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Abstract

The existence and smoothness of center manifolds and a reduction principle are proven for impulsive
delay differential equations. Several intermediate results of theoretical interest are developed, including
a variation of constants formula for linear equations in the phase space of right-continuous regulated
functions, linear variational equation and smoothness of the nonautonomous process, and a Floquet
theorem for periodic systems. Three examples are provided to illustrate the results.

1 Introduction

Center manifold theory has a rich history as one of the fundamental tools in the study of nonlinear dynamical
systems. Broadly speaking, the application of the theory to a given dynamical system near its nonhyperbolic
states permits a reduction of dimension that is locally characteristic of the behaviour of the fully nonlinear
system.

The dynamics of infinite-dimensional systems has been a great source of motivation in the development of
techniques in functional analysis. For instance, (strongly continuous) semigroups of operators are often used
as the building blocks of center manifolds (and, indeed, other invariant manifolds) for infinite-dimensional
dynamical systems. The body of literature on this topic is vast; for a brief exposure one may consult the
works of Chicone [5], Chow and Lu [6], DaPrato and Lunardi [8], Krizstin [22], Veltz and Fogeras [29], as
well as the textbooks [9, 13].

In recent years, there has been a surge of interest in the dynamics of impulsive differential equations with
time delays, especially in neural networks, mathematical biology and ecology, as such systems frequently
involve memory effects (discrete or distributed delays), and bursting or discontinuous controls (impulses).
While large-scale emergent behaviour such as synchronization in neural networks can be introduced through
pinning algorithms, there is little available in terms of low-dimensional analysis techniques to study the
emergence of classical bifucation patterns. Indeed, analysis of specific nonlinear impulsive systems with
delays appears to be mostly confined to more static notions such as well-posedness, permanence, existence of
global attractors and binary stability-instability analysis of equilibrium points, with a look toward bifurcation
toward permanence of a compact region of the phase space — see [11, 25, 30, 31] for some recent applications
to biological systems. Most dynamic bifurcation analysis at present seems restricted to numerical studies.
For instance, in [32], the largest Lyapunov exponent is used to numerically investigate bifurcations to chaotic
attractors in a three-species food chain model with distributed delay and impulsive control.

In this paper, we establish the theoretical existence, smoothness and reduction principle of center mani-
folds for a fairly broad class of impulsive delay differential equations, thereby introducing a classical method
of analysis to this growing field of study. It should be mentioned that in the literature, one typically refers
to nonautonomous invariant manifolds (of which the center manifold is included) as invariant fiber bundles.
These are appropriate generalization of invariant manifolds to explicitly time-varying systems that can be
visualized as time-varying manifolds [1]. However, to avoid unnecessary verbiage and to draw a distinction
between them and linear invariant fibre bundles, we will continue to refer to them as center manifolds.

The structure of the paper is as follows. In Section 2, we provide an imprecise statement of our main
result and elaborate on several of its corollaries – namely, the existence of local center manifolds for fully
nonautonomous delay differential equations and finite-dimensional impulsive systems. We also outline our
method of proof. Section 3 provides background material on impulsive delay differential equations and some
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of the function spaces that will be needed, as definitions specific to our results. Section 4 is devoted to
the development of a variation-of-constants formula for linear nonhomogeneous impulsive delay differental
equations that is interesting in its own right, but will be needed extensively after. The existence of Lipschitz
continuous center fiber bundles (local and global) is proven in Section 5. A reduction principle (attractivity
properties and restricted dynamics equtions) is established in Section 6. A detour is taken to study periodic
linear systems in Section 7, before establishing the smoothness of the center manifold in Section 8, where
we also prove that a periodic system necessarily generates a periodic center manifold. Some examples are
provided in Section 9.

2 Statement of results and methodology

This section will be devoted to an informal statement of the results of this paper, together with a broad
overview of the proofs. We will ultimately be interested in semilinear impulsive delay differential equations
of the form

ẋ = A(t)xt + f(t, xt), t 6= τk

∆x = Bkxt− + gk(xt−), t = τk,
(1)

where A(t) : RCR → Rn and B(k) : RCR → Rn are for each t ∈ R and k ∈ Z, bounded linear operators
acting on the Banach space RCR of uniformly bounded functions φ : [−r, 0]→ Rn that are continuous from
the right and have limits on the left, with r > 0 finite. Also, f : R×RCR → Rn and g : Z×RCR → Rn are
sufficiently smooth and vanishing with vanishing first derivatives at the origin 0 ∈ RCR, and {τk : k ∈ Z} is
a sequence of impulse times. We do not require global Lipschitzian conditions on the vector field f or jump
functional g.

2.1 Statement of the result

Rather imprecisely, the main result of our paper is as follows.

Theorem. Under “reasonable assumptions”, there exists a Lipschitz function C : RCRc → RCR, with
domain consisting of a time-varying subset RCRc ⊂ RCR, with the property that every sufficiently small
solution of (1) with limited two-sided exponential growth is contained within the graph of C: the local center
manifold. Moreover, in the absence of unstable components in the linear part of (1), the local center manifold
attracts nearby solutions. Under certain conditions, the function C : RCRc → RCR is smooth.

The reasonable assumptions of the theorem include, in particular, a splitting of the phase space RCR
into a time-varying internal direct sum RCRs(t) ⊕ RCRc(t) ⊕ RCRu(t) of three closed subspaces, which
behave like time-varying stable, center and unstable subspaces associated to the linear system

ẏ = A(t)yt, t 6= τk

∆y = Bkyt− , t = τk.
(2)

More precisely, this splitting is a decomposition ofRCR as an internal direct sum of three mutually orthogonal
closed stable, center and unstable fibre bundles over RCR with base space R (equivalently, nonautonomous
sets RCRi ⊂ R × RCR). In addition, the evolution family U(t, s) : RCR → RCR associated to the linear
system (2) must satisfy certain invertibility and exponential boundedness conditions when restricted to each
factor of the decomposition, defined through the projection operators Pi : RCR → RCRi onto the stable,
center, and unstable fibre bundles. We will later say that the linear part is spectrally separated if these
conditions are satisfied.

While presented somewhat abstractly, the spectral conditions are satisfied in several important special
cases. For instance, they are satisfied when (2) is periodic, as proven in Section 7. The center manifold is
also smooth in this case.
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2.2 Corollary: center manifolds for finite-dimensional impulsive systems and
systems with memoryless linear part

Our theorem stated imprecisely in Section 2.1 immediately grants existence and smoothness of local center
manifolds or invariant fiber bundles under similar reasonable assumptions for ordinary impulsive differential
equations in Euclidean space,

ẋ = f(t, x), t 6= τk

∆x = gk(x), t = τk.

It should be noted that there are numerous examples of center manifold theory for difference equations
being applied to study periodic systems of impulsive ordinary differential equations – see [7] for a survey of
this method. Despite this, it appears yet to be proven in the literature that such systems possess Ck-smooth
invariant center fiber bundles in general. One result [4] is applicable for impulsive differential equations in
Banach spaces, but only holds for small nonlinearities and grants C1 smoothness. We thus prove prove Ck

smoothness in Euclidean space.
Another useful corollary is the existence and smoothness of the center manifold for impulsive delay

systems when the linear part is memoryless. That is, systems of the form

ẋ = A(t)x+ f(t, xt), t 6= τk

∆x = Bkx+ gk(xt−), t = τk,

where the nonlinearities vanish and have vanishing derivatives at zero. In this case, the verification of spectral
separation can be done on the finite-dimensional linear part, instead of in the whole infinite-dimensional phase
space. This greatly simplifies calculations.

2.3 Methodology

At its core, our approach to prove the existence and smoothness of local center manifolds is an adaptation of
the Lyapunov-Perron method used to prove the existence of center manifolds for various classes of functional
differential equations without impulses. This programme is carried out successfully in [9, 22, 18, 19], for
example.

The Lyapunov-Perron method makes use of a variation-of-constants formula to reinterpret solutions
of the differential equation in question as mild solutions of a semilinear integral equation. In the fully
nonautonomous context, this method was used by Chicone [5] to prove a nonautonomous center manifold
theorem by first appealing to the evolution semigroup. The evolution semigroup allows one to effectively
translate the problem into an autonomous setting by enlarging the phase space. Semigroup theory then
provides the requisite variation of constants formula.

To contrast to the approach of Chicone, we work directly with the evolution family associated to (2)
and prove a variation of constants formula that is reminiscent of a classical formula derived by Jack Hale
for functional differential equations [12]. In the aforementioned reference, Hale proves that solutions of the
inhomogeneous delay differential equation ẋ = Axt + h(t) satisfy the formal variation of constants formula

xt = T (t− s)xs +

∫ t

s

T (t− µ)χ0h(µ)dµ,

where T (t) : X → X is the strongly continuous semigroup associated to the autonomous system ẋ(t) = Axt,
the phase space is X = C([−r, 0],Rn), and χ0 : [−r, 0] → Rn×n is defined by χ0(0) = I and χ0(θ) = 0 for
θ < 0. Strictly speaking, the formula is ill-defined because χ0h(µ) is not in the domain of T (t− µ).

The inconsistencies in Hale’s variation of constants formula can be resolved in several ways, including
adjoint semigroup theory and integrated semigroup theory [14]. We opt for an arguably more elementary
approach, which is similar to the construction used in [3, 24]. Namely, we work with the phase space RCR of
right-continuous regulated functions at the outset and prove that the nonhomogeneous impulsive functional
differential equation

ẋ = A(t)xt + h(t), t 6= τk

∆x = Bkxt− + r(k), t = τk
(3)
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satisfies a forward global existence and uniqueness of solutions property, and that its associated homogeneous
equation generates an evolution family U(t, s) : RCR → RCR that is sufficiently regular to define and prove
the variation of constants formula

xt = U(t, s)xs +

∫ t

s

U(t, µ)χ0h(µ)dµ+
∑

s<τi≤t

U(t, τi)χ0r(i),

where the integral is interpreted in the Pettis (weak) sense. The correctness of this formula is proven in
Section 4.

It is interesting to note that the evolution family U(t, s) generally fails to be strongly continuous, further
necessitating the interpretation of the integral in the weak sense. Indeed, the integrand is not even Bochner
measurable, which makes investigations into strong integrability quite difficult.

The weak integral behaves well with respect to composition of bounded linear operators, and as such
commutes with the projection operators Pi onto the stable, center, and unstable fibre bundles associated to
the linearization. This fact is later used to construct, for each s ∈ R, a bounded linear operator

Kηs : (h, g) 7→ Kηs (f, g)

mapping inhomogeneities (h, r) satisfying bounded exponential growth conditions onto the unique bounded-
growth solutions of the inhomogeneous equation (3) whose components in the center fibre bundle vanish at
time s.

The rest of the proof of existence follows loosely the approach taken in, for instance [9, 22, 18, 19]. albeit
with some modifications. Namely, one cuts off the nonlinearities f and g away from the origin separately in
the center and hyperbolic directions and constructs a nonlinear fixed-point equation for each s ∈ R,

u = U(·, s)ϕ+Kηs ◦Rδ(u),

where ϕ ∈ RCRc(s) is a component in the center bundle in the appropriate fiber and Rδ is the Nemitsky
operator associated to the external direct sum of the nonlinearities f and g following the cutoff procedure.
The fixed point us = us(ϕ) of this equation is then used to define the global center manifold at time s.
The fibre bundle defined by “gluing” these manifolds together along the real line defines the all-time global
center manifold, and a suitable restriction generates the invariant center manifold. The proof of invariance
and attraction is similar in spirit to the autonomous delay differential equations case.

To obtain smoothness, the nonlinearities must be smoothed in a way that makes the Nemitsky operator
smooth in the part of the phase space in which the center manifold resides. As the center manifold is time-
varying, the infinite-dimensionality of the space in which it resides makes the smooth renorming of the space
a nontrivial problem to solve. To resolve this, we specialize to linearizations whose evolution families satisfy
a particular decomposability condition that is formally analogous to a Floquet decomposition on the center
fiber bundle. Then, we prove the smoothness of the center manifold by appealing to methods of contractions
on scales of Banach spaces; see [28, 27, 9] for background on these techniques.

2.4 Notation

The following notation is common to the manuscript. For a subset Z ⊂ R, the symbol χZ will always denote
the identity-valued indicator function:

χZ(θ) =

{
0, θ /∈ Z
I, θ ∈ Z,

with I the identity on Rn. The domain of χZ will be either stated or implied. The cardinality of a set X
will be denoted #S. If V is a normed vector space, the set of bounded linear maps on V will be denoted
L(V ), and if V1, . . . , Vp are all normed spaces, then the set of bounded p-linear maps from V1× · · · × Vp into
V will be denoted Lp(V1× · · ·×Vp, V ). For a function f : T ×X → Y with T ⊆ R and Banach spaces X,Y ,
Dkf(t, x) ∈ Lk(X × · · · ×X,X) denotes the kth Fréchet derivative of f in its second variable at the point
(t, x) ∈ T ×X.
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3 Background material

In this section we will collect necessary results on the linear inhomogeneous impulsive retarded functional
differential equation

ẋ = L(t)xt + h(t), t 6= τk (4)

∆x = Bkxt− + rk, t = τk, (5)

with the impulse condition ∆x(t) = x(t) − x(t−), where xt−(θ) = x(t + θ) for −r ≤ θ < 0 and xt−(0) =
limθ→0− x(t+θ), and r > 0 is finite. We will be working exclusively with spaces of right-continuous regulated
functions; denote

RCR(I,X) =

{
f : I → X : ∀t ∈ I, lim

s→t+
f(s) = f(t) and lim

s→t−
f(s) exists

}
,

where X ⊆ Rn and I ⊆ R. When X and I are closed,

RCRb(I,X) := {f ∈ RCR(I,X) : ||f || <∞}

is a Banach space with the norm ||f || = supx∈I |f(x)|. One may consult [17] for background on regu-
lated functions. We will write RCR := RCR([−r, 0],Rn) when there is no ambiguity, and note that since
RCRb([−r, 0],Rn) = RCR([−r, 0],Rn), we may identify RCR with its associated Banach space. The follow-
ing assumptions will be needed throughout.

H.1 The representation

L(t)φ =

∫ 0

−r
[dθη(t, θ)]φ(θ)

holds, where the integral is taken in the Lebesgue-Stieltjes sense, the function η : R× [−r, 0]→ Rn×n
is jointly measurable and is of bounded variation and right-continuous on [−r, 0] for each t ∈ R, and
such that |L(t)φ| ≤ `(t)||φ|| for some ` : R→ R locally integrable.

H.2 The sequence τk is monotonically increasing with |τk| → ∞ as |k| → ∞, and the representation

Bkφ =

∫ 0

−r
[dθγk(θ)]φ(θ)

holds for k ∈ Z for functions γk : [−r, 0]→ Rn×n of bounded variation and right-continuous, such that
|Bk| ≤ b(k).

Remark 3.0.1. Hypothesis H.1–H.2 could in principle be weakened. However, insofar as applied impulsive
differential equations are concerned, hypothesis H.1 is sufficient. Indeed, H.1 includes the case of discrete
time-varying delays: the linear delay differential equation

ẋ =

m∑
k=1

Ak(t)x(t− rk(t))

with rk continuous, is associated to a linear operator satisfying condition H.1 with η(t, θ) =
∑
Ak(t)H−rk(t)(θ),

where Hz(θ) = 1 if θ ≥ z and zero otherwise. It also obviously includes a large class of distributed delays.

In what follows, we will introduce several properties of regulated functions that will be needed throughout
the paper, in addition to impulsive integral inequalities and some definitions.
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3.1 Properties of regulated functions

We will require some elementary properties of regulated functions. The first result will be useful in proving
boundedness of evolution families associated to linear, homogeneous impulsive equations. We have not seen
the following elementary result in the literature, so it will be proven here for completeness.

Lemma 3.1.1. Let r > 0 be finite and let φ ∈ RCR([a, b],Rn) for some b ≥ a + r. With φt : [−r, 0] → Rn
defined in the usual way, t 7→ ||φt|| is an element of RCR([a+ r, b],R).

Proof. Let t ∈ [a+ r, b] be fixed. We will only prove right-continuity, since the proof of the existence of left
limits is similar. It suffices to prove that for any decreasing sequence sn ↓ 0, we have ||φt+sn || → ||φt||. Let
ε > 0 be given. By right-continuity of φ, for all ε > 0, there exists δ > 0 such that, if 0 < µ < δ, then
|φ(t+ µ)− φ(t)| < ε. Therefore,

||φt+sn || = sup
µ∈[−r,0]

|φ(t+ µ)| ≤ sup
µ∈[−r,sn]

|φ(t+ µ)| ≤ max{||φt||, sup
µ∈[0,sn]

|φ(t+ µ)|}

≤ max{||φt||, |φ(t)|+ ε} ≤ ||φt||+ ε,

provided sn < δ. On the other hand, since φ is bounded, there exists some sequence xn ∈ [−r, 0] such that
|φt(xn)| → ||φt||. By passing to a subsequence, we may assume xn → x̂ ∈ [−r, 0]. If x̂ > −r, then we have

||φt+sn || ≥ sup
µ∈[−r+sn,0]

|φ(t+ µ)| = |φ(x̂)| = ||φt||

provided sn < −x̂, while if x̂ = −r, we notice that the sequence x′n = t+−r+ sn converges to t+ x̂, so that
for all ε > 0, there exists N3 > 0 such that for n ≥ N ,

||φt+sn || ≥ |φ(t+ sn) ≥ ||φt|| − ε.

Therefore, if we let sN1
< δ and sN2

< −x̂, then by setting N = max{N1, N2, N3}, it follows by the above
three inequalities that for n ≥ N ,

−ε ≤ ||φt+sn || − ||φt|| ≤ ε.
We conclude ||φt+sn || converges to ||φt||.

We will eventually need spaces of function f : I → X that are differentiable from the right and whose
right-hand derivatives are elements of RCR(I,X). Specifically, denote the right-hand derivative by

d+f(t) = lim
ε→0+

f(t+ ε)− f(t)

ε

and introduce the space

RCR1(I,X) = {f ∈ RCR(I,X) : d+f ∈ RCR(I,Rn)}.

This space is clearly complete with respect to the norm ||f ||1 = ||f ||+ ||d+f || when restricted to the subspace
consisting of functions that are || · ‖|1-bounded.

The next result concerns a dense subspace of RCR. The proof is available in [17]

Lemma 3.1.2. Let I be compact. For all f ∈ RCR(I,X), there exists a sequence of step functions fn : I →
X such that ||fn − f || → 0.

We will need a characterization of the continuous dual of the space RCR, denoted RCR∗. A result from
Tvrdy [26] provides such for the dual of the space of regulated left-continuous scalar-valued functions, and
for our purposes the obvious modification that is needed is the following.

Lemma 3.1.3. F ∈ RCR∗ if and only if there exists q ∈ Rn and p : [−r, 0]→ Rn of bounded variation such
that

F (x) = q∗x(0) +

∫ 0

−r
p∗(t)dx(t), (6)

where the integral is a Perron-Stieltjes integral.
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We will need a few convergence and boundedness results for Perron-Stieltjes integrals involving right-
continuous regulated functions and functions of bounded variation. Symmetric arguments to those appearing
in [26] obviously yield the following results; see Theorem 2.8 and Corollary 2.10 therein.

Lemma 3.1.4. Let f : [a, b] → Rn be of bounded variation and g ∈ RCR([a, b],Rn). The integral∫ b
a
f∗(t)dg(t) exists in the Perron-Stieltjes sense, and∣∣∣∣∣

∫ b

a

f∗(t)dg(t)

∣∣∣∣∣ ≤ (|f(a)|+ |f(b)|+ varbaf)||g||, (7)

where varbaf denotes the total variation of f on the interval [a, b].

Lemma 3.1.5. Let hn ∈ RCR([a, b],Rn) and h ∈ RCR([a, b], Rn) be such that ||hn − h|| → 0 as n → ∞.

For any f : [a, b]→ Rn of bounded variation, the Perron-Stieltjes integrals
∫ b
a
f∗(t)dh(t) and

∫ b
a
f∗(t)dhn(t)

exist and

lim
n→∞

∫ b

a

f∗(t)dhn(t) =

∫ b

a

f∗(t)dh(t). (8)

3.2 Integral inequalities

We next provide two inequalities. The first is an impulsive Gronwall-Bellman inequality for regulated
functions. The result is similar to Lemma 2.3 of [2], and the proof is omitted. The second one concerns an
elementary estimation of sums of continuous functions at impulses, when the sequence of impulses satisfies
a separation condition.

Lemma 3.2.1. Suppose x ∈ RCR([s, α],R) satisfies the inequality

x(t) ≤ C +

∫ t

s

(p(µ)x(µ) + h(µ))dµ+
∑

s<τi≤t

(bix(τ−i ) + gi) (9)

for some nonnegative integrable function p, integrable and bounded h, nonnegative constants bi, gi and c,
and all t ∈ [s, α]. For t ≥ s, define

z(t, s) = exp

(∫ t

s

p(µ)dµ

) ∏
s<τi≤t

(1 + bi).

