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Abstract

This thesis focuses on advancing the state-of-the-art 3D object detection and local-
ization in autonomous driving. An autonomous vehicle requires operating within a very
unpredictable and dynamic environment. Hence a robust perception system is essential.
This work proposes a novel architecture, AVOD, an Aggregate View Object Detection
architecture for autonomous driving capable of generating accurate 3D bounding boxes
on road scenes. AVOD uses LIDAR point clouds and RGB images to generate features
that are shared by two subnetworks: a region proposal network (RPN) and a second stage
detector network.

The proposed RPN uses a novel architecture capable of performing multimodal fea-
ture fusion on high resolution feature maps to generate reliable 3D object proposals for
multiple object classes in road scenes. Using these proposals, the second stage detection
network performs accurate oriented 3D bounding box regression and category classification
to predict the extents, orientation, and classification of objects in 3D space.

AVOD is differentiated from the state-of-the-art by using a high resolution feature
extractor coupled with a multimodal fusion RPN architecture, and is therefore able to
produce accurate region proposals for small classes in road scenes. AVOD also employs
explicit orientation vector regression to resolve the ambiguous orientation estimate inferred
from a bounding box.

Experiments on the challenging KITTI dataset show the superiority of AVOD over
the state-of-the-art detectors on the 3D localization, orientation estimation, and category
classification tasks. Finally, AVOD is shown to run in real time and with a low memory
overhead. The robustness of AVOD is also visually demonstrated when deployed on our
autonomous vehicle operating under low lighting conditions such as night time as well as
in snowy scenes.

Furthermore, AVOD-SSD is proposed as a 3D Single Stage Detector. This work demon-
strates how a single stage detector can achieve similar accuracy as that of a two-stage
detector. An analysis of speed and accuracy trade-offs between AVOD and AVOD-SSD
are presented.
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Chapter 1

Introduction

The detection and localization of objects within an environment is a key problem in creating
truly autonomous cars. The knowledge of the positions of other cars, pedestrians and
cyclists is required to safely maneuver an autonomous vehicle on the road.

Object detection is a challenging problem, in particular for autonomous vehicles since a
system must be able to detect objects reliably within the environment in various conditions
such as low lighting conditions and snow. In addition to high accuracy detection, it also
needs to be robust and have minimal false positive detections. These properties are crucial
as other modules on the car such as the behavioral planner, make decisions based on what
is detected within the environment.

Deep convolutional neural networks (CNNs) have revolutionized object detection. They
have been widely used in visual recognition since 2012 [40], when they outperformed ex-
isting methods on the task of image classification on the ImageNet dataset [62] by a large
margin. Since then CNNs have been widely used for tackling visual recognition problems.

Most of the research focus in recent years has been on the task of improving the accuracy
and speed of 2D object detectors. Modern successful object detectors such as Faster R-
CNN [60], R-FCN [7], Multibox [69] and YOLO [57] classify objects with a 2D bounding
box in image space. These networks are performing well enough to be deployed in consumer
products. However in the context of the 3D world and the task of autonomous driving, 2D
detection does not capture all the required information such as depth and orientation from
the surrounding environment. Also the performance of 2D detectors has not transferred
well to the detection of objects in 3D. The gap between the two remains large on standard
benchmarks such as the KITTI Object Detection Benchmark [23], where 2D car detectors
such as RRC [59] have achieved over 90% Average Precision (AP). In contrast to 2D, the
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top scoring 3D car detector on the same data only achieves around 70% 3D AP and 84%
Bird’s Eye View (BEV) AP. The reason for such a gap stems from the difficulty induced
by adding a third dimension to the estimation problem, the low resolution of 3D input
data, and the deterioration of its quality as a function of distance. Furthermore, unlike
2D object detection, the 3D object detection task requires estimating oriented bounding
boxes.

Region proposal networks (RPNs) were proposed in Faster-RCNN [60], and have be-
come the prevailing technique towards improving the accuracy of 2D detectors. RPNs
can be considered a weak amodal detector, providing proposals with high recall and low
precision. An RPN is essentially a network hypothesizing the location of potential objects,
by proposing a set of regions that are likely to contain objects.

Single stage detectors such as YOLO [57] on the other hand, propose an RPN-free
architecture to perform detection at a higher speed but with lower accuracy. Extending
both these techniques to 3D to achieve the same accuracy and speed is a non-trivial task.
2D detectors are typically tailored for dense, high resolution image input, where objects
usually occupy a relatively large portion of pixels in the feature map. When considering
sparse and low resolution input such as the Front View [44] or BEV [6] point cloud projec-
tions, these methods are not guaranteed to contain sufficient information to perform the
detection with the same accuracy.

Similar to 2D object detectors, most state-of-the-art models for 3D object detection
rely on a 3D region proposal generation step for 3D search space reduction. Using region
proposals allows the generation of high quality detections via more complex and computa-
tionally expensive processing at later detection stages. However, any missed instances at
the proposal generation stage cannot be recovered during the following stages. Therefore,
achieving a high recall during the the region proposal generation stage is crucial to achieve
good performance. Most current 3D object detection methods leverage multimodal input
from cameras and 3D range sensors. Methods using LIDAR point clouds [6, 44, 43, 15],
stereo depth maps [5], or RGBD sensor depth maps [67], have been shown to outperform
image only methods [3, 50, 2] on the 3D object detection task. Multimodal object detectors
have been previously discussed in the literature [28, 24, 53, 16, 6, 5]. MV3D [3] proposed
an RPN network that generates 3D candidate boxes from the BEV representation of 3D
point cloud. No previous work however, has exploited fusing features from both point
cloud and RGB data to generate region proposals. Both sources of information are crucial
for generating better region proposals, and in particular, lead to higher performance when
targeting small object classes such as pedestrians and cyclists.

This thesis proposes AVOD, an Aggregate View Object Detection architecture for
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autonomous driving. AVOD uses LIDAR point clouds and RGB images to generate features
that are shared by two subnetworks: a region proposal network (RPN) and a second stage
detector network. The RPN is capable of using features from multiple input modes for the
proposal generation task, allowing for higher recall proposal generation on smaller objects
in road scenes. Using these proposals, the second stage detection network performs accurate
oriented 3D bounding box regression predicting the extents, orientation, and category
classification of objects in 3D. AVOD aims to solve the following limitations in current
state-of-the-art 3D object detection methods:

1. Improvements over MV3D [6] in terms of detecting smaller objects such as pedestrian
and cyclists using the fusion mechanism. Furthermore, fusion of image and BEV data,
avoids relying on one source of information.

2. More robust heading estimation using the proposed box representation as opposed
to 8-corner representation used in MV3D.

3. Speed improvement over the state-of-the-art 3D detectors.

Item 1 is concerned with the detection of smaller sized objects. The Faster R-CNN
RPN architecture is tailored for dense, high resolution image input, where objects usually
occupy more than one pixel in the feature map. When considering sparse and low resolution
input such as the BEV point cloud projection generated from LIDAR, this method is not
guaranteed to have enough information from a single pixel to generate region proposals.
As an example, an average pedestrian in the KITTI dataset occupies 0.8×0.6 meters in the
BEV. This translates to an 8×6 pixel area in a BEV map with 0.1 meter resolution. When
downsampled by convolutional feature extractors, instances from this class will occupy a
fraction of a pixel in the resultant feature map. Even with higher resolution BEV maps,
the sparsity of LIDAR data is not sufficient to extract informative features for these small
sized classes. This is one short-coming in MV3D [6], where only BEV map is used to
generate proposals. The authors reported detecting small objects as a difficult problem
with their architecture and only reported results on the task of car detection.

AVOD aims to fuse features from the image and the BEV feature maps as inputs to
the RPN, allowing the generation of high recall proposals for smaller classes. Item 1 is also
concerned with relying on 2D detectors for initial hypothesis as potential objects in the
environment as proposed in architectures such as F-PointNet [54]. Section 3.3 demonstrates
that AVOD is robust to noisy LIDAR data and lighting changes affecting the image data, as
it was tested in snowy scenes and in extreme low light conditions. This is due to the fusion
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mechanism of both sources of information at the RPN stage, allowing reliable proposal
generation even when LIDAR or image quality are degraded.

Item 2 addresses another shortcoming of MV3D in terms of its heading estimation
mechanism that relies on extracting heading information from the regressed 8 corners
of a 3D bounding box. Section 3.3 demonstrates that this method cannot be used to
extract unique orientation information from only the corners of the bounding box. AVOD
explicitly regresses an orientation vector that is used to correct the orientation estimate
extracted from such box representations. This is shown to provide a 29.46% increase in
AHS (explained in Section 3.2.1) over MV3D on the Car class of the KITTI dataset.

Item 3 is concerned with the speed of state-of-the-art networks. AVOD has been op-
timized for speed and is currently the fastest two-staged 3D detector compared to other
state-of-the-art 3D detectors, as shown in Table 3.6.

AVOD has been evaluated on the tasks of proposal generation, 3D detection, and BEV
detection on the challenging KITTI 3D object detection benchmark. AVOD has also been
demonstrated to work in snow and at night due to the proposed feature fusion from both
image and LIDAR sources, making it a suitable candidate for deployment on autonomous
vehicles.

This work further explores the impacts of modifying AVOD to operate as a Single
Stage Detector, using existing techniques to improve the performance of the network as an
object classifier and bounding box regressor. The advantage of a single stage detector is
the simplicity in the architecture as well as reduction in the number of network parameters.
Although existing 2D single stage detectors operate at relatively high speed compared to
two-stage 2D detectors, there are currently no existing fast single stage 3D detectors.

AVOD is a joint effort with my colleagues Jason Ku and Ali Harakeh. The original
AVOD architecture inspired by MV3D [6] was proposed by Ali Harakeh. Customizing
the feature extractor to improve detection on pedestrian and cyclist was proposed by
myself, which led to using Feature Pyramid on AVOD to boost performance. The core
implementation of AVOD as well as deployment of AVOD on our autonomous vehicle was
done by myself and Jason Ku. The work on AVOD-SSD was done by myself with the aim
to understand if single stage detectors can match or surpass the accuracy of AVOD while
running at similar or faster speed. All code is implemented using Google’s Tensorflow [17]
and Robot Operating System (ROS) for deployment on the car [56].

The remainder of this thesis is organized as follows: Chapter 2 provides some back-
ground on deep learning and in particular object detection methods. Chapter 3 presents
the article containing new methods. Chapter 4 presents a single stage 3D object detector
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and the speed and accuracy trade-off of two-stage vs. single stage are studied. Finally
chapter 5 concludes this thesis 1.

Resources

• AVOD arxiv paper can be found at https://arxiv.org/abs/1712.02294

• The AVOD code can be found at https://github.com/kujason/avod

• The AVOD-SSD code can be found at https://github.com/melfm/avod-ssd

More qualitative results including those of AVOD running in snow and night scenes
are provided in video format here.

1Throughout this thesis, the narrator will be referred to as “we”, rather than “I”. This is because the
AVOD research presented in this thesis was developed in a collaborative setting. My specific contributions
are outlined in the introduction, and all writing outside of Chapter 3 on AVOD is entirely my own.
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Chapter 2

Background

This chapter briefly presents the background information required for the contributions
made by this work. This includes a brief overview of Neural Networks and Convolutional
Neural Networks in particular, as well as providing some background on object detection
methods and current state-of-the-art techniques under both 2D and 3D settings.

