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Abstract 
 

Phosphorus (P) is an essential nutrient in fertilizers that are necessary for food production. 

Wastewater may represent a renewable source of nutrients if methods for recovering P from 

dilute wastewater streams can be developed. Adsorption, a low cost and efficient process, has the 

potential to recover P from wastewater as it can transfer contaminants from the liquid to the solid 

phase for easy separation. 

This study evaluated fourteen commercial sorbents for potential phosphorus recovery from 

synthetic wastewater (SWW) using batch testing. Commercially available sorbents (e.g. ion 

exchange resins (IEX), granular ferric oxide, hybrid IEX and activated alumina) were obtained 

from several companies and tested for phosphate removal in a 48-hour adsorption test. Seven of 

the sorbents exhibited substantial phosphate removal were then tested for recovery using acidic 

(HCl), basic (NaOH), salt (NaCl) and basic salt (NaOH + NaCl) desorption solutions. Sorbents 

were evaluated with respect to P recovery from the SWW. An IEX sorbent was found to recover 

the largest fraction at 23 % P from the SWW; while all other sorbents recovered less than 20 % P 

from the synthetic wastewater.  

The three top performing sorbents from batch testing were chosen for column testing to 

investigate their potential for P adsorption and recovery with a specific target of generating a 

concentrated chemical desorption effluent. Sorbents included two metal oxide sorbents (granular 

ferric hydroxide and activated alumina) as well as an ion exchange (IEX) resin. After the 

sorbents were tested for P removal in column tests, chemical desorption solutions were utilized 

to recover P from the spent sorbents. Recovery from metal oxide sorbents was conducted using 

basic (NaOH) and acidic (HCl) solutions while recovery from IEX sorbent used salt (NaCl) and 

basic salt (NaOH + NaCl) solutions in addition to acidic and basic treatments. Sorbents were 

evaluated on the basis of P adsorption as well as recovery from the sorbent and the initial 

synthetic wastewater (SWW) stream. The IEX sorbent demonstrated the highest removal of 64 % 

P from the SWW, while the metal oxide sorbents adsorbed between 23 and 43 % P. Desorption 

using NaOH was most effective for metal oxide sorbents, which were found to recover 39 % P 

(granular ferric hydroxide) and 21 % P (activated alumina) from the initial SWW. Sorbent C 

recovered the largest quantity of P (61%) from SWW with the use of NaCl. Due to its good 

performance, sorbent C was used to recover P from two wastewater samples. Using NaCl, 

sorbent C recovered 47 and 15 % of P from secondary and final effluent samples. 

In addition to a shift in wastewater treatment to P recovery, wastewater treatment is also focusing 

on producing effluent that meets ultra-low effluent P discharge limits. In order to achieve this 

goal, non-reactive phosphorus (nRP) must be removed; nRP contains condensed phosphates and 

organic phosphorus (OP) species that are recalcitrant in secondary wastewater treatment and tend 

to remain in final effluents.  

An advanced oxidation process (AOP) which couples TiO2/UV photolysis with ultrafiltration 

(UF) to oxidize and remove nRP species was tested. Tests utilizing a mixture of two OP model 

compounds were conducted to determine the effect of TiO2/UV photolysis on the model 



vi 

 

compound removal and to elucidate the mechanisms of phosphorus removal; nRP was removed 

through adsorption and UV irradiation. The AOP was also tested for P removal from three 

municipal wastewaters and one automotive industry effluent. In all cases, phosphorus removal 

was found to occur through filtration, surface complexation onto the TiO2 and UV oxidation. 

Total phosphorus removal efficiencies between 90-97 % were observed for the municipal 

wastewater effluents and 44 % removal was observed in the industrial effluent after treatment 

using AOP. Conversion of nRP to reactive P (RP) was evident during TiO2/UV treatment of 

samples that had high concentrations of nRP; the total amount of phosphate liberated was not 

quantified due to phosphate binding to TiO2.   In summary, the AOP effectively oxidized nRP to 

RP, achieving a high level P removal in real wastewater effluents and retaining P on the TiO2 

solids. 

Investigations into P recovery by TiO2 nanoparticles revealed that adsorption of P onto TiO2 was 

due to a combination of inner sphere complex formation and calcium bridging. Precipitation of 

calcium phosphate was observed at pH values above 10. Recovery of P from TiO2 after 

concentrating of the TiO2 solids and application of a chemical desorption solution was assessed. 

Recovery with an NaOH desorption solution was minimal due to calcium phosphate precipitation 

while recovery using HCl was limited, releasing only 2 % of adsorbed P. Recovery from TiO2 

nanoparticles loaded with calcium phosphate precipitates was also investigated. A recovery of 35 

% P was observed from TiO2 solids via the dissolution of the precipitates. 
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1.0 Introduction 
 

1.1 Problem Statement 
 

The recognition that wastewater contains valuable resources has caused a paradigm shift from 

nutrient removal to recovery in wastewater treatment (LeCorre et al., 2009). Presently, the 

majority of wastewater treatment plants use chemical and biological treatment to remove 

phosphorus (P) from the wastewater stream, collecting it in the biosolids for disposition 

(Valsami-Jones, 2001). This traditional form of treatment is slowly being replaced with nutrient 

recovery technologies and wastewater treatment plants (WWTPs) are being renamed as water 

resource recovery facilities (WRRFs). As of 2015, there were six WRRFs in North America 

which recover P using struvite crystallization (Latimer et al., 2015). Struvite 

(NH4MgPO4·6H2O), is a valuable, inorganic P precipitate that can act as slow release fertilizer 

(Desmidt et al., 2015).  

While the goal of P recovery is the new focus of wastewater treatment, phosphorus in 

wastewaters must still be removed to low concentrations to avoid the detrimental effects of 

eutrophication in receiving waters (Cordell et al., 2009). In some cases, persistent non-reactive 

phosphorus (nRP) needs to be removed to achieve ultra-low effluent P concentrations. This is 

important in areas with sensitive receiving waters prone to eutrophication that require stricter 

phosphorus effluent discharge limits (Clark et al.,2010); nRP species can make up 26 to 81 % of 

the total P in treated wastewater effluents as it is more recalcitrant, and not receptive to 

biological and chemical nutrient removal processes (Qin et al., 2015). The oxidation of nRP 

would benefit P recovery technologies as organic P species are not available for nutrient 

recovery and thus, are lost to landfill (Latimer et al., 2015). There is a need for technologies that 
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can oxidize nRP to inorganic P species which are more susceptible to removal and potentially 

recovery, and as such, could help reach the high levels of removal necessary in treated 

wastewater effluents. 

Finally, a limitation of struvite-based recovery is that the concentration of P in the wastewater 

stream needs to be greater than 100 mg P/L for these technologies to be effective (Xie et al., 

2016). Phosphorus concentrations in domestic wastewater influents are low (< 10 mg P/L) 

limiting the implementation of struvite technologies to integration with enhanced biological 

phosphorus removal (EBPR) where P has been concentrated to suitable levels (Ye et al., 2017). 

Wastewater treatment plants which do not utilize EBPR require technologies that can concentrate 

phosphorus into a stream which meets the high concentrations necessary for nutrient recovery. 

In summary, with the shift to P recovery, WWTPs without EBPR require technologies for P 

recovery that collect P from dilute waste streams and concentrate P into a form suitable for 

struvite recovery. Simultaneously, a method is required to oxidize nRP in wastewater streams to 

allow this fraction of P to be recovered while also achieving ultra-low P concentrations in treated 

wastewater effluent. 

 

1.2 Objectives and Scope 
 

The goals of this study were:  

1) To identify commercial sorbents that can adsorb and subsequently desorb large quantities of 

phosphorus to recover P from wastewater treatment plant effluents. 

 

In laboratory bench testing, existing commercial sorbents were investigated for phosphorus 

adsorption and desorption. An ideal sorbent would have the ability to adsorb large quantities of P 
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and achieve high level P removal in wastewater effluents. Sorbents would also be regenerated 

via chemical desorption and hence, chemical desorption was also investigated. Desorption 

solutions were evaluated on liberation of P from the sorbent and concentration of the recovery 

solution. An ideal desorption solution would recover all adsorbed P and produce a recovery 

solution with high P concentration which would be a useful feedstock for nutrient recovery 

technologies (i.e. struvite crystallization). 

The sorbent and the corresponding desorption solution that demonstrated the best performance 

was used to remove and recover P from real wastewater effluents.  

 

2) To determine if a commercial advanced oxidation process could be effective at oxidizing 

organic P species in wastewater treatment effluent. 

 

Two model compounds were tested in a mixture and individually, to evaluate the ability of a lab-

scale commercial UV/TiO2 advanced oxidation process (AOP) coupled with ultrafiltration to 

oxidizing non-reactive phosphorus to reactive phosphorus. Model compounds were used to gain 

insight into the mechanism of non-reactive phosphorus removal through the action of TiO2/UV 

photocatalysis.  The AOP unit was also used to treat real effluent samples to evaluate the ability 

to breakdown nRP species in a complex wastewater matrix.  

 

3) To test TiO2 nanoparticles as a means to concentrate P into the solid phase and then transfer to 

a concentrated aqueous phase suitable for struvite recovery. 
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Phosphorus adsorption onto TiO2 and its potential for P recovery from wastewater was 

investigated using a lab scale ultrafiltration unit employed to separate the TiO2 from the 

wastewater and to concentrate the TiO2 nanoparticles.  Concentration of P in the recovery stream 

through concentration of the P-loaded TiO2 solids, followed by pH adjustment was examined to 

optimize chemical use for recovery.  

4) Propose a strategy to oxidize non-reactive phosphorus and remove liberated reactive 

phosphorus from the liquid phase to the solid phase for subsequent recovery into a solution 

suitable for P recovery. 

 

1.3 Significance  
 

The knowledge gained in this study will give insight into methods of adsorption for phosphorus 

recovery. It also improves the understanding of the mechanism of nRP removal though TiO2/UV 

photolysis as well as providing insight into the approaches that could be used to reduces nRP in 

wastewater effluents. The investigations made in this study towards nRP oxidation also provide a 

commercial technology that could be implemented into current practice to reduce nRP in 

wastewater effluents. Finally, the information obtained in this study can provide insight to use of 

TiO2 nanoparticles as a seed for calcium phosphate precipitation as potential method for 

phosphorus recovery. 

 

1.4 Outline of Thesis 
 

This thesis is divided into eight chapters and including an introduction to the project in Chapter 

1. The literature review portion of this thesis is divided into two chapters. Chapter 2 is a 
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literature review on nutrient recovery using adsorption processes which has been published as a 

WERF White report titled “State of Knowledge of the Use of Sorption Technologies for Nutrient 

Recovery from Municipal Wastewaters” (NUTRIR06x, 2014). A literature review exploring the 

oxidation of organic phosphorus is presented in Chapter 3. Chapter 4 contains the methodology 

and results from batch tests that screened commercial sorbents for phosphorus removal and 

recovery using chemical desorption solutions. Experimentation and results of column tests 

further exploring the top three performing sorbents are presented in Chapter 5. Chapter 6 

describes the experimental method and results obtained from oxidation of non-reactive 

phosphorus using a lab-scale commercial TiO2/UV AOP. Methodology and results from 

attempting to recover the liberated orthophosphate from photolysis are presented in Chapter 7. 

The last chapter in this thesis is Chapter 8 which summarizes the various conclusions of the 

experimental work and discusses recommendations for future work.  

Chapters 4 through 7 are written in manuscript format and intended for submission to peer 

reviewed journals for publication consideration. References are provided at the end of each 

chapter. 
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2.0 Literature Review: Adsorption for Nutrient Recovery 

 
 

 

This work was published by International Water Association (IWA) Publishing and can be found 

online at: https://www.iwapublishing.com/books/state-knowledge-use-sorption-technologies-

nutrient-recovery-municipal-wastewaters-nutrients 

 

 

Gray, H., Parker, W. & Smith, S. 2015. State of Knowledge of the Use of Sorption Technologies 

for Nutrient Recovery from Municipal Wastewaters. Water Intelligence Online, 14, 

9781780407319. 

 

 

https://www.iwapublishing.com/books/state-knowledge-use-sorption-technologies-nutrient-recovery-municipal-wastewaters-nutrients
https://www.iwapublishing.com/books/state-knowledge-use-sorption-technologies-nutrient-recovery-municipal-wastewaters-nutrients
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2.1 Problem Statement 

 

Fertilizer is an essential part of food production. It nourishes soil and prepares the ground for 

growing crops for human and livestock consumption. The components in fertilizers that are 

required for the growth of plants are phosphorus and nitrogen, nutrients which cannot be 

substituted (Hao et al., 2013). Because nitrogen and phosphorus are absolutely necessary for 

food production there was cause for concern when it was reported that worldwide mining of 

phosphate rock is expected to peak in the year 2030; complete exhaustion of global phosphate 

rock stores is expected to occur in the next 50 – 100 years (Cordell et al., 2009). 

Due to the threat to global crops and livestock, methods to reduce use of phosphorus and 

nitrogen have been put into play in hopes of allowing stores to last longer (Hao et al., 2013). 

However, the solution to the problem is not limiting the use of essential nutrients. Over time the 

stores of phosphorus will still be depleted. This problem has highlighted the necessity of having 

alternate sources of the phosphorus and nitrogen. An opportunity exists in harvesting nutrients 

from wastewater. 

Use of wastewater as a nutrient source will be one of the biggest gains in nutrient recovery (Hao 

et al., 2013). Wastewater treatment views nutrients as nuisance contaminants that cause 

eutrophication in receiving waters. To lower the amount of nutrients being introduced to 

wastewater, manufacturers have stopped adding phosphate into their products (e.g. detergents). 

However, even with this reduced input of phosphorus, wastewater streams can deliver an average 

of 3 mg P/ (person-day). Hence wastewater is still a significant source of phosphorus (Daigger, 

2009).   
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Significant effort has been put into developing treatments to achieve high levels of phosphorus 

and nitrogen removal. With nutrient limits getting increasingly tight, operational costs and 

complexity of treatments are increasing (Gu et al., 2007). Developing a low cost technology that 

recycles nutrients and produces low nutrient level effluent will not only help cut operational 

costs but also give wastewater treatment plants a source of income by selling the recycled 

nutrients back to industry (de-Bashan et al., 2004). Adsorption offers a highly efficient and 

stable, low cost technology for phosphorus and nitrogen removal; desorption of the nutrients 

from the sorbent will allow phosphorus and nitrogen to be easily recycled using nutrient 

recycling technologies.  This report summarizes the state of knowledge on the use of sorption 

technologies for recovering nitrogen and phosphorous from municipal wastewaters.  Gaps in the 

literature that should be addressed to increase the viability of this application are identified.  

 

2.2 Sustainability in Wastewater Treatment 

 

Wastewater is rich in phosphorus (P) and nitrogen (N), nutrients that are necessary for the 

development of life. In the wastewater industry, these nutrients are seen as nuisance 

contaminants due to the negative effect their presence has on receiving waters. Eutrophication is 

caused by the introduction of N and P to the aquatic environment. Addition of the nutrients lead 

to algal blooms which cause a decrease in dissolved oxygen concentrations and ultimately death 

in higher aquatic organisms (van Loon and Duffy, 2000; Love et al., 2010). Studies indicate that 

phosphorus plays the major role in eutrophication, causing eutrophic conditions to develop in 

oligotrophic waters with phosphorus concentrations as low was 20 µg P/L (Mayer et al., 2013). 

Since eutrophication has such a negative impact, wastewater effluents are highly regulated and 

discharge limits of N and P are continually decreasing.  
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Conventional wastewater treatment uses technologies to remove contaminants producing 

clarified water that can be released back into aquatic systems without adverse effects (Metcalf 

and Eddy, 2003). The goal of current wastewater treatment is the outright removal of nutrient 

species with nitrogen being outgassed and phosphorus most often ending up in landfill bound in 

the sludge. Phosphorus can be removed from wastewater through chemical precipitation and 

enhanced biological removal (Metcalf and Eddy, 2003). In chemical precipitation, metal salts are 

added to wastewater to remove inorganic phosphorus (i.e. phosphate) through precipitation 

(Sedlak, 1991). Biological phosphorus removal cultures bacteria that, under the right conditions, 

store large amounts of phosphate in poly-phosphate deposits in their cell bodies (Grady et al., 

2011). In conventional treatment, N is removed from wastewater using nitrification and 

denitrification processes. In these processes, bacteria remove ammonia from wastewater and 

release it into the atmosphere as N2 gas. This process has little to no effect on the nitrogen cycle 

(Mulder, 2003). 

The depletion of phosphate stores worldwide has pushed phosphorus recovery into the 

foreground to help alleviate the strain on natural mined phosphate ore (Biswas et al., 2007; 

Cordell et al., 2009). Since there is little impact on the nitrogen cycle, nitrogen recycling has 

received less attention in recent years. After all, nitrogen is an abundant element with nitrogen 

gas making up 78% of the atmosphere (Erisman et al., 2008).  However, implementing nitrogen 

recovery can reduce operating costs of wastewater treatment plants as well as reduce the cost of 

fertilizer production. Nitrification and denitrification require energy for aeration and pumping 

increasing costs which can be saved through nitrogen recycling (Malovanyy et al., 2013). Also, 

when nitrogen is released in the form of N2 gas, it is in a form of nitrogen that cannot be reused 

without further processing. Nitrogen fertilizers are currently manufactured using ammonia (NH3) 
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obtained through the Haber Bosch process; Figure 2-1 depicts the cycle of nitrogen through 

wastewater treatment and the Haber Bosch process. The Haber Bosch process converts N2 gas to 

NH3 gas through the use of high temperatures and pressures introducing high cost (Erisman et 

al., 2008). Capturing the nitrogen in wastewater can provide aqueous ammonia for various 

industries preventing the added step of converting N2 gas to ammonia. 

Once implemented, nutrient recovery technologies will have a significant role in the 

development of sustainable waste and wastewater treatments (Daigger, 2009). The evaluation of 

conventional P removal led to the discovery that existing technologies will prove to be difficult 

or impossible to use for recovery. Chemical P removal is efficient in achieving low levels of P 

removal however the treatment makes it difficult to recover P from the sludge because the 

precipitated P species are often not in a form available to plants. Phosphate is the target species 

for P recovery (Rittman et al., 2011). On the other hand, the biosolids that remain after biological 

P removal can be recycled in soil. However, biosolids are land applied approximately only 1% of 

the time due to other contaminants in the biosolids (Rittman et al., 2011).   

A review of conventional treatment has led to the recognition that traditional removal methods 

have limitations that also drive the need for better treatment technologies in general. Existing 

“traditional” treatment of wastewater is unsustainable (Daigger, 2009). Chemical treatment has 

high associated cost and often problems arise when considering sludge handling and disposal 

(Rodrigues et al., 2010; Biswas et al., 2007). Biological removal has its own set of difficulties. 

Treatment using microorganisms is lengthy, complex and requires considerable investment in 

infrastructure (Long et al., 2011). Although there is constant push to improve conventional 

technologies, even the best available technologies are reaching their limits in meeting human and 

environmental needs (Daigger et al., 2009; Mayer et al., 2013). These issues with conventional 
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treatment add to the necessity to develop a technology that can recover nutrients from 

wastewater. 

 

 

Figure 2-1: The cycle of nitrogen through wastewater treatment and the Haber Bosch 

process. 

 

One of the major challenges for nutrient removal is that there are currently no economic 

incentives for nutrient recycling. Current financial models indicate that the cost of mined 

phosphate rock is lower than that of phosphate recovered from wastewater (Guest et al., 2009). 

However, after review of the models, it was found that most models only accounted for internal 

cost of nutrient recovery neglecting the external environmental benefits such as reduced impact 

of nutrients on source waters. Once models were adjusted to include the environmental benefits 
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of nutrient recycling, nutrient recovery was found to be economically viable (Molinos-Senante et 

al., 2010). Even with the support of financial modeling, more can be done to help make the 

process more economically viable. Use of technologies that require less energy and do not 

require specialized training can help reduce financial burden.  

Wastewater contains a number of components other than nutrients that are valuable resources. 

Heat energy, carbon and water can all be recovered from wastewater adding further motivation 

to change treatment of wastewater to recovery (Ashley et al., 2011). Technologies which can 

capture the value added components of wastewater are slowly being implemented in wastewater 

treatment. One such technology includes anaerobic membrane bioreactors (AnMBR) which treat 

domestic wastewater without aeration, decreasing sludge production and operating costs, and 

producing an energy rich by-product in the form of methane biogas (Lew et al., 2009). The 

resultant AnMBR effluent is low in suspended solids and possesses a high nutrient concentration 

due to the limited biomass growth under anaerobic conditions. In a review of the AnMBR 

process, Smith et al. (2012) emphasized that technologies need to be employed for post-

treatment to remove N and P to allow the discharge of the effluent without the risk of 

eutrophication.  

Application of biological nutrient removal after AnMBR systems can be challenging due to 

insufficient quantities of chemical oxygen demand which are required by microorganisms (Smith 

et al., 2012). The gap in technology presents an opportunity for nutrient recovery processes. A 

nutrient recovery process exploiting microalgae to take up nutrients with the exhausted 

microalgae to be used in fertilizer for land application has been reported (Ruiz-Martinez et al., 

2012). The system showed promising removal of nitrogen (67.2 %) and phosphorus (97.8 %); 

however, effluent nutrient concentrations fluctuated in correlation to influent concentrations that 
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ranged from 42.6 to 81.4 mg NH3-N/L and 5.1 to 10.5 mg P/L. The system required pH 

adjustment, a source of uniform photosynthetically active radiation throughout the reactor, and 

the monitoring of additional variables for optimal nutrient removal that increased the operating 

costs for the system (Ruiz-Martinez et al., 2012).  

A low cost, highly efficient treatment option of increasing interest for nutrient recovery is the 

process of adsorption. Adsorption technologies require little energy input and can be adapted to 

meet the needs of different wastewater treatment plants (Li et al., 2014; Long et al., 2011).  Used 

in solid–liquid separation, adsorption is already known to be a useful technology and has been 

implemented in water and wastewater treatment plants worldwide (Crittenden et al., 2012). 

Currently, the limitation of adsorption lies with finding a sorbent which will be selective for 

phosphorus and nitrogen over other aqueous species and that under appropriate conditions will 

release targeted sorbates.  A summary of the research that has been conducted in this area is 

presented in Section 2.4. 

 

2.3 Adsorption Literature 

 

At its essence, adsorption is the process of accumulating a material, called a sorbate, at an 

interface. Usually, the sorbent is a solid and the interface can lie between the solid and a liquid or 

gas (Crittenden et al., 2012). For nutrient recovery in wastewater, the sorbent collects aqueous 

species from the wastewater onto its surface. The process of adsorption requires several transport 

steps to situate the sorbate in its final location where it will attach to the sorbent. A schematic of 

the adsorption process is shown in Figure 2-2. The first step of adsorption is the movement of the 

contaminant from the bulk solution to the outermost layer of the sorbent (Figure 2-2a); this layer 

is called the boundary layer. At the boundary layer, there is an envelope of stationary liquid that 
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the sorbate must pass through to enter the pores of the sorbent.  The passage through the 

stationary liquid layer is driven by diffusion (Figure 2-2b). The final steps of adsorption involve 

the movement of the sorbate into the sorbent pores and attachment to the surface of the sorbate 

(Figure 2-2c) (Metcalf and Eddy, 2003).  

In order for a sorbent to adsorb a sorbate, there must be a driving force for the movement of the 

sorbate into the pores. If a driving force is not present, the sorbate will not move into the sorbent 

and will not be adsorbed. Commonly the driving force in adsorption is a concentration gradient 

between the surface of the sorbent and the bulk solution, causing the sorbate to move into the 

pores of the sorbate (Thorton et al., 2007). Sorbent-sorbate interactions are dependent on the 

properties of the sorbent, sorbate, pH and presence of other species. To assist with determining 

the best sorbent(s) to be used for nutrient removal, the chemical species of nitrogen and 

phosphorus in wastewater was reviewed. 

 

 

Figure 2-2: The process of adsorption of a sorbate (blue circle) onto a sorbent (black 

circle). 
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2.3.1 Nitrogen Speciation in Wastewater 

 

Nitrogen in wastewater can come from a variety of sources including fertilizer run off, animal 

proteins and nitrogenous plant material. The total nitrogen (TN) in wastewater is made up of 

organic and inorganic fractions as shown in Figure 2-3a. The organic nitrogen fraction is made 

up of nitrogen in the form of amino acids, amino sugars and proteins which are long chains of 

amino acids. Inorganic nitrogen consists of total ammonia nitrogen (TAN), nitrate (NO3
-) and 

nitrite (NO2
-) (Metcalf and Eddy, 2003). Total ammonia nitrogen is the sum of the ammonium 

ion (NH4
+) and the free ammonia (NH3) species. The presence of either ammonium or ammonia 

in water is dependent on the pH of the solution. Figure 2-3b shows the distribution of the TAN 

species over pH which is established by the equilibrium reaction shown in Equation 2-1.  

NH4
+↔ NH3 + H+                                 pKa = 9.25        (2-1) 

 

 

The pH of wastewater is typically 6.5 – 8.5, hence, ammonium is the dominant species (Metcalf 

and Eddy, 2003). Total ammonia nitrogen is one of the target sorbate species in this study; TAN 

recovered from wastewater will be a valuable added resource for fertilizer manufacturing. 
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Figure 2-3: Classification of total nitrogen species (a) and the ammonium/ammonia 

distribution diagram (b). 
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2.3.2 Phosphorus Speciation in Wastewater 

 

Total phosphorus in wastewater is also comprised of organic and inorganic species. Figure 2-4a 

shows the different phosphorus species that make up total phosphorus (TP). Total organic 

phosphorus (TOP) is made up of a variety of compounds including adenosine triphosphate 

(ATP), phospholipids and phosphonate (Maher and Woo, 1998). Inorganic phosphate consists of 

inorganic condensed phosphorus, mineral phosphorus and orthophosphate. Condensed and 

mineral phosphorus make up the fraction of phosphorus known as acid-hydrolyzable phosphorus 

(AHP) while orthophosphate is known as reactive phosphorus (RP). AHP and RP are phosphorus 

fractions determined by which analytical method is used for their detection. As with ammonia, 

orthophosphate (also referred to as phosphate) is present in water in various forms that are pH 

dependent. Figure 2-4b shows the relative amounts of phosphate in water with respect to pH 

range. The distribution diagram of phosphate was based on the following three equilibrium 

reactions: 

 H3PO4 ↔ H+ + H2PO4
-                               pKa1 = 2.15      (2-2) 

H2PO4
- ↔  H+ + HPO4

2-                              pKa2 = 7.20      (2-3) 

 HPO4
2- ↔  H+ + PO4

3-                                pKa3 = 12.33    (2-4) 

 

In the pH range of 6.5 – 8.5, H2PO4
- and HPO4

2- are the dominant orthophosphate species. 

Although, phosphate is the target phosphorus sorbate species in this study, adsorption of soluble 

organic phosphorus (SOP) species should also be investigated due to the SOP fraction making up 

a large fraction of the residual TP after wastewater treatment (Gu et al., 2011). To achieve low 

levels of phosphorus, organic phosphorus (OP) must be removed and converted to 

orthophosphate to allow it to be readily available when recycled. 
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Figure 2-4: Classification of total phosphorus species (a) and the orthophosphate 

distribution diagram (b). 
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2.3.3 Characteristics of a Sorbent 

 

When using adsorption to remove a specific target species, a good sorbent will be one that 

adsorbs large amounts of sorbate. The quantity of sorbate that a sorbent can adsorb is called the 

adsorption capacity. It is dependent on the physical and chemical attributes of the sorbent.  The 

mass and type of sorbent in a system affects several important factors including the number of 

available sorption sites, adsorption capacity and selectivity of the sorption sites for the target 

sorbate (Crittenden et al., 2012). A sorbent that is efficient in one application may not be 

appropriate to use in a different application. Sorbents are useful tools which can be used for a 

variety of different applications; however, sorbent characteristics must be reviewed and 

understood to determine the best sorbent to be used for nutrient recycling.  

 

2.3.3.1. Physical Characteristics of Sorbents 

 

The main physical characteristic that impacts the adsorption capacity of a sorbent is the surface 

area. Sorbents that have high surface areas have large surfaces for the sorbate to interact with, 

therefore giving a higher possibility of sorption (Ozacar et al., 2003). The surface area of a 

sorbent is dependent on the starting material used in its production. While small particles have a 

large surface area per unit mass a major contributor to surface area is the presence of porosity in 

the solids with large amounts of pores resulting in high surface areas (Crittenden et al., 2012).  

