these various 

crystallographic textures to predict forming limits. In these preliminary works, the effect of 

elasticity and yield locus evolution, which is captured through crystal plasticity during 
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deformation, was not considered. Using an elastic-viscoplastic Taylor-type polycrystal plasticity 

model, Tvergaard and Needleman [195] calculated the forming limit strains for only equibiaxial 

and plane strain tension. Zhou and Neale [196] utilized a rate-dependent crystal plasticity 

formulation to predict FLDs for FCC annealed metal sheets using the MK-approach. Although 

their model incorporated the initial texture and texture evolution, elasticity was not considered, 

and the imperfection band was assumed to remain normal to the principal stretch direction. Qiu et 

al. [197] considered the effects of elasticity but did not consider the band angle. Wu et al. [198] 

further developed upon the rate-dependent polycrystal model to incorporate the effect of various 

imperfection band angles. They analyzed the effects of imperfection intensity, orientation, 

distribution of grain orientations, crystal elasticity, strain rate sensitivity, single slip hardening and 

latent hardening on FLD predictions. Inal et al. [118] used the elastic-viscoplastic Taylor type 

polycrystal model to compare the differences in forming limits of FCC and BCC slip systems. In 

their work, FCC and BCC aggregates with identical initial textures were calibrated to have nearly 

identical to uniaxial tension (through the material constants). Afterwards, an MK analysis was 

performed to generate FLD for each slip system configuration, and the differences were compared. 

Their results showed that BCC slip systems show a significant increase in formability over FCC 

slip systems in the biaxial stretching region. Yield potentials of both materials were calculated and 

compared, reinforcing the influence of yield locus shapes for the two types of polycrystals. 

Recently, Cyr et al. [199] formulated a thermo-elasto-viscoplastic crystal plasticity MK-analysis 

to simulate the elevated temperature (up to 300C) FLD of aluminum alloys AA3003 and AA5754. 

This framework varies the material hardening parameters of crystal plasticity and the material 

imperfection parameter with temperature, which is subsequently used to simulate the FLD. Their 

simulated FLD showed reasonable agreement with experimental data. 

2.4.3 Formability Analysis of TRIP-assisted Steel 

Attempts have been made to simulate the formability of TRIP-assisted steels. Tourki et al. 

[200] experimentally measured the volume fraction of martensite through X-Ray dispersive energy 

coupled with SEM analysis for temperatures of −196°	𝐶 to 22°	𝐶. They presented temperature 

dependent model for the volume fraction of martensite, 𝑓Rº, with respect to strain, such that 

 𝑓Rº = 1 − 𝑒𝑥𝑝 −𝛽(𝑇) 1 − 𝑒𝑥𝑝 −𝛼(𝑇)𝜀 �.È 	 ( 2.34 ) 
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where 𝛽(𝑇) and 𝛼(𝑇) are temperature dependent parameters. The authors went on to predict the 

FLD of AISI 304 stainless steel using the MK analysis. The predicted FLD showed good 

agreement, however, the resultant martensite volume fraction data was not confirmed to 

simultaneously match experiments. Campos et al. [201] performed a MK analysis to predict the 

FLD of AISI 304 stainless steel. The simple anisotropic phenomenological Hill (1948) [96] yield 

function without martensite transformation was used to perform their analysis. The predicted FLD 

showed good agreement with a limited set of experimental data. In a similar manner, Panich et al. 

[107] simulated the formability of TRIP 780 steel with the MK-approach, the Yld2000 

phenomenological yield function [99] and without a model for martensite transformation. They 

showed significant deviations between predicted and experimentally measured FLDs. Makkouk et 

al. [202] simulated AISI 304 stainless steel behavior using a phenomenological plasticity model 

with the martensite transformation kinetics model developed by Iwamoto et al. [155] [153] [154]. 

They performed an MK analysis to simulate the FLD and compared with experimental 

measurements data obtained via the Marciniak punch test. 

2.5 Deficiency	in	Literature	

Strain induced martensitic transformation in steel has been studied extensively. Modeling 

TRIP steel is challenging because it requires the integration of physics, material science and 

numerical modeling to be successful. However, despite the vast amount of experimental and 

theoretical works, there still exists a need for a combination of accurate elastic-plastic behavior 

with the TRIP effect for use in a constitutive model.  

Beyond this need, little knowledge is available in the literature that contributes to the 

understanding of TRIP steel formability. The MK method offers an efficient framework for the 

calculation of FLDs. Yet, as of late, many formability analyses using the MK approach do not 

account for the physics of martensite transformation or martensite transformation in general, let 

alone the differences due to the microstructural phenomenon. Connolly et al. [203] recently 

investigated the effects of martensite transformation on the formability of TRIP 800 steel. 

However, their study used a phenomenological constitutive model. Even with all the advancements 

in computational performance and experimentation, there still exists a need for a framework to 

quickly and efficiently simulate forming limits diagrams that accounts for the micromechanics of 

TRIP-assisted steels.  
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3 SCOPE AND RESEARCH OBJECTIVE 

The scope of this thesis is to develop a crystal plasticity constitutive model that 

incorporates martensitic transformation to simulate FLDs. In order to employ a micromechanics 

based transformation criterion, a rate-dependent elastic viscoplastic polycrystal framework will be 

developed that incorporates the individual slip systems of FCC and BCC crystals, for a duplex 

stainless TRIP assisted steel. The proposed model will be calibrated using the initial texture 

supplied by Kim et al. [163], experimentally measured martensite volume fractions and stress-

strain response during uniaxial tension for the selected material. The calibrated model will then be 

analyzed under different strain paths. Furthermore, the proposed model will be incorporated into 

the MK framework to explore the formability aspect of a TRIP-assisted steel and the effects of 

transformation control parameters. Thus, the main objectives of the current research are to: 

1. Couple an elastic-viscoplastic crystal plasticity model to a micromechanical dependent 

transformation model to capture the effects of martensite transformation. 

2. Calibrate the crystal plasticity model using DSS initial texture, along with volume fraction 

evolution and uniaxial stress-strain response. 

3. Discuss results of multi-axial loading as well as the microstructure evolution.  

4. Identify favorable austenite crystal orientations that promote transformation. 

5. Simulate FLDs using the calibrated material parameters in an MK framework. 

6. Evaluate the sensitivity of martensite transformation parameters on formability. 

3.1 Limitations	of	Modeling	Formulation	Used	in	Current	Study	

Several assumptions are made during the formulation of the model framework. From a 

material science perspective, ferrite and martensite are assumed to be of a BCC structure [63], 

while austenite is assumed to be a FCC structure. The BCC crystalline is assumed to have 24 slip 

systems active and that slip system activity is independent of temperature. This naturally imposes 

a limitation where additional slip systems are active at elevated temperatures [137]. The orientation 

relationship between parent phase and transformed martensite is assumed to follow a single variant 

of the Bain relationship. 
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From a modeling perspective, the framework uses a Taylor-type polycrystal plasticity model 

for simulating an RVE. The transformation criterion is inspired by that of Kim et al. [163], however 

it has been modified as a stress based transformation criterion to suit the nature of a Taylor-type 

model. The transformation from austenite to martensite is assumed to occur instantaneously, and 

that accumulated slip during austenite deformation has no effect on martensite deformation. From 

an experimental data perspective, the microstructure, stress strain curve and the volume fraction 

data are provided by Kim et al. [163]. It is also assumed that the experiments were carried out in 

isothermal conditions, such that little to no heat generation from plastic work or latent heating 

occurs; therefore, thermal effects are not considered. 
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4 CONSTITUTIVE MODELING 

In this thesis, the crystal plasticity constitutive formulation developed by Asaro and 

Needleman [111] and used by Inal et al. [127] is employed with power law hardening to model 

the polycrystalline behaviour of distinct steel microstructures. 

4.1 Single Crystal Plasticity Model 

The deformation gradient tensor, 𝑭, is defined as 

 𝐹no =
𝑑𝑥n
𝑑𝑋o

 ( 4.1 ) 

where 𝑥n is the current material point location in space and 𝑋o is the initial material point location 

in space. Deformation of the crystal are caused by crystallographic slip, through dislocation motion 

on active slip systems, and elastic lattice distortion and rigid body rotations of the lattice. As such 

these deformations can be obtained through polar decomposition of the deformation gradient 

 𝑭 = 𝑭∗𝑭� ( 4.2 ) 

where 𝑭�, accounts for crystallographic slip and 𝑭∗, accounts for rigid body rotations and elastic 

deformation. The graphical representation of the total deformation gradient decomposition is 

shown in Figure 21. 

 

Figure 21: Decomposition of the total deformation tensor F 
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The vectors 𝒔(𝜶) and 𝒎(𝜶) are regarded as lattice vectors such that they stretch and rotate by 

 𝒔∗	(𝜶) = 𝑭∗𝒔(𝜶), 𝒎∗	(𝜶) = 𝒎(𝜶)𝑭∗Ë𝟏 ( 4.3 ) 

The spatial gradient of velocity 𝑳 is written as 

 𝑳 = 𝑭𝑭ËI = 𝑳∗ + 𝑳� ( 4.4 ) 

where 𝑳�, accounts for crystallographic slip and component 𝑳∗, accounts for rigid body rotations 

and elastic deformation. Each component is respectively defined as 

 𝑳∗ = 𝑭∗𝑭∗ËI, 𝑳� = 𝑭∗(𝑭�𝑭�ËI)𝑭∗ËI ( 4.5 ) 

The symmetric strain rate tensor, 𝑫, and skew symmetric spin tensor, 𝑾, can be obtained from the 

velocity gradient  

 𝑳 = 𝑫 +𝑾 ( 4.6 ) 

where 

 𝑫 =
1
2 𝑳 + 𝑳� , 𝑾 =

1
2 𝑳 − 𝑳�  ( 4.7 ) 

Isolation of the elastic and plastic components produces the following 

 𝑫 = 𝑫∗ + 𝑫�, 𝑾 = 𝑾∗ +𝑾𝑷 ( 4.8 ) 

The plastic component of the strain-rate and spin for the crystal can be respectively written as 

 𝑫� = 𝑷(𝜶)
R

𝛾(𝜶),				𝑾� = 𝑾(R)𝛾(𝜶)
R

 ( 4.9 ) 

where 𝛾(𝜶) is the shear rate on each slip system 𝛼. The expansion of the symmetric and skew-

symmetric tensors for each slip system 𝛼 are written as 

 𝑷(𝜶) =
1
2 𝒔∗	(𝜶) ⊗𝒎∗	(𝜶) + 𝒎∗	(𝜶) ⊗ 𝒔∗	(𝜶)  ( 4.10 ) 

 𝑾(𝜶) =
𝟏
𝟐 𝒔∗	(𝜶) ⊗𝒎∗	(𝜶) − 𝒎∗	(𝜶) ⊗ 𝒔∗	(𝜶) 	 ( 4.11 ) 

The rate dependent elastic constitutive equation for a crystal is formulated as 
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 	Ð∗
∇ = 𝜏 −𝑾∗𝜏 + 𝜏𝑾∗ = 𝕃𝒆𝒍𝑫∗ ( 4.12 ) 

where 𝜏 is the Kirchoff Stress,	Ð∗
∇  is the Jaumann rate of Kirchoff Stress on the crystal lattice 

coordinate system, and 𝕃𝒆𝒍 is the rotated elastic moduli tensor. 𝕃𝒆𝒍 is rotated from the 4th order 

elastic moduli tensor 𝕃 by the crystal orientation. 

 𝕃𝒆𝒍 = 𝑸	𝑸	𝕃	𝑸𝑻𝑸𝑻 ( 4.13 ) 

Cauchy stress can be related to Kirchoff stress through 

 𝝈 = det	(𝑭)ËI𝝉 ( 4.14 ) 

The constitutive Equation 4.12 can be rewritten in terms of the Jaumann rate of Cauchy stress 

through  

 	𝝈∇ = 𝕃𝒆𝒍𝑫 − 𝝈O − 𝝈𝒕𝒓𝑫 ( 4.15 ) 

where 𝝈O is the visco-plastic stress rate which is defined as 

 𝝈O = 𝑹(𝜶)𝛾(𝜶)
𝜶

 ( 4.16 ) 

 

based on the continuum slip 𝑾(𝜶), a second-order tensor 𝑹(𝜶) for each slip system is defined as 

follows 

 𝑹(𝜶) = 𝕃𝒆𝒍𝑷(𝜶) +𝑾(𝜶)𝝈 − 𝝈𝑾(𝜶) ( 4.17 ) 

The slip rates are used as inputs to equation 4.12 which are formulated in the framework of the 

power-law relation show below 

 
𝛾(𝜶) = 𝛾𝟎𝑠𝑔𝑛 𝝉(𝜶)

𝝉(𝜶)

𝒈(𝜶)

I
�

 
( 4.18 ) 

𝛾𝟎 is a reference shear rate (taken to be the same for all the slip systems), 𝑚 is the strain-rate 

sensitivity exponent, 𝝉(𝜶) is the resolved shear stresses and 𝒈(𝜶) is the hardness of each slip system. 