2.1 Feedforward Neural Networks

The Feedforward Neural Networks (FNN), are the most basic and common type of artificial
neural networks deployed in practical applications. The goal of a feedforward network is
to approximate some function f ∗. A feedforward network defines a mapping y = f(x; θ)
where x is the input and f is a function mapping x to some output y. A feedforward neural
network with l hidden layers is parameterized by l + 1 weight matrices (W0, ...,Wl) and
l+1 vectors of biases (b1, ..., bl+1). The concatenation of the weight matrices and the biases
forms the parameter vector θ, which specifies the function computed by the network. The
network learns the value of the parameters θ that result in the best function approximation.
Feedforward neural networks are called networks because they are typically represented by
composing together many different functions. A neural network can be associated with
a directed acyclic graph describing how the functions at each layer are composed. For
example, we could have three functions f (1), f (2) and f (3) connected in a chain resulting
to f(x) = f (3)(f (2)(f (1)(x))) where f (1) is the first layer, f (2) is the second layer and so
on. The final layer of a feedforward network is called the output layer [29]. A neural
network learns certain features in an input, where features can be variables or attributes
in the data. For instance in the case of images, such features are learned in an hierarchical
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fashion, where the low level features represent edges, boundaries and lines, and as we go
deeper into the hierarchy, the features become much more complex representing shapes and
attributes associated with the target object. A neural network essentially learns to look
for certain features, and when it is shown an unseen sample, it calculates the probabilities
for the features it is trained to look for.

Figure 2.1: Feedforward neural network with inputs x1, x2, x3, four hidden units
h1, h2, h3, h4 and two output units o1, o2.

2.2 Convolutional Networks

Convolutional neural networks [42], also known as or CNNs or ConvNets, are a kind of
neural network designed to process data that has a known grid-like topology [29]. Convolu-
tional networks have been extremely successful in practical image processing applications.
Convolutional networks are simply neural networks that apply the convolution operation
in place of general matrix multiplication in at least one of their layers.

2.2.1 The Convolution Operation

Convolution is a mathematical operation on two functions f and g to produce a third
function. Convolution is defined as an integral that expresses the amount of overlap of g
as it is shifted over f . The convolution operation is typically denoted with an asterisk:

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (2.1)
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The convolution formula can be described as a weighted average of the function f(τ)
at the moment t where the weighting is given by g(−τ) shifted by the amount of t. As
t changes, the weighting function g places more emphasis on different parts of the input
function f . Note that in general, convolution is defined for any function for which the
above integral is defined.

In convolutional network terminology, function f to the convolution is often referred
to as the input, and function g is the kernel. The output is sometimes referred to as
the feature map. When working with data on a computer, time and space usually will be
discretized. Therefore we can define the discrete convolution, assuming f and g are defined
only on integer t :

(f ∗ g)(t) =
∞∑

τ=−∞

f(τ)g(t− τ) (2.2)

In the context of convolutional neural networks, the input is usually a multidimen-
sional array of data, and the kernel is usually a multidimensional array of parameters that
are adapted by the learning algorithm. These multidimensional arrays are referred to as
tensors.

We often use convolution over more than one axis at a time. For instance in the case
of a 2D image I as input, we would also use a two-dimensional kernel K:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.3)

where S is the output or feature map [29].

Convolution leverages three important ideas that can help improve a machine learning
system: sparse interactions, parameter sharing and equivariant representations.

A fully connected neural network layers use matrix multiplication by a matrix of pa-
rameters with a separate parameter describing the interaction between each input unit and
each output unit. This way, as demonstrated in Figure 2.1, every output unit interacts
with the input unit. However, it is impractical to connect neurons to all neurons when
dealing with high-dimensional inputs such as images and hence, fully connected networks
don’t scale well to full images. Convolutions deploy a kernel of a size smaller than the
input, and this enables them to connect each neuron to only a local region of the input
volume.
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Convolutional networks efficiency in comparison to traditional fully connected networks
are quite significant. If there are m inputs and n outputs, then matrix multiplication
requires m × n parameters, and the algorithms used in practice have O(m × n) runtime
per training sample. If we limit the number of connections from each output to k, then
the sparsely connected approach requires only k × n parameters and O(k × n) runtime.

For example, consider the task of processing an image, where the input might have
thousands or millions of pixels. We can detect small, meaningful features such as edges
with kernels that occupy only tens or hundreds of pixels. With convolutions, we need to
store fewer parameters. This in turn reduces the computational demand of the network.

Parameter sharing in convolutional networks occurs since each member of the kernel
is used at every position of the input and hence instead of learning a separate set of
parameters for every location, the network learns only one set of parameters. This is in
contrast to a fully connected network setting where each element of the weight matrix is
used exactly once when computing the output of a layer.

Finally in the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. Specifically, a function f(x) is
equivariant to a function g if f(g(x)) = g(f(x)). In the case of images, convolution creates
a 2D map of where certain features appear in the input. Therefore if we move the object
in the input, its representation will move the same amount in the output [29].

2.2.2 Convolutional Network Structure

A simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms one
volume of activations to another through a differentiable function. Typically three types
of layers are used to build ConvNet architectures: convolutional layer, pooling layer, and
fully-connected (FC) layer, where in a fully connected layer neurons have full connections
to all activation from previous neurons, as seen in regular FNNs. These layers are stacked
to form a ConvNet architecture.

The convolution layer computes the output of neurons that are connected to local
regions in the input, by computing a dot product of weights and a small region they
are connected to in the input volume to produce a set of linear activations. Next, each
linear activation is run through a nonlinear activation function. In the next stage, the
pooling layer performs a downsampling operation along the spatial dimensions (width,
height). Hence it is common to periodically insert a pooling layer in-between successive
convolution layers. Finally the FC layer computes the class scores.
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The spatial arrangement of a Conv layer output volume is controlled by three hyperpa-
rameters: the depth, stride and zero-padding. The depth corresponds to the number
of filters the network uses to look for different features in the input. The stride specifies
how to slide the filter. When the stride is 1, the filter is moved one pixel at a time, and
when the stride is 2, the filter jumps two pixels, and so on. This, in turn will produce a
smaller output volume spatially. The padding is used to pad the input volume with zeros,
which enables the network to control the spatial size of the output volumes.

2.2.3 Receptive Field

ConvNets enable connecting each neuron to only a local region of the input volume. The
spatial extent of this connectivity is a hyperparameter called the receptive field of the
neuron, i.e. filter size. For instance, Figure 2.2 shows an input volume of the size [4× 4].
If the receptive field is 2 × 2 then each neuron in the convolution layer will have weights
to a [2 × 2] region in the input volume, a total of 2 ∗ 2 = 4 + 1 weights (where +1 is the
bias parameter).

Figure 2.2: Concept of receptive field visualized with an example of convolving a 2 × 2
kernel over a 4× 4 input using unit strides [14].

2.2.4 Pooling

A pooling function replaces the output of the network at a certain location with a summary
statistic of the nearby outputs. For instance max pool gives the maximum value within a
fixed-size rectangular neighbourhood region as shown in Figure 2.3. The usage of pooling
is motivated by the fact that it makes the representation approximately invariant to small
translations of the input. This means that if we translate the input by a small amount,
the value of most of the pooled outputs do not change.
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Figure 2.3: The most common downsampling operation max pool, shown with a stride of
2. That is, each max is taken over 4 numbers.

2.2.5 Region of Interest(RoI) Pooling

Region of interest pooling (also known as RoI pooling) is an operation widely used in object
detection tasks using convolutional neural networks. This pooling technique was proposed
in Fast R-CNN [25]. The RoI pooling layer uses max pooling to convert the features inside
any valid region of interest into a small feature map with a fixed spatial extent.

ROI pooling employs the following steps to transform the input:

• Divide the region proposal into fixed-sized sections where the number of these sections
matches the output size.

• Find the largest value in each section.

• Copy these max values to the output buffer.

Figure 2.4 shows the concept of RoI pooling visually. The RoI operation allows us to
reuse the feature map from the convolutional network and hence it significantly speeds up
the network processing speed. This is because if there are many object proposals in the
frame, the same input feature map can be reused for all of them. And since computing
the convolutions is very expensive, this approach saves significant amount of computation
time. In addition, it helps to train an RPN end-to-end to generate high-quality region
proposals which are then used by the second stage network for detection.
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(a) Input image. (b) Proposed region divided
into sections.

(c) Max-pooled output.

Figure 2.4: ROI pooling example visualization. In this example, the RoI is divided by 2
along each dimension, where the sections are unequal due to uneven dimensions.

2.3 Object Detection

Object detection is a core problem in computer vision. Object detection is achieved through
solving two tasks, object classification and localization. Object classification is the task of
specifying which of k object categories the input belongs to. To solve the classification task,
the learning algorithm is asked to produce a function f : Rn → 1, ..., k. When y = f(x),
the model assigns an input described by vector x to a category identified by numeric code
y. For the task of object classification the input is usually an image, where an image is
described as a set of pixel brightness values, and the output is a numeric code identifying
the type of object in the image. Regression on the other hand returns a numeric value, as
opposed to a numeric code representing a class. To solve this task, the learning algorithm
is asked to output a function f : Rn → R. This is similar to classification, except that
the format of output is different [29]. Regression for the task of object detection requires
returning numbers indicating the location of the detected object. For instance in the
case of 2D object detection in image space, the algorithm provides 4 numbers such as
(x1, y1, width, height) representing a bounding box in image space. Image segmentation
extends the task of locating the objects by identifying the object boundaries such as lines
and curvature in the image. Different object detection tasks are visualized in Figure 2.5.

Since the actual goal of an object detector model is to generate exactly one detection
per object, i.e. exactly one high confidence detection, a common practice is to assume
that highly overlapping detections belong to the same object and collapse them into one
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Figure 2.5: Example of single and multi-instance object classification, object classification
+ localization and object segmentation [12].

detection. Non-maximum suppression (NMS), is a post-processing algorithm responsible
for merging all detections that belong to the same object. The algorithm greedily selects
high scoring detections and deletes close-by less confident neighbors since they are likely
to cover the same object by sorting the boxes based on scores.

Detection pipelines generally start by extracting a set of robust features from input
images (Haar [51], SIFT [49], HOG [8], convolutional features [11]). These features are
then used to identify objects using techniques discussed in more detail in the next section.

2.3.1 Classic Object Detectors

Object detection using the sliding-window technique has a long and rich history. The
sliding-window technique works by sliding a box around image and classifying each image
crop inside a box. In other words, the classifier is run at evenly spaced locations over the
entire image, focusing on smaller areas of the feature map. One of the earliest successes of
object classification is the classic work of LeCun et al. who applied convolutional neural
networks to handwritten digit recognition [71, 42]. The introduction of Histograms of
Oriented Gradients (HOG) [8] and integral channel features [10] gave rise to effective
methods for object detection.

The HOG detector in particular applies a sliding window to find objects in 4 steps:

1. Scan the image by sliding the window at all locations
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2. Extract features in window

3. Classify and accept window if score is above threshold

4. Clean up the overlapping bounding boxes (post-processing by appling NMS.)

Typically the window is fixed-sized. However in a typical scene, same object category
may appear at different sizes and scales. To solve this issue, the authors in [8] proposed
to shrink the image and repeat the sliding over many iterations at different scales. This
resulted in a full image pyramid where the detector slides at every scale. The input image is
first divided into non-overlapping cells, typically 8× 8 pixels. The authors then proposed
to apply HOG to extract features in each cell. Then a linear SVM is used to predict
the presence or absence of object class in each window in the image. Finally using NMS
algorithm at each iteration the highest scoring boxes are selected as the final detection.
The HOG detector models an object class as a single rigid template as shown in Figure
2.6.

Figure 2.6: Single HOG template models people in upright pose [8].

One limitation of HOG was the fact that it did not take into account outlier objects
such as objects in unusual poses, and instead it used a restrictive template for detecting
people. The method for generating such templates assume common seen objects such as
people in upright pose. Deformable Parts Model (DPMs) [21] employs a disjoint pipeline to
extract static features, classify regions and then predicting bounding boxes for high scoring
regions. This approach takes into account the fact that objects are composed of parts at
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specific relative location. Different instances of the same object class also have parts in
slightly different locations. The DPM model borrowed the idea of the HOG detector,
taking a HOG template for the full object. Given an object template the DPM algorithm
then adds locations relative to each other, where relative in this context means that if an
object moves, the parts will also move along together. This idea is visualized in Figure
2.7, where an object is decomposed into parts. In addition, DPM gives some slack to the
location of the part, i.e. a part can also have deformation, meaning that it can slightly
move around the expected location. Such assumption helps in terms of detecting people
with different heights and sizes and not just an average person.

