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Abstract 
 

 Multi Reference Equation of Motion Coupled Cluster (MREOM-CC) is an electronic structure 

method that allows the calculation of many electronic states simultaneously. A sequence of 

transformations are applied to a Hamiltonian allowing for a subsequent diagonalization of a much smaller 

subspace. These transformations preserve the eigenvalues of the original Hamiltonian, and paradoxically 

calculations increase in accuracy while simultaneously reducing the cost of the calculation. MREOM has 

previously been used to calculate transition metal atom spectra as well as vertical excitation spectra from 

organic molecules and transition metal complexes. 

 In this thesis, MREOM is used to calculate a potential energy surface for several systems 

containing many excited states. The systems studied in this thesis are positively charged diatomic 

transition metal oxides (MO+, M = V, Cr, Mn, Fe, Co, Ni) chosen for both their electronic complexity as well 

as the opportunity for a tandem experimental study in the Hopkins lab. Calculations were approached 

using either a high spin or low spin regime for the reference states of each system. High spin systems 

converged at high interatomic distance, but generally exhibited discontinuities. Low spin systems 

appeared smooth, but were troublesome to set up. However, MREOM is not recommended for 

complicated potential energy surfaces until further improvements can be made. 

 In a second project an improved algorithm is developed for the time-consuming final 

diagonalization step in MREOM. Using a carefully designed data structure for multiple electronic states 

the critical multiplication of “𝐺 ∙ 𝐶” is carried out efficiently, with minimal resorting and optimized using 

the Basic Linear Algebra Subroutines (BLAS) library. The implementation is not yet complete, and requires 

interfacing with the rest of the code. 
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Chapter 1 

Introduction to Electronic Structure Theory 
 

The electronic structure problem is one of the most basic problems within quantum chemistry. Many 

different theories and methods have been devised to solve this fundamental problem, with new methods 

arising to capture the structure of systems that fail using current approaches. The exact approach, the Full 

Configuration Interaction (FCI) method, can involve solving equations with billions of determinants for a 

molecule as simple as ethylene [1]. Solving eigenvalue equations with this incredibly large dimension is 

not feasible with current technology. For this reason, we look to methods that reasonably approximate 

properties of interest which can be implemented using modern hardware. 

Single reference (SR) calculations are often the starting point for electronic structure theory 

calculations, and usually work well for systems starting relatively close to their equilibrium geometry, if 

they have a wavefunction that can be described by a single slater determinant. The Hartree-Fock method 

[2] is a common single reference calculation included in most, if not all, quantum chemistry software 

packages. The Hartree-Fock method is an excellent method when determining ground state geometries 

as well as vibrational frequencies. This method can yield 99.9% of the total electronic energy of the system 

in Hartrees. However, for a small molecule such as H2O even a difference as small as 0.1% yields error in 

the total energy of around 300 kJ/mol, or 50 kcal/mol. A large fraction of the error can be expected to 

cancel when evaluating reaction energies, but in general Hartree-Fock does not calculate accurate enough 

energies. A method that goes beyond the simplified treatment of the Hartree-Fock approximation is 

required to treat more complicated systems. Coupled Cluster (CC) [3] theory is a common method beyond 

Hartree-Fock. This method yields much better accuracy for electronic energies (1 kcal/mol) but is a single 

reference method, and once again is only applicable if the wavefunction of the system can be qualitatively 

described by a single determinant. In the cases of low lying excited states, transition metal compounds, 
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cases including bond-breaking, and magnetic or spin state systems, the single reference approximation is 

often not accurate. In these instances, we must use multiple determinants to describe our wave-function, 

even qualitatively. 

Multireference (MR) methods become necessary when single reference methods fail to approximate 

the electronic structure of a system in question. Implementations of this multi-reference approximation 

include Multireference Configuration Interaction (MRCI) [4], Multireference Coupled Cluster (MRCC) [5], 

as well as the Multireference Equation of Motion (MREOM) [6] method, developed in the Nooijen group 

to reduce the cost of multi-reference calculations while calculating hundreds of states simultaneously. In 

this proposal, the primary multi reference method employed will be MREOM. MREOM has been 

successful as a method for determining the electronic structure of problematic atoms and small molecules. 

This method involves a Complete Active Space (CAS) specification, where many open shell orbitals and 

electrons to be distributed to these orbitals are specified. The active space is much smaller than the 

complete orbital space. Therefore, full CI calculations within the CAS space are feasible. This is called CASCI. 

In addition, when the orbitals that define the CAS are optimized the calculations are referred to as CASSCF. 

This compact CAS gives rise to many reference determinants, in which different electronic state 

configurations are accounted for. After specifying the reference space, a series of careful transformations 

can be applied to the bare Hamiltonian, which simplifies the resulting diagonalization while preserving 

the Hamiltonians original eigenvalues, or energy values. MREOM has been used to calculate atomic 

excitation spectra for transition metals such as Cr, Mn, Fe, and Co [7], transition metal complexes [8], and 

large numbers of valence excited states for organic compounds [9]. While MREOM has seen great success 

as a more time-economical alternative to other multi-reference methods, MREOM is still under 

development. Advances can be made on the algorithm’s implementation to significantly speed up 

computation time.  
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In this thesis, the current theory behind MREOM will be explained, detailing how transformations 

can be made to the Hamiltonian such that the calculation becomes more efficient while also becoming 

more accurate [9]. Applications of MREOM to six diatomic transition metal oxide cations are proposed as 

interesting test systems well suited to challenge MREOM. These systems are electronically complicated 

due to the presence of many low-lying states. Calculating potential energy surfaces for these systems is 

challenging, and a calculation approach is proposed to simplify the process. Finally, a new implementation 

for MREOM is proposed. This new method combines an intelligent data structure with optimized linear 

algebra subroutines to calculate many energy states simultaneously, leading to large theoretical speed 

ups in calculation time. These changes have not been implemented fully due to time constraints. Sample 

code used for each Hamiltonian contribution for both the one body and two body case are examined in 

detail, and the next steps required to finish the project are outlined. 
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Chapter 2 

Multi-Reference Equation of Motion Coupled Cluster Theory 
 

The electronic structure problem is the solution to the wave-function of electrons in an electrostatic 

field created by stationary nuclei. These nuclei are considered fixed due to the assumption that motion of 

nuclei and electrons can be separated due to the different time scales these motions occur on, using the 

Born-Oppenheimer approximation. This solution involves both the wave function of the electrons as well 

as their energies. Slater determinants [10] are used as an expression for these multi-electron systems, 

since they satisfy the anti-symmetry requirements of the wave-function, which in turn satisfies the Pauli 

exclusion principle. These properties are outlined in Figure 1. 

𝜓𝜆 =
1

√𝑁!
|

𝜒1(𝑥1) 𝜒2(𝑥1) ⋯ 𝜒𝑁(𝑥1)

𝜒1(𝑥2) 𝜒2(𝑥2) ⋯ 𝜒𝑁(𝑥2)
⋮ ⋮ ⋱ ⋮

𝜒1(𝑥𝑁) 𝜒2(𝑥𝑁) ⋯ 𝜒𝑁(𝑥𝑁)

| ≡ |𝜒1𝜒2 …𝜒𝑁| 

|𝜒1𝜒2 …𝜒𝑁| = (−1)|𝜒2𝜒1 …𝜒𝑁| 

|𝜒1𝜒1 …𝜒𝑁| = 0 

Figure 1: Definition of Slater Determinants, including built in anti-symmetry and Pauli exclusion properties 

Currently most wave-function based Quantum Chemistry problems are phrased in the language of 

Second Quantization [10]. The benefit of Second Quantization is that the slater determinants can be 

represented by a series of operators, and the problem will be reduced to algebra manipulations. The 

problem can then be easily programmed and solved via computation. We specify the wave-function as a 

series of ordered orbitals with occupation numbers zero or one denoting whether the orbital contains an 

electron or not. Equation 1 shows a sample wave-function with N electrons. The notation indicates that 

orbitals a, d, and z are occupied. 
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|𝑎1, 𝑏0, 𝑐0, 𝑑1, … , 𝑧1⟩ (1) 

 

Two major operators exist in second quantization. The first is the creation operator 𝑝̂†, which adds an 

electron to orbital p. The second is the annihilation operator which removes an electron from orbital p. 

The Hamiltonian written using Second Quantization is shown below. It has been written with only one and 

two particle excitations. 

𝐻̂ = ℎ𝑞
𝑝
𝑝̂†𝑞 + ℎ𝑝𝑞

𝑟𝑠 𝑝̂†𝑞̂†𝑟𝑠 (2) 

ℎ𝑞
𝑝

= ∫𝜑𝑝
∗(𝜏) [−

1

2
𝛻2 + 𝑉𝐻𝑙(𝑟𝜙⃑⃑⃑⃑ )]𝜑𝑞(𝜏)𝑑𝜏                        𝜏 = (𝑟 , 𝜙) (3) 

ℎ𝑝𝑞
𝑟𝑠 = ⟨𝑝𝑞|𝑟𝑠⟩ − ⟨𝑝𝑞|𝑠𝑟⟩ (4) 

⟨𝑝𝑞|𝑟𝑠⟩ = ∫∫𝜑𝑝
∗(𝜏1)𝜑𝑞

∗(𝜏2)
1

|𝑟1⃑⃑⃑  − 𝑟2⃑⃑  ⃑|
𝜑𝑟(𝜏1)𝜑𝑠(𝜏2)𝑑𝜏1𝑑𝜏2  

From here, we can discuss the Full Configuration Interaction (CI) problem. This involves including 

every Slater determinant expressing excitations from our ground state electronic configuration into any 

number of virtual orbitals. If we have Na and Nb alpha and beta spin orbitals as well as M spatial orbitals, 

we have (𝑀
𝑁𝑎

) (𝑀
𝑁𝑏

)  determinants, each of which is an eigenstate of a one electron Hamiltonian. This can 

be used as the basis for our many electron problem. We then write: 

|𝛹⟩ = ∑𝐶𝜆|𝜙𝜆⟩

𝜆

(5) 

We then apply the variational principle to the above: 

𝐸 =
⟨𝛹|𝐻|𝛹⟩

⟨𝛹|𝛹⟩
(6) 
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Which then leads to the eigenvalue problem: 

∑⟨𝛹𝜆|𝐻|𝛹µ⟩

µ

𝐶µ = 𝐸𝐶𝜆

𝐻𝐶 = 𝐶𝐸

(7) 

CI may also be undertaken as a multi reference calculation, referred to as MRCI. The driving principle 

behind Multi Reference calculations involves defining a Complete Active Space (CAS) in terms of occupied 

orbitals, active orbitals, and virtual orbitals. This is done using a CAS Self Consistent Field (CASSCF) 

calculation. The goal is to optimize the orbitals such that ECAS is minimized. The CAS is defined as a linear 

combination of determinants with a set of coefficients to be optimized as shown in equation 8. 

|𝐶𝐴𝑆⟩ = ∑𝐶𝜆|𝜙𝜆
𝐶𝐴𝑆⟩

𝜆

(8) 

As stated previously, our CAS is comprised of three different types of orbitals [11]; occupied orbitals 

which are each doubly occupied, virtual orbitals which are empty, and active orbitals that can be 

populated with zero, one, or two electrons. Figure 2 shows an example CAS. Each determinant in the CAS-

space will have an identical core occupied space but differ in the configuration of electrons in the active 

orbitals. An example CAS is given in Figure 2, while an example excitation removing an electron from this 

CAS can be seen in Figure 3. 

 
Figure 2: CAS Orbital Diagram Showcasing doubly occupied orbitals (Occupied), variably occupied orbitals (Active), and empty 

orbitals (Virtual). 
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Figure 3: Example excitation of 1h1p out of the previously shown CAS. An electron from an occupied orbital is promoted to an 
active orbital, while simultaneously an electron from an active orbital is promoted to a virtual orbital. 

The different excitations occurring outside of the CAS will be referred to as follows. Excitations that 

involve an electron being promoted from an occupied orbital will be referred to as a hole (h) excitation. 

Excitations that involve an electron being promoted to a virtual orbital will be referred to as a particle (p) 

excitation. The following are the list of excitations included in Multi Reference Configuration Interaction 

with Singles and Double excitations (MRCISD). These excitations are visualized in Figure 4. 

1. 1 hole(1h): An electron from an occupied orbital is promoted to the active space 

2. 1 particle(1p): An electron is promoted from the active space to a virtual orbital 

3. 1h1p: An electron from an occupied orbital is promoted to a virtual orbital; electron is 

promoted from an occupied orbital to an active orbital, and an electron from an active 

orbital is promoted to a virtual orbital. 

4. 2p: Two electrons from the active space are promoted to the virtual orbitals. 

5. 2h: Two electrons from the occupied orbitals are promoted to the active space. 

6. 2h 1p: Two holes are created in the occupied space, and a particle is added to the virtual 

space 
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7. 1h 2p: One hole is created in the occupied space, and two particles are created in the 

virtual space. 

8. 2h 2p: Two holes are created in the occupied space, and two particles are created in the 

virtual space. 

 

 

Figure 4: Excitations Included in a MRCISD calculation. These excitations may potentially include active-active 
excitations in addition to the labeled excitation which do not change the overall excitation. 

While the above seems reasonable, in practice it is only usable for small molecules. Once again, the 

number of determinants scales as 𝑛ℎ
2  𝑛𝑝

2nCAS [12]. ncas  may be as large as ~100,000, therefore MRCI 

calculations have the capacity to be incredibly expensive. Using modern technology, it is impossible to 

store and compute this incredible number of determinants. For this reason, full MRCISD is only used for 
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small active spaces. A more widely used alternative is internally contracted MRCI. The main drawback to 

this method is a lack of size extensivity, which in practice means that large active spaces must be used. 

The Multi Reference Equation of Motion method for electronic structure calculations can be described, 

in broad terms, as a series of transformations to a bare Hamiltonian (𝐻̂) that is then followed by a 

diagonalization to the final transformed Hamiltonian (𝐺). Once our CAS has been determined as previously 

outlined, we can then build and transform our Hamiltonian. Starting from the Schrödinger equation, we 

can apply a transformation to our Hamiltonian as in equation 9. 

𝐺̂ = 𝑈−1𝐻̂𝑈 (9) 

We then show in equation 10 that transforming our Hamiltonian in principle only changes our 

eigenvectors and not our eigenvalues. This means that any transformation we apply to our Hamiltonian 

will not change the results of our MREOM calculation. The goal of this transformation is to decouple the 

CAS from the external space as indicated in Equation 11. 

𝐺|𝛷𝜆⟩ = (𝑈−1𝐻̂𝑈)(𝑈−1|𝛹𝜆⟩) (10) 

𝐺|Φ𝜆⟩ = 𝑈−1𝐻̂|Ψ𝜆⟩ 

𝐺|Φ𝜆⟩ = 𝑈−1|Ψ𝜆⟩𝐸𝜆 

𝐺̂|Φ𝜆⟩ = |Φ𝜆⟩𝐸𝜆 

⟨𝜙𝑋|𝐺̂|𝜙𝐶𝐴𝑆⟩ = 0 (11) 

If we could apply transformations to the Hamiltonian such that equation 11 holds, the final 

diagonalization would be very compact, and only include CAS configurations as illustrated in Equation 12. 

Once we have the transformed Hamiltonian, we multiply this resulting matrix by a column vector C that 
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satisfies equation 12 and preserves our eigenvalues. At this point, only excitations within our CAS remain 

as shown in Figure 5. 

 

Figure 5: Simplified Hamiltonian obtained after removing all excitations out of the CAS. 

𝐴𝐶𝜆 = 𝐶𝜆𝐸𝜆 (12) 

While the above is conceptually possible, we find that excluding all the excitations out of the CAS 

results in poor results. For this reason, we still include 1h, 1p, and sometimes 1h1p excitations in our 

calculation. Using Second Quantization, we perform a series of transformations to remove unwanted 

excitations out of the CAS. Our transformations all have a similar form, and the example given below is of 

the ”T” transformation. 

𝐻̅ = 𝑒−𝑇𝐻𝑒𝑇 (13) 

𝐻̅ = ℎ̅0 + ℎ̅𝑝
𝑞
{𝑒̂𝑞

𝑝
} + ℎ̅𝑝𝑞

𝑟𝑠 {𝑒̂𝑟𝑠
𝑝𝑞

} + ℎ̅𝑝𝑞𝑟
𝑠𝑡𝑢 {𝑒̂𝑠𝑡𝑢

𝑝𝑞𝑟
} + ⋯ 

𝑒̂𝑞
𝑝

= 𝑝̂†𝑞̂ 

𝑒̂𝑟𝑠
𝑝𝑞

= 𝑝̂†𝑞̂†𝑠̂𝑟̂ 

T amplitudes are then solved via Equation 14, where ωk and Rk denote the weights used and states 

from the CASSCF calculation, and i/x denotes an active or inactive orbital. The notation {...} is technically 

involved, and it denotes Kutzelnigg-Mukherjee normal ordering [13] for a multi-configurational reference. 

Moreover, the many-body transformations introduce three body interactions in 𝐺, which are assumed 
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small. However, this implies that results are always approximate since the three body elements are 

neglected as shown in Equation 13. We denote three other similarity transforms 𝑆̂, 𝑋̂ and 𝐷̂ in a similar 

fashion in Equation 15. 

∑𝜔𝑘 ⟨𝑅𝑘|𝐸𝑎

𝑖
𝑥𝐻̅|𝑅𝑘⟩ = 0

𝑘

(14) 

ℎ̅𝑖𝑗
𝑎𝑏 = ℎ̅𝑖𝑥

𝑎𝑏 = ℎ̅𝑥𝑦
𝑎𝑏 = 0 

𝐺̅ = {𝑒𝑆+𝑋=𝐷}−1𝐻̅{𝑒𝑆+𝑋=𝐷} (15) 

 

𝐺 is our Hamiltonian with all excitations involving more than two bodies removed. This approximation 

is applicable assuming that contributions due to three body or more terms are negligible. Figure 6 shows 

an example structure of the two body equations in 𝐺 over the CAS + 1h + 1p determinants. 

