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ABSTRACT

Resource over-exploitation can have profound effects on both ecosystems and the human populations

residing in them. Models of population growth based on a depletable resources have been studied

previously, but relatively few consider metapopulation effects. Here we analyze a socio-ecological

metapopulation model where resources grow logistically on each patch. Each population harvests

resources on its own patch to support population growth, but can also harvest resources from other

patches when their own patch resources become scarce. We find that allowing populations to harvest

from other patches significantly accelerates collapse and also increases the parameter regime for which

collapse occurs, compared to a model where populations are not able to harvest resources from other

patches. As the number of patches in the metapopulation increases, collapse is more sudden, more

severe, and occurs sooner. These effects also persist under scenarios of asymmetry and inequality

between patches. We conclude that metapopulation effects in socio-ecological systems can be both

helpful and harmful and therefore require urgent study.

Manuscript version from 19 September 2017.

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/195412doi: bioRxiv preprint first posted online Sep. 28, 2017; 

http://dx.doi.org/10.1101/195412
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Background1

Simple population dynamic models have long been used in theoretical population biology, beginning with

the logistic growth model developed by Verhulst [1]:

dN
dt

= rN
(

1− N
K

)
,

where N(t) is the population size at time t, r is the net growth rate, and K is the carrying capacity. This2

model represents resource-limited population growth reaching a carrying capacity K that is the largest3

population size that the resources of the environment can support. The logistic growth model and various4

extensions thereof are richly represented in the ecological literature and have been used as a framework to5

study population dynamics in a variety of species [2, 3, 4].6

Other literature has extended single population models to study metapopulation dynamics. A metapop-7

ulation is a collection of spatially distributed populations all belonging to the same species [5]. Metapopu-8

lation models provide important insight into interactions of connected populations. Previous research on9

metapopulations has identified phenomena such as the rescue effect and extinction debt. In a rescue effect,10

the local extinction of a population is prevented due to immigration of a neighboring population residing11

in the same metapopulation [6]. In contrast, extinction debt refers to an effect whereby destruction of a12

natural habitat has not only immediate impacts on populations, but also creates a ‘debt’ effect whereby13

future extinctions will occur as well long after habitat destruction has ceased [7].14

Although population growth models such as the logistic growth model have arguably found their15

fullest expression in ecology, Verhulst developed his model for application to human populations and16

he inferred the model’s parameter values using population data from Belgium and other countries. This17

interest in human populations may have been due to the influence of Thomas Malthus and his work ‘An18

Essay on the Principle of Population’, which is well known for its hypothesis that famine and poverty are19

mathematically inevitable [8].20

Malthus continues to influence our thought in a time of severe global over-consumption and resource21

depletion. Resource depletion has been conceptualized and quantified in various ways. For instance, recent22

literature identifies seven planetary boundaries that must not be transgressed if humans are able to live23
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sustainably on the planet, and finds that three of these boundaries have already been transgressed [9].24

More recently, researchers have introduced frameworks to describe the process by which over-25

consumption occurs. For instance, the red/green sustainability framework describes how populations26

become increasingly disconnected from their impacts as they urbanize [10]. In a ‘green’ phase, popula-27

tions are highly dependent on their local environment for their subsistence, and therefore feedback from28

environmental implications of human activity are quick to down-regulate the human activity. However, as29

populations develop and draw their resources from a global resource pool, their economic activities cause30

environmental impacts that are no longer felt by them but rather by geographically distant populations,31

weakening the short-term coupling between humans and their environment. This process is captured32

by, for instance, the linkages between local deforestation and high pressure for international agricultural33

exports [11], and the large dependence seafood markets in Japan, the United States, and the European34

Union on foreign sources [12].35

Although logistic growth models and its variations are most widely used in ecology, the application of36

population growth models to resource-limited human populations has also received attention, perhaps on37

account of our growing awareness of the possible ramifications of resource over-exploitation, especially in38

the face of environmental change [13]. Mathematical models have been used to study phenomena such as39

human population collapse in a model with resource dynamics [14] and conflict among metapopulations40

arising over common resources [15, 16]. Models have also been used to study historical human population41

collapses such as in the people of Easter Island [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], the Kayenta42