The International Union of Pure and Applied Chemistry (IUPAC) has defined three 

classifications of pore size; macropores have a pore diameter greater than 50 nm, mircopore 

diameters are less than 2 nm and the boundary diameter for mesopores fall between the mirco- 

and macropore sizes (IUPAC, 1982). While the presence of pores helps increase a surface area, 
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pore size can also limit the adsorption capacity based on the size of the target sorbate. If the 

sorbate of interest is larger than the pore diameter, it will be unable to diffuse into pore, thus 

reducing the accessible adsorption surface area (Schreier and Regalbuto, 2004). While a large 

surface area is required for a sorbent material, sorbent-sorbate attraction, which is dependent on 

the fundamental chemical composition of the sorbent, must also be considered (Mohan and 

Pittman, 2007). 

 

2.3.3.2. Chemical Characteristics of Sorbents 

 

A knowledge of the mechanism by which a sorbate is adsorbed onto the sorbent surface can help 

select the appropriate sorbent for use. Adsorption mechanisms can be categorized into physical 

or chemical sorption (Crittenden et al., 2012). Physisorption is driven by physical attractions 

between the sorbent and the sorbate. The mechanisms behind physisorption are nonspecific and 

include binding in the form of van der Waal forces and electrostatic interactions (Breeuwsma and 

Lyklema, 1972; Crittenden et al., 2012). The reaction between the sorbate and the sorbent 

surface is reversible and process speed is limited by mass transfer (Crittenden et al., 2012). 

Physisorption is used widely in water treatment. It is observed in ion exchange and adsorption of 

contaminants onto activated carbon and some minerals (Jorgensen and Weatherley, 2003; 

Crittenden et al., 2012). By contrast chemisorption leads to the forming of covalent bonds 

between the sorbate and the surface sites on the sorbent. In covalent bonding, electrons are 

shared or exchanged between the sorbent surface and the adsorbed species forming bonds that 

are considered irreversible. In chemisorption, the rate of adsorption is often dependent on the rate 

of the chemical reactions involved in forming the covalent bonds (Crittenden et al., 2012; Su et 

al., 2013).  
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The forces that drive adsorption are dependent on the reactive functional groups on the surface of 

the sorbent. These electrostatic forces lead to the attraction of the sorbate and can explain the 

selectivity of the surface. An important concept of adsorption onto sorbates is the zero point 

charge (pHZPC). The sorbent pHZPC is the pH value at which the surface of the sorbent has no 

overall charge (Shah et al., 1982). When the pH of the solution is below the pHZPC, the surface 

functional groups are protonated causing an overall positive charge of the sorbent. When solution 

pH is higher than pHZPC, the functional groups are deprotonated and the sorbent surface charge is 

negative. Surface charge of the sorbent is important characteristic due to the attraction between 

sorbents and sorbates when oppositely charged. If a sorbent and sorbate are similarly charged, 

the sorbate will be repelled by the sorbent.  

 

2.3.3.3 Models for Adsorption Mechanism Determination 

 

Tools are available to help determine the mechanisms that are active when a sorbate is adsorbed 

on the sorbate. Adsorption isotherms are models that relate the mass of sorbate accumulated onto 

a mass of sorbent to the liquid phase concentration at equilibrium.  The nature of the adsorption 

model that is appropriate for a specific application is dependent on the type of sorbent surface 

(i.e. homo- or heterogeneous) in which adsorption is occurring and whether or not adsorption 

occurs in a mono- or multi-layer fashion (Metcalf and Eddy, 2003). In theory, the Langmuir 

isotherm describes a simple, ideal scenario in which monolayer adsorption of a sorbate occurs on 

a homogeneous surface. The Langmuir isotherm is derived from the equilibrium reaction where 

the sorbate (A) adsorbs to an empty site (S) on the surface of the sorbent to create an occupied 

surface site (SA). The equation for the Langmuir isotherm is shown in Equation 2-5. A linear 

form of the Langmuir isotherm is shown in Equation 2.6. 
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X =
𝐾𝐿𝑄𝑚𝐶𝑒

1 + 𝐾𝐿𝐶𝑒
                                                            (2-5) 

𝐶𝑒

𝑋
=

1

𝑄𝑚𝐾𝐿
+

𝐶𝑒

𝑄𝑚
                                                    (2-6) 

 

In the Langmuir equation, Ce is the concentration of the sorbate in the bulk solution at 

equilibrium (mg P/L), X is the amount of sorbate adsorbed per mass of sorbent (mg/g), Qm is the 

equilibrium maximum adsorption capacity (MAC) expressed in mg/g and KL is the binding 

constant with units of L/mg (Su et al., 2013).   

When adsorption of the sorbate occurs on a heterogeneous surface and in multiple layers, the 

system is often modeled by the Freundlich isotherm. Equation 2-7 is the expression for the 

Freundlich equation, where KF and N are fitting parameters called Freundlich adsorption 

constants. The linear form of the Freundlich is shown in Equation 2-8. A simplification of the 

Freundlich, when N is equal to 1, is known as the linear model (Metcalf and Eddy, 2003). 

X = 𝐾𝐹𝐶𝑒

1
𝑁⁄

                                                         (2-7) 

log X = log 𝐾𝐹 +
1

𝑁
𝑙𝑜𝑔 𝐶𝑒                                           (2-8) 

 

 

2.3.3.4 Sorbents for Nutrient Recycling 

 

Overall, the one characteristic that is necessary in a good sorbent is its capability to collect as 

much sorbate as possible. That being said, it should be recognized that the goal of nutrient 

recovery is to be able to collect nutrient for reuse in other applications. This objective highlights 

the need for sorbates to be recovered from the sorbent and possible sorbent reuse. Recovery of N 
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and P from the sorbent into a liquid concentrate can be important for different nutrient recycling 

technologies such as magnesium ammonium phosphate (MAP), also known as struvite (Rahman 

et al., 2014). Furthermore, when a sorbent can be used for multiple cycles it effectively has a 

much higher adsorption capacity and reduces cost because the sorbent needs to be replaced less 

frequently (Rodrigues et al., 2010).  

Desorption of the sorbate from the sorbent is often dependent on how the sorbate was initially 

adsorbed. Since physisorption is due to electrostatic interactions and van der Waals forces, the 

process is considered reversible and often associated with easier desorption. Physisorption has 

some disadvantages, the major issue is dealing with competition for adsorption by other species 

(Crittenden et al., 2012; Biswas et al., 2007). Competition will lead to a decrease in sorbent 

adsorption capacity that is undesirable if maximum quantities of sorbents are to be recovered. By 

nature physisorption is a non-selective process, adsorbing any opportunistic sorbates that happen 

to be attracted to the sorbent surface (Crittenden et al., 2012). Wastewater is a complex matrix 

consisting of many aqueous species that could be potential sorbates. Therefore, having a sorbent 

which is highly selective is beneficial to recover target species.  

Alternatively, chemisorption is more selective in the sorbent-sorbate interactions that occur; 

however, as previously mentioned, the bonds formed in the process are considered to be 

irreversible.  Prior studies have been successful in determining chemisorption interactions which 

may be useful in water and wastewater treatment. In some cases, desorption of chemisorbed 

species can occur by manipulating the system conditions (i.e. pH adjustment). In cases where 

desorption cannot occur, another option is the use of the sorbent itself as a product for the 

fertilizer industry and can be evaluated for use in land application (Bellier et al., 2006). 
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2.4 Summary of Sorbent Research in Literature 

 

The overall goal of this project is to find a good sorbent for nitrogen and phosphorus recycling. 

Understanding the advantages and disadvantages of the previously explored sorbents will help 

identify sorbents or reactions that are best for nutrient removal and recovery. A critical review of 

the literature will help pinpoint any advantages or disadvantages of choosing one sorbent 

composition, or mechanism, over another. The most logical starting point in investigating what 

will be a useful sorbent for nutrient removal is treatments which are well defined and frequently 

used. The review of the literature begins with conventional water and wastewater adsorption 

technologies.  

 

2.4.1 Activated Carbon 

 

One of the most widely used sorbents in conventional water treatment is activated carbon (AC). 

AC has been employed mainly to remove organic matter and heavy metals. It is an attractive 

sorbent because it is easily manufactured and can be manipulated to remove a variety of different 

contaminants (Mahmudov and Huang, 2011). To make AC, starting materials such as wood and 

coal are heated to temperatures around 700°C, creating a char which is then activated by 

exposure to gas (e.g. CO2, steam) at temperatures between 800 - 900°C. The result of the process 

is a sorbent high in oxygenated functional groups and the formation of pores in the char which 

increases the surface area. Different activation methods can result in pore formation of different 

sizes (Metcalf and Eddy, 2003; Amano et al., 2012). Although less common in wastewater 

treatment, AC has gained momentum in its use in advanced treatment (Metcalf and Eddy, 2003). 

Recently research groups have been investigating the use of AC to adsorb inorganic ions to 

establish if existing ACs are capable of removing phosphate and ammonium from wastewater.  
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Mahmudov and Huang (2011) investigated the adsorption of several oxyanions by commercially 

available granular activated carbon (GAC) Filtrasorb 400, sourced from Calgon Carbon. The 

results indicated that while the sorbents affinity for nitrate was fairly high (MAC of 0.29 

mmol/g), very little phosphate was adsorbed (MAC of 0.10 mmol/g). Hussain et al. (2011) also 

used a commercial GAC product (Table 2-1) to test for phosphate adsorption and met with some 

success.  

Hussain et al. found that the GAC was able to remove 70% of phosphate at pH 7 and an initial 

phosphate concentration of 20 mg P/L (Hussain et al., 2011). Previously Hussain et al. (2006) 

evaluated the same GAC for ammonia adsorption. The GAC was able to remove over 70% 

ammonia-nitrogen over the pH range of 2 – 13. Adsorption of aqueous ammonia by an 

unspecified commercial coconut based GAC was tested by Long et al. (2008) and the maximum 

adsorption capacity of the GAC was determined to be 17.19 mg/g. Hence, it is apparent that 

adsorption of different sorbates is dependent on the type of activated carbon used. 

 

Table 2-1: Properties of GAC tested by Hussain et al. for phosphate and ammonia adsorption 

(Hussain et al., 2011; Hussain et al., 2006). 
 

Ash Content (%) > 5 

Hardness < 90 

Moisture (%) 5 

pH 9 – 10 

Particle Size (mm) 0.65 – 2.36 

Particle Density (kg/m3) 1317 

 

 

 

There has been some disagreement in the mechanism behind adsorption onto activated carbon. In 

most studies, the initial uptake onto the AC was fast, with the majority of adsorption occurring in 
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the first few minutes of treatment. This behaviour is usually indicative of physisorption (Long et 

al., 2008). Physisorption through electrostatic interactions and ion exchange is the mechanism 

for ammonium removal while phosphate removal studies have shown that the phosphate 

adsorption mechanism is actually a combination of specific chemical and electrostatic 

interactions (Mahmudov and Huang, 2011).  

Researchers can agree, however, on the role that the surface functional groups have on 

adsorption. The surface of activated carbon is high in oxygenated functional groups that can be 

classified as either acidic or basic functional groups. Known surface functional groups of AC are 

shown in Figure 2-5. Studies have shown that ACs high in basic adsorption sites have higher 

phosphate adsorption due to the attraction of HPO4
2-

 through hydrogen bonding. The acidic 

groups are negative therefore repelling the phosphate anion (Amano et al., 2012). Adsorption of 

the ammonium cation occurs on the acidic surface sites such as carbonyl or phenolic hydroxyl 

groups (Long et al., 2008). 

 

 

Figure 2-5: Surface functional groups of activated carbons (Long et al., 2008) 
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These functional groups also adsorb other ionic species potentially causing ammonium and 

phosphate adsorption to decrease in real waters due to competition effects. Prior studies have 

shown that competition increased in the presence of chloride, sulfate and nitrate ions, directly 

affecting phosphate adsorption (Mahmudov and Huang, 2011; Amano et al., 2012; Hussain et 

al., 2011). Another ion that decreases phosphate adsorption is hydroxyl (OH-) ion. As pH 

increases the amount of phosphate adsorbed decreases due to the change in the surface charge of 

the AC (Amano et al., 2012). Hussain et al. (2011) saw a decrease in phosphate adsorption above 

pH 7 while Namasivayam and Sangeetha (2004) saw decreased phosphate adsorption at pH 

values higher than 11.  

It is unclear which orthophosphate species adsorbs to AC. Amano et al. (2012) stated that it was 

understood that AC adsorbs both H2PO4
- and HPO4

2- equally, however upon further investigation 

Amano et al. discovered that AC adsorbs only small amounts of H2PO4
-. This could be 

dependent on the type of AC being used and the type of functional groups on the surface. The 

degree of phosphate protonation and the degree of surface charge is dependent on pH and should 

be monitored closely when using AC for treatment.   

By comparison, ammonium adsorption had little dependence on pH. Ammonium removals of 

over 70% were observed over the pH range of 2 to 13 (Hussain et al., 2006).  However, 

ammonium removal was dependent on temperature and initial concentrations of ammonium and 

activated carbon. Increased temperature enhanced ammonium removal, almost doubling the rate 

of uptake from 6.7 to 16.8 mg/g min by increasing temperature from 20 to 40°C (Long et al., 

2008). Higher adsorption of ammonia also occurred with increasing initial concentrations of both 

GAC and sorbate. A larger initial does of sorbent leads to a decrease in capacity; however, 
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overall more ammonia is removed from solution due to the increase in sorbent surface area 

(Long et al., 2008).     

The results of these studies have shown that while there has been some success with adsorption 

of phosphate and ammonia, the difficulty lies in finding the appropriate type of AC in terms of 

amount and type of functional groups. The ability of AC to remove different adsorbates is due to 

its surface properties, a characteristic easily manipulated by the organic matter and activation 

technique used to produce the AC. The process of activation can substantially alter the surface 

properties.  

 

2.4.1.1 Surface Modification of Activated Carbon 

 

There are different methods of activating activated carbon that can manipulate the formation of 

pores in the char. The pores can vary in size and number depending on the activation agents used 

(Crittenden et al., 2012). The formation of pores increases the internal surface area of the sorbent 

which allows more surface for the exposed sorbate to bind. Different activation procedures can 

also select for the types (i.e. acidic or basic) of surface sites available for binding thereby 

affecting which species will be adsorbed to the surface (Amano et al., 2012).  The following 

section summarizes research that studied the effects of activation procedures on phosphate 

adsorption.  

From previous studies, it can be established that the qualities of activated carbon that encourage 

phosphate adsorption are a high surface area in which basic functional groups are predominant. 

The type of surface group can be altered by the choice of temperature in the final outgassing step 

during AC production (Amano et al., 2012). To demonstrate this, Amano et al. (2012) sourced a 
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wood based AC (Norit) which was de-ashed, oxidized using nitric acid and then outgassed while 

heated to a temperature in the range of 600 – 1000°C. Results from the study indicated that as 

outgassing temperature increased basic adsorption surface sites increased, thus maximizing the 

amount of phosphate adsorbed. There was little to no effect on AC surface area or pore size 

(Amano et al., 2012). 

The number of basic functional groups on the surface of the activated carbon can also be 

manipulated by increasing the length of the activation process (Amano et al., 2012). This 

relationship was shown during research by Amano et al. on a coconut based AC (Calgon Carbon 

Japan). In the study, the AC was activated by heating (900°C) under the flow of CO2 gas over 

time periods that varied from 0.5 to 2 hours. Overall, a 30-minute activation of the char caused 

the surface area to significantly increase from 14 to 756 m2/g. Increasing the length of activation 

time from 30 minutes to 2 hours caused an even further increase in surface area and also 

improved total pore volume. The surface area changed from 756 to 1491 m2/g while pore volume 

increased from 0.040 to 0.714 mL/g. Amano et al. discovered that phosphorus adsorption 

positively correlated with increasing surface area (R2 = 0.91) and pore volume (R2 = 0.92). 

 

2.4.1.3 Activated Carbon for Nutrient Recovery 

 

After a review of the literature, it can be seen that activated carbon has some challenges with its 

use with respect to nutrient recycling. One challenge is the low selectivity of AC for sorbates 

introducing competition between ions for the same surface sites. Wastewater is a complex matrix 

known to contain ions such as sodium, potassium and sulfate which may introduce competition 
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for adsorption sites thereby reducing adsorption. Another challenge that would have to be 

addressed to use AC is recovery of the nutrients after adsorption.  

Current literature has not investigated if chemical treatment could be used to desorb nutrients 

from AC therefore it is unknown as to whether the adsorbed sorbate species could be recovered. 

Regeneration of the AC could also present a challenge. Currently AC is regenerated by 

reforming the char through pyrolysis – heating the AC to burn off any build up and regenerating 

the surface functional groups. In most cases, regeneration is rarely done because the adsorption 

capacity of AC has never been fully recovered (Crittenden et al., 2012).  

Use of exhausted AC for land application as a fertilizer is another gap in the literature. If the 

nutrients cannot be recovered, further study would be necessary to see if AC could work as a 

slow release fertilizer for land application. If the AC can be used for land application, the AC 

would have to be replaced regularly. Commercial activated carbons can be quite costly, therefore 

continuous replacement would not help reduce costs in wastewater treatment (Hussain et al., 

2011; Hussain et al., 2006). 

 

2.4.2 Natural Minerals of Sorbents 

Natural materials with adsorbent qualities such as mineral and clays have been evaluated as 

potential sorbents. These materials typically require processing to make them ready for use as 

sorbents.  For example, mined rock materials are crushed to increase surface area, rinsed, air 

dried and then sieved to separate the various sizes to increase uniformity (Bellier et al., 2006). 

Clay and mineral materials have been regarded as promising sorbents due to the surface 

functional groups available. The functional groups on the sorbent surface vary due to the 
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chemical composition of the various clay and mineral materials. Varieties include oxide minerals 

such as aluminum oxide, calcium carbonate and silica. (Altundoğan and Tümen, 2001). The 

various compositions of these materials can affect nutrient adsorption. Descriptions of the clay 

minerals can be found in Table 2-2. The following section reviews literature in which phosphate 

was the adsorbate.  A summary of adsorption capacities and other experimental results of the 

natural clay minerals can be located in Table 2-3.  Ammonium adsorption that can be achieved 

with a special class of sorbents (zeolites) is reviewed in Section 2.4.3. 

 

Table 2-2: Characteristics of naturally sourced clay minerals. 

Name Formula Description Reference 

Apatite 
Ca10(PO4)6(X)2 

(X = OH, F, Cl, Br) 

- Structure consists of phosphate 

anions and calcium cations. 
Cruz et al., 2005 

Bauxite NA 
- Aluminosilicate 

- High in iron and aluminum oxides 

Altundogan and 

Tumen, 2001 

Bentonite Al2O3.4(SiO2).H2O 

- Also known as montmorillonite 

- Aluminosilicate 

- High in aluminum oxide 

Sohrabnezhad et al., 

2014 

Calcite CaCO3 
- Limestone has large % 

composition of calcite 

Karageorgiou et al., 

2007 

Diatomite NA 

- Siliceous sedimentary rock 

- Typically 80 – 91% SiO2 with 

alumina and ferric oxide 

Xiong et al., 2008 

Kaolinite Al2Si2O5(OH)4  - Layered aluminosilicate  mineral 
Thompson and Cuff, 

1985 

Pyrrhotite Fe(1-x)S - Iron sulfide mineral Li et al., 2013 

Quartz Sand SiO2 - Silicate mineral Jiang et al., 2014 

Vermiculite NA 

- Magnesium-aluminum-iron-

silicate clay mineral 

- Expandable layers 

- 5 – 20% water between layers  

Huang et al., 2014 
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Table 2-3: Summary of Clays and Minerals used for Phosphate Sorption from Wastewater Streams 

Sorbent 

Adsorption 

Capacity 

(mg P/g) 

Adsorption Isotherm 

Model and Kinetics 

Optimum pH 

Range 

Surface Area 

(m2/g) 
Reference 

Apatite 0.41 - Langmuir NA 530 Bellier et al., 2006 

Fluoroapatite 0.37 - Langmuir NA 480 Bellier et al., 2006 

Fluoroapatite 0.28 - Langmuir NA 580 Bellier et al., 2006 

Hydroxyapatite 0.31 - Langmuir NA 720 Bellier et al., 2006 

Hydroxyapatite 4.76 - Langmuir - tested at pH 7 NA Molle et al., 2005 

Bauxite 6.73 NA 3.2 – 5.5 NA Altundogan and Tumen, 2001 

Bauxite 0.61 - Langmuir 5.9 6.8 Drizo et al., 1999 

Bentonite 0.28 
- Langmuir 

- Freundlich 
8 – 10 85 Morharami and Jalali, 2013 

Bentonite 0.5 NA 4 - 6 31.7 Yan et al., 2010 

Calcium Rich 

Sepiolite 
9.04 (pH 7) 

- Langmuir 

- Freundlich 
3 – 6 231 Yin et al., 2013 

Calcite 1.82 NA 2 – 8 0.98 Morharami and Jalali, 2013 

Calcite 19.0 (at pH 12) NA 10.5 – 12 NA Karageorgiou et al., 2007 

Calcite 

(Limestone) 
0.68 - Langmuir 7.8 7.4 Drizo et al., 1999 

Calcite 

(Limestone) 
1.09 

- Langmuir 

Freundlich 
NA 570 Bellier et al., 2006 

Diatomite 
10.2 (pH 4) 

1.7 (pH 8.5) 

- Langmuir 

- Freundlich 
2 – 5 24.77 Xiong et al., 2008 

Kaolinite 0.32 
- Langmuir 

- Freundlich 
2 – 4 3.66 Morharami and Jalali, 2013 

Pyrrhotite 0.92 

- Langmuir 

- Freundlich 

- Pseudo-Second Order 

3.5 – 12.1 NA Li et al., 2013 

Quartz Sand 0.17 
- Langmuir 

- Pseudo-Second Order 
NA NA Jiang et al., 2014 

Vermiculite 2.65 

- Langmuir 

- Freundlich 

- Pseudo-Second Order 

NA 9.8 Huang et al., 2014 
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Investigations into the use of minerals and clays as sorbents have included the use of bentonite, 

sepiolite and quartz sand among others (Moharami and Jalali, 2013; Huang et al., 2014; Yin et 

al., 2011; Jiang et al., 2014). Phosphate adsorption capacities reported in the literature using 

mineral and clays as sorbents varied greatly.  Quartz sand had the lowest adsorption capacity for 

phosphate with an adsorption capacity of 0.17 mg P/g while calcite was the highest at 19 mg P/g 

(Jiang et al., 2014; Karageorgiou et al., 2007). Overall, mineral adsorbents displayed varied 

affinities for phosphorus adsorption, even in minerals of the same classification. An example of 

this variance is in the reported phosphate adsorption capacities reported for calcite (Table 2-3); 

Morharami and Jalali (2013) reported an MAC of 1.82 mg P/g while Karageorgiou et al. (2007) 

reported an MAC of 19 mg P/L. Similar differences in reported adsorption capacities can also be 

seen for bauxite, bentonite, hydroxyapatite and calcite (Table 2-3).  

In addition to the adsorption affinities, mineral sorbents have been found to display various 

adsorption mechanisms. Jiang et al. (2014) stated that quartz sand displayed physical adsorption 

through electrostatic interaction or ion exchange. Bauxite was also determined to adsorb 

phosphate in this manner (Jiang et al., 2014; Altundoğan and Tümen, 2001). Ion exchange is the 

process that occurs when ions pre-existing in a material (called counterions) are replaced with 

different ions of the same charge entering the sorbent channels and pores. Materials that can take 

part in the ion exchange process usually have an overall negative or positive charge and 

counterions exist in the structure of the sorbent so electroneutrality is met (Crittenden et al., 

2012). In minerals the ion exchange occurs at the metal oxide surface sites. Aluminum oxides 

and zirconium oxides are examples of metal oxides known to participate in this mechanism 

(Tanada et al., 2003; Su et al., 2013).  
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Several mineral sorbents have been reported to adsorb phosphorus through adsorption driven by 

precipitation. Calcite, a mineral very high in calcium carbonate (98.2% CaCO3), has been found 

to precipitate calcium phosphate (Karageorgiou et al., 2007). Upon addition to water, calcite 

forms hydrolysis products which have positive charges at pH values lower than 8.2 (8.2 is the 

zero point charge of calcite). At pH values lower than 8.2, physical adsorption occurs through 

electrostatic interactions between the negatively charged phosphate species and the positive 

surface sites achieving up to 75% phosphate removal and a sorbent loading of approximately 15 

mg/g. However, upon closer inspection, calcite was found to perform better at pH values higher 

than the pHzpc. At pH 12, calcite exhibited removal efficiencies reaching approximately 95% and 

the sorbent loading capacity reached 19 mg P/g. Enhanced adsorption with increased pH was 

counter intuitive. As pH increased, the overall negative charge of calcite would increase, 

repelling the negative phosphate ion. It was discovered that the adsorption of phosphate at high 

pH was due to the driving force of calcium phosphate (CaP) precipitating at the surface 

(Karageorgiou et al., 2007).  

Apatite can also precipitate CaP; however, when several varieties were tested for phosphate 

removal, they were found to have MAPs much lower than calcite. The MAP ranged from 0.28 to 

0.41 mg P/g for three igneous apatites (Bellier et al., 2006).  The loading capacities reported for 

the igneous apatites were quite low when compared to other studies (2.7 – 4.8 mg P/g). This 

could be due to the igneous form of apatite having much lower porosity when compared to their 

sedimentary counter parts (Molle et al., 2005; Bellier et al., 2006). Overall, if phosphorus uptake 

can be optimized, precipitation of CaP is an advantage of some minerals. The mineral loaded 

with CaP can be marketed as a fertilizer (Bellier et al., 2006). 
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Despite the abovementioned deficiencies, minerals are widely available, inexpensive and have an 

affinity for phosphate adsorption making them attractive materials to use if adsorption capacities 

can be increased. As with activated carbon, natural minerals can be treated to change the 

properties of the mineral structure. Literature which employed surface modified natural minerals 

for phosphate removal are reviewed in the following section.  

 

2.4.2.1 Surface Modification of Natural Mineral Sorbents 

 

A method of enhancing nutrient adsorption in minerals is by modification of the chemical 

structure. Vermiculite is a layered magnesium-aluminum-iron silicate mineral that, when heated, 

results in water that is between the layers converting to steam to cause separation of the layers 

and cracks in the surface. The product of heating vermiculite is known as exfoliated or expanded 

vermiculite because the available surface area is increased drastically. The increase in surface 

area improves the ion exchange capacity of the clay mineral (Gordeeva et al., 2002). Expanding 

vermiculite can be produced at temperatures between 200 and 1000 °C. Evaporation of water 

occurs at temperatures at the lowest end of the temperature range while higher temperatures 

result in other changes stemming from the decomposition of chemical structure. While exfoliated 

vermiculite is normally used for metal adsorption, its adsorption properties have been evaluated 

for phosphate removal with limited success. The loading capacity of phosphate on the mineral 

was found to be 2.65 mg P/g (Huang et al., 2014).    

Calcination is a form of modification in which heating leads to the partial decomposition of the 

chemical structure of the sorbent starting material; calcination involves the heating of Ca rich 

materials to temperatures up to 1000°C (López-Periago et al., 2013). The result of calcination 
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can be increased surface area or calcium content. Table 2-4 summarizes two studies in which 

calcination was used to improve phosphate adsorption. Ozacar et al. (2003) found that 

calcination of Alunite, an aluminum-potassium-sulfate mineral, led to increased surface area and 

increased adsorption capacity. Yin et al. (2013) used natural calcium rich sepiolite (CRS) to 

monitor the effects of calcination on phosphate uptake. The clay material was heated to a variety 

of temperatures within the range of 100 to 1000°C. Calcination temperatures of 500°C and below 

had little effect on P removal; however, temperatures exceeding 600°C increased P removal 

significantly with the highest loading capacity occurring with CRS calcinated at 900°C. The 

increase in phosphate adsorption was attributed to an increase in the CaO composition in the 

calcinated sorbent at higher calcination temperatures; in part, the adsorption mechanism of CRS 

is driven by CaP precipitation. Another effect of calcination was a change in the pHzpc from 6.5 

(unmodified) to 11.7 reducing the influence of pH. A high pHzpc indicates that at circumneutral 

pH the charge of the surface of CRS is positive thereby attracting phosphate (Yin et al., 2013).  

 

Table 2-4: Phosphate adsorption capacity and surface area with increasing calcination 

temperature and time. 

