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Abstract

This paper provides a derivative-based optimal investment strategy for an ambiguity-

averse pension investor who faces not only risks from time-varying income and market re-

turn volatility but also uncertain economic conditions over a long time horizon. We derive

a robust dynamic derivative strategy and show that the optimal strategy under ambiguity

aversion reduces the exposures to market return risk and volatility risk and that the investor

holds opposite positions for the two risk exposures. In the presence of a derivative, ambiguity

has distinct effects on the optimal investment strategy. More important, we demonstrate the

utility improvement when considering ambiguity and exploiting derivatives and show that

ambiguity aversion and derivative trading significantly improve utility when return volatility

increases. This improvement becomes more significant under ambiguity aversion over a long

investment horizon.

JEL classification: C61; G11; G22

Key words: Robust portfolio choice; DC pension plan; Ambiguity; Derivative; Stochastic

volatility; Stochastic salary

1. Introduction

Pension funds hold a significant share of the global market portfolio. Global institutional

pension fund assets in 22 major markets are approximately $36.4 trillion and increased

4.3% in 2016, and the total pension assets in these countries amount to 62% of their GDP1.

∗Corresponding author.
Email addresses: zengy36@mail.sysu.edu.cn (Yan Zeng), d268li@uwaterloo.ca (Danping Li),

iamchenzheng@163.com (Zheng Chen), yangzhou@scnu.edu.cn (Zhou Yang)
1The data are from Willis Towers Watson’s Global Pension Assets Study 2017: https://www.willistowers

watson.com/en/insights/2017/01/global-pensions-asset-study-2017.
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Therefore, pension investment has become increasingly important. Moreover, derivatives are

increasingly popularity in pension investment and investors are often ambiguity averse. In

this paper, we combine these two features and provide a derivative-based optimal investment

strategy for an ambiguity-averse pension investor. The investor considers a market with

stochastic volatility and faces uncertainties concerning both salary income and economic

conditions over a long time horizon. We show that ambiguity aversion reduces the exposures

to market return and volatility risks. In the presence of a derivative, i.e., taking a call/put

option or a straddle option as an example, the investor buys stocks and simultaneously

shorts call and straddle options or shorts both the stock and put option. These trading

strategies incentivize the investor to reduce portfolio risk. For each type of option, there are

distinct effects of the ambiguity over the market return risk and the stochastic volatility risk

on the optimal investment strategy. For example, ambiguity concerning market return risk

always reduces the investment in both the stock and the straddle option, while ambiguity

concerning volatility risk reduces the investment in the straddle option while increasing the

investment in the stock. Our analysis further shows that ambiguity aversion and derivative

trading significantly improve investors’ utility, especially when the return volatility is high

and/or the time horizon is long.

Motivated by recent studies on pension investment, this paper provides an integrated

framework for studying an optimal derivative-based pension investment problem. There are

two types of pension funds: defined benefit (DB) and defined contribution (DC) pension

plans. Due to demographic change and financial market development, many countries have

shifted their pension schemes from DB to DC plans to ease the pressure on social security

programs and have therefore transferred the investment risk to investors (Poterba et al.,

2007). As DC pension plans are playing an increasingly important role, more and more

individuals who build their own DC pension funds have been exposed to the investment risk.

This paper explores various aspects of intertemporal portfolio choices regarding risk and

uncertainty in DC pension plans, including market return and stochastic volatility risks

and income and economic uncertainties. In particular, wealth accumulation depends on

financial return and investors’ contribution which is related to their salary income. Over

a long horizon, investors face model instability (structural change of the model economy)

and asset return variability. The experimental studies (Bossaerts et al., 2010) demonstrate

that investors are averse not only to risk (the known probability distribution) but also to

ambiguity (the unknown probability distribution). Also, as we all know, the expected returns
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are extremely difficult to estimate, and investors are skeptical of the reliability of standard

historical estimates. Therefore, it becomes increasingly important to take ambiguity aversion

into account, see Anderson et al. (1999), Merton (1980) and the references therein. Moreover,

long-term pension investments need to incorporate the risks of salary and the stochastic

volatility of stock returns, which are well documented in the empirical literature. On the

one hand, salary has significant effects on the optimal long-term portfolio choice of investors.

Munk and Sørensen (2010) show that the relation between salary growth and interest rate

remains a significant factor determining the optimal investment strategy. On the other

hand, as an important improvement of the Black-Scholes model, stochastic volatility has

been developed in the literature of option pricing, portfolio selection and related statistics

(e.g., Heston, 1993; Kim et al., 1998; Fernndez-Villaverde et al., 2015; Campbell et al., 2016).

In this paper, we also take stochastic salary and stochastic volatility into account and study

the effects on the optimal investment decisions.

This paper is also related to the use of derivatives for optimal investment. Liu and Pan

(2003) develop an optimal investment strategy of using derivatives with stochastic volatility

and price jumps. They find that derivatives help to improve investors’ utility. In practice,

the derivative market is well developed and provides abundant opportunities for pension

funds to cope with volatility risk. Derivatives are becoming increasingly popular for pension

funds in many countries. For example, the second and third pillars of the UK pension funds

are invested not only in capital markets such as stocks and bonds, but also in foreign option

markets. In this paper, we follow this trend and consider the optimal investment strategy

for a DC pension investor who is ambiguity averse and is able to invest in bond, stock, and

derivative markets.

This paper is the first, to our knowledge, to explore the joint effect of ambiguity aversion

and derivative trading on optimal pension investment and to examine their roles in improving

utility. The main contributions of this paper are as follows. First, we provide a proof showing

that the optimization problem is well posed, and also present the verification theorems to

guarantee the validity of the results. Second, we derive an optimal investment strategy

for the underlying asset and its derivative in a DC pension plan. As noted by Liu and

Pan (2003), derivative trading is essential for improving investors’ utility. We investigate

two models, one with and one without the derivative. By comparing the results of the two

models, we find that trading in derivatives leads to utility improvement by offering additional

investment opportunities. Third, after explicitly solving the model, we show that ambiguity
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aversion affects an investor’s risk sharing in both the myopic and hedging components.

Moreover, the risk exposures to market return and volatility risks decrease with respect to

(w.r.t.) ambiguity. However, for the explicit investment strategies with the straddle option,

ambiguity concerning market return risk always reduces the investment in both the stock and

the derivative; ambiguity concerning volatility risk reduces the investment in the derivative

while increasing the investment in the stock. Finally, in DC pension investment, we find

that the optimal investment strategy has an additional hedging component that addresses

salary risk. In our model, salary risk generates different effects on an investor’s exposures to

market return and volatility risks.

This paper is related to three strands of the literature. The first strand is on the asset

allocation of DC pension funds. Given the widespread use of DC pension plans in prac-

tice, there is extensive literature addressing the asset allocation problems of DC pension

funds. The existing literature adopts a variety of objectives, such as the expected utility

maximization (see Blake et al., 2013, 2014; Chen et al., 2017; Deelstra et al., 2004; Emms,

2012; Giacinto et al., 2011) and the mean-variance criterion (see He and Liang, 2013; Sun

et al., 2016; Wu and Zeng, 2015).2 In a DC pension plan, human capital constitutes an in-

dispensable part of investors’ wealth. Therefore, the uncertainty regarding the future salary

is considered to be a typical background risk. Several scholars have conducted research on

portfolio choices with salary risk (e.g., Bodie et al., 1992; Bodie et al., 2004). To explore the

effect of stochastic salary on an investor’s investment behavior, we assume that the salary

process follows a general stochastic process, and then explicitly derive an optimal strategy.

We find that the correlation between the salary and market return/volatility risks results in

distinct effects: as salary risk increases, the investor always shorts more derivatives, but she

may reduce or increase stock investment for different types of options.

2These papers explore different aspects of factors involved in the investment of DC pension plans. In the

utility maximization framework, Deelstra et al. (2004) study the optimal design of guarantees in DC plans.

Giacinto et al. (2011) investigate a model of optimal allocation for a DC pension plan with a minimum

guarantee. Blake et al. (2013, 2014) use numerical algorithms to solve optimal investment problems under

S-shaped utility and Epstein-Zin utility, respectively. Chen et al. (2017) adopt an S-shaped utility to

describe an investor’s preferences and obtain the optimal investment strategy in closed-form. Under the

mean-variance criterion, He and Liang (2013) study a portfolio model for a DC pension plan during the

accumulation phase and derive a time-consistent investment strategy within the game theoretic framework.

Wu and Zeng (2015) consider the effects of mortality risk on equilibrium strategies. Sun et al. (2016) use a

jump-diffusion model to investigate an optimal investment problem for DC pensions.
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The second strand of the literature explores certain potentials and roles of derivative trad-

ing in managing stochastic volatility in DC pension plans. There is considerable empirical

evidence on time-varying stock return volatility (see Taylor, 1994, for a survey). Following

Ílhan et al. (2005) and Liu and Pan (2003)3, Hsuku (2007) studies a dynamic consumption

and asset allocation problem with a derivative under a recursive utility function. Jalal (2013)

derives dynamic option-based investment strategies for an investor who exhibits downside

loss aversion. Recently, Escobar et al. (2015) consider an optimal investment strategy for an

ambiguity-averse investor who can invest in stock and derivative markets. However, there

are very limited results on dynamic asset allocation with derivatives in pension investment,

despite the increasing popularity of using derivatives in the pension investment market. Ac-

cording to a report by the Singapore Exchange (SGX) from January 6, 2015, the value of

securities trading fell 25%, while derivative trading volume rose to a record high in 2014.

In the pension investment market, derivatives have been increasingly used over the past

decade. The 2012 NAPF Annual Survey shows that 57% of member schemes include deriva-

tives. Moreover, the Global Pension Assets Study 2016 reports that at the end of 2015, the

average global asset allocation of the seven largest markets (Australia, Canada, Japan, the

Netherlands, Switzerland, the UK and the US) is 44% equities, 29% bonds, 3% cash and 24%

other assets, which are mainly derivatives. In this paper, we assume that the DC pension

investor is allowed to invest in a derivative market. By examining cases with and without a

derivative, we find that the use of a derivative always improves investor’s utility.

The third strand is on ambiguity in portfolio selection. Ellsberg (1961) is the first to state

that most people are ambiguity averse. Then there are numerous theoretical and empirical

studies that explore the significance of ambiguity in affecting investor behavior (Bossaerts et

al., 2010; Cao et al., 2005; Dimmock et al., 2016, etc). Recent studies consider investment

problems with ambiguity and robust decisions.Anderson et al. (2003) develop a constrained

worst-case model and derive a robust decision. The model helps the decision maker to

assess the fragility of any given decision rule. Maenhout (2004, 2006) also derive the optimal

3Specifically, Liu and Pan (2003) study the optimal investment strategies when an investor has access

not only to bond and stock markets but also to a derivative market and provide an example of the role of

derivatives in the presence of volatility risk. They find that derivative trading helps to improve investors’

utility. Ílhan et al. (2005) investigate an optimal investment problem for an investor who maximizes the

expected exponential utility from terminal wealth, combining a static position in derivatives with a traditional

dynamic trading strategy in stocks.
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investment strategy for an investor who is ambiguity averse w.r.t. expected market returns.

Following Maenhout (2004), some studies address the implications of ambiguity for portfolio

choice. For example, Liu (2010) examines an optimal consumption and investment problem

for an ambiguity-averse investor with time-varying investment opportunities. Branger and

Larsen (2013) consider the optimal portfolio choice under different degrees of ambiguity

aversion concerning jump and diffusion risks. Flor and Larsen (2014) consider an optimal

investment strategy for an ambiguity-averse investor in the context of a stochastic interest

rate. Munk and Rubtsov (2014) study a portfolio management problem for an ambiguity-

averse investor under stochastic interest risk and inflation risk. Zheng et al. (2016) consider a

robust optimal investment-reinsurance problem using a constant elasticity of variance (CEV)

model. They also explicitly solve the case of an exponential utility function. Luo (2016)

studies the strategic consumption-portfolio rules with information frictions and salary risk.

Our work is related to these works and makes several extensions to address ambiguity and

portfolio choice.

By considering ambiguity aversion, this paper provides a theoretical explanation of the

portfolio choice puzzle of “low portfolio fractions allocated to equity” in the empirical liter-

ature (Dimmock et al., 2016). We further explore the distinct effects of different ambiguity

attitudes toward market return and volatility risks on the risk exposures and investment

proportions. In the presence of a derivative, we show that ambiguity always reduces the

derivative investment (in absolute terms), while its effect on stock investment is uncertain.

By considering salary risk, our model of DC pension investment is much richer than the

classical type of deterministic contribution model. A stochastic salary stipulates an exoge-

nous income stream, which makes it difficult to solve the optimization problem. In this

paper, we derive a closed-form of the robust investment strategy for DC pension plans (with

a stochastic salary). As in Anderson et al. (2003) and Maenhout (2004), the discrepancy

between the reference model and the alternative models is defined in terms of relative en-

tropy, which serves as a penalty and quantifies the investor’s degree of ambiguity aversion

about the reference model. The aim of the investor is to maximize the expected utility from

the terminal wealth at retirement. Using the robust control approach, the robust optimal

investment strategy is derived in closed-form.

This paper provides some insights into the efficient investment of DC pension plans.

First, derivatives can provide an efficient way to diversify various risk factors to improve

pension funds’ investment performance. Because the DC pension investment horizon is long,
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volatility risk has a significant effect on portfolio selection, and therefore, derivatives can

be very useful to manage such risk. We show that utility is always improved by using the

derivative, regardless of ambiguity aversion. Second, if an investor experiences uncertainty

concerning her reference model, she usually reduces her exposures to market return risk and

volatility risk. Moreover, there are distinct effects of ambiguity on the stock and derivative

investments. Third, different levels of the pension’s salary process, i.e., the different param-

eters in the salary process, result in different investment behaviors and have a significant

effect on the investment strategy. Paying attention to the salary process is necessary for the

design of a DC pension plan.

The paper is organized as follows. Section 2 describes the model. Section 3 derives

the explicit expressions of the robust optimal risk exposures, investment strategies and the

corresponding optimal value function when the derivative is available. Section 4 provides

the solutions without derivatives trading. Section 5 presents several numerical examples to

illustrate the effects of the model parameters on the robust optimal investment strategy and

utility improvements generated by considering ambiguity aversion and derivative trading.

Section 6 concludes the paper.

2. Investment under ambiguity

We study the optimal investment strategy of a DC pension investor who can invest in a

financial market consisting of a bond, a stock and a derivative of the stock. The stock price

follows a stochastic volatility process. We assume that there are no transaction costs or taxes

in the financial market and that trading occurs continuously. In addition to undertaking

financial risk, the investor also receives a stochastic salary stream and faces salary risk

during her working period. Moreover, she is ambiguity averse regarding both the dynamics

of the stock and its stochastic volatility. Throughout this paper, (Ω,F , {Ft}t∈[0,T ],P) is a

filtered complete probability space on which the filtration {Ft}t∈[0,T ] is generated by a two-

dimensional Brownian motion (WS(t),WV (t)), where T > 0 is a finite constant representing

the investment time horizon (retirement date); Ft denotes the information available until

time t; and P is a reference measure.

2.1. Financial market

The financial market consists of a risk-free bond, a stock and a derivative. The risk-free

bond evolves according to

dS0(t) = rS0(t)dt, S0(0) = 1, (1)
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where r > 0 represents the risk-free interest rate. The stock price follows

dS(t) = S(t)
[
(r + λ1V (t)) dt+

√
V (t)dWS(t)

]
, S(0) = s0, (2)

while the stock return variance V (t) is governed by

dV (t) = κ(δ − V (t))dt+ σV
√
V (t)

(
ρV dWS(t) +

√
1− ρ2

V dWV (t)

)
, V (0) = v0, (3)

where WS(t) and WV (t) are independent Brownian motions on a filtered complete probabil-

ity space (Ω,F , {Ft}t∈[0,T ],P). In this model, the instantaneous variance process V (t) is a

stochastic process with long-run mean δ > 0, mean-reversion rate κ > 0, and volatility coef-

ficient σV > 0. The price and volatility are correlated, which is captured by the coefficient

ρV ∈ (−1, 1) and represents an important feature of the real data. λ1 is a constant capturing

the market price of the risk factor WS(t).

In addition to investing in the risk-free bond and the stock, the pension investor also

has the opportunity to invest in the derivative with the risky asset as the underlying asset.