Figure 2.7: Example of DPM full detector model with the added parts [21].

Note that as shown in Figure 2.7 each part has an appearance, which is modeled with
a HOG template. DPMs significantly helped to extend dense detectors to more general
object categories and had top results on PASCAL [20] for many years. Using sliding
window techniques such as HOG and DPMs to perform object detection has limitations in
terms of computation time and accuracy. Many viewing windows may contain a perfectly
identifiable portion of the object, for instance part of an object, but not the entire object,
nor even the center of the object. This leads to decent classification but poor localization
in general. While the combination of hand-crafted features and sliding-window approach
was the leading detection paradigm in classic computer vision, with the emergence of
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deep learning [40], two-stage detectors, described next, quickly came to dominate object
detection.

2.3.2 Two-Staged Detectors

The dominant paradigm in modern object detection takes a different approach from the
sliding-window technique by adopting a two-stage detection. As pioneered in the Selective
Search work [70], the first stage generates potential bounding boxes that should contain all
the objects, and the second stage classifies the proposals into foreground and background
classes. The overall pipeline for Selective Search includes generating a set of candidate
proposals, extracting features using a convolutional network, scoring the boxes using an
SVM model, adjusting the bounding boxes using a linear model, and finally eliminating
duplicate detections using NMS. Each stage of this complex pipeline requires precise tun-
ing and the resulting system is slow, taking more than 40 seconds per image at test time.
Regions with CNN features (R-CNN) [26] upgraded the second-stage classifier to a convo-
lutional network providing a higher gain in accuracy. R-CNN and its variants use region
proposals instead of sliding windows to find objects in images. R-CNN was improved over
the years, both in terms of speed [32] and by using learned object proposals [52, 60], which
enable training the systems end-to-end. Spatial Pyramid Pooling (SPPNet) [32] speeds up
the original R-CNN approach. It introduces a spatial pyramid pooling layer that is more
robust to region size and scale, allowing the classification layers to reuse features computed
over feature maps generated at different image resolutions. Fast R-CNN [25] builds on R-
CNN and SPPNet by speeding up the network’s convolution processing time by sharing
computation. Fast R-CNN proposed an architecture to fine-tune all layers end-to-end by
minimizing a loss for both confidence scores and bounding box regression, which was first
introduced in MultiBox [69] for learning objectness. A Fast R-CNN network takes an en-
tire image as input and a set of object proposals. The network first processes the whole
image with several convolutions and max pooling layers to produce a feature map. Then
for each object proposal, a region of interest (RoI) pooling layer was proposed to extract
a fixed-length feature vector from the feature map. Each feature vector is then fed into
a sequence of FC layers that finally branch into two output layers: one that produces K
object classes and another layer that outputs four real-valued numbers, representing the
bounding-box position of the detected object. The architecture of Fast R-CNN is depicted
in Figure 2.8.

Faster R-CNN took the idea of optimizing the computation time further by introduc-
ing a Region Proposal Network (RPN) that shares full-image convolutional features with
the second stage detection network. Faster R-CNN introduces a method to integrate the
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Figure 2.8: Fast R-CNN as a two-staged detector architectural diagram [25].

RPN with Fast R-CNN by alternating between fine-tuning shared convolutional layers and
prediction layers for these two networks. This work also introduced a training scheme that
alternates between fine-tuning for the object proposal task and then fine-tuning for object
detection. This training scheme allows the network to converge quickly producing a unified
network with convolution features shared by both tasks [60]. The architecture of Faster
R-CNN is depicted in Figure 2.9, which shows how the RPN shares the convolutional fea-
tures corresponding to the full image with the second stage detection network, thus saving
computation time at each detection stage. The RPN is trained end-to-end to generate
high-quality region proposals, which are used by Fast R-CNN for detection.

2.3.3 Single-Stage Detectors

There have been many attempts to build faster detectors by optimizing each stage of
the detection pipeline, but so far, significantly increased speed comes only at the cost of
significantly decreased detection accuracy.

As an alternative approach to speed up the 2D detectors, OverFeat [63] was one of
the first single stage object detector using a multi-scale and sliding window approach with
ConvNets. OverFeat predicts a bounding box directly from each location of the feature map
by accumulating predicted bounding boxes. They argue that combining many localization
predictions removes the need to train on background samples.

More recently Single Shot Detector (SSD) [48, 22] and You Only Look Once (YOLO)
[57, 58] have renewed interest in single stage methods. These detectors have been tuned
for speed but their accuracy trails that of two-stage methods. SSD on average has around
10− 20% lower AP on datasets such as PASCAL VOC [18], while YOLO focuses on more
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Figure 2.9: Faster R-CNN as a two-staged detector architectural diagram [60].

extreme speed/accuracy trade-off. Recent work showed that two-stage detectors can be
made fast simply by reducing input image resolution or the number of proposals, but single
stage methods still cannot gain the same accuracy offered by a two-stage detection system
[35].

YOLO discretizes the image into an S×S grid. Then each grid cell, using convolutional
features, proposes potential bounding boxes along with their confidence scores. The differ-
ence between this approach and an RPN-based approach is that YOLO uses the features
from the entire image to predict each bounding box, where each individual grid cell pre-
dicts B bounding boxes with confidence score. These scores can be interpreted as whether
they are likely to contain an object or not. If there is no object in a grid cell, it is expected
for the confidence score to be zero. YOLO [57] shares some similarities with R-CNN. But
instead of relying on the initial bounding box guesses, it puts spatial constraints on the
grid cell proposals, which helps to mitigate multiple detections of the same object. YOLO
uses the whole feature map, as shown in Figure 2.10, to predict confidences for multiple
categories and bounding boxes.

SSD discretizes the output space of bounding boxes into a set of default boxes over
different aspect ratios and scales per feature map location. SSD is similar to the RPN in
Faster R-CNN since they use a fixed set of anchor boxes for prediction. However instead of
pooling features from these anchors and then evaluating them separately via a second clas-
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sifier, they simultaneously produce a score for each object category in each box. Therefore
with SSD there is no proposal step. In addition, the network combines predictions from
multiple feature maps with different resolutions to handle objects of various sizes [48].

Figure 2.10: Comparison between two single stage detection models: SSD and YOLO [48].
This figure highlights the main difference between SSD and YOLO in terms of adopting
different feature extraction mechanism. That is, YOLO uses the final feature map but SSD
uses features at different scales.
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2.4 3D Object Detection

Following the trend in 2D two-stage detection, 3D proposal generation algorithms typically
used hand-crafted features to generate a small set of candidate boxes that retrieve most
of the objects in 3D space. 3DOP [4] uses hand-crafted geometric features from stereo
point clouds to score 3D sliding windows in an energy minimization framework. The
top K scoring windows are selected as region proposals, which are then consumed by
a modified Fast-RCNN [25] to generate the final 3D detections. Mono3D [3] uses the
same framework, but instead exploits a ground plane prior and hand-crafted features from
semantic segmentation outputs to generate 3D proposals from monocular images.

Single stage or single shot object detectors similar to YOLO [58] have also been proposed
as RPN free architectures for the 3D object detection task. VeloFCN [44] projects a LIDAR
point cloud to the front view, which is used as an input to a fully convolutional neural
network to directly generate dense 3D bounding boxes. 3D-FCN [43] extends this concept
by applying 3D convolutions on 3D voxel grids constructed from LIDAR point clouds to
generate better 3D bounding boxes.

Another alternative to 3D RPN-based architectures is 3D object detection from monoc-
ular images only. Deep MANTA [2] proposes a many-task vehicle analysis approach from
monocular images that optimizes region proposal, detection, 2D box regression, part lo-
calization, part visibility, and 3D template prediction simultaneously. The architecture
requires a database of 3D models corresponding to several types of vehicles, making the pro-
posed approach hard to generalize to classes where such models do not exist. Deep3DBox
[50] proposes to extend a 2D object detector [1] to 3D by exploiting the fact that the
perspective projection of a 3D bounding box should fit tightly within its 2D detection
window. However, the performance of these methods, which is presented in Section 3.3, is
consistently weaker than methods that use point cloud data.

Recently, VoxelNet [76] was released as a single shot detector that leverages more
powerful point-wise features extracted directly on a 3D voxel grid. However, even with
sparse 3D convolution operations, the inference time for the VoxelNet is 225ms on a TitanX
GPU [76].

3D RPNs have previously been proposed in [67] for 3D object detection from RGBD
images, where MV3D extends the image based RPN of Faster R-CNN [60] to 3D by corre-
sponding every pixel in the BEV feature map to multiple prior 3D anchors. These anchors
are then fed to the RPN to generate 3D proposals that are used to create view-specific
feature crops from the BEV, front view of [44], and image view feature maps. A deep
fusion scheme is used to combine information from these feature crops to produce the final
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detection output.

One substitute for RPNs present in the literature is using mature 2D object detectors
for proposal generation in 2D, followed by amodal 3D extent regression. This trend started
with [41] for indoor object detection, which inspired Frustum-based PointNets (F-PointNet)
[54] to extend the feature extraction stage to rely on point-wise features of PointNet [55]
instead of point histograms. Similarly PointFusion [74] proposed applying a 2D detector to
obtain bounding boxes, and then fusing corresponding image and 3D point cloud to perform
object detection. They process image data and the raw point cloud data independently by a
CNN and a PointNet architecture, respectively. While these methods work well for brightly
lit scenes, they are expected to perform poorly in more extreme scenarios since they are
designed to rely on the image and the quality of the 2D detector. Such extreme scenarios
can be caused by sensor noise and severe lighting variations, such as night time or severe
weather conditions such as snow. These conditions are typically present in autonomous
driving scenarios.

2.5 Evaluation Metrics for Object Detection

This section discusses the evaluation metrics used to evaluate AVOD, both at RPN stage
and the overall performance of the second stage classification, regression and heading esti-
mation.

2.5.1 Bounding Box Evaluation

For a bounding box to be considered a correct detection, the area of overlap ao between
the predicted bounding box Bp and ground truth bounding box Bgt must exceed a certain
threshold. A common threshold for 2D is 0.7 (70%), obtained by the formula :

ao =
area Bp ∩Bgt

area Bp ∪Bgt

(2.4)

where Bp ∩ Bgt denotes the intersection of the predicted and ground truth bounding
boxes and Bp ∪Bgt their union [19]. This formula can be extended to 3D to measure how
well the 3D boxes overlap.

21



2.5.2 Precision & Recall

For a given task and class, the precision-recall curve is computed from a method’s ranked
output. Recall is defined as the proportion of all positive examples ranked above a given
rank. Precision is the proportion of all examples above the rank which are from the positive
class [19].

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(2.5)

where TP is acronym for True Positive, which indicates a correct detection with existing
corresponding ground-truth. FP is False Positive and indicates that an object was detected
but it does not have a corresponding ground-truth, i.e. false detection. FN is False
Negative, and indicates that an object was in the ground-truth but not detected by the
system.

2.5.3 Average Precision (AP)

The AP summarizes the shape of the precision-recall curve and is defined as the mean
precision at a set of eleven equally spaced recall levels [0, 0.1, ..., 1]:

AP =
1

11

∑
r∈{0,0.1,...,1}

pinterp(r) (2.6)

The precision at each recall level r is interpolated by taking the maximum precision
measured for which the corresponding recall exceeds r:

pinterp(r) = max
r̂:r̂≥r

p(r̂) (2.7)

where p(r̂) is the measured precision at recall r̂. The intention in interpolating the
precision-recall curve is to reduce the impact of the “wiggle” in the precision-recall curve
caused by small variations in the ranking of examples [19]. The detections are iteratively
assigned to ground truth labels starting with the largest overlap, measured by bounding
box intersection over union. In order to obtain a high score, a detection method must have
precision at all levels of recall. Therefore this metric penalizes methods which retrieve only
a subset of detections with high precision.
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2.5.4 Average Orientation Similarity (AOS)

KITTI assesses the performance of jointly detecting objects and estimating their 3D ori-
entation using an average orientation similarity (AOS).