Sorbent 

Adsorption 

Capacity 

(mg/g) 

Temperature 

(°C) 

Time 

(Hrs) 

Surface 

Area 

(m2/g) 

Calcium 

Composition 

(%) 

 

Ca-rich 

Sepiolite 

9.04 -- 

2 

231.1 22.3 

Yin et al., 

2013 

8 400 38.8 -- 

7.5 600 26.5 -- 

18.5 700 13.3 29.1 

33.9 900 12.9 -- 

25 1000 7.15 33.7 

Alunite 

9 -- 

1 

29.2 -- 

Ozacar et 

al., 2003 

13 500 42.2 -- 

19 600 57.0 -- 

19 700 58.7 -- 

41.5 800 130 -- 

40 900 123 -- 
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Even though the enhancement of the mineral sorbents improved loading capacities, there are still 

several issues that need to be taken into consideration. The loading capacities reported for the 

calcinated and uncalcinated CRS were established in solutions where the initial phosphate 

concentration was very high (800 mg P/L) (Yin et al., 2013). When Yin et al. (2013) tested the 

CRS sorbents using lower initial phosphate concentrations, the loading capacity decreased 

drastically. In solutions containing 0.05 mg P/L, loading capacities ranged from 0.0018 to 0.0020 

mg/g for uncalcinated and 900°C calcinated CRS, respectively. With typical wastewater influent 

concentrations being in the range of 4 to 16 mg P/L, lower loading capacity of the mineral 

sorbents may prove to be problematic (Metcalf and Eddy, 2003). 

 

2.4.2.2 Natural Mineral Sorbents for Nutrient Recovery 

 

From the literature reviewed it can be seen that while the naturally sourced mineral sorbents may 

be useful in areas where conventional wastewater infrastructure is limited or does not exist, 

issues may arise when used for nutrient recovery. One challenge with the use of natural mineral 

sorbents in nutrient recovery is the highly varied adsorption characteristics and the unpredictable 

nature of the sorbents. Natural minerals typically have impurities and imperfections that cause 

reduced adsorption capacity (Bellier et al., 2006).  

There were gaps in the literature investigating natural minerals as sorbents for ammonia and 

phosphate. Competition effects on adsorption in the presence of other anions were not addressed 

by the literature. Reduced adsorption capacity due to competition could also present an obstacle 

in nutrient recovery as minerals and clays play acts as scavengers for cationic and anionic 

pollutants in nature (Moharami and Jalali, 2013). Desorption of phosphate from natural mineral 



41 

 

sorbents was also not investigated in literature. Reuse of sorbent would increase the overall 

adsorption capacity of the sorbents. The fate of the spent sorbent was also unclear in literature. In 

the case of CaP precipitating sorbents, it has been suggested that the spent sorbent can be land 

applied as fertilizer; however, few studies investigated the use of these materials as slow release 

fertilizers (Bellier et al., 2006). 

 

2.4.3 Natural Zeolites 

 

Substantial research has focused on a class of mineral that has excellent ion exchange 

capabilities. Natural zeolites are known to adsorb ammonia through cation exchange and have 

the benefits of other minerals such as low cost and high surface area. Natural zeolites are porous 

aluminosilicate materials that were first discovered in volcanogenic sedimentary rock and now 

can be found in zeolitic deposits around the world (Wang et al., 2010). There are several 

physiochemical characteristics that zeolites have that contribute to their utility as a sorbent 

material.  

The aluminosilicate framework that comprises the foundation of zeolites imparts zeolites with a 

negative charge and the ability to exchange cations. The structure of the aluminosilicate 

framework can be found in Figure 2-6. Within the physical structure, the central silica atom 

(Si4+) is substituted with an aluminum atom (Al3+), leaving an overall negative charge (Wang et 

al., 2010). In natural zeolites, this substitution occurs during the formation of the material and 

the negative charge in the framework is balanced by the presence of mono- or divalent cations 

and water. The water molecules act as aqueous bridges binding atoms in the foundation to 

cations or bridging cations with additional cations (Wang et al., 2010). In addition, due to the 
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presence of channels in their structure, natural zeolites have large surface areas when compared 

to other mineral materials (Huo et al., 2012). The general chemical formula of zeolites is 

Mx/n[AlxSiyO2(x+y)]·pH2O where M can be Na, K, Li and/or Ca, Mg, Ba, Sr, n is the cation charge 

and y/x and p/x can range from 1 – 6 and 1 – 4, respectively (Wang et al., 2010). A collection of 

zeolites with corresponding chemical structures is presented in Table 2-5. Examples of chemical 

composition of different natural zeolites are in Table 2-6. 

 

Figure 2-6: An example of the aluminosilicate framework of the zeolite clinoptilolite (Image 

from Mineralienatlas.de).  

 

Table 2-5: Names of natural zeolites with corresponding chemical formula (adapted from 

Wang et al., 2010). 

Name Chemical Formula 

Clinoptilolite  (K2, Na2, Ca)3Al6Si30O72·21H2O  

Mordenite (Na2, Ca)4Al8Si40O96·28H2O 

Chabazite (Ca, Na2,K2)2Al4Si8O24·12H2O 

Phillipsite  K2(Ca, Na2)2Al8Si10O32·12H2O 

Scolecite  Ca4Al8Si12O40·12H2O 

Stilbite  Na2Ca4Al10Si26O72·30H2O 

Analcime Na16Al16Si32O96·16H2O 

Laumontite  Ca4Al8S16O48·16H2O 

Erionite  (Na2K2MgCa1.5)4Al8Si28O72·28H2O 

Ferrierite (Na2, K2, Ca, Mg)3Al6Si30O72·20H2O 
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Table 2-6: Chemical composition of reviewed zeolites. 

 

 Natural Zeolites 

Constituent 
Clinoptilolite 

(Turkish) 

Clinoptilolite 

(Chinese) 
Chende Zeolite C 

Clinoptilolite 

(Japanese) 

Zeolite 

(Chabizite base) 

Clinoptilolite 

(Iranian) 

Zeolite  

(Chilean) 

SiO2 74.4 65.52 71.53 51.80 77.96 68.10 78.3 67 

Al2O3 11.5 9.89 13.65 18.34 14.02 18.59 11.7 13 

Fe2O3 1.1 1.04 2.82 3.40 1.30 2.84 0.51 2.0 

TiO2 0.1 0.21 0.28 -- -- -- 0.018 0.2 

MnO2 < 0.001 -- -- -- -- -- -- -- 

MnO -- 0.61 0.05 -- -- -- -- 0.04 

MgO 0.5 0.61 1.61 0.96 0.46 0.75 -- 0.69 

CaO 2.0 3.17 1.89 4.73 1.23 0.27 0.23 3.20 

BaO -- -- -- 0.35 -- -- -- -- 

SrO -- -- -- 0.04 -- -- 0.97 2.60 

Na2O 0.6 2.31 1.86 0.60 1.15 8.32 3.2 0.45 

K2O 5.0 0.88 4.14 4.91 3.88 1.12 5.5 0.05 

P2O5 0.02 -- -- -- -- -- -- -- 

H2O -- 7.25 -- -- -- -- -- -- 

CuO -- -- -- -- -- -- 0.24 -- 

ZrO2 -- -- -- -- -- -- 0.038 -- 

SO3 -- -- -- -- -- -- 0.12 -- 

Loss on 

Ignition 
5.85 10.02 5.60 15.14 -- -- -- -- 

Reference 
Karadag et 

al., 2006 

Wang et al., 

2008; Du et 

al., 2005 

Huang et 

al., 2010 

Karapinar 

et al., 2009 

Jha and 

Hayashi, 2009 

Cyrus and 

Reddy, 2011 

Ashrafizadeh 

et al., 2008 

Englert and 

Rubio, 

2005 
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Natural zeolites have been used to exchange ammonia in aquatic systems. A summary of 

research studies employing natural zeolites for ammonium uptake can be found in Table 2-7. 

Ammonium adsorption onto natural zeolites has been investigated in depth. In a review by Wang 

et al. (2010), it was reported that natural zeolites have a wide range of ammonia exchange 

capacities (AECs) ranging from 2.7 to 30.6 mg/g. Investigations into the effects of initial 

ammonium concentration on AEC and the mechanisms behind ammonium adsorption have 

indicated that the AEC increased with increasing initial ammonium concentration. This was 

attributed to the larger concentration gradient between the bulk liquid and the surface of the 

zeolite (Karadag et al., 2006).  

When monitoring the effects of contact time, Karadag et al. (2006) discovered that 70% of total 

ammonia uptake was within the first ten minutes of contact. In the first few minutes, diffusion 

was fast onto the surface of the zeolite. After the first 10 minutes, ammonium uptake was slow 

and the system reached equilibrium at 40 minutes. The system was slow to reach equilibrium due 

to slow diffusion of ammonium into the pores of the zeolite. Fast initial uptake of ammonium 

followed by a slow progression to equilibrium by natural zeolites has been witnessed in other 

studies (Cyrus and Reddy, 2011; Karapinar et al., 2009; Du et al., 2005).  

The effects of temperature, pH and sorbent dosage on ammonium uptake into the zeolite have 

been reported. Karadag et al. (2006) found that increasing operation temperature caused the rate 

of ammonium uptake as well as AEC to decrease. The fact that ammonium removal via zeolite 

worked better under lower temperatures may prove attractive for treatment processes in colder 

climates. Karadag et al. did not test their system at temperatures lower than 25°C, therefore 

further investigation is necessary.  
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Table 2-7: Summary of Natural Zeolites used for Ammonia Sorption in Wastewater Streams. 

Sorbent 

Adsorption 

Capacity 

(mg/g) 

Adsorption Isotherm 

Model and Kinetics 

Cation Exchange 

Capacity (CEC) 

(meq/g) 

Bulk 

Density 

(kg/m3) 

Particle Size 

(mm) 
Reference 

Clinoptilolite 

(Turkish) 

8.121 (25°C) 

6.149 (40°C) 

5.166 (55°C) 

- Langmuir 

- Pseudo-Second Order 

- Intraparticle Diffusion 

0.95 – 1.4 
900 - 

1100 
1.0 – 1.4 Karadag et al., 2006 

Zeolite C 231 NA 2351 NA < 0.06 
Karapinar et al., 

2009 

Zeolite (Chabizite base) 10.84 - Langmuir 2.50 1.73 < 0.001 
Cyrus and Reddy, 

2011 

Clinoptilolite (Chinese) 21.672 
- Langmuir3 

- Freundlich4  
1.03 NA 0.45 – 0.904 

3Wang et al., 2008;  
4Du et al., 2005 

Clinoptilolite (Chinese) 3.05 
- Langmuir 

- Freundlich 
NA NA 0.45 – 0.9 Wang et al., 2006 

Clinoptilolite 22.5 - Langmuir NA NA NA 
Jorgensen and 

Weatherly, 2003 

Clinoptilolite 

(Japanese) 
16.02 - Langmuir 2.16 NA < 0.10 

Jha and Hayashi, 

2009 

Zeolite  

(New Zealand) 
20.1  NA 0.878 – 1.13 NA < 2.0 Bolan et al., 2003 

Clinoptilolite 1 10.47 - Langmuir 0.93 0.982 < 2.0 
Bernal and Lopez-

Real, 1993 

Clinoptilolite 2 13.65 - Langmuir 1.02 0.796 < 2.0 
Bernal and Lopez-

Real, 1993 

Clinoptilolite 3 19.50 - Langmuir 1.396 0.858 < 2.0 
Bernal and Lopez-

Real, 1993 

Clinoptilolite 4 16.52 - Langmuir 1.50 0.561 < 2.0 
Bernal and Lopez-

Real, 1993 

Chilean Zeolite 

(Clinoptilolite and 

Mordenite) 

11.4 – 14.8 - Langmuir 2.05 NA 0.013 
Englert and Rubio, 

2005 

Clinoptilolite (Iranian) 17.85 
- Langmuir 

- Freundlich 
NA 960 1 – 2 

Ashrafizadeh et al., 

2008 
1[NH4

+]o=20 mg/L and sorbent dose = 0.5 g/L (Karapinar et al., 2009),2Optimum pH: 6 (Du et al., 2005).5[NH4
+]o = 50 mg/L 
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Ion exchange capacity is also dependent on the range of pH used during treatment. The species 

present in solution and the charge associated with them are dependent on pH (Metcalf and Eddy, 

2003). An optimum operating pH of 6 was determined by Du et al. for ammonium adsorption 

onto a Chinese clinoptilolite. At lower pH values, ammonium ions had to compete for binding 

sites with H+ ions, decreasing removal efficiency. Increased uptake at pH 6 could also be 

attributed to the removal of impurities in the natural zeolite (i.e. calcium carbonate), thereby 

increasing available surface area (Du et al., 2005). The effect of zeolite dosage was investigated 

by Karapinar et al. (2009) on ammonium uptake and AEC, a relationship that had not been 

addressed in many other studies. Karapinar observed that ammonium uptake increased and AEC 

decreased with higher amounts of zeolite. The optimal dose of zeolite was found to be 8 g/L for 

solutions containing initial ammonia concentrations of 10 to 40 mg/L. This would translate to a 

large mass of sorbent in a municipal wastewater treatment setting.  

The impact of competition on adsorption to natural zeolites has been investigated. Malovanyy et 

al. (2013) studied the effects of K+, Ca2+, Na+ and Mg2+ on the ammonium exchange capacity of 

a natural zeolite. In the presence of the additional ions, the AEC of the natural zeolite decreased 

to 6.8 mg/g from 10.8 mg/g (Malovanyy et al., 2013). Huang et al. (2010) studied the removal of 

ammonium from aqueous solutions through use of a Chinese natural zeolite. The research group 

monitored the effects cations and anions on an individual basis such that a relationship could be 

established between the presence of each species and NH4
+ uptake. For each species, increased 

cation concentration led to a decreased AEC by the zeolite. Sodium had the largest effect, and 

the ranking of cations in order of competitive effect was Na+ > Mg2+ >Ca2+ > K+. The presence 

of anions in solution also adversely affected ammonium uptake. Having carbonate in solution 

caused the largest decrease in AEC, reducing removal efficiency by over 24%. The presence of 
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the other anionic species had much smaller influences on AEC. Removal efficiencies decreased 

by 6, 12 and 13.8% in the presence of chloride, sulfate and phosphate, respectively (Huang et al., 

2010). 

Ion exchange can also result in organic matter removal, and hence questions arise as to whether 

there would be competition effects between organic matter and ammonium uptake by natural 

zeolites. Jorgensen and Weatherley (2003) evaluated the impact of the presence of organic matter 

on ammonia adsorption onto the natural zeolite clinoptilolite. In the study, the change in 

maximum ion exchange was assessed when organic matter was present (i.e. proteins and citric 

acid). Jorgensen and Weatherley observed enhanced NH4
+ adsorption at lower initial ammonium 

concentrations and 31 % decrease in maximum NH4
+ capacities in the presence of organic 

matter.  

Desorption of ammonia and zeolite regeneration has been the subject of several investigations 

involving natural zeolites. There are a variety of methods that can be used to regenerate 

expended zeolites. These methods include regeneration via acid or base solution, salt solution 

and heating (Li et al., 20111). Bolan et al. (2003) used 0.5 M HCl to regenerate natural zeolites 

from New Zealand and found that the acid released both NH4
+ and other cations taken up by the 

zeolite. Bolan et al. were able to regenerate the natural zeolite for over twelve cycles without 

greatly affecting the AEC of the zeolite. Du et al. used a sodium chloride solution at a pH of 11 – 

12 to regenerate a natural clinoptilolite. The NaCl solution concentration was 0.5 M and the pH 

was adjusted using NaOH. It was concluded that the ammonia removal capacity of the 

clinoptilolite remained constant after the second and third regeneration cycles but did not present 

the data collected from those runs (Du et al., 2005). 
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Overall, it has been observed that the regeneration technique can greatly affect the adsorption 

capacity of the zeolite. Li et al. (2011) evaluated three different regeneration techniques to 

determine which would be best to use on clinoptilolite. It was concluded that an NaCl salt 

solution was the best to use for regeneration, leading to practically no change in AEC. Zeolite 

regenerated by heat treatment (200°C, 4 hr) had the lowest ammonium capacity after 

regeneration, followed by acid regeneration (1.0 M HCl). Cyrus and Reddy (2011) also had 

mixed success when using an acid regeneration technique for the natural zeolites used to treat 

swine wastewater. Cyrus and Reddy found that the expended natural zeolite could be regenerated 

with 0.1N HCl; however, results of full regeneration of the column and testing of the regenerated 

zeolite were not reported. The regeneration results that were reported by Cyrus and Reddy 

showed that ammonia release from the zeolite was slow, only releasing up to 10 mg/L within the 

first 50 hours. The zeolite continued to desorb ammonium over 150 hours. Due to these results, 

Cyrus and Reddy suggested that the natural zeolites are promising for use as nitrogen slow 

release fertilizers. The HCl concentration used a close proxy to the ammonium concentration that 

would be present in acidic soils, leading to the slow release of ammonia. 

 

2.4.3.1 Natural Zeolites for Nutrient Recovery 

 

There are some challenges associated with the use of natural zeolites for nutrient adsorption. One 

challenge is the lower adsorption capacities of the zeolites. Ammonium exchange by natural 

zeolites can only occupy 6.8 - 52% of the potential maximum cation exchange capacity (Bolan et 

al., 2003). Cation exchange capacity can vary greatly between zeolites of same and different 

classifications (Wang et al., 2010). The lower adsorption capacities highlight another challenge 

with the use of natural zeolites – the production of a large quantity of solid waste if used in large 
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scale plants. It has been shown that when used in wastewater applications, the AEC of natural 

zeolites lie within the range of 0.2 – 0.68 meq/g, this corresponds to less than 1% nitrogen in the 

content of the spent zeolite (Malovanyy et al., 2013). One final challenge in zeolite use is that 

zeolites could also be cost prohibitive due to the cost of mining and transportation of the zeolite 

as well as cost of disposal of spent zeolite or transportation for land application (Malovanyy et 

al., 2013).  

There are also some issues that have not been addressed in literature. Regeneration of zeolites 

have been studied; however, characterization of the desorbed solutions have not been 

investigated. Zeolites are known to exchange other ions (i.e. free metal ions) which could be 

introduced into the desorbed solution and potentially cause adverse effects when using nutrient 

recovery technologies (Wang et al., 2008). Another gap in the literature includes the fate of 

exhausted zeolites. The potential for land application use of the spent sorbent should be 

investigated. 

 

2.4.4 Engineered Ion Exchange Resins 

 

The ion exchange mechanism is a promising method for ammonium adsorption from wastewater. 

Ion exchange provides excellent response to shock loading of systems and if ion exchange 

capacities are maximized, an excellent source for ammonium recovery. Attention has also turned 

to engineered ion exchange resins due to their ability to have high reaction rates as well as 

increased reactive site availability for incoming sorbates (Thorton et al., 2007). Since engineered 

resins are manufactured, the framework of the resin can be produced in a way that has minimal 

impurities and inconsistencies, maximizing the capacity of the resin. Organic resins are also 
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being implemented in ion exchange due to their resistance to chemical change (Thorton et al., 

2007; Jorgensen and Weatherly, 2003). Table 2-8 summarizes studies that have used ion 

exchange resins for ammonium and phosphate removal.     

Ion exchange for ammonium removal is used often in the aquaculture industry since ammonia is 

toxic to aquatic species and water is recirculated throughout the system (Jorgensen and 

Weatherley, 2003). Jorgensen and Weatherley (2003) tested two polymeric exchangers, Dowex 

50w-x8 and Purolite MN500, for their ability to exchange ammonium. The results obtained from 

ammonium uptake showed that the two polymeric resins had ammonium capacities higher than 

that of clinoptilolite. The MACs for Dowex 50w-x8, Purolite MN500 and clinoptilolite were 

approximately 38, 25 and 22.5 mg/ g, respectively. Jorgensen and Weatherly discovered that 

Purolite MN500 was also selective to ammonia over sodium ions, an ability that could prove to 

be useful in saline environments. In a separate study it was observed that the presence of 

calcium, magnesium, sodium and potassium cause the AEC of MesoLite and KU – 2 – 8 to 

decrease by 30 and 70 %, respectively. Optimum pH for ammonia uptake by anion exchange 

resins varied between 5.9 and 7 (Thorton et al., 2007).  

Engineered ion exchange resins can also be used for anion exchange and research has 

investigated their use for phosphate removal. A weak base exchanger was found to work very 

well for phosphorus exchange. At optimum pH, the ion exchange resin had a loading capacity of 

153 mg P/g (Awual and Jyo, 2011). The weak base exchanger was found to work better at low 

pH experiencing less adsorption as pH became more basic. While anion exchange resins may 

select the target sorbate over other ions in solution, overall adsorption was found to decrease up 

to 17 % due to competition (Awual and Jyo, 2011).  
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Table 2-8: Summary of Engineered Ion Exchange Resins used for Sorption in Wastewater Streams 

Sorbent Sorbate Resin Type 

Adsorption 

Capacity  

(mg sorbate/g) 

Adsorption Isotherm 

Model  

Optimum pH 

Range 
Desorption Reference 

Dowex  

50w-x8 
NH4

+ 
Strong Acid 

Cation 
38  NA NA NA 

Jorgensen and 

Weatherly, 2003 

Purolite 

MN500 
NH4

+ 
Strong Acid 

Cation 
25  NA NA NA 

Jorgensen and 

Weatherly, 2003 

MesoLite NH4
+ Cation 49 - Langmuir 6 – 7  NA Thorton et al., 2007 

Purolite 

C104 
NH4

+ 
Weak Acid 

Cation 
21.9 - Thomas Model -tested at 9.12 0.51 M NaCl 

Malovanyy et al., 

2013 

KU – 2 – 8  NH4
+ 

Strong Acid 

Cation 
74.1 - Thomas Model 5.9 0.17 M HCl 

Malovanyy et al., 

2013 

INDION 225 

Na 
NH4

+ 
Strong Acid 

Cation 
16.14 - Langmuir NA NA Bashir et al., 2010 

Diaion WA20 PO4
3--P Weak Base Anion 153.45 – 43.09   NA 2 – 3 1 – 2 M HCl Awual and Jyo, 2011 

Diaion SA10A PO4
3--P 

Strong Base 

Anion 
52.7 – 12.09   NA 3 – 7 1 – 2 M HCl Awual and Jyo, 2011 

Purolite Ferrix 

A33E 
PO4

3--P 

Strong Base 

Hybrid Exchange 

Resin 

48 - Langmuir NA 
2% NaOH 

2% NaCl 
Nur et al., 2013 

Amberlite IRA 

– 900 
PO4

3--P 

Strong Base 

Hybrid Exchange 

Resin 

2.41 NA 6 – 8 
2% NaOH 

2% NaCl 
Blaney et al., 2007 

LayneRT PO4
3--P 

Strong Base 

Hybrid Exchange 

Resin 

9.54 
- Langmuir 

- Freundlich 
NA NA 

Sendrowski and 

Boyer, 2013 

LayneRT PO4
3--P 

Strong Base 

Hybrid Exchange 

Resin 

1.49 – 10.1 - Freundlich NA 
2% NaOH 

2.5% NaCl 

O’Neal and Boyer, 

2013 

LayneRT PO4
3--P 

Strong Base 

Hybrid Exchange 

Resin 

7.68  NA NA 
4% NaOH 

2% NaCl 
Martin et al., 2009 

1Experiments completed at [PO4
3-]o= 0.2 mg P/L 
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Other anion exchange resins have been used in conjunction with metal oxides creating what is 

called a hybrid anion exchange and reporting reasonable phosphate adsorption. One study 

reported a MAC of 48 mg P/g (Nur et al., 2013). Use of the hybrid anion exchange resin reduced 

the competition effects on phosphate adsorption due to the other ions competing for different 

bonding sites. The mechanism of phosphate adsorption in a hybrid anion exchange was reported 

to result from precipitation of phosphate with the iron oxide functional groups (Blaney et al., 

2007). The optimum working pH for the hybrid anion exchange resins were found to be between 

6 and 8 (Blaney et al., 2007). 

Desorption has also been studied in depth using ion exchange resins and many different methods 

have been used to regenerate the resins. Cationic exchange resins have a high affinity for H+ ions 

and can be regenerated using acidic solutions (Malovanyy et al., 2013). Hybrid ion exchange 

resins can desorb phosphate using a 2% NaOH and 2% NaCl solution. Studies reported no 

change in adsorption capacity after three consecutive regeneration cycles, recovering over 90% 

adsorbed phosphate (Blaney et al., 2007; Nur et al., 2013). The weak base ion exchange resin 

was easily regenerated using 1M HCl to desorb the phosphate on the resin and the NaOH rinse 

returned the resin to the hydroxyl form (Awual and Jyo, 2011). The weak base ion exchange 

resin was able to be regenerated several times, recovering over 95% of phosphate in each cycle. 

 

2.4.4.1 Engineered Ion Exchange Resins for Nutrient Recovery 

 

There are challenges in the use of ion exchange resins including competition effects and optimal 

working pH ranges. Competition effects arise due to the ion exchange resin being non-selective 

for the sorbate of focus thus decreasing adsorption capacity. Decreased adsorption capacity could 
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also be seen at pH values which are not optimal for phosphate or ammonium exchange. While 

ammonium exchange can occur around neutral pH, phosphate exchange via anion exchange 

resins is highest at low pH, adding in a costly pH adjustment step. Investigation into overcoming 

these challenges in addition to the high adsorption capacities and easy regeneration of engineered 

ion exchange resins make them good candidates for use in nutrient removal/recovery. 

Additionally, the ability of ion exchange resins to adsorb quickly and handle shock loads make 

them attractive for use in a large-scale wastewater treatment plant. 

 

2.4.5 Metal Oxides as Sorbents 

 

Studies of natural mineral sorbents have demonstrated the ability of metal oxide functional 

groups to adsorb phosphorus. As mentioned previously, inconsistencies in the structure and 

impurities found in natural minerals cause decreased adsorption capacities when used as 

sorbents. Metal oxides can be synthesized easily in higher purity and consistency and this has 

allowed deeper study of their effectiveness as sorbents and better understanding of interactions 

between sorbate species and the metal oxides (Deliyanni et al., 2007). One of the benefits of 

engineering metal oxides is the control that can be exhibited during development. Manufacturing 

conditions can be manipulated in a way that during the formation, the metal oxide growth 

process can be halted at a stage where the metal oxide has a fully developed crystalline structure 

but is extremely small. These extremely small metal oxides are usually less than 100 nm one 

dimension classifying them as nanoparticles (Su et al., 2013). Nanoparticles are very attractive 

for use as sorbents since they can have very specific surface properties that can be highly 

specific, efficient and cost effective (Qu et al., 2013).  
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The mechanism of phosphorus adsorption on metal oxides is dependent on the metal oxide 

present. When iron and/or magnesium are present the predominant mechanism of phosphate 

adsorption is surface complexation (Kumar et al., 2014a; Tanada et al., 2003). In surface 

complexation, phosphate forms bonds on the surface of the metal oxide creating an inner sphere 

complex as shown in Figure 2-7. Phosphate can form bonds at the surface in a mono- or bi-

dentate formation where bidentate are stronger than monodentate complexes because they 

involve the formation of two bonds (Li and Stanforth, 2000). In the case of aluminum or 

zirconium metal oxides, phosphate adsorption through ion exchange is usually due to the 

phosphate anion exchanging with the hydroxyl group on the surface of the iron oxide forming an 

outer sphere complex (Blaney et al., 2007; Tanada et al., 2003). 

 

 

Figure 2-7: Monodentate and bidentate inner sphere complexes formed between phosphate 

and the metal oxide surface (adapted from Blaney et al., 2007). 
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A summary of studies that have used metal oxides for phosphate adsorption is presented in Table 

2-9. Several types of iron oxide have been studied for adsorption of phosphorus from water. The 

surface complexation reaction between phosphorus and iron hydr(oxide) has been well studied 

and applied to phosphorus removal in wastewater. The adsorption and precipitation of phosphate 

with iron oxides is the foundation for chemical phosphorus removal (Kumar et al., 2014a).  