 

Figure 6: Excitations remaining in our MREOM Calculation after transforming out the 2h, 2p, 1h2p, and 2p1h 
excitations. 
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We then diagonalize this final more compact space as outlined in MRCI. Of note are the huge gains in 

efficiency in MREOM versus MRCI by reducing the number of determinants in the final diagonalization by 

several orders of magnitude. However, the most expensive step in current MREOM calculations is still this 

final diagonalization. Future steps are to be taken to increase the efficiency of diagonalization to speed 

up the slowest part of the current MREOM implementation. 
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Chapter 3 

Multi-Reference Equation-Of-Motion Study of MO+ 

(M = V, Cr, Mn, Fe, Co, Ni) 

In the previous chapter, an overview of electronic structure theory was discussed leading to the 

theory behind a particular multi-reference method: Multi-Reference Equation of Motion Coupled Cluster 

(MREOM-CC). MREOM-CC has been previously used in studies to calculate transition metal atom spectra 

[7], vertical excitation spectra from organic molecules as well as transition metal complexes [14], model 

magnetic systems, as well as potential energy surfaces where single reference methods failed. Figure 7 

shows the result of an MREOM calculation of CoKr+. In this study some 200 excited states were calculated 

by MREOM. [15] 

 

Figure 7: MREOM-CC Calculation of CoKr+ including approximately 200 States with corrections for Basis Set Superposition 
Error (BSSE). This calculation was not possible with single reference methods and gives an idea of the capabilities of MREOM. 
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The main strength of MREOM is the ability to calculate many excited states from a single set of 

amplitudes as well as a state averaged CAS. These amplitudes and the nature of this state averaged CAS 

were discussed in the previous chapter. In this chapter, the principles behind running a CASSCF and 

MREOM calculation in the ORCA program are described. A study will be conducted to calculate the 

potential energy surfaces of six cations of transition metal oxides using MREOM. Currently the most 

successful method to calculate potential energy surfaces is MRCI(+Q) [16]. The method is robust due to a 

variational wavefunction and a state specific approach. In this chapter the suitability of using MREOM as 

a method to calculate potential energy surfaces will be explored. 

3.1: Systems in Study: Transition Metal Oxide Cations 

The systems under consideration are several positively charged diatomic transition metal oxides (MO+, 

M = V, Cr, Mn, Fe, Co, Ni). These systems were chosen for two key reasons. The MREOM approach has 

been used to calculate potential energy surfaces for only a few systems, notably CoKr+ and CoAr+ These 

systems are comparatively simple. The transition metal oxides are far more challenging to calculate, and 

this study provides a more stringent challenge for the methodology. The second reason these systems 

were chosen was that the proposed systems of this computational study lend themselves easily to 

experimentation via Velocity Map Imaging (VMI) in the Hopkins lab [17]. To attempt to gauge the number 

of states in each system, excited state energy levels were taken from NIST for each transition metal atom 

and for the lowest three energy levels of oxygen. While each transition metal atom is densely packed with 

many low lying excited states, oxygen has a gap of almost ~2 eV. However, that metal coupled to oxygen 

will have nine times that due to the coupling of states between the transition metal and oxygen’s 3P states. 

At the asymptote of the potential energy surface, the energy of the system can be represented as: 

𝐸(𝑀𝑂+) = 𝐸(𝑀+) + 𝐸(𝑂) 
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Table 1 shows the number of states that can be expected under 2 eV for each system based on the 

coupling of energy state values taken from NIST [18]. While each system has many low-lying states, VO+ 

deserves special mention due to the relatively high density of states at low energy. Potential energy 

surfaces were found for each system, except VO+. This may be due in part to the added complexity of the 

system compared to the other systems studied; VO+ has by far the highest density of low lying states in 

the asymptote regime. 

 

Table 1: Number of States below 2 eV for the Transition Metal Oxide systems in this study. 

VO+ CrO+ MnO+ FeO+ CoO+ NiO+ 

252 54 63 153 135 72 

 

As a quick comparison, values from NIST can be compared to bare atom MREOM calculations including 

spin orbit coupling for the first three term symbols, shown in Table 2. These MREOM energy values have 

been lined up to the term symbols and J values of each energy level. The average of states at an energy 

level is compared to the given NIST values. In most cases this absolute error is small, with high absolute 

error offset by a low percent difference. Even when only including the first three term symbols, each 

transition metal cation has many densely packed states. This simple comparison makes the electronic 

complexity of the transition metals apparent. 

While the energies of the states at asymptotes can be calculated using the above and compared with 

MREOM calculations, there isn’t a simple way to calculate energies near equilibrium geometries. However, 

the character of these states changes as the bonds of the system are broken. Equilibrium structures can 

be pictured as a combination of M3+ and O2-.  
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Table 2: Comparison of MREOM and NIST values for Transition Metal Atoms. 

 

Atom
Electron 

Configuration
Term J NIST (eV)

Average Level 

Energy (eV)

Absolute 

Difference (eV)

Percent 

Difference

V+ 3d4 5D 0 0 0 0 N/A
1 0.0045 0.0052 0.0008 17.23%
2 0.0132 0.0156 0.0023 17.66%
3 0.0259 0.0306 0.0047 18.34%
4 0.0421 0.0501 0.0081 19.18%

3d3 4s 5F 1 0.323 0.2653 0.0577 17.86%
2 0.3331 0.2765 0.0566 16.99%
3 0.3482 0.2934 0.0548 15.75%
4 0.368 0.3157 0.0523 14.22%
5 0.3921 0.3433 0.0488 12.46%

3d3 4s 3F 2 1.0713 0.89 0.1812 16.92%
3 1.0963 0.918 0.1783 16.26%
4 1.128 0.954 0.1739 15.42%

Cr+ 3d5 6S 5/2 0 0 0 N/A

3d4 4s 6D 1/2 1.4831 1.4521 0.031 2.09%
3/2 1.4918 1.4618 0.0301 2.02%
5/2 1.5061 1.4778 0.0284 1.88%
7/2 1.5255 1.4997 0.0258 1.69%
9/2 1.5494 1.5273 0.0221 1.42%

3d4 4s 4D 1/2 2.4212 2.2103 0.2108 8.71%
3/2 2.434 2.2251 0.2088 8.58%
5/2 2.4546 2.249 0.2056 8.38%
7/2 2.4827 2.2808 0.2018 8.13%

Mn+ 3d5 4s 7S 3 0 0 0 N/A

3d5 4s 5S 2 1.1745 1.0773 0.0972 8.28%

3d6 5D 4 1.7762 2.1694 0.3932 22.14%
3 1.8094 2.1996 0.3902 21.56%
2 1.8326 2.2223 0.3896 21.26%
1 1.8475 2.2374 0.3899 21.10%
0 1.8548 2.245 0.3902 21.04%

Fe+ 3d6 4s 6D 9/2 0 0.002 0.002 N/A
7/2 0.0477 0.0466 0.0011 2.27%
5/2 0.0828 0.0798 0.003 3.64%
3/2 0.107 0.1028 0.0042 3.92%
1/2 0.1211 0.1163 0.0048 3.96%

3d7 4F 9/2 0.2322 0.5056 0.2734 117.77%
7/2 0.3013 0.5713 0.27 89.60%
5/2 0.3519 0.6213 0.2694 76.56%
3/2 0.3865 0.6581 0.2716 70.26%

3d64s 4D 7/2 0.9863 0.9439 0.0424 4.30%
5/2 1.0405 0.9958 0.0447 4.29%
3/2 1.0762 1.0299 0.0463 4.30%
1/2 1.0969 1.0494 0.0475 4.33%

Co+ 3d8 3F 4 0 0.0002 0.0002 N/A
3 0.1178 0.1142 0.0037 3.11%
2 0.198 0.1924 0.0057 2.86%

3d7 4s 5F 5 0.4154 0.3109 0.1045 25.15%
4 0.4995 0.3912 0.1083 21.69%
3 0.5655 0.4558 0.1097 19.39%
2 0.6137 0.5042 0.1095 17.85%
1 0.6453 0.5364 0.1089 16.88%

3d7 4s 3F 4 1.2166 1.0853 0.1313 10.79%
3 1.3277 1.1934 0.1343 10.12%
2 1.4037 1.2668 0.1369 9.76%

Ni+ 3d9 2D 5/2 0 0.0006 0.0006 N/A
3/2 0.1868 0.185 0.0018 0.96%

3d8 4s 4F 9/2 1.0407 1.1339 0.0932 8.96%
7/2 1.1568 1.2472 0.0904 7.82%
5/2 1.2542 1.3428 0.0886 7.07%
3/2 1.3222 1.4099 0.0878 6.64%

3d8 4s 2F 7/2 1.68 1.7579 0.0778 4.63%
5/2 1.8592 1.9343 0.075 4.04%
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When looking at the above, it is important to decide when to consider absolute difference as opposed 

to percent difference. In certain cases, states have large percent differences with an absolute difference 

of less than ~0.1 eV. In some cases, both percent difference and absolute difference are high. Due to the 

restriction of using a single CAS for all states, MREOM calculations are not always accurate for all atomic 

states. Errors occur in the above energy level calculations due to the supplied CAS not containing states 

with the correct character. While the solution would be to add in another set of states with the proper 

character, it is complicated to find a correct state averaged CAS over many states. This issue may be more 

complicated for molecules. Near equilibrium the bonding solution of MO+ can be described formally as 

M3+ + O2-. As the geometry changes to larger interatomic distances, this will shift to the asymptote of M+ 

+ O. The electronic structure must capture this change in character. 

3.2: Calculation Strategy: ‘High spin’ and ‘Low spin’ 

The essence of the approach used for this study was to attempt to distill the CAS of each calculation 

into two separate categories: (i) using the highest possible allowed spin case by maximizing the number 

of unpaired electrons and (ii) a more moderate spin case where different configurations of the CAS were 

explored. The high spin case was chosen to simplify the CAS process, whereas the low spin cases were 

chosen as an alternative in the event at the high spin cases failed. These regimes were chosen to simplify 

the CAS selection process, removing the option of mixed spin active spaces. In the end, calculations from 

both approaches ended up both succeeding and failing, with certain transition metal cations proving to 

be more complicated than others.  

Six species were chosen to be studied; VO+, CrO+, MnO+, FeO+, CoO+, and NiO+. These transition metals 

are all in the same row of the periodic table, and are adjacent in atomic number. This was done to examine 

the differences in electronic structure between similar species, as well as the effects this had on various 

calculation properties such as overall calculation timings. Table 3 and Table 4 denote the CAS’s used for 
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each molecule. In the following tables, red denotes that the calculation failed, and green denotes that it 

has succeeded. In all cases, a CAS could be found that appeared continuous, but the MREOM calculation 

might still fail. Reasoning for this will be touched on later.  

Table 3: Attempted High Spin CAS Configurations, with successful configurations in green and failed configurations in red. 

High Spin 

System Electrons Orbitals Multiplicity States 

VO+ 8 9 9 5 

  8 8 9 5 

CrO+ 9 9 10 1 

MnO+ 10 9 9 5 

FeO+ 11 9 8 5 

CoO+ 12 9 7 5 

NiO+ 13 9 6 4 

 

Table 4: Attempted Low Spin CAS Configurations, with successful configurations in green and failed configurations in red. 

Low Spin 

System Electrons Orbitals Multiplicity States 

VO+ 8 8 3 1 

 8 8 3 3 

 7 6 5 3 

 8 8 3,1 5,5 

CrO+ 9 8 4 3 

 9 8 4 2 

MnO+ 10 9 5 3 

FeO+ 11 9 6 3 

CoO+ 12 9 5 2 

NiO+ 13 9 4 3 
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3.3: Basics of Complete Active Space Calculations 
A proper CASSCF calculation is the first step to an MREOM calculation. For an MREOM calculation to 

be successful, there are certain requirements for the calculated CAS. One would wish to define a single 

state-averaged CAS that results in continuous, symmetry adapted results over the whole range of 

requested geometries. Unfortunately, the CASSCF implementation in ORCA does not allow for explicit 

definitions of symmetry within the CAS. The only control the user has over CAS symmetry is to check 

degeneracy patterns upon convergence which occurs at two levels. 

The first level is to check the converged orbital degeneracies, both of orbital energies and of orbital 

occupation numbers. There are two possible degeneracy patterns for orbitals in the proposed systems. π, 

δ, and φ orbitals are doubly degenerate, while σ orbitals are non-degenerate. The second quality check is 

to check the degeneracy of calculated states. The same capitalized labels Π, Δ, Φ, and Σ characterize 

electronic states. Π, Δ, Φ all refer to doubly degenerate states whereas Σ refers to non-degenerate states. 

At the CASSCF computation level it is important to ensure that complete multiplets are included in the 

CAS. When running CASSCF calculations using ORCA, all of this must be judged using degeneracy patterns. 

Including incomplete multiplets will result in incorrect degeneracy patterns.  

A CASSCF calculation is defined by the number of electrons in the system, the orbitals that these 

electrons will populate over different state averaged configurations, the multiplicities to be calculated, 

and the number of states to be calculated for each multiplicity [19]. This step is the most user intensive 

step; there is currently no automated way to set up the active space. While the number of orbitals and 

electrons is given by the system at the start of the equation, this can change as ‘problem’ orbitals arise. 

This will be discussed in greater detail later.  
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The following is a sample CASSCF ORCA input: 

!CASSCF DKH ma-DKH-def2-TZVP 

 

* xyz 1 4 

Ni 0.000000 0.000000 0.000000 

O 0.000000 0.000000 1.650000 

end 

 

 

%casscf 

nel 10 

norb 9 

mult 5 

nroots 3 

end 

 

The calculation’s appearance is deceptively simple. The first line denotes the type of calculation and 

basis set to be used, with available basis sets being found in the ORCA manual [20]. ‘DEF2-TZVP’ is a 

minimally augmented basis set designed for heavy metal elements, while the ‘ma’ tag denotes that a 

subsection of elements contain a minimal set of diffuse functions [21]. DKH denotes the use of a Douglas– 

Kroll–Hess Hamiltonian for scalar relativistic effects [22]. The next block denotes the geometry of the 

system, including the XYZ coordinates of every atom in the calculation. Finally, the CASSCF block lists all 

required pieces of the calculation. Note that there are several default settings not listed in the above that 

may be changed as the need arises. These can be found in the ORCA manual. 

Table 5 contains the first user check of a completed CASSCF calculation, the orbital degeneracy 

patterns. When summed across, each row in this table will equal the number of electrons specified for 

the active space. This table lists the expected value of electrons that exist in each given orbital. The 

expectation is that a clear degenerate pattern will exist in the set of active orbitals. Table 5 shows the 

orbital degeneracy of MnO+ over an interatomic distance of 1.45 to 2.00. Each row of the table represents 

a different geometry. 
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Table 5: CAS Orbital Occupation Degeneracies of Low Spin MnO+.  

Interatomic 
Distance (Å) State Averaged Orbital Occupancy 

1.4 1.9089 1.9089 1.9009 1.0003 1.0003 0.7575 0.7575 0.7105 0.0553 

1.45 1.8888 1.8888 1.8886 1.0004 1.0004 0.7775 0.7775 0.7251 0.053 

1.5 1.8747 1.8651 1.8651 1.0003 1.0003 0.8011 0.8011 0.7426 0.0496 

1.55 1.859 1.8385 1.8385 1.0003 1.0003 0.8277 0.8277 0.7627 0.0455 

1.6 1.8413 1.8105 1.8105 1.0002 1.0002 0.8556 0.8556 0.7849 0.0412 

1.65 1.8219 1.7831 1.7831 1.0001 1.0001 0.8829 0.8829 0.8088 0.0372 

1.7 1.8015 1.7585 1.7585 1 1 0.9074 0.9074 0.833 0.0338 

1.75 1.7809 1.7379 1.7379 0.9999 0.9999 0.9279 0.9279 0.8561 0.0315 

1.8 1.7609 1.7216 1.7215 0.9999 0.9999 0.9442 0.9442 0.8771 0.0307 

1.85 1.742 1.709 1.709 0.9999 0.9999 0.9567 0.9567 0.8954 0.0316 

1.9 1.7243 1.6994 1.6994 0.9998 0.9998 0.9662 0.9662 0.9109 0.0339 

1.95 1.7074 1.6919 1.6919 0.9998 0.9998 0.9735 0.9735 0.9238 0.0383 

2 1.6909 1.686 1.686 0.9998 0.9998 0.9793 0.9793 0.9342 0.0447 

 

In the above table there is a clear orbital degeneracy pattern in each calculation. The above calculation 

looks good, but an MREOM calculation run with the above CAS would most likely result in T amplitudes 

that are not converged. This is due to the last orbital in the CAS having a very low orbital occupancy (<0.05) 

throughout most of the CAS energy surface. This issue can be solved by altering the CAS to the CAS found 

below. By removing the problem orbital, the occupancy is distributed among the remaining 8 orbitals. 

However, problems with T amplitude convergence also occur if an orbital is too highly populated (>1.95). 

This can be solved by removing two electrons in addition to removal of the orbital. 

%casscf 

nel 10 

norb 8 

mult 5 

nroots 3 
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The second check performed is to ensure the degeneracy of the calculated states. Once again, it is 

expected for these states to either be non-degenerate or doubly degenerate. Table 6 shows a degeneracy 

pattern denoting appropriate orbital symmetry within the CAS calculation. 

Table 6: CASSCF Energies of Low Spin MnO+ Calculation at 1.65 Å.  