AOS =
1

11

∑
r∈{0,0.1,...,1}

max
r̂:r̂≥r

s(r̂) (2.8)

where r is recall.

The orientation similarity s ∈ [0, 1] at recall r is a normalized ([0..1]) variant of the
cosine similarity defined as:

s(r) =
1

|D(r)|
∑
i∈D(r)

1 + cos∆
(i)
θ

2
δi (2.9)

where D(r) denotes the set of all object detections at recall rate r and ∆
(i)
θ is the differ-

ence in angle between estimated and ground truth orientation of detection i. To penalize
multiple detections which correspond to a single object, we set δi = 1 if detection i has
been assigned to a ground truth bounding box (overlaps by at least 50%) and δi = 0 if it
has not been assigned.

Finally KITTI evaluates pure classification and regression (continuous orientation) per-
formance on the task of 3D object orientation estimation in terms of orientation similarity
[23].
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Chapter 3

AVOD

This chapter discusses AVOD, an Aggregate View Object Detection architecture for au-
tonomous driving.

3.1 The AVOD Architecture

The AVOD architecture is depicted in Figure 3.1, where it uses feature extractors to gener-
ate feature maps from both the BEV map and the RGB image. Both feature maps are used
by the RPN to generate non-oriented region proposals, which are passed to the detection
network for dimension refinement, orientation estimation, and category classification.

3.1.1 RGB Image Input

The RGB input image is expected to provide better classification and size information in
comparison to LIDAR point cloud data. KITTI dataset image data was collected using a
two color and two grayscale PointGrey Flea2 video cameras (10 Hz, resolution: 1392× 512
pixels, opening: 90◦ × 35◦)[23]. KITTI provides the data for training and testing using
the left color camera images. To preserve features of smaller objects, input images are
resized to 1590 × 480 pixels. However the size of the input image can also be set as a
hyperparameter. Input feature normalization is done by subtracting the mean of the RGB
channels over the training set, for each image.
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Figure 3.1: AVOD’s architectural diagram. The feature extractors are shown in blue, the
region proposal network in pink, and the second stage detection network in green.

3.1.2 Point Cloud Representation

KITTI dataset LIDAR was collected using a Velodyne HDL-64E 3D laser scanner (10 Hz,
64 laser beams, range: 100 m)[23]. The 3D point cloud of the road scene is used to carry
out a more accurate 3D object detection and localization. A raw point cloud is not useful
for convolutional neural networks, because a 3D grid representation of the point cloud
requires complex and extensive computation for feature extraction. Similar to [6] we can
encode the information from the point cloud into useful compact 2D representation. This
enables us to leverage powerful existing feature extraction networks such as VGG, which
work on 2D image inputs.

Bird’s Eye View Maps

The bird’s eye view maps encode maximum point cloud height and density information.
Compared to the RGB image input, this view offers several advantages. The physical sizes
of objects are preserved when projected into the bird’s eye view. Furthermore, there are
no issues with with overlapping occlusion since objects in this view occupy different space.
The bird’s eye view maps are generated by discretizing the point cloud with a 0.1 meters
resolution and then projecting the voxels onto the xz-plane. For each cell, the height feature
is computed as the maximum height of the points in the cell. In order to encode more
detailed height information, the point cloud is divided into M equally-sized slices. A height
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map is computed for each slice. The point cloud density indicates the number of points in
each cell. This results to a six-channel BEV map from a voxel grid representation of the
point cloud at 0.1 meter resolution. The point cloud is cropped at [−40, 40]×[0, 70] meters,
along the x and z-axis respectively, to contain points within the field of view of the camera.
The first 5 channels of the BEV map are encoded with the maximum height of points in
each grid cell, generated from 5 equal slices between [0, 2.5] to include points above the
ground-plane. The sixth BEV channel contains point density information computed per
cell, normalized by computing the min(1.0, log(N+1)

log 16
), where N is the number of points in

the cell. It must be noted that this method takes certain assumptions such as an accurate
estimated ground-plane. Another assumption is that objects such as cars and pedestrian
appear within certain distance above the ground-plane. The final input to the network is
a BEV map of size 800× 700 with information encoded into 6 channels.

Figure 3.2: Bird’s Eye View Maps, top representing the 2D image, and bottom the
bird’s eye view maps from LIDAR point clouds showing 1 height slice and density map.
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3.1.3 Generating Feature Maps From Point Clouds And Images

VGG Feature Extractor

AVOD uses two feature extractors, one for each input view. The feature extractors are
based on the VGG16 architecture [65], with the following modifications. First, half the
number of filters are used at every convolutional layer. Second, Xavier weight initialization
method [27] is used to initialize weights instead of using pre-trained ImageNet weights.
Third, batch normalization is employed to provide similarly scaled feature maps from both
views. Finally, the fourth maxpooling layer and fifth convolutional layers of VGG16 are
discarded, resulting in output feature maps that have 8× smaller resolution than their
corresponding input, with a depth of 256. The output of the feature extraction from both
views is passed through a 4× bilinear upsampling layer to attain higher resolution feature
maps. A visual representation of the extracted features can be seen in Figure 3.3.

Figure 3.3: Visual representation of a subset of image features tiled at Conv3 layer.
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Number of Layers Operation Kernel Output

2 conv1 3× 3 480× 1590× 32

1 maxpool 2× 2 240× 795× 32

2 conv2 3× 3 240× 795× 64

1 maxpool 2× 2 120× 397× 64

3 conv3 3× 3 120× 397× 128

1 maxpool 2× 2 60× 198× 128

3 conv4 3× 3 60× 198× 256

NA upsampling NA 240× 795× 256

1 1× 1 conv 1× 1 240× 795× 1

Table 3.1: Image branch feature extractor layers with image input of (480× 1590× 3).

Number of Layers Operation Kernel Output

2 conv1 3× 3 700× 800× 32

1 maxpool 2× 2 350× 400× 32

2 conv2 3× 3 350× 400× 64

1 maxpool 2× 2 175× 200× 64

3 conv3 3× 3 175× 200× 128

1 maxpool 2× 2 87× 100× 128

3 conv4 3× 3 87× 100× 256

NA upsampling NA 350× 400× 256

1 1× 1 conv 1× 1 350× 400× 1

Table 3.2: BEV branch feature extractor layers with BEV input of (700× 800× 6).
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Feature Pyramids

Inspired by the Feature Pyramid Network (FPN) [46], we design a bottom-up decoder that
learns to upsample the feature map back to the original input size. The decoder takes as
input the output of the encoder, F , and produces a new M ×N × D̃ feature map. Figure
3.4 shows the operations performed by the decoder, which include upsampling of the input
via a conv-transpose operation, concatenation of a corresponding feature map from the
encoder, and finally fusing the two via a 3 × 3 convolution operation. The final feature
map is of high resolution and representational power, and is shared by both the RPN
and the second stage detection network. The combination of features at different scales
can significantly boost the performance of the network for detecting small objects such as
pedestrian and cyclists. The performance boost of applying feature pyramids is further
discussed in Section 3.3.

Figure 3.4: The architecture of the feature pyramid extractor shown here for the image
branch. Feature maps are propagated from the encoder to the decoder section via red
arrows. Fusion is then performed at every stage of the decoder by a learned upsampling
layer, followed by concatenation (represented as C ), and then mixing via a convolutional
layer, resulting in a full resolution feature map at the last layer of the decoder.
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Number of Layers Operation Kernel Output

2 conv1 3× 3 360× 1200× 32

1 maxpool 2× 2 180× 600× 32

2 conv2 3× 3 180× 600× 64

1 maxpool 2× 2 90× 300× 64

3 conv3 3× 3 90× 300× 128

1 maxpool 2× 2 45× 150× 128

3 conv4 3× 3 45× 150× 256

1 upsample conv3 3× 3 90× 300× 256

1 pyramid fusion3 3× 3 90× 300× 64

1 upsample conv2 3× 3 180× 600× 128

1 pyramid fusion2 3× 3 180× 600× 32

1 upsample conv1 3× 3 360× 1200× 64

1 pyramid fusion1 3× 3 360× 1200× 32

Table 3.3: Image branch feature pyramid feature extractor layers with image input of
(360 × 1200 × 3). Note that the output dimension from the operation upsample conv
involves both the upsampling and concatenation operations.
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Number of Layers Operation Kernel Output

2 conv1 3× 3 704× 800× 32

1 maxpool 2× 2 352× 400× 32

2 conv2 3× 3 352× 400× 64

1 maxpool 2× 2 176× 200× 64

3 conv3 3× 3 176× 200× 128

1 maxpool 2× 2 88× 100× 128

3 conv4 3× 3 88× 100× 256

1 upsample conv3 3× 3 176× 200× 256

1 pyramid fusion3 3× 3 176× 200× 64

1 upsample conv2 3× 3 352× 400× 128

1 pyramid fusion2 3× 3 352× 400× 32

1 upsample conv1 3× 3 704× 800× 64

1 pyramid fusion1 3× 3 704× 800× 32

Table 3.4: BEV branch feature pyramid feature extractor layers with BEV input of (700×
800×6) with padding to allow even divisions for max pooling ops. The padding is removed
from the final feature map, resulting to a final output size of (700× 800× 32).

3.1.4 Multimodal Fusion Region Proposal Network

Anchor Generation

Similar to 2D two-stage detectors, the RPN network regresses the difference between a
set of prior 3D boxes and the ground truth. These prior boxes are referred to as anchors,
where the concept of anchor is the same as proposed in Faster R-CNN.

Anchors in 3D are encoded using the axis-aligned bounding box encoding shown in
Figure 3.5. Anchor boxes are parameterized by the centroid (tx, ty, tz) and axis aligned
dimensions (dx, dy, dz). To generate the 3D anchor grid, (tx, ty) pairs are sampled at an
interval of 0.5 meters in BEV, while tz is determined based on the sensor’s height above the
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ground plane. Similar to [5], the dimensions of the anchors are determined by clustering
the training samples for each class. Using the ground truth label clusters calculated for
BEV, N 3D anchor boxes are generated. The reason for using clusters is because, it is
difficult to hand pick the best prior box dimensions. The network can still learn to adjust
the boxes appropriately, however if we pick better priors for the network to start with,
we can make it easier for the network to learn to predict more accurate bounding box
detections. Therefore instead of choosing priors by hand, the ground truth label sizes from
the training set are clustered using k-means into 2, 1, and 1 clusters, for the Car, Pedestrian
and Cyclist classes, respectively. The anchor boxes are generated on a grid over the 3D
space with a stride of 0.5 meters, placing them on the ground plane. The size of the anchor
stride is a hyperparameter which can be tuned to obtain the best proposals covering all
the region with potential object targets on the grid. The boxes are generated with 0◦ and
90◦ orientations, resulting to 4 boxes when the cluster is 2, where the orientation is fixed
during the RPN stage and orientation regression is delayed until the second stage. Since
a LIDAR point cloud is sparse, this results in many empty anchors. Therefore anchors
without 3D points in BEV are removed efficiently by computing an integral image over the
point occupancy map, resulting in 10− 100K non-empty anchors per frame, depending on
the sample and the anchor stride.

Multiview Feature Crop And Resize Operation

To extract feature crops for every anchor from the view specific feature maps, we use the
crop and resize operation [35]. Given an anchor in 3D, two regions of interest are obtained
by projecting the anchor onto the BEV and image feature maps. The corresponding regions
are then used to extract feature map crops from each view, which are then bilinearly resized
to 3× 3 to obtain equal-length feature vectors.

