
On Large Polynomial Multiplication

in Certain Rings

by

Khan Shagufta Shagufa

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

c© Khan Shagufta Shagufa 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Multiplication of polynomials with large integer coefficients and very high degree is

used in cryptography. Residue number system (RNS) helps distribute a very large integer

over a set of smaller integers, which makes the computations faster. In this thesis, multi-

plication of polynomials in ring Zp/(x
n + 1) where n is a power of two is analyzed using

the Schoolbook method, Karatsuba algorithm, Toeplitz matrix vector product (TMVP)

method and Number Theoretic Transform (NTT) method. All coefficients are residues of

p which is a 30-bit integer that has been selected from the set of 30-bit moduli for RNS

in NFLlib. NTT has a computational complexity of O(n log n) and hence, it has the best

performance among all these methods for the multiplication of large polynomials. NTT

method limits applications in ring Zp/(x
n + 1). This restricts size of the polynomials to

only powers of two. We consider multiplication in other cyclotomic rings using TMVP

method which has a subquadratic complexity of O(nlog2 3). An attempt is made to improve

the performance of TMVP method by designing a hybrid method that switches to school-

book method when n reaches a certain low value. It is first implemented in Zp/(x
n + 1) to

improve the performance of TMVP for large polynomials. This method performs almost

as good as NTT for polynomials of size 210. TMVP method is then exploited to design

multipliers in other rings Zp/Φk where Φk is a cyclotomic trinomial. Similar hybrid designs

are analyzed to improve performance in the trinomial rings. This allows a wider range of

polynomials in terms of size to work with and helps avoid unnecessary use of larger key

size that might slow down computations.

iii

Acknowledgements

I express my deep gratitude to my supervisor, Professor Anwar Hasan for his constant

support, encouragement and patience during my graduate studies. He consistently steered

me in the right direction whenever I needed it. I thank Professor Mark Aagaard and

Professor Mahesh Tripunitara for reviewing this thesis.

I am grateful to Julien Eynard and Nusa Zidaric for their guidance and support. I

thank my colleagues for all the discussions and motivation: Ahmed, Tanushree, Chris and

Mohannad.

I must express my profound thankfulness to my parents and my brother for always

believing in me, encouraging me and making it possible to fulfill my dreams. Thanks to

Rameez, Sonia bhabi and my entire family for all the support.

Finally, special thanks to Niyaz and my friends here for never letting me lose hope

and for all the laughs I had throughout my stay: Nivedita, Meghana, Kritika, Jacqueline,

Namrah and Adi. A big shout-out to Shamma for always being there.

iv

Dedication

This thesis is dedicated to my parents, Shahin Anjum and Shafiq Ullah Khan and my

brother, Md Shafquat Ullah Khan who have always believed in me and provided unfail-

ing support. This accomplishment has been possible only because of their blessings and

sacrifices.

v

Table of Contents

List of Tables x

List of Abbreviations xii

1 Introduction 1

1.1 Motivation . 1

1.2 Scope of Work . 3

1.3 Thesis Organization . 4

2 Background 5

2.1 Finite Field Arithmetic . 5

2.1.1 Ring . 5

2.1.2 Polynomial Ring . 6

2.1.3 Finite Field . 7

2.2 Modular Reduction . 7

vi

2.3 Residue Number System (RNS) . 8

2.4 Polynomial Multiplication Methods . 9

2.4.1 Karatsuba Algorithm . 9

2.4.2 Toeplitz Matrix Vector Product . 11

2.4.3 Number Theoretic Transform (NTT) 14

2.5 Multiplication in Cyclotomic Polynomial Ring using RNS 16

2.5.1 Other Cyclotomic Polynomials . 17

2.6 Summary . 18

3 Multiplication of Polynomials in Zp/Φk(x) 19

3.1 Polynomial Multiplication in ring Z/(xn + 1) 20

3.1.1 Polynomial Multiplication using the Schoolbook Method 21

3.1.2 Multiplication in Z/(xn + 1) using Karatsuba Algorithm 23

3.1.3 Multiplication using Toeplitz Matrix Vector Product 26

3.1.4 NTT-based Polynomial Multiplication and Algorithms 30

3.1.5 Hybrid Design with Karatsuba and Toeplitz 35

3.2 Polynomial Multiplication in Ring Zp(x)/Φk(x) 36

3.2.1 Multiplication of Polynomials in Ring Z/(x2.3
i
+ x3i + 1) 37

3.2.2 Multiplication of Polynomials in Ring Zp/(x
2.2h.3i − x2h.3i + 1) . . . 40

3.2.3 Multiplication using Three-Way Split TMVP 41

3.3 Hardware Implementation . 43

vii

3.3.1 Functional Simulation of TMVP and Karatsuba 43

3.3.2 Field Programmable Gate Array (FPGA) 44

3.4 Summary . 44

4 Analysis of Implementation 46

4.1 Multiplication in Ring Zp/(x
n + 1) . 47

4.1.1 Comparison in Software for Different Methods of Multiplication . . 47

4.1.2 Hybrid Implementation . 49

4.2 Multiplication in Rings Quotiented by Cyclotomic Trinomials 55

4.2.1 Multiplication of Polynomials in Ring Zp/(x
2.3h +x3

h
+1) using TMVP 55

4.2.2 Multiplication of Polynomials in Ring Zp/(x
2.2i.3j − x2i.3j + 1) using

TMVP . 56

4.3 Hardware Implementation of Two-Way Split TMVP 58

4.4 Summary . 59

5 Concluding Remarks 61

5.1 Contribution Summary . 61

5.2 Future Work . 62

References 63

APPENDICES 69

viii

A RNS base used and Modular Reduction Algorithm 70

A.1 List of all the moduli in the RNS base used in this thesis 70

A.2 Modular Reduction using Barrett’s Reduction Algorithm 72

ix

List of Tables

3.1 Range of sizes of polynomial within the range 1024 ≤ n ≤ 2048 with various

cyclotomic polynomials . 37

4.1 Timing report from Software Implementation using different multiplication

methods . 48

4.2 Timing report forHybrid-TMVP implementation with different break-points

m . 50

4.3 Timing report for comparing modified Hybrid-TMVP implementation with

reduced number of mod at breakpoints m = 16 and m = 32 52

4.4 Timing report for comparing modified Hybrid-TMVP implementation with

loop unrolling . 53

4.5 Timing report for multiplication in ring Zp/(x
2.3h +x3

h
+1) using three-way

split TMVP and Hybrid(m) with different break-points m 56

4.6 Timing report for multiplication in ring Zp/(x
2.2i.3h − x2

i.3h + 1) using a

combination of two-way split and three-way split TMVP and Hybrid(m)

where m is the break-point . 57

x

4.7 Xilinx synthesis report on implementation of polynomial multiplication us-

ing TMVP . 58

4.8 Xilinx synthesis report for polynomials of size 26 and 27 reusing the block

for 25 . 59

xi

List of Abbreviations

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

FHE Fully Homomorphic Encryption

FPGA field programmable gate array

HE Homomorphic Encryption

LWE Learning with Error

NTT Number Theoretic Transform

RLWE Ring-Learning with Error

RNS Residue number system

SHE Somewhat Homomorphic Encryption

TMVP Toeplitz matrix vector product

xii

Chapter 1

Introduction

1.1 Motivation

Multiplication of polynomials with large coefficients is a very common application when

it comes to cryptography especially with Ring-Learning with Error (RLWE) or Some-

what Homomorphic Encryption (SHE). Homomorphic Encryption (HE) is an encryption

that allows specific mathematical operations to be carried out on the encrypted data and

when decrypted, the result would be the same as obtained by performing those specific

mathematical operations on the data before encryption [18]. Fully Homomorphic Encryp-

tion (FHE), suggested by Rivest, Adleman and Dertouzos back in 1978, is a scheme that

makes extremely complex encrypted data programs evaluable [34][7][8]. The first feasible

construction of the scheme, recognized as SHE was presented by Gentry in 2009 [17][10].

RLWE is a ring variant of Learning with Error (LWE) [32] in which all computations are

considered in ring R = Z/Φk where Φk is the kth cyclotomic polynomial of degree n = φ(k)

[10] [22].

1

With the help of RNS, polynomials with extremely large coefficients are represented by

a set of smaller coefficient polynomials. Arithmetic operations on all these smaller polyno-

mials can be executed independently. Somewhat Practical Fully Homomorphic Encryption

(FV) scheme by Junfeng Fan and Frederik Vercauteren is an efficient practical SHE scheme

that handles sufficient number of operations. In 2015, a full RNS variant of the FV scheme

has been presented with practical benefits of the RNS variant [5]. The polynomial multi-

plication involved in this SHE scheme is handled efficiently using NTT and Fast Fourier

Transform (FFT) in power-of-two cyclotomic rings.

Cyclotomic rings quotiented in xn + 1 are simple to work with because n is a power of

two and by just making simple adjustments to n-dimensional FFT, arithmetic operations

can be carried out efficiently [23]. Multiplication of polynomials can be carried out with

quasi-linear complexity of O(n log n). For the convenience of operations, these cyclotomics

are most preferred and commonly considered in recent ring-based cryptographic schemes.

It is also important to consider other cyclotomics. For efficient FHE, it is required to ex-

plore cyclotomic polynomials that are not powers of two because power-of-two cyclotomics

fail to suffice for properties required for certain implementation features and also restricts

diversity of security assumptions [23]. Another reason is that with these cyclotomics, the

jump from a power of two to the next one is very distributed for large polynomials. If

a desired ring size is slightly higher than a certain power of two, it will be required to

consider the next power of two that might lead to unnecessary increase in runtimes.

2

1.2 Scope of Work

In this thesis, multiplication of polynomials of size n is presented over polynomial ring

Z/(xn + 1) where n is a power of two (i.e., xn + 1 is the cyclotomic polynomial Φ2n) and

all operations are considered in the RNS. This polynomial multiplication in the RNS is

useful in many cryptographic schemes that deal with huge integers. The main modulus of

the RNS is the product of multiple smaller moduli. Throughout the entire thesis, residues

in prime p is considered which is a 30-bit modulus from the set of moduli for the RNS

used in NFLlib. Multiplication of polynomials in ring Z/(xn + 1) is investigated using the

schoolbook method, Karatsuba algorithm, TMVP and NTT. A comparison in terms of

CPU-time is presented for the methods through software implementation.

The practicality of using Toeplitz matrix vector product is considered as it does not

limit the choice of ring to Z/(xn +1) only and it can be efficiently used for rings quotiented

by other cyclotomic polynomials. Using schoolbook method or Karatsuba algorithm, the

product of size 2n− 1 is first computed and then adjustments are made for corresponding

cyclotomics. In Z/(xn +1), this adjustment is a simple subtraction of (n+ i)-th coefficients

from i -th coefficients where 0 ≤ i ≤ n but it is not as simple in other rings. Whereas with

TMVP, the Toeplitz matrix for each of the rings is formed with necessary adjustments so

that the products are directly modulo corresponding cyclotomic ring. Multiplication of

polynomials in cyclotomic trinomials are explored using TMVP method. Efficiencies for

multiplying polynomials of different sizes n where 2h ≤ n ≤ 2h+1 are analyzed.

In order to demonstrate the practical feasibility and efficiency of TMVP, a hardware

implementation of two-way split TMVP in ring Z/(xn + 1) is carried out for polynomials

of smaller sizes. The designs are synthesized in field programmable gate array (FPGA).