Then, µ 7→ z(t, µ) is integrable and the following inequality is satisfied.

x(t) ≤ Cz(t, s) +

∫ t

s

z(t, µ)h(µ)dµ+
∑

s<τi≤t

z(t, τi)gi. (10)

Lemma 3.2.2. Let f : R→ R be continuous and suppose {τk} satifies τk+1 − τk ≥ ξ.

1. If f is increasing, then
∑
s<τi≤t f(τi) ≤ 1

ξ

∫ t+ξ
s

f(µ)dµ.

2. If f is decreasing, then
∑
s<τi≤t f(τi) ≤ 1

ξ

∫ t
s−ξ f(µ)dµ.

Proof. Let {τ0, . . . , τN} = {τk : k ∈ Z} ∩ (s, t]. If f is increasing, then

∑
s<τi≤t

f(τi) =

N∑
i=0

f(τi) =
1

δ

N∑
i=0

f(τi)ξ ≤
1

ξ

N∑
i=0

f(τ0 + iξ)ξ ≤ 1

ξ

∫ t+ξ

s

f(µ)dµ.

The decreasing case is similar.
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3.3 Evolution families, nonautonomous sets and processes

Definition 3.3.1. Let X be a Banach space. An evolution family on X is a collection of bounded linear
operators {U(t, s)}t≥s∈R on X that satisfy U(t, s) = U(t, v)U(v, s) for all t ≥ v ≥ s and U(t, t) = IX .

Nonlinear variants of evolution families are more appropriately defined in terms of nonautonomous sets,
which are a specific type of fiber bundle. This is because insofar as evolution families may serve to define
solutions to linear Cauchy problems, the interval of existence of a nonlinear Cauchy problems will typically
depend on the initial data. The following definition is borrowed from Kloeden and Rasmussen [21], with
slightly different notation.

Definition 3.3.2. If X is a Banach space, a subset M⊆ R×X is a nonautonomous set over X. For each
t ∈ R, the set

M(t) = {x : (t, x) ∈M}

is called the t-fiber of M.

Definition 3.3.3. A process on X is a pair (S,M) where M is a nonautonomous set over R × X and
S :M→ X, whose action we denote by S(t, (s, x)) = S(t, s)x, and satisfies the following.

• {t} ×X ⊂M(t) and S(t, t) = IX for all t ∈ R.

• S(t, s)x = S(t, v)S(v, s)x whenever (s, x) ∈M(v) and (v, S(v, s)x) ∈M(t).

Note that the above definition is different, for example, than the one for process appearing in [21], where
processes are defined first as (partial) mappings, independent of nonautonomous sets. The reason for our
distinction here is that we want to make precise the notion that a process S(t, s) need not be defined on the
entire Banach space X for every pair of time arguments, the way evolution families U(t, s) are.

Definition 3.3.4. If M is a nonautonomous set over X and Y is another Banach space, we will say
a function f : M → Y has a given regularity property (eg. continuous, Lipschitz continuous, smooth) if
f(t, ·) :Mt → Y has the same regularity property. That is, regularity is defined fibrewise.

Definition 3.3.5. Let U(t, s) : X → X be a family of bounded linear operators defining a forward process on
a Banach space X — that is, U(t, s) = U(t, v)U(v, s) for all t ≥ v ≥ s and U(t, t) = IX . We say that U is
spectrally separated if there exists a triple (Ps, Pc, Pu) of bounded projection-valued functions Pi : R→ L(X)
with Ps + Pc + Pu = I such that the following hold.

1. There exists a constant N such that supt∈R (||Ps(t)||+ ||Pc(t)||+ ||Pu(t)||) = N <∞.

2. The projectors are mutually orthogonal; Pi(t)Pj(t) = 0 for i 6= j.

3. U(t, s)Pi(s) = Pi(t)U(t, s) for all t ≥ s and i ∈ {s, c, u}.

4. Define Ui(t, s) as the restriction of U(t, s) to Xi(s) = R(Pi(s)). The operators Uc(t, s) : Xc(s) →
Xc(t) and Uu(t, s) : Xu(s) → Xu(t) are invertible and we denote Uc(s, t) = Uc(t, s)

−1 and Uu(s, t) =
Uu(t, s)−1 for s ≤ t.

5. The operators Uc and Uu define all-time processes on the family of Banach spaces Xc(·) and Xu(·).
Specifically, the following holds for all t, s, v ∈ R.

Uc(t, s) = Uc(t, v)Uc(v, s), Uu(t, s) = Uu(t, v)Uu(v, s).

6. There exist real numbers a < 0 < b such that for all ε > 0, there exists K ≥ 1 such that

||Uu(t, s)|| ≤ Keb(t−s), t ≤ s (11)

||Uc(t, s)|| ≤ Keε|t−s|, t, s ∈ R (12)

||Us(t, s)|| ≤ Kea(t−s), t ≥ s. (13)
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The above definition is a time-varying version of the spectral decomposition hypotheses associated to the
center manifold theorem for autonomous delay differential equations appearing in [9].

Definition 3.3.6. Let U(t, s) : X → X be spectrally separated. The nonautonomous sets

Xi = {(t, x) : t ∈ R, x ∈ Xi(t)}

for i ∈ {s, c, u} are termed respectively the stable, center, and unstable bundles associated to U(t, s).

3.4 Existence and uniqueness of solutions for the linear equation

In order to eventually prove the existence of the center manifold in Section 5, we will need to first verify
existence, uniqueness and continuability of solutions.

Lemma 3.4.1. Let h ∈ RCR(R,Rn) and let hypotheses H.1–H.2 hold. For all φ ∈ RCR and s ∈ R, there
exists a unique function x ∈ RCR([s− r,∞),Rn) satisfying xs = φ and the integral equation

x(t) =

{
φ(0) +

∫ t
s
[L(µ)xµ + h(µ)]dµ+

∑
s<τi≤t[Bixτ−

i
+ ri], t > s

φ(t− s), s− r ≤ t ≤ s.
(14)

The above lemma follows by hypotheses H.1–2, the Banach fixed-point theorem, Lemma 3.2.1 and typical
continuation methods. It could also be proven by identifying the equation with a generalized ordinary
differential equation, as in [10]. Under stronger assumptions, one may look at the proof of Theorem 5.1.1
for local existence and uniqueness. Note here that h may be unbounded on the real line; however, since it is
regulated it is bounded on every compact set [17].

Consider now the homogeneous equation

ẋ = L(t)xt, t 6= τk (15)

∆x = Bkxt− , t = τk. (16)

Definition 3.4.1. Let hypotheses H.1–H.2 hold. For a given (s, φ) ∈ R × RCR, let t 7→ x(t; s, φ) denote
the unique solution of (15)–(16) satisfying xs(·; s, φ) = φ. The function U(t, s) : RCR → RCR defined by
U(t, s)φ = xt(·, s, φ) for t ≥ s is the evolution family associated to the homogeneous equation (15)–(16).

Lemma 3.4.2. The evolution family satisfies the following properties.

1) For s ≤ t, U(t, s) : RCR → RCR is a bounded linear operator. In particular,

||U(t, s)|| ≤ exp

(∫ t

s

`(µ)dµ

) ∏
s<τi≤t

(1 + b(i)). (17)

2) For s ≤ v ≤ t, U(t, s) = U(t, v)U(v, s).

3) For all θ ∈ [−r, 0], s ≤ t+ θ and φ ∈ RCR, U(t, s)φ(θ) = U(t+ θ, s)φ(0).

4) For all τk > s, one has U(τk, s) = (I + χ0Bk)U(τ−k , s).
1

5) Let C(t, s) denote the evolution family on RCR associated to the “continuous” equation ẋ = L(t)xt.
The following factorization holds:

U(t, s) =

{
C(t, s), [s, t] ∩ {τk}k∈Z ∈ {{s}, ∅}
C(t, τk) ◦ (I + χ0Bk) ◦ U(τ−k , s), t ≥ τk > s

(18)

1Note here that the left limit is the uniform one-point limit. Namely, U(τ−k , s)φ(θ) = U(τk, s)φ(θ) for θ < 0, while

U(τ−k , s)φ(0) = U(τk, s)φ(0
−).

9



Proof. Property 2) and 3) are immediate consequences of the uniqueness assertion of Lemma 3.4.1 and the
definition of the evolution family. For property 1), we obtain linearity by noticing that φ 7→ x(t; s, φ) is linear
in φ for each t ≥ s and, consequently, φ 7→ xt(·; s, φ) is is also linear. To obtain boundedness, we notice that
by virtue of the integral equation (14), U(t, s)φ(θ) satisfies

|U(t, s)φ(θ)| ≤ ||φ||+
∫ t+θ

s

|L(µ)U(µ, s)φ|dµ+
∑

s<τi≤t+θ

|BiU(τ−i , s)φ|

≤ ||φ||+
∫ t

s

`(µ)||U(µ, s)φ||dµ+
∑

s<τi≤t

b(i)||U(τ−i , s)φ||.

Since the upper bounds are independent of θ, denoting X(t) = U(t, s)φ, we obtain

||X(t)|| ≤ ||φ||+
∫ t

s

`(µ)||X(µ)||dµ+
∑

s<τi≤t

b(i)||X(τ−i )||.

By Lemma 3.1.1, t 7→ ||X(t)| is an element of RCR([s − r,∞),R). Invoking Lemma 3.2.1, we obtain the
desired boundedness (17) of the evolution family and property 1) is proven. Finally, since

U(τk, s)φ(0) = φ(0) +

∫ τk

s

L(µ)U(µ, s)φdµ+
∑

s<τi≤τk

BiU(τ−i , s)φ

= U(τ−k , s)φ(0) +BkU(τ−k , s)φ

and U(τ−k , s)φ(θ) = U(τk, s)φ(θ) for θ < 0, we readily obtain property 4). The verification of property 5)
follows by existence and uniqueness of solutions and property 4).

4 The variation of constants formula

Existence, uniqueness and continuability of solutions of the linear inhomogeneous equation (4)–(5) has been
granted by Lemma 3.4.1. From this result we directly obtain a decomposition of solutions.

Lemma 4.0.1. Let h ∈ RCR(R,Rn) and let H.1–H.2 hold. Denote t 7→ x(t; s, φ;h, r) the solution of
the linear inhomogeneous equation (4)–(5) for inhomogeneities h = h(t) and r = rk, satisfying the initial
condition xs(·; s, φ;h, r) = φ. The following decomposition is valid:

x(t; s, φ;h, r) = x(t; s, φ; 0, 0) + x(t; s, 0;h, 0) + x(t; s, 0; 0, r) (19)

With this decomposition, we will now proceed with the derivation of the variation of constants formula.
We prove a pointwise formula in Section 4.1 before lifting the formula into the space RCR in Section 4.2

4.1 Pointwise variation of constants formula

The following lemmas prove representations of the inhomogeneous impulsive term xt(·; s, 0; 0, r) and the
inhomogeneous continuous term xt(·; s, 0;h, 0).

Lemma 4.1.1. Under hypotheses H.1–H.2, one has

xt(·; s, 0; 0, r) =
∑

s<τi≤t

U(t, τi)χ0ri (20)

Proof. Denote x(t) = x(t; s, 0; 0, r). Clearly, for t ∈ [s,min{τi : τi > s}, one has xt = 0. Assume without
loss of generality that τ0 = min{τi : τi > s}. Then xτ0 = χ0r0 due to (14). From Lemma 3.4.1 and 3.4.2,

10



we have xt = U(t, τ0)χ0r0 for all t ∈ [τ0, τ1), so we conclude that (20) holds for all t ∈ [s, τ1). Supposing by
induction that xt =

∑
s<τi≤t U(t, τi)χ0ri for all t ∈ [s, τk) for some k ≥ 1, we have

xτk = xτ−
k

+ χ0Bkxτ−
k

+ χ0rk

= U(τk, τk−1)xτk−1
+ χ0rk

= U(τk, τk−1)
∑
s<τi≤τk−1

U(τk−1, τi)χ0ri + χ0rk

=
∑
s<τi≤τk U(t, τi)χ0ri.

Equality (20) then holds for t ∈ [τk, τk+1) by applying Lemma 3.4.2. The result follows by induction.

Lemma 4.1.2. Let h ∈ RCR(R,Rn). Under hypotheses H.1–H.2, one has

xt(θ; s, 0;h, 0) =

∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ, (21)

where the integral is defined for each θ as the integral of the function µ 7→ U(t, µ)[χ0h(µ)](θ) in Rn.

Proof. The proof of this lemma is adapted from the proof of Theorem 16.3 of [12]. Let us denote x(t; s)h =
x(t; s, 0;h, 0). First, we note that operator x(t, s) : RCR([s, t],Rn)→ Rn is linear (a consequence of Lemma
3.4.1) for each fixed s ≤ t, and that it admits an extension to a linear operator x̃(t, s) : Lloc1 ([s, t],Rn)→ Rn.
We do not prove this claim, since the proof is essentially identical to how one would prove Lemma 3.4.1. For
w ∈ [s, t] and denoting x̃t = [x̃(·, s)h]t for brevity, we see that

|x̃w(θ)| ≤
∫ w+θ

s

|L(µ)x̃µ|dµ+

∫ w+θ

s

|h(µ)|dµ

≤ |h|1 +

∫ t

s

`(µ)||xµ||dµ,

which implies the uniform inequality ||xt|| ≤ |h|1 +
∫ t
s
`(µ)||x̃||µdµ. Applying Lemma 3.2.1 yields ||x̃t|| ≤

e|`|1 |h|1, where | · |1 denotes the L1[s, t] norm. Thus, |x̃(t, s)h| = |x̃t(0)| ≤ e|`|1 |h|1, so x̃ is bounded. By
classical results of functional analysis, there exists an integrable, essentially bounded n× n matrix function
µ 7→ V (t, s, µ) such that

x̃(t, s)h =

∫ t

s

V (t, s, µ)h(µ)dµ. (22)

First we show that V (t, s, µ) is independent of s. Let α ∈ [s, t] and let k ∈ L1([s, t],Rn) be such that
k = 0 on [s, α]. Then x̃(t, s)k = x(t, α)k and x(t, µ)k = 0 for µ ∈ [s, α]. Thus,

∫ t

α

[V (t, s, µ)− V (t, α, µ)]k(µ)dµ = 0

for all k ∈ L1([α, t],Rn). Thus, V (t, s, µ) = V (t, α, µ) almost everywhere on [α, t]. Since α is arbitrary, we
have that V (t, s, µ) is independent of s.

Define V (t, s) = V (t, s, ·) for any t ≥ s and V (t, s) = 0 for s < t. Let us denote x̃(t) = x̃(t, s)h and
Vτ−

i
(θ, s) = V (τi + θ, s) when θ < 0 and Vτ−

i
(0, s) = V (τ−i , s). From the integral equation (14) and the
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representation (22), we have∫ t

s

V (t, µ)h(µ)dµ

=

∫ t

s

L(µ)x̃µdµ+
∑

s<τi≤t

Bix̃τ−
i

+

∫ t

s

h(µ)dµ

=

∫ t

s

∫ 0

−r
[dθη(µ, θ)]x̃(µ+ θ)dµ+

∑
s<τi≤t

∫ 0

−r
[dθγi(θ)]x̃τ−

i
(θ) +

∫ t

s

h(µ)dµ

=

∫ t

s

∫ 0

−r
[dθη(µ, θ)]

∫ µ+θ

s

V (µ+ θ, ν)h(ν)dνdµ+
∑

s<τi≤t

∫ 0

−r
[dθγk(θ)]

∫ τi+θ

s

Vτ−
i

(θ, ν)h(ν)dν +

∫ t

s

h(µ)dµ

=

∫ t

s

∫ 0

−r
[dθη(µ, θ)]

∫ µ

s

V (µ+ θ, ν)h(ν)dνdµ+
∑

s<τi≤t

∫ 0

−r
[dθγk(θ)]

∫ τi

s

Vτ−
i

(θ, ν)h(ν)dν +

∫ t

s

h(µ)dµ

=

∫ t

s

∫ t

ν

∫ 0

−r
[dθη(ν, θ)]V (µ+ θ, ν)h(ν)dµdν +

∑
s<τi≤t

∫ τi

s

∫ 0

−r
[dθγi(θ)]Vτ−

i
(θ, ν)h(ν)dν +

∫ t

s

h(µ)dµ

=

∫ t

s

∫ t

µ

∫ 0

−r
[dθη(ν, θ)]V (ν + θ, µ)h(µ)dν +

∑
s<τi≤t

χ(−∞,τi](µ)

∫ 0

−r
[dθγk(θ)]Vτ−

i
(θ, µ)h(µ) + h(µ)

 dµ
=

∫ t

s

∫ t

µ

∫ 0

−r
[dθη(ν, θ)]V (ν + θ, µ)dν +

∑
s<τi≤t

χ(−∞,τi](µ)

∫ 0

−r
[dθγk(θ)]Vτ−

i
(θ, µ) + I

h(µ)dµ

=

∫ t

s

I +

∫ t

µ

L(µ)Vν(·, µ)dν +
∑

s<τi≤t

BiVτ−
i

(·, µ)

h(µ)dµ.

Since the above holds for all h ∈ L1([s, t],Rn), we have that the fundamental matrix V (t, s) satisfies

V (t, s) =

 I +

∫ t

s

L(µ)Vµ(·, s)dµ+
∑

s<τi≤t

BiVτ−
i

(·, s), t ≥ s

0 t < s.

(23)

almost everywhere. By uniqueness of solutions (Lemma 3.4.1, it follows that V (t, s)ξ = U(t, s)[χ0ξ](0) for
all ξ ∈ Rn. Since x̃(t, s) is an extension of x(t, s) to the larger space L1([s, t],Rn), representation (22) holds
for h ∈ RCR([s, t],Rn). Thus, for all t ≥ s,

xt(θ; s, 0;h, 0) = x(t+ θ, s)h

=

∫ t+θ

s

V (t+ θ, µ)h(µ)dµ

=

∫ t

s

V (t+ θ, µ)h(µ)dµ

=

∫ t

s

U(t+ θ, µ)[χ0h(µ)](0)dµ

=

∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ,

which is what was claimed by equation (21).

With Lemma 4.0.1 through Lemma 4.1.2 at hand, we arrive at the variation of constants formula.
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Lemma 4.1.3. Let h ∈ RCR(R,Rn). Under hypotheses H.1–H.2, one has the variation of constants formula

xt(θ; s, φ;h, r) = U(t, s)φ(θ) +

∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ+
∑

s<τi≤t

U(t, τi)[χ0ri](θ). (24)

4.2 Variation of constants formula in the space RCR
The goal of this section will be to reinterpret the variation of constants formula (24) in such a way that the
integral appearing therein may be thought of as a weak integral in the space RCR. Specifically, we will show
that the integral may be regarded as a Gelfand-Pettis integral. This form has several advantages, the most
important being it will allow us to later commute bounded projection operators with the integral sign. We
recall the following definition, which appears in [23].

Definition 4.2.1. Let X be a Banach space and (S,Σ, µ) a measure space. We say that f : S → X is Pettis
integrable if there exists a set function If : Σ→ X such that

ϕ∗If (E) =

∫
E

ϕ∗fdµ

for all ϕ∗ ∈ X∗ and E ∈ Σ. If is the indefinite Pettis integral of f , and If (E) the Pettis integral of f on E.

By abuse of notation, we will often write If (E) =
∫
E
fdµ when there is no ambiguity. For our purposes,

the following proposition will be of primary usefulness. Its proof is elementary and can be found in numerous
textbooks on functional analysis and integration.

Proposition 4.2.1. The pettis integral posesses the following properties.

• If f is Pettis integrable, then its indefinite Pettis integral is unique.

• If T : X → X is bounded, then T
(∫
E
fdµ

)
=
∫
E

(Tf) dµ whenever one of the integrals exists.

• If µ(A ∩B) = 0, then
∫
A∪B fdµ =

∫
A
fdµ+

∫
B
fdµ.

