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Abstract 

Changes to ice cover on lakes throughout the northern landscape has been established as an 

indicator of climate change and variability. These changes are expected to have implications for 

both human and environmental systems. Additionally, monitoring lake ice cover is required to 

enable more reliable weather forecasting across lake-rich northern latitudes. Currently the 

Canadian Ice Service (CIS) monitors lakes using RADARSAT-2 SAR (synthetic aperture radar) 

and optical imagery through visual interpretation, with total lake ice cover reported weekly as a 

fraction out of ten. An automated method of classification would allow for more detailed records 

to be delivered operationally. 

In this research, the Iterative Region Growing using Semantics (IRGS) approach has been 

employed to perform ice-water classification on 61 RADARSAT-2 scenes of Great Bear Lake and 

Great Slave Lake over a three year period. This approach first locally segments homogeneous 

regions in an image, then merges similar regions into classes across the entire scene. These classes 

are manually labelled by the user, however automated labelling capability is currently in 

development. An accuracy assessment has been performed on the classification results, comparing 

outcomes with user-generated reference data as well as the CIS fraction reported at the time of 

image acquisition. The overall average accuracy of the IRGS method for this dataset is 92%, 

demonstrating the potential of this semi-automated method to provide detailed and reliable lake 

ice cover information. 
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1.0 General Introduction 

  Introduction and Motivation 

Lakes encompass a large part of the hydrological system of fresh water flowing throughout the 

Northern Hemisphere. In arctic and sub-arctic regions the areal extent of lakes cover 15-40% of 

the landscape (Duguay et al., 2003). Seasonal ice on these lakes represents a significant component 

of the cryosphere and plays a role in many biologic, ecologic and socio-economic processes 

(Prowse et al., 2011b). A movement towards later freeze-up and earlier break-up dates on northern 

lakes since the middle of the last century has been demonstrated in various studies and is predicted 

to continue (Brown & Duguay, 2011; Duguay et al., 2006; Magnuson, 2000; Palecki & Barry, 

1986). Alterations to the state of lake ice cover due to climate change is expected to have 

implications for both human and environmental systems. For example, transportation via ice roads 

has already begun to be affected by unusually mild winters. Continued climate warming will cause 

further challenges for those who rely on seasonal lake ice for access to isolated communities and 

remote industries (Prowse et al., 2011a). In addition, an increase in the duration of the open-water 

season will raise evaporation rates and impact lake-climate interactions.  

The inclusion of lakes and lake ice in weather forecasting and climate models has also been 

advocated in recent literature. Some climate simulations do not account for the multitude of small 

lakes across Canada, however the simulations that do have presented more accurate results when 

compared with real-world observations (Brown & Duguay, 2010). Understanding, recording, and 

predicting lake ice phenology will be necessary for both local weather forecasting and overall 

climate modelling going forward (Brown & Duguay, 2010). 
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Ground observations of lake ice conditions have been gathered at a network of sites across the 

country since 1822. Unfortunately, since the 1980s the number of in-situ lake ice observations has 

plummeted as a result of budget cuts to government agencies as well as the advancement of remote 

sensing systems (Duguay et al., 2006; Lenormand et al., 2002). The launch of earth observing 

satellite systems has been able to increase the coverage and frequency of lake ice observations 

allowing for the creation of detailed lake ice phenology records, though this has yet to be realized 

(Jeffries et al., 2005). The literature on monitoring lake ice is not a large collection when compared 

to that of other aspects of the cryosphere despite the proven importance of lake ice phenology in 

the context of climate change (Jeffries et al., 2012). 

Currently, the Canadian Ice Service (CIS) monitors ice cover on over 130 lakes across Canada 

using a combination of synthetic aperture radar (SAR) and optical imagery for use in numerical 

weather prediction models (Brown et al, 2002). SAR systems are particularly well suited for this 

application as they are unaffected by cloud cover and can acquire images overnight and during 

polar darkness. These scenes are visually interpreted, and ice cover is reported as a fraction out of 

ten on a weekly basis (Geldsetzer & van der Sanden, 2013; Howell et al., 2009). More detailed 

information including percent coverage, position, and extent of the lake ice is not available 

operationally as it would be time consuming and thus costly if produced in the existing manner. If 

an unsupervised method of classification were made operational, detailed records of ice extent on 

these lakes could be provided at high spatial and temporal resolutions. The need for such a method 

will soon become essential considering the wealth of operational SAR data that is becoming 

available from new satellite missions such as Sentinel 1 A/B and the upcoming RADARSAT 

Constellation Mission (RCM). Automated classification approaches using SAR imagery provide 
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a potential solution to fill the gap in lake ice research by allowing for precise, timely, and thus cost 

effective monitoring. This unmet potential underpins the motivation for this work. 

  Research Objective 

The Vision and Image Processing (VIP) Lab at the University of Waterloo has developed a 

software system called MAGIC (MAp Guided Ice Classification). This system showcases the 

iterative region growing using semantics (IRGS) approach, which allows for semi-automated 

classification of SAR images. The IRGS approach has been proven a reliable method multiple 

times on SAR datasets of sea ice (Yu & Clausi, 2007; 2008; Leigh et al., 2014) but has not yet 

been applied to lake ice imagery. Because of its specialized nature, IRGS shows promise as a 

means to quickly and accurately provide high quality lake ice cover information. The MAGIC user 

interface (UI) also includes other segmentation methods to allow for comparison with IRGS 

(Clausi et al., 2010).  

This study employs the IRGS method to classify ice and water in 61 RADARSAT-2 SAR 

scenes of large northern lakes, namely Great Bear Lake (GBL) and Great Slave Lake (GSL) located 

in the Northwest Territories, Canada. The accuracy of this method is then assessed against reported 

ice fractions provided by CIS, other segmentation methods, as well as reference data created 

through visual interpretation of SAR and optical imagery. Specifically, the primary objective of 

this research is to evaluate the suitability of the IRGS classification method as a means for 

providing dependable lake ice phenology information using SAR imagery.  

  Document Outline 

Chapter Two of this document provides background information on lake ice phenology, the 

use of SAR remote sensing for lake ice monitoring, and a review of the segmentation methodology 
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used in this study, as well as others. Chapters Three to Five contain the study area, data, and 

methodology of this study. A discussion of the findings follows in Chapter Six. Chapters Seven 

and Eight include a conclusion to the findings of this work as well as recommendations for 

continuation of this research.  
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2.0 Background 

  Lake Ice Phenology 

Lake ice phenology, or the annual freeze and thaw cycle of lakes, is a dynamic sequence 

involving many interacting factors. Local air temperature is the dominant control, but other 

climatic and non-climatic factors play a role. These factors include precipitation, wind, cloud 

cover, lake morphometry, elevation, ice albedo, and water inflow from external sources. This 

section will outline these forces, with a focus on Canadian studies. A short discussion of the 

recorded changes in lake ice phenology due to climate warming will follow. 

Throughout the relevant literature various terms are used to describe the stages of ice growth 

and decay on lakes. For the sake of simplicity in this document, the following terms will be used 

to define the stages of the ice season: freeze-up will refer to the period in fall from the first day 

when ice is detected on a lake surface, to the time of complete ice cover; break-up will refer to the 

period after which melting begins, up to the point when a lake is free of ice. The ‘ice season’ will 

refer to the general period between fall and spring when these processes are taking place. 

2.1.1 Freeze-up  

As air temperature at the site of a lake drops in the fall, mixing occurs between surface and 

deeper waters due to temperature dependent variations in density. This continues until the entire 

water column reaches maximum density at 4°C (Ragotzkie, 1978). The time it takes for this to 

occur is largely a product of the capacity for heat storage within a lake, with large deep lakes 

freezing later than smaller, shallower lakes under similar conditions (Williams, 1965). Surface 

waters continue to cool and a stable water layer forms as it approaches the freezing point, 
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producing the initial ice layer. This fragile layer called skim ice generally appears first along the 

calm edges of lakes and in bays protected from wind (Jeffries et al., 2005). Wind can play a role 

in the timing of freeze-up as it increases the rate of mixing, speeding the cooling process (Williams, 

1965). The average bulk temperature a lake needs to reach in order to freeze at the surface has 

been related to the fetch of the lake and amount of wind present. Jeffries et al. (2005) report that 

smaller lakes begin to freeze at bulk temperatures of 2-3°C whereas larger lakes need to reach 1°C 

in order for freeze-up to begin. In addition, initial ice must reach a certain thickness on large lakes 

in order to resist breaking so a complete cover of ice can form. Jones (1969) also suggests that 

snow fall may hasten ice growth during this time, as it provides freezing nuclei when it falls on 

open water.  Frazil ice may also appear during freeze-up. This is a collection of loose ice crystals 

formed under turbulent or windy conditions, appearing similar to slush on the lake surface. Both 

of these initial types of ice can integrate into the solid ice cover later in the season (Jeffries et al., 

2012).  

Two types of thicker ice dominate on lakes throughout the ice season. The first is congelation 

ice which forms at the ice-water interface as water freezes to the bottom of the initial ice layer. 