The objective of this thesis is to compare the efficiency of TMVP method against effi-

3

ciencies of schoolbook method, NTT and the Karatsuba method in Z/(xn + 1) for different

sizes of polynomials. All implementations are executed in software. Hybrid designs, based

on the comparison are implemented to speed up TMVP. Another objective is to make use

of TMVP method for multiplication in other cyclotomics in order to allow multiplication

of polynomials whose sizes are not restricted to powers of 2.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 gives an overview of the required mathemat-

ical background about finite field arithmetic. It describes different polynomial multiplica-

tion methods, RNS and its role in cryptography. Chapter 3 presents detailed explanation

of each of those multiplication methods in ring Z/(xn + 1) and provides appropriate algo-

rithms for the ease of understanding. It introduces multiplication using TMVP method in

other rings quotiented by cyclotomic trinomials. Chapter 4 is an organization of the re-

sults obtained from the software implementations of polynomial multiplication. CPU-time

required for the implementation in software is measured for different sizes of polynomials

using each of the methods and tabulated comparisons are provided. Chapter 4 also provides

estimated area in terms of LUTs and registers used for the hardware synthesis of TMVP

implementation using Xilinx. Chapter 5 is a discussion based on the implementation and

its analysis. It also talks about the scopes and possibilties of future work related to this

thesis.

4

Chapter 2

Background

This chapter provides an overview of the required mathematical knowledge for the multi-

plication of polynomial multiplication in a given ring. The organization of the chapter is as

follows: A brief introduction to the mathematical terms in finite field arithmetic that con-

cerns our work is provided. Different methods of implementing polynomial multiplication

that are examined in this thesis are explained. This chapter also identifies a number of

cyclotomic polynomials that can be considered for the multiplication of polynomials using

proper variants of Toeplitz matrix vector product.

2.1 Finite Field Arithmetic

2.1.1 Ring

A ring R is a set of elements with the binary operations of addition (+) and multiplication

(−) satisfying the following properties.

5

• (+, R) forms an abelian or a commutative group such that a + b = b + a with 0 as

the identity.

• Multiplication is associative with 1 as the multiplicative identity.

• The multiplication operation is distributive over the addition operation.

When a×b = b×a for all elements a and b in the ring, the ring is said to be a commutative

ring. If there exists an element b such that a× b = 1 for an element a of the ring, then a

is called a unit or an invertible element [25].

2.1.2 Polynomial Ring

A polynomial over the ring R can be represented in the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where each of the coefficients ai belongs to the ring R and n > 0. If m is the largest integer

for which am 6= 0, then the degree of f(x) is m. All polynomials in the indeterminate x

with coefficients from commutative ring R forms a polynomial ring R[x] [25][12].

• f(x) is a constant polynomial if it is equal to a0 and has a degree 0.

• If the highest nonzero term, xm has the coefficient of 1 then the polynomial f(x) is

a monic polynomial.

• f(x) ∈ R[x] is an irreducible polynomial if it cannot be factorized into smaller poly-

nomials in R[x].

6

2.1.3 Finite Field

When all nonzero elements of a commutative ring R have multiplicative inverses, the ring

is called a field. When addition or multiplication is performed on elements of a field, the

resultant element is also a member of the same set. The number of elements in a field is

called the order of the field [9].

nFinite field, also known as Galois Field, is a field with finite number of elements. A

finite field, Fpm has pm elements where p is prime and m is a positive integer. For any

prime number p, Zp is a field and any field of order p is isomorphic to Zp. Also, if Fq is

a finite field of order q = pm, then it is seen as an extension field of Zp of degree m [25]

[12][28].

2.2 Modular Reduction

In modular arithmetic, all values are reduced to or wrapped around a specific value which

is called the modulus. A simple example of modular reduction is the reduction of integers

modulo n. In this case all the integers limit from 0 to n − 1 and so does the result of all

arithmetic operations. Z represents all integers. Consider all integers reduced in modulo

n and let that be denoted as Zn = Z/nZ. So the elements in this ring are 0, 1, . . . , (n− 1).

There are different algorithms that can be used to perform modular reduction efficiently.

The classical method, Montgomery’s algorithm and Barrett’s algorithm are the popular

ones [6].

7

2.3 Residue Number System (RNS)

A residue number system RNS enables us to represent a large integer as a set of smaller

integers. The RNS comprises a set of moduli that are independent of each other and large

integer is represented by its residue in each modulus. Mathematical operations are per-

formed on each of the residue and this allows avoiding carry in addition or multiplication.

This makes computations more efficient [16].

Let us consider a set of integers B= {q1, . . . , qk}, where gcd(qi, qj) = 1, i 6= j. If B

is the base of the residue number system, then any integer x in the residue class Zq with

q = q0q1, . . . , qk is represented as a k-tuple, (x1, x2, . . . , xk) where xi ≡ x mod qi [37][31][27].

RLWE-based encryption in lattice based crytography involves operations on polynomials

of very large coefficients. RNS can be used to represent each of those coefficients as a set

of smaller integers, leading to simpler polynomial operations.

Residue Arithmetic

For any integer x and modulo q, (−x) mod q = (q − x) mod q. This additive inverse

property is useful in dealing with subtractions. If xy mod q = 1 for any integer 0 ≤ yq−1,

then y is the multiplicative inverse of x. Chinese Remainder Theorem (CRT) commonly

requires the use of this property.

In RNS, the result of addition and subtraction is also in reduced form with respect to

the moduli. x± y = {(x1 ± y1) mod q1, . . . , (xk ± yk) mod qk}. Similarly, multiplication in

RNS provides the product in the corresponding modulus.

8

2.4 Polynomial Multiplication Methods

Lattice based cryptography uses ideal lattices for better performance in terms of area and

speed. These lattices are ideals in R = Zp/f(x) where f(x) is some monic polynomial of

size n in Zp and p is a prime number [10].

The product C(x) of two polynomials A(x) and B(x) of size n is evaluated as

C(x) =
n−1∑
j=0

n−1∑
i=0

aibjx
i+j (2.1)

where A(x) =
n−1∑
i=0

aix
i and B(x) =

n−1∑
i=0

bix
i.

Polynomial multiplication has a complexity of O(n2) in schoolbook and is significantly

time consuming for large values of nn. Apart from the schoolbook method, there are vari-

ous approaches for carrying out polynomial multiplication. Fast Fourier Transform, Karat-

suba approach and Toeplitz Matrix Vector Product are some of the algorithms commonly

used in cryptography. This section provides a basic understanding for each of the above

mentioned methods. Here, multiplication using each of the following methods is executed

considering ring R = Z/(xn + 1). The resultant polynomial is in modulo xn + 1.

2.4.1 Karatsuba Algorithm

The Karatsuba algorithm can be used to improve the complexity of polynomial multipli-

cation from quadratic (O(n2)) to subquadratic (O(nlog2 3)). The algorithm was originally

proposed to make digital multiplication simpler. Its use in polynomial multiplication has

been introduced later. Each of the polynomials to be multiplied is divided into half sized

9

polynomials and the multiplication is replaced by three half-sized polynomial multiplica-

tions. This is repeated and divided recursively and finally the product is achieved by

expansion [15] [40] [26].

Consider two polynomials A and B of size n where n is even, i.e.,

A = a0 + a1x+ · · ·+ an−1x
n−1 and

B = b0 + b1x+ · · ·+ bn−1x
n−1

A and B are each split in half sized polynomials AH ,AL, BH and BL respectively:

A = AL + AHx
n/2 and B = BL +BHx

n/2

Therefore,

A = (a0 + ...+ an/2−1x
n/2−1) + (an/2 + ...+ an−1x

n/2−1)xn/2 and

B = (b0 + ...+ bn/2−1x
n/2−1) + (bn/2 + ...+ bn−1x

n/2−1)xn/2

Let K0, K1 and K2 be three polynomials where

K0 = ALBL

K2 = AHBH and

K1 = (AL + AH)(BL +BH)−K0 −K2

Assuming that n is a power of 2, the Karatsuba algorithm is applied to multiply these

half sized polynomials and in this way the algorithm repeats recursively until n = 1. The

number of coefficient halves every recursion, hence it has a total of log2 n recursive steps

[29]. The product is then reduced modulo xn+1 because we are considering ring Z/(xn+1).

It can be done by a simple step ci = ci − ci+n for 0 ≤ i ≤ n − 1, where ci represents the

coefficients of the product.

10

2.4.2 Toeplitz Matrix Vector Product

Unlike Schoolbook method and Karatsuba algorithm, TMVP method gives us the result

in ring R directly. The way the Toeplitz matrix is formed depends on the ring R and the

matrix product is the residue of the product of the polynomials in the chosen ring.

Toeplitz Matrix

A Toeplitz matrix T is an n × n square matrix where entries at coordinates (i, j) and

(i + 1, j + 1) for 0 ≤ (i, j) ≤ n− 2 are the same. This property allows the matrix to be

defined by only its 2n− 1 different entries as the rest are just repetitions [20].

T =



t0 t−1 t−2 . . . t−(n−1)

t1 t0 t−1 . . . t−(n−2)

t2 t1 t0 . . . t−(n−3)

.

.

.

.

tn−1 tn−2 tn−3 . . . t0



.

Addition of two Toeplitz matrices only requires addition of these elements and hence

cost is the same as 2n− 1 additions over the field.

Multiplication using Toeplitz Matrix

The multiplication of a 1× n vector v and an n× n Toeplitz Matrix T is described below

[13].

11

Let

T=

T0 T1

T2 T0

 and V =
(
V0 V1

)
where T0, T1 and T2 are n

2
× n

2
Toeplitz matrices and V0 and V1 are 1× n

2
matrices.

V T =
(
V0 V1

)T0 T1

T2 T0

 =
(
k2 + k1 k2 + k0

)
(2.2)

where,

k0 = V0(T1 − T0)

k1 = V1(T2 − T0)

k2 = (V0 + V1)T0

So, the multiplication of a vector of size n with an n × n Toeplitz matrix is broken down

into three multiplications of vector of size n
2

with n
2
× n

2
Toeplitz matrix. The splitting is

continued recursively until each of the sub-matrices is of size 1.

Multiplying Polynomials in Ring Zp/(x
n + 1) using Toeplitz matrix

Consider vectors A =
(
a0 a1 . . . an−1

)
and B =

(
b0 b1 . . . bn−1

)
representing the

coefficients of the polynomials A(x) and B(x) of size n. Let

D(x) = A(x)B(x)

C(x) = A(x)B(x) mod (xn + 1)

The coefficients of D(x) can be represented as a vector D. The vector D is obtained by

multiplying vector A of length n with an n× (2n− 1) matrix B′ where

12

B′ =



b0 b1 b2 . . . bn−1 0 0 . . . 0 0

0 b0 b1 . . . bn−2 bn−1 0 . . . 0 0

.

.

.

.

0 0 0 . . . b0 b1 b2 . . . bn−1 0


The matrix B′ is formed from vector B such that each entry of the matrix product D

represents the corresponding coefficient of polynomial D(x).

D = AB′ =
(
a0 a1 . . . an−1

)



b0 b1 b2 . . . bn−1 0 0 . . . 0 0

0 b0 b1 . . . bn−2 bn−1 0 . . . 0 0

.

.

.

.

0 0 0 . . . b0 b1 b2 . . . bn−1 0


Since, C(x) is basically D(x) reduced in ring Zp/(x

n + 1), all terms in D(x) with degree

greater than equal to n are reduced. In ring Zp/(x
n + 1), xn = −1, xn+1 = −x and so on.

Therefore, if di is the coefficient of xi then the equivalent of dnx
n in the ring is −dn.

Given,

D(x) = d0 + d1x+ d2x
2 + · · ·+ dn−1x

n−1 + dnx
n + · · ·+ d2n−2x

2n−2 (2.3)

13

then

C(x) = (d0 − dn) + (d1 − dn+1)x+ · · ·+ (dn−2 − d2n−2)xn−2 + dn−1x
n−1 (2.4)

In matrix representation,

C =
(
a0 a1 . . . an−1

)



b0 b1 b2 . . . bn−1

−bn−1 b0 b1 . . . bn−2

−bn−2 −bn−1 b0 . . . bn−3

.

.

.

.

−b1 −b2 −b3 . . . b0



.

Here, the n×n square matrix is a Toeplitz matrix allowing the evaluation of C done using

the recursive method of Toeplitz matrix vector product [13]. The computational complex-

ity of multiplication of polynomials by this method is subquadratic (O(nlog2 3)) [19].