Energy (Ha) Relative Energy 
(eV) 

-1231.9966 0 
-1231.9966 0 
-1231.9692 0.7467 

 

The issue with orbital occupancies that approach either doubly occupied or empty orbitals is that 

operators related to these orbitals carry a low weight; this makes it difficult to describe the amplitudes 

related to those operators. When calculating CAS excitations, highly occupied orbitals will be difficult to 

excite into, whereas lowly occupied orbitals are difficult to excite out of. In general, finding appropriate 

orbital degeneracies will lead to proper energy degeneracies, but this is not a guarantee. It’s important to 

always check both the degeneracies of the orbitals and the degeneracies of the calculated states. When 

running calculations on diatomic metal cations, it can be common to ‘split’ a degeneracy by only including 

one of the two states from the degeneracy. This will result in a set of orbitals without symmetry. The 

following calculation results found in Table 7 include one state from a multiplet. Table 8 shows the 

calculation result that occurs after including the missing half of the multiplet. This calculation can be 

further improved by the removal of the low occupancy orbital. Of note in the above is that adding and 

removing states shifts the calculated energies of the same states between calculations.  
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Table 7: Failed MnO+ CAS Calculation at 1.65 Å with number of states set to 1. This calculation failed due to the inclusion of a 
split multiplet. 

State Energy 
(Ha): 

-1232.0028 

Orbital Occupancy 
1.9809 

1.9436 

1.5409 

1.0176 

1.0084 

1.0002 

1.0001 

0.4605 

0.0479 

 

Table 8: Successful CASSCF Calculation of MnO+ at 1.65 Å after including the other half of the chosen multiplet by setting 
number of states to 2. 

State Energies 
(Ha): 

-1231.9998 

-1231.9998 

Orbital Occupancy 
1.9447 
1.7003 
1.7003 
1.0081 
1.0003 
1.0003 
0.7997 
0.7997 
0.0468 

 

 

Figure 8: CAS Energy Surface of Low Spin MnO+. The surfaces appear smooth, with two calculated states appearing 
degenerate. 
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Figure 8 shows the result of a CAS energy surface of MnO+, calculating 3 energy states with a 

multiplicity of 5. States 2 and 3 are degenerate, and are denoted with square points as opposed to circular. 

The continuous and well-behaved nature of the calculated surface means that this CAS is a prime 

candidate for an MREOM calculation. While the above is a good set of rules to start from when attempting 

a CASSCF calculation, finding the proper CAS is the first step to an MREOM calculation. Unfortunately, a 

good CAS does not guarantee the success of a MREOM calculation. 

3.4: CASSCF Calculation Results and Discussion 

Figure 9 and Figure 10 show the potential energy surfaces calculated for each CAS used for an 

MREOM calculation as well as the orbital occupancies related to that CAS. Each calculation was 

conducted using the ma-DKH-Def2-TZVP basis set. Tables covering orbital occupancies can be 

found in Appendix B. 
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High Spin CAS Potential Energy Surfaces 

 

 

 

Figure 9: Complete active space potential energy surfaces for high spin cases. 
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Low Spin CAS potential energy surfaces 

 

 

 

Figure 10: Complete active space potential energy surfaces for low spin cases. 
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Comparing the CAS calculations for the high spin and low spin cases, it is clear that high spin 

surfaces in general are repulsive, and do not show a minimum. Upon addition of electron 

correlation effects in MREOM, other low spin states are accessible. This should lead to finding 

bounded states. The low spin CASSCF do exhibit stable minima, except in the case of FeO+. In the 

cases of VO+ and CrO+, degeneracies break down at the last point of the calculation. This would 

most likely lead to these geometries being excluded from the MREOM calculation. 

3.5: Basics of Multi Reference Equation of Motion Calculations 

Much like finding the appropriate CAS for a calculation, finding the right set of parameters to run a 

successful MREOM calculation can involve a good amount of trial and error. Unfortunately, MREOM 

calculations take significantly longer than CASSCF calculations. Each trial calculation runs for 

approximately one to three days, and the calculation is not guaranteed to be successful across the entire 

potential energy surface.  

MREOM calculations are defined by the supplied CAS as well as the number of states requested. While 

it is possible to include the entire CASSCF calculation as a part of an MREOM calculation, it is preferable 

to separate them. This allows greater control and monitoring over the CASSCF calculation. Due to the size 

of the input file, the sample MREOM input file can be found in Appendix C. It is not necessary to 

understand every option of this input file, but important options will be detailed below. There are 3 main 

blocks of an MREOM calculation: the CASSCF, MRCI, and MDCI. The CASSCF block should exactly match 

the block found from the previous CASSCF calculation. Orbitals are read in from an Orca orbital (“.gbw”) 

file. The MRCI portion of the calculation is responsible for the calculation of T, S, X, D, and U amplitudes. 

The MDCI block is the final diagonalization of the resulting matrix whose eigenvalues give the requested 

energies. The most important parameters in the MRCI block are the ‘STOL’, ‘DoSingularPT’, and 
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‘SingularPTThresh’ options. Singular Perturbation Theory is a method for approximating T-amplitudes 

non-iteratively, and should be used as opposed to coupled cluster when issues involving T-amplitude 

convergence appear. Convergence issues in T-amplitudes at this point of the calculation are the main 

reason why an MREOM calculation might fail, and it is unclear at this time why certain calculations require 

this option while others do not.  

In most cases, failing an MREOM calculation means that the supplied CAS wasn’t of sufficient quality. 

This could be either due to discontinuities in the calculated potential energy surface, or due to issues with 

degeneracies in either the orbital occupancies or the calculated energy states. Occasionally, a CAS that 

looks perfectly converged may be passed to an MREOM calculation only to have that calculation fail. More 

than likely, the MREOM calculation would have failed calculating T and U amplitudes related to the 

transformation of the Hamiltonian. While most calculations may converge in less than 100 iterations, 

certain calculations such as VO+ could be allowed 1000 iterations and still fail. These convergence issues 

are indicative of an issue calculating amplitudes related to the coupled cluster method, namely an issue 

with nearly singular equations.  

From previous experience it is known that the solution of the cluster amplitudes in an MREOM 

calculation can be cumbersome. In regard to the calculated T Amplitudes (𝑡𝑖𝑗
𝑎𝑏) a tentative solution is 

available by replacing certain problem amplitudes by their first-order perturbative solution. The selection 

of such perturbative amplitudes is based on the eigenvalues of a suitable metric matrix. In practice there 

is a threshold to select [23]. This threshold is user selected and is based around the diagonalization of the 

metric matrices to obtain a set of orthonormal eigenvectors and eigenvalues, and discarding amplitudes 

related to eigenvalues below a certain threshold. However, simply discarding amplitudes can lead to 

jagged and discontinuous potential energy surfaces [23]. Replacing these amplitudes with a perturbative 

guess yields the greatest success. In general, one would like to select a threshold that just barely 
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encompasses the problem amplitudes. In ORCA, there is no simple way to accomplish this currently, so 

calculations must be tested by increasing the threshold iteratively. A clear issue with this procedure is that 

a different number of amplitudes may be replaced at different geometries, and that can lead to 

discontinuities in calculated potential energy surfaces. In the future, the threshold process may be 

replaced by an automatic threshold picking scheme, but this is outside the scope of this thesis [24].  

The final block is the main part of the calculation, and where the program will spend most of its time. 

‘newblocks’ are specified with a multiplicity as well as the number of states to calculate. This does not 

have to be the same as the states calculated in the CASSCF. While the MREOM calculation is sensitive to 

the supplied CAS, it is possible to calculate a CAS at a certain multiplicity and obtain a huge number of 

energies for different spin states. Every MREOM calculation has its associated quality checks. All cluster 

amplitudes T,S,X,D, and U should be relatively small, below about 0.10. IF they are large, 3 body 

contributions in the transformed Hamiltonian can be large, but are neglected. If some cluster amplitudes 

are large (0.1-0.15), the results from an MREOM calculation are questionable [23]. Figure 11 shows an 

example of calculated T amplitudes. 
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-------------------- 

LARGEST T AMPLITUDES 

-------------------- 

16-> 22  -1-> -1       0.065483 

16-> 29  -1-> -1       0.065321 

18-> 47  -1-> -1       0.058644 

17-> 46  -1-> -1       0.058644 

18-> 35  -1-> -1       0.057465 

17-> 34  -1-> -1       0.057465 

16-> 33  -1-> -1       0.052265 

16-> 42  -1-> -1       0.050569 

11-> 29  -1-> -1       0.046262 

18-> 40  -1-> -1       0.046074 

17-> 39  -1-> -1       0.046074 

16-> 30  -1-> -1       0.043835 

18-> 21  -1-> -1       0.042248 

17-> 20  -1-> -1       0.042248 

11-> 42  -1-> -1       0.041957 

18-> 28  -1-> -1       0.040540 

 

Figure 11: Example T Amplitudes from a high spin CoO+ MREOM Calculation. T amplitudes are well 

below the 0.1 calculation accuracy threshold.References weights from the final CI part of an MREOM 

calculation should be above 0.9. These reference weights are calculated for each state and are a measure 

of the CAS contribution in the final wave function. If this value is too low (<~0.90) then the accuracy of the 

resulting state is questionable. Unfortunately, passing these two checks does not necessarily result in a 

successful calculation. Curves could still have discontinuities or exhibit strange behavior. However, failing 

these checks removes any confidence that the results may be trusted. 

3.6: MREOM Calculation Results and Discussion 
 

The following are the completed potential energy surfaces from completed CASSCF calculations. In 

the following we will discuss MREOM calculations that start from the CASSCF results discussed before. 

While several CASSCF calculations can be completed in an hour, an MREOM calculation can take from 2 

hours to 1 day. This meant that it takes a significantly higher time investment to find the correct settings 
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necessary for a successful MREOM calculation. In the following section, both the high spin and low spin 

results will be considered together and compared.  

Table 9 includes details for each calculation. 

Table 9: MREOM calculation details including number of states, multiplicities, elapsed calculation time, and SPT 
threshold. 

  Basis Set Multiplicity 
Total 
States SPT 

Calculation 
Time 

VO+ 

ma-DKH-Def2-
TZVP 

9 N/A No SPT N/A (Failed) 

CrO+ 10 39 0.01 7h46m 

MnO+ 9 41 No SPT 2d22h 

FeO+ 8 69 No SPT 10h55m 

CoO+ 7 64 0.01 1d3h 

NiO+ 6 91 No SPT 8h 

VO+ 5,3 N/A 0.1 N/A (Failed) 

CrO+ 4 39 0.1 3h19m 

MnO+ 5 41 0.01 3h47m 

FeO+ 6 69 0.1 11h15m 

CoO+ 5 64 No SPT 1h51m 

NiO+ 4 49 0.01 8h21m 

 

Previously, theoretical and experimental studies have been conducted on the first series transition 

metal oxides for both neutral and charged species. A comprehensive study by Harrison et al. [25] was 

conducted on transition metal oxides for both neutral, cationic, and anionic species to calculate 

spectroscopic properties, such as vibrational frequencies and ground state spin states. Neutral species  

have also been investigated by Anderson et al. [26] and A. J. Merer [27], while charged species were 

studied by Fiedler et al. [28], Y. Nakao and K. Hiraro [29], Y. Shiota and K. Yoshizawa [30] to find ground 

state properties such as ionization energy or equilibrium ground state bond lengths for both neutral and 

charged species respectively. Approximate equilibrium bond lengths for the systems in this study are 

compared to both neutral and charged species in Table 10. Bond lengths used in this table are low spin 
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results that have been rounded to the nearest data point based on inspection of each curve. As such, this 

comparison is approximate, but shows a general agreeance within +/- 0.1 Å. To increase accuracy further 

comparisons require more points to be calculated near this equilibrium bond distance. 

Table 10: Comparison of MREOM calculated bond lengths with literature for transition metal oxide cations 

  
Experimental 

Results  Theoretical Results 

Species r0 [27] r0 [25] r0 [26] r0 [27] Species r0 r0[28] r0[29] r0[30] 

VO 1.59 1.60 1.55 1.59 VO+ / / 1.55 1.53 

CrO 1.62 1.62 1.53 1.62 CrO+ 1.60 / 1.61 1.57 

MnO 1.65 1.66 1.57 1.65 MnO+ 1.70 / 1.83 1.72 

FeO 1.62 1.68 1.55 1.62 FeO+ 1.65 1.62 1.67 1.63 

CoO 1.60 1.62 1.56 1.63 CoO+ 1.60 1.63 1.69 1.63 

NiO 1.63 1.63 1.59 1.63 NiO+ 1.60 1.63 1.68 1.65 

 

Please note that while it may appear that plots do not include the number of states listed above, all 

states have been accounted for. Several states are very close in energy and, depending on the range of 

states calculated, appear to overlap. While each calculation involves many states, it is a small subsection 

of the total number of states that exist for these potential energy surfaces. Attempting to calculate the 

entire potential energy surface is currently unfeasible. 

3.6.1: MnO+ Calculation and Discussion 

Calculated MREOM potential energy surfaces are shown in Figure 12. The MnO+ MREOM calculations 

have similarities, but differ due to jaggedness present in the high spin case. While the low spin case seems 

to have remained continuous, the high spin case involves some state mixing at around 1.70 Å to 1.80 Å. 

This occurs when the program calculates different states at different geometries. When setting up the 

calculation, the user does not decide to include specific states, but simply input several states per 

multiplicity. Problems occur if the program does not calculate the same states at each geometry. To assess 

the validity of each calculation, the reference weights and T amplitudes are examined for each geometry. 
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Figure 12: MREOM potential energy surface plots of MnO+. 
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Table 11: Smallest references weights and largest T-amplitudes for high spin and low spin MnO+. 

Interatomic 
Distance (Å) Smallest Reference Weights (High Spin) Largest T Amplitudes (High Spin) 

1.4 0.8745 0.9036 0.9038 0.067779 0.06719 0.048935 

1.45 0.8755 0.9053 0.9058 0.076563 0.060643 0.042937 

1.5 0.8763 0.9066 0.9069 0.061426 0.048551 0.036614 

1.55 0.8767 0.9051 0.9051 0.080213 0.077952 0.041718 

1.6 0.8767 0.9033 0.9033 0.08842 0.086724 0.041006 

1.65 0.8762 0.9016 0.9016 0.066612 0.06448 0.04143 

1.7 0.8753 0.9 0.9 0.084372 0.045215 0.0403 

1.75 0.8988 0.8988 0.9109 0.089201 0.057006 0.042703 

1.8 0.8981 0.8981 0.9127 0.089327 0.084712 0.042571 

1.85 0.8988 0.8999 0.9129 0.078069 0.076038 0.040513 

1.95 0.9009 0.9019 0.9145 0.088258 0.086315 0.045744 

2.0 0.9033 0.9041 0.9183 0.096399 0.093535 0.050526 

Interatomic 
Distance (Å) Smallest Reference Weights (Low Spin) Largest T Amplitudes (Low Spin) 

1.4 0.9304 0.9304 0.9315 0.584819 0.584819 0.193995 

1.45 0.9281 0.934 0.934 0.384476 0.384476 0.264742 

1.5 0.9255 0.9382 0.9382 0.351814 0.237517 0.237517 

1.55 0.9267 0.9424 0.9424 0.416985 0.161447 0.161447 

1.6 0.9288 0.946 0.946 0.411187 0.120229 0.120229 

1.65 0.9375 0.9473 0.9473 0.356044 0.095754 0.095754 

1.7 0.9341 0.949 0.949 0.056244 0.054671 0.054671 

1.75 0.9352 0.9487 0.9487 0.053831 0.049127 0.049127 

1.8 0.9354 0.948 0.948 0.051837 0.045566 0.045566 

1.85 0.9335 0.947 0.947 0.050214 0.049106 0.026308 

1.9 0.9338 0.946 0.946 0.054304 0.048794 0.031118 

1.95 0.9343 0.9433 0.9433 0.059901 0.047654 0.033962 

2 0.9353 0.942 0.942 0.065933 0.046779 0.038823 

 

After analyzing   
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Table 11, issues can be found with each calculation. Reference weights should stay above 

approximately ~0.90 and T amplitudes should not be higher than approximately ~0.1. For the high spin 

calculation, reference weights become small at low geometries, but become acceptable at r > 1.75 Å. For 

the low spin calculation, T amplitudes exceed the acceptable threshold for low interatomic distances, but 

become acceptable at 1.7 Å. This calls the first 0.4 Å of each calculation into question. To attempt to rectify 

this, the calculation was redone with a higher SPT threshold shown in Figure 13. 

 

 

Figure 13: Comparison of SPT thresholds for low spin MnO+. Increasing the SPT threshold had little effect on calculated 
energies but produced a large reduction of T Amplitudes as well as a slight increase in curve smoothness 

0

0.5

1

1.5

2

2.5

3

3.5

4

1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05

R
el

at
iv

e 
En

er
gy

 (
eV

)

Interatomic Distance (Å)

Low Spin MnO+ (0.05 SPT)

0

0.5

1

1.5

2

2.5

3

3.5

4

1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05

R
el

at
iv

e 
En

er
gy

 (
eV

)

Interatomic Distance (Å)

Low Spin MnO+ (0.01 SPT)



36 
 

The plots in Figure 13 appear similar, with the higher SPT calculation appearing marginally less jagged. 

The main result of the increased threshold was that T amplitudes dropped significantly while results 

stayed largely the same. The calculation also completed faster, finishing in approximately three hours 

while the original calculation finished in four hours. From Figure 14, we can see increasing the SPT 

threshold had little effect on the calculation, but curves appeared less jagged. 

 

Figure 14: Comparison of energy values between differing SPT thresholds. Changing this threshold does not affect the 
calculated energies. 

Table 12: Smallest references weights and largest T amplitudes for low spin MnO+ with SPT=0.05. 