This type of ice is often called black ice as it lacks texture and has a clear appearance (Jeffries et 

al., 2012). The second is white ice, named for its high light scattering and albedo. White ice forms 

when snow cover is present on pre-formed ice and can be produced in two ways. The first occurs 

when the weight of the snow load overcomes the buoyancy of the ice sheet below, causing flooding 

at the snow-ice interface and the creation of slush. Rapid freezing then takes place to form a white 

ice layer (Ashton, 2011). The second process occurs when meltwater or rain percolates down 

through snow to the top of the ice sheet and later freezes (Bengtsson, 1986). In many cases wind 

causes snow to accumulate close to the shorelines of lakes throughout ice cover duration, meaning 
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white ice is observed more extensively in these areas whereas bare, black ice is more common in 

the center of a lake (Bengtsson, 1986). An example of how black and white ice appear in a SAR 

scene is shown in Figure 2.2.2. 

Local air temperature has been shown to be the most influential factor determining the timing 

of freeze-up as well as break-up. Although lake ice phenology is influenced by many factors, heat 

loss or gain at the surface due to temperature conditions is the governing force (Williams, 1965). 

Duguay et al. (2006) confirmed this in a Canada-wide time series study from 1966-1995.  The 

authors reported that the arrival of the autumn or spring 0°C isotherm date strongly related the 

timing of freeze-up and break-up, but that these events lagged one to four weeks behind the 0°C 

isotherm date. Similar findings are reported by Williams et al. (2004), Ghanbari et al. (2009), and 

Palecki & Barry (1986).  

Several other factors may influence the process of freeze-up and length of the ice season. 

Patterns in large scale atmosphere and ocean circulation known as teleconnections are related to 

trends in air temperature throughout northern landscapes, and have been related to variations in 

lake ice phenology (Bonsal et al., 2006). Bonsal et al. (2006) examined the relationship between 

some of these indices and freshwater ice duration over Canada from 1950-1999. El Nino/ Southern 

Oscillation as well as the positive phases of the Pacific Decadal Oscillation and the Pacific North 

American pattern were found to be linked with shorter ice cover duration for most of Northwestern 

North America. These patterns are associated with a deeper Aleutian low which allows an increase 

of relatively warmer Pacific air into the Northwest (Prowse et al., 2011b). These results are 

congruent with an earlier study by Robertson et al. (2000) who connected the climatic impacts of 

El Niño with lake and river ice phenology events in the Northern Hemisphere between 1900 and 

1995.  
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The presence of snow cover has also been described as a driver for ice thickening due to the 

role it plays in white ice formation. As mentioned, when the weight of a snow cover overcomes 

the buoyancy of the ice layer below, a slushing event occurs resulting in the creation of a white ice 

layer (Adams & Roulet, 1980; Ashton, 2011). In addition to this cycle, the decrease in dry snow 

cover after a slushing event later leads to additional ice thickening (Ashton, 2011). This supports 

the acceptance that snow acts as insulation, hindering the growth of underlying ice because of its 

relatively low thermal conductivity (Duguay et al., 2003). A study by Rouse et al. (2008) 

corroborate this through their presentation of ice thickness models for 3 meter and 30 meter deep 

lakes across the Mackenzie River delta, under both full snow and no snow conditions. The modeled 

images clearly demonstrate the insulating effects of snow cover in relation to ice thickness, where 

maximum ice thickness on bare ice reaches 2 meters, while under snow cover only reaches 1.4 

meters. This is mildly supported by Williams et al. (2004) who related snow depth to ice thickness 

in a survey of 143 lakes across North America, but reported only a slight decrease in ice thickness 

as snow depth increased.  In this case the single-date measurement used for each may not have 

represented conditions throughout the season, causing the weakly observed correlation.  

 The presence or absence of clouds has also been linked to ice growth. Curry et al. (1993) 

modeled the effects of cloud cover in the high Arctic and reported that, especially during polar 

darkness, the absence of clouds increased the loss of long wave radiation and enhanced ice growth.  

Brown & Duguay (2010) summarize that clouds can both trap long wave radiation slowing ice 

growth, or reflect solar radiation away from the ice cover either enhancing ice growth or slowing 

spring melt depending on the season.   
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2.1.2 Break-up 

As previously mentioned, air temperature is the main control determining the onset of break-

up, with this event taking place one to four weeks after the 0°C isotherm date depending on the 

size of the lake (Duguay et al., 2006). Spring break-up has been established to be more sensitive 

to changes in air temperature than freeze-up even though both follow closely with seasonal 

temperature trends. Duguay et al. (2006) observed earlier break up at various locations as a result 

of climate warming, but did not deduce a significant change in the timing of freeze-up. This is in 

agreement with a previous examination by Schindler et al. (1990) who reported a decrease in ice 

cover duration due to earlier spring break-up by about 20 days over a 20 year time series in 

Northwestern Ontario.  

As with freeze-up, several other factors may play a role during the melt season. The albedo of 

ice cover plays a major role in the speed of break-up and is determined by the type of ice, its 

density, and presence of snow. Very dense ice has the lowest albedo, and this increases as density 

decreases, such as in the case of white ice (Heron & Woo, 1994).  Jones (1969) observes that the 

presence of white ice delays melting, and suggests that the distribution of white ice is more 

important during break-up than the thickness if the ice cover. Snow can protect underlying ice 

from melting as it inhibits heat transfer from the atmosphere and reflects incoming solar radiation 

(Brown & Duguay, 2010). Albedo is highest when there is fresh snow present on the ice, and 

decreases during melt as small ponds are formed (Brown & Duguay, 2010). As this continues, 

solar radiation absorption increases and brings about the onset of a positive feedback loop. This 

weakening of the ice cover makes it vulnerable to mechanical disintegration from wind and 

turbulence, resulting in further melting (Palecki & Barry, 1986). 
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Inflowing water from either land runoff or rivers can effect both freeze-up and break-up as it 

introduces relatively warm water and creates turbulence (Brown & Duguay, 2010). This is 

recorded in a study on variations in ice phenology on Great Slave Lake by Howell et al. (2009). 

The authors observe that the central body of the lake is the first area clear of ice and also has the 

shortest melt period because of inflow from the Slave River.   

The elevation of a lake has also been shown to have some effect on the timing of ice phenology 

events, where generally higher altitude lakes experience longer ice cover duration than those in the 

same region at lower altitudes (Brown & Duguay, 2010). Livingstone (2010) investigated ice 

phenology events on high elevation lakes in the Tatra Mountains, Poland. Lake elevations ranged 

from 1,580 to 2,157 meters above sea level and a clear dependence on altitude was recorded, with 

ice cover duration increasing by 10.2 days per 100 m. Break-up timing was especially found to 

correlate strongly with changes in elevation, the highest lakes thawing almost 50 days later than 

the lowest ones (Livingstone et al., 2010). 

When considering the many factors at play in the freeze-up and break-up of ice cover on lakes 

it is clear that the process is dynamic and complex. Lake ice phenology incorporates both climatic 

and non-climatic factors which influence ice cover duration and thickness. Although air 

temperature plays the largest role during this process, smaller factors may cause yearly variations 

in phenology at a given site. Factors such as rain and snowfall during this cycle may become 

increasingly important as climate normals continue to shift, deepening the need for high quality 

lake ice cover monitoring. 
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2.1.3 Trends in Lake Ice Phenology 

The timing and duration of lake ice cover has been demonstrated as a powerful indicator of 

climate change and variability in several studies including those by Duguay et al. (2003), 

Magnuson (2000), Livingstone (1997), and Palecki & Barry (1986). These analyses as well as 

others have indicated that climate warming is responsible for changes to the timing of lake ice 

phenology events.  Specifically, long term historical records have demonstrated the relationship 

between shortened ice cover duration, earlier break-up dates, and the increase in global mean air 

temperature since the industrial revolution (Duguay et al., 2006; Livingstone et al., 2010). 

Observed and projected effects that this may have on infrastructure, aquatic habitat, permafrost, 

and other components of the natural and built environment are summarized by Prowse et al. 

(2011a).   

As it has been mentioned, the timing of break-up is more affected by rising air temperatures 

than freeze-up. A study of historical trends in freshwater ice conducted by Magnuson (2000) 

revealed that there is strong evidence showing earlier ice break-up and later freeze-up throughout 

the Northern Hemisphere. In this 150 year study the author calculated changes in freeze-up 

averaging 5.8 days later per hundred years, and break-up averaging 6.5 days earlier per hundred 

years. This study also revealed that since the 1950s inter-annual variation in the timing of 

phenology events has increased.  Variability was recorded as 12% higher during freeze-up and 5% 

higher during break-up than the previous period (Magnuson, 2000). Brown & Duguay (2011) 

simulated lake ice phenology across the Arctic regions of North America using the Canadian Lake 

Ice Model (CLIMo) for a 139 year period up to 2100. This model calculated mean trends from 

2041-2070 revealing a 10-25 day reduction in ice cover duration for shallow lakes, and a 10-30 
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day reduction for deeper lakes. They concluded that changes in air temperature and precipitation 

will be responsible for decreases in ice cover duration in the future (Brown & Duguay, 2011). 

