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Abstract

This paper provides a derivative-based optimal investment strategy for am,ambiguity-
averse pension investor who faces not only risks from time-varying income and market re-
turn volatility but also uncertain economic conditions over a long time horizon. We derive
a robust dynamic derivative strategy and show that the optimalsstrategy under ambiguity
aversion reduces the exposures to market return risk and voelatility, risk and that the investor
holds opposite positions for the two risk exposures. In the presence of a derivative, ambiguity
has distinct effects on the optimal investment strategy. Mere important, we demonstrate the
utility improvement when considering ambiguity and exploiting derivatives and show that
ambiguity aversion and derivative trading significantly improve utility when return volatility
increases. This improvement becomes more significant under ambiguity aversion over a long

investment horizon.
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1. Introduction

Pension funds hold a significant share of the global market portfolio. Global institutional
pension fund assets in 22 major markets are approximately $36.4 trillion and increased

4.3% in 2016, and the total pension assets in these countries amount to 62% of their GDP!.
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Therefore, pension investment has become increasingly important. Moreover, derivatives are
increasingly popularity in pension investment and investors are often ambiguity averse. In
this paper, we combine these two features and provide a derivative-based optimal investment
strategy for an ambiguity-averse pension investor. The investor considers a market with
stochastic volatility and faces uncertainties concerning both salary income and economic
conditions over a long time horizon. We show that ambiguity aversion reduces the exposures
to market return and volatility risks. In the presence of a derivative, i.e., taking a call/put
option or a straddle option as an example, the investor buys stocks and simultaneously
shorts call and straddle options or shorts both the stock and put option. </These trading
strategies incentivize the investor to reduce portfolio risk. For each type of option;there are
distinct effects of the ambiguity over the market return risk and the stochastic volatility risk
on the optimal investment strategy. For example, ambiguity conc¢erning market return risk
always reduces the investment in both the stock and the straddle option, while ambiguity
concerning volatility risk reduces the investment in the straddle option while increasing the
investment in the stock. Our analysis further shows that“ambiguity aversion and derivative
trading significantly improve investors’ utility, espeeially when the return volatility is high
and/or the time horizon is long.

Motivated by recent studies on pension-investment, this paper provides an integrated
framework for studying an optimal defivative-based pension investment problem. There are
two types of pension funds: defined benefit (DB) and defined contribution (DC) pension
plans. Due to demographic chiangesand financial market development, many countries have
shifted their pension schemes from DB to DC plans to ease the pressure on social security
programs and have therefore transferred the investment risk to investors (Poterba et al.,
2007). As DC pension plans are playing an increasingly important role, more and more
individuals who'build their own DC pension funds have been exposed to the investment risk.

This paper explores various aspects of intertemporal portfolio choices regarding risk and
uncertainty,in DC pension plans, including market return and stochastic volatility risks
and income and economic uncertainties. In particular, wealth accumulation depends on
financial return and investors’ contribution which is related to their salary income. Over
a long horizon, investors face model instability (structural change of the model economy)
and asset return variability. The experimental studies (Bossaerts et al., 2010) demonstrate
that investors are averse not only to risk (the known probability distribution) but also to

ambiguity (the unknown probability distribution). Also, as we all know, the expected returns



are extremely difficult to estimate, and investors are skeptical of the reliability of standard
historical estimates. Therefore, it becomes increasingly important to take ambiguity aversion
into account, see Anderson et al. (1999), Merton (1980) and the references therein. Moreover,
long-term pension investments need to incorporate the risks of salary and the stochastic
volatility of stock returns, which are well documented in the empirical literature. On the
one hand, salary has significant effects on the optimal long-term portfolio choice of investors.
Munk and Sgrensen (2010) show that the relation between salary growth and interest rate
remains a significant factor determining the optimal investment strategy. On«the other
hand, as an important improvement of the Black-Scholes model, stochastievolatility has
been developed in the literature of option pricing, portfolio selection and related statistics
(e.g., Heston, 1993; Kim et al., 1998; Fernndez-Villaverde et al., 2015;,Camphell et al., 2016).
In this paper, we also take stochastic salary and stochastic volatility into account and study
the effects on the optimal investment decisions.

This paper is also related to the use of derivatives foroptimal investment. Liu and Pan
(2003) develop an optimal investment strategy of using derivatives with stochastic volatility
and price jumps. They find that derivatives help tosmprove investors’ utility. In practice,
the derivative market is well developed and provides abundant opportunities for pension
funds to cope with volatility risk. Derivatives are.becoming increasingly popular for pension
funds in many countries. For example; the.second and third pillars of the UK pension funds
are invested not only in capital marketsisuch as stocks and bonds, but also in foreign option
markets. In this paper, we follow this trend and consider the optimal investment strategy
for a DC pension investor-who issambiguity averse and is able to invest in bond, stock, and
derivative markets.

This paper is the fitst, to our knowledge, to explore the joint effect of ambiguity aversion
and derivative trading/on optimal pension investment and to examine their roles in improving
utility. The main contributions of this paper are as follows. First, we provide a proof showing
that the optimization problem is well posed, and also present the verification theorems to
guaranteeythe validity of the results. Second, we derive an optimal investment strategy
for the underlying asset and its derivative in a DC pension plan. As noted by Liu and
Pan (2003), derivative trading is essential for improving investors’ utility. We investigate
two models, one with and one without the derivative. By comparing the results of the two
models, we find that trading in derivatives leads to utility improvement by offering additional

investment opportunities. Third, after explicitly solving the model, we show that ambiguity



aversion affects an investor’s risk sharing in both the myopic and hedging components.
Moreover, the risk exposures to market return and volatility risks decrease with respect to
(w.r.t.) ambiguity. However, for the explicit investment strategies with the straddle option,
ambiguity concerning market return risk always reduces the investment in both the stock and
the derivative; ambiguity concerning volatility risk reduces the investment in the derivative
while increasing the investment in the stock. Finally, in DC pension investment, we find
that the optimal investment strategy has an additional hedging component that addresses
salary risk. In our model, salary risk generates different effects on an investor’s exposures to
market return and volatility risks.

This paper is related to three strands of the literature. The first strand is om'the asset
allocation of DC pension funds. Given the widespread use of DC pension,plans in prac-
tice, there is extensive literature addressing the asset allocation™preblems of DC pension
funds. The existing literature adopts a variety of objectives;\such as the expected utility
maximization (see Blake et al., 2013, 2014; Chen et al., 201% Deelstra et al., 2004; Emms,
2012; Giacinto et al., 2011) and the mean-variance criterion(see He and Liang, 2013; Sun
et al., 2016; Wu and Zeng, 2015).2 In a DC pensiofplan, human capital constitutes an in-
dispensable part of investors’ wealth. Therefore,the uncertainty regarding the future salary
is considered to be a typical background risk. “Several scholars have conducted research on
portfolio choices with salary risk (e.g.sBodie et al., 1992; Bodie et al., 2004). To explore the
effect of stochastic salary on an investor’s investment behavior, we assume that the salary
process follows a general stochastie,process, and then explicitly derive an optimal strategy.
We find that the correlation between the salary and market return/volatility risks results in
distinct effects: as salary risk increases, the investor always shorts more derivatives, but she

may reduce or inerease stock investment for different types of options.

2These papers explore different aspects of factors involved in the investment of DC pension plans. In the
utility maximization' framework, Deelstra et al. (2004) study the optimal design of guarantees in DC plans.
Giacinto et al.77(2011) investigate a model of optimal allocation for a DC pension plan with a minimum
guarantee. Blake et al. (2013, 2014) use numerical algorithms to solve optimal investment problems under
S-shaped utility and Epstein-Zin utility, respectively. Chen et al. (2017) adopt an S-shaped utility to
describe an investor’s preferences and obtain the optimal investment strategy in closed-form. Under the
mean-variance criterion, He and Liang (2013) study a portfolio model for a DC pension plan during the
accumulation phase and derive a time-consistent investment strategy within the game theoretic framework.
Wu and Zeng (2015) consider the effects of mortality risk on equilibrium strategies. Sun et al. (2016) use a

jump-diffusion model to investigate an optimal investment problem for DC pensions.



The second strand of the literature explores certain potentials and roles of derivative trad-
ing in managing stochastic volatility in DC pension plans. There is considerable empirical
evidence on time-varying stock return volatility (see Taylor, 1994, for a survey). Following
flhan et al. (2005) and Liu and Pan (2003)?, Hsuku (2007) studies a dynamic consumption
and asset allocation problem with a derivative under a recursive utility function. Jalal (2013)
derives dynamic option-based investment strategies for an investor who exhibits downside
loss aversion. Recently, Escobar et al. (2015) consider an optimal investment strategyfor an
ambiguity-averse investor who can invest in stock and derivative markets. However, there
are very limited results on dynamic asset allocation with derivatives in pensiéon investment,
despite the increasing popularity of using derivatives in the pension investment market. Ac-
cording to a report by the Singapore Exchange (SGX) from January 6, 2015, the value of
securities trading fell 25%, while derivative trading volume rose“to a,record high in 2014.
In the pension investment market, derivatives have been intreasingly used over the past
decade. The 2012 NAPF Annual Survey shows that 57%.0f member schemes include deriva-
tives. Moreover, the Global Pension Assets Study 2016 réports that at the end of 2015, the
average global asset allocation of the seven largest markets (Australia, Canada, Japan, the
Netherlands, Switzerland, the UK and the US) 1844 % equities, 29% bonds, 3% cash and 24%
other assets, which are mainly derivatives. In“this paper, we assume that the DC pension
investor is allowed to invest in a derivative market. By examining cases with and without a
derivative, we find that the use of’a derivative always improves investor’s utility.

The third strand is on ambiguityin‘portfolio selection. Ellsberg (1961) is the first to state
that most people are ambiguity ‘averse. Then there are numerous theoretical and empirical
studies that explore tle significance of ambiguity in affecting investor behavior (Bossaerts et
al., 2010; Cao et al., 2005; Dimmock et al., 2016, etc). Recent studies consider investment
problems with, ambiguity and robust decisions.Anderson et al. (2003) develop a constrained
worst-case model) and derive a robust decision. The model helps the decision maker to

assess thesfragility of any given decision rule. Maenhout (2004, 2006) also derive the optimal

3Specifically, Liu and Pan (2003) study the optimal investment strategies when an investor has access
not only to bond and stock markets but also to a derivative market and provide an example of the role of
derivatives in the presence of volatility risk. They find that derivative trading helps to improve investors’
utility. Ilhan et al. (2005) investigate an optimal investment problem for an investor who maximizes the
expected exponential utility from terminal wealth, combining a static position in derivatives with a traditional

dynamic trading strategy in stocks.



investment strategy for an investor who is ambiguity averse w.r.t. expected market returns.
Following Maenhout (2004), some studies address the implications of ambiguity for portfolio
choice. For example, Liu (2010) examines an optimal consumption and investment problem
for an ambiguity-averse investor with time-varying investment opportunities. Branger and
Larsen (2013) consider the optimal portfolio choice under different degrees of ambiguity
aversion concerning jump and diffusion risks. Flor and Larsen (2014) consider an optimal
investment strategy for an ambiguity-averse investor in the context of a stochastic interest
rate. Munk and Rubtsov (2014) study a portfolio management problem for an ambiguity-
averse investor under stochastic interest risk and inflation risk. Zheng et al. (2016) ¢onsider a
robust optimal investment-reinsurance problem using a constant elasticity0f variance (CEV)
model. They also explicitly solve the case of an exponential utility functien. Luo (2016)
studies the strategic consumption-portfolio rules with information-frietions and salary risk.
Our work is related to these works and makes several extensions to address ambiguity and
portfolio choice.

By considering ambiguity aversion, this paper providestartheoretical explanation of the
portfolio choice puzzle of “low portfolio fractions alleeated to equity” in the empirical liter-
ature (Dimmock et al., 2016). We further explore the distinct effects of different ambiguity
attitudes toward market return and volatility risks on the risk exposures and investment
proportions. In the presence of a derivative, we show that ambiguity always reduces the
derivative investment (in absolute terms)/while its effect on stock investment is uncertain.
By considering salary risk, our medel of DC pension investment is much richer than the
classical type of deterministic contribution model. A stochastic salary stipulates an exoge-
nous income stream,/Awhich makes it difficult to solve the optimization problem. In this
paper, we derive a‘closed-form of the robust investment strategy for DC pension plans (with
a stochastic salary). As in Anderson et al. (2003) and Maenhout (2004), the discrepancy
between the reference model and the alternative models is defined in terms of relative en-
tropy, which. serves as a penalty and quantifies the investor’s degree of ambiguity aversion
about thereference model. The aim of the investor is to maximize the expected utility from
the terminal wealth at retirement. Using the robust control approach, the robust optimal
investment strategy is derived in closed-form.

This paper provides some insights into the efficient investment of DC pension plans.
First, derivatives can provide an efficient way to diversify various risk factors to improve

pension funds’ investment performance. Because the DC pension investment horizon is long,



volatility risk has a significant effect on portfolio selection, and therefore, derivatives can
be very useful to manage such risk. We show that utility is always improved by using the
derivative, regardless of ambiguity aversion. Second, if an investor experiences uncertainty
concerning her reference model, she usually reduces her exposures to market return risk and
volatility risk. Moreover, there are distinct effects of ambiguity on the stock and derivative
investments. Third, different levels of the pension’s salary process, i.e., the different param-
eters in the salary process, result in different investment behaviors and have a significant
effect on the investment strategy. Paying attention to the salary process is necessary forthe
design of a DC pension plan.