A summary of the different properties of the iron minerals can be found in Table 2-10. Genz et 

al. (2004) studied an akaganeite (β-FeOOH) sorbent and found that it had a large MAC of 23 mg 

P/g. Akaganeite showed a higher adsorption capacity of 60 mg P/g when studied in the pure 

crystalline form (Deliyanni et al., 2007). Ferrihydrite, goethite and hematite were found to have 

loading capacities of approximately 18, 5 and 2.8 mg P/g Fe, respectively; note that the 

adsorption capacities have been normalized for iron content (Kang et al., 2003). In another study, 

an iron oxyhydroxide exhibited a much lower phosphate adsorption capacity of 1.5 mg P/g 

(Boujelben et al., 2008). In each study, the adsorption of phosphate decreased at increasing pH 

and as the concentration of competing anions increased. Optimum pH was found to be in the low 

(<5) pH range. It was also found that the presence of bicarbonate decreased phosphate uptake, 

while the presence of calcium and magnesium ions increased phosphate removal at high pH 

through precipitation (Kang et al., 2003).  
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Table 2-9: Summary of Synthesized Metal Oxides used for Phosphate Sorption in Wastewater Streams 

Sorbent 

Adsorption 

Capacity  

(mg/g) 

Log 

KL 

Adsorption Isotherm 

Model and Kinetics 

Optimum pH 

Range 

Competing 

Ions 
Desorption 

Specific 

Surface 

Area (m2/g) 

Reference 

Akaganeite  

(β-FeOOH) 

23.3 (pH 5.5) 

16.9 (pH 8.2) 

1.31 

0.94 
- Langmuir 5.5 NA 

0.6 M 

NaOH 
280 

Genz et al., 

2004 

Akaganeite  

(β-FeOOH) 

59.62 (25°C) 

44.87 (45°C) 

27.29 (65°C) 

-1.69 

-1.85 

-1.62 

- Langmuir 

- Freundlich 

- Pseudo-Second Order 

- Exothermic 

- only tested at 

pH 7 
NA 

pH 12 

(NaOH) 
330 

Deliyanni et 

al., 2007 

Amorphous 

Ferrihydrite 
18 NA - Freundlich 3 NA 

0.2 M 

NaOH 
200 – 300  

Kang et al., 

2003 

Goethite 

(α-FeOOH) 
5 NA - Freundlich NA NA 

0.2 M 

NaOH 
20 

Kang et al., 

2003 

Hematite 

(α-Fe2O3) 
2.8 NA - Freundlich NA NA NA 20 – 25 

Kang et al., 

2003 

FeOOH 1.5 (pH 5) -0.70 

- Langmuir 

- Freundlich 

- Endothermic 

5 NA NA 2.609 
Boujelben et 

al., 2008 

Aluminum 

Hydroxide 

(γ-alumina) 

6.45 NA - Langmuir 4 
F-, citrate, 

tartrate 
NA NA 

Chen et al., 

1973 

Aluminum 

Hydroxide 

(corundum) 

1.24 NA NA NA NA NA NA 

Anderson 

and Malotky, 

1979 

Boehmite 

(AlOOH) 
45 (pH 4)  

- Freundlich 

- First Order  
4 

Cl-, SO4
2-, 

NO3
-, CO3

2-  

 
297 

Tanada et al., 

2003 

Amorphous 

ZrO(OH)2 
15 (pH 8.8) NA - Freundlich 

- only tested at 

pH 8.8 
Cl-, SO4

2- 
0.1 M 

NaOH 
228 

Chitrakar et 

al., 2006 

Amorphous 

ZrO2 

99.01 (pH 

6.2) 
-0.51 

- Langmuir 

- Freundlich 

- Pseudo-Second Order 

2 – 6  
- little to no 

effect 

0.1 M 

NaOH 
327 

Su et al., 

2013 

La2O3 24.6 (pH 6) NA - Freundlich 4 – 6   
- little to no 

effect 

0.8 M 

NaOH 
550 – 600 

Ning et al., 

2008 
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Table 2-10: Composition of iron hydr(oxide) minerals (adapted from Kumar et al., 2014a). 

Iron Mineral Chemical Formula 

Ferrihydrite Fe5HO8·4H2O/Fe2O3·nH2O 

Akaganeite β-FeOOH 

Goethite α-FeO(OH)/ ~90%Fe2O3 

Hematite α-Fe2O3 

Lepidocrocite γ-FeO(OH)/ ~90%Fe2O3 

Magnetite Fe3O4 

 

 

Aluminum oxides also have a variety of forms that can be classified as aluminum oxides, 

aluminum hydroxides and aluminum oxyhydroxides (shown in Table 2-11). While being 

reviewed for their use in wastewater treatment, it was reported that aluminum oxides γ-alumina 

and corundum adsorbed very little phosphate and had adsorption capacities of 0.208 and 0.04 

mmol/g, respectively. At pH 7, the aluminum oxyhydroxide gibbsite was determined to have an 

even smaller adsorption capacity of 0.015 mmol/g. Boehmite, aluminum oxyhydroxide, was 

determined to have the highest adsorption capacity of 1.45 mmol/g; approximately 45 mg P/g at 

pH 4 (Tanada et al., 2003; Kumar et al., 2014b). The presence of other anions decreased 

phosphate uptake onto boehmite by a small amount; however, it still showed preference for 

phosphate adsorption over other species. The effects of chloride, nitrate and sulfate were studied 

(Tanada et al., 2003). It was determined that pH influenced the adsorption of phosphate on 

aluminum oxides greatly. Adsorption of phosphate onto gibbsite decreased with increasing pH 

(Kumar et al., 2014b). Boehmite exhibited an optimum working pH of 4. Changes in pH above 

or below 4 led to drastic decreases in phosphate uptake (Tanada et al., 2003). 

Other oxides have also been investigated for phosphate adsorption. Nanoscale amorphous 

zirconium oxides were investigated by Su et al. (2013) because they have a number of traits 

suitable for an effective sorbent. Zirconium oxides have high strength in resisting oxidants, acids 
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and bases, they are non-toxic; and have a high thermal stability and very low solubility in water. 

Amorphous ZrO2 was found by Su et al. (2013) to have one of the highest reported adsorption 

capacities of 99 mg/g at pH 6.2. Optimal phosphate adsorption occurred at low pH (i.e. ~2) and 

decreased only slightly from pH 2 to 6. The presence of chloride, sulfate and bicarbonate had 

little effect on phosphorus adsorption onto ZrO2. Lanthanum oxide was also used for phosphate 

adsorption showing a good adsorption capacity of 24.6 mg/g (Ning et al., 2008). The optimum 

pH for La2O3 was shown to be a pH of 4 with removal decreasing for both increasing and 

decreasing pH. Lanthanum oxide also showed preferential uptake of phosphate over carbonate, 

sulfate and chloride species (Ning et al., 2008).  

 

Table 2-11: Classification of aluminum oxides (adapted from Kumar et al., 2014b). 

Classification Name Formula 

Aluminum Hydroxide Gibbsite α-Al(OH)3 

Aluminum Oxide 
γ-Alumina γ-Al2O3 

Corundum α-Al2O3 

Aluminum Oxyhydroxide Boehmite γ-AlOOH 

 

 

There is some uncertainty over which inner sphere complexes form in phosphate adsorption onto 

metal oxide surfaces. When goethite was studied, it has been shown in one study that bidentate 

complexes are formed between the iron atoms and phosphate at low pH while other studies have 

found that monodentate complexes prevail over the majority of the pH range, and bidentate 

formation is dependent on the phosphate speciation (Genz et al., 2004). Whether monodentate or 

bidentate complexes prevail can indicate if desorption of phosphate from the metal oxide surface 

will be difficult since bidentate complexation is stronger than monodentate (Li and Stanforth, 

2000).   
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2.4.5.1 Binary Metal Oxides as Sorbents 

 

The adsorbent capabilities of binary oxides have received considerable attention. Binary oxides 

combine the physical properties of two or more metal oxides and display greater adsorption 

abilities due to having the benefits of both parent compounds (Li et al., 2014). Binary oxides 

usually contain iron or aluminum and have shown to have large adsorption capacities ranging 

from 13.7 mg P/g to as high as 61.5 mg P/g (Long et al., 2011, de Sousa et al., 2012); a summary 

of mixed metal oxides can be located in Table 2-12. A review of several binary oxides, including 

aluminum iron hydr(oxides), iron and aluminum mesoporous spheres and an iron zirconium 

binary is presented below (Ayoub et al., 2001; de Sousa et al., 2012; Ren et al., 2012).  

Ayoub et al. (2001) examined the use of an iron aluminum hydroxyl(oxide) to treat wastewaters 

which contained low levels of phosphorus. One of the challenges in wastewater treatment is to 

achieve low levels of phosphorus in the effluent as the concentration gradient as a driving force 

for adsorption is reduced. When used in a simple matrix of distilled water and 0.5 mg P/L, the 

filter media was able to remove over 90% of the phosphate while with a treated wastewater 

effluent only 48% of the phosphate was removed. The decrease in adsorption capacity was 

hypothesized to be due to competition among the ions present in the complex wastewater matrix.  



60 

 

Table 2-12: A Summary of Binary and Trimetal Oxide use for Phosphate Sorption in Wastewater Streams 

Sorbent 

Adsorption 

Capacity  

(mg/g) 

Log 

KL 

Adsorption 

Isotherm Model 

and Kinetics 

Optimum pH 

Range 

Competing 

Ions 

Desorption 

Conditions 
Reference 

Fe – La  29.5 (pH 7) 0.93 

- Langmuir  

- Pseudo-second-

order 

4 
F-, 

SO4
2-, NO3

- 
NA Liu et al., 2013 

Al – Mn  59.8 (pH 6) -0.82 

- Langmuir 

- Pseudo-second-

order 

5 
F-, 

SO4
2- 

NA Wu et al., 2014 

Fe – Cu 
39.8 (pH 5) 

35.2 (pH 7) 

1.25 

0.90 

- Langmuir 

- Pseudo-second-

order 

3 – 7 
F-,  

SiO3
2- 

0.5M NaOH Li et al., 2014 

Fe – Mn 36 (pH 5.6) 1.13 

- Freundlich 

- Pseudo-second-

order 

< 5 
- little to no 

effect  
0.1M NaOH 

Zhang et al., 

2009 

Fe – Zr 
33.4 (pH 5.5) 

24.9 (pH 8.5) 

0.67 

0.84 

- Langmuir 

- Pseudo-second-

order 

< 5 
- little to no 

effect 
0.5M NaOH1 Ren et al., 2012 

Magnetic  

Fe – Zr  

13.65 (pH 4) 

17.87 (pH 3) 
NA 

- Langmuir  

- Pseudo-second-

order 

3 – 4  

NO3
-, 

SO4
2-, 

citrate 

0.1M NaOH2 Long et al., 2011 

Fe – Al3 

(Mesoporous 

spheres) 

20.07 (pH 3) 

2.67 (pH 7) 

NA 

0.02 
- Langmuir 3 NA NA 

de Sousa et al., 

2012 

Fe – Al – Mn  48.3 (pH 6.8) NA 

- Freundlich 

- Pseudo-second-

order 

4 

SiO3
2-, 

HCO3
-, 

SO4
2- 

NA Lu et al., 2013 

1Ren et al., 2012 only observed 53% of sorbate desorb giving evidence that some adsorption is irreversible bonding.  
2Long et al., 2011 reported that after five regeneration cycles, adsorption capacity only decreased to 66.7%. 
3Ratio of Fe:Al is 1:1 (Sousa et al., 2012) 

 



61 

 

Competition from other aqueous species needs to be minimized in the process of adsorption. A 

good sorbent is selective for the sorbate of focus. A magnetic iron – zirconium (Fe-Zr) binary 

oxide demonstrated lower phosphate adsorption due to competition. Decreased adsorption was 

found to occur in the presence of nitrate, sulfate and citrate (Long et al, 2011). Long et al. 

observed the effects of the various competing ions separately to determine which species 

affected adsorption capacity the most. In the case of the magnetic Fe – Zr oxide, citrate proved to 

have the largest effect on phosphate sorption due to the presence of hydroxyl groups on citrate. 

In other studies, metal oxides have proven to be very selective for phosphate over other known 

competitive species in wastewater. Li et al. (2014) investigated the use of an iron (III) – copper 

(II) binary oxide for phosphate adsorption from aqueous solutions. Although initially developed 

for arsenic adsorption, the binary oxide proved to be selective for phosphate over arsenic. At pH 

5, the adsorption capacity of Fe – Cu (1:2) was determined to be 39.8 mg P/g (Li et al., 2014). 

Other competitive species were then tested and results showed that Fe – Cu oxide adsorbed 

phosphate over sulfate, chloride and bicarbonate.  However, the presence of high concentrations 

of fluorine (F-) and silica oxide (SiO3
2-) species were shown to interfere with phosphate 

adsorption.  

The presence of potentially competing ions had little effect on the uptake of phosphate onto an 

iron manganese binary oxide (Zhang et al., 2009). Manganese oxide has proven to have 

scavenging abilities for ions in fresh and salt water environments. Testing the binary oxide 

sorbent was done to see if the combination of Mn with Fe would increase the adsorption capacity 

and selectivity onto the sorbent (Zhang et al., 2009). The Fe – Mn binary oxide was determined 

to have a high MAC of 33.2 mg P/g and no significant effect on phosphate adsorption due to 

competition effects. The Fe – Mn sorbent had an optimal working pH range of 3 to 5 with 
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removal decreasing with higher pH. Ionic strength had no effect on phosphate adsorption. An 

iron zirconium binary oxide was also found to have the same trends with respect to pH and ionic 

strength demonstrating a MAC of 36.28 mg P/g (Ren et al., 2012). Competition effects were also 

shown to have little to no effect on phosphorus uptake onto the Fe – Zr binary oxide. 

Trimetal oxides have been recently studied for phosphate adsorption. Lu et al. (2013) evaluated 

the use of an iron aluminum manganese mixed metal oxide for phosphate adsorption. The 

sorbent was amorphous and had a rough, irregular surface. The ratio of Fe:Al:Mn of the mixed 

metal oxide was determined to be 3:3:1 (Lu et al., 2013). The trimetal oxide demonstrated an 

adsorption capacity higher than both the iron manganese and iron aluminum binary oxides. 

Adsorption of phosphate was negatively affected by increasing pH and higher concentrations of 

SiO3
2-, HCO3

- and SO4
2- anions. The highest amount of phosphate removal was observed at a pH 

of 4 (Lu et al., 2013). 

 

2.4.5.2 Desorption from Metal Oxides 

 

Desorption of phosphate from metal oxides has been studied extensively with different methods 

investigated.  The most widely used method of desorption is regeneration with sodium hydroxide 

(Genz et al., 2004). Sodium hydroxide desorption was successful when desorbing phosphate 

from nanocrystalline akaganeite with 100% desorption at pH 12 (Deliyanni et al., 2007). These 

results were in agreement with Genz et al. who found no significant change in adsorption 

capacity over three cycles using 0.6M NaOH to regenerate their granular ferric hydroxide 

(akaganeite). Desorption from an iron zirconium binary oxide with 0.5M NaOH was assessed; 

however, desorption was found to be incomplete – 53% of the adsorbed phosphate being 
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irreversibly bound to the sorbent (Ren et al., 2012). The iron copper binary oxide studied by Li et 

al. (2014) showed a 21% decrease in removal efficiency, but still had a high phosphate 

adsorption capacity after five regeneration cycles with 0.5 M NaOH. During the fifth cycle, the 

sorbent had an adsorption capacity of around 27 mg P/g.  Zhang et al. (2009) determined that 

0.1M NaOH desorbed phosphate from the iron manganese binary oxide just as well as 0.5M, 

showing that more dilute solutions of NaOH could be used in regeneration. By reducing the 

amount of sodium hydroxide, overall process cost will decrease. Other methods of desorption 

have been attempted but with little success. Genz et al. (2004) found that they lost over 20% 

removal efficiency with each cycle when used hydrogen peroxide to regenerate akageneite. Genz 

et al. concluded that the NaOH regeneration was more suitable for the iron oxide. 

 

2.4.5.3 Metal Oxides for Nutrient Recovery 

 

Challenges have emerged with use of metal oxides as sorbents which need to be taken into 

consideration when investigating the use of metal oxide sorbent for nutrient recovery. One 

challenge with the use of metal oxides is the decrease in adsorption capacity, or in some cases 

less phosphorus being desorbed, after each desorption cycle. While some metal oxides show 

preference for phosphate adsorption, in others the selectivity is lessened and competition effects 

are observed. Competition effects will also be a challenge in the use of metal oxides as sorbents 

in wastewater.  

Gaps in the literature also exist and should be investigated to evaluate the use of metal oxides in 

nutrient recovery. One gap is the investigation of the use of exhausted sorbent after the sorbent 

loses adsorption capacity due to chemically irreversible bound phosphate. Use of the spent 

sorbent as a fertilizer should be studied as well as the breakdown of metal oxides to starting 
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materials for possible reuse. The second gap in the literature is implementation of metal oxide 

sorbents into wastewater treatment. Some treated waters have increased metal concentrations due 

to breakdown of the metal oxide and release into effluent waters (Kumar et al., 2014a). There is 

also a gap in the literature pertaining to the use of metal oxides for ammonium adsorption. 

Investigation into the above mentioned areas will help in the evaluation of metal oxides for 

nutrient recovery. 

 

2.4.4 Biowastes as Low-Cost Adsorbents 

 

The use of biowastes as potentially sustainable nutrient removal technologies has been reported.  

Tables 2-13 and 2-14 summarize a collection of studies that employed biowastes for phosphate 

and ammonium adsorption, respectively. Biowastes are typically agricultural waste products that 

have been dried and ground to form particles. Drying usually occurs at temperatures of 70 - 

105°C over a period of several hours (Biswas et al., 2007; Biswas et al., 2008; Liu et al., 

2010a,b,c). Sources of such biowastes include, but are not limited to, food processing plants such 

as juice making facilities (Nguyen et al., 2013; Biswas et al., 2007). These materials are 

abundant in hydroxyl functional groups that are contributed by cellulose, hemicellulose and 

lignin which suggests that the material would be effective as a sorbent.  Biowastes have other 

attractive qualities such as being readily available and inexpensive, renewable sources (Nguyen 

et al., 2013). Due to their potential as sorbents and other positive attributes, research has focused 

on the use of biowastes in nutrient removal. 
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Table 2-13: Summary of Biowaste use for Phosphorus Sorption in Wastewater Streams 

Sorbent Sorbate 
Adsorption 

Capacity (mg/g) 

Adsorption Isotherm 

Model and Kinetics 

Optimum pH 

Range 

Competing 

Ions 
Reference 

Saw Dust PO4
3--P 20.39 

- Freundlich 

- Pseudo-Second Order 
NA NA 

Benyoucef and 

Amrani, 2011 

Coir Pith PO4
3--P 4.35 NA 2 – 3.5 NA 

Krishnan and 

Haridas, 2008 

Palm Surface 

Fibres 
PO4

3--P 4.35 NA NA NA Riahi et al., 2008 

Granular Date 

Stones 
PO4

3--P 8.70 
- Pseudo- Second Order 

- Intraparticle Diffusion 
3 - 5 NA Ismail, 2012 

Palm Surface 

Fibers 
PO4

3--P 8.47 
- Pseudo- Second Order 

- Intraparticle Diffusion 
3 - 5 NA Ismail, 2012 

Okara 

(soy bean milk 

by-products) 

PO4
3--P 0.8 - Langmuir 3 CO3

2- 
Nguyen et al., 

2013 

Coir Pith 

impregnated 

with Fe (III) 

PO4
3--P 68.0 NA NA NA 

Krishnan and 

Haridas, 2008 

Orange Waste 

impregnated 

with La, Ce and 

Fe 

PO4
3--P 13.94 - Langmuir 5 – 7 

- little to no 

effect 

Biswas et al., 

2007 

Orange Waste 

impregnated 

with Zr 

PO4
3--P 57 - Pseudo-Second Order 1 – 4 

- little to no 

effect 

Biswas et al., 

2008 

Sugar Cane 

bagasse fibres 

loaded with Fe 

PO4
3--P 49.6 

- Langmuir 

- Freundlich 
NA NA 

Carvalho et al., 

2011 

Urea modified 

Saw Dust 
PO4

3--P 29.66 - Freundlich NA NA 
Benyoucef and 

Amrani, 2011 
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Table 2-14: Summary of Biowastes use for Ammonium Sorption in Wastewater Streams 

Sorbent Sorbate 
Adsorption 

Capacity (mg/g) 

Adsorption Isotherm 

Model and Kinetics 

Optimum pH 

Range 

Surface 

Area (m2/g) 

Competing 

Ions 
Reference 

Strawberry 

Leaf 
NH4

+ 

3.93 (15°C) 

6.05 (25°C) 

6.71 (30°C) 

7.66 (35°C) 

- Langmuir 

- Freundlich 

- Pseudo-Second Order 

- Intraparticle Diffusion 

- Endothermic 

5 – 8 0.35 

Zn2+, Al3+, 

HCO3
-, 

CO3
2- PO4

3- 

Liu et al., 

2010a1 

Boston Ivy 

Leaf Sorbent  
NH4

+ 

3.37 (15°C) 

5.28 (25°C) 

6.07 (30°C) 

6.59 (35°C) 

- Langmuir 

- Freundlich 

- Logistic Model 

- Endothermic 

5 – 10 31.96 NA 
Liu et al., 

2010b 

Strawberry 

Stems 
NH4

+ 4.62 (30°C) 

- Langmuir 

- Freundlich 

- Logistic Model 

NA 0.10 NA 
Liu et al., 

2010c 

Boston Ivy 

Stems 
NH4

+ 5.01 (30°C) 

- Langmuir 

- Freundlich 

- Logistic Model 

NA 0.53 NA 
Liu et al., 

2010c 

Southern 

Magnolia 

Leaves 

NH4
+ 6.22 (30°C) 

- Langmuir 

- Freundlich 

- Logistic Model 

NA 1.54 NA 
Liu et al., 

2010c 

Poplar Leaves NH4
+ 6.25 (30°C) 

- Langmuir 

- Freundlich 

- Logistic Model 

NA NA NA 
Liu et al., 

2010c 

Sawdust NH4
+ 1.7 (pH 8) 

- Langmuir 

- Freundlich 

- Pseudo-Second Order 

- Intraparticle Diffusion 

6 - 10 NA NA 
Wahab et al., 

2010 

1Liu et al., (2010a) discovered that the competing ions effected adsorption due to their influence on ambient pH upon addition.  
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Coir pith and date-palm wastes have both been examined to determine their phosphate 

adsorption abilities (Krishnan and Haridas, 2008; Riahi et al., 2009; Ismail, 2012). Coir pith, a 

waste product from the production of natural fibers from coconut husks, was studied for 

phosphate adsorption capacity. The dried coir pith that was ground into a powder was found to 

have a MAC of 4.35 mg P/g and was effective over the pH range of 2 to 3.5 (Krishnan and 

Haridas, 2008). Date palm fibers, from the study conducted by Riahi et al. (2009), were found to 

have the same MAC (4.35 mg P/g). Ismail (2012) used granular date stones and dried palm 

surface fibers for phosphate adsorption. The adsorption capacities for the two biowastes used 

were twice as high as those found for the above mentioned studies. Granular date stones had a 

MAC of 8.7 mg P/g while the dried palm surface fibers which had an adsorption capacity of 8.47 

mg P/g. As with the dried coir pith, the other biowastes were found to be most efficient at low 

pH with optimum pH ranges occurring between pH values of 2 and 5 (Riahi et al., 2009; Ismail, 

2012). 

The use of biowastes as adsorbents for ammonia removal has proven to be much more 

successful. Liu (2010a) reported on research projects which investigated the use of plant residues 

for ammonia adsorption. Liu et al. (2010a) dried and ground strawberry leaves into a powder to 

be used as the sorbent. When the strawberry leaf sorbent (SLS) was investigated using a 

scanning electron microscope (SEM), the surface of the powder was found to be irregular with 

pores ranging in size from nanometers to micrometers (Liu et al., 2010a). The irregular pore 

sizes may help explain the result obtained from modeling using known adsorption models. The 

results indicated that there was both monolayer adsorption on a homogenous surface (Langmuir, 

R2 > 0.97) and multilayer adsorption onto a heterogeneous surface (Freundlich, R2 > 0.94). 

During batch testing, 0.2 grams of SLS were added to 25 mL of test solution, a solution of 
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ammonia nitrogen prepared in several concentrations. The results show that ammonia adsorption 

increased with increased initial concentration of ammonia and increasing temperature. Liu et al. 

(2010a) conducted batch test experiments at 15, 25 and 35 °C; adsorption capabilities of the SLS, 

calculated using the Langmuir model, was highest at 35 °C (MAC = 7.66 mg/g), followed by 25 

°C (MAC = 6.05 mg/g) and 15 °C (MAC = 3.93 mg/g).The results for the SLS were very similar 

to a second study by Liu et al. (2010b) which studied the use of Boston Ivy Leaf Sorbent (BILS) 

for ammonia adsorption. Unlike the strawberry leaf sorbent, BILS had a removal efficiency of 

100% in a solution with an initial ammonia nitrogen concentration of 25 mg/L. SLS had a 

removal efficiency of 60% in the same solution (Lui et al., 2010c). 

The main goal of using biowastes as sorbents is the reduction in the cost of wastewater 

treatment. However, another advantage of using biowastes is that the process takes waste 

products that are causing environmental burden (i.e. landfill space and costs) and makes these 

products useful. Also, the waste product themselves could be seen as a good source of nutrients, 

as in the case in the use of soybean milk by-products (okara). Due to popular demand for tofu 

and soy milk, global production of okara as waste has been estimated to be around 14 million 

tons per year (Nguyen et al., 2013). This high amount of waste has led to the investigation of 

okara as a sorbent for contaminant removal. Unfortunately, when tested for phosphate 

adsorption, okara was shown to adsorb very little with a maximum adsorption capacity of 0.8 

mg/g (Nguyen et al., 2013). Low adsorption of phosphorus or ammonia is found frequently with 

biowastes sorbents, leading to the investigation of modifying these sorbents to increase nutrient 

adsorption.  

Research has also has examined the use of biosorbents as a support for other effective sorbents 

for the sorbate of interest. In 2007, Biswas et al. modified orange waste from an orange juicing 
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plant with lanthanum, cerium and iron ions and increased the adsorption capacity to 14 mg P/L. 

Krishnas and Haridas (2008) modified the surface of coir pith by impregnation with iron (Fe(III)) 

and increase adsorption capacity by to 68.0 mg/g.  

Use of biosorbents has several merits. They are a sustainable, low cost option that can reduce 

waste from other industries thereby cutting down the dependence of industry on landfills. They 

produce a somewhat environmentally conscious product which has exhibited phosphate and 

ammonium uptake. One of the challenges present in the implementation of biosorbents for 

nutrient recovery may be the availability of the starting materials (i.e. waste products). 

Biosorbents may be useful in localized areas where the waste products are easily available. There 

is also very limited information on regeneration of the biosorbent and if sorbate can be collected 

separate from the biosorbent post adsorption. 

 

2.4.7 Adsorption of Phosphate and Ammonia Together 

From the review of literature, it can be seen that there has been segregation between phosphorus 

and nitrogen recovery by sorbents. As sorbates, ammonia and phosphate require different 

characteristics in a sorbent. In solution ammonia is present as ammonium cations while 

phosphate is present in anionic forms of varying charge. Therefore, these species will be 

attracted to different surfaces. Hence, sorbents that can adsorb ammonia and phosphate have 

consisted of composite materials. A summary of the sorbents which adsorb phosphorus and 

ammonia together can be found in Table 2-15. Composite materials are two or more materials 

mixed together to create an additive effect with respect to their adsorptive capabilities. 

Composite materials were mentioned previously with respect to taking two materials to enhance 

the adsorption of a single sorbate as in the case of metal oxides. In the following section, 
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composite materials will be discussed with regard to combining sorbents that select for two 

different sorbates. In the case of ammonia and phosphate, composite materials are an attractive 

option due to the difference between phosphate and ammonia ion charges.  

 

Table 2-15: Summary of Sorbents which Remove both Ammonium and Phosphate. 

Sorbent Mechanism 

Adsorption 

Capacity 

(mg/g) 

Adsorption 

Isotherm Model 

and Kinetics 

Optimum 

pH 

Range 

Reference 

NaCl, FeCl3 

Calcinated 

Clinoplitolite 

Ion exchange 

with Surface 

complexation 

P: 1.26 mg P/g 

N: 2.70 mg N/g 
- Langmuir NA 

Huo et al., 

2012 

Si-Rich and Ca-

Rich Zeolites  

Ion exchange 

with 

precipitation 

and adsorption 

P: 1.2 mg P/g 

N: 9.57 mg N/g 

- Langmuir 

- Pseudo-Second 

Order 

P: 5 

N: 9 

Ji et al., 

2013 

Type-C Natural 

Zeolite with CaP 

Precipitation 

(Ca:P=5.01) 

Ion exchange 

with 

precipitation 

P: 36.8 mg P/g 

N: 6 mg N/g 
  NA 

P: 9 – 10 

N: 6 – 7  

Karapinar, 

2009 

Zeolite/Fe2O3 

Composite 

Ion exchange 

with Surface 

complexation 

P: 7.14 mg P/g 

N: 35.7 mg N/L 
  NA 

P: 4 – 7  

N: 7.5 – 9 

Xie et al., 

2014 

1Liu et al., (2010a) discovered that the competing ions effected adsorption due to their influence on 

ambient pH upon addition.  