Dimensionality Reduction Via 1× 1 Convolutional Layers

In some scenarios, the region proposal network is required to save feature crops for 100K an-
chors in GPU memory. Attempting to extract feature crops directly from high dimensional
feature maps imposes a large memory overhead per input view. As an example, extracting
7×7 feature crops for 100K anchors from a 256-dimensional feature map requires around 5
gigabytes1 of memory assuming 32-bit floating point representation. Furthermore, process-
ing such high-dimensional feature crops with the RPN greatly increases its computational
requirements.

1100, 000× 7× 7× 256× 4 bytes.
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Inspired by their use in [37], we apply a 1 × 1 convolutional kernel on the output
feature maps from each view, as an efficient dimensionality reduction mechanism. The
1× 1 convolution acts on every pixel position in each feature map according to:

fout = σ(
256∑
i=0

wifi + b), (3.1)

where fi is the pixel value at each one of the 256 feature map channels, wi is a learned
weight, and b is a learned bias term. These 1 × 1 convolutions can be thought of as
strictly linear coordinate-dependent transformations in the filter space, followed by a non-
linear activation function σ. By learning these transformations, the RPN reduces the
dimensionality of its input feature maps while retaining information deemed useful for
the proposal generation task. From a computational point of view, 1 × 1 convolutions
are dot products across the depth of the feature map and can be computed efficiently on
GPUs. The result is a feature selection mechanism that reduces the memory overhead for
computing anchor specific feature crops by 256× per view, allowing the RPN to process
fused features of tens of thousands of anchors using only a few megabytes of additional
memory while still attaining state-of-the-art performance.

3D Proposal Generation

The outputs of the crop and resize operation are equal-sized feature crops from both
views, which are fused via an element-wise mean operation. Two task specific branches
[60] composed of 2 fully connected layers of size 256, use the fused feature crops to regress
axis aligned object proposal boxes and output an object/background “objectness” score.
3D box regression is performed by computing (∆tx,∆ty,∆tz,∆dx,∆dy,∆dz), the difference
in centroid and dimensions between anchors and ground truth bounding boxes.

Loss Function

Smooth L1 loss is used for 3D box regression, and cross-entropy loss for “objectness”.
Similar to [60], background anchors are ignored when computing the regression loss. Back-
ground anchors are determined by calculating the 2D IoU in BEV between the anchors
and the ground truth bounding boxes. For the car class, anchors with IoU less than 0.3
are considered background anchors, while ones with IoU greater than 0.5 are considered
object anchors. This way, a single ground-truth box may assign positive labels to multiple
anchors. Anchors that are neither positive or negative do not contribute to the training
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objective. Note that this is to eliminate any ambiguity between a positive and negative
sample. For the pedestrian and cyclist classes, the object anchor IoU threshold is reduced
to 0.45. To remove redundant proposals, 2D NMS at an IoU threshold of 0.8 is used to keep
the top 1024 proposals during training. For NMS, tensorflow API is used which selects
a subset of bounding boxes based on scores, by pruning away boxes that have high IoU
overlap with previously selected boxes. At inference time, 300 proposals are used for the
Car class, whereas 1024 proposals are kept for pedestrians and cyclists. These values are
deduced from the recall vs. number of proposals curves (Figure 3.9) to obtain the highest
possible recall for every class with the least number of proposals.

We minimize an objective function following the multi-task loss in Fast R-CNN [25].

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (3.2)

In the above loss formulation, i is the index of an anchor in a mini-batch and pi is
the predicted probability of anchor i being an object. The ground-truth label p∗i is 1 if
the anchor is positive and is 0 if the anchor is negative. ti is a vector representing the 6
parameterized coordinates of the predicted bounding box, and t∗i is the ground-truth box
associated with a positive anchor. The classification loss Lcls is log loss over two classes
(object vs. non-object). For the regression loss, we use Lreg(ti, t

∗
i ) = R(ti, t

∗
i ) where R is

the robust loss function as define in Eq. 3.2. The term p∗iLreg means the regression loss is
activated only for positive anchors (p∗i = 1) and is disabled otherwise (p∗i = 0). The output
of the cls and reg layers consist of pi and ti repectively. The two terms are normalized
by Ncls and Nreg and weighted by a balancing hyperparameter λ. In the case of the cls
term, it is normalized by the anchor mini-batch size and the reg term is normalized by
the number of positive anchors. By default we set λ to 5 for reg which provides the best
performance in our experiments.

3.1.5 Second Stage Detection Network

3D Bounding Box Encoding

In [6], Chen et al. claim that 8 corner box encoding provides better results for regressing
oriented bounding boxes than the traditional axis aligned encoding previously proposed in
[67]. However, an 8 corner encoding does not take into account the physical constraints
of a 3D bounding box, as the top corners of the bounding box should be forced to align
with those at the bottom. To reduce redundancy and keep these physical constraints, we
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propose to encode the bounding box with four corners and two height values representing
the top and bottom corner offsets from the ground plane, determined from the sensor
height.

Figure 3.5 shows different bounding box representations. Our regression targets are
therefore (∆x1, ...,∆x4,∆y1, ...,∆y4,∆h1,∆h2), the corner and height offsets from the
ground plane between the proposals and the ground truth boxes. To determine corner
offsets, we correspond the closest corner of the regressed bounding boxes to the closest
corner of the ground truth box in BEV. The proposed encoding reduces the box repre-
sentation from 24 dimensional vector to a 10 dimensional one. To make a comparison
between different bounding box representations, an 8-corner box representation was also
implemented. The regression targets for 8-corner are: t = (∆x1, ...,∆x8,∆y1, ...,∆y8,
∆z1, ...,∆z8). Two variations of 8-corner are implemented, one where the order of the
corners are preserved during conversion, and another formulation where the order of cor-
ners are not preserved but rather the corners are rotated to the nearest 90◦ angle. This
enables us to perform a closest corner to corner matching when comparing the corners to
the ground-truth boxes. When regressing corners, it is possible for the regressed corners
to be skewed. In our implementation, we align each face corners of the box, resulting to
an aligned 3D box shape. This process is visualized in Figure 3.6 for four corner encoding,
where the alignment is done as follows. First the mid-points on each edge are determined,
and the opposite mid-points are connected via a straight line. The longest line is then
selected and all the corners are then aligned with respect to this line, by selecting the
minimum and maximum corner values along each axis. Section 3.7 shows the performance
comparison between these box representations.

Figure 3.5: A visual comparison between the 8 corner box encoding proposed in [6], the
axis aligned box encoding proposed in [67] and proposed 4 corner encoding.
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Figure 3.6: A visual example of aligning skewed regressed 4 corners. The left figure shows
how the reference line is selected along the longest side. The right figure shows how the
corners are aligned with respect to the selected line.

Explicit Orientation Vector Regression

To determine orientation from a 3D bounding box, MV3D [6] relies on the extents of the
estimated bounding box where the orientation vector is assumed to be in the direction of
the longer side of the box. This approach suffers from two problems. First, this method fails
for detected objects that do not always obey the rule proposed above, such as pedestrians.
Secondly, the resulting orientation is only known up to an additive constant of ±π radians.
Orientation information is lost as the corner order is not preserved in closest corner to corner
matching. Figure 3.8 presents an example of how the same rectangular bounding box can
contain two instances of an object with opposite orientation vectors. Our architecture
remedies this problem by computing (xor, yor) = (cos(θ), sin(θ)). This orientation vector
representation implicitly handles angle wrapping as every θ ∈ [−π, π] can be represented
by a unique unit vector in the BEV space. We use the regressed orientation vector to
correct the bounding box orientation estimate from the adopted four corner representation.
Specifically, we extract the four possible orientations of the bounding box, and then choose
the one closest to the explicitly regressed orientation vector. This idea is visualized in
Figure 3.7. In Section 3.3, this process is shown to provide a more accurate orientation
estimate than directly using the regressed orientation vector.
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Figure 3.7: A visual example of orientation correction. The red arrow represents the
regressed orientation vector. Blue and green arrows are the possible headings where the
green is chosen since it is the closest heading to the regressed vector.

Figure 3.8: A visual representation of the 3D detection problem from BEV. Green: The
bounding box used to determine the IoU overlap in the computation of the average preci-
sion. Blue: The vector used to compute the average error in distance to impact. Red:
The centroid of the bounding box used to calculate the average error in estimating the
centroid. The importance of explicit orientation estimation can be seen as an object’s
bounding box does not change when the orientation (purple) is shifted by ±π radians.
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Generating Final Detections

Similar to the RPN, the inputs to the multiview detection network are feature crops gen-
erated from projecting the proposals into the two input views. As the number of proposals
is an order of magnitude lower than the number of anchors, the original feature map with
a depth of 256 is used for generating these feature crops. Crops from both input views
are resized to 7 × 7 and then fused with an element-wise mean operation. A single set
of three fully connected layers of size 2048 process the fused feature crops to output box
regression, orientation estimation, and category classification for each proposal. Similar to
the RPN, we employ a multi-task loss combining two Smooth L1 losses for the bounding
box and orientation vector regression tasks, and a cross-entropy loss for the classification
task as shown in Eq. 3.3. Final detected boxes are only considered in the evaluation of the
regression loss if they have at least a 0.65 or 0.55 2D IoU in BEV with the ground truth
boxes for the car and pedestrian/cyclist classes, respectively. Since multiple proposals can
be regressed to the same space in BEV, we perform 2D NMS with an IoU threshold of 0.01
to eliminate overlapping detections. The final loss is calculated by the sum of the RPN
loss described in Eq.3.2 and Eq.3.3.

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) + λ

1

Nang

∑
i

p∗iLang(ti, t
∗
i )

(3.3)

3.1.6 Training

We train two networks, one for the car class and one for both the pedestrian and cyclist
classes. The RPN and the detection networks are trained jointly in an end-to-end fashion
using mini-batches containing one image with 512 and 1024 ROIs, respectively. The net-
work is trained for 120K iterations using an ADAM optimizer [39] with an initial learning
rate of 0.0001 that is decayed exponentially every 100K iterations with a decay factor of
0.1. For regularization, we employ dropout with a probability of 0.5 throughout all the
fully connected layers. Batch Normalization is also applied to all FC layers. Batch normal-
ization leads to improvements in convergence while eliminating the need for other forms of
regularization.
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Path-Drop

Path-drop training is applied by implementing the following. At each iteration, we ran-
domly generate 3 probabilities, the first determines the chance of keeping the image branch,
the second determines keeping the BEV branch, and the third makes the final decision in
the case where both branches are killed off. So if our random probability is higher than the
probability set as hyperparameter, that branch is dropped. For instance at each iteration
we decide to drop either the BEV or image branch but we never drop both. Although
dropping one input during training might be an ideal technique to make the network ro-
bust to missing inputs such as lack of image or BEV, overall our experiments showed that
the results were insensitive to path-drop. Therefore in all our experiments, the probability
of dropping either branch was set to 0.9 indicating that both branches were kept during
training most of the time.

Data Augmentation

Data augmentation techniques such as flipping and PCA jittering are applied to the train-
ing data. Data augmentation helps to increase the training instances, and in turn, it
reduces overfitting. Both image and point cloud data can be flipped horizontally where
the corresponding labels are also flipped to match the flipped object location. PCA jitter-
ing consists of altering the intensities of the RGB channels in the training images. This is
implemented by computing PCA on all RGB values in the training data, and then adding
multiples of the found principle components to the images, as described in [40].

3.2 Proposed Evaluation Metric

This section discusses the proposed metric to measure the performance of heading estima-
tion.