• ||
∫
E
fdµ|| ≤

∫
E
||f ||dµ

Lemma 4.2.1. Let h ∈ RCR(R,Rn) and let H.1–H.2 hold. The function U(t, ·)[χ0h(·)] : [s, t] → RCR is
Pettis integrable for all t ≥ s and[∫ t

s

U(t, µ)[χ0h(µ)]dµ

]
(θ) =

∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ. (25)

Proof. By Lemma 3.1.3 and the uniqueness assertion of Proposition 4.2.1, if we can show for all p : [−r, 0]→
Rn of bounded variation the equality∫ 0

−r
p∗(θ)d

[∫ t

s

U(t, µ)[χ0h(µ)](θ)dµ

]
=

∫ t

s

[∫ 0

−r
p∗(θ)d

[
U(t, µ)[χ0h(µ)](θ)

]]
dµ

holds, then Lemma 4.2.1 will be proven. Note that the above is equivalent to∫ 0

−r
p∗(θ)d

[∫ t

s

V (t+ θ, µ)h(µ)dµ

]
=

∫ t

s

[∫ 0

−r
p∗(θ)d

[
V (t+ θ, µ)h(µ)

]]
dµ. (26)

We prove the lemma first when h is a step function. In this case, a consequence of equation (23) is that
θ 7→ V (t+ θ, µ)h(µ) and µ 7→ V (t+ θ, µ)h(µ) are piecewise continuous, while Lemma 3.4.1 and Lemma 4.1.2

imply θ 7→
∫ t
s
V (t+θ, µ)h(µ)dµ is also piecewise continuous, all with at most finitely many discontinuities on

any given bounded set. Conseqently, both integrals in (26) can be regarded as a Lebesgue-Stieltjes integrals,
with Fubini’s theorem granting the desired equality.
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When h ∈ RCR(R,Rn) is an arbitrary right-continuous regulated function, we approximate its restriction
to the inverval [s, t] by a convergent sequence of step functions hn by Lemma 3.1.2. Equation (26) is then
satisfied with h replaced with hn. Define the functions

Jn(θ) =

∫ t

s

V (t+ θ, µ)hn(µ)dµ, Kn(µ) =

∫ 0

−r
p∗(θ)d

[
V (t+ θ, µ)hn(µ)

]
,

J(θ) =

∫ t

s

V (t+ θ, µ)h(µ)dµ, K(µ) =

∫ 0

−r
p∗(θ)d

[
V (t+ θ, µ)h(µ)

]
,

so that
∫ 0

−r p
∗(θ)dJn(θ) =

∫ t
s
Kn(µ)dµ. By Lemma 3.4.2 and elementary integral estimates, Jn → J uni-

formly. The conditions of Lemma 3.1.5 are satisfied, and we have the limit∫ 0

−r
p∗(θ)dJn(θ)→

∫ 0

−r
p∗(θ)dJ(θ).

Conversely, for each µ ∈ [s, t], Lemma 3.1.4 applied to the difference Kn(µ) − K(µ) yields, together with
Lemma 3.4.2,

|Kn(µ)−K(µ)| ≤ (|p(0)|+ |p(−r)|+ var0
−rp)

(∫ t

s

exp

(∫ t

y

`(ν)dν

)
dy

)
||hn − h||.

Thus, Kn → K uniformly, and the bounded convergence theorem implies
∫ t
s
Kn(µ)dµ→

∫ t
s
K(µ)dµ. There-

fore, equation (26) holds, and the lemma is proven.

With Lemma 4.1.3 and Lemma 4.2.1 at hand, we obtain the variation of constants formula for the linear
inhomogeneous equation (4)–(5) in the Banach space RCR.

Theorem 4.2.1. Let H.1–H.2 hold, and let h ∈ RCR(R,Rn). The unique solution t 7→ xt(·; s, φ;h, r) ∈ RCR
of the linear inhomogeneous impulsive system (4)–(5) with initial condition xs(·; s, φ;h, r) = φ, satisfies the
variation-of-constants formula

xt(·; s, φ;h, r) = U(t, s)φ+

∫ t

s

U(t, µ)[χ0h(µ)]dµ+
∑

s<τi≤t

U(t, τi)[χ0ri], (27)

where the integral is interpreted in the Pettis sense and may be evaluated pointwise using (25).

As a simple corollary, we can express any solution t 7→ xt defined on [s,∞) as the solution of an integral
equation.

Corollary 4.2.1.1. Let H.1–H.2 hold, and let h ∈ RCR(R,Rn). Any solution t 7→ xt ∈ RCR of the linear
inhomogeneous impulsive system (4)–(5) defined on the interval [s,∞) satisfies for all t ≥ s the equation

xt = U(t, s)xs +

∫ t

s

U(t, µ)[χ0h(µ)]dµ+
∑

s<τi≤t

U(t, τi)[χ0ri]. (28)

5 Existence of Lipschitz continuous center manifolds

This section will be devoted to the existence of center manifolds, a reduction principle, and the derivation
of abstract impulsive differential equations restricted to the center manifold.

5.1 Preliminary definitions and mild solutions of an abstract integral equation

At this stage it is appropriate to introduce several exponentially weighted Banach spaces that will be needed
to construct the center manifolds. First, denote PC(R,Rn) the set of functions f : R → Rn that are
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continuous everywhere except for at times t ∈ {τk : k ∈ Z} where they are continuous from the right and
have limits on the left.

PCη = {φ : R→ RCR : φ(t) = ft, f ∈ PC(R,Rn), ||φ||η = sup
t∈R

e−η|t|||φ(t)|| <∞}

Bη(R,RCR) = {f : R→ RCR : ||f ||η = sup
t∈R

e−η|t|||f(t)|| <∞}

PCη(R,Rn) = {f ∈ PC(R,Rn) : ||f ||η = sup
t∈R

e−η|t|||f(t)|| <∞}

Bητk(Z,Rn) = {f : Z→ Rn : ||f ||η = sup
k∈Z

e−η|τk||fk| <∞}.

Also, if M ⊂ R × RCR is a nonautonomous set over RCR, we define the space PCη(R,M) of piecewise-
continuous functions taking values in M by

PCη(R,M) = {f ∈ PCη : f(t) ∈M(t)}.

If Xη is one of the above spaces, then the normed space Xη,s = (Xη, || · ||η,s) with norm

||F ||η,s =

{
supt∈R e

−η|t−s|||F (t)||, dom(F ) = R
supk∈Z e

−η|τk−s|||F (k)||, dom(F ) = Z,

is complete.
Our attention shifts now to the semilinear system

ẋ = L(t)xt + f(t, xt), t 6= τk (29)

∆x = Bkxt− + gk(xt−), t = τk, (30)

for nonlinearities f : R × RCR → Rn and gk : RCR → Rn. Additional assumptions on the nonlinearities,
evolution family and sequence of impulses may include the following.

H.3 For each φ ∈ RCR([α− r, β],Rn), the function t 7→ f(t, φt) is an element of RCR([α, β],Rn).

H.4 The evolution family U(t, s) : RCR → RCR associated to the homogeneous equation (15)–(16) is
spectrally separated.

H.5 φ 7→ (t, φ) and φ 7→ gk(φ) are Cm for some m ≥ 1 for each t ∈ R and k ∈ Z, and there exists δ > 0
such that for each j = 0, . . . ,m, there exists cj : R → R+ locally bounded and a positive sequence
{dj(k) : k ∈ Z} such that

||Djf(t, φ)−Djf(t, ψ)|| ≤ cj(t)||φ− ψ||,
||Djgk(φ)−Djgk(ψ)|| ≤ dj(k)||φ− ψ||.

for φ, ψ ∈ Bδ(0) ⊂ RCR. Also, there exists q > 0 such that ||Djf(t, φ)|| ≤ qcj(t) and ||Djgk(φ)|| ≤
qdj(k) for φ ∈ Bδ(0).

H.6 f(t, 0) = gk(0) = 0 and Df(t, 0) = Dgk(0) for all t ∈ R and k ∈ Z.

H.7 There exists a constant ξ > 0 such that τk+1 − τk ≥ ξ for all k ∈ Z.

Definition 5.1.1. A mild solution of the semilinear equation (29)–(30) is a function x : [s, T ]→ RCR such
that for all s ≤ t < T , the function x(t) = xt satisfies the integral equation

x(t) = U(t, s)x(s) +

∫ t

s

U(t, µ)[χ0f(µ, x(µ))]dµ+
∑

s<τi≤t

U(t, τi)[χ0g(τi, x(τ−i ))], (31)

and x(t)(θ) = x(t+θ)(0) whenver θ ∈ [−r.0] satisfies t+θ ∈ [s, T ], where U is the evolution family associated
to the homogeneous equation (15)–(16) and the integral is interpreted in the Pettis sense.
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Remark 5.1.1. The right-hand side of equation (31) is well-posed under conditions H.1–H.3 in the sense
that it defines for s ≤ t < T , a nonlinear operator from RCR([s− r, t],Rn) into RCR. Note also that for a
function x : [s, T ]→ RCR, we denote x(τ−i )(θ) = x(τ−i )(θ) for θ < 0 and x(τ−i )(0) = x(τi)(0

−).

If x : [s− r, T )→ Rn is a classical solution — that is, x is differentiable from the right, continuous except at
impulse times τk, continuous from the right on [s− r, T ] and its derivative satisfies the differential equation
(29)–(30) — then t 7→ xt is a mild solution. This can be seen by defining the inhomogeneities h(t) ≡ f(t, xt)
and rk ≡ gk(xτ−

k
), solving the equivalent linear equation (4)–(5) with these inhomogeneities and intial

condition (s, xs) ∈ R×RCR in the mild sense, and applying Corollary 4.2.1.1. For this reason, we will work
with equation (31) exclusively from now on.

Additionally, one should note that the assumption H.5 implies that the nonlinearities are uniformly locally
Lipschitz continuous. Together with the other assumptions, this implies the local existence and uniqueness
of mild solutions through a given (s, φ) ∈ R ×RCR. Namely, we have the following lemma, which may be
seen as a local, nonlinear version of (3.4.1).

Lemma 5.1.1. Under assumptions H.1–H.5, for all (s, φ) ∈ R × D, there exists a unique mild solution
x(s,φ) : [s, s + α) → RCR of (31) for some α = α(s, φ) > 0, satisfying x(s) = φ. Also, if one defines the
nonautonomous set

M =
⋃

φ∈RCR

⋃
s∈R

⋃
t∈[s,s+α)

{t} × {s} × {φ},

then S :M→RCR with S(t, s)x = x(s,φ)(t) is a process on RCR.

Combining the discussion following Definition 5.1.1 with Lemma 5.1.1, it follows that S(t, s) satisfies the
following abstract integral equation wherever it is defined.

S(t, s)φ = U(t, s)φ+

∫ t

s

U(t, µ)χ0f(µ, S(µ, s)φ)dµ+
∑

s<τi≤t

U(t, τi)χ0g(τi, S(τ−i , s)φ). (32)

Of use later will be a result concerning the smoothness of the process S :M→RCR. This result is interesting
in its own right and will be useful later in proving the periodicity of center manifolds; see Theorem 8.3.1.

Theorem 5.1.1. Under hypotheses H.1–H.6, the process S :M→RCR is Ck+1. Also, S′(t, s) = DS(t, s)φ
satisfies for t ≥ s the abstract integral equation

S′(t, s) = U(t, s) +

∫ t

s

U(t, µ)χ0Df(µ, S(µ, s)φ)S′(µ, s)dµ+
∑

s<τi≤t

U(t, τi)χ0Dg(τi, S(τ−i , s)φ)S′(τ−i , s).

(33)

Proof. We will prove only that S is C1, the proof of higher-order smoothness being an essentially identical
albeit notationally cumbersome extension thereof. Let s ∈ R be fixed. Let ψ ∈ RCR be given. For given
ν > 0, denote by Bν(ψ) the closed ball centered at ψ with radius ν in RCR.

Introduce for given ε, δ, ν > 0 the normed vector space (Xε,δ,ν , || · ||), where Xε,δ,ν consists of the functions
φ : [s− r, s+ ε]× Bδ(ψ)→ Bν(ψ) such that x 7→ φ(t, x) is continuous for each t, φ(t, x)(θ) = φ(t+ θ, x)(0)
whenever θ ∈ [−r, 0] and [t+ θ, t] ⊂ [s− r, s+ ε], and |φ|| <∞ for the norm given by

||φ||ε,δ,ν = sup
t∈[s−r,s+ε]
||x−ψ||≤δ

||φ(t, x)||.

It can be easily verified that (Xε,δ,ν , || · ||) is a Banach space. With L(RCR) the bounded linear operators
on RCR, introduce also the space (Xε,δ, || · ||) consisting of functions Φ : [s − r, s + ε] × RCR → L(RCR)
such that x 7→ Φ(t, x) is continuous for each t, Φ(t, x)h(θ) = Φ(t+ θ, x)h(0) for all h ∈ RCR, and ||Φ|| <∞,
where the norm is ||Φ(t, x)|| = sup||h||=1 ||Φ(t, x)h||ε,δ,ν . Clearly, (Xε,δ, || · ||) is complete.
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Define a pair of nonlinear operators

Λ1 : Xε,δ,ν → Xε,δ,ν ,

Λ1(φ)(t, x) = χ[s−r,s)(t)x(t− s) + χ[s,s+ε](t)

[
U(t, s)x(s) +

∫ t

s

U(t, s)χ0f(µ, φ(µ, x))dµ

+
∑

s<τi≤t

U(t, τi)χ0g(τi, φ(τ−i , x))


Λ2 : Xε,δ ×Xε,δ → Xε,δ

Λ2(φ,Φ)(t, x)h = χ[s−r,s)(t)IRCRh+ χ[s,s+ε](t)

[
U(t, s)h+

∫ t

s

U(t, µ)χ0Df(µ, φ(µ, x))Φ(µ, x)hdµ+

+
∑

s<τi≤t

U(t, µ)χ0Dg(τi, φ(τ−i , x)))Φ(τ−i , x)h

 , h ∈ RCR.
By choosing ε and δ small enough, Λ1 can be shown to be a uniform contraction. Indeed, if we denote
κ = sup||x−ψ||≤2δ ||x||, the mean-value theorem grants the estimate

||Λ1(φ)− Λ1(γ)|| ≤ κ sup
t∈[s,s+ε]

∫ t

s

||U(t, µ)||c1(µ)dµ+
∑

s<τi≤t

||U(t, τi)||d1(i)

 ||φ− γ||
≡ κLε||φ− γ||

We can always obtain a uniform contraction by taking ε small enough. Also, note that t 7→ Λ1(φ)(t, x) ∈
RCR, x 7→ Λ1(φ, x) is continuous and Λ1(φ)(t, x)(θ) = Λ1(φ)(t + θ, x)(0). To ensure the appropriate
boundedness, if we denote κ = sup||x−ψ||≤δ k0(x), the estimate

||Λ1(φ)− ψ|| ≤ ||φ− ψ||+ κ sup
t∈[s,s+ε]

∫ t

s

||U(t, µ)||c0(µ)dµ+
∑

s<τi≤t

||U(t, τi)||d0(i)


≡ δ + κMε

implies it is sufficient to choose ε, δ, ν > 0 small enough so that δ + κMε < ν. This can always be done
because Mε → 0 as ε→ 0 due to H.5 and Lemma 3.4.2.

The continuity of φ 7→ Λ2(φ,Φ) for fixed Φ ∈ Xε,δ follows by the estimate

||Λ2(φ,Φ)− Λ2(γ,Φ)|| ≤
(∫ s+ε

s

||U(s+ ε, µ)||c1(µ)||(φ(µ, x)− γ(µ, x)||dµ

+
∑

s<τi≤s+ε

||U(s+ ε, τi)||d1(i)||φ(τ−i , x)− γ(τ−i , x)||

 ||Φ||.
Also, for each φ ∈ Bδ(ψ) it is readily verified that ||Λ2(φ,Φ)− Λ2(φ,Γ)|| ≤ κLε||Φ− Γ||, which by previous
choices of ε, δ, ν > 0 indicates that Φ 7→ Λ2(φ,Φ) is a uniform contraction.

We are ready to prove the statement of the theorem. Denote by (xn, x
′
n) the iterates of the map Λ :

Xε,δ,ν × Xε,δ,ν → Xε,δ,ν × Xε,δ,ν defined by Λ(x, x′) = (Λ1(x),Λ2(x, x′)) and initialized at (x0, x
′
0) with

x0(t, x) = x and x′0(t, x) = IRCR. The fiber contraction theorem [16] implies convergence (xn, x
′
n)→ (x, x′).

Note also that Dx0 = x′0. If we suppose Dxn = x′n for some n ≥ 0, then for t ≥ s, Lemma 4.2.1 implies that
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for each θ ∈ [−r, 0],

Dxn+1(t, φ)(θ) = D

U(t, s)xn(s, φ)(θ) +

∫ t

s

U(t, µ)χ0f(µ, xn(µ, φ))(θ)dµ+
∑

s<τi≤t

U(t, τi)χ0g(τi, xn(τ−i , φ))(θ)


= D

U(t, s)xn(s, φ)(θ) +

∫ t

s

V (t+ θ, µ)f(µ, xn+1(µ, φ))dµ+
∑

s<τi≤t

V (t+ θ, τi)g(τi, xn+1(τ−i , φ))


= U(t, s)x′n(s, φ)(θ) +

∫ t

s

V (t+ θ, µ)Df(µ, xn(µ, φ))x′n(µ, φ)dµ

+
∑

s<τi≤t

V (t+ θ, τi)Dg(τi, xn(τ−i , φ))x′n(τ−i , φ)

= Λ2(xn, x
′
n)(t, φ)(θ)

= x′n+1(t, φ)(θ),

while for t < s, it is easily checked that Dxn+1(t, φ) = x′n+1(t, φ). This proves that Dxn+1(θ) = x′n+1(θ)
pointwise in θ. To prove the result uniformly, we note that the difference quotient can be written for t ≥ s
as

1

||h||
(
xn+1(t, φ+ h)− xn+1(t, φ)− x′n+1(t, φ)h

)
=

∫ t

s

U(t, µ)χ0
1

||h||
(
f(µ, xn(µ, φ+ h))− f(µ, xn(µ, φ))−Df(µ, xn(µ, φ))Dxn(µ, φ)h

)
dµ

+
∑

s<τi≤t

U(t, τi)χ0
1

||h|||
(
g(τi, xn(τ−i , φ+ h))− g(τi, xn(τ−i , φ))−Dg(τi, xn(τ−i , φ))Dxn(τ−i , φ)h

)
.

Since xn is differentiable by the induction hypothesis, the integrand and summand converge uniformly to
zero as h → 0. Thus, xn+1 is differentiable and Dxn+1 = x′n+1, so by induction Dxn = x′n for each n.
Also, by construction, x′n is continuous for each n and, being the uniform limit of continuous functions,
x′ = limn→∞ x′ is continuous. By the fundamental theorem of calculus,

x(φ+ h)− x(φ)− x′(φ)h

||h||
= lim
n→∞

xn(φ+ h)− xn(φ)−Dxn(φ)h

||h||

= lim
n→∞

∫ 1

0

1

||h||
[x′n(φ+ (λ− 1)h)− x′n(φ)]hdλ

=

∫ 1

0

1

||h||
[x′(φ+ (λ− 1)h)− x′(φ)]hdλ→ 0

as h→ 0. By definition, x is differentiable and Dx = x′.
If we define y(t)φ = x(t, φ) for the fixed point x : [s − r, s + ε] × Bδ(ψ) → Bν(ψ), then y satisfies

y(t)φ = S(t, s)φ for (t, φ) ∈ [s, s + ε] × Bδ(ψ). This can be seen by comparing the fixed point equation
y(t) = Λ1(y)(t, φ) with the abstract integral equation (32). We conclude that S is C1 (fibrewise). The
correctness of equation (33) follows by comparing to the fixed point equation associated to Λ2.

5.2 Bounded solutions of the inhomogeneous linear equation

In this section we will identify a pseudoinverse for η-bounded solutions of the inhomogeneous linear equation

x(t) = U(t, s)x(s) +

∫ t

s

U(t, µ)[χ0F (µ)]dµ+
∑

s<τi≤t

U(t, τi)[χ0Gi], −∞ < s ≤ t <∞. (34)

As defined in Definition 3.3.5, we recall now that RCRc(t) = R(Pc(t)), where Pc is the projection onto the
center bundle of the linear part of (29)–(30).

18



Lemma 5.2.1. Let η ∈ (0,min{−a, b}) and let H.1, H.2 and H.4 hold. Then,

RCRc(ν) = {ϕ ∈ RCR : ∃x ∈ PCη, x(t) = U(t, s)x(s), x(ν) = ϕ} . (35)

Proof. If ϕ ∈ RCRc(ν), then Pc(ν)ϕ = ϕ and the function x(t) = U(t, ν)Pc(ν)ϕ = Uc(t, ν)ϕ is defined for
all t ∈ R, satisfies x(t) = U(t, s)x(s), x(ν) = ϕ, x(t)(θ) = x(t + θ)(0), and by chosing ε < η, there exists
K > 0 such that

e−η|t|||x(t)|| ≤ Keε|ν|e−(η−ε)|t|||ϕ|| ≤ Keε|ν|||ϕ||.

Finally, as x(t) = [U(t, s)x(s)(0)]t for all t ∈ R, we conclude x ∈ PCη.