The paper is organized as follows. Section 2 describes the model. ~Section”3 derives
the explicit expressions of the robust optimal risk exposures, investnient strategies and the
corresponding optimal value function when the derivative is available. Section 4 provides
the solutions without derivatives trading. Section 5 presents Several numerical examples to
illustrate the effects of the model parameters on the robust optimal investment strategy and
utility improvements generated by considering ambiguity=aversion and derivative trading.

Section 6 concludes the paper.

2. Investment under ambiguity

We study the optimal investment strategy of a DC pension investor who can invest in a
financial market consisting of a hend, aystock and a derivative of the stock. The stock price
follows a stochastic volatility process. We assume that there are no transaction costs or taxes
in the financial market and that, trading occurs continuously. In addition to undertaking
financial risk, the investor,also receives a stochastic salary stream and faces salary risk
during her working.petriod. Moreover, she is ambiguity averse regarding both the dynamics
of the stock and.its stochastic volatility. Throughout this paper, (Q, F, {F;}icjo,r. P) is a
filtered complete probability space on which the filtration {F;};c07) is generated by a two-
dimensional Brownian motion (Ws(t), Wy, (t)), where T' > 0 is a finite constant representing
the investment time horizon (retirement date); F; denotes the information available until

time ¢; and P is a reference measure.

2.1. Financial market
The financial market consists of a risk-free bond, a stock and a derivative. The risk-free

bond evolves according to
dSo(t) = rSp(t)dt, Sp(0) =1, (1)
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where r > 0 represents the risk-free interest rate. The stock price follows

dS@:aﬂﬂRT+MVU»dV+MV@MW@@}, S(0) = so, 2)

while the stock return variance V' (t) is governed by

AV () = k(6 — V())dt + on waGﬂwwmwh—@mw@) V(0)=w, (3)

where Wg(t) and Wy (t) are independent Brownian motions on a filtered complete prebabil-
ity space (€2, F, {F:}icjor), P). In this model, the instantaneous variance process.V (this a
stochastic process with long-run mean 6 > 0, mean-reversion rate x > 0, and volatility coef-
ficient o > 0. The price and volatility are correlated, which is captured™by thejcoefficient
pv € (—1,1) and represents an important feature of the real data. A, is a constant capturing
the market price of the risk factor Wg(t).

In addition to investing in the risk-free bond and the stock, the pension investor also
has the opportunity to invest in the derivative with the risky asset as the underlying asset.
Following Liu and Pan (2003), we consider the derivativeswith.price O(t, S(t), V (t)), (or O(t)
for short) at time ¢; this depends on the underlyingprice of the stock S(t) and its volatility
V(t), and its payoff structure at the expirationtime 7 is defined by O(7) = f(S(7), V(7))
for some function f. * Inspired by Liu and Pans(2003) and Escobar et al.(2015), we assume

that the price process of derivative Oft;'S(t), V'(t)) satisfies

dmw:m@a+mﬁ@+m%@QQN@w+¢Wﬂm@@
+ oy /A =030, ()\QV(t)dt - \/dev(t)> , t< T, (4)
O(r) = £(S(), V(7))
where )\, is a congtanticapturing the market price of stochastic volatility risk Wy (¢); Os and
O, are the partial derivatives of O w.r.t. S(t) and V/(t), respectively. We can show that
given a physical measure, there exists a unique risk-neutral measure in the extended financial

market (5,5, O) which is given by (1), (2) and (4), and prove that the financial market in

our papen,is complete and, furthermore, there is only one pricing kernel (see Appendix A).

4As in the literature, such as Liu and Pan (2003), the derivative includes most traded option types. As
shown in Liu and Pan (2003), the expiration date 7 of the derivative does not need to match the investment
horizon T. They present some examples of derivative types. For instance, a derivative with a linear payoff
structure f(S(7),V (7)) = S(7) becomes the stock itself. However, for some strike price K > 0, a derivative
with a non-linear payoff structure f(S(7), V(7)) = (S(7) — K)T corresponds to a European-style call option,
while that with f(S(7), V(7)) = (K — S(7))" corresponds to a European-style put option.



In a DC pension plan, the investor contributes part of her salary to the pension fund
before retirement. The salary process is essential when considering a DC pension plan. In

this paper, we assume that the dynamics of the investor’s salary are described by

dL(t) = L(t) [pLdt Vorpr ()\1V(t)dt + \/V(t)dWs(t)>
vor/T— 12 (AQV(t)dt + \/V(t)dWV(t)ﬂ , (5)

L(0) = lo,

where p;, > 0 is the appreciation rate, o, > 0 is the volatility and p;, € [-1%1] isithe

coefficient parameter.

Remark 2.1. The salary process plays an important role in pension plans/and. is analyzed
in several studies (Bodie et al., 2004; Chen et al., 2017; Deelstra et al., 2004; Dybvig and
Liu, 2010; Guan and Liang, 2014, 2015). Among these contributions, Bodie et al. (2004) and
Dybvig and Liu (2010) assume that the salary process is spanned by the stocks in the financial
market, which reflects the fact that salary is related to the profitability of the company. Guan
and Liang (2014) furthermore assume that the salary process is correlated with the volatility
of the stock. In those cases, salary risk is insurable“in the stock market. Because the
stochastic volatility contains some other risks faced by the investor in our model, we assume
the salary to be related to stochastic volatility. It would be interesting and more realistic
to introduce an independent random’process on the stochastic salary. In this case, the part
related to [? (the salary variable)canmnot be separated in the Hamilton-Jacobi-Bellman (HJB)
equation. It becomes difficultito derive closed-form solutions to the optimization problems,

which significantly complicates the analysis of the problems.

2.2. Ambiguity

The abovesmentioned framework is a traditional portfolio choice model in the DC pension
plan, where the investor is assumed to be ambiguity neutral. However, in reality, the investor
is usuallymambiguity averse and wants to guard herself against worst-case scenarios. To
incorporate ambiguity aversion into the investor’s investment problem, we assume that the
reference model capturing the knowledge of the investor’s ambiguity is described by the
probability measure P, but she is skeptical of this reference model and is willing to consider
some alternative models, which are defined by a class of probability measures equivalent to

P as follows (cf. Anderson et al., 2003; Maenhout, 2004):

Q:={QQ~F}.



Define ® := {¢(t) := (¢s(t), dv (1)) }ejo,r], which satisfies three conditions: (i) ¢s(t) and
oy (t) are Fi-measurable for each ¢ € [0, T; (ii) {exp{ fo ))2dt + (ov (£))?] dt}} <
oo; and (iii) [¢(¢)[* < KV () for as. (t,w) € [0, T]x €, with constant & € [max(¢, ¢,), k/0v ),
where ¢, and ¢, are defined in (20) and (41), respectively. We will explain ¢ in footnote 7
and ¢, in footnote 14 below. We denote © for the space of all such processes ®. Furthermore,

we define a real-valued process {A®(¢)|t € [0,T]} as

t 1 t t 1 t

A®<t>=exp{— [ os@aws(s) - 5 [ @stoyras - [ ovtoramis) - [ <¢V<s>>2ds}.
0 0 0 0

(6)

Accordingly, A®(t) is a P-martingale. For each ®, a new alternative measure Q that is

absolutely continuous with P on F7 is defined by

dQ

— | =A%T).
dP |7 (T)

By Girsanov’s Theorem, under the alternative measure Q 4we have
AW (t) = dWs(t) + ¢5(E)ar

AW (t) = dWy (t) Py (H)dt

where W (t) and W2 (t) are one-dimensional'standard Brownian motions. Furthermore, the
price and volatility of the stock, the priee of the derivative and the stochastic salary under

Q can be written as

AS™(t) = 8°(t) [ (r + V() H6s()V/ VI ) dt + VVEAWE (1))

AV*(0) = |w(5 30— o TR pvos(t) + /1 = pov(0)] at
+ o VVE v dWE (1) + /1 - pdWE (1)),

dO®(t) £ rO* )t + (0,5%(t) + oy pyO,) [Alvq’(t)dt — ps(O)/VER)AL + ¢v<1>—(t)dwg>(t)}
sov /1= A0, PV P (1)t — v () TFDAL + V7ROV

AL (Y = L®(1) [uLdt + oL (MVE)AL — ¢s(t)/VED) AL + /VE () dWE(¢))
T ouy/1— gV (1)t — 6 (1) V)L + v/ TEDAWE() } .

2.3. Wealth process

Let u := {u(t) := (us(t),uo(t))}icjo,r) be a trading strategy, and X*“(¢) is the wealth

process under strategy u, where ug(t), uo(t) and 1 —ug(t) —up(t) are the proportions of the

10



wealth invested in the stock, derivative and risk-free bond, respectively. Then, the wealth

process X" (¢) under probability measure P follows

mezwwk—mwwwﬁﬂf <>8

:XWWMHWAQ( (t)dt + /V(£)dWs(t) )
Oy (1) <)\2V(t)dt + \/dev(wﬂ 4 EL(t)dt

mﬁgbﬂmw

XU(O) = o,
(11)
where
- Os(t) B 1 —OSS(t)ga/vav us(t)
9(75) = = ov mov (12)
Oy (t) 0 Vom— uo(t)

represent the investor’s exposures to market return risk Ws(¢) and additional volatility risk
Wi (t), respectively. Here, we consider the exposures instead of portfelio weights to simplify
the analysis.®> As shown in Liu and Pan (2003), the exposure stemis from the dynamics of
asset prices and the specific portfolio.

In addition, we assume that the contribution rate of'the salary is £ € [0,1]. Then under

the ambiguity framework, the wealth process X®"(t) under probability measure Q follows

AXPU(E) = XU (p) [rdt +0s(1) </\1V‘I> Bt & Be(t)/ VROt + /VEDAWE (¢ )
Oy (1) (Aqu’(t)dt — oYV dt + MW(t)dW&(t))] LA (YAt

Definition 2.2. A strategy u = Au(t) =Aus(t),uo(t)) e, is said to be admissible if

(13)

(i) us(t) and up(t) are Fi-progressively measurable processes;
(i) Eq. (138) has a pathwise-unique solution {X‘I”“(t)}te[oﬂ, for any (t,x,v,l) € O :=
0, 7] x R?;
(1) B2, {7 L) + (wos)Dlds ) < o0 and Y, ,, [[U(X*(D)] < oo, for
any (t,z,v, )€ @, where BY,  [] = E®[|(X®*(t), V*(t), L*(t)) = (z,v,1)].

Denote by 11 the set of all admissible strategies.

2.4. Optimization problem
In this paper, the pension investor is assumed to be risk averse with a constant relative

risk aversion (CRRA) utility function and seeks to derive an investment strategy during

®We also provide the non-redundant condition as shown in Eq. (3.3) in Escobar et al. (2015) and
Eq. (12) in Liu and Pan (2003). Because we have only one derivative in the model and the relationship

between risk exposure and the portfolio weight is shown by Eq. (12), the non-redundant condition becomes

V1-p30, #0.
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the time interval [0,7] to maximize the expected utility from terminal wealth under the
ambiguity framework. Then, the optimization problem for the investor can be written as®

sup inf B? [U(Xq>,u(T)> +/T ( (¢s(s))? n (¢v(s))® )) ds] ’ (14)

well €0 0 \2Ug(s,x,v,l)  2Wy(s,z,v,l

where
=

and + is the coefficient of relative risk aversion. We assume that v > 1 for practical rélevance

(see Branger and Larsen, 2013; Escobar et al., 2015; Flor and Larsen, 2014). /The pertur-

Ul(x) (15)

)

bations ¢g(t) and ¢y (t) in the penalty term are scaled by Vg(t,x,v,l) and"Wy (tyx, v,1),
respectively. Wg(t,z,v,1) and Wy (¢, z,v,1) represent the preference parameters,for ambigu-
ity aversion and measure the degree of confidence in the reference model [P at time ¢; and
deviations from the reference measure are penalized by the lastlintegral term in the expec-
tation, which depends on the relative entropy arising from the diffusion risks. According to
Maenhout (2004), the larger Wg(t, x,v,l) and Wy (¢, x, v, [arepthe less the deviations from
the reference model are penalized. Furthermore, the pension investor has less faith in the
reference model, such that she is more likely to cemsider alternative models. Hence, the

pension investor’s ambiguity aversion is increasingww.r.t. Wg(t,z,v,l) and ¥y (¢, x,v,1).
Proposition 2.3. There exists a uniqueyfunction H(t,x,v,l) satisfying

H(t,$,@,l) = Suqu)*’u(t?fE,’U,D, (16)

uell

d* u _ D, u
H® %(t,x,v,1) ql)IElgH (t,27v,1)

SN [U(X T / T (wﬁi(% N 2\If(v¢(2,(8x),)z, l)) ds] |

(17)
_ Bs _ Bv
o) = gy Were)=amiaoy
and (8),(10), (13).
Proof. See Appendix B. m

SFollowing Anderson et al. (2003) and Maenhout (2004), the alternative models considered by the investor
are difficult to distinguish statistically from the reference model. To take this issue into account, the value
function includes a penalty term for deviating excessively from the reference model in the sense of relative

entropy (the last integral term in the expectation in Eq. (14)), which arises from diffusion risk.

12



Based on Proposition 2.3, we define H(t,z,v,l) as the optimal value function of our
optimization problem.

According to Pathak (2002), Branger and Larsen (2013), Escobar et al. (2015), Flor and
Larsen (2014) and Maenhout (2004), we assume the forms of (¢, x,v,1) and Wy (¢, z,v,1)
given by (18) for analytical tractability. In (18), 8s and [y are positive constants and
called ambiguity aversion parameters; these are used to describe the investor’s attitude
toward ambiguity. We allow the level of ambiguity concerning the stock price to differfrom
that concerning the stock’s volatility. For convenience, we abuse the notation slightlytand
interpret 8g as ambiguity aversion regarding market return risk and y as ambiguity aversion

regarding additional volatility risk.

