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Abstract

Employing data-driven methods to efficiently solve practical and large optimization

problems is a recent trend that focuses on identifying patterns and structures in the prob-

lem data to help with its solution. In this thesis, we investigate this approach as an

alternative to tackle real life large scale optimization problems which are hard to solve

via traditional optimization techniques. We look into three different levels on which data-

driven approaches can be used for optimization problems.

The first level is the highest level, namely, model structure. Certain classes of mixed-

integer programs are known to be efficiently solvable by exploiting special structures embed-

ded in their constraint matrices. One such structure is the bordered block diagonal (BBD)

structure that lends itself to Dantzig-Wolfe reformulation (DWR) and branch-and-price.

Given a BBD structure for the constraint matrix of a general MIP, several platforms (such

as COIN/DIP, SCIP/GCG and SAS/ DECOMP) exist that can perform automatic DWR

of the problem and solve the MIP using branch-and-price. The challenge of using branch-

and-price as a general-purpose solver, however, lies in the requirement of the knowledge of

a structure a priori. We propose a new algorithm to automatically detect BBD structures

inherent in a matrix. We start by introducing a new measure of goodness to capture desired

features in BBD structures such as minimal border size, block cohesion and granularity of

the structure. The main building block of the proposed approach is the modularity-based

community detection in lieu of traditional graph/hypergraph partitioning methods to al-

leviate one major drawback of the existing approaches in the literature: predefining the

number of blocks. When tested on MIPLIB instances using the SAS/DECOMP frame-

work, the proposed algorithm was found to identify structures that, on average, lead to

significant improvements both in computation time and optimality gap compared to those

detected by the state-of-the-art BBD detection techniques in the literature.

The second level is problem type where problem-specific patterns/characteristics are

to be detected and exploited. We investigate hub location problem (HLP) as an exam-

ple. HLP models the problem of selecting a subset of nodes within a given network as

hubs, which enjoy economies of scale, and allocating the remaining nodes to the selected

hubs. The main challenge of using HLP in certain promising domains is the inability of
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current solution approaches to handle large instances (e.g., networks with more than 1000

nodes). In this work, we explore an important pattern in the optimal hub networks: spatial

separability. We show that at the optimal solutions, nodes are typically partitioned into

allocation clusters in such a way that convex hulls of these clusters are disjoint. We exploit

this pattern and propose a new data-driven approach that uses the insights generated from

the solution of a smaller problem - low resolution representation - to find high quality

solutions for the large HLPs.

The third and the lowest level is the instance level where the instance-specific data is

explored for patterns that would help solution of large problem instances. To this end, we

open up a new application of HLPs originating from human brain connectivity networks

(BCN) by introducing the largest (with 998 nodes) and the first three-dimensional dataset

in the literature so far. Experiments reveal that the HLP models can successfully reproduce

similar results to those in the medical literature related to hub organisation of the brain.

We conclude that with certain customizations and methods that allow tackling very large

instances, HLP models can potentially become an important tool to further investigate the

intricate nature of hub organisations in human brain.
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Chapter 1

Introduction

The advent of Big Data in recent years has drawn attention of the scientific community

to developing new techniques that enable efficient processing of unprecedented amounts of

data pouring in from real life applications. One of the disciplines in which such data pro-

cessing has become of utmost importance is operations research (OR) which deals with the

mathematical modelling of real life systems (e.g., manufacturing, transportation, finance,

healthcare, etc.) and application of analytical methods to help make better decisions. Data

Analytics enables organizations to get insights from data that go beyond simple report-

ing. This involves the use of algorithms and mathematical models to explore the data and

discover patterns which are the essence of valuable knowledge (Dhaenens and Jourdan,

2016).

Typically, a mathematical model of a system is built by using the information available

about the system together with a set of reasonable assumptions for the aspects of the

system that are unknown. The more data recorded from a system the more information

the modeller has about it, and the less assumptions s/he needs to make. Hence, intuitively,

it can be said that by recording more data, one can build a more realistic model of a system

which is likely to lead to better informed decisions on the problems of interest. This may

be one of the reasons for the growing interest for approaches that combine Big Data and

optimization (Nicosia et al., 2017).

With more data, on the other hand, mathematical models become more complicated
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and the optimization problems resulting from these models become harder to solve. This

is one of the main challenges of Big Data from the OR perspective. Employing data-driven

methods to efficiently solve practical and large optimization problems has become a recent

trend that focuses on identifying patterns and structures in the problem data to help with

its solution. In this thesis, we investigate this approach as an alternative to tackle real

life large scale optimization problems which are hard to solve via traditional optimization

techniques. We look into three different levels on which data-driven approaches can be

used for optimization problems: model structure, problem type, and instance levels. Each

level is dealt with in a different chapter.

Throughout this thesis, we will be working on a subclass of optimization problems called

mixed integer program (MIP). For a given set of integer and/or real-valued variables (x)

an MIP is an optimization problem that either minimizes or maximizes a linear objective

function, subject to some linear equations or inequalities (Gamrath and Lübbecke, 2010).

Any MIP can be transformed into the following form:

minimize
x

cTx (1.1a)

s.t. Ax = b (1.1b)

x ∈ Rn
+ (1.1c)

xi ∈ Z ∀i ∈ I (1.1d)

where n,m ∈ N, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, and I ∈ {1, ..., n}. In the above definition,

c, A, and b are often referred to as the objective function coefficient vector, constraint

matrix, and right-hand-side vector, respectively.

Certain classes of MIPs (e.g., bin packing, hub location etc.) are known to be efficiently

solvable by exploiting special structures embedded in their constraint matrices. One such

structure is the BBD structure that lends itself to DWR and branch-and-price.
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1.1 Bordered Block Diagonal Structures

Let R = {1, 2, ...,m} and C = {1, 2, ..., n} be the index set of rows and columns of an m×n
constraint matrix A = {aij | i ∈ R, j ∈ C} of an MIP. A permutation (Aπ) of A into a

K-way singly BBD form is defined in Aykanat et al. (2004):

Aπ = A[R,C] =


Aπ11 Aπ12 ... Aπ1K
Aπ21 Aπ22 ... Aπ2K

...
...

. . .
...

AπK1 AπK2 ... AπKK
AπS1 AπS2 ... AπSK

 =


D1

D2

. . .

DK

B1 B2 ... BK

 (1.2)

where R and C denote, respectively, the row and column permutations. In (1.2), the b×n
submatrix B = [B1, ..., BK ] is called the border component and the d × n submatrix

D =

D1

. . .

DK

 is called the block-diagonal component.

The most general BBD form - which is often referred to as doubly BBD or arrowhead

form - is defined by two border components, a row and a column, and a block-diagonal com-

ponent. In this study, we only consider singly BBD form with row border and hereinafter

refer to it as BBD for simplicity.

Permuting sparse matrices into bordered block-diagonal structures has recently drawn

the attention of many researchers due to their suitability for parallel processing and decom-

position. Potential applications of BBD structures such as LU and QR factorization and

decomposition of linear program (LP) are discussed in Aykanat et al. (2004). We focus on

one specific application of BBD structures; namely, decomposition of mixed integer pro-

grams using Lagrangian relaxation. The merit of Lagrangian relaxation lies in its ability

to provide potentially tight bounds in a reasonable computational time by decomposing

the original problem into smaller subproblems. It requires, however, a valid BBD structure

to be known and supplied by the user. Consequently, the detection of an underlying BBD

structure is a crucial step in using decomposition methods, such as Lagrangian relaxation,
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to tackle large scale MIPs.

In Chapter 2, we propose an efficient data-driven algorithm to automatically detect

the underlying singly BBD structures in constraint matrices of MIPs. Our computational

experiments reveal that most optimization problems have an underlying BBD structure

that can be exploited by decomposition. This may be described as a high level application

of data-driven methods in the optimization context since the proposed approach could be

used in any MIP irrespective of the nature of the underlying real life problem.

Devising a methodology on such generic level has its drawbacks. For example, certain

characteristics specific to the underlying problem may be overlooked. These characteristics

sometimes could prove to be very valuable in efficiently solving such problems. One such

problem type which is known to be very hard to solve using generic methods is hub location

problem (HLP).

1.2 Hub Location Problem

HLPs tackle the problem of selecting a subset of nodes within a given network as hubs

and allocating the remaining nodes to the selected hubs. All flow between nodes is, then,

routed via hubs (as the inter-hub links typically enjoy economies of scale) in such a way

to minimize an overall transportation cost.

We study a specific subclass of HLPs: USApHMP in which all the hubs are assumed

to be fully interconnected, each node in the network is allocated to a single hub, the hubs

are uncapacitated, and the total number of hubs, p is specified a priori. There exist several

MIP formulations for the USApHMP. Throughout this thesis, we use the formulation by

Ernst and Krishnamoorthy (1996) since it has been shown to be the most computationally

efficient model when solved by general-purpose commercial solvers (e.g., CPLEX, Gurobi,

etc.). Table 1.1 provides the list of important notation used throughout the chapter and

Definition 1 formally states the USApHMP and provides the MIP formulation proposed

by Ernst and Krishnamoorthy (1996).

Definition 1 Let N = {1, 2, ..., n} be a set of nodes in a given coordinate system. For each

node pair (i, j), let wij represent the volume of flow and dij represent the distance between
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Table 1.1: Descriptions of parameters and decision variables in USApHMP formulation

Notation Description

α Inter-hub discount factor,
wij The amount of flow from node i to node j,
dij The distance from node i to node j,
Oi =

∑
j wij Total amount of outflow from node i,

Di =
∑

j wji Total amount of inflow to node i,

xikm Total amount of flow emanating from node i that is routed between hubs k and m
yik Binary variable indicating whether node i is allocated to hub k

the two nodes. The traffic (flow) between nodes is to be routed via a set of nodes designated

as hubs. Each node must be allocated to exactly one hub. A collection (distribution) cost is

incurred to route traffic from (to) a origin (destination) node to (from) a hub. Moreover, a

transfer cost is incurred to send flow between hubs. Given p, the number of hubs to locate

on the network, the USApHMP is the problem of finding the optimal hubs locations, as well

as the allocation of the remaining nodes to hubs such that the overall cost of satisfying the

flow demand is minimized and can be formulated mathematically as follows:

[USApHMP] min
∑
i∈N

∑
k∈N

∑
m∈N

αdkmxikm +
∑
i∈N

∑
k∈N

(Oi +Di)dikyik (1.3a)

s.t.
∑
k∈N

ykk = p (1.3b)∑
k∈N

yik = 1 ∀i ∈ N (1.3c)

yik ≤ ykk ∀i, k ∈ N (1.3d)∑
m∈N

xikm −
∑
m∈N

ximk = Oiyik −
∑
j∈N

wijyjk ∀i, k ∈ N (1.3e)

xikm ≥ 0 ∀i, k,m ∈ N (1.3f)

yik ∈ {0, 1} ∀i, k ∈ N (1.3g)

In Chapter 3, we uncover an important pattern in the optimal hub networks: spatial

separability. We show that at the optimal solutions, nodes are typically partitioned into
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allocation clusters in such a way that convex hulls of these clusters are disjoint. We exploit

this pattern and propose a new data-driven approach that uses the insights generated from

the solution of a smaller problem - low resolution representation - to find high quality

solutions for the large HLPs.

HLPs have been introduced in the context of airline transportation (O’Kelly, 1987a),

postal delivery (Ernst and Krishnamoorthy, 1996), and telecommunication (Klincewicz,

1998). The main challenge of using HLP in certain promising domains is the inability of

current solution approaches to handle large instances (e.g., networks with more than 1000

nodes). One such application area which has not been explored before originates from

BCN.

1.3 Brain Connectivity Networks

Recent interest of the medical and neuroscience community in building a “network map”

(connectome) of the human brain lead to the rapid development of medical imaging tech-

nologies that can probe the neural circuitry of the human brain with high spatio-temporal

resolution. Using high-resolution diffusion tensor/spectrum imaging (DTI/DSI) data, re-

searchers have shown that some regions in the brain cortex play a hub role and act as

an intermediary to transmit signals between other regions (van den Heuvel and Sporns,

2013). This is believed to provide an evolutionary advantage in reducing the size of the

brain (Bullmore and Sporns, 2012). As damage to these regions causes serious problems

(van den Heuvel et al., 2010; Zalesky et al., 2011), it is important to identify these hub

regions as precisely as possible. Researchers have hitherto used graph-theoretical measures

(Crossley et al., 2013; Bassett and Sporns, 2017) to study the connectivity networks of hu-

man brain and identify hub regions. To the best of our knowledge, identifying hub regions

in BCN has never been studied within an optimization context.

In Chapter 4, we explore the potential of USApHMP in identifying the precise locations

of hub regions in BCN provided that the resulting large instances can be solved efficiently.

Currently, the state-of-the-art methods are capable of solving instances with only a few

hundred nodes within a reasonable amount of time. Considering the fact that there are
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approximately 86 billion neurons in an adult human brain (Azevedo et al., 2009), one

can argue that being able to optimally solve a problem with a few hundred nodes is not

appealing enough by itself from the practical point of view as it would yield very low

precision.

It is not uncommon that methodologies that work well on moderate size instances

become intractable as the problem size increases. Hence, it is essential to make use of

instance-specific patterns to be able to solve very large problem instances. The largest

problem instances in the literature have only 200 nodes (Ernst and Krishnamoorthy, 1996).

Scarcity of scalable solution methodologies may be attributed to the absence of large prac-

tical benchmark instances. To bridge this gap, a BCN dataset originally generated by Hag-

mann et al. (2008) is re-introduced in Chapter 4 in a way amenable to the existing HLP

models. This dataset is the largest (with n = 998 nodes) and the first three-dimensional

dataset in the literature so far. Computational experiments on this dataset reveal that the

HLP models can successfully reproduce similar results to those in the medical literature

related to hub organisation of the human brain. Our results in Chapter 4 may be seen

as a proof of concept that with certain customizations and scalable solution methods that

allow tackling very large instances, HLP models can potentially become important tools

to further investigate the intricate nature of hub organisations in BCNs.

1.4 Outline

The rest of the thesis is organized in a way to explore the potential uses of data-driven

methods in optimization from the highest to the lowest level. In Chapter 2, we look into

the problem of detecting BBD structures in the constraint matrices of generic MIPs and

exploiting such structures with decomposition techniques. In Chapter 3, we investigate a

specific problem type (HLP), which is well-known to be a challenging MIP, and uncover

an important characteristic of the problem that leads to a new computationally efficient

data-driven solution approach. In Chapter 4, we introduce BCNs and study the problem

of locating hub regions in human brain as a new potential application of HLP. Conclusions

and a brief discussion on future research avenues are provided in Chapter 4.
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Chapter 2

Structure Detection in Mixed Integer

Programs

2.1 Introduction and Literature

Permuting a matrix into a BBD form (i.e., detecting an inherent BBD structure) is partic-

ularly valuable for the decomposition of MIPs. Let us consider the following generic MIP

problem whose constraint matrix A =

[
D

B

]
is given in its BBD form as in (1.2):

minimize
x

cTx (2.1a)

s.t. Dx = e (2.1b)

Bx = f (2.1c)

x ∈ Rn
+ (2.1d)

xi ∈ Z ∀i ∈ I (2.1e)

where n,m, d, b ∈ N, c ∈ Rn, D ∈ Rd×n, B ∈ Rb×n, e ∈ Rd, f ∈ Rb, and I ∈ {1, ..., n}.
In the above definition, D and B are called the block-diagonal component and the border

component, respectively.
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Notice that if the constraints in (2.1c) are relaxed, the remaining problem is separable

to K independent MIPs. Lagrangian relaxation relaxing constraints (2.1c) using La-

grangian multipliers µ ∈ Rb results in the subproblem zSP (µ) = min{(cT − µTB)x :

(2.1b), (2.1d), (2.1e)}, where zSP (µ) is the optimum objective value of the subproblem for

a given µ. In practice, this relaxed problem, which is decomposable into K independent

subproblems, can often be solved more easily than the original problem. The best La-

grangian bound corresponding to the set of relaxed constraints can be found by solving

the Lagrangian dual problem max{fTµ + zSP (µ)} which can be solved using subgradi-

ent or cutting plane methods. Another decomposition technique, which is closely related

to Lagrangian relaxation, is Dantzig-Wolfe reformulation (DWR). For the generic

MIP problem given in (2.1), DWR that convexifies constraints (2.1b), (2.1d), and (2.1e)

yields an extended formulation with an LP bound that corresponds to the Lagrangian

bound mentioned earlier. The LP relaxation of the DWR is equivalent to Lagrangian

relaxation and the two are used interchangeably hereinafter.

Relaxing a minimization (maximization) problem provides a lower (upper) bound on

the value of the objective function. In theory, there are numerous different relaxations

available for even moderate size MIPs. The challenge is to identify a relaxation that

results in the tightest bound in a reasonable amount of time. The tightness of a bound or

the strength of a relaxation is typically defined as the relative deviation from the optimal

objective value; i.e.,

Gap =
z∗ − z̄
z∗

%

where z∗ and z̄ are the optimal objective value and the bound, respectively. When z∗ is

unknown, the best known objective value z̃ is used instead.

Besides the tightness of the bound it produces, another key aspect of a relaxation is its

computational efficiency; namely, the time required to calculate the bound. As mentioned

earlier, a decomposable problem is often easier to solve (i.e., requires less computational

time); therefore, detecting an a priori decomposable structure in the constraint matrix of

an MIP is often desirable. One of the key properties of the constraint matrix A of an MIP

is that it is not affected by the order of rows and columns. In other words, changing the

order of variables and/or constraints does not affect the optimal solution. This significantly
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reduces the number of possible structures to search through compared to when the order

mattered. To make mathematical use of this property, the constraint matrix A can be

represented as a bipartite graph G = (V , E), where V = R ∪ C and E = {(i, j) | aij 6= 0}
(Aykanat et al., 2004). The majority of BBD structure detection methods in the literature

relies on this graph representation.

A subset S ⊂ V is called a K-way vertex separator if the subgraph G[V \ S] in-

duced by removing S from G has at least K connected components. Similarly, Π =

{V1,V2, ...,VK ;S} is said to be a K-way vertex partition (of G) by vertex separator,

if the following conditions hold:

Vk ⊂ V , Vk 6= ∅, for 1 ≤ k ≤ K

Vk ∩ Vl = ∅, for 1 ≤ k < l ≤ K

Vk ∩ S = ∅, for 1 ≤ k ≤ K

K⋃
k=1

Vk ∪ S = V

Adj(Vk) ⊆ S, for 1 ≤ k ≤ K

where Adj(Vk) is an extension of the notation Adj(vi) which denotes the set of vertices

adjacent to vertex vi in graph G. We use Adj(Vk) to denote the adjacency set of a vertex

subset Vk ⊆ V , i.e., Adj(Vk) = {vj ∈ V \ Vk : vj ∈ Adj(vi) for some vi ∈ Vk}. The graph

partitioning with vertex separators (GPVS) is defined as follows (Aykanat et al.,

2004): Given a graph G = (V , E), an integer K, a cost function for vertex separators, and

a balance criterion for subgraphs, the GPVS problem seeks to find a K-way vertex partition

Π = {V1,V2, ...,VK ;S} that satisfies the balance criterion with minimum cost.