3.2.1 The Average Heading Similarity Metric

In addition to the metrics discussed in Section 2.5, AVOD 3D detection results are also
evaluated using the 3D and BEV AP and Average Heading Similarity (AHS) at 0.7 IoU
threshold for the car class, and 0.5 IoU threshold for the pedestrian and cyclist classes. The
AHS is the Average Orientation Similarity (AOS) [23], but evaluated using 3D IOU and
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global orientation angle instead of 2D IOU and observation angle, removing the metric’s
dependence on localization accuracy.

AHS =
1

11

∑
r∈(0,0.1,....1)

max
r̂:r̂≥r

s(r̂), (3.4)

where s(r) is defined at every recall value r according to:

s(r) =
1

|D(r)|
∑
i∈D(r)

1(IoU ≥ λ)
1 + cos(θ − θ∗)

2
. (3.5)

Here, θ is the global orientation estimate, θ∗ is the ground truth global orientation, and
D(r) is the set of all detections at recall r. 1(IOU ≥ λ) is an indicator function used to
only consider valid detections in the computation of the heading similarity. The AHS can
be evaluated in either 3D or BEV spaces by switching the source of the IoU computation
in the indicator function.

3.3 Experiments and Results

We test AVOD’s performance on the proposal generation and object detection tasks on
the three classes of the KITTI Object Detection Benchmark [23]. We follow [6] to split
the provided 7481 training frames into a training and a validation set at approximately a
1 : 1 ratio. For submission to the KITTI server, we train on our custom split with 85%
of training data used for training and the rest for validation. Note that since there are
significantly fewer instances of pedestrian and cyclists compared to the car instances, this
split in particular, helps to achieve better generalization on the detection of both pedestrian
and cyclist classes by including more instances in the training set. For evaluation, we follow
the easy, medium, hard difficulty classification proposed by KITTI.

3D Proposal Recall: 3D proposal generation is evaluated using 3D bounding box recall at
a 0.5 3D IoU threshold. We compare our RPN against the proposal generation algorithms
3DOP [4] and MONO3D [3]. Figure 3.9 shows the recall vs number of proposals curves for
our fusion RPN, 3DOP and Mono3D. It can be seen that our fusion based RPN outperforms
both 3DOP and Mono3D by a wide margin on all three classes. As an example, our RPN
achieves an 86% 3D recall on the Car class with just 10 proposals per frame. The maximum
recall achieved by 3DOP and Mono3D on the Car class is 73.87% and 65.74% respectively.
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Figure 3.9: The recall vs number of proposals at a 3D IoU threshold of 0.5 for the three
classes evaluated on the validation set at moderate difficulty.

This gap is also present for the pedestrian and cyclist classes, where our RPN achieves more
than 20% increase in recall at 1024 proposals. This large gap in performance suggests the
superiority of learning based approaches over methods based on hand crafted features.
For the car class, our RPN achieves a 91% recall at just 50 proposals, whereas MV3D [6]
reported requiring 300 proposals to achieve the same recall. It should be noted that MV3D
does not publicly provide proposal results for cars, and was not tested on pedestrians or
cyclists.

3D Object Detection: 3D detection results are evaluated using the 3D AP, BEV AP,
and AHS metrics at 0.7 IoU threshold for the car class, and 0.5 IoU threshold for the
pedestrian and cyclist classes. We compare against publicly provided results from MV3D
[6] and Deep3DBox [50] on the validation set. It has to be noted that no currently pub-
lished method provides public results on the pedestrian and cyclist classes for the 3D object
detection task, and hence comparison is done for the car class only. On the validation set
(Table 3.5), AVOD is shown to outperform MV3D by 1.84% AP on the moderate setting
and 3.22% on the hard setting. However, AVOD achieves a 30.28% and 27.54% increase
in AHS over MV3D at the moderate and hard setting respectively. This can be attributed
to the loss of orientation vector direction discussed in Section 3.1.5 resulting in orienta-
tion estimation up to an additive error of ±π radians. To verify this assertion, Figure
3.11 shows a qualitative comparison of the results of AVOD and MV3D in comparison to
KITTI’s ground truth. It can be seen that MV3D assigns erroneous orientations for almost
half of the cars shown. On the other hand, AVOD assigns the correct orientation for all
cars in that particular scene. As expected, the gap in 3D localization performance between
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Deep3DBox and AVOD is very large. It can be seen in Figure 3.11 that Deep3DBox fails
at accurately localizing most of the vehicles in 3D. This further enforces the superiority
of fusion based methods over monocular based ones. We also compare the performance
of our architecture on the KITTI test set with MV3D, VoxelNet[76], and F-PointNet[54].
Test set results are provided directly by the evaluation server, which does not compute
the AHS metric. Table 3.6 shows the results of AVOD on KITTI’s test set. It can be
seen that with only the modified VGG feature extractor, AVOD performs quite well on
all three classes, while being twice as fast as the next fastest method, F-PointNet. How-
ever, once we add our high-resolution feature extractor, i.e. feature pyramid architecture,
AVOD-FPN outperforms all other methods on the car class in 3D object detection, with
a noticeable margin of 4.19% on hard (highly occluded or far) instances in comparison to
the second best performing method, F-PointNet. Finally, our network that is trained on
only the KITTI training data outperforms the ImageNet pretrained F-PointNet on the car
class and achieves comparable results on pedestrians and cyclist classes while being 1.7×
faster. MV3D, F-PointNet, and VoxelNet do not provide orientation estimation results to
be evaluated using KITTI’s 2D AOS metric. Thus, performance comparison in terms of
heading estimation with existing methods cannot be performed.

Easy Moderate Hard

AP AHS AP AHS AP AHS

Deep3DBox 5.84 5.84 4.09 4.09 3.83 3.83
MV3D 83.87 52.74 72.35 43.75 64.56 39.86

AVOD-FPN 84.41 84.19 74.44 74.11 68.65 68.28

Table 3.5: A comparison of the performance of Deep3DBox [50], MV3D [6], and AVOD-
FPN evaluated on the car class in the validation set. For evaluation, we show the AP and
AHS (in %) at 0.7 3D IoU.

Runtime and Memory Requirements: We use FLOP count and number of parameters
to assess the computational efficiency and the memory requirements. AVOD-FPN archi-
tecture employs roughly 38.073 million parameters, approximately 16% that of MV3D.
The deep fusion scheme employed by MV3D triples the number of fully connected layers
required for the second stage detection network, which explains the significant reduction in
the number of parameters of AVOD-FPN. Furthermore, AVOD-FPN architecture requires
231.263 billion FLOPs per frame allowing it to process frames in 0.1 seconds on a TITAN
Xp GPU, taking 20ms for pre-processing, where the pre-processing includes operations such

42



Figure 3.10: Qualitative results of AVOD for cars (top) and pedestrians/cyclists (bottom).
Left: 3D proposal network output, Middle: 3D detection output, and Right: the pro-
jection of the detection output into image. The 3D LIDAR point cloud has been colorized
and interpolated for better visualization.

as loading the input, BEV map generation, anchor generation and empty anchor filtering,
and 80ms for inference. This makes it 1.7× faster than F-PointNet, while maintaining
state-of-the-art results. Finally, both AVOD and AVOD-FPN require only 2 gigabytes
of GPU memory at inference time, making them suitable to be used for deployment on
autonomous vehicles.

3.3.1 Ablation Studies

Table 3.7 shows the effect of varying different hyperparameters on the performance mea-
sured by the AP and AHS, number of model parameters, and FLOP count of the proposed
architecture. The original network uses hyperparameter values described throughout the
thesis up to this point, along with the feature extractor of MV3D. We study the effect
of the RPN’s input feature vector origin and size on both the proposal recall and final
detection AP by training two networks, one using BEV only features, and the other using
feature crops of size 1× 1 as input to the RPN stage. We also study the effect of different
bounding box encoding schemes shown in Figure 3.5, and the effects of adding an orienta-
tion regression output layer on the final detection performance in terms of AP and AHS.
Finally, we compare different fusion schemes proposed previously by MV3D [6]. The fusion
schemes are shown in Figure 3.12.

RPN Input Variations: Figure 3.9 shows the recall vs. number of proposals curves
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AP3D (%) APBEV (%)

Method Runtime (s) Class Easy Moderate Hard Easy Moderate Hard

MV3D [6] 0.36

Car

71.09 62.35 55.12 86.02 76.90 68.49
VoxelNet [76] 0.23 77.47 65.11 57.73 89.35 79.26 77.39

F-PointNet [54] 0.17 81.20 70.39 62.19 88.70 84.00 75.33
AVOD 0.08 73.59 65.78 58.38 86.80 85.44 77.73

AVOD-FPN 0.1 81.94 71.88 66.38 88.53 83.79 77.90

VoxelNet [76] 0.23

Ped.

39.48 33.69 31.51 46.13 40.74 38.11
F-PointNet [54] 0.17 51.21 44.89 40.23 58.09 50.22 47.20

AVOD 0.08 38.28 31.51 26.98 42.51 35.24 33.97
AVOD-FPN 0.1 50.80 42.81 40.88 58.75 51.05 47.54

VoxelNet [76] 0.23

Cyc.

61.22 48.36 44.37 66.70 54.76 50.55
F-PointNet [54] 0.17 71.96 56.77 50.39 75.38 61.96 54.68

AVOD 0.08 60.11 44.90 38.80 63.66 47.74 46.55
AVOD-FPN 0.1 64.00 52.18 46.61 68.09 57.48 50.77

Table 3.6: A comparison of the performance of AVOD with the state-of-the-art 3D object
detectors evaluated on KITTI’s test set. Results are generated by KITTI’s evaluation
server [23].

for both the original RPN and BEV only RPN on the three classes on the validation set.
For the pedestrian and cyclist classes, fusing features from both views at the RPN stage
is shown to provide a 10.1% and 8.6% increase in recall over the BEV only version at
1024 proposals. This difference increases as the number of proposals is decreased reaching
20% when using 100 proposals. For the car class, adding image features as an input to
the RPN does not seem to provide a higher recall value over the BEV only version. We
attribute this to the fact that instances from the car class usually occupy a large space in
the input BEV map, providing sufficient features in the corresponding output feature map
to reliably generate object proposals. The effect of the increase in proposal recall on the
final detection performance can be observed in Table 3.7.

Using both image and BEV features at the RPN stage results in a 6.9% and 9.4%
increase in AP over the BEV only version for the pedestrian and cyclist classes respec-
tively. We perform an additional experiment using 1 pixel feature vector size as an input
to the RPN from both views. We observe a drop in AP for all three classes, with the
drop being much higher for the pedestrian and cyclist classes (26.9% and 32.6% decrease
for pedestrians and cyclists vs. a 9.5% decrease for cars). This enforces the hypothesis
that a single pixel does not contain sufficient information for proposal generation for these
smaller classes. It has to be noted that the BEV only RPN requires 266.64 million less
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Car Pedestrian Cyclist

Architecture AP3D AHS3D AP3D AHS3D AP3D AHS3D Number Of Parameters FLOPs

Original 74.1 73.9 39.5 29.8 41.6 33.2 38,073,528 186,284,945,569
RPN BEV Only 74.1 73.9 32.6 26.7 32.2 30.2 0 -266,641,569

Feature Pyramid Extractor 74.8 74.5 58.8 43.3 49.7 48.7 -21,391,104 +44,978,386,776
RPN 1 Pixel Feature Size 64.6 64.3 12.6 11.6 9.0 8.2 -4,096 -20,480

Axis Aligned 67.6 67.5 32.6 27.8 36.6 35.6 -8196 -40,958
4 Corners No Orientation 67.8 43.1 37.8 17.9 41.1 18.6 -4,098 -20,418
8 Corners No Orientation 66.9 34.1 37.8 18.1 40.4 21.0 +24638 +122,879

8 Corners Ordered No Orientation 51.6 51.6 18.3 16.1 13.2 13.1 +24638 +122,879
Late Fusion 73.2 72.6 38.0 29.9 36.8 34.8 +34,113,536 +170,536,962
Deep Fusion 72.6 72.4 36.4 27.6 36.9 32.2 +34,113,536 +170,536,962

Basic FC Layers(2048) 67.9 67.5 36.2 26.4 32.4 27.0 +68,169,728 +266,641,569

Table 3.7: A comparison of the performance of different variations of hyperparameters,
evaluated on the validation set at moderate difficulty. We use a 3D IoU threshold of 0.7
for the car class, and 0.5 for the pedestrian and cyclist classes. The effect of variation of
hyperparameters on the FLOPs and number of parameters are measured relative to the
original network.