Conversely, suppose ϕ ∈ RCR admits some x ∈ PCη such that x(t) = U(t, s)x(s) and x(ν) = ϕ. Let
||x||η = K. We will show that Ps(ν)ϕ = Pu(ν)ϕ = 0, so that ϕ = Iϕ = (Pc(ν) + Ps(ν) + Pu(ν))ϕ = Pc(ν)ϕ,
from which we will conclude ϕ ∈ RCRc(ν).

By spectral separation, we have for all ρ < ν,

e−η|ρ|||Ps(ν)ϕ|| = e−η|ρ|||Us(ν, ρ)Ps(ρ)x(ρ)||
≤ e−η|ρ|Kea(ν−ρ)||Ps(ρ)|| · ||x(ρ)||
≤ KKea(ν−ρ)||Ps(ρ)||,

which implies ||Ps(ν)ϕ|| ≤ KKeaν ||Ps(ρ)|| exp(η|ρ|−aρ). Since η < −a and ρ 7→ ||Ps(ρ)|| is bounded, taking
the limit as ρ→ −∞ we obtain ||Ps(ν)ϕ||| ≤ 0. Similarly, for ρ > ν, we have

e−η|ρ|||Pu(ν)ϕ|| = e−η|ρ|||Uu(ν, ρ)Pu(ρ)x(ρ)||
≤ e−η|ρ|Keb(ν−ρ)||Pu(ρ)|| · ||x(ρ)||
≤ KKeb(ν−ρ)||Pu(ρ)||,

which implies ||Pu(ν)ϕ|| ≤ KKebν ||Pu(ρ)|| exp(η|ρ| − bρ). Since η <b and ρ 7→ ||Pu(ρ)|| is bounded, taking
the limit ρ → ∞ we obtain ||Pu(ν)ϕ|| ≤ 0. Therefore, Ps(ν)ϕ = Pu(ν)ϕ = 0, and we conclude that
Pc(ν)ϕ = ϕ and ϕ ∈ RCRc(ν).

Lemma 5.2.2. Let conditions H.1, H.2 and H.4 be satisfied. Let h ∈ RCR(R,Rn). The integrals∫ t

s

U(t, µ)Pc(µ)[χ0h(µ)]dµ,

∫ t

v

U(t, µ)Pu(µ)[χ0h(µ)]dµ

Proof. The nontrivial cases are where t ≤ s and t ≤ v. For the former, defining H(µ) = χ0h(µ) we have the
string of equalities

Uc(t, s)Pc(s)

∫ s

t

U(s, µ)H(µ)dµ = Uc(t, s)

∫ s

t

Uc(s, µ)Pc(µ)H(µ)dµ

=

∫ s

t

Uc(t, µ)Pc(µ)H(µ)dµ

=

∫ s

t

U(t, µ)Pc(µ)H(µ)dµ

= −
∫ t

s

U(t, µ)Pc(µ)H(µ)dµ.

The first integral on the left exists due to Lemma 4.2.1 and Proposition 4.2.1. The subsequent equalities
follow by Proposition 4.2.1 and the definition of spectral separation. The case t ≤ v for the other integral is
proven similarly.
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Define the (formal) family of linear operators Kηs : PCη(R,Rn) ⊕ Bητk(Z,Rn) → Bη(R,RCR) by the
equation

Kηs (F,G)(t) =

∫ t

s

U(t, µ)Pc(µ)[χ0F (µ)]dµ−
∫ ∞
t

U(t, µ)Pu(µ)[χ0F (µ)]dµ+

∫ t

−∞
U(t, µ)Ps(µ)[χ0F (µ)]dµ

+

t∑
s

U(t, τi)Pc(τi)[χ0Gi]dτi −
∞∑
t

U(t, τi)Pu(τi)[χ0Gi]dτi +

t∑
−∞

U(t, τi)Ps(τi)[χ0Gi]dτi,

(36)

indexed by s ∈ R, where the external direct sum PCη,s(R,Rn)⊕Bη,sτk (Z,Rn) is identified as a Banach space
with norm ||(f, g)||η,s = ||f ||η,s + ||g||η,s, and the summations are defined as follows:

b∑
a

F (τi)dτi =


∑

a<τi≤b

F (τi), a ≤ b

−
a∑
b

F (τi)dτi, b < a.

Lemma 5.2.3. Let H.1, H.2, H.4 and H.7 hold, and let η ∈ (0,min{−a, b}).
1. The function Kηs : PCη,s(R,Rn) ⊕ Bη,sτk (Z,Rn) → Bη,s(R,RCR) with η ∈ (0,min{−a, b}) and defined

by formula (36) is linear and bounded. In particular, the norm satisfies

||Kηs || ≤ C
[

1

η − ε

(
1 +

e(η−ε)ξ

ξ

)
+

1

−a− η

(
1 +

2e(η−a)ξ

ξ

)
+

1

b− η

(
1 +

2e(b+η)ξ

ξ

)]
(37)

for some constants C and ε independent of s.

2. Kηs has range in PCη,s and v = Kηs (F,G) is the unique solution of (34) in PCη,s satisfying Pc(s)v(s) =
0.

3. The expression K∗(F,G)(t) = (I − Pc(t))K0
s (F,G)(t) uniquely defines, independent of s, a bounded

linear map
K∗ : PC0(R,Rn)⊕B0

τk
(Z,Rn)→ PC0.

Proof. Let ε < min{min{−a, b} − η, η}. To show that Kηs is well-defined, we start by mentioning that all
improper integrals and inifnite sums appearing on the right-hand side of (36) can be interpreted as limits of
well-defined finite integrals and sums, due to Lemma 4.2.1, Lemma 5.2.2 and Proposition 4.2.1. For brevity,
write

Kηs (F,G) =
(
Ku,f

1 −Kc,F
1 +Ku,F

1

)
+
(
Ku,G

2 −Kc,G
2 +Ks,G

2

)
,

where each term corresponds to the one in (36) in order of appearance.
We start by proving the convergence of the improper integrals. Denote

I(v) =

∫ v

t

U(v, µ)Pu(µ)[χ0F (µ)]dµ,

and let vk ↗∞. We have, for m > n and n sufficiently large so that vm > 0,

||I(vm)− I(vn)|| ≤
∫ vm

vn

KNeb(t−µ)|F (µ)|dµ

≤
∫ vm

vn

KNeb(t−µ)eηµ||F ||ηdµ

= KN ||F ||ηebt
∫ vm

vn

eµ(η−b)dµ

=
KN ||F ||η
b− η

ebt
(
e−vn(b−η) − e−vm(b−η)

)
≤ KN ||F ||η

b− η
ebte−vn(b−η).
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Therefore, I(vk) ∈ RCR is Cauchy, and thus converges; namely, it converges to the improper integralKu,F (t).
One can similarly prove that Ks,F (t) converges. For the infinite sums, we employ similar estimates; if we
denote S =

∑
t<τi<∞ ||Uu(t, τi)[χ0Gi]|| and assume without loss of generality that τ0 = 0, a fairly crude

estimate (that we will later improve) yields

S ≤
∑

t<τi<∞
KNeb(t−τi)eη|τi|||G||η

=
∑

−|t|<τi≤0

KN ||G||ηebte|τi|(b+η) +
∑

0<τk<∞
KN ||G||ηebte−(b−η)τi

≤ KNebt
(
|t|
ξ
e|t|(b+η) +

1

1− e−(b−η)ξ

)
||G||η.

Thus, Ku,G(t) converges uniformly. One can show by similar means that Ks,F (t) and Ks,G(t) both converge.
Therefore, Kηs (F,G)(t) ∈ RCR exists. We can now unambigiously state that Kηs is clearly linear.

Our next task is to prove that ||Kη
s (F,G)]||η,s ≤ Q||(F,G)||η,s for constant Q satisfying the estimate

of equation (37). We will prove the bounds only for ||Ku,F ||η,s, ||Ku,G||η,s, ||Kc,F ||η,s and ||Kc,G||η,s; the
others follow by similar calculations. For t < s, we we have

e−η|t−s|||Ku,F (t)|| ≤ e−η|t−s|
∫ ∞
t

KNeb(t−µ)|F (µ)|dµ

≤ eη(t−s)KN

[∫ s

t

eb(t−µ)eη|µ−s|||F ||η,sdµ+

∫ ∞
s

eb(t−µ)eη|µ−s|||F ||η,sdµ
]

= eη(t−s)KN ||F ||η,s
[∫ s

t

eb(t−µ)eη(s−µ)dµ+

∫ ∞
s

eb(t−µ)eη(µ−s)dµ

]
= eη(t−s)KN ||F ||η,s

[
ebt+ηs

e−(b+η)t − e−(b+η)s

b+ η
+ ebt−ηs

e−(b−η)s

b− η

]
≤ KN ||F ||η,s

1

b− η

The above inequality is also satisfied for t ≥ 0, and we conclude ||Ku,F ||η,s ≤ KN(b − η)−1||(F,G)||η,s.
Next, for t < s,

e−η|t−s|||Ku,G(t)|| ≤ e−η|t−s|
∑

t<τi<∞
KNeb(t−τi)|Gi|

≤ eη(t−s)KN

 ∑
t<τi<s

eb(t−τi)eη|τi−s|||G||η,s +
∑

s≤τi<∞

eb(t−τi)eη|τi−s|||G||η,s


≤ eη(t−s)KN ||G||η,s

1

ξ

[∫ s

t−ξ
eb(t−µ)eη(s−µ)dµ+

∫ ∞
s−ξ

eb(t−µ)eη(µ−s)dµ

]
≤ eη(t−s)KN ||G||η,s

ξ

[
ebt+ηs

e−(b+η)(t−ξ) − e−(b+η)x

b+ η
+ ebt−ηs

e−(b−η)(s−ξ)

b− η

]
≤ 2KN ||G||η,s

ξ(b− η)
· e(b+η)ξ,

where we have made use of Lemma 3.2.2 to estimate the sums. The same conclusion is valid for t ≥ s, and
it follows that ||Ku,G||η,s ≤ 2KNe(b+η)ξ(ξ(b− η))−1||(F,G)||η,s. Next, for t ≤ s,

e−η|t−s|||Kc,G(t)|| ≤ eη(t−s)KN ||G||η,s
∑

t<τi≤s

eε(τi−t)eη(s−τi)

≤ eη(t−s)KN ||G||η,s
ξ

∫ t

s−ξ
eε(µ−t)eη(s−µ)dµ
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= eη(t−s)KN ||G||η,s
ξ(η − ε)

(
eε(s−ξ−t)eηξ − e−η(t−s)

)
≤ KN ||G||η,s

ξ(η − ε)
e(η−ε)ξ

This estimate continues to hold for all t, s ∈ R. To compare to the integral term, for s ≤ t we have

e−η|t−s|||Kc,F (t)|| ≤ e−η(t−s)KN ||F ||η,s
∫ t

s

eε(t−µ)eη(µ−s)dµ

= e−η(t−s)KN ||F ||η,s
1

η − ε

(
eη(t−s) − eε(t−s)

)
≤ KN ||F ||η,s

η − ε

and this estimate persists for all t, s ∈ R. Similar estimates for the other integrals and sums appearing in
(36) ultimately result in the bound appearing in (37). This proves part 1.

To prove part 2, denote v = Kηs (F,G). It is clear from the definition of v, the orthoginality of the
projection operators and Proposition 4.2.1 that Pc(s)v(s) = 0. Also, for all −∞ < z ≤ t < ∞, denoting
F = χ0F and Gi = χ0G, we have

U(t, z)v(z) +

∫ t

z

U(t, µ)F (µ)dµ+

t∑
z

U(t, τi)Gidτi

= U(t, z)v(z) +

∫ t

z

U(t, µ)Pc(µ)F (µ)dµ−
∫ z

t

U(t, µ)Pu(µ)F (µ)dµ+

∫ t

z

U(t, µ)Pu(µ)F (µ)dµ

+

t∑
z

U(t, τi)Pc(τi)Gidτi −
z∑
t

U(t, τi)Pu(τi)Gidτi +

t∑
z

U(t, τi)Pu(τi)Gidτi

=

∫ t

s

U(t, µ)Pc(µ)F (µ)dµ−
∫ ∞
t

U(t, µ)Pu(µ)F (µ)dµ+

∫ t

−∞
U(t, µ)Ps(µ)F (µ)dµ

+

t∑
s

U(t, τi)Pc(τi)Gidτi −
∞∑
t

U(t, τi)Pu(τi)Gidτi +

t∑
−∞

U(t, τi)Ps(τi)Gidτi

= v(t),

so that t 7→ v(t) solves the integral equation (34). This also demonstrates that v ∈ PCη. To show that
it is the only solution in PCη satisfying Pc(s)v(s) = 0, suppose there is another r ∈ PCη that satisfies
Pc(s)r(s) = 0. Then the function w := v − r is an element of PCη that satisfies w(t) = U(t, z)w(z) for
−∞ < z ≤ t < ∞. By Lemma 5.2.1, we have w(s) ∈ RCRc(s). But since Pc(s)w(s) = 0 and Pc(s) is the
identity on RCRc(s), we obtain w(s) = 0. Therefore, w(t) = U(t, s)0 = Uc(t, s)0 = 0 for all t ∈ R, and we
conclude v = r, proving the uniqueness assertion.

For assertion 3, we compute first

K∗(F,G)(t) =

∫ t

−∞
U(t, µ)Ps(µ)[χ0F (µ)]dµ−

∫ ∞
t

U(t, µ)Pu(µ)[χ0F (µ)]dµ

t∑
−∞

U(t, τi)Ps(τi)[χ0Gi]dτi −
∞∑
t

U(t, τi)Pu(τi)[χ0Gi]dτi.

Routine estimation using inequalities (11)–(13) together with Lemma 3.2.2 produces the bound

||K∗(F,G)(t)|| ≤ KN
(
−1

a
+

1

b
− e−aξ

aξ
+
ebξ

bξ

)
||(F,G)||,

and as the bound is independent of t, s, the result is proven.
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5.3 Modifications of the nonlinearities

Let ξ : R+ → R be a C∞ bump function satisfying

i) ξ(y) = 1 for 0 ≤ y ≤ 1,

ii) 0 ≤ ξ(y) ≤ 1 for 1 ≤ y ≤ 2,

iii) ξ(y) = 0 for y ≥ 2.

We modify the nonlinearities of (29)–(30) in the center and hyperbolic directions separately. For δ > 0, we
let

Fδ(t, x) = f(t, x)ξ

(
||Pc(t)x||
Nδ

)
ξ

(
||(Ps(t) + Pu(t))x||

Nδ

)
(38)

Gδ(k, x) = gk(x)ξ

(
||Pc(τk)x||

Nδ

)
ξ

(
||(Ps(τk) + Pu(τk))x||

Nδ

)
, (39)

The proof of the following lemma and corollary will be omitted. They can be proven by emulating the proof
of [Lemma 6.1 ,[18]] and taking into account the uniform boundedness of the projectors Pi; see property 1
of Definition 3.3.5.

Lemma 5.3.1. Let f(t, ·) and gk(·) be uniformly (in t ∈ R and k ∈ Z) Lipschitz continuous on the ball
BRCR(δ, 0) in RCR with mutual Lipschitz constant L(δ), and let f(t, 0) = gk(0) = 0. The functions

Fδ : R×RCR → Rn, Gδ : Z×RCR → Rn

are globally, uniformly (in t ∈ R and k ∈ Z) Lipschitz continuous with mutual Lipschitz constant Lδ that
satisfies Lδ → 0 as δ → 0

Corollary 5.3.0.1. The substitution operator

Rδ : PCη,s → Bη,s(R,Rn)⊕Bη,sτk (Z,Rn)

defined by Rδ(x)(t, k) = (Fδ(t, x(t)), Gδ(k, x(τk))) is globally Lipschitz continuous with Lipschitz constant L̃δ
that satisfies L̃δ → 0 as δ → 0. Moreover, the Lipschitz constant is independent of η, s.

Corollary 5.3.0.2. ||(Fδ(t, x), Gδ(k, x))|| ≤ 4δLδ for all x ∈ RCR and (t, k) ∈ R× Z.

5.4 The center manifold

Let ε < η ∈ (0,min{−a, b}) and define a mapping Gs : PCη,s ×RCRc(s)→ PCη,s by

Gs(u, ϕ) = U(·, s)ϕ+Kηs (Rδ(u)). (40)

Note that by Lemma 5.2.3 and Corollary 5.3.0.1, the operator is well-defined, Kηs is bounded and Rδ is
globally Lipschitz continuous for each δ > 0, provided H.1–H.7 hold. Choose δ small enough so that

L̃δ||Kη
s ||η <

1

2
. (41)

Notice that δ can be chosen so that (41) can be satisfied independent of s, due to Lemma 5.2.3. If ||ϕ|| <
r/(2K) then Gs(·, ϕ) leaves B(r, 0) ⊂ PCη,s invariant. Moreover, Gs(·, ϕ) is Lipschitz continuous with
Lipschitz constant 1

2 . One may notice that r is arbitrary. We can now prove the following:

Theorem 5.4.1. Let conditions H.1–H.7 hold. If δ is chosen as in (41), then there exists a globally Lipschitz
continuous mapping u∗s : RCRc(s) → PCη,s such that us = u∗s(ϕ) is the unique solution in PCη,s of the
equation us = Gs(us, ϕ).
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Proof. The discussion preceding the statement of Theorem 5.4.1 indicates that Gs(·, ϕ) is a contraction
mapping on B(r, 0) ⊂ PCη,s for every r > ||ϕ||2K. Since the latter is a closed subspace of the Banach
space PCη,s, the contraction mapping principle implies the existence of the function u∗s. To show that it is
a Lipschitz continuous, we note

||u∗s(ϕ)− u∗s(ψ)||η,s = ||Gs(u∗s(ϕ), ϕ)− Gs(u∗s(ψ), ψ))||η,s

≤ K||ϕ− ψ||+ 1

2
||u∗s(ϕ)− u∗s(ψ)||η,s.

Therefore, u∗s is Lipschitz continuous with Lipschitz constant 2K.

Definition 5.4.1 (Lipschitz center manifold). The center manifold, Wc ⊂ R×RCR, is the nonautonomous
set whose t-fibers for t ∈ R are given by

Wc(t) = Im{C(t, ·)}, (42)

where C : RCRc → RCR is the (fiberwise) Lipschitz map defined by C(t, φ) = u∗t (φ)(t).

The construction above implies the center manifold is fiberwise Lipschitz. We can prove a stronger result,
namely that the Lipschitz constant can be chosen independent of the given fiber.

Corollary 5.4.1.1. There exists a constant L > 0 such that ||C(t, φ) − C(t, ψ)|| ≤ L||φ − ψ|| for all t ∈ R
and φ, ψ ∈ RCRc(t).

Proof. Denote uφ = ut(φ) and uψ = ut(ψ). A preliminary estimation appealing to the fixed-point equation
(40) yields

||C(t, φ)− C(t, ψ)|| ≤ ||φ− ψ||+ ||(Kηt (Rδu
φ)−Kηt (Rδu

ψ))(t)||.

By Corollary 5.3.0.2, each of Rδu
φ and Rδu

ψ are uniformly bounded, so Lemma 5.2.3 implies the existence
of a constant c > 0 such that

||(Kηt (Rδu
φ)−Kηt (Rδu

ψ))(t)|| ≤ c||(Rδuφ −Rδuψ)(t)||
≤ c sup

s∈R
||(Rδuφ −Rδuψ)(s)||e−η|t−s|

≤ cL̃δ||uφ − uψ||η,t
≤ cL̃δ2K||φ− ψ||,

and in the last line we used the Lipschitz constant from Theorem 5.4.1. Combining this result with the
previous estimate for ||C(t, φ)− C(t, ψ)|| yields the uniform Lipschitz constant.

Recall that by Lemma 5.1.1, there is a process (S,M) on RCR such that t 7→ S(t, s)φ is the unique mild
solution of (31) through the initial conditon (s, φ) defined on an interval [s, s + α). With this in mind, the
center manifold is locally positively invariant with respect to S.

Theorem 5.4.2 (Center manifold: invariance and inclusion of bounded orbits). Let conditions H.1–H.7
hold. The center manifold Wc enjoys the following properties.

1. Wc is locally positively invariant: if (s, φ) ∈ Wc and ||S(t, s)φ|| < δ for t ∈ [s, T ], then (t, S(t, s)φ) ∈ Wc

for t ∈ [s, T ].