 

 

Karapinar (2009) investigated the use of a natural zeolite to remove ammonium (Table 2-7). 

After the initial investigation, Karapinar investigated the use of the ammonium adsorbed zeolite 

as a seed material for calcium phosphate precipitation. Calcium phosphate precipitation was 

monitored in the pH range of 7.5 – 10. More precipitate was formed within the pH range of 9 - 

10. The presence of zeolite was found not to affect the precipitation of calcium phosphate and 

the study confirmed that calcium phosphate was precipitating on the zeolite. However, Karapinar 

(2009) stated that ammonium removal and calcium phosphate precipitation need to be studied 

using real wastewater to prove its “real world” efficacy. While the process of ammonium 
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adsorption and calcium phosphate precipitation onto the natural zeolite is convenient for nutrient 

recycling, the success of the ammonia phosphate enriched zeolite as a fertilizer is not known and 

must also be studied.  

Several studies have investigated the use of calcium enriched zeolites to remove ammonia and 

phosphate (Murayama et al., 2003; Wu et al., 2007; Zhang et al., 2007). These studies used 

silica-rich fly ash derived zeolites and treated them using CaCl2 to enhance the zeolites ability to 

retain phosphate. While the studies showed some success, a research group led by Ji et al. (2013) 

pointed out that the method used by the researchers had some disadvantages. The calcium 

enrichment method increases treatment cost and produces salt solutions that then need to be 

handled and disposed. Although the studies had their disadvantages Ji et al. (2013) believed that 

fly ash derived zeolites were useful in nutrient removal. The research group investigated the use 

a mixture of silica-rich and calcium-rich fly ash derived zeolites, effectively removing the 

calcium enrichment step used by the other researchers. The mixed zeolites demonstrated a 

phosphate adsorption capacity of 3 mg P/g and an ammonium capacity of 9.6 mg NH4
+-N/g. A 

challenge of using the mixed zeolites was that the working pH ranges for optimum phosphate 

and ammonium adsorption were different. Phosphate was adsorbed best at pH 5, while 

ammonium was adsorbed best at pH 9. Also, the mixed zeolites could not achieve low level 

removals of nitrogen and phosphorus even at high sorbent dosage. Mixed zeolite dosage of 20 

g/L achieved final phosphate and ammonium concentrations of approximately 2 mg/L and 0.5 

mg/L, respectively. The fact that the end product obtained by the use of the spent zeolite mixture 

can be used directly as a fertilizer is a major advantage for its implementation (Ji et al., 2013). 
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2.5 Summary of Literature Review 

 

Overall, adsorption has become an attractive treatment method due to its stability, simple 

operating conditions and production of less waste sludge. Adsorption can be applied to treatment 

plants of large and small scale and is specifically beneficial for dilute waste streams (Su et al., 

2013). Adsorption capacity and competition effects are two of the major challenges with existing 

sorbents. Natural zeolites and minerals have lower adsorption capacities which can be 

contributed by impurities in their framework and competing ions. Biosorbents had varied 

adsorption capacities and competition effects were tested on very few sorbents. The use of 

biosorbents for nutrient adsorption is attractive since the process uses waste from other 

industries, reducing waste and cost. However, the starting materials used to make biosorbents 

may only be available in localized areas. Another challenge with the use of biosorbents is the 

limited information on desorption of nutrients and regeneration of the sorbent. 

After a review of the literature, ion exchange resins and metal oxide sorbents were deemed to 

have characteristics that, once optimized, have the greatest potential for use in nutrient recovery. 

The ability of these technologies to adsorb and desorb large amounts of ammonium and 

phosphate make these methods very attractive for use in wastewater treatment. Research is 

necessary to overcome some of the challenges posed by competition effects and desorption 

capabilities, but once managed the use of these sorbent materials could achieve the goals of 

nutrient recovery.  In recent studies using sorbents to collect both ammonium and phosphate, it 

can be seen that there will be some compromise. Ammonium and phosphate have opposite 

charges, both demanding different sorbent characteristics and working pH ranges from 

adsorption technologies. 
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2.6 Gaps in the Research 
 

Although there have been a number of studies of nutrient recovery, more needs to be done, 

especially focusing on recovering both phosphorus and nitrogen. The following is a summary of 

the gaps found in research: 

• Sorbent effectiveness in real wastewater samples: Most studies have used simple test 

solutions as a proxy for wastewater samples. Researchers characterize real wastewater 

samples and transfer the determined amounts to a simple solution containing the 

sorbate of focus. Wastewater has a complex matrix with many species coexisting. 

While the majority of studies look into the effects of competition with other species, 

the true performance of a sorbent cannot be evaluated until subjected to real world 

samples.  

• Organic nitrogen and phosphorus species: Organic phosphorus and nitrogen stand in 

the way of meeting stringent effluent regulations. They must be removed for effluent 

levels to reach the ultra-low concentrations needed to meet the policies of today and in 

the future. Also, just removing organic nitrogen and phosphorus is essentially throwing 

away valuable, and in the case of phosphorus, irreplaceable resources. Research must 

be completed to determine a method to convert organic P and N to forms that are useful 

in nutrient recovery.   

• Sorbate desorption and sorbate reuse: Desorption of the nutrients from the sorbent also 

needs to be researched further. Optimizing desorption into a feedstock solution for 

recovery technologies (e.g. struvite) is required. Also, studies have focused on one or 

two regeneration studies, but have not established the effects of long term use.   
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3.0 Literature Review: Organic Phosphorus Oxidation 

 
3.1 Problem Statement 

 

Phosphorus removal from waste water is gaining more attention in recent years. Areas with 

sensitive receiving waters prone to eutrophication require stricter phosphorus effluent discharge 

limits (Clark et al.,2010). In addition, there has been a shift in wastewater treatment from 

phosphorus removal to recovery since P is an essential nutrient and as such, a valuable 

commodity in the fertilizer industry (LeCorre et al., 2009). The pressure towards nutrient 

recovery has increased recently when it was reported that worldwide mining of phosphate rock is 

expected to peak in the year 2030; complete exhaustion of global phosphate rock stores is 

expected to occur in the next 50 – 100 years (Cordell et al., 2009).  

Phosphorus speciation in the wastewater stream affects both P recovery and the ability to achieve 

lower discharge limits. Organic phosphorus species can make up 26 to 81 % of the total P in 

treated wastewater effluents as it is more recalcitrant, and not receptive to biological and 

chemical nutrient removal processes (Qin et al., 2015).  Further, current phosphorus recovery 

technologies recover P in the form of an inorganic P precipitates (i.e. struvite) and therefore 

organic P species are not suitable for nutrient recovery (Latimer et al., 2015). Thus, a method is 

needed which can oxidize organic P in wastewater, making the P available for P recovery and 

consequently make it easier to achieve high level P removal efficiencies in wastewater treatment 

effluents. 
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3.2 Organic P in Wastewater 

 

Total phosphorus (TP) in wastewater can exist in several forms. Particulate and dissolved P are 

retained or pass through a 0.45 µm membrane filter, respectively (Gu et al., 2011). Organic P 

typically makes up 15 % of dissolved phosphates in wastewater, with the remaining fractions 

being 50 % orthophosphate and 35 % of condensed phosphates (Parsons and Smith, 2008; Mayer 

and Woo, 1998). Organic and condensed phosphates make up a fraction of TP referred to as non-

reactive P (nRP), operationally defined as such since they do not react directly with the reagents 

used in colorimetric P detection methods (Robards et al., 1994).  

The nRP fraction is typically recalcitrant in wastewater treatment (Qin et al., 2015). In a 2011 

study by Gu et al., nRP concentrations ranged from 9 – 54 µg P/L in secondary wastewater 

effluents, and from 3 – 42 µg P/L in tertiary wastewater effluents. Therefore, with TP regulations 

for sensitive receiving waters approaching 0.01 mg P/L, the presence of nRP in wastewater will 

have a significant impact on the ability to meet these types of limits. 

Few studies have specifically investigated organic P in the wastewater stream. While information 

is limited, studies agree that the organic P compounds in domestic waste water mainly consist of 

esterized phosphorus and pyrophosphate species that contain a covalent phosphorus to oxygen to 

carbon bond. (Qin et al., 2015). Further characterization of organic P compounds has shown that 

pyrophosphates and organic mono ester phosphates are hydrophilic in nature, while mono- and 

di- ester phosphates are more hydrophobic; Qin et al. (2015) found that the majority of organic P 

in wastewater was hydrophobic in character.  

The type and quantity of nRP in a wastewater stream is dependent on the source. Depending on 

the area serviced by the wastewater treatment plant, industrial wastes and agricultural runoff 
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could be significant contributors to nRP in wastewater. The use of organic phosphorus 

compounds in industrial applications is increasing leading to wastewater streams high in 

refractory nRP; organic phosphorus compounds are used as herbicides/pesticides, chelating 

agents and in pharmaceuticals (Xing et al., 2017a; Mangat Echavia et al., 2009; Nowack, 2003; 

Kamel, 2015). Organic phosphorus use in industry and its existence in industrial wastewater has 

been well studied; many industries use phosphonates, a group of phosphorus compounds that 

contain a hard to break covalent carbon to phosphorus bond (Nowack, 2003). An example of a 

phosphonate that is in high worldwide demand is Glyphosate, a nonselective herbicide which has 

increased in usage due to the production of genetically modified crops that are tolerant to 

Glyphosate (Xing et al., 2017a). 

 

3.3 Advanced Oxidation Processes use for Organic Phosphorus Oxidation 

 

Studies of oxidation of organic P in wastewaters have typically been limited to the removal of 

large quantities found in some industrial wastewaters. Wastewater streams which contain large 

quantities of organophosphate pesticides (e.g. glyphosate) have been the subjected to several 

advanced oxidation processes (AOPs). The section reviews prior studies of the use of AOPs in 

this regard. 

 

3.3.1 Catalytic Wet Oxidation 

 

Wet oxidation is a process that uses oxygen or air to mineralize aqueous organic compounds to 

CO2 gas and water. High temperatures and pressures are often needed in the wet oxidation 

process to avoid partial oxidation of organics and long reaction times (Bhargava et al., 2006). 

Catalytic wet oxidation (CWO) typically uses catalysts to improve reaction conditions, making 
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the process more efficient. Even with the use of catalysts, high temperature and pressure may 

still be required to achieve the desired results in short enough reaction times (Xing et al., 2017a; 

Xing et al., 2017b). Due to the elevated temperatures and pressures, the mechanism behind 

oxidation via CWO is complicated and involves a combination of hydrolysis, thermal 

decomposition and free radical oxidation (Bhargava et al., 2006). CWO has been identified as a 

suitable method to remove organic pollutants in medium to high concentration wastewaters.  

Prior studies of catalytic wet oxidation in wastewater applications have mainly focused on the 

oxidation of glyphosate and organic P in glyphosate process wastewater. In one study, CWO was 

used with an activated carbon (AC) catalyst which had been modified to increase the catalytic 

activity of the AC surface (Xing et al., 2017a). Experiments were completed in a co-current 

upflow fixed bed reactor containing 10 mL of catalyst; a hydraulic residence time of 

approximately 25 minutes while the temperature and pressure were 110 – 130 ℃ and 1.0 MPa 

respectively. Removals of over 99 % glyphosate and 93 % organic P were observed after CWO 

of the glyphosate waste water where the initial glyphosate and organic P concentrations ranged 

from 213 – 2560 and 51 – 474 mg/L, respectively (Xing et al., 2017a). In another study by the 

same research group, CWO was coupled with a lime-catalyzed formose reaction to oxidize 

organic P and formaldehyde in the same glyphosate process wastewater (Xing et al., 2017b). In 

the study, the effluent collected after CWO was heated to 60 – 90 ℃ and lime was added to the 

reactor to initiate formaldehyde oxidation via the autocatalytic behaviour of the 

lime/formaldehyde mixture (Castells et al., 1983). More than 99% glyphosate and 90% organic P 

were oxidized to phosphate when optimal CWO conditions were used; the experiments 

employed a 3 % modified AC catalyst, a temperature of 130℃, a pressure of 1.0 MPa and a 

reaction time of 2 hours (Xing et al., 2017b). With the addition of the lime 96.2 % of total 
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phosphorus was removed via precipitation of phosphate. Overall, CWO was shown to effectively 

oxidize glyphosate and organic P in concentrated wastewater streams.  

In general, the high pressures and temperatures required for wet oxidation to be an effective 

treatment have associated high operating cost and thus, catalysts are being explored to make the 

process more cost effective. However, a review by Bhargava et al. (2006) found that the catalysts 

used in CWO are costly and inefficient and there is much need for improvement. Additional 

research is needed to address catalyst deactivation and catalyst recovery for the CWO process to 

gain further industrial use (Bhargava et al., 2006).  

 

3.3.2 Photocatalysis  

 

Photocatalysis is often used in advanced oxidation processes (AOPs) to oxidize organic 

contaminants in water and wastewater streams. In photocatalysis, oxidation occurs through the 

action of hydroxyl (˙OH) and superoxide (O2˙
-) radicals that are formed by exposing a 

semiconductor to UV light; the UV light promotes an electron of the semiconductor from the 

valence to the conduction band leading to the formation of radicals (Benotti et al., 2009). 

Photocatalysis of organic phosphorus has been regularly reported in the literature. These studies 

typically coupled UV light with various forms of TiO2 (Chen and Liu, 2007; Mangat-Echavia et 

al., 2009), hydrogen peroxide (Manassero et al., 2010) and ferrioxalate (Chen et al., 2007). 

 

3.3.2.1 Titanium Dioxide and UV Light 

 

The combination of titanium dioxide (TiO2) and UV light have been used to treat wastewaters 

containing pesticides. The photocatalyst TiO2 has been used in powder suspensions, or slurries 
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(Shifu and Yunzhang, 2007; Han et al., 2009; Evgenidou et al., 2006), as well as immobilized on 

silica gel (Mangat Echavia et al., 2009). Studies have also evaluated TiO2/UV photocatalysis 

using either natural (Vela et al., 2018) or artificial UV irradiation. A summary of studies 

investigating pesticide oxidation via TiO2/UV photocatalysis is summarized in Table 3-1. In 

general, it has been reported that the use of TiO2/UV can achieve high levels (>80%) of pesticide 

removal.  Its performance has been found to be dependent on the duration of UV exposure, 

catalyst dose and initial concentration of contaminant.  

Advanced oxidation processes which use TiO2 as a photocatalyst have also been found to remove 

pesticides via physical adsorption (Mayer et al., 2013). Chen and Liu (2007) observed 

glyphosate adsorption to the TiO2 surface under dark conditions; the TiO2 adsorption capacity 

for glyphosate was 1.28 x 10-6 mol/g (40 µg P/g TiO2). Adsorption of the organic P species did 

not hinder oxidation, as orthophosphate was detected in solution once the UV lights were 

activated (Chen and Liu, 2007). In another study Han et al. (2009) discovered that the pesticide 

acephate adsorbed to TiO2 and this was also found to not hinder oxidation. Mangat Echavia et al. 

(2009) reported complete removal of 0.1 mM glyphosate after adsorption to TiO2 and 60 minutes 

of UV exposure. RP was not released after oxidation of the glyphosate suggesting that the 

liberated orthophosphate and other intermediate compounds were removed via adsorption.   

Several studies have addressed the liberation of inorganic ions during the oxidation of pesticides. 

Degradation via photolysis can take numerous pathways as the radical species that form are non-

selective (Legrini et al., 1993; Westeroff et al., 2009). As such, most studies have monitored 

orthophosphate (inorganic P species) to gauge if complete mineralization of the parent 

compounds had occurred. In one study, liberation of orthophosphate was observed with 

photooxidation, however the quantity of PO4
3- released was low when compared to the 
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stoichiometry of the amount of glyphosate degraded (Mangat Echavia et al., 2009). Han et al. 

(2009) observed only 2 % of P was mineralized into orthophosphate. The release of lower than 

expected orthophosphate could be due to adsorption onto the TiO2 catalyst or due to incomplete 

mineralization of the compound studied. Several by-products have been identified in experiments 

by Evgenidou et al. (2006) studying the pesticides dimethoate and dichlorvos; nine organic 

compounds were identified as by-products of dimethoate oxidation while three organic 

compounds were observed for dichlorvos oxidation. Longer UV irradiation times have the 

potential to completely mineralize parent compound and any additional organic by-products.  

The use of TiO2/UV to oxidize organic contaminants has both advantages and limitations. The 

advantages include the efficacy of the treatment over a wide range of pH, little chemical 

requirements other than the addition of the catalyst (i.e. TiO2) and no need for additional 

treatment post-oxidation (Shon et al., 2006). Photocatalysis is however limited by the 

transmission of the UV light. The wastewater stream being treated must allow good transmission 

of the UV light as water with high turbidity will interfere with oxidation of contaminants 

(Gogate and Pandit, 2003). In addition, due to the energy requirements of the system, the overall 

cost of TiO2/UV photolysis could be higher than other methods of treatment (Shon et al., 2006). 



81 

 

Table 3-1: Summary of studies investigating UV/TiO2 oxidation on organophosphate containing pesticides. Removal 

efficiencies based on detection of parent compounds in solution. 

 

Method 
Contaminant of 

Focus 

Removal 

Efficiency 

(%) 

Irradiation 

Time (min) 
Comments Reference 

UV/TiO2 

Dimethoate 

(C5H12NO3PS2) 
100 %  60 - TiO2 was immobilized onto silica gel. 

- Removal of glyphosate was due to photocatalysis  

  and adsorption. 

- Initial pesticide concentrations were 0.1 mM  

  (3.1 mg P/L). 

Mangat Echavia et 

al., 2009 

Glyphosate 

(C3H8NO5P) 
100 % 60 

Acephate 

(C4H10NO3PS) 
100 % 105 

UV/TiO2 

Malathion 

(C10H19O6PS2) 
100 % 

240 

- Optimal TiO2 dose: 200 mg/L 

- Natural sunlight used as UV light source. 

- Pesticides were treated as a mixture dosed in  

  wastewater treatment plant effluent  

- Initial concentrations of 0.3 mg/L (0.04 – 0.06 mg  

   P/L) per pesticide was used.  

Vela et al., 2018 

Fenotrothion 

(C9H12NO5PS) 

80 ± 8 % Quinalphos 

(C12H15N2O3PS) 

Dimethoate 

UV/TiO2 Glyphosate > 90 % 210 

- Initial glyphosate concentration: 2.5 x 10-4 M   

  (7.7 mg P/L) 

- Optimal TiO2 dose: 6 g/L 

Shifu and 

Yunzhang, 2007 

UV/TiO2 Acephate > 90 % 60 

- Optimal TiO2 dose: 4 g/L 

- Initial acephate concentration: 0.40 mM 

  (12.4 mg P/L) 

Han et al., 2009 

UV/TiO2 

Dimethoate 100 % 120 - Initial pesticide concentrations: 20 mg/L (2.7 – 2.8    

   mg P/L) 

- TiO2 dose: 100 mg/L 

Evgenidou et al., 

2006 
Dichlorvos 

(C4H7O4PCl2) 
100 % 30 

UV/TiO2 Dimethoate 100 % 30 
- Initial concentration: 10 mg/L (1.35 mg P/L) 

- TiO2 dose: 100 mg/L 

Evgenidou et al., 

2005 
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3.3.2.2 Hydrogen Peroxide and UV Light 

 

The exposure of hydrogen peroxide (H2O2) to UV light produces hydroxyl radicals which 

oxidize organic compounds to CO2, H2O and inorganic ions (Malato et al., 2000). This method 

has been employed to treat solutions containing glyphosate (Manassero et al., 2010). The study 

investigated the effects of initial glyphosate concentration (27 – 91.3 mg/L), H2O2 concentration 

and pH on the performance of the process. Optimal glyphosate conversion was observed to occur 

at H2O2/glyphosate molar ratios in the range of 7 – 19 and above pH 7. Overall, oxidation of over 

70 % glyphosate to orthophosphate was observed after 5 hours at pH 7 and with a H2O2 dose 

between 75 – 200 mg/L (Manassero et al., 2010). 

Relatively few studies have investigated the use of H2O2/UV light for organic P oxidation and 

this may be due to limitations of the method. One disadvantage is that hydroxyl radical formation 

from H2O2 at 254 nm is slow, leading to long reaction times. In addition, hydroxyl radical 

formation can be inhibited in the presence of dissolved and suspended solids (Ikehata and El-

Din, 2006). Municipal wastewaters are known to have large dissolved and suspended solids 

concentrations (Shon et al., 2006). High dissolved and suspended solids concentrations in 

combination with the large volumes of wastewater that need to be treated will likely limit the use 

of H2O2/UV treatment for organic P oxidation in wastewater. 

 

3.3.2.3 Ferrioxalate 

 

The ferrioxalate system combines Fe(III) with oxalate and UV light to produce hydroxyl radicals 

which then oxidize organic contaminants. Chen et al. (200) reported photodegradation of 

glyphosate in a ferrioxalate system with 60.6 % conversion to RP at pH values between 3.5 and 
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5; initial glyphosate concentrations were 5.0 mg/L. When the pH was raised to a value of 6, the 

conversion lowered to 42.1 %.  It was found that use of the acidic pH range was necessary for 

effective oxidation due to the prevalence of Fe(C2O4)2
- and Fe(C2O4)3

3- which are more 

efficiently photolyzed over other ferrioxalate species (Chen et al., 2007). The pH adjustment 

needed for optimal oxidation is a limitation of the use of the ferrioxalate method. Adjusting the 

pH of large volumes of municipal wastewater would be costly. Therefore, the ferrioxalate 

method would be best used in industrial wastewater streams which are already acidic. 

 

3.4 Literature Review Summary 

 

In summary, oxidation methods are potentially attractive for oxidizing organic phosphorus in 

wastewater. The literature suggests that TiO2/UV photocatalysis has the greatest potential for 

nRP oxidation in wastewater treatment effluents due the limited chemical addition and efficacy 

at circumneutral pH. Research is however necessary to determine if TiO2/UV could be an 

effective method for nRP oxidation in wastewater effluents which contain a mixture of OP 

species in addition to phosphonates. Additionally, wastewaters typically contain natural 

dissolved organic matter which could impact the efficacy of TiO2/UV photocatalysis; additional 

research questions include catalyst dosage and length of UV irradiation necessary for different 

wastewater effluents. With additional research, the use of TiO2/UV photocatalysis could achieve 

the goal of nRP oxidation in wastewater streams.   
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3.5 Gaps in Literature 

Overall, the literature indicates that AOPs are effective at oxidizing organic phosphorus 

compounds to inorganic RP however there are a number of areas that require further research. 

The following is a summary of gaps in the literature: 

• Use of oxidation methods on real wastewater samples: The majority of studies reported in 

the literature have focused on pesticides in simple test solutions. Waste water is a 

complex matrix with other constituents that may affect the efficiency of oxidation on 

organic P in wastewater effluents.  

• Organic phosphorus species: Prior studies have focused on organophosphate containing 

pesticides (phosphonates). Wastewater effluents are known to contain a variety of 

different organic P compounds (i.e. esterized phosphorus, pyrophosphates). The efficacy 

of oxidation methods for solutions containing the mixture of nRP species found in 

municipal wastewater effluents should be investigated.  

• Organic phosphorus concentrations: In the literature, experiments have targeted treatment 

of concentrated pesticide waste streams. Organic P concentrations in typical municipal 

wastewaters are low in comparison and therefore, different treatment issues may arise. 

• Competition between natural organic matter and organic phosphorus: In municipal 

wastewater, organic P species are less concentrated in comparison to organic matter. 

hydroxyl radicals non-selectively attack organic contaminants in solution, therefore 

photolysis may not be as effective on organic P compounds in wastewaters with high 

organic matter such as municipal wastewater. 
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4.0 Screening of Commercially Available Sorbents for Phosphorus 

Recovery from Synthetic Wastewater Test Solution  

 

 
4.1 Summary 
 

An opportunity exists to harvest nutrients from wastewater, a source rich in phosphorus. Using 

adsorption and desorption tests, this study evaluates 14 commercial sorbents for potential 

phosphorus recovery from synthetic wastewater. Commercially available sorbents (e.g. ion 

exchange resins (IEX), granular ferric oxide, hybrid IEX and activated alumina) were obtained 

from several companies and tested for phosphate removal from the wastewater in a 48-hour 

adsorption test. Sorbents which exhibited substantial phosphate removal were then tested for 

recovery using acidic (HCl), basic (NaOH), salt (NaCl) and basic salt (NaOH + NaCl) desorption 

solutions. Sorbents were evaluated with respect to P recovery from both the spent sorbent 

(adsorbed fraction) and from the synthetic wastewater stream. In terms of recovery of phosphate 

from the initial synthetic wastewater stream, the IEX sorbent C was found to recover the largest 

fraction at 23 % P; while all other sorbents recovered less than 20 % P from the synthetic 

wastewater.  Additional desorption solutions (carbonate and magnesium sulfate) were tested on 

sorbents A (granular ferric hydroxide) and D (IEX) and it was found that these solutions can 

increase phosphorus recovery from wastewater.  

KEYWORDS: Nutrient Recovery, Wastewater, Adsorption, Desorption  

 

4.2 Introduction 

 

Phosphorus is an essential nutrient in fertilizers that are necessary for food production. 

Conventional practices used to produce P based fertilizers are costly and unsustainable; 
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phosphate rock is mined worldwide with total depletion of phosphate stores projected to occur 

within the next 50 to 100 years (Erisman et al., 2008; Cordell et al., 2009; Hao et al., 2013). 

Wastewater may represent a renewable source of nutrients if methods for harvesting P are 

developed. The quality of effluents and cost of wastewater treatment may also be enhanced by 

replacing nutrient removal with nutrient capture and recycling since phosphorus and nitrogen 

often must be removed to reduce toxicity, or to mitigate the effects of eutrophication.  

 

The literature shows that methods for nutrient recovery from waste water range from conceptual, 

proof-of-concept studies to monitoring of full-scale implementation into water resource recovery 

facilities (WRRFs). A number of studies have focused on phosphorus recovery from wastewater, 

leading to several literature reviews on the subject (de Bashan and Bashan, 2004; Xie et al., 

2016; Mehta et al., 2015); some examples of methods investigated include reverse osmosis, 

adsorption and electrochemical methods. To date, only technologies which produce struvite 

(NH4MgPO4·6H2O) have been implemented in full scale wastewater treatment plants (Latimer et 

al., 2015). Although these technologies are in use, there is an interest in the development of 

economical and efficient recovery methods for nutrients (de Bashan and Bashan, 2004). 

 

Adsorption is a low cost and efficient process that can transfer contaminants from the liquid to 

the solid phase for separation (Metcalf and Eddy, 2003). Since adsorption requires little energy 

input there has already been some deployment in wastewater treatment (Li et al., 2014; Long et 

al., 2011). Challenges can however arise when selecting a sorbent suitable for nutrient removal. 

Identifying sorbents that adsorb large quantities of nutrients may lead to the use of two sorbents 

of different compositions to adsorb N and P due to the differing properties of nitrogen and 
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phosphorus bearing compounds. The adsorption of nutrients must also be reversible if nutrients 

are to be recovered, a functionality which is dependent upon adsorbent properties (Rittman et al., 

2011). If nutrients cannot be desorbed, sorbents will not be an effective recovery technology.  

 

This study used commercially available sorbents of different compositions to obtain insight into 

the effect of adsorption mechanisms on phosphorus recovery. The mechanisms of focus in this 

study include ion exchange and surface complexation. Ion exchange resins (IEX) incorporate an 

exchange mechanism where one ion replaces another at the resin surface while metal oxide 

sorbents can bind phosphate via surface complexation or ion exchange depending on the metal 

present.  In practice several commercially available IEX resins include metal oxides in their 

structure to increase sorption capacity (Blaney et al., 2007; Kumar et al., 2014a; Tanada et al., 

2003).  

 

Ion exchange resins (IEX) and metal oxides have been employed to remove various 

contaminants from aqueous solutions. Ion exchange resins are known to have quick response to 

shock loading and large reactive site availability for certain sorbates (Thorton et al., 2007). Ion 

exchange resins have been previously employed to capture phosphate ions from the liquid phase. 