2.4.3 Number Theoretic Transform (NTT)

Fast Fourier Transform (FFT) algorithm is a fast way to perform polynomial multiplica-

tion. It requires lesser operations than the other methods described earlier in this chapter.

It has a quasi-linear complexity of O(n log n) [10].

The Discrete Fourier Transform (DFT) is a reversible procedure for mapping in time

series. The coefficients of the DFT can be calculated by iteration. FFT is an efficient

14

method for the computation of DFT of a time series [11] which makes the computation

fast.

DFT over a finite field Fp is defined as the NTT over a ring. NTT does not use complex

numbers or complex arithmetic as it is in finite field. Let us represent a polynomial A(x)

as vector A = (a0, . . . , an−1) where ai ∈ Zp and consider ω to be the n-th root of unity.

Then we can define NTTω(A) as:

Ai =
n−1∑
j=0

ajω
ij mod p (2.5)

and inverse Number theoretic Transform INV -NTTω−1(A) is defined as:

ai = n−1
n−1∑
j=0

Ajω
−ij mod p (2.6)

where 0 ≤ i ≤ n− 1 [10].

Polynomial Multiplication using NTT

The procedure to perform polynomial multiplication requires us to calculate the FFT

of the coefficients of each of the polynomial multiplicants, followed by component-wise

multiplication. The inverse FFT of the component-wise product gives us the polynomial

product of the two initial polynomials.

Let A = (a0, . . . , an−1) and B = (b0, . . . , bn−1) be the vector representations of polyno-

mials A(x) and B(x) of size n. In order to find their polynomial product we have to take

the extended vectors Ã = (a0, . . . , an−1, 0, . . . , 0) and B̃ = (b0, . . . , bn−1, 0, . . . , 0), each of

length 2n− 1.

AB = INV -NTTω−1(NTTω(Ã) ◦NTTω(B̃)) (2.7)

where ◦ represents component-wise multiplication and ω is the 2n-th root of unity [10].

15

Polynomial Multiplication using NTT in ring Z/(xn + 1)

AB is the polynomial multiplication of vectors of size n so it has a length of 2n− 1. We

are dealing with polynomial ring R = Z/(xn + 1) so we need to reduce the product vector

accordingly. One of the advantages of using NTT for polynomial multiplication in ring R is

that we can use negative wrap convolution to take into account the modular reduction and

avoid the use of the extended vectors of twice the input length [10]. In ring Z[x]/(xn + 1),

xn = −1. When A = (a0, . . . , an−1), negative wrapping of A is given by A′ = (a′0, . . . , a
′
n−1)

where a′i = aiφ
i and φ2 = ω mod p. Similarly, let B′ and C′ represent the negative

wrapping of B and C. Then we can say, C′ = INV -NTTω−1(NTTω(A′) ◦ NTTω(B′)).

The coefficients c′i of vector C′ are then multiplied by φ−i to obtain vector C where

C = AB mod Zp/(x
n + 1) [10] [21] [36][30][33].

2.5 Multiplication in Cyclotomic Polynomial Ring us-

ing RNS

A cyclotomic polynomial Φk is a monic polynomial whose roots are the primitive kth roots

of unity and has a degree of φ(k) where φ is the Euler totient function [4]. NFLlib is a

library in C++ designed for ring Z/(xn + 1) and dedicated to ideal lattice cryptography.

It uses RNS to store the polynomial coefficients which means it breaks up the polynomial

with extremely large coefficients into a set of polynomials with coefficients that are within

machine word size. It uses NTT for computations in lattice cryptography as all computa-

tion is in ring Z/(xn + 1) [2]. This library provides sets of moduli for 16-bits, 32-bits and

64-bits representation.

In this thesis, we are working with different methods of polynomial multiplication in ring

16

Z/(xn + 1) and in RNS base. We implement all our multiplications considering residues in

one of the moduli from the set of moduli provided by NFLlib for 32-bits integer coefficients.

So all our implementation results are not more than 32-bits.

2.5.1 Other Cyclotomic Polynomials

Even though it is easy to work with cyclotomic polynomials of two nonzero coefficients,

i.e., of form xn + 1 where n = 2h, it is also essential to consider other forms. For large

values of n, the next possible cyclotomic polynomial with two nonzero coefficients will have

a huge increase in the value of the degree. If the desired security level requires ring which

is larger than a certain 2h but much smaller than 2h+1 then this restriction leads to the use

of unnecessarily long key sizes and runtimes [23]. NTT used in lattice based cryptography

for polynomial multiplication in ring Zp/(x
n + 1) is the fastest amongst all three methods

that we are dealing with. But NTT limits the application to only Zp/(x
n + 1) where n is

a power of two. TMVP method keeps the scope of extending the application to rings with

other cyclotomic polynomials. Few of the other cyclotomic polynomials are mentioned

below and are grouped as Class I to Class VI.

I. Φk = xn
′
+ 1, n′ = 2h, k = 2h+1

II. Φk = x2n
′
+ xn

′
+ 1, n′ = 3i, k = 3i+1

III. Φk = x4n
′
+ x3n

′
+ x2n

′
+ xn

′
+ 1, n′ = 4.5j, k = 5j+1

IV. Φk = x2n
′ − xn′ + 1, n′ = 2.2h3i, k = 2h+1.3i+1

V. Φk = x4n
′ − x3n′ + x2n

′ − xn′+1, n′ = 4.2h5j, k = 2h+1.5j+1

VI. Φk = x8n
′
+ x7n

′ − x5n′ − x4n′ − x3n′ + xn
′
+ 1, n′ = 8.2h3i5j, k = 2h+1.3i+1.5j+1

17

In the next chapter, we discuss multiplication in rings Z/Φk where Φk = x2n
′
+ xn

′
+ 1 or

x2n
′ − xn′ + 1 for the values of n′ as mentioned for Class II and IV above.

2.6 Summary

In this chapter, we have given a brief introduction to the neccessary mathematical back-

ground including details about finite field arithmetic, modular reduction, residue number

system, polynomial multiplication and some basic introduction to the different ways of

multiplying polynomials in ring Z/(xn + 1). Some cyclotomic polynomials are mentioned

which can possibly be used as qoutient for other rings.

18

Chapter 3

Multiplication of Polynomials in

Zp/Φk(x)

This chapter provides a comparison amongst the efficiencies of different methods of im-

plementing polynomial multiplication of n coefficients where n is a power of 2. The focus

is on polynomials of degrees as high as 211 − 1 or more. Residue number system is used

to store imformation within machine word size. Each coefficient is reduced in modulo qi

which is of 30 bits. Polynomial multiplication is performed in ring Z/(xn + 1).

An approach is made to expand the size of the polynomials beyond powers of two by

utilizing rings quotiented by certain special cyclotomic polynomials. Toeplitz matrices are

evaluated for the multiplication using TMVP method in two other rings quotiented by

cyclotomic trinomials. Corresponding procedures, algorithms and computational complex-

ities are discussed in this chapter.

All implementations were done in modulo q = 1073479681, one of the 30 bits long

moduli from the RNS modulus in NFLlib. The software implementation can be carried

19

on of each of the members qi of the RNS base as moduli. The RNS base considered

here is a product of 291 30 bits long integers. The base B consisting of the 30 bits long

moduli is mentioned in the appendix. All the implementations can be repeated with any

of the moduli and their linked variables. All the data together will represent the encrypted

information it carries.

3.1 Polynomial Multiplication in ring Z/(xn + 1)

The irreducible polynomial for the ring is chosen to be xn + 1, it allows to make use of the

property xn ≡ −1. This property enables us to simplify the polynomial multiplication as

A(x)B(x) =
n−1∑
i=0

n−1∑
j=0

(−1)b
i+j
n caibjx(i+j mod n) (3.1)

Even with this property, the complexity of multiplication using schoolbook method

remains quadratic requiring n2 multiplications and (n − 1)2 additions or subtractions to

evaluate the result. Different methods of polynomial multiplication are implemented in

C++ to compare their efficiencies in software. g++ compiler is used in linux machine to

compile the codes and clock() function to record the time taken by each of the processes.

Karatsuba and TMVP are recursive methods which require lesser number of multiplica-

tion than the general schoolbook method. These recursive methods are more effective for

polynomials of higher degrees so we have also implemented some hybrids, where normal

schoolbook method for multiplication is carried our for smaller values of n where n is the

size of the polynomial and switch to recursive method for higher values.

20

3.1.1 Polynomial Multiplication using the Schoolbook Method

Schoolbook method is the most straightforward way of multiplying two polynomials. When

we multiply two polynomials A and B of size n and m respectively, the product is of size

n + m − 1. In this method, each of the coefficients of A is multiplied with each of the

coefficients of B and therefore, it requires a total of nm multiplications. The complexity

of multiplication by this method is O(nm).

C = A×B = A×
m−1∑
i=0

bix
i

where bi represents the coefficients of polynomial B.

Algorithm 1 represents multiplication of two polynomials with n coefficients by schoolbook

method. The multiplication is in the ring Z/(xn+1) so the algorithm includes the modular

reduction process in the last step. The conditions of the modular reduction step would be

different for different cyclotomic polynomials.

So, the complexity to multiply two polynomials of size n by schoolbook method is

O(n2).

21

Algorithm 1 Polynomial Multiplication by Schoolbook Method in ring Z/(xn + 1)

Input: A, B, n, q

1: initialize: ci = 0 for 0 ≤ i ≤ 2n− 2

2: for i = 0 to (n− 1) do

3: for j = 0 to (n− 1) do

4: ci+j ← ci+j + (ai × bj)

5: end for

6: end for

7: for i = 0 to (n− 2) do

8: c′i ← (ci − cn+i)

9: end for

10: c′n−1 ← cn−1

11: return C ′

22

3.1.2 Multiplication in Z/(xn + 1) using Karatsuba Algorithm

A simple example for multiplication of two polynomials using the Karatsuba algorithm is

given below. Let A = 5 + 10x+ 9x2 + 4x3 and B = 10 + 8x+ 3x2 + 9x3. Then,

A = (5 + 10x) + (9 + 4x)x2

B = (10 + 8x) + (3 + 9x)x2

Therefore,

k0 = (5 + 10x)(10 + 8x)

k2 = (9 + 4x)(3 + 9x)

k1 =
(
(5 + 9) + (10 + 4)x

)(
(10 + 3) + (8 + 9)x

)
− k0 − k2

For the three half sized polynomial multiplications we repeat the procedure. That is, we

divide k0 to evaluate three smaller products k′0, k
′
1 and k′2 which we then recombine to form

k0. Similarly we also evaluate k1 and k2. So, for k0 = a0 × b0 = (5 + 10x)(10 + 8x),

k′0 = 50, k′2 = 80, k′1 = 140

Therefore, k0 = 50 + 140x + 80x2 and similarly, k2 = 27 + 93x + 36x2 and k1 = 105 +

187x+ 122x2

A×B = k0 + k1x+ k2x
2 = 50 + 140x+ 185x2 + 187x3 + 149x4 + 93x5 + 36x6

C = A×B mod (x4 + 1) = −99 + 47x+ 149x2 + 187x3

Using the same concept, multiplication of polynomials of higher degrees can be performed

with increasing number of recursions.

The asymototic complexity of the Karatsuba algorithm depends on the number of coeffi-

cients of the polynomials. For the number of coefficients n = 2h, the Karatsuba algorithm

23

requires O(nlog2 3) basic arithmetic operations. Assuming that n = ml where and m and

l are integers, the number of additions and multiplications required by the Karatsuba

algorithm can be generalized as follows [40]

number of multiplications = (
1

2
m2 +

1

2
m)l = nlogm(1

2
m2+ 1

2
m) (3.2)

number of additions = u.nlogm(1
2
m2+ 1

2
m) − 8n+ v where u ≤ 6 and v ≤ 3 (3.3)

The Karatsuba algorithm requires smaller number of multiplications and additions

compared to schoolbook method when m is small and l is large [40].

