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Abstract

Based on data provided by a warehouse logistics management company, we analyze the

warehousing operation and its major processes of order picking and order consolidation.

Without access to the actual layouts and process flow diagrams, we analyze the data to

describe the processes in detail, and prescribe changes to improve the operation.

We investigate the characteristics of the order preparation process and the order con-

solidation operation. We find that products from different orders are mixed for effective

picking. Similar products from different orders are picked together in containers called

totes. Full totes are stored in a buffer area, and then routed to a conveyor system where

products are sorted. The contents of the totes are then consolidated into orders. This order

consolidation process depends on the sequence in which totes are processed and has a huge

impact on the order completion time. OCP is a new problem for both the warehouse man-

agement system and the parallel machine scheduling literature. We provide mathematical

formulations for the problem and devise two solution methods. The first is a simulated

annealing metaheuristic, while the second is an exact branch-and-price method.

We test the solutions on both random and industry data. Simulated Annealing is found

to achieve near optimal solutions within 0.01 % of optimality. For the branch-and-price

approach, we use a set partitioning formulation and a column generation method where

the subproblems are single machine scheduling problems that are solved using dynamic

programming. We also devise a new branching rule and new dynamic programming algo-

rithm to solve the subproblem after branching. To assess the efficiency of the proposed

branch-and-price methodology, we compare against the branch-and-price approach of Chen

and Powell (1999) for the parallel machine scheduling problem. We take advantage of the

fact that OCP is a generalization of the parallel machine scheduling problem. The pro-

posed, more general, branch-and-price approach achieves the same solution quality, but
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takes more time.
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Chapter 1

Introduction

Warehousing operations have a significant effect on transportation efficiency and the cost

of a product. This is particularly true for e-business, where customer expectations are, to

a great extent, measured by the efficiency of the packaging and delivery processes. Today,

manual warehousing operations are being replaced by intelligent automated systems. As

these systems are taking over manual operations, data is being collected on every step

an order goes through. Data often carries with it valuable information that can be used

to improve operations and increase efficiency. It is with this mindset that a data analyt-

ics (DA) collaboration with a global warehousing and logistics automation company was

established, leading to the current work.

Data analytics can help analyze process flow, predict anomalies, hint at possible courses

of action, and validate any proposed changes. But most importantly, carefully designed DA

tools can identify weaknesses in large systems where manual inspection is overshadowed

by large production volumes. E-commerce warehouses are an example of such facilities.

Online orders with different content and priorities have to be filled in record time to meet

customer expectations. Although the demand for individual products may be low, orders
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contain multiple products, typically of high variety. Not only does an e-warehouse require

a large physical space, but it also requires an efficient order fulfilment process in terms of

product picking, consolidating, and packaging.

Order picking has been identified as the most costly and labour-intensive activity in

a warehouse; the cost of order picking is estimated to be as much as 55% of the total

warehouse operating expenses (De Koster et al., 2007). To reduce the cost of order picking,

several policies have been introduced, such as batch or wave picking. Batch/wave picking

refers to grouping orders into batches/waves for simultaneous processing. Orders from the

same batch are placed into the same tote, whereas orders from the same wave may be

placed into multiple different totes. Also, order integrity is maintained in batch picking as

all products from the same order have to be in the same tote. In wave picking, however,

orders are consolidated at a later stage. The current work uses data from an e-commerce

warehouse that uses a wave picking policy. Products from all orders within a wave are

picked together regardless of order integrity. The picking process is done manually where

an operator is handed a picking list and a tote, and is asked to go through the aisles of the

warehouse to pick the corresponding products. After picking, totes are stored temporarily

in a buffer area.

To consolidate orders and ensure their integrity, an Accumulation/Sorting (A/S) system

is often used. For the warehouse under study, there is no accumulation lane. Totes, with

information on the products they carry, are fed to a unit sorter through multiple induction

lines. The system routes the totes to the unit sorter through the induction lines. The unit

sorter is a conveyor equipped with a scanner that scans and routes products to their final

packaging location, called a cubby. A cubby is similar to an accumulation lane, where

products of the same order are gathered. This order consolidation process continues until

the last product within an order is put. Once an order is complete, it is packed and moved

2
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Figure 1.1: Consolidation process flow diagram deduced from the data.

to the delivery area. Figure 1.1 shows a process diagram of the consolidation process in

the warehouse under study, entirely deduced from the data provided.

As an e-warehouse caters to online customer demand, the daily demand of an e-

warehouse is typically higher than that of a regular warehouse. For example, the warehouse

under study release more than 250,000 orders containing more than 1,200,000 products in

eight days and may operate up to 24 hours a day as observed in the data. According to the

data, the warehouse use a wave picking policy. The characteristics of the wave in terms

of the number and variety of orders and products is important. For the warehouse under

study, the average number of products and orders per wave for an eight day period (data

covers eight days) is given in Figure 1.2. Figure 1.2 shows that the daily average number of
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orders per wave varies between 790 and 1,405, while the daily average number of products

per wave ranges from 3,955 to 7,100.
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Figure 1.2: Average number of orders and products per wave during eight day.

Order characteristics affect the pick lists, hence, the contents of the totes, and, even-

tually, the consolidation process. It is expected that the number of different totes that an

order is dispersed across is higher when the number of products in an order is higher. The

number of products per order is displayed in Figure 1.3. It shows that 75 % of the orders

contain at most five products, whereas only 7 % contain more than 10 products.

Finally, Figure 1.4 displays the number of waves, orders, products, and totes for each

day. The number of waves ranges between 6 and 92, the number of orders between 9,835

and 74,680, the number of products between 24,600 and 387,450, and the number of totes
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Figure 1.3: Number of products per order.

between 4,252 and 20,630, which implies that, on average, 32,814 orders containing 165,335

products are processed in 34 waves using 10,742 totes per day. The large scale of the daily

operation suggests that minor improvement in the order consolidation time may translate

in huge savings.

In this work, we analyze the data to understand the warehousing operation and the

different steps it involves. We then identify processes that can be optimized to improve

the overall order fulfilment operation. We emphasize that no prior information on the

warehouse is available, including the nature of the products served, the size and layout of

the warehouse, or the equipment used. The data was provided by an industrial partner

who obtained the data from the automated warehousing system the warehouse operates.

5



0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

1 2 3 4 5 6 7 8

N
u

m
b

e
r 

o
f 

W
av

es
 p

e
r 

D
ay

N
u

m
b

er
s 

o
f 

P
ro

d
u

ct
s,

 O
rd

er
s 

an
d

 T
o

es
 p

er
 D

ay
 

(T
h

o
u

sa
n

d
)

Day

Product Order Tote Wave

Figure 1.4: Size of daily operation.

We analyze historical data to identify the different operations in the consolidation process

using descriptive analytics. Three main parts (picking, consolidation, and waiting before

packaging) are identified, and the importance of each, as well as the relationships among

them, are examined. We find that consolidation time, which is the completion time of an

order at the unit sorter, has a significant impact on the whole process. In investigating

the problem, we identify a general class of parallel machine scheduling problems that we

call the Order Consolidation Problem (OCP). We define OCP to optimize the consolida-

tion process. We present a nonlinear mixed integer programming formulation of OCP,

and develop heuristic and exact solution methodologies based on simulated annealing and

branch-and-price, respectively. We test our algorithm on both industry and random in-
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stances. The random instances are used to assess the quality of the solutions generated,

while the relatively large industry instances are used for validation. The results show

that our proposed solutions improve the consolidation time of the orders significantly and,

hence, the entire order preparation process.

The rest of the thesis is structured as follows: in Chapter 2, we review the literature

for both warehouse management systems and parallel machine scheduling problems. In

Chapter 3, we provide descriptive anlaytics based on the data provided and show that im-

provement of the order consolidation process would improve the whole process. In Chapter

4, we introduce the order consolidation problem (OCP), propose a solution methodology

based on simulated annealing, and present improvements on the real system. We propose

a branch and price algorithm and conduct an extensive computational study in Chapter

5. Finally, we conclude the thesis in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we review the literature on warehouse management systems and the parallel

machine scheduling/order consolidation problem.

2.1 Warehouse Management Systems

Warehouse management is a well-studied research area with several research segments

such as picking strategies, routing policies, operation strategies, and accumulation/sorting

(A/S) systems design. Since the focus of the work is on the order consolidation process,

we review the literature on A/S systems and order batching. We recommend the reviews

of Gu et al. (2007) and De Koster et al. (2007) for picking policies.

The main goal of order batching is to increase efficiency by grouping orders and pro-

cessing them together. A batch is a set of orders that is picked by a single picker. The

problem was studied by Gademann et al. (2001), Hsieh and Huang (2011), and Grosse

et al. (2014), who proposed heuristic and exact methods to solve it. The purpose is to
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reduce travel times by picking the same products or the products that are stored in close

proximity in the warehouse (Henn et al., 2012).

After order batching is performed, the routing is determined, i.e. the sequences in

which pickers pick the required products. Ratliff and Rosenthal (1983) and Roodbergen

and Koster (2001), for example, use a special case of the Traveling Salesman Problem to

optimize routing in a rectangular warehouse. Most of the research is focused on developing

heuristics for the routing of pickers (Hwang et al., 2004; Petersen and Aase, 2004; Theys

et al., 2010). Recently, other issues, such as picker blocking and congestion, have been

included in routing pickers (Pan and Wu, 2012; Hong et al., 2012; Chen et al., 2013).

Wave picking is a policy that is applied when several pickers handle a larger set of orders

simultaneously (Roodbergen and Koster, 2001). The difference between batch picking and

wave picking is the definition of the pick lists. An order belongs to a single pick list in batch

picking, while an order can be split into multiple pick lists in wave picking. Therefore, an

order accumulation/sorting process is needed following wave picking.

Order accumulation/sorting systems are used to consolidate orders when products of

order are split into multiple pick lists in the picking process. An automatic A/S is usually

composed of a closed-loop conveyor with automatic divert mechanisms, a scanner, and

accumulation lanes where the products are diverted (Van den Berg and Zijm, 1999). In

the warehouse under study, there are cubbies instead of accumulation lanes. A sensor scans

products that are inducted to the unit sorter. Products corresponding to the same order

are then automatically diverted into the assigned cubby.

There are few publications on A/S systems. Under the assumption of a single order-

lane assignment, Bozer and Sharp (1985) examined the advantages of recirculation to

avoid lane blocking in an A/S system when a shipping lane is full. Bozer and Sharp (1985)

study a system that processes a relatively small number of large orders, and where each

10



sorting lane is dedicated to one order. Simulation is used to analyze the dependence of

system throughput on factors such as the induction capacity, the number of lanes, and

the length of the lanes. Considering A/S systems where multiple orders can be assigned

to one lane, Bozer et al. (1988) and Johnson (1997) suggested that assigning lanes to

orders at the induction step is better than any predetermined assignment rule. Meller

(1997) considered a two-level order A/S system and developed an algorithm, based on

decomposing a favorably structured mathematical program, to optimally assign orders

to lanes based on the arrival sequence of items to the sortation system. Russell and

Meller (2003) presented a prescriptive model, which examines several system parameter

combinations to help decide whether or not to automate the sortation system.

2.2 Parallel Machine Scheduling Literature Review

The order consolidation problem is closely related to the parallel machine scheduling (PMS)

problem. Given a set of jobs J = {1, 2, ..., n} with positive processing times pj and a set

of identical machines I = {1, 2, ...,m}, the PMS problem seeks to find a non-preemptive

schedule such that at most one job is processed on a machine at any given time. The

objective is to minimize the total job completion time. The parallel machine scheduling

(PMS) problem was introduced by McNaughton (1959).

Although most of the literature focuses on single order jobs, additional types, such as

batch jobs and multiple order jobs (moj), have been studied in large-scale integrated cir-

cuits and semiconductor manufacturing industries. A batch job is a group of jobs that are

processed simultaneously using what is aclled batch processing machin. A multiple order

job groups mulitple orders and is then assigned to a batch job. Uzsoy (1995) developed

several exact and heuristic solution approaches for both single and parallel machines. Mul-
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tiple order jobs were first introduced by Mason et al. (2004). Mason et al. (2004), Qu and

Mason (2005), Erramilli and Mason (2006), and Mason and Chen (2010) studied multiple

order jobs for single machine problems, while Jampani and Mason (2008) and Liu (2010)

considered parallel machines. Studies with both batch and multiple order jobs focus on

how to group orders into jobs. Accordingly, researchers focused on grouping orders and

scheduling them simultaneously. Split jobs, on the other hand, refers to when an order

can be processed on two machines simultaneously if preemption is allowed. The PMS

problem with split jobs was studied by Serafini (1996), Xing and Zhang (2000), Logendran

and Subur (2004), Shim and Kim (2008), and Wang et al. (2013). Several performance

criteria such as minimization of total weighted completion time (TWCT), total weighted

tardiness time (TWTT), and completion time of the last job (Cmax), etc, have been used

as objective functions. We focus on TWCT due to its relevance to OCP.

The literature considers three types of machines: identical, uniform, and unrelated.

Identical machines have the same processing time for each job (Chan et al., 1998; Juesheng,

1998; Min and Cheng, 1999; Chen and Powell, 1999; van Den Akker et al., 1999; Radhakr-

ishnan and Ventura, 2000; Mokotoff, 2004; Pessoa et al., 2010; Kaplan and Rabadi, 2013;

Li et al., 2016; Liaw, 2016; Kowalczyk and Leus, 2017). Uniform machines have processing

speeds, but the speed of the machine is independent of which job it is processing (Bal-

akrishnan et al., 1999; Chen and Powell, 1999; Yeh et al., 2015; Ramezani et al., 2015;

Li et al., 2018). Unrelated machines have different processing speeds, and the speed of

the machine is dependent on which job it is processing (Liu et al., 2001; Yin et al., 2001;

Weng et al., 2001; Mokotoff and Chrétienne, 2002,?; Kim et al., 2002; Anagnostopoulos and

Rabadi, 2002; Liu and Wang, 2006; Logendran et al., 2007; Tavakkoli-Moghaddam et al.,

2009; Vallada and Ruiz, 2011; Lin and Ying, 2015; Chen, 2015; Bülbül and Şen, 2017; Villa

et al., 2018).
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The order consolidation problem includes batching, multiple order jobs, and splitting.

