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a  b  s  t  r  a  c  t

Traditionally,  the  spread  of  infectious  diseases  in  human  populations  has  been  modelled  with  static
parameters.  These  parameters,  however,  can  change  when  individuals  change  their  behaviour.  If these
changes  are  themselves  influenced  by  the disease  dynamics,  there  is scope  for  mechanistic  models  of
behaviour  to improve  our  understanding  of this  interaction.  Here,  we present  challenges  in modelling
changes  in  behaviour  relating  to disease  dynamics,  specifically:  how  to incorporate  behavioural  changes
in  models  of  infectious  disease  dynamics,  how  to  inform  measurement  of  relevant  behaviour  to  param-
eywords:
ehaviour
odel

nfectious disease dynamics
ovement and travel

eal-time data collection

eterise  such  models,  and how  to  determine  the  impact  of  behavioural  changes  on  observed  disease
dynamics.

© 2014  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY-NC-SA
license  (http://creativecommons.org/licenses/by-nc-sa/3.0/).
eporting

ntroduction

Human behaviour may  be influenced by a myriad of fac-
ors ranging from media to person-to-person communication. The
ehavioural response towards an infectious disease (e.g., whether
o get vaccinated, or whether to stay at home during an epidemic) is
haped by a combination of these influences, and how people evalu-
te them with respect to the alternatives. Additionally, behavioural
esponses are influenced by various factors, such as religious or
ultural beliefs and norms, that can be clustered both spatially
nd socially. Even within social groups, there is individual-level
ariability, and responses are constrained by our personal circum-
tances. For example, people may  be asked or feel obliged to turn
p for work irrespective of whether they feel at risk of infection.

The interrelationship between the spread of an infectious dis-

ase and the behaviour towards it is subject to a number of dynamic
eedbacks. Specifically, an outbreak of an infectious disease can trig-
er behavioural responses, which in turn can affect the course of the
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epidemic. Mathematical models provide an invaluable tool to study
such feedbacks. Yet, behavioural dynamics have, until recently,
rarely been incorporated in models of infectious disease dynam-
ics. Taking into account individual behavioural heterogeneities and
shifts in such models can be important because (1) predictions may
be unreliable if they fail to take into account behavioural dynam-
ics and (2) most policies target individual-level behaviour and not
macro-scale dynamics.

To formulate models in which infectious disease dynamics and
behaviour are interdependent, we need to understand the mech-
anisms behind any mutual influence. To what extent do people
themselves, their social “networks”, media opinion leaders, or
health care providers affect individual behaviour? And how are the
perceptions that determine behaviour influenced by properties of
an infection, such as its prevalence or severity? There are often sev-
eral ways of interpreting the same influence; in the case of disease
prevalence, for example, people could respond to current preva-
lence, recent prevalence, or historical prevalence. Disease severity

also affects behaviour (Sadique et al., 2013), but the relationship
is not necessarily straight-forward: different responses will be
prompted by a disease that infects 50% of a population and kills 1%
of those infected versus an infection that infects only 0.5% but kills
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hem all. Lastly, knowing that “No man  is an island, . . .any man’s
eath diminishes me,  because I am involved in mankind,” people
ight be aware of external risks, but are not necessarily good at

stimating their chance of occurring.
The following challenges relate to the overarching questions of

ow to incorporate behavioural changes in models of infectious
isease dynamics. We  do not aim to provide a new perspective
r comprehensive review on these topics, which can be found in
umerous recent works (Ferguson, 2007; Funk et al., 2010; Bauch
nd Galvani, 2013; Manfredi and d’Onofrio, 2013). Instead, our goal
s to summarise some open questions and challenges in the field
hat are an important focus of immediate research, and that we
ope will serve as an entry point for those interested in getting

nvolved.

. Set the baseline and determine the effect of departing
rom it

A key challenge underlying many of the points addressed in this
aper is to set an appropriate baseline of behaviour. Two  impor-
ant “baseline” behaviours stand out, one related to mixing, that
s how people go about activities of daily life that involve some
isk of infection (e.g., going to school, or having sex) and the other
elated to disease prevention and control. The contact baseline, or
he “normal mixing” behaviour, can be disrupted by an epidemic
hrough a number of mechanisms. For example, individuals can
hoose to change their behaviour in an attempt to reduce their risk
Auld, 2003), or their behaviour can be influenced by the nature
f being ill (Lloyd-Smith et al., 2004; Van Kerckhove et al., 2013),
oth of which affect contact patterns. The other relevant “baseline”
efers to people’s inherent willingness to partake in preventative
ehaviours; most people, for example, follow official recommen-
ations and have their children vaccinated.