Ice phenology events on lakes at varying latitudes have been shown to be affected differently 

by climate change. In a study by Livingstone et al. (2010) the authors revealed that more temperate 

lakes which already experience a short ice cover will be the most effected by climate warming. 

This will cause greater decrease in ice cover duration on these lakes, potentially eliminating winter 

ice cover entirely. This change will have a number of implications for local ecology and climate 

interactions (Livingstone et al., 2010). These observations confirm the importance of being able 

to record the coming changes to lake ice cover in a timely, detailed, and reliable way. 

  Lake Ice Monitoring with Synthetic Aperture Radar 

2.2.1 SAR Remote Sensing 

The advancement of SAR remote sensing has allowed for a wealth of lake ice phenology 

information to be gathered from large and remote expanses. Although optical and thermal sensors 

are appropriate for this task, SAR imaging systems have become the standard tool for operational 

ice cover monitoring because of their capability to capture images in polar darkness and through 

any cloud cover conditions.  

SAR imagers are active microwave sensors which operate through the transmission and 

reception of microwave electromagnetic (EM) energy. A timed pulse of energy is generated and 

focused through the antenna of the sensor toward the target in question.  The reflected or 

‘backscattered’ energy is then returned to the sensor and detected by the same antenna. Early 

imaging radar systems aboard aircraft used real aperture radar (RAR), however the spatial 

resolution along the azimuth direction was very coarse (Figure 2.2.1) (Shokr & Sinha, 2015). 
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Azimuth resolution of a system is a direct function of its antenna length, with a longer antenna 

resulting in better resolution. For RAR the required antenna length to achieve reasonable resolution 

from a satellite system is not possible. SAR overcomes this problem as it allows for a long antenna 

to be synthesized through Doppler-effect signal processing (Kellndorfer & McDonald, 2009).  

The frequency or wavelength of the EM pulse sent by a SAR system governs the properties 

which are best observed by the system. RADARSAT and RADARSAT-2 operate in C band (at 

5.6cm wavelength) as this has been determined a suitable wavelength for monitoring ice, however 

other wavelengths such as X band are also used for sea and lake ice monitoring (Holmes, 1984; 

Sobiech & Dierking, 2013). Polarization describes how an EM wave propagates along an invisible 

plane as it travels to and from a target. SAR systems predominantly transmit energy and receive 

backscatter in the horizontal or vertical polarization (relative to the surface or the earth), however 

coming missions will carry fully polarimetric or compact polarimetric sensors which allow for 

additional signatures other than backscatter to be derived (Kellndorfer & McDonald, 2009). 

Figure 2.2.1 SAR geometry (Ray et al, 2015). 
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The amount of backscattering received to a SAR system depends on the effect that a ground 

target will have on the transmitted pulse. This parameter is called the backscatter coefficient or 

‘sigma naught’ (σ0) and can be treated as a property of the target surface in question. The value of 

σ0 is presented in decibels (dB) and is determined by surface roughness as well as the physical and 

electrical properties of the target. The parameters of a SAR system including wavelength, 

polarization, and incidence angle also have an effect on σ0 value (Shokr & Sinha, 2015). 

The CIS heavily relies on SAR imagery to allow for operational sea ice and lake ice 

monitoring. Trained ice analysts use SAR as well as optical images along with ancillary data such 

as weather information and recent ice conditions to create daily ice charts for Canada’s northern 

and eastern marine coasts as well as for the Laurentian Great Lakes. CIS also uses this information 

to monitor ice cover on over 130 inland lakes. The amount of ice cover on these lakes is recorded 

as a fraction out of ten on a weekly basis. This information is used by the Canadian Meteorological 

Centre (CMC) for use in weather forecasting models. RADARSAT-2 has provided the CIS with 

SAR images which improve on the previously launched RADARSAT mission through the 

inclusion of both HH and HV polarized images available in the ScanSAR Wide mode which offers 

a swath width of 500km. The upcoming RADARSAT Constellation Mission will be outfitted to 

deliver compact polarimetric information in its wide swath modes (Dabboor & Geldsetzer, 2014). 

The recently launched Sentinel-1A and B satellites also provide C band SAR imagery to CIS in 

multiple polarizations in a wide swath mode.  

2.2.2 Challenges 

Unsupervised classification of ice and open water on a lake requires an algorithm to be able to 

differentiate between these two classes. This matter is complicated by the fact that SAR backscatter 
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signatures of ice and water vary significantly throughout and across scenes, where several 

signatures can be observed for each class (Geldsetzer & van der Sanden, 2013). In the beginning 

of the ice season, congelation ice appears dark (Figure 2.2.2b). This occurs because the radar signal 

is scattered away from the sensor off of the basal ice-water interface due to the differences in 

dielectric constants between ice (Ɛ’I  = 2.2 to 4.5) and water (Ɛ’W  = 80) (Duguay et al., 2002).  This 

causes confusion with open water as there is a low σ0 contrast between dark open water and newly 

formed ice. Later in the season backscatter increases due to further thickening of the ice, as well 

as increased roughness from cracking and deformation (Morris et al., 1995).  Snow ice results in 

volume scattering and a bright backscatter throughout the ice season (Duguay et al., 2002).  

During spring melt the presence of water on the ice surface from ice or snow cover melt causes 

a decrease in σ0 value because of increased specular scattering. When this melt water drains a 

rough ice surface is often left behind causing another spike in backscatter values (Surdu et al., 

2015). Open water, which commonly appears very dark in SAR scenes can appear brighter a result 

of surface roughness caused by wind (Geldsetzer et al., 2010).  

(a) (b) (c) (d) 

Figure 2.2.2 Samples of backscatter signatures of ice and water in RADARSAT-2 SAR scenes. 

(a)  mix of deformed white and black ice, (b) black ice, (c) white ice during spring melt with 

open water leads, (d) wind effect on open water. 
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In addition to these complications, variation in incidence angle across large swath SAR scenes 

causes discrepancies in all backscatter signatures; ice which appears very dark in the far range may 

appear brighter in the near range even though they are the same age and type.  Because of these 

similarities, highly accurate automated classification of ice and water classes is made difficult. 

Acquiring multiple polarizations of a scene provides additional information which can be used 

to increase the performance of classification methods. Information captured in the HV polarization 

is less affected by variations in incidence angle and strong wind even when large areas of open 

water are present. This results in a more consistently low σ0 value from open water, but the tradeoff 

for this is a reduced contrast between water and ice, especially new thin ice (Surdu et al., 2015).  

For this reason, dual polarization imagery is beneficial to use during classification as compared to 

single polarization data.  

  Ice-Water Segmentation and Classification  

2.3.1 Previous Approaches 

Segmentation methods split an image into a set number of classes containing uniform 

information. These methods are widely used to interpret remotely sensed data, with simple 

techniques included in various GIS and image processing packages such as ArcMap and ENVI. 

The task of classification goes a step further by assigning a meaningful label to each segmented 

class (ex. ice and water). The need for a way to quickly and reliably interpret SAR images of ice 

and water has motivated a library of work over the past three decades. Publications have employed 

many standard and novel approaches for classification in marine bodies, with some applications 

to freshwater lakes and rivers. Unsupervised and semi-supervised approaches including threshold, 

clustering, support vector machines, and others have been explored, with researchers often 
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combining several methods and data sources into a multi-step workflow. A sample of studies are 

discussed here, with a focus on those which employ C band SAR data for research over ice and 

water. 

Threshold methods have been explored in several ice segmentation studies. This method can 

be useful for separating objects that exist on a contrasting background like ice on water. In simple 

thresholding all pixels at or above a predefined grey level value are assigned to one class, and all 

those below the ‘cut-off’ fall into the other (Castleman, 1996).  Thresholding may be done globally 

in an image wherein the cut-off value remains constant, or may be done locally where an image is 

subdivided and has a cut-off value chosen for each region based on its unique properties 

(Castleman, 1996).  A dynamic local thresholding technique was introduced by Haverkamp et al. 

(1993) specifically adapted for sea ice segmentation and was found to be more accurate than 

previous global thresholding methods. Soh & Tsatsoulis (1999b) furthered this work with the 

addition of peak detection and spatial clustering. Their approach was tested on more than 300 SAR 

ice images and subjectively validated by ice analysts from the United States National Ice Center. 

Despite the local thresholding method the authors reported poor results on images with large areas 

of open water because of the effects of incidence angle and wind. Later, Geldsetzer et al. (2010) 

developed a thresholding technique to specifically discriminate between melting lake ice and open 

water in Radarsat-2 SAR images from Old Crow Flats, Yukon. In this study backscatter thresholds 

for both HH and HV bands were statistically determined based on grey level metrics, with the HH 

imagery used to classify initial break-up and HV imagery used later, when 10% or more open 

water was present. Nghiem & Leshkevich (2007) recorded a comprehensive library of ice 

backscatter signatures on the Laurentian Great Lakes, and later used this look-up table along with 
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a simple threshold method to classify open water and several ice types (Leshkevich & Nghiem, 

2013).  