Anasazi [28], and the Andean Tiwanaku civilization [29], as well as collapse of modern populations43

[30, 31, 32, 33].44

With some exceptions [15, 16, 27, 34], most previous research on resource-limited population growth45

focuses on single populations and not on multi-population interactions. However, multi-population interac-46

tions through trade and other mechanisms are an inescapable feature of the world’s human metapopulation47

dynamic, and can have significant impacts on ecosystems and resource levels [35]. The literature on48

multi-population interactions has explored meta-population models involving migration of individuals49

between patches [28], or competing populations conflicting and bargaining over a common resource50

[15, 16]. A multi-patch model of human populations fitted to data from Easter Island has predicted51
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that coupling human populations together through exchange of resources, migration and technology can52

stabilize the entire metapopulation [27].53

In this paper we build on a previous single population model [18] to create a metapopulation model54

of resource-limited growth that captures mechanisms similar to the red/green sustainability framework.55

Populations grow logistically by exploiting a depletable resource that obeys a resource dynamic. Local56

populations can take resources not only from their own patch but also from other patches, when resources57

in their own patch become scarce. Our research objective was to determine whether the metapopulation58

collapses faster or more often when patches are allowed to harvest resources from other patches. We59

describe the model in the next section, followed by Results and a Discussion section.60

2. Model61

We build on a previous single-population model analyzed by Basener and Ross [18] who formulated a62

model whereby the population grows logistically to a carrying capacity that is proportional to the resource63

level. A second equation describes the logistic growth of resources to a separate carrying capacity, minus64

harvesting. We develop both two-patch and ten-patch versions of our model.65

Two-patch model66

In the two-patch model, patch 1 has population size P1 and resource level R1, and patch 2 has population67

size P2 and resource level R2:68

dP1

dt
= a1P1

(
1− P1

R1 +b1R2

)
(1)

dR1

dt
= c1R1

(
1− R1

K1

)
−h1P1−b2h2P2 (2)

dP2

dt
= a2P2

(
1− P2

R2 +b2R1

)
(3)

dR2

dt
= c2R2

(
1− R2

K2

)
−h2P2−b1h1P1 (4)

where a1,2 is the growth rate of patch 1 (resp. 2); c1,2 is the resource renewal rate in patch 1 (resp. 2); K1,269

is the carrying capacity of the depletable resource in patch 1 (resp. 2); h1,2 is the baseline harvesting rate70

at which patch 1 (resp. patch 2) harvests resources for its population’s consumption; b1 is the proportion71
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of resources that patch 1 takes from patch 2, and similarly for b2. In this model, the carrying capacity of72

the human populations is determined by how much resource is available to support them, either from their73

own patch or taken from the other patch. When b1 = b2 = 0 we recover the original model by Basener74

and Ross [18].75

We set b1 = b1(R1,P1) and assume that patch 1 will attempt to harvest more resources from patch76

2 when the resources from patch 1 are not enough to support the patch 1 population. Similarly, b2 =77

b2(R2,P2). These functions take the form78

b1(R1,P1) =
1

1+ e(β1−γ1P1/R1)
(5)

b2(R2,P2) =
1

1+ e(β2−γ2P2/R2)
(6)

These are sigmoidal functions where the rate at which patch 1 harvests from patch 2 is higher when P1/R179

is higher, and vice versa, where β1 > 0 controls the location of the mid-point of the sigmoid, and where80

γ1 > 0 controls how steep the curve is. Parameters β2 and γ2 are similarly defined.81