A “baseline” or equilibrium might be attained through game
heoretic analysis (Gersovitz, 2013; Geoffard and Philipson, 1997)
nder the assumption that people make rational decisions by
eighing up the private benefits and costs of different options,

ielding a certain fraction of the population seeking vaccination,
r adopting safe sex. In the absence of data on such “baseline”
ehaviour, the theoretical equilibrium can provide a useful start-

ng point. This can then be disrupted by some event, such as
he Measles–mumps–rubella (MMR)  scandal in the United King-
om. How exactly and under which circumstances such disruptions
anifest themselves is an open research question, and one that

an only be answered by relating game-theoretical or other mod-
lling approaches more closely with independent observations of
ehaviour.

. Assess how and to what extent behaviour should be
odelled explicitly

During model development, an investigator must decide
hether to treat a given quantity as a dynamic one which evolves

n response to other quantities (a model “variable”), or as a fixed
alue that is exogenously imposed by the modeller (a model
parameter”). Traditional epidemic models account for behaviour
mplicitly through parameters such as the basic reproduction
umber. In contrast, modelling the dynamics of behaviour towards

nfectious diseases requires endogenising behaviour by making
t a model variable. However, this leaves questions about which
spects of behaviour should be endogenised, and which should

emain as model parameters. This is more than just a technical
ecision, because it has implications for how we  understand
nd interpret behavioural dynamics. A relevant question is: To
hat extent is vaccination behaviour determined by response to
 10 (2015) 21–25

disease dynamics, and to what extent is it determined by vaccine
availability and social norms? In other words, to what extent are
vaccine scares historical accidents (exogenous treatment), and to
what extent are they enabled by the inherent instability of high
vaccine coverage caused by vaccine-generated herd immunity
(endogenous treatment)?

Intuitively, if behaviour depends on quantities that change
rapidly, such as disease dynamics in a fast-expanding outbreak,
then behaviour should probably be represented endogenously. If
behaviour depends on quantities that change more slowly, such as
social norms or vaccine supply, then it might be possible to rep-
resent behaviour through a model parameter. Which of the two
scenarios applies, however, also depends on the timescales consid-
ered, as social norms and vaccine supply do evolve, yet over long
periods. The question of whichever approach is most appropriate in
a given scenario can be addressed more rigorously by formulating
a collection of variant models where different aspects of behaviour
are treated as variables or parameters, and then using model selec-
tion methods to determine which variant model best explains the
data.

3. Determine the minimal level of detail required to model
differences in behaviour

How much psychological detail is required for models to be
able to capture the dynamics of population-level behaviour? There
are many different models of health-related behaviour in psychol-
ogy, but for epidemiological purposes a crude understanding of
the major drivers and their relative strength is probably sufficient.
In the same way that thermodynamic laws are not formulated to
depend on the details of molecular-level dynamics, can we  model
population-level behaviour in a simple, aggregate way without
explicit reference to individual-level dynamics?

The key challenge then becomes heterogeneity. How well does
the simple model work for everybody? Are there identifiable groups
whose response is predictably different, and how important are
they epidemiologically? Is there a “landscape” of predispositions
to certain behaviours (i.e., will some people be more inclined to
follow official guidelines than others)? If yes, do people fall into
discrete groups or is that landscape continuous? For example,
are risk-averse versus risk-seeking tendencies bimodal, or dis-
tributed across a more continuous distribution? How do individuals
perceive risks of both infection and adverse effects from control
measures and how does the perception of risk change with disease
prevalence in the population?

Many of these questions have been studied in econometrics
(Gersovitz, 2013), but it remains an open challenge to trans-
late these insights into mechanistic models of infectious disease
dynamics. Exploring these questions in mechanistic models and
testing different scenarios could yield the limits as well as strengths
of “simpler” models, as well as suggest appropriate studies (e.g.,
through population surveys) that would directly inform model
parameters.

4. Quantify changes in reporting behaviour

Data used to track an epidemic typically rely on reporting by
individual doctors or hospitals, and therefore depend on how many
people seek medical care, how likely doctors are to identify a case
correctly, and how likely they are to report it. How does people’s
health-seeking behaviour change during the course of an outbreak?

