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Abstract

Multi Reference Equation of Motion Coupled Cluster (MREOM-CC) is an electronic structure
method that allows the calculation of many electronic states simultaneously. A sequence of
transformations are applied to a Hamiltonian allowing for a subsequent diagonalization of a much smaller
subspace. These transformations preserve the eigenvalues of the original Hamiltonian, and paradoxically
calculations increase in accuracy while simultaneously reducing the cost of the calculation. MREOM has
previously been used to calculate transition metal atom spectra as well as vertical excitation spectra from

organic molecules and transition metal complexes.

In this thesis, MREOM is used to calculate a potential energy surface for several systems
containing many excited states. The systems studied in this thesis are positively charged diatomic
transition metal oxides (MO*, M =V, Cr, Mn, Fe, Co, Ni) chosen for both their electronic complexity as well
as the opportunity for a tandem experimental study in the Hopkins lab. Calculations were approached
using either a high spin or low spin regime for the reference states of each system. High spin systems
converged at high interatomic distance, but generally exhibited discontinuities. Low spin systems
appeared smooth, but were troublesome to set up. However, MREOM is not recommended for

complicated potential energy surfaces until further improvements can be made.

In a second project an improved algorithm is developed for the time-consuming final
diagonalization step in MREOM. Using a carefully designed data structure for multiple electronic states
the critical multiplication of “G - C” is carried out efficiently, with minimal resorting and optimized using
the Basic Linear Algebra Subroutines (BLAS) library. The implementation is not yet complete, and requires

interfacing with the rest of the code.
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Chapter 1

Introduction to Electronic Structure Theory

The electronic structure problem is one of the most basic problems within quantum chemistry. Many
different theories and methods have been devised to solve this fundamental problem, with new methods
arising to capture the structure of systems that fail using current approaches. The exact approach, the Full
Configuration Interaction (FCI) method, can involve solving equations with billions of determinants for a
molecule as simple as ethylene [1]. Solving eigenvalue equations with this incredibly large dimension is
not feasible with current technology. For this reason, we look to methods that reasonably approximate

properties of interest which can be implemented using modern hardware.

Single reference (SR) calculations are often the starting point for electronic structure theory
calculations, and usually work well for systems starting relatively close to their equilibrium geometry, if
they have a wavefunction that can be described by a single slater determinant. The Hartree-Fock method
[2] is a common single reference calculation included in most, if not all, quantum chemistry software
packages. The Hartree-Fock method is an excellent method when determining ground state geometries
as well as vibrational frequencies. This method can yield 99.9% of the total electronic energy of the system
in Hartrees. However, for a small molecule such as H,O even a difference as small as 0.1% yields error in
the total energy of around 300 kJ/mol, or 50 kcal/mol. A large fraction of the error can be expected to
cancel when evaluating reaction energies, but in general Hartree-Fock does not calculate accurate enough
energies. A method that goes beyond the simplified treatment of the Hartree-Fock approximation is
required to treat more complicated systems. Coupled Cluster (CC) [3] theory is a common method beyond
Hartree-Fock. This method yields much better accuracy for electronic energies (1 kcal/mol) but is a single
reference method, and once again is only applicable if the wavefunction of the system can be qualitatively

described by a single determinant. In the cases of low lying excited states, transition metal compounds,



cases including bond-breaking, and magnetic or spin state systems, the single reference approximation is
often not accurate. In these instances, we must use multiple determinants to describe our wave-function,

even qualitatively.

Multireference (MR) methods become necessary when single reference methods fail to approximate
the electronic structure of a system in question. Implementations of this multi-reference approximation
include Multireference Configuration Interaction (MRCI) [4]' Multireference Coupled Cluster (MRCC) [5],
as well as the Multireference Equation of Motion (MREOM) [6] method, developed in the Nooijen group
to reduce the cost of multi-reference calculations while calculating hundreds of states simultaneously. In
this proposal, the primary multi reference method employed will be MREOM. MREOM has been
successful as a method for determining the electronic structure of problematic atoms and small molecules.
This method involves a Complete Active Space (CAS) specification, where many open shell orbitals and
electrons to be distributed to these orbitals are specified. The active space is much smaller than the
complete orbital space. Therefore, full Cl calculations within the CAS space are feasible. This is called CASCI.
In addition, when the orbitals that define the CAS are optimized the calculations are referred to as CASSCF.
This compact CAS gives rise to many reference determinants, in which different electronic state
configurations are accounted for. After specifying the reference space, a series of careful transformations
can be applied to the bare Hamiltonian, which simplifies the resulting diagonalization while preserving
the Hamiltonians original eigenvalues, or energy values. MREOM has been used to calculate atomic
excitation spectra for transition metals such as Cr, Mn, Fe, and Co [7], transition metal complexes[8], and
large numbers of valence excited states for organic compounds [9]. While MREOM has seen great success
as a more time-economical alternative to other multi-reference methods, MREOM is still under
development. Advances can be made on the algorithm’s implementation to significantly speed up

computation time.



In this thesis, the current theory behind MREOM will be explained, detailing how transformations
can be made to the Hamiltonian such that the calculation becomes more efficient while also becoming
more accurate [9]. Applications of MREOM to six diatomic transition metal oxide cations are proposed as
interesting test systems well suited to challenge MREOM. These systems are electronically complicated
due to the presence of many low-lying states. Calculating potential energy surfaces for these systems is
challenging, and a calculation approach is proposed to simplify the process. Finally, a new implementation
for MREOM is proposed. This new method combines an intelligent data structure with optimized linear
algebra subroutines to calculate many energy states simultaneously, leading to large theoretical speed
ups in calculation time. These changes have not been implemented fully due to time constraints. Sample
code used for each Hamiltonian contribution for both the one body and two body case are examined in

detail, and the next steps required to finish the project are outlined.



Chapter 2

Multi-Reference Equation of Motion Coupled Cluster Theory

The electronic structure problem is the solution to the wave-function of electrons in an electrostatic
field created by stationary nuclei. These nuclei are considered fixed due to the assumption that motion of
nuclei and electrons can be separated due to the different time scales these motions occur on, using the
Born-Oppenheimer approximation. This solution involves both the wave function of the electrons as well
as their energies. Slater determinants [10] are used as an expression for these multi-electron systems,
since they satisfy the anti-symmetry requirements of the wave-function, which in turn satisfies the Pauli

exclusion principle. These properties are outlined in Figure 1.

1 x1(x1)  xa(x1) - xn(xq)
Y, = \/ﬁ Xl(SxZ) XZ(ExZ) XN(ExZ) = x1xs x|
x1Gen)  x2(xn) o ()

lxaxz - xnl = Dlxaxs - xnl

|x1x1 - xnl=0

Figure 1: Definition of Slater Determinants, including built in anti-symmetry and Pauli exclusion properties

Currently most wave-function based Quantum Chemistry problems are phrased in the language of
Second Quantization [10]. The benefit of Second Quantization is that the slater determinants can be
represented by a series of operators, and the problem will be reduced to algebra manipulations. The
problem can then be easily programmed and solved via computation. We specify the wave-function as a
series of ordered orbitals with occupation numbers zero or one denoting whether the orbital contains an
electron or not. Equation 1 shows a sample wave-function with N electrons. The notation indicates that

orbitals a, d, and z are occupied.



|a1,b0,C0,d1,...,Z1) (1)

Two major operators exist in second quantization. The first is the creation operator p', which adds an
electron to orbital p. The second is the annihilation operator which removes an electron from orbital p.
The Hamiltonian written using Second Quantization is shown below. It has been written with only one and

two particle excitations.

H= hpp q + hpgp ptGTrs (2)

1 . o
w2 = [ 3 [-572+ V()| ear t=G9) ©
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<wm>ff%mwma (0 de1 2

From here, we can discuss the Full Configuration Interaction (Cl) problem. This involves including
every Slater determinant expressing excitations from our ground state electronic configuration into any
number of virtual orbitals. If we have N, and Ny alpha and beta spin orbitals as well as M spatial orbitals,

we have (Iflw) (13/;) determinants, each of which is an eigenstate of a one electron Hamiltonian. This can
a

be used as the basis for our many electron problem. We then write:

|%=me> 5)

We then apply the variational principle to the above:

_@Hw)

W) ©)
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Which then leads to the eigenvalue problem:

> (walHl#) 6, = £
1l

(7)
HC = CE

Cl may also be undertaken as a multi reference calculation, referred to as MRCI. The driving principle
behind Multi Reference calculations involves defining a Complete Active Space (CAS) in terms of occupied
orbitals, active orbitals, and virtual orbitals. This is done using a CAS Self Consistent Field (CASSCF)
calculation. The goal is to optimize the orbitals such that Ecg is minimized. The CAS is defined as a linear

combination of determinants with a set of coefficients to be optimized as shown in equation 8.
CAS) = ) CiIg5™) ®
p)

As stated previously, our CAS is comprised of three different types of orbitals [11]; occupied orbitals
which are each doubly occupied, virtual orbitals which are empty, and active orbitals that can be
populated with zero, one, or two electrons. Figure 2 shows an example CAS. Each determinant in the CAS-
space will have an identical core occupied space but differ in the configuration of electrons in the active
orbitals. An example CAS is given in Figure 2, while an example excitation removing an electron from this

CAS can be seen in Figure 3.

[T

Virtual Orbitals (a,b)

_H_
_’7
4
_L_

Active Orbitals (x.y)

Occupied Orbitals (i.j)

Figure 2: CAS Orbital Diagram Showcasing doubly occupied orbitals (Occupied), variably occupied orbitals (Active), and empty
orbitals (Virtual).



Virtual Oﬂtals (a,b)  Virtual Orbjtals (a,b)

_1_
_L_

Active Orbitals (x,y) Active Orbitals (x,y)

FF

FEFEEF
FELFF

Occupied Orbitals (i,j) Occupied Orbitals (i,j)

Figure 3: Example excitation of 1h1p out of the previously shown CAS. An electron from an occupied orbital is promoted to an
active orbital, while simultaneously an electron from an active orbital is promoted to a virtual orbital.

The different excitations occurring outside of the CAS will be referred to as follows. Excitations that
involve an electron being promoted from an occupied orbital will be referred to as a hole (h) excitation.
Excitations that involve an electron being promoted to a virtual orbital will be referred to as a particle (p)
excitation. The following are the list of excitations included in Multi Reference Configuration Interaction

with Singles and Double excitations (MRCISD). These excitations are visualized in Figure 4.

1. 1 hole(1h): An electron from an occupied orbital is promoted to the active space
2. 1 particle(1p): An electron is promoted from the active space to a virtual orbital

3. 1hlp: An electron from an occupied orbital is promoted to a virtual orbital; electron is
promoted from an occupied orbital to an active orbital, and an electron from an active

orbital is promoted to a virtual orbital.
4. 2p: Two electrons from the active space are promoted to the virtual orbitals.
5. 2h: Two electrons from the occupied orbitals are promoted to the active space.

6. 2h 1p: Two holes are created in the occupied space, and a particle is added to the virtual

space



7. 1h 2p: One hole is created in the occupied space, and two particles are created in the

virtual space.

8. 2h 2p: Two holes are created in the occupied space, and two particles are created in the

virtual space.

CAS 1h 1p 2h 1h1p 1h2p| 2p |2hlp

Virtual Orbitals (a,b)

+

—+

Active Orbitals (x,y)

_1+
_‘H’_

Occupied Orbitals (i,j)

=

Figure 4: Excitations Included in a MRCISD calculation. These excitations may potentially include active-active
excitations in addition to the labeled excitation which do not change the overall excitation.

While the above seems reasonable, in practice it is only usable for small molecules. Once again, the
number of determinants scales as nj} nﬁnCAS [12]. n35 may be as large as ~100,000, therefore MRCI
calculations have the capacity to be incredibly expensive. Using modern technology, it is impossible to

store and compute this incredible number of determinants. For this reason, full MRCISD is only used for



small active spaces. A more widely used alternative is internally contracted MRCI. The main drawback to

this method is a lack of size extensivity, which in practice means that large active spaces must be used.

The Multi Reference Equation of Motion method for electronic structure calculations can be described,
in broad terms, as a series of transformations to a bare Hamiltonian (H) that is then followed by a
diagonalization to the final transformed Hamiltonian (G). Once our CAS has been determined as previously
outlined, we can then build and transform our Hamiltonian. Starting from the Schrédinger equation, we

can apply a transformation to our Hamiltonian as in equation 9.

~

G =U"HU 9)

We then show in equation 10 that transforming our Hamiltonian in principle only changes our
eigenvectors and not our eigenvalues. This means that any transformation we apply to our Hamiltonian
will not change the results of our MREOM calculation. The goal of this transformation is to decouple the

CAS from the external space as indicated in Equation 11.
Gl®z) = (UTTHU)WU' ) (10)
G|D;) = UTTH|W)
G|®;) = UTHWL)E,
G|D;) = |D2)Ex

<¢X|G|¢CAS) =0 (11)

If we could apply transformations to the Hamiltonian such that equation 11 holds, the final
diagonalization would be very compact, and only include CAS configurations as illustrated in Equation 12.

Once we have the transformed Hamiltonian, we multiply this resulting matrix by a column vector C that



satisfies equation 12 and preserves our eigenvalues. At this point, only excitations within our CAS remain

as shown in Figure 5.

CAS X

CAS A B Cl = |AxC

X 0 D 0 0

Figure 5: Simplified Hamiltonian obtained after removing all excitations out of the CAS.
ACA = CAEA (12)

While the above is conceptually possible, we find that excluding all the excitations out of the CAS
results in poor results. For this reason, we still include 1h, 1p, and sometimes 1hlp excitations in our
calculation. Using Second Quantization, we perform a series of transformations to remove unwanted
excitations out of the CAS. Our transformations all have a similar form, and the example given below is of

the "T” transformation.
H=e THeT (13)

H = Ry + R3{&P} + Rl {62} + hSHLeldT} + -

stu
AD At
el =ptq

ADq _ atatan
érs =pratsr

T amplitudes are then solved via Equation 14, where wx and R denote the weights used and states
from the CASSCF calculation, and i/x denotes an active or inactive orbital. The notation {...} is technically
involved, and it denotes Kutzelnigg-Mukherjee normal ordering [13] for a multi-configurational reference.

Moreover, the many-body transformations introduce three body interactions in G, which are assumed

10



small. However, this implies that results are always approximate since the three body elements are
neglected as shown in Equation 13. We denote three other similarity transforms S, X and D in a similar

fashion in Equation 15.

=0 (14)

nab _ pab _ pab _
hij - hix - hxy =0

G = {eS+X=D}—1H{eS+X=D} (15)

G is our Hamiltonian with all excitations involving more than two bodies removed. This approximation
is applicable assuming that contributions due to three body or more terms are negligible. Figure 6 shows

an example structure of the two body equations in G over the CAS + 1h + 1p determinants.

CAS 1h 1p 1hlp

Y 1Y Ty T
CAS | e, e¥ ey €qy
Ty 1T TU Ju
1h Ciu eju Cia Cia
ay 1a ax bz
1p Ciu ea:y eby Cax

ay 1a axr at
lhlp | e,; e, i €

Figure 6: Excitations remaining in our MREOM Calculation after transforming out the 2h, 2p, 1h2p, and 2p1h
excitations.

11



We then diagonalize this final more compact space as outlined in MRCI. Of note are the huge gains in
efficiency in MREOM versus MRCI by reducing the number of determinants in the final diagonalization by
several orders of magnitude. However, the most expensive step in current MREOM calculations is still this
final diagonalization. Future steps are to be taken to increase the efficiency of diagonalization to speed

up the slowest part of the current MREOM implementation.

12



Chapter 3
Multi-Reference Equation-Of-Motion Study of MO*

(M =V, Cr, Mn, Fe, Co, Ni)

In the previous chapter, an overview of electronic structure theory was discussed leading to the
theory behind a particular multi-reference method: Multi-Reference Equation of Motion Coupled Cluster
(MREOM-CC). MREOM-CC has been previously used in studies to calculate transition metal atom spectra
[7], vertical excitation spectra from organic molecules as well as transition metal complexes [14], model
magnetic systems, as well as potential energy surfaces where single reference methods failed. Figure 7
shows the result of an MREOM calculation of CoKr*. In this study some 200 excited states were calculated

by MREOM. [15]

MREOM Calculation of CoKr*

3.5

N
n

N

=
n

[

Relative Energy (eV)

©
U

2 2.2 2.4 2.6 2.8 3 3.2 3.4

Interatomic Distance (A)

Figure 7: MREOM-CC Calculation of CoKr*including approximately 200 States with corrections for Basis Set Superposition
Error (BSSE). This calculation was not possible with single reference methods and gives an idea of the capabilities of MREOM.