A watershed algorithm separates segments in a greyscale image by deeming the pixels with 

the lowest intensity as the bottom of a ‘watershed drainage basin’ and those with the highest 

intensity as the ridges which separate these basins. In SAR imagery the algorithm creates many 

small regions due to the high amount of noise, which then need to be merged. Watershed merging 

then joins neighboring basins through comparing their average intensities, sizes, and gradients 

(Clausi et al., 2010, Soh et al., 2004). Soh et al. (2004) build on their previous work, presenting 

the Advanced Reasoning using Knowledge for Typing of Sea ice (ARKTOS) system, a novel 

approach for classifying SAR sea ice images. This system incorporated local thresholding, 

unsupervised clustering, and watershed merging for segmentation, as well as class labeling. The 

labeling was done through computing attributes from segmented regions and employing a rule-

based module to infer the classification labels (Soh et al., 2004). Watershed merging was also 

incorporated into the IRGS approach (Yu & Clausi, 2007; 2008). In these two works the IRGS 

methodology is presented, which uses a watershed algorithm to generate a preliminary 

segmentation. Edge penalties and region growing are also incorporated to produce highly accurate 

segmentations of RADARSAT images. In their study, Yu & Clausi (2008) found that IRGS 

produced ice-water segmentation with 97% accuracy. This approach is further explained in the 

next chapter: 2.3.2 IRGS. 

The aim of cluster analysis is to find the natural groupings in a set of unlabeled data based on 

a quantitative comparison of similarity between the characteristics of data points, with the resulting 

segmentation having a high level of similarity within a group and low level of similarity between 

groups (Jain, 2010).  Early on, Kwok et al. (1992) used ISODATA clustering to segment SAR sea 
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ice images of the Canadian arctic and labelled the segments using seasonal look-up tables 

containing backscatter signatures for several ice types. Weber et al. (2003) applied a fuzzy k-means 

segmentation (wherein pixels may belong to more than one group) to RADARSAT images of the 

Peace River, Alberta in order to classify major ice cover types, and concluded that the outcomes 

appeared accurate when compared to visual interpretation and airborne observations. k -means 

clustering was also employed by Sobiech & Dierking (2013) to perform ice-water segmentation 

during spring break-up on small lakes in the Lena Delta, Siberia. Their results demonstrated that 

this method is suitable for segmentation, though it should be noted that backscatter values on the 

small lakes studied were not affected by incidence angle or wind. Further advances by Gauthier et 

al. (2010) combined image texture information with a fuzzy k-means algorithm to allow for 

automated segmentation of ice classes and open water in RADARSAT images of rivers in northern 

Quebec. The authors reported overall accuracy up to 76% when results were validated against 

ground photos, aerial surveys, and field measurements.  

Since ice and water can often have similar backscatter signatures in a SAR scene, texture within 

an image is important to consider in order to increase the accuracy of classification results. In a 

SAR image this means quantifying the nature of grey level variation between a set of items in a 

scene, for example ice floes (Castleman, 1996). This is often done using grey level co-occurrence 

matrices (GLCM) which represent the relationship and distance between neighboring pixels. The 

use of texture features for sea ice classification was introduced by Holmes et al. (1984) who 

computed two textural images (entropy and inertia) using GLCM for a high resolution X-band HV 

image of the Beaufort Sea. The authors reported an overall accuracy of 65%, recommending that 

future work incorporate additional texture features such as uniformity and correlation. Gill (2003) 

derived textural and statistical image products from RADARSAT images and used them to classify 
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sea ice and water with a fuzzy screening method. Karvonen et al. (2005) developed an algorithm 

for ice-water discrimination also using RADARSAT images. The authors did not use GLCM, but 

instead computed segment-wise autocorrelation as a texture measure as they found it was not 

sensitive to wave conditions or variations in incidence angle. Zakhvatkina et al. (2013) later 

investigated which GLCM SAR image texture features were optimal for discriminating between 

sea ice types in ENVISAT ASAR imagery. The authors calculated nine texture features and used 

them to train a neural network classifier which was then tested on 20 images, resulting in average 

classification accuracy greater than 80%.  

Support vector machines (SVM) have recently been used for both segmenting and labelling 

SAR images of ice and water. The SVM method involves the construction of a decision boundary 

in the feature space of data based on the properties of training samples. This boundary can then be 

used to segment classes or allocate labels for the classes in question (Tso, 2001). An SVM model 

which used backscatter and texture features to assign ice-water labels after segmentation was 

employed by Leigh et al (2014) for use with IRGS segmentation, and was found to be up to 97% 

accurate when tested on 20 scenes.  Liu et al. (2015) presented an approach which used backscatter 

and texture information from RADARSAT-2 images as well as ice concentration for SVM 

classification. First, an initial SVM was carried out using 10 backscatter and texture bands as input, 

and the result was used to extract ice concentration. Another SVM was then implemented using 

the original 10 bands as well as concentration as input. The final result was then labelled into 

multiple sea ice types using a decision tree technique. The authors reasoned that ice concentration 

is a characteristic of ice types and thus should be exploited during classification, for example old 

ice often has high concentrations because several large ice floes are connected across an area (Liu 

et al., 2015). Zakhvatkina et al. (2017) also used an SVM algorithm trained with backscatter and 
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texture features from manually classified images. Their fully automated technique was used to 

process over 2700 RADARSAT-2 scenes of Arctic sea ice and water. The authors noted a high 

level of correspondence between manually classified images, ice charts, and the algorithm results, 

reporting an average total accuracy of 91%. 

Many groups have offered solutions to the problem of classifying ice and water in SAR images, 

incorporating clustering approaches, watershed merging, texture information, and SVM classifiers 

to produce reliable results. The VIP lab at the University of Waterloo has developed the novel 

MAGIC user interface for this purpose. It houses the aforementioned IRGS algorithm as well as 

other standard segmentation techniques including k-means and Gaussian mixture model (GMM).  

These methods are employed in this study, and thus are further explained in the following sections.  

2.3.2 IRGS Segmentation 

The IRGS algorithm has been created to perform segmentation and ultimately classification of 

SAR ice imagery in a in an automated and reliable way. This technique, which combines aspects 

of several image processing methods, is the product of over 15 years of investigation by students 

and researchers. This work has been united and packaged in the MAGIC system. K-means and 

GMM segmentation approaches are included in the MAGIC user interface and these will be 

measured against IRGS in this study.  

The IRGS algorithm has been specifically tailored to deal with the unique segmentation 

challenges present in SAR scenes of ice and water. The steps involved in the IRGS approach are 

outlined in Figure 2.3.1. When employing IRGS the region of interest is first divided into a number 

of sub-regions called ‘autopolygons’ using the HV image as input (Figure 2.3.1b). These are 

generated through a watershed segmentation creating regions which follow the natural structure of 
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the image (Vincent & Soille, 1991; Leigh et al., 2014). This step is carried out using only the HV 

image because it shows less backscatter variation as a result of strong wind or incidence angle 

effects. The autopolygons are meant to decrease errors caused by these effects across an image, as 

each autopolygon is segmented individually in the following step.  

Within each autopolygon, small uniform regions are distinguished again using a watershed 

algorithm. Each watershed region is then represented by a node in a region adjacency graph and 

assigned an initial label (Yu et al., 2012). The subsequent segmentation is an iterative process 

which involves merging and clustering regions towards an ideal configuration with fewer nodes 

(Clausi et al., 2010; Yu et al., 2012).  During this process edge strength between adjacent regions 

as well as neighborhood information is also considered, increasing segmentation accuracy (Yu & 

(a) (b) (c) 

(d) (e) 

Figure 2.3.1 Steps of the IRGS segmentation approach. (a) HH polarization SAR image, (b) HV 

image after autopolygon segmentation, (c) local IRGS segmentation within each autopolygon, (d) all 

segments ‘glued’ into the final chosen number of classes, (e) final segmentation after manual 

labelling where yellow represents ice and blue represents open water.  
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Clausi, 2007). This process ultimately breaks up each autopolygon into homogenous regions of 

either ice or water. Once complete, image wide ‘gluing’ is performed, which merges similar 

regions from any of the autopolygons into a set number of final classes as defined by the user, 

again using edge strength and neighborhood information. This is called the ‘Glocal’ approach as 

it incorporates ‘high detail local’ and ‘large scale global’ information (Leigh et al., 2014). These 

final classes can then be labeled manually by the user, or labeled through the use of an 

unsupervised technique such as an SVM following the work of Leigh et al. (2014). 

Recent work by Li et al. (2015) used some properties of IRGS as well as incorporated self-

training in a semi-supervised approach for ice-water classification. In addition, Wang et al. (2016) 

combined ice/water information produced in MAGIC with AMSR-E ice concentration data to 

generate improved ice concentration estimates.  