The propensity to visit a doctor is likely to depend on levels of
concern and on public health messages, both of which are sub-
ject to change as an outbreak progresses. Evidence from the 2009
flu pandemic in the UK suggested that individuals’ likelihood of
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onsulting a doctor decreased radically over the course of the
pidemic (Brooks-Pollock et al., 2011), and the increasing avail-
bility of online surveillance of influenza-like illness elsewhere
pens promising avenues for similar studies. Likewise, doctors’
iagnosis and reporting behaviour may  change, depending on
amiliarity with a condition and perceptions about which infec-
ions are currently common. Changes may  take place gradually as
ttitudes evolve, or suddenly in response to significant changes in
he reporting system, for example the UK’s introduction of a tele-
hone and internet service midway through the 2009 pandemic
Harcourt et al., 2012).

Some models have attempted to draw together evidence from
arious sources to account for changing reporting behaviours
Birrell et al., 2011), but in general more information is needed.
aboratory testing of cases defined on the basis of symptoms alone
rovides a useful validation of doctors’ diagnoses, but fails to cap-
ure those individuals who do not seek treatment. Work is required
o better integrate medically attended case series with commu-
ity surveillance, particularly surveillance that explicitly monitors
rends in health-care seeking behaviour (Rubin et al., 2009; Brooks-
ollock et al., 2011), to “cut out the middle man” (the doctor) and
etter understand the true epidemic picture, and the behavioural
rivers that may  distort our measurements.

. Predict the response to interventions and health
ampaigns

With better availability of drugs and vaccines, successful con-
rol of infectious diseases is increasingly dependent on compliance
f individuals with implemented measures. Improving the design
nd evaluation of control strategies therefore first requires deeper
nderstanding of human behaviour, its variability and the drivers
f its change. Can we predict the response to a health campaign?

Such responses can vary greatly both within and between
opulations, and depend on cultural circumstances, details of the

nfection, and the health campaign in question, as the examples of
olio in Pakistan or measles in the UK (with differences in behaviour
efore and after the perfidious Wakefield study alleging a link
etween the MMR  vaccine and autism) demonstrate. Moreover, the
uccesses of a health campaign may  vary due to the passive (requir-
ng members of population to seek health measures) or active
bringing health measures to the individuals of a population) nature
f the campaign. How much do the details of implementation mat-
er? Can a single spokesperson make a difference? Can a campaign
nd up doing more harm than good? When we  model interven-
ions, how do we account for change in behaviour in response to
nterventions?

Analysis of uptake statistics linked to knowledge of campaigns
ould be a starting point to answer these questions, but how these

re best translated into models for infectious disease dynamics
emains an open question.

. Identify the role of movement and travel

Infectious diseases and their dynamics are tightly linked with
ovement and travel. On one hand, population movement can

rive local disease transmission and its seasonality, as in sub-
aharan Africa where increases in urban density during the dry
eason cause episodic measles outbreaks (Ferrari et al., 2008). On
he other hand, disease can be a strong driver of movement by caus-
ng people to flee disease-hit areas, especially dense urban centres

e.g., plague and cholera in historical London). This can have nega-
ive consequences for destination locations, especially if migrants
re unknowingly infected (Mesnard and Seabright, 2009). Alterna-
ively, people may  choose to minimise their trips in response to
 10 (2015) 21–25 23

outbreaks and engage in self-protecting behaviour by cancelling
their flights, indicating that they value the reduction in perceived
risk of infection more than the money spent on airfare (Fenichel
et al., 2013). The ability of people to flee will depend on various
factors including socioeconomic conditions, family structure, and
non-local contacts, highlighting the importance of understanding
the heterogeneity in causes and effects of disease-driven move-
ment.

As a result of lower density of the remaining population, indi-
viduals’ contact networks may  shrink, reducing local transmission.
In contrast, medical and emergency response personnel are likely
to experience an increase in their numbers of contacts. But how
exactly do contact networks change in response to infection and to
what extent are these dynamics dependent on where an infection
is? Given that most contact patterns are measured in the absence of
disease (Mossong et al., 2008), how useful are these studies for pre-
dicting disease spread and assessing control measures? Combining
our understanding of basic human mobility and migration patterns
(González et al., 2008; Simini et al., 2012) with the behaviour “base-
line” (see Challenge 1) offers a good starting point to model the
effects of changes in movement and travel on diseases.