Following Liu and Pan (2003), we consider the derivative with price O(t, S(t), V (t)), (or O(t)

for short) at time t; this depends on the underlying price of the stock S(t) and its volatility

V (t), and its payoff structure at the expiration time τ is defined by O(τ) = f(S(τ), V (τ))

for some function f . 4 Inspired by Liu and Pan (2003) and Escobar et al.(2015), we assume

that the price process of derivative O(t, S(t), V (t)) satisfies





dO(t) = rO(t)dt+ (OsS(t) + σV ρVOv)
(
λ1V (t)dt+

√
V (t)dWS(t)

)

+ σV
√

1− ρ2
VOv

(
λ2V (t)dt+

√
V (t)dWV (t)

)
, t ≤ τ,

O(τ) = f(S(τ), V (τ)),

(4)

where λ2 is a constant capturing the market price of stochastic volatility risk WV (t); Os and

Ov are the partial derivatives of O w.r.t. S(t) and V (t), respectively. We can show that

given a physical measure, there exists a unique risk-neutral measure in the extended financial

market (S0, S, O) which is given by (1), (2) and (4), and prove that the financial market in

our paper is complete and, furthermore, there is only one pricing kernel (see Appendix A).

4As in the literature, such as Liu and Pan (2003), the derivative includes most traded option types. As

shown in Liu and Pan (2003), the expiration date τ of the derivative does not need to match the investment

horizon T . They present some examples of derivative types. For instance, a derivative with a linear payoff

structure f(S(τ), V (τ)) = S(τ) becomes the stock itself. However, for some strike price K > 0, a derivative

with a non-linear payoff structure f(S(τ), V (τ)) = (S(τ)−K)+ corresponds to a European-style call option,

while that with f(S(τ), V (τ)) = (K − S(τ))+ corresponds to a European-style put option.
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In a DC pension plan, the investor contributes part of her salary to the pension fund

before retirement. The salary process is essential when considering a DC pension plan. In

this paper, we assume that the dynamics of the investor’s salary are described by





dL(t) = L(t)
[
µLdt+ σLρL

(
λ1V (t)dt+

√
V (t)dWS(t)

)

+σL
√

1− ρ2
L

(
λ2V (t)dt+

√
V (t)dWV (t)

)]
,

L(0) = l0,

(5)

where µL ≥ 0 is the appreciation rate, σL ≥ 0 is the volatility and ρL ∈ [−1, 1] is the

coefficient parameter.

Remark 2.1. The salary process plays an important role in pension plans and is analyzed

in several studies (Bodie et al., 2004; Chen et al., 2017; Deelstra et al., 2004; Dybvig and

Liu, 2010; Guan and Liang, 2014, 2015). Among these contributions, Bodie et al. (2004) and

Dybvig and Liu (2010) assume that the salary process is spanned by the stocks in the financial

market, which reflects the fact that salary is related to the profitability of the company. Guan

and Liang (2014) furthermore assume that the salary process is correlated with the volatility

of the stock. In those cases, salary risk is insurable in the stock market. Because the

stochastic volatility contains some other risks faced by the investor in our model, we assume

the salary to be related to stochastic volatility. It would be interesting and more realistic

to introduce an independent random process on the stochastic salary. In this case, the part

related to l2 (the salary variable) cannot be separated in the Hamilton-Jacobi-Bellman (HJB)

equation. It becomes difficult to derive closed-form solutions to the optimization problems,

which significantly complicates the analysis of the problems.

2.2. Ambiguity

The above-mentioned framework is a traditional portfolio choice model in the DC pension

plan, where the investor is assumed to be ambiguity neutral. However, in reality, the investor

is usually ambiguity averse and wants to guard herself against worst-case scenarios. To

incorporate ambiguity aversion into the investor’s investment problem, we assume that the

reference model capturing the knowledge of the investor’s ambiguity is described by the

probability measure P, but she is skeptical of this reference model and is willing to consider

some alternative models, which are defined by a class of probability measures equivalent to

P as follows (cf. Anderson et al., 2003; Maenhout, 2004):

Q := {Q|Q ∼ P}.
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Define Φ := {φ(t) := (φS(t), φV (t))}t∈[0,T ], which satisfies three conditions: (i) φS(t) and

φV (t) are Ft-measurable for each t ∈ [0, T ]; (ii) E
{

exp
{

1
2

∫ T
0

[(φS(t))2dt+ (φV (t))2] dt
}}

<

∞; and (iii) |φ(t)|2 ≤ κ2V (t) for a.s. (t, ω) ∈ [0, T ]×Ω, with constant κ ∈ [ max(φ, φ
3
), κ/σV ),

where φ, and φ
3

are defined in (20) and (41), respectively. We will explain φ in footnote 7

and φ
3

in footnote 14 below. We denote Θ for the space of all such processes Φ. Furthermore,

we define a real-valued process {ΛΦ(t)|t ∈ [0, T ]} as

ΛΦ(t) = exp

{
−
∫ t

0

φS(s)dWS(s)− 1

2

∫ t

0

(φS(s))2ds−
∫ t

0

φV (s)dWV (s)− 1

2

∫ t

0

(φV (s))2ds

}
.

(6)

Accordingly, ΛΦ(t) is a P-martingale. For each Φ, a new alternative measure Q that is

absolutely continuous with P on FT is defined by

dQ
dP

∣∣∣
FT

= ΛΦ(T ).

By Girsanov’s Theorem, under the alternative measure Q, we have

dWΦ
S (t) = dWS(t) + φS(t)dt,

dWΦ
V (t) = dWV (t) + φV (t)dt,

where WΦ
S (t) and WΦ

V (t) are one-dimensional standard Brownian motions. Furthermore, the

price and volatility of the stock, the price of the derivative and the stochastic salary under

Q can be written as

dSΦ(t) = SΦ(t)
[(
r + λ1V

Φ(t)− φS(t)
√
V Φ(t)

)
dt+

√
V Φ(t)dWΦ

S (t)
]
, (7)

dV Φ(t) =

[
κ(δ − V Φ(t))− σV

√
V Φ(t)(ρV φS(t) +

√
1− ρ2

V φV (t))

]
dt

+ σV
√
V Φ(t)(ρV dWΦ

S (t) +
√

1− ρ2
V dWΦ

V (t)), (8)

dOΦ(t) = rOΦ(t)dt+ (OsS
Φ(t) + σV ρVOv)

[
λ1V

Φ(t)dt− φS(t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

S (t)
]

+ σV

√
1− ρ2

VOv

[
λ2V

Φ(t)dt− φV (t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

V (t)
]
, (9)

dLΦ(t) = LΦ(t)
[
µLdt+ σLρL(λ1V

Φ(t)dt− φS(t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

S (t))

+ σL

√
1− ρ2

L(λ2V
Φ(t)dt− φV (t)

√
V Φ(t)dt+

√
V Φ(t)dWΦ

V (t))

]
. (10)

2.3. Wealth process

Let u := {u(t) := (uS(t), uO(t))}t∈[0,T ] be a trading strategy, and Xu(t) is the wealth

process under strategy u, where uS(t), uO(t) and 1−uS(t)−uO(t) are the proportions of the
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wealth invested in the stock, derivative and risk-free bond, respectively. Then, the wealth

process Xu(t) under probability measure P follows




dXu(t) = Xu(t)

[
(1− uS(t)− uO(t))

dS0(t)

S0(t)
+ uS(t)

dS(t)

S(t)
+ uO(t)

dO(t)

O(t)

]
+ ξL(t)dt

= Xu(t)
[
rdt+ θS(t)

(
λ1V (t)dt+

√
V (t)dWS(t)

)

+θV (t)
(
λ2V (t)dt+

√
V (t)dWV (t)

)]
+ ξL(t)dt,

Xu(0) = x0,

(11)

where

θ(t) =


 θS(t)

θV (t)


 =


 1 OsS(t)+σV ρV Ov

O(t)

0
σV
√

1−ρ2
V Ov

O(t)




 uS(t)

uO(t)


 (12)

represent the investor’s exposures to market return risk WS(t) and additional volatility risk

WV (t), respectively. Here, we consider the exposures instead of portfolio weights to simplify

the analysis.5 As shown in Liu and Pan (2003), the exposure stems from the dynamics of

asset prices and the specific portfolio.

In addition, we assume that the contribution rate of the salary is ξ ∈ [0, 1]. Then under

the ambiguity framework, the wealth process XΦ,u(t) under probability measure Q follows

dXΦ,u(t) = XΦ,u(t)
[
rdt+ θS(t)

(
λ1V

Φ(t)dt− φS(t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

S (t)
)

+θV (t)
(
λ2V

Φ(t)dt− φV (t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

V (t)
)]

+ ξLΦ(t)dt.

(13)

Definition 2.2. A strategy u = {u(t) := (uS(t), uO(t))}t∈[0,T ] is said to be admissible if

(i) uS(t) and uO(t) are Ft-progressively measurable processes;

(ii) Eq. (13) has a pathwise-unique solution
{
XΦ,u(t)

}
t∈[0,T ]

, for any (t, x, v, l) ∈ O :=

[0, T ]× R3;

(iii) EΦ
t,x,v,l

{∫ T
t

[V Φ(s) ((uS(s))2 + (uO(s))2)]ds
}
< ∞ and EΦ

t,x,v,l

[
|U(XΦ,u(T ))|

]
< ∞, for

any (t, x, v, l) ∈ O, where EΦ
t,x,v,l[·] = EΦ[·|(XΦ,u(t), V Φ(t), LΦ(t)) = (x, v, l)].

Denote by Π the set of all admissible strategies.

2.4. Optimization problem

In this paper, the pension investor is assumed to be risk averse with a constant relative

risk aversion (CRRA) utility function and seeks to derive an investment strategy during

5We also provide the non-redundant condition as shown in Eq. (3.3) in Escobar et al. (2015) and

Eq. (12) in Liu and Pan (2003). Because we have only one derivative in the model and the relationship

between risk exposure and the portfolio weight is shown by Eq. (12), the non-redundant condition becomes
√

1− ρ2
VOv 6= 0.

11
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the time interval [0, T ] to maximize the expected utility from terminal wealth under the

ambiguity framework. Then, the optimization problem for the investor can be written as6

sup
u∈Π

inf
Φ∈Θ

EΦ

[
U(XΦ,u(T )) +

∫ T

0

(
(φS(s))2

2ΨS(s, x, v, l)
+

(φV (s))2

2ΨV (s, x, v, l)

)
ds

]
, (14)

where

U(x) =
x1−γ

1− γ , (15)

and γ is the coefficient of relative risk aversion. We assume that γ > 1 for practical relevance

(see Branger and Larsen, 2013; Escobar et al., 2015; Flor and Larsen, 2014). The pertur-

bations φS(t) and φV (t) in the penalty term are scaled by ΨS(t, x, v, l) and ΨV (t, x, v, l),

respectively. ΨS(t, x, v, l) and ΨV (t, x, v, l) represent the preference parameters for ambigu-

ity aversion and measure the degree of confidence in the reference model P at time t; and

deviations from the reference measure are penalized by the last integral term in the expec-

tation, which depends on the relative entropy arising from the diffusion risks. According to

Maenhout (2004), the larger ΨS(t, x, v, l) and ΨV (t, x, v, l) are, the less the deviations from

the reference model are penalized. Furthermore, the pension investor has less faith in the

reference model, such that she is more likely to consider alternative models. Hence, the

pension investor’s ambiguity aversion is increasing w.r.t. ΨS(t, x, v, l) and ΨV (t, x, v, l).

Proposition 2.3. There exists a unique function H(t, x, v, l) satisfying

H(t, x, v, l) = sup
u∈Π

HΦ∗,u(t, x, v, l), (16)

HΦ∗,u(t, x, v, l) = inf
Φ∈Θ

HΦ,u(t, x, v, l)

= inf
Φ∈Θ

EΦ
t,x,v,l

[
U(XΦ,u(T )) +

∫ T

t

(
(φS(s))2

2ΨS(s, x, v, l)
+

(φV (s))2

2ΨV (s, x, v, l)

)
ds

]
,

(17)

ΨS(t, x, v, l) =
βS

(1− γ)H(t, x, v, l)
, ΨV (t, x, v, l) =

βV
(1− γ)H(t, x, v, l)

, (18)

and (8), (10), (13).

Proof. See Appendix B.

6Following Anderson et al. (2003) and Maenhout (2004), the alternative models considered by the investor

are difficult to distinguish statistically from the reference model. To take this issue into account, the value

function includes a penalty term for deviating excessively from the reference model in the sense of relative

entropy (the last integral term in the expectation in Eq. (14)), which arises from diffusion risk.
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Based on Proposition 2.3, we define H(t, x, v, l) as the optimal value function of our

optimization problem.

According to Pathak (2002), Branger and Larsen (2013), Escobar et al. (2015), Flor and

Larsen (2014) and Maenhout (2004), we assume the forms of ΨS(t, x, v, l) and ΨV (t, x, v, l)

given by (18) for analytical tractability. In (18), βS and βV are positive constants and

called ambiguity aversion parameters; these are used to describe the investor’s attitude

toward ambiguity. We allow the level of ambiguity concerning the stock price to differ from

that concerning the stock’s volatility. For convenience, we abuse the notation slightly and

interpret βS as ambiguity aversion regarding market return risk and βV as ambiguity aversion

regarding additional volatility risk.

3. Optimal investment strategy with a derivative

This section is devoted to deriving the optimal investment strategy for the DC pension

investor in the presence of a derivative. We first provide a closed-form solution to the case

in which the investor is ambiguity averse in general and then analyze a special case without

ambiguity aversion.

For convenience, we introduce some notations. Let

C1,2,2,2(O) = {ψ(t, x, v, l)|ψ(t, ·, ·, ·) is once continuously differentiable on [0, T ]

and ψ(·, x, v, l) is twice continuously differentiable on R3} .

Let u = (uS, uO), θ = (θS, θV ) and φ = (φS, φV ) denote the values taken by u(t) =

(uS(t), uO(t)), θ(t) = (θS(t), θV (t)) and φ(t) = (φS(t), φV (t)), respectively. For any (t, x, v, l) ∈
O and ψ(t, x, v, l) ∈ C1,2,2,2(O), we define an infinitesimal generator as

Aφ,uψ(t, x, v, l) = ψt + [rx+ xθSλ1v + xθV λ2v − xθSφS
√
v − xθV φV

√
v + ξl]ψx

+
[
κ(δ − v)− σV

√
vρV φS − σV

√
v
√

1− ρ2
V φV

]
ψv

+
[
µLl + lσLλ1vρL − lσL

√
vφSρL + lσLλ2v

√
1− ρ2

L − lσL
√
vφV

√
1− ρ2

L

]
ψl

+
1

2
x2v(θ2

S + θ2
V )ψxx +

1

2
σ2
vvψvv +

1

2
l2σ2

Lvψll + lσLvσV

(
ρV ρL +

√
1− ρ2

V ρ
2
L

)
ψlv

+(xσV θSvρV + xσV θV v
√

1− ρ2
V )ψxv + (xθSlσLvρL + xθV lσLv

√
1− ρ2

L)ψxl,

where ψt, ψx, ψv, ψl, ψxx, ψvv, ψll, ψlv, ψxv and ψxl represent the partial derivatives of ψ

w.r.t. the corresponding variables.
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According to the principle of dynamic programming, the HJB equation with ambiguity

aversion can be derived as (see Escobar et al., 2015; Maenhout, 2006; Yi et al., 2013)

sup
u∈R2

inf
||φ||≤√κv

{
Aφ,uJ(t, x, v, l) +

φ2
S

2ΨS

+
φ2
V

2ΨV

}
= 0 (19)

with the boundary condition J(T, x, v, l) = U(x).

The following proposition presents the conditions under which the solution of the HJB

equation is indeed the value function, and the control is the optimal strategy.

Proposition 3.1. If there exists a function J(t, x, v, l) ∈ C1,2,2,2(O) and a control (u∗,Φ∗) :=

{(u∗(t), φ∗(t))}t∈[0,T ] ∈ Π×Θ such that

(1) for any ||φ|| ≤ √κv, Aφ,u∗J(t, x, v, l) +
φ2
S

2ΨS
+

φ2
V

2ΨV
≥ 0;

(2) for any u ∈ R2, Aφ∗,uJ(t, x, v, l) +
(φ∗S)2

2ΨS
+

(φ∗V )2

2ΨV
≤ 0;

(3) Aφ∗,u∗J(t, x, v, l) +
(φ∗S)2

2ΨS
+

(φ∗V )2

2ΨV
= 0, with J(T, x, v, l) = U(x); and

(4) {J(τ, x, v, l)}τ∈T and { (φ∗S(τ))2

2ΨS(τ,x,v,l)
+

(φ∗V (τ))2

2ΨV (τ,x,v,l)
}τ∈T are uniformly integrable, where T de-

notes the set of stopping times τ ≤ T , u∗ = (u∗S, u
∗
O) and φ∗ = (φ∗S, φ

∗
V ) denote the values

taken by u∗(t) = (u∗S(t), u∗O(t)) and φ∗(t) = (φ∗S(t), φ∗V (t)), respectively. Then J(t, x, v, l) =

H(t, x, v, l), and (u∗,Φ∗) is an optimal control.