Aykanat et al. (2004) uses a simple cost function cost(Π) = |S| to minimize the size of

the border component (i.e., the number of rows in the border component). In principle,

the BBD structure detection problem can be formulated as a GPVS problem. For a given

K and balance criterion, the resulting K-way vertex partition Π can be used to reconstruct

Aπ. Specifically, each connected component in the subgraph G[V \ S] will correspond to

a block in D and S will correspond to B. However, the formulation of GPVS requires

the input of the number of blocks K and other necessary parameters to define a balance

10



criterion.

The pursuit of a fully automatic BBD structure detection algorithm renders GPVS

obsolete as a base method due to the aforementioned requirements. One needs a base

method which requires no user input. Community detection offers such an advantage.

A graph is said to have a community structure if the vertices of the graph can be

partitioned into groups, referred to as communities, such that the density of edges within

communities is higher than in between communities (Girvan and Newman, 2002). To

quantify the quality of a community structure, several objective measures are studied in

the literature. The most widely used quality measure, introduced by Newman and Girvan

(2004), is called modularity. According to Newman and Girvan (2004): “modularity

measures the fraction of the edges in the graph that connect vertices of the same type (i.e.,

within-community edges) minus the expected value of the same quantity in a graph with

the same degree sequence and same community divisions, but random connections between

vertices”. Mathematically, the modularity is given by:

Q =
K∑
k=1

[
ek
e
−
(
dk
2e

)2
]

(2.2)

where K is the number of communities, ek is the number of edges within community k, dk

is the total degree of nodes in community k, and e is the total number of edges in the graph.

If the number of within-community edges is no better than random, then Q = 0. Values

approaching to Q = 1 indicate a strong (high quality) community structure. Consequently,

the community detection problem can be formally defined as follows:

Definition 2 Given a graph G = (V , E), the community detection problem seeks to find a

vertex partition Π = {V1,V2, ...} that maximizes modularity Q.

Notice that the number of partitions K is implicitly optimized in the above definition.

Moreover, the balance criterion required for GPVS is not required for community detection.

This makes the latter more suitable for automatic detection of BBD structures.

In the context of community detection, the edges between different communities can

be considered as noise which prevents the complete separation of communities from each
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other. In other words, removing the “noisy” edges will yield at least K connected compo-

nents. Recall that the graph representation of a matrix is bipartite. Hence, an edge always

connects a pair of row and column vertices, and a noisy edge can be removed by removing

one of the vertices it connects. Specifically, since we consider the detection of singly BBD

structures with row borders, one may only remove the vertices from the set of row vertices

R. Therefore, in a similar fashion, we call a vertex with at least one out-of-community

connection a noisy (row) vertex. The following definition establishes the connection

between community detection and BBD structure detection.

Definition 3 Given the bipartite graph representation G = (V , E) of A, the BBD struc-

ture detection problem seeks to find the community structure Π = {V1,V2, ...,VK} and the

smallest set of noisy vertices S = {s1, s2, ..., sK} ⊆ R that maximize a given objective

function Γ(Π,S) and satisfy

G[V \ S] ≡
K⋃
k=1

G[Vk \ sk]

K⋃
k=1

Vk = V

where V = R∪ C, G[V \ S] is the subgraph induced by removing the set of vertices S, and

G[Vk \ sk] is the subgraph induced by the set of vertices Vk \ sk.

Notice that in Definition 2, the set S is uniquely defined (as the smallest set of noisy

vertices) for a given Π and can be found, in principle, by solving the underlying optimization

problem.

Literature on the detection of underlying BBD structures in sparse matrices is very

limited (Weil and Kettler, 1971; Borndörfer et al., 1998; Ferris and Horn, 1998; Aykanat

et al., 2004; Wang and Ralphs, 2013; Bergner et al., 2015). Weil and Kettler (1971)

propose a method based on iterative permutation of rows and columns in the matrix

according to a north-west corner rule. Borndorfer et al. (1998) discuss the relation of the

BBD structure detection problem to well-known combinatorial optimization problems and

propose a branch-and-cut algorithm for the exact solution of the detection problem.
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To the best of our knowledge, Ferris and Horn (1998) are the first to investigate the

BBD structure detection problem explicitly in the context of decomposition of LP. They

represent the constraint matrices of linear programs as bipartite graphs and propose a

two-phase approach for partitioning these graphs. The initial partitions obtained by spec-

tral partitioning methods are then locally refined heuristically (Kernighan and Lin, 1970).

Based on the refined partitions, they greedily place rows/columns to the border area by

examining the “out-of-partition” degrees of each vertex. This approach is similar to the

one we adopt in this work. Another important contribution of their study is the introduc-

tion of a goodness measure for the detected BBD structures, which accounts for both the

homogeneity of the block sizes and the size of the border area. Their experiments on a

large number of LP instances from NETLIB library indicate that BBD structure detection

is a promising direction for the solution of large linear programs.

Aykanat et al. (2004) propose two mathematical models based on bipartite graph and

hypergraph representation of matrices. They reduce the problem of permuting sparse

matrices to BBD forms to the well-known GPVS and hypergraph partitioning (HP). Both

GPVS and HP are known to be NP-hard problems (Bui and Jones, 1992; Lyaudet, 2010).

They compare the performance of three graph/hypergraph partitioning methods: PaToH

(Catalyurek and Aykanat, 1999), MeTiS (Karypis and Kumar, 1998b), and FH (Ferris

and Horn, 1998). They conclude that in terms of partition quality (i.e., the percentage of

border area), FH performs significantly worse than PaToH and MeTiS. They further report

that, as expected, the processing times of the hypergraph model (PaToH) are much higher

than those of graph models (MeTiS and FH) for the majority of the instances tested.

Bergner et al. (2015) propose a method for BBD structure detection that is well-suited

for DWR which has been shown to produce high-quality solutions for well-structured mixed

integer programs (Vanderbeck and Wolsey, 2010). Automatically applying DWR to a

given problem with BBD structure has been implemented in several studies (Gamrath and

Lübbecke, 2010; Puchinger et al., 2011; Ralphs and Galati, 2009; Vanderbeck, 2005). The

hinderance DWR faces to function as a general-purpose tool is the requirement to input

a BBD structure inherent to the constraint matrix. Bergner et al. (2015) pave the way to

address this issue. They attempt to detect BBD structures that provide tight dual bounds

at the root node of DWR (i.e., Lagrangian bounds). They propose a structure detection
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algorithm based on hypergraph partitioning hMETIS (Karypis and Kumar, 1998a). They

conduct a thorough analysis of potential proxy measures (e.g., number of blocks, per-

centage of border area, average density of blocks, average integrality gap of subproblems)

for the goodness of a detected BBD structure in the context of DWR and conclude that

“percentage of border area” is the best proxy measure among those investigated. It is

unfortunate that they discard all other measures in favor of one which is essentially very

intuitive, as a smaller border area is expected to provide a better bound. Nevertheless,

their experiments with instances from MIPLIB2003/2010 (Achterberg et al., 2006; Koch

et al., 2011) serve as a benchmark for the studies in this line of research, including ours.

Their results show that in many instances, the bounds obtained by the commercial mixed

integer programming solver CPLEX at the root node can be significantly improved by such

decomposition approaches.

In their technical report, Witt and Lübbecke (2015) investigate the strength of DWRs

of the classical edge formulation for the maximum weighted stable set problem. They

argue that, since every constraint in this model corresponds to an edge of the underlying

graph, formulating a DWR can be described as choosing a subgraph and convexifying all

constraints corresponding to edges of this subgraph. They characterize DWRs not yielding

a stronger LP relaxation as reformulations where this subgraph is bipartite and present

a characterization of DWRs with the strongest possible LP relaxation as reformulations

where the chosen subgraph contains all odd holes (and 3-cliques). This work is one of

the first attempts to theoretically characterize the strength of all possible DWRs of a

well-known optimization problem; namely, the Stable Set Problem.

The problem of detecting BBD structure may be related to several problems in the

data-mining literature. For example, a well-known problem called biclustering tries to

simultaneously partition the set of samples and the set of their attributes (features) into

subsets (classes) in such a way that samples and features classified together are highly

relevant to each other. In a matrix representation, this corresponds to a re-ordering of the

matrix in such a way that the majority of nonzeros are covered within diagonal blocks with

very high density. Busygin et al. (2008) review the most used and successful biclustering

techniques and their related applications. The survey summarizes mathematical concepts

that can be met in existing biclustering techniques from a theoretical viewpoint.
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The main disadvantage of graph partitioning algorithms used in Ferris and Horn (1998),

Aykanat et al. (2004) and Bergner et al. (2015) is the need to specify the number of

partitions beforehand. In the absence of information on the underlying structure of a

matrix, this requirement may lead to detection of inferior structures. As mentioned earlier,

community detection implicitly optimizes the number of partitions which has made it a very

popular tool in several real life applications such as biological networks, social networks,

and citation networks (Girvan and Newman, 2002; Rosvall and Bergstrom, 2007). For a

general background on community detection, the reader is referred to Fortunato (2010) and

Porter et al. (2009). To our knowledge, community detection has not been investigated in

the context of BBD structure detection.

Assessing the quality of detected community structures is one of the debated topics

in the related literature. Porter et al. (2009) discuss the effectiveness of various quality

functions proposed in the literature. Fortunato (2010) states that the most popular quality

function is the modularity of Newman and Girvan (2004). Good et al. (2010) investigate

the performance of modularity maximization in practical contexts.

Finding the optimal community structure in a complex network is shown to be NP-

hard (Brandes et al., 2008). There are, however, several algorithms such as Walktrap (Pons

and Latapy, 2006), Edge-betweenness (Girvan and Newman, 2002), Infomap (Rosvall and

Bergstrom, 2007), and Fast-greedy (Clauset et al., 2004) to find sub-optimal community

structures with polynomial complexity. Lancichinetti et al. (2008) provide a set of bench-

mark graphs on which the performances of different algorithms can be tested. Lancichinetti

and Fortunato (2009) and Leskovec et al. (2010) compare the performances of various com-

munity detection algorithms on selected benchmark graphs. Lancichinetti and Fortunato

(2009) conclude that based on the benchmark graphs, three algorithms introduced by Ros-

vall and Bergstrom (2007); Blondel et al. (2008) and Ronhovde and Nussinov (2009) appear

to have the best performance in terms of the quality of community structures, with the

additional advantage of low computational complexity.

The main contribution of this work is a new BBD structure detection approach based

on community detection that does not require the input of the number of blocks. Second,

we propose a new measure of goodness for BBD structures, that successfully accounts

for the trade-off between the quality of the block-diagonal and the border components.
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Finally, we conduct a comparative computational study that provides valuable insights on

the untapped research potential within the realm of structure detection in optimization.

The rest of the chapter is organized as follows: In Section 2, we propose a new measure

of goodness for BBD structures. In Section 3, we introduce our approach for structure

detection. In Section 4, we report results from the proposed approach on test instances

from the MIPLIB2003/2010 (Achterberg et al., 2006; Koch et al., 2011). In Section 5, we

discuss several observations and potential research avenues. Conclusions are provided in

Section 6.

2.2 Goodness of BBD Structures

In principle, any sparse matrix can be permuted into a BBD form by placing a sufficiently

large number of rows into the border component. In fact, Bergner et al. (2015) experi-

mentally show that often more than one such permutation is possible. This necessitates

the use of an objective measure to evaluate the goodness of alternative BBD structures

inherent in sparse matrices. It is evident from the nature of BBD structures that there are

two components, border and block-diagonal, that should be accounted for when comparing

alternative structures.

Consider a hypothetical 1825× 1500 matrix A and its different permutations shown in

Figure 2.1, where white (black) cells correspond to zero (nonzero) entries in the matrix.

As seen, Figure 2.1.(a) has a BBD form with two diagonal blocks of sizes 1025× 900 and

700× 600 and a border area of 100 rows. Figure 2.1.(b) is obtained from Figure 2.1.(a) by

moving 100 more rows from the block-diagonal component into the border component and

has five non-identical blocks of equal sizes 325× 325. Finally, Figure 2.1.(c) is obtained

from Figure 2.1.(b) by moving 125 more rows from the block-diagonal component into the

border component and has fifteen identical blocks of sizes 100× 100. Figure 2.1 provides

a simple example of how the size of the border component and the decomposition of the

block-diagonal component are correlated with each other. Particularly, by increasing the

size of the border component (i.e., placing more rows into the border component), the

(remaining) block-diagonal component can be decomposed into a larger number of blocks.
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More generally, a change in the composition of the border component inevitably leads to

a change in the composition of the block-diagonal component. Hence, the qualities of the

two components should also be correlated. In what follows, we first separately discuss the

characteristics that are related to the qualities of the border and block-diagonal components

and then attempt to combine them into a single goodness measure for BBD structures.
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Figure 2.1: Permutations of a hypothetical matrix into different BBD forms

2.2.1 Quality of the block-diagonal component

In the context of Lagrangian relaxation, each block in the block-diagonal component corre-

sponds to a Lagrangian subproblem that is to be solved at every iteration with a different

set of Lagrangian multipliers until the best bound is found. Therefore, from a computa-

tional efficiency point of view, it is desirable to have subproblems with small sizes. One

way to achieve this is to have as many subproblems as possible. We refer to this desirable

characteristic as granularity and express it as the number of blocks in the block-diagonal

component.

It is worth noting that granularity alone does not guarantee computational efficiency.

Consider an extreme case where the block-diagonal component has 10 blocks, 9 of which

are negligibly small compared to the 10th. In this case, the subproblem corresponding to
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the 10th block will be of size nearly equal to the original problem. Having to solve this

subproblem at every iteration will render this Lagrangian relaxation computationally in-

efficient. To avoid such issues, another desirable characteristic can be defined as having

(nearly) equal-sized blocks, which we refer to as homogeneity. Homogeneity is especially

desirable for parallel processing; namely, solving subproblems in parallel on different pro-

cessors rather than in sequence on a single processor. The overall computation time of

such a parallel processing mostly depends on the size of the largest subproblem. Hence,

having high granularity and homogeneity together ensures computational efficiency of the

Lagrangian relaxation.

There is yet another desirable characteristic which further contributes to the compu-

tational efficiency. Consider a block-diagonal component with not only equal-sized but

identical blocks. This implies that the Lagrangian subproblems are identical (assum-

ing the objective function coefficients and the right hand side values are also identical).

In this case, solving only one of the subproblems at every iteration is sufficient for La-

grangian relaxation. We refer to this feature as isomorphism. Unfortunately, it is not

as straightforward to express the degree of isomorphism as it is to express granularity and

homogeneity.

To illustrate the aforementioned characteristics, consider the block-diagonal compo-

nents of the matrix permutations in Figure 2.1. As mentioned earlier, Figure 2.1.(a) has two

blocks of unequal sizes which indicates low granularity and homogeneity. Figure 2.1.(b),

on the other hand, has higher granularity (with 5 blocks) and homogeneity (with equal

sizes) compared to Figure 2.1.(a). Finally, Figure 2.1.(c) has the highest granularity and

homogeneity as well as an additional advantage of isomorphism among its blocks. There-

fore, one would expect a good quality measure to provide a ranking of (a) < (b) < (c) of

the block-diagonal components. In pursuit of such an objective quality measure, we inves-

tigated the modularity function Q, given in (2.2), as a candidate. Note that Q takes values

in the range [0, 1) where the minimum score corresponds to a matrix with a single block

and the maximum score corresponds to the equal distribution of non-zeros among

as many separable blocks as possible. Although equal distribution of non-zeros does

not guarantee homogeneity or isomorphism, it can be used as a proxy for both. Our initial

experiments on the test instances showed that if a BBD structure with identical blocks
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is indeed inherent in the constraint matrix, a significantly higher modularity score (com-

pared to other alternatives) is achieved by its block-diagonal component. To illustrate the

effectiveness of modularity, we calculated the modularity scores of the three block-diagonal

components in Figure 2.1 and the scores (Q(a) = 0.42 < Q(b) = 0.78 < Q(c) = 0.93)

concurred with our expectation to discriminate in favor of high granularity, homogene-

ity, and isomorphism. Therefore, we adopted modularity as the quality measure of the

block-diagonal component in subsequent computational experiments.

2.2.2 Quality of the border component

Unlike block-diagonal components, quality of border components has been expressed with

a simple proxy measure in the literature; namely, the percentage of border area which is

calculated as the ratio of the number of rows in the border area to the total number of

rows. The subset of constraints included in the border component dictates the tightness of

the Lagrangian bound, or the optimality gap closed. Consequently the fewer the relaxed

constraints, the better is the expected Lagrangian bound. Although there is no causal

relation between the percentage of border area and the optimality gap closed, Bergner

et al. (2015) experimentally show that there is a strong negative correlation between the

two.

Interestingly, despite the clear nonlinearity of the correlation, Bergner et al. (2015) opt

for using percentage of border area as a measure for goodness as is. To remedy this, we

propose a simple exponential decay function of percentage of border area x, P (x) = e−λx,

to measure the quality of the border component, where λ is a parameter to tune the effect

of adding (removing) a single row to (from) the border component. Notice that the quality

score P takes values in the range (0,1] where the minimum score corresponds to the border

component being equal to A and the maximum score corresponds to the border component

being empty. Notice also that the marginal effect of changing the percentage of border area

decreases as the size of the border component increases and becomes negligible beyond a

certain threshold. In the context of Lagrangian relaxation, this threshold point ideally

corresponds to the point where the Lagrangian bound equals the LP bound. However, it

is not easy to identify this point without solving the resulting decomposition problems at
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every step. Practically, the parameter λ can be used to tune the threshold point.

2.2.3 Goodness score

In studying the quality of noisy block-diagonal structures, Suresh Kumar and Chan-

drasekharan (1990) suggest that a quality measure should have the following properties:

• Non-negativity and scalability: Scores are within a fixed range of non-negative values

irrespective of size and sparsity of matrices.

• Physical meaning of extrema: The minimum and maximum scores correspond to

special cases.

• High discrimination power: Good/bad structures are consistently scored as high/low.

We already established that both quality measures Q and P hold the aforementioned

properties. As mentioned earlier, improving the quality of the block-diagonal component

inevitably deteriorates the quality of the border component. Intuitively, then, the good-

ness of a BBD structure should depend on finding the best compromise between the two

conflicting objectives. To this end, we combine the quality functions defined for the block-

diagonal and the border components into a single expression to measure the goodness of

BBD structures.

Definition 4 Given a permutation Aπ =

[
D

B

]
of an m×n matrix A into a BBD structure

where the d × n matrix D is the block-diagonal component and the b × n matrix B is the

border component, the following functions measure the quality of D, B and the goodness

of Aπ, respectively:

Q(Aπ) =
K∑
i=1

ei
e

[
1− ei

e

]
(2.3)

P (Aπ, λ) = e−λ
b
m (2.4)

Γ(Aπ, λ) = Q(Aπ)P (Aπ, λ) (2.5)
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where K is the number of diagonal blocks, ei is the number of non-zero entries in block i,

and e is the total number of non-zero entries in matrix D.