7. Develop models that can be verified against data from
digital sources

Data on individual and population behaviour concerning infec-
tious diseases have historically been scarce. However, the recent
advent of new digital sources may  change that (Salathé et al., 2012).
These sources include online social media, mobile phone data, Blue-
tooth data, electronic texts, search engine data, sales data and other
sources of data now routinely collected by companies and insti-
tutions. For example, researchers have used data from Twitter to
study awareness and sentiments regarding influenza outbreaks and
vaccines (Salathé and Khandelwal, 2011; Signorini et al., 2011).
Other promising digital sources include usage data for websites
like Wikipedia (McIver and Brownstein, 2014), and search engine
data, such as available through Google Flu Trends (Ginsberg et al.,
2009), although challenges clearly remain (Butler, 2013). Any scien-
tific model must ultimately be testable against data, hence we  must
develop models that can be tested against the kind of data that are
available. Relevant challenges include: How can we be more cre-
ative about using “new” data sources to develop models? Can we
use digital media to set up our own experiments to answer some
of the challenges posed here and thus inform model development?
Which statistical models can be used, and which new ones need to
be developed, to synthesise information derived from digital media
with information derived from more traditional sources, such as
cross-sectional population surveys, inside or outside of a modelling
framework?

In this way, the weaknesses of one type of data may  be compen-
sated by the strengths of the other. Existing data on behaviour were
often not collected with the purpose of model parameterisation in
mind, so it can be difficult to find appropriate data for parameter-
ising behavioural models; therefore modellers will often have to
collect the data themselves. Because digital data sources are often
resolved at the individual level, individual-based models and net-
work simulations lend themselves naturally to such applications.

8. Inform real-time data collection

Data on behavioural change in response to an epidemic (or

similar) shock are key for parametrising models of infectious dis-
ease dynamics. In an ideal situation, collecting these data during
a real epidemic would provide the rare opportunity to measure
behaviours in response to local and global information about
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isease spread, as well as simultaneous measurement of the pos-
ible drivers of behaviour change. However, collecting these data,
ven if key drivers are known, is very difficult and, consequently,
arely done (Rubin et al., 2009; Van Kerckhove et al., 2013).

An alternative approach may  be the collection of data on hypo-
hetical scenarios. The advantage of a hypothetical scenario is that
esearchers can gain information on many different sorts of events,
nd studies can be repeated among many different population
amples. However, hypothetical studies can be expensive and the
alue of these studies remains controversial. In this situation, epi-
emiological models, in addition to being consumers of data on
ehavioural response and change, can also be used to inform real-
ime collection of data on behaviour. What sample sizes should
e used to robustly detect changes in behaviour? Which obser-
ation window must be used to robustly parameterise models?
re there “sentinel” individuals that can be observed to minimise
esources and maximise prediction accuracy? While making use of
odels when planning studies may  not solve practical limitations

f cohort recruitment, it will make the rare opportunities of real-
ime behavioural data collection a more efficient process so models
an more accurately reflect behaviour and make better predictions.

. Engage in dialogue across disciplines

Many of the issues discussed in this work touch on research that
s being done in a number of different disciplines, from psychology
o sociology, economics, epidemiology and mathematics. Different
pproaches are traditionally used in different fields, and rarely do
esults attained in one area get used in another. A recent book has
one to laudable lengths to include chapters from economists as
ell as mathematical biologists (Manfredi and d’Onofrio, 2013),

ut, clearly, much work remains to be done in an area where clearly
here is great scope for cross-fertilisation of ideas and methods.

onclusions

Behavioural heterogeneities and changes play an important
ole in many areas of infectious disease dynamics, from vaccine-
reventable infections (Metcalf et al., 2015) and eradication efforts
Klepac et al., 2015), to network modelling and measurement
Eames et al., 2015; Pellis et al., 2015). Designing and validat-
ng models of behaviour towards infectious diseases and changes
herein is challenging. Nonetheless, while it may  be impossible to
apture the behaviour of a given individual, it may  be more feasible
o predict behavioural averages and distributions. Consequently,
opulation-scale behaviour may  be amenable to modelling (Funk
t al., 2010), and even where it is not, it remains important to
dentify the limits of predictability and propagate uncertainty onto

odel uncertainty.
With these challenges addressed, models of infectious diseases

hat include human behaviour can make the important transition
rom theoretical models of what–if scenarios to becoming relevant
or policy decisions (Edmunds et al., 2013; Metcalf et al., 2015).
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