Totes, which contain products from multiple orders, are similar to multiple order jobs.

For an order to be completed, multiple totes need to be processed, which is similar to the

splitting property. Also, the processing time of each tote is given, which is similar to batch

jobs. Boysen et al. (2018) recently defined this job type and called it as the batched order

bin. Unlike this work, they focus on the single machine scheduling problem.

The OCP minimizes the total completion time (TCT) of orders. Due to the job def-

inition, OCP is shown to be NP-Hard by reducing it to the parallel machine scheduling

problem with TWCT. The latter is studied by Chan et al. (1998) who showed that under

some assumptions, the linear relaxation of the set partitioning formulation is optimal. van

Den Akker et al. (1999) solved the same problem using column generation. Chen and

Powell (1999) proposed branch-and-price for the parallel machine scheduling problem with

TWCT. Weng et al. (2001) studied unrelated parallel machines with setup times. Lin and

Ying (2015), Chen (2015), and Bülbül and Şen (2017) studied the unrelated PMS problem

with TWCT. Mason et al. (2004) and Mason and Chen (2010) studied multiple order jobs

with TCT and TWCT for the single machine problem, whereas Jampani and Mason (2008)

and Jia and Mason (2009) considered the parallel machine version.

Several exact solution approaches were presented for various PMS problems. Belouadah

and Potts (1994) formulated the TWCT problem as an integer program. De et al. (1994)

proposed a dynamic programming exact solution algorithm for a problem involving earli-

ness, tardiness, and due date penalties. Uzsoy (1995) developed efficient optimal algorithms

to minimize Cmax, maximum lateness (Lmax), and TWCT for single batch processing ma-

chines with incompatible job families. Uzsoy (1995) also applied some of those results to

problems with parallel identical batch processing machines. Schutten and Leussink (1996)

presented a branch and bound algorithm to solve the PMS problem with release dates and
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family setup times to minimize Lmax. Serafini (1996) studied job splitting on identical

parallel machines in a textile industry to minimize the maximum weighted tardiness. It

is shown that minimizing maximum weighted tardiness can be done in polynomial time.

Both van Den Akker et al. (1999) and Chen and Powell (1999) proposed and analyzed the

column generation approach to the set partitioning formulation of the TWCT problem.

Chen and Powell (1999) considered a class of problems of scheduling uniform or unrelated

parallel machines with an objective of minimizing an additive criterion. They proposed a

decomposition approach to solve this problem exactly. Balakrishnan et al. (1999) proposed

a mixed integer programming (MIP) formulation for the problem of early/tardy scheduling

with sequence-dependent setups on uniform parallel machines. Mokotoff and Chrétienne

(2002) and Mokotoff (2004) developed exact cutting plane algorithms for parallel machines

with the criteria of Cmax.

For split jobs, Shim and Kim (2008) studied identical parallel machines with the ob-

jective of minimizing total tardiness and developed a branch and bound algorithm using

several dominance properties and lower bounds for the problem. Liaw (2016) studied the

problem of scheduling preemptive jobs on identical parallel machines to minimize total

tardiness and developed a branch-and bound algorithm using a lower bound scheme and a

heuristic algorithm. Bülbül and Şen (2017) proved that relaxing the problem of TWCT for

unrelated parallel machines naturally provides a non-preemptive solution and formulated

the problem as a mixed integer linear program. They also developed an exact Benders

decomposition-based algorithm for solving this formulation. Kowalczyk and Leus (2017)

considered identical machines with an undirected conflict graph which imposes whether

or not two jobs can be processed at the same machine. For the objective of Cmax, they

presented an exact branch and price algorithm.

Heuristic approaches have also been presented. For identical parallel machines, Juesh-
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eng (1998) and Min and Cheng (1999) proposed a genetic algorithm for the minimization

of Cmax. Radhakrishnan and Ventura (2000) used simulated annealing for the identical

parallel machines to minimize the sum of the absolute deviations of job completion times

from their corresponding due dates. Xing and Zhang (2000) developed a heuristic to solve

the identical parallel machine problem with job splitting to minimize Cmax. Weng et al.

(2001) studied unrelated parallel machines for the TWCT criteria with setup times, pro-

posed seven heuristic algorithms, and tested them using simulation. Kim et al. (2002)

devised a simulated annealing algorithm for the unrelated parallel machines problem with

sequence dependent setup times. Anagnostopoulos and Rabadi (2002) studied the same

problem for the Cmax criteria and also implemented simulated annealing. Logendran and

Subur (2004) investigated an unrelated parallel machine problem with job splitting, where

jobs are split beforehand, and a tabu search based heuristic algorithm was developed for

minimizing the TWT objective function. Logendran et al. (2007) studied unrelated parallel

machines with sequence-dependent setup times for the TWT criteria and proposed a tabu

search algorithm.

For the parallel machine multiple order job scheduling problem of minimizing the

TWCT, Jampani and Mason (2008) developed a column generation based heuristic for

the problem with order ready times. Jia and Mason (2009) also developed heuristic algo-

rithms containing three parts: order sequencing, job-to-machine assignment and sequenc-

ing, and order-to-job assignment. Tavakkoli-Moghaddam et al. (2009) and Vallada and

Ruiz (2011) studied unrelated machines and proposed a genetic algorithm. Fanjul-Peyro

and Ruiz (2010) proposed a set of simple iterated greedy local search based metaheuristics

for the unrelated parallel machine problem for the objective of Cmax minimization. To

minimize total tardiness, Lee et al. (2013) studied the problem of unrelated PMS with ma-

chine and sequence-dependent setup times and developed a tabu search algorithm. Kaplan
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and Rabadi (2013) defined fighter jets refuelling as an identical parallel machine problem

with the objective of TWT and solved it using simulated annealing. Lin and Ying (2015)

used simulated annealing to solve the unrelated machines problem with multiple criteria.

Chen (2015) developed three heuristics for the unrelated parallel machines problem with

sequence-dependent setup time for the objective of TWCT. Li et al. (2016) studied iden-

tical machines with Cmax and TWCT criteria under a green environment. The green

environment is defined through a constraint that limits the total machine cost by a given

threshold. Several heuristics were developed for both problems. Villa et al. (2018) de-

veloped several heuristics for the unrelated parallel machine scheduling problem with one

scarce additional resource to minimize Cmax.

PMS problems have been studied for several objectives, machine types, job types, and

constraints. However, with the technological developments in production environments,

new job, machine, or performance criteria may be required to tackle recent problems.

Table 2.1 provides a summary of the papers reviewed in terms of machine type (Identical

(P), Uniform (Q), Unrelated (R)), job type (Single, Batch, Split, Multiple Order Jobs

(MOJ) ), and solution methodology (Exact, Heuristic). According to the table, most of

the work focuses on single order jobs, with only two studies on multiple order jobs. Apart

from Boysen et al. (2018), which is the closest to this work, there is very limited research

on multiple orders-multiple jobs.

2.3 Conclusions

In this chapter, we provide literature review on order picking and, accumulation and sorta-

tion systems. We also present an extensive literature review on parallel machine scheduling

problems. We review parallel machine scheduling problems under four categories: machine
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type, job type, performance criteria, and solutions methods. The many orders-many jobs

characteristic of OCP makes it a unique problem in the literature. It generalizes the PMS

problem and to the best of our knowledge, there is only one related paper.

Before we formally define OCP, we report on the descriptive data analysis on which

OCP is identified in the next chapter.
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Chapter 3

Descriptive Analytics of the Order

Preperation Process

In this chapter, we analyze a data set which contains detailed information on the unit sorter

operation, where order consolidation is performed. We define the steps of order preparation

process, then show the importance of the order consolidation process by analyzing the

contribution of each step to the overall order preparation time.

The wave operation is executed as follows. A set of orders are grouped into a wave to

be processed simultaneously. Then pick lists are formed so that products from different

orders are grouped to be picked by the same picker and placed in a tote. Once all products

in a pick list are placed in a tote, the latter is placed in a buffer area awaiting the start

of consolidation. Consolidation starts when all totes of a wave reach the buffer. Totes

are diverted to induction lines where their content is inducted on the unit sorter. The

unit sorter uses a conveyor system to send each product to the cubby assigned to the

respective order. Recall that each product belongs to an order. Once all the products of

an order are in the cubby, the order may be packed. The wave operation is completed
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all orders are packed. The wave operation timeline is illustrated in Figure ??. In this

complex operation, order preparation process is performed. The order preparation process

timeline is illustrated in Figure ??. After an order is assigned to a wave, its products

are assigned to pick lists, which are then picked into totes. Totes wait in the buffer area

until the consolidation process starts. The consolidation of an order starts when the first

product from the wave is inducted to the unit sorter. The duration between the order

release time and the beginning of the sortation operation refers to the picking duration.

The two main operations in consolidation are putting and packing. The putting duration

is defined as the time between induction of the first and the last products from the same

order. Consequently, a waiting time for an order occurs between the start time of the

wave and the start time of the order. Therefore, consolidation time is the summation of

the waiting time in the buffer and putting time. Also, the idle time, which is defined as

the time spent waiting for packing, may occur after all products are gathered in the same

cubby and the order is ready to be packed. Order completion time is the time between the

wave consolidation start time and the packing start time, which excludes picking from the

order preparation time.

We investigate the average order completion times to understand the importance of

the different processes. First, we clean the data by eliminating waves that are processed

over multiple days to remove the samples with huge break times. Second, we eliminate

the waves whose processes are stopped due to lunch or dinner breaks. The reason for

eliminating these waves instead of removing the break times is the uncertainty of working

environments before and after the breaks. Working environments may refer to the number

of working operators and induction lines in use. Thus, for the sake of reliability of the

analysis, we eliminate the waves with long breaks and only analyze the waves with no

significant breaks.
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Figure 3.1: Definitions of the durations and the times.

We calculate the process times for 17 waves over eight days. Figure 3.2 shows process

times for picking, waiting in buffer, putting, and waiting for packing. On average, an

order spends 61 minutes in picking, 26 minutes in the buffer area, 30 minutes in putting,

and 19 minutes waiting for packing. Given the lack of data on the picking operation,

we investigate the consolidation operation further. Since consolidation covers the buffer

waiting and putting time of an order, we calculate consolidation time as the summation of

those two durations. For the same waves from Figure 3.2, we present picking, consolidation,

and waiting for packing times in Figure 3.3. The consolidation operation is the second

largest part of order preparation with an average time of 56 minutes.

In Figures 3.4, the waves are sorted by descending order according to their completion

time. We observe that consolidation time contributes the longest part of completion time.

To achieve an improved consolidation process, we propose to determine an optimal sequence
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Figure 3.2: Average picking, waiting in buffer, putting times and waiting for packing
of the orders for 17 waves.
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Figure 3.3: Average picking, consolidation and waiting for packing of the orders for
17 waves.
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Figure 3.4: Total average completion times of the orders for 17 waves.

of the totes, i.e, how the totes are diverted from the buffer area to the putwall area. The

sequence determines the last induction time of the orders and, hence, the corresponding

consolidation time.

Next we calculate statistics on the total number of orders, the total number of prod-

ucts, the average consolidation time per order, and the average waiting time for packing

per order. For this analysis, we include the 273 waves and eliminate breaks longer than

one minute. Figures 3.5(a) and 3.5(b) depict the distribution of the order and product

quantities among waves, respectively. Figure 3.5(a) reveals that more than 50 % of the

waves are from the group of interval (1300-1400). Also, around 30 % of the waves are

from the group of interval (0-400). Figure 3.5(b) provides similar features. Around 30 %

of the waves are from the group of interval (0-3000), whereas around 50 % of them are

from the group of interval (5000-8000). Both findings suggest that there are two types of

waves: small-sized and large-sized. The distributions of the time related variables, average

23



consolidation time per order, and average waiting for packing time per order, are analyzed

and illustrated in Figures 3.6(a) and 3.6(b), respectively. Both Figures 3.6(a) and 3.6(b)

show that the average consolidation time of orders is significantly greater than the average

waiting for packing time.
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Figure 3.5: Distributions of order size related variables.

3.1 Conclusions

In this chapter, we perform data analysis to gain an understanding of the problem under

study. Based on data, we describe the current status wave operation. We define the

steps of the wave operation and order preparation process and analyze their importance.

On average, an order spends 56 minutes in consolidation step and 19 minutes in waiting

for the packing step. Therefore, we conclude this chapter by suggesting to determine

the tote sequence in which they are diverted from the buffer area to the unit sorter area

to improve the order consolidation process. In the next chapter, we define the order
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Figure 3.6: Distributions of time related variables.

consolidation process and develop a mathematical formulation. We propose a simulated

annealing metaheuristic and validate it using industry instances.
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Chapter 4

Optimizing the Order Consolidation

Process

The consolidation time of an order, i.e. the time from the beginning of the wave consoli-

dation operation until the last product in the order is inducted, depends on the number of

totes that carry the order’s products and their induction sequence. Totes are emptied at

the induction line according to the sequence in which they are released from the buffer area.

An order seizes a cubby from the time that the first product from the order is inducted to

the time that the last product of the order is inducted. Our calculation of the putting time

for an order is tote-based rather than product-based. A tote-based calculation considers

a tote as a whole and equates the induction time of all products from the tote to the

induction time of the last product inducted. The product-based calculation requires the

actual induction time of items; therefore, we would need to know the sequence in which

items are inducted. However, there is no such sequence as operators pick products and

induct them to the unit sorter arbitrarily.

In Table 4.1, the total consolidation time for five waves is compared for product versus
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tote based induction times.

Table 4.1: Total consolidation time comparison.