Recall that both Q and P can take values between 0 and 1. Hence, Γ ∈ [0, 1), with

Γ approaching 0 corresponds to a BBD structure with a single block (or empty block-

diagonal component) and Γ approaching 1 corresponds to a BBD structure with empty

border component and K = min(m,n) isomorphic blocks in the block-diagonal component.

In the proposed goodness measure, λ can be interpreted as a trade-off parameter between

the quality of the block-diagonal and the border components. In particular, a large λ

value would prioritize the quality of the border component over the quality of the block-

diagonal component. In Section 2.4, we illustrate the quality and goodness functions with

an example and investigate the effect of λ on the output.

Next, we introduce a BBD structure detection approach based on community detection

and maximization of goodness score.

2.3 A Community Detection Based Approach

To motivate the proposed approach, we begin by discussing the effect of specifying the

number of blocks K on the structures detected. As noted earlier, this is one of the draw-

backs of the existing approaches. Figure 2.2 shows the original constraint matrix of the

10teams instance from MIPLIB2003 (Achterberg et al., 2006) and two permutations with

different detected BBD forms.

Notice that the border components in Figure 2.2-(b) and Figure 2.2-(c) are identical,

whereas the same block-diagonal component is permuted differently and decomposed into

different number of blocks, namely 2 and 9, respectively. This is a typical consequence of

requiring user input for the number of blocks. Particularly, when K is set to 2 for any of the

BBD structure detection algorithms existing in the literature, the structure in Figure 2.2-

(b) is mostly likely to be detected despite being clearly inferior to the structure in Figure

2.2-(c). With that in mind, it can be trivially shown that the most granular (efficient)

decomposition of a matrix D into diagonal blocks is uniquely defined and corresponds to the
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Figure 2.2: Constraint matrix of original 10teams instance and detected BBD structures

decomposition of its bipartite graph representation into connected components (Hopcroft

and Tarjan, 1973). This provides a key insight that constitutes the main idea behind our

approach: For a given set of rows in the border component (which corresponds to S in

bipartite graph representation), the most granular partitioning of the remaining vertices is

uniquely defined.

Recall that we argued the uniqueness of S for a given community structure Π in Def-

inition 2. This, combined with the aforementioned observation, implies that there is a

bilateral relationship between Π and S which can be exploited.

Notice that finding a candidate Π or S does not require defining the number of blocks

a priori. For matrices with unknown inherent structures, this may prove very valuable

since enumerating the number of partitions via trial and error within a specified range has

several drawbacks. First, it requires multiple execution of structure detection algorithm

as in Ferris and Horn (1998); Aykanat et al. (2004) and Bergner et al. (2015) which may

be computationally burdensome, especially for large matrices. Second, the “best” inherent

structure may have the number of blocks outside the range of predefined number of par-

titions, in which case such heuristics would detect inferior structures. Finally, by forcing

a predefined number of partitions, one may end up having blocks that are further decom-

posable. In Section 4, we provide examples of such issues on the instances selected from

MIPLIB2003/2010 (Achterberg et al., 2006; Koch et al., 2011).

Our proposed algorithm is based on iterative execution of two phases called Remove
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and Merge. At the Remove phase, the bipartite graph G[V \ S] corresponding to the

block-diagonal component (initially, G) is decomposed into communities and row vertices

are greedily removed from G[V \ S] (i.e., placed into the border component S) to improve

the quality of the block-diagonal component. Specifically, the row vertices with the highest

“out-of-community” degree (i.e., number of edges a vertex has with other communities) are

removed at each sub-iteration. Removal of rows continues until a noiseless (i.e., separable)

block-diagonal component is attained.

At the Merge phase, for each row in the border component S, the “minimal” merge

is identified as the list of blocks it couples. For example, if a row in S has three non-zeros

at columns {j1, j2, j3} and the blocks corresponding to those columns are {k1, k2, k3}, then

its minimal merge is M = {k1, k2, k3}. Typically, the minimal merges for some rows turn

out to be identical, i.e., some merges result in the relocation of multiple rows back to the

block-diagonal component. The best merge is greedily identified at each sub-iteration as

the one that provides the minimum marginal reduction in the quality score of the block-

diagonal component. Merging of blocks continues until there are only two blocks left in

the block-diagonal component. Each sub-iteration in Remove or Merge generates an

alternative BBD structure uniquely defined by G and S. Since G is the same for all

alternative structures, it suffices to record only the alternative vertex separators generated

at each sub-iteration in a list L.

The two-phase routine is executed iteratively until an identical set of vertex separators

in L is regenerated or a predetermined number of iterations (tmax) is reached. The list of all

alternative structures are outputted by the algorithm and evaluated based on the goodness

score defined in (6) to retain the one with the highest score. Notice that the generation

of the alternative BBD structures is independent of the λ tuning parameter and that λ is

only used to identify the best structure among all alternatives.

Tables 2.1 and 2.2 provide the notation and the list of functions used in the defini-

tion of the algorithm, respectively, whereas the pseudo-code is given in Algorithm 1. The

algorithm makes use of three data structures: graph, set, and ordered list. Set repre-

sentation and operators (i.e., “ ∪ ”, “ \ ”, “ ∈ ”, “ ≡ ”) are used when the order of the

elements does not matter and an element cannot be repeated more than once. For exam-

ple, {1, 2, 3} ∪ {2, 4} ≡ {1, 2, 3, 4}. To make the distinction of different data structures
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clear, in Algorithm 1 we used bold calligraphic letters (e.g., G) for graphs, calligraphic

letters for sets (e.g., S, A, M), bold lowercase letters for lists of scalars (e.g., r, n), and

bold uppercase letters for lists of sets (e.g., L, Π, U). Note that brackets “[ ]” are used to

denote both induced subgraphs (e.g., G[V ]) and a specific element of an ordered list (e.g.,

n[i]).

Table 2.1: Descriptions of the symbols used in Algorithm 1

Notation Description

A An M ×N matrix
G = (R∪ C, E) Bipartite graph representation of A
V ,R, C Set of all, row, and column vertices in a bipartite graph G, respectively
G[V ] Subgraph of G induced by vertex set V
A Set of vertices adjacent to a given vertex
Π A list whose entries are the sets of vertices in each community of a given graph
B A list whose entries are the sets of vertices in each connected component of a given graph
n List (scalar) of out-of-community degrees (noises) of each row vertex
S Set of vertex separators
s List (scalar) representation of vertex separators in increasing index order
r List (scalar) representation of remaining row vertices in increasing index order
∆S Set of vertices added to or removed from S
M Set of blocks in a minimal merge
M List of minimal merges for each row in S
L (∗L) The list (pointer) of vertex separators obtained at each iteration
γ List (scalar) of goodness scores for each alternative BBD structure stored in L
tmax Maximum number of iterations

As seen in the pseudo-code, the community detection is one of the key subroutines in

the algorithm and is executed at every iteration. This calls for a fast community detection

method, possibly at the expense of reduced quality. In order to choose the most suitable

method, we tested several computationally efficient methods in the literature and observed

that fast-greedy algorithm of Clauset et al. (2004) performs significantly faster than the

other methods, yields community structures with comparable quality and does not require

any parameter-tuning. Hence, we opted for using fast-greedy algorithm as the base com-

munity detection method in this study. The algorithm tries to optimize the modularity

function in a greedy manner. Initially, every vertex belongs to a separate community, and

communities are merged iteratively such that each merge is locally optimal (i.e., yields

the largest increase in the current value of modularity). The algorithm stops when it is
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Algorithm 1 BBD Structure Detection Algorithm: KEE

function KEE(G, tmax)
L[ ]← ∅, S ← ∅, t← 0, check ← true
while check do

check ← Remove(G,S,L, check)
B ← decompose(G[V \ S])
if |B| ≤ 2 then

check ← false
check ← Merge(G,S,L, check)
t ← t + 1
if t ≥ tmax then

check ← false
return L

function Remove(G, ∗S, ∗L, check)
while check do

r ← list(R \ S)
Π ← community(G[V \ S])
n ← noises(G[V \ S],Π)
if max(n) > 0 then

∆S ← {r[i] | n[i] = max(n)}
if is.in(S ∪∆S,L) or {S ∪∆S} ≡ R then

check ← false
else
S ← S ∪∆S
L ← append(S,L)

else
check ← false

return check

function Merge(G, ∗S, ∗L, check)
B ← decompose(G[V \ S])
while |B| > 2 and check do

s ← list(S)
M[ ] ← ∅
for every v ∈ S do
A ← neighbor(v,G)
M ← ∅
for every u ∈ A do

k ← block.of(u,B)
M ←M∪ {k}

M ← append(M,M)

U ← unique(M)
q[ ] ← ∅
for j = 1 to |U| do

∆S ← {s[i] |M[i] ≡ U[j]}
∆q ← quality.D(G,S \∆S)− quality.D(G,S)
f ← frequency(U[j],M)
q ← append(∆q/f,q)

∆S ← {s[i] |M[i] ≡ U[j],q[j] = max(q)}
if is.in(S \∆S,L) or {S \∆S} ≡ ∅ then

check ← false
else
S ← S \∆S
L ← append(S,L)

return check 25



Table 2.2: Descriptions of the functions used in Algorithm 1
Function Output Description

graph(A) G Constructs the bipartite representation of the matrix A
noises(G,Π) n Calculates the noise caused by each row vertex
neighbor(v,G) A Returns the vertices adjacent to the vertex v in the graph G
decompose(G) B Decomposes the graph G into its connected components (blocks)
community(G) Π Decomposes the graph G into communities which maximize modularity
block.of(v,B) k Returns the index of the block which vertex v belongs to in B

list(S) s Returns the list representation of S in increasing order of its elements
max(n) n Returns the entry with the largest value in the (scalar) list n
is.empty(L) T/F Checks whether the list L is empty
unique(M) U Returns the list of distinct sets in the list M
frequency(S,L) f Returns the number of times an entry (the set S) is repeated in the list L
append(S,L) L Appends a new entry (the set S) to the end of the list L
is.in(S,L) T/F Checks whether the set S is an entry of the list L
quality.D(G,S) q Calculates the quality of the block-diagonal component
goodness(G,S, λ) g Calculates the goodness of the BBD structure

Remove(G, ∗S, ∗L, check) check Iteratively removes the set of rows causing maximum noise
Merge(G, ∗S, ∗L, check) check Iteratively merges the set of blocks providing minimum reduction in Q

not possible to increase the modularity anymore. The computational complexity of fast-

greedy algorithm is O(|V|log2|V|), where |V| is the number of vertices in the given graph

(Lancichinetti and Fortunato, 2009).

Before presenting the computational results, we first discuss the validity and conver-

gence of the algorithm. As argued before, a valid BBD structure can be uniquely defined

by the bipartite graph representation G of matrix A and a vertex separator S ⊆ R. It can

be seen from Algorithm 1 that at each sub-iteration of Remove and Merge, the output

(L) of KEE is either updated by adding a new vertex separator or kept the same in which

case the algorithm is terminated. The extreme cases where KEE returns an empty L or

all vertex separators in L are 1-way separators correspond to BBD structures with a single

block. In Section 2.3., we discussed that such (trivial) structures attain lowest possible

goodness score (Γ = 0). They are, nevertheless, considered valid BBD structures which

ensures the validity of the algorithm.

Next, it becomes evident from Algorithm 1 that KEE terminates when one of the fol-

lowing two conditions is satisfied: (i) a previously generated structure is regenerated or (ii)

a predefined number of iterations (tmax) is reached. There are 2|R| distinct vertex separa-
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tors, each corresponding to a different BBD structure. Hence, theoretically, even without

enforcing the second termination condition, the algorithm is guaranteed to converge (i.e.,

terminate after finitely many iterations). However, the theoretical limit on the number of

maximum iterations is astronomically high even for moderate size problems. Therefore,

to ensure a timely termination, we used tmax = 100 in our computational experiments.

An alternative way could be to set a limit on the total processing time or the number of

distinct BBD structures generated (i.e., number of sub-iterations). It is worth noting that

for all of the instances included in our computational experiments, the first condition was

sufficient for a timely termination of the algorithm. However, in general, enforcing the

first condition may lead to premature termination of the algorithm before finding the best

structure, due to cycling.

2.4 Computational Experiments

In this section, we present a comprehensive computational analysis and comparison with

the state-of-the-art, namely Bergner et al. (2015). We start by describing the experimental

framework, we then analyze the structures detected by our proposed approach and compare

against Bergner et al. (2015).

2.4.1 Experimental Framework

The testing is done on the benchmark instances of Bergner et al. (2015) that are extracted

from MIPLIB2003/2010 (Achterberg et al., 2006; Koch et al., 2011). Two criteria are used

for comparison, namely CPU time required to obtain the best Lagrangian bound and the

tightness of the Lagrangian bound.

Bergner et al. (2015) introduce an algorithm, DWR, to detect alternative BBD struc-

tures and two variations of the algorithm, DWR auto and DWR best, to identify the best

structure among the alternatives. According to their description, DWR executes hMETIS

(Karypis and Kumar, 1998a) with different input parameters such as number of partitions

and number of dummy variables to obtain alternative structures. DWR auto identifies
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the best structure as the one with smallest border area. DWR best, on the other hand,

selects the structure that yields the best Lagrangian bound. They state that “DWR best

is extremely time consuming and only meant as an assessment of the method’s potential”.

In a similar fashion, we call our proposed algorithm KEE, which detects alternative BBD

structures in a given matrix. The main difference from DWR is that KEE requires no user

input apart from the matrix itself. To be able to make a fair comparison, we also provide

two variations of our algorithm. The first variation selects the structure with the best good-

ness score that accounts for the trade-off between the quality of the block-diagonal and

the border components; namely, when the tuning parameter λ = 5; whereas, the second

variation considers only the quality of the border component (λ = 20). We refer to them

as KEE auto and KEE best. Algorithm 2 provides the pseudo-codes for the variations.

Algorithm 2 Variations of KEE Algorithm

function KEE.variation(A, var, tmax)
G ← graph(A)
L ← KEE(G, tmax)
if is.empty(L) then
Sbest ← ∅

else
γ[ ] ← ∅
for i = 1 to |L| do

if var = “auto” then
g ← goodness(G,L[i], λ = 5)
γ ← append(g, γ)

if var = “best” then
g ← goodness(G,L[i], λ = 20)
γ ← append(g, γ)

if max(γ) = 0 then
Sbest ← ∅

else
Sbest ← {L[i] | γ[i] = max(Γ)}

return (G,Sbest)

We used R programming environment for the implementation of the proposed algorithm

and Gurobi 6.0.2, with default parameters and a single thread, to solve the Lagrangian

subproblems and master problems. All the experiments were carried out on an Intel(R)

Core(TM) i7-4510U PC (2.60GHz, 8GB memory) running Windows 8.1. We limited the

processing time of all experiments to 1800 seconds and the best bound obtained until
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termination was reported as the Lagrangian bound and was used to calculate the optimality

gap for the cases where convergence was not achieved before termination. Note that the

time limit was set to 3600 seconds in Bergner et al. (2015).

Finally, since the algorithm presented in Section 3 detects singly BBD structures, we

only tested on the instances for which the best structure detected by Bergner et al. (2015)

was reported to be a singly BBD structure. Although the extension of the algorithm to

detect arrowhead (doubly BBD) structures which are potentially amenable to Lagrangian

decomposition is possible, the quality of such a decomposition depends on several other

factors such as types of linking variables (integer or continuous) and number of blocks

linked by each variable. Accounting for these factors requires an extension to the goodness

measure defined in Section 2. In this study, however, our focus is to illustrate the potential

of the proposed fully-automated algorithm.

2.4.2 Structure Detection

We begin by analyzing the change of the quality scores, Q and P , and the goodness score

Γ for a complete run of KEE algorithm. Figure 2.3 summarizes a typical run of KEE

algorithm on the reblock67 instance from MIPLIB2010 (Koch et al., 2011). As described

in Section 2.3, our algorithm is based on an iterative execution of a two-phase routine:

REMOVE and MERGE. The regions of the plots with white background correspond to

the REMOVE phase and the shaded regions correspond to the MERGE phase. The

algorithm is terminated when a previously generated structure is regenerated (to prevent

infinite loops). Each plot illustrates the change of quality and goodness scores for different

values of the tuning parameter (λ ∈ {1, 5, 20}). The dashed (thin straight) lines represent

the change of the quality score of the block-diagonal (border) component, Q (P ), and

the thick straight lines represent the change of overall goodness score, Γ, throughout the

complete execution of the algorithm. The marked points on the Γ lines indicate the highest

goodness score attained throughout the execution; i.e., the best BBD structure detected.

Notice that the Q lines are the same for all three plots since the quality of the block-

diagonal component does not depend on the tuning parameter λ. However, the P lines

become more stretched as λ increases, aptly reflecting the increased marginal effect of
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Figure 2.3: Evaluation of quality and goodness scores in the KEE algorithm for different
values of λ for reblock67

changes in the border component. Moreover, we observe that Γ mimics the behavior of Q

for very small values of λ and that of P for very large values of λ. Since the purpose of

defining a new goodness measure is to account for the trade-off between the quality of the

block diagonal and the border components, one needs to avoid the complete dominance of

one quality score over the other. The plot for λ = 5 illustrates how an effective trade-off

between the two quality scores is possible. Notice that the behavior of Γ alternatingly

mimics that of Q and P between certain breakpoints which roughly correspond to the

points where P = Q. Similar analysis of quality and goodness scores with a wide range of

λ values for all test instances revealed that any λ ∈ [3, 5] is a good choice for the tuning

parameter to effectively reflect the trade-off between the quality of block-diagonal and

border components. Interestingly, as briefly discussed in Section 2.2, a visual inspection of

the plot presented in Bergner et al. (2015) (Figure 8a) illustrating the negative correlation

between the integrality gap closed and the percentage of linking constraints also leads to a

similar conclusion on the suitable range of λ values. Consequently, we use λ = 5 for KEE

auto, whereas we use a sufficiently high λ = 20 for which the goodness score is dominated

by the quality of the border component for KEE best.

Next, we investigate whether the proposed approach is able to detect the best BBD

structure in a given matrix, if a good structure is inherent in the matrix. Figure 2.4 shows

the detected BBD structures for 15 test instances from MIPLIB2003/2010 (Achterberg
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et al., 2006; Koch et al., 2011). It is clear that our proposed algorithm detects BBD

structures with well-balanced block sizes for 16 out of 26 test instances (see Figure 2.2 for

10teams instance). This observation is particularly important since previous approaches

such as Ferris and Horn (1998), Aykanat et al. (2004), and Bergner et al. (2015) explicitly

impose a balance criterion among the diagonal blocks by using dummy variables; whereas

KEE manages that implicitly.