13



The main strength of MREOM is the ability to calculate many excited states from a single set of
amplitudes as well as a state averaged CAS. These amplitudes and the nature of this state averaged CAS
were discussed in the previous chapter. In this chapter, the principles behind running a CASSCF and
MREOM calculation in the ORCA program are described. A study will be conducted to calculate the
potential energy surfaces of six cations of transition metal oxides using MREOM. Currently the most
successful method to calculate potential energy surfaces is MRCI(+Q) [16]. The method is robust due to a
variational wavefunction and a state specific approach. In this chapter the suitability of using MREOM as

a method to calculate potential energy surfaces will be explored.

3.1: Systems in Study: Transition Metal Oxide Cations

The systems under consideration are several positively charged diatomic transition metal oxides (MO*,
M =V, Cr, Mn, Fe, Co, Ni). These systems were chosen for two key reasons. The MREOM approach has
been used to calculate potential energy surfaces for only a few systems, notably CoKr* and CoAr* These
systems are comparatively simple. The transition metal oxides are far more challenging to calculate, and
this study provides a more stringent challenge for the methodology. The second reason these systems
were chosen was that the proposed systems of this computational study lend themselves easily to
experimentation via Velocity Map Imaging (VMI) in the Hopkins lab [17]. To attempt to gauge the number
of states in each system, excited state energy levels were taken from NIST for each transition metal atom
and for the lowest three energy levels of oxygen. While each transition metal atom is densely packed with
many low lying excited states, oxygen has a gap of almost ~2 eV. However, that metal coupled to oxygen
will have nine times that due to the coupling of states between the transition metal and oxygen’s 3P states.

At the asymptote of the potential energy surface, the energy of the system can be represented as:

E(MO*) = E(M*) + E(0)
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Table 1 shows the number of states that can be expected under 2 eV for each system based on the
coupling of energy state values taken from NIST [18]. While each system has many low-lying states, VO*
deserves special mention due to the relatively high density of states at low energy. Potential energy
surfaces were found for each system, except VO*. This may be due in part to the added complexity of the
system compared to the other systems studied; VO* has by far the highest density of low lying states in

the asymptote regime.

Table 1: Number of States below 2 eV for the Transition Metal Oxide systems in this study.

VO* CrO* MnO* FeO* CoO* NiO*
252 54 63 153 135 72

As a quick comparison, values from NIST can be compared to bare atom MREOM calculations including
spin orbit coupling for the first three term symbols, shown in Table 2. These MREOM energy values have
been lined up to the term symbols and J values of each energy level. The average of states at an energy
level is compared to the given NIST values. In most cases this absolute error is small, with high absolute
error offset by a low percent difference. Even when only including the first three term symbols, each
transition metal cation has many densely packed states. This simple comparison makes the electronic

complexity of the transition metals apparent.

While the energies of the states at asymptotes can be calculated using the above and compared with
MREOM calculations, there isn’t a simple way to calculate energies near equilibrium geometries. However,
the character of these states changes as the bonds of the system are broken. Equilibrium structures can

be pictured as a combination of M3* and O%.
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Table 2: Comparison of MREOM and NIST values for Transition Metal Atoms.

Electron Average Level Absolute Percent
Atom ) . Term J NIST (eV) 5 X

Configuration Energy (eV) Difference (eV) Difference

vt 3d* 5p 0 0 0 0 N/A
1 0.0045 0.0052 0.0008 17.23%

2 00132 0.0156 0.0023 17.66%

3 0.0259 0.0306 0.0047 18.34%

4 0.0421 0.0501 0.0081 19.18%

3d34s Sp1 0.323 0.2653 0.0577 17.86%

2 03331 0.2765 0.0566 16.99%

3 0.3482 0.2934 0.0548 15.75%

4 0.368 0.3157 0.0523 14.22%

5 03921 0.3433 0.0488 12.46%

3d%4s 3 2 10713 0.89 0.1812 16.92%

3 1.0963 0.918 0.1783 16.26%

4 1.128 0.954 0.1739 15.42%

crt 3d° 65 5/2 0 0 0 N/A
3d%as 6p 1/2 1.4831 1.4521 0.031 2.09%

3/2  1.4918 1.4618 0.0301 2.02%

5/2  1.5061 1.4778 0.0284 1.88%

7/2 15255 1.4997 0.0258 1.69%

9/2 15494 1.5273 0.0221 1.42%

3d*4s ‘o 1/2 24212 2.2103 0.2108 8.71%

3/2 2434 2.2251 0.2088 8.58%

5/2  2.4546 2.249 0.2056 8.38%

7/2 24827 2.2808 0.2018 8.13%

Mn* 3d°as s 3 0 0 0 N/A
3d°4s 5¢ 2 11745 1.0773 0.0972 8.28%

3d° Sp 4 1.7762 2.1694 0.3932 22.14%

3 1.8094 2.1996 0.3902 21.56%

2 1.8326 22223 0.3896 21.26%

1 1.8475 2.2374 0.3899 21.10%

0  1.8548 2.245 0.3902 21.04%

Fe' 3d®4s 5p 9/2 0 0.002 0.002 N/A
7/2  0.0477 0.0466 0.0011 2.27%

5/2  0.0828 0.0798 0.003 3.64%

3/2  0.107 0.1028 0.0042 3.92%

1/2  0.1211 0.1163 0.0048 3.96%

3d’ 4%  9/2 02322 0.5056 0.2734 117.77%

7/2 03013 0.5713 0.27 89.60%

5/2 03519 0.6213 0.2694 76.56%

3/2 03865 0.6581 0.2716 70.26%

3d%as p 7/2 09863 0.9439 0.0424 4.30%

5/2  1.0405 0.9958 0.0447 4.29%

3/2 1.0762 1.0299 0.0463 4.30%

1/2  1.0969 1.0494 0.0475 4.33%

Co* 3d® 35 4 0 0.0002 0.0002 N/A
3 01178 0.1142 0.0037 3.11%

2 0.198 0.1924 0.0057 2.86%

3d” 4s S 5 04154 0.3109 0.1045 25.15%

4 0.4995 0.3912 0.1083 21.69%

3 0.5655 0.4558 0.1097 19.39%

2 06137 0.5042 0.1095 17.85%

1 0.6453 0.5364 0.1089 16.88%

3d’ 4s 3k 4 12166 1.0853 0.1313 10.79%

3 13277 1.1934 0.1343 10.12%

2 14037 1.2668 0.1369 9.76%

Ni*t 3d° p 5/2 0 0.0006 0.0006 N/A
3/2  0.1868 0.185 0.0018 0.96%

3d®4s % 9/2  1.0407 1.1339 0.0932 8.96%

7/2  1.1568 1.2472 0.0904 7.82%

5/2  1.2542 1.3428 0.0886 7.07%

3/2 13222 1.4099 0.0878 6.64%

3d%4s % 7/2 1.68 1.7579 0.0778 4.63%

5/2  1.8592 1.9343 0.075 4.04%
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When looking at the above, it is important to decide when to consider absolute difference as opposed
to percent difference. In certain cases, states have large percent differences with an absolute difference
of less than ~0.1 eV. In some cases, both percent difference and absolute difference are high. Due to the
restriction of using a single CAS for all states, MREOM calculations are not always accurate for all atomic
states. Errors occur in the above energy level calculations due to the supplied CAS not containing states
with the correct character. While the solution would be to add in another set of states with the proper
character, it is complicated to find a correct state averaged CAS over many states. This issue may be more
complicated for molecules. Near equilibrium the bonding solution of MO* can be described formally as
M3* + 0%, As the geometry changes to larger interatomic distances, this will shift to the asymptote of M*

+ 0. The electronic structure must capture this change in character.

3.2: Calculation Strategy: ‘High spin” and ‘Low spin’

The essence of the approach used for this study was to attempt to distill the CAS of each calculation
into two separate categories: (i) using the highest possible allowed spin case by maximizing the number
of unpaired electrons and (ii) a more moderate spin case where different configurations of the CAS were
explored. The high spin case was chosen to simplify the CAS process, whereas the low spin cases were
chosen as an alternative in the event at the high spin cases failed. These regimes were chosen to simplify
the CAS selection process, removing the option of mixed spin active spaces. In the end, calculations from
both approaches ended up both succeeding and failing, with certain transition metal cations proving to

be more complicated than others.

Six species were chosen to be studied; VO*, CrO*, MnO*, FeO*, CoO*, and NiO*. These transition metals
are all in the same row of the periodic table, and are adjacent in atomic number. This was done to examine
the differences in electronic structure between similar species, as well as the effects this had on various

calculation properties such as overall calculation timings. Table 3 and Table 4 denote the CAS’s used for
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each molecule. In the following tables, red denotes that the calculation failed, and green denotes that it
has succeeded. In all cases, a CAS could be found that appeared continuous, but the MREOM calculation

might still fail. Reasoning for this will be touched on later.

Table 3: Attempted High Spin CAS Configurations, with successful configurations in green and failed configurations in red.

High Spin

System Electrons Orbitals

vVo*

Multiplicity States

CrO*
MnO*
FeO*
CoO*
NiO*

Table 4: Attempted Low Spin CAS Configurations, with successful configurations in green and failed configurations in red.

Low Spin

System Electrons Orbitals

vo*

Multiplicity States

CrO*

MnO*
FeO*
CoO*
NiO*
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3.3: Basics of Complete Active Space Calculations
A proper CASSCF calculation is the first step to an MREOM calculation. For an MREOM calculation to

be successful, there are certain requirements for the calculated CAS. One would wish to define a single
state-averaged CAS that results in continuous, symmetry adapted results over the whole range of
requested geometries. Unfortunately, the CASSCF implementation in ORCA does not allow for explicit
definitions of symmetry within the CAS. The only control the user has over CAS symmetry is to check

degeneracy patterns upon convergence which occurs at two levels.

The first level is to check the converged orbital degeneracies, both of orbital energies and of orbital
occupation numbers. There are two possible degeneracy patterns for orbitals in the proposed systems. T,
6, and ¢ orbitals are doubly degenerate, while o orbitals are non-degenerate. The second quality check is
to check the degeneracy of calculated states. The same capitalized labels M, A, ®, and X characterize
electronic states. M, A, @ all refer to doubly degenerate states whereas 2 refers to non-degenerate states.
At the CASSCF computation level it is important to ensure that complete multiplets are included in the
CAS. When running CASSCF calculations using ORCA, all of this must be judged using degeneracy patterns.

Including incomplete multiplets will result in incorrect degeneracy patterns.

A CASSCF calculation is defined by the number of electrons in the system, the orbitals that these
electrons will populate over different state averaged configurations, the multiplicities to be calculated,
and the number of states to be calculated for each multiplicity [19]. This step is the most user intensive
step; there is currently no automated way to set up the active space. While the number of orbitals and
electrons is given by the system at the start of the equation, this can change as ‘problem’ orbitals arise.

This will be discussed in greater detail later.
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The following is a sample CASSCF ORCA input:

!CASSCF DKH ma-DKH-def2-TZVP

* xyz 1 4

Ni 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.650000
end

%casscft

nel 10

norb 9

mult 5

nroots 3

end

The calculation’s appearance is deceptively simple. The first line denotes the type of calculation and

basis set to be used, with available basis sets being found in the ORCA manual [20]. ‘DEF2-TZVP’ is a
minimally augmented basis set designed for heavy metal elements, while the ‘ma’ tag denotes that a
subsection of elements contain a minimal set of diffuse functions [21]. DKH denotes the use of a Douglas—
Kroll-Hess Hamiltonian for scalar relativistic effects [22]. The next block denotes the geometry of the
system, including the XYZ coordinates of every atom in the calculation. Finally, the CASSCF block lists all

required pieces of the calculation. Note that there are several default settings not listed in the above that

may be changed as the need arises. These can be found in the ORCA manual.

Table 5 contains the first user check of a completed CASSCF calculation, the orbital degeneracy
patterns. When summed across, each row in this table will equal the number of electrons specified for
the active space. This table lists the expected value of electrons that exist in each given orbital. The
expectation is that a clear degenerate pattern will exist in the set of active orbitals. Table 5 shows the
orbital degeneracy of MnO* over an interatomic distance of 1.45 to 2.00. Each row of the table represents

a different geometry.
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Table 5: CAS Orbital Occupation Degeneracies of Low Spin MnO*.

Interatomic
Distance (A) State Averaged Orbital Occupancy
14 1.9089 1.9089 1.9009 0.7575 0.7575 0.7105
1.45 1.8888 1.8888 1.8886 0.7775 0.7775 0.7251
15 1.8747 1.8651 1.8651 0.8011 0.8011 0.7426
1.55 1.859 1.8385  1.8385 0.8277 0.8277 0.7627
1.6 1.8413 1.8105 1.8105 0.8556 0.8556 0.7849
1.65 1.8219 1.7831 1.7831 0.8829 0.8829 0.8088
1.7 1.8015 1.7585 1.7585 0.9074 0.9074 0.833
1.75 1.7809 1.7379 1.7379 0.9279 0.9279 0.8561
1.8 1.7609 1.7216 1.7215 0.9442 0.9442 0.8771
1.85 1.742 1.709 1.709 0.9567 0.9567 0.8954
1.9 1.7243 1.6994 1.6994 0.9662 0.9662 0.9109
1.95 1.7074 1.6919 1.6919 0.9735 0.9735 0.9238
2 1.6909 1.686 1.686 0.9793 0.9793 0.9342

0.0553

0.053
0.0496
0.0455
0.0412
0.0372
0.0338
0.0315
0.0307
0.0316
0.0339
0.0383
0.0447

Inthe above table there is a clear orbital degeneracy pattern in each calculation. The above calculation
looks good, but an MREOM calculation run with the above CAS would most likely result in T amplitudes
that are not converged. This is due to the last orbital in the CAS having a very low orbital occupancy (<0.05)
throughout most of the CAS energy surface. This issue can be solved by altering the CAS to the CAS found
below. By removing the problem orbital, the occupancy is distributed among the remaining 8 orbitals.
However, problems with T amplitude convergence also occur if an orbital is too highly populated (>1.95).

This can be solved by removing two electrons in addition to removal of the orbital.

%cassct
nel 10
norb 8
mult 5
nroots 3
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The second check performed is to ensure the degeneracy of the calculated states. Once again, it is
expected for these states to either be non-degenerate or doubly degenerate. Table 6 shows a degeneracy

pattern denoting appropriate orbital symmetry within the CAS calculation.

Table 6: CASSCF Energies of Low Spin MnO* Calculation at 1.65 A.

Energy (Ha) Relative Energy
(ev)
-1231.9966 0
-1231.9966 0
-1231.9692 0.7467

The issue with orbital occupancies that approach either doubly occupied or empty orbitals is that
operators related to these orbitals carry a low weight; this makes it difficult to describe the amplitudes
related to those operators. When calculating CAS excitations, highly occupied orbitals will be difficult to
excite into, whereas lowly occupied orbitals are difficult to excite out of. In general, finding appropriate
orbital degeneracies will lead to proper energy degeneracies, but this is not a guarantee. It’s important to
always check both the degeneracies of the orbitals and the degeneracies of the calculated states. When
running calculations on diatomic metal cations, it can be common to ‘split’ a degeneracy by only including
one of the two states from the degeneracy. This will result in a set of orbitals without symmetry. The
following calculation results found in Table 7 include one state from a multiplet. Table 8 shows the
calculation result that occurs after including the missing half of the multiplet. This calculation can be
further improved by the removal of the low occupancy orbital. Of note in the above is that adding and

removing states shifts the calculated energies of the same states between calculations.

22



Table 7: Failed MnO* CAS Calculation at 1.65 A with number of states set to 1. This calculation failed due to the inclusion of a
split multiplet.

State Energy
(Ha):
Orbital Occupancy

1.9809
1.9436
1.5409
1.0176
1.0084
1.0002
1.0001
0.4605
0.0479

-1232.0028

Table 8: Successful CASSCF Calculation of MnO* at 1.65 A after including the other half of the chosen multiplet by setting
number of states to 2.

State Energies  -1231.9998
(Ha): -1231.9998
Orbital Occupancy
1.9447
1.7003
1.7003
1.0081
1.0003
1.0003
0.7997
0.7997
0.0468
— 0.14 —@—State 1 State 2 State 3
£ 0.12
> 0.1
g
@ 0.08
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Figure 8: CAS Energy Surface of Low Spin MnO*. The surfaces appear smooth, with two calculated states appearing
degenerate.
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Figure 8 shows the result of a CAS energy surface of MnO*, calculating 3 energy states with a
multiplicity of 5. States 2 and 3 are degenerate, and are denoted with square points as opposed to circular.
The continuous and well-behaved nature of the calculated surface means that this CAS is a prime
candidate foran MREOM calculation. While the above is a good set of rules to start from when attempting
a CASSCEF calculation, finding the proper CAS is the first step to an MREOM calculation. Unfortunately, a

good CAS does not guarantee the success of a MREOM calculation.