Proof. See Appendix C.

According to Proposition 3.1, we know that the optimal investment strategy is u∗, the

optimal risk exposure is

θ∗(t) := (θ∗S(t), θ∗V (t)) =


 1 OsS(t)+σV ρV Ov

O(t)

0
σV
√

1−ρ2
V Ov

O(t)


u∗(t),

the worst-case measure is Φ∗, and the corresponding optimal value function is J(t, x, v, l) if

Novikov’s condition is satisfied, which is given below.

Theorem 3.2. For the robust portfolio choice problem (16) with wealth process (13), if the
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parameters satisfy certain technical conditions 7, the optimal risk exposure is

θ∗S(t) = m(t)

(
1 + h̄(t)

L(t)

Xu∗(t)

)
− σLρLh̄(t)

L(t)

Xu∗(t)
,

θ∗V (t) = n(t)

(
1 + h̄(t)

L(t)

Xu∗(t)

)
− σL

√
1− ρ2

Lh̄(t)
L(t)

Xu∗(t)
;

(22)

the optimal investment strategy is

u∗S(t) = θ∗S(t)− OsS(t) + σV ρVOv

O(t)
u∗O(t), u∗O(t) =

O(t)θ∗V (t)

σV
√

1− ρ2
VOv

; (23)

the corresponding optimal value function is

J(t, x, v, l) =
(x+ h̄(t)l)1−γ

1− γ exp(ḡ(t)v + ĝ(t)); (24)

and the worst-case measure is given by

φ∗S(t) =
βS(λ1(1− γ) + σV ρV ḡ(t))

√
V (t)

(1− γ)(βS + γ)
, φ∗V (t) =

βV (λ2(1− γ) + σV
√

1− ρ2
V ḡ(t))

√
V (t)

(1− γ)(βV + γ)
,

(25)

where {X∗(t)}t∈[0,T ] is the wealth process under the corresponding optimal strategy, and

m(t) =
λ1(1− γ) + (1− (βS + γ))σV ρV ḡ(t)

(1− γ)(βS + γ)
, (26)

n(t) =
λ2(1− γ) + (1− (βV + γ))σV

√
1− ρ2

V ḡ(t)

(1− γ)(βV + γ)
, (27)

ḡ(t) =
ν1ν2 − ν1ν2eα2(ν1−ν2)(T−t)

ν2 − ν1eα2(ν1−ν2)(T−t) , (28)

ĝ(t) =

∫ T

t

[r(1− γ) + κδḡ(s)] ds, (29)

7The technical conditions are φ < κ2/σ2
V with

φ , max

{
β2
Sλ

2
1

(βS + γ)2
,
β2
S(λ1(1− γ) + σV ρV ḡ(0))2

(1− γ)2(βS + γ)2

}
+ max

{
β2
V λ

2
2

(βV + γ)2
,
β2
V (λ2(1− γ) + σV

√
1− ρ2

V ḡ(0))2

(1− γ)2(βV + γ)2

}
,

(20)

and for ḡ(t) ∈ [ḡ(0), 0],

[64(1− γ)2 − 4(1− γ)][(m(t))2 + (n(t))2] + 8(1− γ)A(t) ≤ κ2

2σ2
V

, (21)

which are needed in the verification theorem. According to Dotsis et al. (2007) and Sepp (2008), who give

the parameter estimates of the Heston model using the S&P500 index, we know that the value of κ2/σ2
V

in the technique conditions is very large (approximately 375.39). Therefore, more parameters can satisfy

conditions (20) and (21).
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h̄(t) =
ξ

µL − r
(e(µL−r)(T−t) − 1), (30)

α1 = −κ+
λ1(1− (βS + γ))σV ρV

βS + γ
+
λ2(1− (βV + γ))σV

√
1− ρ2

V

βV + γ
, (31)

α2 =
σ2
V

2
− βSσ

2
V ρ

2
V + βV σ

2
V (1− ρ2

V )

2(1− γ)

+
(1− (βS + γ))2σ2

V ρ
2
V

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2

V )

2(βV + γ)(1− γ)
, (32)

α3 =
λ2

1(1− γ)

2(βS + γ)
+
λ2

2(1− γ)

2(βV + γ)
, ν1,2 =

α1 ±
√
α2

1 − 4α2α3

−2α2

, (33)

A(t) = γ(m(t))2 − σV ρV ḡ(t)

βS + γ
m(t) + γ(n(t))2 − σV

√
1− ρ2

V ḡ(t)

βV + γ
n(t). (34)

Proof. See Appendix D.

Theorem 3.2 presents three features of our results. First, the components m(t) and

n(t) in optimal risk exposures θ∗S(t) and θ∗V (t) consist of traditional components involving

the myopic and hedging components. Taking exposure to market return risk θ∗S(t) as an

example, the myopic component λ1

βS+γ
is constant and decreases in the ambiguity aversion

parameter βS for stock risk but does not depend on the ambiguity aversion parameter βV

for additional volatility risk. This shows that a myopic investor concentrates solely on

the ambiguity aversion parameter βS w.r.t. market return risk. The hedging component

(1−(βS+γ))σV ρV ḡ(t)
(1−γ)(βS+γ)

is time dependent, and for a non-myopic investor, this component depends

on βV , as ḡ(t) depends on βV . That is, the investor is concerned not only with βS but also

with βV w.r.t. market return risk. The case of exposure to additional volatility risk θ∗V (t)

is easily analyzed in a similar manner. Second, from the remaining components of optimal

risk exposure, we find that the salary process exists in the portfolio and generates a new

hedging component w.r.t. salary risk. Due to the assumption that the risk factors WS(t)

and WV (t) are contained in the salary process, this component is affected by both βS and

βV . Third, the worst-case measure is chosen by Eq. (25), which is proportional to volatility
√
V (t). The case of φ∗S(t) is affected by both the ambiguity regarding market return risk βS

and the ambiguity regarding additional volatility risk βV .

Remark 3.3. In our results, m(t) and n(t) in the optimal risk exposure are consistent with

the previous studies on ambiguity, such as Branger and Larsen (2013) and Escobar et al.

(2015). However, they do not consider the salary risk, which is very important in a DC

pension plan. In this model, the worst-case measure here takes a form similar to that in

Escobar et al. (2015).
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Theorem 3.4. For problem (16), if there exists a function J(t, x, v, l) ∈ C1,2,2,2(O) that is

a solution to the HJB equation (19) with boundary condition J(T, x, v, l) = U(x) and if its

parameters satisfy conditions (20) and (21), then the optimal value function is H(t, x, v, l) =

J(t, x, v, l), and the optimal strategy is u∗ = {(u∗S(t), u∗O(t))}t∈[0,T ] given in Theorem 3.2.

Proof. See Appendix E.

Remark 3.5. We present several special cases to show the relationships between θ∗S(t),

θ∗V (t) and βS, βV and γ. It is obvious that the effects of σL on θ∗S(t) and θ∗V (t) depend on

the value of ρL. When ρL = 0, the optimal risk exposure in this case, denoted θ∗1S(t) and

θ∗1V (t), can be written as θ∗1S(t) = m(t)
(

1 + h̄(t) L(t)

Xu∗ (t)

)
and θ∗1V (t) = n(t)

(
1 + h̄(t) L(t)

Xu∗ (t)

)
−

σLh̄(t) L(t)

Xu∗ (t)
, and the optimal value function in this case, denoted J1(t, x, v, l), can be written

as J1(t, x, v, l) = (x+h̄(t)l)1−γ

1−γ exp(ḡ1(t)v + ĝ1(t)).8 Moreover, as h̄(t) > 0, ḡ(t) < 0 and γ > 1,

following simple calculations, when ρV = 0, we have
∂θ∗1S(t)

∂(βS+γ)
< 0, which implies that the

optimal risk exposure decreases w.r.t. the sum of aversion to ambiguity and risk in some

cases, which implies that the investor decreases her exposure to market return risk when she

is more ambiguity averse and risk averse.

Remark 3.6. If σL = 0, the salary process is non-stochastic; then the optimal risk exposure

in this case, denoted θ∗2S(t) and θ∗2V (t), can be written as θ∗2S(t) = m(t)(1 + ĥ(t)

Xu∗ (t)
) and

θ∗2V (t) = n(t)(1 + ĥ(t)

Xu∗ (t)
), and the optimal value function in this case, denoted J2(t, x, v), can

be written as J2(t, x, v) = (x+ĥ(t))1−γ

1−γ exp(ḡ(t)v + ĝ(t)), where

ĥ(t) =
ξl0

µL − r
[exp(µLT − r(T − t))− exp(µLt)], (35)

and m(t), n(t), ḡ(t), ĝ(t) are given by Eqs. (26), (27), (28) and (29).9 In this case, we find

that the optimal risk exposures are proportional to m(t) and n(t).

8The optimal investment strategy when ρL = 0, denoted u∗1S(t) and u∗1O(t), can be written as

u∗1S(t) = θ∗1S(t) − OsS(t)+σV ρV Ov(t)
O(t) u∗1O(t) and u∗1O(t) =

O(t)θ∗1V (t)

σV
√

1−ρ2
V Ov

, and the worst-case measure in this

case, denoted φ∗1S(t) and φ∗1V (t), can be written as φ∗1S(t) =
βS(λ1(1−γ)+σV ρV ḡ1(t))

√
V (t)

(1−γ)(βS+γ) and φ∗1V (t) =

βV (λ2(1−γ)+σV
√

1−ρ2
V ḡ1(t))

√
V (t)

(1−γ)(βV +γ) , where

ḡ1(t) = ν11ν21−ν11ν21eα21(ν11−ν21)(T−t)

ν21−ν11eα21(ν11−ν21)(T−t) , ĝ1(t) =
∫ T
t

[r(1− γ) + κδḡ1(s)] ds,

α11 = −κ+ λ1(1−(βS+γ))σV ρ
βS+γ +

λ2(1−(βV +γ))σV
√

1−ρ2
V

βV +γ ,

α21 =
σ2
V

2 −
β2
Sσ

2
V ρ

2
V +βV σ

2
V (1−ρ2

V )
2(1−γ) +

(1−(βS+γ))2σ2
V ρ

2
V

2(βS+γ)(1−γ) +
(1−(βV +γ))2σ2

V (1−ρ2
V )

2(βV +γ)(1−γ) ,

α31 =
λ2

1(1−γ)
2(βS+γ) +

λ2
2(1−γ)

2(βV +γ) , ν11,21 =
α11±
√
α2

11−4α21α31

−2α21
,

and h̄(t) is given by Eq. (30). By derivation, we obtain α2
11 − 4α21α31 ≥ 0.

9The optimal investment strategy when σL = 0, denoted u∗2S(t) and u∗2O(t), can be written as
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Furthermore, if there is no salary in our model, i.e., ξ = 0 or L(t) = 0, our problem

reduces to a portfolio selection problem. The optimal risk exposure in this case, denoted

θ∗3S(t) and θ∗3V (t), can be written as θ∗3S(t) = m(t) and θ∗3V (t) = n(t), and the optimal value

function in this case, denoted J3(t, x, v), can be written as J3(t, x, v) = x1−γ
1−γ exp(ḡ(t)v+ ĝ(t)),

where m(t), n(t), ḡ(t) and ĝ(t) are given by Eqs. (26), (27), (28) and (29), respectively.10

Correspondingly, the optimal risk exposure is independent of wealth x. It is worth noting

that the optimal investment strategy obtained in the case without stochastic salary is the

same as that given in Escobar et al. (2015) without jumps.

Remark 3.7. If the pension investor is ambiguity neutral, i.e., both ambiguity aversion

parameters βS and βV equal 0, the optimal risk exposure in this case, denoted θ∗4S(t) and

θ∗4V (t), can be written as θ∗4S(t) = λ1+σV ρV ḡ2(t)
γ

(
1 + h̄(t) L(t)

Xu∗ (t)

)
−σLρLh̄(t) L(t)

Xu∗ (t)
and θ∗4V (t) =

λ2+σV
√

1−ρ2
V ḡ2(t)

γ

(
1 + h̄(t) L(t)

Xu∗ (t)

)
− σL

√
1− ρ2

Lh̄(t) L(t)

Xu∗ (t)
, and the optimal value function in

this case, denoted J2(t, x, v, l), can be written as J4(t, x, v, l) = (x+h̄(t)l)1−γ

1−γ exp(ḡ2(t)v+ ĝ2(t)),

where

ḡ2(t) =
ν12ν22 − ν12ν22eα22(ν12−ν22)(T−t)

ν22 − ν12eα22(ν12−ν22)(T−t) , ĝ2(t) =

∫ T

t

[r(1− γ) + κδḡ2(s)] ds, (36)

and h̄(t) is given by Eq.(30). By derivation, we obtain α2
12 − 4α22α32 ≥ 0.11

Similarly, the following remark provides the optimal investment strategy in the case of

no ambiguity and no stochastic salary.

u∗2S(t) = θ∗2S(t) − OsS(t)+σV ρV Ov
O(t) u∗2O(t) and u∗2O(t) =

O(t)θ∗2V (t)

σV
√

1−ρ2
V Ov

, and the worst-case measure in this

case, denoted φ∗2S(t) and φ∗2V (t), can be written as φ∗2S(t) =
βS(λ1(1−γ)+σV ρV ḡ(t))

√
V (t)

(1−γ)(βS+γ) and φ∗2V (t) =

βV (λ2(1−γ)+σV
√

1−ρ2
V ḡ(t))

√
V (t)

(1−γ)(βV +γ) .
10The optimal investment strategy without stochastic salary, denoted u∗3S(t) and u∗3O(t), can be writ-

ten as u∗3S(t) = θ∗3S(t) − OsS(t)+σV ρV Ov
O(t) u∗3O(t) and u∗3O(t) =

O(t)θ∗3V (t)

σV
√

1−ρ2
V Ov

, and the worst-case mea-

sure in this case, denoted φ∗3S(t) and φ∗3V (t), can be written as φ∗3S(t) =
βS(λ1(1−γ)+σV ρV ḡ(t))

√
V (t)

(1−γ)(βS+γ) and

φ∗3V (t) =
βV (λ2(1−γ)+σV

√
1−ρ2

V ḡ(t))
√
V (t)

(1−γ)(βV +γ) .
11The optimal investment strategy without ambiguity, denoted u∗4S(t) and u∗4O(t), can be written as

u∗4S(t) = θ∗4S(t)− OsS(t)+σV ρV Ov
O(t) u∗4O(t) and u∗4O(t) =

O(t)θ∗4V (t)

σV
√

1−ρ2
V Ov

. In Eq. (36),

α12 = −κ+
λ1(1− γ)σV ρV

γ
+
λ2(1− γ)σV

√
1− ρ2

V

γ
, α22 =

σ2
V

2γ
,

α32 =
(λ2

1 + λ2
2)(1− γ)

2γ
, ν12,22 =

α12 ±
√
α2

12 − 4α2a32

−2α22
.

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Remark 3.8. If the pension investor is ambiguity neutral and σL = 0, the salary process

is non-stochastic, and the optimal risk exposure in this case, denoted θ∗5S(t) and θ∗5V (t), can

be written as θ∗5S(t) = λ1+σV ρV ḡ2(t)
γ

(1 + ĥ(t)

Xu∗ (t)
) and θ∗5V (t) =

λ2+σV
√

1−ρ2
V ḡ2(t)

γ
(1 + ĥ(t)

Xu∗ (t)
), and

the optimal value function in this case, denoted J5(t, x, v), can be written as J5(t, x, v) =

(x+ĥ(t))1−γ

1−γ exp(ḡ2(t)v + ĝ2(t)), where ĥ(t), ḡ2(t) and ĝ2(t) are given by Eqs. (35)-(36).12

Furthermore, if there is no salary and no ambiguity in our model, the optimization

problem becomes a portfolio selection problem for an ambiguity-neutral investor; the optimal

risk exposure in this case, denoted θ∗6S(t) and θ∗6V (t), can be written as θ∗6S(t) = λ1+σV ρV ḡ2(t)
γ

and θ∗6V (t) =
λ2+σV

√
1−ρ2

V ḡ2(t)

γ
, and the optimal value function in this case, denoted J6(t, x, v),

can be written as J6(t, x, v) = x1−γ
1−γ exp(ḡ2(t)v + ĝ2(t)), where ḡ2(t) and ĝ2(t) are given by

Eq. (36).13 In this case, the result reduces to that of the optimal portfolio problem in the

case without jumps in Liu and Pan (2003).