The resolved shear stresses on each slip system 𝝉(𝜶), is calculated using Schmid’s Law [110]. 

 𝝉(𝜶) = 𝑷(𝜶): 𝝈 ( 4.19 ) 

The rate of hardness increase of a crystal evolves based on 𝒈(𝜶) which is defined by the hardening 

law 
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 𝒈(𝜶) = ℎ(RÝ) 𝛾(𝜷)
𝜷

 ( 4.20 ) 

where ℎ(RÝ) are the hardening moduli. Asaro and Needleman [111] proposed that the hardening 

moduli be defined as 

 ℎ(RÝ) = 𝑞(RÝ)ℎ(Ý)   (no sum on 𝛽) ( 4.21 ) 

where ℎ(Ý) is the hardening rate on a single slip system, and 𝑞(RÝ) is a matrix that relates the latent 

hardening matrix of a slip system to the self-hardening rate. For a FCC crystal, the latent hardening 

matrix, 𝑞(RÝ)àáá , is defined as 

 𝑞(RÝ)àáá =

𝐴 𝑞𝐴 𝑞𝐴 𝑞𝐴
𝑞𝐴 𝐴 𝑞𝐴 𝑞𝐴
𝑞𝐴 𝑞𝐴 𝐴 𝑞𝐴
𝑞𝐴 𝑞𝐴 𝑞𝐴 𝐴

 ( 4.22 ) 

𝐴 is a 3 x 3 unity matrix, and 𝑞 is the latent hardening coefficient. In the above, slip systems {1,2,3} 

are coplanar, as are systems {4,5,6}, {7,8,9}, and {10,11,12}. Thus, the ratio of the latent-

hardening rate to the self-hardening rate for coplanar systems are taken as unity. For a BCC crystal, 

the slip systems {1,2}, {3,4}, {5,6}, {7,8}, {9,10}, and {11,12} are coplanar while, slip systems 

13-24 are of independent slip planes. Thus, the latent hardening matrix for a BCC crystal, 𝑞(RÝ)âáá , 

is defined as 

 𝑞(RÝ)âáá =

𝐵 𝑞𝐵 𝑞𝐵 𝑞𝐵 𝑞𝐵 𝑞𝐵 … 	
𝑞𝐵 𝐵 𝑞𝐵 𝑞𝐵 𝑞𝐵 𝑞𝐵 	 	
𝑞𝐵 𝑞𝐵 𝐵 𝑞𝐵 𝑞𝐵 𝑞𝐵 	 	
𝑞𝐵 𝑞𝐵 𝑞𝐵 𝐵 𝑞𝐵 𝑞𝐵 	 𝑞𝐶
𝑞𝐵 𝑞𝐵 𝑞𝐵 𝑞𝐵 𝐵 𝑞𝐵 	 	
𝑞𝐵 𝑞𝐵 𝑞𝐵 𝑞𝐵 𝑞𝐵 𝐵 	 	
… 	 	 	 	 	 … 	
	 	 	 𝑞𝐶 	 	 	 𝐶

 ( 4.23 ) 

where 𝐵 is a 2 x 2 unity matrix and 𝐶 is a 12 x 12 unity matrix. 

Many single crystal hardening models exist in literature, such as the models proposed by 

Peirce et al. [204], Anand et al. [205] [126], Chang-Asaro [206] and Bassani and Wu [207]. In 

this work, the power law hardening model [126] is used to describe the polycrystalline behaviour 

because of its accepted practice in modeling iron based crystals. The power law hardening model 

is 
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 ℎ(Ý) = ℎO
ℎO𝛾x
𝜏O𝑛

+ 1
yËI

 ( 4.24 ) 

where ℎO is the initial hardening rate of the system, 𝜏O is the initial critically resolved shear stress, 

𝑛 is the crystal hardening exponent and 𝛾x is the total accumulated slip defined by 

 𝛾x = 𝛾(𝜶) 	𝑑𝑡
	

R

�

O

 ( 4.25 ) 

 

4.2 Transformation	Criteria	

Martensite transformation is modeled to occur at the intersection of shear fault bands, the 

method is similar to that employed by Kim et al. [163], however instead of using an energy based 

term, the fault band shear stress triggers the proposed transformation criterion. An instance of 

transformation occurs when the resolved shear stress on two or more of the twelve habit plane 

systems exceeds the transformation threshold, Γ�·, defined as 

 Γ�· = 𝐶�I + 𝐶�L ∙ Γx�� 
( 4.26 ) 

where 𝐶�I, 𝐶�L are material parameters, and Γx�� is the accumulated shear of the crystal. The 

accumulated slip Γx��, is the integration of the summation of the shear rates over time 

 Γx�� = 𝛾(𝜶)
|

R

�

O

𝑑𝑡 ( 4.27 ) 

Similarly, the resolved shear stress is calculated on each of the fault band systems, 𝛼, using 

Schmid’s Law (equation 4.19) for every austenite crystal. 

 𝝉𝑯𝑷	(R) = 𝑷𝑯𝑷	(R): 𝝈 ( 4.28 ) 

where 𝑷𝑯𝑷	(R) is calculated on the habit plane indices. When two or more components of 𝝉𝑯𝑷	(R) 

exceeds that of Γ�· transformation is modelled to take place. 
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4.3 Numerical	Implementation	

This chapter presents the numerical integration scheme of the crystal plasticity framework 

with martensitic transformation. The tangent modulus for rate dependent solids, known as the rate-

tangent modulus method, developed by Peirce et al. [208] [209] is used for integrating the 

accumulated shear strain for every single crystal. A first order forward Euler method is used for 

stress integration of each crystal with Taylor-averaging for the polycrystal response. The 

formulation assumes planar loading conditions (𝜎FF = ∆𝜎FF = 0) and prescribed proportional in-

plane strain increments (𝜌 = ∆𝐷LL/∆𝐷II). By solving a system of equations for mixed boundary 

conditions, the through thickness strain increment, ∆𝐷FF, is determined at each iteration. After 

calculating stress for each crystal, FCC austenite crystals that satisfy the transformation criteria 

are transformed and mapped to a single BCC martensite crystals. The following presents the details 

for this implementation.  

4.3.1 Rate Tangent Formulation 

The slip system shear strain increment, ∆𝛾�
R , on an individual slip system, 𝛼, at time 𝑡 is 

given by 

 ∆𝛾�
R = 𝛾�åI

R − 𝛾�
R  ( 4.29 ) 

and a linear interpolation is employed within the time increment to give 

 ∆𝛾�
R = 1 − 𝜃 𝛾�

R + 𝜃𝛾�åI
R ∆𝑡 ( 4.30 ) 

where ∆𝑡 is the time increment, 𝜃 ∈ [0, 1] such that 𝜃 = 0 corresponds to Euler’s first order 

forward method, 𝜃 = 1	corresponds to Euler’s first order backwards method, and 𝜃 = 0.5 

corresponds to a second order semi-implicit method. The instantaneous slip rate, 𝛾�
R , is calculated 

as 

 𝛾�
R = 𝛾O𝑠𝑔𝑛 𝜏�

R 𝜏�
R

𝑔�
R

I/�

 ( 4.31 ) 

Using a first order Taylor series expansion, the instantaneous slip rate at the next time increment, 

𝛾�å∆�
R  
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 𝛾�åI
R = 𝛾�

R +
𝜕𝛾(R)

𝜕𝜏(R) �
∆𝜏�

R +
𝜕𝛾(R)

𝜕𝑔(R) �
∆𝑔�

R  ( 4.32 ) 

where ∆𝜏�
R = 𝜏�

R ∆𝑡 and ∆𝑔�
R = 𝑔�

R ∆𝑡. Substituting the constitutive equations and Equations 

4.31 - 4.32 into equation 4.30, the slip system shear strain increment, ∆𝛾�
R  can be expressed as 

 ∆𝛾�
R = 𝑓(R) + Ϝ�

(R): 𝑫 ∆𝑡 ( 4.33 ) 

where  

 𝑓�
(R) = 𝕄RÝ𝛾�

(R),			
	

Ý

	Ϝ�
(R) = 𝕄RÝ𝑸�

(R),
	

Ý

		𝑸�
(R) =

𝜃	∆𝑡	𝛾�
(R)

𝑚𝜏�
R 𝑹�

(R) ( 4.34 ) 

where 𝛽 indexes over the number of slip systems. Here, 𝕄 is the inverse of ℕ formulated as 

 ℕRÝ = 𝛿RÝ +
𝜃∆𝑡	𝛾�

(R)

𝑚 	
𝑹�
(R): 𝑷�

(R)

𝜏�
R 	+ 𝑠𝑔𝑛 𝜏�

R ℎ�	(RÝ)	

𝑔�
R  ( 4.35 ) 

where 𝜹 is the identity matrix and ℎ�	(RÝ) is the hardening matrix at time, t. Thus, the elastic-plastic 

tangent modulus, 𝕃�
z�, can be calculated as 

 𝕃�
z� = 𝕃�z� − 𝑹�

(R)⨂	Ϝ�
(R)

	

R

 ( 4.36 ) 

and the increment in viscoplastic stress, ∆𝝈𝒕𝟎, is  

 ∆𝝈𝒕𝟎 = 𝑹�
(R)	𝑓�

(R)∆𝑡
	

R

 ( 4.37 ) 

4.3.2 Polycrystal Taylor Averaging, Stress Formulation and Boundary Conditions  

The macroscopic strain of the polycrystal is imposed on the microscale onto every 

individual crystal. The strain tensor is dependent on the imposed loading condition. 

 𝜀(ê) = 𝜀 → 𝚫𝑫𝒕å𝟏
(𝒌) = 𝚫𝑫𝒕å𝟏

	  ( 4.38 ) 

where 𝑘 is an individual crystal. The stress of the polycrystal aggregate, 𝛔𝒕, is the average of all 

individual crystal stresses  
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𝛔𝒕 =

1
𝑁 𝛔𝒕

(ê)
|

êZI

 ( 4.39 ) 

Similarly, the polycrystal aggregated viscoplastic stress increment, ∆𝝈𝒕𝟎 

 

 
∆𝝈𝒕𝟎 =

1
𝑁 ∆𝝈𝒕

𝟎	(ê)
|

êZI

 ( 4.40 ) 

 and the aggregated elastic-plastic tangent modulus, 𝕃�
z� 

 

 
𝕃�
z� =

1
𝑁 𝕃�

z�	(ê)
|

êZI

 ( 4.41 ) 

The formulation assumes incremental planar loading conditions (∆𝜎FF = 0) and prescribed 

proportional in-plane strain increments (𝜌 = ∆𝐷LL/∆𝐷II) on the aggregated polycrystal. 