Wave Product-based calculation Tote-based calculation % GAP
1 1136034 1171015 3.08
2 506281 544820 7.61
3 1354862 1390378 2.62
4 660476 689239 4.35
5 420242 446133 6.16

According to Table 4.1, the difference between both calculations is a maximum 7.61%.

Given that it is not possible to know or enforce the order of emptying products from totes,

it is reasonable to use a tote-based calculation. It is both practical and acceptable.

Reducing the average consolidation time also leads to the efficient usage of resources.

One of the critical resources in the warehouse is the putwall. Each wave is assigned to a

putwall which has a determined number of cubbies (1309 for the warehouse under study).

Figure 4.1 highlights the relation between average cubby usage and average consolidation

time. It is clear that there is almost a linear relationship.

As a solution to reduce order consolidation times, we introduce an optimization problem

to determine the sequence in which totes are inducted/emptied. We call such a problem, the

order consolidation problem (OCP). The order consolidation problem is a generalization of

the parallel machine scheduling problem as it introduces a third element besides jobs and

machines. In OCP, there are totes (jobs), induction lines (machines), and orders. Orders

are similar to split jobs and totes are similar to batches of split jobs. To finish processing

an order, all of its parts from different batches have to be processed.
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4.1 Mathematical Formulation

We use indices k ∈ K for orders and i, j ∈ J for totes. Once an operator has a tote, he/she

starts emptying the products one at a time at one of m induction lines. The processing

time of tote j, i.e., the time it takes to empty it, is denoted by pj. We define two sets of

continuous decision variables, the completion time of order k and of tote j, denoted by COk

for order k ∈ K and Cj for tote j ∈ J , respectively. We also define assignment variable

xij which takes value 1 if tote i ∈ J precedes tote j ∈ J . Let us introduce the additional

sets Jk, J0, and Jn+1. Jk is a subset of J containing totes with products belonging to order

k ∈ K. J0 and Jn+1 are sets with dummy node 0 and dummy node n + 1, respectively.
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The problem is formulated as nonlinear mixed integer program (NMIP):

[NMIP]: min
∑
k∈K

COk (4.1)

s.t.
∑

i∈Jn+1

xji = 1 j ∈ J (4.2)

∑
j∈J

x0j = m (4.3)

∑
i∈J0

xij −
∑

i∈Jn+1

xji = 0 j ∈ J (4.4)

Cj = pjx0j +
∑
i∈J

(Ci + pj)xij j ∈ J (4.5)

COk ≥ Cj j ∈ Jk, k ∈ K (4.6)

Cj ≥ 0 j ∈ J (4.7)

COk ≥ 0 k ∈ K (4.8)

xij ∈ {0, 1} i ∈ J0, j ∈ Jn+1 (4.9)

The objective function (4.1) minimizes the total completion time of orders. Constraints

(4.2) ensure that each tote precedes another tote. Since multiple totes cannot be processed

simultaneously in the same line, each tote can be followed by exactly one tote, unless

it is the last tote in the line. Constraint (4.3) states that there are m induction lines

and m sequences of totes are formed. Constraint (4.3) assigns m totes to the dummy

tote. Constraints (4.4) are the flow balance constraints to ensure that the precedence

assignments form sequences. Constraints (4.5) calculate the completion time of totes.
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Altough nonlinear, constraints (4.5) may be linearized as:

Cj ≥ pjx0j j ∈ J (4.10)

Cj ≥ (Ci + pj)−M(1− xij) i, j ∈ J (4.11)

where M is a big number. Constraints (4.6) calculate the order completion times. The

rest of the constraints are the domain constraints on the decision variables.

Let us consider the special case where each order is allocated to a single tote. In this

case, the OCP reduces to the machine scheduling problem with weighted completion time.

Since each order corresponds to a single tote, the variable COk may be eliminated, and

the objective function reduces to:

min
∑
k∈K

∑
j∈Jk

Cj (4.12)

Note that the weighted completion time of a tote is the sum of the completion time of

the orders in it. Therefore, the weights correspond to the number of of orders in a tote, and

the problem reduces to the parallel machine scheduling problem with weighted completion

time minimization, which is known to be a NP-hard. Hence, the OCP is also NP-hard.

Since OCP is an NP-hard problem and the size of the industry instances are be too

large, we propose a simulated annealing metaheuristic approach to obtain near optimal

solutions in reasonable time (in 2 minutes).
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4.2 Solving OCP using Simulated Annealing

Simulated Annealing (SA) is a metaheuristic approach that draws an analogy with the

physical annealing of solids to solve optimization problems (Metropolis et al., 1953). SA

searches for good solutions using a probabilistic search approach. It starts with an initial

solution denoted by x, with cost Zx. A neighbour y of this initial solution is generated with

cost Zy. The change in cost 4 = Zy−Zx is computed. If 4 < 0, then the current solution

x is replaced by its neighbour y; otherwise, y replaces x with a non-zero probability that

decreases gradually as the search proceeds. The acceptance function is exp(4/T ), where T

is the control parameter, which corresponds to the temperature in the analogous physical

annealing process (Kirkpatrick et al., 1983).

We represent solutions of OCP as a single vector which contains all totes. We obtain

machine schedules by assigning totes from this vector to the machines one by one according

machine availability. We choose this representation to avoid obtaining solutions that do

not satisfy the rule that a job is assigned to the first availoable machine. We refer to such

solutions as infeasible. Infeasibility may only occur while assigning a tote to a machine

such that the tote waits for a busy machine while there is an available one. Whenever a

machine is available, it must be used for the next job. In the case where each machine

schedule is defined by a vector, a simple insertion or swap operation may lead to a sollution

that does not satisfy this rule and hence is infeasible. When we define the solution as a

single vector of totes and obtain the machine schedules based on machine availibilitty,

we do not need to worry about feasibility, because every neighbour solution we obtain is

feasible. The SA algorithm is initialized using a list-based heuristic that we present next,

in which a neighbour formed using either a swap or an insertion operation.
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4.2.1 Initial Solution and Neighbourhood Definition

To begin the SA algorithm, an initial feasible solution is required. One approach to generate

this initial solution is to randomly generate a list including every tote. This approach is

easy to implement and requires no prior knowledge of the problem structure; however, it

could yield solutions which are far from optimal. This approach could, in turn, lead to

poor performance of SA algorithm (Radhakrishnan and Ventura, 2000). In this work, we

propose a list-based heuristic which forms a list of totes based on a given criterion, then

uses the list to process the totes whenever an induction line becomes available. Let vj

denote the number of distinct orders in tote j ∈ J . We sort the totes in descending order

of
vj
pj

, then use it as a tote sequence for the consolidation process.

A neighbour solution is found through either a swap or an insertion. We randomly

choose one of the neighbourhoods and generate the neighbour solution. Regardless of the

neighbourhood we select, we randomly generate two numbers (indices of two totes from

the current solution) from the interval [1,..., n] and randomly select whether a swap or an

insertion is performed. If an insertion operation is selected, then we insert the second tote

in the location of the first tote. If a swap operation is selected, then we swap the locations

of those two totes. In the following section, we explain how the parameters of the SA

algorithm are set.

4.2.2 Parameter Calibration and Main Steps

In theory, SA converges to a globally optimal solution with probability 1 if all theoretical

conditions are satisfied (Kirkpatrick et al., 1983). However, the conditions for asymp-

totic convergence, such as the cooling method and stopping criterion, may not be met in

practice (Kirkpatrick et al., 1983). Therefore, it is often critical to adjust the values of
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parameters, such as initial temperature, cooling schedule, and stopping criteria based on

problem characteristics (Kim et al., 2002). In addition to those parameters, we also have

another parameter that defines how a neighbourhood is picked. Let ω be the probability

of selecting a neighbour using swapping.

We design an experiment to determine the parameters of the SA algorithm. We choose

three values for the temperature parameter T : 5n, 10n and 15n. The temperature cooling

formula is (1 − q)T , where: q = 0.01, q = 0.001 and q = 0.0001. We use the standard

setting of a problem with 4 lines, 50 totes, 100 orders and select processing times of totes

from the interval (10, 40). For this problem setting, we generate 200 random instances and

solve them using the SA algorithm given in Algorithm 1 for each parameter combination

presented in Table 4.2.

Table 4.2: Values of SA algorithm parameters.

Parameter Value-1 Value-2 Value-3 Value-4 Value-5
ω 0 0.25 0.5 0.75 1
T 5n 10n 15n - -
q 0.01 0.001 0.0001 - -

Algorithm 1 first generates an initial solution using the list-based heuristic. Then, one

of the neighbours is randomly selected using parameter ω and a candidate solution is gener-

ated. If the candidate solution is better than the current solution, the search moves to the

neighbour solution and the best solution is updated. When a worse solution is generated,

the search moves to the neighbour solution with probability Exp(
Cost(Scurrent)−Cost(Sneighbour)

T
).

Once this is done, T is updated as (1− q)T and a new iteration is performed. The search

continues until T drops below a predetermined threshold of 0.01.

The averages of the best solutions found for each parameter setting are given in Table

4.3. The best parameter values according to Table 4.3 are 15n, 0.0001, and 1 for T , q and ω,
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Algorithm 1 Simulated Annealing Algorithm

1: Input: Instance, T , q, w
2: Output: Sbest

3: Scurrent ← ListHeuristic(Instance)
4: Sbest ← Scurrent

5: While ( T ≥ 0.01)
6: Sneighbour ← GetNeighbour(Scurrent, w)
7: T ← T (1− q)
8: If Cost(Sneighbour) ≤ Cost(Scurrent)
9: Scurrent ← Sneighbour

10: If Cost(Sneighbour) ≤ Cost(Sbest)
11: Sbest ← Sneighbour

12: End
13: Else If Exp(

Cost(Scurrent)−Cost(Sneighbour)

T
) ≥ Rand(0, 1)

14: Scurrent ← Sneighbour

15: End
16: end While
17: Return (Sbest)

respectively. However, the difference between the best and the worst parameter settings is

only 0.3 %. Therefore, we continue analyzing the results. We first find the optimal solution

for each instance under all parameter settings. We then average the optimal objectives for

each value of ω for each instance. The best ω value for a given instance is the one which

resulted in the best average of the optimal objectives; these ω values are shown in Figure

4.2. As shown, the best ω values are ω = 1 for 149, ω = 0.75 for 43 and ω = 0.5 for 8

instances. The same analysis is applied to the other parameters. Figure 4.3 displays the

results for T . The best solutions are obtained at T = 5n, T = 10n, and T = 15n for 74,

54 and 72 instances, respectively.

Similarly, Figure 4.4 displays the same information for parameter q. The best solutions

are obtained in 81, 66 and 53 instances for q = 0.001, q = 0.01 and q = 0.0001, respectively.

This shows that no value dominates the others.
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Table 4.3: Average results for each parameter setting.

T q ω = 0 ω = 0.25 ω = 0.5 ω = 0.75 ω = 1
5n 0.0001 14532.19 14509.93 14502.13 14496.37 14490.64
5n 0.001 14531.43 14510.53 14501.34 14495.12 14490.68
5n 0.01 14530.74 14509.6 14501.57 14495.92 14490.7
10n 0.0001 14535.29 14512.07 14502.4 14497.33 14490.59
10n 0.001 14530.31 14511 14503.46 14496.11 14491.53
10n 0.01 14531.89 14513.28 14501.47 14496.91 14491.51
15n 0.0001 14531.56 14509.43 14502.88 14496.42 14490.54
15n 0.001 14528.72 14509.6 14503.12 14495.04 14491.03
15n 0.01 14530.01 14510.31 14502.59 14494.05 14491.45
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Figure 4.2: Best average performance for ω.
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Figure 4.3: Best average performance for T .

Based on these findings, we set the values of q and T to 0.001 and 5n, respectively.

For the neighbour selection, although the swap neighbourhood dominates insertion most

of the times, we set ω to 0.85, in between the best and the second best values.

4.2.3 Computational Study

We begin this section by explaining how the industry instances are extracted from the

database provided by the industry partner. We then validate the results on the industry

instances and compare to the actual consolidation times observed in the warehouse. Lastly,
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Figure 4.4: Best average performance for q.

we test on random instances for a special case of OCP to evaluate the quality of the

heuristic solutions. The SA algorithm, along with the list heuristic, are coded in C#, and

the mathematical models are solved using CPLEX 12.6. The tests are performed on a PC

with I7-4790 CPU and 8 GB of RAM.

Extracting Industry Instances

The input parameters for the OCP are the tote contents, the processing time of totes, and

the number of induction lines. Unfortunately, not all information is explicitly available
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in the database provided by the industrial partner. The data provides the order-wave

allocation and order content, but not the content of the totes. Since the content of each

tote is not known, the processing time of the totes is also unavailable. We use system data

characteristics to estimate tote content, and, hence, the processing time of the totes.

Based on the data, it appears that, after inducting its content, the induction operator

also inducts the empty tote. Based on this, we extract the content information. We

consider all items inducted between two empty totes as belonging to the second empty

tote. However, there are anomalies in the data when the scanner cannot read the bar-codes

properly. Figure 4.5 shows two excerpts from the database for 15 consecutive induction

times. Figure 4.5(a) and Figure 4.5(b) show the induction operations without and with

anomalies, respectively.

The first column of the tables in Figure 4.5 is the induction clock time of missions. A

mission may refer to a product or an empty tote induction. The mission codes are provided

in the second column of the tables. Each mission has its own unique code. Missions starting

with “6” are products; whereas those starting with “T” are empty totes. The question

marks are missed scans. There is no other data to determine whether a missed scan refers

to a product or a tote. The duration between two consecutive inductions may help identify

the missing records. Figure 4.5(a) shows that the time difference between inducting the

last item in the tote and the empty tote is significantly larger than that between two

consecutive items. We use this observation to identify missing records. The reason for

the greater time difference after inducting a tote may be due to tote switching. Figure

4.6 shows two excerpts, each with an anomaly. The anomalies are most likely caused by

different types of missions (product or empty tote induction). Figure 4.6(a) illustrates an

anomaly that is probably due to a missed tote induction while Figure 4.6(b) illustrates an

anomaly that is due probably due to a missed product induction. To further strengthen

39



(a) Induction table without any anomaly. (b) Induction table with an anomaly.