4. Optimal investment strategy without a derivative

In this section, to illustrate the significant role of the derivative, we seek the solution to

the case without a derivative and compare it to the result with a derivative.

If there is no derivative security in the financial market, the optimal investment strategy

equals the optimal risk exposure to WS(t), and the surplus process of an ambiguity-averse

pension investor under measure Q becomes

dX Φ̃,ũ(t) = X Φ̃,ũ(t)

[
rdt+ ũ(t)

(
λ1V

Φ̃(t)dt− φ̃S(t)
√
V Φ̃(t)dt+

√
V Φ̃(t)dW Φ̃

S (t)

)]

+ξLΦ̃(t)dt,

(37)

where ũ := {ũ(t)}t∈[0,T ], Φ̃ := {φ̃(t) := (φ̃S(t), φ̃V (t))}t∈[0,T ], and the risk exposure equals

the investment strategy, i.e., θ̃S(t) = ũ(t). The optimization problem becomes

sup
ũ∈Π

inf
Φ̃∈Θ

{
EΦ̃
t,x,v,l

[
U(X Φ̃,ũ(T )) +

∫ T

t

(
(φ̃S(s))2

2Ψ̃S(s, x, v, l)
+

(φ̃V (s))2

2Ψ̃V (s, x, v, l)

)
ds

]}
, (38)

and the corresponding HJB equation becomes

sup
ũ∈R

inf
||φ̃||≤√κv

{
Ãφ̃,ũJ̃(t, x, v, l) +

φ̃2
S

2Ψ̃S

+
φ̃2
V

2Ψ̃V

}
= 0, (39)

12The optimal investment strategy when σL = 0 for an ambiguity-neutral pension investor, denoted u∗5S(t)

and u∗5O(t), can be written as u∗5S(t) = θ∗5S(t)− OsS(t)+σV ρV Ov
O(t) u∗5O(t) and u∗5O(t) =

O(t)θ∗5V (t)

σV
√

1−ρ2
V Ov

.

13The optimal investment strategy without stochastic salary and ambiguity, denoted u∗6S(t) and u∗6O(t),

can be written as u∗6S(t) = θ∗6S(t)− OsS(t)+σV ρV Ov
O(t) u∗6O(t) and u∗6O(t) =

O(t)θ∗6V (t)

σV
√

1−ρ2
V Ov

.
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Ψ̃S(t, x, v, l) =
βS

(1− γ)J̃(t, x, v, l)
, Ψ̃V (t, x, v, l) =

βV

(1− γ)J̃(t, x, v, l)
, (40)

with the boundary condition J̃(T, x, v, l) = U(x), where ũ and φ̃ = (φ̃S, φ̃V ) denote the

values that ũ(t) and φ̃(t) = (φ̃S(t), φ̃V (t)) take, respectively, and

Ãφ̃,ũψ(t, x, v, l) = ψt + [rx+ xũλ1v − xũφ̃S
√
v + ξl]ψx +

1

2
x2vũ2ψxx

+ [κ(δ − v)− σV
√
vρV φ̃S − σV

√
v
√

1− ρ2
V φ̃V ]ψv +

1

2
σ2
vvψvv

+
[
µLl + lσLλ1vρL − lσL

√
vφ̃SρL + lσLλ2v

√
1− ρ2

L − lσL
√
vφ̃V

√
1− ρ2

L

]
ψl

+
1

2
l2σ2

Lvψll + lσLvσV (ρV ρL +
√

1− ρ2
V

√
1− ρ2

L)ψlv + xσV ũvρV ψxv + xũlσLvρLψxl.

The following theorem presents the optimal investment strategy and optimal value func-

tion for the DC pension investor without a derivative.

Theorem 4.1. For the robust portfolio choice problem (38) without a derivative, if the

parameters satisfy certain technical conditions, 14 the optimal investment strategy and risk

exposure are

ũ∗(t) = θ̃∗S(t) = m̃(t)

(
1 + h̄(t)

L(t)

Xu∗(t)

)
− σLρLh̄(t)

L(t)

Xu∗(t)
; (43)

the corresponding optimal value function is

J̃(t, x, v, l) =
(x+ h̄(t)l)1−γ

1− γ exp(ḡ3(t)v + ĝ3(t)); (44)

and the worst-case measure is given by

φ̃∗S(t) =
βS
√
V (t)(λ1(1− γ) + σV ρV ḡ3(t))

(1− γ)(βS + γ)
, φ̃∗V (t) =

βV
√
V (t)(λ2(1− γ) + σV

√
1− ρ2

V ḡ3(t))

(1− γ)(βV + γ)
,

(45)

14The technical conditions are φ
3
< κ/σV , where

φ
3
, max

{
β2
Sλ

2
1

(βS + γ)2
,
β2
S(λ1(1− γ) + σV ρV ḡ3(0))2

(1− γ)2(βS + γ)2

}
+ max

{
β2
V λ

2
2

(βV + γ)2
,
β2
V (λ2(1− γ) + σV

√
1− ρ2

V ḡ3(0))2

(1− γ)2(βV + γ)2

}
,

(41)

and for ḡ3(t) ∈ [ḡ3(0), 0],

[64(1− γ)2 − 4(1− γ)](m̃(t))2 + 8(1− γ)γ(m̃(t))2 − 8(1− γ)
σV ρḡ3(t)

βS + γ
m̃(t) ≤ κ2

2σ2
V

. (42)

Similar to conditions φ < κ/σV and (21), conditions φ
3
< κ/σV and (42) are also technical conditions and

easily satisfied.
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where {X∗(t)}t∈[0,T ] is the wealth process under the corresponding optimal strategy, and

m̃(t) =
λ1(1− γ) + (1− (βS + γ))σV ρV ḡ3(t)

(1− γ)(βS + γ)
, ḡ3(t) =

ν̃1ν̃2 − ν̃1ν̃2eα̃2(ν̃1−ν̃2)(T−t)

ν̃2 − ν̃1eα̃2(ν̃1−ν̃2)(T−t) ,

ĝ3(t) =

∫ T

t

[r(1− γ) + κδḡ3(s)] ds, α̃1 = −κ+
λ1(1− (βS + γ))σV ρV

βS + γ
,

α̃2 =
σ2
V

2
− βSσ

2
V ρ

2
V

2(1− γ)
− βV σ

2
V (1− ρ2

V )

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2
V

2(βS + γ)(1− γ)
,

α̃3 =
λ2

1(1− γ)

2(βS + γ)
, ν̃1,2 =

α̃1 ±
√
α̃2

1 − 4α̃2α̃3

−2α̃2

,

(46)

and h̄(t) is given by Eq.(30). By derivation, we obtain α̃2
1 − 4α̃2α̃3 ≥ 0.

The proof of Theorem 4.1 is similar to that of Theorem 3.2, and thus, we omit it here.

Theorem 4.2. For problem (38), if there exists a function J̃(t, x, v, l) ∈ C1,2,2,2(O) that is

a solution to the HJB equation (65) with boundary condition J̃(T, x, v, l) = U(x), and the

parameters satisfy conditions (41) and (42), then the optimal value function is J̃(t, x, v, l),

and the optimal strategy is ũ∗ = {ũ∗(t)}t∈[0,T ] given in Theorem 4.1.

The proof of Theorem 4.2 is similar to that of Theorem 3.4, and thus, we omit it here.

From Theorem 4.1, we find that the optimal investment strategy and risk exposure are

both given by Eq. (43). Compared with the former case and optimal exposure to market

return risk (22), the difference lies in the form of m̃(t), particularly, the values of ν1,2 and

ν̃1,2. Here, because the market is incomplete and the investor has only one stock to invest

in and obtains one risk premium, the equity premium λ2 for additional volatility risk is

disappearing; as a result, hedging w.r.t. additional volatility risk is less efficient. This

quantitative influence depends on the chosen parameters of the model, as illustrated in the

following numerical examples. We find that the utility that the pension investor gains is

substantially improved when investing in the derivative. Similar results are also found in

Escobar et al. (2015). Similar to the case of investment with the derivative, we also provide

some special cases in Appendix F if the pension investor has no access to the derivative.

5. Numerical analysis

In this section, we provide several numerical examples to illustrate the effects of model

parameters on the robust optimal risk exposures and investment strategies. We also illus-

trate the utility improvements by considering ambiguity aversion and derivative trading. To

improve the credibility of our empirical results, we fix a set of base-case parameters for our
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model (Table 1) using data from existing empirical studies. For details, refer to Liu and Pan

(2003) and Escobar et al. (2015).15

Table 1: Values of model parameters in the numerical examples.

r κ δ ξ λ1 λ2 µL σL σV γ βS βV

0.05 5 0.132 0.2 4 -6 0.08 0.5 0.25 4 3 1

ρV ρL x l v S K τ T t

-0.4 0.3 1 1 0.152 100 100 0.1 5 0

5.1. Effects of model parameters on risk exposures

Risk exposures θ∗S and θ∗V more intuitively describe the exposures to risks WS and WV ,

and the risk exposures are independent of the types of options. Other related studies also

consider the performance of risk exposures; please see Escobar et al. (2015). Therefore, in

this subsection, we first consider the effects of model parameters on the risk exposures.

Figure 1 shows the effects of the ambiguity aversion parameters βS and βV on the optimal

market return risk exposure θ∗S and volatility risk exposure θ∗V , respectively. We find that

θ∗S decreases in βS, consistent with Escobar et al. (2015). Another main result is that θ∗V

significantly decreases (in absolute terms) in βV . These results show that in an ambiguous

environment, the investor becomes less aggressive. We now focus on one specific risk exposure

and show how the two ambiguity aversion parameters have distinct effects on it. Taking θ∗S as

an example, we find that the stock ambiguity aversion parameter βS has a relatively greater

effect than the volatility ambiguity aversion parameter βV . This is consistent with the case

of θ∗V . Compared to βV (βS), βS (βV ) represents a direct way to affect market return risk

exposure (volatility risk exposure).

15According to Liu and Pan (2003), the empirical properties of the stochastic volatility model have been

extensively examined using either the time-series data on the S&P 500 index alone (Andersen et al., 2002;

Eraker et al., 2003) or the joint time-series data on the S&P 500 index and options (Chernov and Ghysels,

2000; Pan, 2002). Because of different sample periods or empirical approaches in those studies, the exact

model estimates may differ from one paper to another. Our chosen model parameters agree with the cases

studied by Liu and Pan (2003) and Escobar et al. (2015).
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Figure 1: Effects of βS and βV on θ∗S and θ∗V .
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Figure 2: Effects of κ and σV on θ∗S and θ∗V .

Figure 2 shows the effects of the mean-reversion rate κ and volatility coefficient σV on

the optimal market return risk exposure θ∗S and volatility risk exposure θ∗V , respectively. In

the stock return variance process, a lower mean-reversion rate κ and higher volatility σV

usually imply greater additional volatility risk. As a result, θ∗V decreases and increases (in

absolute terms) in κ and σV , respectively. The case of θ∗S is similar to that of θ∗V , as there is

a diversification effect (benefit from risk diversification).
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Figure 3: Effects of salary parameters µL, σL, ξ and l0 on θ∗S and θ∗V .

Figure 3 shows the effects of the salary parameters, appreciation rate µL, volatility coeffi-

cient σL, contribution rate ξ and initial salary l0 on the optimal market return risk exposure

θ∗S and volatility risk exposure θ∗V . We find that both θ∗S and θ∗V increase (in absolute terms)

in µL, ξ and l0. When µL, ξ and l0 increase, more pension funds are accumulated. Therefore,

the investor prefers to undertake more risks to earn more profits. In addition, θ∗S decreases

in σL and θ∗V increases (in absolute terms) in σL.
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Figure 4: Effects of ρV and ρL on θ∗S and θ∗V .
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Figure 4 shows the effects of the correlation coefficients ρV and ρL on the optimal market

return risk exposure θ∗S and volatility risk exposure θ∗V , respectively. This figure shows that

θ∗S decreases in ρV and ρL, while θ∗V first increases (in absolute terms) and then decreases

in ρV and ρL. This behavior stems from the assumption of our model. From Eqs. (22),

(26) and (27), ρV and
√

1− ρ2
V (ρL and

√
1− ρ2

L) reflect different properties of a sensitivity

analysis for ρV (ρL). ρV (ρL) may be negative or non-negative, and
√

1− ρ2
V (
√

1− ρ2
L)

is non-negative. Therefore, the risk exposure to WS decreases in ρV and ρL, and the risk

exposure to WV decreases (in absolute terms) in |ρV | and |ρL|.

5.2. Effects of model parameters on investment strategies

In this subsection, we take the straddle option16 as an example to demonstrate the effects

of model parameters on investment strategies. The result further illustrates the significant

role of the derivative on the optimal investment strategy.

0 0.5 1 1.5 2 2.5 3

S

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

O
p

ti
m

a
l 
p

o
rt

fo
li
o

 w
e

ig
h

t 
in

 s
to

c
k
 u

S
*

V
=0

V
=0.5

V
=1

0 0.5 1 1.5 2 2.5 3

S

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

-0.38

-0.36

O
p

ti
m

a
l 
p

o
rt

fo
li
o

 w
e

ig
h

t 
in

 d
e

ri
v
a

ti
v
e

 u
O

*

V
=0

V
=0.5

V
=1

Figure 5: Effects of βS and βV on u∗S and u∗O.

Figure 5 shows the effects of the ambiguity aversion parameters βS and βV on the optimal

proportions invested in the stock u∗S and derivative u∗O, respectively. We find that both u∗S and

u∗O decrease (in absolute terms) in βS. Compared to those in stock investment, the changes

in derivative investment are relatively small. When βS increases, the investor becomes more

ambiguity averse to the return of the stock. Therefore, she tends to invest less in the stock.

Moreover, u∗O decreases (in absolute terms) in βV in a similar way. As ambiguity reduces the

16The straddle is a portfolio comprising a call option and a put option with the same underlying strike

price, time to maturity, and market volatility, and its price is given in Appendix G. We assume that the

initial stock price is 100, and the strike price is chosen in a way that makes the straddle “delta-neutral”. For

details, refer to Liu and Pan (2003) and Cui et al. (2017). The analyses with other types of options, such as

call options and put options are similar. To save space, we do not include these results in our paper.
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volatility risk premium, the derivative investment becomes less attractive to the ambiguous-

averse investor. Therefore, she shorts the straddle option less. However, u∗S increases in

βV . As ambiguity hampers the investor’s judgement regarding the variation in the stock’s

volatility, the investor holding the short straddle may worry about the substantial increase

in the stock price. Hence, at this time, she invests more wealth in the stock to reduce the

total risk of the portfolio.
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Figure 6: Effects of κ and σV on u∗S and u∗O.

Figure 6 shows the effects of the mean-reversion rate κ and volatility coefficient σV

on the optimal proportions invested in the stock u∗S and derivative u∗O, respectively. As κ

increases, both u∗S and u∗O decrease (in absolute terms). As the correlation ρV is negative, the

uncertainties of the stock price and its volatility change in different ways. Although V (t) will

be stable as κ increases, there is an increased probability of a decrease in the stock price.

The decrease affects the investment strategies in the stock and the derivative. Moreover,

when κ < 2, the effects of σV on the optimal investment strategies are not monotone; when

κ ≥ 2, u∗S and u∗O decrease (in absolute terms) as σV increases. In other words, the larger

σV is, the more risk the stock has. Therefore, the investor will invest less in the stock and

the derivative.

Figure 7 shows the effects of the salary parameters, appreciation rate µL, volatility co-

efficient σL, contribution rate ξ and initial salary l0 on the optimal proportions invested in

the stock u∗S and derivative u∗O. We find that both u∗S and u∗O increase (in absolute terms)

in µL, ξ and l0: the increasing µL, ξ and l0 imply that there will be greater pension fund

accumulation. Therefore, the investor prefers to undertake more risks to earn more. In

addition, u∗S decreases in σL, and u∗O increases (in absolute terms) in σL. The investor now

both shorts the straddle option more and buys less stock to reduce the portfolio risk. The
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results here are consistent with the results on risk exposures in Figure 3.
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Figure 7: Effects of salary parameters µL, σL, ξ and l0 on u∗S and u∗O.
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Figure 8: Effects of ρV and ρL on u∗S and u∗O.

Figure 8 shows the effects of correlation coefficients ρV and ρL on the optimal proportions

invested in the stock u∗S and derivative u∗O, respectively. On the one hand, both u∗S and u∗O

increase (in absolute terms) in ρV . When the risks of the financial market increase, the

investor goes long on more stocks and shorts more derivative to reduce her portfolio risk.