Nur et al. (2013) used a strong base hybrid exchange resin that achieved an adsorption capacity 

of 48 mg P/g sorbent. O’Neal and Boyer (2013) also used a strong base hybrid exchange resin to 

remove phosphorus from grey water and reported adsorption capacities ranging from 1.5 to 10.1 

mg P/g sorbent. 
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Known for forming surface complexes with phosphate (Smith et al., 2008), metal oxide based 

sorbents have also been tested for removal of phosphate from aqueous environments (Kumar, 

2014a). A granular ferric hydroxide, that was used to remove phosphate from water, had a 

reported adsorption capacity of 24 mg P/g sorbent at pH 6 (Sperlich, 2010). Aluminum 

hydroxide has been shown to adsorb 45 mg P/g sorbent at a pH of 4 (Tanada et al., 2003).  

 

Regeneration of metal oxides and hybrid ion exchange resins with either basic and/or salt 

solutions has been reported (Blaney et al., 2007; Malyovanny et al., 2013). While desorption has 

been reported, in most cases the studies were conducted to regenerate the sorbent and not to 

collect adsorbed species (Blaney et al., 2007; Nur et al., 2013). Prior studies have suggested that 

sorbents have the potential for multiple regeneration cycles with little effect on adsorption 

capacity (Rodrigues et al., 2010). It is therefore anticipated that desorption of nutrients into a 

feedstock suitable for fertilizer production would require minor adjustments from current 

regeneration methods. 

 

The purpose of this study was therefore to test whether commercially available sorbents could be 

employed to recover phosphorus from wastewater. In this study emphasis was placed on 

desorption of P from the sorbent by assessing different desorption solutions to investigate which 

combinations of solution and sorbent were most suitable for nutrient recovery. The sorbents were 

evaluated based on P adsorption capacity from a synthetic wastewater (SWW) and the recovery 

of P from the SWW; desorption solutions were assessed through nutrient recovery from the spent 

solids. The results of this research will provide guidance to the wastewater treatment industry 
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when making decisions when selecting appropriate adsorbent technologies for nutrient removal 

and recovery. 

 

4.3 Methodology 

 

4.3.1 Synthetic Wastewater 

An inorganic synthetic wastewater (SWW) that emulated the complexity of secondary-treated 

wastewater in terms of ionic composition was modified from that described by Jung et al. 

(2005). The common components of the synthetic wastewater solution (Table 4-1) included 

magnesium sulfate (MgSO4·7H2O, Sigma-Aldrich, St. Louis, MO), calcium chloride 

(CaCl2·2H2O, Fisher Scientific, Fair Lawn, NJ), sodium bicarbonate (NaHCO3, EMD Chemicals 

Inc., Gibbstown, NJ), sodium acetate (CH3COONa, BDH Chemicals, Toronto, ON).  Potassium 

phosphate monobasic (KH2PO4) (BDH, VWR International LLC., West Chester, PA) was also 

included and concentration was dependent on the experiment and are subsequently described in 

further detail. The synthetic wastewater was prepared using ultra pure water (18.2MΩ, MilliQ) 

and adjusted to a pH of 7.0 + 0.05 using hydrochloric acid (HCl, EMD Chemicals Inc., 

Gibbstown, NJ) or sodium hydroxide (NaOH, Sigma-Aldrich, St. Louis, MO). All chemical 

reagents used in this study were reagent grade or higher. 
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Table 4-1: Synthetic wastewater recipe adapted from Jung et al. (2005). Potassium 

phosphate monobasic (a) concentration was dependent on target phosphorus 

concentration. 

Compound Concentration (mg/L) 

Magnesium Sulfate (MgSO4·7H2O) 24.0 

Calcium Chloride (CaCl2·2H2O) 2.4 

Sodium Bicarbonate (NaHCO3) 300.0 

Sodium Acetate (CH3COONa) 820.3 

Potassium Phosphate Monobasic (KH2PO4) a 

 

 

4.3.2 Commercial Adsorbents 

 

Fourteen commercially available sorbents were obtained from vendors based on supplier 

recommendations on the sorbent’s potential to adsorb P from solution via chemical adsorption or 

ion exchange. The sorbents utilized in this study represent a small fraction of commercial 

adsorbents available and varied in chemical composition, summarized in Table 4-2. Sorbents 

included ion exchange resins (IEX), titanium dioxide, granular activated alumina, silica 

hydrogels and ferric hydroxide based materials; sorbents are referred to by an alphabetic code to 

maintain anonymity of the supplier.  In addition, Table 4-2 gives conventional uses of these 

commercial sorbents to demonstrate their potential as nutrient sorbing agents.  The uses include 

phosphate removal but also, given the strong chemical similarity included arsenate removing 

resins.   
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4.3.3 Adsorption Isotherm Experiments 

 

Adsorption isotherms were developed using data gathered from batch tests.  In the batch tests the 

solutions were prepared by adding known amounts of KH2PO4 standard solution to 50 mL of the 

synthetic wastewater to yield final nominal concentrations of 0, 5, 10, 20, 40 and 80 mg P/L; 

adsorption isotherm experiments of select sorbents included test solutions with a nominal 

concentration of 100 mg P/L.  For these batch tests 50 mL polypropylene tubes (Corning Inc., 

Tewksbury, MA) were used. After a known amount of sorbent addition, the tubes were 

continuously mixed on a rocker for 48 hours after which equilibrium was assumed. The contents 

of the tube were then filtered using 0.45 µm polyethersulfone membrane filters (VWR 

International LLC., West Chester, PA). Filtrates were subsequently analyzed for total 

phosphorus concentration using the methods described below. 

 

4.3.4 Nutrient Recovery Experiments 

 

In the chemical desorption experiments, a known amount of sorbent was added to the synthetic 

wastewater test solution with a nominal phosphate concentration of 40 mg P/L (1.29 mmol P/L) 

and the pH of the test solution was adjusted to 7.0 + 0.05. After 48 hours, the sorbent was filtered 

from the solution using a 0.45 µm cellulose nitrate membrane filter (Whatman, Germany) and 

rinsed with 25 mL ultrapure water (18.2MΩ, MilliQ). The spent sorbent was then soaked in 50 

mL of desorption solution for 48 hours.  The desorption solutions that were tested included 0.1 

M NaOH, 0.1 M HCl, 0.1 M NaCl and 0.1 M NaOH + 0.1 M NaCl. After 48 hours, the 

desorption solution was filtered through 0.45 µm membrane filter and the filtrate was brought to 

a neutral pH by adjusting with 0.1 M HCl or NaOH. Desorption filtrates were analyzed for total 

phosphorus concentrations using the methods described below.  
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Table 4-2: Commercial sorbents tested. 

Sorbent Description Conventional Use 

A 
Granular ferric 

hydroxide based 

sorbent 

- Phosphate adsorption 

B 
Ion exchange resin 

(IEX) 

- General deionization and chemical 

processing applications 

- R-N-(CH3)+Cl- functional group 

C IEX 

- General deionization and chemical 

processing applications 

- Dimethylamine functional group 

D IEX 

- General deionization and chemical 

processing applications 

- Trimethylamine functional group 

E 
IEX with hydrated 

ferric oxide (HFO) 

nanoparticles 

- Arsenate adsorption 

F 
Granular activated 

alumina 

- Strong affinity for polar 

compounds 

- Nonspecific contaminants 

G Hybrid IEX 
- Arsenate adsorption 

- Trimethylamine functional group 

H 
Aluminum and 

Titanium Oxide based 

sorbent 

- General contaminant removal 

- Metal removal 

I 
Aluminum and 

Titanium Oxide based 

sorbent 

- General contaminant removal 

- Metal removal 

J 
Synthetic amorphous 

silica hydrated 

- Strong affinity for polar 

compounds and proteins 

K 
Synthetic amorphous 

silica hydrated/citric 

acid 

- Strong affinity for polar 

compounds and proteins 

L 
Synthetic amorphous 

silica hydrated 

- Strong affinity for polar 

compounds and proteins 

M 
Synthetic amorphous 

silica hydrated 

- Strong affinity for polar 

compounds and proteins 

N TiO
2
 - Photochemical reactions 

 

 

4.3.5 Evaluation of Alternative Desorption Solution 

 

Additional chemical desorption tests were conducted on selected sorbents; these experiments 

followed the same protocol as the previously described nutrient recovery experiments, apart from 
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the desorption solutions used. The alternate desorption solutions included 0.5 M MgSO4, 1.0 M 

NaOH, 0.1, 0.5 and 1.0 M NaHCO3. A mixture of 0.5 M NaOH + 0.5 M NaHCO3 was also 

tested for phosphorus recovery. 

 

4.3.6 Phosphorus Measurements 

 

Phosphorus was measured using Inductively Coupled Plasma Optical Emission Spectrometry 

(ICP-OES); intensities were measured at a wavelength of 213.617 nm. Calibration solutions used 

for ICP-OES measurements were prepared each day of analysis using KH2PO4 in ultrapure water 

(18.2MΩ, MilliQ). Phosphorus standards prepared from certified reference material (H3PO4, Lot 

BCBM9148V, 1002 ± 4 mg P/L) purchased from Sigma Aldrich were included in all runs for 

quality assurance.  

 

4.3.7 Data Analysis 

 

Results from the batch adsorption isotherm testing were fit to the Freundlich isotherm (Equation 

4-1) that is commonly used to describe adsorption of species to sorbents with heterogeneous 

surfaces; Equation 4-1 was fit to the results of the batch isotherm testing using non-linear 

regression; isotherm fit was optimized to minimize least squares error using the nlinfit function 

of MATLABTM.  

X = KFCe
1/N                                                                      (4-1) 

 

In Equation 4-1, Ce is the concentration of the sorbate in the bulk solution at equilibrium (mg 

P/L), X is the amount of sorbate adsorbed per mass of sorbent (mg P/g sorbent). The fitting 

parameters of the Freundlich isotherm KF ((mg/g)(L/mg)1/N) and 1/N (unitless) are known as the 
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Freundlich capacity factor and Freundlich intensity parameter, respectively (Liu et al., 2010a). 

The sum of squared error (SSE) reported for the fit of each sorbent to the Freundlich isotherm 

was calculated using Equation 4-2. 

 

 SSE =  ∑ (𝑋𝑒,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙  −  𝑋𝑒,𝑚𝑜𝑑𝑒𝑙)𝑖

2𝑛
𝑖=0                                     (4-2) 

 

The recoveries of phosphorus from the sorbent (Equation 4-3) and the initial synthetic 

wastewater (Equation 4-4) were estimated: 

 

𝑅𝑠  =  
𝑀𝑃𝐷

𝑀𝑃𝐴 
 𝑥 100 %                                                        (4-3) 

𝑅𝑊𝑊  =  
𝑀𝑃𝐷

𝑀𝑃𝑊𝑊
 𝑥 100 %                                                      (4-4) 

 

where MPD is the mass of desorbed P, MPA is the mass of adsorbed P and MPWW is the initial 

mass of P in the synthetic wastewater; all expressed in milligrams. To extend the results to 

evaluate column testing, Equations 4-5 and 4-6 from Crittenden el al. (2012) were employed to 

determine sorbent usage rate (SUR, g/L) and the volume of wastewater treated (VWW, L/g) per 

kilogram of sorbent, respectively.   The calculations were performed with the assumption that the 

P loading on the sorbent was in equilibrium with the influent P concentration and the mass 

transfer zone is small compared to the length of the column (Crittenden et al., 2012).  

 

SUR = Ce/KFCe
1/N                                                               (4-5) 

VWW = SUR-1                                                                      (4-6) 
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Statistical analysis of the sorbents was conducted using ANOVA and T-tests. Results of 

ANOVA and T-tests are indicated by reporting the result of the F or t value, respectively, as well 

as the corresponding p value; degrees of freedom of the statistical test are reported in brackets. 

  

4.4 Results and Discussion 

 

Nutrient recovery with adsorption involves initial adsorption of the target sorbate (i.e. 

phosphorus) and subsequent release of sorbate from the spent sorbent. The results of adsorption 

and desorption tests are presented separately below.  

 

4.4.1 Adsorption Screening Tests 

 

Adsorption screening experiments were completed to determine which commercial sorbents 

substantially adsorbed phosphorus and to determine the adsorption capacity of each sorbent.  It 

was expected that sorbents with larger adsorption capacities would have the potential to recover, 

larger quantities of nutrients, an important criterion that can impact the overall efficiency of any 

potential recovery process. 

 

The initial screening of the fourteen sorbents established that eleven of them could adsorb 

phosphorus; sorbents L, M and N did not demonstrate P adsorption and were not included in 

further testing. The screening involved testing of sorbate adsorption at nutrient concentrations 

relevant to medium strength domestic wastewater with average orthophosphate concentration of 

5 mg P/L (Metcalf and Eddy, 2003). Sorbents were evaluated based on sorbate removal with a 

cut-off threshold of 30%; any sorbents which demonstrated less than 30 % P removal were not 

included in further testing. The removal results of the sorbent screening are shown in Figure 4-1 
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with the cut-off threshold indicated. In terms of P removal, the performance of iron oxides 

(sorbent A), anion exchange resins (sorbents B through E and G) and activated alumina (sorbent 

F) based sorbents varied but on average, performed above the 30 % threshold; these sorbents 

were studied further in adsorption isotherm tests. Sorbents H through K displayed limited 

adsorption of phosphorus removing between 1 – 6 % P; sorbents in this group consisted of 

synthetic amorphous silica based sorbents, aluminum/titanium based metal oxides and TiO2 

powder.  Due to their ineffective performance, sorbents H through K were discarded from further 

investigation.   

 

 

Figure 4-1: Phosphorus Removals for sorbents which exhibited nutrient adsorption. 

Colours depict different sorbent compositions. Sorbents with a percent removal below the 

cut-off threshold of 30 % (red line) were excluded from additional testing. Initial phosphate 

concentration was and 5 mg P/L. 



97 

 

4.4.2 Adsorption Isotherms 

 

Seven sorbents met the adsorption performance threshold and were further characterized by 

adsorption isotherm experiments, the results of which were fit with isotherms (Figures 4-2 and 4-

3). Adsorption capacity did not become saturated for any of the seven sorbents over the range of 

phosphorus concentrations tested, therefore the Freundlich isotherm was found to best describe 

the sorption responses. The best fit Freundlich parameters 1/N and KF are summarized in Table 

4-3. It should be noted that due to the mathematical structure of the Freundlich equation 

(Equation 4-1), the Freundlich parameters are closely related and estimates of one parameter will 

impact the second parameter (Vlad, 2015). Results of the sorbents which successfully adsorbed P 

are discussed in detail below.  

 

The quality of fit of the Freundlich isotherm to the data obtained from adsorption isotherm tests 

were examined for further insight into the adsorption behaviours of the sorbents. A trend was 

observed with respect to sorbent composition in the values obtained for R2 and sum of squared 

error. The fits for metal oxide sorbents A and F corresponded to R2 values of 0.96 and 0.98, 

while hybrid IEX sorbents E and G had R2 values of 0.87 and 0.86, respectively. Sorbents that 

were solely IEX based had smaller R2 values; sorbents B and C both had R2 values of 0.72 

whereas sorbent D had the smallest R2 of 0.54. The error associated with the fit of the Freundlich 

isotherm to the data of the various sorbents was also higher with IEX sorbents. The sum of 

squared error (SSE) values (Equation 4-2) obtained in fitting the adsorption isotherms were 0.75 

(mg P/g)2 or higher; metal oxide sorbents had SSE values of 0.43 (mg P/g)2 or less.  The better 

fit obtained for the metal oxide sorbents could be due to the adsorption process onto metal oxide 

sorbents being more heterogeneous, and therefore well described by the Freundlich isotherm, 
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while adsorption via IEX can occur more stoichiometrically (Crittenden et al., 2012). 

Additionally, results from adsorption isotherm testing with IEX sorbents was also highly variable 

and therefore could have also affected the fit of the Freundlich isotherm; results in experiments 

with IEX sorbents could be more variable due to the sorbents being non-selective for P, 

adsorbing any opportunistic ion (Thorton et al., 2007; Sengupta and Pandit, 2011). Altogether, it 

is evident that the Freundlich isotherm better describes sorbents containing metal oxides over the 

ion exchange resins.  

 

The adsorption isotherm experiments were performed to identify which sorbents exhibited larger 

adsorption capacities, and therefore have the potential to recover larger quantities of P. The 

Freundlich capacity factor KF describes the mass of P adsorbed by the sorbent under the test 

conditions performed (Liu et al., 2010a). Evident from the range of KF values listed in Table 4-3, 

the sorbents exhibited different P adsorption capacities with no observable trends, however, the 

resulting KF could be grouped into three categories; high and medium capacity sorbents had KF 

values in the ranges of 2.72 – 2.38 and 1.69 - 1.25 (mg/g)(L/mg)1/N respectively while one 

sorbent (D, IEX) had a low capacity with a KF of 0.54 (mg/g)(L/mg)1/N. The high capacity 

sorbents included IEX sorbents B and D as well as the granular ferric hydroxide sorbent A and 

sorbent E, a hybrid IEX that incorporates metal oxide nanoparticles. The two sorbents with mid-

range KF factors were sorbent F (activated alumina) and sorbent G (IEX). The Freundlich 

isotherm was also used to describe P adsorption from source-separated urine and wastewater 

streams onto a hybrid IEX (O’Neal and Boyer, 2013). The KF values obtained in this study were 

lower than the range of KF values observed using a hybrid IEX in the different water matrices; 
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the KF values ranged from 3.37 to 13.0 (mg/g)(L/mg)1/N (O’Neal and Boyer, 2013). Overall, 

sorbent B exhibited the largest KF value of the sorbents tested.  

 

Values for 1/N determined through fitting adsorption data to the Freundlich isotherm were also 

examined. The 1/N term is indicative of the degree of heterogeneity of the surface adsorption 

with heterogeneity decreasing as 1/N approaches 1 (Foo and Hameed, 2010); heterogeneity of 

surface adsorption is due to adsorption sites having a distribution of energies, indicating that a 

number of different interactions (e.g. electrostatic, acid-base) are occurring (O’Neal and Boyer, 

2013). Freundlich intensity parameters (1/N) for the seven sorbents ranged between 0.32 (sorbent 

E) and 0.82 (sorbent D); the values for 1/N obtained for the rest of the sorbents studied were in 

the midrange, between 0.68 and 0.52. Overall, there was no observable trend between the 1/N 

value and sorbent composition however insight can be gained when examining the sorbents with 

the largest (IEX sorbent D) and smallest (hybrid IEX sorbent E) values of 1/N. For IEX sorbent 

B, the 1/N value approached 1 indicating adsorption is more homogeneous. In other words, the 

adsorption sites on the surface are of similar type which could decrease the selectivity of 

phosphorus at the surface; a sorbent which preferentially adsorbs P over other ions would 

demonstrate higher selectivity of phosphorus. Alternatively, 1/N for sorbent E approached 0 

which has been interpreted as indicating many different sites available for P adsorption and could 

have increased selectivity. The 1/N value obtained for sorbent E (0.32) fell within the range of 

values obtained in another study which investigated P adsorption onto another hybrid IEX for 

use in source separated urine (O’Neal and Boyer, 2013); 1/N ranged from 0.15 and 0.4 in diluted 

urine and urine streams mixed with wastewater. In the study, the lower 1/N values were 

attributed to the combination of electrostatic and Lewis acid-base interactions that were 
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occurring at the surface (O’Neal and Boyer, 2013). Therefore, adsorption is potentially less 

favourable in sorbents with high values of 1/N (i.e. sorbent B) due to the possibility of increased 

competition in complex waste water streams where ions may compete for the same surface sites 

unless the surface sites are highly selective for the target sorbate. 

 

  

Table 4-3: Freundlich isotherm parameters determined for sorbents which adsorb 

phosphorus; KF and 1/N, known as the Freundlich capacity factor and Freundlich intensity 

parameter, respectively.  

 

Sorbent 

Freundlich Isotherm Fitting Parameters 

KF 1/N R2 SSE 

A 2.38 0.52 0.96 0.11 

B 2.66 0.53 0.72 0.75 

C 2.47 0.61 0.72 1.17 

D   0.54 0.83 0.54 1.19 

E 2.72 0.32 0.87 0.03 

F 1.25 0.65 0.98 0.07 

G 1.69 0.68 0.86 0.42 

 

 

 

In summary, the commercial sorbents which exhibited phosphorus adsorption varied with respect 

to their Freundlich capacity factors and 1/N values. The types of sorbents investigated in this 

study could potentially all have qualities that could be beneficial for P recovery. An example of 

this can be highlighted with the comparison of sorbents E and B. Hybrid IEX sorbent E and IEX 

sorbent B were found to have high KF values but differed with respect to 1/N values. From the 

literature, the results suggest that Sorbent E, which incorporates metal oxides, could be capable 

of selectively adsorbing P from the synthetic wastewater while IEX sorbent B may be more 

susceptible to competition from other ions in solution. Whether the sorbent is selective for P or 

prone to competition could both hinder or benefit P recovery in wastewater. While competition 
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during the adsorption phase may decrease the P adsorbed, any P that is adsorbed may be 

desorbed easily with the right competitive ion. On the other hand, sorbents which select for P 

may have stronger bonds with P at the surface and could prevent P from being desorbed easily. 

Therefore, the results from adsorption isotherms needed to be evaluated with respect to P 

recovery to obtain further insight into the effectiveness of the sorbents for P recovery. 

 

 

 

 
 

Figure 4-2:  Freundlich adsorption isotherms for (a) granular ferric hydroxide sorbent A 

(red, solid) and ion exchange resin sorbents (b) sorbent B (purple, dashed), (c) sorbent C 

(green, dashed) and (d) sorbent D (blue, solid).  
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Figure 4-3: Freundlich adsorption isotherms for (a) IEX with metal oxide nanoparticles 

sorbent E (purple, solid), (b) activated alumina sorbent F (green, dashed) and (c) IEX 

sorbent G (red, dashed). Figure 4b plots all seven Freundlich isotherms for sorbents; 

colours and line styles are consistent with individual plots. 

 

4.4.3 Nutrient Recovery  

 

An important criterion for selection of a sorbent for nutrient recovery is that the sorbate (i.e. 

phosphorus) must be able to be desorbed. Ideally, the desorption process would result in 100 % 

recovery of P from the sorbent resulting in sorbent regeneration and no loss of surface binding 

sites. Any irreversibly bound phosphorus would occupy binding sites for addition P sorption, 
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thereby lessening the adsorption capacity of the sorbent and potential for nutrient recovery. 

Recovery of the sorbate from a sorbent is often dependent on the type of sorbent and the 

desorption method used. Chemical desorption is used in current adsorption processes for sorbent 

regeneration, regaining binding sites for another round of treatment; acidic, basic and salt 

desorption solutions have all be used to regenerate various sorbents for reuse over many cycles 

(Blaney et al., 2007; Nur et al., 2013).   

 

The current study evaluated solutions typically used for sorbent regeneration but focused on 

sorbate collection in the used desorption solution rather than reuse of the sorbent. Due to the 

variety of sorbents utilized in this study, basic (0.1 M NaOH), acidic (0.1 M HCl), salt (0.1 M 

NaOH) and basic salt (0.1M NaOH + 0.1 M NaCl) solutions were used to determine which 

sorbents had promise for nutrient recovery. Figure 4-4a shows the P recovered from the spent 

sorbents using the four desorption solutions as calculated using Equation 4-3. The recovery 

results are discussed in terms of phosphorus recovery from the sorbent and total recovery from 

the wastewater solution below. 

  

Recovery of P from granular ferric hydroxide sorbent A using NaOH, HCl, NaCl and NaOH + 

NaCl desorption solutions yielded average desorbed masses of 5.32, 3.71, 2.56 and 5.13 mg P/g 

sorbent respectively. The amount of P recovered was found to be dependent on the desorption 

solution used (F(7) =75.438, p = 0.001). Recovery of P via the salt desorption solution was the 

least effective for sorbent A, recovering 18.2 % of P adsorbed to the surface. The HCl desorption 

solution improved recovery in comparison to NaCl, increasing recovery to 26.4 % (t(2) =9.85, p 

= 0.01). Use of NaOH further increased P recovery from sorbent A, with 37.8 % P being 



104 

 

desorbed (NaCl: t(2) = 9.51, p = 0.01; HCl: t(2) = 5.86, p = 0.03). The mixture of NaOH + NaCl 

did not improve P recovery from sorbent A over the use of NaOH alone; 36.5 % P was recovered 

from sorbent A using the basic salt mixture which was not significantly different from the 

quantity recovered through the use of NaOH (t(2) = 0.692, p  =0.561). Overall, the desorption 

solutions NaOH and NaOH + NaCl recovered the largest quantities of P from sorbent A.  

 

Treatment of IEX sorbent B with NaOH, HCl, NaCl and NaOH + NaCl recovered 3.31, 5.54, 

5.28, and 5.88 mg P/g sorbent B, respectively. The amount of P recovered was determined to be 

dependent on the desorption solution used (F(7) =15.861, p = 0.011). Application of the NaOH 

desorption solution recovered 21.6 % P, the lowest recovery observed of the four desorption 

solutions (HCl: t(2) = -69.5, p < 0.001; NaCl: t(2) = -4.50, p = 0.05; NaOH + NaCl: t(2) = -6.74, 

p = 0.02). The remaining three desorption solutions recovered similar quantities of P which were 

not statistically different; desorption using HCl, NaCl, and NaOH + NaCl corresponded in P 

recoveries of 36.1, 34.4, and 38.4 % from sorbent B. Therefore, desorption solutions containing 

chloride recovered the largest quantities of P from Sorbent B.  

 

Recovery from the IEX sorbent C with NaOH, HCl, NaCl and NaOH + NaCl desorption 

solutions resulted in recoveries of 6.63, 6.13, 7.76 and 9.20 mg P/g respectively. The amount of 

P recovered was found to be dependent on the desorption solution used (F(7) =19.233, p = 

0.008). The 38.4 and 35.5 % P recoveries with NaOH and HCl desorption solutions, respectively, 

were not statistically different (t(2) = 1.11, p = 0.382). The combination of NaOH + NaCl 

recovered 53.3 % P from sorbent C, an increase from the recoveries obtained through the use of 

NaOH (t(2) = -6.30, p = 0.02) and HCl (t(2) = -6.45, p = 0.02). Desorption using NaCl recovered 
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45.0 % P from sorbent C and was not statistically different from the quantities of P recovered 

through application of the other three desorption solutions (NaOH: t(2) = -2.84, p = 0.105; HCl: 

t(2) = -3.50, p = 0.07; NaOH + NaCl: t(2) = -3.37, p = 0.08). This suggests that the presence of 

the chloride ion was enough to compete for the adsorption sites of sorbent C occupied by P 

thereby causing P to be liberated, however there may be a slight enhancement in having the 

exchange between Cl- and P occurring at basic pH. Overall, NaCl and NaOH + NaCl recovered 

the largest quantities of P from sorbent C.  

 

The recovery of P from IEX sorbent D with NaOH, HCl, NaCl and NaOH + NaCl desorption 

solutions resulted in average recoveries of 2.29, 2.88, 3.38 and 3.47 mg P/g sorbent, respectively. 

The amount of P recovered was found to be dependent on the desorption solution used (F(7) = 

24.57, p = 0.005). NaOH recovered the least amount of P from sorbent D, desorbing 9.5 % P 

(HCl: t(2) = -7.99, p = 0.02; NaCl: t(2) = 5.24, p = 0.03; NaOH + NaCl: t(2) = -21.91, p = 0.002). 

The chloride-containing desorption solutions HCl, NaCl and NaOH + NaCl recovered 12.1, 13.1 

and 13.5 % P. The recoveries obtained using chemical desorption in the presence of Cl- were 

statistically similar apart from HCl and the combination of NaOH + NaCl where the acidic 

conditions recovered less P (t(2) = -8.795, p = 0.01). Therefore, at neutral and basic pH, 

desorption solutions containing the chloride ion recovered more P from sorbent D.  
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Figure 4-4: Percent recovery of P from the (a) adsorbed fraction on sorbent and (b) 

original synthetic wastewater solution. P was recovered using basic (blue), acidic (light 

blue), salt (green) and basic salt (purple) solutions.    
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Phosphorus recovery from Hybrid IEX sorbent E yielded average recoveries of 3.31, 3.27, 3.47 

and 4.10 mg P/g sorbent using NaOH, HCl, NaCl and NaOH + NaCl, respectively; the quantity 

of P recovered was found to be dependent on the desorption solution used (F(7) =20.699, p = 

0.007). Application of NaOH recovered 35.6 % P which was not statistically different from the 

35.1 and 37.3 % P recovered using HCl and NaCl desorption solutions, respectively (HCl: t(2) = 

4.025, p = 0.06; NaCl: t(2) = -2.952, p = 0.10). Use of the combination of NaOH + NaCl 

recovered 44.0 % P from sorbent E, higher than the quantity of P recovered by NaOH (t(2) = -

4.928, p = 0.04) and HCl (t(2) = -5.216, p = 0.035) and NaCl recoveries (t(2) = -4.928, p = 

0.039). Therefore, the basic salt desorption solutions demonstrated the best recovery from 

sorbent E.   