The multiplication of polynomials using the Karatsuba algorithm has been imple-

mented in C++ for polynomials with 32 bits long coefficients and in modulo q where

q = 1073479681. We have considered the same q through out the entire implementation

and for all different methods. The size of the polynomials are varied from 2 to 216. The

multiplication code is then verified for associative and commutative properties as follows.

A×B = B × A

(A+B)× C = A× C +B × C

For smaller values of n, its functionality is checked manually by comparing the output

product with the precomputed expected results. We have also made a comparison of the

results obtained by implementation of all different methods for the same pair of polynomials

to verify for functional correctness. The algorithm for multiplication using the Karatsuba

algorithm is given in Algorithm 2. The modular reduction in the ring quotiented by xn + 1

is also considered in the algorithm. The reduction process will not be the same for any

other cyclotomic polynomial.

24

Algorithm 2 Polynomial Multiplication using the Karatsuba algorithm (KA)

Input: A, B, n, q

1: procedure KA(A, B)

2: if n = 1 then

3: r ← A(0)×B(0)

4: else

5: for j = 0 to (n
2
− 1) do

6: A0(i)← A(i)

7: A1(i)← A(i+ n
2
)

8: B0(i)← B(i)

9: B1(i)← B(i+ n
2
)

10: end for

11: k0 ← KA(A0,B0)

12: k01 ← KA
(
(A0 + A1), (B0 + B1)

)
13: k2 ← KA(A1,B1))

14: k1 ← k01 − k0 − k2

15: r ← k0 + k1x
n/2 + k2x

n

16: end if

17: for i = 0 to (n− 2) do

18: r′i ← (ri − rn+i)

19: end for

20: r′n−1 ← rn−1

21: return r′

25

3.1.3 Multiplication using Toeplitz Matrix Vector Product

The product of two polynomials of size n in ring Z/f(x) where f ∈ Z can be computed

as Toeplitz matrix-vector product. It has a subquadratic space complexity [3]. f(x) is an

irreducible polynomial of size n over Z. Let A and B be two polynomials with n 32-bit

coefficients in ring Z/(xn + 1). The product of A and B in the given ring can be computed

by multiplying the polynomials and then reducing the product in modulo xn + 1. TMVP

is a different approach where we modify one of the multiplicants to form a n× n Toeplitz,

T matrix such the product of T and the other multiplicant gives product in the desired

ring.

As mentioned for the schoolbook method, the product C = A × B mod (xn + 1)

can be written as A ×
n−1∑
i=0

bix
i mod (xn + 1). We can also express C as

n−1∑
i=0

A(i)bi where

A(i) = (xi × A) mod (xn + 1) [1] [24]. This multiplication can also be represented in

matrix-vector product format. The matrix product can be represented as follows

C = A×



B(0)

B(1)

.

.

.

B(n−1)


where B(i) is the matrix representation of (xi × B) mod (xn + 1). In this case the n× n

matrix of B in mod(xn + 1) is a Toeplitz matrix and does not need further modifications.

Let this n× n matrix be MB. Then

26

MB =



b0 b1 b2 . . . bn−1

−bn−1 b0 b1 . . . bn−2

−bn−2 −bn−1 b0 . . . bn−3

. .

. .

−b1 −b2 −b3 . . . b0


Since, n is a power of 2 the multiplication of vector A to matrix MB is carried out by 2-way

split Toeplitz matrix vector product as discussed in the previous chapter. The example

given for multiplication using the karatsuba algorithm is repeated using the TMVP method.

Given, A = 5 + 10x+ 9x2 + 4x3 and B = 10 + 8x+ 3x2 + 9x3. The product C = A×B

The matrix representation of the coefficients of the polynomials is as follows.

A =
(

5 10 9 4
)

and B =


10 8 3 9

−9 10 8 3

−3 −9 10 8

−8 −3 −9 10


The matrices are broken down into half sized matrices.

A0 =
(

5 10
)

and A1 =
(

9 4
)

B0 =

10 8

−9 10

 , B1 =

3 9

8 3

 and B2 =

−3 −9

−8 −3



27

k0 = A0 × (B1 −B0), k1 = A1 × (B2 −B0) and k2 = (A0 + A1)×B0

r0 = k2 + k1 and r1 = k2 + k0

C =
(
r0 r1

)
k0 =

(
5 10

)
×

−7 1

17 −7

 , k1 =
(

9 4
)
×

−13 −17

1 −13

 and k2 =
(

14 14
)
×

10 8

−9 10


The process is repeated recursively to evaluate k0, k1 and k2.

k′0 = 40, k′1 = 240 and k′2 = −105

r′0 = 135 and r′1 = −65

Therefore,

k0 =
(

135 −65
)

, k1 =
(
−113 −205

)
and k2 =

(
14 252

)
r0 =

(
−99 47

)
and r1 =

(
149 187

)
C =

(
−99 47 149 187

)
The implementation is verified by comparing results of A×B with B×A and (A+B)C

with (A × C + B × C) similar to the Karatsuba application. Manual comparison with

precomputed results were also performed similar to the one done for the former method.

Algorithm 3 provides a simple presentation of the Toeplitz matrix vector product

method for polynomial multiplication that is explained here. In this thesis, this method is

implemented both in software and hardware .

As mentioned before, multiplication using the recursive TMVP method has a sub-

quadratic complexity. Since the implementation is in ring Z/(xn + 1) with n = 2h we have

used two-way split TMVP. The number of 32-bit multiplications Mn = 3 and the number

28

Algorithm 3 Multiplication of polynomials using TMVP method in Zp/(x
n + 1)

Input: A, B, n, q

1: procedure TMVP(A,B)

2: if n = 1 then

3: Z ← A×B

4: else

5: for i = 0 to (n
2
− 1) do

6: A0(i)← A(i)

7: A1(i)← A(i+ n
2
)

8: B0(i)← B(i)

9: B1(i)← B(i+ n
2
)

10: B2(i)← −B(n
2
− i)

11: end for

12: for i = 0 to (n
2
− 2) do

13: B0(i+ n
2
)← −B(n− i)

14: B1(i+ n
2
)← B(n

2
− 1− i)

15: B2(i+ n
2
)← −B(n

2
+ 1− i)

16: end for

17: k0 ← TMVP
(
A0, (B1 −B0)

)
18: k1 ← TMVP

(
A1, (B2 −B1)

)
19: k2 ← TMVP

(
(A0 + A1),B0

)
20: r0 ← k2 + k1

21: r1 ← k2 + k0

22: Z ←
(
r0 r1

)
23: return Z

29

of 32-bit additions An = 5 when n = 2. For an arbitrary n = 2h, Mn = 3Mn
2

= nlog2 3 and

An = 3An
2

+ 3n− 1 = 5.5nlog2 3 − 6n+ 0.5 [13].

3.1.4 NTT-based Polynomial Multiplication and Algorithms

Different methods of multiplication of polynomial multiplications in ring Z/(xn + 1) are

discussed in this section of the thesis. Number Theoretic Transform is a very efficient

method for such implementation. NTT has a computational complexity of O(n log n). So,

it is expected to be faster than the quadratic schoolbook method and other methods with

subquadratic complexity for the multiplication of higher degree polynomials.

The modulus q is a prime number and in this case we have considered it to be an element

of the RNS base. ω is the nth primitive root and is precomputed. Other related variables

are also evaluated before starting the computation. The general algorithm for overview

of polynomial multiplication using Number Theoretic Transform is given in Algorithm 4.

We are considering polynomials of size n where n is only 2h. The algorithm computes the

negative wrapped convolution of the polynomials so it is not required to double the length

of the polynomials. The resultant polynomial evaluated by negative wrapped convolution

NTT is already reduced in the ring qoutiented by xn + 1.

For a small toy example for multiplication of two polynomials using Number Theoretic

Transform let the polynomials be A = 5 + 10x and B = 6 + 8x. They can be represented

in matrix form as

A =
(

5 10
)

and B =
(

6 8
)

Each of the matices are of length n = 2. We pad A and B with two zeroes. The new

matrices are

30

A′ =
(

5 10 0 0
)

and B′ =
(

6 8 0 0
)

When we multiply using NTT we perform pointwise multiplication, so without the padding

we will not get the third element of the product. For the new matrices n = 4. The minimum

working modulus is 11, since all the inputs are less than 11. N be a prime number such

that, N = kn + 1 and N ≥ 11. Selecting k = 3 gives N = 13 which satisfies all the

conditions. Generator for Z13, g = 6 since gf 6≡ 1 mod 13 where f is any factor of 12.

Therefore, ω = gk = 63 ≡ 8 mod 13. ω is the primitive 4th root of unity. The square

matrix which multiplied to a given matrix of length 4 is


1 1 1 1

1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9


Now, the values required to do the inverse NTT are ω−1 and n−1. When ω = 8 and

n = 4, ω−1 = 5 mod 13 and n−1 = 10 mod 13. The matrix for INV -NTT is


1 1 1 1

1 ω−1 ω−2 ω−3

1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−9

 =


1 1 1 1

1 5 12 8

1 12 1 12

1 8 12 5


Evaluating NTT (A′), NTT (B′) and C ′ = NTT (A′) ◦NTT (B′):

31

NTT (A′) =
(

5 10 0 0
)


1 1 1 1

1 8 12 5

1 12 1 12

1 5 12 8

 and NTT (B′) =
(

6 8 0 0
)


1 1 1 1

1 8 12 5

1 12 1 12

1 5 12 8



C ′ = NTT (A′) ◦NTT (B′) =
(

2 7 8 3
)
◦
(

1 5 11 7
)

=
(

2 9 10 8
)

Therefore,

C = INV -NTT
(
NTT (A′) ◦NTT (B′)

)

= (10)
(

2 9 10 8
)


1 1 1 1

1 5 12 8

1 12 1 12

1 8 12 5



=
(

30 100 80 0
)

Hence, c = (5 + 10x)(6 + 8x) = 30 + 100x+ 80x2

Algorithms 4, 5 and 6 summarize the procedure for multiplying polynomials using

NTT. NTT n
w

(â) is the number theoretic transform of negative wrapped a i.e., â which is

a recursive process and explained in Algorithm 5.

32

Algorithm 4 Polynomial multiplication using NTT

Input: a, b, ω, ω−1, n, n−1, q

1: Precompute: ωi, ω−i, φi, φ−ifor i ∈ (0, n− 1)

2: for i = 0 to (n− 1) do

3: ái ← aiφ
i mod p

4: b́i ← biφ
i mod p

5: end for

6: Â← NTT n
w

(â)

7: B̂ ← NTT n
w

(b̂)

8: for i = 0 to (n− 1) do

9: Ĉ ← ÂB̂ mod p

10: end for

11: ĉ← InvNTT n
w

(Ĉ)

12: for i = 0 to (n− 1) do

13: ći ← ĉiφ
−i mod p

14: end for

15: return c

33

Algorithm 5 Number Theoretic Transform(NTT)

Input: a, n, index = 1

1: procedure NTT (a, n, index)

2: for n > 1 do

3: n2 = n/2

4: for i = 0 to n2 − 1 do

5: a0(i)← a(2i)

6: a1(i)← a(2i+ 1)

7: end for

8: NTT (a0, n2, 2× index)

9: NTT (a1, n2, 2× index)

10: for i = 0 to n2 − 1 do

11: Butterfly
(
a(i), a(i+ n2), a0(i), a1(i), i× index

)
12: end for

13: end for

14: return a

Algorithm 6 Butterfly

Input: a(i), a(i+ n2), a0(i), a1(i), S = i× index

1: T ←
(
S × a(i+ n2)

)
mod q

2: a1(i)← a(2i+ 1)

3: a(i)←
(
a0(i) + T

)
mod q

4: a(in2)←
(
a0(i)− T

)
mod q =0

34

3.1.5 Hybrid Design with Karatsuba and Toeplitz

Apart from the typical Karatsuba and TMVP methods where the recursion is repreated

until the polynomials are down to the size of one element, we have implemented different

versions of Hybrid designs where the recursive method is applied until n is down a certain

value m, for example 4, 8 or 16. We call it the break-point m where the recursion ends and

all polynomial products are evaluated using general schoolbook method. The designs are

functionally correct. Time taken to evaluate the polynomial multiplication is recorded for

polynomials of size n = 2h for 2 ≤ n ≤ 16384. For each value of n, 1000 different input

sets are passed through the system and average time is recorded. This hybrid method is

implemented to make imrpovements to the performance of the recursive methods.