2. If (s, φ) ∈ Wc, then S(t, s)φ = u∗t (Pc(t)S(t, s)φ)(t) = C(t, Pc(t)S(t, s)φ)

3. If x : R→ RCR is a mild solution of (31) satisfying ||x||η < δ, then (t, x(t)) ∈Wc for all t ∈ R.

4. R× {0} ⊂ Wc and C(t, 0) = 0 for all t ∈ R.
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Proof. Let (s, φ) ∈ Wc and denote x(t) = S(t, s)φ, with ||x|| < δ. Since (s, φ) ∈ Wc, there exists ϕ ∈
RCRc(s) such that φ = u∗s(ϕ)(s). Define x̂ = u∗s(ϕ). Then, it follows that ϕ = Pc(s)φ, x̂(s) = φ =
Pc(s)φ+Kη

s (R(x̂))(s), and

x̂(t) = U(t, s)ϕ+Kηs (Rδ(x̂))(t)

= U(t, s)ϕ+

U(t, s)Kη
s (Rδ(x̂))(s) +

∫ t

s

U(t, µ)χ0Rδ(µ, x̂(µ))dµ+
∑

s<τi≤t

U(t, τi)χ0Gδ(i, x̂(τ−i ))


= U(t, s)x̂(s) +

∫ t

s

U(t, µ)χ0Rδ(µ, x̂(µ))dµ+
∑

s<τi≤t

U(t, τi)χ0Gδ(i, x̂(τ−i ))

for all t ∈ [s, T ]. But since ||x(t)|| < δ on [s, T ], uniqueness of mild solutions (Lemma 3.4.1 with Theorem
4.2.1) implies that x = x̂|[s,T ].

Let v ∈ [s, T ] and define z : R→ RCR by z = x̂− U(·, v)Pc(v)x̂(v). One can easily verify that

z(t) = U(t, v)z(v) +

∫ t

v

U(t, µ)U(t, µ)χ0Rδ(µ, x̂(µ))dµ+
∑

v<τi≤t

U(t, τi)χ0Gδ(i, x̂(τ−i ))

for all t ∈ [v,∞) and that Pc(v)z(v) = 0. By Lemma 5.2.3, z = Kηv(Rδ(x̂))|[v,∞), so that we may write

x̂ = U(·, v)Pc(v)x̂(v) +Kηv(Rδ(x̂)) = u∗v(Pc(v)x̂(v)).

Therefore, x̂(v) = u∗v(Pc(v)x̂(v))(v), and since x(v) = x̂(v), this proves that (v, x(v)) ∈ Wc and, through
essentially the same proof, that

x(v) = u∗v(Pc(v)x(v))(v) = C(v, x(v))(v).

The proofs of the other two assertions of the theorem follow by similar arguments, and are omitted.

The modification of the nonlinearity Rδ results in the function u∗s that defines the center manifold having
a uniformly small hyperbolic part. Namely, we have the following lemma.

Lemma 5.4.1. Define P̂c : PCη → PCη(R,RCRc) by P̂cφ(t) = Pc(t)φ(t). If δ > 0 is sufficiently small, then

||(I − P̂c)u∗s||0 < δ.

Proof. Recall that u∗s satisfies the fixed-point equation u∗s = U(·, s)ϕ+Kηs (Rδ(u
∗
s)). Thus, with P̂h = I− P̂c,

P̂hu
∗
s = P̂h ◦ Kηs (Rδ(u

∗
s))

because U(t, s) is an isomorphism of RCRc(s) onto RCRc(t) and ϕ ∈ RCRc(s). By Corollary 5.3.0.2, we
have for all t ∈ R that ||Rδ(u∗s(t))|| ≤ 4δLδ, which implies Rδ(u

∗
s) ∈ B0(R,Rn)⊕B0

τk
(Z,Rn). We obtain the

claimed result by applying the second conclusion of Lemma 5.2.3 and taking δ sufficiently small, recalling
from Corollary 5.3.0.1 that Lδ → 0 as δ → 0.

6 Reduction principle

The results of this section concern the dynamics on and near the center manifold. Section 6.1 pertains to
the dynamical behaviour of the solutions of the impulsive functional differential equation (29)–(30) on its
center manifold. The dynamics near the center manifold are elucidated in Section 6.2.

6.1 Invariance equations for center bundle components of orbits in Wc

On the center manifold, components of mild solutions on the center bundle are decoupled, as stated in the
following lemma. To begin, let Sδ denote the forward process associated to the nonlinear integral equation
be a mild solution of the integral equation

y(t) = U(t, s)y(s) +

∫ t

s

U(t, µ)[χ0Fδ(µ, y(µ))]dµ+
∑

s<τi≤t

U(t, τi)[χ0Gδ(i, y(τ−i ))].
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Note that the above is the smoothed version of (31). The proof of the following follows by direct calculation
and the second orbit property of the center manifold, as stated in Theorem 5.4.2.

Lemma 6.1.1 (Dynamics on the center manifold: integral equation). Let y : R→ RCR satisfy y(t) ∈ Wc(t)
with y(t) = Sδ(t, s)y(s). Consider the projection of y onto the center bundle: w(t) = Pc(t)y(t). The
projection satisfies the integral equation

w(t) = U(t, s)w(s) +

∫ t

s

U(t, µ)Pc(µ)χ0Fδ(µ, C(µ,w(µ)))dµ+
∑

s<τi≤t

U(t, τi)Pc(τi)χ0Gδ(i, C(τi, w(τ−i )))

(43)

When a solution on the center manifold is defined by a classical solution, we can show that its projection
satisfies a particular impulsive differential equation. This identification carries over to solutions that merely
have enough smoothness to ensure that their right-hand derivatives exist and are elements of the space
RCR(R,Rn).

Theorem 6.1.1 (Dynamics on the center manifold: abstract impulsive differential equation). Let y ∈
RCR1(R,Rn) satisfy yt ∈ Wc(t) with yt = Sδ(t, s)ys. Consider the projection w(t) = Pc(t)yt and define the
linear operators L(t) : RCR1 → RCR and Bk : RCR1((−r, 0],Rn)→ L∞((−r, 0],Rn) by

L(t)φ =

{
L(t)φ, θ = 0
d+φ(θ), θ < 0

, Bkφ(θ) =

{
Bkφ, θ = 0
φ(θ)− φ(θ−), θ < 0

(44)

Then w : R→ RCR1 satisfies, pointwise, the abstract impulsive differential equation

d+w(t) = L(t)w(t) + Pc(t)χ0Fδ(t, C(t, w(t))), t 6= τk (45)

∆w(τk) = Bkw(τ−k ) + Pc(τk)χ0Gδ(k, C(τk, w(τ−k ))), t = τk, (46)

where ∆w(τk)(θ) := limε→0+ [w(τk)(θ)−w(τk − ε)(θ)] is the non-uniform pointwise jump at time τk, defined
for θ ∈ (−r, 0].

Proof. For brevity, denote F (µ) = Fδ(µ, C(µ,w(µ))), F (µ) = χ0F (µ), F(µ) = Pc(µ)χ0F (µ) and analogously
for Gδ. We begin by noting that equation (43) allows us to write finite difference wε(t) = w(t+ ε)−w(t) as

wε(t) = [U(t+ ε, s)− U(t, s)]w(s) + (U(t+ ε, t)− I)

∫ t

s

U(t, µ)F(µ)dµ+ U(t+ ε, t)Pc(t)

∫ t+ε

t

U(t, µ)F (µ)dµ

+ (U(t+ ε, t)− I)
∑

s<τi≤t

U(t, τi)G(i) + U(t+ ε, t)
∑

t<τi≤t+ε

U(t, τi)G(i)

(47)

First, we show that d+U(t, s)φ = L(t)U(t, s)φ pointwise for φ ∈ RCR. For θ = 0, we have

1

ε
(U(t+ ε, s)φ(0)− U(t, s)φ(0)) =

1

ε

∫ t+ε

t

L(µ)U(µ, s)φdµ,

which converges to L(t)U(t, s)φ as ε→ 0+. For θ < 0 and ε > 0 sufficiently small,

1

ε
(U(t+ ε, s)φ(θ)− U(t, s)φ(θ)) =

1

ε
(φ(t+ ε+ θ − s)− φ(t+ θ − s)) −→ d+φ(t+ θ − s) = d+U(t, s)φ(θ).

Therefore, d+U(t, s)φ = L(t)U(t, s)φ pointwise, as claimed. Since U(t, t) = I, this also proves the pointwise
convergence

1

ε
(U(t+ ε, t)− I)φ→ L(t)φ.

Next, we show that

1

ε
U(t+ ε, t)Pc(t)

∫ t+ε

t

U(t, µ)F (µ)dµ→ Pc(t)F (t) = F(t) (48)
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pointwise as ε→ 0+. We do this by first proving that the sequence xn := 1
εn
U(t+εn, t)Pc(t)

∫ t+εn
t

U(t, µ)F (µ)dµ

is pointwise Cauchy for each sequence εn → 0+. Assuming without loss of generality that εn is strictly de-
creasing, we have for all n ≥ m,

xn − xm =

[
1

εn
U(t+ εn, t)−

1

εm
U(t+ εm, t)

]
Pc(t)

∫ t+εn

t

U(t, µ)χ0F (µ)dµ

+
1

εm
U(t+ ε, t)

∫ t+εn

t+εm

Uc(t, µ)Pc(µ)χ0F (µ)dµ

Both integrals can be made arbitrarily small in norm by taking n,m ≥ N and N large enough. Since
1
εU(t+ ε, t) is pointwise convergent as ε→, we obtain that the sequence xn is pointwise Cauchy, and is hence
pointwise convergent. Direct calculation of the limit in the pointwise sense yields (48). Combining all of the
above results with equation (47) gives the pointwise equality

d+w(t) = L(t)U(t, s)w(s) + L(t)

∫ t

s

U(t, µ)F(µ)dµ+ F(t) + L(t)
∑

s<τi≤t

U(t, τi)G(i) = L(t)w(t) + F(t),

which is equivalent to (45).
To obtain the difference equation (46), we similarly identify wε(τk)(θ) := w(τk)(θ) − w(τk − ε)(θ) with

the decomposition

wε(τk) = [U(τk, s)− U(τk − ε, s)]w(s) +

∫ τk

τk−ε
U(t, µ)F(µ)dµ+

∫ τk−ε

s

[U(τk, µ)− U(τk − ε, µ)]F(µ)dµ

+
∑

τk−ε<τi≤τk

U(τk, τi)G(i) +
∑

s<τi≤τk−ε

[U(τk, τi)− U(τk − ε, τi)]G(i)

Using Lemma 3.4.2 and Lemma 4.2.1, the above is seen to converge pointwise as ε→ 0+, with limit

∆w(τk) = BkU(τ−k , s)w(s) +Bk
∫ τk

s

U(τ−k , µ)F(µ)dµ+ G(k) +Bk
∑

s<τi<τk

U(τ−k , τi)G(i) = Bkw(τ−k ) + G(k),

which is equivalent to the difference equation (46).

6.2 Attractivity of the center manifold

The final result of this section concerns the attractivity properties of the center manifold. In particular, we
obtain the usual conclusion that in the absence of an unstable bundle, the center manifold is (nonuniformly)
attracting.

Theorem 6.2.1 (Attraction of the center manifold). For ν > 0 and S ∈ R, there exist positive constants C
and δ such that

1. If u and v are mild solutions of (31) on the interval I = [s− T, s] for T > 0 and s ≤ S satisfying

• (I − Ps(j))u(j) = (I − Ps(j))v(j) for either j = s or j = s− T ;

• ||u(t)|| ≤ δ and ||v(t)|| ≤ δ for all t ∈ I,

then, ||Ps(s)[u(s)− v(s)]|| ≤ C||Ps(s− T )[u(s− T )− v(s− T )]||e(a+ν)T .

2. If u and v are mild solutions on the interval I = [s, s+ T ] for T > 0 and s ≥ S satisfying

• (I − Pu(j))u(j) = (I − Pu(j))v(j) for either j = s or j = s+ T ;

• ||u(t)|| ≤ δ and ||v(t)|| ≤ δ for all t ∈ I,

then, ||Pu(s)[u(s)− v(s)]|| ≤ C||Pu(s+ T )[u(s+ T )− v(s+ T )]||e−(b−ν)T .
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Proof. We begin by proving the first assertion, and will prove only the case where (I−Ps(s))(u(s)−v(s)) = 0,
as the other case is similar. Let L = L(δ) be the Lipschitz constant of the nonlinearity R̃δ, and denote

z−(t) = ||Ps(t)(u− v)(t)||, z+(t) = ||(I − Ps(t))(u− v)(t)||.

Let t ∈ I. Routine integral estimation with the spectral separation assumptions result in the estimate

z−(s)eat ≤ Kz−(t) +

∫ s

t

KNLea(t−µ)(z+(µ) + z−(µ))dµ+

s∑
t

KNLea(t−τi)(z+(τ−i ) + zi(τ
−
i ))dτi. (49)

Also, the spectral separation guarantee that the expression

(I − Ps(t))u(t) = U(t, s)[Pc(s) + Pu(s)]u(s) +

∫ t

s

U(t, µ)[Pc(µ) + Pu(µ)]χ0Fδ(µ, u(µ))dµ

+

t∑
s

U(t, τi)[Pc(τi) + Pu(τi)]χ0Gδ(i, u(τ−i ))dτi

is well-defined even when t ≤ s, and similarly for v. Using the fact that (I − Ps(s))(u − v)(s) = 0, we get
the estimate

z+(t) ≤
∫ s

t

KNLeb(t−µ)(z−(µ) + z+(µ))dµ+

∫ s

t

KNLeb(t−τi)(z−(τ−i ) + z+(τ−i ))dτi.

Some routine changes of variables and Lemma 3.2.1 then imply

z+(t) ≤ KNL

[∫ s

t

e(b−KL)(t−µ)z−(µ)dµ+

s∑
t

e(b−KL)(t−τi)zi(τ
−
i )dτi

]
.

Substituting the above into (49) results in the somewhat bulky expression

z−(s)eat ≤ Kz−(t) +

∫ s

t

KNLea(t−µ)z−(µ)dµ+

s∑
t

KNLea(t−τi)z−(τ−i )dτi

+

∫ s

t

(KNL)2

[∫ s

µ

ea(t−µ)+(b−KNL)(µ−η)z−(η)dη +

s∑
µ

ea(t−µ)+(b−KNL)(µ−τi)z−(τi)dτi

]
dµ

+

s∑
t

(KNL)2

[∫ s

µ

ea(t−τi)+(b−KNL)(τi−µ)z−(µ)dµ+

s∑
τi

ea(t−τi)+(b−KNL)(τi−τk)z−(τ−k )dτk

]
dτi.

Applying Fubini’s Theorem and estimating sums via Lemma 3.2.2 yields

z−(s)eat ≤ Kz−(t) +

∫ s

t

(KNL+ κ)ea(t−µ)z−(µ)dµ+

s∑
t

(KNL+ κ)ea(t−τi)z−(τ−i )dτi,

κ =
(KNL)2

b− a−KNL

(
1 +

e(b−a−KNL)ξ

ξ

)
,

where ξ is the constant appearing in assumption H.7. Note that κ = κ(δ) is positive provided δ is chosen
small enough. More changes of variables and use of Lemma 3.2.1 eventually lead us to the inequality

z−(s)e−a(s−t)Ke−as ≤ z−(t) exp
(
−e−as(KNL+ κ)(t− s)

)
,

which upon substituting t = s− T and rearranging grants

z−(s) ≤ Ke−as · exp
(
(a+ e−as(KNL+ κ))T

)
z−(s− T ).

Choosing C = Ke−aS and δ small enough so that e−as(KNL(δ)+κ(δ)) ≤ ν results in the desired inequality.
An analogous argument proves the second assertion of the theorem. The proof is omitted.
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7 Linear theory for periodic systems

Insofar as impulsive systems are concerned, the simplest class of linearization one can encounter is one that
is periodic. In this section, we therefore study the linear system (15)–(16) satisfying conditions H.1, H.2
under the periodic constraints

L(t+ T ) = L(t), Bk+q = Bk, τk+q = τk + T, (50)

for some T > 0 and q ∈ N. Ultimately, we will prove that the evolution family associated to the such
a periodic system is spectrally separated, thereby proving that under suitable regularity conditions on the
nonlinearities, the semilinear system (29)–(30) posesses a center manifold provided the linear part is periodic.

7.1 The monodromy operator and compactness

We must discuss the interrelation between the period T and the range r of the delay. If r < T , it will be
convenient to reinterpret the periodic system [(15)–(16)+(50)] as having the phase space RCR([−T, 0],Rn).
This can always be done, since each of L(t) and Bk extend in an obvious, trivial way to RCR([−T, 0],Rn). In
the opposite case, where r ≥ T we let j ∈ N satisfy r ≤ jT and extend the phase space to RCR([−jT, 0],Rn).
In both cases, the following proposition is true.

Proposition 7.1.1. There exists j ∈ N minimal such that r ≤ jT , and the evolution family U(t, s) on
RCR associated to the periodic system [ (15)–(16)+(50)] extends uniquely to an evolution family Ũ(t, s) on
RCR([−jT, 0],Rn) satisfying the identity

Ũ(t, s)φ(θ) = U(t, s)ψ(θ)

for all φ ∈ RCR([−jT, 0],Rn) and θ ∈ [−r, 0], where ψ = φ|[−r,0]. In particular, U(t, s) = π→Ũ(t, s)π←
where the linear maps π← : RCR → RCR([−jT, 0,Rn) and π→ : RCR([−jT, 0,Rn)→ RCR are

π←φ(θ) =

{
φ(θ), θ ∈ [−r, 0],
0, θ ∈ [−jT, r) π→φ = φ|[−r,0].

Following the above proposition, we denote RCRj = RCR([−jT, 0],Rn). For each t ∈ R, define the

operators Ṽt : RCRj → RCRj and Vt : RCR → RCR by

Ṽt = Ũ(t+ jT, t), Vt = U(t+ jT, t).

Lemma 7.1.1. Ṽt is compact for each t ∈ R.

Proof. Let PCS denote the set of functions f : [−jT, 0] → Rn that are continuous except at points s ∈ S,
where they are right-continuous and posess limits on the left. For all k ∈ N, the identity Ṽ kt = U(t+ kT, t)
holds. This follows by existence and uniqueness (Lemma 3.4.1) of solutions. Moreover, if φ ∈ RCRj , then

Ṽtφ is continuous except at times θn ∈ [−jT, 0] such that t + jT + θn ∈ {τk : k ∈ Z}. At such times,
Ṽtφ is continuous from the right and has limits on the left. Let Θ = {θ1, . . . , θN} denote the set of all
such discontinuity points; note that N = jq is indeed finite. Therefore, if B ⊂ RCRj is bounded, then

Y := Ṽt(B) ⊂ PCΘ, the latter of which is complete with respect to the supremum norm.
By [2], a subset of Y ⊂ PCΘ is precompact if and only if it is uniformly bounded and quasiequicontinuous

– that is, for all ε > 0, there exists δ > 0 such that if t1, t2 ∈ [θk−1, θk) ∩ [−jT, 0] satisfy |t1 − t2| <
δ, then ||x(t1) − x(t2)|| < ε for all x ∈ Y . Uniform boundedness follows by equation (17). To obtain
quasiequicontinuity, let t1 > t2 and t = 0 without loss of generality. We note that for all Ṽtx ∈ Y,

||Ṽtx(t1)− Ṽtx(t2)|| = ||U(jT + t1, jT + t2)U(jT + t2, 0)x(0)− U(jT + t2, 0)x(0)||
= ||χ0 ◦ [U(jT + t1, jT + t2)− I]U(jT + t2, 0)x||

≤
∫ jT+t2

jT+t1

`(µ)dµ

(
e
∫ jT
0

`(µ)dµ

jq∏
k=1

(1 + b(k))

)
C

≡ K
∫ jT+t2

jT+t1

`(µ)dµ,
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where ||x|| ≤ C for all x ∈ B, and the inequality on the third line follows by Lemma 3.4.2 and the integral form

of solutions provided by equation (14). Choosing δ so that
∫ jT+t2
jT+t1

`(µ)dµ < ε/K for |t1 − t2| < δ whenever

t1, t2 ∈ [−jT, 0] we obtain the required quasiequicontinuity of Y . Therefore, Y = Ṽt(B) is precompact, so Ṽt
is compact.

Lemma 7.1.2. Vt is compact for each t ∈ R.

Proof. By Proposition 7.1.1, we have Vt = π→Ṽtπ←. The boundedness of each of π← and π← together with
the compactness of Ṽt grants the compactness of Vt.

The compactness of the monodromy operator Vt provides us with several useful results from the spectral
theory of compact operators; see the monograph [20] for details.

Theorem 7.1.1. Let t ∈ R and let σt denote the spectrum of Wt := (Vt)C, the complexification of Vt.

1. If λ ∈ σt is nonzero, then λ and λ are eigenvalues of Wt.

2. The generalized eigenspace Mλ,t ⊂ RCRC associated to the eigenvalue λ ∈ σt is finite-dimensional and
invariant under Wt.

3. The Riesz projection

Pλ,t(λ) =
1

2πi

∫
γ

(ξI −Wt)
−1dξ

is a projection onto Mλ,t.

4. If Λ ⊂ σt, then

PΛ,t =
∑
λ∈Λ

Resz=λ(zI −Wt)
−1

is a projection onto

MΛ,t =
⊕
λ∈Λ

Mλ,t.