Ten-patch model82

We also analyzed a version of the model where ten patches are interconnected and can take resources from83

one another. The dynamics of patch i in the ten-patch model are given by84

dPi

dt
= aiPi

1− Pi

Ri +
10
∑

j=1, j 6=i
biR j

 (7)

dRi

dt
= ciRi

(
1− Ri

Ki

)
−hiPi−

10

∑
j=1, j 6=i

b jh jPj

where parameter definitions are the same as in the two-patch case.85

Baseline parameter values86

The baseline values of our parameters appear in Table 1. The population growth rate a1,2 was estimated87

by historical world population growth rates [36]. The resource growth rate c1,2 was taken as the average88

increase in crop yield since 1961 [37]. The values of the harvesting efficiency h1,2 and carrying capacity89
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Symbol Definition Value Source
a1,2 Population 1,2 net growth rate 0.0177/year [36]
c1,2 Resource growth rate in patch 1, 2 0.015/year [37]
h1,2 Harvesting efficiency of population 1, 2 0.008/year calibrated
K1,2 Carrying capacity of resources in patch 1, 2 1,000,000 calibrated
β1,2 Controls location of the mid-point of the sigmoid for population 1, 2 3.5 calibrated
γ1,2 Controls steepness of the sigmoid for population 1, 2 5 calibrated

Table 1. Baseline model parameter values.

of the resources K1,2 were calibrated so that the populations would begin with enough resources to survive90

for several centuries regardless of their rates of resource use, and so their harvesting efficiency was high91

enough that there were consequences to over-exploitation but not high enough to make resource use92

incredibly costly. At these parameter values, the population size of a single patch grows to 650,000 and93

then declines somewhat to an equilibrium population size of 480,000 over a timescale of several hundred94

years.95

The parameters controlling the midpoint and steepness of the sigmoid function (β and γ) were obtained96

through calibration by analyzing the effect they had on how much and when the populations would take97

from neighboring populations. To calibrate β , our intention was that the populations did not take much98

from neighbors when they were not in need. In contrast, they would take more when their resources began99

to dwindle and neighbour’s resources were needed to survive. To calibrate γ we choose a value such100

that the switch between these two described states was relatively gradual. In particular, we required βi101

and γi to satisfy the property that if Pi/Ri = 1/2 and thus resources were abundant, then bi was roughly102

25%, whereas if Pi/Ri = 1, indicating a situation where a shortage of resources was beginning to become103

worrisome, then bi would be greater than 75%.104

Initial conditions were P1(0) = 50,000, P2(0) = 50,000, R1(0) = 1,000,000, and R2(0) = 1,000,000.105

These initial conditions corresponded to two populations with relatively low starting population levels and106

with initially abundant resources at carrying capacity in their respective patches.107

We solved the model equations numerically using the adaptive fourth-fifth order Runge Kutta method108

implemented via Matlab’s ODE45 solver. The code can be found on Github [38]. We compared model109

dynamics for both interconnected and isolated versions of the two-patch and ten-patch models to determine110
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the impact of interconnectedness on the likelihood and timing of collapse.111

We explored the sensitivity of model predictions to parameter variations away from the baseline112

parameter values. In this process we considered two different scenarios for parameter variations. In most113

figures, populations were always assumed symmetric and had identical parameter values, but some figures114

explore the case of asymmetric populations where the two populations differ in one parameter value.115

3. Results116

3.1. Baseline Scenario117

The baseline scenario was simulated for both the interconnected (b1,b2 > 0) and isolated (b1 = b2 = 0)118

versions of the model. In the interconnected baseline scenario (Fig. 1), the populations begin a nearly119

exponential increase in their population growth (Fig. 1a) as they quickly reduce their local resources120