3.4: CASSCF Calculation Results and Discussion

Figure 9 and Figure 10 show the potential energy surfaces calculated for each CAS used for an
MREOM calculation as well as the orbital occupancies related to that CAS. Each calculation was
conducted using the ma-DKH-Def2-TZVP basis set. Tables covering orbital occupancies can be

found in Appendix B.
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Figure 10: Complete active space potential energy surfaces for low spin cases.
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Comparing the CAS calculations for the high spin and low spin cases, it is clear that high spin
surfaces in general are repulsive, and do not show a minimum. Upon addition of electron
correlation effects in MREOM, other low spin states are accessible. This should lead to finding
bounded states. The low spin CASSCF do exhibit stable minima, except in the case of FeO*. In the
cases of VO* and CrO*, degeneracies break down at the last point of the calculation. This would

most likely lead to these geometries being excluded from the MREOM calculation.

3.5: Basics of Multi Reference Equation of Motion Calculations

Much like finding the appropriate CAS for a calculation, finding the right set of parameters to run a
successful MREOM calculation can involve a good amount of trial and error. Unfortunately, MREOM
calculations take significantly longer than CASSCF calculations. Each trial calculation runs for
approximately one to three days, and the calculation is not guaranteed to be successful across the entire

potential energy surface.

MREOM calculations are defined by the supplied CAS as well as the number of states requested. While
it is possible to include the entire CASSCF calculation as a part of an MREOM calculation, it is preferable
to separate them. This allows greater control and monitoring over the CASSCF calculation. Due to the size
of the input file, the sample MREOM input file can be found in Appendix C. It is not necessary to
understand every option of this input file, but important options will be detailed below. There are 3 main
blocks of an MREOM calculation: the CASSCF, MRCI, and MDCI. The CASSCF block should exactly match
the block found from the previous CASSCF calculation. Orbitals are read in from an Orca orbital (“.gbw”)
file. The MRCI portion of the calculation is responsible for the calculation of T, S, X, D, and U amplitudes.
The MDCI block is the final diagonalization of the resulting matrix whose eigenvalues give the requested

energies. The most important parameters in the MRCI block are the ‘STOL’, ‘DoSingularPT’, and
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‘SingularPTThresh’ options. Singular Perturbation Theory is a method for approximating T-amplitudes
non-iteratively, and should be used as opposed to coupled cluster when issues involving T-amplitude
convergence appear. Convergence issues in T-amplitudes at this point of the calculation are the main
reason why an MREOM calculation might fail, and it is unclear at this time why certain calculations require

this option while others do not.

In most cases, failing an MREOM calculation means that the supplied CAS wasn’t of sufficient quality.
This could be either due to discontinuities in the calculated potential energy surface, or due to issues with
degeneracies in either the orbital occupancies or the calculated energy states. Occasionally, a CAS that
looks perfectly converged may be passed to an MREOM calculation only to have that calculation fail. More
than likely, the MREOM calculation would have failed calculating T and U amplitudes related to the
transformation of the Hamiltonian. While most calculations may converge in less than 100 iterations,
certain calculations such as VO* could be allowed 1000 iterations and still fail. These convergence issues
are indicative of an issue calculating amplitudes related to the coupled cluster method, namely an issue

with nearly singular equations.

From previous experience it is known that the solution of the cluster amplitudes in an MREOM
calculation can be cumbersome. In regard to the calculated T Amplitudes (tiajb) a tentative solution is
available by replacing certain problem amplitudes by their first-order perturbative solution. The selection
of such perturbative amplitudes is based on the eigenvalues of a suitable metric matrix. In practice there
is a threshold to select [23]. This threshold is user selected and is based around the diagonalization of the
metric matrices to obtain a set of orthonormal eigenvectors and eigenvalues, and discarding amplitudes
related to eigenvalues below a certain threshold. However, simply discarding amplitudes can lead to
jagged and discontinuous potential energy surfaces [23]. Replacing these amplitudes with a perturbative

guess yields the greatest success. In general, one would like to select a threshold that just barely
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encompasses the problem amplitudes. In ORCA, there is no simple way to accomplish this currently, so
calculations must be tested by increasing the threshold iteratively. A clear issue with this procedure is that
a different number of amplitudes may be replaced at different geometries, and that can lead to
discontinuities in calculated potential energy surfaces. In the future, the threshold process may be

replaced by an automatic threshold picking scheme, but this is outside the scope of this thesis [24].

The final block is the main part of the calculation, and where the program will spend most of its time.
‘newblocks’ are specified with a multiplicity as well as the number of states to calculate. This does not
have to be the same as the states calculated in the CASSCF. While the MREOM calculation is sensitive to
the supplied CAS, it is possible to calculate a CAS at a certain multiplicity and obtain a huge number of
energies for different spin states. Every MREOM calculation has its associated quality checks. All cluster
amplitudes T,S,X,D, and U should be relatively small, below about 0.10. IF they are large, 3 body
contributions in the transformed Hamiltonian can be large, but are neglected. If some cluster amplitudes
are large (0.1-0.15), the results from an MREOM calculation are questionable [23]. Figure 11 shows an

example of calculated T amplitudes.

29



16-> 22 -1-> -1 0.065483
16-> 29 -1-> -1 0.065321
18-> 47 -1-> -1 0.058644
17-> 46 -1-> -1 0.058644
18-> 35 -1-> -1 0.057465
17-> 34 -1-> -1 0.057465
16-> 33 -1-> -1 0.052265
16-> 42 -1-> -1 0.050569
11-> 29 -1-> -1 0.046262
18-> 40 -1-> -1 0.046074
17-> 39 -1-> -1 0.046074
16-> 30 -1-> -1 0.043835
18-> 21 -1-> -1 0.042248
17-> 20 -1-> -1 0.042248
11-> 42 -1-> -1 0.041957
18-> 28 -1-> -1 0.040540

Figure 11: Example T Amplitudes from a high spin CoO* MREOM Calculation. T amplitudes are well
below the 0.1 calculation accuracy threshold.References weights from the final Cl part of an MREOM
calculation should be above 0.9. These reference weights are calculated for each state and are a measure
of the CAS contribution in the final wave function. If this value is too low (<~0.90) then the accuracy of the
resulting state is questionable. Unfortunately, passing these two checks does not necessarily result in a
successful calculation. Curves could still have discontinuities or exhibit strange behavior. However, failing

these checks removes any confidence that the results may be trusted.

3.6: MREOM Calculation Results and Discussion

The following are the completed potential energy surfaces from completed CASSCF calculations. In
the following we will discuss MREOM calculations that start from the CASSCF results discussed before.
While several CASSCF calculations can be completed in an hour, an MREOM calculation can take from 2

hours to 1 day. This meant that it takes a significantly higher time investment to find the correct settings
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necessary for a successful MREOM calculation. In the following section, both the high spin and low spin

results will be considered together and compared.

Table 9 includes details for each calculation.

Table 9: MREOM calculation details including number of states, multiplicities, elapsed calculation time, and SPT

threshold.
Total Calculation
Basis Set Multiplicity States SPT Time
vo* 9 N/A No SPT N/A (Failed)
Cro* 10 39 0.01 7h46m
MnO* 9 41 No SPT 2d22h
FeO* 8 69 No SPT 10h55m
CoO* 7 64 0.01 1d3h
NiO* ma-DKH-Def2- 6 91 No SPT 8h
vo* TZvP 53 N/A 0.1 N/A (Failed)
CrO* 4 39 0.1 3h19m
MnO* 5 41 0.01 3h47m
FeO* 6 69 0.1 11h15m
CoO* 5 64 No SPT 1h51m
Nio* 4 49 0.01 8h21m

Previously, theoretical and experimental studies have been conducted on the first series transition
metal oxides for both neutral and charged species. A comprehensive study by Harrison et al. [25] was
conducted on transition metal oxides for both neutral, cationic, and anionic species to calculate
spectroscopic properties, such as vibrational frequencies and ground state spin states. Neutral species
have also been investigated by Anderson et al. [26] and A. J. Merer [27], while charged species were
studied by Fiedler et al. [28], Y. Nakao and K. Hiraro [29], Y. Shiota and K. Yoshizawa [30] to find ground
state properties such as ionization energy or equilibrium ground state bond lengths for both neutral and
charged species respectively. Approximate equilibrium bond lengths for the systems in this study are

compared to both neutral and charged species in Table 10. Bond lengths used in this table are low spin
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results that have been rounded to the nearest data point based on inspection of each curve. As such, this
comparison is approximate, but shows a general agreeance within +/- 0.1 A. To increase accuracy further

comparisons require more points to be calculated near this equilibrium bond distance.

Table 10: Comparison of MREOM calculated bond lengths with literature for transition metal oxide cations

Experimental
Results Theoretical Results

Species Foen Foes Fors roen Species ro roes roeol roe
Vo 1.59 1.60 1.55 1.59 vo* / / 1.55 1.53
CrO 1.62 1.62 1.53 1.62 cro* 1.60 / 1.61 1.57
MnO 1.65 1.66 1.57 1.65 MnO* 1.70 / 1.83 1.72
FeO 1.62 1.68 1.55 1.62 FeO* 1.65 1.62 1.67 1.63
CoO 1.60 1.62 1.56 1.63 CoO* 1.60 1.63 1.69 1.63
NiO 1.63 1.63 1.59 1.63 NiO* 1.60 1.63 1.68 1.65

Please note that while it may appear that plots do not include the number of states listed above, all
states have been accounted for. Several states are very close in energy and, depending on the range of
states calculated, appear to overlap. While each calculation involves many states, it is a small subsection
of the total number of states that exist for these potential energy surfaces. Attempting to calculate the

entire potential energy surface is currently unfeasible.

3.6.1: MnO* Calculation and Discussion

Calculated MREOM potential energy surfaces are shown in Figure 12. The MnO* MREOM calculations
have similarities, but differ due to jaggedness present in the high spin case. While the low spin case seems
to have remained continuous, the high spin case involves some state mixing at around 1.70 A to 1.80 A.
This occurs when the program calculates different states at different geometries. When setting up the
calculation, the user does not decide to include specific states, but simply input several states per
multiplicity. Problems occur if the program does not calculate the same states at each geometry. To assess

the validity of each calculation, the reference weights and T amplitudes are examined for each geometry.
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Figure 12: MREOM potential energy surface plots of MnO*.
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Table 11: Smallest references weights and largest T-amplitudes for high spin and low spin MnO*.

Interatomic
Distance (A)

14
1.45
15
1.55
1.6
1.65
1.7
1.75
1.8
1.85
1.95
2.0

Smallest Reference Weights (High Spin)

0.8745
0.8755
0.8763
0.8767
0.8767
0.8762
0.8753
0.8988
0.8981
0.8988
0.9009
0.9033

0.9036
0.9053
0.9066
0.9051
0.9033
0.9016
0.9
0.8988
0.8981
0.8999
0.9019
0.9041

0.9038
0.9058
0.9069
0.9051
0.9033
0.9016
0.9
0.9109
0.9127
0.9129
0.9145
0.9183

Largest T Amplitudes (High Spin)

0.067779
0.076563
0.061426
0.080213
0.08842
0.066612
0.084372
0.089201
0.089327
0.078069
0.088258
0.096399

0.06719
0.060643
0.048551
0.077952
0.086724

0.06448
0.045215
0.057006
0.084712
0.076038
0.086315
0.093535

0.048935
0.042937
0.036614
0.041718
0.041006
0.04143
0.0403
0.042703
0.042571
0.040513
0.045744
0.050526

Interatomic
Distance (A)

14
1.45
15
1.55
1.6
1.65
1.7
1.75
1.8
1.85
1.9
1.95
2

Smallest Reference Weights (Low Spin)

0.9304
0.9281
0.9255
0.9267
0.9288
0.9375
0.9341
0.9352
0.9354
0.9335
0.9338
0.9343
0.9353

0.9304
0.934
0.9382
0.9424
0.946
0.9473
0.949
0.9487
0.948
0.947
0.946
0.9433
0.942

0.9315
0.934
0.9382
0.9424
0.946
0.9473
0.949
0.9487
0.948
0.947
0.946
0.9433
0.942

Largest T Amplitudes (Low Spin)

0.584819
0.384476
0.351814
0.416985
0.411187
0.356044
0.056244
0.053831
0.051837
0.050214
0.054304
0.059901
0.065933

0.584819
0.384476
0.237517
0.161447
0.120229
0.095754
0.054671
0.049127
0.045566
0.049106
0.048794
0.047654
0.046779

0.193995
0.264742
0.237517
0.161447
0.120229
0.095754
0.054671
0.049127
0.045566
0.026308
0.031118
0.033962
0.038823

After analyzing
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Table 11, issues can be found with each calculation. Reference weights should stay above
approximately ~0.90 and T amplitudes should not be higher than approximately ~0.1. For the high spin
calculation, reference weights become small at low geometries, but become acceptable at r > 1.75 A. For
the low spin calculation, T amplitudes exceed the acceptable threshold for low interatomic distances, but
become acceptable at 1.7 A. This calls the first 0.4 A of each calculation into question. To attempt to rectify

this, the calculation was redone with a higher SPT threshold shown in Figure 13.

Low Spin MnO* (0.05 SPT)

g w
i W unn b

Relative Energy (eV)
T

o
n

135 145 155 165 175 185 195  2.05
Interatomic Distance (A)

Low Spin MnO* (0.01 SPT)

= g w
RN WL s
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o

o
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Figure 13: Comparison of SPT thresholds for low spin MnO*. Increasing the SPT threshold had little effect on calculated
energies but produced a large reduction of T Amplitudes as well as a slight increase in curve smoothness

35



The plots in Figure 13 appear similar, with the higher SPT calculation appearing marginally less jagged.
The main result of the increased threshold was that T amplitudes dropped significantly while results
stayed largely the same. The calculation also completed faster, finishing in approximately three hours
while the original calculation finished in four hours. From Figure 14, we can see increasing the SPT

threshold had little effect on the calculation, but curves appeared less jagged.

MnO* SPT Comparison
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Figure 14: Comparison of energy values between differing SPT thresholds. Changing this threshold does not affect the
calculated energies.

Table 12: Smallest references weights and largest T amplitudes for low spin MnO* with SPT=0.05.

g::farﬁtczn&c) Smalls;:iziftirence Largest T Amplitudes
1.4 0.9227 0.9377 0.9377 0.079 0.0286  0.0283
1.45 0.9244 0.9405 0.9405 0.0749 0.0281 0.0281
1.5 0.9271 0.9441 0.9441 0.0703 0.0268 0.0266
1.55 0.93 0.9481  0.9481 0.066 0.0276  0.0257
1.6 0.9327 0.9491 0.9491 0.0623 0.0282 0.0275
1.65 0.9346 0.9492 0.9492 0.0591 0.0318 0.0269
1.7 0.9332 0.949 0.949 0.0563  0.0356 0.026
1.75 0.9333 0.9485 0.9485 0.054 0.0398 0.0256
1.8 0.9334 0.9478 0.9478 0.0519 0.0443  0.0287
1.85 0.9335 0.947 0.947 0.0502 0.0491 0.0263
1.9 0.9338 0.946 0.946 0.0543 0.0488 0.0311
1.95 0.9343 0.9433 0.9433 0.0599 0.0477 0.034
2.0 0.9353 0.942 0.942 0.0659 0.0468 0.0388
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Figure 15: MnO* calculated energy comparison at two selected points.

Table 12 shows a promising result from raising the SPT threshold. Results now appear with reasonable
T amplitudes and reference weights. Next, we compare calculated energy states in Figure 15 between
high and low spin calculations to see if the calculations show agreement. Each set of energies adheres to
a similar pattern between calculations at 1.7 A, while the calculations at 2.0 A do not show agreement.
The low spin case appears to be converging on an asymptote, while the high spin case does not. The
midpoint calculations both show relative agreement, differing by about ~0.3 eV. This is surprising, due to
potential issues with each calculation at that geometry. The general agreement between calculations
lends these questionable sections some validity. From the above information, it appears that the high spin
case trades a larger flexibility of calculable geometries for continuity errors in a section of the potential

energy surface.

The low-spin calculations use a CASSCF reference that corresponds to the final states calculated in

MREOM. The orbitals from such a CAS are better than orbitals from the high-spin CAS, and one would
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expect low-spin results to be more accurate. The high-spin calculations are a bit of a stretch for the

MREOM methodology and here we explore the ability of MREOM to recover from poor starting orbitals.