Figure 4.5: Screenshots of the induction table.

this analysis, we investigate the break times between consecutive inductions. Two samples

are compared. The first consists of break times before and after the induction of a product,

while the second sample is for the break times before and after an empty tote.

The warehouse has three putwalls, each fed by four semiautomatic and two manual

induction lines for a total of twelve semiautomatic and six manual induction lines. The

data distinguishes the semiautomatic lines from the manual ones by their ID numbers.

As it is hard to make predictions for the manual induction lines, we focus only on the

semiautomatic lines.

Given a sequence of products/totes A, B, C, the break time for B is defined as the

time from when A is inducted until the time when C is inducted. Figure 4.7 shows the
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(a) Induction table with an anomaly that is assumed to be
caused by an empty tote.

(b) Induction table with an anomaly that is assumed to be
caused by an item.

Figure 4.6: Anomaly comparison.

distribution of break times for products at all induction lines that feed putwall-1. Similarly,

Figure 4.8 provides the distribution of break times for empty totes at all induction lines

that feed putwall-1. Both Figure 4.7 and Figure 4.8 show that the break times for an

empty tote are significantly greater than the break times for a product. It is more than

five seconds for more than 90% of the totes. To be on the safe side, we use a threshold of

eight seconds to identify totes.

Another important and practical assumption is to set an upper bound on the capacity of

a tote. Based on partial but accurate data on tote content, the distribution of the number

of products per tote is illustrated in Figure 4.9. The figure shows that the maximum

number of items in a tote is 40 with 97.5 % of totes having less than 30 items. Based on

this, we set the tote capacity to 30 items. Using this and the threshold of 8 seconds for
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(a) Item induction at line-1. (b) Item induction at line-2.

(c) Item induction at line-3. (d) Item induction at line-4.

Figure 4.7: Item induction times (in seconds) at putwall-1.

empty totes, the content of totes is identified.

When investigating the number of lines, we find that not all lines are used to process

every wave. We provide the number of waves that use a specific number of lines in Table

4.4. Columns 3, 4 and 5 show the average number of totes, orders and products per wave,

respectively.

Most of the waves are processed with both manual and semiautomatic induction lines.

Few are processed with one, two, or three semiautomatic lines. As mentioned earlier, the

data on the waves that use manual lines is not reliable since we cannot derive tote content.

Therefore, we continue our study with the waves that use only semiautomatic induction
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(a) Empty tote induction at line-1. (b) Empty tote induction at line-2.

(c) Empty tote induction at line-3. (d) Empty tote induction at line-4.

Figure 4.8: Tote induction times (in seconds) at putwall-1.

lines. Figure 4.10 depicts the usage of each line for 10 waves. A detailed version of Figure

4.10 with the normalized values of processing time (tote emptying), idle time, and blocked

time are illustrated in Figure 4.11. Processing time is defined as the time that operators

process totes. Idle time is the time that occurs between switching emptied and full totes.

Blocked time is the time when there is no tote processing.

Both Figures 4.10 and 4.11 indicate that not all waves are processed when all lines

are available. Therefore, we need to take the availability of the lines into consideration

while comparing our results to actual system performance. Our purpose is to determine a

sequence to improve the order consolidation process; hence, we need to compare sequences
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Figure 4.9: Characteristics of the totes.

instead of schedules. We define 2 scenarios to compare the sequences. The first scenario

considers all lines are available all the time. To be able to make a comparison for this

scenario, we derive the industry sequence from the data and reschedule the totes according

to this industry sequence while ignoring block times. The second scenario considers lines

with blocked times. We use the optimized sequence to schedule the totes to the lines while

enforcing block times.
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Table 4.4: The average values of the generated instances.

Induction Number of Avg. # Avg. # Avg. #
line waves totes/wave orders/wave items/wave
1 3 422 1273 5269
2 6 358 1389 5073
3 4 304 1333 5997
4 50 424 1394 6458
6 238 407 1346 5975

Validation of Solution on Industry Instances

In this section, we present the results of SA on industry instances. We test on ten instances.

The number of totes, orders, products are given in Table 4.5. Note that the complexity

of an instance depends on the order-tote relationship. Detailed information about the

instances is provided in Appendix A.

Table 4.5: Industry instances.

Number of
Instance Totes Orders Products
W-353-1243 353 1243 4202
W-374-1384 374 1384 6702
W-420-1374 420 1374 6275
W-368-1373 368 1373 5646
W-336-1367 336 1367 5601
W-257-851 257 851 2978
W-253-932 253 932 3925
W-377-989 377 989 4667
W-169-949 169 949 3932
W-121-267 121 267 1234

As explained in Section 4.2.3, we define 2 scenarios based on the availabilities of the

lines. Scenario-1 corresponds to all lines being available. Scenario-2 takes line availability

into account, which is derived from the data. We compare sequences generated using SA to
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Figure 4.10: Induction line usage for 10 sort waves.

the ones from the data. Once the sequences are known, schedules can be easily generated

by assigning the next job in the sequence to the first available line.

We present the average consolidation times (in minutes) per order under both scenar-

ios in Table 4.6. The improvement is calculated as
100(Current system−SA)

Current system . As seen, the

improvements over the current system are significant. For Scenario-1, at least 6.74% im-

provement is achieved with an average of 28.77%. For Scenario-2, these values are 5.96%

and 19.9%, respectively. Although consolidation time is the main objective, we compare

the number of orders whose consolidation time improves (decreases), increases, or remains

the same. This comparison is given in Table 4.7. About 75.66% and 66.96% of orders were

46



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Process Idle Blocked

Figure 4.11: Normalized induction line usage for 10 waves.

improved under Scenarios 1 and 2, respectively.

Finally, we investigate the effect of optimizing the consolidation sequence on cubby

usage. Once an order’s first product is inducted, a cubby is assigned to the order, and

that order seizes the cubby until all products are inducted. Table 4.8 compares the cubby

usage times in minutes between SA and the current system under Scenarios 1 and 2. On

average, 21.92% and 20.71% improvements are achieved Scenarios 1 and 2, respectively. In

Figure 4.12, the number of cubbies in use over time are given for the instance W-353-1242.

It is clear that a significant improvement is achieved in terms of cubby usage. The current

system uses 747 cubbies at any given time, whereas the optimized sequence uses at most

47



Table 4.6: Comparison of SA and industry sequences.

Scenario-1 Scenario-2
Instance SA Current Improvement SA Current Improvement

System (%) System (%)
W-353-1243 14.66 25.13 41.66 20.91 31.51 33.64
W-374-1384 27.71 38.94 28.83 70.17 79.25 11.45
W-420-1374 26.01 37.60 30.84 63.61 80.96 21.42
W-368-1373 21.44 30.55 29.82 123.23 139.92 11.93
W-336-1367 21.56 32.22 33.10 23.81 32.19 26.03
W-257-851 11.46 18.65 38.56 23.16 29.84 22.39
W-253-932 17.77 26.85 33.83 21.26 30.27 29.76
W-377-989 30.75 32.97 6.74 45.97 48.88 5.96
W-169-949 18.93 21.52 12.04 23.12 26.65 13.24
W-121-267 5.30 7.83 32.30 5.86 7.64 23.19
Average 19.56 27.22 28.77 42.11 50.71 19.9

Table 4.7: Total number of orders with improved, increased, and the unchanged
completion times.

Scenario-1 Scenario-2
Wave Improved Increased Unchanged Improved Increased Unchanged

W-353-1243 1020 209 14 918 309 16
W-374-1384 1098 261 25 920 423 41
W-420-1374 1099 258 17 959 384 31
W-368-1373 1075 285 13 891 464 18
W-336-1367 1102 248 17 979 373 15
W-257-851 689 157 5 577 261 13
W-253-932 771 151 10 722 195 15
W-377-989 479 457 53 426 499 64
W-169-949 579 332 38 605 315 29
W-121-267 206 59 2 188 73 6

Total 8118 2417 194 7185 3296 248
% 75.66 22.53 1.81 66.97 30.72 2.31
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658 which is about 12% improvement over the current system.

Table 4.8: Cubby usage times.

Scenario-1 Scenario-2
Instance SA Current Improvement SA Current Improvement

System (%) System (%)
W-353-1243 10.22 15.04 32.06 14.26 21.56 33.86
W-374-1384 22.22 28.28 21.44 34.56 40.35 14.36
W-420-1374 20.53 26.64 22.92 43.42 57.13 24.00
W-368-1373 16.65 50.29 20.57 77.33 88.05 12.07
W-336-1367 16.96 22.47 24.51 18.49 24.99 26.01
W-257-851 7.26 10.48 30.70 12.97 16.74 22.54
W-253-932 14.60 19.71 25.93 17.44 24.10 27.62
W-377-989 22.05 23.57 6.46 32.35 35.83 9.73
W-169-949 13.34 15.52 14.07 16.66 19.91 16.32
W-121-267 3.82 4.80 20.49 4.15 5.22 20.47
Average 14.76 18.75 21.92 27.16 33.39 20.71

Quality of SA solution on Random Instances

To test the quality of the solutions generated by SA, we test on six small problems shown

in Table 4.9. Several different parameter settings are generated randomly for each problem.

The maximum number of totes an order can have its products in is denoted by γ, and is

randomly assigned values 3, 4, or 5. The number of induction lines is set to 4, 5 or 6.

After the orders are generated, we distribute the products of an order among the totes

randomly. The tote processing time is assumed to be constant and is set to 5. 20 instances

were generated for each of the six small problems.

To solve OCP to optimality, we take advantage of the fact that processing times are
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Figure 4.12: Cubby usage in time.

identical and solve the following formulation:

[OCPP]: min
∑
k∈K

COk (4.13)

s.t. COk ≥ p
∑
t∈T

tzjt j ∈ Jk, k ∈ K (4.14)

∑
j∈J

zjt ≤ m t ∈ T (4.15)

∑
t∈T

zjt = 1 j ∈ J (4.16)
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Table 4.9: Small random problems.

Problem Number of Totes Number of Orders
1 10 20
2 20 30
3 20 40
4 30 40
5 30 50
6 30 60

zjt = 0, 1 j ∈ J, t ∈ T (4.17)

where zjt = 1 if tote j is processed at time slot t and p is the tote processing time. The

objective function (4.13) minimizes the total completion time of orders. Constraints (4.14)

calculate the completion time of orders with respect to time slot assignments. Constraints

(4.15) ensure that at most m totes are assigned to a time slot to prevent assigning totes to

more than the number of induction lines. Constraints (4.16) guarantee that all totes are

processed.

Table 4.10 displays the number of induction lines, instance number, lower bound, and

best objective from solving [OCPP] in Cplex 12.6 for 600 seconds (LB and OCPP) and the

objectives achieved by the list heuristic and SA. The rest of the columns display gaps and

CPU times. Table 4.10 proves that SA is quite efficient in terms of both CPU time and

objective function values. SA achieves better values than OCPP for two instances because

of the time limit on OCPP. It is important to emphasize that for the instances that OCPP

solved within the time limit, the average relative gap of SA is less than 0.01%. Also large

gaps for SA correspond to large gaps for [OCPP]. This is most probably due to the quality

of the lower bound LB.
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Table 4.10: Results of the random problems.

Instance Result GAP (%) CPU (seconds)
Induction

Lines Problem LB OCPP List SA GAP1 GAP2 GAP3 OCPP List SA
4 1 192.25 192.25 201.00 192.25 0.00 0.00 0.00 0.00 0.00 0.00
4 2 301.75 301.75 313.00 301.75 0.00 0.00 0.00 0.00 0.00 0.00
4 3 629.75 629.75 674.75 629.75 0.00 0.00 0.00 2.40 0.00 0.00
4 4 777.24 848.75 950.00 848.50 9.17 9.20 -0.03 695.20 0.00 0.00
4 5 954.07 1095.75 1209.00 1095.25 14.80 14.85 -0.05 823.50 0.00 1.00
4 6 1142.48 1176.75 1264.25 1176.75 3.00 3.00 0.00 1504.15 0.00 1.00
5 1 158.00 158.00 163.50 158.00 0.00 0.00 0.00 0.00 0.00 0.00
5 2 244.75 244.75 253.50 244.75 0.00 0.00 0.00 0.00 0.00 0.00
5 3 524.50 524.50 558.25 524.50 0.00 0.00 0.00 0.05 0.00 0.00
5 4 694.03 697.50 777.75 698.00 0.57 0.50 0.07 128.85 0.00 0.05
5 5 883.16 899.50 990.00 899.75 1.88 1.85 0.03 335.95 0.00 1.00
5 6 969.50 969.50 1037.75 969.75 0.03 0.00 0.03 2.10 0.00 1.00
6 1 147.00 147.00 151.50 147.00 0.00 0.00 0.00 0.00 0.00 0.00
6 2 229.25 229.25 234.75 229.25 0.00 0.00 0.00 0.00 0.00 0.00
6 3 459.00 459.00 488.50 459.00 0.00 0.00 0.00 0.20 0.00 0.00
6 4 599.00 599.00 667.25 599.25 0.04 0.00 0.04 12.95 0.00 0.20
6 5 771.00 771.00 844.25 771.25 0.03 0.00 0.03 10.05 0.00 1.80
6 6 835.00 835.00 889.00 835.00 0.00 0.00 0.00 0.70 0.00 1.15

GAP1 = 100 (SA−LB)
LB

GAP2 = 100 (OCPP−LB)
LB

GAP3 = 100 (SA−OCPP )
OCPP

4.3 Conclusions

In this chapter, we define the order consolidation problem. We present a mathematical

formulation of OCP and propose a simulated annealing (SA) algorithm. We calibrate the

parameters of the SA algorithm and conduct two computational tests. In the first one,

we evaluate the proposed solutions using industry instances. For the first test, to extract

tote contents from the data, we analyze induction operations further. We show that in

the data there are anomalies which prevent determining tote content accurately. Using

information extracted from the data, we devise an algorithm to estimate tote content. To

provide reliable analysis, we also consider the usage of the induction lines. We show that

while processing a wave, not all induction lines are always available. To compare the SA
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sequences to industry instances, we define two scenarios, one of which considers that all

lines are available at all time whereas the other takes blocked times into consideration.