Hybrid Karatsuba

For Karatsuba, the modular reduction is done only in the final stage after expansion

and evaluation of the product. Wherever we decide to stop the recursion and compute

the polynomial product of polynomials of size 2h, we have to perform three mainstream

multiplication of polynomials and obtain the polynomial products of size 2× 2h− 1. Then

we combine the three polynomial and recursively keep expanding as previously in the divide

and conquer method. The depth of the recursive method is reduced by h − 1 since the

schoolbook method is more efficient for polynomials with lower sizes.

Since, the multiplication is in ring Z/(xn + 1), the final product of size 2 × 2h − 1

is then reduced by simply subtracting the (2h + i)th coefficient from ith coefficient for

0 ≤ i ≤ n− 2.

35

Hybrid TMVP

In case of Toeplitz matrix vector product, we are multiplying a vector of length n to an n×n

matrix. The product is already reduced in the ring Z/(xn + 1) and no further adjustments

are required. The multiplication recursively keeps splitting into three multiplications of

polynomials of half the size until the size of the vector and the Toeplitz matrix goes down

to a single value. We modify this method so that instead of executing the recursion all the

day to the point where the matrices are of size= 1, the recursion stops at a point where the

size of the matrices is greater than one and all the required multiplications are done using

the schoolbook method. For example, for any value of n we implement Hybrid -TMVP

method with break-point m = 16. When the size of the polynomial n = 16, we switch to

schoolbook method and perform multiplication of the polynomials by schoolbook method.

We are implementing the Hybrid -TMVP with different break-points and improvising

further modifications to the design to improve performance. All the timing data from

software implementation are tabulated and further decriptions are provided in Chapter 4.

3.2 Polynomial Multiplication in Ring Zp(x)/Φk(x)

In the previous chapter, it is mentioned that Toeplitz matrix approach for multiplication

of polynomials of size n can be used so that we can multiply polynomials of size n 6= 2h.

Considering ring Z/(xn + 1), the difference in size between two consecutive polynomials

is huge for higher values of n. For example, the size of polynomial jumps from 210 to

211 or 211 to 212. We explore rings quotiented by other cyclotimic polynomials to allow

multiplication of polynomials of different sizes within the different limits set by powers of

two.

36

Φk(Class) h i j 1024 ≤ n ≤ 2048

I 10 − − 1024

IV 6 2 − 1152

V I 1 1 2 1200

V 6 − 1 1280

IV 3 4 − 1296

V I 2 2 1 1440

II − 6 − 1458

V 5 − 2 1600

IV 5 3 − 1728

V I 4 1 1 1920

IV 2 5 − 1944

V 2 − 3 2000

I 11 − − 2048

Table 3.1: Range of sizes of polynomial within the range 1024 ≤ n ≤ 2048 with various

cyclotomic polynomials

Table 3.1 gives a detailed range of possible sizes that can be considered using various

cyclotomic polynomials, Φk. In the table, h, i and j represents the powers of 2, 3 and 5

respectively and Class I to V I represents the six n-th cyclotomic polynomials mentioned

in Chapter 2.

3.2.1 Multiplication of Polynomials in Ring Z/(x2.3i + x3i + 1)

One of the reasons for using the TMVP method is for the multiplication of polynomials of

sizes other than powers of two by considering other cyclotomic polynomials as mentioned

in the previous section. This gives us a wide range of options in terms of the sizes of

37

polynomial. For example, if n is a power of 2 the size of the polynomials jumps from

1024 to 2048. We can use the cyclotomic trinomial x2.3
i

+ x3i + 1 which would make

multiplication of polynomials of size 1458 possible in the ring Z/(x2.3
i

+ x3i + 1) where

i = 6.

The multiplication of polynomials A and B of size n = 2.3i modulo x2.3
i
+ x3i + 1 is

A×B mod (x2.3
i
+ x3i + 1) = A× (

2.3i∑
i=0

bix
i) mod (x2.3

i
+ x3i + 1) =

2.3i∑
i=0

A(i) × bi

Similar to the two-way split TMVP method we represent the product in matrix-vector prod-

uct form C = MA ×B where MA is an n× n matrix representation of [A(0)A(1)...A(n−1)]

and A(i) = (xi × A) mod (x2.3
i

+ x3i + 1) [1] [24]. Vectors A =
(
a0 a1 a2 . . . an−1

)
and B =

(
b0 b1 b2 . . . bn−1

)
represent polynomials A and B respectively. Let A

(i)
T be

the transpose of the vector representation of A(i). Then

MA =
(
A

(0)
T A

(1)
T A

(2)
T A

(n−1)
T

)

38



a0 −a2.3i−1 . . . −a3i+1 −a3i −(a3i−1 − a2.3i−1) . . . −(a1 − a3i+1)

a1 a0 . . . −a3i+2 −a3i+1 a3i . . . −(a2 − a3i+2)

. .

. .

. .

a3i−1 a3i−2 . . . a0 −a2.3i−1 −a2.3i−2 . . . −a3i

a3i a3i−1 − a2.3i−1 . . . a1 − a3i+1 a0 − a3i −a3i−1 . . . −a1
a3i+1 a3i . . . a2 − a3i+2 a1 − a3i+1 a0 − a3i . . . −a2
. .

. .

. .

a2.3i−1 a2.3i−2 . . . a3i a3i−1 − a2.3i−1 a3i−2 − a2.3i−2 . . . a0 − a3i


Matrix MA is a 2.3i ×2.3i matrix. A toeplitz matrix TA can be formed from MA by

shifting the last 3i rows to the top and the rest of the 3i to the bottom [1]. The matrix

product D = TA×B is then computed using the TMVP algorithm. Since n is a multiple

of 2, one iteration of 2-way split TMVP algorithm is carried out. This results in 3 half

sized matrix multiplications. We can derive the product C = A×B mod (x2.3
i
+x3i + 1)

by switching the top 3i rows of D with the bottom 3i rows.

D =

T0 T1

T2 −T0

B0

B1

 =

P 0 + P 2

P 1 − P 2



39

where T0, T1 and T2 are 3i × 3i Toeplitz matrices.

T0 =



a3i a3i−1 − a2.3i−1 . . . a1 − a3i+1

a3i+1 a3i . . . a2 − a3i+2

. .

. .

. .

a2.3i−1 a2.3i−2 . . . a3i


, T2 =



a0 −a2.3i−1 . . . −a3i+1

a1 a0 . . . −a3i+2

. .

. .

. .

a3i−1 a3i−2 . . . a0


and

T1 = T2 − T0

P 0 = (T0 + T1)B1, P 1 = (T2 − T0)B0 and P 2 = T0(B0 −B1)

Hence,

C =

P 1 − P 2

P 0 + P 2


P 0, P 1 and P 2 are computed by three-way split TMVP method since each has 3i × 3i

Toeplitz matrix as a multiplier. Here, the number of multiplications M2.3i = 3M3i and the

number of additions A2.3i = 5A3i .

3.2.2 Multiplication of Polynomials in Ring Zp/(x
2.2h.3i − x2h.3i + 1)

Another trinomial that can be considered for the multiplication of two polynomials is

x2.2
h.3i−x2h.3i+1. The Toeplitz matrix can be generated in a similar manner as the previous

trinomial and then we perform a single iteration of two-way split. The multiplication

is then carried out with h iterations of two-way split TMVP followed by i iterations of

40

three-way split TMVP multiplication method. The subquadratic complexity of polynomial

multiplication in the ring Zp/(x
2.2h.3i − x2h.3i + 1) using TMVP is

M2.2h.3i = 3M2h.3i = 3× (2h)log2 3 ×M3i = 3× (2h)log2 3 × (3i)log3 6

3.2.3 Multiplication using Three-Way Split TMVP

The two preceeding sections discuss computation of the product of polynomials of size

n = 2.3i or 2.2h.3i using TMVP method. For n = 2.3i, the first step is a single level of

two-way splitting method for Toeplitz matrix-vector product followed by i iterations of

three-way splitting method. Similarly, when n = 2.2h.3i, we have a single iteration of two-

way split TMVP followed by h iterations of two-way split TMVP and lastly i iterations

of three-way split TMVP method. The three-way split TMVP method is briefly discussed

below.

C =


T 0 T 1 T 2

T 3 T 0 T 1

T 4 T 3 T 0



B0

B1

B2

 =


P 2 + P 3 + P 4

P 1 − P 4 + P 5

P 0 − P 3 − P 5



41

where T 0, T 1, T 2, T 3 and T 4 are 3i−1 × 3i−1 Toeplitz matrices and B0, B1 and B2 are

3i−1 × 1 matrices.

P 0 = (T 0 + T 3 + T 4)B0

P 1 = (T 0 + T 1 + T 3)B1

P 2 = (T 0 + T 1 + T 2)B2

P 3 = T 0(B0 −B2)

P 4 = T 1(B1 −B2)

P 5 = T 3(B0 −B1)

M3i = 6M3i−1 and A3i = 8A3i−1 The subquadratic complexity of polynomial multiplication

by three-way split Toeplitz for TMVP method is such that the Mn = nlog3 6 and An =

4.8nlog3 6 − 5n+ 0.2 [1].

So, the complexity of multiplication of polynomials of size n = 2.3i in ring Z/(x2.3
i

+

x3
i

+ 1) is M2.3i = 3 × 3ilog3 6
and A2.3i = 5(4.8 × 3ilog3 6 − 5 × 3i + 0.2). Referring to the

example of polynomials with 1458 coefficients which is 2.3i , we can perform polynomial

multiplication in the ring Zp/(x
2.3ix3

i
+ 1) with i = 6. The subquadratic complexity of

this implementation is less than multiplication of polynomials with 2048 coefficients in ring

Z/(xn + 1). A wider range of polynomials in terms of size can be considered.

The number of multiplications required for the multiplication of polynomials of size

n = 2.2h.3i in ring Z/(x2.2
h.3i − x2h.3i + 1) is M2.2h.3i = 3× 2hlog2 3 × 3ilog3 6

.

42

3.3 Hardware Implementation

Polynomial multiplication using Karatsuba and TMVP methods are also coded in VHDL.

The specifications are similar to that of the software implementation in terms of ring,

moduli, size and degree. Since, recursive approach is not always advisable in terms of

hardware, components are created for each n where n = 2h. The top level creates three

half sized modules. The half sized module is also designed to create three even smaller

components that takes polynomials of size n/4. In this way many components are created

and together they work exactly as it would in the recursive configuration.

3.3.1 Functional Simulation of TMVP and Karatsuba

The application of TMVP and Karatsuba in Hardware is done considering similar ap-

proaches. The explanation below is true in case of both the apporaches.

Muliplication of two polynomials of size n, where each coefficient is reduced in 30

bits long modulo q is implemented in VHDL. The entire implementation is performed

combinationally. The design is compiled and simulated using ModelSim. Separate modules

and test benches for multiplying polynomials of size varying from 2 to 211 are created and

verified for functional correctness via functional simulation. The results obtained from

each method are compared to the precomputed product for the same set of polynomials.

If we recall the software version, same implementation was carried out recusively. In

case of hardware, recursive application gets complicated and results in synthesis issues. In

order to avoid such circumstances, separate components were defined depending on the

size of the input polynomial and for each polynomial product, the design for multiplying

halved sized polynomials are created for three instances. In a way this implementation

43

is same as the software implementation only creating copies of hardware each time the

product splits into three half-sized products.

3.3.2 Field Programmable Gate Array (FPGA)

Field Programmable Gate Array (FPGA) is an array of programmable and reconfigurable

gates. Xilinx, Microsemi, Altera and some other tools are available for FPGA synthesis.