3.6.2: FeO* Calculation and Discussion

From Figure 16, we can see several irregularities in the low spin plot, and a few in the high spin plot
over the course of the calculation. The high spin calculation was able to be completed up to 6.0 A, but
results were poor past 2 A. T amplitudes were not converged for r > 2 A for the low spin case. While both
potential energy surfaces have a degree of strangeness to them, the high spin case appears more
continuous than the low spin case. From this point on, T amplitudes and reference weights can be found

in Appendix D.
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Figure 16: MREOM potential energy surface plots of FeO*. The high spin method (top panel) produces a less jagged
curve compared to the low spin method (bottom panel) for this system.

In general, both quality indicators appear satisfactory. However, the high spin case borders on
guestionable, with T amplitudes and reference weights both approaching unsatisfactory values. In the low
spin case, reference weights start a bit low but quickly grow. T amplitudes begin small and grow slightly,
but stay reasonable throughout the entire calculation. From the energy comparison in Figure 17, both
calculations appear to agree on the energy range where states occur, but not on the distribution of states
within that range. In this calculation, the high spin case appears more continuous and well behaved when

compared to the low spin calculation and is the preferred calculation for this system.
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Figure 17: FeO* calculated energy comparison between spin cases.

3.6.3: CoO* Calculation and Discussion

Figure 18 shows the results of the MREOM calculation using each spin approach for CoO*. The high
spin and low spin systems exhibit the same properties that occurred in previous calculations. The high
spin calculation allows convergence for a greater range of geometries than the low spin case, while
exhibiting jaggedness around 1.9 A and state mixing past 1.8 A. There are no obvious discontinuities in

the low spin calculation. Appendix D contains reference weights and T amplitudes for the above surfaces.
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Figure 18: MREOM potential energy surface plots of CoO*.

Reference weights and T amplitudes are satisfactory. In the high spin case, reference weights are at
their lowest but still above acceptable standards. This does not explain the discontinuities found in the
high spin case above 2A. This is once again most likely due to state mixing, with calculations picking up
separate states at different geometries, which converge on the same asymptote as geometries approach

complete separation. However, upon visual inspection of both potential energy surfaces, the high spin
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system PECs are more jagged than those of the low spin system. The curves produced by the low spin

MREOM calculation appear to be reasonable.

3.6.4 NiO* Calculation and Discussion

Figure 19 shows the results of the MREOM calculations for NiO*. Once again, the high spin case was
able to calculate a larger range of geometries for the potential energy surface. However, the high spin
case includes significantly more jagged curves, with many curves showing a jump of about ~1 eV. This
jump is not observed in the low spin case. Note that the high spin case includes an extra 42 states. These
were included to account for the jaggedness by attempting to remove the state mixing issue. Appendix D

contains T amplitudes and reference weights for the above calculations.
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Figure 19: MREOM potential energy surface plots of NiO*. Here we see significant discontinuities in the high spin
calculation, including state-mixing along the potential energy curves for higher energy states.

For the high spin case, Tamplitudes and reference weights are both approaching thresholds suggesting
that certain states may not be accurate. As explained previously, extra states were included in the high
spin calculation, which are meant to be removed to create a continuous and well-behaved potential

energy surface. Figure 20 is the result of the edited high spin surface:

High Spin NiO* (Edited)

Relative Energy (eV)
H

14 1.5 1.6 1.7 1.8 1.9 2

Interatomic Distance (A)

Figure 20: Edited high spin NiO* potential energy surface. Curves that were discontinuous have been removed.

To compare plots easily with the low spin case, the high spin cases’ surface was truncated after
removing the jagged curves. The two plots begin to appear similar, but more analysis is required. Figure
21 is a comparison of calculated energy states at two separate points. This state energy plot shows general
agreement between the high spin and low spin calculated plots after editing the plots to remove
jaggedness. Each exhibits a similar gap of about ~0.8 eV for the first energy level gap, leading to a dense
cluster of states. While the two plots are very similar, the high spin case was significantly easier to set up

on the CAS level, with the MREOM calculation completed along more or less the same timeline. One of
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the main strengths of MREOM is its ability to calculate many states simultaneously. This makes the impact
of requiring extra states needed to make an accurate high spin plot negligible. The above strategy allows
for high spin MREOM calculations to create continuous potential energy surfaces for complicated

electronic systems.
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Figure 21: NiO* calculated energy comparison. There is good agreement between the edited high spin and low spin
calculations.

3.6.5 CrO* Calculation and Discussion

The plots of CrO* found in Figure 22 are an interesting case in this study. For the other transition metal
oxides, the high spin potential energy surface appeared with jaggedness and discontinuity between the
midpoint and asymptote, but were stable across a much larger range of geometries. The low spin case
would have a smaller range, but curves would be smoother. Here, the high spin curve appears significantly
smoother than the low spin case, while still enjoying the benefits of a much more stable CAS. Once again,
appendix D contains reference weights and T amplitude data. From Appendix D, some trouble reference

weights and odd T amplitudes are found for both the high spin and low spin cases.
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Figure 22: MREOM potential energy surface plots of CrO*.

For the high spin case, something odd occurs in the T amplitudes at 1.55 A and 1.65 A. While reference
weights of all the included states stay high, the T amplitudes of those points calls into question the
calculated energies. Despite how the high spin calculation looks, results appear questionable due to the
low reference weights for several states at most geometries. When we compare energy states between

calculations in Figure 23, results do not line up.
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Figure 23: CrO* calculated energy comparison.

Here, we see little agreement between the two calculations. Gaps between states do not line up
between calculations. For the midpoint case, the only energies that appear to agree are the cluster of
energies around ~2eV. For the endpoint case, calculations have a similar pattern but disagree on both the
highest and lowest state. Overall, there is a very weak agreement between the calculations that does not
inspire confidence. In this case, the high spin calculation appears preferable despite the low reference
weights for a handful of states at each geometry. However, T amplitudes stay low throughout the
calculation. Despite low reference weights, curves remained continuous and appear without any
irregularities. The high spin calculation for CrO* appears trustworthy. CrO* is the only system in this study
where the high spin case appeared well behaved without editing out states, compared to the

discontinuous curves calculated for each other system.

3.6.6 VO* Calculation and Discussion

Unfortunately, an MREOM calculation for VO* was not completed for any of the several CAS
configurations attempted. Both high and low spin were attempted, as well as a mixed spin CAS calculating

states from several multiplicities. In some cases, a CAS would not remain stable across the entire range of
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geometries. Mixed spin active spaces are more complicated to converge, with high spin cases being the
simplest to both create and converge. This was the reasoning behind using the high spin regime in the
first place. Most calculations failed in the T amplitude stage. Table 12 denotes the results of each MREOM
calculation involving VO*. Each MREOM calculation that was able to run did so at 1000 iterations. Note
that most other calculations converged before 100 iterations, with only one calculation requiring 230. In
contrast, the calculations for VO* were more resistant toward converging T amplitudes than other

calculations. The tolerance for T amplitude convergence is 10°®.

Table 13: MREOM results for VO*.For each CAS that converged, MREOM calculations were conducted. The T amplitude
residual was not able to be converged sufficiently to complete the calculation.

CAS T Amplitude
Electrons Orbitals Multiplicity States Convergence? Residual
8 8 3 3 No N/A
8 9 3,1 5,5 No N/A
8 9 5 3 No N/A
8 8 5 3 No N/A
8 8 3,1 5,3 Yes Running
8 8 3 1 Yes 0.010126407
8 8 31 5,5 Yes 0.002531189
8 9 53,1 2,33 Yes 0.000931845
8 9 9 5 Yes 0.000066
6 7 5 3 Yes 0.000022599

From the above, it appears that the CAS involving the fewest states resulted in the slowest
convergence. However, the active spaces that involved many state from several orbitals were also slow
to converge, fairing only slightly better. The CAS that was closest to convergence involved the fewest
orbitals, removing two due to problems with orbital occupancy. The increased convergence could simply
be due to involving fewer orbitals as opposed to finding the correct CAS. As of this writing, other CAS

configurations are being attempted. As current calculations have not come close to proper convergence,
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it is unclear what CAS configuration might yield suitable results. In the end, none of the attempted

calculations yielded anything suitable.

3.7: Conclusion

In this study, six transition metal oxide cations were examined using MREOM: VO*, CrO*, MnO*, FeO",
CoO*, NiO*. These systems were approached using two different spin regimes; a high spin regime created
to simplify the CAS process, and a low spin regime used as a more sensible approach. VO* was additionally
approached with a mixed spin CAS when other approaches failed, but did not yield a potential energy
surface. From the five systems that were completed, the low spin case was the more reasonable
calculation in three of the five calculations, with FeO* and CrO* appearing to behave better as high spin
calculations. This is interesting, as the idea that high energy high spin states can be used as a reference to
calculate states significantly lower in energy is unintuitive. However, it is unclear how accurate these

calculations are due to high T amplitudes and sub-optimal reference weights.

For MnO*, CoO*, and NiO", results were significantly better behaved in the low spin case when
compared to the high spin case. Curves appeared continuous with low T amplitudes and high reference
weights. The only issue with these calculations was the difficulty in setting them up. Originally, the high
spin regime was introduced to simplify the CAS selection process. Unfortunately, the high spin case failed
for two of the above systems due to issues with convergence of T amplitudes. This might be solved with
a more aggressive approach to choosing a singular PT threshold, as it is theorized that issues with T
amplitudes or jaggedness could be due to different numbers of amplitudes being frozen depending on the

current geometry. Currently, there is no way to choose a fixed number of T-amplitudes to approximate.

Unfortunately, even when allowed more than three times the iterations of the other calculations, it
was not possible to converge T-amplitudes for either spin regime of VO*. This might be explained by the

increased density of states of V* compared with the other transition metals, requiring a larger CAS to
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properly calculate a potential energy surface. As these states begin to converge asymptotically, calculating

these states becomes significantly more complex.

While the high spin results involved discontinuities, these discontinuities could be addressed in NiO*
by calculating many states and trimming down until only continuous curves remain. Using a high spin CAS
is not an intuitive response to convergence issues, as the states included in the CAS are often very far from
the ground state of the system. By editing the high spin NiO* plot, a continuous and well behaved potential
energy surface was obtained. While this strategy may make the high spin approach viable, it is unclear if
this produces sufficiently accurate potential energy surfaces. While NiO* could be edited to show general
agreement, the other systems showed disagreement between calculation regimes. In the case of CrO*,

high T amplitudes and low reference weights make the results appear questionable.

In this chapter a high spin and low spin calculation approach was applied to six systems, with five
systems viable potential energy surfaces. While the high spin case was significantly easier to set up, the
low spin case calculated smoother curves for three of the systems in this study. While the cost of running
a high spin calculation is generally low for the user, the calculations take longer to finish and results appear
guestionable. By editing the high spin curves, it was possible to add extra states for later removal to create
a smoother potential energy surface. In the end, the low spin case yielded several reasonable potential
energy surfaces and is recommended. However, the unintuitive high spin approach with editing may also

be considered as a simple to run alternative.

The goal to calculate many potential energy surfaces for complicated transition metal oxides is
ambitious. A clear alternative to MREOM is to use MRCI calculations. This would require a large state-
averaged CAS calculation, and this might compromise the accuracy of the calculation. MREOM is designed
to have fewer issues in this regard, but as evidenced from the current work the MREOM approach can

suffer from numerical instabilities. The use of symmetry in the calculations might alleviate some of the
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problems, and certainly would allow for a better targeting of states. However, this would require a major
re-implementation in ORCA. These studies show that MREOM calculations are not sufficiently robust to
calculate full potential energy surfaces. MREOM can be used to calculate single point energies, and one
might calculate several single point energies at close lying geometries to extract a low-order Taylor series
expansion. In the future this can be expanded to calculate parameters for non-adiabatic vibronic models.

[25]
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Chapter 4

New Method for Implementing MREOM

In the first chapter of this thesis the basics for an MREOM calculation was established, as well as the
theory behind MREOM. Similarity transformations are applied to a bare Hamiltonian H such that
excitations out of the CAS are removed. These transformations do not effect the eigenvalues of the
Hamiltonian, meaning that transforming the Hamiltonian does not change the energy levels. In this
chapter, an algorithm will be introduced to create a new Cl program designed to perform MREOM
calculations. This program is meant to take advantage of the efficiency of heavily optimized common use
linear algebra libraries. A data structure was created such that arrays could be easily passed to these linear
algebra subroutines. This would allow efficient calculation of several integrals at once while avoiding the

array reshuffling present in current implementations of MREOM.

Unfortunately, this project was not completed. The CI Code was meant to be completed on ASUS2
using FORTRAN, which would later be ported to C for ORCA. The ASUS2 version of the code was meant to
be a proof of concept, with practical calculations using ORCA. The main advantage for calculations run
using ORCA is the inclusion of spin-orbit coupling, which increases the accuracy of the calculation by
accounting for energy level shifts due to the interaction between an electron’s spin and orbital motion. In
the end it was deemed too much investment to get the program running on ACES2 to just immediately

port it to ORCA for actual use. This code will most likely be completed by a future student in ORCA.
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The algorithm being implemented in this study is a Davidson Algorithm. The heart of the algorithm is

to use preconditioners to create a guess input vector | @). The next step is to then construct a

representation of the Hamiltonian H from these guess vectors:
Hpq = (%lﬂ%)
Next, we diagonalize this Hamiltonian:

HC,=EC

Then calculate the current best estimate:

N
W=D 140Gy
p=1

Next the residual is calculated:

Rk = (xklg — E|)

If the residual is above some tolerance value, then new guess vectors are calculated:

o= (Hy—E)™ 'Rk

(16)

(17)

(18)

(19)

(20)

With the process repeated from the 2™ step until the calculation converges. While both the current

implementation of MREOM and the proposed implementation use a Davidson algorithm, they are

implemented in different ways. The heart of the matter is that improvements can be made to the

efficiency of the current Cl program.

Table 14 shows the percentage of time spent in each part of an MREOM calculation for a variety of systems.

The most time-consuming step was found to be final matrix diagonalization.
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Table 14: Relative timings of each calculation section for MREOM calculations in ORCA.

CASSCF MDCI MRCI

System Iterations Module Module
NiO* 0.001 0.314 0.685
MnO* <0.1% 0.036 0.963
FeO* 0.001 0.102 0.897
CoO* 0.001 0.257 0.742
CrO* 0.008 0.434 0.559

From Table 13, we can see that the program spends most of its time in two separate Cl portions, both
dedicated to matrix diagonalizations. The current implementation of the MRCI code is a generalized non-
specific algorithm designed to treat one integral at a time. A new algorithm was developed with a unique
data structure in mind such that multiple integrals could be processed in a single matrix-matrix

multiplication call. This data structure is shown in Figure 24.

CAS C(n, 1)

1h C(i,n, 1)
1p C(a,n, 1)
1hlp C(a,i,n, 1)

Figure 24: Data structure used in the new algorithm. This data structure would allow for the intelligent storage of our
data, with ‘simpler’ indices treated later by the different loops of the program.

The orbital labels, i and a, refer to inactive low energy hole orbitals that are doubly occupied in each
reference determinant and virtual orbitals that are empty in the reference state. In MREOM calculations
we are often interested in many electron states. States which have the same spatial symmetry
represented by irreducible representations and spin values, namely the S, and S? values, can share the
same data structure. The individual sates are categorized by the index n. These states can all be treated
together in a block Davidson algorithm. The matrix multiplication of HC is carried out for a block of states

all at once and is shown in Figure 25. The most complicated label to use is the occupation string of orbitals
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in the active space. This string is indicated by the Greek indices (A, y, etc.) and represents the active space
character of the contribution. Each string is characterized by irrep, number of electrons, and S, value, with all

possible strings occurring consecutively.

a n n

b g[x,v] alc[A]| = b|RW

L

Figure 25: Structure of a matrix-matrix multiplication. Much of the algorithm depends on exploiting matrix-matrix
multiplication calls.

While this algorithm is more efficient, it is significantly more complicated. Each contribution requires
a specialized and unique loop structure. While the current implementation spends a significant amount
of time diagonalizing matrices, it has a ‘one size fits all’ solution. This means that while the new algorithm
would be much faster, development time would both be significantly longer as well as more complicated.
Due to the nature of calculations in quantum chemistry requiring testing many different systems a

streamlined and efficient Cl code is required to push the state of the art forward.