2.3.3 K-Means and Gaussian Mixture Model Segmentation 

Unsupervised k-means segmentation has been employed in a number of cases to separate 

various ice types and open water on lakes and rivers in SAR scenes, making it a well-known 

method to compare to the IRGS segmentation approach. Both the k-means and GMM segmentation 

algorithms are partitional squared error clustering methods which are standard in pattern-

recognition. The process of segmentation begins with the user choosing a fixed number of classes 

(k) to be assigned to the image. The algorithm then chooses k cluster centers to coincide with 

randomly chosen values in the image. Each other value is then assigned to the most similar cluster 

center in order to form the initial classes. The means of these classes are then computed and 

become the new cluster centers, and initial class members are then reassigned based on these new 

cluster centers. In GMM segmentation both the means and the covariances of the initial classes are 
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computed to select the new cluster center.  The last two steps are repeated until there is minimal 

reassignment, and the sum of the distance between the values in a class and the cluster center for 

that class is as small as possible. The algorithm also ends if a maximum number of iterations set 

by the user is reached (Jain et al., 1999). Although it was first proposed more than half a century 

ago, k-means clustering remains as one of the most widely used algorithms of its type, due to its 

efficiency and high rate of success in many instances (Jain, 2010).  

A major downfall of these techniques is that the algorithm is sensitive to the partition of the 

initial cluster centers. Essentially, when the initial cluster centers are chosen the segmentation is 

stuck with them to some degree, the even if they do not best represent the natural groupings of the 

image values (Jain et al., 1999).  
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3.0 Study Area 

The images used in this study are captured over GBL and GSL, shown in Figure 3.0.1. GBL 

and GSL are both deep, large lakes located within the Mackenzie River basin, Northwest 

Territories. GBL spans ~31,000km2 with a mean depth of 76m and a maximum depth of 446m. It 

is described to be ice covered from late November to July (Howell et al., 2009). Mean monthly 

temperatures at Déline range from 13.3 to -25.2°C, remaining below 0°C from October to April as 

shown in Figure 3.0.2.  

  

Figure 3.0.2.3.1 Location of Great Bear Lake and Great Slave Lake within Canada. Climate 

information is available from stations located in Déline, Hay River, and Yellowknife. 
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GSL spans an area of ~27,000km2 with the central basin averaging 41m in depth with a maximum 

of 163m, while the much deeper east arm of the lake averages 249m in depth, reaching a maximum 

of 614m. At a lower latitude, GSL is generally ice covered between late December and early June 

(Howell et al., 2009). Temperatures recorded at Yellowknife and Hay River near GSL are slightly 

warmer than those observed at Déline, ranging from 17 to -25.6°C and 16.1 to -21.8°C respectively 

(see Figure 3.0.2). 
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Figure 3.0.2 Mean monthly temperature normals for 1981-2010 at Délene, Yellowknife, 

and Hay River climate stations near Great Bear Lake and Great Slave Lake. Temperature 

Data from Environment Canada (climate.weather.gc.ca). *Déline normals calculated with 

mean monthly temperatures from 1991-2010 only, based on available data. 
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4.0 Data 

Sixty-one RADARSAT-2 scenes of GBL or GSL are used in this study spanning the 

winters of 2013-2016 as outlined in Tables 6.1.2 and 6.1.3. In total, three ice cover seasons are 

included. All images are dual-polarized HH and HV images in ScanSAR Wide beam mode. Each 

image covers a swath width of 500 by 500 km, with a nominal spatial resolution of 100 m. Each 

image is approximately 10,000 by 10,000 pixels with 50 m by 50 m pixel spacing.  Images were 

acquired in both ascending and descending passes, with incidence angles of 20-49 degrees in each 

scene (MacDonald, Dettwiler and Associates Ltd., 2014). The percent of the lake covered by the 

SAR scene is also recorded in Tables 6.1.2 and 6.1.3 as this can be a source of variance between 

the classification outcomes and the CIS weekly fraction. Only scenes which included 70% or more 

of the target lake were used in this study.  It should also be noted that scenes where a lake was 

completely ice covered or completely open water were excluded. The chosen image set represents 

a suitable sample for this study as it offers a range of backscatter signatures and incidence angles 

for ice and water at varying points throughout freeze-up and break-up process. 

Weekly ice concentration fractions are recorded by CIS for two sections (north and south) for 

both GBL and GSL as shown in Figure 4.1. For the sake of simplicity when reporting the results 

of this study these fractions have been averaged for each lake. The fraction most closely 

corresponding to the timing of each scene is outlined in Tables 6.1.2 and 6.1.3. During freeze-up, 

the notation of 9+ describes a lake which is more than 9/10ths ice covered or is completely ice 

covered but may continue to change fraction. This notation reports within CIS that imagery of this 

lake should continue to be ordered in case ice coverage changes in the coming weeks. During 

spring break-up the 9+ fraction signifies a lake that has begun the process of break-up but is still 
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more than 9/10ths ice covered (V. Pinard, personal communication, 2018). These CIS ice fractions 

are used to compare to the total ice concentration produced by IRGS, k-means, and GMM 

segmentation methods.  

Temperature information was taken into account during the creation of reference data as well 

as during validation. Climate stations in Déline, Hay River, and Yellowknife (Figure 3.0.1) 

provided daily climate information up to 2016. Temperature recorded at the Déline station was 

used for comparison to results at GBL, whereas the temperatures from Hay River and Yellowknife 

were averaged to compare with results at GSL.  

Terra and Aqua satellite MODIS (Moderate Resolution Imaging Spectroradiometer) optical 

imagery is also employed in this study. This imagery was used to provide clarity during the 

creation of reference data as well as for visual evaluation of the classification outcomes, however 

availability was limited by cloud cover. Imagery was accessed through the Worldview web 

platform made available by NASA (earthdata.nasa.gov/labs/worldview). These reference images 

generated an understanding of the evolution of freeze-up and break-up on GSL and GBL during 

North 

North 

South 

South 

Great Bear Lake Great Slave Lake 

Figure 2.3.1 Delineation of north and south sections of GBL and GSL as provided by CIS. 
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the study periods, and were necessary for accurate interpretation of the SAR scenes used in this 

study. 

As mentioned, an automated classification workflow for monitoring lake ice is required to be 

fast in addition to being highly accurate. One way of minimizing computation time is to reduce 

the size of the images through downsampling. A 4x4 block average creates a new image by taking 

the average value of every 4 by 4 pixel window to create one pixel, with the outputted image being 

1/16th the size of the original.  However, this process also reduces image quality which may impact 

classification results. To test this, a Glocal IRGS classification was conducted for a set of seven 

images at both full size and after a 4x4 block average and ice concentration was compared to the 

corresponding CIS ice fraction estimates. At full size the Glocal IRGS process took approximately 

five minutes, while at reduced size the process took less than thirty seconds. Total ice concentration 

from the downsampled images closely resembled that from the full size images, as well as closely 

followed the reported ice fraction from CIS. The average difference in total ice coverage estimates 

between full size images and downsampled images was 1.8%. From this test, it can be assumed 

that classification accuracy will not be affected by reduced image size and quality. These results 

are supported by Leigh et al. (2014) who also used this method when classifying ScanSAR Wide 

images of sea ice, where the authors reported that downsampling did not affect classification 

outcomes. 
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5.0 Methods 

  Classification 

The MAGIC user interface was used to conduct IRGS, k-means, and GMM segmentation for 

all images in the chosen dataset. Both the co-polarized HH and cross-polarized HV images were 

used as input for all methods. The north and south sections of each lake (as shown in Figure 4.1) 

were segmented separately to correspond to the weekly fractions available from CIS, however they 

were later combined for the sake of simplicity when reporting results. Land and other lakes were 

excluded from segmentation using mask created through MAGIC using a vector file. A 250 m 

buffer was added to this mask between the lakes and their shorelines, including islands, in order 

to minimize the effect that land pixels would have on segmentation outcomes.  

Preliminary testing through trial-and-error was conducted to arrive at the suitable parameters 

to be set for each segmentation method. Although the final results are binary, several separate 

classes of ice and water resulted from segmentation, and were then labeled as one class or the 

other. These segmentation classes do not necessarily represent specific ice types, but were needed 

to minimize areas of ice and water being merged into the same class. For IRGS segmentation, a 

12 vertical by 12 horizontal maximum was set for how many autopolygons were to be created per 

image, these were then automatically generated in MAGIC using a watershed algorithm (see 

section 2.3.2 for more information). Each autopolygon was then segmented into five initial classes, 

and these were then ‘globally’ merged into 12 final classes of either ice or water across the image 

which were then manually labeled by the user.  

For k-means and GMM segmentation, images were segmented into 5 final classes. Although 

this is less than the number of classes for IRGS, it was found that increasing the final number of 
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classes did not significantly improve the segmentation outcomes. The k-means algorithm was 

applied regionally (based on a watershed) and the GMM algorithm was applied on a pixel-by-pixel 

basis to add variety to the methods being tested against IRGS. Because these methods are 

constrained by the partition of the original cluster centers, k-means and GMM segmentations for 

the 2013-2014 year were repeated five times for each scene. Through this test it was revealed that 

there was a negligible difference between the outcomes of each repetition, so the first outcome 

was included as the result for these scenes and all others afterward. Other parameters available in 

MAGIC were left at their default settings.  