For synthesizing our design for FPGA, Xilinx ISE Design Suite is used. The design platform

VC707, which is supposedly a high-performance, high-speed design platform, is available

for use with license. Since, the number of IOBs limit to 600, it was a challenge to deal with

large coefficients. We can only afford to have limited number of 32 bits long coefficients

as input or as output every clock cycle. So, we store the two input arrays of 32 bits long

coefficients in registers over a number of clock cycles and once we have both the input

arrays ready, we start the multliplication process by TMVP method.

We have programmed the polynomial multiplication by TMVP in VHDL using com-

ponents operating in combinational circuits.

3.4 Summary

This chapter presents detailed description of multiplication methods that are implemented

in the thesis. Algorithms for multiplication in the ring Z/(xn + 1) using NTT, Karatsuba,

TMVP and Schoolbook method and their complexities are described. Small examples are

given for the ease of understanding. A hybrid method is then introduced that performs

polynomial multiplication using the Karatsuba algorithm and TMVP for large values of

44

n and then switches to schoolbook method when n reduces to a small number such as 4,

8, 16 or 32. Two trinomials are presented and their roles in expanding the range of the

sizes of polynomials are discussed. Multiplication in Z/(xn + 1) has been implemented in

hardware using the method and here we have briefly discussed simulation and synthesis in

FPGA.

45

Chapter 4

Analysis of Implementation

The implementations are run on a laptop with Intel R© Core
TM

i7-5600U CPU @ 2.60GHz,

under Linux. The machine has two cores, each having two HW threads and 4MB cache

size. Multiplication of polynomials in ring Zp/(x
n + 1)is executed using different methods.

A comparison is made amongst the performance of each of these methods for a wide range

of polynomials. Hybrid designs, as mentioned in the previous chapter are implemented in

an attempt to improve the performance of the recursive methods. Modifications are made

to the hybrid designs to further boost the performance. Other rings are considered for

multiplication of polynomials of size n 6= 2h. Using TMVP, multiplication of polynomials

of sizes n = 2.3i or n = 2.2h3i are implemented in software. All these methods are

implemented in software using C + +. The two-way split TMVP method is implemented

in hardware to multiply polynomials of size n = 2h. All results are presented in tabular

form in this chapter.

46

4.1 Multiplication in Ring Zp/(xn + 1)

Multiplication of polynomials are implemented using the schoolbook method which is

the most basic method of multiplication, the Karatsuba algorithm, TMVP multiplication

method and NTT. Schoolbook method which has the highest asymptotic complexity is

the slowest while dealing with large polynomials and NTT is the fastest offering the best

computational complexity. The Karatsuba algorithm and TMVP multiplication method

have similar subquadratic computational complexities. All these methods are implemented

in software for the multiplication polynomials in the ring quotiented by xn + 1 where n is

a power of two. Values of n in the range 22 to 216 are considered and corresponding data

is tabulated in the first section of this chapter. Schoolbook method is the fastest when

smaller polynomials are multiplied. Hybrid version of the TMVP algorithm is implemented

to acheive better performance with the recursive methods.

4.1.1 Comparison in Software for Different Methods of Multipli-

cation

The average time taken to multiply polynomials with n coefficients has been recorded by

n varying from 22 to 216. Time taken for 1000 differents pairs of polynomials are recorded

and averaged for each value of n. The procedure is carried out using schoolbook method,

the Karatsuba algorithm , TMVP method and NTT. The results are shown in Table 4.1.

It is also helpful to check the range for which the general multiplication method is most

efficient. This helps us design the hybrid TMVP and Karatsuba models as efficiently as

possible.

The table shows that the schoolbook method is faster than all other methods for poly-

47

nomials of sizes 22 to 25. For n = 25, TMVP and Karasuba are slower than NTT which is

the slowest method for smaller polynomials. Multiplication by NTT method has complex-

ity of O(n log n) which is significantly better compared to the complexities of Schoolbook

method and the recursive methods which are O(n2) and O(nlog2 3) respectively. For poly-

nomials with sizes n = 26 and above, NTT is always the fastest. Implementations with

schoolbook method is the slowest among all when n ≥ 28.

Size, n Schoolbook (ms) Karatsuba (ms) TMVP (ms) NTT (ms)

22 0.00044 0.00064 0.00064 0.00072

23 0.00076 0.00172 0.00188 0.00153

24 0.00446 0.00519 0.00524 0.00783

25 0.00995 0.02950 0.01629 0.01387

26 0.03367 0.05649 0.05788 0.01673

27 0.13362 0.14624 0.14280 0.03557

28 0.50831 0.43696 0.43178 0.07924

29 2.06235 1.34559 1.29159 0.18295

210 8.05378 3.95002 3.92518 0.37736

211 32.74930 12.13550 11.89820 0.75523

212 131.18400 37.13610 36.27160 1.61358

213 516.74300 110.36300 107.53300 3.41800

214 2073.79000 324.10700 323.70400 7.34510

215 8476.68000 969.18000 948.98100 15.56130

216 33331.80000 2961.11000 2864.13000 34.57590

Table 4.1: Timing report from Software Implementation using different multiplication

methods

48

4.1.2 Hybrid Implementation

Table 4.1 shows that the schoolbook method is the fastest method for multiplication of

polynomials of size n ≤ 25. We have modified the recursive method in TMVP so that after

the polynomials are broken down into polynomials with very small value of n, the method

of multiplication switches to schoolbook method. We call it a Hybrid implementation of the

the TMVP method that improvises schoolbook method. Hybrid designs have been tested

with break-points m (points where the recursion stops and switches to schoolbook method)

at different values of n in order to find the fastest practical implementation in software.

We implement the design by switching to schoolbook method at n = 4, 8, 16 and 32.

Table 4.2 displays the implementation time for Hybrid variation of TMVP with break-

points m at different values of n. This comparison is mainly done to identify the break-point

that give us the best increase in performance.

49

Size, n m = 2 (ms) m = 4 (ms) m = 8 (ms) m = 16 (ms) m = 32 (ms) m = 64 (ms)

25 0.013 0.007 0.006 0.009 0.010 0.012

26 0.0303 0.022 0.019 0.024 0.037 0.046

27 0.089 0.070 0.067 0.072 0.087 0.110

28 0.267 0.207 0.181 0.202 0.289 0.336

29 0.806 0.614 0.551 0.619 0.885 1.026

210 2.405 1.807 1.714 1.846 2.624 2.942

211 7.276 5.403 5.010 5.593 7.877 8.856

212 21.620 17.185 15.131 17.179 23.719 26.781

213 65.103 48.401 45.3502 51.655 72.207 78.921

214 202.640 148.316 136.954 157.289 191.705 237.287

215 628.418 470.201 423.522 464.763 578.910 716.137

216 1826.970 1386.160 1221.150 1375.650 1720.210 2141.92

Table 4.2: Timing report for Hybrid-TMVP implementation with different break-points

m

The highlighted column of Table 4.2 represents the best result for our hybrid design.

According to the data collected, this design gives the best improvement to our TMVP

implementation when we switch to schoolbook method at n = 8. With this design, a

performance better than NTT can be achieved for polynomials of size 25 and almost as

good as NTT for n = 26.

Further Improvements

The Hybrid design shows a good improvement in the performance. Considering other

factors, we attempt to increase the performance even more in software. The schoolbook

method requires a large number of modular reduction operations. We try to reduce the

50

number of mod operations and also perform loop unroll to speed up the process since we

know the upper limit for m.

1. Decreasing the Number of Modular Reduction

All the products need to be reduced in modulo q. Methods like NTT requires n modular

reduction since it needs only n multiplications and the recursive methods require nlog2 3

modular reduction. On the other hand, with schoolbook method we need n2 multiplications

and hence n2 modular reductions. We modify our hybrid implementation to get better

results. We maintain the same concept except we modify the code for schoolbook method

to improve the performance by reducing the number of mod operations. Therefore, the

number of mod operations are reduced from m2 to m2

16
. The new design uses an array to

store the 64-bit integer products until 16 such multiplications are done and then the stored

64-bit integers are added in five batches followed by a mod operation. This design works

for ≥ 16. Similar design can be implemented for lower values of n as well. We are trying

to increase the performance when the design switches to schoolbook method when n ≥ 16.

Table 4.3 represents the timing data for the modified hybrid version of TMVP method

with break-points at n = 16 and n = 32. We did not repeat it with lower break-points

since our design is modified to reduce the number of modular reduction by working with

16 values at a time.

51

Size, n m = 16 (ms) m = 32 (ms)

25 0.005 0.009

26 0.016 0.035

27 0.052 0.062

28 0.146 0.182

29 0.455 0.543

210 1.373 1.661

211 4.117 5.165

212 12.370 15.411

213 38.047 45.631

214 116.502 136.601

215 353.999 412.746

216 1015.930 1243.570

Table 4.3: Timing report for comparing modified Hybrid-TMVP implementation with

reduced number of mod at breakpoints m = 16 and m = 32

The initial hybrid design shows best result with break-point at n = 8 and that is why

we have this modified design to see if the performance with break-points at n = 16 and

n = 32 can be improved or not. This modified implementation performs faster than NTT

till n = 26 which is an improvement from our first Hybrid design which was better than

glsntt for n ≤ 25.

2. Effect of Loop Unrolling

Another way of implementing the Hybrid design is by unrolling the for-loops in the school-

book method and using the least number of operations. Consdering large value of n as the

break-point is not ideal for this implementation as it needs all the required multiplications

52

to be defined since the loops are unrolled. For larger polynomials, it becomes tricky with

higher chances of inducing error to the code so we limit our break-point to a maximum of

32. Apart from unrolling the for-loops, here we have also tried to minimize the number of

mod operations used. In C ++, mod operation is basically equal to three basic operations.

For this method we require only m mod operations for reducing the 64-bit integer product

by modulo p. m is the point where the process switches to schoolbook method. The result

with the modified version is given in Table 4.4.

Size, n m = 4 (ms) m = 8 (ms) m = 16 (ms) m = 32 (ms)

25 0.0037 0.0021 0.0015 0.0013

26 0.0117 0.0071 0.0063 0.0046

27 0.0405 0.0226 0.0187 0.0138

28 0.1101 0.0702 0.0484 0.0456

29 0.3351 0.2054 0.1525 0.1386

210 0.9855 0.6248 0.4680 0.4230

211 2.9945 1.9104 1.4389 1.3469

212 8.9957 5.8133 4.2516 3.9322

213 27.3733 17.7335 12.9279 11.9301

214 82.6420 53.4080 39.4232 36.2145

215 249.6320 158.8880 116.4950 108.6110

216 740.7690 471.9190 358.2720 325.7600

Table 4.4: Timing report for comparing modified Hybrid-TMVP implementation with loop

unrolling

This unrolled for-loops version of schoolbook method gives a better performance with

higher break-points. The elimination of for-loops and mod operations cause a great im-

provement in performance. With this design, the implementation is faster than NTT for

53

polynomials of size ≤ 29. The performance is very similar to NTT at n = 210 and above

that NTT performs better than the hybrid. The plain TMVP method is as good as or even

than better NTT for multiplication of polynomials of sizes ≤ 24 whereas using the modified

hybrid version of TMVP we can acheive an NTT-like performance for polynomials with

sizes upto 210. We are comparing the new design’s performance to that of NTT because is

the fastest of all methods being investigated for multiplying larger polynomials as shown

in Table 4.1.

The plot presents a comparison among the performances of TMVP, NTT, Hybrid design

and the two variations of the Hybrid design.

For polynomials of size n = 2h, The plot shows h along the x-axis and runtime in

54

ms along the y-axis. The graph represents improvement in performance of TMVP when

a Hybrid design is considered. The pink line representing performance unrolled for-loop

version of hybrid intersects the line for NTT at h ≈ 10.