On the other hand, both u∗S and u∗O decrease (in absolute terms) in ρL. As it is difficult to
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reduce salary risk by managing the portfolio of the stock and the derivative, investment in

the stock and the derivative will decrease.

Moreover, we find that the derivative type has no effect on the value function in our

model. This is because that in our paper, the financial market is complete and we can treat

the risk exposure instead of the investment strategy as the control variable in the investor’s

wealth process, which makes the value function independent of the derivative type. The

same is true for the optimal terminal wealth level XΨ∗,u∗ . However, the strategy needed to

replicate this optimal terminal wealth depends on the form of the derivative since the form

of the derivative specifies the terminal condition of the BSDE in (4).

Since the derivative type has an important effect on the investment strategy, we demon-

strate this argument by theoretical and numerical analysis as follows. From Theorem 3.2,

the optimal investment strategy {(u∗S(t), )u∗O(t)}t∈[0,T ] is

u∗S(t) = θ∗S(t)− S(t)θ∗V (t)

σV
√

1− ρ2
V

· Os

Ov

− ρV θ
∗
V (t)√

1− ρ2
V

,

u∗O(t) =
θ∗V (t)

σV
√

1− ρ2
V

· O(t)

Ov

.

θ∗S(t) and θ∗V (t) are independent of the derivative type (see Eq. (22) in Theorem 3.2), while

Os
Ov

and O(t)
Ov

affect u∗S(t) and u∗O(t), respectively. In other words, O(t), Os and Ov have

important effects on the investment strategy. Using the parameters in Table 1, we have

− S(t)θ∗V (t)

σV
√

1−ρ2
V

> 0 and
θ∗V (t)

σV
√

1−ρ2
V

< 0, showing that u∗S(t) increases in Os
Ov

, and u∗O(t) decreases

in O(t)
Ov

. In particular, without loss of generality, we provide the numerical analysis for the

cases of call option, put option and straddle option at t = 0. We have θ∗S(t) = 1.8383 and

θ∗V (t) = −5.5831, and the other values are given in Table 2. We find that O(t)
Ov

is positive

under the three options, i.e., the pension investor shorts the three options. However, their

qualitative effects are different. The investor who chooses the straddle option will short

fewer than the investor who chooses the call option, while shorting more than the investor

who chooses the put option. Furthermore, the effect of the derivative type on the strategy

invested in the stock is complicated. The positions invested in the stock for the cases of the

straddle and call options are long, while a short position is adopted for the case of the put

option. The percentage that the pension investor longs (or shorts) for the case of the call

(or put) option is larger than that for the case of the straddle option.
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Table 2: Comparison of three derivative types.

− S(t)θ∗V (t)

σV
√

1−ρ2
V

Os
Ov

ρV θ
∗
V (t)√

1−ρ2
V

θ∗V (t)

σV
√

1−ρ2
V

O(t)
Ov

u∗S(t) u∗O(t)

call option 0.0024 0.0061 2.4367 -24.3667 0.0232 14.3194 -0.5651

straddle option 0.0024 0.0008 2.4367 -24.3667 0.0205 1.2415 -0.4999

put option 0.0024 -0.0046 2.4367 -24.3667 0.0178 -11.8364 -0.4347

5.3. Utility improvement

In this subsection, we study the utility improvement obtained by considering ambiguity

aversion and derivative trading. We focus on two cases of utility improvement for a DC

pension investor. One is the utility improvement delivered by considering ambiguity aver-

sion, the other is the utility improvement delivered by allowing the investor to trade in the

derivative.

For the first case, we calculate the utility improvement delivered by considering the

ambiguity aversion case compared with the case in which ambiguity is ignored. In particular,

we assume that the investor does not adopt the optimal strategy u∗ = {(u∗S(t), u∗O(t)}t∈[0,T ]

given in Theorem 3.2 but instead makes the decision as if she were ambiguity neutral, i.e.,

the pension investor follows the strategy u∗4 = {(u∗4S(t), u∗4O(t))}t∈[0,T ] given in Remark 3.7.

The value function for the pension investor in this case is defined by

J̄(t, x, v, l) = inf
Φ̄∈Θ

{
EΦ̄
t,x,v,l

[
U(X Φ̄,u∗

4(T )) +

∫ T

t

(
(φ̄S(s))2

2Ψ̄S(s, x, v, l)
+

(φ̄V (s))2

2Ψ̄V (s, x, v, l)

)
ds

]}
,

where

Ψ̄S(t, x, v, l) =
βS

(1− γ)J̄(t, x, v, l)
, Ψ̄V (t, x, v, l) =

βV
(1− γ)J̄(t, x, v, l)

.

Similar to the above derivation, we derive the optimal value function under the suboptimal

strategy

J̄(t, x, v, l) =
(x+ h̄(t)l)1−γ

1− γ exp(ḡ9(t)v + ĝ9(t)).17 (47)

17In Eq. (47),

ḡ9(t) = ν̄1ν̄2−ν̄1ν̄2eᾱ2(ν̄1−ν̄2)(T−t)

ν̄2−ν̄1eᾱ2(ν̄1−ν̄2)(T−t) , ĝ9(t) =
∫ T
t

[r(1− γ) + κδḡ9(s)] ds,

ᾱ1 = −κ+ (λ1+σV ρV ḡ2(t))(1−(βS+γ))σV ρV
γ +

(λ2+σV
√

1−ρ2
V ḡ2(t))(1−(βV +γ))σV

√
1−ρ2

V

γ ,

ᾱ2 =
σ2
V

2 −
βSσ

2
V ρ

2
V

2(1−γ) −
βV σ

2
V (1−ρ2

V )
2(1−γ) , ν̄1,2 =

ᾱ1±
√
ᾱ2

1−4ᾱ2ᾱ3

−2ᾱ2
,

ᾱ3 = − (λ1+σV ρV ḡ2(t))2(1−γ)βS
2γ2 − (λ2+σV

√
1−ρ2

V ḡ2(t))2(1−γ)βV
2γ2 +

(1−γ)(λ2
1+λ2

2−σ2
V (ḡ2(t))2)

2γ ,

and h̄(t) and ḡ2(t) are given by Eqs. (30) and (36). After some calculations, we have ᾱ2
1 − 4ᾱ2ᾱ3 ≥ 0.
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Furthermore, we define the utility improvement obtained by considering the ambiguity

aversion given by

UI1(t, x, v, l) := 1− J(t, x, v, l)

J̄(t, x, v, l)
= 1− exp((ḡ(t)− ḡ9(t))v + ĝ(t)− ĝ9(t)), (48)

where J(t, x, v, l) and J̄(t, x, v, l) are given by Eqs. (24) and (47).

For the second case, we calculate the utility improvement obtained by considering deriva-

tive trading compared with the case in which a derivative is inaccessible. In particular, it is

defined by

UI2(t, x, v, l) := 1− J(t, x, v, l)

J̃(t, x, v, l)
= 1− exp((ḡ(t)− ḡ3(t))v + ĝ(t)− ĝ3(t)), (49)

where J(t, x, v, l) and J̃(t, x, v, l) are given by Eqs. (24) and (44).

Remark 5.1. From the expressions of ḡ9(t), ĝ9(t), ḡ3(t), utility improvements UI1 and UI2

are independent of the salary process.

Remark 5.2. Liu and Pan (2003) state that in a setting without ambiguity, trading in the

derivative can significantly improve an investor’s utility. Here, we further show that when

the investor is ambiguity averse, there is also a utility improvement obtained from gaining

access to the derivative market. The quantitative improvement is shown in the following

numerical examples, which also reveal that the utility improvement delivered by having

access to the derivative is large. This implies that the derivative plays a crucial role in

providing investment opportunities and improving the efficiency of the market.

Figure 9 shows the effects of the ambiguity aversion parameters βS and βV on utility

improvements. UI1 is the utility improvement from considering ambiguity aversion, and we

find that it increases in βS and βV . Intuitively, when the investor is more uncertain about the

reference model, considering ambiguity aversion may deliver greater utility improvements.

Furthermore, the ambiguity aversions w.r.t. stock and volatility have different effects on

the degree of utility improvement. UI2 is the utility improvement from allowing derivative

trading. The effects of βS and βV on UI2 are different from those on UI1, which shows

that when the investor has no access to the derivative, the effects of βS and βV on UI2

are much less obvious than those on UI1, and even in the absence of ambiguity aversion

(βS = βV = 0), there is still a high degree of utility improvement for the investor. From

this, we reiterate that it is suboptimal to exclude the derivative. The derivative improves

the investment efficiency and helps the investor to pursue good investment performance.
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Figure 9: Effects of βS and βV on utility improvements.

Figure 10 shows the effects of the mean-reversion rate κ and volatility coefficient σV on

utility improvements. In the stock return variance process, a larger mean-reversion rate

κ and smaller volatility σV indicate less uncertainty in the variance process. That is, the

investor faces low volatility risk. We find that both types of utility improvements decrease

in κ and increase in σV . Furthermore, in both two cases, when the investor faces lower

volatility risk, her utility improvement is smaller.18
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Figure 10: Effects of κ and σV on utility improvements.

Figure 11 shows the effects of the time horizon T and correlation ρV ∈ (−1, 1) on utility

improvements. The figure shows that the utility improvements UI1 and UI2 increase in the

time horizon T . It is therefore necessary to incorporate ambiguity aversion and derivative

trading in a DC pension plan over a long investment period. The case of the correlation ρV

is interesting. Due to the specific parametrization of the model, the utility improvements

18This is because there is ambiguity aversion toward the volatility risk and the derivative investment

opportunity exists; as a result, when the volatility risk is low, the investor’s optimal behavior will lead to

less utility improvement than in the case where volatility risk is high.
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(both UI1 and UI2) first increase and then decrease in the correlation ρV . Note that when

ρV → ±1, two risky assets are almost fully correlated; then, the role of the derivative is

weakened when utility improvements are relatively small.
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Figure 11: Effects of ρV and T on utility improvements.

6. Conclusion

In this paper, we consider a robust optimal investment problem for a DC pension investor

facing a stochastic salary. The stock price exhibits stochastic volatility, and the investor has

different levels of uncertainty regarding the diffusion component of the stock and its volatility.

To cope with volatility risk, she is able to invest her wealth in a derivative. We first solve an

optimal investment problem with both ambiguity aversion and a derivative in closed-form

and provide verification theorems to guarantee the validity of the solution. Next, we obtain

the solutions without the derivative, ambiguity, or salary for some interesting special cases.

We also discuss the utility improvements for an investor who considers ambiguity aversion

or has access to the derivative. Finally, we explore several detailed conclusions in numerical

examples.

We find that three factors play significant roles in the optimal investment strategy in

the DC pension plan. The first factor is ambiguity aversion. When an investor experiences

uncertainty concerning her reference model, she usually reduces her exposures to the market

return risk and volatility risk, because in an uncertain environment, it is optimal to adopt

a conservative strategy. Moreover, the investor adopts different investment strategies for

the stock and the derivative and there are distinct effects of ambiguity on the stock and

derivative investments. The second factor is the derivative. Derivatives have the convenient

properties of providing frequent trading opportunities and improving market efficiency. In-

vestment in derivatives may deliver a large utility improvement. The third factor is salary.
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In a DC pension plan, the salary and the contribution thereof are essential and generate

additional wealth for the investor. More important, the salary has an important effect on

her investment strategy, and the investor has a new hedge demand in her portfolio to address

salary risk. In the numerical examples, we verify the results and find that different model

parameters generate distinct properties and that different degrees of ambiguity aversion lead

to complicated cases. It is necessary to determine a more accurate relationship among the

key factors; this is an interesting problem left for future research.
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Appendix A.

Proof of market completeness.

In this proof, we show that given a physical measure, there exists a unique risk-neutral

measure in our paper. We prove that the financial market in our paper is complete. The

proof includes three steps.

First, we present the following result on the existence and uniqueness of risk-neutral

equivalent martingale measure P̂ in the extended financial market (S0, S, O) which is given

by (1), (2) and (4).

Theorem A.1. Let N , {(t, s, v) : s > 0, v > 0, 0 ≤ t < T}. Suppose that the following

PDE admits a classical solution O ∈ C2,1(N ∩ C(N ∪ {t = T}),




−∂tO − Lλ2O = 0 in N ,

O(T, s, v) = f(s, v), ∀ (s, v) ∈ (0,+∞)2,

(50)
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where the differential operator Lλ2 takes the following form

Lλ2O , vs2

2
∂ssO +

σ2
V v

2
∂vvO + ρV σV vs∂svO + rs∂sO + [κ(δ − v)− σV ρV λ1v

−σV λ2v
√

1− ρ2
V

]
∂vO − rO.

(51)

Here, λ2 is a constant capturing the market price of stochastic volatility risk WV (t) and

satisfies that

E
[
exp

{
λ2

1 + λ2
2

2

∫ T

0

V (t)dt

}]
< +∞. (52)

If there exists a derivative O with terminal payoff f(S(T ), V (T )) in the financial market,

whose price function is given by O(t, S(t), V (t)), then there exists a risk-neutral equivalent

martingale measure P̂ in the financial market (S0, S, O). More precisely, it admits the form

given by

dP̂ , exp

{
−
∫ T

0

λ1

√
V (t)dWS(t)−

∫ T

0

λ2

√
V (t)dWV (t)− λ2

1 + λ2
2

2

∫ T

0

V (t)dt

}
dP.

(53)

In other words, for the value process X of the portfolio (S0, S, O) satisfying that {X(τ)} is

uniformly integrable under the measure P̂ for all F-stopping times, {e−rtX(t)}Tt=0 is an F-

martingale under the measure P̂. Moreover, if ∂VO 6= 0 inN , then the risk-neutral equivalent

martingale measure P̂ is unique.

Proof. Let ∆S0 ,∆S and ∆O be the shares invested in the riskless bond, stock and the deriva-

tive, respectively, which are F-adapted processes. Then the portfolio value process X is given

by

X = ∆S0S0 + ∆SS + ∆OO.

Using the self-financing trading strategy, it follows from (7) and (8) that

dX(t) =
(
X(t)−∆S(t)S(t)−∆O(t)O(t)

)
dS0(t) + ∆S(t)dS(t) + ∆O(t)dO(t)

= X 1(t)dt+ X 2(t)dWS(t) + X 3(t)dWV (t)

= rX(t)dt+ X 2(t)dŴS(t) + X 3(t)dŴV (t), (54)
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where we used Itô’s formula in the second equality and PDE (50) in the third equality, and

X 1(t) = r
(
X(t)−∆S(t)S(t)−∆O(t)O(t)

)
+ ∆S(t)S(t) (r + λ1V (t))

+∆O(t)

[
∂tO(·) +

1

2
V (t)(S(t))2∂ssO(·) +

1

2
σ2
V V (t)∂vvO(·)

+ ρV σV V (t)S(t)∂svO(·) + (r + λ1V (t))S(t)∂sO(·) + κ(δ − V (t))∂vO(·)
]
,

X 2(t) =
[
∆S(t)S(t) + ∆O(t) (∂sO(·)S(t) + ρV σV ∂vO(·))

]√
V (t), (55)

X 3(t) =
√

1− ρ2
V σV ∆O(t)∂vO(·)

√
V (t), (56)

dŴS(t) = dWS(t) + λ1

√
V (t) dt, dŴV (t) = dWV (t) + λ2

√
V (t) dt, (57)

and (·) in X 1(t),X 2(t),X 3(t) represents (t, S(t), V (t)). Recalling (52), we have that the

density process satisfies the so-called Novikov’s condition (see Karatzas and Shreve (1991)),

and P̂ is an equivalent martingale measure of P, and (ŴS, ŴV ) is a Brownian motion under

the measure P̂. From (54), we deduce that for any 0 ≤ t < s ≤ T and F−stopping time

τ ∈ [ t, s ],

e−rτX(τ) = e−rtX(t) +

∫ τ

t

e−ruX 2(u)dŴS(u) +

∫ τ

t

e−ruX 3(u)dŴV (u).

Let τ = τn = inf{u ∈ [ t, s ] : |X 2(u)| + |X 3(u)| ≥ n} for any n = 1, 2, · · · , and take the

conditional expectation with respect to Ft under measure P̂ in the above equality, we have

EP̂
[
e−rτnX(τn)

∣∣∣Ft
]

= e−rtX(t).

Let n → +∞, it follows from {e−rτX(τ)} being uniformly integrable that {e−rtX(t)}Tt=0 is

an F-martingale under the measure P̂.

If ∂vO 6= 0 a.e. in N , then the second equality in (54) implies that {e−rtX(t)}Tt=0 is an

F-local martingale under P̂ for any portfolio satisfying the assumption in this theorem only

if (ŴS, ŴV ) takes the form (57). Thus, the risk-neutral equivalent martingale measure P̂ in

the financial market (S0, S, O) is unique.