For the first scenario, at least 6.74% improvement is achieved with the suggested schedules

(sequences) whereas the average improvement is 28.77%. For the second scenario, these

values are 5.96% and 19.9%, respectively.

In the second computational test, to asses the quality of the SA solutions on random

instances, we define a special case of the OCP where processing time of all totes is the

same. The quality of the SA sequences are near optimal with an average relative gap of

less than 0.01%.

In the next chapter, we develop an exact solution framework based on a branch-and-

price approach.
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Chapter 5

A Branch-and-Price Approach for

the Order Consolidation Problem

In this Chapter, we develop a branch-and-price algorithm for the order consolidation prob-

lem. We use a set-partitioning formulation that is equivalent to formulation [NMIP] of

Section 4.1. Let S denote the set of all partial schedules on a single induction line. For

each tote j ∈ J , let parameter bsj = 1 if schedule s ∈ S includes tote j, and 0 otherwise.

Defining variable ys to take value 1 if schedule s ∈ S is selected and 0 otherwise, the set

partitioning formulation is:

[ISP]: min
∑
k∈K

COk (5.1)

s.t. COk ≥
∑
s∈S

Cs
j ys j ∈ Jk, k ∈ K (5.2)

∑
s∈S

bsjys = 1 j ∈ J (5.3)

∑
s∈S

ys = m (5.4)
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ys = 0, 1 s ∈ S (5.5)

Constraints (5.3) and (5.4) correspond to the original constraints (4.2) and (4.3), which are

the assignment and induction line capacity constraints. Constraints (5.3) ensure that each

tote is covered by exactly one partial schedule. Constraint (5.4) ensures that m schedules

are selected. Constraints (5.2) calculate the completion time of the orders according to

the selected schedules. The set-partitioning formulation is solved by column generation,

as described in the following section.

5.1 Solution by Column Generation

To solve [ISP], we need to generate all feasible partial schedules in set S. Since the number

of feasible partial schedules can be too large, it is not practical to generate all of them.

Instead, schedules are generated iteratively. Let [LSP] denote the linear relaxation of [ISP].

Its dual problem is:

[DSP]: max mλ0 +
∑
j∈J

λj (5.6)

s.t.
∑
j∈Jk

βjk ≤ 1 k ∈ K (5.7)

∑
k∈K

∑
j∈Jk

Cs
jβjk −

∑
j∈J

bsjλj − λ0 ≥ 0 s ∈ S (5.8)

βjk ≥ 0 j ∈ Jk, k ∈ K (5.9)

In [DSP], βjk denotes the dual variable corresponding to tote j and order k, for each j ∈ Jk,

k ∈ K, and corresponds to constraints (5.2). The dual variable λj corresponds to tote j,

for each j ∈ J , and corresponds to constraints (5.3). λ0 is the dual variable corresponding
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to the total available lines and corresponds to constraint (5.4).

Column generation starts by solving [LSP] on a subset of schedules S̄ ⊆ S and then

verifies whether the solution of the restricted problem (LSP[S̄]) is optimal to the original

problem [LSP]. If it is not optimal, then a new schedule is generated by solving a pricing

problem [PP]:

[PP] min
∑
j∈J

∑
k:j∈Jk

β̄jkCj −
∑
i∈J0

∑
j∈J

λ̄jxij (5.10)

s.t. (4.4), (4.5), (4.7), (4.9) (5.11)

The pricing problem [PP] is a single machine scheduling problem.

If the objective value of [PP] minus λ̄0 is negative, the corresponding solution defines

a new partial schedule for S̄, and the process is restarted. Columns are added to [LSP(S̄)]

until no column with negative reduced cost is identified. In practice, an alternative stopping

criterion is when the relative gap between the lower bound and the upper bound is less than

a predetermined value (e.g. 0.001). The lower bound of [LSP] at iteration h is calculated

with the equation LBh = max{LBh−1, UB + u} where u is the objective function of the

partial schedule with the most negative value, i.e., the objective function value of [PP].

The value of u is at most 0, since the objective of [PP] is a minimization and (0,0) is

feasible. UB is the objective value of [LSP(S̄)] at iteration h− 1. Since (S̄) is updated at

every iteration, UB either decreases or stays the same. Therefore, we do not need to check

whether or not UB is improved at every iteration. The update of LB is valid because when

u is 0, i.e., there are no columns with negative reduced cost, LB = UB, and the algorithm

stops.

The solution of the pricing problem [PP] is crucial to the efficiency of the branch-and-

price approach. In the following section, we describe a dynamic programming algorithm
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to solve it.

5.2 A Dynamic Programming Algorithm for the Pric-

ing Problem

According to Smith’s rule (Smith, 1956), in any optimal schedule for the parallel machine

scheduling problem with the objective of minimizing weighted completion time, jobs on

each machine must follow the shortest weighted processing time (SWPT) order. Subprob-

lem [PP] determines a subset of jobs that minimize the total weighted completion time

minus the sum of the dual variables. For a given subset of jobs, the problem reduces to

a minimum total weighted completion time problem on a single machine, whose optimal

solution satisfies the SWPT order. Therefore, any optimal solution must satisfy the SWPT

order. Based on this important observation, Chen and Powell (1999) propose a dynamic

programming algorithm with O(nP ) worst case complexity where P is the total processing

time of the jobs and n is the number of jobs. The algorithm uses the recursion function

F (j, t) defined as the minimum objective value of a partial schedule that contains a subset

of jobs of {1, 2, ..., j}, that satisfies the SWPT rule, and is completed at time t. The algo-

rithm is initialized as follows: F (j, t) =∞ for t < 0, j = 0, ..., n; F (0, t) = 0 for t ≥ 0. And

the recursion function is given by F (j, t) = min{F (j − 1, t − pj) + twj − λj, F (j − 1, t)}

where w and λ are the weight and the dual variable value of the corresponding job. Then

the solution of the problem is min0≤t≤P F (n, t). In PP, the weight of a tote (same as job

in the machine scheduling problem) is calculated as
∑

k:j∈Jk β̄jk for j ∈ J . The dynamic

programming algorithm is given in Algorithm 2.

In the following section, we devise a heuristic to warm start the column generation

procedure.
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Algorithm 2 Dynamic Programming-1

1: FOR each j ∈ N ,t WHERE t< 0 set F (j, t) =∞
2: FOR each t set F (0, t) = 0
3: FOR each j ∈ N
4: FOR each t ∈ P
5: F (j, t) = min{F (j − 1, t− pj) + twj − λj, F (j − 1, t)}
6: end FOR
7: end FOR
8: z∗ =∞
9: FOR each j ∈ N, t ∈ P
10: IF (z∗ ≤ F (j, t) ) THEN
11: z∗ ← F (j, t)
12: END IF
13: end FOR

5.3 Heuristic Algorithm to Generate Initial Columns

Since the convergence of column generation depends on the quality of the starting columns,

we provide a construction heuristic to generate the initial columns. The goal is to generate

complete solutions to OCP for use as initial columns.

The heuristic determines the schedule based on the relation between totes. We consider

that two totes are neighbours if there is at least one order that has items in both totes.

Starting from an arbitrary tote, the heuristic sorts its neighbours in a descending order of

processing time. The neighbours are assigned one by one to the first available line. Once

all the neighbours of the tote under consideration are assigned, the last tote is picked as the

new tote whose neighbours are identified and the same assignment procedure is applied.

The heuristic can generate up to nm columns by varying the starting tote.
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5.4 Branch and Price Algorithm

The column generation procedure of Section 5.1 is embedded within a branch-and-bound

tree, leading to a branch-and-price (b&p) framework. If a predetermined solution quality is

not achieved at the root node, branching is performed. The branching rule is crucial to the

success of the b&p algorithm. Branching on the original variable ys is difficult to enforce

for ys = 0. The column corresponding to ys represents a feasble partial schedule on one of

the induction lines. Setting ys to 0 implies that the schedule has to be removed. It is not

easy to exclude such a schedule when solving the single machine scheduling subproblem.

Fortunately, there is a solution to this difficulty. Instead of branching on ys, we branch

on totes being at the same column or not. The [NMIP] formulation uses variable xij to

define whether or not tote j immediately follows tote i. If we branch on the x variables,

the precedence relationships between totes has to be considered in the subproblem. Both

van Den Akker et al. (1999) and Chen and Powell (1999) easily include the precedence

relations to the subproblem. Since there is at least one optimal solution satisfying Smith’s

rule, only columns that satisfy Smith’s rule are generated. When determining the branching

variable, the relationship between jobs is enforced while satisfying Smith’s rule. For OCP,

however, such a relationship does not exist as the objective does not minimize TWCT.

The subproblem reduces to a single machine scheduling problem with TWCT objective at

the root node, but not after branching.

After branching, van Den Akker et al. (1999) and Chen and Powell (1999) can still

generate columns according to Smith’s rule with a revised version of Algorithm 2 that

is given in Algorithm 3. They define a set, denoted by Bj, for job j, to determine the

jobs that can be processed immediately before job j. The set Bj for job j is updated

according to the branching rule, and the value of the new recursion is calculated as F (j, t) =
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mini∈Bj∪{0}{F (i, t− pj) + twj − λj}.

Algorithm 3 Dynamic Programming Algorithm for the Subproblems after Branching
When Smith’s Rule is Applicable

1: FOR each j ∈ N ,t WHERE t< 0 set F (j, t) =∞
2: FOR each t set F (0, t) = 0
3: FOR each j ∈ N
4: FOR each t ∈ P
5: F (j, t) = mini∈Bj∪{0}{F (i, t− pj) + twj − λj}
6: end FOR
7: end FOR
8: z∗ =∞
9: FOR each j ∈ N, t ∈ P
10: IF (z∗ ≤ F (j, t) ) THEN
11: z∗ ← F (j, t)
12: END IF
13: end FOR

5.5 Solving the Subproblems after Branching

To solve the subproblems after branching, a commercial solver can be used. The compu-

tational time, however, may be excessive and could hinder the performance of the entire

branch-and-price algorithm. To overcome this, we propose an alternative mathematical

formulation for OCP with two sets of binary variables instead of the x variables. We use

the same indices, parameters, and continuous variables as [NMIP]. In addition, we define

a set of induction lines, denoted by L. We define zij which takes value 1 if tote i, j ∈ J are

processed on the same induction line and tote i is processed earlier than tote j. We also

define binary variable tjl which takes value 1 if tote j ∈ J is processed in line l ∈ L. The

alternative formulation is:
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[NMIP2]: min
∑
k∈K

COk (5.12)

s.t. Ci + pj ≤ Cj +M(1− zij) i, j ∈ J (5.13)

zij + zji =
∑
l∈L

tiltjl i, j ∈ J (5.14)

∑
l∈L

tjl = 1 j ∈ J (5.15)

COk ≥ Cj j ∈ Jk, k ∈ K (5.16)

zij ∈ {0, 1} i, j ∈ J (5.17)

tjl ∈ {0, 1} j ∈ J, l ∈ L (5.18)

The objective function (5.12) minimizes the total completion time of all orders. Con-

straints (5.13) calculate the completion times of totes. Constraints (5.14) are nonlinear

and they ensure that zij + zji is 1 when both totes i and j are processed in the same in-

duction line; otherwise, the value of zij + zji becomes 0. Constraints (5.15) are assignment

constraints that force each tote to be processed on only one induction line. Constraints

(5.16) calculate the completion times of the orders.

In the subproblem, we solve a single machine scheduling problem by selecting and

scheduling a subset totes. Let us present a formulation of subproblem [PP] that uses z and

t as variables:

[SPP2]: min
∑
j∈J

∑
k:j∈Jk

β̄jkCj −
∑
j∈J

λ̄jtj (5.19)

s.t. Ci + pjtj ≤ Cj +M(1− zij) i, j ∈ J (5.20)
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zij + zji ≤ 0.5(ti + tj) i, j ∈ J (5.21)

ti + tj − 1 ≤ zij + zji j ∈ J (5.22)

zij ∈ {0, 1} i, j ∈ J (5.23)

tj ∈ {0, 1} j ∈ J (5.24)

Note that tj = 1 implies that tote j is selected. The objective function (5.19) minimizes

the total weighted completion time of the selected totes plus the cost of selecting a tote

to schedule. Constraints (5.20) calculate the completion time of tote j ∈ J . Constraints

(5.21) and (5.22) enforce the relationship between totes if they are both selected.

Observing the relation between [ISP] and [SPP2], we can see that for any feasible

solution ys; s ∈ S, there is a corresponding feasible solution zij, i, j ∈ J and Tj, j ∈ J

where

zij =
∑
s∈S

esijys (5.25)

where esij is 1 if totes i and j are both contained in schedule s and tote i is processed

before tote j. Once the root node is solved, if the solution ys; s ∈ S is fractional, then the

corresponding z variables are computed using (5.25).