Transverse shear strains are also constrained (Δ𝐷IF = Δ𝐷LF = 0). By solving a system of 

equations for mixed boundary conditions, the through thickness strain increment, ∆𝐷FF, is 

determined at each iteration. Using a forward Euler scheme, the Cauchy stress state of the 

aggregated polycrystal is calculated at the next increment in time as 

𝚫𝛔𝐭 = 𝛔𝒕å𝟏 − 𝛔𝒕
= 𝕃�

z�: 𝚫𝑫𝒕å𝟏 − ∆𝝈𝒕𝟎 + 𝚫𝑾𝒕å𝟏: 𝛔𝒕 − 𝛔𝒕: 𝚫𝑾𝒕å𝟏 − 𝛔𝐭tr 𝚫𝐃𝐭å𝟏  
( 4.42 ) 

For a plane stress formulation, 𝜎FF = ∆𝜎FF = 0, can be expressed as 

 ΔσFF,� = 𝕃FFê�,�
z� : Δ𝐷ê�,�åI − ∆𝜎FF,�O = 0 ( 4.43 ) 

leading to 

 Δ𝐷FF,�åI =
∆𝜎FF,�O

𝕃FFFF,�
z� −

𝕃FFII,�
z�

𝕃FFFF,�
z� Δ𝐷II,�åI −

𝕃FFLL,�
z�

𝕃FFFF,�
z� Δ𝐷LL,�åI − 2

𝕃FFIL,�
z�

𝕃FFFF,�
z� Δ𝐷IL,�åI ( 4.44 ) 

The increment of stress for each crystal is then calculated as 

∆𝛔𝒕
(ê) = 𝕃�

z�	(ê): 𝚫𝑫𝒕å𝟏 − ∆𝝈𝒕
𝟎	(ê) + 𝚫𝑾𝒕å𝟏: 𝛔𝒕

(ê) − 𝛔𝒕
(ê): 𝚫𝑾𝒕å𝟏

− 𝛔𝒕
(ê)tr 𝚫𝐃𝐭å𝟏  

( 4.45 ) 

and the stress of each crystal at the next time increment is 
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 𝛔𝒕å𝟏
(ê) = 𝛔𝒕

(ê) + ∆𝛔𝒕
(ê) ( 4.46 ) 

4.3.3 Orientation Update for a Crystal 

The orientation tensor, 𝓠�
ê , is initialized by three Bunge Euler angles 𝜙I,Φ, 𝜙L . A first 

order incremental scheme is used to update the slip normal and vectors, spin tensor, orientation 

tensor of the crystal. The increment in plastic spin, ∆𝑾�åI
� , is calculated as  

 ∆𝑾�åI
� = 𝑾�

(R)
	

R

	∆𝛾�
R  ( 4.47 ) 

The increment in elastic spin, ∆𝑾�åI
∗ , is used to calculate the new orientation matrix 

 ∆𝑾�åI
∗ = ∆𝑾�åI − ∆𝑾�åI

�  ( 4.48 ) 

where the orientation is updated accordingly 

 𝓠�åI	 = 𝑰 + ∆𝑾�åI
∗ 𝓠�	  ( 4.49 ) 

 Similarly, a first order incremental scheme is used to update the slip system normal and 

vectors. The increment in the plastic deformation gradient is calculated as 

 ∆𝑭�åI� = 𝑰 + 𝑷�
(R) +𝑾�

(R)
	

R

	∆𝛾�
R  ( 4.50 ) 

and the increment in the elastic deformation is 

 ∆𝑭�åI∗ = 𝑰 + ∆𝑫�åI + ∆𝑾�åI − 𝑷�
(R) +𝑾�

(R)
	

R

	∆𝛾�
R  ( 4.51 ) 

Finally, the crystal slip planes and slip vectors are updated 

 𝒔𝒕å𝟏
∗	(R) = ∆𝑭�åI∗ 𝒔𝒕

∗	(R),			𝒎𝒕å𝟏
∗	(R) = 𝒎𝒕

∗	(R)∆𝑭�åI∗ËI ( 4.52 ) 
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4.3.4 Transformation Criteria 

The transformation threshold is calculated at the end of each increment for each FCC 

austenite crystal 

 Γ�åI�· = 𝐶�I + 𝐶�L ∙ Γ�åIx�� ( 4.53 ) 

where the total accumulated slip 

 Γ�åIx�� = 𝛾�åI
R

	

R

 ( 4.54 ) 

The resolved shear stress on the 12-fault band normal and vectors are calculated using the current 

stress state where 

 𝑷𝒕å𝟏
𝑯𝑷	 R =

1
2 𝒔𝒕å𝟏

ó�	 R ⨂𝒎𝒕å𝟏
ó�	 R +𝒎𝒕å𝟏

ó�	 R ⨂𝒔𝒕å𝟏
ó�	 R  ( 4.55 ) 

and 

 𝝉𝒕å𝟏
𝑯𝑷	 R = 𝑷𝒕å𝟏

𝑯𝑷	 R : 𝝈𝒕å𝟏 ( 4.56 ) 

In a similar manner to updating the crystal lattice, the fault band normal and vectors are updated 

as 

 𝒔𝒕å𝟏
ó�	(R) = ∆𝑭�åI∗ 𝒔𝒕

ó�	(R),			𝒎𝒕å𝟏
ó�	(R) = 𝒎𝒕

ó�	(R)∆𝑭�åI∗ËI ( 4.57 ) 

When two or more fault bands exceed the transformation threshold (representing an intersection 

of fault bands) 

 𝝉�åI
ó�	 R ≥ Γ�åI�·  ( 4.58 ) 

the austenite crystal is transformed to martensite. Following the Bain orientation relationship, the 

newly formed BCC crystal lattice is rotated about the < 001 > crystal axis by 45° that follows 

the single variant Bain relationship, such that 

 𝓠𝒕𝒓𝒂𝒏𝒔 = 𝓠�åI	 (𝜙I + 45°,Φ, 𝜙L) ( 4.59 ) 

and the orientation of the BCC slip systems 𝒔𝟎𝑩𝑪𝑪 replace the FCC slip systems, 𝒔𝒕å𝟏∗	𝑭𝑪𝑪 such that 
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 𝒔𝒕å𝟏∗ = 𝓠𝒕𝒓𝒂𝒏𝒔𝒔𝟎𝑩𝑪𝑪 ( 4.60 ) 

Finally, the power-law hardening parameters of martensite are mapped over to replace the 

austenite parameters ℎO
U, 𝜏O

U, 𝑛U → ℎOR
S, 𝜏OR

S, 𝑛RS  and the accumulated shear on each slip is 

reinitialized 

 𝛾�åI
R = 0 ( 4.61 ) 

4.3.5 Polycrystal Stress Integration Algorithm with Transformation Effects 

The steps in the integration of stress for the polycrystal response with transformation effects 

are as follows: 

(1) Subroutine entry of polycrystal with known values of 𝛔𝒕, 𝛔𝒕
(ê), 𝒔𝒕

∗	(ê), 𝒎𝒕
∗	(ê), 𝜸�

ê , 𝒈�
ê , 

𝓠�
ê , ∆𝐷II,�åI, ∆𝐷LL,�åI, ∆𝐷IL,�åI, ∆𝑾�åI, ∆𝑡�åI, 𝒔𝒕

ó�	(R)	and		𝒎𝒕å𝟏
ó�	(R) (if applicable)	

(2) Calculate the crystal elastic-plastic and viscoplastic stress tensors for all crystals 

i. Initialize index for grains 𝑘 = 1 

ii. Calculate the rotated crystal elasticity tensor for the crystal 

𝕃�z� = 𝓠�
ê 𝓠�

ê 𝕃	𝓠�
𝑻	 ê 𝓠�

𝑻	 ê   

iii. Calculate the symmetric and anti-symmetric plastic slip tensors 

𝑷�
(R) =

1
2 𝒔𝒕

∗	 ê,R ⨂𝒎𝒕
∗	 ê,R + 𝒎𝒕

∗	 ê,R ⨂𝒔𝒕
∗	 ê,R  Symmetric Slip Tensor 

𝑾�
(R) =

1
2 𝒔𝒕

∗	 ê,R ⨂	𝒎𝒕
∗	 ê,R + 𝒎𝒕

∗	 ê,R ⨂	𝒔𝒕
∗	 ê,R  Anti-symmetric Slip Tensor 

iv. Calculate resolved shear stress on each slip system 

𝜏�
R = 𝑷�

(R): 𝛔𝒕
(ê)  

v. Calculate the instantaneous shear rate 

𝛾�
R = 𝛾O𝑠𝑔𝑛 𝜏�

R 𝜏�
R

𝑔�
ê,R

I/�

  

vi. Calculate the second order tensor, 𝑹�
(R) 
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𝑹�
(R) = 𝕃�z�: 𝑷�

(R) +𝑾�
(R)𝛔𝒕

(ê) − 𝛔𝒕
(ê)𝑾�

(R)  

vii. Calculate the hardening modulus matrix based on the crystal structure 

ℎ(Ý) = ℎO
ℎO𝜸�

Ý,ê

𝜏O𝑛
+ 1

yËI

  

ℎ�	(RÝ)
(ê) = 𝑞(RÝ)ℎ(Ý)  

viii. Calculate the rate-tangent modulus matrices 

ℕRÝ = 𝛿RÝ +
𝜃∆𝑡	𝛾�

(R)

𝑚 	
𝑹�
(R): 𝑷�

(R)

𝜏�
R 	+ 𝑠𝑔𝑛 𝜏�

R ℎ�	(RÝ)
(ê) 	

𝑔�
R   

ℕ = 𝕄Ë𝟏  

𝑸�
(R) =

𝜃	∆𝑡	𝛾�
(R)

𝑚𝜏�
R 𝑹�

(R)  

𝑓�
(ê,R) = 𝕄RÝ𝛾�

(R)
	

Ý

  

Ϝ�
(ê,R) = 𝕄RÝ𝑸�

(R)	
	

Ý

  

ix. Calculate the elastic-plastic and viscoplastic stress tensors 

𝕃�
z�	(ê) = 𝕃�z� − 𝑹�

(R)⨂	Ϝ�
(R)

	

R

 Elastic-plastic tensor 

∆𝝈𝒕
𝟎	(ê) = 𝑹�

(R)	𝑓�
(R)∆𝑡�åI

	

R

 Viscoplastic stress tensor 

x. IF  𝑘 < number of grains, 𝑘 = 𝑘 + 1 and GO TO Step ii 

(3) Solve the boundary conditions for plane stress condition 

i. Calculate the aggregated elastic-plastic stress increment 

𝕃�
z� =

1
𝑁 𝕃�

z�	(ê)
|

êZI

  

ii. Calculate the aggregated viscoplastic stress increment 
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∆𝝈𝒕𝟎 =
1
𝑁 ∆𝝈𝒕

𝟎	(ê)
|

êZI

  

iii. Calculate the through thickness strain increment 

Δ𝐷FF,�åI =
∆𝜎FF,�O

𝕃FFFF,�
z� −

𝕃FFII,�
z�

𝕃FFFF,�
z� Δ𝐷II,�åI −

𝕃FFLL,�
z�

𝕃FFFF,�
z� Δ𝐷LL,�åI − 2

𝕃FFIL,�
z�

𝕃FFFF,�
z� Δ𝐷IL,�åI 

(4) Update the stress, orientation and accumulated slip of each crystal 

i. Initialize index for grains 𝑘 = 1 

ii. Calculate the slip on each slip system for the next increment 

∆𝛾�
ê,R = 𝑓�

(ê,R)∆𝑡�åI + Ϝ�
(ê,R): ∆𝑫𝒕å𝟏	  

𝛾�åI
ê,R = 𝛾�

ê,R + ∆𝛾�
ê,R   

iii. Calculate the hardness of each slip system for the next increment 

∆𝑔�
ê,R = ℎ�	(RÝ)

(ê)
	

Ý

	∆𝛾�
ê,Ý   

𝑔�åI
ê,R = 𝑔�

ê,R + ∆𝑔�
ê,R   

iv. Compute the orientation matrix for the next increment 

∆𝑾�åI
� = 𝑾�

(R)
	

R

	∆𝛾�
ê,R  Plastic spin increment 

∆𝑾�åI
∗ = ∆𝑾�åI − ∆𝑾�åI

�  Elastic spin increment 

𝓠�åI
ê = 𝑰 + ∆𝑾�åI

∗ 𝓠�
ê   

 

v. Update the crystal lattice slip normal and vectors 

∆𝑭�åI
�	(ê) = 𝑰 + 𝑷�

(ê,R) +𝑾�
(ê,R)

	

R

	∆𝛾�
ê,R  Plastic deformation 

increment 

∆𝑭�åI
∗(ê) = 𝑰 + ∆𝑫�åI + ∆𝑾�åI

− 𝑷�
(ú,R) +𝑾�

(ú,R)
	

R

	∆𝛾�
ê,R  

Elastic deformation 
increment 

𝒔𝒕å𝟏
∗	(ê) = ∆𝑭�åI

∗(ê)𝒔𝒕
∗	(ê)  