Next, we present a result regarding the existence and uniqueness of the classical solution

of PDE (50).

Lemma A.2. Suppose that |ρV | < 1 and the coefficients r, λ1, λ2 are bounded and satisfy

κ ≥ σV ρV λ1 + σV
√

1− ρ2
V λ2. Moreover, assume that the terminal payoff function f is a

continuous function, and that there exist a positive constant C and a nonnegative constant

k such that

|f(s, v)| ≤ C
(

1 + s+ ek
√
v+1
)
, ∀ (s, v) ∈ (0,+∞)2. (58)
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Then PDE (50) has a unique classical solution.

Proof. Define Nn , {(t, s, v) : 1/n < s < n, 1/n < v < n, 0 ≤ t < T}, and we use the

following PDEs in bounded domain Nn with the uniformly parabolic differential operator to

approximate PDE (50) in unbounded domain N with the degenerate parabolic differential

operator given by 



−∂tOn − Lλ2On = 0 in Nn,

On(t, s, v) = fn(s, v) on ∂pNn,
(59)

where n ∈ N, ∂pNn is the parabolic boundary of Nn, and {fn} is a smooth function sequence

such that fn converges to f in C([ 1/m,m ]2) for any m ∈ N, and satisfies

|fn(t, s, v)| ≤ C
(

2 + s+ ek
√
v+1
)
.

Since |ρV | < 1, the differential operator Lλ2 satisfies the uniformly elliptic condition and the

coefficient functions and the terminal function are smooth, the theory for PDEs implies that

there exists a classical solution On ∈ C2+α,1+α/2(Nn) for PDE (59) (see Lieberman (1996)).

Next, we establish a uniform estimate on the maximum of the solutions |On|. Denote

O = CeK(T−t)
(

2 + s+ ek
√
V+1

)
,

where C is the constant in (58) and K is a positive constant defined later. Then we have

−∂tO − Lλ2O

≥ CeK(T−t)
[
K
(

2 + s+ ek
√
v+1
)
− σ2

V v

2
ek
√
v+1 k2

v + 1
− rs− κδek

√
v+1 k

2
√
v + 1

+ r
(

2 + s+ ek
√
V+1

) ]
≥ 0,

provided thatK is large enough, where we have used the fact that κ ≥ σV ρV λ1+σV
√

1− ρ2
V λ2

in the first inequality . Moreover, it is clear that O ≥ fn = On on ∂pNn. Thus, the compar-

ison principle (see Lieberman (1996)) implies that On ≤ O in Nn, which implies that {On}
has a uniform upper bound O. Repeating the same argument, we can derive that {On} has

a uniform lower bound −O.

Thus far, we have shown that |On| ≤ O, which is bounded in any bounded domain Nm.

Applying the Hölder interior estimate, we deduce that there exists a function O defined in

Nm such that On converges to O in C2,1(Nm). By the standard method for Cauchy problem,

we can deduce that O can be uniquely extended in N , and O ∈ C2,1(N ) ∩ C(N ∪ {t = T})
is the unique classical solution of PDE (50).

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Finally, we show the completeness result of the financial market (S0, S, O).

Theorem A.3. Suppose that |ρV | < 1 and r, λ1, λ2 are bounded and satisfy κ ≥ σV ρV λ1 +

σV
√

1− ρ2
V λ2, and the deterministic continuous function f(s, v) satisfies (58). Assume that

there exists a derivative O with terminal payoff f(S(T ), V (T )) in financial market, whose

price function is O(t, S(t), V (t)), where O is the unique classical solution of PDE (50). If

∂vO 6= 0 in N , then the financial market (S0, S, O) is complete. More precisely, for any

contingent claim ξ satisfying that ξ is measurable with respect to FT and EP̂(|ξ|) < +∞,

there exists a unique portfolio (∆S0 ,∆S,∆O) to replicate ξ, where the measure P̂ is defined

in (53). Moreover, the price process of the contingent claim is given as

O(t) = EP̂ [ert−rT ξ|Ft
]

=
1

π(t)
EP [π(T )ξ|Ft] , (60)

where π is the pricing kernel satisfing the following SDE:

dπ(t)

π(t)
= −rdt− λ1

√
V (t)dWS(t)− λ2

√
V (t)dWV (t). (61)

Proof. From Theorem A.1 and Lemma A.2, we know that there exists a unique risk-neutral

equivalent martingale measure P̂ in the financial market (S0, S, O). If ξ is measurable with

respect to FT and EP̂(|ξ|) < +∞, then EP̂
(
e−rT ξ|F·

)
is a martingale under the unique risk-

neutral equivalent martingale measure P̂. Using the martingale representation theorem, it

follows that there exists an F-adapted stochastic process (ζ1, ζ2) such that

EP̂
(
e−rT ξ

∣∣∣Ft
)

=

∫ t

0

ζ1(u)dŴS(u) +

∫ t

0

ζ2(u)dŴV (u).

Let X 2(t) = ζ1(t)ert and X 3(t) = ζ2(t)ert. Since

√
1− ρ2

V σV ∂vO(t, S(t), V (t))
√
V (t) 6= 0, S(t)

√
V (t) 6= 0 a.s. in Ω,

we can solve ∆S and ∆O as

∆O(t) =
ζ2(t)ert√

1− ρ2
V σV ∂vO(t, S(t), V (t))

√
V (t)

,

∆S(t) =
ζ1(t)ert −∆O(t) (∂sO(t, S(t), V (t))S(t) + ρV σV ∂vO(t, S(t), V (t)))

√
V (t)

S(t)
√
V (t)

.

Let

X(t) = EP̂
(
er(t−T )ξ

∣∣∣Ft
)
, ∆S0(t) = X(t)−∆S(t)S(t)−∆O(t)O(t),

then (54) still holds. Thus, (∆S0 ,∆S,∆O) is self-financing, and X(T ) = ξ, which implies that

ξ can be replicated by the portfolio X = (∆S0 ,∆S,∆O). The pricing formula (60) follows

the expression of X, and (61) can be deduced from (54).
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Appendix B.

Proof of Proposition 2.3. We will use the contraction mapping principle (see Theorem

5.1 in Gilbarg and Trudinger, 2001) to prove the conclusion. (If the mapping T from Banach

space B onto itself satisfies that there exists a constant θ < 1 such that ‖T J1 − T J2‖ ≤
θ‖J1 − J2‖ for all J1, J2 ∈ B, then, there exists a unique solution J ∈ B such that T J = J .)

Restrict the initial state (x, v, l) in a compact set A ⊂ R3, choose a small enough positive

constant δ, defined below, and let B = L∞(B) with B = [T − δ, T ]×A, where L∞(B) is the

space of Borel-measurable functions with norm esssup{|J(t, x, v, l)| : (t, x, v, l) ∈ B}. Next,

we first consider the optimal control problem on the time interval [T − δ, T ]. Fix a function

J ∈ B; then, we denote

ΨJ
S(s, x, v, l) =

βS
(1− γ)J(s, x, v, l)

, ΨJ
V (s, x, v, l) =

βV
(1− γ)J(s, x, v, l)

,

and

Hu;J(t, x, v, l) = inf
Φ∈Θ

EΦ
t,x,v,l

[
U(XΦ,u(T )) +

∫ T

t

(
(φS(s))2

2ΨJ
S(s, x, v, l)

+
(φV (s))2

2ΨJ
V (s, x, v, l)

)
ds

]

subject to (13), (8) and (10).

Consider the optimal control problem

HJ(t, x, v, l) = sup
u∈Π

Hu;J(t, x, v, l), ∀ (t, x, v, l) ∈ B.

It is clear that there exists a unique value function HJ ∈ B (see Yong and Zhou, 1999)

for the above optimal control problem. Thus, we define a mapping T : J → HJ from

B onto itself. Suppose that J1, J2 are two functions in B; then, we compute that for any

Φ ∈ Θ, u ∈ Π,

‖T (J1)− T (J2)‖B = sup
(t,x,v,l)∈B

|HJ1(t, x, v, l)−HJ2(t, x, v, l)|

≤ sup
u∈Π,Φ∈Θ,(t,x,v,l)∈B

∣∣∣∣∣E
Φ
t,x,v,l

[∫ T

t

(
(φS(s))2

2ΨJ1
S (s, x, v, l)

+
(φV (s))2

2ΨJ1
V (s, x, v, l)

− (φS(s))2

2ΨJ2
S (s, x, v, l)

− (φV (s))2

2ΨJ2
V (s, x, v, l)

)
ds

]∣∣∣∣∣

≤ 1− γ
2

sup
Φ∈Θ,(t,x,v,l)∈B

EΦ

[∫ T

T−δ
|(J1 − J2)(s, x, v, l)|

(
(φS(s))2

βS
+

(φV (s))2

βV

)
ds

]

≤ (1− γ)‖J1 − J2‖B
2 min{βS, βV }

sup
Φ∈Θ

EΦ

[ ∫ T

T−δ
||φ(s)||2 ds

]
. (62)
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It is not difficult to compute that

sup
Φ∈Θ

EΦ

[ ∫ T

T−δ
||φ(s)||2 ds

]
= sup

Φ∈Θ
E

[
ΛΦ(T )

∫ T

T−δ
||φ(s)||2 ds

]

= sup
Φ∈Θ

E

[ [
ΛκΦ/κσV (T )

]κσV /κ
exp

{
κ− κσV

2κσV

∫ T

0

||φ(s)||2 ds

}∫ T

T−δ
||φ(s)||2 ds

]

≤ sup
Φ∈Θ

κ2E

[ [
ΛκΦ/κσV (T )

]κσV /κ
exp

{
κ(κ− κσV )

2σV

∫ T

0

V (s) ds

}∫ T

T−δ
V (s) ds

]

≤ sup
Φ∈Θ

κ2 E
[

ΛκΦ/κσV (T )
]κσV /κ

E

[
exp

{
κ2

2σ2
V

∫ T

0

V (s) ds

}]κσV (κ−κσV )/κ2

E

[ ∫ T

T−δ
(V (s))κ

2/(κ−κσV )2

ds

](κ−κσV )2/κ2

δ1−(κ−κσV )2/κ2

, (63)

where we use Assumption (iii) in footnote 6 in the first equality and Holder’s inequality in

the second inequality.

From Theorem 5.1 in Taksar and Zeng (2009), we conclude that

E

[
exp

(
κ2

2κ2σ2
V

∫ T

0

||φ(s)||2ds

)]
≤ E

[
exp

(
κ2

2σ2
V

∫ T

0

V (s)ds

)]
<∞,

and ΛκΦ/κσV is an exponential martingale. Moreover, the regularity result for SDE implies

that

E

[ ∫ T

0

(V (s))κ
2/(κ−κσV )2

ds

]
< +∞.

Thus, combining (62) and (63), we can choose a small enough δ > 0 such that

sup
Φ∈Θ

EΦ

[ ∫ T

T−δ
||φ(s)||2 ds

]
≤ min{βS, βV }

1− γ ,

and

‖T (J1)− T (J2)‖B ≤
1

2
‖J1 − J2‖B.

Hence, the mapping T is a contraction mapping. According to the contraction mapping

principle, the mapping T has a unique fixed point. This means that there exists a unique

value function H(t, x, v, l) of the optimal control problem if t ∈ [T − δ, T ] and (x, v, l) ∈ A,

which consists of (16), (17) and (18) subject to (13), (8) and (10).

Next, we extend the result into the total time interval [ 0, T ]. Suppose that we have

proven that there exists a unique value function H(t, x, v, l) of the optimal control problem

if t ∈ [ T̂ , T ] and (x, v, l) ∈ A.

Then, we choose a small enough positive number δ such that

sup
Φ∈Θ

EΦ

[∫ T̂

T̂−δ
||φ(s)||2 ds

]
=

min{βS, βV }
1− γ .
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Moreover, let B = L∞(B) with B = [ T̂ − δ, T̂ ]× A. Fix a function J ∈ B; then, we denote

ΨJ
S(s, x, v, l) =

βS
(1− γ)J(s, x, v, l)I{s∈[ T̂−δ,T̂ ]} + (1− γ)H(s, x, v, l)I{s∈(T̂ ,T ]}

,

ΨJ
V (s, x, v, l) =

βV
(1− γ)J(s, x, v, l)I{s∈[ T̂−δ,T̂ ]} + (1− γ)H(s, x, v, l)I{s∈(T̂ ,T ]}

,

and

Hu;J(t, x, v, l) = inf
Φ∈Θ

EΦ
t,x,v,l

[
U(XΦ,u(T )) +

∫ T

t

(
(φS(s))2

2ΨJ
S(s, x, v, l)

+
(φV (s))2

2ΨJ
V (s, x, v, l)

)
ds

]

subject to (13), (8) and (10).

Consider the optimal control problem

HJ(t, x, v, l) = sup
u∈Π

Hu;J(t, x, v, l), ∀ (t, x, v, l) ∈ B.

Repeating the same argument as above, we can prove that there exists a unique value

function H(t, x, v, l) of the optimal control problem if (t, x, v, l) ∈ B. Repeating the same

argument in the domain [T − 2δ, T − δ ] × A, [T − 3δ, T − 2δ ] × A, · · ·, we can prove that

there exists a unique value function H(t, x, v, l) of the optimal control problem if (t, x, v, l) ∈
[ 0, T ] × A. Since the set A is arbitrary, and the compatibility in different compact sets is

obvious, then we have proven that there exists a unique value function H(t, x, v, l) of the

optimal control problem for any (t, x, v, l) ∈ [ 0, T ]× R3. �

Appendix C.

Proof of Proposition 3.1. We know that ΨS(t, x, v, l), ΨV (t, x, v, l) in Proposition 2.3 are

ΨJ
S(t, x, v, l), ΨJ

V (t, x, v, l), respectively. Consider the optimal control problem

HJ(t, x, v, l) = sup
u∈Π

inf
Φ∈Θ

EΦ
t,x,v,l

[
U(XΦ,u(T )) +

∫ T

t

g(s, x, v, l, φS, φV ) ds

]

subject to (13), (8) and (10) for any (t, x, v, l) ∈ O, where

g(s, x, v, l, φS, φV ) =
φ2
S

2ΨJ
S(s, x, v, l)

+
φ2
V

2ΨJ
V (s, x, v, l)

.

Note that in this optimal control problem, J in ΨJ
S and ΨJ

V is the function given in the

assumptions rather than the value function. Thus, g is a given function w.r.t. (s, x, v, l, φ),

independent of the value function HJ , and the optimal control problem is standard.

Repeating a proof similar to that in Theorem 3.2 in Mataramvura and Øksendal (2008),

we deduce that J is the value function of the above optimal control problem. Since the
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value function and J in ΨJ
S and ΨJ

V are the same, J is the value function of the optimal

control problem, consisting of (16), (17) and (18) subject to (13), (8) and (10). Thus, by

Proposition 2.3, the uniqueness of the value function implies that H(t, x, v, l) = J(t, x, v, l)

for any (t, x, v, l) ∈ O, and (u∗,Φ∗) is an optimal control. �

Appendix D.

Proof of Theorem 3.2. According to the first-order optimality conditions, the functions

φ∗S and φ∗V , which realize the infimum part of Eq. (19), are given by

φ∗S =
βS
√
v

(1− γ)J
[xθSJx + σV ρJv + lσLρLJl] ,

φ∗V =
βV
√
v

(1− γ)J

[
xθV Jx + σV

√
1− ρ2

LJv + lσL
√

1− ρ2Jl

]
.

(64)

Substituting Eq. (64) into Eq. (19), we have

Jt + (rx+ xθSλ1v + xθV λ2v + ξl)Jx + κ(δ − v)Jv + (µLl + lσLλ1vρL + lσLλ2v
√

1− ρ2
L)Jl

+
1

2
x2v(θ2

S + θ2
V )Jxx +

1

2
σ2
V vJvv +

1

2
l2σ2

LvJll + (xσV θSvρV + xσV θV v
√

1− ρ2
V )Jxv

+(xθSlσLvρL + xθV lσLv
√

1− ρ2
L)Jxl + lσLvσV (ρV ρL +

√
1− ρ2

V

√
1− ρ2

L)Jlv

− βSv

2(1− γ)J
[xθSJx + σV ρV Jv + lσLρLJl]

2

− βV v

2(1− γ)J
[xθV Jx + σV

√
1− ρ2

V Jv + lσL
√

1− ρ2
LJl]

2 = 0.