5.6 An Alternative Branching Rule

Instead of branching on the z variables, we propose branching on having two totes in the

same column. Accordingly, a pair of totes (i, j) is selected such that zij + zji is closest to

0.5, i.e. with the maximum integer infeasibility. Five branches are then created, two of

the branches with zij + zji fixed to 1 and the other branches with zij + zji fixed to 0. If
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zij + zji is fixed to 0, then the initial restricted master problem of the corresponding child

node consists of all the columns of its parent node except the ones in which tote i and tote

j are scheduled at the same column. If zij + zji is fixed to 1, then the initial restricted

master problem of the corresponding child node consists of all the columns of its parent

node except the ones in which only one of tote i or tote j is scheduled in a column. When

zij + zji = 0, there are three cases for the subproblem. We can select only tote i, only

tote j or neither. As a result, the first child node imposes that tote i and j cannot be

scheduled at the same column, and while generating columns with negative reduced cost

values, columns must contain only tote i from tote pair (i, j). The second child node is

the same as the first child node except the column generation constraint. For the second

one, columns that contain only tote j from tote pair (i, j) have to be generated. The third

child node is similar to the other child nodes, but no column containing neither tote from

tote pair (i, j) can be scheduled in the subproblem. For the child nodes where zij + zji

is fixed to 1, there are two cases: both totes of pair (i, j) are scheduled in the columns

generated by the subproblem, or neither of the columns from pair (i, j) are scheduled in

the same column. As a summary, we use z variables to select columns when branching,

whereas we use t variables to enforce the branching when solving the subproblems within

column generation. Figure 5.1 illustrates the branching rule. The third level in Figure 5.1

corresponds to the case where zij +zji = 1 but ys is still fractional. In that case, we further

branch on whether i proceeds j or vice versa.

As mentioned earlier, the dynamic programming algorithm of Chen and Powell (1999)

fails to accumulate precedence based branching constraints. To overcome this, we propose

a new dynamic programming algorithm. Let F(j, t) denote the minimum objective value

(total weighted completion time minus the sum of the dual variable values minus the

value of selecting a tote) in a partial schedule consisting of a subset of totes of 1, 2,..., j,
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Figure 5.1: An illustration of the branching rule.

provided that the partial schedule follows SWPT order and that tote j is the last tote that

is completed at time t in the partial schedule.

To fix or eliminate a tote, due to the branching constraints, we define a cost πj and set

it large enough to eliminate tote j, or sufficiently negative to select tote j. The dynamic

programming algorithm is provided in Algorithm 4. The worst-case complexity of Algo-

rithm 4 is bounded by O(n2P ) as there are a total of nP states, and it takes no more than

O(n) time to evaluate a state.

5.7 Computational Analysis

In this section, we test the column generation algorithm. The performance of the algorithm

can be affected by the number of starting columns and the number of columns generated
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Algorithm 4 Dynamic Programming Algorithm for the Subproblems after Branching

1: UPDATE this FOR each j ∈ N ,t WHERE t< 0 set F (j, t) =∞
2: FOR each t set F (0, t) = 0
3: FOR each j ∈ N
4: FOR each t ∈ P
5: F (j, t) = mini∈Bj∪{0}{F (i, t− pj) + twj − λj − πj}
6: end FOR
7: end FOR
8: z∗ =∞
9: FOR each j ∈ N, t ∈ P
10: IF (z∗ ≤ F (j, t) ) THEN
11: z∗ ← F (j, t)
12: END IF
13: end FOR

for each subproblem. We determine four strategies and compare them to determine the

best setting. Strategies are presented in Table 5.1. We tested the strategies on five test

problems whose configurations are summarized in Table 5.2.

Generating a feasible solution for OCP is easy; therefore, we generate as many feasible

solutions as the number of totes, and then generate random columns according to those

solutions. Random columns are generated regardless of the strategy tested. The construc-

tion heuristic can generate as many solutions as the number of totes. Another important

decision is the number of columns generated from the dynamic programming subproblem.

For a valid lower bound, the column with the most negative reduced cost should be gen-

erated. Since we use a dynamic programming algorithm, we can also easily obtain other

columns with negative reduced costs. Adding all negative reduced cost columns may in-

crease the solution time of the master problem, whereas adding just one may lead to poor

convergence.

For testing, the number of totes that an order is split over (γ) is set to 1, 2, 3 and

the number of induction lines is set to 2, 3, 4, 5 and 6. Items from an order are assigned
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Table 5.1: The strategies used for the branch-and-price algorithm.

Initial Columns Column Generation
Strategy Random Columns Construction Heur. Optimal Best 10 Columns

1 X X X
2 X X X X
3 X X
4 X X X

Table 5.2: Test problems.

Problem No n |K|

1 10 20
2 20 40
3 30 60
4 40 80
5 50 100

randomly to its totes. The process time of tote j ∈ J is randomly selected from the interval

[20, 80]. Five instances are generated for each problem setting. The algorithms are tested

on a 64-bit Windows 7 operating system with 8 GB RAM and a 3.6 GHz Intel i7-4790

processor, coded using C#, and solved using Cplex 12.6. Each random instance is run for

a maximum of 3600s.

The average results for the four strategies are presented in Tables 5.3, 5.4, 5.5 and 5.6,

respectively. The tables provide the number of tree nodes explored, the number of columns

generated, and the relative gap under different values of γ.

The results show that, regardless of the strategy chosen, higher values of γ lead to

higher gaps. Also, as expected, there is a direct relation between the number of columns

generated and the number of nodes explored. When we compare the strategies, strategy 2

seems to be the best. Strategy 4 is the second best, and strategy 3 is the worst.

67



T
a
b

le
5
.3

:
R

e
su

lts
o
f

stra
te

g
y

1
.

P
ro

b
le

m
N

o
d
e
s

E
x
p
lo

re
d

C
o
lu

m
n
s

G
e
n
e
ra

te
d

R
e
la

tiv
e

G
a
p

|J|
|K
|
|L|

γ
=

1
γ

=
2

γ
=

3
γ

=
1

γ
=

2
γ

=
3

γ
=

1
γ

=
2

γ
=

3

10
20

2
1.00

73.20
176.40

227.40
1413.00

5403.00
0.05

0.89
0.97

10
20

3
1.00

274.80
776.40

171.20
2002.80

6323.20
0.00

0.75
0.98

10
20

4
1.00

580.20
1281.00

149.40
3017.40

8146.00
0.00

0.84
0.97

10
20

5
1.00

1570.60
1803.40

145.20
6729.40

10861.40
0.00

0.88
0.83

10
20

6
1.00

155.20
1885.40

157.40
1035.80

8600.60
0.00

0.60
0.87

20
40

2
1.00

440.80
1758.80

274.20
23318.00

91006.40
0.04

0.80
0.98

20
40

3
1.00

1841.60
6039.80

221.40
42990.40

164033.20
0.18

0.74
3.03

20
40

4
1.00

4814.00
12013.00

199.80
50907.80

155855.80
0.07

0.80
3.52

20
40

5
1.00

1608.20
14996.60

184.20
11367.20

107637.80
0.22

0.70
3.10

20
40

6
1.00

6110.00
13345.40

189.60
32940.00

72429.00
0.02

0.87
2.54

30
60

2
1.00

118.20
383.40

544.20
16712.60

75161.60
0.01

0.93
2.50

30
60

3
1.00

496.00
1533.80

368.40
17631.40

86154.40
0.05

0.94
2.22

30
60

4
1.00

838.20
2925.00

350.20
15398.40

74107.40
0.06

0.87
2.39

30
60

5
1.00

4.20
2616.60

340.60
1726.80

38146.00
0.11

0.85
2.05

30
60

6
1.00

15.00
2708.60

363.80
1626.40

22433.80
0.21

0.67
1.93

40
80

2
1.00

1.00
54.80

1080.20
1310.60

24361.60
0.01

0.64
2.53

40
80

3
1.00

41.60
265.20

511.80
3091.00

32229.40
0.02

0.83
4.73

40
80

4
1.00

364.40
419.00

387.20
11485.00

27569.20
0.03

0.78
3.72

40
80

5
1.00

208.60
437.00

391.80
5735.00

18057.20
0.05

0.84
2.96

40
80

6
1.00

121.00
128.40

384.40
2789.20

6713.40
0.03

0.76
2.38

50
100

2
1.00

2.20
7.40

492.80
2094.00

8804.00
0.02

0.56
5.22

50
100

3
1.00

35.80
47.20

447.60
5265.00

9971.60
0.02

2.32
8.45

50
100

4
1.00

66.80
69.20

350.40
4336.00

9185.00
0.03

2.34
6.99

50
100

5
1.00

66.80
36.80

372.80
3128.40

5234.40
0.07

4.71
8.21

50
100

6
1.00

30.80
13.00

333.80
1866.80

3269.20
0.10

3.98
8.02

68



T
a
b

le
5
.4

:
R

e
su

lt
s

o
f

st
ra

te
g
y

2
.

P
ro

b
le

m
N

o
d

e
s

E
x
p
lo

re
d

C
o
lu

m
n
s

G
e
n
e
ra

te
d

R
e
la

ti
v
e

G
a
p

|J
|
|K
|
|L
|

γ
=

1
γ

=
2

γ
=

3
γ

=
1

γ
=

2
γ

=
3

γ
=

1
γ

=
2

γ
=

3

10
20

2
1

11
3.

2
27

2.
8

21
1.

8
11

42
.6

21
30

.4
0.

00
0.

83
0.

95
10

20
3

1
43

3.
6

12
98

.6
18

2.
6

21
77

.4
68

52
0.

00
0.

75
0.

99
10

20
4

1
11

06
.2

30
03

14
3.

4
45

11
.8

12
81

2.
6

0.
00

0.
84

0.
99

10
20

5
1

14
78

.6
26

27
13

5.
2

68
14

.4
12

92
3.

4
0.

00
0.

88
0.

83
10

20
6

1
29

9.
8

24
20

.4
14

9.
6

12
41

92
84

.4
0.

00
0.

61
0.

88
20

40
2

1
52

9.
2

43
38

.8
80

8.
2

19
68

5.
4

14
64

48
.6

0.
04

0.
70

1.
13

20
40

3
1

28
78

71
00

.4
63

6.
8

44
41

6.
2

13
16

76
0.

20
0.

72
3.

21
20

40
4

1
36

10
13

32
9.

2
64

5.
4

28
70

1.
6

10
15

11
.4

0.
04

0.
81

3.
38

20
40

5
1

34
97

.2
14

26
8.

2
56

1
17

56
9.

6
73

40
8.

8
0.

29
0.

64
2.

80
20

40
6

1
48

00
.2

69
31

50
9.

6
22

33
9.

8
27

95
6.

2
0.

11
0.

82
2.

63
30

60
2

1
14

6.
8

47
2

20
29

14
53

1.
6

65
49

5.
4

0.
01

0.
79

2.
36

30
60

3
1

52
2.

2
17

24
.4

13
72

.4
12

24
4.

6
63

42
1.

6
0.

05
0.

67
2.

05
30

60
4

1
84

1.
8

24
57

.6
12

65
.8

93
87

.6
41

72
1.

4
0.

06
0.

71
2.

00
30

60
5

1
1

92
2.

2
12

95
.4

13
37

.2
13

04
0.

8
0.

11
0.

63
1.

56
30

60
6

1
1.

8
24

5.
6

11
73

.4
11

60
.6

38
90

.6
0.

21
0.

55
1.

68
40

80
2

1
1

63
.4

35
53

.8
96

09
.2

23
45

1.
8

0.
01

0.
58

1.
73

40
80

3
1

97
21

8
25

94
.2

94
31

.2
25

85
9.

6
0.

02
0.

67
1.

90
40

80
4

1
1

19
0.

4
19

83
.2

28
29

.6
11

99
9.

4
0.

03
0.

61
1.

91
40

80
5

1
20

0.
6

47
.6

20
15

.4
56

68
.2

44
21

.6
0.

05
0.

65
1.

86
40

80
6

1
1.

2
41

21
51

.6
22

99
.2

34
89

.4
0.

03
0.

74
1.

62
50

10
0

2
1

1
6

55
13

.4
91

97
.8

10
08

1.
2

0.
02

0.
42

1.
55

50
10

0
3

1
1

18
.2

34
18

.8
44

06
.6

67
66

.6
0.

02
0.

47
1.

47
50

10
0

4
1

1
29

30
74

.4
41

15
.8

67
17

.6
0.

03
0.

44
1.

66
50

10
0

5
1

1
2.

6
30

20
.6

36
65

.2
34

07
0.

07
0.

42
1.

46
50

10
0

6
1

1
3.

4
29

25
.4

33
51

35
16

.4
0.

10
0.

56
1.

47

69



T
a
b

le
5
.5

:
R

e
su

lts
o
f

stra
te

g
y

3
.

P
ro

b
le

m
N

o
d

e
s

E
x
p
lo

re
d

C
o
lu

m
n
s

G
e
n
e
ra

te
d

R
e
la

tiv
e

G
a
p

|J|
|K
|
|L|

γ
=

1
γ

=
2

γ
=

3
γ

=
1

γ
=

2
γ

=
3

γ
=

1
γ

=
2

γ
=

3

10
20

2
1

76.2
159.2

103.2
957.8

1698.2
0.05

0.84
0.93

10
20

3
1

188
479.4

92.4
1228.8

2949.6
0.03

0.75
0.98

10
20

4
1

376.2
816.6

82.4
1768.8

4372.6
0.00

0.92
0.98

10
20

5
1

385
1231.8

72
1857.2

6547.2
0.13

0.88
0.82

10
20

6
1

137
789.6

75.8
668.6

3418.4
0.00

0.63
0.86

20
40

2
1.8

480.4
2063.8

386
24070.6

97064.4
0.04

0.75
0.98

20
40

3
3.8

1331.6
5970.4

360.4
29703

156226.6
0.10

0.83
2.66

20
40

4
2.8

3886.8
12767.8

293.8
44361.2

164487.8
0.00

0.85
3.07

20
40

5
1.2

6805
17463

238.8
43648.8

144214.8
0.15

0.72
3.19

20
40

6
1.6

6970.4
17998.2

221.6
37670.8

107290.2
0.01

0.87
2.64

30
60

2
1.8

112.2
379

902.4
14691.2

66884.6
0.05

0.83
2.28

30
60

3
12.2

453.6
1237.4

1450.4
17526.4

69912
0.00

0.88
2.43

30
60

4
24.8

66.2
2800.6

1493
2185.8

68806
0.02

0.82
2.22

30
60

5
12.6

59.2
4360

777.6
1298.4

67385.6
0.03

0.81
2.09

30
60

6
14.4

6.2
4446.2

683
847.4

31300.8
0.27

0.65
2.02

40
80

2
7

1.4
67.8

3158.4
5736

23541
0.01

0.73
2.45

40
80

3
23

53
252.6

4068.6
5455.8

32681.6
0.00

0.83
12.24

40
80

4
722.8

258
479

31281.8
8845

31174
0.00

0.74
10.96

40
80

5
59.6

422
681.6

4176.2
8324

22956
0.00

0.80
2.52

40
80

6
40.4

277
304.6

2338.4
5186.6

10913.6
0.01

0.88
2.23

50
100

2
8.6

2.2
6.6

6402.4
6067.2

7618
0.00

0.56
13.43

50
100

3
68.6

25.6
49

13846.8
5715

9046.4
13.24

6.14
32.93

50
100

4
274

61.8
80.8

22332.2
6284.8

9278.6
11.67

9.39
24.23

50
100

5
308

99
81.4

19419.6
5910.4

7551.4
11.17

20.08
30.32

50
100

6
392.8

87.6
52.2

19113.4
4506.2

4238.6
11.33

15.33
29.08

70



T
a
b

le
5
.6

:
R

e
su

lt
s

o
f

st
ra

te
g
y

4
.