Interatomic 
Distance (Å) 

Smallest Reference 
Weights 

Largest T Amplitudes 

1.4 0.9227 0.9377 0.9377 0.079 0.0286 0.0283 

1.45 0.9244 0.9405 0.9405 0.0749 0.0281 0.0281 

1.5 0.9271 0.9441 0.9441 0.0703 0.0268 0.0266 

1.55 0.93 0.9481 0.9481 0.066 0.0276 0.0257 

1.6 0.9327 0.9491 0.9491 0.0623 0.0282 0.0275 

1.65 0.9346 0.9492 0.9492 0.0591 0.0318 0.0269 

1.7 0.9332 0.949 0.949 0.0563 0.0356 0.026 

1.75 0.9333 0.9485 0.9485 0.054 0.0398 0.0256 

1.8 0.9334 0.9478 0.9478 0.0519 0.0443 0.0287 

1.85 0.9335 0.947 0.947 0.0502 0.0491 0.0263 

1.9 0.9338 0.946 0.946 0.0543 0.0488 0.0311 

1.95 0.9343 0.9433 0.9433 0.0599 0.0477 0.034 

2.0 0.9353 0.942 0.942 0.0659 0.0468 0.0388 
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Figure 15: MnO+ calculated energy comparison at two selected points. 

 

Table 12 shows a promising result from raising the SPT threshold. Results now appear with reasonable 

T amplitudes and reference weights. Next, we compare calculated energy states in Figure 15 between 

high and low spin calculations to see if the calculations show agreement. Each set of energies adheres to 

a similar pattern between calculations at 1.7 Å, while the calculations at 2.0 Å do not show agreement. 

The low spin case appears to be converging on an asymptote, while the high spin case does not. The 

midpoint calculations both show relative agreement, differing by about ~0.3 eV. This is surprising, due to 

potential issues with each calculation at that geometry. The general agreement between calculations 

lends these questionable sections some validity. From the above information, it appears that the high spin 

case trades a larger flexibility of calculable geometries for continuity errors in a section of the potential 

energy surface. 

The low-spin calculations use a CASSCF reference that corresponds to the final states calculated in 
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expect low-spin results to be more accurate. The high-spin calculations are a bit of a stretch for the 

MREOM methodology and here we explore the ability of MREOM to recover from poor starting orbitals. 

3.6.2: FeO+ Calculation and Discussion 
 

From Figure 16, we can see several irregularities in the low spin plot, and a few in the high spin plot 

over the course of the calculation. The high spin calculation was able to be completed up to 6.0 Å, but 

results were poor past 2 Å. T amplitudes were not converged for r > 2 Å for the low spin case. While both 

potential energy surfaces have a degree of strangeness to them, the high spin case appears more 

continuous than the low spin case. From this point on, T amplitudes and reference weights can be found 

in Appendix D. 
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Figure 16: MREOM potential energy surface plots of FeO+. The high spin method (top panel) produces a less jagged 
curve compared to the low spin method (bottom panel) for this system. 

In general, both quality indicators appear satisfactory. However, the high spin case borders on 

questionable, with T amplitudes and reference weights both approaching unsatisfactory values. In the low 

spin case, reference weights start a bit low but quickly grow. T amplitudes begin small and grow slightly, 

but stay reasonable throughout the entire calculation. From the energy comparison in Figure 17, both 

calculations appear to agree on the energy range where states occur, but not on the distribution of states 

within that range. In this calculation, the high spin case appears more continuous and well behaved when 

compared to the low spin calculation and is the preferred calculation for this system. 

 

Figure 17: FeO+ calculated energy comparison between spin cases. 

3.6.3: CoO+ Calculation and Discussion 
 

Figure 18 shows the results of the MREOM calculation using each spin approach for CoO+. The high 

spin and low spin systems exhibit the same properties that occurred in previous calculations. The high 

spin calculation allows convergence for a greater range of geometries than the low spin case, while 

exhibiting jaggedness around 1.9 Å and state mixing past 1.8 Å. There are no obvious discontinuities in 

the low spin calculation. Appendix D contains reference weights and T amplitudes for the above surfaces. 
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Figure 18: MREOM potential energy surface plots of CoO+. 
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system PECs are more jagged than those of the low spin system. The curves produced by the low spin 

MREOM calculation appear to be reasonable. 

3.6.4 NiO+ Calculation and Discussion 

     Figure 19 shows the results of the MREOM calculations for NiO+. Once again, the high spin case was 

able to calculate a larger range of geometries for the potential energy surface. However, the high spin 

case includes significantly more jagged curves, with many curves showing a jump of about ~1 eV. This 

jump is not observed in the low spin case. Note that the high spin case includes an extra 42 states. These 

were included to account for the jaggedness by attempting to remove the state mixing issue. Appendix D 

contains T amplitudes and reference weights for the above calculations.  
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Figure 19: MREOM potential energy surface plots of NiO+. Here we see significant discontinuities in the high spin 
calculation, including state-mixing along the potential energy curves for higher energy states. 

      For the high spin case, T amplitudes and reference weights are both approaching thresholds suggesting 

that certain states may not be accurate. As explained previously, extra states were included in the high 

spin calculation, which are meant to be removed to create a continuous and well-behaved potential 

energy surface. Figure 20 is the result of the edited high spin surface:  

 

Figure 20: Edited high spin NiO+ potential energy surface. Curves that were discontinuous have been removed. 
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removing the jagged curves. The two plots begin to appear similar, but more analysis is required. Figure 

21 is a comparison of calculated energy states at two separate points. This state energy plot shows general 

agreement between the high spin and low spin calculated plots after editing the plots to remove 

jaggedness. Each exhibits a similar gap of about ~0.8 eV for the first energy level gap, leading to a dense 
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the main strengths of MREOM is its ability to calculate many states simultaneously. This makes the impact 

of requiring extra states needed to make an accurate high spin plot negligible. The above strategy allows 

for high spin MREOM calculations to create continuous potential energy surfaces for complicated 

electronic systems. 

 

Figure 21: NiO+ calculated energy comparison. There is good agreement between the edited high spin and low spin 
calculations. 

3.6.5 CrO+ Calculation and Discussion 
 

The plots of CrO+ found in Figure 22 are an interesting case in this study. For the other transition metal 

oxides, the high spin potential energy surface appeared with jaggedness and discontinuity between the 

midpoint and asymptote, but were stable across a much larger range of geometries. The low spin case 

would have a smaller range, but curves would be smoother. Here, the high spin curve appears significantly 

smoother than the low spin case, while still enjoying the benefits of a much more stable CAS. Once again, 

appendix D contains reference weights and T amplitude data. From Appendix D, some trouble reference 

weights and odd T amplitudes are found for both the high spin and low spin cases. 
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Figure 22: MREOM potential energy surface plots of CrO+. 

For the high spin case, something odd occurs in the T amplitudes at 1.55 Å and 1.65 Å. While reference 

weights of all the included states stay high, the T amplitudes of those points calls into question the 

calculated energies. Despite how the high spin calculation looks, results appear questionable due to the 

low reference weights for several states at most geometries. When we compare energy states between 

calculations in Figure 23, results do not line up. 
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Figure 23: CrO+ calculated energy comparison. 

Here, we see little agreement between the two calculations. Gaps between states do not line up 

between calculations. For the midpoint case, the only energies that appear to agree are the cluster of 

energies around ~2eV. For the endpoint case, calculations have a similar pattern but disagree on both the 

highest and lowest state. Overall, there is a very weak agreement between the calculations that does not 

inspire confidence. In this case, the high spin calculation appears preferable despite the low reference 

weights for a handful of states at each geometry. However, T amplitudes stay low throughout the 

calculation. Despite low reference weights, curves remained continuous and appear without any 

irregularities. The high spin calculation for CrO+ appears trustworthy. CrO+ is the only system in this study 

where the high spin case appeared well behaved without editing out states, compared to the 

discontinuous curves calculated for each other system. 

3.6.6 VO+ Calculation and Discussion 
 

Unfortunately, an MREOM calculation for VO+ was not completed for any of the several CAS 

configurations attempted. Both high and low spin were attempted, as well as a mixed spin CAS calculating 
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geometries. Mixed spin active spaces are more complicated to converge, with high spin cases being the 

simplest to both create and converge. This was the reasoning behind using the high spin regime in the 

first place. Most calculations failed in the T amplitude stage. Table 12 denotes the results of each MREOM 

calculation involving VO+. Each MREOM calculation that was able to run did so at 1000 iterations. Note 

that most other calculations converged before 100 iterations, with only one calculation requiring 230. In 

contrast, the calculations for VO+ were more resistant toward converging T amplitudes than other 

calculations. The tolerance for T amplitude convergence is 10-6. 

Table 13: MREOM results for VO+.For each CAS that converged, MREOM calculations were conducted. The T amplitude 
residual was not able to be converged sufficiently to complete the calculation. 

Electrons Orbitals Multiplicity States 
CAS 

Convergence? 
T Amplitude 

Residual 

8 8 3 3 No N/A 

8 9 3,1 5,5 No N/A 

8 9 5 3 No N/A 

8 8 5 3 No N/A 

8 8 3,1 5,3 Yes Running 

8 8 3 1 Yes 0.010126407 

8 8 3,1 5,5 Yes 0.002531189 

8 9 5,3,1 2,3,3 Yes 0.000931845 

8 9 9 5 Yes 0.000066 

6 7 5 3 Yes 0.000022599 

 

From the above, it appears that the CAS involving the fewest states resulted in the slowest 

convergence. However, the active spaces that involved many state from several orbitals were also slow 

to converge, fairing only slightly better. The CAS that was closest to convergence involved the fewest 

orbitals, removing two due to problems with orbital occupancy. The increased convergence could simply 

be due to involving fewer orbitals as opposed to finding the correct CAS. As of this writing, other CAS 

configurations are being attempted. As current calculations have not come close to proper convergence, 
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it is unclear what CAS configuration might yield suitable results. In the end, none of the attempted 

calculations yielded anything suitable. 

3.7: Conclusion 

In this study, six transition metal oxide cations were examined using MREOM: VO+, CrO+, MnO+, FeO+, 

CoO+, NiO+. These systems were approached using two different spin regimes; a high spin regime created 

to simplify the CAS process, and a low spin regime used as a more sensible approach. VO+ was additionally 

approached with a mixed spin CAS when other approaches failed, but did not yield a potential energy 

surface. From the five systems that were completed, the low spin case was the more reasonable 

calculation in three of the five calculations, with FeO+ and CrO+ appearing to behave better as high spin 

calculations. This is interesting, as the idea that high energy high spin states can be used as a reference to 

calculate states significantly lower in energy is unintuitive. However, it is unclear how accurate these 

calculations are due to high T amplitudes and sub-optimal reference weights.  

For MnO+, CoO+, and NiO+, results were significantly better behaved in the low spin case when 

compared to the high spin case. Curves appeared continuous with low T amplitudes and high reference 

weights. The only issue with these calculations was the difficulty in setting them up. Originally, the high 

spin regime was introduced to simplify the CAS selection process. Unfortunately, the high spin case failed 

for two of the above systems due to issues with convergence of T amplitudes. This might be solved with 

a more aggressive approach to choosing a singular PT threshold, as it is theorized that issues with T 

amplitudes or jaggedness could be due to different numbers of amplitudes being frozen depending on the 

current geometry. Currently, there is no way to choose a fixed number of T-amplitudes to approximate. 

Unfortunately, even when allowed more than three times the iterations of the other calculations, it 

was not possible to converge T-amplitudes for either spin regime of VO+. This might be explained by the 

increased density of states of V+ compared with the other transition metals, requiring a larger CAS to 
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properly calculate a potential energy surface. As these states begin to converge asymptotically, calculating 

these states becomes significantly more complex. 

While the high spin results involved discontinuities, these discontinuities could be addressed in NiO+ 

by calculating many states and trimming down until only continuous curves remain. Using a high spin CAS 

is not an intuitive response to convergence issues, as the states included in the CAS are often very far from 

the ground state of the system. By editing the high spin NiO+ plot, a continuous and well behaved potential 

energy surface was obtained. While this strategy may make the high spin approach viable, it is unclear if 

this produces sufficiently accurate potential energy surfaces. While NiO+ could be edited to show general 

agreement, the other systems showed disagreement between calculation regimes. In the case of CrO+, 

high T amplitudes and low reference weights make the results appear questionable. 

 In this chapter a high spin and low spin calculation approach was applied to six systems, with five 

systems viable potential energy surfaces. While the high spin case was significantly easier to set up, the 

low spin case calculated smoother curves for three of the systems in this study. While the cost of running 

a high spin calculation is generally low for the user, the calculations take longer to finish and results appear 

questionable. By editing the high spin curves, it was possible to add extra states for later removal to create 

a smoother potential energy surface. In the end, the low spin case yielded several reasonable potential 

energy surfaces and is recommended. However, the unintuitive high spin approach with editing may also 

be considered as a simple to run alternative. 

The goal to calculate many potential energy surfaces for complicated transition metal oxides is 

ambitious. A clear alternative to MREOM is to use MRCI calculations. This would require a large state-

averaged CAS calculation, and this might compromise the accuracy of the calculation. MREOM is designed 

to have fewer issues in this regard, but as evidenced from the current work the MREOM approach can 

suffer from numerical instabilities. The use of symmetry in the calculations might alleviate some of the 
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problems, and certainly would allow for a better targeting of states. However, this would require a major 

re-implementation in ORCA. These studies show that MREOM calculations are not sufficiently robust to 

calculate full potential energy surfaces. MREOM can be used to calculate single point energies, and one 

might calculate several single point energies at close lying geometries to extract a low-order Taylor series 

expansion. In the future this can be expanded to calculate parameters for non-adiabatic vibronic models. 

[25] 
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Chapter 4 

New Method for Implementing MREOM 

In the first chapter of this thesis the basics for an MREOM calculation was established, as well as the 

theory behind MREOM. Similarity transformations are applied to a bare Hamiltonian H such that 

excitations out of the CAS are removed. These transformations do not effect the eigenvalues of the 

Hamiltonian, meaning that transforming the Hamiltonian does not change the energy levels. In this 

chapter, an algorithm will be introduced to create a new CI program designed to perform MREOM 

calculations. This program is meant to take advantage of the efficiency of heavily optimized common use 

linear algebra libraries. A data structure was created such that arrays could be easily passed to these linear 

algebra subroutines. This would allow efficient calculation of several integrals at once while avoiding the 

array reshuffling present in current implementations of MREOM. 

Unfortunately, this project was not completed. The CI Code was meant to be completed on ASUS2 

using FORTRAN, which would later be ported to C for ORCA. The ASUS2 version of the code was meant to 

be a proof of concept, with practical calculations using ORCA. The main advantage for calculations run 

using ORCA is the inclusion of spin-orbit coupling, which increases the accuracy of the calculation by 

accounting for energy level shifts due to the interaction between an electron’s spin and orbital motion. In 

the end it was deemed too much investment to get the program running on ACES2 to just immediately 

port it to ORCA for actual use. This code will most likely be completed by a future student in ORCA. 

  

 



51 
 

The algorithm being implemented in this study is a Davidson Algorithm. The heart of the algorithm is 

to use preconditioners to create a guess input vector | ϕ⟩ . The next step is to then construct a 

representation of the Hamiltonian H from these guess vectors: 

𝐻𝑝𝑞 = ⟨𝜑𝑝|𝑔|𝜑𝑞⟩ (16) 

Next, we diagonalize this Hamiltonian: 

𝑯𝐶𝒑 = 𝐸𝑪𝒑 (17) 

Then calculate the current best estimate: 

|ψ⟩ =  ∑|ϕp⟩Cp

𝑁

𝑝=1

(18) 

Next the residual is calculated: 

𝑅𝑘 =  ⟨Χ𝑘|𝑔 − 𝐸|ψ⟩ (19) 

If the residual is above some tolerance value, then new guess vectors are calculated: 

ϕ = (𝐻0 − 𝐸)−1𝑅𝑘 (20)  

With the process repeated from the 2nd step until the calculation converges. While both the current 

implementation of MREOM and the proposed implementation use a Davidson algorithm, they are 

implemented in different ways. The heart of the matter is that improvements can be made to the 

efficiency of the current CI program.  

Table 14 shows the percentage of time spent in each part of an MREOM calculation for a variety of systems. 

The most time-consuming step was found to be final matrix diagonalization. 
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Table 14: Relative timings of each calculation section for MREOM calculations in ORCA. 

System 
CASSCF 

Iterations 
MDCI 

Module 
MRCI 

Module 

NiO+ 0.001 0.314 0.685 

MnO+ <0.1% 0.036 0.963 

FeO+ 0.001 0.102 0.897 

CoO+ 0.001 0.257 0.742 

CrO+ 0.008 0.434 0.559 
 

From Table 13, we can see that the program spends most of its time in two separate CI portions, both 

dedicated to matrix diagonalizations. The current implementation of the MRCI code is a generalized non-

specific algorithm designed to treat one integral at a time. A new algorithm was developed with a unique 

data structure in mind such that multiple integrals could be processed in a single matrix-matrix 

multiplication call. This data structure is shown in Figure 24. 

CAS    C(n, λ) 

1h    C(i, n, λ) 

1p    C(a, n, λ) 

1h1p   C(a, i, n, λ) 

Figure 24: Data structure used in the new algorithm. This data structure would allow for the intelligent storage of our 
data, with ‘simpler’ indices treated later by the different loops of the program. 

 

The orbital labels, i and a, refer to inactive low energy hole orbitals that are doubly occupied in each 

reference determinant and virtual orbitals that are empty in the reference state. In MREOM calculations 

we are often interested in many electron states. States which have the same spatial symmetry 

represented by irreducible representations and spin values, namely the Sz and S2 values, can share the 

same data structure. The individual sates are categorized by the index n. These states can all be treated 

together in a block Davidson algorithm. The matrix multiplication of HC is carried out for a block of states 

all at once and is shown in Figure 25. The most complicated label to use is the occupation string of orbitals 
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in the active space. This string is indicated by the Greek indices (λ, μ, etc.) and represents the active space 

character of the contribution. Each string is characterized by irrep, number of electrons, and Sz value, with all 

possible strings occurring consecutively. 

 

Figure 25: Structure of a matrix-matrix multiplication. Much of the algorithm depends on exploiting matrix-matrix 
multiplication calls. 

 

While this algorithm is more efficient, it is significantly more complicated. Each contribution requires 

a specialized and unique loop structure. While the current implementation spends a significant amount 

of time diagonalizing matrices, it has a ‘one size fits all’ solution. This means that while the new algorithm 

would be much faster, development time would both be significantly longer as well as more complicated. 