3. Optimal investment strategy with a derivative

This section is devoted to deriving the optimal investment strategy for the DC pension
investor in the presence of a derivative. We first provide a closed-form solution to the case
in which the investor is ambiguity averse in general andithen analyze a special case without
ambiguity aversion.

For convenience, we introduce some notationsy Let
C222(0) = {Y(t,z,v,D)|(t, -, -,)uis onse continuously dif ferentiable on [0,T]
and (-, x,v, 1) is twicé continuously dif ferentiable on R3} .

Let u = (us,up), 0 = (0§8y) and ¢ = (¢s,dy) denote the values taken by u(t) =
(us(t), uo(t)), 0(t) = (0s(t),Bv (1)) and ¢(t) = (¢s(t), dv (1)), respectively. Forany (¢, z,v,1) €

O and Y(t,z,v,1) €CH%22(0), we define an infinitesimal generator as
APt o 0, 1) = g+ [re + 205 v + 20y Agv — 20505/0 — 20y dy /v + £l ),
+ [li(é —v) — ov\/Upv s — Uvﬁm¢v} Yy
+ [uLz +lophvpy — lopy/dspr + loghavy/T — p2 — zaLﬁapvm} by
—%x%(ﬁg + 03 ) + %angw + %l%imﬂu +lopvoy (pvpL + \/W) (.
+(zoyOsvpy + 2oy Oyo/1 — p2)ibe, + (20sloLvpr, + 20vloLvy/1 — 2 )b,

where Uy, V., Uy, V1, Yuw, Yous Yu, Y, Yap and 1, represent the partial derivatives of 1

w.r.t. the corresponding variables.

13



According to the principle of dynamic programming, the HJB equation with ambiguity
aversion can be derived as (see Escobar et al., 2015; Maenhout, 2006; Yi et al., 2013)

: 0% o }
sup inf QAP (tx,0,0) + 52 + S b =0 19
e |¢|s\/m{ ( ) Wy 20y, (19)

with the boundary condition J(7',z,v,l) = U(z).
The following proposition presents the conditions under which the solution of the HJB

equation is indeed the value function, and the control is the optimal strategy.

Proposition 3.1. If there exists a function J(t, z,v,1) € CY**2(0) and a contrél(u’, ®*) :=
{(u*(t), 9*(t)) }rejor € 1L x © such that
* 2 2
(1) for any ||¢]] < \/&D, AP J(t,2,0,1) + i + e > 0;
(2) for any u € R?, A®“J(t,z,v,1) + (¢5)° + @) 0,

g T 20y, =
. % *\2 * \2 .
(3) A J(t, z,v,1) + % + % =0, with J(T,z,v,l) = U(x)eand
(4) {J(1,z,0,1) }rex and {2\1(/(@?7(2)51) + 2\1(,&52)5’”}%5 are upiformly integrable, where ¥ de-

notes the set of stopping times T < T, u* = (uf,ul) and @* = (¢%, ¢3,) denote the values
taken by u*(t) = (us(t),us(t)) and ¢*(t) = (¢5(t), &% (£)), respectively. Then J(t,x,v,l) =

H(t,z,v,l), and (u*, ®*) is an optimal control,
Proof. See Appendix C. O
According to Proposition 3.1, wé know that the optimal investment strategy is u*, the

optimal risk exposure is

1 O55(t)+oy py Oy
* * * O *
COSNET O = g |0,
o(t)

the worst-case measureyis’®*, and the corresponding optimal value function is J(¢, z,v,() if

Novikov’s conditien is satisfied, which is given below.

Theorem 3.2+For the robust portfolio choice problem (16) with wealth process (13), if the

14



parameters satisfy certain technical conditions ”, the optimal risk exposure is

0%5(t) = mi(t) (1 + h(t)
0% (t) = n(t) (1 + h(t)

the optimal investment strategy is

_O:5(t) +ovpvO,y

o)

the corresponding optimal value function is
J(t,x,v,l) =

and the worst-case measure is given by

Bs(M(1 =) + ovpvi()/V(E)
(1—=7)(Bs+7) ’

95(t) =

(z + h(t)D)'—
1=~

ug(t),

5 (1) =

By (Aof

oy L)
X (t)’
(22)
7 L)
) = o1/ T= () s
ey OWo({E)
up(t) /1= 20, (23)
exp(g(t)v + 9()); (24)

L—7) +ovy1—ppg(t)VV(E)

(1 =By +7)

where { X*(t) }iepo,r) s the wealth process under the corresponding optimal strategy, and

A (1 =)+ (1 —ABs ¥7))ovpvg(t)

mit) = (=B ) ’ (26)
A1 =)+ (1< (Bv +7))ov/1— ptg(t)

nlt) = T2 +7) ’ 27)
Uy Vo~ V1V2€a2(V1—V2)(T—t)

9(t) = UgA 1y g2(n1—12)(T—t) 7 (28)

i< / NP1 =)+ dg(s)] ds. (20)

"The technical conditions are ¢ < x?/o} with

{ §X. BE( =) +ovpvi(0))”

EEEE Pt (AP TP

and for g(t). €4g(0), 0],

[64(1 — )% = 4(1 = N][(m (1) + (n(1))*] + 8(1 = P A(t) <

o

BEN; By (Al —7) +ovy/1—pig(0))°
By +7)% (1=7)2(Bv +7)?
(20)
KZQ
ﬁv (21)

which are needed in the verification theorem. According to Dotsis et al. (2007) and Sepp (2008), who give

the parameter estimates of the Heston model using the S&P500 index, we know that the value of x?/o%

in the technique conditions is very large (approximately 375.39). Therefore, more parameters can satisfy

conditions (20) and (21).
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h(t) = L(e(HL_T)(T_t) — 1), (30)

B —7rT
ar = —p 4 2= Bs +N))ovey | Aol = (Bv +7))ovy1 = P%/’ (31)
Bs+7 Bv +7
0o — OV Bsovpy + Bvoy (1= py)
2 2(1=1)
(1~ (s + )0k (1= (By + 1) 01— i) )
2(Bs +7)(1 =) 2Bv +1)(1=v)
A=) NA =) _arpx+/af —dagas
VTt 2Bty T 2a y”
— ~(m 2_UVPV§(t)m nn? — 2V 1_:0%/9@)”
A(t) = ~v(m(t)) Be 17 (t) +(n(1)) B (), (34)
Proof. See Appendix D. m

Theorem 3.2 presents three features of our results. First, thescomponents m(t) and
n(t) in optimal risk exposures 6%(t) and 65 (t) consist of traditienal components involving

the myopic and hedging components. Taking exposure to, market return risk 0%(¢) as an

A1
Bs+y

parameter Jg for stock risk but does not depend ow'the ambiguity aversion parameter [y

example, the myopic component is constant and decreases in the ambiguity aversion

for additional volatility risk. This shows.that, aymyopic investor concentrates solely on

the ambiguity aversion parameter Sg w.r.t. market return risk. The hedging component

(A1=(Bs+7))oveva(t)
(A=) (Bs+7)

on Py, as g(t) depends on [y . That is, the investor is concerned not only with Ss but also

is time dependent“and for a non-myopic investor, this component depends

with Sy w.r.t. market retwrnizisk. The case of exposure to additional volatility risk 63 (¢)
is easily analyzed in a similar manner. Second, from the remaining components of optimal
risk exposure, we find that the salary process exists in the portfolio and generates a new
hedging compouent w.rit. salary risk. Due to the assumption that the risk factors Wg(t)
and Wy (t) are contained in the salary process, this component is affected by both Sg and
Pv. Third, the.worst-case measure is chosen by Eq. (25), which is proportional to volatility
\/W . TPhe’case of ¢§(t) is affected by both the ambiguity regarding market return risk s
and the ambiguity regarding additional volatility risk [y .

Remark 3.3. In our results, m(t) and n(t) in the optimal risk exposure are consistent with
the previous studies on ambiguity, such as Branger and Larsen (2013) and Escobar et al.
(2015). However, they do not consider the salary risk, which is very important in a DC
pension plan. In this model, the worst-case measure here takes a form similar to that in

Escobar et al. (2015).
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Theorem 3.4. For problem (16), if there exists a function J(t,z,v,1) € CY**2(0) that is
a solution to the HJB equation (19) with boundary condition J(T,xz,v,l) = U(x) and if its
parameters satisfy conditions (20) and (21), then the optimal value function is H(t, x,v,l) =
J(t,z,v,1), and the optimal strategy is w* = {(u§(t), us(t)) beepo,r) given in Theorem 3.2.

Proof. See Appendix E. m

Remark 3.5. We present several special cases to show the relationships between 0%(¢),
0y, (t) and Bg, Py and 7. It is obvious that the effects of o, on 6%5(¢) and 6}, (¢) dépend on
the value of py. When p; = 0, the optimal risk exposure in this case, denoted,074(t) and

07, (1), can be written as 014(t) = m(?) (1 + ﬁ(t)Xﬁ?gt)) and 07, (t) = n(t) (1 + () Xﬁ&’fgt)) -

orh(t) L) and the optimal value function in this case, denoted J; (¢, #, v;), ¢an be written

Xu* (t)’
as Ji(t,x,v,l) = %exp@l(ﬂv + §1(t)).2 Moreover, as h(t) >0, g(#) < 0 and v > 1,
following simple calculations, when py = 0, we have ;Eegssg) <w07"which implies that the

optimal risk exposure decreases w.r.t. the sum of aversion, to ambiguity and risk in some
cases, which implies that the investor decreases her exposure to market return risk when she

is more ambiguity averse and risk averse.

Remark 3.6. If o, = 0, the salary process is non-stochastic; then the optimal risk exposure

in this case, denoted 54(t) and 65, (t), canwbe written as 05¢(t) = m(t)(1 + ngzt)) and

05, (t) =n(t)(1+ M), and the optimal,valuefunction in this case, denoted Js(¢, x,v), can

X (t)
_ (a+h()
= -

§lo
g — T

and m(t), n(t), g(t), g(#hare given by Eqgs. (26), (27), (28) and (29).° In this case, we find

be written as Jy(t, x, v) exp(g(t)v + g(t)), where

h(t) =

lexp(pT — (T — 1)) — exp(prt)], (35)

that the optimal risk exposures are proportional to m(t) and n(t).

8The optimal. investmient strategy when p; = 0, denoted ujg(t) and ul,(t), can be written as
_ 0, S(t)+ Ou(t), _ 06y (B) . .
uig(t) = 014(t) — %%o(t) and ui,(t) = lei\/ii;%,a,’ and the worst-case measure in this

case, denotedngiq(t) and ¢y (t), can be written as ¢jg(t) = ﬁS(Al(l_(vl)j%‘(/;:f;gt)) " and v (1) =
Bv (A2(1=y)%ov/1—pE g1(t)\/V(t)

(T=v)(Bv+7) , Where

_ _ a1 (v11—va1)(T—1) . T _

gi(t) = e s G1(t) = [, [r(1 =) + k851 (s)] ds,
_ M(A=(Bs+t)ovp | A2(=Bv+n))ovy/1-p%

Q= =k Bs+y + Byt ’

gy = TV BROVPYABvoy (A=py) | (I=(Bs+v)’0bpy | (1=(Bv+1))’07 (1=p})

1= 2(1-7) 2(Bs+7) (1) 2Bv+N1-)

X2 (1—y) A2(1—7) _anfy/o; —dasiaz

as1 = 2(155+'7) 2(25v+7)’ V21 = *510421 ’

and h(t) is given by Eq. (30). By derivation, we obtain o, — 4aajas; > 0.
9The optimal investment strategy when o = 0, denoted ujg(t) and uj,(t), can be written as
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Furthermore, if there is no salary in our model, i.e., £ = 0 or L(¢t) = 0, our problem
reduces to a portfolio selection problem. The optimal risk exposure in this case, denoted
1g(t) and 65, (t), can be written as 034(t) = m(t) and 65, (t) = n(t), and the optimal value
(g(t)v+4(t)),
where m(t), n(t), g(t) and g(t) are given by Eqs. (26), (27), (28) and (29), respectively.!”

function in this case, denoted J3(t, x,v), can be written as J3(t,z,v) = % .

Correspondingly, the optimal risk exposure is independent of wealth z. It is worth noting
that the optimal investment strategy obtained in the case without stochastic salary‘is the

same as that given in Escobar et al. (2015) without jumps.