Table 2.3 provides a comparison of the structures detected by KEE auto, KEE best,

and DWR best. Unfortunately, the decomposition properties of the DWR auto algorithm is

not available in Bergner et al. (2015). The number of diagonal blocks, the number of rows

in the border area, and the maximum number of columns (rows) in a block are indicated

by K, b, and Col (Row), respectively. Moreover, P and Q show the quality scores of the

block-diagonal and border components whereas Γ shows the overall goodness scores of the

structures detected by KEE auto. Γ̂ shows the estimated goodness scores of the structures

detected by DWR best. The estimates are calculated based on the decomposition properties

provided in Bergner et al. (2015) assuming that the block-diagonal component attains the

highest possible quality score for the given number of blocks. The instances for which KEE

auto and DWR best detected the identical BBD structures are in bold, whereas instances

where KEE auto (or in case of fiber, KEE best) and DWR best seem to have identical

borders are in italic.

A quick inspection of the quality and goodness scores provides valuable insights. First

of all, we observe that for the two instances (10teams, harp2 ) the goodness scores are very

low (0.11 and 0.17, respectively). Although we concluded from Figure 2.4 that the detected

structures have very granular block-diagonal components with well-balanced blocks, the

overall goodness of the structures are significantly reduced by the relatively large border

area. One implication of such discrepancy between the quality of the block-diagonal and

the border components is the direction of structural improvement; namely, the appropriate

action to be taken to improve the goodness score. In these cases, the appropriate action

would be to relocate some of the rows in the border component to the block-diagonal

component at the expense of reduced quality (by merging some of the blocks) in the block-

diagonal component. However, our algorithm, designed to take such action, did not find

a better structure simply because there is no better structure inherent in the constraint
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Figure 2.4: Detected BBD structures with well-balanced block sizes
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Table 2.3: Comparison of BBD structures detected by KEE auto/best, and DWR best.
Instance KEE auto KEE best DWR best

K b Col Row Q P Γ K b Col Row K b Col Row Γ̂
10teams 9 95 225 15 0.89 0.12 0.11 9 95 225 15 9 95 225 15 0.11
aflow30a 29 29 38 20 0.96 0.74 0.71 29 29 38 20 2 28 430 230 0.37
aflow40b 39 39 76 39 0.97 0.87 0.85 39 39 76 39 10 39 348 179 0.78
fiber 6 33 564 151 0.64 0.63 0.40 3 22 713 178 2 22 713 178 0.37
fixnet6 132 17 54 28 0.98 0.83 0.82 108 15 239 128 2 14 436 235 0.43
gesa2-o 26 94 215 219 0.88 0.68 0.60 2 26 803 819 2 26 611 611 0.45
harp2 73 39 41 1 0.98 0.17 0.17 73 39 41 1 10 39 369 9 0.16
mkc 946 107 426 240 0.99 0.85 0.84 260 29 2409 1449 2 31 2911 1815 0.48
modglob 22 23 62 41 0.92 0.67 0.62 4 8 276 186 2 8 211 144 0.44
noswot 5 9 26 35 0.80 0.78 0.62 4 8 51 70 5 9 26 35 0.62
opt1217 48 16 16 1 0.98 0.29 0.28 48 16 16 1 4 16 192 12 0.21
p2756 161 19 259 77 0.98 0.88 0.86 115 16 553 145 3 16 918 257 0.60
pp08a 8 8 30 16 0.87 0.74 0.65 8 8 30 16 8 8 30 16 0.65
pp08aCUTS 8 8 30 32 0.87 0.85 0.74 8 8 30 32 8 8 30 32 0.74
rout 5 16 111 55 0.80 0.76 0.60 5 16 111 55 5 16 111 55 0.60
set1ch 20 12 35 24 0.95 0.88 0.84 20 12 35 24 20 12 35 24 0.84
beasleyC3* 89 48 168 110 0.96 0.87 0.84 36 26 1676 1154 2 26 1252 862 0.46
gmu-35-40 9 9 357 194 0.70 0.90 0.63 9 9 357 194 2 9 432 217 0.45
mcsched 5 32 349 415 0.80 0.92 0.74 5 32 349 415 5 32 349 415 0.74
mine-166-5* 3 373 333 3273 0.63 0.80 0.50 2 183 497 4973 2 596 416 3090 0.35
mine-90-10* 5 398 181 1183 0.80 0.73 0.58 2 108 541 3727 2 92 450 3928 0.46
pw-myciel4 23 551 47 331 0.96 0.71 0.68 4 110 322 2455 2 165 530 4009 0.45
ran16x16 16 16 32 17 0.94 0.75 0.71 16 16 32 17 16 16 32 17 0.71
reblock67* 5 279 134 451 0.80 0.57 0.46 2 72 401 1483 2 69 335 1228 0.43
rmine6 3 451 430 2756 0.65 0.73 0.48 2 168 830 5461 2 354 557 3439 0.39
rococoC10 626 83 69 10 0.98 0.72 0.71 626 83 69 10 8 82 447 407 0.63

matrix. In fact, for these two instances, relocation of any row into the block-diagonal

component would simply merge all the blocks, resulting in a single block. Hence, we

can conclude that the highest goodness score a structure can attain is bounded by the

composition of the original matrix. A normalization procedure by finding the theoretical

maximum goodness score in a given matrix would provide more meaningful interpretation

of the Γ values. Secondly, we observe that the goodness scores of the structures detected

by KEE auto are consistently better than those of DWR best. To be fair, this is an

expected result, since DWR best does not maximize the goodness score, but it maximizes

the quality of the border component. Nevertheless, the estimated goodness score as well

as the estimated quality scores of the block-diagonal and border components gives us a
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similar idea for the direction of structural improvement, should one be looking for a fair

trade-off between the two components.

Instances in italic (aflow40b, fiber, harp2, opt1217, gmu-35-40 ) point to an important

observation that was briefly discussed in Section 2.3. DWR does not always decompose a

block diagonal matrix into its most granular form. This is most likely caused by the fact

that DWR is based on hypergraph partitioning which requires the input of the number of

blocks. Notice that for aflow40b, harp2, opt1217, the number of blocks in the structures

detected by KEE auto is outside the range {2, 3, ..., 20} of K values enumerated in DWR.

On the other hand, for fiber and gmu-35-40, the reason for DWR’s inferior decomposition

is probably the compliance with the balance criterion among the block sizes required by

hMeTiS algorithm. Nevertheless, the most efficient decomposition of a block diagonal

matrix is unique as discussed in Section 2.4, and apparently DWR sometimes misses it due

to input requirements.

For the instances in bold, KEE auto and DWR best seem to have detected identical

structures. We observe that the detected structures are highly granular and have well-

balanced blocks. Finally, it is worth noting that decomposition properties of KEE best are

given to just provide evidence that when only the quality of the border component is of

concern, KEE best is also able to detect comparable structures to those detected by DWR

best. It is evident from the columns b, Col, and Row of KEE best and DWR best that

both algorithms detect BBD structures with similar border size and maximum column/row

sizes.

2.4.3 Lagrangian Bound

The Lagrangian bound resulting from the relaxation of the border area is the dual bound in

Bergner et al. (2015) and obviously depends on the BBD structure detected. In Table 2.4,

we compare the bounds found by KEE auto and DWR auto in terms of their optimality gaps

and CPU times. Bold entries in the table indicate that the respective algorithm performs

better than (or as good as) the other for that instance. Since the optimal solutions of all

test instances are available, the gaps are calculated based on the optimal objective values.

The best of the two bounds and CPU times are displayed in bold.
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According to Table 2.4, the two algorithms perform quite similar on all instances,

with the exception of four instances (starred in the table, namely, beasleyC3, mine-166-5,

mine-90-10, reblock67 ) where DWR auto obtains significantly tighter bounds. For these

four instances, according to Bergner et al. (2015), DWR auto and DWR best detect BBD

structures that have 2 blocks and significantly smaller border areas compared to those of

KEE auto. Hence, it is expected that their bounds would be tighter than those of KEE

auto. This comes, however, at the expense of inferior structures as the Lagrangian bound

depends only on the size of the border area. To provide a fair comparison, we compare

the bounds obtained by KEE best against those obtained by DWR best in Table 2.5. As

evident from Table 2.5, Lagrangian bounds and CPU times of KEE best algorithm are

comparable but slightly inferior to those of DWR best.

Notice in Table 2.4 that for instances aflow30a, aflow40b, fiber, fixnet6, gesa2-o, mod-

glob, p2756, two bounds are quite close to each other, but KEE auto is significantly faster

than DWR auto. These seem to be the instances where DWR auto fails to find the most

efficient and granular structure. Small differences in CPU times do not necessarily imply

the superiority of one algorithm over another, since many factors may be of influence. A

significant difference, however, is often an indicator of a superior/inferior structure de-

tected by the compared algorithms. If we set 30 seconds as a significant difference, then

KEE auto does better in 9 instances versus 3 for DWR auto.

As seen in Table 2.4, for six instances (in italic), the Lagrangian bound obtained by KEE

auto is exactly equal to the LP bound, i.e., the worst possible bound. Surprisingly, for the

majority of these instances, the BBD structures detected by KEE auto algorithm are very

high quality structures. aflow30a and aflow40b, in particular, have BBD structures with

a highly granular block diagonal matrix of almost equally sized blocks and a very small

border area. It is in direct contradiction with the belief that a nice inherent structure

leads to a good bound. This indicates that the quality of the bound may not be the best

indication of a good structure.

In summary, we conclude from Tables 2.3, 2.4, and 2.5 that KEE is capable of detecting

BBD structures that provide comparable bounds to DWR requiring less CPU time, in

general. Considering the fact that the state-of-the-art technique DWR requires user input

for the number of blocks and a balance criterion (number of dummy variables) to generate
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Table 2.4: Comparison of Lagrangian bounds obtained by KEE auto and DWR auto.

Instance KEE auto DWR auto

Name LP Gap (%) Gap (%) CPU (sec) Gap (%) CPU (sec)
10teams 0.76 0.00 10.11 0.05 2.22
aflow30a 15.10 15.10 5.82 14.71 93.51
aflow40b 13.90 13.90 8.66 13.90 70.52
fiber 61.55 2.27 24.46 1.07 540.53
fixnet6 69.85 18.91 8.27 18.89 2838.48
gesa2-o 1.18 0.70 34.33 0.78 113.14
harp2 0.61 0.61 23.45 0.61 1.59
mkc 8.51 0.16 96.42 0.16 106.25
modglob 1.49 0.58 8.57 0.79 3600.00
noswot 4.88 0.49 5.36 0.49 1.26
opt1217 25.13 25.13 8.13 25.13 0.07
p2756 13.93 0.27 7.17 0.27 234.98
pp08a 62.61 2.50 2.06 2.50 0.47
pp08aCUTS 25.43 2.50 1.84 2.58 0.58
rout 8.88 0.68 25.39 0.68 5.90
set1ch 41.31 0.04 1.40 0.10 0.61
beasleyC3* 94.64 31.47 58.23 15.38 3600.00
gmu-35-40 0.01 0.01 150.54 0.01 0.12
mcsched 8.56 0.06 67.82 0.06 84.30
mine-166-5* 45.09 11.66 1800.00 7.33 2983.32
mine-90-10* 13.12 5.96 541.79 0.49 1426.12
pw-myciel4 100.00 60.00 28.42 60.00 27.50
ran16x16 18.48 10.77 5.13 10.77 0.93
reblock67* 13.61 3.85 656.65 0.13 529.73
rmine6 1.12 0.99 1800.00 0.42 836.89
rococoC10 34.42 34.42 217.10 34.42 13.75

Table 2.5: Lagrangian bounds obtained by KEE best and DWR best for the exceptional
instances.

Instance KEE best DWR best

Name Gap (%) CPU (sec) Gap (%) CPU (sec)
beasleyC3 18.64 1130.03 15.38 3600.00
mine-166-5 9.18 1800.00 7.33 2983.32
mine-90-10 0.88 1800.00 0.49 1426.12
reblock67 0.14 708.12 0.13 529.73

36



alternative structures, the results presented above accentuates the merit of KEE, which

does not require any user input at all.

2.5 Conclusions

A community detection based approach for identifying BBD structures in mixed integer

programs is introduced, studied, and tested. Unlike current approaches that are based

on graph/hypergraph partitioning methods, the proposed approach relies on community

detection which has the advantage of not specifying the number of partitions a priori. We

also define a new measure of goodness to compare the alternative BBD structures detected.

The main motivation behind BBD structure detection is the possibility of using de-

composition methods to solve intractable large scale integer programs. To this end, the

proposed approach is designed to account for the trade-off between computational time

and solution quality. Experiments on test instances from MIPLIB2003/2010 (Achterberg

et al., 2006; Koch et al., 2011) reveal the effectiveness of the proposed approach in detecting

good underlying BBD structures that yield tight Lagrangian bounds in short computational

times.

37



Chapter 3

Spatial Separability in Hub Location

Problems

In this chapter we look into a specific type of problem, HLP, and explore the potential

of data-driven approaches in tackling such problems. HLP is one of the well-established

areas of research in literature with over thirty years of contributions. HLP models the

problem of selecting a subset of nodes within a given network as hubs and allocating the

remaining nodes to the selected hubs. All flow between nodes is, then, routed via hubs (as

the inter-hub links typically enjoy economies of scale) in such a way to minimize an overall

transportation cost.

3.1 Introduction and Literature

Following the seminal work by O’Kelly (1986), the field enjoyed a proliferation of new

models, solution methodologies, and applications. Current models are capable of incor-

porating practical features such as capacity constraints (Campbell, 1994a; Ebery et al.,

2000; Boland et al., 2004; Labbé et al., 2005; Correia et al., 2010; Contreras et al., 2011c),

congestion (Elhedhli and Hu, 2005; Elhedhli and Wu, 2010; de Camargo et al., 2009b),

incomplete hub network topologies (Campbell et al., 2005a,b; Alumur et al., 2009; Calık
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et al., 2009; Contreras et al., 2013), and uncertainty (Marianov and Serra, 2003; Contreras

et al., 2011b; Alumur et al., 2012).

Solution methodologies ranging from decomposition-based methods such as Lagrangian

relaxation (Pirkul and Schilling, 1998; Aykin, 1994; Elhedhli and Hu, 2005), Branch-and-

Price (Contreras et al., 2011c), and Benders decomposition (de Camargo et al., 2009a;

Contreras et al., 2011a) to metaheuristics such as genetic algorithms (Topcuoglu et al.,

2005), tabu search and GRASP (Klincewicz, 1992; Mayer and Wagner, 2002) have been

proposed. On the application side, HLPs have been introduced in the context of airline

transportation (O’Kelly, 1987a; Mart́ın and Román, 2004), postal delivery (Ernst and Kr-

ishnamoorthy, 1996), and telecommunication (Klincewicz, 1998). The reviews by Alumur

and Kara (2008), Farahani et al. (2013) and Contreras (2015) provide a thorough survey

of the state-of-the-art in the field and Campbell and O’Kelly (2012) discuss the past and

the future of hub location research and possible fertile research avenues.

Different objective functions can be used to model the way in which hubs are deter-

mined. For example, p-hub median problems assume that the number of hubs to locate is

known a priori and try to minimize the total flow/transportation (O’Kelly, 1987b; Camp-

bell, 1994b; Ernst and Krishnamoorthy, 1996). On the other hand, fixed cost hub location

problems assume that the number of hubs is not known a priori, but a fixed set-up cost for

each hub site is known and try to minimize the sum of total set up and flow costs (O’Kelly,

1992b). p-hub center problems try to minimize the maximum of a given cost measure

such as flow cost or travel time of all origin-destination pairs (Yaman and Elloumi, 2012;

Campbell et al., 2007; Kara and Tansel, 2000). Hub covering problems assume a demand

is covered if both origin and destination are within a specified distance of a hub node and

try to minimize the total set-up cost of the hub network (Kara and Tansel, 2003; Hamacher

and Meyer, 2006; Wagner, 2008).

HLP models are also differentiated based on the nature of the allocations of non-hub

nodes to selected hubs. Single allocation problems assume that each node is allocated to a

single hub. In other words, all the incoming and outgoing traffic for every node is routed

through a single hub (O’Kelly, 1987b; Campbell, 1994b; Ernst and Krishnamoorthy, 1996).

Multiple allocation problems, on the other hand, assume that a node can be allocated to

multiple hubs. Therefore, multiple allocation problems are relaxed versions of the single
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allocation problems (Hamacher et al., 2004; Maŕın, 2005; Contreras et al., 2011a).

Another important characteristic of HLPs is the incorporation of capacity constraints.

Most HLP variants are characterized based on whether they incorporate capacity con-

straints or not. Constraints may be imposed on the incoming and outgoing flow at the

hubs nodes as well as on the hub arcs. Uncapacitated problems do not incorporate capacity

constraints. In other words, they assume infinite capacity for all hubs and hub arcs. Ma-

jority of the early work on HLPs fall under this category (O’Kelly, 1987b; Klincewicz, 1992;

Mayer and Wagner, 2002). Capacitated problems may incorporate capacity constraints on

the incoming/outgoing flows at the hubs nodes or on the hub arcs. Campbell (1994a);

Ebery et al. (2000); Boland et al. (2004) study capacitated multiple allocation problems

with constraints on hub node capacities whereas (Labbé et al., 2005; Correia et al., 2010;

Contreras et al., 2011c) study capacitated single allocation problems with constraints on

hub node capacities. Bryan (1998); Aykin (1994) consider problems with capacity con-

straints on hubs arcs and direct O/D links, respectively. Finally, Elhedhli and Wu (2010)

introduce a new model where hub capacity is also a decision variable.

Breadth of recent advances in hub location research is astonishing. For example, hub-

arc problems (Campbell et al., 2005a,b) are different than other HLP variants in that they

relax the assumption of fully-interconnectedness of hub network and consider different net-

work topologies. This relaxation is particularly meaningful for the applications where set

up costs associated with hub arcs are prohibitive. HLPs with uncertainty consider the

effect of uncertainty in costs, demands, and distances. Marianov and Serra (2003) are the

first dealing with uncertainty at the hub nodes. They represent hubs as queues with lim-

ited lengths. Contreras et al. (2011b) model the classical uncapacitated multiple allocation

problem as a two-stage integer stochastic program with recourse when demands and flow

costs are uncertain. Alumur et al. (2012) consider HLPs with uncertainty in set-up costs

and demands for both single and multiple allocation problems. Demand uncertainty typi-

cally cause congestion at the hub networks. Elhedhli and Hu (2005) introduce a new model

with additional costs for congestion at the hubs. HLPs with competition consider problems

where several firms (decision makers) exist in the market and compete to provide service

to customers. They introduce models where demand flow is captured from competitor’s

hub network if a reduction in travel time is offered by a new hub network. Marianov et al.
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(1999) introduce competitive hub location models in which follower tries to maximize the

captured demand flow. Sasaki and Fukushima (2001) uses a game theoretic framework to

introduce Stackelberg hub location model where competition takes place between a large

company and several mid-size companies.

We study a specific subclass of HLPs: USApHMP which was described in Definition

1. One of the first linear (mixed integer) programming formulations for USApHMP was

introduced by Skorin-Kapov et al. (1996) which had O(n4) variables and O(n3) constraints.