Due to the nature of calculations in quantum chemistry requiring testing many different systems a 

streamlined and efficient CI code is required to push the state of the art forward.  

Each contribution must be individually calculated for both the one electron and two electron 

contributions. This means that some residual R is calculated by multiplying our Hamiltonian H with some 

input vector C, for both the one electron and two electron cases. Examples of this multiplication can be 

seen below for each case: 

𝑅𝑛𝜇 = −𝛴𝑥,𝑖,𝑛,𝜆 ℎ𝑖𝑥〈𝑢|𝑥|𝜆〉𝐶𝑖𝑛𝜆 (21) 
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𝑅𝑛𝜇 = −𝛴𝑘,𝑥,𝑦,𝑧,𝑛,𝜆 〈𝑘𝑥||𝑧𝑦〉〈𝑢|𝑥†𝑦𝑧|𝜆〉𝐶𝑘𝜆 (22) 

Equation 22 shows a one electron example, where Equation 23 shows a two-electron example. Labels 

i,j,k refer to hole electrons, whereas x,y,z refer to active space electrons. As mentioned in Chapter 1, all 

1h, 1p, 1h1p, and 2h contributions are determined and calculated. This is done by determining each valid 

residual contribution and finding what combination of Hamiltonian and C vector labels determines this 

residual. Determining each contribution involves engineering a Hamiltonian and C vector pair whose 

multiplication results in a particular residual. Contributions that result in residuals with the wrong electron 

character are discarded. In each of the above cases, the sum labels give an idea of what labels will be 

looped over in the code. 

Each matrix is designed to be stored in memory consecutively as per the data structure stated 

previously, with less complicated labels appearing first and more complicated labels appearing second. 

This means that every contribution has a calculable starting point and end-point determined by the 

properties of the system being looked at. In truth, the program stores the entire array in memory and 

determines what pieces need to be used by a particular subroutine by calculating a series of ‘offsets’ 

during the initiation of the program. These offsets are stored and are used by a pointer to determine how 

to correctly access relevant parts of the residual, Hamiltonian, and CI vectors. This is visualized in Figure 

26. 
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Figure 26: Example of array in memory. The nature of the data structure and each element appearing consecutively in 
memory allows matrix-matrix multiplication calls to be exploited for massive gains in efficiency. 

 

Depending on what contribution is being looked at, several integrals can be calculated simultaneously 

with a single matrix-matrix multiplication call. For example, the contribution shown in Equation 23 may 

be looped simply, While the contribution found in Equation 24 must be looped over explicitly due to its 

complexity: 

𝑅𝑛𝜆 = +𝛴𝑖,𝑎,𝜆 ℎ𝑖𝑎〈𝑢|𝜆〉𝐶𝑎𝑖𝑛𝜆 (23) 

𝑅𝑖𝑛𝑢 = +𝛴𝑥,𝑖,𝑗,𝑘,𝜆 ℎ𝑗𝑥〈𝑢|𝑥|𝜆〉𝐶𝑖𝑗𝑛𝜆 (24) 

Put simply, the complexity of a contribution is determined by how, if possible, different labels may be 

‘glued’ together. For example, the first contribution is made possible by gluing together the ‘a’ and ‘i’ 

labels. Since no active space electrons occur, the active space in both the input vector and residual remain 

identical, and so the final two labels may also be glued together. This results in the following pseudo-code: 

𝑅(1, 𝑛 ∙ 𝜆) = 𝑠𝑢𝑚(𝑖, 𝑎)𝐻(1, 𝑖 ∙ 𝑎) × 𝐶(𝑖 ∙ 𝑎, 𝑛 ∙ 𝜆) (25) 

Whereas the second example is more complicated due to the inclusion of an active space electron. 

Each time an active space electron is involved, a subroutine must be called to calculate how the active 

space electron operates on the original active space string to determine a new active space string. Most 

contributions require an active space electron, but most contributions can also be simplified in some way. 

The pseudo-code from equation 4 can be found rewritten below: 

𝑅(𝑖 ∙ 𝑛, 𝜇) = 𝑠𝑢𝑚(𝑖) × 𝑉(1, 𝑗) × 𝐶(𝑖, 𝑗; 𝑛, 𝜆)𝑇 (26) 

Where the ‘T’ denotes a transposed array. This is required due to a mismatch of labels between the 

Hamiltonian and the input vector and the residual. What this means is that each active space and state 
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label must be looped over explicitly, and within that loop each C(i,j) matrix used must be transposed 

before being multiplied with the Hamiltonian. Since each loop must be treated explicitly, this contribution 

requires more time to complete. A full list of contributions, along with the pseudocode associated with 

each contribution, can be found in appendix A. 

As stated previously, one of the main benefits of writing this algorithm and data structure is the ease 

and efficiency of matrix-matrix multiplication using the Basic Linear Algebra Subroutines (BLAS) library. 

This library has been heavily optimized to provide extremely efficient linear algebra functions. Taking 

proper advantage of these already-optimized subroutines allows for a large speedup in the CI code. The 

backbone of the code comes from structuring our contributions such that we make as few calls using BLAS 

as possible, as each call will still be the bottleneck of a calculation. 

The following will be two pseudo-code examples of subroutines in the CI code; the first will be a one 

body Hamiltonian contribution and the second will be a two-body contribution. The two-body 

contribution is more complicated, but most of the complication comes from proper configuration of arrays, 

offsets, and labels to correctly determine each contribution. 
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4.1 Code example of one body Hamiltonian 
 

We will start by looking at the contribution from before, shown in equation (3). Equation 28 shows 

both the equation form and pseudocode form of this contribution. This contribution is simple compared 

to other one body contributions. There are no active space contributions, which means that the active 

space label found in the input array is the same as the label in the residual. This means that the active 

space and state label may be looped over simultaneously. The form of the residual and the form of the 

input vector also means that the hole and particle labels ‘a’ and ‘i’ can also be looped over simultaneously. 

This will be addressed in the way that the matrix-matrix multiplication is set up at the end of the 

subroutine. First, the code will be written in its entirety on the following page. Then, each section will be 

analyzed. 

𝑅𝑛𝜆 = +𝛴𝑖,𝑎,𝜆 ℎ𝑖𝑎〈𝑢|𝜆〉𝐶𝑎𝑖𝑛𝜆 (27) 

R(1, n ∙ λ) = sum(i, a) × V(1, i ∙ a) ∙ C(i ∙ a, n ∙ λ) 

do aspin=1,2 

     do arep=1, nirrep 

          ispin = aspin 

          irep = arep 

 

          ni = js_norb(o_h, irep) 

          na = js_norb(o_p, arep) 

 

          s_C = s_ph(aspin,ispin) 

          s_R = s_0 

 

          ioff = js_orb_offh(irep,ispin) -1 

          aoff = js_orb_offp(arep,aspin) -1 

 

          nlambda = js_nactive(s_C) 

 

          do a = 1,na 

               do i = 1,ni 

                  v2(a,i) = hmat(ioff+i,aoff+a) 

 

          C_start = js_off_psi(s_C, arep, irep) 

          R_start = js_off_psi(s_R, 1, 1) 
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          nsum = na*ni 

          nrow = 1 

          ncol = nstate*nlambda 

          fact = 1.0d0 

 

   Call matrix-matrix multiplication 

   (nrow, ncol, nsum, fact,  

    v2, maxorb,  

    C(C_start), nsum,  

    R(R_start), nrow) 

 

 

At this time, portions of the code will be individual examined. The program begins with the following 

code snippet: 

 
do aspin=1,2 

     do arep=1, nirrep 

          ispin = aspin 

          irep = arep 

  

Each spin and irreducible representation must be explicitly looped over, so that every contribution is 

accounted for. In this case, the spins and irrep between the ‘a’ and ‘i’ particles are identical. This is a 

corollary of how this particular contribution was derived. In most cases, the spins of the particles must be 

the same such that the state is not annihilated as per the rules of second quantization. In the above, the 

code starts at 1 and ends at 2 for the spin loop, and loops several times equal to ‘nirrep’ for the irreducible 

representation loop. ‘nirrep’ is one of the many variables that is initialized by the program during startup 

based on the system in question. 

                 ni = js_norb(o_h, irep) 

      na = js_norb(o_p, arep) 

 

      s_C = s_ph(aspin,ispin) 

      s_R = s_0 

 

      ioff = js_orb_offh(irep,ispin) - 1 

      aoff = js_orb_offp(arep,aspin) - 1 

 

      nlambda = js_nactive(s_C) 
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Here is where the many different offsets are calculated. ‘ni’ and ‘na’ refer to the number of orbitals 

related to that set of electrons, based on the character of that set (hole, particle, active) and what 

representation is being currently looked at. ‘s_C’ and ‘s_R’ refer to what sector the residual and input 

vectors represent. This can be seen by analyzing the original equation: 

𝑅𝑛𝑢 = +𝛴𝑖,𝑎,𝜆 ℎ𝑖𝑎〈𝑢|𝜆〉𝐶𝑎𝑖𝑛𝜆 (28) 

Where the residual has internal CAS character (as denoted by s_0) and the input vector C has 1h1p 

character. Proper configuration of these sectors means that the correct portions of each array are taken. 

In each case, only portions of a much larger array are used for each calculation. The offsets for each of the 

electrons that are part of this contribution are calculated based on what spin/representation is being 

looked at. Finally, the active space label is set by a subroutine that uses the previously calculated input 

sector. There are no active space electrons in this contribution, so this active space label does not change 

during this calculation. 

do a = 1,na 

     do i = 1,ni 

          v2(a,i) = hmat(ioff+i,aoff+a) 

  

Next, the local Hamiltonian array is filled in based on previously calculated particle numbers and 

offsets. This section allows the most flexibility in terms of how the calculation will proceed. Labels can be 

shuffled such the optimal matrix-matrix multiplication is achieved. 

C_start = js_off_psi(s_C, arep, irep) 

R_start = js_off_psi(s_R, 1, 1) 

 

The offsets for both the C and R vectors are now calculated. Each offset is specific to the sector and 

representation currently being calculated. In this case, the residual vector only has one possible 

representation. This is a result of the residual sector being analyzed; the CAS space being the simplest 

possible space to calculate. 
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          nsum = na*ni 

          nrow = 1 

          ncol = nstate*nlambda 

          fact = 1.0d0 

 

   Call matrix-matrix multiplication 

   (nrow, ncol, nsum, fact,  

    v2, maxorb,  

    C(C_start), nsum,  

    R(R_start), nrow) 

  

A number of different values related to the matrix-matrix multiplication are first calculated. A matrix-

matrix multiplication has the form shown in Equation 30, Where A and B are matrices, and M,K,N are the 

dimensions of each matrix. In the above, the internal label ‘K’ is represented by the variable ‘nsum’ and 

external labels M and N are represented by ‘nrow’ and ‘ncol’. In effect, the internal labels disappear, and 

the external labels remain. 

𝐴[𝑀 × 𝐾] ∙ 𝐵[𝐾 × 𝑁] = 𝐶[𝑀 × 𝑁] (29) 

 

 

 

 

In our previous psudeocode contribution: 

𝑅(1, 𝑛 ∙ 𝜆) = 𝑠𝑢𝑚(𝑖, 𝑎) × 𝑉(1, 𝑖 ∙ 𝑎) ∙ 𝐶(𝑖 ∙ 𝑎, 𝑛 ∙ 𝜆) (30) 

We are effectively summing over the inner labels in the Hamiltonian and Input vectors such that only the 

correct labels remain in the residual. The matrix-matrix multiplication used in BLAS will make sense of the 

calculation based on the supplied dimensions if the supplied dimensions results in a possible matrix 

multiplication.  

The variable ‘fact’ is a factor that can apply to the result of the calculation, generally +/- 1. This sign is 

determined by how the different operators interact during the derivation of each contribution. Finally, 
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the matrix-matrix calculation is called with all the previously determined arguments. Essentially, the 

dimensions of the matrix and a resulting factor are given, as well as the matrices to be multiplied together. 

Finally, the matrix that this result is going to be placed in is also specified. In effect we have: 

Call matrix-matrix multiplication 

(Dimensions of the matrix (M,N,K) 

(Matrix 1 with leading dimension) 

(Matrix 2 with leading dimension) 

(Result matrix with leading dimension) 

 

To give the residual result. This call has many different arguments and is bulkier than many other 

matrix-matrix multiplication subroutines, but has incredible efficiency and flexibility. In each subroutine 

for each contribution, the matrix-matrix multiplication call will have roughly the same arguments but will 

be different depending on the contribution being calculated. This call is made extremely efficient by using 

the matrix-matrix multiplication function from the BLAS library. 
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4.2 Accounting for Spin Cases 
The next subroutine that will be analyzed is a two-body contribution that has a number of different 

spin cases depending on the form of the two-electron integral, which all must be accounted for. This is 

accomplished by including an ‘icase’ parameter and careful manipulation of the contributing equations. 

In certain cases, these contributions end up being the same for all three cases. In some cases, this 

contribution can be entirely different for all three cases. This is determined by manipulating the equations 

for the two-electron integral based on the different allowed cases for spin, and the properties of two 

electron integrals. Any integrals that aren’t entirely the same spin or that don’t have equal amounts of 

alpha and beta spins are as shown in Equation 32. Dummy labels may be freely swapped if the character 

of the label is preserved. That is, hole labels can be swapped for hole labels, particle labels for particle 

labels, etc. as shown in Equation 33. With this in mind, operators may be permuted, and a sign is produced. 

After permuting these operators, labels can be swapped to ‘line up’ cases with other cases, if possible. 

Before checking for similar contributions, many different spin cases are considered in equation 34. 

⟨𝐴𝐵|𝐵𝐵⟩ = ⟨𝐴𝐴|𝐴𝐵⟩ = 0 (31) 

⟨𝑋𝑌|𝐼𝐽⟩ = −⟨𝑋𝑌|𝐽𝐼⟩ ≠ ⟨𝑋𝐼|𝑌𝐽⟩ (32)  

⟨𝐴𝐴|𝐴𝐴⟩, ⟨𝐴𝐵|𝐴𝐵⟩, ⟨𝐴𝐵|𝐵𝐴⟩ (33) 

The cases for the current contribution will now be examined. The equation for the all alpha case is 

shown in equation 35. This is the base example and requires no manipulation at this point. Next, the 

⟨𝐴𝐵|𝐴𝐵⟩ spin case is examined in equation 36. Capital letters are used to denote electrons of different 

spin. This contribution is in the same form as the above, and requires no special manipulation. The 

different spins will simply have to be taken under consideration in the code. Lastly, the final ⟨𝐴𝐵|𝐵𝐴⟩ 

contribution is written as Equation 37.  
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𝑅(𝑑, 𝑙, 𝑛, 𝜇) = ⟨𝑑𝑥|𝑏𝑙⟩𝑑†𝑥†𝑙𝑏 ∙ 𝐶(𝑏, 𝑛, 𝜆) (34) 

𝑅(𝑑, 𝑙, 𝑛, 𝜇) = ⟨𝐷𝑥|𝐵𝑙⟩𝐷†𝑥†𝑙𝐵 ∙ 𝐶(𝐵, 𝑛, 𝜆) (35) 

𝑅(𝑑, 𝑙, 𝑛, 𝜇) = ⟨𝐷𝑥|𝑏𝐿⟩𝐷†𝑥†𝐿𝑏 ∙ 𝐶(𝑏, 𝑛, 𝜆) (36) 

Which is not in the same form as the previous contribution. This contribution requires properties of the 

two body integrals to get it into the correct form. Namely that: 

⟨𝐴𝐵|𝐴𝐵⟩ =  −⟨𝐴𝐵|𝐵𝐴⟩ 

This gives equation 38 which cannot be further modified. The ‘L’ and ‘b’ labels may not be swapped, as 

they refer to different categories of electrons; ‘b’ is a particle label and ‘L’ is a hole label. 

𝑅(𝑑, 𝑙, 𝑛, 𝜇) = −⟨𝐷𝑥|𝐿𝑏⟩𝐷†𝑥†𝐿𝑏 ∙ 𝐶(𝑏, 𝑛, 𝜆) (37) 

While in this contribution each case must be handled differently, other contributions can involve 

overlap between the cases. This can be shown by examining the ‘F1’ contribution. Equation 39 and 40 

define the ⟨𝐴𝐵|𝐴𝐵⟩ term. Equation 39 is modified to Euqation 40 by permuting the ‘Z’ operator through 

‘y’.  

F1: 𝑅𝑛𝑢 = −𝛴𝑘,𝑥,𝑦,𝑧,𝜆 〈𝑘𝑥||𝑧𝑦〉〈𝑢|𝑥†𝑦𝑧|𝜆〉𝐶𝑘𝜆 R(1,n;µ) = Sum(k) V(1,k) * C(k, n; λ) 

𝑅(𝑛, 𝜇) = ⟨𝐾𝑥|𝑍𝑦⟩𝐾†𝑥†𝑦𝑍 ∙ 𝐶(𝑘, 𝑛, 𝜆) (38) 

𝑅(𝑛, 𝜇) = −⟨𝐾𝑥|𝑍𝑦⟩𝐾†𝑥†𝑍𝑦 ∙ 𝐶(𝑘, 𝑛, 𝜆) (39) 

 

 

𝑅(𝑛, 𝜇) = ⟨𝐾𝑥|𝑧𝑌⟩𝐾†𝑥†𝑌𝑧 ∙ 𝐶(𝑘, 𝑛, 𝜆) (40) 
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Equation 41 shows the ⟨𝐴𝐵|𝐵𝐴⟩ term. This equation can be manipulated such that the two cases are 

the same, using operator permutations and label swaps. From Equation 42 to equation 43, the ‘z’ operator 

is permuted through ‘Y’, which introduces a factor of negative one. The next line is not technically 

necessary, but better shows that this case is equal to the previous case. This is because these labels have 

no further meaning besides representing an active electron. The label is summed over and is hence a 

‘dummy’ label. 