 

Recovery from activated alumina sorbent F with NaOH, HCl, NaCl and NaOH + NaCl 

desorption solutions corresponded to recoveries of 5.27, 2.90, 2.37 and 7.05 mg P/g sorbent F 

which were not statistically different (F(7) = 3.379, p = 0.135). Desorption recovered between 

20.1 and 59.8 % P through use of the four desorption solutions.  

 

Phosphorus desorption from the Hybrid IEX sorbent G with NaOH, HCl, NaCl and NaOH + 

NaCl desorption solutions corresponded to recoveries of 3.75, 3.55, 4.99 and 6.02 mg P/g 

sorbent. The amount of P recovered was found to be dependent on the desorption solution used 

(F(7) =7.539, p = 0.04). Desorption using NaOH and HCl recovered similar quantities of P; 

NaOH recovered 23.5 % P while HCl recovered 22.2 % P (t(2) = 1.04, p = 0.408). The use of 

NaCl recovered 31.2 % P from sorbent G, a recovery that was significantly higher than those 

obtained using NaOH (t(2) = -4.864, p = 0.04) and HCl (t(2) = -8.342, p = 0.014). Phosphorus 
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recovery using the combination of NaOH + NaCl was variable but on average 37.6% P was 

recovered from sorbent G; P recovered using the basic salt solution was not significantly 

different from the quantities liberated by NaOH (t(2) = -2.761, p = 0.110), HCl (t(2) = -3.085, p 

= 0.091) and NaCl (t(2) = -1.259, p = 0.335). Therefore, recovery using NaCl was the best 

desorption solution used for recovery from sorbent G; NaOH + NaCl could also prove useful 

however the results were not as reproducible when compared to NaCl. 

 

Further examination of P recovery from the sorbents provided insight into which chemical 

desorption solution was best for the different types of sorbents studied. The sorbents that 

included metal oxides released larger quantities of P with basic and basic salt desorption 

solutions. Ion exchange sorbents exhibited greater P recovery with desorption solutions 

containing chloride. In sorbents that incorporate metal oxides, recovery using acidic and basic 

desorption solutions have proven to be the most effective due to the changes in sorbate and 

surface charge caused by the change in pH (Chitrakar et al., 2006). The pHzpc (zero-point charge) 

of metal oxides can be in the circumneutral pH range; at pH values above the pHzpc, the surface 

of the sorbent will become negative (Luster et al., 2017) Therefore, the high recoveries obtained 

with NaOH with the metal oxide sorbents were consistent with the literature as the charge of 

phosphate becomes more negative at high pH, which would be repelled by the negatively 

charged sorbent surface. With respect to IEX sorbents, liberation of sorbate (i.e. phosphate) 

occurs when a counter ion exchanges with P at the surface. Chloride is known to be an effective 

counter-ion for IEX sorbents and has been previously used in regeneration studies (Thorton et 

al., 2007). Thus, the elevated P recovery using desorption solutions with Cl- with IEX resins was 

consistent with theory. The optimal conditions for the exchange between P and Cl- were at 
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circumneutral pH. Hybrid IEX sorbents consist of a combination of IEX and metal oxides, 

therefore both mechanisms of recovery could be employed during desorption. The composition 

of hybrid IEX sorbents could explain why there was an enhancement in recovery observed when 

the combination of NaOH + NaCl was used for hybrid IEX sorbent E. Therefore, the desorption 

solutions used to obtain the maximum recoveries from the sorbents were dependent on sorbent 

composition and mechanism of adsorption.  

 

An examination of the percent P recovered from the sorbent was employed to indicate which 

sorbent was able to recover the most adsorbed P. Sorbents with higher percent recoveries could 

have more sorption sites available for subsequent cycles of P adsorption and recovery. There was 

an observed difference in % P recovered by the sorbents under optimal desorption conditions 

(F(25) = 17.429, p < 0.001). The difference in percent recoveries separated the sorbents into two 

groups. The first group consisted of sorbents B, D and G, which recovered statistically similar 

amounts of P using the best desorption solution suited for each of the sorbents. The second group 

included sorbents A, B, C, E, F and G which had optimal recoveries that were statistically 

similar. The lowest % recovery of adsorbed P was recorded for IEX sorbent D which liberated a 

maximum of 13.5 % P (NaOH + NaCl) from the sorbent; this indicates that sorbent D had the 

largest fraction of irreversibly bound phosphorus on the sorbent. With the exception of sorbent 

D, the remaining sorbents exhibited similar optimal recoveries ranging from of 31 to 60 % 

adsorbed P.  
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While recovery from the solid phase of the sorbent was deemed to be important, it does not 

quantify the total mass of sorbate recovered from the wastewater stream being treated. Retrieving 

the largest quantity of nutrient from the initial wastewater stream is the goal of nutrient recovery. 

Hence, the P recoveries from the initial wastewater were calculated (Equation 4-4) for the 

sorbents and are shown in Figure 4-4b. Sorbents were evaluated in terms of largest recovery of P 

from the synthetic wastewater stream using NaOH, HCl, NaCl and NaOH + NaCl desorption 

solutions; the desorption solution used to achieve optimal P recovery from each sorbent is 

identified in brackets. Sorbents D (NaCl) and E (NaCl + NaOH) had the poorest performance of 

the sorbents recovering 8.7 and 10.3 % from the synthetic wastewater, respectively. Sorbents A 

(NaOH), B (HCl, NaCl, NaOH + NaCl), F (NaOH, HCl, NaCl, NaOH + NaCl) and G (NaCl) had 

midrange recoveries corresponding to 13.3, 14.7, 17.6 and 15.1 %.  Ion exchange resin, sorbent 

C (NaCl, NaOH + NaCl) reclaimed 23.0% P from the wastewater stream.  A difference in total P 

recovered from the initial SWW was observed based on the sorbent used (F(25) = 8.974, p < 

0.001). Through statistical analysis, the sorbents were grouped into categories that recovered 

similar quantities of P from the SWW; some sorbents were found to overlap in the three 

categories. The first group, which recovered the least amount of P from the SWW, included IEX 

sorbents D and B, hybrid IEX sorbents E and G and metal oxide sorbent A. The mid-range group 

of sorbents included IEX sorbent B, hybrid IEX sorbent E and G, and metal oxide sorbents A 

and F. The group of sorbents with the highest recoveries included IEX sorbent C and metal oxide 

sorbent F.  When ranked in terms of total P recovery, the sorbent order was C (IEX) ≥ F 

(activated alumina) ≥ G (IEX), B (IEX), A (granular ferric hydroxide), E (IEX with metal oxide 

nanoparticles) ≥ D (IEX). In summary, ion exchange resin sorbent C and activated alumina 

sorbent F were able to recover the largest quantity of P from the wastewater stream. 
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4.4.4 Recovery Experiments with Alternative Desorption Solutions 

 

Alternative desorption solutions containing competitive ions were evaluated for their potential to 

increase the driving force of P off specific sorbents. Sorbent A, a granular ferric hydroxide, and 

sorbent D, an IEX, were tested with the alternative desorption solutions. Past research has shown 

that iron oxide based sorbents preferentially adsorb carbonate over phosphate (Wilfert et al., 

2015). To take advantage of competition effects with the goal of greater P recovery, sorbent A 

was tested with a 0.1M, 0.5M and 1.0M NaHCO3 solutions, a mixture of 0.5 M NaHCO3 + 0.5 

M NaOH (pH 11.7) and a solution of 0.5 M MgSO4. The recoveries using alternative desorption 

solutions on sorbents A and D were evaluated on the basis of P recovery from the solid phase 

and total P recovered from the SWW test solution.  

 

The experiments testing the recovery of P using alternative desorption solutions were performed 

at a later date than initial desorption tests and therefore the potential for changes in P adsorption 

by sorbent A and D was investigated. In the additional recovery tests, sorbent A adsorbed 11.42 

± 1.27 mg P/g sorbent while sorbent D adsorbed 9.22 ± 0.72 mg P/g sorbent.  Hence, the 

adsorption capacities for sorbent A and D were approximately 19 and 51 % lower, respectively, 

than that observed in initial desorption testing; mass of P adsorbed by sorbent A and D were 

significantly different from initial adsorption experiments (A: t(12) = 3.968, p = 0.002; D: t(12) 

= 3.083, p = 0.009). The decrease in adsorption was attributed to changes of the surface of the 

sorbents from exposure to air as the sorbents used in initial desorption tests were taken from 

sealed packaging. Due to the change in adsorption, recovery calculations performed for 



112 

 

alternative desorption solutions were expected to be lower because of the reduced quantities of P 

adsorbed by the sorbents.  

 

The results obtained through treatment of sorbent A with the additional desorption solutions 

were examined to see if P recovery improved relative to the previously described sorbents. The 

percent P recovered from the solid phase and from the initial SWW are presented in Figure 4-5a 

and 4-5b, respectively.  Exposure of sorbent A to 0.1, 0.5 M, 1.0 M NaHCO3 resulted in 0.97, 

2.01 and 6.91 mg P/g sorbent being desorbed while exposure to the combination of 0.5 M 

NaHCO3 + NaOH resulted in the liberation of 3.63 mg P/g sorbent. Recovery using 0.5 M 

MgSO4 was also investigated and resulted in the desorption of 0.68 mg P/g sorbent. Finally, 0.74 

mg P/g sorbent A was liberated through use of ultra pure water; ultrapure water was included as 

a control. Limited P desorption was observed with the use of 0.5 M MgSO4 and 0.1 M NaHCO3 

as desorption solutions. The quantities of P that were desorbed by these solutions were not 

statistically different from that observed when using ultra pure water (MgSO4: t(2) = 0.417, p = 

0.717; 0.1 M NaHCO3: t(2) = 1.014, p = 0.417) and therefore, the solutions were considered 

unsuitable as P desorbing agents. Alternatively, increased P recovery was observed with 

increasing NaHCO3 concentrations (r = 0.936, p = 0.006). An average of 62 % P was liberated 

from sorbent A using 1.0 M NaHCO3, which was approximately 46 % more than that which was 

recovered with 0.5 M NaHCO3 (t(2) = 5.349, p = 0.033). Therefore, solutions containing 0.5 M 

and 1.0 M NaHCO3 were found to substantially desorb P from sorbent A.  

 

Recoveries obtained through the application of alternative desorption solutions were further 

investigated to determine their performance when compared to the original four desorption 
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solutions. The average percent P recovered from the sorbent and total percent P recovered from 

sorbent A obtained through the use of the NaOH, HCl, NaCl and NaOH + NaCl desorption 

solutions are indicated by dashed lines on Figure 4-5a and 4-5b, respectively; 0.1 M NaOH was 

determined to be the best desorption solution for sorbent A of the four solutions tested. The 

quantity of P desorbed by NaHCO3 + NaOH was higher than the P liberated using the same 

concentration of NaHCO3 alone (t(2) = -5.032, p = 0.0037). When compared to the initial 0.1 M 

NaOH desorption solution, the quantity of P liberated using the NaHCO3 + NaOH mixture was 

not statistically different (t(2) = -4.076, p = 0.055). However, the percent P recovered from the 

sorbent (t(2) = -7.454, p = 0.018)  and from the initial SWW (t(2) = -6.206, p = 0.025) were 

lower when using the combination of NaHCO3 + NaOH due to lower quantity of P initially 

adsorbed. Recovery from sorbent A using NaHCO3 + NaOH was also compared to the recovery 

obtained using 1.0 M NaHCO3 and the two quantities were not statistically different (t(2) = 

3.396, p = 0.077).  The quantity of P recovered by 1.0 M NaHCO3 was not statistically different 

from the amount recovered using 0.1 M NaOH (t(2) = 1.672, p = 0.236. Overall, the percent of P 

liberated from sorbent A and the percent recovered from the initial SWW both increased by 

approximately 5 % using 1.0 M NaHCO3 however due to variability and lower initial adsorption, 

effect on P recovery was not statistically significant.  

 

Sorbent D was chosen for further testing to evaluate the possibility of increased recovery as it 

was observed to have the highest adsorption capacity yet recovered the smallest fractions of P 

from both the adsorbed fraction and synthetic wastewater while using the original four 

desorption solutions. The percent P recovered from sorbent D and from the initial SWW are 

presented in Figure 4-5a and 4-5b, respectively. Desorption using 0.5 M NaHCO3, 0.5 M 
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NaHCO3 + 0.5 M NaOH (pH 11.7) and 1.0 M NaOH resulted in the recovery of 7.25, 5.86, and 

5.79 mg P/g, respectively.  Desorption with ultra pure water was also conducted and resulted in 

the liberation of 0.02 mg P/g sorbent. While the average mass of P recovered from sorbent D 

using 1.0 M NaOH was greater than the average mass of P adsorbed, the two amounts were not 

significantly different and therefore effectively all of the P was desorbed from sorbent D (t(4) = - 

0.2195, p = 0.837). The masses of P recovered using NaHCO3, NaOH and the NaHCO3 + NaOH 

mixture were not statistically different (F(5) = 4.840, p = 0.115). Overall, use of NaHCO3, NaOH 

and the NaHCO3 + NaOH mixture recovered around 60 to 100 % of P adsorbed to sorbent D, a 

significant increase (~70 %) from the recoveries observed with NaCl and NaOH + NaCl (F(9) = 

22.867, p = 0.001); 0.1 M NaCl and the mixture 0.1 M NaOH + 0.1 M NaCl demonstrated the 

top performance of the four original desorption solutions tested. Therefore, alternative desorption 

solutions increased the P recovered from sorbent D and thus, increased the P recovered from the 

initial SWW test solution.  

 

 

 

 



115 

 

 

Figure 4-5: Percent recovery of P from the (a) adsorbed fraction on sorbent and (b) 

synthetic wastewater. To increase driving force, P was recovered using carbonate and 

magnesium sulfate solutions. Dashed lines indicate percent recovery obtained from 

desorption using acidic (red), basic (navy), salt (green) and basic salt (purple) solutions.     
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4.4.5 Implications for Recovery in Practical Use 

 

Additional analysis was conducted to extend the results from batch testing to give insight as to 

how the sorbents would perform in column applications. In practice, sorbents are typically 

employed in a series of adsorption columns and hence calculations were performed to predict the 

sorbent usage rate (SUR, Equation 4-5) and volume of wastewater treated per kilogram of 

sorbent (VWW, Equation 4-6). Additionally, the estimated mass of P recovered (PEST) from the 

adsorption column was calculated using the percent recovery obtained from the best desorption 

solution for the sorbent of focus. Finally, the volume of desorption solution (VDS) required to 

meet a target desorption effluent concentration for nutrient recovery technologies was calculated. 

Calculations of PEST and VDS are described in detail below. The column calculations were 

performed for the three sorbents which demonstrated a characteristic that could contribute to 

increased phosphorus recovery. Sorbents C (IEX), and F (activated alumina) were chosen on the 

basis of its potential to recover the largest quantity of P from the SWW, while sorbent A 

(granular ferric hydroxide) had increased recovery through the application of the alternative 

desorption solutions.  Results from the above calculations for the select sorbents are summarized 

in Table 4-4 and discussed below. 

 

Ideally, a sorbent would be able to treat a large volume of waste water before the adsorption 

column is exhausted and hence, the sorbent usage rate (SUR) and volume of wastewater treated 

(VWW) was calculated for the three sorbents. Using Equation 4 and the fitting parameters 

obtained from the Freundlich isotherm (Table 4-3), the SUR was calculated for the three sorbents 

treating a typical domestic wastewater with an influent P concentrations of 5 mg P/L (Metcalf 

and Eddy, 2003); the VWW treated is the inverse of the SUR. Sorbents A, C and F had SURs of 



117 

 

910, 758 and 1 250 mg sorbent/L wastewater treated, respectively, corresponding to VWW of 

1.10, 1.32 and 0.71 L/mg sorbent. The results indicate sorbent C would treat the largest quantity 

of wastewater before exhaustion of the column. The calculations for SUR and VWW do not 

consider if the column can be regenerated and used again and as such, the estimates can only be 

applied to the first cycle of adsorption. Looking to the literature, the SUR values calculated for 

sorbents A, C and F did not fall within the range of carbon usage rates for a granular activated 

carbon (GAC) that has been used in pilot tests to remove pharmaceuticals in municipal 

wastewater; the study reported carbon usage rates ranging between 30 to 100 mg GAC/L 

wastewater treated (Kårelid et al., 2017). This suggests that the sorbent usage rates of the three 

sorbents may not be reasonable for use in P recovery. As described above, the fitting parameters 

of the Freundlich isotherm are related and different values for KF and 1/N can produce the same 

X values in Equation 4-1 (Vlad, 2015), therefore, the values obtained in Table 4-4 could be 

improved with further investigation of the sorbents. In addition, the SUR could be lowered, 

increasing VWW, with regeneration and reuse of the sorbents. 

 

Table 4-4: Sorbent usage rate (SUR) and volume wastewater treated (VWW), estimated P 

recovered (PEST) and minimum volume desorption solution (VDS) calculations performed 

for sorbents A (granular ferric hydroxide), C (IEX) and F (activated alumina).   

 

Sorbent 
SUR 

(g sorbent /L) 

VWW  

(L/g sorbent) 

PEST  

(g/kg sorbent) 

VDS 

(L/kg sorbent) 

A 0.91 1.10 2.1 21 

C 0.76 1.32 2.1 21 

F 1.25 0.71 3.5 35 

 

 

The recovery phase of the adsorption column is also an important indicator of the practicality of 

a sorbent’s use, particularly the amount of desorbing agent needed as chemical requirements 
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would increase the cost of the process. Hence, the estimated mass of P recovered (PEST) from a 

hypothetical exhausted column containing 1 kg of sorbent was calculated by multiplying the total 

mass of P adsorbed by the optimal desorption efficiency obtained by the best desorbing solution. 

The resulting concentration of the recovery effluent was also considered to be important as it is 

desirable for the desorption stream to have a target final concentration of 100 mg P/L, the 

minimum concentration suited for struvite formation (Xie et al., 2016). Therefore, a target 

concentration of 100 mg P/L was set when calculating the maximum volume of desorption 

solution (VDS); if recovery requires volumes of desorption solutions larger than the VDS, the final 

recovery effluent concentration would not meet the concentration required for nutrient recovery 

technologies. Results from these calculations are summarized in Table 4-4 and discussed further 

below.    

 

Sorbents that require smaller desorption volumes are preferential when evaluating if the sorbents 

use for nutrient recovery is practical. As predicted by the results of batch testing, sorbents A and 

C recovered similar quantities of P (2.1 g Pkg sorbent) from the exhausted adsorption column 

while sorbent C is predicted to recover the largest quantity of P (3.5 g P/kg sorbent).. Due to the 

quantities of PEST calculated, the VDS calculated for sorbents A, C and F were 21, 21 and 35 L/kg 

sorbent per recovery cycle. Therefore, the estimated P that can be recovered from the sorbents 

would have to desorb within the corresponding VDS for the blended recovery stream to have a 

concentration that meets the 100 mg P/L threshold for nutrient recovery technologies.  

 

In summary, the results of this study provided insight into the impact of sorbent composition on 

P recovery. When fitting the adsorption data with the Freundlich isotherm, it was evident that 
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two adsorption mechanisms could have benefits for P removal from wastewater. Metal oxide 

sorbents were selective for P over IEX sorbents, which could help with P uptake by the sorbent 

in complex wastewater streams. Ion exchange sorbents were less selective for P but exhibited 

large adsorption capacities which was shown in adsorption column calculations to be beneficial 

for the recovery process. Although both sorbents are susceptible to competition, IEX sorbents are 

more prone to adsorption of any accessible ion. This trait of IEX sorbents can help in P recovery 

as IEX sorbents demonstrated desorption of P in most solutions containing an appropriate 

counter-ion. Therefore, both IEX and metal oxide sorbents have potential for use in phosphorus 

recovery. 

 

4.5 Conclusions 

 

The purpose of this study was to screen commercial sorbents for P adsorption and evaluate 

recovery of P from the sorbents through chemical desorption. Of 14 commercial sorbents, seven 

sorbents were able to adsorb practical quantities of phosphate. With respect to sorbent 

composition, there were no trends were observed in the Freundlich isotherm parameters KF and 

1/N however sorbents which incorporated metal oxides had improved quality of fit to the 

isotherm over IEX sorbents. Overall, the commercial sorbents with the largest Freundlich 

capacity factors (KF) were IEX sorbents B (2.66) and C (2.41) as well as hybrid IEX resin E 

(2.72).  

 

Phosphorus recovery testing was completed on sorbents A through G using basic, acidic, salt and 

basic salt solutions. The most effective desorption solution was dependent on sorbent 

composition; IEX sorbents recovered the most P with NaCl desorption solutions, P was 
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recovered from metal oxide sorbents using NaOH while hybrid IEX sorbents required a mixture 

of both desorbing agents to get optimal P recovery. Sorbent F (activated alumina) released the 

largest fraction of adsorbed phosphorus from the solid phase (54.7 %), followed by sorbent E 

(43.8 %) and IEX sorbent G (43.0%, IEX).  In terms of recovery of phosphate from the initial 

synthetic wastewater stream, sorbent C and F was found to recover the largest quantity of 

phosphate from the synthetic wastewater stream, recovering 23 and 17.6 % P, respectively. 

Overall, both IEX and metal oxide sorbents were proven to have potential for use in phosphorus 

recovery. 
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5.0 Column Testing of Commercial Sorbents for Phosphorus 

Recovery  
 

5.1 Summary 
 

With wastewater treatment shifting to resource recovery, a method of phosphorus recovery is 

needed to concentrate P from dilute wastewater streams in treatment plants without enhanced 

biological nutrient removal. This study evaluates three commercially available sorbents for P 

adsorption and recovery to generate a concentrated chemical desorption effluent. Sorbents 

included granular ferric hydroxide (sorbent A) and activated alumina (sorbent B) based sorbents 

as well as an ion exchange (IEX) resin (sorbent C). After the sorbents were tested for P removal 

in column tests, chemical desorption solutions were utilized to recover P from the spent sorbents. 

Recovery from the metal oxide sorbents A and B was conducted using basic (NaOH) and acidic 

(HCl) solutions while recovery from sorbent C used salt (NaCl) and basic salt (NaOH + NaCl) 

solutions in addition to acidic and basic solutions. Sorbents were evaluated on the basis of P 

adsorption as well as recovery from the sorbent and the initial synthetic wastewater (SWW) 

stream. Sorbent C demonstrated the highest removal of 55 % P from the SWW, while sorbents A 

and B adsorbed approximately 20 % P. Desorption using NaOH was most effective for sorbents 

A and B, which were found to recover 21 and 17 % P from the initial SWW. Sorbent C 

recovered the largest quantity of P (52 %) from SWW with the use of NaCl. Due to its good 

performance, sorbent C was used to recover P from two wastewater samples. Using NaCl, 

sorbent C recovered 37 and 16 % of P from secondary and final effluent samples. 

 

KEYWORDS: Nutrient Recovery, Wastewater, Adsorption, Desorption  
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5.2 Introduction  

 

Typically, phosphorus is removed from waste water to mitigate the effects of eutrophication in 

receiving waters. Phosphorus removal in traditional wastewater treatment occurs through 

chemical P removal and enhanced biological nutrient removal where P is taken up into the 

biosolids (Valsami-Jones, 2001). Traditional nutrient removal in wastewater treatment plants 

(WWTPs) is slowly being replaced with nutrient recovery technologies such that WWTPs are 

being renamed as water resource facilities (WRRFs); as of 2015, six WWRFs aim to recover P 

using struvite crystallization (Latimer et al., 2015). Due to P concentrations in domestic 

wastewater being < 10 mg P/L, nutrient recovery technologies can only be implemented after 

EBNR where P has been concentrated to suitable levels for struvite crystallization (Ye et al., 

2017). A method to concentrate phosphorus in a recovery stream is needed for non-EBNR 

wastewater treatment plants.   

 

Adsorption is a low cost and efficient process for wastewater treatment that can transfer 

contaminants from the liquid to the solid phase for easy separation (Metcalf and Eddy, 2003; Li 

et al., 2014; Long et al., 2011). Adsorbents with large adsorption capacities would be beneficial 

for P recovery since any P adsorbed onto the sorbent is potentially available for recovery. 

Additionally, adsorbents that have a high selectivity for P may remove significant amounts of P, 

producing an effluent that could meet strict discharge limits. The sorbents employed in this 

study, ion exchange resins (IEX) and metal oxides, have been known to demonstrate the features 

mentioned above and thus have been used in the past to remove contaminants from aqueous 

solutions. Iron and aluminum (hydr)oxides are known for forming surface complexes with 

phosphate while IEX resins have large reactive site availability for ions; in wastewater at 
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circumneutral pH, phosphate exists as H2PO4
- and HPO4

2- (Kumar et al., 2014a; Thorton et al., 

2007). Metal oxide and IEX resins have the potential for P recovery from waste water.  

 

Liberation of the adsorbed P from the sorbent is necessary to ensure P is recovered into a 

concentrated recovery stream for struvite crystallization technologies. The type of sorbent will 

determine whether adsorption is reversible (Rittman et al., 2011). Metal oxide sorbents and IEX 

resins are known to be regenerated easily using simple desorption solutions. Desorption of the 

adsorbed P has the potential to produce a concentrated P recovery stream suitable for nutrient 

recovery technologies if the amount of desorption solution used is small. Desorption has been 

studied for both ion exchange resins and metal oxides with desorption solutions including basic 

and/or salt solutions, used for metal oxides and hybrid ion exchange resins (Blaney et al., 2007; 

Malyovanny et al., 2013); more information on desorption from sorbents can be found in 

Chapter 4. While desorption has mostly been studied with respect to sorbent regeneration, P 

recovery in the desorption stream is now being examined.  Zhang et al. (2013) found that a 

proprietary hydrated ferric oxide nanocomposite could recover 97 % of P from a dilute 

wastewater effluent (~ 2 mg P/L); P was desorbed from the sorbent using a NaCl/NaOH binary 

solution. It was noted that P in the recovery stream was 100x more concentrated than the 

wastewater effluent tested. Therefore, recovering adsorbed P into a concentrated recovery stream 

is possible and could be the outcome of desorption from the sorbents used in P recovery.  

 

In this study, column tests were used to investigate the phosphorus adsorption capacity and 

evaluate the P recovery potential of three commercial sorbents. The sorbents and their 

corresponding desorption solutions were chosen based on results from batch testing (Chapter 4). 
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Phosphorus recovery by chemical desorption was evaluated in terms of the percent P recovered 

from the exhausted adsorption columns, the percent P recovered from the initial synthetic 

wastewater (SWW) solution as well as the concentration of P in the spent recovery solution. The 

sorbent that demonstrated the highest potential for P adsorption and recovery in tests with the 

SWW was used to treat two wastewater samples. The results of this study will provide direction 

to the wastewater treatment industry when making decisions when selecting appropriate 

adsorbent and sorbent regeneration technologies for phosphorus removal and recovery. 

 

5.3 Methodology  

 

5.3.1 Commercial Adsorbents 

 

Three commercially available sorbents were used in column testing; the three sorbents 

demonstrated potential for use in P recovery in a previous study where a variety of sorbents were 

screened using batch testing (Chapter 4) for P recovery via chemical desorption. The sorbents 

used in this study were of different compositions and are referred to by an alphabetic code to 

maintain anonymity of the supplier. Sorbent A is a granular ferric hydroxide sorbent that is 

marketed for phosphate adsorption. Sorbents B and C are both marketed as sorbents that target 

non-specific contaminants; sorbent B is an activated alumina sorbent while sorbent C is an ion 

exchange resin (IEX) with a surface that had been functionalized with dimethylamine.   

 

5.3.2 Synthetic Wastewater 

 

To simulate the complexity of wastewater in terms of ionic composition, a synthetic wastewater 

(SWW) modified from Jung et al. (2005) was employed in column tests. The components of the 

synthetic wastewater solution included magnesium sulfate (MgSO4·7H2O, Sigma-Aldrich, St. 
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Louis, MO), calcium chloride (CaCl2·2H2O, Fisher Scientific, Fair Lawn, NJ), sodium 

bicarbonate (NaHCO3, EMD Chemicals Inc., Gibbstown, NJ), sodium acetate (CH3COONa, 

BDH Chemicals, Toronto, ON) and potassium phosphate monobasic (KH2PO4) (BDH, VWR 

International LLC., West Chester, PA); quantities of the individual components are listed in 

Table 5-1. The synthetic wastewater was prepared using ultra pure water (18.2MΩ, MilliQ) and 

adjusted to a pH of 7.0 + 0.05 using either hydrochloric acid (HCl, EMD Chemicals Inc., 

Gibbstown, NJ) or sodium hydroxide (NaOH, Sigma-Aldrich, St. Louis, MO). All chemical 

reagents used in this study were reagent grade or higher. 