The parameters chosen for each method remained consistent for the entire dataset. The final 

classes for each method were then labeled as ice or water by the user and merged, ultimately 

resulting in a semi-automated binary classification.  

  Accuracy Assessment 

In order to assess the accuracy of the classification outcomes, reference information was 

generated by the author for comparison. A random sample of ~400 pixels per image were labelled 

as either ice or water within MAGIC based on visual interpretation of morphology, texture, and 

backscatter. A CIS ice analyst provided some training to the author as well as advised the use of 

an RGB composite of SAR bands (HH/HH/HV) to help discriminate between classes (V. Pinard, 

personal communication, 2017). This, in addition to MODIS optical imagery was used to help 

create the most accurate reference pixels possible. In total 24,321 pixels were labeled for the entire 

dataset of 61 scenes. The reference data was then matched against each classification result image 

to infer accuracy for each method. This assessment negates the need to create a pixel level ground 

truth for all scenes in the dataset. The total ice coverage fraction of GBL and GSL for each scene 
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was also recorded so it could be compared to the reported CIS weekly ice cover fraction. These 

results are presented in the next chapter. 
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6.0 Results and Discussion 

  Classification Accuracy 

Classifications for 61 images of GBL and GSL were carried out in this study using semi-

automated IRGS, k-means, and GMM methods. The results are compared to CIS weekly fractions 

of total ice cover as well as reference data created by the author. This is detailed in Tables 6.1.2 

and 6.1.3, which document total ice cover fractions and overall accuracy per image for each 

classification method. Overall error matrices are displayed in Table 6.1.1.  These tables show that 

all of the methods tested performed well, with the Glocal IRGS approach being the most accurate 

having an overall accuracy of 92.1%. Most errors occurred from ice being misclassified as water 

for all methods, though this was more prominent in the k-means and GMM classifications 

accounting for 10% and 9% of the totals respectively.  

Table 6.1.1 Error matrix totals and percentages by classification method for all GBL 

and GSL images used in this study. OA is overall average accuracy of the method.  

(a) IRGS  Reference Classification 

Totals   Ice Water 

Classification 
Ice 10308 / 42% 760 / 3% 11068 

Water 1152 / 5% 12101 / 50% 13253 

Reference totals 11460 12861 24321 

OA 92.1%    

     

(b) k-means  Reference Classification 

Totals   Ice Water 

Classification 
Ice 8873 / 36% 955 / 4% 9828 

Water 2403 / 10% 12090 / 50% 14493 

Reference totals 11276 13045 24321 

OA 86.2%    

    

(c) GMM  Reference Classification 

Totals   Ice Water 

Classification 
Ice 9217 / 38% 840 / 3% 10057 

Water 2144 / 9% 12120 / 50% 14264 

Reference totals 11361 12960 24321 

OA 87.7%    



34 

 

Figure 6.1.1 presents the difference in accuracy between the tested methods as well as between 

seasons.  All methods showed relatively consistent and accurate performance during break-up but 

had varied performance during freeze-up, with accuracies as low as 67% for IRGS, 56% for k-

means, and 59% for GMM classifications. When assessing the SAR scenes visually, it is much 

easier to distinguish ice and water in the break-up images, and because of this it is not surprising 

that classification results are more accurate during this time.  

The IRGS approach performed noticeably better than the other two methods during freeze-up, 

with an average seasonal accuracy of 89.8%. The freeze-up seasonal accuracies for k-means and 

GMM are 80.9% and 82.4% respectively. Ice error is especially prevalent during freeze-up at 7% 

for IRGS, 14% for k-means, and 13% for GMM. There was no notable difference in the accuracy 

of methods between scenes of GBL and GSL. 

 

Figure 6.1.1 Box and whisker plots of seasonal and overall accuracy for IRGS, k-means, and 

GMM classifications for all GBL and GSL images used in this study. 
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Figure 6.1.2 Classification results for November 19th, 2015 scene of GBL. (a) HH polarized 

SAR image, (b) HV polarized SAR image, (c) MODIS optical image, (d) k-means 

classification OA= 84%, (e) GMM classification OA=76%, (f) IRGS classification 

OA=88%. 
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Figure 6.1.3 Classification results for June 5th, 2014 scene of GSL. (a) HH polarized SAR 

image, (b) HV polarized SAR image, (c) MODIS optical image, (d) k-means classification 

OA=81%, (e) GMM classification OA=95%, (f) IRGS classification OA=97%. 
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Figures 6.1.2 and 6.1.3 compare final classification results for all of the tested methods. From 

these images it is clear that the Glocal IRGS approach provides the most accurate classification of 

those tested, with most ice and water areas captured correctly. Ice types with low backscatter 

signatures such as thin black ice were commonly misclassified by the methods used in this study. 

This is especially evident during freeze-up, where black ice was consistently classified as open 

water by both the k-means and GMM approaches. The IRGS approach adequately captures areas 

of black ice that are missed by the other approaches, but not completely. This is evidenced in the 

southernmost arm of GBL in Figure 6.1.2 (f) where black ice is partially but not fully captured by 

the method.  

Figure 6.1.3 shows very good spring break-up results from the IRGS and GMM approaches, 

however the GMM result shows some speckle noise. This is typical of the GMM results, with other 

scene outputs from this method containing much more noise than shown here, possibly because 

this method was executed as pixel-based instead of regionally. All results in this figure have 

misclassified areas of ice as open water. Surdu et al. (2015) note that the presence of surface water 

on ice caused by spring melt brings about a decrease in σ0 value due to increased signal absorption 

under low wind conditions where surface melt ponds have formed. This may explain why some 

ice covered areas in the image were classified as open water.  

A common error evident in the Glocal IRGS approach arises during the ‘gluing’ step when 

homogeneous classes from each autopolygon are merged across the entire scene to create the final 

class outputs. These classes should remain homogenous during this step, but classes which 

represent ice and water sometimes end up becoming merged.  Figure 6.1.4 displays an example of 

this issue. In (b) regions of ice shown in pink and violet are separate from the purple water class 

but in (c) these regions have been merged into one class with water (orange). The resulting 
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classification after manual labelling then includes regions of ice that have been misclassified as 

water.  

This ‘gluing’ step is necessary to ease manual classification, as the user only needs to label a 

handful of classes instead of the hundreds present before this step. Unsupervised labelling through 

the use of an SVM or other method would negate the need for this step and possibly remove this 

source of error when employing IRGS. Alternatively, texture features could be utilized in this step 

to decrease this error as they would provide additional information during gluing. 

 

Figure 6.1.4 Example of Glocal merging error evident in the segmentation of a GBL scene. (a) 

HH polarized SAR image, (b) local segmentation within autopolygons (autopolygons not shown), 

(c) segmented classes after merging, (d) final classification. 

In contrast, Pons Bernad et al. (2009) argue that classification should be done by the user once 

significant classes are extracted through segmentation. The aim of their study was to create a way 

to quickly segment images into homogenous regions of interest. These could then be modified by 

the user. The authors express that in some cases it makes more sense to have a fast and easily 

executed segmentation algorithm, in combination with an intuitive tool to simplify labeling for the 

user. This could be applicable in the case of ice-water classification for lake monitoring as there 

Ice Water 
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are already ice analysts available at CIS who could perform this task, however most other recent 

publications strive for a more automated approach.  

Overall, the results demonstrate the ability of the semi-automated Glocal IRGS method to 

reliably capture the evolution of ice seasons on GBL and GSL. This method provides a 

visualization of where the ice cover is located during freeze-up and break-up, delivering a very 

useful product for future studies. As mentioned each Glocal IRGS segmentation took less than 30 

seconds, as did the regional k-means segmentation. The GMM approach took upwards of 3 minutes 

for segmentation, likely because it was carried out on a pixel-by-pixel basis instead of regionally, 

in addition to the extra computational expense inherent in this method. Labelling the final 

segmentation classes as either ice or water added about 30 seconds to each method. 

K-means segmentation is shown to generally produce less accurate classification results when 

compared to the other methods tested, especially during freeze-up.  Although the GMM approach 

offers a high average accuracy of  ~88%, the lengthy run time of this method as well as the visible 

noise present its results makes it undesirable as an operational method to monitor lake ice 

phenology. Some errors are present while employing the Glocal IRGS classification, however the 

high accuracy of ~92% makes it a viable option for monitoring lake ice. The incorporation of 

unsupervised labelling would be necessary for using this approach operationally in order to 

expedite the generation of results and minimize errors.  
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Table 6.1.2 Results of IRGS, k-means, and GMM classifications on GBL. Total ice cover 

fraction as well as overall classification accuracy (OA) are presented. Temperature and 

percent lake included in the scene are also recorded. 