Each contribution must be individually calculated for both the one electron and two electron
contributions. This means that some residual R is calculated by multiplying our Hamiltonian H with some
input vector C, for both the one electron and two electron cases. Examples of this multiplication can be

seen below for each case:

Ry, = _Zx,i,n,/'l hix<u|x|l>cin)l (21)

u
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Rny = _Zk,x,y,z,n,l (kxl |Z3"><u|x1—yz|/1>ck/1 (22)

Equation 22 shows a one electron example, where Equation 23 shows a two-electron example. Labels
i,j,k refer to hole electrons, whereas x,y,z refer to active space electrons. As mentioned in Chapter 1, all
1h, 1p, 1hlp, and 2h contributions are determined and calculated. This is done by determining each valid
residual contribution and finding what combination of Hamiltonian and C vector labels determines this
residual. Determining each contribution involves engineering a Hamiltonian and C vector pair whose
multiplication results in a particular residual. Contributions that result in residuals with the wrong electron
character are discarded. In each of the above cases, the sum labels give an idea of what labels will be

looped over in the code.

Each matrix is designed to be stored in memory consecutively as per the data structure stated
previously, with less complicated labels appearing first and more complicated labels appearing second.
This means that every contribution has a calculable starting point and end-point determined by the
properties of the system being looked at. In truth, the program stores the entire array in memory and
determines what pieces need to be used by a particular subroutine by calculating a series of ‘offsets’
during the initiation of the program. These offsets are stored and are used by a pointer to determine how

to correctly access relevant parts of the residual, Hamiltonian, and Cl vectors. This is visualized in Figure

26.
Indices

al ¢+ 1 2 1T 1+ 1T 21T 121 20T 11T 2 1T 11T 21 11 21
il 1 I 2 | 3 | 1 | | 3 |
ni 1 | 2 |
A 1 |

as, iy, ay, iy, ay, iy, az, iy, as, iy, ay, iy, ay, iz,

ny, Ay ny, A4 ny, A4 ny, A4 Ny, A4 Ny, A4 ny, A4

Memory
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Figure 26: Example of array in memory. The nature of the data structure and each element appearing consecutively in
memory allows matrix-matrix multiplication calls to be exploited for massive gains in efficiency.

Depending on what contribution is being looked at, several integrals can be calculated simultaneously
with a single matrix-matrix multiplication call. For example, the contribution shown in Equation 23 may
be looped simply, While the contribution found in Equation 24 must be looped over explicitly due to its

complexity:

Ry = +Zi,a,l hia<u|/1)cain/'l (23)

Riny = +2xij k2 hix(ulx[A)Cijna (24)

Put simply, the complexity of a contribution is determined by how, if possible, different labels may be
‘glued’ together. For example, the first contribution is made possible by gluing together the ‘@’ and ‘i’
labels. Since no active space electrons occur, the active space in both the input vector and residual remain

identical, and so the final two labels may also be glued together. This results in the following pseudo-code:

R(A,n-A) =sum(i,a)H1,i-a) X C(i-a,n-A) (25)

Whereas the second example is more complicated due to the inclusion of an active space electron.
Each time an active space electron is involved, a subroutine must be called to calculate how the active
space electron operates on the original active space string to determine a new active space string. Most
contributions require an active space electron, but most contributions can also be simplified in some way.

The pseudo-code from equation 4 can be found rewritten below:

R(@i-n,pu) =sum(@) x V() xC3G,j;n )T (26)

Where the ‘T’ denotes a transposed array. This is required due to a mismatch of labels between the

Hamiltonian and the input vector and the residual. What this means is that each active space and state
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label must be looped over explicitly, and within that loop each C(i,j) matrix used must be transposed
before being multiplied with the Hamiltonian. Since each loop must be treated explicitly, this contribution
requires more time to complete. A full list of contributions, along with the pseudocode associated with

each contribution, can be found in appendix A.

As stated previously, one of the main benefits of writing this algorithm and data structure is the ease
and efficiency of matrix-matrix multiplication using the Basic Linear Algebra Subroutines (BLAS) library.
This library has been heavily optimized to provide extremely efficient linear algebra functions. Taking
proper advantage of these already-optimized subroutines allows for a large speedup in the Cl code. The
backbone of the code comes from structuring our contributions such that we make as few calls using BLAS

as possible, as each call will still be the bottleneck of a calculation.

The following will be two pseudo-code examples of subroutines in the Cl code; the first will be a one
body Hamiltonian contribution and the second will be a two-body contribution. The two-body
contribution is more complicated, but most of the complication comes from proper configuration of arrays,

offsets, and labels to correctly determine each contribution.
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4.1 Code example of one body Hamiltonian

We will start by looking at the contribution from before, shown in equation (3). Equation 28 shows
both the equation form and pseudocode form of this contribution. This contribution is simple compared
to other one body contributions. There are no active space contributions, which means that the active
space label found in the input array is the same as the label in the residual. This means that the active
space and state label may be looped over simultaneously. The form of the residual and the form of the
input vector also means that the hole and particle labels ‘a’ and ‘i’ can also be looped over simultaneously.
This will be addressed in the way that the matrix-matrix multiplication is set up at the end of the
subroutine. First, the code will be written in its entirety on the following page. Then, each section will be

analyzed.

Ry = +Zi,a,l hia<u|/1)cain/'l (27)

R(1,n-A) =sum(i,a) x V(1,i-a)-C(i-a,n-A)

do aspin=1,2

do arep=1, nirrep
ispin = aspin
irep = arep

ni = js norb(o_h, irep)
na = js norb(o _p, arep)

s C = s _ph(aspin,ispin)
S R=s0

ioff = js orb offh(irep,ispin) -1
aoff = js orb offp(arep,aspin) -1

nlambda = js nactive(s C)
do a = 1,na
do 1 = 1,ni1

v2(a,i) = hmat (ioff+i,aoff+a)

C start = js off psi(s C, arep, irep)
R start js off psi(s R, 1, 1)
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nsum = na*ni

nrow = 1

ncol = nstate*nlambda
fact = 1.0d0

Call matrix-matrix multiplication
(nrow, ncol, nsum, fact,

v2, maxorb,

C(C start), nsum,

R(R start), nrow)

At this time, portions of the code will be individual examined. The program begins with the following
code snippet:

do aspin=1,2
do arep=1, nirrep

ispin = aspin

irep = arep
Each spin and irreducible representation must be explicitly looped over, so that every contribution is
accounted for. In this case, the spins and irrep between the ‘@’ and ‘i’ particles are identical. This is a
corollary of how this particular contribution was derived. In most cases, the spins of the particles must be
the same such that the state is not annihilated as per the rules of second quantization. In the above, the
code starts at 1 and ends at 2 for the spin loop, and loops several times equal to ‘nirrep’ for the irreducible

representation loop. ‘nirrep’ is one of the many variables that is initialized by the program during startup

based on the system in question.

ni = js norb(o h, irep)
na = js norb(o p, arep)

s C = s ph(aspin,ispin)
s R=s50

ioff = js orb offh(irep,ispin) - 1
aoff = js orb offp(arep,aspin) - 1

nlambda = js nactive (s C)
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Here is where the many different offsets are calculated. ‘ni’ and ‘na’ refer to the number of orbitals
related to that set of electrons, based on the character of that set (hole, particle, active) and what
representation is being currently looked at. ‘s_C’ and ‘s_R’ refer to what sector the residual and input

vectors represent. This can be seen by analyzing the original equation:

Rpy = +2i,a,l hia<u|/1>cain/1 (28)

Where the residual has internal CAS character (as denoted by s_0) and the input vector C has 1hlp
character. Proper configuration of these sectors means that the correct portions of each array are taken.
In each case, only portions of a much larger array are used for each calculation. The offsets for each of the
electrons that are part of this contribution are calculated based on what spin/representation is being
looked at. Finally, the active space label is set by a subroutine that uses the previously calculated input
sector. There are no active space electrons in this contribution, so this active space label does not change

during this calculation.

do a = 1,na
do i = 1,ni1
v2(a,i) = hmat (ioff+i,aoff+a)

Next, the local Hamiltonian array is filled in based on previously calculated particle numbers and
offsets. This section allows the most flexibility in terms of how the calculation will proceed. Labels can be

shuffled such the optimal matrix-matrix multiplication is achieved.

C start = js off psi(s C, arep, irep)
R start = js off psi(s R, 1, 1)

The offsets for both the C and R vectors are now calculated. Each offset is specific to the sector and
representation currently being calculated. In this case, the residual vector only has one possible
representation. This is a result of the residual sector being analyzed; the CAS space being the simplest

possible space to calculate.
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nsum = na*ni

nrow = 1

ncol = nstate*nlambda
fact = 1.0d0

Call matrix-matrix multiplication
(nrow, ncol, nsum, fact,

v2, maxorb,

C(C start), nsum,

R(R start), nrow)

A number of different values related to the matrix-matrix multiplication are first calculated. A matrix-
matrix multiplication has the form shown in Equation 30, Where A and B are matrices, and M,K,N are the
dimensions of each matrix. In the above, the internal label ‘K’ is represented by the variable ‘nsum’ and
external labels M and N are represented by ‘nrow’ and ‘ncol’. In effect, the internal labels disappear, and

the external labels remain.

A[M x K]+ B[K x N] = C[M x N] (29)

In our previous psudeocode contribution:

R(A,n-A) =sum(i,a) xV(1,i-a)-C(i-a,n-A) (30)

We are effectively summing over the inner labels in the Hamiltonian and Input vectors such that only the
correct labels remain in the residual. The matrix-matrix multiplication used in BLAS will make sense of the
calculation based on the supplied dimensions if the supplied dimensions results in a possible matrix

multiplication.

The variable ‘fact’ is a factor that can apply to the result of the calculation, generally +/- 1. This sign is

determined by how the different operators interact during the derivation of each contribution. Finally,
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the matrix-matrix calculation is called with all the previously determined arguments. Essentially, the
dimensions of the matrix and a resulting factor are given, as well as the matrices to be multiplied together.

Finally, the matrix that this result is going to be placed in is also specified. In effect we have:

Call matrix-matrix multiplication
(Dimensions of the matrix (M,N,K)
(Matrix 1 with leading dimension)
(Matrix 2 with leading dimension)

(Result matrix with leading dimension)

To give the residual result. This call has many different arguments and is bulkier than many other
matrix-matrix multiplication subroutines, but has incredible efficiency and flexibility. In each subroutine
for each contribution, the matrix-matrix multiplication call will have roughly the same arguments but will
be different depending on the contribution being calculated. This call is made extremely efficient by using

the matrix-matrix multiplication function from the BLAS library.
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4.2 Accounting for Spin Cases
The next subroutine that will be analyzed is a two-body contribution that has a number of different

spin cases depending on the form of the two-electron integral, which all must be accounted for. This is
accomplished by including an ‘icase’ parameter and careful manipulation of the contributing equations.
In certain cases, these contributions end up being the same for all three cases. In some cases, this
contribution can be entirely different for all three cases. This is determined by manipulating the equations
for the two-electron integral based on the different allowed cases for spin, and the properties of two
electron integrals. Any integrals that aren’t entirely the same spin or that don’t have equal amounts of
alpha and beta spins are as shown in Equation 32. Dummy labels may be freely swapped if the character
of the label is preserved. That is, hole labels can be swapped for hole labels, particle labels for particle
labels, etc. as shown in Equation 33. With this in mind, operators may be permuted, and a sign is produced.
After permuting these operators, labels can be swapped to ‘line up’ cases with other cases, if possible.

Before checking for similar contributions, many different spin cases are considered in equation 34.

(AB|BB) = (AA|AB) = 0 (31)
(XY|I]) = —(XY|]I) # (XI|Y]) (32)
(AA|AA), (AB|AB), (AB|BA) (33)

The cases for the current contribution will now be examined. The equation for the all alpha case is
shown in equation 35. This is the base example and requires no manipulation at this point. Next, the
(AB|AB) spin case is examined in equation 36. Capital letters are used to denote electrons of different
spin. This contribution is in the same form as the above, and requires no special manipulation. The
different spins will simply have to be taken under consideration in the code. Lastly, the final (AB|BA)

contribution is written as Equation 37.

62



R(d,l,n,p) = (dx|bl)dtxTlb- C(b,n, 1) (34)
R(d,l,n,n) = (Dx|BYDTxTIB-C(B,n, 1) (35)
R(d,l,n, 1) = (Dx|bLYD*xTLb - C(b,n, 1) (36)

Which is not in the same form as the previous contribution. This contribution requires properties of the

two body integrals to get it into the correct form. Namely that:

(AB|AB) = —(AB|BA)

This gives equation 38 which cannot be further modified. The ‘L’ and ‘b’ labels may not be swapped, as

they refer to different categories of electrons; ‘b’ is a particle label and ‘L’ is a hole label.

R(d,l,n,u) = —(Dx|Lb)DTxTLb - C(b,n, 1) (37)

While in this contribution each case must be handled differently, other contributions can involve
overlap between the cases. This can be shown by examining the ‘F1’ contribution. Equation 39 and 40

define the (AB|AB) term. Equation 39 is modified to Eugation 40 by permuting the ‘2’ operator through

{“H

y.

FL: Ry = —Zixyza (kxlzy)u|xTyz| 1)y R(1,m;p) = Sum(k) V(LK) * C(k, n; A)

R(n, ) = (Kx|Zy)KTxTyZ - C(k,n, 1) (38)
R(n, ) = —(Kx|Zy)KtxtZy - C(k,n, 1) (39)
R(n,u) = (Kx|zV)KTxTYz- C(k,n, 1) (40)
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Equation 41 shows the (AB|BA) term. This equation can be manipulated such that the two cases are
the same, using operator permutations and label swaps. From Equation 42 to equation 43, the ‘z’ operator
is permuted through ‘Y’, which introduces a factor of negative one. The next line is not technically
necessary, but better shows that this case is equal to the previous case. This is because these labels have
no further meaning besides representing an active electron. The label is summed over and is hence a

‘dummy’ label.

R(n,u) = (Kx|zV)KTxTYz- C(k,n, 1) (41)
R(n,p) = —(Kx|Y2)KtxtYz- C(k,n, 1) (42)
R(n, ) = —(Kx|Zy)KtxtZy - C(k,n, 1) (43)

4.3 Code Example of two body Hamiltonian

Once again, this example will start with the equation and pseudocode versions of the contribution
which are shown in equation 45. This contribution is much more complicated than the one analyzed
previously. Active space particles are involved which operate on the active space. This means that this
label must be looped over explicitly, in addition to looping over the state label. Two body contributions
must also all include all relevant spin cases, which means that each contribution must be run between
one to three times depending on the complexity of the case. The code will be posted in its entirety, with
sections of code analyzed. There are clear similarities to the previous contribution, which will not be gone

over again in detail.