Remark 3.7. If the pension investor is ambiguity neutral, i.e., both ambiguitysaversion

parameters g and Sy equal 0, the optimal risk exposure in this case,enoted 0;4(t) and

5y (t), can be written as 0¢(t) = M (1 + B(t)Xﬁg()t)) —oppih(t )% (() and 03, (t) =

oy/1— 2. 7 . . .
retoy i Pv5(t) (1 + h(t)Xi(f()t)) —op\/1—p2h(t XLu(t()t), and the optimal value function in
X 1 A
BtPOD 7 exp(ga(t)v+Ga(t)),

this case, denoted J5(t, x, v, 1), can be written as Jy(t, z, v, )=

where

Viglpy — Viglgge”?2(V12—v22)(T 1)

galt) = L oakt) / (r(1— ) + #oga(s)] s, (36)

Vg — 1/1260422(V12*V22)(T*t)
and h(t) is given by Eq.(30). By derivation, we‘obtain a2, — 4aggasy > 0.1

Similarly, the following remark prowides the optimal investment strategy in the case of

no ambiguity and no stochastic salary:

ubg(t) = 034(t) — w so(t) and ui,(t) = %7 and the worst-case measure in this
case, denoted ¢3¢(t) and, P5p.(f), can be written as ¢iq(t) = Pl (Y)J;;&;Z:i(;)) "0 and P3y(t) =

By (A2(1=v)+ov4/1— ﬂv(](t))\/V(t
A= (Bv+7)
19The optimal investment strategy without stochastic salary, denoted uj¢(t) and uj,(t), can be writ-

* = \px O:8(t)+ovpv Oy * _ _O®)o3,(t) . )
ten as uig(t) = 055(t)/~ ==Gu"—"uio(t) and ujy(t) = W, and the worst-case mea-

Bs (M (1—y)+ovpvat)\/V(t)
(1-7)(Bs+7)

sure in this case, denoted ¢3¢ (t) and @5 (), can be written as ¢iq(t) = and

d1 (1) = By(A2(1—=7)+0v+/1—p%G(1)\/V (1)
v 1A= (Bv+7)
1The optimal investment strategy w1thout ambiguity, denoted uj¢(t) and u},(t), can be written as

wjs(t) = O5g(t) — Q3WFevevOuys (1) and wjy (t) = 2040 1y By, (36),

O(t) ov/1-p%0,
AM(1—7)o A1 —Y)ov+/1—p? o?
01s = —k + 1 ( ) vﬂv+ 2( Yoy PV7 gy = 2V,
Y Y 2y
_ A+ A - 7) Vg gy = 212 +\/od, — 4o,
2’}/ ’ —20[22 '
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Remark 3.8. If the pension investor is ambiguity neutral and o; = 0, the salary process

is non-stochastic, and the optimal risk exposure in this case, denoted 6;4(t) and 6%, (¢), can

_ A1+vavgg(t)(1 0 ) and 6, (1) = >\2+0V\/1—P%/§2(t)<1 L _h® ), and

be written as 6¢(t) s SCHD) = > SSH0)

the optimal value function in this case, denoted J;(t,x,v), can be written as Js(t,z,v) =
(H?(ft)w)m exp(g2(t)v + G2(t)), where h(t), g(t) and ga(t) are given by Eqs. (35)-(36).12
Furthermore, if there is no salary and no ambiguity in our model, the optimization

problem becomes a portfolio selection problem for an ambiguity-neutral investor; the optimal

(t) = Aoy pyga(t)

risk exposure in this case, denoted 6 (t) and 6§, (t), can be written as ;g :

oya/1— 2 5 . . . .
and 65, (t) = Aatov 71 pVgQ(t), and the optimal value function in this case, denoted Js(¢, , v),

1;_7; exp(ga(t)v + go(t)), where go(t) and/go(t) are given by

can be written as Js(t,x,v) =
Eq. (36).'2 In this case, the result reduces to that of the optimal pértfolioyproblem in the
case without jumps in Liu and Pan (2003).

4. Optimal investment strategy without a derivative

In this section, to illustrate the significant role of the derivative, we seek the solution to
the case without a derivative and compare it to the result with a derivative.

If there is no derivative security in the financial market, the optimal investment strategy
equals the optimal risk exposure to Ws(t), and“the surplus process of an ambiguity-averse

pension investor under measure (Q becomes

AX®a(t) = XP8(¢) [rdt+ﬁ(t) <A1v<f>(t)dt — ds(t)\/VE(t)dt + v@(t)dwg(t))]
+EL*(t)dE,
(37)
where 1 := {a(t) } ol @ = {(t) := (ds(t), dv(t) }icjor), and the risk exposure equals

the investment strategy,1.e., Ag(t) = @(t). The optimization problem becomes

UXHR(T) + /T< Os)? , _(ov())? ))ds]}, (39)

acll $eO ¢ \2Ug(s,z0,l) 20y (s, z,0,1

sup inf {Ef’x ol

and the gorresponding HJB equation becomes

L 72 72
sup _inf A®EJ(t, z,0,1) + & + in =0, (39)
aeR ||9l|< Ev 2 2Wy

2The optimal investment strategy when o, = 0 for an ambiguity-neutral pension investor, denoted u} ¢ (t)

and ui, (t), can be written as uig(t) = 0ig(t) — %{Wugo(t) and ui,(t) = %.
—p%,0,
13The optimal investment strategy without stochastic salary and ambiguity, denoted ufq(¢) and uf,(¢),
can be written as ulg(t) = 055(t) — %WUZO (t) and ug,(t) = %.
—p%,0,
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~ o ﬁs > o 5\/
Usthov )=z Whreh=a—"5 oy @O

with the boundary condition J(T,z,v,1) = U(z), where @ and ¢ = (¢g,dy) denote the
values that @(t) and ¢(t) = (ds(t), oy (t)) take, respectively, and

o . 1
Aqﬁﬂ”ﬁ(t, xr,v, l) = lZJt + [TZIT + l’fb)\ll) — $1~L¢S\/5 + £Z]¢x + 5952@@2%%35
- - 1
+ [k(0 = v) = ovupyds — ov /U1 — pi o], + 5031}1#%
+ ,ULZ + lJL)\lvpL — lJL\/EQ;SpL + lUL)\QUm — ZJL\/EQ;V\/qu wl

1 N -
+ il%iv%/]u + logvoy(pypr + /1 — pin/1 — p})tw + Tovivpy e, + BUlogopLha.

The following theorem presents the optimal investment strategy and.optimal value func-

tion for the DC pension investor without a derivative.

Theorem 4.1. For the robust portfolio choice problem (38)“without a derivative, if the

parameters satisfy certain technical conditions, '* the optimal.investment strateqy and risk

exrposure are

S (f) — B () — 7o L(t) 2o L)
a*(t) = 0%(t) = m(t) (1 + h(t)X“* (t)) - OLpLh(t)Xu* ol (43)
the corresponding optimal value function is
Tt v,0) =~ SO oy + ) (a1)
and the worst-case measure/iswgiven by
Ju(t) = BsV/ V() (AT ) + ovpvgs(t)) Fo () = B/ V() (A1 —7) +ov/1 = pprgs(t))
° =) (B +7) o (1= (B +7) 5 ’

4The techdical conditions are Q3 < k/oy, where

b & oN% { L2 5%(/\1(1—7)+0vpv93(0))2}+max { B3 5%/0\2(1—7)+UV\/1—P%/§3(0))2}
= ( ( ’

et )2 (1—7)%(Bs + ) By ) -2y +7)?
(41)
and for g3(t) € [75(0), 0],
(641 — 9)2 — 4(1 — ))(R(D)? + 8(1 — (w0 — 801 — 1) 2B sy < £ ()

Bs + oy

Similar to conditions ¢ < r/ov and (21), conditions ¢, < r/ov and (42) are also technical conditions and

easily satisfied.
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where {X*(t) }repo,r) s the wealth process under the corresponding optimal strategy, and

M1 =7)4+ 1= (Bs +7))ovpvis(t) D1y — ) Dped21=72)(T—1)

mit) = (I =) (Bs +7) o sl = Dy — Dpef2(m1—m)(T—t)
T J—

() = / (1 — ) + kogs(s)] ds, Gy = —r + 22U (ﬁﬁs: Navev.

2 ' 2 9 2 2 2 2 52 ! (46)
Gy = oy Bsov py _ Bvoi(1—py) (1= (Bs+7))°ovpy

2 2(1-7) 2(1—7) 2(Bs +7)(1—=7) ~
~ )\%(1 - ’}/) - . 5(1 + 5&% — 4(542543
a3 = m, o= " 2d, )

and h(t) is given by Eq.(30). By derivation, we obtain G — 4éaés > 0.
The proof of Theorem 4.1 is similar to that of Theorem 3.2, and thus, we omit it here.

Theorem 4.2. For problem (38), if there exists a function J(t,z,v)l) € CH*%2(0) that is
a solution to the HJB equation (65) with boundary condition<J(T, 1) = U(z), and the
parameters satisfy conditions (41) and (42), then the optimal value function is j(t,x,v,l),

and the optimal strategy is W = {0*(t) }re0.1) given ineLheorem 4.1.

The proof of Theorem 4.2 is similar to that of Theérem 3.4, and thus, we omit it here.

From Theorem 4.1, we find that the optimal investment strategy and risk exposure are
both given by Eq. (43). Compared with the former case and optimal exposure to market
return risk (22), the difference lies il the form of (), particularly, the values of 14 o and
1. Here, because the market is incomplete and the investor has only one stock to invest
in and obtains one risk premium, ‘thie equity premium A, for additional volatility risk is
disappearing; as a result, hedging w.r.t. additional volatility risk is less efficient. This
quantitative influencé depends on the chosen parameters of the model, as illustrated in the
following numerical examples. We find that the utility that the pension investor gains is
substantially“improved when investing in the derivative. Similar results are also found in
Escobar et al. (2015). Similar to the case of investment with the derivative, we also provide

some specialjeases in Appendix F if the pension investor has no access to the derivative.

5. Numerical analysis

In this section, we provide several numerical examples to illustrate the effects of model
parameters on the robust optimal risk exposures and investment strategies. We also illus-
trate the utility improvements by considering ambiguity aversion and derivative trading. To

improve the credibility of our empirical results, we fix a set of base-case parameters for our

21



model (Table 1) using data from existing empirical studies. For details, refer to Liu and Pan

(2003) and Escobar et al. (2015).'

Table 1: Values of model parameters in the numerical examples.

r K ) £ A XA pr oL oy v fBs By
0.05 5 0.13%2 0.2 4 -6 008 05 025 4 3 1

v PL x l v S K T T t
-04 0.3 1 1 0.15* 100 100 0.1 5 0

5.1. Effects of model parameters on risk exposures

Risk exposures 0% and 67, more intuitively describe the exposures.teo risks Wg and Wy,
and the risk exposures are independent of the types of options. Other related studies also
consider the performance of risk exposures; please see Escobar et“al.(2015). Therefore, in
this subsection, we first consider the effects of model parameters on the risk exposures.

Figure 1 shows the effects of the ambiguity aversion.parameters Ss and 5y, on the optimal
market return risk exposure 6% and volatility riskyexposure 67, respectively. We find that
0% decreases in fg, consistent with Escobar etfal. (2015). Another main result is that 67
significantly decreases (in absolute terms)4nsgy. These results show that in an ambiguous
environment, the investor becomes less.aggressive. We now focus on one specific risk exposure
and show how the two ambiguity aversion parameters have distinct effects on it. Taking 0% as
an example, we find that the stockambiguity aversion parameter Sg has a relatively greater
effect than the volatility ambiguity aversion parameter 5y,. This is consistent with the case
of 6;,. Compared to Sy (8s), Bs (By) represents a direct way to affect market return risk

exposure (volatility risk exposure).

15 Accordingto Liwmand Pan (2003), the empirical properties of the stochastic volatility model have been
extensively examined using either the time-series data on the S&P 500 index alone (Andersen et al., 2002;
Eraker et alin2003) or the joint time-series data on the S&P 500 index and options (Chernov and Ghysels,
2000; Pan,\2002). Because of different sample periods or empirical approaches in those studies, the exact
model estimates may differ from one paper to another. Our chosen model parameters agree with the cases

studied by Liu and Pan (2003) and Escobar et al. (2015).

22



Risk exposure to stock price risk HS*

Risk exposure to stock price risk (-)S"

Figure 2 shows the effects ofithe mean-reversion rate x and volatility coefficient oy on
the optimal market return risk,exposure 6% and volatility risk exposure 65, respectively. In
the stock return varianée process, a lower mean-reversion rate x and higher volatility oy
usually imply greater additional volatility risk. As a result, 6}, decreases and increases (in

absolute terms)fin k and oy, respectively. The case of 0% is similar to that of 0}, as there is
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Figure 3: Effects of salary parameters piz,\0 1, € and lp on 0§ and 65,.

Figure 3 shows the effects of the salary parameters, appreciation rate p, volatility coeffi-
cient o, contribution rate ¢ and initial salary /o on the optimal market return risk exposure
0% and volatility risk exposure 7. We find that both 6% and 6}, increase (in absolute terms)
in pur, € and ly. When pup, & and [y inetease, more pension funds are accumulated. Therefore,
the investor prefers to unidertake more risks to earn more profits. In addition, 0% decreases

in oy, and 6} increasés (in absolute terms) in oy,.
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Figure 4 shows the effects of the correlation coefficients py and py on the optimal market
return risk exposure 6% and volatility risk exposure 60y;, respectively. This figure shows that
0% decreases in py and pp, while 6} first increases (in absolute terms) and then decreases
in py and py. This behavior stems from the assumption of our model. From Egs. (22),

(26) and (27), py and \/1 — p?, (pr, and /1 — p?) reflect different properties of a sensitivity
analysis for py (pr). pv (pr) may be negative or non-negative, and /1 — p? (1/1 — p?)

is non-negative. Therefore, the risk exposure to Wy decreases in py and pp, and the risk

exposure to Wy decreases (in absolute terms) in |py| and |pg|.

5.2. Effects of model parameters on investment strategies
In this subsection, we take the straddle option'® as an example to demonstrate the effects
of model parameters on investment strategies. The result further illustrates the significant

role of the derivative on the optimal investment strategy.
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Figure §:-Effects of s and Sy on u§ and ug,.

Figure 5 shows,the effects of the ambiguity aversion parameters g and 5y, on the optimal
proportions invested in the stock ug and derivative vy, respectively. We find that both ug and
ug, decrease (in absolute terms) in fs. Compared to those in stock investment, the changes
in derivative investment are relatively small. When (s increases, the investor becomes more
ambiguity averse to the return of the stock. Therefore, she tends to invest less in the stock.