(Fig. 1b). This decrease in local resources causes the populations to begin taking resources from their121

neighboring patch to continue supporting their population (Fig. 1d). This results in greater resource122

availability (Fig. 1c) which stimulates further unsustainable population growth. Once the resources of123

both patches are strongly depleted, both populations collapse.124

In contrast to the interconnected case, both populations achieve sustainability in the isolated case125

at baseline parameter values (Fig. 1). Much like the interconnected scenario, the population of both126

civilizations grow very quickly, reaching a peak and then beginning to decline (Fig. 1a). However,127

instead of complete extinction of the population, the population decline begins to slow as the system128

reaches a steady state in which the population and resources equilibrate at an intermediate level, achieving129

sustainability.130

Dynamics in the 10-patch model amplify the trends in dynamics observed in the 2-patch model. The131

initial increase in population size is much more rapid, but the following collapse happens much sooner and132

is much more sudden than in the 2-patch model (Fig. 1a). Collapse occurs after 159 years in the 10-patch133

model compared to the 289 years in the 2-patch model. Resources are depleted much more rapidly in the134

10-patch model (Fig. 1b-d).135
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Figure 1. Model dynamics at baseline parameter values for the isolated, interconnected, and 10
population scenarios for (a) population size P1 of patch 1, (b) resource availability R1 in patch 1, (c) total
resources available to population 1, and (d) percentage of harvest of patch 2 taken by population 1.
Results for population 2 and patch 2 are symmetrical.

3.2. Time to collapse136

We also studied how the time to collapse depends on parameter values for the isolated and interconnected137

scenarios. Time to collapse was defined as the time elapsed until the populations of both patches reaches138

zero (P1,2 < 10−7). We generated plots showing the time to collapse versus a single parameter, with all139

other parameter values held constant at their baseline values (Fig. 2,3). By doing so, we obtain an idea140

of whether the more rapid collapse of interconnected systems compared to isolated systems is robust141

to changes in model parameter values, and which parameter values are most influential in determining142

collapse.143

Across a broad range of parameter values, time to collapse in the interconnected case is much shorter,144

demonstrating that the interconnection of the two populations is detrimental to the stability of the system145

(Fig. 2, 3). The isolated case is more resilient to collapse, as we see that the model often survives146
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Figure 2. Time to collapse for the isolated and interconnected cases as it depends on changes in (a) the
human growth rate a, (b) the resource growth rate c, (c) the harvesting constant h and (d) the carrying
capacity K. The parameter along the horizontal axes was changed for both patches, thus preserving
symmetry. A green star has been included in each graph to indicate the value of the parameter in the
baseline scenario.

indefinitely in all cases except when the harvesting constant or resource growth rate are changed drastically147

relative to the baseline values (Fig. 2b, c). This is in contrast to the interconnected case, where nearly148

all parameter choices for the human growth rate a, the resource growth rate c, the harvesting constant149

h and the carrying capacity K lead to collapse. Collapse occurs more rapidly when the human growth150

rate a or the harvesting constant h are increased, since both scenarios correspond to populations growing151

unsustainably quickly (a) or exploiting their resources unsustainably quickly (h). Interestingly, it is152

relatively independent of the carrying capacity K and the resource growth rate c. Therefore in this system,153

increasing carrying capacity (K) by boosting yield by, or increasing the ability of the resource to replenish154

itself (r) has relatively little effect in delaying the collapse.155

The more rapid collapse observed in the 10-patch model compared to the 2-patch model (Fig. 1) is156
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Figure 3. Time to collapse for the isolated and interconnected cases as it depends on changes in (a) the
steepness of sigmoidal function γ , (b) the midpoint of sigmoidal function β . A green and yellow star have
been included in each graph to indicate the value of the parameter in the baseline scenario of the
interconnected case and isolated case, respectively. IS denotes interconnected symmetric, wherein the
parameter along the horizontal axes was changed for both patches, thus preserving symmetry, while IA
denotes interconnected asymmetric, wherein the parameter values for population 1 was changed while the
parameter values for population 2 was held constant at its baseline value.
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Figure 4. Time to collapse versus number of populations included in model. Baseline parameter values
were used (Table 1).

also robust under these parameter variations (Fig. 2). As the number of populations increases from 2 to 10,157

the time to collapse declines with the number of populations (Fig. 4).158

The observed relationships between time to collapse and interconnectedness are also preserved under159

variation in parameters controlling the rate at which one patch harvests resources from another patch:160