𝑅(𝑛, 𝜇) = ⟨𝐾𝑥|𝑧𝑌⟩𝐾†𝑥†𝑌𝑧 ∙ 𝐶(𝑘, 𝑛, 𝜆) (41) 

𝑅(𝑛, 𝜇) = −⟨𝐾𝑥|𝑌𝑧⟩𝐾†𝑥†𝑌𝑧 ∙ 𝐶(𝑘, 𝑛, 𝜆) (42) 

𝑅(𝑛, 𝜇) = −⟨𝐾𝑥|𝑍𝑦⟩𝐾†𝑥†𝑍𝑦 ∙ 𝐶(𝑘, 𝑛, 𝜆) (43) 

4.3 Code Example of two body Hamiltonian 
 

Once again, this example will start with the equation and pseudocode versions of the contribution 

which are shown in equation 45. This contribution is much more complicated than the one analyzed 

previously. Active space particles are involved which operate on the active space. This means that this 

label must be looped over explicitly, in addition to looping over the state label. Two body contributions 

must also all include all relevant spin cases, which means that each contribution must be run between 

one to three times depending on the complexity of the case. The code will be posted in its entirety, with 

sections of code analyzed. There are clear similarities to the previous contribution, which will not be gone 

over again in detail. 

𝑅𝑙𝑑𝑛𝑢 = −𝛴𝑥,𝑏,𝑑,𝑙,𝜆 〈𝑑𝑥||𝑏𝑙〉〈𝑢|𝑥†|𝜆〉𝐶𝑏𝜆 (44) 

 𝑅(𝑑 ∙ 𝑙, 𝑛, 𝜇) = 𝑆𝑢𝑚(𝑏) 𝑉(𝑑 ∙ 𝑙, 𝑏) × 𝑐(𝑏, 𝑛; λ) 
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do dspin=1,2 

   do dx_rep=1, nirrep 

 

      bl_rep = dx_rep 

      do brep = 1, nirrep 

         lrep = dirprd(brep, bl_rep) 

 

         do drep=1, nirrep 

            xrep=dirprd(drep, dx_rep) 

 

            if (icase.eq.1) then 

               bspin = dspin 

               xspin = dspin 

               lspin = dspin 

               sfact = 1.0d0 

            elseif (icase.eq.2) then 

               bspin = dspin 

               xspin = 3 - dspin 

               lspin = 3 - dspin 

               sfact = 1.0d0 

             

 

elseif (icase.eq.3) then 

               lspin = dspin 

               xspin = 3 - dspin 

               bspin = 3 - dspin 

               sfact = -1.0d0 

 

                

 

               nb = js_norb(o_p, brep) 

               nd = js_norb(o_p, drep) 

               nl = js_norb(o_h, lrep) 

               nx = js_norb(o_a, xrep) 

 

               s_C = s_p(bspin) 

               s_R = s_ph(dspin,lspin) 

 

               doff = js_orb_offp(drep,dspin) -1 

               loff = js_orb_offh(lrep,lspin) -1 

               xoff = js_orb_offa(xrep,xspin) -1 

               boff = js_orb_offp(brep,bspin) -1 

 

               do x = 1,nx 

                  do lambda = 1, js_nactive(s_C) 

                     I_mu_1(x,lambda) = collect_I_mu_1 

                                        (x,1,lambda, xrep, 

                                         xspin, s_C, c_sign) 
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               do x = 1,nx 

                  if (icase.eq.3) then 

                     do b = 1,nb 

                        do d = 1,nd 

                           do l = 1,nl 

                              v3(d,l,b) = hmat(doff+d,xoff+x, 

                                               loff+l,boff+b) 

                  else 

                     do b = 1,nb 

                        do d = 1,nd 

                           do l = 1,nl 

                              v3(d,l,b) = hmat(doff+d,xoff+x, 

                                               boff+b,loff+l) 

 

                  do lambda = 1,js_nactive(s_C) 

                     mu = I_mu_1(x,lambda) 

                     C_start = js_off_psi(s_C, brep, 1) 

                     R_start = js_off_psi(s_R, drep, lrep) 

 

                     nsum = nb 

                     nrow = nd*nl 

                     ncol = nstate 

                     nC = nb*nstate 

                     nR = nd * nl *  nstate 

                     fact = -1.0d0 * c_sign * sfact 

 

                     Call matrix-matrix multiplication 

                     (nrow, ncol, nsum, fact 

                      v3, maxorb, 

                      C(C_start + (lambda-1)*nC),nsum, 

                      R(R_start + (mu-1)*nR),nrow) 

 

 

Next, we begin to discuss the different features of the two electron code beginning with a twist on 

the one electron code: 

 

do dspin=1,2 

   do dx_rep=1, nirrep 

 

      bl_rep = dx_rep 

      do brep = 1, nirrep 

         lrep = dirprd(brep, bl_rep) 

 

         do drep=1, nirrep 

            xrep=dirprd(drep, dx_rep) 
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Since each particles spin is relative to the other particles in the system, only one spin must be explicitly 

looped over. However, in the two-body case each representation is a product of the irreducible 

representations of the two related particles on each side of the integral. In this case, that means ‘d’/’x’ 

are related as well as ‘b’/’l’. For the code, the result is that there is a product irreducible representation 

called ‘dx_rep’, which can be made by many different combinations of ‘drep’ and ‘xrep’. ‘drep’ is looped 

over explicitly and a direct product function is used to find the related ‘xrep’. Once the first irrep is found, 

the second irrep is found in a similar fashion. Of note is that the two product irreps are equal. This is a 

result of the symmetry of the two electron integrals. 

 

 

               if (icase.eq.1) then 

                  bspin = dspin 

                  xspin = dspin 

                  lspin = dspin 

                  sfact = 1.0d0 

               elseif (icase.eq.2) then 

                  bspin = dspin 

                  xspin = 3 - dspin 

                  lspin = 3 - dspin 

                  sfact = 1.0d0 

               elseif (icase.eq.3) then 

                  lspin = dspin 

                  xspin = 3 - dspin 

                  bspin = 3 - dspin 

                  sfact = -1.0d0 

 

This is a simple if statement used to determine the spins of each particle based on which case is being 

looked at. Each case has an associated ‘factor’ related to how each case was derived. In this case, each 

spin case is different. 

nb = js_norb(o_p, brep) 
nd = js_norb(o_p, drep) 
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nl = js_norb(o_h, lrep) 

nx = js_norb(o_a, xrep) 

 

s_C = s_p(bspin) 

s_R = s_ph(dspin,lspin) 

 

doff = js_orb_offp(drep,dspin) -1 

loff = js_orb_offh(lrep,lspin) -1 

xoff = js_orb_offa(xrep,xspin) -1 

boff = js_orb_offp(brep,bspin) -1 

 

The above offsets and sectors are all calculated identically to the one body case. There are simply more 

of them to account for. 

do x = 1,nx 

     do lambda = 1, js_nactive(s_C) 

          I_mu_1(x,lambda) = collect_I_mu_1(x,1,lambda, xrep, 

                                            xspin, s_C, c_sign) 

 

The above code is present in all contributions that include a change in the active space label. The 

purpose of this subroutine is to calculate each possible active space change based on each possible active 

particle and input active space configuration. These are placed into an array for later use during the 

matrix-matrix multiplication loops.  

do x = 1,nx 

     if (icase.eq.3) then 

          do b = 1,nb 

               do d = 1,nd 

                    do l = 1,nl 

                         v3(d,l,b) = hmat(doff+d,xoff+x, 

                                     loff+l,boff+b) 

     else 

          do b = 1,nb 

               do d = 1,nd 

                    do l = 1,nl 

                         v3(d,l,b) = hmat(doff+d,xoff+x, 

                                     boff+b,loff+l) 
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Each Hamiltonian array is filled in based on the previous calculated offsets. Of note is that each case is 

functionally identical to the one body case with extra loops for extra particles, each Hamiltonian is filled 

in differently depending on the icase being analyzed. 

do lambda = 1,js_nactive(s_C) 

     mu = I_mu_1(x,lambda) 

     C_start = js_off_psi(s_C, brep, 1) 

     R_start = js_off_psi(s_R, drep, lrep) 

 

     nsum = nb 

     nrow = nd*nl 

     ncol = nstate 

     nC = nb*nstate 

     nR = nd * nl * nstate 

     fact = -1.0d0 * c_sign * sfact 

 

     call B_GEMM('N','N',nrow,ncol,nsum, 

                 fact,v3,js_maxorb, 

                 C(C_start + (lambda-1)*nC),nsum, 

                 1.0d0, 

                 R(R_start + (mu-1)*nR),nrow) 

 

Lastly, the matrix-matrix multiplication call is set up in a similar way to the previous contribution with 

one notable difference; each active state must be looped over explicitly. This time, the factor applied to 

each residual result is a product of the factor related to the spin case, the contribution in question, and 

the sign related to the calculation of ‘mu’. This means that the offset calculated for both the residual and 

input vector is the offset for the first loop, with subsequent loops being shifted based by both ‘nC’ and 

‘nR’. Once again, these variables are filled in by examining the pseudocode representation of the 

contribution. 

𝑅(𝑑 ∙ 𝑙, 𝑛; 𝜇) = 𝑆𝑢𝑚(𝑏) 𝑉(𝑑 ∙ 𝑙, 𝑏) × 𝑐(𝑏, 𝑛; 𝜆) (45) 

In the previous calculation, this was accomplished implicitly. There was only one loop, and it included 

the entirety of the relevant parts of the C and R arrays. In this case, each lambda and mu is looped over 
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explicitly. The structure of each array means that looping over the more complicated sections last allows 

the program to loop as few times as possible.  

4.4 Future Work Implementing the New Algorithm 
 

As stated previously, the above CI code was not completed. While the code for each contribution was 

completed, subroutines within each contribution were not. These were included as ‘black box’ functions 

such that the code was able to compile, but do not function correctly. Even though the code could not be 

run, the compiler was used as a tool to check the code for bugs related to language semantics. 

The most complicated ‘black box’ function that was not completed was the function responsible for 

taking input active spaces (λ) and converting them based on the active space operators present (x,y,z) to 

a new active space (μ). The idea behind this function would be to represent the input active space as a 

binary number with ‘1’s representing an existing electron, then propagating every active space operator 

properly with a series of permutations while keeping track of the sign this produces. As a safety check, it 

should be possible for certain permutations to cause states to be annihilated resulting in the program 

gracefully exiting this failed contribution and continuing with another. Applying a creation operator to an 

existing electron or removing an electron that did not exist resulted in null states as shown in Equation 47 

and 48. As per the rules of creation/annihilation operators. Equation 49 and 50 are also true for 

contributions that have multiple active space operators. 

𝑥†|𝑎0 …𝑥1 …⟩ = 0 (46) 

𝑥|𝑎0 …𝑥0 …⟩ = 0 (47) 

𝑥†𝑥|𝑎0 …𝑥1 …⟩ = |𝑎0 …𝑥1 …⟩ (48) 

𝑥𝑥†|𝑎0 …𝑥0 …⟩ = |𝑎0 …𝑥0 …⟩ (49) 

 

𝑥𝑥†|𝑎0 …𝑥1 …⟩ = 0 (50) 
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𝑥†𝑥|𝑎0 …𝑥0 …⟩ = 0 (51) 

 

The active space operators do not necessarily commute. The order of operators can also be swapped 

to produce two more properties. In both swapped cases the first operation annihilates the state. 

Equations 49 and 50 show operations that do not annihilate the state, while 51 and 52 do. Other 

unfinished sections of code include the calculation of the more complicated offset arrays, as well as a 

body of code responsible for running and accumulating each Hamiltonian contribution as well as 

performing all the necessary initial calculations related to the code. 

In this chapter it has been shown that the matrix diagonalization step in the current implementation 

of MREOM takes by far the most time to complete, and is therefore the obvious target for the greatest 

gain in efficiency. By creating a data structure that takes advantage of incredibly optimized linear algebra 

subroutines, it is possible to compute multiple integrals in a single matrix-matrix multiplication call, 

whereas current implementations solve a single integral at a time. This is due to a one-size-fits-all solution 

in the current implementation, while the proposed code has a specialized subroutine for each individual 

contribution. This means that while coding the program becomes significantly more complicated, the time 

saved when calculating potential energy surfaces over multiple different systems is expected to be quite 

substantial. The algorithm is designed such that there is no resorting necessary to the CI vectors. The 

relevant elements of the Hamiltonian integrals are copied such that they can be efficiently entered into 

BLAS subroutines. 
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Chapter 5 

Conclusion and Future Direction 

MREOM-CC as a method has several desirable properties. The method can calculate many states 

from one set of amplitudes and a single state averaged CAS, and it is reasonably insensitive to the supplied 

CAS, which has less of an effect on the final results. As a method, MREOM has been previously used to 

calculate potential energy surfaces as well as vertical excitation spectra where single reference methods 

could not produce reasonable results. In this thesis, MREOM was examined using both a computational 

study designed to push the limits of the method and a new algorithm created to reduce the computational 

cost of the method. This new algorithm appears promising, but is unfinished currently. The computational 

study produced potential energy surfaces that were dubious in quality and does not appear to be a viable 

method for potential energy surface calculations. 

It is often difficult to converge the full set of cluster amplitudes that enter the sequence of similarity 

transformations. To overcome this issue certain amplitudes are obtained from first-order perturbation 

theory. However, the selection of which amplitudes to treat using perturbation theory is ad hoc and can 

change with nuclear configuration. This is a prime reason potential energy surfaces can be discontinuous. 

Another reason may be the CI solver in the ORCA program, which may converge to different roots in 

unexpected ways. At present MR-EOMCC does not seem to be a viable approach to calculate full potential 

energy surfaces for a large number of states.  

The MR-EOMCC approach does have its merits and in the future different avenues will be explored. 

One approach would be to construct vibronic models based on MREOM. Such calculations requires a 

sizable set of points at nearby geometries, such that numerical derivative approaches can be used to 

extract Taylor series expansion coefficients for the potential energy matrix in a diabatic representation. 

Since all displaced geometries are nearby, it should be straightforward to run consistent MREOM 
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calculations. Another schema would be to replace the CI amplitudes equations completely by a first-order 

perturbation theory. This would serve two purposes. First, one would expect continuous solutions as a 

function of nuclear geometry. Second, the approach would become substantially cheaper as the solution 

of cluster amplitudes is expensive. The choice of partitioning of 𝐻̂ into Ho
 + V is crucial as a result, and this 

will need further investigation. If the cluster amplitudes are obtained by perturbation theory, the expense 

of MREOM is reduced. 

In addition to the computational study, a new implementation of the MREOM-CC method was 

attempted to reduce the computational cost of MREOM calculations. This algorithm leveraged the 

efficiency of optimized BLAS subroutines by creating a new data type designed to exploit them. Indices 

are ordered in the data structure by complexity, with simpler labels like the particle and hole labels treated 

first and complex labels like the active space string being treated last. If indices appear in memory 

consecutively, then offsets can allow for the intelligent slicing of arrays such that contributions are 

calculated using the required pieces of arrays fed into a matrix-matrix BLAS multiplication subroutine. 

While this implementation is more efficient compared to the current implementation, it is much more 

complicated. Each contribution must be treated explicitly by a specifically tailored subroutine and 

aggregated. Currently, these contributions are treated with a general subroutine that sacrifices efficiency 

for simplicity.  

In the future, the new algorithm will be implemented on ORCA in C++ as opposed to ACESII in 

FORTRAN. This means that the currently developed code will have to be ported, and the remaining body 

of code tying the contributions together will have to be written. As ORCA incorporates spin-orbit coupling 

where ACESII does not, this will result in a more useful calculation program. This new implementation will 

allow for the efficient testing of several different systems using the much faster code. Currently, using 

MREOM to calculate potential energy surfaces is unsatisfactory due to a few features introduced when 

calculating systems with complicated electronic structure. The new algorithm proposed in this thesis can 
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be used as a tool to open new calculation approaches hopefully allowing for more accurate calculations, 

either by using MREOM-CC as proposed in this study or by pairing it with a vibronic model. Nonetheless, 

further research and development is required. 
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Appendix A: List of Contributions to Hamiltonian in CI Code 

 The following list of contributions are grouped by the type of residual being evaluated, then by 

changing which input C vector was analyzed. Certain combinations were deemed impossible and then 

removed, but have been left in for completeness. The lettering alongside contributions was used to easily 

link subroutine filenames to a formula. Each subroutine’s filename reflected the contribution it was 

calculating. 