Although the formulation has been shown to provide very tight LP bounds, it does not scale

well with the number of nodes. Even for the problem instances of moderate size (between

50 and 100 nodes), commercial solvers reach the memory limit. The formulation proposed

by Ernst and Krishnamoorthy (1996) requires smaller number of variables and constraints

(O(n3) and O(n2), respectively). Although it has looser LP bound compared to that of

Skorin-Kapov et al. (1996)’s formulation, commercial solvers can solve problem instances

up to 100 nodes using this formulation. Ebery (2001) presented another formulation which

requires O(n2) variables and O(n2) constraints. This formulation uses fewer variables than

all of the other models previously presented in the literature. However, in practice, the

computational time required to solve this new formulation was shown to be greater than

that required to solve Ernst and Krishnamoorthy (1996)’s formulation. Therefore, in this

work, we used the formulation by Ernst and Krishnamoorthy (1996) as the mathematical

model for USApHMP.

Despite abundance of various mathematical models and efficient solution methodologies

for moderate size problem instances, the main challenge of using HLP in certain promising

domains is the inability of current solution approaches to handle large instances. (e.g.,

networks with more than 1000 nodes). In this chapter, we study an important characteristic

of optimal hub networks: spatial separability. We discover that the optimal hub-and-

spoke topology is typically composed of disjoint clusters with non-overlapping convex hulls.

Although not a general property, extensive testing on randomly generated instances reveals

that it holds in 99.5% of the time.

Motivated by the need for solving large practical problem instances, our main contri-

butions in this study are to investigate the spatial separability feature observed in the

optimal solutions of USApHMP instances, to elucidate the connection between USApHMP
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and several other problems, and to propose a new approach exploiting this feature to tackle

the largest problem instances in the literature, efficiently.

3.2 Spatial Separability

Campbell and O’Kelly (2012) argue that “the purpose of hub location research is insight,

not numbers and better insight is likely to result from the combination of improved under-

standing of the properties of hub location problems, better algorithms, new solutions, and

a clearer understanding of the practical implications of the solutions”. Several studies in

the literature attempt to identify structures and patterns that would help mitigate the

inherent difficulty of HLPs. O’Kelly (1986), for example, observes that in most cases non-

hub nodes are allocated to the closest hub. However, on a later paper O’Kelly (1992a),

which exploits the parallelism between clustering problems and planar hub location prob-

lems, they illustrate that the closest-hub allocation assumption is too strong an assumption

that could potentially lead to high optimality gaps. Campbell (1990) studies the spatial

conditions under which single allocation (to the nearest hub) or multiple allocation (to

the hub minimizing the distance between origin and destination) is optimal for a non-hub

node. They find analytical expressions for the spatial regions around hub nodes where

nearest hub allocation is optimal. Peker et al. (2016) propose several spatial measures to

evaluate node importance as a proxy for the likelihood to be a hub in the optimal solution

and develop a heuristic which is based on restricting the solution space to sets most likely

to contain hubs. One of the main contributions of this study is to reveal another spatial

pattern of optimal USApHMP solutions which has not been studied in the literature. The

observed pattern constitutes the basis of the solution methodology which is developed with

the goal of tackling the newly introduced BCN instances with n = 998 nodes.

One rather straightforward solution approach for USApHMP is to first identify the

optimal hub nodes, and then decide the optimal allocations of each node to hubs. This

approach is very intuitive as the restricted problem of allocating non-hub nodes to the

given hubs - p hub allocation problem (pHAP) - is much easier to solve than the origi-

nal USApHMP and enumerating all possible hub combinations is not too formidable for
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moderate size instances. Ebery (2001) provides a very efficient formulation for pHAP and

experimentally show that USApHMP require several orders of magnitude more CPU time

than pHAP and conclude that “we should try to concentrate on techniques which may help

to determine possible hub locations, since once the hub locations are known, the problem is

relatively easy to solve”.

Conversely, one could first attempt to find the optimal partition of nodes such that the

ones in the same cluster would be allocated to the same hub and then find optimal hubs

for each cluster. Wagner (2007) proposed a very efficient formulation for the problem of

finding optimum hub locations for a given partitioning of nodes into clusters such that

exactly one hub per cluster must be opened. They call this restricted problem cluster

hub location problem (CHLP) and solve instances with up to 500 nodes within a second.

Nevertheless, this approach has not been as popular as the former, since in the absence

of an efficient way to identify optimal clusters, one has to enumerate exponentially many

partitions.

In this section we attempt to provide analytical and experimental justification for the

latter approach. We start our analyses with the re-examination of a statement from O’Kelly

(1992a) “The property that all observations which are closer to centroid A than to centroid

B are assigned to the same group does not hold for HLPs. Therefore, we cannot use the

strategy of examining only the non-overlapping partitions”. Specifically, we are interested

in redefining non-overlapping partitions concept. To this end, we begin with visual inspec-

tion of the optimal solutions of known problem instances and look for spatial patterns in

these solutions. Figure 3.1 depicts the optimal solutions of six USApHMP instances with

(n = 25) numbers of nodes from CAB dataset provided by O’Kelly (1986). Figures 1.a-c

show the solutions for p ∈ {2, 3, 4} hubs with interhub discount factor α = 0.1, whereas

Figures 1.d-f show the solutions for p ∈ {2, 3, 4} hubs with interhub discount factor α = 1.

In each map, hub nodes are marked with filled circle points whereas non-hub nodes are

marked with empty circle points. Moreover, nodes that are allocated to the same hub are

shown with the same color. We observe that the nodes allocated to the same hub are

geographically (spatially) clustered. To formalize this observation, we proceed with the

following definition:
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Figure 3.1: Optimal solutions of various CAB instances for different (n, p, α) parameter
sets
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Definition 5 The set of nodes that are allocated to the same hub in a USApHMP solution

is called an allocation cluster.

Now, the observation from Figure 3.1 can be rephrased as follows: Allocation clusters

are non-overlapping, i.e., they are separated from each other with clear boundaries.

The aforementioned statement in O’Kelly (1992a) appears to be in contradiction with

observation above. However, the subtle difference lies in how the clusters are defined.

O’Kelly (1992a)’s definition of a partition involves clusters with a centroid and the subset

of nodes for which that centroid is the closest among all centroids in the given partition.

They experimentally show that such partitions are often non-overlapping. By contrast,

partitioning into allocation clusters does not specify a centroid for clusters. A consistent

pattern that the regions encapsulating the nodes in each allocation cluster appear to be non-

overlapping has already been illustrated in Figure 3.1 for CAB instances. In an attempt

to extend its validity for problem instances other than CAB dataset, and to provide a

concise mathematical expression for the aforementioned pattern, the optimal solutions of

USApHMP instances from AP dataset with different numbers of nodes (n) and hubs (p)

are obtained and depicted in Figure 3.2 (with α = 0.75, χ = 3, δ = 2 as given by Ernst

and Krishnamoorthy (1996)). Figures 3.2.a-c show the solutions for 3-hub problem with

n ∈ {25, 50, 100} nodes, whereas Figures 3.2.d-f show the solutions for p ∈ {5, 7, 10} hubs

with n = 100 nodes.

Each polygon in Figure 3.2 represents an allocation cluster. Observe that irrespective

of the n and p values, the allocation clusters are always non-overlapping. More specifically,

the convex hulls of allocation clusters always appear to be disjoint. It is worth mentioning

that we tested the validity of this observation with different (n, p, α) parameters in both

CAB and AP datasets and observed no exception. We call this property spatial separability

and formally define it as follows.

Definition 6 Let Ai = (ai1, ai2, ..., aik), ∀i ∈ N ≡ {1, 2, ..., n} be the coordinate vector

of node i in k-dimensional space. A partition of nodes N into p (allocation) clusters

P = {P1, P2, ..., Pp|
⋃p
i=1 Pi ≡ N and Pi ∩ Pj ≡ ∅, ∀i, j 6= i} is said to be spatially separa-

ble if the convex hulls of the clusters are (pairwise) disjoint, i.e., Conv(Pi) ∩ Conv(Pj) ≡
∅, ∀i, j 6= i.
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Figure 3.2: Optimal solutions of various AP instances for different (n, p) parameter sets

Definition 6 helps us remove the ambiguity in describing the observed spatial pattern by

providing a mathematical expression for the spatial separability property. So far, we have

consistently observed spatial separability in the optimal solutions of the known USApHMP

instances. Figure 3.3, on the other hand, shows that there exist some extreme cases under

which spatial separability is violated in the optimal solutions. Figure 3.3-(a) is the simplest

counter example in 2D space for which the optimal solution can be made to violate spatial

separability by selecting appropriate values for the flows, e.g., w14 = 100, w13 = 1, w24 = 1,

and wij = 0 for all other pairs of nodes (where nodes are numbered from left to right). An

interesting research question would be how likely these violating cases are to occur in real

life settings. To this end, in Section 5.1, we conduct an extensive computational analysis

on randomly generated USApHMP instances and show that these extreme cases occur so

infrequently that overlooking them would not be completely unreasonable as long as this

provides a computational advantage. Figure 3.3-(b) is a typical example of non-separable

instances where spatial separability is violated only by a handful of nodes and relocation

of those nodes so that spatial separability is restored can be done with a negligible increase

46



in the objective value.
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Figure 3.3: Counter examples violating spatial separability

Partitioning into clusters with disjoint convex hulls has been studied in the literature.

Chakravarty et al. (1985) study a related problem: partition a given set of indexed items

(1, 2, ..., n) into p subsets (P1, P2, ..., Pp) to minimize an objective function g(P1, P2, ..., Pp).

They provide several sufficient conditions on g(.) that would guarantee that there is an

optimum partition in which each subset consists of consecutively indexed items and show

that this partitioning problem can be solved in polynomial time. Barnes et al. (1992) use

results from Chakravarty et al. (1985) on consecutive optimizers and derive necessary and

sufficient conditions on g(.) such that there exists an optimum partition which is spatially

separable.

It is worthwhile to comment on an important implication of the aforementioned results

for our study. The results of Chakravarty et al. (1985) can be applied to a restricted

version of USApHMP in which an additional set of constraints is introduced to impose

spatial separability. This would imply that the size of the feasible region (i.e., the search

space) becomes polynomial in n. In other words, the computational effort to completely

enumeration all feasible partitions would be reduced from exponential complexity O(pn) to
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polynomial complexity O(np). Considering that many efficient heuristics for HLPs such as

tabu search and simulated annealing depend on some kind of clever enumeration of feasible

solutions, such a reduction in search space would have substantial impact on computational

performance of these heuristic.

We are, however, mainly interested in making practical use of spatial separability prop-

erty. To this end, we, next, introduce the set of constraints that would impose spatial

separability to HLPs. Figures 3.4 and 3.5 show a spatially separable and non-separable

partition, respectively, of the same set of nodes. An observation from Figures 3.4 and 3.5

allows us to impose spatial separability as a set of linear constraints to the MIP formulation

of USApHMP: In a spatially separable partition no line segment contained in one cluster

intersects with a line segment contained in another cluster. Lemma 1 (given without proof)

can be used to check whether two given line segments intersect.
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Figure 3.4: A spatially separable partition
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Figure 3.5: A non-separable partition

Lemma 1 Let (x1, y1) and (x2, y2) be the two end points of the line segment LS1 and

(x3, y3), (x4, y4) be the end points of the line segment LS2. LS1 and LS2 are said to
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intersect if the following conditions hold:√
(x− x1)2 + (y − y1)2 +

√
(x− x2)2 + (y − y2)2 =

√
(x1 − x2)2 + (y1 − y2)2 (3.1a)√

(x− x3)2 + (y − y3)2 +
√

(x− x4)2 + (y − y4)2 =
√

(x3 − x4)2 + (y3 − y4)2 (3.1b)

where (x, y) is the intersection point of the lines defined by the end of points of LS1 and

LS2 and can be written as follows:

x =
(x1y2 − y1x2)(x3 − x4)− (x1 − x2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

y =
(x1y2 − y1x2)(y3 − y4)− (y1 − y2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

Note that Lemma 1 excludes the degenerate cases where line segments are parallel to

each other. Figure 3.6 illustrates different possible ways the lines defined by the end points

of LS1 and LS2 can intersect only one of which implies the intersection of LS1 and LS2.

(x1, y1)

(x2, y2)(x3, y3)

(x4, y4)

(x, y)

Figure 3.6: Different possibilities of intersections

To impose spatial separability, one needs to identify all pairs of intersecting line seg-

ments (i.e., quadruplets of nodes) and add constraints that prevents these line segments

from being in different clusters. This would require O(n6) additional constraints: O(n4)

for all possible intersecting line segments, and O(n2) for all possible cluster pairs. This

is a formidable number of additional constraints which would unnecessarily complicate
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the MIP formulation. An alternative approach would be similar to adding valid “comb

inequalities” (Naddef and Thienel, 2002) for Travelling Salesman Problem (TSP) (Apple-

gate, 2006). For the purposes of this study, we only need to note that comb inequalities

are not contained in the original TSP formulation, but can be used as valid cuts to tighten

the LP bounds at each branching node. Similar to that, instead of adding all constraints

pertaining to spatial separability at once, one may opt to add only the cuts necessary to

prevent the violating intersections in a given solution. For example, assume that the two

line segments LS1 and LS2 are intersecting. Let nodes i, j and s, t be the end points of the

LS1 and LS2 line segments, respectively. Assume also that in the given solution, the nodes

i, j are included in cluster k and nodes s, t are included in a different cluster m. This is

a case where spatial separability is violated and we need to remove this solution from the

feasible set by ensuring at least one of the four cases listed below is satisfied:

• (a) Nodes i and j are not both in cluster k

• (b) Nodes s and t are not both in cluster m

• (c) At least three of the nodes i, j, s, t are in cluster k

• (d) At least three of the nodes i, j, s, t are in cluster m

Introducing the following set of constraints - hereinafter called intersection elimination

constraint (IEC) - would eliminate this violation:

yik + yjk −Mu1 ≤ 1 (3.2a)

ytm + ysm −Mu2 ≤ 1 (3.2b)

yik + yjk + ytk + ysk +Mu3 ≥ 3 (3.2c)

yim + yjm + ytm + ysm +Mu4 ≥ 3 (3.2d)

u1 + u2 + u3 + u4 ≥ 1 (3.2e)

u1, u2, u3, u4 ∈ {0, 1} (3.2f)

In the above set of constraints, M is a very large number and u1, u2, u3, u4 are auxiliary

decision variables to ensure that at least one of the four cases is satisfied. As one may notice,
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to eliminate each non-separable solution, we need to add 5 constraints and 4 variables.

Hence, ideally, we would like to use as few IEC as possible. In Section 5.1, we use IECs to

impose spatial separability on the randomly generated non-separable USApHMP instances

to be able to calculate optimality gaps. A major drawback of using IECs is that it requires

the ability to solve LP relaxation of an instance. This hinders the use of IECs for very

large problems instances.

Despite its consistent occurrence and implication to significantly reduce computational

effort for solving USApHMPs, spatial separability alone is not sufficient to devise an ap-

proach to tackle very large problem instances. It does, however, provide an important

insight which we exploit in Section 3.3 to propose a new approach which can efficiently

tackle very large problem instances.

3.3 Approach

Despite abundance of efficient algorithms to find feasible solutions and bounds for small-

to-moderate size USApHMP instances, one important component appears to be missing

in the literature: drawing insights on the optimal solution of a large instance from an

(approximate) smaller representation of the same instance. Ernst and Krishnamoorthy

(1996) briefly touch this issue while describing how the smaller instances are generated

from the original 200-node AP dataset. They generate smaller instances by diving the

coordinate system into n disjoint regions with equal number of nodes (200/n nodes each)

and merge the nodes within the same region into a single centroid node. This procedure

is often referred to as parcellation or segmentation in different fields. The resulting maps

are indeed good approximations of the original map and the optimal solutions of these

smaller instances can be used as approximation to the original problem. However, these

smaller instances fail to provide either an upper or a lower bound on the original problem.

They do not provide an upper bound because their solution is not feasible to the original

problem. On the other hand, they do not provide a lower bound because representing a

set of nodes with a single centroid node results in overestimation of at least one inter-

region transportation cost. The lack of interest in the literature to draw insight from

51



smaller instances may be attributed to their failure to provide a lower/upper bound. To

bridge this gap, we propose a new approach which efficiently makes use of the solutions

of smaller instances to find high quality feasible solutions - i.e., upper bounds - for the

original USApHMP problem.

The main implication of the previous section can be summarized as follows: The nodes

that are in spatial proximity to each other tend to behave similarly in their “choice” of

allocation cluster and this tendency becomes more pronounced as the distance between the

two nodes decreases. In other words, on micro level, the effect of distance (coordinates)

become the dominant factor in determining co-allocation decision of two nodes. One way

to interpret and make use of this insight is to lump together several spatially neighbouring

nodes and assume they will be allocated to the same hub. Doing this for all the nodes in

a given map will create spatially disjoint parcels containing lumped nodes for which the

hub location and allocation decisions are yet to be made. This procedure is, in fact, very

common in various fields and can be phrased as reducing the problem resolution. Solving

this low resolution problem may not give us the optimal solution to the original problem,

but by construction it is expected to get us very close to it. One may argue that for very

large problem instances where MIP formulations become astronomically large to process,

an approximate solution is the best one can hope for. In fact, this is exactly how most

HLP instances in the literature are generated, e.g., dividing the coordinate system into

regions consisting equal number of nodes as in Ernst and Krishnamoorthy (1996).

In this section, we propose a new modular approach driven by the aforementioned

insight with an ultimate goal to tackle 1000-node USApHMP instances and find near-

optimal solutions with negligible optimality gaps. We proceed with describing the building

blocks (modules) of the proposed approach.

3.3.1 Parcellation

The first module, which is called parcellation, is used to identify an efficient partition of the

nodes into a predetermined number of parcels. A parcellation is considered efficient if all

parcels consist only of nodes that are in the same allocation cluster at the optimal solution.

As evident from the description, measuring the exact efficiency of a parcellation requires

52



the knowledge of optimal solution to the original problem. Hence such parcellations will

have to be obtained using heuristics. As argued earlier, distance becomes the dominant

force in determining the co-allocation of two nodes on micro level. Therefore, if we require

a large enough number of parcels (e.g., r ≥ 50), the original map will be divided into small

enough parcels that will justify making node allocations to parcels solely based on distance.

This, in turn, relates the parcellation problem to the well-known p-median facility location

problem.

Next, we provide the formal definition and the mathematical formulation for a variant of

p-median problem we call r-Parcellation Problem (rPP). Given r, the number of parcels to

divide a spatial network of nodes into, the rPP is the problem of finding the optimal parcel

medoids, as well as the allocation of the remaining nodes to parcels such that each node is

allocated to exactly one parcel and the sum of node-to-medoid distances is minimized:

[rPP] min
∑
i∈N

∑
j∈N

dijyij (3.3a)

s.t.
∑
j∈N

xj = r (3.3b)∑
j∈N

yij = 1 ∀i ∈ N (3.3c)

yij ≤ xj ∀i, j ∈ N (3.3d)

xj, yij ∈ {0, 1} ∀i, j ∈ N (3.3e)

where the decision variables are defined as follows:

xj =

1 if a medoid is located at node j

0 otherwise

yij =

1 if node i is allocated to parcel j

0 otherwise

Figure 3.7-b shows an example of parcellation. Efficient parcellation of a map is not

unique, i.e., there are multiple different ways an optimum allocation cluster can be divided
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into parcels. Therefore, rPP is not the only method yielding parcels that will lead to a

quality solution. One may use a different method to find an efficient parcellation. In fact,

to speed up this step, we use a heuristic by Kaufman and Rousseeuw (2009) to solve the

rPP rather than solving it optimally. Once an efficient parcellation is found, the next step

is to find the hub-parcel locations and parcel-to-hub allocations which is handled by the

low resolution module.