β , which controls the midpoint location in the sigmoidal function, and γ , which controls the steepness161

of the sigmoidal function (Fig. 3). When γ is increased, the switch to harvesting from other patches162

happens more quickly, causing more rapid collapse (Fig. 3a). Interestingly, if γ is sufficiently low163

(meaning the sigmoidal function transitions smoothly), then collapse does not occur. Hence, if populations164

transition more gradually to harvesting from other patches, collapse can be avoided. When β is decreased,165

populations begin harvesting from other patches earlier and more intensely, causing more rapid collapse166

(Fig. 3b).167

The case of asymmetric parameter variation is also considered in Fig. 3 to provide a contrast with our168

baseline assumption of symmetric parameter values. As the value of γ is increased for only one of the169

populations while the value of γ for the other population is held constant, the time to collapse decreases170

for both populations until it reaches a minimum at the baseline value, and then starts to increase again171

(Fig. 3a). Similarly, if β is increased for only one of the populations, time to collapse decreases until172

it reaches the baseline value but then increases again (Fig. 3b). This suggests that heterogeneity in the173
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metapopulation may stave off collapse.174

3.3. Parameter planes175

By varying two parameters at one time and holding all others constant at their baseline values, we can176

understand parameter combinations that lead to collapse or survival under the isolated and interconnected177

scenarios. It is evident from these parameter planes that the isolated case of the model is far less prone to178

collapse over the same ranges of parameter values. Collapse occurs for a much wider part of the parameter179

plane under the interconnected symmetric case than under the isolated case (electronic supplementary180

material, Figure S1). In contrast to the baseline parameter values, we observe parameter regimes in the181

interconnected symmetric case where increasing the resource growth rate c can move the populations into182

a region of sustainability. Introducing asymmetry to the parameter plans, such that the two parameter183

values for one population are varied while the parameter values for the other population are held at baseline184

values, we observe that sustainability is a more frequent outcome than in the symmetric case, but occurs185

less frequently than in the isolated case (electronic supplementary material, Figure S1).186

3.4. Impact of Inequality187

To observe the effect of inequality on system dynamics, we created an additional scenario involving two188

unequal populations. Population 1 has a higher starting population size, population growth rate, resource189

growth rate and harvesting efficiency, but a lower carrying capacity than population 2, which has more190

resources but a lower starting population size and growth rate. Population 1 is also more prone to take191

resources from population 2 than vice versa. The inequality scenario was simulated with and without192

interconnections. Parameter values can be found in electronic supplementary material, Table S1 and the193

initial conditions were P1(0)=50,000, P2(0)=25,000, R1(0) = 250,000, R2(0)=1,000,000.194

In the interconnected case (electronic supplementary material, Figure S2), population 1 grows relatively195

quickly (Fig. S2a), reaching their maximum population size nearly 100 years before population 2. In the196

process, they exhaust all of their resources early in the simulation (Fig. S2b). However, this causes very197

little disturbance to population 1 since there is only a small, nearly non-existent, decrease in population198

size at the time of resource depletion. This is due to their early dependence on population 2’s resources199

(Fig. S2g) dampening the effect that over-exploitation has on their own population. After this point, both200
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populations continue to consume population 2’s resources (Fig. S2d) until the inevitable depletion, causing201

both populations to collapse.202

In the corresponding isolated but unequal case (electronic supplementary material, Figure S3), the203

outcomes are very different. Population 2 begins a similar population increase as in the interconnected204

case, but the population avoids complete collapse and instead recovers to a stable state (Figure S3c).205

However, population 1 grows unsustainably, over-depletes their resource, and collapses (Fig. S3a,b).206