𝒎𝒕å𝟏
∗	(ê) = 𝒎𝒕

∗	(ê) ∆𝑭�åI
∗(ê) ËI

  

vi. Update the stress for each crystal 
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∆𝛔𝒕
(ê) = 𝕃�

z�	(ê): 𝚫𝑫𝒕å𝟏 − ∆𝝈𝒕
𝟎	 ê + 𝚫𝑾𝒕å𝟏: 𝛔𝒕

ê − 𝛔𝒕
ê : 𝚫𝑾𝒕å𝟏 − 𝛔𝒕

ê tr 𝚫𝐃𝐭å𝟏 	 

𝛔𝒕å𝟏
(ê) = 𝛔𝒕

(ê) + ∆𝛔𝒕
(ê) 

vii. IF  𝑘 < number of grains, 𝑘 = 𝑘 + 1 and GO TO Step ii 

(5) Apply transformation criteria to austenite crystals 

i. Initialize index for grains 𝑘 = 1 

ii. IF NOT AN AUSTENITE CRYSTAL, GO TO Step viii 

iii. Update the habit plane slip normal and vectors 

𝒔𝒕å𝟏
ó�	(ê,R) = ∆𝑭�åI

∗(ê)𝒔𝒕
ó�	(ê,R)  

𝒎𝒕å𝟏
ó�	(ê,R) = 𝒎𝒕

ó�	(ê) ∆𝑭�åI
∗(ê,R) ËI

  

iv. Calculate the resolved shear stress on the habit planes 

𝝉𝒕å𝟏
𝑯𝑷	 ê,R = 𝑷𝒕å𝟏

𝑯𝑷	 ê,R : 𝛔𝒕å𝟏
(ê)   

v. Calculate the transformation criteria 

Γ�åI
x��	(ê) = 𝛾�åI

ê,R
	

R

 The accumulated slip on all slip systems 

Γ�åI
�·	(ê) = 𝐶�I + 𝐶�L ∙ Γ�åI

x��	(ê)  

vi. IF two habit planes satisfy 𝝉�åI
ó�	 ê,R ≥ Γ�åI

�·	(ê) CONTINUE 

ELSE GO TO Step viii 

vii. Transform austenite crystal to martensite crystal 

𝓠�åI	 = 𝓠𝒕𝒓𝒂𝒏𝒔 = 𝓠�åI	 (𝜙I + 45°,Φ, 𝜙L) Rotate crystal according to Bain 

orientation 

𝒔𝒕å𝟏∗ = 𝓠�åI	 𝒔𝟎𝑩𝑪𝑪 Map orientation to BCC crystal 

ℎO
U, 𝜏O

U, 𝑛U → ℎOR
S, 𝜏OR

S, 𝑛RS Change hardening parameters 

𝛾�åI
ê,R = 0 Reset accumulated shear on slip systems 

viii. IF  𝑘 < number of grains, 𝑘 = 𝑘 + 1 and GO TO Step ii 

(6) Update the aggregated stress of the polycrystal 

𝛔𝒕å𝟏 =
1
𝑁 𝛔𝒕å𝟏

(ê)
|

êZI
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5 FORMING LIMIT CALCULATIONS 

The framework for crystal plasticity MK analysis is developed by Wu et al. [198], and used 

by Inal et al. [118] is employed in this thesis. Figure 22 presents a schematic of the theoretical 

model used in the MK framework. The theoretical model assumes a smooth continuous variation 

in the thickness region of sheet material called a band, "𝑏". This band is oriented at an angle, ΨO, 

concerning the principal axis with an initial thickness, 𝑡O�. The region outside of the band, known 

hereon as region, "𝑎", is assumed to have initial uniform thickness, 𝑡Ox.  

 
Figure 22: Geometrical model of the Marciniak-Kuczynski theory [45] 

The initial imperfection parameter, 𝑓, which is known as the coefficient of geometrical non-

homogeneity, is the ratio of band thickness 	 � and the bulk material 	 x is defined  

 𝑓 =
𝑡O�

𝑡Ox
	 ( 5.1 ) 

Deformation is imposed on the edges of the sheet, such that 

 ÿ!!
ÿ""

= À!!
À""

= 𝜌 = 𝑐𝑜𝑛𝑠𝑡, 𝐷IL = 0, 𝑊IL = 0,	 ( 5.2 ) 

where 𝜀LL ≡ 𝐷LL and 𝜀II ≡ 𝐷II are the principal logarithmic strain rates, 𝜌 is the strain 

proportionality constant and 𝑊no are components of the spin tensor. Additionally, 𝐷IF = 𝐷LF =

𝑊IF =𝑊LF = 0 is assumed, while 𝐷FF is determined by the plane stress condition (𝜎FF = 0). The 

evolution of the current groove orientation, Ψ, is given by 

 tan	Ψ = exp 1 − 𝜌 𝜀II tan	ΨO	 ( 5.3 ) 

Apart from the necessary conditions at the band interface, uniform deformations are assumed both 

inside and outside the band, equilibrium and compatibility inside and outside the band are 
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automatically satisfied. Following Hutchinson and Neale [184] [185], the compatibility condition 

at the band interface is given in terms of the velocity gradient differences inside and outside the 

band are defined as 

 𝑳RÝ� = 𝑳RÝ + 𝑐R𝑛Ý	 ( 5.4 ) 

with the symmetric and skew-symmetric components of the velocity gradient in the band are 

 𝐷RÝ� = 𝐷RÝ +
1
2 𝑐R𝑛Ý + 𝑛R𝑐Ý , 𝑊RÝ

� =𝑊RÝ +
1
2 𝑐R𝑛Ý − 𝑛R𝑐Ý  ( 5.5 ) 

where 𝑐R values are the parameters to be determined, and 𝑛R are components of the unit normal 

vectors to the band orientation given as 

 𝑛I = cosΨ , 𝑛L = sinΨ ( 5.6 ) 

Force equilibrium is established inside and outside of the band by 

 𝑛R�𝜎RÝ� 𝑡� = 𝑛Rx𝜎RÝx 𝑡x ( 5.7 ) 

As outlined in Wu et al. [198], substituting the incremental form of the constitutive relation 

(Section 4) into the incremental form of the force equilibrium (Equation 4.35) with plane stress 

(𝜎FF = 0) leads to three algebraic equations for solving 𝑐I, 𝑐L and 𝐷FF� . The elastic-viscoplastic 

crystal plasticity formulation is then used to calculate the corresponding moduli, 𝕃, and 

viscoplastic stress rates, 𝜎O inside and outside the band. Henceforth, the rates 𝑐R, or 𝐷RÝ�  and 𝐷FF�  

inside the band are directly calculated by solving the three above-mentioned algebraic equations. 

Finally, the sheet thickness inside and outside the band are updated according to 

 𝑡x = 𝐷FF𝑡x, 𝑡� = 𝐷FF� 𝑡� ( 5.8 ) 

The next increment in time is established by the implementation of a one-step explicit rate-tangent 

method outlined in Section 4.3. Furthermore, the method of adaptive time-stepping developed by 

Van der Giessen and Neale [210] is incorporated for computational efficiency. According to 

Hutchinson and Neale [184], the onset of localized sheet necking is defined by the ratio of the in-

band and out-of-band region exceeding 𝜀FF� /𝜀FF ≥ 10�. 
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6 MATERIAL CHARACTERIZATION & CALIBRATION 

The proposed crystallographic transformation model is calibrated to experimental 

measurements presented in Kim et al. [163] of a duplex stainless TRIP assisted steel. Table 7 

presents the chemical composition of the DSS used in this study. This particular alloy was 

developed to provide stress corrosion cracking resistance and high strength, achieved by a 

microstructure phase combination of austenite, ferrite and TRIP effect. The DSS consists of 65% 

ferrite and 35% retained austenite by volume.  

Table 7: TR-DSS Chemical Composition [163] 

C Si Mn Cr Ni Mo Cu N Fe 
0.03 0.6 1.8 21.9 2.5 0.6 0.5 0.17 Remainder 

         

6.1 Texture Measurement 

The material’s initial microstructure (as presented in Kim et al. [163]) that is employed in 

this study was provided by Professor Shi-Hoon Choi from Sunchun National University in the 

Republic of Korea. Electron backscatter diffraction (EBSD) was used to obtain the crystal 

orientation and microstructure phase identification for the material for three sections: the rolling 

direction (RD), transverse direction (TD), and normal direction (ND). Figure 23 presents a 3D 

representation of the crystal orientations obtained from the EBSD of the different sections. Figure 

23 also presents the phase composition of the material. Figure 24 presents the corresponding 

orientation distribution function (ODF) for each EBSD section as presented in Kim et al. [163]. 



 
 

58 

 
Figure 23: EBSD scans of rolling direction, transverse direction and normal direction of crystal orientations and 

individual phase identification [163] 

 
Figure 24: 𝝍𝟐 = 𝟒𝟓° Orientation Distribution Functions (ODF) for ferrite and austenite phases of a). ND Section b). TD 

Section and c). RD Section [163] 

The provided crystal orientations were analyzed using TSL software [211] and MATLAB 

MTEX 4.5.0 analysis software [212] and compared with the original plots presented by Kim et al. 

[163]. It should be mentioned that the ODF plots presented by Kim et al. [163] utilized the TSL 

software. Figure 25 presents a comparison of the original ODF; the resampled ODF plotted by 

TSL and MTEX with good visual comparison. Minor differences in intensity and coloration are 

due to differences in software calculations of distribution functions necessary for approximation. 

The major texture components of the 𝛾- austenite phase can be identified as Copper ({112} <

111 >) and Brass ({110} < 112 >). The texture components of the 𝛼- ferrite phase is that of 

Rotated Cube ({100} < 110 >) and Goss ({110} < 001 >). 
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Figure 25: ODF generated by TSL vs resampled ODF generated by TSL vs resampled ODF generated by MTEX 

6.2 Model Calibration 

Table 8 presents a summary of the elasticity constants of 𝛼- ferrite and 𝛾- austenite used in the 

model as presented in Fréour et al. [213]. 𝛼′- Martensite uses the same elasticity constants as that 

of 𝛼- ferrite, due to crystal similarities. The calibration of the uniaxial tension data was treated as 

an error minimization exercise. Initially, transformation was turned off and ferrite and austenite 

response were fit to reduce the number of material parameter. This exclusion of the martensite 

elastic-plastic behavior focused on the elastic-plastic behavior of ferrite and austenite during the 

first 10% of deformation. Upon obtaining an initial reasonable fit (seen in Figure 26), the complete 

overall response with transformation was calibrated for the martensite elastic-plastic behavior and 

transformation parameters. The experimental stress strain curve was simultaneously fit with the 

volume fraction data to obtain martensite parameters and transformation parameters. Figure 27 

presents the resulting of the experimental and calibrated stress-strain curves.  Table 9 summarizes 

the calibrated individual phase parameters. Table 10 summarizes the transformation criteria 

parameters.  The experimental stress strain curve showed a maximum deviation of 32 MPa 

between 20-30% strain, an relative error of 3.6%. The experimental volume fraction of austenite 

and martensite also showed deviation of a maximum of 4% volume fraction to the calibrated curve 

at strain of 10%. However, subsequent experimental volume fraction data showed good agreement 

to the calibrated curve. 
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Table 8: Elastic properties of individual phases [213] 

Phase 𝑪𝟏𝟏 (GPa) 𝑪𝟏𝟐 (GPa) 𝑪𝟒𝟒 (GPa) 

Ferrite, 𝛼 231.4 134.7 116.4 

Martensite, 𝛼′ 231.4 134.7 116.4 

Austenite, 𝛾 197.5 124.5 122 

    
Table 9: Crystal plasticity material parameters for individual phases 

Phase 𝒉𝟎 𝒎 𝝉𝟎 𝒒 𝒏 
Ferrite, 𝛼 132 0.05 128 1.00 0.15 

Martensite, 𝛼′ 1000 0.05 230 1.00 0.22 

Austenite, 𝛾 95 0.05 95 1.00 0.16 
 

Table 10: Transformation criteria parameters 

𝑪𝒕𝟏 𝑪𝒕𝟐 

300 24 
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Figure 26: Experimental and calibrated uniaxial stress-strain curve and phase volume fractions without transformation 
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Figure 27: Experimental and calibrated uniaxial stress-strain curve and phase volume fractions with transformation 
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7 RESULTS & DISCUSSION 

This chapter presents the simulation results of single crystal, polycrystal, and forming limit 

diagrams for the TRIP-assisted DSS studied. A study on microstructure evolution and preferred 

transformation orientations is presented and discussed for various strain paths. Using the MK 

analysis with the proposed transformation framework, forming limit diagrams are simulated for 

the studied material. Lastly, the effect of transformation criterion on FLD is explored and discussed 

through a parametric study of 𝐶�I and 𝐶�L. 