3.3.2 Low Resolution

Given an efficient parcellation P = {P1, P2, ..., Pr} of nodes N such that

Pi ∩ Pj = ∅, ∀Pi 6= Pj ∈ P
r⋃
i=1

Pi = N

let P (i) represent the parcel node i belongs to in P . Assuming that the distances between

two nodes in the same parcel are negligible, i.e., duv ≤ ε,∀u, v ∈ N : P (u) = P (v), we

can approximate the original problem by treating each parcel as a single supernode and

duplicating the decisions made for a parcel to all the nodes contained in it.

An approximation of the original USApHMP can be done in several different ways de-

pending on how the resulting output will be used. For example, by assuming the distances

between nodes within the same parcel is equal to zero, one may construct an approximate

problem to obtain a lower bound to the original problem. Alternatively, inter and intra

parcel distances may be set in a way to approximate the objective value of the original

USApHMP as accurately as possible. Since the main goal of this study is to produce high

quality feasible solutions to the original problem, we opt to use the latter approximate
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problem for which the distances and flows between the parcels are determined as follows:

d̃ij =

∑
u∈Pi

∑
v∈Pj

wuvduv∑
i∈Pi

∑
j∈Pj

wuv
∀i, j ∈ {1, 2, .., r} (3.4a)

w̃ij =
∑
i∈Pi

∑
j∈Pj

wuv ∀i, j ∈ {1, 2, .., r} (3.4b)

Note that the distance between parcels i and j is calculated as the weighted average

of the distances between every node pair {(u, v) : u ∈ Pi, v ∈ Pj} and the flow between

the parcels is simply the sum of flows between all node pairs. Consequently, the unit cost

of sending flow within a parcel is not zero unlike the original USApHMP. We call this

approximate problem the low resolution problem (LRP) and formally define it as follows:

[LRP] min
r∑
i=1

r∑
k=1

r∑
m=1

αd̃kmx̃ikm +
r∑
i=1

r∑
k=1

(Õi + D̃i)d̃ikỹik (3.5a)

s.t.
r∑

k=1

ỹkk = p (3.5b)

r∑
k=1

ỹik = 1 ∀i ∈ {1, 2, ..., r} (3.5c)

ỹik ≤ ỹkk ∀i, k ∈ {1, 2, ..., r} (3.5d)
r∑

m=1

x̃ikm −
r∑

m=1

x̃imk = Õiỹik −
r∑
j=1

w̃ij ỹjk ∀i, k ∈ {1, 2, ..., r} (3.5e)

x̃ikm ≥ 0 ∀i, k,m ∈ {1, 2, ..., r} (3.5f)

ỹik ∈ {0, 1} ∀i, k ∈ {1, 2, ..., r} (3.5g)

where Õi (D̃i) is the total amount of outflow (inflow) from (to) parcel Pi, w̃ij is the total
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amount of flow from parcel Pi to parcel Pj, and the decision variables are defined as follows:

x̃ikm = Total flow emanating from parcel Pi that is routed between hub parcels Pk and Pm

ỹik =

1 if parcel Pi is allocated to hub parcel Pk

0 otherwise

The term low resolution is adopted from the image processing field where a similar

procedure, namely, assigning the same color to predetermined sets of neighbouring pixels

is a very common practice to achieve computational efficiency at the expense of image

quality. Figure 3.7-c illustrates the optimal solution to LRP for a given parcellatio. Hub

parcels are marked with filled symbols and non-hub parcels are marked with hallow symbols

of the hubs they are allocated to.

LRP is an essential module in the proposed approach as it approximates the original

problem with fewer supernodes and thus allowing us to make use of our ability to solve

smaller USApHMP instances in solving larger problem instances. Once LRP is solved for

a given parcellation, what remains is to obtain a feasible solution to the original problem.

We, next, describe the third module which constitutes the link between low resolution

problem and the original problem.

3.3.3 Reconstruction

Notice that the solution for the low resolution problem would give us a partitioning of

the parcels (and consequently, of the nodes) into p clusters. However, instead of p hub

nodes, we have p hub parcels which typically add up to more than p nodes. In order to

reconstruct a feasible solution to the original problem, one needs to identify exact locations

of p hub nodes. Recall that finding the locations of the hub nodes for a given p-partition of

nodes N is also an existing problem in the literature introduced by Sung and Jin (2001).

Wagner (2007) calls the problem CHLP and provides the most efficient formulation for the

problem. We next provide the formulation provided by Wagner (2007) which constitutes

our third module Reconstruction:
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Let C = {C1, C2, ...Cp} be a partition of N into allocation clusters such that

Ci ∩ Cj = ∅, ∀Ci 6= Cj ∈ C
p⋃
i=1

Ci = N
(3.6)

[CHLP] min

p∑
c=1

∑
k∈Cc

∑
m∈N\Cc

αdkmFkmxkm +

p∑
c=1

∑
k∈Cc

∑
i∈Cc

(Oi +Di)dikyk

s.t.
∑
k∈Cc

yk = 1 ∀c = {1, ..., p} (3.7a)∑
m∈Cc

xkm = yk ∀k ∈ N and ∀c = {1, ..., p} with k /∈ Cc (3.7b)∑
k∈Cc

xkm = ym ∀m ∈ N and ∀c = {1, ..., p} with m /∈ Cc (3.7c)

0 ≤ xkm ≤ 1 ∀k,m ∈ N (3.7d)

yk ∈ {0, 1} ∀k ∈ N (3.7e)

where Fkm is the total amount of flow from the cluster of node k to the cluster of node

m and the decision variables are defined as follows:

xkm =

1 if both nodes k and m are hubs

0 otherwise

yk =

1 if node k is a hub

0 otherwise

Solution of CHLP gives us the optimal hub locations for the given partitions. However,

considering the possible information loss while shrinking the original map into a low reso-

lution one, the input partition may not be the optimal one. To avoid suboptimal solutions

resulting from resolution errors, we devise a final module to recursively refine the feasible
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solutions.

3.3.4 Refining

One way to improve a given feasible solution is to enumerate all its neighborhood solutions

which is what heuristics such as tabu search do. Another approach would be to make use

of a property of optimum solutions to USApHMP: that the solution of the CHLP with

the optimum allocation clusters will give the optimum hubs and similarly, the solution of

another related problem known as pHAP with the optimum hubs will give the optimum

allocation clusters. Hence, by recursively solving CHLP and pHAP one may reach a local

optima. Considering the fact that the feasible solution generated by the first three modules

is not any random solution, but it is found by taking the problem data into account, our

hope is that the local optima hit at the end of Refining will be very close to global optimum.

Next, we provide the mathematical formulation of pHAP for a given subset H ⊆ N of p

hubs:

[pHAP] min
∑
i∈N

∑
k∈H

∑
m∈H

αdkmxikm +
∑
i∈N

∑
k∈H

dik(Oi +Di)yik (3.8a)

s.t. ykk = 1 ∀k ∈ H (3.8b)∑
k∈H

yik = 1 ∀i ∈ N (3.8c)

yik = 0 ∀i ∈ H and k ∈ H \ i
(3.8d)∑

m∈H

xikm −
∑
m∈H

ximk = Oiyik −
∑
j∈N

Wijyjk ∀i ∈ N and ∀k ∈ H

(3.8e)

0 ≤ xikm ≤ 1 ∀i ∈ N and ∀k,m ∈ H
(3.8f)

yik ∈ {0, 1} ∀i ∈ N and ∀k ∈ H
(3.8g)
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Notice that pHAP is the same formulation as USApHMP, only reduced in size. The

constraint sets (1b) and (1d) become redundant in pHAP. For the sake of consistency, (9b)

and (9d) are added to the formulation of pHAP, however the model can be further reduced

by dropping the variables whose values are fixed by constraints (9b) and (9d).

This concludes the description of modules in the proposed approach. Hereinafter, we

refer to this approach as SPATIAL and outline its flow in Algorithm 3. Table 3.2 provides

brief descriptions of the functions used in Algorithm 3 and Figure 3.7 illustrates a sample

flow of the approach at each module. In Sections 5.2 and 5.3, we first illustrate the efficiency

of the approach on known USApHMP instances from AP dataset and then use it to find

quality solution for the very large BCN instances.

Table 3.1: Descriptions of functions.
Function Output Description

get.feasible(ỹ) y Generates a feasible solution from the optimal solution of USApHRP
get.clusters(y) C Extracts the allocation clusters from a given feasible solution
get.hubs(y) H Extracts the hub nodes from a given feasible solution

solve.rpp(I, r) P Divides the map into r spatial parcels and allocates each node into one parcel
solve.lrp(I,P) ỹ Finds the optimal solution to low resolution problem for a given parcellation
solve.chlp(I, C) y, z Finds the optimal solution to cluster hub problem for given clusters
solve.phap(I,H) y, z Finds the optimal solution to node allocation problem for given hubs

Algorithm 3 SPATIAL Algorithm

function SPATIAL(I, r)
P ← solve.rpp(I, r)
ỹ ← solve.lrp(I,P)
y ← get.feasible(ỹ)
C ← get.clusters(y)
zC ← ∞
zA ← 0
while zC 6= zA do

[y, zC ] ← solve.chlp(I, C)
H ← get.hubs(y)
[y, zA] ← solve.phap(I,H)
C ← get.clusters(y)

return y, zA
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Figure 3.7: Step-by-step flow of SPATIAL Algorithm for a random instance with n = 100
nodes and p = 3 hubs

3.4 Computational Experiments

The main purpose of the computational experiments is to illustrate the non-coincidental

existence of the spatial separability and the remarkable computational gain resulting from

its incorporation in a novel approach to solve USApHMP instances. Following the brief

description of the experimental framework, we first show the validity of the spatial sep-

arability property in two dimensional space. We, then, test the performance of the pro-

posed approach on the problem instances from well-known datasets. Finally, we conduct

computational experiments to illustrate the effectiveness of the hub location problems in

modelling the brain hub organisation, and to provide further evidence on the scalability of

the proposed approach.

The testing is done on benchmark instances (AP dataset) provided in Ernst and Kr-

ishnamoorthy (1996), BCN instances introduced in Section 4, an randomly generated in-

stances. For a given set of nodes N , a map is defined by the coordinates of the nodes in two
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or three dimensional space and the flows Wij between each pair of nodes. Random maps

are generated by randomly assigning a values to each coordinate ∀i ∈ N and wij ∀i, j ∈ N
from a uniform distribution between 0 and 1. For a given map, a USApHMP instance is

defined by setting the values for 2 parameters: namely, p (the number of hubs to open),

and α (interhub discount factor).

We used R programming environment for the implementation of the proposed algorithm

and Gurobi 6.0.2, with default parameters and a single thread, to solve the MILP instances.

All experiments were carried out on an Intel(R) Core(TM) i7-4510U PC (2.60GHz, 8GB

memory) running Windows 10. We limited the processing time of all experiments to 3600

seconds.

3.4.1 Spatial Separability

In Figure 2, we showed that the optimal solutions of a few instances from AP dataset

possess what we call spatial separability property. In this section we try to generalize

this observation. To this end, we first checked 100 instances generated using AP dataset

(with different parameters) and validated that the said property holds for all of them.

Next, we wanted to validate that this property is not specific to AP instances. To do so,

we resorted to random maps and instances. Generation of a random map was described

at the beginning of this section. We generated 100 random maps for each n ∈ {25, 50}.
Then, for each map, we generated 12 instances with different values of p ∈ {2, 3, 4, 5} and

α ∈ {0.1, 0.5, 0.9}. Figure 3.8 shows an example of the spatial separability of 12 instances

generated from a random map with different parameters. As clearly seen from the figure,

the convex hulls of the allocation clusters in optimal solution are disjoint in all 12 instances.

Similar plots are generated for all random maps. The observations mostly conferred with

Figure 3.8. However, we also observed several instances for which the spatial separability

was violated. Table 3.2 shows the fraction of instances for which the spatial separability

holds.

Several insights are due from Table 3.2. First, for 99.5% (2387/2400) of the randomly

generated instances spatial separability holds. Second, p = 2 is the only p value for which

spatial separability is violated. Moreover, although stronger evidence is needed for such
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Figure 3.8: An example of spatial separability of optimal solutions on a random map

generalizations, we observe that the number of nonseparable instances increase with n and

α. Unfortunately, such mass computational experiments are not possible for larger n values

due to exponentially increasing processing time to solve USApHMP instances optimally.

Nevertheless, the existence of violating instances suffices to refute the claim that spatial

separability in 2D space is a property of USApHMP.

Although there are few instances for which spatial separability is violated, overwhelming

majority of the instances are spatially separable. This brings forward a question: How

much would we lose from optimality if we looked only for the spatially separable solutions.

More specifically, is there an upper bound on the optimality gap of feasible solutions

restricted to hold spatial separability property or can it be made arbitrarily large? Since
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n = 25 n = 50

p α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

2 100/100 100/100 99/100 100/100 98/100 90/100
3 100/100 100/100 100/100 100/100 100/100 100/100
4 100/100 100/100 100/100 100/100 100/100 100/100
5 100/100 100/100 100/100 100/100 100/100 100/100

Table 3.2: Fraction of separable instances for different parameter values

for the majority of the violating instances in our experiments we could establish spatial

separability by adding only a few intersection elimination constraints (3a-3f), we were able

to check their optimality gaps manually. Not surprisingly, the optimality gaps were very

small ranging between 0.1-0.5% which indicates that even if we imposed spatial separability

a priori, we would not lose much from optimality. Whether such small optimality gaps

are consistent throughout different parameter sets and maps is subject to a more detailed

computational experimentation which we refrain from in this study.

3.4.2 Performance on AP Dataset

We implemented the proposed approach on instances selected from the AP dataset with

100 nodes and p ∈ {2, 3, ..., 10} hubs. Table 4 shows the optimal solutions (OPT), the LP

relaxation (LP) using the MILP formulation given in Ernst and Krishnamoorthy (1996),

and the results from the proposed approach with different number of parcels (r ∈ {25, 50}).
Since the optimal solutions to the instances listed above could be found by Gurobi, both

LP gap (lower bound) and SPATIAL gap (upper bound) are calculated with respect to the

optimal solution.

It is evident that the proposed approach generates high quality solutions in a reasonable

amount of time. In terms of CPU time, Spatial takes significantly less time compared

to both OPT and LP, which hints about the scalability of the proposed approach. As

expected, Spatial(r = 25) requires much less time than Spatial(r = 50). It is, however,

interesting to observe that the gaps for Spatial(r = 25) are very similar to those for

Spatial(r = 50), which implies that the resolution ratio of 1:4 is almost as efficient as the
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Table 3.3: Computational results on selected problem instances from AP dataset

OPT LP SPATIAL(r = 25) SPATIAL(r = 50)

p CPU (sec) z CPU (sec) Gap (%) CPU (sec) Gap (%) CPU (sec) Gap (%)

2 158.26 180223.80 40.54 0.46 0.70 0.00 3.12 0.00
3 406.41 160847.00 93.30 0.76 0.78 0.00 3.34 0.00
4 647.69 145896.58 77.00 0.96 0.75 0.00 6.67 0.00
5 2636.83 136929.44 132.97 1.77 1.72 0.00 19.38 0.58
6 7250.79 129214.65 126.18 1.88 1.79 0.63 24.01 0.63
7 3210.05 122577.13 130.08 2.16 1.42 1.04 20.79 1.04
8 2260.60 116410.90 116.00 1.76 1.67 1.33 19.05 2.01
9 2335.53 111108.79 102.20 1.37 1.17 2.24 29.65 2.37

10 1620.84 106469.57 85.84 1.32 1.71 2.83 25.46 1.38

ratio of 1:2. Finding the resolution ratio which provides the optimum trade-off between

the computation time and the solution quality would be an interesting research question,

though it is out of the scope of this study.

Next, we conduct experiments to compare the performance of Spatial(r = 50) with

Gurobi in terms of optimality gap and CPU time. Table 3.4 shows the results from Gurobi

and Spatial(r = 50) for different parameter values. For each (n, p, α) parameter set

considered, the following experiment is conducted: First, Spatial(r = 50) is run and the

CPU time and objective value zS are recorded. Then, Gurobi is run for the same amount

of time and the lower bound (LB) as well as the upper bound zG (i.e., the best feasible

solution found within the same amount of time) is recorded. Since the optimal solutions

are not known for these instances, the gaps are calculated as δS = 100 (zS − LB)/zS and

δG = 100 (zG − LB)/zG, respectively and the best of the two gaps is written in bold.

Typically for instances with n = 200, Gurobi was not able to find a feasible solution within

the time required for running Spatial. For those cases, we let Gurobi run until it found

a second feasible solution. This was done to avoid any unfairness in comparison, since it

is typical for commercial solvers like Gurobi to find a drastically improved second feasible

solution within a few seconds after the first one. Nevertheless, it becomes clear in Table

3.4 that Spatial significantly outperforms Gurobi across all parameters sets, which points
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Table 3.4: Comparing the performance of SPATIAL and GUROBI on AP instances
α = 0.1 α = 0.5 α = 0.9

n p CPU LB δS (%) δG (%) CPU LB δS (%) δG (%) CPU LB δS (%) δG (%)

100

2 3.4 68471.5 0.06 0.16 7.3 77766.5 1.16 13.45 20.4 85382.7 1.98 3.17
3 3.5 59000.6 0.35 0.32 16.9 70239.7 1.91 1.91 58.8 79090.9 4.22 7.54
4 4.4 51956.3 0.42 1.28 17.9 65045.8 1.73 2.79 96.5 75478 3.95 15.48
5 9.4 47373.3 1.27 0.32 45.9 61476.5 3.26 11.96 182.6 73054.7 4.98 8.00
6 7.6 43543.4 0.78 0.42 44.3 58765.7 3.71 14.78 752.3 71334.1 5.38 22.81
7 11.8 40640.8 1.75 4.05 36.2 56448.4 3.85 14.7 260.0 69969.4 5.11 24.82
8 8.0 38041 0.88 1.01 50.0 54511.1 3.42 17.14 584.0 68792.7 5.55 23.25
9 11.5 35616.3 1.4 2.74 59.5 52907.6 3.34 17.4 1312.4 67836.9 4.42 18.59

10 11.4 33484.4 1.34 3.96 90.4 51480 4.06 12.54 1618.7 67017.4 4.33 24.31

200

2 4.3 69188.4 0.05 0.05 9.9 78526.6 1.31 12.36 24.7 85741.3 1.85 12.05
3 7.4 59618.1 0.25 0.2 30.6 70918.7 2.16 2.38 67.4 79584.9 4.76 9.16
4 4.6 52605.4 0.49 0.11 26.3 65594.9 2.03 3.42 116.6 75867.1 5.06 17.65
5 15.1 48546.3 0.67 1.47 42.0 62208.8 3.64 16.12 380.9 73476.3 5.97 21.86
6 4.9 44880.8 0.85 5.32 44.8 59584.9 4.46 31.16 1076.2 71760.6 5.94 12.87
7 16.3 41793.2 0.82 7.86 63.7 57301.3 4.46 20.09 1096.9 70418.0 6.57 21.34
8 22.0 39103.9 1.32 4.47 113.6 55359.9 3.92 31.37 1004.4 69312.2 5.94 24.03
9 17.6 36800.9 1.62 18 141.2 53750.5 5.06 19.62 1359.2 68391.2 6.21 20.91

10 15.4 34679.0 2.06 24.83 154.5 52401.5 5.18 23.7 1460.4 71141.8 4.99 22.06

to the global efficiency of the proposed approach.