4.2 Multiplication in Rings Quotiented by Cyclotomic

Trinomials

NTT limits the size of the polynomials to only powers of two. Polynomial multiplication

in rings quotiented by other cyclotomic polynomials allow a wider range of the size of the

polynomials to choose from. The TMVP method with a subquadratic complexity is used

in this thesis to implement of polynomials with sizes that are not powers of two. We are

considering rings Zp/(x
2.3h + x3

h
+ 1) and Zp/(x

2.2i.3h − x2i.3h + 1). The implementation is

then modified to increase the performance by considering adequate hybrid method.

4.2.1 Multiplication of Polynomials in Ring Zp/(x
2.3h + x3h + 1)

using TMVP

An implementation of polynomial multiplication in the ring Zp/(x
2.3h + x3

h
+ 1) is done

to multiply of two polynomials that are not size n =powers of two efficiently. Our goal

is to make the implementation efficient in terms of performance. Using the algorithm

mentioned in Chapter 3 we have developed a C ++ code for multiplying two polynomials

of size n = 2.3h using the TMVP method. We have considered a combined TMVP method

where one iteration of two-way split TMVP is performed followed by recursive application

of three-way split TMVP. We compare the results of pure two-way split TMVP with the

55

result from this implementation to show how the runtime can be reduced by considering

other rings when polynomials of size n ≤ 2h are desired. This is an implementation that

we can not consider using NTT. The range of sizes that can be implemented in the range

n = 22 to n = 216 are 6, 18, 54, 162, 486, 1458, 4374, 13122 and 39366. The complexity of

this implementation is O(nlog3 6) which is very similar to the complexity of two-way split

TMVP method. We implement a Hybrid design of the three-way spilt TMVP improvising

schoolbook method to increase the performance.

Table 4.5 represents the data from the implementation using TMVP and Hybrid designs

of the TMVP with different values n as break-point. The table only shows large values of n

because we are not much concerned about smaller polynomials for cryptographic purposes.

Size, n TMVP (ms) Hybrid(9) (ms) Hybrid(27) (ms) Mod-Hybrid(9) (ms) Mod-Hybrid(27) (ms)

162 0.218 0.095 0.118 0.033 0.021

486 1.308 0.561 0.711 0.192 0.132

1458 7.906 3.368 4.305 1.235 0.844

4374 47.844 20.583 25.965 7.389 5.054

13122 286.626 122.407 154.149 45.814 31.429

39366 1725.190 734.938 1039.061 286.549 190.180

Table 4.5: Timing report for multiplication in ring Zp/(x
2.3h + x3

h
+ 1) using three-way

split TMVP and Hybrid(m) with different break-points m

4.2.2 Multiplication of Polynomials in Ring Zp/(x
2.2i.3j − x2i.3j + 1)

using TMVP

x2.2
i.3j−x2i.3j +1 is a trinomial and we are performing polynomial multiplication considering

the ring Zp/(x
2.2i.3j − x2i.3j + 1) with the combination of two-way split and three-way split

56

TMVP approach. The sizes of polynomials are not limited to powers of 2 but 2.2i.3j. So we

can choose size n from a much bigger range of values. There is a huge range of sizes ≤ 216

that can be achieved so we implement and collect data for all possible polynomials only in

the range 210 to 211 and compare the performance. We also implement the basic Hybrid

design to improve the timing results. The results are given in Table 4.6. The break-point

m of each of the hybrid design is mentioned in braces as Hybrid(m).

Size, n TMVP (ms) Hybrid(9) (ms) Hybrid(27) (ms) Mod-Hybrid(9) (ms) Mod-Hybrid(27) (ms)

1152 4.526 2.010 2.009 0.735 0.734

1296 5.835 2.528 3.169 0.888 0.661

1536 7.137 3.654 3.658 2.444 2.443

1728 8.855 3.919 4.815 1.389 1.023

1944 11.778 5.045 6.330 1.718 1.296

Table 4.6: Timing report for multiplication in ring Zp/(x
2.2i.3h−x2i.3h +1) using a combina-

tion of two-way split and three-way split TMVP and Hybrid(m) where m is the break-point

The higher the break-point, the slower is the performance for the Hybrid desgin. We can

modify our Hybrid design as mentioned in this chapter and improve the performance for

higher break-points. We can see some inconsistency in the results from the modified Hybrid

designs. For example, the multiplication of polynomials with n = 1728 is faster than it

is with n = 1536. If we beak the values down, 1536 = 2.28.3 whereas 1728 = 2.25.33.

As discussed before in this chapter, the modified Hybrid is expected to give the better

performance than plain TMVP and we are considering modified Hybrid for powers of

three. n = 1728 has lower powers of two and higher powers of three than n = 1536 and

performance of Hybrid part of the design is more prominant incase of n = 1728.

57

4.3 Hardware Implementation of Two-Way Split TMVP

The Xilinx board used for the experiments has a limitation of 600 input and output ports.

The inputs are passed sequentially in groups of four 32-bit coefficients of each of the two

input arrays every cycle and stored in registers. When all the coefficients have been stored,

the multiplication component takes inputs and evaluates the output which is then stored

in registers and passed as output in groups of 4 coefficeints each cycle. Hence, depending

on the size of the polynomials, the number of clock cycles varies. The result of FPGA

synthesis in Xilinx is represented in Table 4.7. The clock period, the number of registers

and LUTs required are tabulated for different sizes of polynomials.

Size, n Slice Registers LUTs % used Clock Period(ns)

21 391 1183 1 17.689

22 797 4194 1 22.818

23 994 12987 4 29.241

24 3563 43486 14 37.214

25 7443 139047 45 52.526

Table 4.7: Xilinx synthesis report on implementation of polynomial multiplication using

TMVP

Table 4.7 presents the data of implementing all the blocks combinationally, that is for

each of the three recursive half-sized multiplication operation, three modules are created

and implemented in parallel. The entire multiplication operation occurs in a single clock

cycle. However, the operation does not work for n ≥ 26 with this approach. The design

platform VC707 runs out of LUTs. The implementation for n = 26 requires 150% of LUTs

available making synthesis infeasible.

58

For multiplications of polynomials with sizes ≥ 26, we reuse smaller multiplication

module sequentially in different clock cycles instead of creating three copies of the module.

The sequential implementation does not increase the % of LUTs required too significantly

but it does increase the number of registers required to store the intermediate data. Table

4.8 shows the synthesis report for n = 26 and n = 27. Each of the critical path is the

multiplication of 32-bit coefficient polynomials with 32 coefficients.

Size, n Slice Registers % used LUTs % used Clock cycles Clock Period(ns)

26 19752 3 134879 44 3 54.258

27 45561 7 173194 57 9 58.063

Table 4.8: Xilinx synthesis report for polynomials of size 26 and 27 reusing the block for 25

The design can be modified by replacing the TMVP multiplication procedure for smaller

values of n with schoolbook method as we did in software to speed up the multiplication

in smaller modules. We have a limited number IOB ports limiting us to output only 4

coefficients per clock cycle. This increases the number of clock latencies.

4.4 Summary

Multiplication of polynomials of size n = 2h are implemented in software using schoolbook

method, the Karatsuba algorithm, TMVP method and NTT in the ring Zp/(x
n + 1). One

of the goals of the thesis is to make the multiplication using TMVP somewhat as efficient

as it is with NTT for larger polynomial. Different Hybrid versions of TMVP method are

implemented to improve the performance in software. Another reason to consider the

TMVP method is to allow multiplication of polynomials with sizes other than powers of

59

two. Here we have implemented multiplication using two-way split and three-way split

TMVP methods in two different rings that allow a wider range of polynomials. Similar

hybrid algorithms are considered for these multiplications to enhance the performance.

Simple two-way split TMVP method for multiplication in the ring Zp/(x
n +1) is simulated

and synthesized in hardware for sizes n = 2 to n = 27. All implementations are done in

modulo p where p is a 30-bit integer.

60

Chapter 5

Concluding Remarks

5.1 Contribution Summary

In this thesis, different approaches have been analyzed for the multiplication of polynomials

in power-of-two cyclotomics, i.e., cyclotomic Φk = xn + 1 where n = 2h. Performance

of NTT is significantly better than any of the other methods for very large values of n

because of its quasi-linear complexity. Schoolbook method gives the best performance

for n ≤ 25 and becomes the slowest for larger polynomials as it has a complexity of

O(n2). Performances of Karatsuba algorithm and TMVP with subquadratic complexities

are better than schoolbook method for n ≥ 28. Multiplication in ring Zp/(x
n + 1) using

a Hybrid version of TMVP is implemented and it shows performance almost as good as

NTT for n ≤ 210 in software. Using TMVP method, multiplication of polynomials in

other cyclotomic rings Zp/Φk(x) has been implemented successfully with a subquadratic

complexity. Trinomials Φk(x) = x2.3
i
+ x3

i
+ 1 and Φk(x) = x2.2

h.3i + x2
h.3i + 1 have been

considered. Hybrid designs of TMVP and also the modified versions of Hybrid with unrolled

61

for-loop have been implemented which result in performaces twice as good. Performance

of this implementation for n ≤ 29 is comparable to the performance of NTT for n ≤ 29 in

Zp/(x
n + 1).

The hardware implementation of two-way split TMVP is executed combinationally and

synthesized in FPGA for n ≤ 25. For larger polynomials, implementation is synthesized

reusing the block for n = 25 in sequence.

5.2 Future Work

All implementations are carried out considering one of the 291 moduli from the RNS utilized

in NFLlib, which is an open source library for lattice-based cryptography. The polynomials

can actually be represented as a k -tuple with the 30-bit residues in each of the moduli and

processed independently. NFLlib is an open source library that utilizes optimized version

of NTT for arithmetic operations in certain HE. An optimized and parallelized version of

our Hybrid -TMVP method can be analyzed for its performance in NFLlib in place of the

default NTT. The Hybrid design can be implemented in existing schemes that involves

multiplication of polynomials of size less than 210 and its performance can be compared

with respect to the existing implementation.

All implementations are carried out only in software except the two-way split TMVP

method for multiplication in ring quotiented in xn + 1 which is synthesized in FPGA using

Xilinx. However, all the hybrid implementations can be repeated in hardware and synthe-

sized in ASIC and FPGA. Area and throughput optimized implementation in hardware can

be aimed using the hybrid design. We can have a comparison in terms of space complexity

among all the implementations in Hardware.

62

References

[1] Jithra Adikari, M Anwar Hasan, and Christophe Negre. Towards faster and greener

cryptoprocessor for η pairing on supersingular elliptic curve over F21223 . In Interna-

tional Conference on Selected Areas in Cryptography, pages 166–183. Springer, 2012.

[2] Carlos Aguilar-Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier

Killijian, and Tancrede Lepoint. NFLlib: NTT-based fast lattice library. In Cryptog-

raphers Track at the RSA Conference, pages 341–356. Springer, 2016.

[3] Sedat Akleyleky and Ferruh Özbudak. Multiplication in a Galois ring. In Signal

Design and its Applications in Communications (IWSDA), 2015 Seventh International

Workshop on, pages 28–32. IEEE, 2015.

[4] Eric Bach and Jeffrey Shallit. Factoring with cyclotomic polynomials. Mathematics

of Computation, 52(185):201–219, 1989.

[5] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A full RNS

variant of FV like somewhat homomorphic encryption schemes. In Selected Areas in

Cryptography-SAC, 2016.

63

[6] Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Comparison of three mod-

ular reduction functions. In Annual International Cryptology Conference, pages 175–

186. Springer, 1993.

[7] Zvika Brakerski. Fully homomorphic encryption without modulus switching from

classical GapSVP. In CRYPTO, volume 7417, pages 868–886. Springer, 2012.

[8] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from

ring-LWE and security for key dependent messages. In Annual cryptology conference,

pages 505–524. Springer, 2011.

[9] Jorge Castiñeira Moreira and Patrick Guy Farrell. Appendix B: Galois Fields GF (q).

Essentials of Error-Control Coding, pages 339–349.