 

 

 

Image ID

Temp 

(°C) CIS

# of 

Samples IRGS

OA 

(% )

K-

means

OA 

(% ) GMM

OA 

(% )

%  Lake 

Included

GBL 11-07-13 -10.9 0.5 394 0.1 98.2 0.3 91.4 0.0 98.0 100

GBL 11-22-13 -22.3 4.0 398 4.1 81.9 3.2 69.1 2.7 68.6 99

GBL 11-29-13 -14.6 4.0 400 3.2 86.8 1.4 74.3 2.1 78.5 96

GBL 12-05-13 -28.2 8.0 400 9.3 98.8 7.6 75.8 7.3 78.5 94

GBL 12-06-13 -21.0 8.0 400 10.0 97.5 10.0 97.5 10.0 97.5 91

GBL 06-12-14 11.8 9+ 400 10.0 99.5 10.0 99.5 10.0 99.5 88

GBL 06-19-14 16.3 9+ 400 9.7 98.5 9.6 98.5 9.6 98.3 100

GBL 06-29-14 7.1 8.0 400 6.5 92.3 5.8 81.8 6.2 92.3 89

GBL 07-03-14 17.9 2.0 400 2.7 93.3 2.6 93.8 2.1 93.5 96

GBL 07-10-14 12.0 1.0 382 0.1 99.2 0.0 99.2 0.1 99.2 91

GBL 10-31-14 -5.1 0.5 400 0.2 98.3 0.0 98.0 0.1 96.0 96

GBL 11-06-14 -16.6 1.0 400 1.1 92.0 0.9 92.8 1.0 86.8 94

GBL 11-07-14 -20.0 1.0 368 1.4 86.1 0.4 84.2 0.8 86.1 91

GBL 11-12-14 -14.5 1.5 400 1.9 88.5 1.2 83.5 1.4 83.3 100

GBL 11-20-14 -12.3 5.5 400 3.8 84.8 2.3 64.5 2.7 72.8 100

GBL 11-27-14 -26.8 8.0 400 9.0 86.0 5.8 58.0 7.0 76.3 100

GBL 06-06-15 14.9 9+ 379 9.9 99.7 9.9 100.0 9.9 99.2 100

GBL 06-11-15 14.5 9+ 400 9.8 98.5 9.8 98.8 9.8 98.8 91

GBL 06-18-15 11.2 9.0 400 9.0 99.5 9.0 97.8 8.9 98.5 76

GBL 07-01-15 14.8 5.5 400 1.2 87.5 0.3 94.0 0.7 91.3 100

GBL 10-29-15 -2.6 1.0 400 0.1 96.5 0.0 98.8 0.0 98.5 100

GBL 11-05-15 -12.1 2.0 400 0.8 96.0 0.5 88.5 0.3 92.3 95

GBL 11-12-15 -14.9 2.0 400 1.5 88.3 0.6 83.3 1.0 85.5 100

GBL 11-19-15 -25.4 3.0 400 2.7 88.3 1.7 83.8 0.9 75.8 96

GBL 11-26-15 -8.4 6.5 400 5.6 77.3 3.3 67.5 3.9 69.5 91

GBL 12-02-15 -14.6 8.0 400 8.5 96.8 5.3 70.8 6.9 77.0 100

GBL 06-10-16 14.1 9.0 400 9.2 97.5 9.1 98.5 9.0 98.5 100

GBL 06-17-16 7.4 6.0 400 6.7 95.0 6.3 95.0 5.9 88.5 100

GBL 06-29-16 18.2 0.5 400 0.6 96.3 0.6 95.3 0.5 95.5 91

GBL 06-30-16 18.3 0.5 400 0.5 93.3 0.1 97.3 0.1 97.0 75
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Table 6.1.3 Results of IRGS, k-means, and GMM classifications on GSL. Total ice cover 

fraction as well as overall classification accuracy (OA) are presented. Temperature, 

FDD/TDD, and percent lake included in the scene are also recorded.  

 

 

 

Image ID

Temp 

(°C) CIS

# of 

Samples IRGS

OA 

(% )

K-

means

OA 

(% ) GMM

OA 

(% )

%  Lake 

Included

GSL 10-30-13 2.1 0.5 400 0.2 95.5 0.0 96.8 0.0 96.8 84

GSL 11-06-13 -4.7 0.5 400 0.5 93.0 0.1 92.5 0.1 93.0 97

GSL 11-07-13 -6.6 0.5 400 0.9 95.0 0.1 90.8 0.5 91.5 78

GSL 11-20-13 -22.9 3.0 400 3.0 76.3 1.4 65.3 2.1 67.8 78

GSL 12-05-13 -27.9 9.0 400 7.0 67.3 5.7 56.8 6.5 65.3 100

GSL 05-29-14 11.1 9.0 400 9.6 98.0 9.9 98.8 9.8 98.8 100

GSL 06-05-14 5.4 8.5 400 8.3 96.8 7.3 80.5 8.4 94.5 91

GSL 06-06-14 6.8 8.5 400 8.0 95.0 7.5 90.5 8.1 96.0 79

GSL 06-12-14 8.9 4.5 400 5.4 87.8 6.0 82.3 5.7 88.0 79

GSL 06-13-14 13.4 4.5 400 3.7 90.8 3.4 91.5 3.6 92.0 92

GSL 10-23-14 1.6 0.5 400 0.2 94.5 0.0 97.5 0.0 96.8 92

GSL 11-06-14 -3.4 0.5 400 0.4 93.0 0.0 92.3 0.3 92.8 100

GSL 11-20-14 -10.8 2.5 400 2.8 86.0 2.3 70.8 3.5 73.8 95

GSL 11-21-14 -16.8 2.5 400 4.3 96.0 2.3 81.0 3.4 82.3 75

GSL 11-28-14 -27.4 6.0 400 7.4 93.5 4.6 68.3 4.6 67.5 84

GSL 12-12-14 -18.5 9+ 400 9.1 92.5 10.0 99.3 10.0 99.3 100

GSL 05-29-15 7.6 6.5 400 5.4 91.8 5.3 91.0 5.6 92.8 93

GSL 06-06-15 18.2 1.0 400 0.2 98.0 0.2 96.0 0.2 97.5 78

GSL 10-28-15 -2.8 1.0 400 0.3 97.5 0.3 97.8 0.4 98.0 74

GSL 10-29-15 -1.2 1.0 400 0.5 91.8 3.0 70.3 3.0 72.3 78

GSL 11-13-15 -5.1 2.0 400 1.0 94.0 0.3 90.5 0.4 91.0 83

GSL 11-27-15 -7.7 4.5 400 4.0 75.3 3.5 66.0 2.6 66.3 75

GSL 12-02-15 -9.8 4.5 400 4.4 85.8 3.9 69.5 4.2 67.8 100

GSL 12-04-15 -10.3 4.5 400 3.7 84.5 1.8 72.3 2.4 74.3 82

GSL 12-10-15 -10.9 5.0 400 6.1 92.5 3.7 75.5 4.9 83.8 75

GSL 12-17-15 -20.8 8.5 400 7.5 84.8 7.3 78.8 4.3 59.3 95

GSL 05-13-16 6.6 9+ 400 9.5 98.0 9.6 99.0 9.8 99.0 79

GSL 05-18-16 2.9 7.0 400 8.5 95.8 7.5 84.0 8.0 91.3 86

GSL 05-19-16 2.0 7.0 400 7.5 98.0 7.4 96.8 7.5 98.8 75

GSL 05-26-16 7.6 5.5 400 4.3 95.3 3.6 92.5 4.2 94.5 82

GSL 06-02-16 12.0 2.5 400 1.5 95.0 1.4 94.0 1.3 94.5 79
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  Comparison with CIS Weekly Ice Cover Fractions 

Figures 6.2.1 and 6.2.2 display total ice fractions from IRGS, k-means, and GMM classification 

methods as well as those provided by CIS for GBL and GSL over the three years studied. The 

IRGS approach most closely follows the CIS fraction line, however the all of tested methods often 

display a lower ice cover fraction than recorded by CIS. This difference is likely do to the 

overestimation of open water (ice error) by all methods tested, as well as the tendency for CIS 

analysts to overestimate the amount of ice in a lake. (V. Pinard, personal communication, 2017). 

Overall, the tested methods closely follow the reported fractions from CIS, with phenology events 

following a similar trend as that recorded by ice analysts.  

 

Figure 6.2.1 Total ice cover fractions for GBL from each classification method compared with 

estimates provided by CIS. Winter and summer months where the lake is completely ice covered 

or completely ice free are omitted. 
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Figure 6.2.2 Total ice cover fractions for GSL from each classification method compared with 

estimates provided by CIS. Winter and summer months where the lake is completely ice covered 

or completely ice free are omitted. 

Discrepancies between the methods tested and the reported CIS fractions largely occur during 

freeze-up which is congruent with lower classification accuracies observed during that time. The 

most prominent examples of this are shown in Figure 6.2.2 during the fall of 2015. Two notable 

deviations from the CIS ice fraction are recorded during that time. First, the k-means and GMM 

segmentations show a spike in total ice cover early in the fall which does not match reports from 

CIS. The two methods record total ice cover jumping to ~30% in late October and then receding 

back to less than 10% before refreezing. This is caused by an over estimation of ice due to 

incidence angle variation in the HH polarized SAR scene of October 29th. This is shown in Figure 

6.2.3 where low backscatter of open water in the east arm of the lake has caused it to be separated 

from open water in the central basin for these two methods.  
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Figure 6.2.3 Effect of incidence angle on k-means and GMM segmentation approaches in GSL 

scene from October 29th, 2015. (a) HH polarized SAR image (b) K-means segmentation, (c) GMM 

segmentation, (d) Glocal IRGS segmentation. 