Rignu = —Zxpaua (dx||bIu|xt|1)Cpy (44)

R(d-Ln,u) =Sum(b)V(d-L,b) X c(b,n;A)
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do dspin=1,2
do dx rep=1l, nirrep

bl rep = dx rep
do brep = 1, nirrep
lrep = dirprd(brep, bl rep)

do drep=1, nirrep
xrep=dirprd(drep, dx rep)

if (icase.eg.l) then
bspin = dspin
xspin = dspin
lspin = dspin
sfact = 1.0d0

elseif (icase.eq.2) then
bspin = dspin

xspin = 3 - dspin
lspin = 3 - dspin
sfact = 1.0d0

elseif (icase.eqg.3) then
lspin = dspin

xspin = 3 - dspin
bspin = 3 - dspin
sfact = -1.0d0

nb = js norb(o p, brep)
nd = js norb (o p, drep)
nl = js norb(o lrep)
nx = js norb(o a, xrep)

s C = s p(bspin)

s R = s ph(dspin,lspin)
doff = js orb offp(drep,dspin) -1
loff = js orb offh(lrep,lspin) -1
xoff = js orb offa(xrep,xspin) -1
boff = js orb offp(brep,bspin) -1
do x = 1,nx

do lambda = 1, js nactive(s C)

I mu 1(x,lambda) = collect I mu 1

(x,1,lambda, xrep,
xspin, s C, c_sign)
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do x = 1,nx
if (icase.eq.3) then
do b = 1,nb
do d = 1,nd
do 1 = 1,nl
v3(d,1l,b)

hmat (doff+d, xoff+x,
loff+l,boff+b)
else
do b = 1,nb
do d = 1,nd
do 1 = 1,nl
v3(d,1,b)

hmat (doff+d, xoff+x,
boff+b, loff+1)

do lambda = 1,js nactive(s C)
mu = I mu 1(x,lambda)
C start = js off psi(s C, brep, 1)
R start = js off psi(s R, drep, lrep)

nsum = nb
nrow = nd*nl
ncol = nstate

nC = nb*nstate
nR = nd * nl * nstate
fact = -1.0d0 * ¢ _sign * sfact

Call matrix-matrix multiplication
(nrow, ncol, nsum, fact

v3, maxorb,

C(C start + (lambda-1)*nC),nsum,
R(R start + (mu-1)*nR),nrow)

Next, we begin to discuss the different features of the two electron code beginning with a twist on

the one electron code:

do dspin=1,2
do dx rep=1, nirrep

bl rep = dx rep
do brep = 1, nirrep
lrep = dirprd(brep, bl rep)

do drep=1, nirrep
xrep=dirprd (drep, dx rep)
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Since each particles spin is relative to the other particles in the system, only one spin must be explicitly
looped over. However, in the two-body case each representation is a product of the irreducible
representations of the two related particles on each side of the integral. In this case, that means ‘d’/’x’
are related as well as ‘b’/’I. For the code, the result is that there is a product irreducible representation
called ‘dx_rep’, which can be made by many different combinations of ‘drep’ and ‘xrep’. ‘drep’ is looped
over explicitly and a direct product function is used to find the related ‘xrep’. Once the first irrep is found,
the second irrep is found in a similar fashion. Of note is that the two product irreps are equal. This is a

result of the symmetry of the two electron integrals.

if (icase.eg.l) then
bspin = dspin

xspin = dspin
lspin = dspin
sfact = 1.0d0

elseif (icase.eqg.2) then
bspin = dspin
xspin = 3 - dspin
lspin = 3 - dspin
sfact = 1.0d0

elseif (icase.eqg.3) then
lspin = dspin

xspin = 3 - dspin
bspin = 3 - dspin
sfact = -1.0d0

This is a simple if statement used to determine the spins of each particle based on which case is being
looked at. Each case has an associated ‘factor’ related to how each case was derived. In this case, each

spin case is different.

nb = Jjs norb(o p, brep)
nd Jjs_norb(o_p, drep)
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nl = js norb(o h, lrep)
nx = js norb(o a, xrep)

0
Il

s_p(bspin)
s R = s ph(dspin,lspin)

doff = js orb offp(drep,dspin) -1
loff = js orb offh(lrep,lspin) -1
xoff = js orb offa(xrep,xspin) -1
boff = js orb offp(brep,bspin) -1

The above offsets and sectors are all calculated identically to the one body case. There are simply more

of them to account for.

do x = 1,nx
do lambda = 1, Js nactive(s_C)
I mu 1(x,lambda) = collect I mu 1(x,1,lambda, xrep,

xspin, s C, c_sign)
The above code is present in all contributions that include a change in the active space label. The
purpose of this subroutine is to calculate each possible active space change based on each possible active
particle and input active space configuration. These are placed into an array for later use during the

matrix-matrix multiplication loops.

do x = 1,nx
if (icase.eqg.3) then
do b = 1,nb
do d = 1,nd
do 1 = 1,nl
v3(d, 1,b)

hmat (doff+d, xoff+x,
loff+l,boff+b)
else
do b = 1,nb
do d = 1,nd
do 1 = 1,nl
v3(d,1l,b)

hmat (doff+d, xoff+x,
boff+b,loff+1)

68



Each Hamiltonian array is filled in based on the previous calculated offsets. Of note is that each case is
functionally identical to the one body case with extra loops for extra particles, each Hamiltonian is filled

in differently depending on the icase being analyzed.

do lambda = 1,js nactive(s C)
mu = I mu 1(x,lambda)
C start = js off psi(s C, brep, 1)
R start = js off psi(s R, drep, lrep)

nsum = nb

nd*nl

ncol nstate

nC = nb*nstate

nR = nd * nl * nstate

fact = -1.0d0 * c_sign * sfact

nrow

call B GEMM('N', 'N',nrow,ncol,nsum,
fact,v3,Jjs _maxorb,
C(C_start + (lambda-1)*nC),nsum,
1.0do0,
R(R start + (mu-1)*nR),nrow)

Lastly, the matrix-matrix multiplication call is set up in a similar way to the previous contribution with
one notable difference; each active state must be looped over explicitly. This time, the factor applied to
each residual result is a product of the factor related to the spin case, the contribution in question, and
the sign related to the calculation of ‘mu’. This means that the offset calculated for both the residual and
input vector is the offset for the first loop, with subsequent loops being shifted based by both ‘nC’ and
‘nR’. Once again, these variables are filled in by examining the pseudocode representation of the

contribution.

R(d-Ln;u) =Sum(b)V(d-L,b) X c(b,n; 1) (45)

In the previous calculation, this was accomplished implicitly. There was only one loop, and it included

the entirety of the relevant parts of the C and R arrays. In this case, each lambda and mu is looped over
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explicitly. The structure of each array means that looping over the more complicated sections last allows

the program to loop as few times as possible.

4.4 Future Work Implementing the New Algorithm

As stated previously, the above Cl code was not completed. While the code for each contribution was
completed, subroutines within each contribution were not. These were included as ‘black box’ functions
such that the code was able to compile, but do not function correctly. Even though the code could not be

run, the compiler was used as a tool to check the code for bugs related to language semantics.

The most complicated ‘black box’ function that was not completed was the function responsible for
taking input active spaces (A) and converting them based on the active space operators present (x,y,z) to
a new active space (W). The idea behind this function would be to represent the input active space as a
binary number with ‘1’s representing an existing electron, then propagating every active space operator
properly with a series of permutations while keeping track of the sign this produces. As a safety check, it
should be possible for certain permutations to cause states to be annihilated resulting in the program
gracefully exiting this failed contribution and continuing with another. Applying a creation operator to an
existing electron or removing an electron that did not exist resulted in null states as shown in Equation 47
and 48. As per the rules of creation/annihilation operators. Equation 49 and 50 are also true for

contributions that have multiple active space operators.

xtag..x;..)=0 (46)

xlag ... xg...) =10 47)
xtxlag ..xy ..) = |ag .. xqg ..) (48)
xxtlag ..xg...) = |ag ... xg ...) (49)
xxtlag..x;..) =0 (50)



xtx|ag..xg...) =0 (51)

The active space operators do not necessarily commute. The order of operators can also be swapped
to produce two more properties. In both swapped cases the first operation annihilates the state.
Equations 49 and 50 show operations that do not annihilate the state, while 51 and 52 do. Other
unfinished sections of code include the calculation of the more complicated offset arrays, as well as a
body of code responsible for running and accumulating each Hamiltonian contribution as well as

performing all the necessary initial calculations related to the code.

In this chapter it has been shown that the matrix diagonalization step in the current implementation
of MREOM takes by far the most time to complete, and is therefore the obvious target for the greatest
gain in efficiency. By creating a data structure that takes advantage of incredibly optimized linear algebra
subroutines, it is possible to compute multiple integrals in a single matrix-matrix multiplication call,
whereas current implementations solve a single integral at a time. This is due to a one-size-fits-all solution
in the current implementation, while the proposed code has a specialized subroutine for each individual
contribution. This means that while coding the program becomes significantly more complicated, the time
saved when calculating potential energy surfaces over multiple different systems is expected to be quite
substantial. The algorithm is designed such that there is no resorting necessary to the Cl vectors. The
relevant elements of the Hamiltonian integrals are copied such that they can be efficiently entered into

BLAS subroutines.
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Chapter 5
Conclusion and Future Direction

MREOM-CC as a method has several desirable properties. The method can calculate many states
from one set of amplitudes and a single state averaged CAS, and it is reasonably insensitive to the supplied
CAS, which has less of an effect on the final results. As a method, MREOM has been previously used to
calculate potential energy surfaces as well as vertical excitation spectra where single reference methods
could not produce reasonable results. In this thesis, MREOM was examined using both a computational
study designed to push the limits of the method and a new algorithm created to reduce the computational
cost of the method. This new algorithm appears promising, but is unfinished currently. The computational
study produced potential energy surfaces that were dubious in quality and does not appear to be a viable

method for potential energy surface calculations.

It is often difficult to converge the full set of cluster amplitudes that enter the sequence of similarity
transformations. To overcome this issue certain amplitudes are obtained from first-order perturbation
theory. However, the selection of which amplitudes to treat using perturbation theory is ad hoc and can
change with nuclear configuration. This is a prime reason potential energy surfaces can be discontinuous.
Another reason may be the Cl solver in the ORCA program, which may converge to different roots in
unexpected ways. At present MR-EOMCC does not seem to be a viable approach to calculate full potential

energy surfaces for a large number of states.

The MR-EOMCC approach does have its merits and in the future different avenues will be explored.
One approach would be to construct vibronic models based on MREOM. Such calculations requires a
sizable set of points at nearby geometries, such that numerical derivative approaches can be used to
extract Taylor series expansion coefficients for the potential energy matrix in a diabatic representation.

Since all displaced geometries are nearby, it should be straightforward to run consistent MREOM
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calculations. Another schema would be to replace the Cl amplitudes equations completely by a first-order
perturbation theory. This would serve two purposes. First, one would expect continuous solutions as a
function of nuclear geometry. Second, the approach would become substantially cheaper as the solution
of cluster amplitudes is expensive. The choice of partitioning of H into Ho+ V is crucial as a result, and this
will need further investigation. If the cluster amplitudes are obtained by perturbation theory, the expense

of MREOM is reduced.

In addition to the computational study, a new implementation of the MREOM-CC method was
attempted to reduce the computational cost of MREOM calculations. This algorithm leveraged the
efficiency of optimized BLAS subroutines by creating a new data type designed to exploit them. Indices
are ordered in the data structure by complexity, with simpler labels like the particle and hole labels treated
first and complex labels like the active space string being treated last. If indices appear in memory
consecutively, then offsets can allow for the intelligent slicing of arrays such that contributions are
calculated using the required pieces of arrays fed into a matrix-matrix BLAS multiplication subroutine.
While this implementation is more efficient compared to the current implementation, it is much more
complicated. Each contribution must be treated explicitly by a specifically tailored subroutine and
aggregated. Currently, these contributions are treated with a general subroutine that sacrifices efficiency

for simplicity.

In the future, the new algorithm will be implemented on ORCA in C++ as opposed to ACESII in
FORTRAN. This means that the currently developed code will have to be ported, and the remaining body
of code tying the contributions together will have to be written. As ORCA incorporates spin-orbit coupling
where ACESII does not, this will result in a more useful calculation program. This new implementation will
allow for the efficient testing of several different systems using the much faster code. Currently, using
MREOM to calculate potential energy surfaces is unsatisfactory due to a few features introduced when

calculating systems with complicated electronic structure. The new algorithm proposed in this thesis can
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be used as a tool to open new calculation approaches hopefully allowing for more accurate calculations,
either by using MREOM-CC as proposed in this study or by pairing it with a vibronic model. Nonetheless,

further research and development is required.
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Appendix A: List of Contributions to Hamiltonian in Cl Code

The following list of contributions are grouped by the type of residual being evaluated, then by
changing which input C vector was analyzed. Certain combinations were deemed impossible and then
removed, but have been left in for completeness. The lettering alongside contributions was used to easily
link subroutine filenames to a formula. Each subroutine’s filename reflected the contribution it was

calculating.

One Body Contributions

R——EW—(—H—P@H—)M— AT

Al Rpu = =2y 2 hix(ulx|2)Cina R(1,n;mu) = -sum(i) V(1,i) * C(i,n; A)
A2 Rpy = +2xa2 hxa(u|xT|/1)Can,1 R(1,n;mu) = Sum(a) V(1,a) * C(a,n,;A)
A3 Rpy = +2; g2 hig(u|A)Cqina R(1,n*\) = sum(i,a) V(1,i*a) * C(a*I,n*A)
B.1 Ranu = 2y hax(ulx|2)Cpp R(a,n;mu) =V(a,1) * C(1,n; A)
B.2 Ranu = +2Zqp 2 hap(u|1)Cpna R(a,n* A) = Sum(b) V(a,b) * C(b,n* A)

roE LT oAy
B.3 Rony = — Zx,a,i,l hix(u|x|2)Cqina R(a*n;mu) = sum(i) V(1,i) * C(a,i;n, ) T
Cl Rinu = _Zx,i,ll hxl<u|xT|A>Cnl R(i,n;mu) = V(Ill) * C(llnr}\)
C.2 Rinu = =2 j 2 hij{u|2)Cina R(i,n*A) =V(i,j) * C(j,n* \)

R =+2mggn éw”%y(u ¥ A

C.3 Rinu = —Zxaija hea(ulxT[DCaina  R(i,nm;mu) =V(1,a) * C(a,in;A)

Cc4 Rinu = +Zxij k2 hix(ulx[2)Cijna R(i*n;mu) = sum(i) V(1,j) * C(i,j;n,A)AT

D.1 Rignu = Za,i,/l hai(uM>CnA R(i*a,n* A) = V(i*a,1) * C(1,n* A)

D.2 Rignu = _Zx,i,j,a,/l hax(ulxll)cin/l R(a,i*n; mu) =V(a,1) * C(1,i*n; A)

D.3 Rignu = _Zx,i,a,b,/l Sabhxi(ulx-l_l/wcan/l R(i,a*n;mu) = V(i,1) * C(1,a*n; A)

D.4 Rignu = +2i,j,a,b,/1 hpa{u|A)China R(a,i*n* A) = sum(b) V(a,b) * C(b,i*n* A)

D.5 Rigny = _Za,b,ij,/l hij(“l/l)cajnl R(i,a*n* A) = sum(j) V(i,j) * C(a,j;n,A) T
amE LA X T

E1l  Rijna = Zijna haj(ulxt[A)Cina R(j,i*n;mu) = V(j,1) *C(L,i*n;A)

E2  Rijna = 2ijkina hij{ul)Crina R(,i*n* A) = sum(k) V(j,k) * C(k,i*n*A)
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Two Body Contributions

F.1
F.2
F.3
F.4

G.1
G.2

G.3
G4
G5

H.1

H.2
H.3
H.4
H.5
H.6

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8
1.9

(ul{quTTS}kM) Ry, =— kx,y,z,A (kx||ZY)<u|xTyZ|/1>Ck)L
(ul{quTTS}bTM> Ry, = +Zb,x,y,z,l (xJ/||bZ)(u|x+yTZ|/1>Cb;1
(l{pqrsIbTk|A)  Rpy = —Zxyupa (k| |byXulxTy|2)Chiz
(ul{quTTS}jkM) Ry, = +Zx,y,j,k,l (]kl |yx)(u|xY|/1)Cjk,1

(uld{ptqtrs}|a) Rnau = Zxy,zaa (dx||zyNulxTyz|2)C)
(uld{pTqTrs}k|2) Rnau + 2y y 1, (dk||lyx)(ulxy|A)Cia

a 2
4 =5VY I A d]
7

(uld{pTqrsIbt|A)  Rpgu + Zxypaa (dx|[by)u|xTy|2)Cpy,
(uld{ptqtrs}btk|d)  Rpau + Zxyzipar Oap(xkllzyulxTyz|2)Chys
(uld{pTqrsIbtk|A)  Rpgy — Zxwpaa (dk|[bx)(ulx|2)Cpya

Cuefettptatestikih)

(u|lT{quTT'S}|/1) Rup = 2xy,212 (xYHZl)(uleyTZM)CA
(u|lT{quTT‘S}k|/1) Rupu = —2xy ki1 (xk”yl)(ulx-rﬂ/l)ckl
(u|lT{quTT‘S}bTM) Rppu = +2xyp12 (xy |bl><u|x1-y1-|/1>cb/1
|[l{ptqTrs}bTk|2) Ry = —Zxy 2102 Suclxy||bz)u|xTyTz|2)Cpra
(|l"{pTqTrs}bTk|A)  Rpp = +Ex ki (kD] xT|2)Cpiz

|t {pTqtrsykll)  Rnw = —Zx kb2 SuclxillzyNu|xTyz|2) Cixa

(u|le{quTr5}|/'l) Rpiau = _Zx,y,d,l,l (dxllyl>(u|XTY|/1)CA
u|[lTd{pTqTrs}bT|2) Ruau = +Zxyzp.a12 Sap(xyl|zI)(ulxTyT2|2)Chy
u|[ltd{pTqTrs}bT|2) Rugu = —Zxpaua (dx][bI)u|xT|2)Cyz
u|ld{pTqTrsik|l)  Ruau = —Zxyzaiir Ouldx]|zyu|xTyt|2)Cyy
u|ltd{pTqtrs}k|2)  Rniau = +Zxaiia (dk||xD{ulx|2)Ciz

a ) fa
g9 O nld = v a1 kAR Odl
7

u|l'd{pTqtrs}bTk|A) Ruiau = —Zb,aka (dk||DI){u|2)Chi
(u|l'd{pTqTrs}bTk|A) Ruau = +Zxybk2 Sucdx||by)u|xTy|2)Cpra
(u|l*d{p*q*r5}b*k|1) Rutau = —2xy,zbd,11 5db<xk||yl)(u|x1-y|l>cbk/1
u|lTd{pTqTrs}jkll)  Ruau = +Zxy,jxa SucldjlxyXulxy| D) Cxa
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1.1
1.2
1.3
1.4

1.5
1.6
1.7

(ulmtntptqtrs}|a)
(ulmtnt {ptqtrs}k|a)
(ulmtntptqtrsik|a)
(ulmtntptqtrsibt|a)
Gepin gl b e A)
(ulmtntptqtrs)ik|a)
(ulmtntptqtrs)jk|a)
(ulmtnt {ptqtrs)jk|2)

Ry = Zx,y,m,n,l (xy| |mn)<u|x1-y+|/1>c/1
Ry = +2x,k,m,n,l (Xkllmn>(u|x+|/1>ck/1
Ry = _Zx,y,z,n,m,k,/l Oni{xyl |mZ>(u|x+yTz|/1>Ck)l
Ry = +Zx,y,b,n,m,k,/1 Smr{xy| |bn>(u|x-ry+|/1)cbk/1

Ry = _Zx,y,j,k,m,n,/l 6nj(xk| |ym>(u|x-ry|/1>cjkl

Rypny = +Zw,x,y,z,j,k,m,n,/16nj8mk(xyl|WZ>(u|x+yTZW|/1)Cjk/l
Riynu = +2k,jmna (kjllmn><u|/1>cjkl
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Appendix B: Complete Active Space Orbital Occupancies

The following are orbital occupancy tables related to CASSCF calculations of the molecules studied in

Chapter 2. The values listed are the expected value of electrons found in that orbital.