P
ro

b
le

m
N

o
d

e
s

E
x
p
lo

re
d

C
o
lu

m
n
s

G
e
n
e
ra

te
d

R
e
la

ti
v
e

G
a
p

|J
|
|K
|
|L
|

γ
=

1
γ

=
2

γ
=

3
γ

=
1

γ
=

2
γ

=
3

γ
=

1
γ

=
2

γ
=

3

10
20

2
1

89
.2

21
5

19
7.

6
94

6.
4

18
32

.6
0.

00
0.

80
0.

98
10

20
3

1
44

3
13

28
.4

17
4

23
64

.6
70

00
0.

00
0.

75
0.

99
10

20
4

1
10

93
23

62
.4

10
2.

2
42

90
.8

10
37

2.
6

0.
00

0.
84

0.
99

10
20

5
1

11
12

.8
15

82
.6

91
.2

44
08

84
57

.4
0.

00
0.

88
0.

85
10

20
6

1
15

1.
2

12
20

.6
87

.4
73

2.
8

47
65

0.
00

0.
61

0.
88

20
40

2
1

45
2.

8
44

01
.4

79
3.

6
19

53
8.

8
14

40
90

.4
0.

04
0.

71
1.

03
20

40
3

1
37

59
72

32
.8

60
4

57
24

4.
4

12
69

76
.2

0.
20

0.
80

3.
64

20
40

4
1

36
26

.4
14

13
5.

8
59

1
27

67
2

10
93

08
.6

0.
07

0.
81

3.
50

20
40

5
1

92
10

12
97

9.
4

47
9

41
83

9.
2

64
31

2.
4

0.
29

0.
73

2.
77

20
40

6
1

43
45

.8
84

26
38

5.
8

22
80

8.
6

35
30

6
0.

12
0.

76
2.

56
30

60
2

1
12

6.
4

47
4

19
38

14
59

0.
4

65
74

8.
8

0.
01

0.
80

2.
26

30
60

3
1

53
8

17
69

.4
12

78
12

53
7.

6
66

95
0

0.
06

0.
69

2.
18

30
60

4
1

91
8

20
01

.8
11

45
.4

10
75

7.
8

37
16

0.
2

0.
06

0.
74

2.
07

30
60

5
1

1
14

17
.8

11
68

.8
11

92
.6

19
42

9
0.

11
0.

71
1.

77
30

60
6

1
1

28
9.

4
10

26
94

7.
8

37
39

.2
0.

21
0.

57
1.

71
40

80
2

1
1

63
.4

41
26

.8
93

13
23

88
2.

6
0.

01
0.

54
1.

74
40

80
3

1
1

21
6

25
48

.4
33

81
.6

23
45

8
0.

02
0.

67
1.

80
40

80
4

1
1

26
3.

4
18

14
.6

26
38

16
40

1.
6

0.
04

0.
69

2.
05

40
80

5
1

13
.2

87
.4

19
71

.8
25

24
.2

56
27

.6
0.

05
0.

68
1.

86
40

80
6

1
1

25
.2

19
06

20
79

30
44

.6
0.

04
0.

72
1.

59
50

10
0

2
1

1
6.

2
56

61
.4

91
57

.4
10

09
0.

4
0.

02
0.

44
1.

65
50

10
0

3
1

1
18

.2
34

72
40

99
.6

70
43

0.
02

0.
42

1.
67

50
10

0
4

1
1

43
29

68
.2

39
90

.8
74

86
0.

03
0.

41
1.

59
50

10
0

5
1

1
5.

6
28

43
35

04
33

76
.6

0.
08

0.
41

1.
59

50
10

0
6

1
1

4.
4

26
67

.2
29

49
.6

33
18

.6
0.

11
0.

55
1.

64

71



We also analyze the effects of branching on the relative gaps. Figure 5.2 illustrates the

average gaps before and after branching for each strategy for different γ’s.
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Figure 5.2: Average relative gaps before and after branching.

It is clear that strategy 3 is the worst in terms of relative gap obtained. Although

strategies 1 and 3 provide the most improvement after branching, strategies 2 and 4 obtain

better results. Therefore, we conclude that generating multiple columns (10 columns)

results in finding better incumbent solutions. In other words, the reason for the high
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improvement after branching for strategies 1 and 3 is the incumbent solutions, not the

lower bound. Another important finding is the distribution of CPU time spent. There are

three main parts in the column generation algorithm. The first one is the solution of the

subproblem which is solved using dynamic programming denoted by DP. The second is the

solution of the master problem denoted by LSP. The third is the solution of the binary set

partitioning formulation, denoted by ISP. Figure 5.3 displays the CPU time spent on each

part of the algorithm for all strategies. Strategies 2 and 4 also outperform other strategies

in terms of CPU time. As Figure 5.3 reveals, the solution of [ISP] takes more time than

expected. This observation is true regardless of the strategy applied.

5.8 Comparison Between Order Consolidation Prob-

lem and Parallel Machine Scheduling

Being a special case of the order consolidation problem, the proposed solution methodology

is applicable to the parallel machine scheduling problem. We set γ to 1 and compare to the

branch and price approach of Chen and Powell (1999). Due to the findings in Section 5.7,

we apply strategy 2 for both solution methods. We also set the same stopping criteria of

1% relative gap and maximum 3600 seconds for CPU time limit. Average results for both

methods are presented in Table 5.7. The average is taken over 35 instances for 2, 3, 4, 5,

and 6 induction lines. Detailed results are provided in Appendix B. The first two columns

give the number of totes and orders. The remaining columns display the lower bound (LB),

upper bound (UB), relative gap, calculated as 100UB−LB
LB

, and solution time in seconds for

the method of Chen and Powell (1999) for PMS, and for the proposed branch-and-price

for OCP, respectively.

For all instances, both algorithms find an optimal solution within 1%. In 35 instances,
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(a) CPU times for strategy 1. (b) CPU times for strategy 2.
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Figure 5.3: Comparison of CPU times.

both methods found the optimal solution. In 112 instances, both methods find the same

solution, whereas in 13 instances, only one of the methods obtained the best solution. For

those 13 instances, OCP obtained better results in six, Chen and Powell (1999) found better

results in seven. Figure 5.4 displays the relative gaps of OCP and PMS for instances where

different gaps are found. The instance names are displayed as “n−|K|−m−problem”. In

terms of CPU time, Chen and Powell (1999) is faster than the proposed algorithm. This is

expected due to the differences between the respective restricted master problems. Chen
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Table 5.7: Comparison between OCP and PMS.

Problem Parameters PMS OCP
n |K| LB UB GAP CPU LB UB GAP CPU
10 20 1398.28 1398.48 0.0096 0 1398.28 1398.28 0 0.04
20 40 4873.6 4879.16 0.1348 1.56 4873.6 4879.64 0.136 2.08
30 60 10393.24 10400.36 0.0872 11.52 10393.24 10400.28 0.0864 15.76
40 80 18500.84 18505 0.0272 51.4 18500.84 18505 0.0272 61.96
50 100 26285 26295 0.0476 140.44 26285 26295 0.0476 351.8

and Powell (1999) take advantage of the SWPT rule. Figure 5.5 compares the CPU times

for instances that required at least 100s for either method.
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Figure 5.4: Gap comparison for OCP and PMS when different gaps are achieved.
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Figure 5.5: CPU time comparison for OCP and PMS on instances which required
at least 100s.

5.9 Conclusions

In this chapter, we develop a branch-and-price algorithm for the set partitioning formu-

lation of OCP. Then, we present column generation algorithm that we use to solve each

node of branch-and-price. We explain how we use the dynamic programming algorithm

introduced in Chen and Powell (1999) in the root node to solve the pricing problem. We

introduce a new branching strategy based on a new mathematical model for OCP to de-

termine branching variables and to solve the pricing problem using dynamic programming.
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Since the dynamic programming algorithm of Chen and Powell (1999) does not solve the

pricing problem after branching, we develop a new dynamic programming algorithm whose

complexity is bounded by O(n2P ).

We test four strategies to determine the parameters of branch-and-price algorithm.

These strategies determine how the initial columns are obtained and how many columns are

generated by the pricing problem. For strategies 1 and 2, we start with columns generated

using a construction algorithm in addition to random columns, whereas strategies 3 and

4 start with only random columns. We generate the best 10 columns with the pricing

problem for strategies 2 and 4, whereas we generate only the best column for strategies 1

and 3. Strategy 2 is found to be the best strategy based on an extensive computational

test. Solutions within 1% gap (0.06% on average) are found in the root node when γ is 1

for strategy 2. When γ is 2, on average, the results are found to be within 0.66%, while

the average gap is 1.76% when γ is 3. We also compared a special case where γ is 1. In

this case, OCP reduces to a parallel machine scheduling problem with the total weighted

completion time objective function. We implemented and compared to the methodology

presented in Chen and Powell (1999). We showed that even though the proposed algorithm

was designed for a more complex problem, we obtain solutions of similar quality as the

algorithm of Chen and Powell (1999). This comparison proves that the proposed algorithm

is successful in finding high quality solutions.
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Chapter 6

Conclusion

This chapter provides a brief revisit of the analyses and methods proposed in this thesis,

followed by a synopsis of our findings and their relevance. We also offer some suggestions

for future work directions and their potential benefits.

In this thesis, we use a data analytics approach for an e-warehouse to understand the

system in detail and identify areas for improvement. We analyze the system to derive a

process diagram for the warehouse, which is entirely deduced from the data provided. We

show that the characteristics of waves and orders are related, and that 73 % of the orders

contain at most five products whereas 9 % contain more than 10 products. We also present

daily operations in terms of numbers of products sold, orders processed, totes used, and

waves formed.

In Chapter 2, we review the related literature under two sections. Since this study is

conducted for an e-warehouse, in Section 2.1, we explore warehouse management systems.

We provide a literature review for order picking and accumulation and sortation systems.

We also present an extensive literature review on parallel machine scheduling problems in
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Section 2.2, since our analysis suggests a way to improve the order consolidation process,

which we define as a parallel machine scheduling problem. We first categorize the problems

according to machine type, job type, performance criteria, and solutions methods. We show

that there are different job definitions in the literature consequent to differing requirements

of various manufacturing environments. We review studies for different job definitions and

explain their application areas. From this, we ascertain that the job we define for our

study has been considered in only one other study. We also cover problems with the

objective of total weighted completion time minimization criterion, because it is the most

related criterion to the objective function of the order consolidation problem (OCP). We

end our review with an investigation of parallel machine scheduling problems according to

the solution method, covering both exact and heuristic approaches. From this literature

examination, we find out that there are not many exact solution methods for parallel

machine scheduling problems with general job types, other than the classical single job

parallel machine scheduling problem.

In Chapter 3, we apply descriptive analytics to draw a picture of the current status

of the e-warehousing system. We define the steps (as durations) of the order preparation

process and analyze their contribution to whole order preparation time. We first select

the waves, in total 17, which are not interrupted with any significant breaks. We calculate

processing times of each defined duration and visualize the average times for each wave. On

average, an order spends 61 minutes in picking, 26 minutes in the buffer area, 30 minutes

in putting, and 19 minutes in waiting for the packing. Since the order consolidation time

is defined as the summation of the waiting time in the buffer area and the putting time

in the unit sorter, it requires 56 minutes to consolidate an order on average. We defined

system variables for the wave processing as follows: number of orders, number of products,

average consolidation time, waiting for packing and packing operators. We showed that
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the order consolidation process is not significantly correlated to other variables. Therefore,

we conclude this chapter by suggesting to determine the tote sequence in which they

are diverted from the buffer area to the unit sorter area in order to improve the order

consolidation process.

In Chapter 4, we define the order consolidation problem and show that OCP is also

expected to improve average cubby usage time per order. We present the mathematical

formulation of OCP and propose a simulated annealing (SA) algorithm to solve the prob-

lem. To evaluate the performance of the SA algorithm, we consider a special case of OCP

where all the totes have the same processing time. We design an experiment to calibrate

the parameters of the SA algorithm. We conduct two computational tests. The first one

uses industry instances to evaluate the proposed algorithm. Due to the absence of tote

contents in the data, we analyze induction operations further. We show that in the data

there are anomalies which do not allow determining tote contents. By analyzing induction

operations, we develop an algorithm to estimate tote contents. For the sake of reliability,

we also analyze the usage of the induction lines and show that during a wave process, not

all induction lines are always available. Since we compare the sequences obtained by the

SA algorithm to industry instances, we define two scenarios, one of which considers that

all lines are available at all times whereas the other takes the breaks into consideration.