(65)

Differentiating Eq. (65) w.r.t. (θS, θV ) implies

θ∗S =
λ1Jx − βS

(1−γ)J
(σV ρV JxJv + lσLρLJxJl) + σV ρV Jxv + lσLρLJxl

x
[

βS
(1−γ)J

J2
x − Jxx

] ,

θ∗V =
λ2Jx − βV

(1−γ)J
(σV
√

1− ρ2
V JxJv + lσL

√
1− ρ2

LJxJl) + σV
√

1− ρ2
V Jxv + lσL

√
1− ρ2

LJxl

x
[

βV
(1−γ)J

J2
x − Jxx

] .

(66)
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Plugging Eq. (66) into Eq. (65) implies

Jt + (rx+ ξl)Jx + κ(δ − v)Jv + (µLl + lσLλ1vρL + lσLλ2v
√

1− ρ2
L)Jl +

1

2
σ2
V vJvv +

1

2
l2σ2

LvJll

+lσLvσV (ρV ρL +
√

1− ρ2
V

√
1− ρ2

L)Jlv −
βSv

2(1− γ)J
(σ2

V ρ
2
V J

2
v + l2σ2

Lρ
2
LJ

2
l + 2σV σLρV ρLlJvJl)

− βV v

2(1− γ)J

(
σ2
V (1− ρ2

V )J2
v + l2σ2

L(1− ρ2
L)J2

l + 2σV σL
√

1− ρ2
V

√
1− ρ2

LlJvJl

)

+
v
[
λ1Jx − βS

(1−γ)J
(σV ρV JxJv + lσLρLJxJl) + σV ρV Jxv + lσLρLJxl

]2

2
[

βS
(1−γ)J

J2
x − Jxx

]

+
v[λ2Jx − βV

(1−γ)J
(σV
√

1− ρ2
V JxJv + lσL

√
1− ρ2

LJxJl) + σV
√

1− ρ2
V Jxv + lσL

√
1− ρ2

LJxl]
2

2
[

βV
(1−γ)J

J2
x − Jxx

] = 0.

(67)

To solve Eq. (67), we attempt to conjecture the solution in the following form:

J(t, x, v, l) =
(x+ h(t, l))1−γ

1− γ g(t, v), h(T, l) = 0, g(T, v) = 1, (68)

the partial derivatives of which are

Jt = gt
(x+ h)1−γ

1− γ + g(x+ h)−γht, Jx = g(x+ h)−γ, Jxx = −γg(x+ h)−γ−1,

Jv = gv
(x+ h)1−γ

1− γ , Jvv = gvv
(x+ h)1−γ

1− γ , Jl = g(x+ h)−γhl, Jlv = gv(x+ h)−γhl

Jll = −γg(x+ h)−γ−1h2
l + g(x+ h)−γhll, Jxv = gv(x+ h)−γ, Jxl = −γg(x+ h)−γ−1hl.

(69)

Substituting Eqs. (68)-(69) into Eq. (67), we have

gt
(x+ h)1−γ

1− γ + g(x+ h)−γht + rxg(x+ h)−γ + ξlg(x+ h)−γ + κ(δ − v)gv
(x+ h)1−γ

1− γ

+(µLl + lσLλ1vρL + lσLλ2v
√

1− ρ2
L)g(x+ h)−γhl +

1

2
σ2
V vgvv

(x+ h)1−γ

1− γ
+

1

2
l2σ2

Lv[−γg(x+ h)−γ−1h2
l + g(x+ h)−γhll] + lσLvσV (ρV ρL +

√
1− ρ2

V

√
1− ρ2

L)gv(x+ h)−γhl

−βSv
2g

[
σ2
V ρ

2
V g

2
v

(x+ h)1−γ

(1− γ)2
+ l2σ2

Lρ
2
Lg

2(x+ h)−γ−1h2
l + 2σLσV ρV ρLlgv

(x+ h)−γ

1− γ ghl

]

−βV v
2g

[
σ2
V (1− ρ2

V )g2
v

(x+ h)1−γ

(1− γ)2
+ l2σ2

L(1− ρ2
L)g2(x+ h)−γ−1h2

l

+2σLσV
√

1− ρ2
V

√
1− ρ2

Llgv
(x+ h)−γ

1− γ ghl

]

+
v
[
λ1g(x+ h)−γ + 1−(βS+γ)

1−γ σV ρV gv(x+ h)−γ − (βS + γ)lσLρLg(x+ h)−γ−1hl

]2

2(βS + γ)g(x+ h)−γ−1

+
v
[
λ2g(x+ h)−γ + 1−(βV +γ)

1−γ σV
√

1− ρ2
V gv(x+ h)−γ − (βV + γ)lσL

√
1− ρ2

Lg(x+ h)−γ−1hl

]2

2(βV + γ)g(x+ h)−γ−1
= 0.

(70)
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Furthermore, let

g(t, v) = eḡ(t)v+ĝ(t), ḡ(T ) = ĝ(T ) = 0,

h(t, l) = h̄(t)l + ĥ(t), h̄(T ) = ĥ(T ) = 0.

(71)

Then,

gt = g(ḡtv + ĝt), gv = gḡ, gvv = gḡ2, ht = h̄tl + ĥt, hl = h̄, hll = 0. (72)

Inserting Eqs. (71)-(72) into Eq. (70) implies

x+ h

1− γ

{
v

[
ḡt +

(
−κ+

λ1(1− (βS + γ))σV ρ

βS + γ
+
λ2(1− (βV + γ))σV

√
1− ρ2

βV + γ

)
ḡ

+

(
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2)

2(βV + γ)(1− γ)

)
ḡ2

+
λ2

1(1− γ)

2(βS + γ)
+
λ2

2(1− γ)

2(βV + γ)

]
+ ĝt + r(1− γ) + κδḡ

}
+ l
{
h̄t + (µL − r)h̄+ ξ

}
+ ĥt − rĥ = 0.

(73)

By separating the variables with and without x, v and l, we can derive the following equa-

tions:

ḡt +

(
−κ+

λ1(1− (βS + γ))σV ρ

βS + γ
+
λ2(1− (βV + γ))σV

√
1− ρ2

βV + γ

)
ḡ

+

(
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2)

2(βV + γ)(1− γ)

)
ḡ2

+
λ2

1(1− γ)

2(βS + γ)
+
λ2

2(1− γ)

2(βV + γ)
= 0,

ĝt + r(1− γ) + κδḡ = 0,

h̄t + (µL − r)h̄+ ξ = 0, ĥt − rĥ = 0.

Considering the boundary conditions, we have

ḡ(t) =
ν1ν2 − ν1ν2eα2(ν1−ν2)(T−t)

ν2 − ν1eα2(ν1−ν2)(T−t) , ĝ(t) =

∫ T

t

[r(1− γ) + κδg1(s)] ds,

h̄(t) =
ξ

µL − r
(e(µL−r)(T−t) − 1), ĥ(t) = 0,

(74)

where

α1 = −κ+
λ1(1− (βS + γ))σV ρ

βS + γ
+
λ2(1− (βV + γ))σV

√
1− ρ2

βV + γ
,

α2 =
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2)

2(βV + γ)(1− γ)
,

α3 =
λ2

1(1− γ)

2(βS + γ)
+
λ2

2(1− γ)

2(βV + γ)
,

ν1,2 =
α1 ±

√
α2

1 − 4α2α3

−2α2

.
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Substituting ḡ(t), ĝ(t), h̄(t) and ĥ(t) into Eqs. (64) and (66), we can derive θ∗S(t), θ∗V (t),

φ∗S(t) and φ∗V (t).

As βS, βV > 0, γ > 1, we have α2 > 0 and α3 < 0. By calculations, we obtain

α2 =
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2)

2(βV + γ)(1− γ)
,

=
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

σ2
V ρ

2

2(βS + γ)(1− γ)
− σ2

V ρ
2

1− γ +
(βS + γ)σ2

V ρ
2

2(1− γ)

+
σ2
V (1− ρ2)

2(βV + γ)(1− γ)
− σ2

V (1− ρ2)

1− γ +
(βV + γ)σ2

V (1− ρ2)

2(1− γ)
,

=
σ2
V

2
+

σ2
V ρ

2

2(βS + γ)(1− γ)
+

σ2
V (1− ρ2)

2(βV + γ)(1− γ)
− σ2

V

1− γ +
γσ2

V

2(1− γ)
.

As γ > 1, we have

σ2
V ρ

2

2(βS + γ)(1− γ)
+

σ2
V (1− ρ2)

2(βV + γ)(1− γ)
>

σ2
V ρ

2

2(1− γ)
+
σ2
V (1− ρ2)

2(1− γ)
=

σ2
V

2(1− γ)
.

Therefore,

α2 >
σ2
V

2
+

σ2
V

2(1− γ)
− σ2

V

1− γ +
γσ2

V

2(1− γ)
= 0.

Because α3 < 0, α2
1 − 4α2α3 > 0. The proof of Theorem 3.2 is completed.

Appendix E

This appendix mainly provides the proof of Theorem 3.4. Before giving the proof, we

present some lemmas, which are used in the proof of Theorem 3.4.

Lemma E.1. ḡ(t) given by Eq. (28) is an increasing function of t and ḡ(t) ≤ 0, ∀t ∈ [0, T ].

Proof. The direct calculation shows that

ḡt(t) =
−ν1ν2(ν1 − ν2)2α2eα2(ν1−ν2)(T−t)

(ν2 − ν1eα2(ν1−ν2)(T−t))2
.

It is obvious that ν2 > 0 > ν1 and α2 > 0, which implies that ḡt(t) > 0, i.e., ḡ(t) is an

increasing function of t. As ḡ(T ) = 0, then ḡ(t) ≤ 0, ∀t ∈ [0, T ].

In Theorem 3.2, we have already derived the optimal risk exposure and the optimal

investment strategy. However, we should guarantee that the Radon-Nikodym derivative

Λ∗(t) of Q w.r.t. P corresponding to the optimal worst-case scenario drifts φ∗S(t) and φ∗V (t),

i.e., the expression Λ(t) with φ∗S(t), φ∗V (t) instead of φS(t) and φV (t), is indeed a P-martingale,

which ensures a well-defined Q∗. The following lemma states sufficient conditions for this

scenario based on Novikov’s condition and Theorem 5.1 in Taksar and Zeng (2009).
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Lemma E.2. Novikov’s condition

E

[
exp

(∫ T

0

(
1

2
(φ∗S(s))2 +

1

2
(φ∗V (s))2

)
ds

)]
<∞

holds for φ∗S(t) and φ∗V (t) if the parameters satisfy that for ∀ḡ(t) ∈ [ḡ(0), 0],

β2
S(λ1(1− γ) + σV ρV ḡ(t))2

(1− γ)2(βS + γ)2
+
β2
V (λ2(1− γ) + σV

√
1− ρ2

V ḡ(t))2

(1− γ)2(βV + γ)2
<
κ2

σ2
V

. (75)

Proof. From Theorem 3.2, we have

φ∗S(t) =
βS
√
V (t)(λ1(1− γ) + σV ρV ḡ(t))

(1− γ)(βS + γ)
, φ∗V (t) =

βV
√
V (t)(λ2(1− γ) + σV

√
1− ρ2

V ḡ(t))

(1− γ)(βV + γ)
.

Then

E

[
exp

(∫ T

0

(
1

2
(φ∗S(s))2 +

1

2
(φ∗V (s))2

)
ds

)]

= E

[
exp

(∫ T

0

(
β2
S(λ1(1− γ) + σV ρḡ(s))2

2(1− γ)2(βS + γ)2
+
β2
V (λ2(1− γ) + σV

√
1− ρ2ḡ(s))2

2(1− γ)2(βV + γ)2

)
V (t)ds

)]
.

With condition (75), we can verify that Φ∗ := {φ∗(t) := (φ∗S(t), φ∗V (t))}t∈[0,T ] satisfies

Novikov’s condition as follows.

E

[
exp

(
1

2

∫ T

0

||φ∗(s)||2ds

)]
= E

[
exp

(∫ T

0

(
1

2
(φ∗S(s))2 +

1

2
(φ∗V (s))2

)
ds

)]

≤ E

[
exp

(
κ2

2σ2
V

∫ T

0

V (s)ds

)]
<∞.

The first estimate follows from condition (75) because of the property of quadratic functions,

and the second is from Theorem 5.1 in Taksar and Zeng (2009).

To verify condition (4) in Proposition 3.1, we present another lemma.

Lemma E.3. For problem (16), if J(t, x, v, l) is the solution to the HJB equation (19) and

the parameters satisfy that for ḡ(t) ∈ [ḡ(0), 0],

[64(1− γ)2 − 4(1− γ)][(m(t))2 + (n(t))2] + 8(1− γ)A(t) ≤ κ2

2σ2
V

, (76)

we have

EΦ∗

[
sup
t∈[0,T ]

|J(t,XΦ∗,u∗
(t), V (t), L(t))|4

]
<∞,

and

EΦ∗

[
sup
t∈[0,T ]

∣∣∣∣
(φ∗S(t))2

2ΨS(t,XΦ∗,u∗(t), V (t), L(t))
+

(φ∗V (t))2

2ΨV (t,XΦ∗,u∗(t), V (t), L(t))

∣∣∣∣
2
]
<∞,

where

A(t) = γ(m(t))2 − σV ρV ḡ(t)m(t) + γ(n(t))2 − σV
√

1− ρ2
V ḡ(t)n(t), (77)

and m(t), n(t) are given by Eqs. (26) and (27).
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Proof. Step 1. Proof of EΦ∗ [
supt∈[0,T ] |J(t,XΦ∗,u∗

(t), V (t), L(t))|4
]
<∞.

Substituting Eqs. (22) and (25) into Eq. (13), we have

d(XΦ∗,u∗
(t) + h̄(t)L(t))

XΦ∗,u∗ + h̄(t)L(t)
= (r + A(t)V (t))dt+m(t)

√
V (t)dWΦ∗

S (t) + n(t)
√
V (t)dWΦ∗

V (t),

(78)

where m(t), n(t) and A(t) are given by Eqs. (26), (27) and (77). It is easy to obtain that

Eq. (78) has a unique positive solution

XΦ∗,u∗
(t) + h̄(t)L(t) = (x0 + h̄(0)l0) exp

{∫ t

0

rds+

∫ t

0

(
A(s)− 1

2
(m(s))2 − 1

2
(n(s))2

)

︸ ︷︷ ︸
Ā(s)

V (s)ds

+

∫ t

0

m(s)
√
V (s)dWΦ∗

S (s) +

∫ t

0

n(s)
√
V (s)dWΦ∗

V (s)

}
.

Because

J(t,XΦ∗,u∗
(t), V (t), L(t)) =

(XΦ∗,u∗
(t) + h̄(t)L(t))1−γ

1− γ exp(ḡ(t)V (t) + ĝ(t)),

ḡ(t) ∈ [ḡ(0), 0], and ĝ(t) is bounded, we obtain the following estimate with the appropriate

constant K1 > 0,

|J(t,XΦ∗,u∗
(t), V (t), L(t))|4 =

∣∣∣∣
(XΦ∗,u∗

(t) + h̄(t)L(t))1−γ

1− γ exp(ḡ(t)V (t) + ĝ(t))

∣∣∣∣
4

≤ K1

∣∣∣∣(XΦ∗,u∗
(t) + h̄(t)L(t))1−γ

∣∣∣∣
4

.

Next, we focus on |(XΦ∗,u∗
(t) + h̄(t)L(t))1−γ|4.

∣∣∣∣(XΦ∗,u∗
(t) + h̄(t)L(t))1−γ

∣∣∣∣
4

≤ K2 exp

{∫ t

0

4(1− γ)Ā(s)V (s)ds+

∫ t

0

4(1− γ)m(s)
√
V (s)dWΦ∗

S (s)

+

∫ t

0

4(1− γ)n(s)
√
V (s)dWΦ∗

V (s)

}

= K2 exp

{∫ t

0

[
32(1− γ)2(m(s))2 + 32(1− γ)2(n(s))2 + 4(1− γ)Ā(s)

]
V (s)ds

}

︸ ︷︷ ︸
F1(t)

· exp

{∫ t

0

− 32(1− γ)2(m(s))2V (s)ds+

∫ t

0

4(1− γ)m(s)
√
V (s)dWΦ∗

S (s)

}

︸ ︷︷ ︸
F2(t)

· exp

{∫ t

0

− 32(1− γ)2(n(s))2V (s)ds+

∫ t

0

4(1− γ)n(s)
√
V (s)dWΦ∗

V (s)

}

︸ ︷︷ ︸
F3(t)

,
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where K2 is a constant. For the term F2(t), we can find an estimate as

EΦ∗
[(F2(t))4]

= EΦ∗
[
exp

(∫ t

0

− 128(1− γ)2(m(s))2V (s)ds+

∫ t

0

16(1− γ)m(s)
√
V (s)dWΦ∗

S (s)

)]
<∞.