7.1 Single Crystal Model 

To demonstrate the capability of the proposed crystal plasticity transformation framework, 

simulations of single crystals are performed under uniaxial tension along the RD.  Three 

simulations were performed and are outlined as follows: 

1) A non-transforming FCC crystal denoted as “FCC”. 

2) A non-transforming BCC crystal denoted as “BCC”. 

3) A transforming FCC to BCC crystal denoted as “Transform”. 

The FCC single crystal simulation used the material parameters (Table 9) for 𝛾- austenite, while 

the BCC single crystal used the material parameters for 𝛼′- martensite. A random orientation (𝜑I =

−98.26°,	Φ = 40.47°, 𝜑L = 86.37°) is used for each simulation. Figure 28 presents the stress-

strain curves of the single crystal simulations to highlight the effect of TRIP at a single crystal 

level. A significant difference is observed in the strength and hardening between the FCC and BCC 

crystal without transformation because of the difference in properties of the soft 𝛾- austenite and 

hard 𝛼′- martensite phase. Figure 28 also presents the {100} pole figure of the single crystal and 

the corresponding evolution of 𝜑I. The orientation of the non-transforming FCC and transforming 

FCC to BCC crystals are represented by blue and red lines respectively. The transforming FCC 

single crystal behaviour follows the FCC crystal behaviour, until a strain of 0.20 is reached where 

the stress-based transformation criteria is satisfied.  Once satisfied, an instanteous rotation of the 

crystal occurs according to the single variant Bain orientation.  The orientation slip systems and 

hardening parameters are changed from a FCC (anustenite) crystal to the BCC (martensite) crystal, 

and the accumulated shear is reset to zero.  This transformation can be seen in two ways: First, 
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there is a crystal rotation of 𝜑I + 45° at 0.20 strain.  Secondly, there is an initial elastic loading of 

the newly formed BCC crystal that converges to the stress level of a non-transforming BCC crystal 

upon further deformation.   

 

Figure 28: Uniaxial tension stress strain and texture evolution of a single crystal FCC, BCC and FCC>BCC 
transformation simulation 

7.2 Polycrystalline Model 

Polycrystalline simulations were performed using the DSS crystal texture, material 

parameters for individual phases and transformation criterion parameters presented in Chapter 6. 

Simulations of uniaxial tension, plane strain tension, and equi-biaxial tension and the resulting 

orientation distribution are presented and discussed. 

7.2.1 Uniaxial Tension (𝝆 = −𝟎. 𝟓) 

Two studies are performed to investigate the sensitivity of transformation due to the initial 

sheet orientation: uniaxial tension along the rolling direction (RD) and transverse direction. 

7.2.1.1 Uniaxial	Tension	along	the	Rolling	Direction	

Table 11 - Table 13 presents the simulated texture evolution of 𝛼- ferrite, 𝛾- austenite and 

𝛼′- martensite phases respectively at various strain level (0%, 10%, 20%, 30% and 40%) along the 

RD.  It should be mentioned that no figures are presented for 0% and 10% strain for martensite 
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because little to no martensite was generated at that time. Table 11 - Table 13 also presents the 

corresponding phase volume fraction at the different strain levels. The corresponding uniaxial 

tensile (UA) stress-strain response of the DSS in the RD was presented above in Figure 27.  The 

α- ferrite phase initially began with a noticeable rotated cube (φI = 0°,	Φ = 0°, φL = 45°) 

texture.  However, during deformation, the texture further strengthens to a rotated cube texture.  

At 40% strain, an additional weak pole began to evolve at (φI = 0°,	Φ = 70°, φL = 45°). 

 The 𝛾– austenite phase shows a weak texture of brass (𝜑I = 35°,	Φ = 45°, 𝜑L = 0°) and 

copper (𝜑I = 0°,	Φ = 35°, 𝜑L = 45°) initially. Before transformation occurs (~10% strain), 𝛾- 

austenite still exhibits a weak texture with the highest intensity at (𝜑I = 45°,	Φ = 90°, 𝜑L = 45°) 

due to texture evolution.  Once transformation occurs, the 𝛾– austenite and 𝛼′- martensite crystal 

volume content decreased and increased respectively during the deformation process due to 

transformation.  As such, each ODF figure was plotted with a different number of crystal 

orientations. After 20% strain, a significant strengthening in orientation intensity (i.e. the number 

of crystals occurring at that orientation) is observed at (𝜑I = 50°,	Φ = 45°, 𝜑L = 0°) and (𝜑I =

40°,	Φ = 90°, 𝜑L = 45°) for the austenite phase (Table 12).  This phenomenon continues for the 

entirety of the deformation (up to 40% strain).  With the volume fraction of austenite decreasing 

as a function deformation, these orientations can represent a set of orientations that do not promote 

transformation for the given microstructure and slip hardening rates of DSS. 
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Table 11: Uniaxial tension 𝝆 = −𝟎. 𝟓 along RD 𝜶- ferrite texture at a) 0% b) 10% c) 20% d) 30% e) 40% effective strain 

 

  

Effective Strain 𝛼 −Phase Texture 

a). 
0% Strain 
Volume 
Fraction 

65% 
  

b). 
10% Strain 

Volume 
Fraction 

65% 
  

c). 
20% Strain 

Volume 
Fraction 

65% 
  

d). 
30% Strain 

Volume 
Fraction 

65% 
  

e). 
40% Strain 

Volume 
Fraction 

65% 
  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  
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Table 12: Uniaxial tension	𝝆 = −𝟎. 𝟓 along RD 𝜸- austenite texture at a) 0% b) 10% c) 20% d) 30% e) 40% effective 
strain 

Effective Strain 𝛾 −Phase Texture 

a). 
0% Strain 
Volume 
Fraction 

35% 
  

b). 
10% Strain 

Volume 
Fraction 

35% 
  

c). 
20% Strain 

Volume 
Fraction 
19.7% 

  
d). 

30% Strain 
Volume 
Fraction 
10.0% 

  
e). 

40% Strain 
Volume 
Fraction 

6.8% 
  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  
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Table 13: Uniaxial tension	𝝆 = −𝟎. 𝟓 along RD 𝜶′- martensite texture at a) 20% b) 30% c) 40% effective strain 

Effective Strain 𝛼′ −Phase Texture 

a). 
20% Strain 

Volume 
Fraction 
15.3% 

  
b). 

30% Strain 
Volume 
Fraction 
25.0% 

  
c). 

40% Strain 
Volume 
Fraction 
28.2% 

  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  

 

7.2.1.2 Schmid	Factor	Analysis	of	Uniaxial	Tension	in	Rolling	Direction	

In literature, it has been reported that grains that exhibit high Schmid factor (SF) are 

favourable for transformation.  Schmid factor is a scalar term that determines a crystal planes 

resistance to dislocation slip for a given applied stress tensor, such that 

 𝑆𝐹 = 𝑷: 𝝈 = 𝑃no𝜎no ( 7.1 ) 

where 𝝈 is the applied stress tensor that is normalized along the major direction.  A high Schmid 

factor corresponds to an orientation that is favourable for slip (i.e. lower deformation to induce 

plastic slip).  As a result, lower Schmid factor crystals will have high magnitudes of stress due to 

elastic loading. Seo et al. [214] performed experimental EBSD measurements and analyzed the 

Schmid factor of austenite crystals that transformed to martensite in a duplex steel.  They reported 

that the majority of austenite crystals that transformed to martensite during uniaxial tension had a 

Schmid factor of greater than 0.46 at 20% strain.   
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 With this observation in mind, a Schmid factor analysis was performed to identify key 

characteristics of transformation that is related to texture. Three Schmid factor analyses were 

performed: 

1) Highest Schmid Factor amongst austenite crystal slip systems: 𝑃no =
I
L
𝑠n	𝑚o

	 + I
L
𝑚n
	 𝑠o	  

2) Highest Schmid Factor amongst austenite habit plane systems: 𝑃no =
I
L
𝑠nó�𝑚o

ó� + 𝑚n
ó�𝑠oó� 

3) Second highest Schmid Factor amongst austenite habit planes systems 

The transformation criteria required that the stress on two fault bands must exceed the 

transformation threshold, Γ�·.  Thus, the second highest Schmid factor of each austenite crystal is 

of interest. In each study, all crystals are binned within 0.01 increments of their initial Schmid 

factor. Although the Schmid factor can evolve with deformation, many aspects of the texture 

studied strengthened rather than rotated during uniaxial tension.  Thus, the initial Schmid factor is 

assumed to be comparable to the final Schmid factor; however, this is not generally true.  All 

transformed crystals are tracked and the strain at which they transform are also binned accordingly 

to determine when transformation occurred. Figure 29 - Figure 31 presents a histogram of the 

Schmid factor analysis for the three factors studied.  It is important to note that ~30% of the total 

austenite phase (85% of all austenite crystals) have a Schmid factor greater than 0.44 in this 

material.  In agreement with literature, a significant volume fraction of austenite crystals with a 

Schmid factor greater than 0.44 transformed.  However, a significant proportion of these crystals 

transformed at ~20% strain. Furthermore, the percentage of austenite crystals with a lower Schmid 

factor (less than 0.40) transformed was higher, such that most crystals (if not all within the bin) 

transformed.  In addition, austenite crystals with a low Schmid factor generally transformed the 

earliest.  This is a result of the transformation criteria being stress-based where austenite crystals 

with a lower Schmid factor generate higher stress that is needed to transform. Functionally, the 

Schmid factor and resolved shear stress are functionally similar (comparing Equation 4.28 and 

7.1).  This means that higher Schmid factor habit planes should be favourable for transformation 

earlier in deformation.  Yet, the Schmid factor of the first and second highest habit planes show 

similar trends where lower Schmid factor habit planes transformed the earliest; the second highest 

Schmid factor showed concentrations of values between 0.33 and 0.40. Thus, there exists a 

competition between the stress projected on the habit plane and the total stress developed within 
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the crystal. It should be mentioned that the austenite crystal group with the highest Schmid factor 

had the highest proportion of crystals that did not transform. Other experimental studies have 

observed that high SF crystals do not necessarily transform at all due to the influence of shape and 

morphology on austenite stability [215]. 

 
Figure 29: Highest Schmid factor for dislocation slip systems of γ-austenite crystals under uniaxial tension in RD 

 
Figure 30: Highest Schmid factor for Habit Planes of γ-austenite crystals under uniaxial tension in RD 
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Figure 31: Second Highest Schmid factor for Habit Planes of γ-austenite crystals under uniaxial tension in RD 

As mentioned above, crystals with generally low Schmid factor on the dislocation planes 

exhibited earlier transformation while some did not transform at all.  Furthermore, many of the 

austenite crystals that transformed earliest had a Schmid factor between 0.33 and 0.40 on the 

second highest habit plane. To gain additional insight into why some crystals transform earlier 

than others, the resolved shear stress evolution is studied four austenite crystals during uniaxial 

tension in the RD.  Table 14 summarizes these four crystals and were selected as follows: 

1) An austenite crystal with a Schmid factor between 0.33 and 0.40 on the second highest 

habit plane that transformed early (< 15% strain) 

2)  An austenite crystal with a Schmid factor between 0.33 and 0.40 on the second highest 

habit plane that transformed later (> 40% strain) 

3) An austenite crystal with a low Schmid factor (< 0.30) on the second highest habit plane  

4) An austenite crystal with a high Schmid factor (> 0.40) on the second highest habit plane  
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Table 14: Austenite Crystals Analyzed for Critical Shear Stress on Habit Planes for Transformation 

Crystal 

Number 

Schmid Factor 

(2nd Largest on HP) 
𝜑I  

[°] 

Φ  

[°] 

𝜑L 

 [°] 

Strain at 

Transformation 

1 0.359 -71.5 32.5 103.0 0.13 

2 0.363 91.4 39.2 -107.0 0.56 

3 0.253 85.0 44.0 -112.2 N/A 

4 0.463 117.2 22.5 -120.5 N/A 

 

Figure 32 presents the shear stress and transformation threshold evolution on the habit planes with 

respect to strain for the four crystals studied. Crystal #1 had a Schmid factor of 0.359 that 

transformed at ~13% strain.  The resolved shear stress on the fault band system loaded up 

elastically; this generated a rapid increase in stress that was necessary for transformation. 