High Spin CAS Orbital Occupancies

vo*
Distance [A) Orbital occupancys
1.45 1 1 1 1 08 08 08 08 08
1.5 1 1 1 1 08 028 08 08 08
1.55 1 1 1 1 08 08 08 08 08
1.6 1 1 1 1 08 028 08 08 08
1.65 1 1 1 1 08 08 08 08 08
1.7 1 1 1 1 08 028 08 08 08
1.75 1 1 1 1 08 08 08 08 08
1.8 1 1 1 1 08 028 08 08 08
1.85 1 1 1 1 08 08 08 08 08
1.9 1 1 1 1 08 08 08 08 08
1.95 1 1 1 1 08 08 08 08 08
2.0 1 1 1 1 08 08 08 08 08
2.05 1 1 1 1 08 08 08 08 08
2.1 1 1 1 1 08 08 08 08 08
2.2 1 1 1 1 08 08 08 08 08
2.3 1 1 1 1 08 028 08 08 08
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CrO*

Distance [A) Orbital occupancys

14 025 025 025 025|035 025 025 025|025
145 025 025 025 025 | 035 025 025 0.25 | 025
15 025 025 025 025 | 035 025 025 0.25 | 025
155 025 025 025 035 |03l 035 025 025|035
16 025 025 025 035|035 025 025 025|025
165 025 025 025 035|035 025 025 025|025
17 025 025 025 035|035 025 025 025|025
175 025 025 025 035|035 025 025 025|025
18 0235 025 025 035|035 025 025 025|025
1.85 0235 025 025 035|035 025 025 025|025
15 025 025 025 035|035 0235 025 025|025
1495 025 025 025 025|035 025 025 025|025
2.0 025 025 025 025 | 035 025 025 0.25 | 0.25
205 025 025 025 035 |03 035 025 025|035
21 025 025 025 035 |03 035 025 025|035
22 025 025 025 025|035 025 025 025|035

MnO*

Distance (A) Orbital occupancys

1.4 1.2 12 12 12 12 1
1.45 1.2 12 12 12 1.2
1.5 1.2 12 12 12 1.2
1.55 1.2 12 12 12 1.2
16 1.2 12 12 12 1.2
1.65 1.2 12 12 12 1.2
17 1.2 1.2 12 12 1.2
175 12 12 12 12 12
1.8 12 12 12 1.2 1.2
1.85 12 12 12 1.2 1.2
19 12 12 12 1.2 1.2
1.95 12 12 12 1.2 12
20 12 12 12 1.2 12
2.2 12 12 12 1.2 12

I e N N
N = N s R N s R R R T =
bbb e e e e b e b e e ek ek e
I S S e ==
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FeO*

Distance [A) Orbital occupancys
1.4 1.5625 1.5625 1.3908 1.384 1.037> 1.037> 1.016 1.0091 1
1.45 1.7481 1.3785 1.3785 1.1997 1.1997 1.0509 1.0224 10224 1
1.5 1.7437 1.3723 1.3723 1.1997 1.1997 1.0553 1.0284 1.0284 1
1.55 1.7393 1.3643 1.3643 1.1998 1.1998 1.0597 1.0363 1.0363 1
1.6 1.7362 1.3548 1.3548 1.1999 1.1999 1.0629 1.0438 1.0438 1
1.65 1.7358 1.3446 1.3446 1.2 1.2 1.0633 1.0559 1.0559 1
1.7 1.7387 1.3347 1.3347 1.2 1.2 1.0657 1.0657 1.0604 1
1.75 1.7446 1.3261 1.3261 1.2001 1.2001 1.0743 1.0743 1.0545 1
1.8 1.7525 1.3192 1.3192 1.2001 1.2001 1.0811 1.0811 1.0466 1
1.85 1.761 1.3141 1.3141 1.2001 1.2001 1.0862 1.0862 1.0382 1
1.9 1.9714 1.2255 1.2001 1.2001 1.1871 1.1871 1.0136 1.0136 1.0014
1.95 1.9778 1.2197 1.2001 1.2001 1.1899 1.1899 1.0107 1.0107 1.0011
2.0 1.9829 1.2151 1.2001 1.2001 1.1921 1.1921 1.0083 1.0083 1.0009
2.05 1.9868 1.2115 1.2001 1.2001 1.154 1.194 1.0065 1.0065 1.0007
2.1 1.9898 1.2088 1.2001 1.2001 1.1954 1.1954 1.005 1.005 1.0005
2.15 1.9921 1.2067 1.2001 1.2001 1.1964 1.1964 1.0039 1.0039 1.0004
2.2 1.9939 1.2051 1.2001 1.2001 1.1972 1.1972 1.003 1.003 1.0003
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CoO*

Nistance [A] Orbital occupancys

1.3 1.7626 1.7626 1.5815 1.398 1.398 1.0371 1.0371 1.0231 1

1.35 1.9662 1.5643 1.5643 1.3997 1.3997 1.0354 1.0354 1.0351 1.0001
1.4 1.9619 1.5602 1.5602 1.3995 1.3995 1.0401 1.0392 1.0392 1.0002
1.45 1.9539 1.5549 1.5549 1.3992 1.3992 1.0492 1.0442 1.0442 1.0002
1.5 1.9351 1.5459 1.5459 1.3987 1.3987 1.0707 1.0524 1.0524 1.0003
1.55 1.9053 1.5329 1.5329 1.3976 1.3976 1.1064 1.0634 1.0634 1.0005
1.6 1.8831 1.5232 1.5232 1.3959 1.3959 1.1384 1.0697 1.0697 1.0007
1.65 1.87/91 1.5211 1.5211 1.3936 1.3936 1.1559 1.0673 1.0673 1.0009
1.7 1.8924 1.5256 1.5256 1.391 1.391 1.1583 1.0575 1.0575 1.0011
1.75 1.9141 1.533 1.533 1.3884 1.3884 1.1522 1.0448 1.0448 1.0011
1.8 19355 154 1.54 1.3861 1.3861 1.1447 1.0332 1.0332 1.0011
1.85 1.9529 1.54534 1.5434 1.3841 1.3841 1.1389 1.0241 1.0241 1.001
1.9 1.9659 1.5493 1.5493 1.3824 1.3824 1.1353 1.0173 1.0173 1.0008
1.95 197532 1.552 1.552 1.3807 1.3807 1.1337 1.0125 1.0125 1.0007
2.0 1.9819 1.5538 1.5538 1.37/91 1.37/91 1.1333 1.0091 1.0091 1.0006
2.2 1.9945 1.5573 1.5573 1.3734 1.3734 1.1379 1.0027 1.0027 1.0002

NiO*

Distance (A) Orbital occupancys

1.45 1.9064 1.6968 1.6968 1.6909 1.6909 1.1155 1.1011 1.1011 1.0006
1.5 1.8835 1.6984 1.6984 1.6816 1.6816 1.1555 1.1001 1.1001 1.0008
1.55 1.8682 1.6941 1.6941 1.6786 1.6786 1.1969 1.0942 1.0942 1.001
1.65 1.8859 1.6945 1.6945 1.6729 1.6729 1.2477 1.0651 1.0651 1.0013
1.7 1.9095 1.7069 1.7069 1.6615 1.6615 1.2545 1.049 1.049 1.0012
1.75 1.9318 1.7178 1.7178 1.6518 1.6518 1.2561 1.0359 1.0359 1.0011
1.85 1.9635 1.7328 1.7328 1.6379 1.6379 1.257 1.0187 1.0187 1.0008
1.9 1.9734 1.7374 1.7374 1.6329 1.6329 1.2582 1.0136 1.0136 1.0006
1.95 1.9805 1.7408 1.7408 1.6287 1.6287 1.2601 1.0099 1.0099 1.0005
2.05 1.9894 1.745 1.745 1.6223 1.6223 1.2649 1.0054 1.0054 1.0003
2.1 1.9921 1.7463 1.7463 1.6198 1.6198 1.2675 1.004 1.004 1.0003
2.2 1.9955 1.7479 1.7479 1.6157 1.6157 1.2725 1.0022 1.0022 1.0002
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Low Spin CAS Orbital Occupancies

vo*
Distance (A) Orbital occupancys

145 1.5828 1.008 05564 05542 04064 03509 0 03412

1.5 19721 1.0197 0.949 0971 04105 03518  0.3498

1.55 1.498 1.498 0.943 0.243 0.502 0.502 0.1141

1.6 1.4982 1.4982 0.9329 059329 05018 05018 0.1342

1.65 1.4583 14583  0.9224 0959224 05016 05016  0.1552

1.7 1.4985 1.4985 0.9115 09415 05015 0 0.5015 0.177

1.75 1.4987 145987 09005 05005 05013 05013 0.1992

1.8 1.4588 1.4588 0.8853 0.838%3 05011 05011 0.2214

1.85 1.499 1.499 0.8783  0.8783 0.501 0.501 0.2434

1.9 1.4991 14921  0.8676 08676 05002 05009 0 0.2649

1.95 1.4992 1.4952 0.8572 0.8572 05007 05007 0.2856

2.0 1.4953 14553  0.8473 08473 05006 05006 0.3054

2.05 1.206 1.206 07939 0732 06668  0.6668  0.6666

2.1 1.1783 1.1783 0.8216 0.8216 0.6667 0.6667  (0.6666

CrO*
Dlstance (&) Orbital occupancys

1.4 17826 1.7826 13368 0.9981 0.94981 0.9734 0.5496 0.5496 0.0292
1.45 1.9437 1.4931 1.493 0.9972 0.9972 0.8401 08401 0.3703 0.0251
15 18951 1.48596 14896 0.9976 0.9976 0.8435 08435 0.3631 0.0244
1.55 1954 1.4881 14881 (0.998 0.998 0.845 0.845 0.355949 0.0239
1.65 1.9563 1.4871 14871 0.9985 0.9985 0.846 0.846 0.357 0.0235
1.7 1.9562 1.4871 14871 0.9987 0.9987 0.846 0.846 0.3563 0.0239
1.75 158552 1.487 1487 0.9989 0.94929 0.8461 0.8461 0.356 0.0249
1.85 1.9502 1.4864 14864 0.9991 0.9991 0.8467 08467 0.3565 0.0289
19 1.9458 1.4857 14857 0.9992 0.9992 0.8474 08473 0.3576 00321
1.95 1.9397 1.4847 145846 (0.9993 0.9993 0.8484 O.8484 (0.3595 0.0361
2.0 15311 1.483 14829 0.9994 0.9994 0.8501 0.8501 0.3626 0.0414
2.05 19193 1.4803 14803 0.9994 0.9994 0.8527 08527 0.3677 0.0481
2.1 16913 1.418 1418 0.9996 0.9996 (0.9149 (.9149 0.6002 0.0436
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MnO*

Distance [A) Orbital occupancys
1.4 1.9145 1.8954 1.8954 1.0008 1.0008 0.7713 0.7713 0.7505
1.45 1.8975 1.8724 1.8724 1.0007 1.0007 07943 07943 0.7677
15 1.8792 1.8462 1.8462 1.0006 1.0006 0.8204 0.8204 0.7864
1.55 18594 1.8182 1.8182 1.0004  1.0004 0.8484 0.8484  0.8066
16 1.8384 1.7904 1.7904 1.0003 1.0003 0.8761 0.8761 0.828
1.65 1.8169 1.765 1.765 1.0002  1.0002 09014 09014 0.8499
1.7 1.7958 1.7435 1.7435 1.0001 1.0001 059229 059229 0.8713
1.75 1.776 1.7262 1.7262 1 09402 09402 0.8912
1.8 1.7581 1.7128 1.7128 1 09536 09536 0.9091
1.85 1.7427 1.7027 1.7027 1 09637 09637  0.9245
1.9 1.7298 1.695 1.695 09999 09999 09714 09714 0.9374
1.95 17121 1.6802 16802 09929 (09999 09773  0.9773 0.9438
2.0 17104 1.6848 1.6848 1 09817 059817 0.9567
FeO"
Diswnce (A} Orbital occupancys
1.45 1.748 1374 13784 11997 11997 L0s09 1025 1025 1
15 1.7436 13723 1373 11997 11997 106554 10285 1028 1
1.55 17393  1.3/43 13643 11998 11993 10528 0 1.03s4  1.03R4 1
16 1.7362 1.3547 13547 11999 L1999 10629 10458 1.0458 1
1.65 1.7357 13445  1.3445 1.2 1.2 1.0633 1.066 1.056 1
1.7 1.7387 1.3347 13347 1.2 1.2 10657 1087 10604 1
1.75 1.7446 1.3261 13261 12001 L2001 10743 10743 1.0545 1
18 17526 13192 13152 12001 12001 10811 10811 10466 1
1.85 1.761 13141 13141 1.2001 12001 1.08R2 @ 1.08s2  1.0381 1
19 19713 1.2256 12000 12001 11871 11871 10136 1.0136  1.0014
1.95 19778 1.2197 12000 12001 118%9 1.18%9 10107 10107 1.0011
2.0 19828 12151 12000 0 1.2001 @ 119210 11921 10084 0 10084  1.0009
2.05 19868 1.2115 12000 12001 11939 11939 10065 @ 10065 1.0007
21 1.5898 1.2088 1.2000 12001 11953  1.1953 1.005 1.006 1.0005
2.15 19921 12067 12001 12001 1194 1194 10089 10039  1.0004
2.2 1.9938 12062 1.2000 12001 11972 11972 10081 @ 1.0031 @ 1.0003
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CoO*

Distance (&) Orbital occupancys
1.3 1.9532 1.5532 1.9235 1.4952 1.4992 10463 1.0463 1.0257 0.0532
1.35 1.5439 1.5439 1.9183 1.4983 1.4989 10557 1.0557 1.0339 0.0508
14 1.9328 15328 1.9139 1.4986 1.4986 10668 1.0668 1.0421 0.0478
1.45 1.91599 1.51599 1.9106 1.498 1.498 10797 1.0797 1.0454 0.0447
15 1.5054 1.5051 1.9051 1.4972 1.4972 10945 1.0945 1.055 0.0419
1.55 19111 1.888 1.888 1.4961 1.4961 11116 11116 1.0581 0.0354
16 19162 1.8685 1.8685 1.4547 1.4947 11311 11311 1.0582 0.0371
1.65 1.9238 1.8468 1.2468 1.4929 1.4929 11528 1.1528 1.0558 0.0354
1.7 1.9312 1.824 1.824 1.4909 1.4909 11756 1.1756 1.0521 0.0355
1.75 1.9367 1.801 1.801 1.4883 1.4889 11987 1.1987 1.0486 0.0376
1.8 1.93593 1778 1.778 1.487 1.4869 12216 1.2216 1.0461 0.0414
1.85 1.9384 1.7554 1.7554 1.4853 1.485 1.2442 1.2442 1.0449 0.0472
15 1.9339 1.7333 1.7333 1.4836 1.4834 1.2664 1.2664 1.0445 0.0555
1.95 1.9249 1.7113 1.7113 1.4824 1.4819 12883 1.2883 1.0443 0.0673
2.0 1.9103 1.6893 1.6893 1.4812 1.4808 1.2103 1.2103 1.044 0.0846
NiO*
Distance (A) Orbital occupancys
14 15434 151 1951 16653 16693 16565  1.0913 10913 0.0588
1.45 1.942 1852 1862 16708 16708 16561 11051 11051 0.0577
15 15411  1.8802 18802 1675 16725 L6545 11209 11209 0.0571
1.55 15409 18614 1.8614 16742 16742 1652 113% 11396  0.0568
16 15414 183895 18385 16756 16756 16493 11619 1.161% (0.0566
1.65 15427 18126 18126 16766 16766 16472 11879 11879 0.0565
1.7 15423 17835 17839 16768 16769 16459 12165 12165 0.0573
175 15403 17551 1.7-51 16766 16764 16459 12451 12451 0.084
18 15353 17279 17279 16751 16751 16475 12722 12722 0.0668
1.8 19263 17026 17026 16731 16731 16503 12574 12974 0.0773
15 19125 16792 16792 16704 16704 16541 13208 13207 0.092%6
191 1909 16746 16746 16700 16701 L6546 13253 13253  0.0955)
192 1.506 16703 16702 1.66% 16695 16555 13297 13297 0.09%8
1.%3 15021 1669 1665  1.6658  1.6658 16561 1334 1334 0.1
1% 1.858 16685 168685 16615 16615 16568 13384 13383 0.108
195 18537 16679 1.6675 16582 16573 16568 13426 1.34)5 0.113
1.96 1.885 16674 16675 16583 1.6531 16531 13467 13467 0.1181
197 18841 1667 1667  1.6588 1.649 1649 13508 13509 01233
158 18785 16664 16666 1.6  1.6449 1645 13545 13549 0.1285)
195 18736 1666 1666  1.6601 1641 16409 13589  1.3588  0.1345
2.0 1.868 16656 16656 16606 1.6371 1637 13628 13627 0.1406
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Appendix C: Sample MREOM Input File