Because (F2(t))4 is a non-negative local martingale, it is a supermartingale. In fact, (F2(t))4

is a martingale due to bounded function 16(1 − γ)m(t) on [0, T ] (see Lemma 4.3 in Taksar

and Zeng, 2009). Similarly, we have EΦ∗
[(F3(t))4] <∞, and (F3(t))4 is also a martingale.

For the term F1(t), we estimate EΦ∗
[(F1(t))2] as

EΦ∗
[(F1(t))2] = EΦ∗

[
exp

(∫ t

0

(
64(1− γ)2(m(s))2 + 64(1− γ)2(n(s))2 + 8(1− γ)Ā(s)

)
V (s)ds

)]
.

Again applying Theorem 5.1 in Taksar and Zeng (2009), we obtain EΦ∗
[(F1(t))2] <∞ if for

ḡ(t) ∈ [ḡ(0), 0], the following condition holds:

64(1− γ)2(m(s))2 + 64(1− γ)2(n(s))2 + 8(1− γ)Ā(s) ≤ κ2

2σ2
V

,

i.e.,

[64(1− γ)2 − 4(1− γ)][(m(s))2 + (n(s))2] + 8(1− γ)A(s) ≤ κ2

2σ2
V

.

Applying the Cauchy-Schwartz inequality, we can arrive at

EΦ∗ |J(t,XΦ∗,u∗
(t), V (t), L(t))|4 ≤ K3EΦ∗ [|(XΦ∗,u∗

(t) + h̄(t)L(t))1−γ|4
]
≤ K4EΦ∗

[F1(t)F2(t)F3(t)]

≤ K4

{
EΦ∗

[(F1(t))2]EΦ∗
[(F2(t)F3(t))2]

} 1
2

≤ K4

{
EΦ∗

[F1(t)2](EΦ∗
[(F2(t))4]EΦ∗

[(F3(t))4])
1
2

} 1
2
<∞,

where K3 and K4 are appropriate positive constants.

Step 2. Proof of EΦ∗
[
supt∈[0,T ] | (φ∗S(t))2

2ΨS(t,XΦ∗,u∗ (t),V (t),L(t))
+

(φ∗V (t))2

2ΨV (t,XΦ∗,u∗ (t),V (t),L(t))
|2
]
< ∞.

Inserting Eq. (18) into EΦ∗
[
supt∈[0,T ] | (φ∗S(t))2

2ΨS(t,XΦ∗,u∗ (t),V (t),L(t))
+

(φ∗V (t))2

2ΨV (t,XΦ∗,u∗ (t),V (t),L(t))
|2
]

yields

EΦ∗

[
sup
t∈[0,T ]

∣∣∣∣
(φ∗S(t))2

2ΨS(t,XΦ∗,u∗(t), V (t), L(t))
+

(φ∗V (t))2

2ΨV (t,XΦ∗,u∗(t), V (t), L(t))

∣∣∣∣
2
]

= EΦ∗

[
sup
t∈[0,T ]

∣∣∣∣
(1− γ)J(t,XΦ∗,u∗

(t), V (t), L(t))(φ∗S(t))2

2βS

+
(1− γ)J(t,XΦ∗,u∗

(t), V (t), L(t))(φ∗V (t))2

2βV

∣∣∣∣
2
]

≤ EΦ∗

[
sup
t∈[0,T ]

∣∣∣∣
(1− γ)(φ∗S(t))2

2βS
+

(1− γ)(φ∗V (t))2

2βV

∣∣∣∣
2

|J(t,XΦ∗,u∗
(t), V (t), L(t))|2

]

≤ EΦ∗

[
sup
t∈[0,T ]

∣∣∣∣
(1− γ)(φ∗S(t))2

2βS
+

(1− γ)(φ∗V (t))2

2βV

∣∣∣∣
4
] 1

2

EΦ∗

[
sup
t∈[0,T ]

|J(t,XΦ∗,u∗
(t), V (t), L(t))|4

] 1
2

<∞.
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Based on Lemmas E.2 and E.3, we can prove the verification theorem.

Proof of Theorem 3.4. Following the process of solving the HJB equation, conditions

(1) and (2) of the admissible strategy hold, and condition (3) of the admissible strategy can

be obtained by EΦ∗ [
supt∈[0,T ] |J(t,XΦ∗,u∗

(t), V (t), L(t))|4
]
<∞ in Lemma E.3. Thus, u∗ is

an admissible strategy. For Lemmas E.2 and E.3, we can simply apply Proposition 3.1 to

prove that u∗ is the optimal strategy for problem (16) and J(t, x, v, l) is the corresponding

optimal value function.

Appendix F

This appendix provides some special cases when the pension investor has no access to

the derivative.

Remark F.1. We present several special cases to show the relationships between ũ∗(t)

and βS, βV and γ. It is obvious that the effect of σL on ũ∗(t) depends on the value of ρL.

When ρL = 0, the optimal investment strategy in this case, denoted ũ∗1(t), can be written

as ũ∗1(t) = m̃1(t)
(

1 + h̄(t) L(t)

Xu∗ (t)

)
, and the optimal value function in this case, denoted

J̃1(t, x, v, l), can be written as J̃1(t, x, v, l) = (x+h̄(t)l)1−γ

1−γ exp(ḡ4(t)v + ĝ4(t)), where

m̃1(t) =
λ1(1− γ) + (1− (βS + γ))σV ρV ḡ3(t)

(1− γ)(βS + γ)
, ḡ4(t) =

ν̃11ν̃21 − ν̃11ν̃21eα̃21(ν̃11−ν̃21)(T−t)

ν̃21 − ν̃11eα̃21(ν̃11−ν̃21)(T−t) ,

ĝ4(t) =

∫ T

t

[r(1− γ) + κδḡ4(s)] ds, α̃11 = −κ+
λ1(1− (βS + γ))σV ρV

βS + γ
,

α̃21 =
σ2
V

2
− βSσ

2
V ρ

2
V

2(1− γ)
− βV σ

2
V (1− ρ2

V )

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2
V

2(βS + γ)(1− γ)
,

α̃31 =
λ2

1(1− γ)

2(βS + γ)
, ν̃11,21 =

α̃11 ±
√
α̃2

11 − 4α̃21α̃31

−2α̃21

,

and h̄(t) is given by Eq. (30). By derivation, we obtain α̃2
11 − 4α̃21α̃31 ≥ 0. As h̄(t) > 0,

ḡ4(t) < 0, ρV = 0 and γ > 1, following simple calculations, we have
∂ũ∗1(t)

∂(βS+γ)
< 0, which

implies that the optimal investment strategy decreases w.r.t. aversion to ambiguity and

risk in some cases. This result is intuitive and similar to the case involving the derivative.

When ρL = 1, the optimal investment strategy in this case, denoted ũ∗2(t), can be written

as ũ∗2(t) = m̃(t)
(

1 + h̄(t) L(t)

Xu∗ (t)

)
− σLh̄(t) L(t)

Xu∗ (t)
, and the optimal value function in this case,
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denoted J̃2(t, x, v, l), can be written as J̃2(t, x, v, l) = (x+h̄(t)l)1−γ

1−γ exp(ḡ5(t)v + ĝ5(t)), where

ḡ5(t) =
ν̃12ν̃22 − ν̃12ν̃22eα̃22(ν̃12−ν̃22)(T−t)

ν̃22 − ν̃12eα̃22(ν̃12−ν̃22)(T−t) ,

ĝ5(t) =

∫ T

t

[r(1− γ) + κδḡ5(s)] ds,

α̃12 = −κ+
λ1(1− (βS + γ))σV

βS + γ
,

α̃22 =
σ2
V

2
− βSσ

2
V

2(1− γ)
+

(1− (βS + γ))2σ2
V

2(βS + γ)(1− γ)
,

α̃32 =
λ2

1(1− γ)

2(βS + γ)
, ν̃12,22 =

α̃12 ±
√
α̃2

12 − 4α̃22α̃32

−2α̃22

,

and h̄(t) is given by Eq. (30). By derivation, we obtain α̃2
12 − 4α̃22α̃32 ≥ 0. When ρL =

−1, the optimal investment strategy in this case, denoted ũ∗3(t), can be written as ũ∗3(t) =

m̃(t)
(

1 + h̄(t) L(t)

Xu∗ (t)

)
+ σLh̄(t) L(t)

Xu∗ (t)
, and the optimal value function in this case, denoted

J̃3(t, x, v, l), can be written as J̃3(t, x, v, l) = (x+h̄(t)l)1−γ

1−γ exp(ḡ6(t)v + ĝ6(t)), where

ḡ6(t) =
ν̃13ν̃23 − ν̃13ν̃23eα̃23(ν̃13−ν̃23)(T−t)

ν̃23 − ν̃13eα̃23(ν̃13−ν̃23)(T−t) ,

ĝ6(t) =

∫ T

t

[r(1− γ) + κδḡ6(s)] ds,

α̃13 = −κ− λ1(1− (βS + γ))σV
βS + γ

,

α̃23 =
σ2
V

2
− βSσ

2
V

2(1− γ)
+

(1− (βS + γ))2σ2
V

2(βS + γ)(1− γ)
,

α̃33 =
λ2

1(1− γ)

2(βS + γ)
, ν̃13,23 =

α̃13 ±
√
α̃2

13 − 4α̃23α̃33

−2α̃23

,

and h̄(t) is given by Eq. (30). By derivation, we obtain α̃2
13 − 4α̃23α̃33 ≥ 0.

Compared with Remark 3.5, we find that when the investor has no access to the derivative,

the non-redundant condition is unnecessary. Therefore, we analyze the case of ρ = ±1 here

and provide related explicit results. From the previous results, we find that the equity

premium λ2 for additional volatility risk is now 0; the investor has no way to cope with

the volatility risk. She may increase her wealth invested in the stock (the second part in

Eq. (23) is dropped), which causes her to undertake more risk than in the case with the

derivative, and decrease her utility at retirement. The following special cases can be studied

in a similar way. For a detailed comparison, we list related explicit results below.

Remark F.2. If σL = 0, the salary process is non-stochastic; then, the optimal investment

in this case, denoted ũ∗4(t), can be written as ũ∗4(t) = m̃(t)(1 + ĥ(t)

Xu∗ (t)
), and the optimal value

function in this case, denoted J̃4(t, x, v), can be written as J̃4(t, x, v) = (x+ĥ(t))1−γ

1−γ exp(ḡ3(t)v+

ĝ3(t)), where ĥ(t), m̃(t), ḡ3(t) and ĝ3(t) are given by Eqs. (35) and (46). In this case, we

find that the optimal investment strategy is proportional to m̃(t).
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Furthermore, if there is no salary and no derivative, our model reduces to a portfolio

selection problem for an ambiguity-averse investor. The optimal investment strategy in this

case, denoted ũ∗5(t), can be written as ũ∗5(t) = λ1(1−γ)+(1−(βS+γ))σV ρV ḡ3(t)
(1−γ)(βS+γ)

, and the optimal

value function in this case, denoted J̃5(t, x, v), can be written as J̃5(t, x, v) = x1−γ
1−γ exp(ḡ3(t)v+

ĝ3(t)), where ḡ3(t) and ĝ3(t) are given by Eq. (46).

Remark F.3. If there is no derivative in the financial market and if the pension investor

is ambiguity neutral, then the optimal investment strategy, denoted ũ∗6(t), can be written

as ũ∗6(t) = λ1+σV ρV ḡ7(t)
γ

(
1 + h̄(t) L(t)

Xu∗ (t)

)
− σLρLh̄(t) L(t)

Xu∗ (t)
, and the optimal value function,

denoted J̃6(t, x, v, l), can be written as J̃6(t, x, v, l) = (x+h̄(t)l)1−γ

1−γ exp(ḡ7(t)v + ĝ7(t)), where

ḡ7(t) =
ν̃14ν̃24 − ν̃14ν̃24eα̃24(ν̃14−ν̃24)(T−t)

ν̃24 − ν̃14eα̃24(ν̃14−ν̃24)(T−t) , (79)

ĝ7(t) =

∫ T

t

[r(1− γ) + κδḡ7(s)] ds, (80)

α̃14 = −κ+
λ1(1− γ)σV ρV

γ
, α̃24 =

σ2
V

2
+

(1− γ)σ2
V ρ

2
V

2γ
,

α̃34 =
λ2

1(1− γ)

2γ
, ν̃14,24 =

α̃14 ±
√
α̃2

14 − 4α̃24α̃34

−2α̃24

,

and h̄(t) is given by Eq.(30). By derivation, we obtain α̃2
14 − 4α̃24α̃34 ≥ 0.

Remark F.4. If there is no derivative in the financial market, the pension investor is

ambiguity neutral and σL = 0, the salary process is non-stochastic; then in this case, the

optimal investment strategy, denoted ũ∗7S(t), can be written as ũ∗7S(t) = λ1+σV ρV ḡ7(t)
γ

(1 +

ĥ(t)

Xu∗ (t)
), and the optimal value function in this case, denoted J̃7(t, x, v), can be written as

J̃7(t, x, v) = (x+ĥ(t))1−γ

1−γ exp(ḡ7(t)v+ ĝ7(t)), where ĥ(t), ḡ7(t) and ĝ7(t) are given by Eqs. (35),

(79)-(80).

Furthermore, if there is no salary, no ambiguity and no derivative in our model, the op-

timization problem becomes a portfolio selection problem for an ambiguity-neutral investor;

the optimal investment in this case, denoted ũ∗8S(t), can be written as ũ∗8S(t) = λ1+σV ρV ḡ7(t)
γ

,

and the optimal value function in this case, denoted J̃8(t, x, v), can be written as J̃8(t, x, v) =

x1−γ
1−γ exp(ḡ7(t)v + ĝ7(t)), where ḡ7(t) and ĝ7(t) are given by Eqs. (79) and (80).

Remark F.5. If σV = 0, the volatility of the risky asset is non-stochastic, and as noted

above, the derivative is indeed redundant. The optimal investment strategy in this special

case, denoted ũ∗9(t), can be written as ũ∗9(t) = λ1

βS+γ
(1 + h̄(t) L(t)

Xu∗ (t)
) − σLρlh̄(t) L(t)

Xu∗ (t)
, and

the optimal value function in this case, denoted J̃9(t, x, l), can be written as J̃9(t, x, l) =
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(x+ h̄(t)l)1−γ

1− γ exp(ĝ8(t)), where

ĝ8(t) =

(
r(1− γ) +

λ2
1(1− γ)δ

2(βS + γ)

)
(T − t) +

λ2
1(1− γ)(v0 − δ)

2(βS + γ)κ
(exp(−κt)− exp(−κT )) ,

and h̄(t) is given by Eq.(30).

Appendix G

This appendix provides the optimal strategy under two special cases, European-style call

and put options. Option pricing for the stochastic volatility model adopted here refers to

Liu and Pan (2003) and Cui et al. (2017). We derive the prices of European-style call and

put options with time τ to expiration and striking at K as follows

C(t) = c(t, τ, S, V ;K); P (t) = p(t, τ, S, V ;K),

where S is the spot price and V is the market volatility at time t, and the call and put

options’ prices are, respectively,

c(t, τ, S, V ;K) = SP1(t, τ, S, V ;K)− e−rτKP2(t, τ, S, V ;K),

p(t, τ, S, V ;K) = e−rτK(1− P2(t, τ, S, V ;K))− S(1− P1(t, τ, S, V ;K)),

where the risk-neutral probabilities P1 and P2 are recovered from inverting the respective

characteristic functions

P1(t, τ, S, V ;K) =
1

2
− 1

π

∫ ∞

0

Im

[
eiz(lnK−lnS−rτ)eA(1−iz)+B(1−iz)V

z

]
dz,

P2(t, τ, S, V ;K) =
1

2
− 1

π

∫ ∞

0

Im

[
eiz(lnK−lnS−rτ)eA(−iz)+B(−iz)V

z

]
dz,

where Im denotes the imaginary component of a complex number, and A(y), B(y) are given

by

B(y) = − a(1− e−qτ )

2q − (q + b)(1− e−qτ )
,

A(y) = −κ
∗δ∗

σ2
V

(
(q + b)τ + 2 ln

(
1− q + b

2q
(1− e−qτ )

))
,

a = y(1− y), b = ρV σV y − κ∗,

q =
√
b2 + aσ2

V , κ∗ = κ+ σV (ρV λ1 +
√

1− ρ2
V λ2), δ∗ =

κδ

κ∗
.

The price of the straddle option used in our numerical examples is given by

O(t) = c(t, τ, S, V ;K) + p(t, τ, S, V ;K).
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