However, Crystal #2 had a similar Schmid factor (0.363), yet transformed at ~56% strain. As the 

shear stress on the fault band begins to increase, plastic flow begins to dominate the deformation 

and reduces further building of stress on the habit planes.  At 22% strain, the hardening saturates 

and began to soften due to texture rotation.  As the crystal rotates, the habit planes also rotate away 

from a favorable position.  Eventually, a new fault band becomes more active at a strain of 34% 

where the shear stress begins to increase until transforming at 56% strain.  This is an excellent 

example highlighting that although some crystals may be primed for transformation, texture 

evolution can influence whether a crystal transforms. However, if the transformation threshold had 

been lowered by ~13 MPa, this crystal would have transformed at 22% strain; this leads to an 

abrupt change that is discontinuous in the strain at which crystals transform due to transformation 

threshold. Crystal #3 and #4 had a Schmid factor of 0.253 and 0.463 respectively.  Neither crystal 

reached the critical threshold that was necessary for transformation. Again, this can be caused a 

soft crystal orientation causing the stress tensor to saturate at a low stress level from plastic slip. 
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Figure 32: Plot of fault band shear stress and transformation threshold with respect to strain for the four crystals 
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7.2.1.3 Uniaxial	Tension	along	the	Transverse	Direction	

To investigate the influence of texture on martensite, simulations are performed where the 

loading direction is along the transverse direction.  This is accomplished by rotating the crystal 

texture by 90° (𝜑I = 𝜑I + 90°) about the normal direction (ND). Table 15 and Table 16 presents 

the simulated texture and volume fraction evolution of 𝛾- austenite and 𝛼′- martensite phases 

respectively.  The rotated texture of the 𝛾–austenite shows a similar weak texture of brass (𝜑I =

35°,	Φ = 45°, 𝜑L = 0°) and copper (𝜑I = 90°,	Φ = 35°, 𝜑L = 45°) initially as compared to the 

RD texture. As a result, the resultant texture of UA in the TD for both 𝛾– austenite at 40% strain 

shows remarkable similarity to that of UA in the RD; High intensity texture components formed 

and strengthened at nearly identical locations at (𝜑I = 50°,	Φ = 45°, 𝜑L = 0°) and (𝜑I =

40°,	Φ = 90°, 𝜑L = 45°) for the austenite phase.  Although the final textures are similar, the final 

martensite volume fraction was 6.8% at 40% strain deformation in the TD (compared to 8.6% in 

RD). This highlights that other texture variants have become more favourable for transformation 

due to directional changes, yet the concentrated rotated brass (𝜑I = 50°,	Φ = 45°, 𝜑L = 40°), 

copper (𝜑I = 90°,	Φ = 35°, 𝜑L = 45°) and minor cube texture components remain. Gey et al. 

[216] showed that the rate of transformation with respect to crystal orientation, where they noted 

that cube- and Goss- oriented 𝛾 grains transformed less in 304 stainless steel at low temperatures 

for their material.  

Table 15: Uniaxial tension 𝝆 = −𝟎. 𝟓 along TD 𝜸- austenite texture at a) 0% b) 10% c) 20% d) 30% e) 40% effective 
strain 

Effective Strain 𝛾 −Phase Texture 

a). 
0% Strain 
Volume 
Fraction 

35% 
  

b). 
10% Strain 

Volume 
Fraction 

35% 
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c). 
20% Strain 

Volume 
Fraction 
22.0% 

  
d). 

30% Strain 
Volume 
Fraction 
12.4% 

  
e). 

40% Strain 
Volume 
Fraction 

8.6% 
  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  

 

 

Table 16: Uniaxial tension 𝝆 = −𝟎. 𝟓 along TD 𝜶′- martensite texture at a). 20% b). 30% c). 40% effective strain 

Effective Strain 𝛼′ −Phase Texture 

a). 
20% Strain 

Volume 
Fraction 
15.3% 

  
b). 

30% Strain 
Volume 
Fraction 
25.0% 
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c). 
40% Strain 

Volume 
Fraction 
28.2% 

  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  

 

7.2.2 Plane Strain (𝝆 = 𝟎. 𝟎)	and Biaxial Stretching (𝝆 = 𝟏. 𝟎) 

It has been shown that the volume fraction evolution of austenite to martensite has a notable 

sensitivity to changing stress triaxiality [217] [218] [219] [220] [221], such that martensite 

evolution increases with an increase in triaxiality, Σ.  Therefore, two additional strain paths are 

simulated and studied: in-plane strain tension (𝜌 = 0.0, Σ = 0.58) and biaxial stretching (𝜌 =

1.0, Σ = 0.66).  These strain paths are also critical strain paths for evaluating formability. To 

compare the evolution of martensite with respect to deformation for different strain paths, the 

effective strain, 𝜀zµµ, is defined as 

 𝜀zµµ =
2
3 𝜀no

º 𝜀noº  ( 7.2 ) 

where 𝜀noº  is the deviatoric strain defined as 𝜀noº = 𝜀no	 −
I
F
𝜀êê	 𝛿no. Figure 33 presents the volume 

fraction evolution of martensite with respect to effective strain for plane strain and biaxial tension.  

The martensite evolution during uniaxial tension (Σ = 0.33) is also presented for comparison.  

Simulations show a positive trend of triaxiality on martensite volume fraction evolution that agrees 

with observations in literature. This difference in volume fraction evolution is captured by the rate 

of accumulated shear strain on all slip systems (Equation 4.27). 
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Figure 33: Martensite volume fraction vs effective strain for different loading conditions  

Table 17 presents the resultant textures of plane strain and biaxial loading for γ- austenite 

at 40% effective strain.  The resulting ODF for uniaxial tension is also presented for comparison. 

For the complete texture evolution history, please refer to APPENDIX A.1-A.2. For 𝛾- austenite 

at 40% effective strain, different loading conditions produced varying austenite crystal volume 

fractions from 6.8% to 0.9%.  It should be noted that each ODF is unremarkable, such that only 

minor similar in clustering of orientation intensity was observed.  Table 18 presents a summary of 

the remaining high intensity orientations that did not promote transformation. 

 

Table 17: Comparing different loading condition at 40% effective strain of 𝜸-austenite texture 

Effective Strain 𝛾 −Phase Texture 

Initial Texture 
0% Strain 
Volume 
Fraction 

35% 
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Uniaxial RD 
𝜌 = −0.5 

40% Strain 
Volume 
Fraction 

6.8%   
Plane Strain	
𝜌 = 0.0 

40% Strain 
Volume 
Fraction 

4.2%   
Equi-biaxial 
𝜌 = 1.0 

40% Strain 
Volume 
Fraction 

0.9%   

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  

 

Table 18: Summary of remaining high intensity orientations that did not promote transformation in austenite 

Uniaxial Tension 
𝜌 = −0.5 

Plane Strain Tension 
𝜌 = 0.0 

Equi-biaxial Tension 
𝜌 = 1.0 

𝜑I = 50°, Φ = 45°, 𝜑L = 0° 

𝜑I = 40°, Φ = 90°, 𝜑L = 45° 

𝜑I = 40°, Φ = 75°, 𝜑L = 60° 

𝜑I = 30°, Φ = 30°, 𝜑L = 0° 

𝜑I = 60°, Φ = 90°, 𝜑L = 45° 

𝜑I = 40°, Φ = 75°, 𝜑L = 60° 

 

𝜑I = 50°, Φ = 45°, 𝜑L = 30° − 60° 

 

 

Table 19 presents the resultant textures of plane strain and biaxial loading for α′- martensite 

at 40% effective strain.  The resulting ODF for uniaxial tension is also presented for comparison.  

For the complete texture evolution history, please refer to APPENDIX A.1-A.2. Interestingly, the 

ODF of 𝛼′- martensite at 40% effective strain shows similar common texture components for all 

strain paths studied; even though the parent 𝛾- austenite texture had vastly different resulting 

ODFs.  Martensite showed common orientations at (𝜑I = 0°/90°,	Φ = 45°, 𝜑L = 0°) and (𝜑I =

80°,	Φ = 45°, 𝜑L = 0°) with the spread and intensities showing some deviation. 
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Table 19: Comparing different loading condition at 40% effective strain of 𝜶′- martensite texture 

Effective Strain 𝛼′ −Phase Texture 
Uniaxial RD 
𝜌 = −0.5 

40% Strain 
Volume 
Fraction 
28.2%   

Plane Strain	
𝜌 = 0.0 

40% Strain 
Volume 
Fraction 
30.8%   

Equi-biaxial 
𝜌 = 1.0 

40% Strain 
Volume 
Fraction 
34.1%   

 𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  

	

7.2.2.1 Schmid	Factor	Analysis	of	Plane	Strain	and	Biaxial	Strain	Paths	
Similar to the method presented earlier, a Schmid factor analysis was performed for plane 

strain with 𝜌 = 0.0 and equi-biaxial tension with 𝜌 = 1.0. The stress tensor was calculated from 

each simulation and normalized for each Schmid factor calculation. Figure 34 - Figure 39 presents 

the highest Schmid factor for dislocation, first and second highest Schmid factor on the fault band 

habit planes during plane strain and equi-biaxial tension respectively. 

For plane strain, all the austenite crystals that transformed between 10-15% effective strain 

had a SF of 0.30 or less.  Similarly, the majority of crystals with the lowest relative Schmid factor 

transformed before 15% strain during biaxial loading. Comparing the spread of initial Schmid 

factor for plane strain (𝜌 = 0.0) and equi-biaxial tension with (𝜌 = 1.0), the distribution of SF 

shift towards higher SF as 𝜌 increases. This indicates that more habit planes are favourable for 
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transformation, which was observed previously in the volume fraction evolution of martensite 

(Figure 33). 

 
Figure 34: Highest Schmid factor for dislocation slip systems of γ-austenite crystals under plane strain tension in RD 
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Figure 35: Highest Schmid factor for Habit Planes of γ-austenite crystals under plane strain tension in RD 

 
Figure 36: Second highest Schmid factor for Habit Planes of γ-austenite crystals under plane strain tension in RD 
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Figure 37: Highest Schmid factor for dislocation slip systems of γ-austenite crystals under biaxial tension in RD 

 
Figure 38: Highest Schmid factor for Habit Planes of γ-austenite crystals under biaxial tension in RD 
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Figure 39: Second highest Schmid factor for Habit Planes of γ-austenite crystals under biaxial tension in RD 

7.3 Forming	Limit	Analysis	

The Taylor type TRIP crystal plasticity model was implemented into the MK FLD analysis 

proposed by Wu et al. [198] to calculate the FLDs. Two formability studies are presented to 

demonstrate the effect of transformation induced plasticity on the FLD through the mechanical 

response of DSS: 

1) The effects of the constitutive and transformation model kinetics on formability 

2) The effects of transformation threshold criteria parameters on formability 

Each formability study was conducted with a macroscopic strain rate of 𝐷II = 1.0×10ËF𝑠ËI, in-

plane strain proportionality constant of −0.5 ≤ 𝜌 ≤ 1.0, in ∆𝜌 = 0.1 increments, and initial band 

angle 0° ≤ ΨO ≤ 20°, in ∆ΨO = 5° increments. A range of imperfection parameters used in MK 

analysis has been seen in literature depending on the formulation, various incorporated effects and 

material, anything from 0.9027 ≤ 𝑓 ≤ 0.99995 are observed [178]  [202] [222]. This coefficient 

is typically calibrated to the onset of localization observed in a plane-strain tension experiment. 

However, due to the lack of experimental FLD for the TRIP assisted DSS, the simulated FLDs in 
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this section are explored using an imperfection parameter of 𝑓 = 0.99 [178] [202] [222].  Thus, 

the potential shape and effects of transformation on the FLD are studied in-depth. The first study 

presents the influence of incorporating the transformation induced plasticity criterion into a crystal 

plasticity MK-framework with the calibrated material parameters and transformation criterion 

parameters shown in Chapter 6. The second study analyzes the effect of varying the transformation 

coefficients in a parametric study on 𝐶�I and 𝐶�L from Equation 4.26. This will give insight into 

how timing martensite generation can influence the forming limit. 