Moreover, ug, decreases (in absolute terms) in Sy in a similar way. As ambiguity reduces the

16The straddle is a portfolio comprising a call option and a put option with the same underlying strike
price, time to maturity, and market volatility, and its price is given in Appendix G. We assume that the
initial stock price is 100, and the strike price is chosen in a way that makes the straddle “delta-neutral”. For
details, refer to Liu and Pan (2003) and Cui et al. (2017). The analyses with other types of options, such as

call options and put options are similar. To save space, we do not include these results in our paper.
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volatility risk premium, the derivative investment becomes less attractive to the ambiguous-
averse investor. Therefore, she shorts the straddle option less. However, u} increases in
By . As ambiguity hampers the investor’s judgement regarding the variation in the stock’s
volatility, the investor holding the short straddle may worry about the substantial increase
in the stock price. Hence, at this time, she invests more wealth in the stock to reduce the

total risk of the portfolio.
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Figure 6: Effects of x and oy on ug and ug,.

Figure 6 shows the effects of the mean-reversion rate x and volatility coefficient oy
on the optimal proportions invested in the stoek u% and derivative uf,, respectively. As &
increases, both u} and uy, decrease (im“abselute terms). As the correlation py is negative, the
uncertainties of the stock price and its velatility change in different ways. Although V' (¢) will
be stable as k increases, there is am _increased probability of a decrease in the stock price.
The decrease affects the investment strategies in the stock and the derivative. Moreover,
when x < 2, the effects of @y _on the optimal investment strategies are not monotone; when
Kk > 2, u§ and uldecrease (in absolute terms) as oy increases. In other words, the larger
oy 18, the more risk the stock has. Therefore, the investor will invest less in the stock and
the derivative.

Figure'?.shows the effects of the salary parameters, appreciation rate ur, volatility co-
efficient o, contribution rate £ and initial salary [y on the optimal proportions invested in
the stock u¥ and derivative ug,. We find that both u¥ and ug, increase (in absolute terms)
in pur, € and lyp: the increasing uz, € and [y imply that there will be greater pension fund
accumulation. Therefore, the investor prefers to undertake more risks to earn more. In
addition, u§ decreases in oy, and u, increases (in absolute terms) in oy,. The investor now

both shorts the straddle option more and buys less stock to reduce the portfolio risk. The
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results here are consistent with the results on risk exposures in Figure 3.
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Figure 8 shows the effects of correlation coefficients py, and pr, on the optimal proportions
invested in the stock u§ and derivative uy), respectively. On the one hand, both u§ and ug,
increase (in absolute terms) in py. When the risks of the financial market increase, the
investor goes long on more stocks and shorts more derivative to reduce her portfolio risk.

On the other hand, both u§ and uf, decrease (in absolute terms) in py. As it is difficult to
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reduce salary risk by managing the portfolio of the stock and the derivative, investment in
the stock and the derivative will decrease.

Moreover, we find that the derivative type has no effect on the value function in our
model. This is because that in our paper, the financial market is complete and we can treat
the risk exposure instead of the investment strategy as the control variable in the investor’s
wealth process, which makes the value function independent of the derivative type. The
same is true for the optimal terminal wealth level XV %", However, the strategy needed to
replicate this optimal terminal wealth depends on the form of the derivative singesthe form
of the derivative specifies the terminal condition of the BSDE in (4).

Since the derivative type has an important effect on the investment sttategy, we demon-
strate this argument by theoretical and numerical analysis as follows. From Theorem 3.2,
the optimal investment strategy {(u§(t), )ué(t)}ecpm is
welt) — sy SOIO_ O pibh(t)

o T-p 00 AV
uo(t) = Uvm. O,
0% (t) and 67 (t) are independent of the derivative type (see Eq. (22) in Theorem 3.2), while

Os
Oy

and %f) affect u§(t) and u(t), respeetively. 'In other words, O(t), Os and O, have

important effects on the investment strategy.»Using the parameters in Table 1, we have

EOLA0 0% ()
o‘vw/l—p%, o‘V\/l—p‘Q/

in %. In particular, withoutsloss of generality, we provide the numerical analysis for the

< 0,showing that u%(t) increases in 8—2, and u}(t) decreases

> 0 and
cases of call option, put optionyand straddle option at t = 0. We have 0%(t) = 1.8383 and
i, (t) = —5.5831, and.the other values are given in Table 2. We find that %f) is positive
under the three options, i.e:, the pension investor shorts the three options. However, their
qualitative effects are)different. The investor who chooses the straddle option will short
fewer than the investor who chooses the call option, while shorting more than the investor
who choeeses the put option. Furthermore, the effect of the derivative type on the strategy
invested in the stock is complicated. The positions invested in the stock for the cases of the
straddle and call options are long, while a short position is adopted for the case of the put
option. The percentage that the pension investor longs (or shorts) for the case of the call

(or put) option is larger than that for the case of the straddle option.
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Table 2: Comparison of three derivative types.

__S®mey®) 0. pv Oy (1) 0y (1) o) * *
ov/1-p2 O N O, g (t) ugp(t)
call option 0.0024 0.0061 2.4367 -24.3667 0.0232 14.3194 -0.5651

straddle option 0.0024 0.0008 2.4367 -24.3667 0.0205 1.2415 -0.4999

put option 0.0024 -0.0046  2.4367 -24.3667 0.0178 -11.8364 -0.4347

5.3. Utility improvement

In this subsection, we study the utility improvement obtained by considering ambiguity
aversion and derivative trading. We focus on two cases of utility improvement for a DC
pension investor. One is the utility improvement delivered by considering ambiguity aver-
sion, the other is the utility improvement delivered by allowing the investor'to trade in the
derivative.

For the first case, we calculate the utility improvement delivered by considering the
ambiguity aversion case compared with the case in which“ambiguity is ignored. In particular,
we assume that the investor does not adopt the optimal strategy u* = {(ug(t), u5(t) bejo.1
given in Theorem 3.2 but instead makes the decision asrif she were ambiguity neutral, i.e.,
the pension investor follows the strategy uj = {(uyg(t), uio(t)) }reo,r) given in Remark 3.7.
The value function for the pension investor inithis case is defined by

J(t,,0,1) = inf {EELU,Z {U(X‘E’UZ(T)) +/T( (0s(s))? n (P (s))? )) ds} }’

) L \2Ug(s,z,0,0)  2Uy(s,z,v,]

where

) A Bs _ B By
Us(t,z,v,1).= A )tz 0]) Wy (t,z,0,1) = (1=7)J(t,z,v,0)

Similar to the above derivation, we derive the optimal value function under the suboptimal
strategy

J(t,z,v,1) = % exp(go(t)v + Go(t)).17 (47)

"In Eq. (47),

_ Dy Do — 74 Doe®2(P1—72)(T 1) N T _

go(t) = 152_;1(3;;;1—192)(24) s Go(t) = ft [r(1 —7) + kdgo(s)] ds,

;= —K + Qutovpvg(t)A=(Bs+m))ovev 4 (A2+ova/1-p3 32 () (1= (Bv+7))ov/1—p3,
v v

)

2 2 2 2 2 _ —5 =
5o — v _ Bsovpy _ Bvoy(1-py) o _ aEyaj-dasas
Q2 = 73 2(1—) 21—y » M2= 24, )
Gia — _ atovevg()?(1-y)8s _ (A2tovy/ 1-p} g2(1)*(1-7)Bv + A= A+A3—0? (32(1)?)
3 = 2~2 22 27 )

and h(t) and go(t) are given by Eqs. (30) and (36). After some calculations, we have a3 — 4asasz > 0.
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Furthermore, we define the utility improvement obtained by considering the ambiguity

aversion given by

Ut ) = 1= 0200 = 1= expl(g(0) = )+ = (D). (49

where J(t,x,v,1) and J(t,z,v,1) are given by Eqgs. (24) and (47).
For the second case, we calculate the utility improvement obtained by considering deriva-

tive trading compared with the case in which a derivative is inaccessible. In particular, it is

defined by

Uly(t,,v,1) =1~ % =1 —exp((g(t) — ga(t)v + 9(t) =,9s(8), "  (49)

where J(t,z,v,1) and J(t,z,v,1) are given by Egs. (24) and (44).

Remark 5.1. From the expressions of go(t), go(t), g3(t), utility improvements Ul; and Ul,

are independent of the salary process.

Remark 5.2. Liu and Pan (2003) state that in a setting.without ambiguity, trading in the
derivative can significantly improve an investor’s utility. "Here, we further show that when
the investor is ambiguity averse, there is also @ayutility improvement obtained from gaining
access to the derivative market. The quantitative improvement is shown in the following
numerical examples, which also reveal=that the utility improvement delivered by having
access to the derivative is large. ~This implies that the derivative plays a crucial role in

providing investment opportumities and improving the efficiency of the market.

Figure 9 shows the effects of,the ambiguity aversion parameters Ss and [y on utility
improvements. U/, ig'the utility improvement from considering ambiguity aversion, and we
find that it increases in\Sg/and £y . Intuitively, when the investor is more uncertain about the
reference model; considering ambiguity aversion may deliver greater utility improvements.
Furthermore, the/ambiguity aversions w.r.t. stock and volatility have different effects on
the degreerof utility improvement. Ul is the utility improvement from allowing derivative
trading. The effects of fs and [y on Ul, are different from those on U/, which shows
that when the investor has no access to the derivative, the effects of 8s and [y on Ul,
are much less obvious than those on Ul;, and even in the absence of ambiguity aversion
(Bs = Pv = 0), there is still a high degree of utility improvement for the investor. From
this, we reiterate that it is suboptimal to exclude the derivative. The derivative improves

the investment efficiency and helps the investor to pursue good investment performance.
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Figure 10 shows the effects of the mean-reversion rate x and volatility,eoefficient oy on
utility improvements. In the stock return variance process, a larger mean-reversion rate
r and smaller volatility oy indicate less uncertainty in the variameeyprocess. That is, the
investor faces low volatility risk. We find that both types.of utility improvements decrease
in k and increase in oy. Furthermore, in both two cases, when the investor faces lower

volatility risk, her utility improvement is smaller.!8
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Figure 10: Effects of k¥ and oy on utility improvements.

Figure 1Tyshows the effects of the time horizon 7" and correlation py € (—1, 1) on utility
improvements. The figure shows that the utility improvements Uy and Ul increase in the
time horizon T'. It is therefore necessary to incorporate ambiguity aversion and derivative
trading in a DC pension plan over a long investment period. The case of the correlation py

is interesting. Due to the specific parametrization of the model, the utility improvements

18This is because there is ambiguity aversion toward the volatility risk and the derivative investment
opportunity exists; as a result, when the volatility risk is low, the investor’s optimal behavior will lead to

less utility improvement than in the case where volatility risk is high.
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(both Ul and Ul) first increase and then decrease in the correlation py. Note that when
pv — £1, two risky assets are almost fully correlated; then, the role of the derivative is

weakened when utility improvements are relatively small.
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Figure 11: Effects of py and T on utility improvements.

6. Conclusion

In this paper, we consider a robust optimal investment.problem for a DC pension investor
facing a stochastic salary. The stock price exhibits stochastic volatility, and the investor has
different levels of uncertainty regarding the diffusionscomponent of the stock and its volatility.
To cope with volatility risk, she is able to invest-her wealth in a derivative. We first solve an
optimal investment problem with both ambiguity aversion and a derivative in closed-form
and provide verification theorems, to guarantee the validity of the solution. Next, we obtain
the solutions without the dérivative, ambiguity, or salary for some interesting special cases.
We also discuss the utility improvements for an investor who considers ambiguity aversion
or has access to thedderivative. Finally, we explore several detailed conclusions in numerical
examples.

We find/that three factors play significant roles in the optimal investment strategy in
the DC_pensien~plan. The first factor is ambiguity aversion. When an investor experiences
uncertainty concerning her reference model, she usually reduces her exposures to the market
return risk and volatility risk, because in an uncertain environment, it is optimal to adopt
a conservative strategy. Moreover, the investor adopts different investment strategies for
the stock and the derivative and there are distinct effects of ambiguity on the stock and
derivative investments. The second factor is the derivative. Derivatives have the convenient
properties of providing frequent trading opportunities and improving market efficiency. In-

vestment in derivatives may deliver a large utility improvement. The third factor is salary.
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In a DC pension plan, the salary and the contribution thereof are essential and generate
additional wealth for the investor. More important, the salary has an important effect on
her investment strategy, and the investor has a new hedge demand in her portfolio to address
salary risk. In the numerical examples, we verify the results and find that different model
parameters generate distinct properties and that different degrees of ambiguity aversion lead
to complicated cases. It is necessary to determine a more accurate relationship among the

key factors; this is an interesting problem left for future research.
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Appendix A.

Proof of market completeness.

In this proof, we shew that given a physical measure, there exists a unique risk-neutral
measure in our papér. /We prove that the financial market in our paper is complete. The
proof includes three steps.

First, we present the following result on the existence and uniqueness of risk-neutral
equivalent martidgale measure P in the extended financial market (So, S, O) which is given
by (1), (2) and (4).

Theorem A.1. Let N' 2 {(t,5,v) : s >0, v >0, 0 <t < T}. Suppose that the following
PDE admits a classical solution O € C*' (N NCWN U {t=T}),
—0,0 — L0 =0 in N,

(50)
O(T,s,v) = f(s,v), Y (s,v) € (0,+00)?
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where the differential operator £*2 takes the following form

2 2
L0 £ %8330 + %U&,UO + pyoyvsds,O + rsdsO + [K(6 — v) — oy py v 651
51

— oy Auy/1 — p%/] 0,0 —rO.