Hence, for these parameter values, we observe that the dichotomy between outcomes in the isolated and207

interconnected scenario persists when the two populations are unequal.208

4. Discussion209

In this paper we extended a simple population model where a population harvests a depletable resource to210

a metapopulation setting where a population patch can also harvest resources from other patches when211

their own resources run low. We showed how the populations collapse faster and for a broader range of212

parameter values when patches are allowed to harvest resources from other patches. As the number of213

patches increases, the effect is amplified.214

Interconnections accelerate collapse in this model because the ability to harvest resources from other215

patches enables populations to access a larger resource pool. Consequently, the populations are able to216

grow at a very rapid rate, compared to the case where patches are isolated from one another. Each patch217

population size grows beyond what is sustainable using only the resources in a single patch, and this causes218

rapid collapse as the resources disappear and all patches are left with unsustainably high populations. This219

mechanism operates even when the net resource growth rate c1,2 parameter exceeds the net population220

growth rate parameter a1,2. Collapse remains possible in the isolated scenario, but the smaller available221

resource pools tend to prevent it.222

This effect was robust under a wide range of parameter variation. We also found that asymmetry in223

parameter values between the two patches does not change the qualitative results, but does tend to stave224

off collapse. We speculate that models with greater heterogeneity (such that each patch has a unique set of225

parameter values) might replicate this feature, but we leave this for future work. We furthermore found226

that collapse can occur in a scenario of inequality between the two patches, although we did not test the227
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robustness of this finding to parameter variation.228

In some respects, our model embodies some of the ideas of “red and green loop” dynamics as229

introduced by Cumming et al [10]. Populations in our model can depend on resources harvested non-230

locally, such that the population is buffered from the implications of their harvesting activities in the short231

term. Thus, in the interconnected case, populations are in a red loop regime. As the population transitions232

to relying on the resources of other patches as its own resources are depleted, the red loop progresses to a233

red trap corresponding to collapse of both populations in the interconnected scenario. In comparison, in234

the isolated case, populations are much more dependent on their local resources and feel the impacts of235

their harvesting choices immediately: a green loop regime.236

Our model makes simplifying assumptions that may influence its predictions. For instance, due to237

the structure of our sigmoidal function governing cross-patch harvesting and in particular the assumed238

dependence of cross-patch harvesting on Pi/Ri, patches tend to collapse simultaneously when Ri becomes239

small. Moreover, patches cannot prevent cross-patch harvesting. In reality, effective institutions (where240

they exist) would be able to prevent cross-patch harvesting through legislation and this might have the241

effect of preventing collapse from spreading to all patches. Future work could study the effects of242

retaining a portion of local resources for the native patch’s exclusive use. Similarly, allowing migration243

of individuals as well as cross-patch harvesting could influence dynamics, perhaps even to the point244

of preventing collapse [27]. Non-human species migrate when local resources are depleted; humans245

migrate but technology now allows them to import the resources they need without migrating. Allowing246

cross-patch harvesting while preventing migration could therefore be particularly dangerous.247

Similarly, we assumed a Malthusean world where more resources are always converted into more248

offspring. However, it is observed that most populations go through a demographic transition to lower249

fertility when they become sufficiently industrialized [39]. Incorporating this effect into the model may250

help prevent unsustainable growth, although the strength of the effect depends on whether increases in per251

capita resource consumption outstrip the benefits of slowed population growth.252

Another possible extension of the model is to include dynamically changing parameters. At the moment,253

all parameters in the model are static. However, technological improvements mean that parameters like the254

harvesting efficiency h and cross-patch harvesting should change over the course of the simulation. In this255
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vein, work by Reuveny and Decker [25] explores how technological advancement affects a human-resource256

population model. Similarly modifications to our model could be implemented, and their effects studied.257

In our multi-population socio-ecological model where populations grow by harvesting a depletable258

resource, the ability of one patch to support its population growth by harvesting resources from other259

patches increases population growth in the short run, but causes population collapse in all patches in the260

long run. This effect is robust to parameter variation, and is accelerated significantly by the inclusion of261

more patches. Given the ubiquity of cross-patch harvesting in real populations, socio-ecological models of262

human growth and resource consumption should consider the role of metapopulation effects.263
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