FLOPs than the original network as it does not need to generate feature crops from image
view feature maps. The decrease in the FLOP count for the network does not compensate
for the loss in performance.

Bounding Box Encoding: We study the effect of different bounding box encodings
shown in Figure 3.5 by training two additional networks. The first network estimates axis
aligned bounding boxes, using the regressed orientation vector as the final box orientation.
The second and the third networks use our 4 corner and MV3D’s 8 corner encodings with-
out additional orientation estimation as described in Section 3.1.5. As expected, without
orientation regression to provide orientation angle correction, the two networks employing
the 4 corner and the 8 corner encodings provide a much lower AHS than the original net-
work for all three classes. This phenomenon can be attributed to the loss of orientation
information as described in Section 3.1.5.

Fusion Methods: Figure 3.12 shows the different fusion methods implemented for the
second stage, and compared in this work. The choice of using early fusion for our architec-
ture was due to no observed improvement when using late or deep fusion proposed by [6].
On the other hand, early fusion requires half the number of parameters in the second stage
fully connected layers, and as such requires much less memory when deployed. Early fusion
is also marginally faster at inference time. The performance of fusion methods is shown in
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Table 3.7. Note that Basic FC Layers means no fusion was applied and 3 separate task
specific branches were used.

Figure 3.12: The different fusion schemes used for comparison. The element-wise mean
operation is used for all fusion modes.

Qualitative Results: Figure 3.10 shows the output of the RPN and the final detections
in both 3D and image space. To show generalization, we also deploy AVOD on our au-
tonomous vehicle with a different set of cameras (Ximea MQ013CG-E2 1.3 MP) and a lower
resolution LIDAR (Velodyne HDL-32e) than that used in KITTI. Results of generalization
are shown in Figure 3.13.
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Figure 3.11: A qualitative comparison between MV3D [6], Deep3DBox [50], and AVOD
relative to KITTI’s ground truth on a sample in the validation set. It can be noted that
MV3D can only determine the global orientation of objects with an additive error of ±π
radians.
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Figure 3.13: Results of deploying AVOD on our autonomous vehicle. It can be seen that
the network generalizes well to new scenes even when using data from a different camera
and a lower resolution LIDAR sensor.
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Chapter 4

Single Stage Detection

4.1 Motivation

This chapter discusses AVOD-SSD, a 3D single stage detector for object detection. The
highest accuracy object detectors to date are based on two-stage detectors. In contrast,
single stage detectors have the potential to be faster and simpler architecture-wise. Sin-
gle stage object detection algorithms are simple in a sense that they completely eliminate
proposal generation and subsequent feature resampling stage, and thus encapsulate all
computation into one stage. With this in mind, this work further explores making the
necessary modifications to AVOD to operate as a single stage detector, while still main-
taining a fairly high accuracy. Furthermore the speed accuracy trade-offs between AVOD,
AVOD-FPN and AVOD-SSD are discussed.

4.2 The AVOD-SSD Architecture

A single stage detector simply skips the proposal generation part, but rather regresses the
initial anchors directly. The architecture is depicted in Figure 4.1. The architecture is
similar to AVOD with the following modifications. At the RPN stage, the 1 × 1 Conv is
removed since the network requires a higher resolution feature map in order to regress the
anchors directly. Similar to AVOD’s second stage network, crops from both input views
are resized to 7× 7 and then fused with an element-wise mean operation. After the fusion
of cropped features, the same task-specific FC layers previously used in AVOD to perform
classification, regression and orientation, are deployed to classify and regress the anchors
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directly. The structure of the FC layers is shown in Figure 4.2. The second stage bounding
box refinement is removed and NMS is then applied on all the regressed anchors resulting
to the final bounding boxes. When making these modifications, we need to consider two
factors. First, since we are now regressing all the anchors, we are facing a class imbalance
scenario. This is due to having the majority of the anchors as background and only very
few anchors containing actual objects. This can potentially stop the single stage detector
from achieving state-of-the-art accuracy. The authors in [47] proposed a new loss function
to eliminate this barrier, and the effect of this loss function is demonstrated in Section
4.3. The second factor affecting the performance is the amount of computation happening
inside the network from an implementation point of view. Note that with AVOD, non-
oriented proposals are being regressed at the RPN stage. These regressed anchors then
need to be converted to the desired final box format (such as 4 Corners + Heights or
8-Corners) to perform the regression at the second stage. However with AVOD-SSD this
box conversion processing can be pushed onto the pre-processing stage. Even with these
code optimizations, the computation cost of extracting and fusing features, along with the
regression of large number of anchors for classification, regression and orientation is still
too high to achieve a significant boost in speed. This is further discussed in Section 4.3.

Figure 4.1: AVOD-SSD’s architectural diagram. The feature extractors are shown in blue
and the single stage detection network in pink.
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Figure 4.2: AVOD-SSD FC layers. The number at the bottom of each layer indicates the
size of the layer.

4.2.1 Focal Loss

Single stage object detection methods typically face a large class imbalance during training.
This is because these detectors evaluate 10K−100K candidate locations (i.e. anchors) per
frame but only a few locations contain objects. This imbalance causes two problems: (1)
training is extremely inefficient as most locations are non-objects and the network will spent
most of its time training on negative samples; (2) The easy negatives can simply overwhelm
the network. One common solution proposed is to perform hard negative mining [68, 64]
that samples hard examples during training or adopt a more complex sampling technique.
Authors in [47] proposed a focal loss function that handles the class imbalance faced by a
single stage detector. This enables the network to efficiently train on all examples without
requiring any complex sampling. In addition the proposed loss function reduces the effect
of easy negatives on the computation of the gradients.

Focal loss is designed to address the class imbalance issue by down-weighting easy
examples. This way their contribution to the total loss is small even if their number is
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large. Focal loss essentially performs the opposite role of a robust loss function (e.g. Huber
loss [31]), which reduces the contribution of outliers by down-weighting the loss of examples
with large errors, i.e. hard examples, and it’s commonly used in neural networks. Focal loss
instead focuses the training on a sparse set of hard examples. In particular it addresses the
scenario where there is an extreme imbalance between foreground and background classes
during training (e.g. 1 : 1000). This happens in a single stage detector where out of
thousands of anchors, there might be only a few locations containing objects.

In order to introduce the formulation of focal loss, we start with cross entropy (CE)
loss for binary classification:

CE(p, y) =

{
−log(p), if y = 1

−log(1− p), otherwise
(4.1)

In the above equation y ∈ {±1} specifies the ground-truth class and p ∈ [0, 1] is the
model’s estimated probability for the class with label y = 1. For notational convenience,
we define pt:

pt =

{
p, if y = 1

1− p, otherwise
(4.2)

and then we can rewrite CE(p, y) = CE(pt) = −log(pt).

Balanced Cross Entropy

A common technique to address the class imbalance issue via the CE loss function is to
introduce a weighting factor α ∈ [0, 1] for class 1 and 1 − α for class −1, where α is
a hyperparameter that needs to be tuned for the network. For notational convenience
similarly applied to pt, we define αt. We write the α-Balanced CE loss as :

BCE(pt) = −αtlog(pt) (4.3)

Focal loss then builds on this simple extension.

Focal Loss Definition

As previously discussed, the large class imbalance during training overwhelms the cross
entropy loss. Due to such imbalance, the majority of the loss and the gradients are dom-
inated by the easily classified negative examples. Although α balances the importance of
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positive vs. negative examples, it does not differentiate between easy vs. hard examples.
Instead focal loss down-weights easy examples and focuses the training on hard negatives.

Focal loss uses a modulating factor (1−pt)γ with the cross entropy loss, with a tunable
focusing parameter γ ≥ 0.

FL(pt) = −(1− pt)γlog(pt) (4.4)

The focal loss is visualized for several values of γ ∈ [0, 5] in Figure 4.3. Two important
properties of this loss are the following: (1) When an example is misclassified and pt is
small, the modulating factor is near 1 and hence the loss is not affected. As pt → 1,
the factor goes to 0 and the loss for correctly classified examples is down-weighted. (2)
The focusing parameter γ adjusts the rate at which easy examples are down-weighted.
When γ = 0, FL is equivalent to CE, and as γ is increased the effect of the modulating
factor increases. We can think of the modulating factor γ as reducing the loss contribution
from easy examples while extending the range in which an example receives low loss. For
instance, with γ = 2, an example classified with pt = 0.9 would have ≈ 100× lower loss
compared with CE and with pt = 0.968 it would have ≈ 1000× lower loss. This increases
the importance of correcting misclassified examples by down-scaling the loss by at most
4× for pt ≤ .5 and γ = 2 [47]. An α-balanced variant of the focal loss can also be defined
as:

FL(pt) = −αt(1− pt)γlog(pt) (4.5)

This provides a slight improvement in accuracy over the non-α-balanced form.

Figure 4.3 shows the properties of both loss functions, however for CE loss, it can
be seen that even examples that are easily classified (pt � .5) incur a loss with a large
magnitude. When the loss is summed over a large number of easy examples, these small
values can overwhelm the rare class.

Implementation of focal loss combines the sigmoid operation for computing p. Extend-
ing the focal loss to the multi-class domain is also possible; however, for, simplicity this
work focuses on the binary loss, and this loss is applied for the case of Car detection where
there are only two classes: Car and Background classes.
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Figure 4.3: The focal loss is visualized for several values of γ ∈ [0, 5] [47].

4.3 Experiments

4.3.1 Performance & Speed Analaysis

Table 4.1 shows the performance comparison of AVOD, AVOD-FPN and AVOD-SSD.
Table 4.2 demonstrates the effect of the focal loss applied to AVOD-SSD, increasing the
AP from 61.52 to 73.30. Note that the AP is evaluated at both 0.7 IoU and 0.5 IoU
threshold, where a 0.7 IoU threshold is more descriptive in terms of localization accuracy.
For instance AP3D(0.7) indicates the AP was evaluated at a 0.7 IoU threshold. In this
table the “Original” refers to AVOD-SSD with feature pyramid feature extractor, Basic
FC layers and focal loss.

Both AVOD and AVOD-FPN are optimized for accuracy. For instance, they use two
clusters for car detection, which is tailored towards detecting smaller cars such as smart
cars. Table 4.2 show various hyperparameters selected for AVOD-SSD that affect the
performance and some can potentially reduce run-time speed 1. Note that some of the

1Note that the run-time speeds are approximations. The run-time speed is typically averaged over 100
iterations and the speed can vary when run on different machines. All the speed profiling was done on a
single machine for a fair comparison.
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network parameter optimizations are applicable to all three architectures as they all share
the bulk of the computation overhead. Table 4.1 also shows an additional experiment,
where instead of reducing the computational load on the network, we increase the BEV
resolution to study the effect on the performance (referred to as High Res BEV ). For this
experiment, the point cloud is discretized with a ‘0.07’ meters resolution resulting to a BEV
map of size 1000×1144. This shows that increasing the resolution of BEV improves the AP
of AVOD-SSD while increasing the runtime, while on AVOD-FPN the same improvement
is not achieved. This might indicate that AVOD-SSD can benefit from a richer feature
representation.