One Body Contributions 

𝑅𝑛𝑢 = 𝛴𝑥,𝑦,𝜆 ℎ𝑥𝑦〈𝑢|𝑥†𝑦|𝜆〉𝐶𝜆  

A.1 𝑅𝑛𝑢 = −𝛴𝑥,𝑖,𝜆 ℎ𝑖𝑥〈𝑢|𝑥|𝜆〉𝐶𝑖𝑛𝜆  R(1,n;mu) = -sum(i) V(1,i) * C(i,n; λ) 

A.2 𝑅𝑛𝑢 = +𝛴𝑥,𝑎,𝜆 ℎ𝑥𝑎〈𝑢|𝑥†|𝜆〉𝐶𝑎𝑛𝜆  R(1,n;mu) = Sum(a) V(1,a) * C(a,n,;λ) 

A.3 𝑅𝑛𝜆 = +𝛴𝑖,𝑎,𝜆 ℎ𝑖𝑎〈𝑢|𝜆〉𝐶𝑎𝑖𝑛𝜆   R(1,n*λ) = sum(i,a) V(1,i*a) * C(a*I,n*λ) 

 

B.1 𝑅𝑎𝑛𝑢 = 𝛴𝑥,𝑎,𝜆 ℎ𝑎𝑥〈𝑢|𝑥|𝜆〉𝐶𝑛𝜆   R(a,n;mu) = V(a,1) * C(1,n; λ) 

B.2 𝑅𝑎𝑛𝑢 = +𝛴𝑎,𝑏,𝜆 ℎ𝑎𝑏〈𝑢|𝜆〉𝐶𝑏𝑛𝜆  R(a,n* λ) = Sum(b) V(a,b) * C(b,n* λ) 

𝑅𝑎𝑛𝑢 = +𝛴𝑥,𝑦,𝑎,𝜆 ℎ𝑥𝑦〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑎𝑛𝜆  

B.3 𝑅𝑎𝑛𝑢 = − 𝛴𝑥,𝑎,𝑖,𝜆 ℎ𝑖𝑥〈𝑢|𝑥|𝜆〉𝐶𝑎𝑖𝑛𝜆  R(a*n;mu) = sum(i) V(1,i) * C(a,i;n,λ)^T 

 

C.1 𝑅𝑖𝑛𝑢 = −𝛴𝑥,𝑖,𝜆 ℎ𝑥𝑖〈𝑢|𝑥†|𝜆〉𝐶𝑛𝜆   R(i,n;mu) = V(i,1) * C(1,n;λ) 

C.2 𝑅𝑖𝑛𝑢 = −𝛴𝑖,𝑗,𝜆 ℎ𝑖𝑗〈𝑢|𝜆〉𝐶𝑗𝑛𝜆  R(i,n* λ) = V(i,j) * C(j,n* λ) 

𝑅𝑖𝑛𝑢 = +𝛴𝑥,𝑦,𝑗,𝑖,𝜆 𝛿𝑖𝑗ℎ𝑥𝑦〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑖𝑛𝜆  

C.3 𝑅𝑖𝑛𝑢 = −𝛴𝑥,𝑎,𝑖,𝑗,𝜆 ℎ𝑥𝑎〈𝑢|𝑥†|𝜆〉𝐶𝑎𝑖𝑛𝜆  R(i,n;mu) = V(1,a) * C(a,i,n;λ) 

C.4 𝑅𝑖𝑛𝑢 = +𝛴𝑥,𝑖,𝑗,𝑘,𝜆 ℎ𝑖𝑥〈𝑢|𝑥|𝜆〉𝐶𝑖𝑗𝑛𝜆  R(i*n;mu) = sum(i) V(1,j) * C(i,j;n,λ)^T 

 

D.1 𝑅𝑖𝑎𝑛𝑢 = 𝛴𝑎,𝑖,𝜆 ℎ𝑎𝑖〈𝑢|𝜆〉𝐶𝑛𝜆   R(i*a,n* λ) = V(i*a,1) * C(1,n* λ) 

D.2 𝑅𝑖𝑎𝑛𝑢 = −𝛴𝑥,𝑖,𝑗,𝑎,𝜆 ℎ𝑎𝑥〈𝑢|𝑥|𝜆〉𝐶𝑖𝑛𝜆 R(a,i*n; mu) = V(a,1) * C(1,i*n; λ) 

D.3 𝑅𝑖𝑎𝑛𝑢 = −𝛴𝑥,𝑖,𝑎,𝑏,𝜆 𝛿𝑎𝑏ℎ𝑥𝑖〈𝑢|𝑥†|𝜆〉𝐶𝑎𝑛𝜆  R(i,a*n;mu) = V(i,1) * C(1,a*n; λ) 

D.4 𝑅𝑖𝑎𝑛𝑢 = +𝛴𝑖,𝑗,𝑎,𝑏,𝜆 ℎ𝑏𝑎〈𝑢|𝜆〉𝐶𝑏𝑖𝑛𝜆  R(a,i*n* λ) = sum(b) V(a,b) * C(b,i*n* λ) 

D.5 𝑅𝑖𝑎𝑛𝑢 = −𝛴𝑎,𝑏,𝑖𝑗,𝜆 ℎ𝑖𝑗〈𝑢|𝜆〉𝐶𝑎𝑗𝑛𝜆  R(i,a*n* λ) = sum(j) V(i,j) * C(a,j;n,λ)^T 

𝑅𝑖𝑎𝑛𝑢 = +𝛴𝑥,𝑦,𝑎,𝑏,𝑖,𝑗,𝜆 ℎ𝑥𝑦𝛿𝑎𝑏𝛿𝑖𝑗〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑏𝑗𝑛𝜆  

 

E.1 𝑅𝑖𝑗𝑛𝜆 = 𝛴𝑖,𝑗,𝑛,𝜆 ℎ𝑥𝑗〈𝑢|𝑥†|𝜆〉𝐶𝑖,𝑛,𝜆  R(j,i*n;mu) = V(j,1) *C(1,i*n;λ) 

𝑅𝑖,𝑗,𝑛,𝜆 = 𝛴𝑖,𝑗,𝑘,𝑙,𝑛,𝜆 𝛿𝑗𝑘𝛿𝑖𝑙ℎ𝑥𝑦〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑘,𝑙,𝑛,𝜆-  

E.2 𝑅𝑖𝑗𝑛𝜆 = 𝛴𝑖,𝑗,𝑘,𝑙,𝑛,𝜆 ℎ𝑘𝑗〈𝑢|𝜆〉𝐶𝑘,𝑖,𝑛,𝜆  R(j,i*n* λ) = sum(k) V(j,k) * C(k,i*n*λ) 
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Two Body Contributions 

 〈𝑢|{𝑝†𝑞†𝑟𝑠}|𝜆〉  𝑅𝑛𝑢 = 𝛴𝑤,𝑥,𝑦,𝑧,𝜆 〈𝑥𝑦||𝑤𝑧〉〈𝑢|𝑥†𝑦†𝑧𝑤|𝜆〉𝐶𝜆 

F.1 〈𝑢|{𝑝†𝑞†𝑟𝑠}𝑘|𝜆〉 𝑅𝑛𝑢 = −𝛴𝑘,𝑥,𝑦,𝑧,𝜆 〈𝑘𝑥||𝑧𝑦〉〈𝑢|𝑥†𝑦𝑧|𝜆〉𝐶𝑘𝜆 

F.2 〈𝑢|{𝑝†𝑞†𝑟𝑠}𝑏†|𝜆〉 𝑅𝑛𝑢 = +𝛴𝑏,𝑥,𝑦,𝑧,𝜆 〈𝑥𝑦||𝑏𝑧〉〈𝑢|𝑥†𝑦†𝑧|𝜆〉𝐶𝑏𝜆 

F.3 〈𝑢|{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 𝑅𝑛𝑢 = −𝛴𝑥,𝑦,𝑘,𝑏,𝜆 〈𝑥𝑘||𝑏𝑦〉〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑏𝑘𝜆 

F.4 〈𝑢|{𝑝†𝑞†𝑟𝑠}𝑗𝑘|𝜆〉 𝑅𝑛𝑢 = +𝛴𝑥,𝑦,𝑗,𝑘,𝜆 〈𝑗𝑘||𝑦𝑥〉〈𝑢|𝑥𝑦|𝜆〉𝐶𝑗𝑘𝜆 

 

G.1 〈𝑢|𝑑{𝑝†𝑞†𝑟𝑠}|𝜆〉 𝑅𝑛𝑑𝑢 = 𝛴𝑥,𝑦,𝑧,𝑑,𝜆 〈𝑑𝑥||𝑧𝑦〉〈𝑢|𝑥†𝑦𝑧|𝜆〉𝐶𝜆 

G.2 〈𝑢|𝑑{𝑝†𝑞†𝑟𝑠}𝑘|𝜆〉 𝑅𝑛𝑑𝑢 + 𝛴𝑥,𝑦,𝑘,𝑑,𝜆 〈𝑑𝑘||𝑦𝑥〉〈𝑢|𝑥𝑦|𝜆〉𝐶𝑘𝜆 

 〈𝑢|𝑑{𝑝†𝑞†𝑟𝑠}𝑏†|𝜆〉     𝑅𝑛𝑑𝑢 + 𝛴𝑤,𝑥,𝑦,𝑧,𝑑,𝑏,𝜆 𝛿𝑑𝑏〈𝑥𝑦||𝑤𝑧〉〈𝑢|𝑥†𝑦†𝑤𝑧|𝜆〉𝐶𝑏𝜆 

G.3 〈𝑢|𝑑{𝑝†𝑞†𝑟𝑠}𝑏†|𝜆〉 𝑅𝑛𝑑𝑢 + 𝛴𝑥,𝑦,𝑏,𝑑,𝜆 〈𝑑𝑥||𝑏𝑦〉〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑏𝜆 

G.4 〈𝑢|𝑑{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 𝑅𝑛𝑑𝑢 + 𝛴𝑥,𝑦,𝑧,𝑘,𝑏,𝑑,𝜆 𝛿𝑑𝑏〈𝑥𝑘||𝑧𝑦〉〈𝑢|𝑥†𝑦𝑧|𝜆〉𝐶𝑏𝑘𝜆 

G.5 〈𝑢|𝑑{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 𝑅𝑛𝑑𝑢 − 𝛴𝑥,𝑘,𝑏,𝑑,𝜆 〈𝑑𝑘||𝑏𝑥〉〈𝑢|𝑥|𝜆〉𝐶𝑏𝑘𝜆 

〈𝑢|𝑑{𝑝†𝑞†𝑟𝑠}𝑗𝑘|𝜆〉 

 

H.1 〈𝑢|𝑙†{𝑝†𝑞†𝑟𝑠}|𝜆〉 𝑅𝑛𝑙𝑢 = 𝛴𝑥,𝑦,𝑧,𝑙,𝜆 〈𝑥𝑦||𝑧𝑙〉〈𝑢|𝑥†𝑦†𝑧|𝜆〉𝐶𝜆 

 〈𝑢|𝑙†{𝑝†𝑞†𝑟𝑠}𝑘|𝜆〉 𝑅𝑛𝑙𝑢 = +𝛴𝑤,𝑥,𝑦,𝑧,𝑙,𝑘,𝜆 𝛿𝑙𝑘〈𝑥𝑦||𝑤𝑧〉〈𝑢|𝑥†𝑦†𝑧𝑤|𝜆〉𝐶𝑘𝜆 

H.2 〈𝑢|𝑙†{𝑝†𝑞†𝑟𝑠}𝑘|𝜆〉 𝑅𝑛𝑙𝑢 = −𝛴𝑥,𝑦,𝑘,𝑙,𝜆 〈𝑥𝑘||𝑦𝑙〉〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑘𝜆 

H.3 〈𝑢|𝑙†{𝑝†𝑞†𝑟𝑠}𝑏†|𝜆〉 𝑅𝑛𝑙𝑢 = +𝛴𝑥,𝑦,𝑏,𝑙,𝜆 〈𝑥𝑦||𝑏𝑙〉〈𝑢|𝑥†𝑦†|𝜆〉𝐶𝑏𝜆 

H.4 〈𝑢|𝑙†{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 𝑅𝑛𝑙𝑢 = −𝛴𝑥,𝑦,𝑧,𝑏,𝑙,𝑘𝜆 𝛿𝑙𝑘〈𝑥𝑦||𝑏𝑧〉〈𝑢|𝑥†𝑦†𝑧|𝜆〉𝐶𝑏𝑘𝜆 

H.5 〈𝑢|𝑙†{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 𝑅𝑛𝑙𝑢 = +𝛴𝑥,𝑘,𝑙,𝑏,𝜆 〈𝑥𝑘||𝑏𝑙〉〈𝑢|𝑥†|𝜆〉𝐶𝑏𝑘𝜆 

H.6 〈𝑢|𝑙†{𝑝†𝑞†𝑟𝑠}𝑗𝑘|𝜆〉 𝑅𝑛𝑙𝑢 = −𝛴𝑥,𝑘,𝑙,𝑏,𝜆 𝛿𝑙𝑘〈𝑥𝑗||𝑧𝑦〉〈𝑢|𝑥†𝑦𝑧|𝜆〉𝐶𝑗𝑘𝜆 

 

I.1 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = −𝛴𝑥,𝑦,𝑑,𝑙,𝜆 〈𝑑𝑥||𝑦𝑙〉〈𝑢|𝑥†𝑦|𝜆〉𝐶𝜆 

I.2 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}𝑏†|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = +𝛴𝑥,𝑦,𝑧,𝑏,𝑑,𝑙,𝜆 𝛿𝑑𝑏〈𝑥𝑦||𝑧𝑙〉〈𝑢|𝑥†𝑦†𝑧|𝜆〉𝐶𝑏𝜆 

I.3 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}𝑏†|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = −𝛴𝑥,𝑏,𝑑,𝑙,𝜆 〈𝑑𝑥||𝑏𝑙〉〈𝑢|𝑥†|𝜆〉𝐶𝑏𝜆 

I.4 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}𝑘|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = −𝛴𝑥,𝑦,𝑧,𝑑,𝑙,𝑘,𝜆 𝛿𝑙𝑘〈𝑑𝑥||𝑧𝑦〉〈𝑢|𝑥†𝑦†|𝜆〉𝐶𝑘𝜆 

I.5 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}𝑘|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = +𝛴𝑥,𝑑,𝑙,𝑘,𝜆 〈𝑑𝑘||𝑥𝑙〉〈𝑢|𝑥|𝜆〉𝐶𝑘𝜆 

 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = +𝛴𝑤,𝑥,𝑦,𝑧,𝑏,𝑑,𝑙,𝑘,𝜆 𝛿𝑙𝑘𝛿𝑑𝑏〈𝑥𝑦||𝑤𝑧〉〈𝑢|𝑥†𝑦†𝑧𝑤|𝜆〉𝐶𝑏𝑘𝜆 

I.6 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = −𝛴𝑏,𝑑,𝑙,𝑘,𝜆 〈𝑑𝑘||𝑏𝑙〉〈𝑢|𝜆〉𝐶𝑏𝑘𝜆 

I.7 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = +𝛴𝑥,𝑦,𝑏,𝑙,𝑘,𝜆 𝛿𝑙𝑘〈𝑑𝑥||𝑏𝑦〉〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑏𝑘𝜆 

I.8 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = −𝛴𝑥,𝑦,𝑧,𝑏,𝑑,𝑙,𝜆 𝛿𝑑𝑏〈𝑥𝑘||𝑦𝑙〉〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑏𝑘𝜆 

I.9 〈𝑢|𝑙†𝑑{𝑝†𝑞†𝑟𝑠}𝑗𝑘|𝜆〉 𝑅𝑛𝑙𝑑𝑢 = +𝛴𝑥,𝑦,𝑗,𝑘,𝜆 𝛿𝑙𝑘〈𝑑𝑗|𝑥𝑦〉〈𝑢|𝑥𝑦|𝜆〉𝐶𝑗𝑘𝜆 
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J.1  〈𝑢|𝑚†𝑛†{𝑝†𝑞†𝑟𝑠}|𝜆〉  𝑅𝑚𝑛𝑢 = 𝛴𝑥,𝑦,𝑚,𝑛,𝜆 〈𝑥𝑦||𝑚𝑛〉〈𝑢|𝑥†𝑦†|𝜆〉𝐶𝜆 

J.2 〈𝑢|𝑚†𝑛†{𝑝†𝑞†𝑟𝑠}𝑘|𝜆〉  𝑅𝑚𝑛𝑢 = +𝛴𝑥,𝑘,𝑚,𝑛,𝜆 〈𝑥𝑘||𝑚𝑛〉〈𝑢|𝑥†|𝜆〉𝐶𝑘𝜆 

J.3 〈𝑢|𝑚†𝑛†{𝑝†𝑞†𝑟𝑠}𝑘|𝜆〉  𝑅𝑚𝑛𝑢 = −𝛴𝑥,𝑦,𝑧,𝑛,𝑚,𝑘,𝜆 𝛿𝑛𝑘〈𝑥𝑦||𝑚𝑧〉〈𝑢|𝑥†𝑦†𝑧|𝜆〉𝐶𝑘𝜆 

J.4 〈𝑢|𝑚†𝑛†{𝑝†𝑞†𝑟𝑠}𝑏†|𝜆〉  𝑅𝑚𝑛𝑢 = +𝛴𝑥,𝑦,𝑏,𝑛,𝑚,𝑘,𝜆 𝛿𝑚𝑘〈𝑥𝑦||𝑏𝑛〉〈𝑢|𝑥†𝑦†|𝜆〉𝐶𝑏𝑘𝜆 

 〈𝑢|𝑚†𝑛†{𝑝†𝑞†𝑟𝑠}𝑏†𝑘|𝜆〉 

J.5 〈𝑢|𝑚†𝑛†{𝑝†𝑞†𝑟𝑠}𝑗𝑘|𝜆〉  𝑅𝑚𝑛𝑢 = −𝛴𝑥,𝑦,𝑗,𝑘,𝑚,𝑛,𝜆 𝛿𝑛𝑗〈𝑥𝑘||𝑦𝑚〉〈𝑢|𝑥†𝑦|𝜆〉𝐶𝑗𝑘𝜆 

J.6 〈𝑢|𝑚†𝑛†{𝑝†𝑞†𝑟𝑠}𝑗𝑘|𝜆〉  𝑅𝑚𝑛𝑢 = +𝛴𝑤,𝑥,𝑦,𝑧,𝑗,𝑘,𝑚,𝑛,𝜆𝛿𝑛𝑗𝛿𝑚𝑘〈𝑥𝑦||𝑤𝑧〉〈𝑢|𝑥†𝑦†𝑧𝑤|𝜆〉𝐶𝑗𝑘𝜆 

J.7 〈𝑢|𝑚†𝑛†{𝑝†𝑞†𝑟𝑠}𝑗𝑘|𝜆〉  𝑅𝑚𝑛𝑢 = +𝛴𝑘,𝑗,𝑚,𝑛,𝜆 〈𝑘𝑗||𝑚𝑛〉〈𝑢|𝜆〉𝐶𝑗𝑘𝜆 
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Appendix B: Complete Active Space Orbital Occupancies 

The following are orbital occupancy tables related to CASSCF calculations of the molecules studied in 

Chapter 2. The values listed are the expected value of electrons found in that orbital. 