[10] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung, D. Pao, and

I. Verbauwhede. High-Speed Polynomial Multiplication Architecture for Ring-LWE

and SHE Cryptosystems. IEEE Transactions on Circuits and Systems I: Regular

Papers, 62(1):157–166, Jan 2015.

[11] William T Cochran, James W Cooley, David L Favin, Howard D Helms, Reginald A

Kaenel, William W Lang, GC Maling, David E Nelson, Charles M Rader, and Peter D

Welch. What is the fast fourier transform? Proceedings of the IEEE, 55(10):1664–

1674, 1967.

[12] Keith Conrad. On the origin of representation theory. ENSEIGNEMENT MATHE-

MATIQUE, 44:361–392, 1998.

64

[13] Haining Fan and M Anwar Hasan. A new approach to subquadratic space complexity

parallel multipliers for extended binary fields. IEEE Transactions on Computers,

56(2):224–233, 2007.

[14] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic En-

cryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[15] Xianjin Fang and Longshu Li. On karatsuba multiplication algorithm. In Data,

Privacy, and E-Commerce, 2007. ISDPE 2007. The First International Symposium

on, pages 274–276. IEEE, 2007.

[16] Harvey L Garner. The residue number system. In Papers presented at the the March

3-5, 1959, western joint computer conference, pages 146–153. ACM, 1959.

[17] Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In STOC,

volume 9, pages 169–178, 2009.

[18] Andy Greenberg. Hacker lexicon: What is homomorphic encryption?, Jun 2017.

[19] M Anwar Hasan, Nicolas Meloni, Ashkan H Namin, and Christophe Negre. Block

recombination approach for subquadratic space complexity binary field multiplica-

tion based on Toeplitz matrix-vector product. IEEE Transactions on Computers,

61(2):151–163, 2012.

[20] David Lee. Fast multiplication of a recursive block Toeplitz matrix by a vector and

its application. Journal of Complexity, 2(4):295–305, 1986.

[21] Patrick Longa and Michael Naehrig. Speeding up the number theoretic transform

for faster ideal lattice-based cryptography. In International Conference on Cryptology

and Network Security, pages 124–139. Springer, 2016.

65

[22] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-

ing with errors over rings. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 1–23. Springer, 2010.

[23] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryp-

tography. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 35–54. Springer, 2013.

[24] Edoardo Mastrovito. VLSI architectures for computations in Galois fields. PhD thesis,

Dept. of Electrical Eng, Linkoping Univ., 1991.

[25] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied

cryptography. CRC press, 1996.

[26] Vincent Migliore, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand, Caroline

Fontaine, and Guy Gogniat. Fast polynomial arithmetic for somewhat homomorphic

encryption operations in hardware with karatsuba algorithm. In Field-Programmable

Technology (FPT), 2016 International Conference on, pages 209–212. IEEE, 2016.

[27] Ahmad Habibizad Navin, Asghar Shahrzad Khashandarag, Amin Rahimi Oskuei, and

Mirkamal Mirnia. A novel approach cryptography by using residue number system.

In Computer Sciences and Convergence Information Technology (ICCIT), 2011 6th

International Conference on, pages 636–639. IEEE, 2011.

[28] Harald Niederreiter. A survey of some applications of finite fields. Designs, Codes and

Cryptography, 78(1):129–139, 2016.

66

[29] Christof Paar. A new architecture for a parallel finite field multiplier with low com-

plexity based on composite fields. IEEE Transactions on Computers, 45(7):856–861,

1996.

[30] Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-based

cryptography on reconfigurable hardware. LatinCrypt, 7533:139–158, 2012.

[31] Karl C Posch and Reinhard Posch. Modulo reduction in residue number systems.

IEEE Transactions on Parallel and Distributed Systems, 6(5):449–454, 1995.

[32] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.

Journal of the ACM (JACM), 56(6):34, 2009.

[33] CP Renteŕıa-Mej́ıa and J Velasco-Medina. Hardware design of an NTT-based poly-

nomial multiplier. In Programmable Logic (SPL), 2014 IX Southern Conference on,

pages 1–5. IEEE, 2014.

[34] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy

homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[35] Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dimitrov, and Ingrid

Verbauwhede. Modular hardware architecture for somewhat homomorphic function

evaluation. Cryptology ePrint Archive, Report 2015/337, 2015. https://eprint.

iacr.org/2015/337.

[36] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and

Ingrid Verbauwhede. Compact ring-LWE cryptoprocessor. In International Workshop

on Cryptographic Hardware and Embedded Systems, pages 371–391. Springer, 2014.

67

https://eprint.iacr.org/2015/337
https://eprint.iacr.org/2015/337

[37] Assaid Othman Sharoun. Residue number system (RNS). Poznan University of Tech-

nology Academic Journals. Electrical Engineering, 2013.

[38] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. Advances in

Cryptology-ASIACRYPT 2010, pages 377–394, 2010.

[39] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public

key encryption based on ideal lattices. In Asiacrypt, volume 5912, pages 617–635.

Springer, 2009.

[40] André Weimerskirch and Christof Paar. Generalizations of the Karatsuba algorithm

for efficient implementations (2006). URL: http://eprint. iacr. org/2006/224. Cita-

tions in this document, 2.

68

APPENDICES

69

Appendix A

A.1 List of all the moduli in the RNS base used in

this thesis

The results presented in this thesis are based on modular reduction in 1073479681. While

representing the enormous cryptographic data in RNS, it is reduced in each of the following

moduli which are member of the RNS base under consideration. Polynomial multiplication

and all other operations are performed on each of the 291 numbers that are the reduced

representation of the data in RNS base.

Below is the list of all the 291 moduli of the RNS base B.

1073479681, 1072496641, 1071513601, 1070727169, 1069219841, 1068564481, 1068433409,

1068236801, 1065811969, 1065484289, 1064697857, 1063452673, 1063321601, 1063059457,

1062862849, 1062535169, 1062469633, 1061093377, 1060765697, 1060700161, 1060175873,

1058209793, 1056440321, 1056178177, 1055260673, 1054212097, 1054015489, 1053818881,

1052835841, 1052508161, 1051721729, 1049100289, 1048772609, 1048707073, 1048379393,

1045430273, 1043464193, 1042415617, 1041694721, 1040908289, 1040842753, 1040056321,

70

1038745601, 1038155777, 1037303809, 1036779521, 1034813441, 1033961473, 1032650753,

1032257537, 1032192001, 1031667713, 1030619137, 1029308417, 1028456449, 1026686977,

1026490369, 1026162689, 1025703937, 1023148033, 1022164993, 1021444097, 1021247489,

1020592129, 1019805697, 1019609089, 1019478017, 1018429441, 1018101761, 1017839617,

1016922113, 1016463361, 1015283713, 1014366209, 1012989953, 1012924417, 1012596737,

1012334593, 1012006913, 1011023873, 1010761729, 1010565121, 1009975297, 1008795649,

1008271361, 1007681537, 1006108673, 1005649921, 1005518849, 1005060097, 1004535809,

1004339201, 1002766337, 1002373121, 1000800257, 1000210433, 999948289, 999424001,

999161857, 998572033, 998244353, 997261313, 996278273, 995622913, 995033089, 994902017,

994705409, 994246657, 993918977, 993329153, 993263617, 992083969, 991887361,

991363073, 991297537, 990576641, 989986817, 989003777, 988938241, 988610561, 986382337,

985661441, 985464833, 985006081, 984481793, 983826433, 982450177, 982056961, 981270529,

980746241, 980156417, 979107841, 978780161, 977993729, 977534977, 976355329, 976224257,

975831041, 975634433, 975175681, 974979073, 974258177, 973406209, 972029953,

971898881, 971243521, 970129409, 969146369, 967507969, 967180289, 966197249, 964558849,

962854913, 962592769, 962396161, 961085441, 959119361, 958922753, 958136321, 957939713,

957677569, 957546497, 957349889, 956366849, 955383809, 954531841, 954335233, 952434689,

952238081, 952041473, 951582721, 950468609, 950403073, 950009857, 949682177,

949616641, 949420033, 948699137, 948633601, 947847169, 946339841, 944570369, 944177153,

943718401, 942800897, 941424641, 940572673, 939655169, 938475521, 936312833, 935329793,

935264257, 933888001, 933101569, 932970497, 932904961, 932577281, 930742273, 930021377,

929955841, 929366017, 927662081, 927072257, 926220289, 925892609, 924844033,

924712961, 924450817, 924254209, 922877953, 922550273, 921894913, 921501697, 920518657,

920322049, 919601153, 919339009, 918552577, 918224897, 917569537, 917176321, 916389889,

915996673, 915013633, 914685953, 914096129, 913899521, 913309697, 913244161, 912130049,

71

911081473, 910491649, 909770753, 909377537, 909180929, 908328961, 908197889,

908132353, 907804673, 907542529, 907411457, 907214849, 907018241, 906362881, 904265729,

903282689, 903086081, 902627329, 902430721, 900923393, 900857857, 900464641, 899678209,

898301953, 897712129, 897581057, 897318913, 896991233, 896729089, 896204801, 896008193,

894959617, 893255681, 893059073, 892403713, 891617281, 890437633, 889454593,

889323521, 889126913, 889061377, 888668161, 887488513, 885719041, 885522433, 883949569,

882245633, 881983489, 881590273, 880869377, 880803841, 880214017, 879230977, 876675073,

875298817, 874708993, 874315777, 873725953, 873332737, 873136129, 873005057

A.2 Modular Reduction using Barrett’s Reduction Al-

gorithm

Modular Reduction is generally a slow process as it depends on repetitive use of long

divisions. Barrett’s reduction algorithm limits the need for numerous long divisions and

replaces divisions with shifts, multiplications and subtractions.

The algorithm explaining all the steps required for Barrett’s reduction is given below.

Algorithm 7 Barrett’s Reduction
Input:a, q

1: Precompute: k such that 2k > q, u where u =
⌊
4k

n

⌋
2: á← a−

⌊
au
4k

⌋
q

3: if á ≥ q then

4: á← á− q

5: return á

72

	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Scope of Work
	Thesis Organization

	Background
	Finite Field Arithmetic
	Ring
	Polynomial Ring
	Finite Field

	Modular Reduction
	Residue Number System (RNS)
	Polynomial Multiplication Methods
	Karatsuba Algorithm
	Toeplitz Matrix Vector Product
	Number Theoretic Transform (NTT)

	Multiplication in Cyclotomic Polynomial Ring using rns
	Other Cyclotomic Polynomials

	Summary

	Multiplication of Polynomials in Zp/k(x)
	Polynomial Multiplication in ring Z/(xn+1)
	Polynomial Multiplication using the Schoolbook Method
	Multiplication in Z/(xn+1) using Karatsuba Algorithm
	Multiplication using Toeplitz Matrix Vector Product
	NTT-based Polynomial Multiplication and Algorithms
	Hybrid Design with Karatsuba and Toeplitz

	Polynomial Multiplication in Ring Zp(x)/k(x)
	Multiplication of Polynomials in Ring Z/(x2.3i+x3i+1)
	Multiplication of Polynomials in Ring Zp/(x2.2h.3i-x2h.3i+1)
	Multiplication using Three-Way Split tmvp

	Hardware Implementation
	Functional Simulation of tmvp and Karatsuba
	Field Programmable Gate Array (FPGA)

	Summary

	Analysis of Implementation
	Multiplication in Ring Zp/(xn+1)
	Comparison in Software for Different Methods of Multiplication
	Hybrid Implementation

	Multiplication in Rings Quotiented by Cyclotomic Trinomials
	Multiplication of Polynomials in Ring Zp/(x2.3h+x3h+1) using TMVP
	Multiplication of Polynomials in Ring Zp/(x2.2i.3j-x2i.3j+1) using TMVP

	Hardware Implementation of Two-Way Split tmvp
	Summary

	Concluding Remarks
	Contribution Summary
	Future Work

	References
	APPENDICES
	rns base used and Modular Reduction Algorithm
	List of all the moduli in the rns base used in this thesis
	Modular Reduction using Barrett's Reduction Algorithm