7.3.1 Effects of Martensite Transformation Kinetics on Crystal Plasticity Formability Analysis 

In this section, forming limit diagrams of the calibrated material presented are simulated 

and discussed.  The importance of various transformation kinetics on formability was studied by 

disabling the constitutive model feature (setting constants to extremely large or small values).  

Table 20 presents the test matrix that was used to conduct this study.  A total of 4 formability 

studies were created by simulating the complete TRIP response of DSS, disabling the single variant 

Bain orientation, disabling transformation kinetics (dual-phase ferrite and austenitic steel), and 

setting all austenite properties to martensite (dual-phase ferrite and martensite steel). 

Table 20: Test Matrix of Transformation Kinetics Study 

Simulation Simulation Type Modifications 

1 Full Model of DSS None 

2 No Bain Rotation 𝜑I = 𝜑I + 45° → 𝜑I = 𝜑I + 0° 

3 No Martensite Transformation 𝐶�I = 𝐶�L = 10È 

4 No Austenite Phase 
• Set all FCC austenite crystal properties to 

BCC martensite 

 

7.3.1.1 Analysis	of	Forming	Limit	for	Duplex	Stainless	Steel	

Figure 40 and presents the simulated FLD and resulting band angles for the DSS.  The FLD 

shows limit strains of 0.776, 0.507, and 0.422 for uniaxial tension, plane strain, and equibiaxial 

tension respectively.  Similar experimental forming limits of a silicon TRIP steel (with a volume 

fraction of retained austenite is at ~13%) shows similar curvature and shape [223]. Another 

remarkable result is the location of the lowest limit strain.  Generally, the plane strain formability 
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has the lowest limit strain. In the studied material, the simulated lowest limit strain of 0.397 

occurred at a proportionality ratio of 𝜌 = 0.5.  This characteristic shape is a result of the stress-

strain response post necking. Mohammadi et al. [224] showed the importance of accurately 

capturing the post necking behavior of the material on FLDs.  In their study, simulations of FLDs 

with approximately linear hardening in the post necking region produced a similarly shaped FLD 

where the limit strain was lowest in the biaxial stretching regime. Figure 41 presents the resulting 

band angle evolution as a function of the proportionality straining constant highlighting some 

rotation of the band.  Furthermore, it is important to note that no simulation reached a final band 

angle of +20°. 

 
Figure 40: Forming limit diagram with calibrated material parameters of DSS 

 
Figure 41: Forming limit diagram band angles with calibrated material parameters 
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Table 21 - Table 23 presents crystallographic textures at the lowest limit strains inside and 

outside of the band of 𝛼-ferrite, 𝛼′-martensite and 𝛾-austenite respectively.  It should be noted that 

no in-band austenite texture plots are presented due to complete transformation during localization. 

Similarities in texture are highlighted in red circle and arrows in Table 22 and Table 23. Texture 

components outside of the band show similarities to those presented earlier in this chapter, but 

with higher intensities due to a higher strain levels. Due to the mechanics of localization, all strain 

paths inside the band eventually converge to plane strain before failure; therefore, all in-band 

texture plots show similarities to the plane strain textures as expected.  

Table 21: Comparing different loading condition at limit strain of 𝜸- austenite texture 

Effective Strain 𝛾 −Phase Texture 

Uniaxial 
Out of Band 
𝜌 = −0.5 

  

Plane Strain 
Out of Band	
𝜌 = 0.0 

  

Equi-biaxial 
Out of Band 
𝜌 = 1.0 

  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  

 

  



 
 

87 

Table 22: Comparing different loading condition at limit strain of 𝛂- ferrite texture 

Effective Strain 𝛼 −Phase Texture 

Uniaxial 
Out of Band 
𝜌 = −0.5 

  

Uniaxial 
In Band 
𝜌 = −0.5 

  

Plane Strain 
Out of Band	
𝜌 = 0.0 

  

Plane Strain 
In Band 
𝜌 = 0.0 

  

Equi-biaxial 
Out of Band 
𝜌 = 1.0 

  

Equi-biaxial 
In Band 
𝜌 = 1.0 

  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  
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Table 23: Comparing different loading condition at limit strain of 𝛂′- martensite texture 

Effective Strain 𝛼′ −Phase Texture 

Uniaxial 
Out of Band 
𝜌 = −0.5 

  

Uniaxial 
In Band 
𝜌 = −0.5 

  

Plane Strain 
Out of Band	
𝜌 = 0.0 

  

Plane Strain 
In Band 
𝜌 = 0.0 

  

Equi-biaxial 
Out of Band 
𝜌 = 1.0 

  

Equi-biaxial 
In Band 
𝜌 = 1.0 

  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  
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7.3.1.2 Analysis	 of	 Incorporating	 Martensite	 Transformation	 Kinetics	 into	

Formability	Analysis	

Figure 42 presents the predicted formability of the DSS without the Bain spin variant, DSS 

without martensite transformation and austenite material parameters replaced with martensite 

material parameters.  The complete formulation of TRIP for simulating the DSS is also presented 

for comparison.  Table 24 presents a summary of the limit strains at uniaxial, plane strain, and 

equi-biaxial tension.  Figure 43 presents the thinning ratio, stress response, hardening rate and 

martensite volume fraction evolution inside and outside the band at various load paths for the four 

simulations studied.  The thinning ratio is defined as the ratio between the strain rate outside of the 

band and inside of the band (𝜀FF/𝜀FF� ).  Note that this is the inverse of the Hutchinson and Neale 

[184] relationship for localization. 

Formability of the full TRIP model shows superior formability throughout the entire strain 

proportionality domain; the full TRIP model shows at least 20% more formability and more than 

100% increase in the formability in plane strain tension.  This result highlights the significance of 

TRIP in increasing formability.  Until approximately 10% strain, no martensite has formed in the 

material.  Thus, the hardening and necking responses are identical with a steady increase in the 

thinning ratio.  In the full model, martensite begins to evolve that results in an immediate increase 

in the hardening rate (black arrows in Figure 43).  Yet, the hardening rate of the model without 

transformation continues to decline.  This rapid change in the hardening rate stabilizes the 

localization behavior by a sudden reduction of the thinning ratio which increased the strain to 

failure (red arrows in Figure 43).   

Overall, predictions with and without incorporating the Bain variant show little to no 

influence on formability. The complete TRIP formulation shows a slight increase in formability 

(~0.3% strain) on the drawing side (𝜌 < 0) due to the abrupt rotation that introduces an additional 

straining mechanism. As mentioned earlier, Cherkaoui et al. [157] [158] has shown that multiple 

variants of crystallographic orientations for martensite are possible.  A further study should be 

performed that incorporates multiple variant selection schemes of martensite and its impact on 

formability. 
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Comparison of the dual phase ferrite-martensite forming limit curve further highlights the 

advantages of the TRIP mechanism.  From uniaxial tension to midway through the stretching 

regime (𝜌 = 0.5), the full model DSS predicts higher formability. The dual phase ferrite-

martensite curve, however, shows superior formability in the biaxial regime.  In the TRIP-assisted 

material, the majority of transformation occurs in the first 20% strain before localization becomes 

uncontrollable.  As such, there was too much martensite generation to suppress necking in an 

efficient manner.  Furthermore, the dual phase ferrite-martensite has 24 slip systems for all crystals 

compared to the TRIP-enhanced material with 12 slip systems in the FCC phase.  The higher 

number of slip systems leads to a smoother yield locus in the biaxial to plane strain region that 

produces better formability in the biaxial region [118].  Nevertheless, one could control the 

material processing parameters to govern the rate of martensite transformation in this critical strain 

path. 

 

Figure 42: Predicted formability of a) Full Model of DSS, b) No Bain Spin, c) No Martensite Transformation and d) 
Ferrite/Martensite 

Table 24: Transformation Kinetics Study of Forming Limit Strains 

Simulation Simulation Type Major Strain 
𝝆 = −𝟎. 𝟓 

Major Strain 
𝝆 = 𝟎. 𝟎 

Major Strain 
𝝆 = 𝟏. 𝟎 

1 Full Model of DSS 0.777 0.507 0.423 

2 No Bain Spin 0.774 0.506 0.423 

3 No Martensite Transformation 0.505 0.249 0.355 

4 No Austenite Phase 0.658 0.426 0.512 
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Figure 43: Thinning Ratio, Stress Response, Hardening Rate and Martensite Volume Fraction Evolution vs Out of Band 
Effective Strain at various load paths for the four simulations studied 

7.3.2 Effect of Transformation Threshold Criteria Parameters on Formability 

The TRIP effect is known to be sensitive to temperature [34] [180] [200], strain-rate [153] 

[154] [155] and triaxiality [217] [218] [219] [220] [221]. Typically, TRIP models and criteria that 

describe the driving energy of transformation are calibrated to a series of experiments performed 

at various boundary conditions. As presented earlier, the effect of triaxiality is inherently captured 

through the accumulated shear component of the transformation criteria (Equation 4.26).  Similar 

to the coefficients in Iwamoto and co-workers [153] [154] [155], thermal sensitivity can be 

expressed in terms of the coefficients 𝐶�I and 𝐶�L such that an increase in temperature represents 

an increase in the threshold energy needed for transformation. Varying 𝐶�I and 𝐶�L changes the 

transformation rate of martensite, which directly influences the hardening rate that is fundamental 

in influencing formability [198]. Unfortunately, no experimental measurements exist at various 

temperatures for the DSS studied in this work. Nevertheless, there still exists little understanding 
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on how these factors affect the forming limit of TRIP-assisted steel [203].  As such, a parametric 

study of the transformation criteria parameters, 𝐶�I and 𝐶�L, can provide significant insight into 

the formability of TRIP steel.  In this section, the sensitivity of the transformation threshold criteria 

is presented and discussed. The parameter coefficients used were 𝐶�I =

{280, 300, 320, 340, 360, 380} and 𝐶�L = {10, 20, 30, 40, 50, 60}. This generated 36 different 

combinations of threshold criteria. Figure 44 presents a graphical representation of the domain of 

transformation thresholds that this study explored.   

 
Figure 44: Domain of transformation thresholds studied 

For each combination, the forming limit diagram was generated along with the thinning ratio, 

stress response, hardening rate and martensite volume fraction evolution inside and outside the 

band during uniaxial, plane strain, and biaxial tension.  This study yielded a substantial amount of 

information and results. As such, three studies that are of significance are presented for further 

discussion: 

1) Varying 𝐶�L for a low value of 𝐶�I = 280 

2) Varying 𝐶�L for a high value of 𝐶�I = 380 

3) Varying 𝐶�I for a low value of 𝐶�L = 10 

A summary of the other remaining analyses is presented in APPENDIX A.3.  
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7.3.2.1 Varying	𝑪𝒕𝟐	for	a	Low	Value	of	𝑪𝒕𝟏 = 𝟐𝟖𝟎	

Figure 45 presents the FLD for C1I = 280 and C1L=10:10:60 with thinning ratio, stress 

response, hardening rate and martensite volume fraction evolution. In general, increasing C1L 

increased in formability in this study.  This was accomplished by reducing the volume fraction 

generation rate that helped stabilize and prevent localization. However, the hardening behavior 

and martensite evolution were all similar.  With a low C1I threshold, low stress/energy is required 

for transformation resulting in high volume fraction of martensite during deformation with 

minimal variation due to C1L.  

7.3.2.2 Varying	𝑪𝒕𝟐	for	a	High	Value	of	𝑪𝒕𝟏 = 𝟑𝟖𝟎	

Figure 46 presents the FLD for C1I = 380 and C1L=10:10:60 with thinning ratio, stress 

response, hardening rate and martensite volume fraction evolution.  At a higher value of 𝐶�I, 

transformation from austenite to martensite is more difficult.  As such, lower volume fractions of 

martensite were observed, as well as lower generation rates.  Furthermore, with higher value of 

𝐶�I, C1L becomes much more influential on the FLD response.  With a high value of the C1L 

coefficient, transformation of martensite is completely suppressed outside of the band.  Yet, the 

volume fraction of martensite still evolves within the band. As the in-band evolves towards plane 

strain due to localization, more habit planes can satisfy the transformation threshold, which 

accelerates the martensite generation in the band. This amplifies the incompatibility between the 

two points, which promotes necking. 