A final remark on the results from Table 3.4 is that the performance of Spatial de-

teriorates with increasing α both in terms of CPU time and in terms of optimality gap.

This observation concurs with the results presented in Table 3.2. Namely, since the spatial

separability is more likely to be violated for larger values of α, it is expected that the

performance of the proposed approach, which is based on spatial separability, deteriorates

with increasing α.

3.5 Conclusions

We investigated HLP as an example of the use of data-driven techniques on the problem.

The main challenge of using HLP in certain promising domains is the inability of current

solution approaches to handle large instances (e.g., networks with more than 1000 nodes).

In this work, we uncovered an important pattern in the optimal hub networks: spatial
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separability. We showed that at the optimal solutions, nodes are typically partitioned into

allocation clusters in such a way that convex hulls of these clusters are disjoint. We, then,

exploited this pattern and proposed a new data-driven approach that uses the insights

generated from the solution of a smaller problem - low resolution representation - to find

high quality solutions for the large HLPs. Computational experiments conducted on the

well-known benchmark instances corroborates the effectiveness of the proposed methodol-

ogy.
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Chapter 4

Identifying Hub Regions in Brain

Connectivity Networks

In this chapter, we introduce a new application area for the HLP originating from human

BCN that we hope will benefit from the recent advances in hub location. We conduct

comprehensive computational experiments on a dataset introduced in this chapter with

the largest (998 nodes) and first three-dimensional problem instances in the literature.

We implement the data-driven method proposed in Chapter 3 to provide evidence for the

effectiveness of the proposed approach in producing similar results to the ones established

in medical literature.

4.1 Introduction and Literature

Recent interest of the medical and neuroscience community in building a “network map”

(connectome) of the human brain lead to the rapid development of medical imaging tech-

nologies that can probe the neural circuitry of human brains with high spatio-temporal

resolution. Using high-resolution diffusion tensor/spectrum imaging (DTI/DSI) data, re-

searchers have shown that some regions in the brain cortex play a hub role and act as

an intermediary to transmit signals between other regions (van den Heuvel and Sporns,
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2013). This is believed to provide an evolutionary advantage in reducing the size of the

brain (Bullmore and Sporns, 2012). As damage to these regions causes serious problems

(van den Heuvel et al., 2010; Zalesky et al., 2011), it is important to identify these hub

regions as precisely as possible. Researchers have hitherto used graph-theoretical measures

(Crossley et al., 2013; Bassett and Sporns, 2017) to study the connectivity networks of

the human brain and identify hub regions. To the best of our knowledge, identifying hub

regions in BCN has never been studied within an optimization context.

We believe that HLP can be useful in identifying the precise locations of hub regions

in BCN provided that the resulting large instances can be solved efficiently. Currently, the

state-of-the-art methods are capable of solving instances with only a few hundred nodes

within a reasonable amount of time. Considering the fact that there are approximately 86

billion neurons in an adult human brain (Azevedo et al., 2009), one can argue that being

able to optimally solve a problem with a few hundred nodes is not appealing enough by

itself from the practical point of view as it would yield very low precision. To make the

mathematical HLP models more relevant for practical purposes, general-purpose methods

that can efficiently tackle very large problem instances should be available to end users.

We propose one such method in Section 3.

It is not uncommon that methodologies that work well on moderate size instances be-

come intractable as the problem size increases. Hence, it is essential to test the performance

of proposed methodologies not only on small-to-moderate size problems, but also on very

large problem instances. The largest problem instances in the literature, however, have

only 200 nodes (Ernst and Krishnamoorthy, 1996). Scarcity of scalable solution method-

ologies may be attributed to the absence of large practical benchmark instances. To bridge

this gap, a BCN dataset originally generated by Hagmann et al. (2008) is re-introduced

in Section 4 in a way amenable to existing HLP models. This dataset is the largest (with

n = 998 nodes) and the first three-dimensional dataset in the literature so far. In Section

5, we generate benchmark instances using BCN dataset to evaluate the performance of the

proposed approach.

The human brain is one of the most complex systems known. It has approximately

86 billion neurons in a human brain and each neuron, in turn, is connected to a number

of other neurons. Figure 4.1 shows the anatomy of a typical neuron and the way it is
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connected to another neuron through synapses. The cell bodies of neurons are located at

the outer shell (cortex, or gray matter) of the brain whereas the axons (the fibers that

connect cell bodies) are located inside the cortex (white matter). It is now understood

that every single activity we do, every thought that comes to our minds, every emotion we

experience, and every memory we have is coded in our brains. Evidence suggests that cog-

nitive processes ranging from visual recognition (Behrmann and Plaut, 2013) and language

(Friederici and Gierhan, 2013) to emotion (Pessoa, 2012) are results of dynamic interac-

tions, via instantaneous electrical impulses known as action potential, between different

regions in our brains. Therefore, a complete understanding of how our brains work will

only be possible once we are able to map the entire brain network.

Figure 4.1: Representation of a single neuron
cell

Figure 4.2: Brodmann Areas in the human
brain

The Human Connectome Project (HCP) initiated in 2013 and aiming to create a com-

plete map of the anatomic and functional connections in the human brain is probably one of

the biggest collective projects involving scientists from various disciplines. The two biggest

challenges of this project are: (1) to probe the resolution levels that allow distinguishing

every single neuron, (2) to store and process the data emanating from such high-resolution

imaging. One of the methods that proved very useful in abating the enormity of the task

is to cluster neurons based on their locations and the observed functions. This allows us

to work on the resolution level of the brain areas instead of single neurons. Figure 4.2

shows an example of how the brain is divided into different areas commonly referred to as

Brodmann areas. This parcellation of the brain cortex into 52 areas based on histological
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properties of neurons was proposed by Brodmann (1908) and has since been widely ac-

cepted by neuroscientists. The recent advances in imaging technologies allowed scientists

to improve the parcellation proposed by Brodmann (1908). Glasser et al. (2016) proposed

a new parcellation with 180 areas per hemisphere bounded by sharp changes in cortical

architecture, function, connectivity, and/or topography using multi-model magnetic reso-

nance images from the HCP database. Based on the current trends, it is safe to say that

as our understanding of the brain improves, our need for higher resolution data acquisition

and processing will increase proportionally, too. Hence, tools that allow processing high

resolution data will be in high demand.

One of the revelations of the recent advances in brain studies is the realization that the

functional specialization of the brain regions alone cannot fully account for most aspects

of the brain function and that dynamic interactions across multiple regions are required

to accomplish cognitive processes (van den Heuvel and Sporns, 2013). One aspect of the

brain organisation that appear particularly important in enabling integration of distributed

neural information is that important integrative functions are performed by a specific set of

brain regions and their anatomical connections. In recent years, anatomical and functional

organization of the brain has been approached from the perspective of complex networks

and numerous studies described neural systems in terms of graphs or networks comprising

nodes (neurons and/or the brain regions) and edges (synaptic connections, interregional

pathways) (Fox et al., 2006; Vincent et al., 2007; Honey et al., 2007). The comprehensive

network map of the nervous system of a given organism is called its connectome and

represents a structural basis for dynamic interactions to emerge between its neural elements

(Le Bihan et al., 2001; Hagmann et al., 2003). Several studies have independently concluded

that human connectome combines attributes pertaining to specialization with attributes

that ensure efficient communication (integration). At the center of the latter lies network

elements that are often referred to as hub nodes/regions which are generally characterized

by their dense connectivity to other regions and their central placement in the network.
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4.2 The Human Brain as a Complex Network

Identifying the locations of hub regions as precisely as possible is very important from clin-

ical perspective since any damage to these regions is likely to cause more serious problems,

especially in cognitive functions requiring high integrative processes. This knowledge could

have immediate implications for neurosurgery such as deciding the location of surgical open-

ing, trade-off between removing tumour region and keeping hub region, applying/avoiding

radiation to hub regions.

Current literature on identifying the hub regions in the human brain rely highly on

network representations where the brain is parcelled into contiguous regions each corre-

sponding to a node, and the density of the white matter between any pair of these regions

corresponding to an edge. Several graph theoretical concepts such as strength, between-

ness, and coreness are then used as proxy to measure connectivity and centrality of nodes.

The advantage of using these proxy measures is the computational efficiency in that it

takes only seconds to provide a hubness rank for all the network nodes. However, it is very

common that a measure pertaining to connectivity provide completely different hubness

ranks than those obtained by a measure of centrality. Researchers, then, typically average

the ranks obtained by various measures to calculate an overall hubness rank.

Reconciling the discrepancy between connectivity-based and centrality-based ranks by

a simple average carries the risk to be an oversimplification of the underlying relationship.

In fact, it is known in the hub location literature that a high discrepancy between central-

ity and connectivity in a network is typically an indicator of an underlying multi-centre

hub topology, i.e., not a single contiguous hub region but multiple hub regions across the

network and a linear combination of the two measures often performs very poorly in iden-

tifying the optimal hub structure Klincewicz (1992). Therefore, one may argue that the

mathematical models for the HLPs could potentially be a more proper way to account for

the aforementioned discrepancy. HLP models provide not only a list of hub locations, but

also a complete list of flow pathways between pairs of nodes that elucidates the physical

reason why a certain node is more likely to be a hub.

One of the main contributions of this study is to provide a comparative computational

experiments in Section 4.3.1 to explore the potential of HLP models as an alternative tool
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in explaining the underlying hub organisation of the human brain. We attempt to do that

by using an existing dataset from the literature by Hagmann et al. (2008). The dataset is

generated by dividing the brain cortex into 998 ROIs with an average size of 1.5cm2 and

measuring the density of white matter between ROIs using diffusion spectrum imaging

(DSI) technology. It includes the following information:

• FiberDensity : A 998 × 998 connection matrix of 998 ROIs measured as the thick-

ness/density of white fiber between every pair of ROIs. This data roughly corresponds

to the flow matrix (W) used in hub location literation.

• EdgeLength: A 998 × 998 distance matrix of 998 ROIs measured as the length of

fiber between every pair of ROIs with nonzero fiber density. To account for the

distances between ROI pairs with no fiber connection, another matrix ShortestLength

is generated by calculating the shortest distances between every pair.

• ROICoordinates : A 3×998 matrix which consists of the three dimensional coordinates

of ROIs.

• ROILabels : A vector of size 998 which shows the Brodmann area each ROI belongs

to.

There are several issues to address before conducting computational experiments. Firstly,

the spatial separability property -which the Spatial approach is based upon- assumes eu-

clidean distances whereas the distances between two brain ROIs are recorded as fiber length

which does not necessarily satisfy triangular inequality. Moreover, when we compared the

recorded fiber lengths between two ROIs against the euclidean distances calculated based

on the ROI coordinates, we noticed for some ROI pairs, the fiber length was smaller than

the euclidean distance which indicates that there are measurement errors in the recorded

data as euclidean distance is the smallest possible distance between the two points in space.

By excluding these pairs, we calculated the correlation coefficient between the euclidean

distances and the fiber lengths as 0.904. This high correlation implies that the fiber con-

nections between two ROIs roughly follow a straight line which justifies using euclidean

distances as a proxy for the fiber lengths.
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Methodology adopted by Hagmann et al. (2008) to determine hub ROIs in the brain

network calculates the network measures such as degree, strength, coreness, efficiency and

centrality for each node and then ranks the nodes based on their overall score. They suggest

that this overall ranking could be interpreted as the “hubness” of a node. In the paper,

they report results on the low resolution brain map with 66 Brodmann areas. Following

same the steps, we first regenerated similar results for the high resolution brain map with

998 ROIs. Figure 4.3 shows the 20 highest ranking ROIs with respect to each network

measure mentioned above and the overall hubness rank.

a. Degree b. Stregth c. Coreness

d. Centrality e. Efficiency f. Overall

Figure 4.3: Hub ROIs found by each network measure

Several observations are due from this Figure 4.3. It is argued by Hagmann et al. (2008)
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that a hub ROI is expected to rank among the highest for all the attributes represented

by the aforementioned proxy network measures. It becomes evident from Figure 4.3, how-

ever, that the rankings with respect to these network measures do not necessarily concur.

Although there seems to be some overlap (along the area between two hemispheres), dis-

crepancies outweigh the similarities. For example, the centrality measure seems to suggest

a more distributed hub organisation across the brain map, whereas coreness suggests a

very concentrated hub region along the area between two hemispheres. On the other hand,

degree and strength provide very similar results in terms of the distribution of hub ROIs

across the brain map. This brings up the question: aren’t we biasing the overall hubness

rank towards the distribution provided by degree and strength as we essentially account

for the “same” distribution twice?

When combining multiple conflicting measures into a single overall measure, taking a

simple average is usually considered a naive approach since it ignores possibly different

weight factors associated with each measure. Although, using different weights for each

proxy measure may alleviate this issue to some extend, there are many other issues with

using proxy measures that are hard to address. Are these five proxy measures all that

one would expect a hub ROI to rank good at? An important measure that seems to be

missing, for instance, is the measure of interaction between hubs. Since hubs, by definition,

are interacting entities, one would expect the “hubness” of a node in a given network to

depend on the set of other hub nodes. This, however, is not a trivial measure to account for

by a simple proxy measure due to its inherent non-linearity. USApHMP model is known to

account for this non-linearity which is, in large part, the reason why it is very challenging

to solve very big problem instances.

4.3 Computational Experiments

Finding a mathematical model that captures the underlying mechanisms of hubs is an

essential step towards understanding the true nature of the brain hub organisation. This

is what we attempt to accomplish in this section by computationally testing the validity

of USApHMP in modelling the brain hub organisation and the effectiveness of Spatial
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algorithm in providing near-optimal solutions to large USApHMP instances. We conduct

experiments mainly to compare the results obtained by the state-of-the-art techniques in

the medical literature (Hagmann et al., 2008) and those obtained by the Spatial algorithm.

Throughout this section, we use the real BCN data provided in Hagmann et al. (2008)

which constitute the largest hub location problem instances (with n = 998 nodes) in the

literature to the best of our knowledge.

4.3.1 Comparison of SPATIAL and Hagmann

We, next, provide a comparison between the main results of Hagmann et al. (2008) and

the solutions found by the USApHMP model. It is worth mentioning that unless otherwise

stated, throughout the chapter the results pertaining to the USApHMP models are obtained

by using α = 0.5 since they appear to be in more agreement with the results of Hagmann

et al. (2008). In the original paper, they identify 16 Brodmann areas (posterior cingulate

cortex, the precuneus, the cuneus, the paracentral lobule, the isthmus of the cingulate, the

banks of the superior temporal sulcus, and the inferior and superior parietal cortex, in both

hemispheres) as hub regions, which corresponds to 236 ROIs in total. This implies that

almost one quarter of the whole brain cortex assumes a hub role. Moreover, this also

assumes that the ROIs within the same Brodmann area will all either be hub or non-hub,

which does not help much in isolating the specific hub regions. Finally, using USApHMP

to find p = 236 optimal hub ROIs in a network of n = 998 nodes would be computationally

infeasible. Hence, we resort to some simplifications.

First, we select only the top 10 hub ROIs identified by Hagmann et al. (2008) (shown in

Figure 4.4-a) since with p = 10 the problem becomes feasible to work on. Notice that hub

ROIs are spatially adjacent to each other. This implies that there is a single contiguous hub

region which is made up of 10 ROIs. However, it is known that USApHMP model typically

distributes the hubs all over the given map. Hence, it is very unlikely that USApHMP with

p = 10 hubs will reproduce similar results in terms of hub locations. On the other hand, the

spatial contiguity of hub region signals a connection with one of the problems introduced

in Section 3.3: the LRP. Specifically, if the original brain map with 998 ROIs is reduced

to a lower resolution map with approximately 100 contiguous regions, then the 1-hub LRP
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is expected to produce similar results to the one reported in Hagmann et al. (2008).

Figure 4.4-b shows the optimal solution to 1-hub LRP. The 10 ROIs identified as

hubs by LRP belong to the following brain areas: paracentral lobule, posterior cingulate

cortex, and precuneus in both right and left hemispheres. As expected, the locations of

the hub ROIs are roughly in agreement with those found by Hagmann et al. (2008). Slight

differences may be attributed to approximate nature of both approaches, and in principle,

they can be calibrated in a way to produce more similar results. For example, a different

parcellation technique for the LRP could be used so that one of the resulting parcels

contains exactly the same ROIs as the hub ROIs of Hagmann et al. (2008). In fact, just

to confirm, we manually placed Hagmann’s hub ROIs in a single parcel (P1) and divided

the rest of the ROIs into 99 parcels (P2, P3, ...P100). As argued, the resulting LRP finds

P1 as the hub region. When we calculated the objective value of the solution with hubs

identified by Hagmann et al. (2008) (za = 29883.75 for Figure 4.4-a), it turned out to be

better than that of the original 1-LRP (zb = 30906.03 for Figure 4.4-b) which indicates

that the objective function of USApHMP is suitable to assess the quality of a given subset

of hubs and also implies that there may be an even better subset with better objective

value.

To this end, we implemented another variant of USApHMP as follows: First, we find a

single hub ROI that is selected as the optimal hub for USA1HMP (i.e., single hub problem).

Then, we iteratively add new ROIs to the subset of hubs until we have p = 10 hub ROIs.

In doing so, we restrict the candidate ROI set only to those that are spatially contiguous

to the current hubs and greedily select the candidate addition of which to the current hub

set improves the objective function value the most. Figure 4.4-c shows this solution which

resembles the Hagmann’s more both in terms of the locations of hub ROIs (i.e., stretched

along the vertical axis) and in terms of the objective function value (zc = 28481.40).

These preliminary results are important as they imply that a variant (LRP or Greedy-

contiguous) of USApHMP model can be used to reproduce the results similar to those

reported in medical literature which are based solely on network topological measures.