We show that the improvements over the system are significant. For the first scenario,

at least 6.74% improvement is achieved with the suggested schedules (sequences) whereas

the average improvement is 28.77%. For the second scenario, these values are 5.96% and

19.9%, respectively. We also test the performance of the SA algorithm on random instances

for the special case of OCP whose mathematical model is relatively easier. It is important

to emphasize that for the instances wherein the mathematical model obtained optimal

solution within the time limit, the average relative gap of the SA is less than 0.01%.
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In Chapter 5, we propose a branch-and-price algorithm for the OCP. We first present a

set partitioning formulation of the problem. Then, since generating all possible columns is

not practical, we explain how we generate columns when they are needed using a column

generation algorithm. We use the dynamic programming algorithm introduced in Chen and

Powell (1999) in the root node to generate promising and necessary columns. We apply a

new branch strategy and demonstrate why, in this problem, it is superior to the two-branch

strategy which is common in the literature. We propose another mathematical model to

determine branching variables and explain why it is needed for the new branch strategy.

We also develop a new dynamic programming algorithm whose complexity is bounded

by O(n2P ) for the child nodes because the former algorithm does not solve the pricing

problem to optimality after branching. To determine the parameters of branch-and-price

algorithm, we define four strategies which indicate how the initial columns are obtained

and how many columns are generated by the pricing problem. Strategies 1 and 2 start with

columns generated by a construction algorithm in addition to random columns, whereas

strategies 3 and 4 start with only random columns. The best 10 columns are generated with

the pricing problem for strategies 2 and 4, whereas strategies 1 and 3 generate only the best

column. Strategy 2 was found to be the best strategy based on an extensive computational

test. The results for strategy 2 show that the proposed algorithm found solutions within

1% gap (0.06% in average) in the root node when γ is 1. When γ is 2, on average, the

results are found to be within 0.66%, while the average gap is 1.76% when γ is 3. We

also compared a special case of OCP where γ is 1 and which can be defined as a parallel

machine scheduling problem with the total weighted completion time objective function.

We implemented and compared to the branch-and-price algorithm presented in Chen and

Powell (1999). We showed that even though the proposed algorithm was designed for a

more complex problem, we obtained solutions of similar quality as the algorithm of Chen

and Powell (1999); however, we spent on average 80.32 seconds, while Chen and Powell
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(1999) spent 40.98 seconds. Higher average CPU time is expected due to the complexity of

the master problem of the OCP compared to the PMS problem. This comparison proves

that the proposed algorithm is successful in finding high quality solutions.

This thesis presents the application of data anlaytics to data from an e-warehouse.

Employing descriptive analytics to understand the working process of the warehouse and

to identify areas for improvement, we found that the whole process can be improved by

changing the sequence in which totes are diverted from the buffer area to the unit sorter.

Specifically, we introduced a problem to determine the tote sequence and propose several

solution methodologies to obtain good quality solutions. Evaluation of our results shows

that the proposed methods are not only useful but also practical. For the warehouse

operations, the routing sorter is also important for warehouse efficiency. We did not focus

on the routing sorter operations due to a lack of data. Nevertheless, investigating the

working process of such a sorter remains a promising research area. In the routing sorter,

scheduling of waves or the tote diverting mechanism are also promising directions. Lastly,

processing times of totes in the OCP are not deterministic; however, in this study we

considered the deterministic processing times due to low variance on item induction times.

For a different warehouse where variation for product induction times is high, the OCP

can be studied under stochastic processing times.
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Appendix A

Characteristics and relationships

between totes, orders and items

Table A.1: The Order-Tote relationship.

Orders per Tote Totes per Order
Wave ID max mean std max mean std

W-353-1243 30 11.54 8.39 19 3.27 2.45
W-374-1384 30 17.27 11.1 27 4.66 3.36
W-420-1374 30 14.51 9.42 24 4.43 2.98
W-368-1373 30 14.71 10.47 23 3.94 2.73
W-336-1367 30 16.07 9.66 29 3.95 2.81
W-257-851 30 11.12 8.76 26 3.36 3.18
W-253-932 30 15.13 10.76 14 4.1 1.7
W-377-989 30 11.81 9.66 25 4.5 3.25
W-169-949 30 22.54 10.09 19 4.01 1.9
W-121-267 30 9.37 7.22 20 4.24 4.21
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Table A.2: The product-tote relationship and the tote processing times.

Items per Tote Tote Processing Times
Wave ID max mean std max mean std

W-353-1243 30 11.9 8.76 60 24 14
W-374-1384 30 17.9 11.76 60 33 19
W-420-1374 30 14.94 9.75 60 27 16
W-368-1373 30 18.34 10.97 60 28 16
W-336-1367 30 16.66 10.1 60 30 16
W-257-851 30 11.58 9.26 60 25 16
W-253-932 30 15.51 11.1 60 29 18
W-377-989 30 12.3 10.2 60 27 18
W-169-949 30 23.2 10.4 60 38 15
W-121-267 30 10.2 8.3 60 22 14
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Appendix B

Detailed Comparison between OCP

and PMS
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Table B.1: Comparison between PMs and OCP for 10 totes and 20 orders

Problem PMS OCP
Line Instance LB UB Gap CPU LB UB Gap CPU

2 1 1922 1922 0 0 1922 1922 0 0
3 1 1451 1451 0 0 1451 1451 0 0
4 1 1226 1226 0 0 1226 1226 0 0
5 1 1091 1091 0 0 1091 1091 0 0
6 1 1019 1019 0 0 1019 1019 0 0
2 2 2075 2080 0.24 0 2075 2075 0 0
3 2 1569 1569 0 0 1569 1569 0 0
4 2 1326 1326 0 0 1326 1326 0 0
5 2 1187 1187 0 0 1187 1187 0 0
6 2 1093 1093 0 0 1093 1093 0 0
2 3 1775 1775 0 0 1775 1775 0 0
3 3 1351 1351 0 0 1351 1351 0 0
4 3 1154 1154 0 0 1154 1154 0 0
5 3 1036 1036 0 0 1036 1036 0 0
6 3 964 964 0 0 964 964 0 0
2 4 2333 2333 0 0 2333 2333 0 1
3 4 1771 1771 0 0 1771 1771 0 0
4 4 1485 1485 0 0 1485 1485 0 0
5 4 1320 1320 0 0 1320 1320 0 0
6 4 1237 1237 0 0 1237 1237 0 0
2 5 1889 1889 0 0 1889 1889 0 0
3 5 1422 1422 0 0 1422 1422 0 0
4 5 1202 1202 0 0 1202 1202 0 0
5 5 1068 1068 0 0 1068 1068 0 0
6 5 991 991 0 0 991 991 0 0
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Table B.2: Comparison between PMs and OCP for 20 totes and 40 orders

Problem PMS OCP
Line Instance LB UB Gap CPU LB UB Gap CPU

2 1 7318 7319 0.01 5 7318 7319 0.01 6
3 1 5239 5251 0.23 1 5239 5251 0.23 3
4 1 4217 4222 0.12 1 4217 4217 0 2
5 1 3599 3614 0.42 0 3599 3599 0 0
6 1 3197 3204 0.22 0 3197 3207 0.31 0
2 2 7474 7474 0 3 7474 7474 0 5
3 2 5351 5358 0.13 1 5351 5363 0.22 2
4 2 4304 4304 0 1 4304 4305 0.02 1
5 2 3676 3699 0.63 0 3676 3699 0.63 0
6 2 3271 3279 0.24 0 3271 3279 0.24 0
2 3 8614 8616 0.02 6 8614 8631 0.2 6
3 3 6136 6141 0.08 2 6136 6141 0.08 2
4 3 4895 4898 0.06 1 4895 4898 0.06 2
5 3 4168 4180 0.29 0 4168 4180 0.29 1
6 3 3676 3679 0.08 0 3676 3676 0 0
2 4 7673 7673 0 7 7673 7673 0 7
3 4 5494 5506 0.22 2 5494 5506 0.22 3
4 4 4409 4409 0 2 4409 4409 0 2
5 4 3774 3774 0 0 3774 3782 0.21 1
6 4 3358 3358 0 0 3358 3358 0 0
2 5 6855 6855 0 5 6855 6855 0 6
3 5 4891 4902 0.22 1 4891 4902 0.22 2
4 5 3928 3933 0.13 1 3928 3933 0.13 1
5 5 3352 3353 0.03 0 3352 3363 0.33 0
6 5 2971 2978 0.24 0 2971 2971 0 0
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Table B.3: Comparison between PMs and OCP for 30 totes and 60 orders

Problem PMS OCP
Line Instance LB UB Gap CPU LB UB Gap CPU

2 1 17484 17486 0.01 23 17484 17489 0.03 32
3 1 12222 12232 0.08 12 12222 12232 0.08 13
4 1 9599 9602 0.03 7 9599 9602 0.03 11
5 1 8033 8042 0.11 4 8033 8042 0.11 6
6 1 6992 7014 0.31 3 6992 7014 0.31 4
2 2 14996 14997 0.01 45 14996 14997 0.01 52
3 2 10492 10493 0.01 13 10492 10493 0.01 20
4 2 8252 8256 0.05 5 8252 8256 0.05 7
5 2 6904 6910 0.09 4 6904 6910 0.09 6
6 2 6024 6033 0.15 3 6024 6033 0.15 3
2 3 17622 17623 0.01 33 17622 17623 0.01 38
3 3 12290 12294 0.03 9 12290 12294 0.03 12
4 3 9621 9624 0.03 6 9621 9624 0.03 11
5 3 8025 8037 0.15 4 8025 8037 0.15 6
6 3 6970 6988 0.26 3 6970 6988 0.26 3
2 4 16314 16314 0 34 16314 16314 0 51
3 4 11390 11397 0.06 9 11390 11397 0.06 13
4 4 8947 8958 0.12 5 8947 8958 0.12 7
5 4 7492 7492 0 4 7492 7492 0 7
6 4 6514 6531 0.26 3 6514 6531 0.26 4
2 5 17298 17301 0.02 34 17298 17301 0.02 53
3 5 12075 12085 0.08 13 12075 12080 0.04 17
4 5 9478 9482 0.04 5 9478 9482 0.04 7
5 5 7916 7933 0.21 4 7916 7933 0.21 6
6 5 6881 6885 0.06 3 6881 6885 0.06 5
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Table B.4: Comparison between PMs and OCP for 40 totes and 80 orders

Problem PMS OCP
Line Instance LB UB Gap CPU LB UB Gap CPU

2 1 27829 27830 0 187 27829 27830 0 180
3 1 19262 19268 0.03 37 19262 19268 0.03 53
4 1 14993 14994 0.01 21 14993 14994 0.01 25
5 1 12431 12449 0.14 14 12431 12449 0.14 20
6 1 10738 10741 0.03 11 10738 10741 0.03 17
2 2 28171 28173 0.01 112 28171 28173 0.01 133
3 2 19480 19481 0.01 38 19480 19481 0.01 53
4 2 15145 15150 0.03 23 15145 15150 0.03 33
5 2 12549 12554 0.04 14 12549 12554 0.04 20
6 2 10817 10820 0.03 10 10817 10820 0.03 17
2 3 31567 31575 0.03 120 31567 31575 0.03 133
3 3 21779 21783 0.02 66 21779 21783 0.02 76
4 3 16886 16896 0.06 22 16886 16896 0.06 29
5 3 13962 13965 0.02 15 13962 13965 0.02 21
6 3 12015 12023 0.07 9 12015 12023 0.07 17
2 4 30466 30471 0.02 99 30466 30471 0.02 101
3 4 21031 21035 0.02 48 21031 21035 0.02 66
4 4 16315 16319 0.02 21 16315 16319 0.02 32
5 4 13504 13508 0.03 12 13504 13508 0.03 20
6 4 11632 11636 0.03 9 11632 11636 0.03 14
2 5 33505 33505 0 301 33505 33505 0 358
3 5 23084 23086 0.01 50 23084 23086 0.01 64
4 5 17891 17894 0.02 19 17891 17894 0.02 26
5 5 14773 14773 0 15 14773 14773 0 20
6 5 12696 12696 0 12 12696 12696 0 21

103



Table B.5: Comparison between PMs and OCP for 50 totes and 100 orders

Problem PMS OCP
Line Instance LB UB Gap CPU LB UB Gap CPU

2 1 47256 47268 0.03 1009 47256 47268 0.03 1729
3 1 32435 32451 0.05 104 32435 32451 0.05 310
4 1 25031 25035 0.02 60 25031 25035 0.02 160
5 1 20594 20621 0.13 41 20594 20621 0.13 123
6 1 17641 17673 0.18 29 17641 17673 0.18 90
2 2 45855 45862 0.02 374 45855 45862 0.02 1100
3 2 31450 31453 0.01 117 31450 31453 0.01 330
4 2 24257 24265 0.03 60 24257 24265 0.03 198
5 2 19951 19956 0.03 39 19951 19956 0.03 128
6 2 17090 17097 0.04 29 17090 17097 0.04 88
2 3 42591 42598 0.02 310 42591 42598 0.02 840
3 3 29244 29246 0.01 121 29244 29246 0.01 390
4 3 22583 22585 0.01 56 22583 22585 0.01 186
5 3 18583 18597 0.08 38 18583 18597 0.08 128
6 3 15926 15933 0.04 29 15926 15933 0.04 108
2 4 39466 39474 0.02 456 39466 39474 0.02 1093
3 4 27091 27093 0.01 107 27091 27093 0.01 296
4 4 20911 20917 0.03 47 20911 20917 0.03 145
5 4 17211 17225 0.08 34 17211 17225 0.08 121
6 4 14750 14766 0.11 27 14750 14766 0.11 85
2 5 41993 42003 0.02 210 41993 42003 0.02 522
3 5 28848 28853 0.02 90 28848 28853 0.02 249
4 5 22275 22284 0.04 63 22275 22284 0.04 186
5 5 18350 18361 0.06 37 18350 18361 0.06 113
6 5 15743 15759 0.1 24 15743 15759 0.1 77
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