High Spin CAS Orbital Occupancies 

VO+ 
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CrO+ 

 

MnO+ 
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FeO+ 
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CoO+ 

 

NiO+ 

 

  

Distance (Å)

1.45 1.9064 1.6968 1.6968 1.6909 1.6909 1.1155 1.1011 1.1011 1.0006

1.5 1.8835 1.6984 1.6984 1.6816 1.6816 1.1555 1.1001 1.1001 1.0008

1.55 1.8682 1.6941 1.6941 1.6786 1.6786 1.1969 1.0942 1.0942 1.001

1.65 1.8859 1.6945 1.6945 1.6729 1.6729 1.2477 1.0651 1.0651 1.0013

1.7 1.9095 1.7069 1.7069 1.6615 1.6615 1.2545 1.049 1.049 1.0012

1.75 1.9318 1.7178 1.7178 1.6518 1.6518 1.2561 1.0359 1.0359 1.0011

1.85 1.9635 1.7328 1.7328 1.6379 1.6379 1.257 1.0187 1.0187 1.0008

1.9 1.9734 1.7374 1.7374 1.6329 1.6329 1.2582 1.0136 1.0136 1.0006

1.95 1.9805 1.7408 1.7408 1.6287 1.6287 1.2601 1.0099 1.0099 1.0005

2.05 1.9894 1.745 1.745 1.6223 1.6223 1.2649 1.0054 1.0054 1.0003

2.1 1.9921 1.7463 1.7463 1.6198 1.6198 1.2675 1.004 1.004 1.0003

2.2 1.9955 1.7479 1.7479 1.6157 1.6157 1.2725 1.0022 1.0022 1.0002

Orbital occupancys
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Low Spin CAS Orbital Occupancies 

VO+ 

 

CrO+ 
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MnO+ 

 

FeO+ 
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CoO+ 

 

NiO+ 
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Appendix C: Sample MREOM Input File 
 

 !MR-EOM DKH ma-DKH-Def2-TZVP ExtremeSCF 

 

* xyz 1 6 

Cr 0.000000 0.000000 0.000000 

O  1.65 0.000000 0.000000 

end 

 

%basis 

newgto Cr "ma-DKH-def2-TZVPP" end # Specifying the basis set on "Element" 

newgto O "ma-DKH-def2-TZVPP" end # Specifying the basis set on "Element" 

end 

 

!MOREAD 

%moinp "orca.gbw" 

 

%casscf 

nel 9 

norb 9 

mult 10 

nroots 1 

gtol 1e-12 

etol 1e-12 

shiftup 2 

shiftdn 2 

switchstep nr 

end 

 

%mdci 

ewin -6, 100000 

MaxIter 300 

STol 1e-12 

TCutInt 1e-14 

Hbar_Symmetry = Vertex 

LevelShift 0 

DoSingularPT = True 

SingularPTThresh = 0.01 

End 
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%mrci 

 ewin -6, 100000 

 MaxIter 200 

 citype mrci 

 davidsonopt 0 

 tsel 0 tpre 0 tnat 0 

 Etol 1e-8 Rtol 1e-8 

 RejectInvalidRefs false 

 newblock 6 * 

 nroots 3 

 excitations none 

 flags[is ] 1 

 flags[sa ] 1 

 flags[ia ] 0 

 flags[ijss] 1 

 flags[ijsa] 0 

 refs cas(9,9) end 

 end 

 newblock 4 * 

 nroots 3 

 excitations none 

 flags[is ] 1 

 flags[sa ] 1 

 flags[ia ] 0 

 flags[ijss] 1 

 flags[ijsa] 0 

 refs cas(9,9) end 

 end 

 newblock 2 * 

 nroots 5 

 excitations none 

 flags[is ] 1 

 flags[sa ] 1 

 flags[ia ] 0 

 flags[ijss] 1 

 flags[ijsa] 0 

 refs cas(9,9) end 

 end 

 

 soc 

 DoSOC true # include the SOC contribution 

 end 

end 
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Appendix D: MREOM Reference Weights and T Amplitudes per System 
 

MnO+ 

Table 15: Smallest References Weights and Largest T Amplitudes for MnO+ 

Interatomic 
Distance (Å) Smallest Reference Weights (High Spin) Largest T Amplitudes (High Spin) 

1.4 0.8745 0.9036 0.9038 0.067779 0.06719 0.048935 

1.45 0.8755 0.9053 0.9058 0.076563 0.060643 0.042937 

1.5 0.8763 0.9066 0.9069 0.061426 0.048551 0.036614 

1.55 0.8767 0.9051 0.9051 0.080213 0.077952 0.041718 

1.6 0.8767 0.9033 0.9033 0.08842 0.086724 0.041006 

1.65 0.8762 0.9016 0.9016 0.066612 0.06448 0.04143 

1.7 0.8753 0.9 0.9 0.084372 0.045215 0.0403 

1.75 0.8988 0.8988 0.9109 0.089201 0.057006 0.042703 

1.8 0.8981 0.8981 0.9127 0.089327 0.084712 0.042571 

1.85 0.8988 0.8999 0.9129 0.078069 0.076038 0.040513 

1.95 0.9009 0.9019 0.9145 0.088258 0.086315 0.045744 

2.0 0.9033 0.9041 0.9183 0.096399 0.093535 0.050526 

Interatomic 
Distance (Å) Smallest Reference Weights (Low Spin) Largest T Amplitudes (Low Spin) 

1.4 0.9304 0.9304 0.9315 0.584819 0.584819 0.193995 

1.45 0.9281 0.934 0.934 0.384476 0.384476 0.264742 

1.5 0.9255 0.9382 0.9382 0.351814 0.237517 0.237517 

1.55 0.9267 0.9424 0.9424 0.416985 0.161447 0.161447 

1.6 0.9288 0.946 0.946 0.411187 0.120229 0.120229 

1.65 0.9375 0.9473 0.9473 0.356044 0.095754 0.095754 

1.7 0.9341 0.949 0.949 0.056244 0.054671 0.054671 

1.75 0.9352 0.9487 0.9487 0.053831 0.049127 0.049127 

1.8 0.9354 0.948 0.948 0.051837 0.045566 0.045566 

1.85 0.9335 0.947 0.947 0.050214 0.049106 0.026308 

1.9 0.9338 0.946 0.946 0.054304 0.048794 0.031118 

1.95 0.9343 0.9433 0.9433 0.059901 0.047654 0.033962 

2.0 0.9353 0.942 0.942 0.065933 0.046779 0.038823 
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FeO+ 

Table 16: Smallest References Weights and Largest T Amplitudes for FeO+ 

Interatomic 
Distance (Å) Smallest Reference Weights (High Spin) Largest T Amplitudes (High Spin) 

1.45 0.9251 0.9251 0.926 0.094837 0.094837 0.046668 

1.5 0.9254 0.9254 0.9254 0.096946 0.096946 0.056733 

1.55 0.9248 0.9249 0.9249 0.098853 0.098853 0.048946 

1.6 0.9237 0.9237 0.9241 0.100491 0.100491 0.058271 

1.65 0.921 0.9222 0.9222 0.101821 0.101821 0.058499 

1.7 0.9198 0.9205 0.9206 0.102848 0.102848 0.042803 

1.75 0.9189 0.9193 0.9193 0.103605 0.103605 0.058099 

1.8 0.9184 0.9194 0.9194 0.104133 0.104133 0.057986 

1.85 0.9186 0.9191 0.9191 0.104474 0.104474 0.05686 

1.9 0.9181 0.9181 0.9183 0.100696 0.100696 0.053678 

1.95 0.919 0.919 0.9192 0.100851 0.100851 0.053402 

2.0 0.9195 0.92 0.92 0.100933 0.100933 0.045835 

2.05 0.9201 0.9206 0.9206 0.100959 0.100959 0.04002 

2.1 0.9211 0.9234 0.9244 0.10094 0.10094 0.047875 

2.15 0.9224 0.9259 0.9266 0.100882 0.100882 0.052765 

2.2 0.9241 0.9289 0.9294 0.100791 0.100791 0.052945 

2.3 0.9357 0.9362 0.9363 0.100535 0.100535 0.052797 

2.4 0.9429 0.9435 0.9435 0.100212 0.100212 0.051005 

2.6 0.956 0.957 0.957 0.099502 0.099502 0.061972 

Interatomic 
Distance (Å) Smallest Reference Weights (Low Spin) Largest T Amplitudes (Low Spin) 

1.4 0.9243 0.9267 0.9267 0.026734 0.026734 0.019473 

1.45 0.9288 0.9288 0.9311 0.024898 0.024898 0.020434 

1.5 0.9304 0.9304 0.9361 0.022763 0.022763 0.021764 

1.55 0.9319 0.9319 0.938 0.024559 0.024559 0.02122 

1.6 0.9481 0.9497 0.9551 0.02387 0.02323 0.023056 

1.65 0.9452 0.9467 0.9563 0.02532 0.023763 0.020723 

1.7 0.9406 0.9552 0.9572 0.027718 0.026056 0.023885 

1.8 0.9516 0.9536 0.9538 0.030343 0.026321 0.023695 

1.85 0.9536 0.9537 0.9567 0.031467 0.026162 0.023615 

1.9 0.9548 0.9559 0.9579 0.02981 0.02981 0.025938 

1.95 0.9547 0.9558 0.9583 0.028592 0.028592 0.025144 

2.0 0.9545 0.9558 0.9588 0.030691 0.030691 0.023792 
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CoO+ 

Table 17: Smallest References Weights and Largest T Amplitudes of CoO+ 

Interatomic 
Distance 

(Å) Smallest Reference Weights (High Spin) Largest T Amplitudes (High Spin) 

1.3 0.9101 0.9101 0.9134 0.036641 0.036641 0.026966 

1.35 0.9172 0.9172 0.9199 0.038946 0.038946 0.02752 

1.4 0.9208 0.9209 0.9215 0.040367 0.040367 0.025495 

1.45 0.9232 0.9251 0.9251 0.041698 0.041698 0.028555 

1.5 0.9253 0.9278 0.9309 0.042956 0.042956 0.02558 

1.55 0.9265 0.9275 0.9316 0.044075 0.044075 0.029411 

1.6 0.9263 0.9269 0.9297 0.044997 0.044997 0.029458 

1.65 0.9249 0.9249 0.9264 0.045731 0.045731 0.025335 

1.7 0.9235 0.9235 0.9251 0.046293 0.046293 0.029166 

1.75 0.9232 0.9232 0.9248 0.046707 0.046707 0.022758 

1.8 0.9221 0.9221 0.9232 0.047014 0.047014 0.029217 

1.85 0.9218 0.9218 0.9223 0.047264 0.047264 0.02937 

1.9 0.9221 0.9222 0.9222 0.047493 0.047493 0.029556 

1.95 0.923 0.9235 0.9235 0.04772 0.04772 0.029757 

2 0.9234 0.9242 0.9242 0.047949 0.047949 0.029958 

2.2 0.9279 0.9279 0.9305 0.048792 0.048792 0.029677 

2.4 0.9479 0.9484 0.9486 0.049363 0.049363 0.030432 
Interatomic 

Distance 
(Å) Smallest Reference Weights (Low Spin) Largest T Amplitudes (Low Spin) 

1.3 0.9374 0.9374 0.9417 0.079137 0.04656 0.026442 

1.35 0.9388 0.9388 0.942 0.077046 0.040839 0.026048 

1.4 0.942 0.942 0.9433 0.073187 0.036253 0.025332 

1.45 0.9456 0.9456 0.9462 0.068914 0.032801 0.024545 

1.5 0.9482 0.9482 0.95 0.064804 0.030311 0.024912 

1.55 0.9507 0.9507 0.9517 0.061061 0.029833 0.028576 

1.6 0.9524 0.9524 0.953 0.057732 0.035311 0.027407 

1.65 0.9537 0.9537 0.955 0.054799 0.041268 0.026643 

1.7 0.9558 0.9558 0.9567 0.052224 0.047625 0.026154 

1.75 0.9549 0.9582 0.9582 0.054304 0.049957 0.02867 

1.8 0.9523 0.9598 0.9599 0.061225 0.047949 0.033149 

1.85 0.9489 0.9601 0.9601 0.068313 0.046152 0.038489 

1.9 0.9444 0.9603 0.9603 0.075502 0.04476 0.044523 

1.95 0.9388 0.9606 0.9606 0.082743 0.052035 0.043024 

2.0 0.9346 0.961 0.9611 0.089869 0.060369 0.042181 
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NiO+ 

Table 18: Smallest References Weights and Largest T Amplitudes for NiO+ 

Interatomic 
Distance (Å) Largest T Amplitudes (Low Spin) Smallest Reference Weights (Low Spin) 

1.4 0.055316 0.055316 0.024297 0.945 0.945 0.9499 

1.45 0.047143 0.047143 0.029071 0.95 0.95 0.9518 

1.5 0.041033 0.041033 0.026089 0.9486 0.9494 0.953 

1.55 0.036622 0.036622 0.02192 0.9451 0.9452 0.9531 

1.6 0.033642 0.033642 0.023544 0.9431 0.9431 0.9521 

1.65 0.031719 0.031719 0.022354 0.9411 0.9413 0.9508 

1.7 0.030137 0.030137 0.022895 0.9398 0.9491 0.9498 

1.75 0.028118 0.028118 0.023313 0.9368 0.947 0.9477 

1.8 0.025557 0.025557 0.02316 0.935 0.9445 0.9454 

1.85 0.0229 0.022899 0.022463 0.9414 0.9428 0.9478 

1.9 0.021241 0.020565 0.020565 0.9375 0.94 0.9455 

1.95 0.020077 0.020077 0.019566 0.933 0.9369 0.9404 

Interatomic 
Distance (Å) Largest T Amplitudes (High Spin) Smallest Reference Weights (High Spin) 

1.45 0.102724 0.102724 0.040701 0.9188 0.9195 0.9195 

1.5 0.105067 0.105067 0.046239 0.9172 0.9182 0.9182 

1.55 0.106887 0.106887 0.046548 0.9161 0.9169 0.9169 

1.6 0.10818 0.10818 0.036597 0.9156 0.916 0.916 

1.65 0.109014 0.109014 0.043101 0.9154 0.9154 0.9159 

1.7 0.109491 0.109491 0.045477 0.9152 0.9152 0.9162 

1.75 0.109707 0.109707 0.045102 0.9156 0.9156 0.9165 

1.8 0.109737 0.109737 0.03286 0.9163 0.9163 0.9174 

1.85 0.10963 0.10963 0.044531 0.9175 0.9175 0.9191 

1.9 0.109421 0.109421 0.044331 0.919 0.919 0.9198 

1.95 0.109133 0.109133 0.04418 0.9207 0.9207 0.9214 

2.0 0.108785 0.108785 0.044022 0.9225 0.9225 0.9231 

2.05 0.108392 0.108392 0.043992 0.9236 0.9237 0.9242 

2.1 0.107968 0.107968 0.043944 0.9233 0.9234 0.9242 

2.15 0.107525 0.107525 0.043919 0.9231 0.9231 0.9239 

2.2 0.107075 0.107075 0.045821 0.9236 0.9236 0.9238 
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CrO+ 

Table 19: Smallest References Weights and Largest T Amplitudes for CrO+ 

Interatomic 
Distance (Å) Smallest Reference Weights (High Spin) Largest T Amplitudes (High Spin) 

1.3 0.8565 0.8565 0.857 0.03607 0.03607 0.026336 

1.35 0.8568 0.8568 0.8802 0.04099 0.04099 0.027402 

1.4 0.8574 0.8574 0.8621 0.034482 0.034482 0.026009 

1.45 0.8583 0.8583 0.8709 0.03728 0.03728 0.026184 

1.5 0.8593 0.8593 0.8679 0.039295 0.039294 0.02772 

1.55 0.8605 0.8605 0.8665 0.042795 0.042794 0.029141 

1.6 0.862 0.862 0.8665 0.04395 0.04395 0.029748 

1.65 0.8637 0.8637 0.8677 0.045261 0.045261 0.03071 

1.675 0.8647 0.8647 0.8686 0.045731 0.04573 0.030853 

1.7 0.8658 0.8658 0.8699 0.04501 0.044697 0.029854 

1.75 0.8684 0.8684 0.873 0.045342 0.045337 0.03353 

1.8 0.8716 0.8716 0.8769 0.045586 0.045583 0.039762 

1.85 0.8753 0.8753 0.8814 0.04707 0.047057 0.044981 

1.9 0.8794 0.8794 0.8861 0.055737 0.05573 0.044079 

1.95 0.884 0.884 0.8909 0.066046 0.066042 0.043321 

2.0 0.8886 0.8886 0.8954 0.078296 0.078286 0.046241 

2.1 0.8972 0.8972 0.9026 0.109637 0.109594 0.053148 

2.2 0.9035 0.9035 0.9073 0.150908 0.150875 0.065657 

2.4 0.9096 0.9096 0.9109 0.24328 0.243191 0.106005 

Interatomic 
Distance (Å) Smallest Reference Weights (Low Spin) Largest T Amplitudes (Low Spin) 

1.4 0.9492 0.9498 0.9502 0.031713 0.031708 0.025191 

1.45 0.9506 0.9515 0.9572 0.028477 0.028477 0.024575 

1.5 0.9512 0.9515 0.9605 0.061238 0.057134 0.023584 

1.55 0.9536 0.9556 0.9592 0.212437 0.208189 0.043411 

1.6 0.9524 0.9536 0.9604 0.047928 0.047923 0.047856 

1.65 0.9517 0.953 0.9598 0.129287 0.129279 0.129276 

1.7 0.9497 0.9526 0.9613 0.070278 0.070278 0.070277 

1.75 0.9454 0.9505 0.9603 0.034229 0.034229 0.034229 

1.8 0.9358 0.9467 0.9583 0.021992 0.021495 0.021495 

1.95 0.9157 0.9447 0.9506 0.02479 0.02479 0.024088 

2.0 0.9158 0.9464 0.9489 0.026011 0.026011 0.025764 

 

 

 