Overall it can be seen that by making modifications such as adopting focal loss and
changing other hyperparameters such as using Basic FC layers, i.e. separate task specific
layers as opposed to Fusion layers, and fine-tuning the loss function parameters, AVOD-
SSD can achieve similar accuracy to AVOD. Note that Early Fusion was adopted for both
AVOD and AVOD-FPN because of better performance; however it did not perform as
well with the AVOD-SSD architecture. Instead, separate task specific layers with reduced
layer sizes seems to provide the best performance. However during these experiments,
it was found that reducing the size of the Basic FC layers in general does help with the
performance on AVOD as shown in Table 4.1, compared with the results presented in Table
3.7 where larger sized layers (2048) were used.

In terms of the choice of the feature extractor, that is between the modified VGG
and feature pyramids, AVOD-SSD with VGG feature extractor performs poorly with an
increased inference speed. The poor performance might be due to the fact that the network
requires a rich and multi-scale feature representation such as feature pyramids to be able to
regress anchors directly. The speed is related to the fact that the 1×1 Conv dimensionality
reduction is removed, and hence the network needs to process the crops along the entire
dimension of 256 which results in high memory consumption as these crops need to be
stored in memory as well as increase in the processing run-time. However with feature
pyramid feature extractor, the dimension of features along depth is only 32 and hence, it
runs faster.

Although single stage detectors promise a speed boost as they skip the proposal gen-
eration step, saving significant computation time in the case of 2D detection, the same
speed boost was not achieved in the case of 3D detection. AVOD-SSD is only 0.01s faster
than AVOD-FPN while being 0.01s slower than AVOD. This is due to various overhead
in terms of certain computations. One large computational overhead in all variations of
AVOD architecture is the feature extractor stage where the convolution processing is exten-
sive, specially in the case of the feature pyramid layers. Interestingly, the computational
overhead of processing large number of anchors is smaller than the number and size of
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the feature extractor layers. This was confirmed by performing a small experiment where
the anchor stride is increased significantly resulting in a small number of anchors. Even
significantly reducing the number of anchors does not lead to a significant speed boost in
the GPU processing time.

Finally Figures 4.4 and 4.5 show the Precision-Recall curve for AVOD-FPN vs. AVOD-
SSD for 3D detection, BEV detection and 2D detection on the validation and test set,
respectively. Note that we compare performance against AVOD-FPN since it has better
performance compared to the original AVOD architecture. It can be seen that in terms of
recall, both networks are performing well, however, AVOD-FPN achieves a slightly higher
precision due to the second stage refinement process. The interpretation of these plots is
that AVOD-FPN in general is more robust towards FPs, whereas AVOD-SSD is more prone
to FPs. In addition AVOD-FPN has more precise localization accuracy. This is largely due
to the fact that with two-stage detectors, the network has two chances at both classification
and regression. First the RPN distinguishes between an object and non-object, and the
second stage further decides on the class of the potential objects as well as refining the
location of the bounding box. In contrast with single stage detector, the network only has
one pass at deciding on the class of a potential object and hence the chances of detecting
FPs increases. Overall the AP of AVOD and AVOD-SSD are fairly similar when evaluated
on the validation set, indicating that a single stage detector can perform as well as a two-
stage detector with two-stage detector being more robust towards FPs and slightly more
accurate in terms of localization. Table 4.4 shows the performance of AVOD-SSD on the
KITTI’s evaluation server compared against AVOD and AVOD-FPN. Finally Table 4.3
shows the effect of varying focal loss parameters γ and α. Similar results in terms of the
best values for γ and α providing the highest accuracy reported in [47] was found in these
experiments.

Car
Architecture AP3D(0.7) AHS3D(0.7) AP3D(0.5) AHS3D(0.5) Number Of Parameters FLOPs Runtime speed (s)

AVOD 74.23 73.97 89.10 88.75 38,073,528 186,284,945,569 0.08
AVOD-FPN 74.81 74.53 89.11 88.63 -21,391,104 +27,422,011,231 0.1

AVOD-FPN (Basic FC Layers - 1024) 73.08 72.54 89.51 88.67 -24,534,784 +27,422,011,231 0.09
AVOD-FPN(High Res BEV) 73.74 73.11 89.07 88.02 -21,391,104 +152,577,646,431 0.14

AVOD-SSD(VGG) 56.11 55.89 83.21 82.67 -139,274 -46,616,465,569 0.2
AVOD-SSD(FPN) 73.93 73.32 88.94 87.96 -25,206,346 +27,358,523,231 0.09

AVOD-SSD(FPN + High Res BEV) 74.53 74.08 88.91 88.19 -24,673,610 +152,476,782,431 0.16

Table 4.1: Performance analysis of AVOD, AVOD-FPN and AVOD-SSD on the validation
set and moderate difficulty.
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Car
Architecture AP3D AHS3D AP3D(0.5) AHS3D(0.5) Number Of Parameters FLOPs Runtime speed (s)

Original 73.93 73.32 88.94 87.96 12,867,182 213,643,468,800 0.09
Basic FC Layers without Focal Loss 61.52 60.32 87.78 85.70 0 0 0.09

Early Fusion without Focal Loss 58.88 58.50 84.87 84.03 +3,676,416 0 0.1
Early Fusion (2048) 67.02 66.81 84.64 84.24 +3,676,416 0 0.1

1 Cluster 67.60 67.02 88.14 87.17 0 0 0.08
Reduced Image Resolution 63.86 63.63 82.39 81.93 -3,676,416 -75,220,992,000 0.08

Table 4.2: Effect of different parameters on the accuracy and speed of the AVOD-SSD on
the validation set and moderate difficulty.

Car
γ α AP3D(0.7) AHS3D(0.7) AP3D(0.5) AHS3D(0.5)

1.0 .25 70.85 70.41 88.76 87.86
2.0 .25 73.93 73.32 88.94 87.96
2.0 .75 72.10 71.34 88.46 87.70
2.0 .5 68.01 67.70 88.53 87.86
3.0 .25 70.03 69.39 87.87 86.81

Table 4.3: Effect of varying focal loss parameters γ and α, where γ ranges from [1, 3] and
α is kept between [.25, .75]. Note that these values were chosen since they seem to achieve
better performance as reported in [47].

AP3D (%) APBEV (%) AP2D(%)

Method Runtime (s) Class Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

AVOD-FPN 0.1 Car 81.94 71.88 66.38 88.53 83.79 77.90 89.99 87.44 80.05
AVOD 0.08 73.59 65.78 58.38 86.80 85.44 77.73 89.73 88.08 80.14

AVOD-SSD 0.09 73.64 63.87 56.90 86.14 77.66 75.68 88.94 85.71 78.05

Table 4.4: AVOD-SSD results on the KITTI’s evaluation server [23] compared against
AVOD and AVOD-FPN, where an IoU threshold of 0.7 is used.
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(a) AVOD-FPN 3D Car Detection. (b) AVOD-SSD 3D Car Detection.

(c) AVOD-FPN Bird’s eye view. (d) AVOD-SSD Bird’s eye view.

(e) AVOD-FPN 2D Car Detection. (f) AVOD-SSD 2D Car Detection.

Figure 4.4: Comparison of Precision-Recall curve of AVOD-FPN vs. AVOD-SSD on the
validation set.
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(a) AVOD-FPN 3D Car Detection. (b) AVOD-SSD 3D Car Detection.

(c) AVOD-FPN Bird’s eye view. (d) AVOD-SSD Bird’s eye view.

(e) AVOD-FPN 2D Car Detection. (f) AVOD-SSD 2D Car Detection.

Figure 4.5: Comparison of Precision-Recall curve of AVOD-FPN vs. AVOD-SSD on the
KITTI’s evaluation server.
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4.3.2 Qualitative Results

Figure 4.6 shows qualitative results of AVOD-SSD on KITTI’s test set. It can be seen
that even as a single stage detector, the network is able to detect and regress oriented
bounding boxes in the scenes fairly accurately. The selected scenes include Car instances
with variable orientations, occluded cases and further away instances. For these cases,
AVOD-SSD can reliably detect all the objects within the scene.

Figure 4.7 shows samples where there are false detections among the detected objects
by AVOD-SSD however, AVOD-FPN is more robust towards false detections. Note that
such false detections tend to occur within sections where the BEV map feature might
represent edges and lines similar to BEV features representing an object such as a Car.
Such instances might be confusing, and without the second stage refinement to identify
these detections, they can lead to false detections. It must be noted that although the
network’s confidence score of such false detections are typically low (sometimes as low as
0.1), we typically allow detections even with low confidence score in order to achieve high
recall. The overall accuracy will depend on a good balance between high recall and high
precision.
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(a) AVOD-SSD predictions on sample 000013

(b) AVOD-SSD predictions on sample 000030

(c) AVOD-SSD predictions on sample 000102

Figure 4.6: AVOD-SSD qualitative results on the KITTI test set.
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(a) AVOD predictions on sample 000203 (b) AVOD-SSD predictions on sample 000203

(c) AVOD predictions on sample 000245 (d) AVOD-SSD predictions on sample 000245

Figure 4.7: AVOD-FPN vs AVOD-SSD qualitative comparisons showing FP Car instances
detected by AVOD-SSD on the KITTI test set.
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Chapter 5

Conclusion

This work introduced AVOD, a 3D object detector for autonomous driving scenarios. The
AVOD architecture is differentiated from the state-of-the-art by using a high resolution
feature extractor coupled with a multimodal fusion RPN architecture. AVOD in turn is
able to produce accurate region proposals for small classes in road scenes. Experiments on
the KITTI dataset showed the performance boost of AVOD over the state-of-the-art on
the 3D localization, orientation estimation, and category classification tasks. AVOD-SSD
is introduced as a single stage 3D detector, and this work shows how to train a 3D single
stage detector that can match the accuracy of a two-stage detector. Finally the accuracy
and speed performance of AVOD vs. AVOD-SSD are studied.

5.1 Limitations

5.1.1 2D representation of 3D data

Although the accuracy performance of AVOD compared to other networks that process
LIDAR points directly, is close, AVOD still relies on BEV view. F-PointNet outperforms
AVOD on the task of pedestrian and cyclists detection. This could be due to two reasons,
the fact that F-PointNet uses a pre-trained 2D detector which can more reliably detect
smaller objects such as pedestrians, and the fact that raw 3D data has much richer in-
formation compared to BEV view. Ideally, a more suitable technique should fuse all the
available information such as image, BEV and the point cloud data directly. However,
this will increase the processing time significantly. Networks such as F-PointNet can still
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achieve reasonable speed-time because they rely on the results of a 2D detector which
generates a small number of candidate proposals compared to the RPN and hence reduces
the processing time by a significant amount. These methods also require a pre-trained 2D
network to be able to perform reliably.

5.1.2 Reliance on the Estimated Ground-plane

AVOD relies on an estimated ground-plane in order to generate and place the anchors
on the grid. Although this works fairly well on the KITTI dataset, this fails in the case
where the ground-plane estimation is inaccurate due to hills in the environment and other
variations where the ground-plane is highly variable. In contrast, methods such as F-
PointNet or other similar networks that rely on 2D detection, completely remove the need
for ground-plane estimation.

5.2 Future Work

5.2.1 Speed Optimization

Both AVOD and AVOD-SSD networks can be made faster by optimizing certain operations.
Some pre-processing operations could be moved onto the GPU to run faster, such as BEV
generation. This work compared the performance of a 3D single stage detector to a two-
stage detector; however, the speed boost achieved by single stage 2D detectors did not
transfer well due to the feature extractor layers and high number of potential anchors to
process. A different method for feature extraction as well as generating anchor proposals
can be studied.

5.2.2 Processing Sequential Information

Most current 3D detectors process single frames only, one reason being the computational
overhead of processing 3D information. However in the case of autonomous driving, a lot
of information can be gathered via sequential frames. Information from previous frame can
also be injected into the network. One possible future work is to explore the application of
Recurrent Neural Networks to process video sequences. Another possible area to explore
is a combined pipeline for object detection and tracking where tracking information can
also guide object detection and vice versa.
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