Here, Ay is a constant capturing the market price of stochastic volatility risk Wy (¢) and

E [exp { o u X /0 ' V(t)dtH < 400, (52)

If there exists a derivative O with terminal payoff f(S(7),V (7)) in the finantial market,

satisfies that

whose price function is given by O(¢, S(t), V(¢)), then there exists a risk-neutral equivalent
martingale measure P in the financial market (So,S,0). More precisely; it admits the form

given by

. T T )\2 +>\2 T
dP & exp { —/ My V(1) dWs(t) —/ Ao/ V(1) dWy (1) A2 > 2 / V(t)dt } dP.
0 0 0
(53)
In other words, for the value process X of the portfoie™(Sg;'s, O) satisfying that {X(7)} is

uniformly integrable under the measure P for all Festopping times, {e "X (t)}L, is an F-
martingale under the measure P. Moreover, if 9,/Q #\0in NV, then the risk-neutral equivalent

martingale measure P is unique.

Proof. Let A% A% and A© be the sHares invested in the riskless bond, stock and the deriva-
tive, respectively, which are F-adapted processes. Then the portfolio value process X is given
by

X = A%S,+ AS + A%0.

Using the self-finanCing’ trading strategy, it follows from (7) and (8) that
dX (t)/=WXM) — A%(1)S(t) — AC(H)O(1)) dSo(t) + A®(£)dS(t) + A®(t)dO(t)
=" X (t)dt + X2 (t)dWs(t) + X3 () dWy (t)

— X (t)dt + X2(6)dWs(t) + X3 (1) AW (1), (54)

34



where we used It6’s formula in the second equality and PDE (50) in the third equality, and
X't =7 (X(1) — A%(t)S(t) — AP(t)O(t)) + A%(H)S(t) (r + MV (t))

+A%(1) [atom + SVI(S(1))°0.00) + 503V (120

+pvovV()S(4)9:,0() + (r + MV (1) S()0:0() + k(6 = V(1))8,0(-) |,

X2(t) = [A%(1)S(t) + A%(t) (8,0(-)S(t) + provd,O()] VV (1), (55)
X3(t) = /1 — p2ovA°(1)0,0()\/V (1), (56)
AWs(t) =dWs(t) + A/ V() dt,  dWy () = dWi(£) + Ao/ V(1) dt, (57)

and (-) in X1(t), X?(t), X3(t) represents (¢,S(t),V(t)). Recalling (52), weyhave that the
density process satisfies the so-called Novikov’s condition (see Karatzas,and Shreve (1991)),
and P is an equivalent martingale measure of P, and (/Ws, Wv) is a Brownian motion under
the measure P. From (54), we deduce that for any 0 <{t <.s £ T and F—stopping time
T € |[t,s],
e "X (1) =e "X (1) +/ e X2 (u) dWig (A1) —I—/ e X3 (u)dWy ().
t t

Let 7 = 7, = inf{u € [t,s] : |X?(u)| + |&2()| > n} for any n = 1,2,---, and take the

conditional expectation with respect towF; under measure P in the above equality, we have

E? [e_TT"X(Tn)

]—"t] — X (1),

Let n — +o0, it follows from,{e "X (7)} being uniformly integrable that {e "X (¢)}]_, is
an F-martingale under thiec measure P.

If 9,0 # 0 a.e. il A, then the second equality in (54) implies that {e "X (¢)}]_, is an
F-local martingale undex P for any portfolio satisfying the assumption in this theorem only
if (WS, W\V) thkes,the/form (57). Thus, the risk-neutral equivalent martingale measure P in

the financialhmarket (Sp, S, O) is unique. O

Next{ we present a result regarding the existence and uniqueness of the classical solution
of PDE (50).
Lemma A.2. Suppose that |py| < 1 and the coefficients r, A\;, Ay are bounded and satisfy
K > oypyA + oy m/\g. Moreover, assume that the terminal payoff function f is a
continuous function, and that there exist a positive constant C' and a nonnegative constant
k such that
\f(s,v)\SC’(l—ks—kek‘/”Tl), VY (s,v) € (0, +00)>. (58)
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Then PDE (50) has a unique classical solution.

Proof. Define N,, = {(t,s,v) : 1/n < s <n, 1/n <v <n, 0<t< T}, and we use the
following PDEs in bounded domain N, with the uniformly parabolic differential operator to
approximate PDE (50) in unbounded domain N with the degenerate parabolic differential

operator given by

_815071 - £A2On =0 in Nna
(59)
Oy (t, s,v) = fuls,v) on N,

where n € N, 9,,, is the parabolic boundary of N,,, and {f,} is a smooth functien sequénce

such that f, converges to f in C([1/m,m]?) for any m € N, and satisfies
faltos,0) < C (2454 BT

Since |py| < 1, the differential operator £*? satisfies the uniformly=eliptic condition and the
coefficient functions and the terminal function are smooth, 4he theory for PDEs implies that
there exists a classical solution O,, € C?t1+2/2(A\[) for PDE (59) (see Lieberman (1996)).

Next, we establish a uniform estimate on the maximumn of the solutions |O,|. Denote
0 = el <2+ S +ekvv+1> ,
where C'is the constant in (58) and K_is a positive constant defined later. Then we have

—0,0 — L0
o k2 k
> eIt {K <2—|—8—|—ek‘/m> VT g eVt
2 v+1 2vv + 1
+T(2+s+ekvv+1>] >0,

provided that Klis large €énough, where we have used the fact that k > oy py A +oy m/\g
in the first inequality . Moreover, it is clear that O > f, = O,, on OpN.,. Thus, the compar-
ison principle™(sée Lieberman (1996)) implies that O,, < O in A, which implies that {O,,}
has a uniform upper bound O. Repeating the same argument, we can derive that {O,} has
a uniform lower bound —O.

Thus far, we have shown that |0,| < O, which is bounded in any bounded domain A,,.
Applying the Holder interior estimate, we deduce that there exists a function O defined in
N, such that O,, converges to O in C*'(N,,). By the standard method for Cauchy problem,
we can deduce that O can be uniquely extended in A/, and O € C**(N)NCN U{t =T})
is the unique classical solution of PDE (50). O
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Finally, we show the completeness result of the financial market (Sp, S, O).
Theorem A.3. Suppose that |py| < 1 and 7, \j, Ay are bounded and satisfy k > oy py Ay +
ov/1 — p¥ g, and the deterministic continuous function f(s,v) satisfies (58). Assume that
there exists a derivative O with terminal payoftf f(S(T"),V(T)) in financial market, whose
price function is O(t, S(t), V(t)), where O is the unique classical solution of PDE (50). If
0,0 # 0 in N, then the financial market (Sp,S,0) is complete. More precisely, for any
contingent claim ¢ satisfying that £ is measurable with respect to Fr and Ep(lf |) £ oo0,
there exists a unique portfolio (A0, A A9) to replicate £, where the measure Puis defined

n (53). Moreover, the price process of the contingent claim is given as

1 p
e [m(T)EIF] (60)

where 7 is the pricing kernel satisfing the following SDE:

CZT((; = —rdt — M/ V(O AWs(t) — Ao/ VDA WGA(). (61)

Proof. From Theorem A.1 and Lemma A.2, we know that there exists a unique risk-neutral

O(t) =E [¢""¢|F] =

equivalent martingale measure P in the financial market (S0,5,0). If £ is measurable with
respect to Fr and EX(|¢]) < +oo, then EF (e "E¢|FYis a martingale under the unique risk-
neutral equivalent martingale measure P. Using the martingale representation theorem, it

follows that there exists an F-adapted stochastic process (¢!, (?) such that

]E“”( **Tg‘f / ) dWs (u / C2(u)dWy (u

Let X2(t) = ¢'(t)e and X3(#),= (*(t)e". Since

\/1— pEoy0s@(t, S(t NV V() #0, S(t)vV(t) #0as. in Q,

we can solve A and AC as

AO (t) CQ (t)ert
VI = pZovd,0t, S(t),V(t)\/V(t)

AS(Y S ¢'(H)e"t = A%(1) (9.0t 5(1), V(1)S(t) + pyovad,Ot. S(1). V(1)) V(5]

Let
X(t) = EF (e"(t’T)g‘}}) L AS(1) = X() — AS(H)S(t) — AC(H)O(1),

then (54) still holds. Thus, (A%, A% A9) is self-financing, and X (T) = £, which implies that
¢ can be replicated by the portfolio X = (A% A% A9). The pricing formula (60) follows
the expression of X, and (61) can be deduced from (54). O
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Appendix B.

Proof of Proposition 2.3. We will use the contraction mapping principle (see Theorem
5.1 in Gilbarg and Trudinger, 2001) to prove the conclusion. (If the mapping 7 from Banach
space B onto itself satisfies that there exists a constant § < 1 such that ||TJ; — T Ll <
0||J1 — Jo|| for all Jy, Jo € B, then, there exists a unique solution J € B such that TJ = J.)

Restrict the initial state (z, v, 1) in a compact set A C R?, choose a small enough positive
constant 0, defined below, and let B = L>*°(B) with B = [T —0,T'] x A, where L>(B),is the
space of Borel-measurable functions with norm esssup{|.J(¢,z,v,1)| : (¢,z,v,l) € B}. Next,
we first consider the optimal control problem on the time interval [T — ¢, T'|. Fix a function

J € B; then, we denote

Bs
(1—y)J(s,2,v,1)

Bv
(1 o 7)‘](87 z,v, l)’

Ul(s,z,0,1) = U (s,2,0,1) =

and

(dsls))? (ov(s))?
2Ue(s, z,0,1) 2@§(s,x,v,l)> ds}

T
HY(t,2,0,1) = qi)relgEEx’vyl {U(X‘I”“(T)) +/t (
subject to (13), (8) and (10).
Consider the optimal control problem
HY(t,z,v,1) = supHE/ (t, £, v,1), ¥V (t,z,v,]) € B.
u€ll
It is clear that there exists adunique walue function H” € B (see Yong and Zhou, 1999)
for the above optimal contrél problém. Thus, we define a mapping 7 : J — H’ from

B onto itself. Suppose that J;, Jo are two functions in B; then, we compute that for any

b0, ucll,

HT(Jl) - T(JQ)“B = sup |I—[J1 (tv'xa v, l) - HJ2(t,$7U, l)|

(t,z,v,l)EB
A~ [l (o)
ATl de0,(t,zv,l)EB ¢ 2\If§1(s,x,v,l) 2\11{/1(5,%1),[)

(¢5(5))? (év(s))* ) ds] ‘
)

_2\11:573 (s,z,v,1) a 2\11“],2 (s,z,v,1

/T (= ) (5.2, 0.1)| ( (¢S(5>)2 + (¢)V(3))2) ds]

E‘b

t,x,v,l

1 —
-7 sup E?
2 P€O,(t,zv,l)eB

(1= — J2ls @{ T ) ]
2 min{fs, By} ZEIQ)E /T6H¢(S)H ds|. (62
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It is not difficult to compute that
T T
apE* | [ ol as | = s [ a2 [ Jiocolas]
deO T-6 [oISIC) T—06

= supk { a7 e {u / T||¢><s>||2ds} / T6||¢(5)H2ds}

2@0‘\/

PO i
KoV /K _ T T
< quets | [wren ()] e {SETE [ as) [ vias]
PO 2UV o s
Koy /K l€2 T Koy (k—koy) /K>
< sups” B [AME () [TV R {exp {_2/ V(s) dS}]
PO 20V 0
T 2 2 (k—r0v)?/K? L
E {/ (V(s))" /(r—rov) ds] gl-(n—r0ov)?/k 7 (63)
T-6

where we use Assumption (iii) in footnote 6 in the first equality and Holder’s inequality in
the second inequality.

From Theorem 5.1 in Taksar and Zeng (2009), we conclude that

o (o) s o) <=

and A*®/£°v i an exponential martingale. Moreovers the regularity result for SDE implies
that

< +00.

E { /0 T(v<s))ﬁ2/<~-ﬁ0v>2 ds

Thus, combining (62) and (63), we,can choose a small enough § > 0 such that

T .
p 5 min{Js, By }
itelgE [/HIM(S)H dS} < 1

and

IT(3) = T(h)ls < 51— Bl
Hence, the mapping T ’is a contraction mapping. According to the contraction mapping
principle, the mapping 7 has a unique fixed point. This means that there exists a unique
value fanction"H (¢, x, v, ) of the optimal control problem if t € [T — §,T'] and (z,v,1) € A,
which consists of (16), (17) and (18) subject to (13), (8) and (10).

Next, we extend the result into the total time interval [0,7']. Suppose that we have
proven that there exists a unique value function H(t,z,v,[) of the optimal control problem
if t € [T,T] and (z,v,1) € A.

Then, we choose a small enough positive number ¢ such that

T (s s | — min{Bs By}
JARCCl ds]— o

sup E?
deo
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Moreover, let B = L°(B) with B = [T — §,T] x A. Fix a function J € B; then, we denote

(s, 2,0,1) — % »
(=220, D erps gy + (0= NHs, 2,0, )70y
\If“]/(s,x,v,l) = v J

(L =7)J(s,z,v, l)]{se[f—&f]} + (1 =7)H (s, z,v, l)[{se(iT]}

and

Y (4, 2, 0,1) :%IG%E@ [U(X‘I”“(T))+/tT( (ps(s))? n (ov(s))? )) ds}

t,xv,l 2\1/%(3’1','0,[) 2@6(3,$,U,l

subject to (13), (8) and (10).
Consider the optimal control problem

H’(t,z,v,]) =sup H*/(t,x,v,1), ¥V (t,z,v,]) &B.

uell

Repeating the same argument as above, we can prove that there exists a unique value
function H(t,z,v,l) of the optimal control problem if (¢,430,1) € B. Repeating the same
argument in the domain [T — 20,7 — §| x A, [T — 39,1 —25] X A, - - -, we can prove that
there exists a unique value function H (¢, x,v,1) of the optimal control problem if (¢,z,v,1) €
[0,7'] x A. Since the set A is arbitrary, and the compatibility in different compact sets is
obvious, then we have proven that there exists\a unique value function H(¢,z,v,l) of the

optimal control problem for any (¢, z, us). € [OyT] x R3. O

Appendix C.