IMR-EOM DKH ma-DKH-Def2-TZVP ExtremeSCF

* xyz 1 6

Cr 0.000000 0.000000 0.000000
O 1.65 0.000000 0.000000

end

$basis

newgto Cr "ma-DKH-def2-TZVPP" end # Specifying the basis set on "Element"
newgto O "ma-DKH-def2-TZVPP" end # Specifying the basis set on "Element"
end

'MOREAD
$moinp "orca.gbw"

%casscf
nel 9

norb 9
mult 10
nroots 1
gtol le-12
etol le-12
shiftup 2
shiftdn 2
switchstep nr
end

gmdci

ewin -6, 100000

MaxIter 300

STol le-12

TCutInt le-14

Hbar Symmetry = Vertex
LevelShift O
DoSingularPT = True
SingularPTThresh = 0.01
End
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$mrci

ewin -6, 100000
MaxIter 200
citype mrci
davidsonopt 0
tsel 0 tpre 0 tnat O
Etol 1le-8 Rtol 1le-8
RejectInvalidRefs false
newblock 6 *
nroots 3
excitations none
flags[is ] 1
flags[sa ] 1
flags[ia ] O
flags[ijss] 1
flags[ijsa] O
refs cas(9,9) end
end

newblock 4 *
nroots 3
excitations none
flags[is ] 1
flags[sa ] 1
flags[ia ] O
flags[ijss] 1
flags[ijsa] O
refs cas(9,9) end
end

newblock 2 *
nroots 5
excitations none
flags[is ] 1
flags[sa ] 1
flags[ia ] O
flags[ijss] 1
flags[ijsa] O
refs cas(9,9) end
end

soc
DoSOC true # include the SOC contribution
end

end
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Appendix D: MREOM Reference Weights and T Amplitudes per System

MnO*
Table 15: Smallest References Weights and Largest T Amplitudes for MnO*

Interatomic

Distance (A) Smallest Reference Weights (High Spin) Largest T Amplitudes (High Spin)
14 0.8745 0.9036 0.9038 0.067779 0.06719 0.048935
1.45 0.8755 0.9053 0.9058 0.076563 0.060643 0.042937
1.5 0.8763 0.9066 0.9069 0.061426 0.048551 0.036614
1.55 0.8767 0.9051 0.9051 0.080213 0.077952 0.041718
1.6 0.8767 0.9033 0.9033 0.08842 0.086724 0.041006
1.65 0.8762 0.9016 0.9016 0.066612 0.06448 0.04143
1.7 0.8753 0.9 0.9 0.084372 0.045215 0.0403
1.75 0.8988 0.8988 0.9109 0.089201 0.057006 0.042703
1.8 0.8981 0.8981 0.9127 0.089327 0.084712 0.042571
1.85 0.8988 0.8999 0.9129 0.078069 0.076038 0.040513
1.95 0.9009 0.9019 0.9145 0.088258 0.086315 0.045744
2.0 0.9033 0.9041 0.9183 0.096399 0.093535 0.050526

Interatomic

Distance (A) Smallest Reference Weights (Low Spin) Largest T Amplitudes (Low Spin)
14 0.9304 0.9304 0.9315 0.584819 0.584819 0.193995
1.45 0.9281 0.934 0.934 0.384476 0.384476 0.264742
1.5 0.9255 0.9382 0.9382 0.351814 0.237517 0.237517
1.55 0.9267 0.9424 0.9424 0.416985 0.161447 0.161447
1.6 0.9288 0.946 0.946 0.411187 0.120229 0.120229
1.65 0.9375 0.9473 0.9473 0.356044 0.095754 0.095754
1.7 0.9341 0.949 0.949 0.056244 0.054671 0.054671
1.75 0.9352 0.9487 0.9487 0.053831 0.049127 0.049127
1.8 0.9354 0.948 0.948 0.051837 0.045566 0.045566
1.85 0.9335 0.947 0.947 0.050214 0.049106 0.026308
1.9 0.9338 0.946 0.946 0.054304 0.048794 0.031118
1.95 0.9343 0.9433 0.9433 0.059901 0.047654 0.033962
2.0 0.9353 0.942 0.942 0.065933 0.046779 0.038823
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FeO*

Table 16: Smallest References Weights and Largest T Amplitudes for FeO*

Interatomic
Distance (A)

1.45
15
1.55
1.6
1.65
1.7
1.75
1.8
1.85
1.9
1.95
2.0
2.05
2.1
2.15
2.2
2.3
2.4
2.6

Smallest Reference Weights (High Spin)

0.9251
0.9254
0.9248
0.9237
0.921
0.9198
0.9189
0.9184
0.9186
0.9181
0.919
0.9195
0.9201
0.9211
0.9224
0.9241
0.9357
0.9429
0.956

0.9251
0.9254
0.9249
0.9237
0.9222
0.9205
0.9193
0.9194
0.9191
0.9181
0.919
0.92
0.9206
0.9234
0.9259
0.9289
0.9362
0.9435
0.957

0.926
0.9254
0.9249
0.9241
0.9222
0.9206
0.9193
0.9194
0.9191
0.9183
0.9192

0.92
0.9206
0.9244
0.9266
0.9294
0.9363
0.9435

0.957

Largest T Amplitudes (High Spin)

0.094837
0.096946
0.098853
0.100491
0.101821
0.102848
0.103605
0.104133
0.104474
0.100696
0.100851
0.100933
0.100959
0.10094
0.100882
0.100791
0.100535
0.100212
0.099502

0.094837
0.096946
0.098853
0.100491
0.101821
0.102848
0.103605
0.104133
0.104474
0.100696
0.100851
0.100933
0.100959
0.10094
0.100882
0.100791
0.100535
0.100212
0.099502

0.046668
0.056733
0.048946
0.058271
0.058499
0.042803
0.058099
0.057986
0.05686
0.053678
0.053402
0.045835
0.04002
0.047875
0.052765
0.052945
0.052797
0.051005
0.061972

Interatomic
Distance (A)

1.4
1.45
1.5
1.55
1.6
1.65
1.7
1.8
1.85
1.9
1.95
2.0

Smallest Reference Weights (Low Spin)

0.9243
0.9288
0.9304
0.9319
0.9481
0.9452
0.9406
0.9516
0.9536
0.9548
0.9547
0.9545

0.9267
0.9288
0.9304
0.9319
0.9497
0.9467
0.9552
0.9536
0.9537
0.9559
0.9558
0.9558

0.9267
0.9311
0.9361
0.938
0.9551
0.9563
0.9572
0.9538
0.9567
0.9579
0.9583
0.9588

Largest T Amplitudes (Low Spin)

0.026734
0.024898
0.022763
0.024559
0.02387
0.02532
0.027718
0.030343
0.031467
0.02981
0.028592
0.030691

0.026734
0.024898
0.022763
0.024559
0.02323
0.023763
0.026056
0.026321
0.026162
0.02981
0.028592
0.030691

0.019473
0.020434
0.021764
0.02122
0.023056
0.020723
0.023885
0.023695
0.023615
0.025938
0.025144
0.023792
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CoO*

Table 17: Smallest References Weights and Largest T Amplitudes of CoO*

Interatomic
Distance

(A) Smallest Reference Weights (High Spin) Largest T Amplitudes (High Spin)

13 0.9101 0.9101 0.9134 0.036641 0.036641 0.026966
1.35 0.9172 0.9172 0.9199 0.038946 0.038946 0.02752
1.4 0.9208 0.9209 0.9215 0.040367 0.040367 0.025495
1.45 0.9232 0.9251 0.9251 0.041698 0.041698 0.028555
1.5 0.9253 0.9278 0.9309 0.042956 0.042956 0.02558
1.55 0.9265 0.9275 0.9316 0.044075 0.044075 0.029411
1.6 0.9263 0.9269 0.9297 0.044997 0.044997 0.029458
1.65 0.9249 0.9249 0.9264 0.045731 0.045731 0.025335
1.7 0.9235 0.9235 0.9251 0.046293 0.046293 0.029166
1.75 0.9232 0.9232 0.9248 0.046707 0.046707 0.022758
1.8 0.9221 0.9221 0.9232 0.047014 0.047014 0.029217
1.85 0.9218 0.9218 0.9223 0.047264 0.047264 0.02937
1.9 0.9221 0.9222 0.9222 0.047493 0.047493 0.029556
1.95 0.923 0.9235 0.9235 0.04772 0.04772 0.029757

2 0.9234 0.9242 0.9242 0.047949 0.047949 0.029958
2.2 0.9279 0.9279 0.9305 0.048792 0.048792 0.029677
2.4 0.9479 0.9484 0.9486 0.049363 0.049363 0.030432

Interatomic
Distance

(A) Smallest Reference Weights (Low Spin) Largest T Amplitudes (Low Spin)

13 0.9374 0.9374 0.9417 0.079137 0.04656 0.026442
1.35 0.9388 0.9388 0.942 0.077046 0.040839 0.026048
1.4 0.942 0.942 0.9433 0.073187 0.036253 0.025332
1.45 0.9456 0.9456 0.9462 0.068914 0.032801 0.024545
1.5 0.9482 0.9482 0.95 0.064804 0.030311 0.024912
1.55 0.9507 0.9507 0.9517 0.061061 0.029833 0.028576
1.6 0.9524 0.9524 0.953 0.057732 0.035311 0.027407
1.65 0.9537 0.9537 0.955 0.054799 0.041268 0.026643
1.7 0.9558 0.9558 0.9567 0.052224 0.047625 0.026154
1.75 0.9549 0.9582 0.9582 0.054304 0.049957 0.02867
1.8 0.9523 0.9598 0.9599 0.061225 0.047949 0.033149
1.85 0.9489 0.9601 0.9601 0.068313 0.046152 0.038489
1.9 0.9444 0.9603 0.9603 0.075502 0.04476 0.044523
1.95 0.9388 0.9606 0.9606 0.082743 0.052035 0.043024
2.0 0.9346 0.961 0.9611 0.089869 0.060369 0.042181
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NiO*

Table 18: Smallest References Weights and Largest T Amplitudes for NiO*

Interatomic

Distance (A) Largest T Amplitudes (Low Spin) Smallest Reference Weights (Low Spin)
1.4 0.055316 0.055316 0.024297 0.945 0.945 0.9499
1.45 0.047143 0.047143 0.029071 0.95 0.95 0.9518
1.5 0.041033 0.041033 0.026089 0.9486 0.9494 0.953
1.55 0.036622 0.036622 0.02192 0.9451 0.9452 0.9531
1.6 0.033642 0.033642 0.023544 0.9431 0.9431 0.9521
1.65 0.031719 0.031719 0.022354 0.9411 0.9413 0.9508
1.7 0.030137 0.030137 0.022895 0.9398 0.9491 0.9498
1.75 0.028118 0.028118 0.023313 0.9368 0.947 0.9477
1.8 0.025557 0.025557 0.02316 0.935 0.9445 0.9454
1.85 0.0229 0.022899 0.022463 0.9414 0.9428 0.9478
1.9 0.021241 0.020565 0.020565 0.9375 0.94 0.9455
1.95 0.020077 0.020077 0.019566 0.933 0.9369 0.9404

Interatomic

Distance (A) Largest T Amplitudes (High Spin) Smallest Reference Weights (High Spin)
1.45 0.102724 0.102724 0.040701 0.9188 0.9195 0.9195
1.5 0.105067 0.105067 0.046239 0.9172 0.9182 0.9182
1.55 0.106887 0.106887 0.046548 0.9161 0.9169 0.9169
1.6 0.10818 0.10818 0.036597 0.9156 0.916 0.916
1.65 0.109014 0.109014 0.043101 0.9154 0.9154 0.9159
1.7 0.109491 0.109491 0.045477 0.9152 0.9152 0.9162
1.75 0.109707 0.109707 0.045102 0.9156 0.9156 0.9165
1.8 0.109737 0.109737 0.03286 0.9163 0.9163 0.9174
1.85 0.10963 0.10963 0.044531 0.9175 0.9175 0.9191
1.9 0.109421 0.109421 0.044331 0.919 0.919 0.9198
1.95 0.109133 0.109133 0.04418 0.9207 0.9207 0.9214
2.0 0.108785 0.108785 0.044022 0.9225 0.9225 0.9231
2.05 0.108392 0.108392 0.043992 0.9236 0.9237 0.9242
2.1 0.107968 0.107968 0.043944 0.9233 0.9234 0.9242
2.15 0.107525 0.107525 0.043919 0.9231 0.9231 0.9239
2.2 0.107075 0.107075 0.045821 0.9236 0.9236 0.9238
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CrO*

Table 19: Smallest References Weights and Largest T Amplitudes for CrO*

Interatomic
Distance (A)

13
1.35
14
1.45
1.5
1.55
1.6
1.65
1.675
1.7
1.75
1.8
1.85
1.9
1.95
2.0
2.1
2.2
2.4

Smallest Reference Weights (High Spin)

0.8565
0.8568
0.8574
0.8583
0.8593
0.8605
0.862
0.8637
0.8647
0.8658
0.8684
0.8716
0.8753
0.8794
0.884
0.8886
0.8972
0.9035
0.9096

0.8565
0.8568
0.8574
0.8583
0.8593
0.8605
0.862
0.8637
0.8647
0.8658
0.8684
0.8716
0.8753
0.8794
0.884
0.8886
0.8972
0.9035
0.9096

0.857
0.8802
0.8621
0.8709
0.8679
0.8665
0.8665
0.8677
0.8686
0.8699

0.873
0.8769
0.8814
0.8861
0.8909
0.8954
0.9026
0.9073
0.9109

Largest T Amplitudes (High Spin)

0.03607
0.04099
0.034482
0.03728
0.039295
0.042795
0.04395
0.045261
0.045731
0.04501
0.045342
0.045586
0.04707
0.055737
0.066046
0.078296
0.109637
0.150908
0.24328

0.03607
0.04099
0.034482
0.03728
0.039294
0.042794
0.04395
0.045261
0.04573
0.044697
0.045337
0.045583
0.047057
0.05573
0.066042
0.078286
0.109594
0.150875
0.243191

0.026336
0.027402
0.026009
0.026184
0.02772
0.029141
0.029748
0.03071
0.030853
0.029854
0.03353
0.039762
0.044981
0.044079
0.043321
0.046241
0.053148
0.065657
0.106005

Interatomic
Distance (A)

1.4
1.45
1.5
1.55
1.6
1.65
1.7
1.75
1.8
1.95
2.0

Smallest Reference Weights (Low Spin)

0.9492
0.9506
0.9512
0.9536
0.9524
0.9517
0.9497
0.9454
0.9358
0.9157
0.9158

0.9498
0.9515
0.9515
0.9556
0.9536
0.953
0.9526
0.9505
0.9467
0.9447
0.9464

0.9502
0.9572
0.9605
0.9592
0.9604
0.9598
0.9613
0.9603
0.9583
0.9506
0.9489

Largest T Amplitudes (Low Spin)

0.031713
0.028477
0.061238
0.212437
0.047928
0.129287
0.070278
0.034229
0.021992
0.02479
0.026011

0.031708
0.028477
0.057134
0.208189
0.047923
0.129279
0.070278
0.034229
0.021495
0.02479
0.026011

0.025191
0.024575
0.023584
0.043411
0.047856
0.129276
0.070277
0.034229
0.021495
0.024088
0.025764
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