7.3.2.3 Varying	𝑪𝒕𝟏	for	a	Low	Value	of	𝑪𝒕𝟐 = 𝟏𝟎	

Figure 47 presents the FLD for C1L = 10 and C1L=280:20:380 with thinning ratio, stress 

response, hardening rate and martensite volume fraction evolution. At a low value of 𝐶�L, the rate 

of martensitic transformation is reduced and delayed through an increase of 𝐶�I. As observed in 

plane strain, there is a significant delay in martensite formation.  As such, as the material begins 

to localize, the martensite generation rate is insufficient to recover from localizing and eventually 

necks. Conversely, martensite formation is highly favoured in biaxial tension.  This means that 

delaying martensite formation during biaxial stretching allows for increased hardening at a suitable 

time that stabilizes localization to enhance the limit strain.    
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Figure 45: Forming Limit Diagram for 𝐂𝐭𝟏 = 280 and 𝐂𝐭𝟐 =10:10:60 with Thinning Ratio, Stress Response, Hardening 

Rate and Martensite Volume Fraction Evolution vs Out of Band Effective Strain at various load paths 
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Figure 46: Forming Limit Diagram for 𝐂𝐭𝟏 = 380 and 𝐂𝐭𝟐 =10:10:60 with Thinning Ratio, Stress Response, Hardening 
Rate and Martensite Volume Fraction Evolution vs Out of Band Effective Strain at various load paths 
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Figure 47: Forming Limit Diagram for 𝐂𝐭𝟐 = 10 and 𝐂𝐭𝟐= 280:20:380 with Thinning Ratio, Stress Response, Hardening 
Rate and Martensite Volume Fraction Evolution vs Out of Band Effective Strain at various load paths 
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7.3.2.4 Summary	of	Transformation	Threshold	Criteria	Parameters	

Table 25 presents a summary of the maximum obtainable major limit strains uniaxial, plane 

strain, and equibiaxial and their corresponding coefficients for the range of 𝐶�I and 𝐶�L studied.  

The predicted formability of the DSS is used as a baseline for comparison.  As expected, high 

coefficients of 𝐶�I and 𝐶�L that suppressed martensite had the lowest formability.  Modest gains 

were achieved in improving the plane strain and uniaxial formability (2% - 3%).  However, if the 

forming conditions are not optimal, there is a large decrease in formability (up to ~50% reduction) 

that can occur.  However, a gain of 5.6% strain, which corresponds to a relative improvement of 

13.3% can be obtained by delaying martensite formation. 

Table 25: Potential formability improvements with transformation criterion control 

 𝜌 = −0.5 𝐶�I 𝐶�L 𝜌 = 0.0 𝐶�I 𝐶�L 𝜌 = 1.0 𝐶�I 𝐶�L 
Baseline 0.776 300 24 0.507 300 24 0.422 300 24 
Lowest 0.543 380 60 0.253 380 60 0.377 380 60 
Highest 0.801 360 10 0.516 340 10 0.478 340 50 
Highest 

Gain 
Baseline 

+𝟑. 𝟐	% +𝟏. 𝟖	% +𝟏𝟑. 𝟑	% 

Lowest 
Gain 

Baseline 
−𝟑𝟎. 𝟎	% −𝟓𝟎. 𝟏	% −𝟏𝟎.𝟕	% 
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8 CONCLUSIONS & FUTURE WORK 

The objective of this thesis was to develop a crystal plasticity constitutive model that 

incorporated martensitic transformation to simulate formability of TRIP assisted AHSS. A Taylor 

type TRIP crystal plasticity formulation was developed to capture the macro and micro-mechanical 

response of TRIP assisted multiphase steels for forming.  A new stress-based transformation 

criterion, based on the micromechanics of habit-plane interaction, was developed to initiate 

transformation.  The model was successfully calibrated to the experimental stress-strain and 

volume fraction evolution presented in Kim et al. [163] for duplex stainless steel.  Simulations of 

single crystal and polycrystalline aggregates were performed to highlight the transformation 

mechanisms of the TRIP effect for different loading directions.  The crystal plasticity framework 

was implemented into the Marciniak and Kuczynski (MK) [45] framework to simulate the forming 

limit diagram of the TRIP assisted AHSS.  

8.1 TRIP	Crystal	Plasticity	Constitutive	Model	

The key conclusions drawn from the study of the TRIP crystal plasticity constitutive model 

are as follows: 

• This is the first Taylor type TRIP crystal plasticity framework to simulate the macro and 

micro-mechanical response of TRIP assisted multiphase steels. 

• Transformation criterion is triaxiality dependent through the variation of accumulated 

shear in different loading conditions. 

• Austenite orientations of rotated brass (𝜑I = 50°,	Φ = 45°, 𝜑L = 0°) and copper (𝜑I =

40°,	Φ = 90°, 𝜑L = 45°) were common textures for not promoting transformation during 

uniaxial tension along the rolling direction and transverse direction.  However, 

orientations that did not promote transformation were strain path dependent.  Interestingly, 

all ODFs of 𝛼′- martensite showed common orientations at (𝜑I = 0°/90°,	Φ = 45°, 𝜑L =

0°) and (𝜑I = 80°,	Φ = 45°, 𝜑L = 0°). 

• Simulations of uniaxial tension showed that austenite crystals with lower Schmid factor 

generally transformed with the least amount of deformation. This is a result of the 

transformation criteria being stress-based where austenite crystals with a lower Schmid 

factor generate higher stress through elasticity that is needed to transform. Although the 
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stress-based transformation biased higher Schmid factor on the habit plane crystals, 

competition exists between the magnitude of the stress developed by low Schmid factor 

crystals on the dislocation planes. 

• Although some orientations were primed for transformation, the resulting texture 

evolution could re-orientate a crystal lattice away from generating stress on the habit 

planes which delay transformation.  

• It was observed that a small change in the transformation threshold could lead to an abrupt, 

discontinuous change in the strain at which austenite crystals can transform. 

8.2 TRIP	Crystal	Plasticity	MK	Model	

The highlights from the study of the MK-analysis with TRIP crystal plasticity constitutive 

model are as follows: 

• To the author’s knowledge, this is the first Taylor type TRIP crystal plasticity MK 

framework for modeling multiphase TRIP steel. 

• The mechanism of transforming from low strength austenite to high strength martensite 

showed enhanced formability compared to a material without the mechanism.  At least 

20% improvement in formability was observed when incorporating the transformation 

mechanism. This was a result of martensite transformation occurring at a time where it 

could suppress necking through a sudden increase in hardening rate. 

• Incorporation of the single variant Bain orientation into the TRIP formulation showed a 

minor difference in formability predictions with a peak difference of ~0.3% strain out of 

78% strain on the drawing side (𝜌 < 0). 

• Controlling the processing properties that influence the transformation threshold criteria 

can delay the formation of martensite to a time that is advantageous.  Through this method, 

a gain of 5.6% strain, which corresponds to a relative improvement of 13.3%, for 

equibiaxial tension compared to the formability of the DSS studied. 

• Controlling these threshold parameters yield modest gains in improving the plane strain 

and uniaxial formability (2% - 3%) over the formability of DSS.  However, if the forming 

conditions are not optimal, a reduction by up to 50% could be observed (from 50% strain 

to 25% strain).   
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8.3 Future	Work	

The results of this thesis highlighted the influence of TRIP effect on the micro and macro-

mechanical response in multiple loading conditions as well as the effect of the transformation 

criterion on formability.  The following recommendations are presented for future work: 

1) In the present work, a single uniaxial tension stress strain curve and the corresponding 

volume fraction evolution was used to calibrate the model. However, the mechanical 

response and martensite evolution of TRIP-assisted steel have been shown to be sensitive 

to triaxiality [221], strain-rate [225] [226], and temperature [155]. It is recommended that 

the following sets of data be obtained for a complete calibration of a single material: 

a. Initial and final EBSD measurements of the material’s texture 

b. Stress strain curves at varying strain rates, temperatures and sheet orientation with 

corresponding in-situ volume fraction measurements  

c. Heat generation profiles during deformation 

2) Experimental forming limit diagrams with varying isothermal conditions, as 

experimentally conducted by Krauer and Hora [227], is recommended for further 

validation of this framework. 

3) The current model assumes a Taylor-type homogenization approach to simulate the 

polycrystalline response. Kim et al. [163] used CPFEM to simulate the non-uniform 

deformation behavior of the RVE.  Then again, the CPFEM approach is currently not 

suitable for calculations in the MK-framework (due to computational limitations).  

However, advanced homogenization techniques, such as the viscoplastic self-consistent 

scheme (VPSC) [228], can be implemented into MK-calculations using the TRIP 

constitutive model.  This concept should be explored and compared to the Taylor-type 

TRIP crystal plasticity homogenization scheme for MK-calculations.  

4) The current model transformed only to a single variant of martensite and showed little to 

no significant influence on formability.  However, Cherkaoui et al. [157] [158] has shown 

that multiple variants of crystallographic orientations for martensite are possible.  A further 

study should be performed that incorporates multiple variant selection schemes of 

martensite and its impact on formability. 



 
 

101 

5) The current formulation assumed that all conditions were performed isothermally.  No 

thermal effects, such as heat generation from plastic work or latent heating of martensite 

transformation. Rusinek and Klepaczko [73] has shown that significant heat generation 

occurred during uniform and localized deformation.  Furthermore, recent models have been 

developed for crystal plasticity that incorporates thermally-induced deformations [132] 

[199] [229]. With the current framework, thermodynamic effects can be added to enhance 

the physics of this model further to capture thermal softening of the individual phase 

parameters at elevated temperatures. 

6) Naturally, additional slip system activity for the BCC lattice needs to be incorporated to 

simulate formability at elevated temperatures for these TRIP-assisted steels [137]. 

7) Recently, Kohar et al. [109] presented a multi-scaling approach for calibrating 

phenomenological constitutive models that captures microstructural evolution.  The current 

framework can be used to calibrate a yield surface by generating virtual experiments and 

simulate the behaviour of TRIP-assisted steel in lab-scale simulations of deformation. 
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A.1 – Texture Evolution Plots with Respect to Effective Strain for Plane Strain 

Table A1-1: Plane strain tension 𝝆 = 𝟎. 𝟎 along RD	𝜸- austenite texture at a) 0% b) 10% c) 20% d) 30% e) 40% effective 
strain 

Effective Strain 𝛾 −Phase Texture 

a). 
0% Strain 
Volume 
Fraction 

35% 
  

b). 
10% Strain 

Volume 
Fraction 

35% 
  

c). 
20% Strain 

Volume 
Fraction 
20.1% 

  
d). 

30% Strain 
Volume 
Fraction 

9.1% 
  

e). 
40% Strain 

Volume 
Fraction 

4.2% 
  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  
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Table A1-2: Plane strain tension 𝝆 = 𝟎. 𝟎 along RD 𝜶′- martensite texture at a) 20% b) 30% c) 40% effective strain 

Effective Strain 𝛼′ −Phase Texture 

a). 
20% Strain 

Volume 
Fraction 
14.9% 

  
b). 

30% Strain 
Volume 
Fraction 
25.9% 

  
c). 

40% Strain 
Volume 
Fraction 
30.8% 

  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  
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A.2 – Texture Evolution Plots with Respect to Effective Strain for Biaxial 

Table A2-1: Equi-biaxial tension	𝝆 = 𝟏. 𝟎 𝜸- austenite texture at a) 0% b) 10% c) 20% d) 30% e) 40% effective strain 

Effective Strain 𝛾 −Phase Texture 

a). 
0% Strain 
Volume 
Fraction 

35% 
  

b). 
10% Strain 

Volume 
Fraction 

35% 
  

c). 
20% Strain 

Volume 
Fraction 

9.1% 
  

d). 
30% Strain 

Volume 
Fraction 

1.4% 
  

e). 
40% Strain 

Volume 
Fraction 

0.9% 
  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  
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Table A2-2: Equi-biaxial tension 𝝆 = 𝟏. 𝟎 𝜶′- martensite texture at a) 20% b) 30% c) 40% effective strain 

Effective Strain 𝛼′ −Phase Texture 

a). 
20% Strain 

Volume 
Fraction 
25.9% 

  
b). 

30% Strain 
Volume 
Fraction 
33.6% 

  
c). 

40% Strain 
Volume 
Fraction 
34.1% 

  

 
𝜑L = 0° 𝜑L = 30° 𝜑L = 45° 𝜑L = 60°  
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A.3 – Transformation Threshold Parametric Study Plots 
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