 

Figure 6.2.4 Evolution of freeze-up on GSL, 2015 (a) HH image from December 2nd, (b) HH 

image from December 4th, (c) HH image from December 10th. 

 The second deviation comes later in the season, where all three of the tested methods show a 

decrease in ice cover in early December. The three scenes in question are displayed in Figure 6.2.4. 

It is likely that this decrease in ice cover is correctly reflected by the tested methods as regions of 

ice may have been pushed into the northern shore of the lake by wind between December 2nd and 

December 4th, causing the drop in ice cover fraction. This may also be a product of the fact that 

less of the lake is included in the scene where ice is present (82% on December 4th compared to 

100% on December 2nd).  

Figures 6.2.5 and 6.2.6 display the difference between the total ice fraction resulting from the 

IRGS approach and the CIS recorded ice fraction. These figures show that the ice cover fraction 

from IRGS is very similar to that reported from CIS, differing less than 2/10ths in most cases and 

having an average difference of -0.2/10 for all scenes. A larger variation is recorded for the scene 

of GBL on July 1st, 2015 where IRGS reported total ice coverage of 1.2 while the recorded fraction 

(b) (c) (a) (d) 

(b) (c) (a) 
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from CIS was 5.5/10. This scene is displayed in Figure 6.2.7 along with the IRGS result which 

fairly accurately captures the amount of ice present. The higher estimation of ice by CIS may be a 

result of analysts’ tendency to over-estimate ice, an error, or some other unknown reason.   
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Figure 6.2.5 Difference in ice fraction (IRGS-CIS) for each tested scene of GBL. 
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Figure 6.2.6 Difference in ice fraction (IRGS-CIS) for each tested scene of GSL. 
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Figure 6.2.7 Scenes of GBL on July 1st, 2015, (a) HH polarized scene (b) IRGS classification 

approach result. Accuracy of IRGS result is 86.2%. 

The complete freeze-up and break-up evolution for GSL during the winter of 2015-2016 as 

classified by the Glocal IRGS approach is presented in Figure 6.2.5. This particular season makes 

for an interesting visualization because it has the highest number of scenes available for a single 

year within the dataset, creating a detailed ice phenology record for the lake. This captures the 

potential of more detailed records of lake ice phenology which could be recorded, as it showcases 

the evolution and location of ice growth and decay on the lake in addition to providing total ice 

fraction. From this figure one can see that ice growth begins in the northern-most arm of the lake 

and continues along the shoreline with the central basin and deep east arm freezing last. In spring, 

break up begins at the Slave River inflow and Mackenzie River outflow. A similar pattern can be 

observed in Appendix 1.4 and 1.5 where the evolution of ice cover on GSL for the 2013-2014 and 

2014-2015 seasons are included. This level of detail cannot be not captured operationally without 

the use of an automated classification method, especially considering the increased availability of 

SAR scenes from newly launched or planned observation missions. Similar products for the other 

ice cover seasons on GBL included in Appendix 1.1 – 1.3 and give interesting insight on the 

phenology of ice cover on these lakes. 
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Figure 6.2.8 Evolution of freeze-up and break-up on GSL during the winter of 2015-2016 from 

IRGS results. Overall accuracy (white) and total ice cover fraction (yellow) is displayed the bottom 

right corner of each window. Scenes on December 31st and July 9th are included to show the 

timing of complete freeze-up and complete melt. The average overall accuracy of this image set 

is 91.4%. 
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7.0 Conclusion 

Automated ice-water classification using SAR imagery is a difficult but necessary task for 

monitoring lake ice. In this work 61 RADARSAT-2 images of GBL and GSL are classified using 

k-means and GMM standard classification methods as well as the Glocal IRGS approach. Results 

confirm that variations in incidence angle within a scene cause errors in ice-water classification 

using standard methods, and that ice types with low backscatter signatures such as thin new ice 

are not well classified by these methods.  

The Glocal IRGS segmentation method including initial autopolygon creation, accounts 

for the challenges presented when segmenting ice and water, and various studies have validated 

the ability of this method to produce highly accurate and reliable results (Yu & Clausi, 2007; 2008; 

Leigh et al., 2014). In this study the semi-automated IRGS approach performed very well during 

both freeze-up and break-up, resulting in an overall accuracy of 92.1%. Glocal IRGS shows 

promise as a means of quickly and accurately processing SAR data for lake ice monitoring in the 

future, however automated labeling through the use of SVM or other means will need be 

incorporated with this method for it to be suitable operationally. This added functionality will 

minimize user input, an essential advance for processing the vast amount of imagery becoming 

available from recently launched and upcoming SAR missions including Sentinel 1 A/B and the 

RADARSAT Constellation. 

The literature describes that climate change and air temperature variability can be reliably 

indicated by lake ice phenology and has been the focus of several studies (Duguay et al. 2003; 

Magnuson, 2000). Other works have related social, economic, and environmental spheres to lake 

ice cover, making clear the importance of studying lake ice phenology (Prowse et al., 2011b).  

Recorded and projected climate change will have a strong impact on the factors that influence lake 



49 

 

ice phenology, causing an overall change to the cycle of ice formation and decay. These factors 

further add to the importance of developing methods to reliably monitor lake ice in the coming 

years.   
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8.0 Recommendations for Future Work 

Recently, ice-water class labels have been successfully generated along with segmentation in 

studies of sea ice by using texture information in addition to backscatter values from the HH and 

HV polarizations. These methods then employ a support vector machine (SVM) classifier to 

produce a label for each segmented area based on GLCM texture information. A procedure for 

generating this information is available in MAGIC for use with IRGS. This process involves 

manually labeling a given number of pixels in each SAR image of a selected set, then running a 

forward-feature search to determine the texture features from a candidate set which will provide 

the minimum average error in an SVM classification. This set can then be used in SVM 

classification to assign ice-water labels to previously segmented regions (Leigh et al., 2014).  

This SVM approach is presented by Leigh et al. (2014) and was reported to be up to 97% 

accurate when tested on 20 scenes of sea ice, but has yet to be tested on scenes of lake ice. An 

SVM model using GLCM texture features was also employed by Zakhvatkina et al. (2017) in their 

study of 24 sea ice scenes near Greenland, where they reported up to 95% accuracy. For lake ice 

monitoring purposes, an automated or semi-automated classification technique such as one 

employing an SVM incorporating texture and backscatter information would allow for detailed 

records to be produced at a high volume. The accuracy and timeliness of such a technique would 

also need to be considered. A continuation of this work would incorporate labeling for the 61 

scenes segmented with IRGS, as labeling pixels for GLCM selection was already completed to 

create the reference data for this study. 

The coming RADARSAT Constellation mission (RCM) scheduled for launch this year will 

include sensors outfitted for the use of compact polarimetry data in wide swath modes. Dabboor 
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& Geldsetzer (2014) simulated 23 compact polarimetry parameters and tested them with a 

Maximum Likelihood classification in order to select the optimum parameter for sea ice type, and 

ice-water classification. In this study the authors were able to select a subset of parameters which 

produced very high accuracy classification for varying ice types (99.9%) and discrimination of ice 

and open water (100%). This study demonstrates the promising potential for the development 

automated ice-water classification additional information available in compact-polarimetric 

imagery. Embracing and studying this advancement data availability will be essential to further 

the monitoring lake ice phenology in the coming years. 
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Appendix 1 

 

Appendix 1.1 Evolution if freeze-up and break-up on GBL during the winter of 2013-2014 from 

IRGS results. Overall accuracy (white) and total ice cover fraction (yellow) is displayed the bottom 

right corner of each window. Scene from December 12th is included to show the timing of 

complete freeze-up. 
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Appendix 1.2 Evolution if freeze-up and break-up on GBL during the winter of 2014-2015 from 

IRGS results. Overall accuracy (white) and total ice cover fraction (yellow) is displayed the bottom 

right corner of each window. Scenes on December 3rd and July 10th are included to show the 

timing of complete freeze-up and complete melt. 
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Appendix 1.3 Evolution if freeze-up and break-up on GBL during the winter of 2015-2016 from 

IRGS results. Overall accuracy (white) and total ice cover fraction (yellow) is displayed the bottom 

right corner of each window. Scenes on December 9th and July 7th are included to show the timing 

of complete freeze-up and complete melt. 
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Appendix 1.4 Evolution if freeze-up and break-up on GSL during the winter of 2013-2014 from 

IRGS results. Overall accuracy (white) and total ice cover fraction (yellow) is displayed the bottom 

right corner of each window. Scenes on December 12th and June 30th are included to show the 

timing of complete freeze-up and complete melt. 
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Appendix 1.5 Evolution if freeze-up and break-up on GSL during the winter of 2014-2015 from 

IRGS results. Overall accuracy (white) and total ice cover fraction (yellow) is displayed the bottom 

right corner of each window. Scenes on December 26th is included to show the timing of complete 

freeze-up. 