Proof of Proposition 3.1, We know that (¢, z,v,1), Uy (¢,z,v,0) in Proposition 2.3 are
Uit x,v,1), Ui (t, 2v,1), respectively. Consider the optimal control problem
T
H (¢, v, 1)/= sup inf B/, [U(X‘I”%T)) + / g(s, 20,1, 65, dv) ds
uel €06 77 t
subject to (13), (8) and (10) for any (¢,z,v,l) € O, where

A &
20l(s,z,v,0) 20 (s,z,0,1)

g(87$7v7l7¢57¢v) =

Note that in this optimal control problem, J in ¥} and ¥y is the function given in the

assumptions rather than the value function. Thus, g is a given function w.r.t. (s,z,v,l, @),

independent of the value function H”, and the optimal control problem is standard.
Repeating a proof similar to that in Theorem 3.2 in Mataramvura and Qksendal (2008),

we deduce that J is the value function of the above optimal control problem. Since the

40



value function and J in ¥ and Wy, are the same, J is the value function of the optimal
control problem, consisting of (16), (17) and (18) subject to (13), (8) and (10). Thus, by
Proposition 2.3, the uniqueness of the value function implies that H(t,z,v,l) = J(t,z,v,()

for any (¢,z,v,l) € O, and (u*, ®*) is an optimal control. O

Appendix D.

Proof of Theorem 3.2. According to the first-order optimality conditions, the functions

¢§ and ¢}, which realize the infimum part of Eq. (19), are given by

Bs\/v

¢* [mHSJI + UVpqu + lO'LpLJl] )

ST =9)J
Brv (64
e GZ—V)J [xeva +ovy/1—pidy +lop/1 — szl} )

Substituting Eq. (64) into Eq. (19), we have
Ji + (re 4+ x0s v + 20y Aov + €D T, + (0 — v)J, + (upl 1o A vpr + lophavy/1 — p2)J;
1 1 1
—1—59521)(9% +60%) T + 50‘2,%]% + §l20%vJ” + (zovbsupy + xovOyu/1 — pi) Jp

+(xbslorvpr, + 20vioLv/1 — p2)Ju + logvon(pupr + /1 — p2/1 — p2)Ji

_2(15_;1;)(][9595% + oy pydy + loppedi?
—%WVJI +ovy/1— g8 Jot oL\ /1= p3J)? =0.
(65)
Differentiating Eq. (65) av.rt. (05, 6y) implies
M - %(UVPVJ:EJ@ +lorprdudi) + ovpyde +lorprdu
. -] |
o Jyr— (f#(av\/l = pvdads oL/ 1= piJadt) + ov /1 = pi ey + lopy/1 = pL I
o v [(lg)ﬂﬁ - Jm} |
(66)
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Plugging Eq. (66) into Eq. (65) implies

1
Jo+ (re + &) Je + k(0 —v)Jy + (prl + lophvpr + lopdsvy/1 — p2)J + =

1
5 o2v gy, + §l20%lel

Bsv
+lO'LUO'\/(pvpL + \/1 — pv\/l pL le — S (U‘Z/p%/JS + ZQJ%/)%JZZ + 20’\/0LprLlJUJl)

21 —7)J
By
=7 <0‘2,(1 —pE)J2+ o (1 — p)JE + 20v0p/1 — py/1 — p%lJUJl>

2
|:)\1J B ) (O'vaJ J +l0'LpLJ Jl) +UVpVJxv+lULpLJxl:|

_|_
ey
+v[)\2Jx — (lf—g)J(aV\/l 3 dedy +lop\/1 — p2Jud) + ov/1 — p&Juy + lofy/ L= p2 Ju)? 0
B
-]
(67)
To solve Eq. (67), we attempt to conjecture the solution in the following form:
h(t, 1))
Izl = & +1 (_’7)) g(t,0),  h(T,1) =0, " G(T, v) = 1, (68)
the partial derivatives of which are
+ h)I
Jy = gt% tg@+h) T, Je=g(@+h)TIN e = —yg(e+h) T
Lt 3 et
Jv - v(x+ ) 5 va :gvvua Jl :g(x—i_h)i’yhh le :gv<x+h)77hl
1—7 11—
Ju=—=vg(x +h) R+ gl + h) Thu, Sy = go(z + )T, Ju = —ygle +h) T
(69)
Substituting Eqgs. (68)-(69) into Eq, (67),/we have
+ h) + h)'
gt% + glw + h) Tt TG + B) " + Elg(a + )Y + k(5 — U)gv%
1 + h)t
+(prl + lopghvpr HAdophsvy/1 — p2)g(z + h) " Th + 5012/119@@%

1
+§l2a%v[—vg(:c +h)RAR + g(x + h) Vhy] + logvov(pver + /1 — p2/1 — p2)gu(x + h) 'hy

/N +h)
_%U [aQVpQVg (2 ~ i) +PopLg*(w+h) T hi + 20LavpvPngv—(x1 —i ‘ghl]
By x+h o
NG — et T s a1 - )+ 0
(x+h)™7

+20r0v\/1 — p2\/1 — p2lg, ghy

1—
2
Y [)‘19(“' +h)77 4 B gy oy g, (34 h) Y = (Bs + YloLprg(n + h)”‘lhz}
2(8s +v)g(x +h)=71
2
v [)\29(1’ +h)T7+ %‘/j’ﬂgv 1= p2gu(z+h)™7 = (By +7)lopy/1 — p2gx + h)_w_lhl}

+

n =0

2(Bv +7)g(x + h)t (70)
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Furthermore, let
g(t,v) = 9Ot - g(T) = §(T) =0,
(71)

Then,

9= 9@V +30),  Gw=0G G =05 hi=hd+h,

Inserting Eqgs. (71)-(72) into Eq. (70) implies

x+h o la, + _R+>\1(1—(5s+7))¢7v/?+>\2(1—(5v+7))av 1 — p? ¢
Bs + By +

L=~
(ﬁ _ Bsovp* Bvoy(1—p°) | (1= (Bs+7)’opp® | (1= (Bv #7) ol — pz)) 7
2 2(1-9) 2(1—7) 2(Bs +7)(1 =) 2(By 7)1 =)
M- M-, . oV s 7 7 b —
I resit | AR AT S U A o

By separating the variables with and without z, v and [, we can derive the following equa-

tions:
o M= Bs+))ovp | A(1— (Bv Hedav VI — P
gt+( " B+ " By ¥4 !
T <ﬁ _ Bsopp? Bvop(1—p°) | (L (Bs\F))lovp® (1= (By +7)°0t(1 - ,02)> 72
2 2(1-9) 2(1=7) 2(Bs )1 —7) 2(Bv +7)(1 —7)

MA—7y) A -9) _
2(Bs+7)  2(Bv +7)

G +r(l =)+ kdg =0,

)

_|_

he + (g — r)h + & = 0, by, —wh = 0.
Considering the boundary éenditions, we have

Vs Us iy o e2(r1—v2)(T—1) T
172 172 g(t) :/ [7’(1 _,.y)+ﬁ;5g1<s>] dS,

AN 1/52 — pec2(i—r2)(T—t) 7 : (74)
B(t) = S (elu—n)(T—1) _ P
W) (et D, h(t) =0,
where
o= it M(1 = (Bs +7))ovp n Ao(1 = (Bv +7))ov/1— ,02’
Bs + By + v
= ot Bsaovp®  Bvop(l—p*) (1= (Bs +7)0pp® | (1= (Bv +17))%0t (1= p?)
2 2(1-9) 2(1—7) 2(Bs +7)(1 =) 2Bv +7) (1 =)

g — 200 =7) | X1 —1)
2(Bs +7)  2(Bv +7)’
ar + /a2 — dasas

Vig = —20[2 .
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Substituting g(t), §(t), h(t) and h(t) into Eqs. (64) and (66), we can derive 0%(t), 0% (t),
¢5(t) and ¢y (1).

As Bs, By >0, v > 1, we have ap > 0 and a3 < 0. By calculations, we obtain

o} Bsotpt Brot(l— ) (1= (Bs+)Peds | (1 (Br +9)P0b(1— )
1

Ay —

2 2(1-9) 2(1 ) 2(Bs +7)(1 =) 28v +) (1 =)
_ o Bsopp®  Pvop(1—p?) o p? _ovp® | (Bs +)oip?
2 2(1—9) 2(1—7) 2Bs+7)(1—=7v) 1—v 2(1—79)
ov(1=p") _ov(l=p")  Bv+rov( =)
2(By +7)(1 =) 1—v 2(1-+) ’
_ oy aip’ oy (1= p?) o oy

T TG T2 ) 17 21-7)

As v > 1, we have

otp’ ot (1—p?) ovp® L oy(l=p) ) ob

s+ (=) 2B +0(1—-7)  20-7)  2Al=a) ~ 20-7)

Therefore,

2 2 2 2
9y 9y Oy YTy
Qg > — + — + =0
2 2(1-1v) 1-—7 “R2A1T=y)
Because a3 < 0, a3 — 4asas > 0. The proof of Théerem 312 is completed. [

Appendix E

This appendix mainly provides the proof of Theorem 3.4. Before giving the proof, we
present some lemmas, which areised inythe proof of Theorem 3.4.

Lemma E.1. g(¢) given by Eq. (28)4s an increasing function of ¢ and g(¢) <0, Vt € [0, 7.

Proof. The direct calculation shows that

—11a(v) — 1) 2ape2 i) (=)
(VQ — I/leag(lllfvg)(Tft))Q

9:(t) =

It is obvious that v, > 0 > 14 and ay > 0, which implies that g.(t) > 0, i.e., g(f) is an
increasing funetion of t. As g(T") = 0, then g(¢t) <0, Vt € [0, 7. O

In Theorem 3.2, we have already derived the optimal risk exposure and the optimal
investment strategy. However, we should guarantee that the Radon-Nikodym derivative
A*(t) of Q@ w.r.t. P corresponding to the optimal worst-case scenario drifts ¢ (t) and ¢ (¢),
i.e., the expression A(t) with ¢%(t), ¢}, (¢) instead of ¢5(t) and ¢y (¢), is indeed a P-martingale,
which ensures a well-defined Q*. The following lemma states sufficient conditions for this

scenario based on Novikov’s condition and Theorem 5.1 in Taksar and Zeng (2009).
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Lemma E.2. Novikov’s condition

Blow ([ (30 + j6r07) )| < oo

holds for ¢%(t) and ¢}, (¢) if the parameters satisfy that for Vg(t) € [g(0), 0],

BEM(1 =) +ovpyg(t)® | Br(Ra(l —7) +ovy/1—ppg(t)? K’ (75)
(1—7)2(Bs +)? (I =)%(Bv +7)? oy

Proof. From Theorem 3.2, we have

~ BsvV(IO)(A(1 =) +ovpvg(t))

_bBvy V() (A2l —7) +ov\/d = P%/g(t».

o= o -G Q)

(1 =7)(Bs +7)
Then

Blow ([ (30 + 667 )

~E [exp (/T (6301(1 =) +ovpg(s)® | Fr(e(l =) + o/ p2§(s))2> V(t)ds)] .

0 2(1 = 7)*(Bs +7)? 2(1 — 2 (B )
With condition (75), we can verify that ®* := {¢*(t)" = (0%§(t), #7,(1)) hejo,r) satisfies

Novikov’s condition as follows.

e e (5 :||¢*<s>||2ds)} — fow ([ T (o + 50167 as) |
b oo (2 v <

The first estimate follows from condition (75) because of the property of quadratic functions,

and the second is from Theorem 5.1 in‘Taksar and Zeng (2009). ]

To verify condition (4) il Proposition 3.1, we present another lemma.
Lemma E.3. For problem (16),'if J(¢,z,v,1) is the solution to the HJB equation (19) and
the parameters satisfy that for g(¢) € [g(0), 0],

/{2

4(1 — )" — 400 = (0)* + (n(t))"]+ 81 = AW < 5, (76)
we have
B [[p X 0, V() L(t)>|4] < oo,
and
L, ws(t,xﬁ(é))fv(w, L) " 20y, Xﬁgfv(t), L(t)) ] -
where
A(t) = 4(m(0)2 — avpvg(hm(t) +1(n(D)? — oy /T— gOn(t), (T

and m(t), n(t) are given by Eqgs. (26) and (27).
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Proof. Step 1. Proof of E*" [sup,co 1 |J(t, X* (1), V(t), L(t))|*] < co.
Substituting Eqs. (22) and (25) into Eq. (13), we have

d(X* (1) + h(t) L(1))

XTw  hOLE) (r+ ARV ()t +m(t)\/V (&) AW () + n(t)/V (#)dWE (2),

(78)
where m(t), n(t) and A(t) are given by Eqs. (26), (27) and (77). It is easy to obtain that

Eq. (78) has a unique positive solution

X () £ h()L(E) = (20 + h(0)lo) exp { / :)rds + / ; (A(s) - %(m(s))Q - —(n(s))2> V(s)ds

N

A(s)

- / ;m<s>\/mdwg’*<s) + / :n@mdwy@} '

Because

(X®5W () + h(t)L(t)'
L=~

J(t, X*(1), V(1) L(t) = exp(g(H)V (1) + 4(1)),

g(t) € [9(0),0], and g(t) is bounded, we obtain the following.estimate with the appropriate

constant K; > 0,

4

T ARAOLO)™ v + a00)

L=y

(8, X (8), V(D), L)) :‘

A () + h() L)

Next, we focus on |(X®" W (#) 4 W) L(#)) |4

\(X@*»u* (t) + RO

t

< Kyexp {/ 21 —H)A(s)V (s)ds + / 4(1 —y)m(s)\/V (s)dWZ (s)

0 0

[ oSty T (o)
=Iy.exp {/ [32(1 = 7)*(m(s))* + 32(1 — )*(n(s))* + 4(1 — 1) A(s)] V(s)ds}

0

Fi(t)

exp { / 3201 — () (s)ds + / - v)m(s)\/Wde’*(s)}

0 0

Fa (1)
t

0

exp {/t — 3901 — 7)2(n(s))2V (s)ds + /

0

e v>n<s>\/v<s>dw3*<s>},

-~

F3(t)
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where K3 is a constant. For the term Fy(¢), we can find an estimate as

B [(F2(1))"]

= [exp (/t — 128(1 — ~)%(m(s))?V (s)ds + /;16(1 — V)m(s)mdwg*(s))] < 0.