The significance of this implication lies in what more USApHMP model can provide. A

mathematical model can tell us not only which ROIs are likely to behave as hubs but also

what makes them more favourable candidates for “hubness” compared to the others. To
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a. Hagmann b. 1−LRP c. Greedy

Figure 4.4: Comparison of hub ROIs found by Hagmann et al. (2008) and USApHMP

elaborate, there are two main factors that determine which nodes are selected to be hubs in

a given network: spatial centrality and flow-based centrality. The former simply indicates

how centrally a node is located in the network whereas the latter pertains to the amount

of flow that goes through close proximity of a node. The two are not always in perfect

agreement and often need to be reconciled. In fact, of the six network measures used in

Hagmann et al. (2008), some such as efficiency pertain to spatial/topological centrality

and some such as strength to flow-based centrality. We observed that there is a significant

discrepancy between the node ranks calculated according to different network measures.

This makes the assumption that average rank of a node is a good proxy for its hubness

an oversimplification. On the other hand, USApHMP provides an alternative framework

under which the two factors can be reconciled in a way to minimize the “transportation”

cost of the overall system.

4.3.2 Multi-center Hub Organisation

Moreoever, hub ROIs identified by network measures will likely always correspond to a

monocentric hub structure because typically two neighbouring nodes have similar scores
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on these network measures. However, monocentricity of the brain hub structures has not

yet been established. In fact, in the same study Hagmann et al. (2008) consider another

model where ROIs are clustered into different modules and hub ROIs are identified for each

module. This model is more similar to USApHMP in the general sense, yet it, too, is just

a descriptive model. Namely, it does not provide information on what is the advantage of

having a certain set of hub ROIs as opposed to a different set. Conversely, by providing

the pathways all pairwise flows are routed through for a given set of hubs, USApHMP

can provide deeper insight on the physical/economical advantage of one set over another.

Hence, it is worthwhile to illustrate the parallelism between the result of module-based

approach of Hagmann et al. (2008) and the results of Spatial(p = 6, α = 0.5, r = 66)

algorithm. Figures 4.5-a, b show the 6 allocation clusters identified by Spatial algorithm,

and by Hagmann et al. (2008), respectively on the superior view of the brain. To have a

better understanding of how the clusters look in 3D, we also included the lateral views of

left and right hemispheres for both Spatial and Hagmann in Figures 4.5-c-f. ROIs in each

cluster (module) are marked with the same color in both figures. Moreover, a straight line

is drawn between each ROI and the hub it is allocated to to illustrate the pathways.

a. Spatial (Superior) b. Hagmann (Superior)

x

c. Spatial (Lateral−Left)

y

x

d. Spatial (Lateral−Right)

x

e. Hagmann (Lateral−Left)

y

x

f. Hagmann (Lateral−Right)

x

Figure 4.5: Comparison of the six brain modules identified by SPATIAL and Hagmann et
al. (2008)

We observe a clear resemblance in the distribution of ROIs to clusters and modules.
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First of all, both figures reflect the highly symmetrical nature of the brain. Specifically,

both figures show that there are two clusters (marked with black and red colors) that span

across left and right hemispheres, whereas the remaining four clusters consist of ROIs only

from a single hemisphere (blue and pink from left hemisphere, green and turquoise from

right hemisphere, respectively). A symmetry is also apparent among these four clusters;

specifically, blue-green and pink-turquoise clusters are approximately pairwise symmetrical.

The only visible difference between Hagmann’s modules and Spatial’s allocation clusters

is the span of interhemispheric clusters (black and red). In particular, Spatial’s inter-

hemispheric clusters appears to be more widely spread than Hagmann’s which is mostly

constricted along the axis between the two hemispheres. To quantify the difference between

the two clustering, we solved a CHLP with Hagmann’s modules and compared its objec-

tive value (zH = 29936.71) against the objective value from the Spatial (zS = 29248.25).

2.35% relative gap between the two objective values can be interpreted as a quantitative

indicator of the similarity between the two solutions.

4.3.3 Benchmark Instances

Whether the ideal segmentation of the human brain indeed consists of 6 modules as sug-

gested by Hagmann et al. (2008) is an interesting research question. Unfortunately, it

requires a more elaborate computational analysis ideally with a bigger dataset collected

from multiple individuals to answer this question. Based on the results presented so far,

however, it seems like USApHMP model in general and the solution algorithm Spatial in

particular, could serve as a useful tool in such analyses. To this end, we finally provide the

objective values and the CPU times of Spatial(r = 66) for several BCN instances with

different p and α values.

These results may not serve to provide any important clinical insight, nevertheless,

they serve as a benchmark for future studies which aim to tackle very large instances

such as BCN. Similar to the observation from Table 3.4, the performance of the Spatial

algorithm deteriorates with increasing α in terms of CPU time. Another observation is that

increasing the number of hubs from p to p + 1 improves the objective value significantly

for the small values of p, however past a certain threshold - which seems to be around
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α = 0.1 α = 0.5 α = 0.9

p zS CPU (s) zS CPU (s) zS CPU (s)

2 38220.1 186.3 38658.2 486.2 39303.8 384.3
3 33002.6 261.0 33933.6 183.4 34767.9 196.0
4 28554.5 325.2 29556.1 345.7 30460.6 275.6
5 25822.7 236.8 27143.7 177.9 28061.6 278.2
6 24426.2 232.7 25724.9 267.8 26804.2 209.3
7 23326.3 389.5 24568.1 294.0 25645.0 433.0
8 22561.1 413.0 23760.8 658.4 24664.8 1769.9
9 21443.7 497.4 22728.3 1271.9 24154.4 4198.9

10 20386.4 519.9 22769.8 2608.7 24088.3 3933.4

Table 4.1: Objective values and CPU times of SPATIAL algorithm for different BCN
instances

pt = 8 -, the improvement is quite small. Potentially, this threshold point may be used

to figure out the optimum number of modules the human brain should be segmented to.

The justification for such an approach would be that there is no “economical” advantage

of further segmentation beyond pt where the objective value seem to converge to a certain

value. Obviously, to make such an assertion, one needs to first establish the validity of the

HLP model to effectively represent the underlying economical model of the human brain.

The validity of USApHMP model to represent the underlying economic nature of the brain

hub organisation needs to be tested with larger datasets and compared against the models

already proposed in the literature (Bullmore and Sporns, 2012; Avena-Koenigsberger et al.,

2018) which is beyond the scope of this study.

4.4 Conclusions

We opened up the application of hub location in the BCN with the largest and first three-

dimensional real dataset in the hub location literature. We hope this study is going to

motivate further research in developing optimization-based models that can help explain

the underlying economical/evolutionary advantage of hub organisation in the human brain
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networks, which currently seems to be a missing line of research in neuroscience literature.

Simple mathematical models that can approximate the physical dynamics in the hu-

man brain with a reasonable accuracy could become a very valuable tool for neuroscience

in uncovering the complicated nature of the human brain. From the neuroscience perspec-

tive, these generative models would be superior to descriptive network measures that are

currently in use (such as centrality, coreness, etc. mentioned in Section 4.2) as they not

only provide an answer to the question of “what is it?”, but also an (alternative) explana-

tion for the question “how is it?” On the other hand, from the OR perspective, a possible

application of mathematical models (such as hub location) in neuroscience is very valuable

since there are already some established knowledge about the nature of the human brain

and this knowledge should be accurately predicted by any model employed, which offers a

great opportunity for the purposes of model validation.
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Chapter 5

Conclusions and Future Work

It is unavoidable that with the exponentially increasing amount of data being collected

from all different sources, mathematical models very elegant but without the ability to

solve practically meaningful size problems will eventually become obsolete. In this thesis

work, we showcased how data-driven methods can be adopted to alleviate one of the major

challenges in large scale optimization - the computational efficiency (scalability) - on three

different levels. We hope the ideas proposed and conceptually proven to work efficiently in

this thesis will pave the way to the proliferation of similar studies in the literature.

5.1 Structure Detection

In this section we provide a discussion based on the insights we gained from the results

in Section 2.4 and other computational analyses we did not explicitly include. We present

several important observations in the structure detection and Lagrangian relaxation con-

texts and discuss possible extensions of the proposed approach as well as potential future

research directions.

A rigorous investigation of Figure 2.4 reveals that, for the 16 instances where detected

BBD structures consisted of well-balanced blocks, there is more to the balance of blocks

than just size; i.e., the blocks have nearly (if not completely) identical structures. In terms
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of graph representation, the subgraphs corresponding to each block are (nearly) isomorphic.

The implications of this observation are far-reaching. First, this implies the possibility of

using the solution of one subproblem to obtain solutions to other subproblems, hence

significantly reducing the computational costs. Second, the idea of detecting isomorphic

subgraphs can be incorporated into the structure detection algorithms to enhance the

quality of structures.

The fact that the KEE algorithm detects such isomorphic subgraphs by coincidence

(i.e., without explicitly looking for them) already shows great promise for the potential of

such approaches. Cordella et al. (2001) provide an efficient algorithm for matching large

graphs; i.e., determining whether two input graphs are isomorphic. It is, therefore, possi-

ble to measure the degree of isomorphism in a detected structure. A very straightforward

way would be to do a pairwise comparison on the isomorphism of the subgraphs corre-

sponding to diagonal blocks and calculate the ratio of the number of pairwise isomorphic

subgraphs to the total number of pairs. However, this would be useful only at the stage

of “selecting among alternative structures detected”, rather than looking for isomorphism

at the detection stage. The latter requires solving an extended problem, known as graph

subisomorphism, where the input graphs are of different sizes, and the goal is to check

whether any subgraph of the larger graph is isomorphic to the smaller graph, and if so, to

find the mapping between the vertices of the two graphs.

We have experimented the algorithm proposed by Cordella et al. (2001) and observed

that it is capable of detecting isomorphism within under a second for moderately large

graphs. However, when determining the subisomorphism, it becomes inefficient as the

difference between the sizes of two graphs increases, which hinders its direct usage in a

computationally efficient BBD structure detection algorithm. Finally, despite the implica-

tion of weakness, the expression “nearly identical” also points to another potential research

avenue: identification and reincorporation of “missing information” in the problem descrip-

tion.

Our test results show that the KEE algorithm performs very effectively in detecting

the best inherent BBD structures. However, it is evident from several examples among

the test instances that the best BBD structure is not always the best structure in terms

of the Lagrangian bound (see, for example aflow30a and aflow40b). This observation has
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two implications: (1) while relaxing constraints/rows, one has to consider putting more

weight on the rows with more relevant information. Bergner et al. (2015) introduce a

few potential measures to this end, but only on the variables/columns. Identification

of information-rich rows from the composition of constraint matrix may prove worthy of

further investigation. (2) Lagrangian relaxation (root node solution of DWR) may not be

the most efficient way of exploiting the advantages of a good BBD structure. A complete

DWRDWR implementation (with intelligent branch-and-price policies) using the BBD

structures detected may potentially be a more efficient way of solving large-scale MIP

instances than commercial solvers. As mentioned in Section 2.2, several frameworks with

generic branch-and-price implementations are already available in the literature.

An interesting observation revealed itself with an earlier version of our proposed algo-

rithm. The naive version of our algorithm was not able to detect a nice structure for the

pp08a instance which we knew, by visual inspection, was inherent in the constraint matrix.

However, it was able to detect such a nice structure for the pp08aCUTS instance which

appears to be the same problem, only with some additional cuts (probably by a commercial

solver) in the constraint matrix. A similar case was observed with the gesa2-o and gesa2

instances. This observation implies that it is possible to overlook a good inherent structure

due to the sparse nature of a matrix and that the addition of certain cuts, thereby alter-

ing the original composition of the matrix, may prove useful in detecting superior BBD

structures. This implication could lead to a promising variation of our algorithm since

commercial solvers usually obtain tight bounds at the root node by adding valid cuts to

the original problem.

To explore the potential of this approach, we modified the constraint matrices of the

test instances by adding the cuts generated by CPLEX at the root node to the original

matrices and executed our algorithm on the modified constraint matrices. Unfortunately,

our limited analysis on a few test instances was to no avail. For some instances, the detected

structures were inferior to those detected on the original matrices which meant little, if any,

improvement in the bound would be achieved by Lagrangian relaxation. For the instances

where good structures were detected on the modified matrices, the improvement of the

Lagrangian bound which can be attributed to detected structure, i.e., not to the added

cuts, was also negligible. The former can be attributed to the aggressive addition of cuts
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by Cplex at the root node which inevitably corrupts the inherent BBD structure by adding

more noise to the constraint matrix. The latter, on the other hand, seems to be another

example of the observation we discussed earlier, i.e., a good structure does not always lead

to a good bound. One possible way of exploring the potential of this approach would be

to control the cutting plane heuristics of commercial solvers and check whether there exist

certain types of cuts which provide strong bounds without distorting the inherent block

diagonal structures much.

5.2 Spatial separability in hub location problems

We uncovered and investigated an important feature of optimal hub-and-spoke networks

that we used to devise a solution methodology to solve large HLPs. The effectiveness of the

proposed methodology was tested on well-known benchmark instances from the literture

as well as a new dataset originating from brain connectivity networks which is introduced

as a new application of the HLPs. Computational experiments showed that the proposed

algorithm - Spatial - is very effective both in terms of computation time and optimality

gap and is capable of handling very large instances (with up to 1000 nodes) that has never

been tackled in the literature so far, to the best of our knowledge.

There is a plethora of future research directions in this line of research. For example,

spatial separability seems to prevail in the vast majority of the hub-and-spoke networks.

This raises the question whether the few cases which violate this feature can be singled

out by some mild assumptions so that the objective function of the USApHMP satisfies

the necessary conditions of Barnes et al. (1992). The two-dimensional space in which we

have sought spatial separability consists only of the information on the location of the

nodes and completely overlooks the flow information. Is it possible to introduce some

extra dimensions which encapsulate the flow information such that incorporation of these

dimensions eliminates the few non-separable cases and restores the spatial separability (in

higher dimensions) as a property of the optimal solutions of USApHMP? If so, what would

be the physical meaning of these dimensions and what is the best way to express these

extra dimensions mathematically? The simplest idea that comes to mind is to calculate
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for each node i the fraction of total flow that is between the nodes falling to the left

(bottom) of node i and the nodes falling to the right (top) of node i. When we re-checked

the spatial separability with these additional dimensions, all the non-separable instances

we had among our random instances hold the separability property. This indicates that

there could be a way to impose spatial separability as a rule (rather than just a consistent

pattern) by introducing proper flow-based dimensions.

5.3 Hub organisations in human brain connectivity

networks

A new application area (BCN) for hub location was introduced with the largest and first

three-dimensional real dataset in the hub location literature. Computational experiments

showed that the results established in the medical literature can be reproduced to a certain

degree using the proposed approach. This supports the claim that HLP models in the

OR literature could potentially become very valuable tools in further investigation of the

complex hub organisation of the human brain.

The similarity of the results obtained by 1-hub LRP and those of Hagmann et al.

(2008) signals that there may be a need for a mathematical model of a related problem.

The problem could be phrased as follows: “Given p the number of distinct hub regions and

a limit r on the total number of ROIs which can be hubs, what is the best way to distribute

r ROIs among p spatially contiguous regions”. Such a model would combine the strengths

of both approaches, i.e., the tendency of USApHMP to distribute hubs over the whole

map and the ability of network measures to result in similar hubness for spatially adjacent

nodes. Similar studies where imposing connectivity constraints on existing models can be

found in literature (Carvajal et al., 2013; King et al., 2012).

This study aimed just to provide an introduction to the brain connectivity networks

as a new application of hub location problems. Although some of the results obtained

in this study coincided with the findings in the literature, it also became evident that a

more specialized model of the hub location problems may be required to best represent the

dynamics of the brain networks. For example, the sparsity in the actual fiber connections
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should be taken into account. Moreoever, the fiber densities could be considered as capac-

ities of the arcs between ROIs and the actual flows could be represented by the functional

connectivity datasets which were not included in this study. Relating the architecture

of functional and structural connectivity networks is one of the most challenging topics

within human connectome project for which such a specialized model could provide a fresh

perspective.
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Brodmann, K. (1908). Beiträge zur histologischen lokalisation der grosshirnrinde.
J.Psychol. Neurol., 10:231–246.

Bryan, D. (1998). Extensions to the hub location problem: Formulations and numerical
examples. Geographical Analysis, 30(4):315–330.

Bui, T. N. and Jones, C. (1992). Finding good approximate vertex and edge partitions is
NP-hard. Information Processing Letters, 42(3):153–159.

Bullmore, E. and Sporns, O. (2012). The economy of brain network organization. Nature
Reviews Neuroscience, 13(5):336–349.

Busygin, S., Prokopyev, O., and Pardalos, P. M. (2008). Biclustering in data mining.
Computers & Operations Research, 35(9):2964–2987.

89



Calık, H., Alumur, S. A., Kara, B. Y., and Karasan, O. E. (2009). A tabu-search based
heuristic for the hub covering problem over incomplete hub networks. Computers &
Operations Research, 36(12):3088–3096.

Campbell, A. M., Lowe, T. J., and Zhang, L. (2007). The p-hub center allocation problem.
European Journal of Operational Research, 176(2):819–835.

Campbell, J. F. (1990). Freight consolidation and routing with transportation economies
of scale. Transportation Research Part B: Methodological, 24(5):345–361.

Campbell, J. F. (1994a). Integer programming formulations of discrete hub location prob-
lems. European Journal of Operational Research, 72(2):387–405.

Campbell, J. F. (1994b). Integer programming formulations of discrete hub location prob-
lems. European Journal of Operational Research, 72(2):387–405.

Campbell, J. F., Ernst, A. T., and Krishnamoorthy, M. (2005a). Hub arc location problems:
part iiformulations and optimal algorithms. Management Science, 51(10):1556–1571.

Campbell, J. F., Ernst, A. T., and Krishnamoorthy, M. (2005b). Hub arc location problems:
part iintroduction and results. Management Science, 51(10):1540–1555.

Campbell, J. F. and O’Kelly, M. E. (2012). Twenty-five years of hub location research.
Transportation Science, 46(2):153–169.

Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J. P., and Weintraub, A. (2013).
Imposing connectivity constraints in forest planning models. Operations Research,
61(4):824–836.

Catalyurek, U. V. and Aykanat, C. (1999). Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and
Distributed Systems, 10(7):673–693.

Chakravarty, A. K., Orlin, J. B., and Rothblum, U. G. (1985). Consecutive optimizers
for a partitioning problem with applications to optimal inventory groupings for joint
replenishment. Operations Research, 33(4):820–834.

Clauset, A., Newman, M. E., and Moore, C. (2004). Finding community structure in very
large networks. Physical Review E, 70(6):066111.

Contreras, I. (2015). Hub location problems. In Location Science, pages 311–344. Springer.

90



Contreras, I., Cordeau, J.-F., and Laporte, G. (2011a). Benders decomposition for large-
scale uncapacitated hub location. Operations Research, 59(6):1477–1490.

Contreras, I., Cordeau, J.-F., and Laporte, G. (2011b). Stochastic uncapacitated hub
location. European Journal of Operational Research, 212(3):518–528.

Contreras, I., Dı́az, J. A., and Fernández, E. (2011c). Branch and price for large-scale
capacitated hub location problems with single assignment. INFORMS Journal on Com-
puting, 23(1):41–55.

Contreras, I., Tanash, M., and Vidyarthi, N. (2013). The Cycle Hub Location Problem.
CIRRELT, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logis-
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