5. The projections PΛ,t commute with Wt and if Λ1 and Λ2 are disjoint, then PΛ1,tPΛ2,t = 0.

6. σt is bounded and 0 ∈ σt is the only accumulation point.

Proof. The first five assertions are consequences of the spectral theory of compact operators, as is the fact
that 0 ∈ σt (since RCRC is infinite-dimensional). Suppose then that σt were not bounded. Then there would
exist λn ∈ σt with |λn| → ∞ and an associated sequence of unit-norm eigenvectors xn ∈ RCRC. Then,
||Wt(xn + xn)|| = 2|λ| → ∞, but

||Wt(xn + xn)|| = ||Vt(2Re(xn))|| ≤ 2||U(t+ jT, t)||

and the latter is bounded by Lemma 3.4.2. This completes the proof.

We also have the following theorem concerning eigenvalues of distinct monodromy operators and their
generalized eigenspaces, whose proof follows entirely verbatim the proof of [Theorem 3.3 [9]].

Theorem 7.1.2. Let t, s ∈ R be given with t ≥ s and let λ ∈ C \ {0}.

• λ ∈ σt if and only if λ ∈ σs

• The restriction of UC(t, s) to Mλ,s is a topological isomorphism onto Mλ,t.

Due to the uniqueness of the eigenvalues across all of the monodromy operators, the following definition
is appropriate.

Definition 7.1.1. The Floquet multipliers of the evolution family U(t, s) are the eigenvalues 0 6= λ ∈ σ0 of
the mondodromy operator W0. The Floquet spectrum of the evolution family U(t, s) is denoted σ(U) := σ0.

30



The projections of Theorem 7.1.1 take values in the complexified spaces MΛ,t ⊂ RCRC. To obtain real
projections, it suffices to ensure that all conjugate multipliers are included in the set Λ.

Corollary 7.1.2.1. Let 0 /∈ Λ ⊂ σ(U). If Λ = Λ, the projection PΛ,t : RCRC → RCRC is the complexifica-
tion of a projection operator on RCR.

By definition of complexification, if x ∈ RCRC is real (that is, x = ξ+ i0 for some ξ ∈ RCR), then PΛ,tx
is also real. By abuse of notation, we will identify the complexification of said operator with itself whenever
no confusion should arise. That is, we say that

PΛ,t : RCR → RCR

is also a projection, and is identified with its complexification.

7.2 Spectral separation of U(t, s)

Define the time-varying projectors

Pu(t) = PΛc,t, Pc(t) = PΛc,t, Ps(t) = I − Pu(t)− Pc(t) (51)

where Λu = {λ ∈ σ(U) : |λ| > 1} and Λc = {λ ∈ σ(U) : |λ| = 1}. Since these sets are self-conjugate (ie.
Λ = Λ), the first two operators above define, by Corollary 7.1.2.1, projections on RCR. The third one is a
complementary projector.

Lemma 7.2.1. The projectors Pi(t) for i ∈ {s, c, u} are jT -periodic.

Proof. Since Pu(t) is the projector through the spectral subset Λu associated to the complexified operator
UC(t + jT, t), it follows that Pu(t + kjT ) is the projector through the same subset, associated to UC =
UC(t+ jT + kjT, t+ kjT ), for all k ∈ Z. By uniqueness of solutions and the periodicity condition, the latter
is equal to UC(t+ jT, t), from which it follows that Pu(t) = Pu(t+ kjT ), and mutis mutandis for the other
projectors.

Lemma 7.2.2. R(Ps(t)) =
⋂
λ∈Λc∪Λu

N (Pλ,t).

Proof. Denote Pcu = Pc+Pu and Λcu = Λc∪Λu, so that R(Ps(t)) = N (Pcu(t)). If x ∈ ∩λ∈ΛcuN (Pλ,t), then
Psu(t)x =

∑
λ∈Λcu

Pλ,tx = 0, which shows that ∩λ∈ΛcuN(Pλ,t) ⊆ R(Ps(t)). To obtain the second inclusion,
let x ∈ RCRC be such that x ∈ N (Pcu(t)). For all λ ∈ Λcu, we have

Pλ,tx = P 2
λ,t +

∑
µ∈Λcu\{λ}

Pλ,tPµ,tx = Pλ,tPcu(t)x = 0,

where the second equality is due to Theorem 7.1.1 and the conclusion is because x ∈ N (Pcu(t)).

Lemma 7.2.3. The restriction of Wt to the subspace R(Ps(t)) is compact, and σ(Wt) ⊂ B1(0).

Proof. With the same notation as in the previous proof, since the generalized eigenspaces MΛcu,t are invariant

under Wt, the same is true for the (closed) complement, R(Ps(t)). Denote W̃t the restriction of Wt to said
complement. Suppose by way of contradiction ξ ∈ is a (generalized) eigenvector of W̃t with eigenvalue λ with
|λ| ≥ 1. Then (Wt−λI)kξ = (W̃t−λI)ξ = 0, so ξ is in fact a (generalized) eigenvector of Wt with eigenvalue
λ and |λ| ≥ 1. Consequently, ξ ∈ R(Pcu(t)), which is a contradiction since R(Ps(t)) ∩R(Pcu(t)) = {0}.

Theorem 7.2.1. The evolution family U(t, s) : RCR → RCR associated to the periodic system [ (15)–
(16),(50)] is spectrally separated, with projectors (Ps, Pc, Pu) defined as in equation (51). Also, RCRc and
RCRu are finite-dimensional.

Proof. We prove the theorem by verifying properties 1–5 of Definition 3.3.5 explicitly.
1. Since Ps + Pu + Pc = I, we have the estimate ||Ps|| ≤ 1 + ||Pu||+ ||Pc||. Thus, to prove property 1, it

suffices to prove that ||Pu(t)|| and ||Pc(t)|| are uniformly bounded. We will prove only uniform boundedness
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of Pc(t), since the argument is identical for Pu(t). Also, by periodicity (Lemma 7.2.1), it suffices to prove
uniform boundedness on [0, jT ].

Assume for the moment that property 6 is satisfied (it will be proven later, independently of property 1).
Suppose by way of contradiction that there exists xn ∈ RCR and a (without loss of generality) increasing,
convergent sequence tn ∈ [0, jT ] with ||xn|| = 1 such that ||Pc(tn)xn|| = n. Define yn = Uc(tn, t0)−1xn.
Then, we have

n = ||Pc(tn)xn|| = ||Pc(tn)Uc(tn, t0)yn|| = ||Uc(tn, t0)Pc(t0)yn|| ≤ C||Uc(tn, t0)−1|| (52)

for some constant C > 0; see Lemma 3.4.2.
We will now prove that Uc(tn, t0)−1 is uniformly bounded above; that is, there exists a constant D > 0

such that ||Uc(tn, t0)−1|| ≤ D for all n ≥ 0. This will provide a contradiction to the inequality n ≤
C||Uc(tn, t0)−1|| in (52). Clearly, Uc(tn, t0)−1 being uniformly bounded above is equivalent to Uc(tn, t0) being
uniformly bounded below; that is, there exists E > 0 such that ||Uc(tn, t0)x|| ≥ E||x|| for all x ∈ R(Pc(t0)).

Suppose Uc(tn, t0) is not uniformly bounded below; that is, there exists yn ∈ R(Pc(t0)) with ||yn|| = 1
such that ||Uc(tn, t0)yn|| → 0. Since R(Pc(t0)) is finite-dimensional, we may pass to a subsequence (also
denoted yn) that is convergent by the Bolzano-Weierstrass theorem. Let yn → y and tn → t. We have

||Uc(t, t0)y|| ≤ ||Uc(t, t0)y − Uc(t, t0)yn||+ ||Uc(t, t0)yn − Uc(tn, t0)yn||+ ||Uc(tn, t0)yn||.

As n→∞, the first and third normed terms converge to zero. As for the term in the middle, we know that
Uc(tn, t0)yn → 0 uniformly and, by passing to yet another subsequence (since Uc(t, t0) has finite-dimensional
range) again denoted yn, we may assume that Uc(t, t0)yn also converges uniformly. Consequently, the term
in the middle converges uniformly, and as such we may compute its limit pointwise. By Lemma 3.4.1, we
have

||[Uc(t, t0)yn − Uc(tn, t0)yn](θ)|| ≤

∫ t+θ

tn+θ

`(µ)dµ+
∑

tn+θ<τi≤t+θ

b(i)

C

for n large enough, where ||Uc(s, t0)|| ≤ C for all s ∈ [t0, t] exists due to Lemma 3.4.2. Therefore, the
pointwise (and uniform) limit is zero, and we conclude Uc(t, t0)y = 0, which is a contradiction because
Uc(t, t0) is an isomorphism by Theorem 7.1.2 and ||y|| = 1.

2. This follows by property 5 of Theorem 7.1.1.
3. By following [[9], XIII – Theorem 3.3], we can show that P (t)U(t+jT, s+kjT ) = U(t+jT, s+kjT )P (s)

for some k ∈ N chosen so that s+ (k− 1)jT ≤ t < s+ kjT , for each of the projectors P ∈ {Pu, Pc, Ps}. This
implies P (t)U(t, s+ qjT ) = U(t, s+ qjT )P (s) for q = k − 1. Thus,

P (t)U(t, s) = P (t)U(t, s+ qjT )U(s+ qjT, s)

= U(t, s+ qjT )P (s)U(s+ jT, s)q

= U(t, s+ qjT )P (s)qU(s+ jT, s)q

= U(t, s+ qjT )U(s+ jT, s)qP (s)q

= U(t, s)P (s),

where we have used the fact that P (s) is a projector and commutes with U(s+ jT, s).
4. This follows from Theorem 7.1.2.
5. When t ≥ v ≥ s, the identity Uc(t, s) = Uc(t, v)Uc(v, s) holds by properties of the evolution family U .

When t ≥ s ≥ v, we find I = Uc(t, v)−1Uc(t, s)Uc(s, v), which implies

Uc(v, s) = Uc(v, t)Uc(t, s). (53)

Also,

Uc(t, s) = Uc(t, v)Uc(t, v)−1Uc(t, s) = Uc(t, v)[Uc(v, t)Uc(t, s)] = Uc(t, v)Uc(v, s). (54)
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Equation (53) implies Uc(t, s) = Uc(t, v)Uc(v, s) for v ≥ s ≥ t, while (54) grants it for t ≥ s ≥ v. If v ≥ t ≥ s,
then

Uc(t, s) = Uc(t, v)Uc(t, v)−1Uc(t, s) = Uc(t, v)Uc(v, t)Uc(t, s) = Uc(t, v)Uc(v, s).

If s ≥ t ≥ v, then

Uc(t, s) = Uc(s, t)
−1 = [Uc(s, v)U(v, t)c]

−1 = Uc(t, v)Uc(v, s).

Similarly, the desired equality holds if s ≥ v ≥ t. We have proven that Uc(t, s) = Uc(t, v)Uc(v, s) for all
t, v, s ∈ R. The proof is identical for Uu.

6. This section is split into two parts, where we prove the estimates for Uc and Us separately. The proof
for Uu is similar to the center (Uc) case, and is omitted.

Center part: Uc. Let ε > 0 be given. Recall that Uc(t, s) is the restriction of U(t, s) to R(Pc(s)), so by
Lemma 3.4.2 and periodicity, there exists K > 0 such that, for any s ∈ R, we have ||Uc(t, s)|| ≤ K provided
t ∈ [s, s + jT ]. As Uc(s + jT, s) is compact and all of its eigenvalues satisfy |λ| = 1, Gelfand’s (spectral
radius) formula implies there exists an integer k > 0 such that ||Uc(s + jT, s)k|| < 1 + εjT . If we let mt

be the greatest integer such that s + mtkjT ≤ t and m∗t ∈ {0, . . . , k − 1} the greatest integer such that
s+mtkjT +m∗t jT ≤ t, then a trivial modification of the proof of [[9], XIII – Theorem 2.4] results in

||Uc(t, s)|| ≤ K||Uc(s+ jT, s)k||mt ≤ K(1 + εjT )
t−s
jT ≤ Keε(t−s).

The proof is similar when t ≤ s, and we obtain ||Uc(t, s)|| ≤ Keε|t−s|.
Stable part: Us. Let t ≥ s. As in the proof for the center part, we have ||Us(t, s)|| ≤ K provided

t ∈ [s, s+jT ]. Otherwise, since Us(s+jT, s) is compact by Lemma 7.2.3 and its spectrum is contained within
the complex unit ball, there exists k > 0 such that ||Us(s+ jT, s)k|| ≤ (1 + ajT ) for some a < 0. The rest of
the proof follows by the same reasoning as the proof for the center part, and we obtain ||U(t, s)|| ≤ Kea(t−s)

as required.

Finally, RCRc and RCRu are finite-dimensional because Theorem 7.1.1 guarantees that the invariant
subspaces MΛc,t and MΛu,t are finite-dimensional provided Λc and Λu are finite each finite sets — which
they are because the eigenvalues of Wt can only accumulate at zero. The analogous result for RCRc(t) and
RCRu(t) follows by Corollary 7.1.2.1.

7.3 Floquet decomposition for Uc(t, s)

Of use in subsequent sections is the fact that, when restricted to the nonautonomous set RCRc, the evolution
family U(t, s) is essentially determined by the flow of a finite-dimensional ordinary differential equation. The
following theorem makes this concrete; see [Theorem 4.5, [9]] for the analogous result for delay differential
equations.

Theorem 7.3.1. Denote RCRC
c (t) the complexification of RCRc(t). There exists Q ∈ L(RCRC

c (0)) and
α : R→ L(RCRC

c (0),RCRC
c ) with the following properties.

• α is jT -periodic, α(t) : RCRC
c (0) → RCRC

c (t) is invertible, and there exists β ≥ 1 such that for all
φ ∈ RCRC

c (0),

β−1||φ|| ≤ sup
t∈R
||α(t)φ|| ≤ β||φ||.

• Uc(t, 0)φ = α(t)etQφ for all φ ∈ RCRc.

Proof. Define Q = logUc(jT, 0), where we choose the logarithm to be branch that avoids the (finite set
of nonzero) eigenvalues of Uc(jT, 0). Defining α(t) = U(t, 0)e−tQ, one may verify (compare to Proposition
4.4 and Theorem 4.5 of [9]) that α is periodic and Uc(t, 0) satisfies the claimed decomposition. Uniform
boundedness of α above and below follows by its periodicity and boundedness of Uc(t, 0) on [−jT, jT ]; see
the proof of Theorem 7.2.1. α(t) is clearly invertible.
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8 Smoothness of center manifolds

In Section 5, we proved the existence of invariant center manifolds associated to the abstract integral equation
(31). These invariant manifolds are images of a uniformly Lipschitz continuous function C : RCRc → RCR.
In this secton, we will ultimately prove that this function is smooth. To accomplish this, we will need to
introduce an additional regularity assumption on the nonlinear parts of vector field and jump map.

H.8 The functions cj and sequences {dj(k) : k ∈ Z} introduced in H.5 are bounded.

Note that H.8 is a purely nonautonomous property and is trivially satisfied if the vector field and jump
functions are autonomous. We will also assume that center part Uc(t, s) of the linear evolution family
associated to the linear part of the semilinear equation (29)–(30) satisfies the following decomposability
condition, which is can be seen as a nonautonomous Floquet decomposition.

H.9 There exists α : R→ L(RCRc) andQ ∈ L(RCRc(0)) such that α(t) : RCRc(0)→ RCRc(t) is invertible
for all t ∈ R, there exists β ≥ 1 such that β−1||φ|| ≤ supt∈R ||α(t)φ|| ≤ β||φ|| for all φ ∈ RCRc(0), and
the decomposition Uc(t, 0) = α(t)etQ is satisfied.

Remark 8.0.1. By Theorem 7.3.1, a semilinear equation with linear part satisfying the periodic constraints
(50) automatically fulfills condition H.9.

From this point on, we will assume conditions H.1–H.9 are satisfied. The rest of this section will utilize
several techniques from the theory of contraction mappings on scales of Banach spaces. In particular, many
of the proofs that follow are adapted from [27, 9, 18], albeit adapted somewhat so as to manage the explicitly
nonautonomous and impulsive characteristics of the problem. In order to avoid unnecessary technical details,
some results will be stated without proof.

8.1 Modification of nonlinearities and fixed-point equation for the center man-
ifold

By H.9, let Uc(t, 0) = α(t)etQ. Define Γ : R→ L(RCR,RCRC
c (0)) by

Γ(t) = α(t)−1Pc(t).

Let A = supt∈R ||α−1(t)||, so that in particular ||Γ(t)|| ≤ AN .

We introduce a different modification of the nonlinearity than the one used in Section 5.3. For a smooth
cutoff function ξ, define the smoothed nonlinearities

F̃δ(t, φ) = f(t, φ)ξ

(
||Γ(t)φ||
ANδ

)
ξ

(
||(I − Pc(t))φ||

Nδ

)
G̃δ(k, φ) = gk(φ)ξ

(
||Γ(τk)φ||
ANδ

)
ξ

(
||(I − Pc(τk))φ||

Nδ

)
,

where by a suitable renorming, we may assume without loss of generality that ||·|| is smooth onRCRc(0)\{0}.
This follows because RCRc(0) is finite dimensional.

The following lemma and corollary now follow from the properties of the Floquet-like decomposition
Uc(t, 0) = α(t)etQ. For a proof, see similar results in [18, 19].

Lemma 8.1.1. Let f(t, ·) and gk(·) be uniformly (in t ∈ R and k ∈ Z) Lipschitz continuous on the ball
BRCR(δ, 0) in RCR with mutual Lipschitz constant L(δ), and let f(t, 0) = gk(0) = 0. The functions

F̃δ : R×RCR → Rn, G̃δ : Z×RCR → Rn

are globally, uniformly (in t ∈ R and k ∈ Z) Lipschitz continuous with mutual Lipschitz constant Lδ that
satisfies Lδ → 0 as δ → 0.
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Corollary 8.1.0.1. The substitution operator

R̃δ : PCη → Bη(R,Rn)⊕Bητk(Z,Rn)

defined by Rδ(x)(t, k) = (F̃δ(t, x(t)), G̃δ(k, x(τk))) is globally Lipschitz continuous with Lipschitz constant L̃δ
that satisfies L̃δ → 0 as δ → 0. Moreover, the Lipschitz constant is independent of η, s.

We can repeat the construction of the Lipschitz center manifold of Section 5.4, essentially verbatim.
Namely, we define a family of nonlinear maps G̃η,sδ : PCη,s ×RCRc(s)→ PCη,s by

G̃η,sδ (u, ϕ)) = U(·, s)ϕ+Kηs (R̃δ(u)) (55)

and obtain for δ > 0 sufficiently small a unique fixed point ũη,s : RCRc(s)→ PCη,s satisfying the equation

G̃η,sδ (ũη,s, ·) = ũη,s. The fixed point may be used to define the center manifold in the same way as Definition
5.4.1, and it enjoys the same invariance properties as outlined in Theorem 5.4.2 and the reduction principles
of Section 6. Importantly, we have the following extension of Lemma 5.4.1, whose proof is omitted.

Lemma 8.1.2. There exists δ > 0 such that the fixed point ũη,s of (55) satisfies ||(I − P̂c)ũη,s||0 < δ for all

s ∈ R, where the operator P̂c : PCη → PCη(R,RCRc) is defined as in Lemma 5.4.1.

From this point on, our attention shifts to proving the smoothness of ũη,s : RCRc(s)→ PCη,s as defined
by the fixed point of (55). We begin with some notation. Introduce

Σητk = {f : Z→ RCR : ||f ||η = sup
k∈Z

e−η|τk|||fk||η <∞},

the space of η-bounded RCR-valued sequences. Then, define Σ∞τk = ∪η>0Σητk . Let

V η = {u ∈ PCη : ||(I − P̂c)u||0 <∞},

where P̂c is the projection operator from Lemma 8.1.2. Equipped with the norm

||u||V η,s = ||Pcu||η,s + ||(I − Pc)u||0,

the space V η,s is complete, where the s-shifted definitions are as outlined at the beginning of Section 5.1 .
Let δ > 0 be chosen as in Lemma 8.1.2 and define

V ηδ = {u ∈ V η : ||(I − P̂c)u||0 < Nδ}

and define V ηδ (t) ⊂ RCR by V ηδ (t) = {u(t) : u ∈ V ηδ }. Also, define the set V∞δ = ∪η>0V
η
δ . Set Bη =

PCη(R,Rn) ⊕ Bητk(Z,Rn) and B∞ = ∪η>0B
η. Finally, the bounded p-linear maps from X1 × · · · × Xp to

Y for Banach spaces Xi and Y will be denoted Lp(X1 × · · ·Xp, Y ). We may write simply Lp if there is no
confusion.