0

Because (Fy(t))* is a non-negative local martingale, it is a supermartingale. In fact, (Fy(¢))?

is a martingale due to bounded function 16(1 — v)m(t) on [0,7] (see Lemma 4.3 in Taksar

and Zeng, 2009). Similarly, we have E®"[(F5())?] < oo, and (F3(t))? is also a martingale.
For the term Fj(t), we estimate E® [(F}(t))?] as

B[0P = B [oxp ([ (0400 = 2R 0m(e)) + 6401 = 200060 + 80 Bt Visyas )|

Again applying Theorem 5.1 in Taksar and Zeng (2009), we obtain EZA[(F{(#))?] < oo if for

t

0

g(t) € [g(0),0], the following condition holds:

Iiz

64(1 — 7)*(m(s))” + 64(1 —7)*(n(s))* + 8(1 =N A(s) £ %07

ie.,

/€2

[64(1 = 7)* = 4(1 = )][(m(s))” + (n(5))"] +8(1 = V) A(s) < 5
%
Applying the Cauchy-Schwartz inequality, we gan awrive at

E®|J(, X9 (1), V(1), L(1))|* < KzE®" |

ECELHE) + () L(0)' (1] < KB [Fy(8) Fa(t) Fi (1)

=

< Ky {E¥[(Fu(1))]EY (B (1) F3(4))°]}

-

< 5 BV IR 2 E (R EVIE) D) < o,
where K3 and K, are appropriate positive constants.

Step 2. Proof of E® [supte[O,TH (@50 + (@ () (t))|2] < 0.

2W g (¢, X 2*u* (1), V (t),L(t)) 2y (¢, X 250" (1),V(t),L
(65(1)? (47, (1) |2] vields

. . @*
Inserting Eq. (18),inte/E [supte[O,T] |2‘Ils(t,Xq>*’“* OVOLO) T 20y KT VO L)

o [ . (¢5(8))° .\ (67 (1) ]

o] 2Ws (6, X (), V() L(1)) 20y (1, X2 (1), V (1), L(t))
g { gy [ (0 X (1), V0, L) (65(0)°

t€[0,1] 265

(1 =) J(t XP (), V(E), L(E) (65 (£)2
- 25y

o | o [0 (1 =@ 0)? )
<E o ot It X <t>,v<t>,L<t)>|]

- (1 =651 (L= [']” o i
<E _t:.[lé’pﬂ 255 + 2y E L:B}DT]U(LX (t),V(t),L(t))|]
< Q.
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Based on Lemmas E.2 and E.3, we can prove the verification theorem.
Proof of Theorem 3.4. Following the process of solving the HJB equation, conditions
(1) and (2) of the admissible strategy hold, and condition (3) of the admissible strategy can
be obtained by E*" [sup,co. 1 (6, X®7™ (2), V(t), L(t))|*] < oo in Lemma E.3. Thus, u* is
an admissible strategy. For Lemmas E.2 and E.3, we can simply apply Proposition 3.1 to
prove that u* is the optimal strategy for problem (16) and J(¢,z,v,1) is the correspending

optimal value function. O

Appendix F

This appendix provides some special cases when the pension investor has no access to
the derivative.
Remark F.1. We present several special cases to show{the relationships between @*(t)
and fBg, Py and . It is obvious that the effect of o7 _on @*(¢) depends on the value of py.
When p;, = 0, the optimal investment strategy in this case, denoted a(t), can be written

as uj(t) = my(t) <1 + h(t)2Y ), and the optimal value function in this case, denoted

X (t)
= (=R

jl(t,x,v, [), can be written as jl(t, z,v,l) -

exp(ga(t)v + ga(t)), where

~ _ )‘1(1 - 7) + (1 — (BS + 7))0\//)1/@3(75) B - U11U9 — 1711,}2165!21(171171721)(T7t)
mi(t) = — ;o Gt) = ————— T T
T (1 7)(65 +’7) U9y — Dppef2rFii—vai
g 4 Ar(1— +
g4(t) = / [r(1 —7) + kdga(s)]ds, ran = —Kk+ 1( <5SS+ 3))‘7\/[)\/’
t
O Bsobeh  gRobd—0t) | (L (Bs ) avt

Qo1 =
T2 2017 2(1=79) 2(Bs +7)(1 —=7)
Gy — (1 —7) 5 L a1 £ /af) — 4a01as
=S5 1121 = — ,
. 2(Bs + 1) —20;

and h(t) is given. by Eq. (30). By derivation, we obtain &%, — 4dg,d3; > 0. As h(t) > 0,
Ok (t) .

8(/3; < 0, which

implies ‘that, the optimal investment strategy decreases w.r.t. aversion to ambiguity and

ga(t) < 0, py = 0 and v > 1, following simple calculations, we have

risk in some cases. This result is intuitive and similar to the case involving the derivative.

When p;, = 1, the optimal investment strategy in this case, denoted a3(t), can be written

as uy(t) = m(t) <1 + h(t) Xﬁg()t)> —oph(t) Xl;(f()t), and the optimal value function in this case,
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denoted Jy(t, z,v,1), can be written as Jy(t, z,v,1) = M exp(gs(t)v + gs(t)), where

Dygligy — Dygligget?2 (12— 722)(T1)

w0 = TDQQ — Dygebe2(Piz—p2)(T—t) 7

gs(t) = / [r(1 —7)+ kdgs(s)]ds

¢
Gy = —K + M(1—(Bs + 7))UV7

Bs +7
2 Bsod | (1—(Bs+7))al

Qg = /= — )

2 21-79) 20Bs+7v(1=1y)
A=) . Qg /Gy — 4anass
a32 = V1222 = = 5

2(Bs +7)’ 7 —20
and h(t) is given by Eq. (30). By derivation, we obtain G2, — 4agdsy > 04 When p; =

—1, the optimal investment strategy in this case, denoted @}(t), can be‘written as @}(t)

m(t) (1 + h(t) Xﬁ(f()t)> + oph(t) Xi(,f()t), and the optimal value function in this case, denoted

Js(t,z,v,1), can be written as Js(t,x,v,1) = W exp(gs(t)v +.46(t)), where

~ S ad2s (P13 —ing) (T—t
) = D13lyg — Drlipge®s (719 —728)(T 1)
T1723 — Dyged2s(P13—023)(T—1)

do(t) = / [r(1 — ) + xdgs(s)] do
. B ML= (Bs+7))ov.

9

9

o 5025+z1—(5+ 202
~ Vv 50y 5+ 7)) ov

Qo3 = —— — s
P2 21—y 2B+ (1 =)
d33 _ )\%(1 — ’}/) ]713 by — dlg :i: d%g) — 46[236[33
2(Bs + )" ’ —2di3 ’

and h(t) is given by Eq. (30). Byderivation, we obtain a2, — 4dg3dss > 0.

Compared with Remark®.55we find that when the investor has no access to the derivative,
the non-redundant condition is unnecessary. Therefore, we analyze the case of p = £1 here
and provide relatedexpli¢it results. From the previous results, we find that the equity
premium Ay for additional volatility risk is now 0; the investor has no way to cope with
the volatility risk, She may increase her wealth invested in the stock (the second part in
Eq. (23).is drepped), which causes her to undertake more risk than in the case with the
derivative, and decrease her utility at retirement. The following special cases can be studied
in a similar way. For a detailed comparison, we list related explicit results below.

Remark F.2. If o5 = 0, the salary process is non-stochastic; then, the optimal investment
in this case, denoted @} (t), can be written as @}(t) = m(t)(1+ h(t) ), and the optimal value

Xu )
function in this case, denoted J4(t, z, v), can be written as Jy (¢, z, v) =

OV oxp(ga(t)o+

g3(t)), where h(t), m(t), gs(t) and gs(t) are given by Eqgs. (35) and (46). In this case, we

find that the optimal investment strategy is proportional to m(t).
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Furthermore, if there is no salary and no derivative, our model reduces to a portfolio

selection problem for an ambiguity-averse investor. The optimal investment strategy in this

M (1=7)+(1—(Bs+7))ovpvgs(t)
(A=) (Bs+7)

value function in this case, denoted Js(t, 2, v), can be written as Js(t, z, v) = 1_; exp(gs(t)v+

case, denoted @i (t), can be written as ui(t) = , and the optimal

g3(t)), where g3(t) and g3(t) are given by Eq. (46).
Remark F.3. If there is no derivative in the financial market and if the pension investor

is ambiguity neutral, then the optimal investment strategy, denoted wg(t), can be written

as ug(t) = ’\1+U+"’g7(t) (1 + h(t)-=0 ) _ ngLﬁ(t)%, and the optimal valuesfunction,

X (t)
_ (zth@n' 7
1—y

denoted Js(t, z,v,1), can be written as Jy(t, z,v,1) exp(g7(t)v +4G7 (1)), where

5 S o dza(Pra—ina) (T—t
Dyaliyy — Dyglpget?(1a=v2a) (1)

§7(t> = ) (79)

Doy — D 4e024(P1a=024)(T—t)

T
g7(t) = / [r(1 =)+ kdgr(s)] ds, (80)
t
- M1 —7)o 5 o2 = ~)o2 p?
Gy = o = ovoy o o, (D Yovey
Y 2 2y
MO =9) . auE Al — ands
O34 = — 5 Vig 24 = =z ,
2y =204

and h(t) is given by Eq.(30). By derivation, we\obtain &2, — 4dg4dss > 0.
Remark F.4. If there is no derivative in“the"financial market, the pension investor is
ambiguity neutral and o; = 0, the galary process is non-stochastic; then in this case, the
optimal investment strategy, denoted @§4(t), can be written as @ig(t) =

h(t)
Xu"(t)

Jo(t,z,v) = % exp(Gs (H)vH §7(t)), where h(t), g(t) and §(t) are given by Egs. (35),
(79)-(80).

Atovpy gr(t)
Musovormnlt) (q 4

), and the optimal valde funétion in this case, denoted J;(t,z,v), can be written as

Furthermore/if there. is no salary, no ambiguity and no derivative in our model, the op-

timization problem becomes a portfolio selection problem for an ambiguity-neutral investor;

(t) _ Mitovevigr(t)

the optimal investment in this case, denoted ugq(t), can be written as ugg - ,

and the optimal value function in this case, denoted Jg(t, z, v), can be written as Js(t, z,v) =
”il_j exp(gr(t)v + g7(t)), where gz(t) and g;(t) are given by Eqs. (79) and (80).
Remark F.5. If oy = 0, the volatility of the risky asset is non-stochastic, and as noted

above, the derivative is indeed redundant. The optimal investment strategy in this special

case, denoted u§(t), can be written as ug(t) = /Bé\—jﬂ(l + h(t) X{jgf()t)) - ULplh(t)%, and

the optimal value function in this case, denoted Jo(t,z,1), can be written as Jy(t,z,1) =
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(x 4+ h()) ™

T exp(s(1). where

(1 =)o AT(1 =) (v —9)
2(Bs + ) > T=0+ 2(Bs + )k

and h(t) is given by Eq.(30).

Gs(t) = (r(l )+

(exp(—rt) — exp(—~rT)),

Appendix G

This appendix provides the optimal strategy under two special cases, European=style call
and put options. Option pricing for the stochastic volatility model adopted here/refers to
Liu and Pan (2003) and Cui et al. (2017). We derive the prices of European-style call and

put options with time 7 to expiration and striking at K as follows
C(t) =clt, 7,5, Vi K);  P(t)=p(t 7,5V K),

where S is the spot price and V' is the market volatility“at time ¢, and the call and put
options’ prices are, respectively,

c(t,7,5,V; K) = SPi(t, 7,5, V; K) — e ""KPa(t, 7,5, V; K),

p(t, 7,5, V; K) =e ""K(1 — Patys, S,ViK)) — S(1 — Pi(t, 7,5, V; K)),

where the risk-neutral probabilities Py=and Py are recovered from inverting the respective

characteristic functions

1 {1 (8 iz(In K—In S—r7) JA(1—iz)+B(1—iz)V
Pl(t,T,S,V;K):—__/ Im |:e ° :|dZ,

2 w/, z
1 1 [ iz(In K—In S—r71) JA(—iz)+B(—iz)V
PZ(th7SaV;K):§__/ Im |:e © :|dZ>
7)o z

where Im denotes the imaginary component of a complex number, and A(y), B(y) are given
by
a(l —e )
Bly) = — ,
R [y
K*o* q+b Cor
A(y):_0'2 ((q+b)7+21n(1—2—q(1—eq)>),

Vv

a=y(l—-y), b=pyoyy— K",

qg=V+act, K =r+ov(pvM+1—piX), &=

The price of the straddle option used in our numerical examples is given by

Ko

K*

Oo(t) =c(t, 7,5, V; K)+p(t, 7,5, V; K).
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