By construction of the modified nonlinearity R̃δ and the choice of δ from Lemma 8.1.2, the functions
u 7→ F̃δ(t, u) and u 7→ G̃δ(k, u) are Cm on V ηδ (t) and V ηδ (τk) respectively, for all t ∈ R and k ∈ Z. We are
therefore free to define

(F̃
(p)
δ u)(t) = DpF̃δ(t, u(t)), (G̃

(p)
δ )(k) = DpG̃δu(j, u(τk)),

for 1 ≤ p ≤ m, where Dp denotes the pth Fréchet derivative with respect to the second variable. If we denote

Πη = PCη ⊕ Σητk , then for each u ∈ V∞δ we can define a p-linear map R̃
(p)
δ (u) : Π∞ × · · · × Π∞ → B∞ by

the equation

R̃
(p)
δ (u)((v1, w1), . . . , (vp, wp))(t, k) = (F

(p)
δ u(t)(v1(t), . . . , vp(t)), G

(p)
δ u(k)(w1(t), . . . , wp(t))). (56)

For p = 0, we define R̃
(0)
δ = R̃δ to be equal to the substitution operator as defined in Corollary 8.1.0.1. From

here on, we assume conditions H.1–H.3, H.5–H.8 and H*4 are satisfied.
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8.2 Smoothness of the modified nonlinearity

In this section we elaborate on various properties of the substitution operator R̃δ and its formal derivative

R̃
(p)
δ introduced in equation (56). First, we will need a result that states that condition H.5 holds also for

the modified nonlinearities when restricted to V∞δ .

Lemma 8.2.1. For j = 1, . . . ,m, there exist constants c̃j , d̃j , q̃ > 0 such that

||DjF̃δ(t, φ)−DjF̃δ(t, ψ)|| ≤ c̃j ||φ− ψ||, ||DjF̃δ(t, φ)|| ≤ q̃c̃j φ, ψ ∈ V∞δ (t)

||DjG̃δ(k, φ)−DjG̃δ(k, ψ)|| ≤ d̃j ||φ− ψ||, ||DjG̃(k, φ)|| ≤ q̃d̃j φ, ψ ∈ V∞δ (τk).

Proof. We prove only the Lipschitzian property for DjFδ, since the boundedness and corresponding results
for DjGδ are proven similarly. Denote

X(t, φ) = ξ

(
||Γ(t)φ||
ANδ

)
ξ

(
||(I − Pc(t))φ||

Nδ

)
.

When φ, ψ ∈ V∞δ (t), X is m-times continuously differentiable and its derivative is globally Lipschitz contin-
uous. Moreover, the Lipschitz constant can be chosen independent of t because of the uniform boundedness
(property 1) of the projection operator Pc(t) and the operator Γ(t). Let LipkX denote the Lipschitz constant
for DkX(t, ·). Then,

DjF̃δ(t, φ)−DjF̃δ(t, ψ) = Dj [f(t, φ)X(t, φ)− f(t, ψ)X(t, φ)]

=
∑

N1,N2∈P2(j)

D#N1f(t, φ)D#N2X(t, φ)−D#N1f(t, ψ)D#N2X(t, ψ)

=
∑

N1,N2∈P2(j)

D#N1 [f(t, φ)− f(t, ψ)]D#N2X(t, φ) +D#N1f(t, ψ)D#N2 [X(t, φ)−X(t, ψ)],

where P2(j) denotes the set of partitions of length two from the set {1, . . . , j} and #Y is the cardinality of
Y . Restricted to the ball B2δ(0), the Lipschitz constants for Djf(t, ·) and the boundedness estimates from
H.5 then imply the estimate

||DjF̃δ(t, φ)−DjF̃δ(t, ψ)|| ≤

 ∑
N1,N2∈P2(j)

(1 + q)c#N1
(t)Lip#N2

X

 ||φ− ψ||.
As each of cj and dj are bounded, the Lipschitz constant admits an upper bound. Outside of B2δ(0), X and
all of its derivatives are identically zero.

Lemma 8.2.2. Let 1 ≤ p ≤ m, µi > 0 for i = 1, . . . , p, µ = µ1 + · · · + µp and η ≥ µ. Then we have

R̃
(p)
δ (u) ∈ Lp(Πµ1 × · · · ×Πµp , Bη) for all u ∈ V∞δ , with

||R̃(p)
δ (u)||Lp ≤ sup

t∈R
||F̃ (p)

δ u(t)||e−(η−µ)|t| + sup
k∈Z
||G̃(p)

δ u(k)||e−(η−µ)|τk|

= ||R̃(p)
δ (u)||η−µ.

Also, u 7→ R̃
(p)
δ (u) is continuous as a mapping R̃

(p)
δ : V σδ → Lp(Πµ1 × · · · ×Πµp , Bη) if η > µ, for all σ > 0.

Proof. It is easy to verify that R̃
(p)
δ (u) is p-linear. For boundedness,

||R̃(p)
δ (u)||Lp = sup

t∈R
||v||~µ=1

||F̃ (p)
δ u(t)(v1(t), . . . , vp(t))||e−η|t| + sup

k∈Z
||w||~µ=1

||G̃δ(p)u(k)(w1(τk), . . . , wp(τk))||e−η|τk|

≤ sup
t∈R
||v||~µ=1

||F̃ (p)
δ u(t)|| ·

[
||v1(t)|| · · · ||vp(t)||

]
e−η|t| + sup

k∈Z
||w||~µ=1

||G̃(p)
δ u(k)|| ·

[
||w1(τk)|| · · · ||wp(τk)||

]
e−η|τk|

= sup
t∈R
||F̃ (p)

δ u(t)||e−(η−µ)|t| + sup
k∈Z
||G̃(p)

δ u(k)||e−(η−µ)|τk|.
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The latter is finite by Lemma 8.2.1 whenever η ≥ µ. In particular, the latter lemma implies that for all
φ ∈ V∞δ , one has supt∈R ||DjF̃δ(t, φ(t))|| ≤ q̃c̃j , and similar for G̃k. This uniform boundedness can then be

used to prove the continuity of u 7→ R̃
(p)
δ (u) when η > µ; the proof follows that of [Lemma 7.3 [18]] and is

omitted here.

The proof of the following lemmas are essentially identical to the proofs of [Corollary 7.5, Corollary 7.6,
Lemma 7.7 [18]] and are omitted here. The trivial modification stems from in our case, the nonlinearity
consists of two independent components defined by Fδ and Gδ, as well as the time dependence. This latter
complication is effectively resolved by Lemma 8.2.1.

Lemma 8.2.3. Let η2 > kη1 > 0, 1 ≤ p ≤ k. Then, R̃δ : V η1δ → Lp(Πη1 × · · · × Πη1 , Bη2) is Ck and

DpR̃δ = R̃
(p)
δ .

Lemma 8.2.4. Let 1 ≤ p ≤ m, µi > 0 for i = 1, . . . , p, µ = µ1 + · · · + µp and η ≥ µ. Then, R̃
(p)
δ : V σδ →

Lp(Πµ1 × · · · ×Πµp , Bη) is Ck−p provided η > µ+ (k − p)σ.

Lemma 8.2.5. Let 1 ≤ p ≤ k, µi > 0 for i = 1, . . . , p, µ = µ1 + · · ·µp and η > µ+ σ for some σ > 0. Let

X : RCRc(s)→ V σδ be C1. Then, R̃
(p)
δ ◦X : RCRc(s)→ Lp(Πµ1 × · · · ×Πµp , Bη) is C1 and

D
(
R̃

(p)
δ ◦X

)
(φ)(v1, . . . , vp, ψ) = R̃

(p+1)
δ (X(φ))(v1, . . . , vp, X

′(φ)ψ).

Theorem 8.2.1. Let J η2,η1s : PCη1,s → PCη2,s denote the (continuous) embedding operator for η1 ≤ η2.
Let [η̃, η] ⊂ (0,min{−a, b}) be such that kη̃ < η. Then, for each p ∈ {1, . . . , k} and η ∈ (pη̃, η], the mapping
Jηη̃s ◦ ũη̃,s : RCRc(s)→ PCη,s is of class Ck provided δ > 0 is sufficiently small.

Proof. The proof here follows the same lines as [Theorem 7.7, [9]]. To begin, we choose δ > 0 small enough
so that Lemma 8.1.2 is satisfied in addition to having L̃δ||Kηs || < 1

4 for all η ∈ [η̃, η]. By Lemma 5.2.3 and
Corollary 5.3.0.1, this can always be done in such a way that the inequality holds for all s ∈ R.

We proceed by induction on k. For p = 1 = k, we let η ∈ (η̃, η] and show that Lemma 10.0.1 applies with

Y0 = V η̃,sδ , Y = PCη̃,s, Y1 = PCη,s, Λ = RCRc(s)

f(u, ϕ) = G̃η̃,sδ (u, ϕ), f (1)(u, ϕ) = Kη̃s ◦ R̃
(1)
δ (u), f

(1)
1 (u, ϕ) = Kηs ◦ R̃

(1)
δ (u),

with embeddings J = J ηη̃s and J0 : V η̃,sδ ↪→ PCη̃,s. To check condition b1 we must first verify the C1

smoothness of
V η̃,sδ ×RCRc(s) 3 (u, ϕ) 7→ g(u, ϕ) = J ηη̃s

(
U(·, s)ϕ+Kη̃s ◦ R̃δ(J0u)

)
.

The embedding operator J ηη̃s is itself C1, as is ϕ 7→ U(·, s)ϕ and J0u 7→ R̃δ(J0u), the latter due to Lemma
8.2.3. C1 smoothness of g then follows by continuity of the linear embedding J0. Verification of the equalities

D1g(u, ϕ)ξ = Jf (1)(J0u, ϕ)J0ξ and Jf (1)(J0u, ϕ)ξ = f
(1)
1 (J0u, ϕ)Jξ is straightforward. Condition b2 follows

by boundedness of the embedding operators and the the small Lipschitz constant for G̃η̃,sδ . For condition b3,

the fixed point is ũη̃,s : RCRc(s)→ PCη̃,s, and we may factor it as ũη̃,s = J0 ◦ Φ with Φ : RCRc(s)→ V η̃,sδ

defined by Φ(ϕ) = ũη̃,s(ϕ); the latter is continuous by Theorem 5.4.1 and the factorization is justfied by
Lemma 8.1.2. To check condition b4 we must verify that

V η̃,sδ ×RCRc(s) 3 (u, ϕ) 7→ f0(u, ϕ) = G̃η̃,sδ (J0u, ϕ)

has a continuous partial derivative in its second variable – this is clear since f0 is linear in ϕ. Finally, condition

b5 requires us to verify that the map (u, ϕ) 7→ J ηη̃s ◦ Kη̃s ◦ R̃
(1)
δ (J0u) is continuous from V η̃,sδ × RCRc(s)

into L(RCRc(s),PCη,s), but this once again follows by the continuity of the embedding operators and the
smoothness of R̃δ from Lemma 8.2.3.

The conditions of Lemma 10.0.1 are satisfied, and we conclude that J ηη̃ ◦ ũη̃,s is of class C1 and that the
derivative D(J ηη̃ ◦ ũη̃,s) ∈ L(RCRc(s),PCη,s) is the unique solution w(1) of the equation

w(1) = Kη̃s ◦ R̃
(1)
δ (ũη̃s(ϕ))w(1) + U(·, s) := F1(w(1), ϕ). (57)
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The mapping F1 : L(RCRc(s),PCη,s)×RCRc(s)→ L(RCRc(s),PCη,s) is a uniform contraction for η ∈ [η̃, η]
– indeed, F1(·, ϕ) is Lipschitz continuous with Lipschitz constant L̃δ ·||Kηs || < 1

4 ; this follows from Lemma 8.2.2

and is independent of s. Thus, ũ
(1)
s (ϕ) ∈ L(RCRc(s),PCη̃,s) ↪→ L(RCRc(s),PCη,s) for η ≥ η̃. Moreover,

ũ
(1)
s : RCRc(s)→ PCη,s is continuous if η ∈ (η̃, η].

Now, let 1 ≤ p ≤ k for k ≥ 1 and suppose that for all q ∈ {1, . . . , p} and all η ∈ (qη̃, η], the mapping

J ηη̃s ◦ ũη̃,s : RCRc(s)→ PCη,s

is of class Cq with Dq(J ηη̃s ◦ ũη̃s) = J ηη̃s ◦ ũ
(q)
η̃,s and ũ

(q)
η̃,s(ϕ) ∈ Lq(RCRc(s),PCqη̃,s) for each ϕ ∈ RCRc(s),

such that the mapping

J ηη̃s ◦ ũ
(q)
η̃,s : RCRc(s)→ Lq(RCRc(s),PCη,s)

is continuous for η ∈ (qη̃, η]. Suppose additionally that ũ
(q)
η̃,s(ϕ) is the unique solution w(p) of an equation

w(p) = Kη̃ps ◦ R̃
(1)
δ (ũη̃,s(ϕ))w(p) +H

(p)
η̃ (ϕ) := F

(p)
η̃ (w(p), ϕ), (58)

with H1 = U(·, s) and H
(p)
x (ϕ) for p ≥ 2 is a finite sum of terms of the form

Kpxs ◦ R̃
(q)
δ (ũη̃,s(ϕ))(ũ

(r1)
η̃,s (ϕ), · · · , ũ(rq)

η̃,s (ϕ))

with 2 ≤ q ≤ p, 1 ≤ ri < p for i = 1, . . . , q, such that r1 + · · ·+rq = p. Under such assumptions, the mapping

F
(p)
η̃ : Lp(RCRc(s),PCη,s)×RCRc(s)→ Lp(RCRc(s),PCη,s) is a uniform contraction for all η ∈ [pη̃, η]; see

Lemma 8.2.2.
Next, choose some η ∈ ((p+ 1)η̃, η], σ ∈ (η̃, η/(p+ 1)] and µ ∈ ((p+ 1)σ, η). We will verify the conditions

of Lemma 10.0.1 with the spaces and functions

Y0 = Lp(RCRc(s),PCpσ,s), Y = Lp(RCRc(s),PCµ,s), Y1 = Lp(RCRc(s),PCη,s)

f(u, ϕ) = Kµs ◦ R̃
(1)
δ (ũη̃,s(ϕ))u+H

(p)
µ/p(ϕ), Λ = RCRc(s),

f (1)(u, ϕ) = Kµs ◦ R̃
(1)
δ (ũη̃,s(ϕ)) ∈ L(Y ),

f
(1)
1 (u, ϕ) = Kηs ◦ R̃

(1)
δ (ũη̃,s(ϕ)) ∈ L(Y1),

We begin with the verification of condition b1. We must check that

Lp(RCRc(s),PCpσ,s)×RCRc(s) 3 (u, ϕ) 7→ J ηµ ◦ Kµs ◦ R̃
(1)
δ (ũη̃,s(ϕ))u+ J ηµ ◦H(p)

µ/p(ϕ)

is of class C1, where now J η2η1 : Lp(RCRc(s),PCη1,s) ↪→ Lp(RCRc(s),PCη2,s). The above mapping is C1

with respect to u ∈ Lp(RCRc(s),PCpσ,s) since it is linear in this variable. With respect to ϕ ∈ RCRc(s),
we have that ϕ 7→ J ηµKµs ◦ R̃

(1)
δ (ũη̃,s(ϕ)) is C1: this follows by Lemma 8.2.5 with µ > (p+ 1)σ and the C1

smoothness of ϕ 7→ J ση̃ ◦ ũη̃,s(ϕ) with σ > η̃. For the C1 smoothness of the portion ϕ 7→ J ηµH(p)
µ/p(ϕ), we

get differentiability from Lemma 8.2.5; we have that the derivative of ϕ 7→ H
(p)
µ/p(ϕ) is a sum of terms of the

form

Kµs ◦ R̃
(q+1)
δ (ũη̃,s(ϕ))(ũ

(r1)
η̃,s (ϕ), . . . , ũ

(rq)
η̃,s (ϕ)) +

q∑
j=1

Kµs ◦ R̃
(q)
δ (ũη̃,s(ϕ))(ũ

(r1)
η̃,s (ϕ), . . . , ũ

(rj+1)
η̃,s (ϕ), . . . , ũ

(rq)
η̃,s (ϕ)),

and each ũ
(j)
η̃,s is understood as a map into PCjσ,s. Applying Lemma 8.2.2 with µ > (p+1)σ grants continuity

of DH
(p)
µ/p(ϕ) and, subsequently, to J ηµDH(p)

µ/p(ϕ). The other embedding properties of condition b1 are easily

checked. Condition b4 can be proven similarly.
The Lipschitz condition and boundedness of b2 follows by the choice of δ > 0 at the beginning and the

uniform contractivity of Hp described above. Condition b3 is proven by writing

J ηµ ◦ Kµs ◦ R̃
(1)
δ (ũη̃,s)(ϕ)) = Kηs ◦ R̃

(1)
δ (ũη̃,s(ϕ))
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and applying Lemma 8.2.2 together with the C1 smoothness of ũη̃,s to obtain the continuity of ϕ 7→
R̃

(1)
δ (ũη̃,s) ∈ L(Y, Y1). This also proves the final condition b5 of Lemma 10.0.1, and we conclude that

ũ
(p)
η̃,s : RCRc(s) → Lp(RCRc(s),PCη,s) is of class C1 with ũ

(p+1)
η̃,µ = Dũ

(p)
η̃,s ∈ L(p+1)(RCRc(s),PCη,µ) given

by the unique solution w(p+1) of the equation

w(p+1) = Kµs ◦ R̃
(1)
δ (ũη̃,s(ϕ))w(p+1) +H

(p+1)
µ/(p+1)(ϕ) (59)

where H
(p+1)
µ/(p+1)(ϕ) = Kµs ◦ R̃

(2)
δ (ũη̃,s(ϕ))(ũ

(p)
η̃,s(ϕ), ũ

(1)
η̃,s(ϕ)) + DH

(p)
µ/p(ϕ). Similar arguments to the proof of

the case k = 1 show that the fixed point w(p+1) is also contained in L(p+1)(RCRc(s),PCη̃(p+1),s), and the
proof is complete.

Corollary 8.2.1.1. C : RCRc → RCR is Ck and tangent at the origin to the center bundle RCRc. More
precisely, C(t, ·) : RCRc(t)→ RCR is Ck and DC(t, 0)φ = φ for all φ ∈ RCRc(t).

Proof. Let η̃, η be as in the proof of Theorem 8.2.1. Define the evaluation map evt : PCη → RCR by
evt(f) = f(t). Since we can decompose the center manifold as

C(t, φ) = evt(ũt(φ)) = evt(J ηη̃t ũt(φ)),

boundedness of the linear evaluation map on the space PCη,t then implies the Ck smoothness of C(t, ·). To
obtain the tangent property, we remark that

DC(t, 0)φ = evt

(
D
(
J ηη̃t ◦ ũt(0)

)
φ
)

= evt

(
ũ

(1)
η,t(0)φ

)
.

From equation (57) and Theorem 5.4.2, we obtain ũ
(1)
η,t(0) = U(·, t), from which it follows that DC(t, 0)φ = φ,

as claimed.

As a secondary corollary, we can prove that each derivative of the center manifold is uniformly Lipschitz
continuous. The proof is similar to that of Corollary 5.4.1.1 if one takes into account the representation of

the derivatives ũ
(p)
η̃,s as solutions of the fixed-point equations (59), whose right-hand side is a contraction with

Lipschitz constant independent of s.

Corollary 8.2.1.2. For each p ∈ {1, . . . , k}, there exists a constant L(p) > 0 such that the center manifold
satisfies ||DpC(t, φ)−DpC(t, ψ)|| ≤ L(p)||φ− ψ|| for all t ∈ R and φ, ψ ∈ RCRc(t).

From Remark 8.0.1 we readily obtain the smoothness of the center manifold in the case where the
semilinear equation is periodic. In particular, in such a situation many some of the assumptions H.1–H.9 are
satisfied automatically and can be ignored.

Corollary 8.2.1.3. Suppose the semilinear equation (29)–(30) satisfies the following conditions.

P.1 The equation is periodic with period T and c impulses per period. That is, A(t + T ) = A(t) and
f(t+ T, ·) = f(t) for all t ∈ R, and Bk+c = Bk , gk+c = gk and τk+c = τk + T for all k ∈ Z.

P.2 Conditions H.1–H.3 and H.5–H.6 are satisfied.

Then, the conclusions of Corollary 8.2.1.1 and Corollary 8.2.1.2 hold.

Finally, when the impulsive differential equation has a linear part with no delay,the center manifold is
smooth.

Corollary 8.2.1.4. Consider the semilinear impulsive system

ẋ = A(t)x+ f(t, xt), t 6= τk

∆x = Bkx+ gk(xt−), t = τk.

If conditions H.1–H.3, H.5–H.8 are satisfied and, additionally, the linearization is spectrally separated when
considered as a finite-dimensional impulsive system with phase space Rn, then this system posessses a Ck

center manifold.
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Proof. Under the spectral separation assumption, there exist projectors Ps, Pc, Pu onto the center, stable and
unstable subspaces respectively of the linearization, considered as a finite-dimensional system. Let X(t, s)
be its corresponding Cauchy matrix, and define the projectors on RCRc,

Pi(t)φ(θ) = X(t+ θ, t)Pi(t)φ(0),

for i ∈ {c, u}, and Ps = I − Pc − Pu. It can be verified that, considered as an impulsive delay differential
equation with phase space RCR, the the linearization is spectrally separated, with Pi the projectors onto
the invariant fiber bundles.

Let ||X(t, s)Pc(s)|| ≤ Keε|t−s| by spectral separation. The evolution family restricted to the center fiber
bundle admits the representation

Uc(t, s)φ(θ) = X(t+ θ, s)φ(0),

so that we can write Uc(t, 0) = α(t)eQt with α(t) = X(t+ ·, 0)e−εIt and Q = εI. It follows that ||α(t)|| ≤ K,
so H.9 is satisfied. The result follows by Corollary 8.2.1.1.

8.3 A periodic center manifold

In this section we will prove that the center manifold is itself a periodic function, provided the conditions
P.1–P.2 of Corollary 8.2.1.3 are satisfied. We begin with a preparatory lemma.

Lemma 8.3.1. Define the operator Ns : RCRc(s)→ RCRc(s) by

Ns(φ) = Pc(s)S(s+ jT, s)C(s, φ).

This operator is well-defined and invertible in a neighbourhood of 0 ∈ RCRc(s). Moreover, the neighbourhood
can be written U ∩RCRc(s) for some open neighbourhood U ⊂ RCR of 0 ∈ RCR, independent of s.

Proof. To show that Ns is invertible in a neighbourhood of the origin we will use the inverse function theorem.
The Fréchet derivative of Ns at 0 is given by

DNs(0)φ = Pc(s) ◦DS(s+ jT, s)(0) ◦DC(s, 0)φ

= Pc(s+ jT ) ◦ U(s+ jT, s)φ

= Uc(s+ jT, s)φ,

where we used Corollary 8.2.1.1 to calculate DC(s, 0) and Theorem 5.1.1 to calculate DS(s+jT, s)(0). Since
U(s+ jT, s) is an isomorphism (Theorem 7.2.1) of RCRc(s) with RCRc(s+ jT ) = RCRc(s), we obtain the
claimed local invertibility.

To show that the neighbourhood may be written as claimed, we notice that DNs(x) is uniformly conver-
gent (in the variable s) as x→ 0 to DNs(0). Indeed, we have the estimate

||DNs(x)−DNs(0)|| ≤ ||Uc(s+ jT, s)Pc(s)|| · ||DC(s, x)−DC(s, 0)||,

and the Lipschitz property of Corollary 8.2.1.2 together with uniform boundedness of the projector Pc(s)
and center monodromy operator Uc(s+ jT, s) grants the uniform convergence as x→ 0. As a consequence,
the implicit function may be defined on a neighbourhood that does not depend on s.

Theorem 8.3.1. There exists δ > 0 such that C(s+ jT, φ) = C(s, φ) for all s ∈ R whenever ||φ|| ≤ δ.
Proof. By Lemma 8.3.1, there exists δ > 0 such that if ||φ|| ≤ δ, we can write φ = Ns(ψ) for some
ψ ∈ RCRc(s). By Theorem 5.4.2 and the periodicity condition P.1,

C(s+ jT, φ) = C(s+ jT,Ns(ψ))

= C(s+ jT, Pc(s+ jT )S(s+ jT, s)C(s, ψ))

= S(s+ jT, s)C(s, ψ)

= S(s, s− jT )C(s, ψ)

= C(s, Pc(s)S(s, s− jT )C(s, ψ))

= C(s, Pc(s)S(s+ jT, s)C(s, ψ))

= C(s,Ns(ψ)) = C(s, φ),
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where the identity S(s+ jT, s) = S(s, s− jT ) follows due to periodicity and uniqueness of solutions.

9 Examples

This section contains three examples illustrating our main results. The first, in Section 9.1, is an explicit
derivation of the dynamics on the center manifold for a class of scalar nonautonomous impulsive delay
differential equations. Section 9.2 considers a particular case of such a system: the delayed logistic equation
with linear impulsive harvesting. Finally, in Section 9.3 we consider an abstract mathematical model of
infectious disease with pulse vaccination, incubation period and temporary immunity.

9.1 Reduction principle for a scalar nonautonomous system

In this section we compute to leading order the reduced vector field on the center manifold associated to a
class of scalar impulsive delay differential equations. Our prototype system is of the form

ẋ = a(t)x+ f(t, xt), t 6= τk (60)

∆x = bkx+ gk(xt−), t = τk. (61)

Here we do not assume any periodicity conditions, but we will assume that f(t, ·) and gk(·) are C2 with
f(t, 0) = gk(0) = 0 and D2f(t, 0) = D1gk(0) = 0, so that the linearization of the above system takes the
form of the finite-dimensional system

ẏ = a(t)y, t 6= τk (62)

∆y = bky, t = τk. (63)

Theorem 9.1.1. Let the nonlinearities f and g be C2 in RCR and satisfy the conditions H.3, H.5, H.6
and H.8, and let the sequence of impulses satisfy H.7. Suppose bk > −1 for all k ∈ Z and the linear term
a : R→ R is locally integrable. Define the function κ : R2 → R by

κ(t, s) =

∫ t

s

a(µ)dµ+

t∑
s

log(1 + bi)dτi. (64)

and suppose γ = lim sup|t−s|→∞ |κ(t, s)| < ∞. Then, system (60)–(61) has a one-dimensional C2 center
manifold, the unstable subspace is trivial, and the dynamics restricted to the center manifold are given to
leading order by the scalar impulsive differential equation

ż = a(t)z + f(t)z2 +O(z3), t 6= τk (65)

∆z = bkz + gkz
2 +O(z3), t = τk, (66)

with quadratic coefficients f(t) = 1
2D

2
2f(t, 0)X(t)2 and gk = 1

2D
2
1gk(0)X(τ−k )2, where X ∈ PC is defined by

X(t)(θ) = exp(κ(t+ θ, t)) and the limit X(τ−k ) is the usual pointwise (at θ = 0) limit.

Proof. The condtion γ < ∞ implies that (62)–(63), considered as a finite-dimensional impulsive system, is
spectrally separated with projector Pc = I, with evolution family X(t, s). By Corollary 8.2.1.4 we obtain
the C2 smoothness of the center manifold. By the proof of the aforementioned corollary, we have the
representation

Uc(t, s)φ(θ) = X(t+ θ, s)φ(0), Pc(t)φ = X(t+ ·, t)φ(0)

for the evolution family in RCRc, and the associated projector.
To compute the dynamics on the center manifold, we use Theorem 6.1.1 keeping in mind RCRc(t) =

span{X(t+ ·, t)}. Equation (45)–(46) implies that the dynamics on the center manifold are given to leading
order by the impulsive partial differential equation

d+w(t) = A(t)w(t) +X(t+ ·, t)1

2
χ0D

2
2f(t, 0)w(t)2 +O(w3)

∆w(τk) = Bkw(τ−k ) +X(τk + ·, τk)
1

2
χ0D

2
1gk(0)w(τ−k )2 +O(w3)
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with the linear differential- and difference operators

A(t)φ(θ) = χ0(θ)a(t)φ(0) + (1− χ0(θ))∂θφ(t)(θ), Bkφ(θ) = χ0(θ)bkφ(0) + (1− χ0(θ))[φ(θ)− φ(θ−)],

and the expansion being justified by Corollary 8.2.1.2. Introducing coordinates w(t)(θ) = X(t+ θ, t)z(t) for
some z(t) ∈ R, we remark that by setting θ = 0 we obtain the identity z(t) = w(t)(0), from which it follows
that z ∈ RCR1(R,R) satisfies the impulsive differential equation (65)–(66) – this last may be obtained by
evaluating the above impulsive partial differential equation at θ = 0 and exploiting the bilinearity of the
second differentials and the representation w(t) = X(t)z(t).

9.2 Dynamics of a delayed logistic impulsive harvesting model

As an application of Theorem 9.1.1, let us consider the delay logistic growth model for a single species,
subject to linear harvesting:

ẋ = r(t)x

(
1− x(t− τ)

K(t)

)
, t 6= tk

∆x = −ρx(t−k ), t = tk.

Here, the functions r(t) and K(t) are taken to be positive. Assuming the sequence tk is T periodic with c
impulses per period and the intrinsic growth rate r(t) is also T periodic, the linearization at the origin for
the above system has a one-dimensional center fiber bundle whenever the harvesting effort ρ ∈ (0, 1) satisfies
the equation

(1− ρ)c exp

(∫ T

0

r(s)ds

)
= 1. (67)

Much of the results of the aforementioned section apply if the parameter is taken as an additional state
variable, so that one may study bifurcaions near the critical parameter ρ where equation (67) is satisfied.
We will not do this here, however, as such computational aspects and bifurcation theory are not in the scope
of this article.

When (67) is satisfied, applying Theorem 9.1.1 yields the dynamics on the center manifold described by
the impulsive differential equation

ż = r(t)z − r(t)

K(t)
exp

−∫ t

t−τ
a(s)ds−

∑
t−τ<tk≤t

log(1− p)

 z2 +O(z3), t 6= tk

∆z = −ρz(t−k ) +O(z3), t = tk.

9.3 Dynamics near disease-free solutions in a susceptible-infected model with
pulse vaccination, incubation period and temporary immunity

Consider the following model of disease transmission

Ṡ = −g(t, I(t))S(t) +W (Rt) t 6= tk (68)

İ = g(t, I(t− τ))S(t− τ)− hI(t), t 6= tk (69)

Ṙ = hI(t)−W (Rt), t 6= tk (70)

∆S = −ρS(t−k ), t = tk (71)

∆R = ρS(t−k ), t = tk. (72)

S, I and R denote the susceptible, infected and immune/vaccinated cohorts, respectively. The function
g(t, I) is the per capita infection rate and τ > 0 is the incubation period. Infected individuals clear their
infection at rate h and are then immune, before subsequently losing their immunity rate W (Rt) for some
functional W : RCR([−r, 0],R) → R. A proportion ρ ∈ (0, 1) of susceptible individuals are successfully
vaccinated at times tk, and these individuals subsequently obtain temporarity immunity subject to waning
as if they had just cleared their infection. We make the following assumptions.

42



SIR.1 The per capita infection rate g(t, ·) is Ck in its second variable, uniformly in t, periodic in its first
variable and satisfies g(t, 0) = 0 and g(t, I) > 0 for I > 0.

SIR.2 The waning rate W : RCR([−r, 0],R) → R is Ck smooth, globally Lipschitz continuous, and satisfies
W (R) ≥ 0 for R ≥ 0 and W (0) = 0.

SIR.3 The sequence of vaccination times tk is periodic with period T and c impulses per period.

The first step in our analysis will be to study the invariant disease-free subsapce – that is, the region of
phase space where I ≡ 0 – and identify a one-parameter family of bounded (periodic) solutions. We will
then translate this family of solutions to the origin and obtain an impulsive delay differential equation that
posesses a Ck center manifold on which all bounded solutions must reside.

On the infection-free subspace the dynamics are given by

Ṡ = W (Rt) t 6= tk (73)

Ṙ = −W (Rt), t 6= tk (74)

∆S = −ρS(t−k ), t = tk (75)

∆R = ρS(t−k ), t = tk. (76)

Lemma 9.3.1. Equation (73)–(76) admits a one-parameter family of periodic solutions (SN , RN ) satisfying
the equation SN + RN = N for N > 0. If the waning rate has a sufficiently small Lipschitz constant, there
is only one such family of periodic solutions and it is globally attractive.

Proof. It is easily verified that the positive orthant of (73)–(76)is positively invariant and that the lines
S +R = N are invariant for fixed N > 0. Taking N as a parameter, we may write

Ṡ = W (N − St), t 6= tk

∆S = −ρS(t−k ), t = tk.
(77)

From the above discussion, the closed convex set K = {φ ∈ RCR : 0 ≤ φ ≤ N} is positively invariant under
the process S(t, s) associated to (77). Without loss of generality, assume T ≥ r. The monodromy operator
M : K → K with Mφ = S(T, 0)φ is therefore well-defined. M is continuous by Theorem 5.1.1 and from
the Lipschitz assumption on the waning rate W , it is easy to verify that M(K) is uniformly bounded and
quasiequicontinuous; see the similar proof of Lemma 7.1.1. Thus, M(K) is precompact [2], and the Schauder
fixed point theorem implies the existence of a fixed point X lying in K. Define Y = N − X ∈ K. The
invariance of S + R = N for (73)–(76) and X being a fixed point of the monodromy operator allows us to
conclude that the solution (SN , RN ) through (X,Y ) is a periodic solution satisfying SN +RN = N .

To obtain uniqueness for waning rates with small Lipschitz constants, we note that S(t, 0) satisfies the
integral equation

S(t, 0)φ =

∫ t

0

U(t, s)W (N − S(s, 0)φ))ds,

where for t ≥ 0, U(t, 0)φ(θ) = φ(0)
∏

0<tk≤t(1− p) satisfies an exponential estimate of the form ||U(t, 0)|| ≤
e−ct for some c > 0. If W has Lipschitz constant γ, then denoting Z(t) = S(t, 0)φ − S(t, 0)ψ for given
φ, ψ ∈ RCR, we obtain the integral estimate

ect||Z(t)|| ≤ ect||φ− ψ||+
∫ t

0

γecs||Z(s)||ds,

which together with the Gronwall inequality implies the Lipschitzian estimate

||S(T, 0)φ− S(T, 0)ψ||| ≤ γ

c+ γ

(
eγT − e−cT

)
||φ− ψ||.

The monodromy operator S(T, 0) : RCR → RCR is a contraction when γ is small enough. Iterating from
0 < S0 ∈ RCR, the fixed point is positive due to the positive invariance of the convex set K. A similar
construction to the above yields the unique positive periodic solution satisfying SN + RN = N . Global
attraction follows because S(T, 0) is a contraction.
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Next, we introduce the change of variables S = z1 + SN and R = z2 + RN to translate the positive
disease-free periodic solution of Lemma 9.3.1 to the origin. Doing so, writing the equation in an explicitly
semilinear form and denoting I = z3, we obtain

ż(t) =

 −∂2g(t, 0)χ0 0 DW (RNt )
∂2g(t− r, 0)χ−τ −hχ0 0

0 hχ0 −DW (RNt )

 zt +

 −g(t, 0, zt) + WN (t, zt)
g(t,−r, zt)
−WN (t, zt)

 , t 6= tk

∆z1(t) = −ρz1(t−k ), t = tk

∆z3(t) = ρz1(t−k ), t = tk,

(78)

where zt = ((z1)t, (z2)t, (z3)t) ∈ RCR([−r, 0],R3) and we introduce auxiliary functions

WN (t, φ) = W (φ3 +RNt )−W (RNt )−DW (RNt )φ3

g(t, θ, φ) = g(t+ θ, φ2(θ))φ1(θ)− ∂2g(t+ θ, 0)φ1(θ).

Note that the origin (0, 0, 0) ∈ RCR is now an equilibrium point. The dimension of the center manifold of
the semilinear system (78) is equal to that of the center fiber bundle of its linear part. Since the latter is
finite-dimensional (by Theorem 7.2.1), we obtain the following description of the the bounded solutions of
the original system due to Theorem 5.4.2 and Corollary 8.2.1.3.

Corollary 9.3.0.1. Every solution of the SIR model (68)–(72) with a uniformly small infected component
I � 1 and near-equilibrium disease-free components |S + R − N | � 1 for some constant N , is contained
within a finite-dimensional global center manifold, up to translation by a particular disease-free periodic orbit
of constant population size. The center manifold is Ck and periodic.

Further analysis is necessary to determine the dimension of the center manifold or compute the dynamics
restricted to it. Such investigations are beyond the scope of this article, as they necessitate a method to
analytically compute the portion of the Floquet spectrum on the unit circle for linear periodic impulsive
systems with delays.

10 Conclusion

We proved (Theorem 5.4.1) the existence of a Lipschitz continuous global center manifold for the impulsive
delay differential equation (1) under the assumption of C1 smoothness of the nonlinear portion of vector
field and jump map, in addition to a spectral separation condition on the linearization and some technical
requirements concerning the uniform boundedness in time for the nonlinearities in a neighbourhood of zero.
The center manifold is defined through a function C : RCRc → RCR where RCRc is the center fibre bundle
associated to the linearization. Under the conditions of the theorem, the center manifold is in fact uniformly
Lipschitz continuous (Corollary 5.4.1.1), in that the Lipschitz constant can be chosen independent of the fiber
RCRc(t). Under the same assumptions, we proved the a reduction principle in Section 6. The invariance of
the center manifold was proven (Theorem 5.4.2), as was its attraction (Theorem 6.2.1). The reduced flow
and integral equations on the center manifold were also derived (Section 6.1).

In order to establish the existence of the center manifold, it was necessary to derive a variation of constants
formula (Theorem 4.2.1) associated to the inhomogeneous linear equation (4)–(5). The integral equation
defining mild solutions of the nonlinear equation (1)–(2) was then defined in Section 5.1, where it was proven
that the nomautonomous process associated to the aforementioned integral equation is smooth (Theorem
5.1.1).

To prove the smoothness of the center manifold (Corollary 8.2.1.1) and its tangency at the origin to the
center fiber bundle RCRc, it was necessary to smooth the nonlinearities in a slightly different way. We also
imposed the additional assumption H.9 that the flow on the center fiber bundle of the linearization admitted
a decomposition as an exponential composed with a uniformly (in time) bounded linear operator. In this
case, each derivative of C is Lipschitz continuous, with Lipschitz constant independent (Corollary 8.2.1.2) of
the fiber RCRc(t).

Many of the technical requirements needed for our proof of the existence and smoothness of center
manifolds are automatically satisfied when the linear part of the system in question is does not feature delays
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(Corollary 8.2.1.4), although this class of models is fairly small. Since so many nonlinear models feature
periodicity, we made a concerted effort to develop enough of the Floquet theory for periodic linear impulsive
delay differential equations (Section 7) to guarantee the existence and smoothness of center maoifolds under
the assumption that the linear part is periodic (Corollary 8.2.1.3). In this case, we obtain the expected result
that the center manifold is itself a periodic function (Theorem 8.3.1) provided the entire quasilinear system
is periodic.
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Appendix

This section contains a lemma on smoothness of compositions of mappings on scales of Banach spaces. The
lemma and several modifications thereof appear in [9, 27, 19] among others. To keep the article mostly
self-contained, we include it here.

Lemma 10.0.1 (Lemma 6.7 [9]). Let Y0, Y, Y1 be Banach spaces with continuous embeddings J0 : Y0 ↪→ Y
and J : Y ↪→ Y1 and let Λ be another Banach space. Consider the fixed-point equation y = f(y, λ) for
f : Y × Λ→ Y . Suppose the following conditions hold.

b1) The function g : Y0×Λ→ Y1 defined by (y0, λ) 7→ g(y0, λ) = Jf(J0y0, λ) is of class C1 and there exist
mappings

f (1) : J0Y0 × Λ→ L(Y ),

f
(1)
1 : J0Y0 × Λ→ L(Y1)

such that D1g(y0, λ)ξ = Jf (1)(J0y0, λ)J0ξ for all (y0, λ, ξ) ∈ Y0 × Λ × Y0 and Jf (1)(J0y0, λ)y =

f
(1)
1 (J0y0, λ)Jy for all (y0, λ, y) ∈ Y0 × Λ× Y .

b2) There exists κ ∈ [0, 1) such that f(·, λ) : Y → Y is Lipschitz continuous with Lipschitz constant κ, and

each of f (1)(·, λ) and f
(1)
1 (·, λ) is uniformly bounded by κ.

b3) Under the previous condition, the unique fixed point Ψ : Λ → Y satisfying the equation Ψ(λ) =
f(Ψ(λ), λ) itself satisfies Ψ = J0 ◦ Φ for some continuous Φ : Λ→ Y0.

b4) f0 : Y0 × Λ→ Y defined by (y0, λ) 7→ f0(y0, λ) = f(J0y0, λ) has a continuous partial derivative

D2f : Y0 × Λ→ L(Λ, Y )

b5) The mapping (y, λ) 7→ J ◦ f (1)(J0y, λ) from Y0 × Λ into L(Y, Y1) is continuous.

Then, the mapping J ◦ Ψ is of class C1 and D(J ◦ Ψ)(λ) = J ◦ A(λ) for all λ ∈ Λ, where A = A(λ) is the
unique solution of the fixed point equation A = f (1)(Ψ(λ), λ)A+D2f0(Φ(λ), λ).
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