 

Table 5-1: Synthetic wastewater recipe adapted from Jung et al. (2005).  

 

Compound Concentration (mg/L) 

Magnesium Sulfate (MgSO4·7H2O) 24.0 

Calcium Chloride (CaCl2·2H2O) 2.4 

Sodium Bicarbonate (NaHCO3) 300.0 

Sodium Acetate (CH3COONa) 820.3 

Potassium Phosphate Monobasic (KH2PO4) (mg P/L) 20.6 ± 1.0  

 

 

5.3.3 Wastewater Samples 

 

Wastewater effluent samples were collected from two conventional activated sludge municipal 

wastewater treatment plants in Ontario, Canada. Samples included a secondary effluent sample 

and a final effluent; the secondary effluent was collected after aeration and before alum addition. 

The collected samples were stored a 4 ℃ until testing.  
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5.3.4 Column Experiments 

 

Adsorption column runs were carried out in HDPE columns that were 2 cm in length with a 

1.27 cm inner diameter. The influent was pumped into the column in an up-flow direction using 

peristaltic pumps, MasterFlex L/S Multichannel Pump, Model 7535 - 04 (Cole-Parmer, 

Montreal, QC). Influent flow rates and sorbent weights are summarized in Table 5-2. Effluent 

samples from the columns were collected and analyzed for total P concentrations.  

 

Phosphorus recovery was performed similarly by passing the desorption solution in an up-flow 

direction. The desorption solutions that were tested consisted of 0.5 M NaOH, 0.5 M HCl, 0.5 M 

NaCl and 0.5 M NaOH + 0.5 M NaCl. The desorption solution used in the experiments depended 

on the sorbent being tested. Metal oxide sorbents adsorb P through surface complexation which 

is pH dependent (Chitrakar et al., 2006) therefore, desorption solutions consisting of 0.5M HCl 

and 0.5M NaOH were utilized in P recovery from sorbent A and B. Recovery from IEX sorbent 

C require an ion that competes for the P adsorption site, therefore, desorption solutions of 0.5M 

NaCl and 0.5M NaCl + NaOH were tested in addition to the acidic and basic solutions. 

Composite samples were collected approximately every 5 minutes throughout the recovery phase 

except for recovery from sorbent C with NaOH and NaOH + NaCl desorption solutions in which 

composite samples were taken approximately every 20 minutes. Samples collected during 

desorption were analyzed for total phosphorus concentration.  

A similar adsorption and recovery protocol was used in experiments with wastewater samples. 

Wastewater experiments were completed after the identification of the sorbent and 

corresponding desorption solution that demonstrated the greatest potential for P recovery. 
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Table 5-2: Average influent flow rate, sorbent weight and bed volume for the three 

commercial sorbents used in adsorption column tests. Freundlich capacity and intensity 

factors from previous work (Chapter 4) are also listed.  

 

 Sorbent A Sorbent B Sorbent C 

Sorbent Type Granular ferric 

hydroxide 

Activated  

alumina 

Ion exchange 

resin 

Sorbent Mass (g) 2.87 ± 0.04 3.66 ± 0.10 2.14 ± 0.05 

Flow Rate (mL/min) 2.06 ± 0.24 2.06 ± 0.27 2.09 ± 0.09 

Freundlich Capacity 

Factor (KF) 
2.38 1.25 2.47 

Freundlich (1/N) 0.52 0.65 0.61 

Desorption Solutions 

Tested 
NaOH, HCl NaOH, HCl 

NaOH, HCl, NaCl 

NaOH + NaCl 

 

 

 

5.3.5 Phosphorus Analysis 

 

Total P (TP) was measured using Inductively Coupled Plasma Optical Emission Spectroscopy 

(ICP-OES). Intensities were measured in axial mode at a wavelength of 213.617 nm with the 

viewing height set to 15 mm above the induction coil; the flow rate of the sample pump was set 

to 2 mL/min, argon was used as the plasma and auxiliary gas, set to 15 and 0.5 L/min, 

respectively.  In wastewater samples, reactive P (RP) concentrations were measured using 

ascorbic acid colorimetric determination at 660 nm as per method G-103-93 Rev. 10 (Seal 

Analytical, WI) in accordance to Method 4500 P.E in Standard Methods (Standard Methods, 

2005).  Reactive and total P were measured wastewater samples and non-reactive P (nRP) 

concentrations were calculated by difference between TP and RP. 

 

Calibration solutions were prepared each day of analysis using KH2PO4 in ultrapure water 

(18.2MΩ, MilliQ). A certified reference material (H3PO4, Lot BCBM9148V, 1002 ± 4 mg P/L) 

purchased from Sigma Aldrich was used to prepare P standards included in all runs for quality 



128 

 

assurance. The method detection limits of the colorimetric and ICP-OES methods were 2 and 25 

µg P/L, respectively (Ateeq, 2015).  

 

5.3.6 Data Analysis 

 

Breakthrough curves that presented the effluent concentration divided by the initial influent 

concentration (C/Co) over the number of bed volumes of wastewater treated were prepared. The 

number of bed volumes (BV) was calculated using Equation 5-1 

 

BV = VC (Q t)-1                                                   (5-1) 

where t is the time of sample (min), VC is the volume of the column occupied by the sorbent 

(mL) and Q is the flow rate of the influent (mL/min). The total mass of phosphorus adsorbed was 

calculated using the area under the breakthrough curve.  

 

Composite samples were taken over the duration of the recovery phase of each column and 

therefore the recovered P was calculated as the cumulative sum of the product of the P 

concentration of the desorption solution and the volume of the desorption sample. The recoveries 

of phosphorus from the sorbent (Equation 5-2) and the initial synthetic wastewater (Equation 5-

3) were calculated: 

 

RS = (MPD/MPA) x 100 %                                          (5-2) 

 RWW = (MPD/MPWW) x 100 %                                      (5-3) 

 

where MPD is the mass of desorbed P, MPA is the mass of adsorbed P and MPWW is the initial 

mass of P in the synthetic wastewater; all expressed in milligrams. 
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Statistical analysis of the sorbents was conducted using ANOVA and T-tests. Results of 

ANOVA and T-tests are indicated by reporting the result of the F or t value, respectively, as well 

as the corresponding p value; degrees of freedom of the statistical test are reported in brackets. 

 

5.3.7 Breakthrough Modelling 

 

The Clark Model (Clark, 1987) is a simple model based on mass-transfer and the Freundlich 

isotherm. The generalized equation used to fit to the breakthrough profiles is shown in Equation 

5-4  

C = (
𝐶i

𝑛−1

1 + A𝑒−𝑟𝑡)
1/𝑛 − 1

                                       (5-4) 

where C is the concentration of P in the aqueous phase (mg P/L), Ci is the initial P concentration 

(mg P/L), n is the Freundlich intensity parameter (unitless), t is time (minutes). The term A is 

dependent on breakthrough time (tb) and breakthrough concentration of P (Cb) and is calculated 

using Equation 5-5.  

A =  (
𝐶𝑖

𝑛 − 1

𝐶𝑏
𝑛 − 1 

 −  1) 𝑒𝑟𝑡𝑏                                     (5-5) 

The term r was calculated (Equation 5-6) as a function of the mass-transfer coefficient (KT), the 

flow of the solvent (Gs) and velocity of the adsorption zone (V) to the Freundlich intensity 

parameter.  

  r = V (
𝐾𝑇

𝐺𝑆
) (1 −  n)−1                                           (5-6) 

The full derivation of the model is reported in Clark (1987).  

In this study, the Clark model was heuristically fit to the breakthrough profiles by modifying the 

values for term A and r to minimize the sum of squared errors (SSE, Equation 5-7) between the 

model and the data.  
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         SSE =  ∑ (𝐶𝑒,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙  − 𝐶𝑒,𝑚𝑜𝑑𝑒𝑙)𝑖
2𝑛

𝑖 = 1                                (5-7) 

 

 

5.4 Results and Discussion  
 

5.4.1 Column Adsorption Testing 

 

The column tests were designed to assess the adsorption and subsequent desorption of P from the 

sorbents. An ideal sorbent for P recovery would adsorb large quantities of P which would then be 

chemically desorbed into a highly concentrated recovery stream suitable for nutrient recovery 

technologies. The sorbents investigated in this study were screened during batch testing (Chapter 

4) and each was shown to remove and recover P in a synthetic wastewater (SWW) solution. In 

addition, the sorbents included in this study were chosen for characteristics, described below, 

that could be beneficial for P recovery in wastewater.   

 

To further investigate the feasibility of using the sorbents for P recovery, column testing with 

SWW was conducted to establish loading capacities and removal capabilities of three 

commercial sorbents. To quickly load the sorbent columns with large quantities of P, the initial P 

concentration (Co) of the SWW was 20 mg P/L, which is higher than typical concentrations 

found in wastewater effluents. Breakthrough curves obtained by column tests with the 

commercial sorbents are shown in Figure 5-1. The breakthrough curves were heuristically fit 

with the Clark model to help compare the concentration profiles (Clark, 1987). Sorbents were 

evaluated on P removal efficiency and bed volumes of SWW treated at breakthrough (0.1Co), 

nearing exhaustion of the sorbent (0.5Co) and exhaustion (1.0Co). Table 5-3 summarizes mass 

and percent P removals as well as loading capacities of the sorbents tested; mass and percent 

removals were calculated for the duration of the column test (until sorbent was exhausted). The 
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results of the experiments and the evaluation of each sorbent’s P removal performance are 

subsequently discussed.  

 

Granular ferric oxide sorbent A was included in column tests because of its high affinity for 

phosphate. The breakthrough profile of Sorbent A is presented in Figure 5-1a. Effluent P 

concentrations averaged 0.1Co after approximately 37 BVs, removing an average of 95.4 ± 1.6 % 

P. Effluent P concentrations sharply increased to 0.5Co by approximately 165 BVs; 68.2 ± 4.4 % 

P was removed by 153 BVs. Increased initial effluent P concentrations is potentially be due to 

short-circuiting in the column. The column was determined to be exhausted by 1035 BVs.  The 

breakthrough curve obtained from Sorbent A was described well by the Clark model (SSE = 

786.71, R2 = 0.831).  At exhaustion, adsorption onto sorbent A removed 15.7 mg P and had an 

average P loading of 5.45 mg P/g sorbent. In a study by Chitrakar et al. (2006), synthetic iron 

oxides goethite and akageneite demonstrated higher P loading of 10 mg P/g and at lower 

equilibrium P concentrations (0.3 mg P/L). In another study, three iron oxide based sorbents 

were found to have maximum P loadings of ranging from 61 to 98 mg P/g (Kunaschk et al., 

2015). The loading capacity obtained in this study was less than those observed in other studies 

and may be due to short circuiting of the column and to the presence of competing ions (e.g. 

carbonate) in the SWW. During column testing, Sorbent A removed 43.4 ± 4.7 % P that passed 

through the adsorption column. 
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Figure 5-1: Breakthrough curves fit with Clark Model (red dashed line) for (a) granular 

iron oxide Sorbent A (SSE = 786.71, R2 = 0.831), (b) activated alumina Sorbent B (SSE = 

1849, R2 = 0.252) and (c) IEX Sorbent C (SSE = 859.34, R2 = 0.952).   
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Table 5-3: Percent phosphorus removed when column effluent P concentration is 10%, 

50% and 100% of the influent concentration (Co = 20.6 mg P/L). Average mass of 

phosphorus removed, sorbent loading after exhaustion (1.0Co) and Clark fitting 

parameters are also reported. The 0.1Co effluent threshold was not met by sorbent B 

therefore, percent removal is not reported. 

 

Sorbent A B C 

Number of Trials 7 6 21 

% Removed (0.1Co) 95.4 ± 1.6 -- 96.8 ± 0.9 

% Removed (0.5Co) 68.2 ± 4.4 69.4 ± 1.4 81.4 ± 3.9 

% Removed (1.0Co) 43.4 ± 4.7 23.4 ± 3.2 64.0 ± 5.1 

Mass Removed (mg) 15.7 ± 4.5 15.3 ± 3.4 42.2 ± 5.3 

Loading (mg/g) 5.45 ± 1.57 4.19 ± 0.95 19.7 ± 2.4 

Clark Model 

Fitting 

Parameters 

A 3.77 0.94 29.98 

r 4.5 x 10-3 3.8 x 10-3 3.7 x 10-3 

 

 

 

Sorbent B, an activated alumina based sorbent, demonstrated high P adsorption in batch test 

studies (Chapter 4) and therefore were also included column testing. The breakthrough profile 

for sorbent B is shown in Figure 5-1b. Effluent P concentrations increased immediately after the 

pump was activated; effluent P concentration after 15 BVs was 0.24Co. Phosphorus 

concentrations increased to 0.5Co by 82 BVs, removing 69.4 ± 1.4 % P from the SWW. The 

column was exhausted at 1150 BVs, respectively.  Fitting the breakthrough profile for sorbent B 

to the Clark model produced poor results (SSE = 1849, R2 = 0.252). The poor fit to the Clark 

model could be due to the steep increase in P measured in the adsorption column effluent, 

followed by a slow increase after 500 BVs until exhaustion of the column which indicates two 

types of adsorption are potentially occurring; studies have proposed that metal oxide sorbents 
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that contain Al can remove P via surface complexation, ion exchange and precipitation (Li et al., 

2016). At exhaustion, sorbent B removed 15.3 mg P from the test solution which resulted in a P 

loading capacity of 4.19 mg P/g sorbent. The loading capacity in this study was similar to a study 

using activated alumina to adsorb P from a membrane bioreactor which observed a loading 

capacity of 5 mg P/g sorbent (Genz et al., 2004). The loading capacity observed for sorbent B 

was found to lie between the loading capacities observed for two aluminium hydroxide based 

sorbents which had loading capacities of 6.45 and 1.24 mg P/g sorbent (Chen et al., 1973; 

Anderson and Malotky 1979).  At exhaustion, adsorption onto the column of sorbent B removed 

23.4 ± 3.2 % P.  

 

Sorbent C (IEX) demonstrated the highest removal and recovery of P during batch testing and 

hence was included in the column test experiments. As shown in Figure 5-1c, P effluent 

concentrations were low throughout the first 350 BVs, removing 96.8 ± 0.9 % P. Effluent P 

concentrations slowly increased to 0.5Co by approximately 910 BVs at which 81.4 ± 3.9 % P 

was removed by sorbent C. Column exhaustion occurred around 1320 BVs. The breakthrough 

curve for sorbent C fit well to the Clark model (SSE = 859.34, R2 = 0.952). At exhaustion, 

sorbent C removed 42.2 mg P corresponding to a P loading of 19.7 mg P/g sorbent. The P 

capacity of sorbent C after exhaustion was higher than the range in capacities observed by Liu et 

al. (2016) who studied P removal using an IEX from an anaerobic membrane bioreactor effluent; 

in the study loading capacities ranged from 6 to 11 mg P/g sorbent. Loading capacities observed 

by Liu et al. may have been lower due to the presence of higher concentrations of competing 

ions in the anaerobic membrane bioreactor effluent when compared to the SWW test solution. In 

total, sorbent C removed 64.0 ± 5.1 % P that passed through the adsorption column.  
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Percent P removal and BVs of SWW treated at breakthrough (0.1Co) during treatment with the 

three sorbents were analyzed. The trend observed in increasing BVs of SWW treated of the three 

sorbents at breakthrough was sorbent B << sorbent A < sorbent C. As described above, effluent 

from the sorbent B column was not observed to go below 0.24Co over the duration of the test and 

therefore percent removal and number of BVs SWW treated was not quantified. The number of 

BVs SWW treated was higher for sorbent C (350 BVs) than sorbent A (40 BVs) (t(7) = -17.10, p 

< 0.001). Sorbents A and C removed 95.4 and 96.8 % P when effluent P concentrations were 

0.1Co (t(7) = -1.373, p = 0.212). Sorbent C treated the largest volume of SWW before 

breakthrough was observed.    

 

Percent P removal and BVs of SWW treated when effluent P concentration were 0.5Co during 

treatment with the three sorbents were analyzed. The volume of SWW treated was dependent on 

the sorbent used (F(18) = 135.25, p < 0.001). Sorbents A and B treated 165 and 82 BVs of 

SWW, respectively, when effluent P concentrations were 0.5Co (p < 0.001). An average of 911 

BVs of SWW was treated by sorbent C when effluent P concentration were 0.5Co (p < 0.001). 

Therefore, when effluent P concentrations were 0.5Co, the trend observed in increasing BVs of 

SWW treated was sorbent B < sorbent A < sorbent C. The percent P removed was also 

dependent on the sorbent used (F(18) = 135.254, p < 0.001). Percent P removed by sorbent A 

and B were similar, averaging 70 % P removed (p = 0.841) while sorbent C removed 

approximately 80 % P (p < 0.001). Therefore, sorbent C treated the largest volume of SWW 

when effluent concentrations met the 0.5Co threshold. 
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At exhaustion (1.0Co), the trend in increasing BVs of wastewater treated was sorbent A ≈ sorbent 

B < sorbent C (F(24) = 11.898, p < 0.001). Sorbents A and B treated approximately 1030 and 

1150 BVs of SWW prior to exhaustion; due to variability in the tests, the average BVs treated 

were statistically similar (p = 0.246). Sorbent C treated an average of 1320 before exhaustion of 

the column (p < 0.001). Overall, sorbent C treated a larger volume of SWW compared to 

sorbents A and B. 

 

Sorbent P loadings were compared to determine which of the three sorbents removed the largest 

quantity of P after saturation of the sorbent. The calculated P loading onto metal oxide based 

sorbents A and B were similar (t(11) = 1.769, p = 0.107). Similarities in P loading could be due 

to both the sorbents being metal oxide based with specific surface areas in the range of 230 to 

300 m2/g; adsorption by metal oxide sorbents occur via surface complexation.  The ion exchange 

Sorbent C demonstrated significantly higher removals and P loadings when compared to sorbents 

A and B. Sorbent C adsorbed over 2.5 times more P than sorbents A and B (A: t(12) = -12.82, p 

< 0.001; B: t(13) = -14.90, p < 0.001). The P loading of sorbent C was almost 4 times higher than 

the other two sorbents (A: t(16) = -18.07, p < 0.001; B: t(21) = -23.95, p < 0.001). Overall, 

sorbent C displayed the best removal performance when compared to sorbents A and B.   

 

The Clark model was fit to the breakthrough profiles to further compare the three sorbents. The 

Clark model is a simplified model developed to predict the performance of granular activated 

carbon adsorption columns for the removal of organic compounds however it has been shown to 

perform well for a variety of systems and under different conditions (Clark, 1987; Xu et al., 

2013). Of the three sorbents, sorbent C was best described by the Clark model. The good fit was 
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attributed to the high adsorption capacity of the sorbent capturing the P onto the column resulting 

in low effluent P concentrations in the first section of the breakthrough curve and giving the 

concentration profile the “S” shape typically observed. Sorbents A and B both adsorbed less P, 

with effluent P concentrations detected within minutes of tests being initiated. The duration of 

low P concentration prior to breakthrough was short for sorbent A and not observed in the 

breakthrough profile of sorbent B and hence, the shapes of the concentration profiles deviated 

from what is normally observed in adsorption tests. In a review of mathematical models used to 

describe fixed-bed adsorption columns, it was noted that there is no model that can accurately 

describe a system when the breakthrough curve deviates from the expected shape (Xu et al., 

2013). To improve the fit of sorbent A and B data to a model, the column length would need to 

be increased or the influent P concentration decreased to possibly capture the typical 

breakthrough profile curve. Therefore, the goodness of fit to the Clark model is dependent on 

adsorption capacity of the sorbent as well as column test design. 

 

For more insight into the different removal performances demonstrated by the sorbents, the Clark 

model fitting parameters were examined. The term A (Equation 5-5) is related to the time and 

concentration of breakthrough while r (Equation 5-6) relates to the velocity of the adsorption 

zone and the mass transfer coefficient. The A and r values fit to the breakthrough column for the 

three sorbents are report in Table 5-3. The trend observed for increasing r value was sorbent C < 

sorbent B < sorbent A. The low A and r values can explain the poor fit of the Clark model to the 

breakthrough profile of sorbent B. The r value indicates that mass transfer coefficient is low, 

which is consistent with the initial rapid increase in P concentration at the start of the test and  

slow increase in P concentration before exhaustion of sorbent B. The trend in increasing A value 
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observed was sorbent B < sorbent A < sorbent C and agreed with the trend observed for the 

increasing number of BVs of SWW treated until breakthrough. 

 

5.4.2 Phosphorus Recovery 

 

In terms of P recovery, a high adsorption capacity of a sorbent is only beneficial if the adsorption 

can be reversed. Therefore, recovery of the P adsorbed by the three sorbents was investigated 

using chemical desorption. During the recovery phase, composite samples were collected over 

the duration of desorption. The total P recovered from the sorbent was calculated by summing 

the products of the P concentration and volume of each sample taken. The P concentrations of 

the collected samples from the different sorbents and desorption solutions are presented in Figure 

5-5. The mass and percentage of P recovered with the three sorbents are summarized in Table 5-

3. The recovery of P from the three sorbents using the different desorption solutions was 

evaluated on the basis of the quantity of P recovered from the adsorption column. The results 

obtained in recovery experiments are presented and discussed below. 

 

The recovery from sorbent A using acidic and basic desorption solutions was examined to 

determine the quantity of P recovered from the spent adsorption column and to evaluate the 

performance of the two recovery solutions. Figure 5-2a presents the P concentrations in the 

recovery effluent versus BV for two trials of 0.5M NaOH (red) and 0.5M HCl (blue) desorption. 

In trials using 0.5 M NaOH, the effluent P concentrations reached a maximum within the first 5 

BVs of desorption (average [P] = 450 mg P/L) and quickly decreased to less than 10 mg P/L 

after 38 BVs. In trials using 0.5 M HCl, the effluent P concentration increased above 100 mg P/L 

around 6 BVs, further increased to approximately 130 mg P/L by 9 BVs and then remained 

around 100 mg P/L for an additional 60 BVs. After 75 BVs, the P concentrations slowly 
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decreased but remained above 10 mg P/L for the duration of the desorption phase. In total, 14.1 

and 20.5 mg P were desorbed from sorbent A using NaOH and HCl, respectively, corresponding 

to recoveries of 90 and 95 % which were not statistically different (t(2) = -4.71, p = 0.13). 

Therefore, over 90 % of P adsorbed by sorbent A could be recovered through use of acidic or 

basic desorption solutions. 

Desorption of P from activated alumina sorbent B was investigated using acidic (0.5 M HCl) and 

basic (0.5 M NaOH) desorption solutions. The effluent P concentrations of desorption solution 

used are shown versus BV in Figure 5-2b. Using 0.5 M NaOH, effluent P concentrations 

increased to an average of 530 mg P/L after 6 BVs of desorption solution and then decreases to 

approximately 90 mg P/L by 23 BVs. Phosphorus concentrations in the NaOH desorption 

effluent continued to slowly decrease for the remaining time of the recovery test.  The P 

concentrations in the effluent remained above 10 mg P/L until around 60 BVs of desorption 

solution had passed. Phosphorus concentrations in the HCl desorption effluent were also 

observed to peak however the highest effluent P concentration was 336 mg P/L which was 

observed after ~ 6 BVs. In total, NaOH and HCl desorption solutions liberated 18.4 and 14.0 mg 

P from Sorbent B, respectively, with NaOH recovering more P than HCl (t(2)=60.9, p < 0.001). 

The phosphorus recoveries were estimated as 120 and 91 % for NaOH and HCl. Desorption 

using NaOH recovered larger quantities of P than adsorbed by Sorbent B, however the mass 

desorbed was not statistically different from the mass adsorbed by sorbent B (t(5) = 2.235, p = 

0.07). Overall, almost all the adsorbed P was recovered from sorbent B with the NaOH 

desorption demonstrating better recovery.  
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Figure 5-2: Phosphorus concentration of desorption solution over desorption BVs obtained 

using 0.5 M NaOH (red), 0.5 M HCl (blue) for (a) granular iron oxide sorbent A, (b) 

activated alumina sorbent B and (c) IEX sorbent C. Desorption solutions 0.5 M NaCl 

(green) and 0.5 M NaOH + NaCl (orange) were also used with (d) sorbent C. The results 

from both desorption trials are shown.
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Table 5-4: Mass and percent P recovered from sorbents A, B and C using chemical desorption solutions. Bed volumes of the 

desorption solution required to liberate 90 % recoverable P from the sorbents and calculated final concentration of the 

blended recovery solution (mg P/L) are also reported.  

Sorbent A B C 

Desorption 

Solution  
0.5M NaOH 0.5M HCl 0.5M NaOH 0.5M HCl 0.5M NaOH 0.5M HCl 0.5M NaCl 

0.5M 

NaOH + NaCl 

Number of Trials 2 2 2 2 2 2 8 4 

Mass Recovered 

(mg) 
14.1 ± 1.9 20.5 ± 0.5 18.4 ± 0.1 14.0 ± 0.1 32.8 ± 0.24 21.8 ± 0.6 40.3 ± 5.3 44.5 ± 8.1 

% Recovered 90 ± 12 95 ± 1  120 ± 1  91.3 ± 0.4 78 ± 1 52 ± 1 96 ± 13 106 ± 20 

Blended Recovery 

Concentration  

(mg P/L)  

180 ± 29 80 ± 3 124 ± 3 65 ± 1 411 ± 39 468 ± 20 382 ± 59 362 ± 52 

Average BVs  

  
27 95 53 78 29 17 29 38 

 

 



142 

 

Desorption with acidic (0.5 M HCl), basic (0.5 M NaOH), salt (0.5M NaCl) and basic salt (0.5 M 

NaOH + NaCl) solutions was investigated to determine which solution would best recover 

phosphorus from Sorbent C. In trials with NaOH and HCl (Figure 5-2c), effluent P 

concentrations peaked between 3 and 5 BVs with concentrations of 982 and 1160, respectively. 

The effluent P concentrations in trials using NaCl and NaOH + NaCl peaked at 700 and 671 mg 

P/L, respectively, around 13 BVs. Overall desorption using basic, acidic, salt and basic salt 

solutions liberated 32.8 (77.9%), 21.8 (51.8%), 40.3 (95.5%) and 44.5 (105 %) mg P from 

Sorbent C, respectively.  

 

Recovery results obtained from desorption of P from Sorbent C using the four desorption 

solutions were further investigated to determine which solution was best suited for P recovery. 

There was a statistical difference in % P recovered by sorbent C with the different desorption 

conditions (F(15) = 7.997, p = 0.003). Despite higher P concentrations in the recovery stream, 

HCl recovered 26 % less P than NaOH (t(2) = 25.204, p = 0.002). Comparing NaOH and NaOH 

+ NaCl desorption solutions, NaOH recovered around 22 % less P than the combination of 

NaOH+ NaCl (t(3)= -2.88, p = 0.03). There was no statistical difference between the quantities 

of P recovered through desorption using NaCl and NaOH + NaCl solutions (t(4) = -0.95, p = 

0.39). Results from the basic, salt and basic salt desorption tests show that that introducing Cl- to 

exchange with phosphate on the surface of the sorbent may be the more effective way to 

recovery P and regenerate the sorbent. Using NaCl was deemed to be preferential to NaOH + 

NaCl since there would be additional costs associated with subsequent pH readjustment after the 

addition of NaOH. Therefore, 0.5 M NaCl solution proved to be the favoured desorption solution 

due to its high P recovery and lower chemical cost. 
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Recovery efficacy with respect to producing a concentrated feedstock for nutrient recovery 

technologies was also investigated for the three sorbents. The phosphorus concentration in the 

desorption solutions all exceeded the 100 mg P/L threshold required for some nutrient recovery 

technologies during the recovery phase however, the highest concentrations were normally at the 

beginning of the desorption where less than 50 % of the total recoverable P had been released 

from the sorbent. Liberation of over 90 % recoverable P from the sorbent is desirable to 

minimize loss of P and maximize the regeneration of the sorbent for reuse. Therefore, to evaluate 

the final concentration of the blended desorption effluent, a target of 90 % of total recoverable P 

was set. The concentration of the blended desorption effluent was calculated by dividing the 

cumulative mass P recovered by the cumulative desorption volume required to liberate 90 % 

recoverable P. The final desorption effluent concentration calculated for the three sorbents are 

reported in Table 5-3 and discussed below.  

 

The final concentration of the blended recovery solution using NaOH and HCl desorption 

solutions were examined for granular ferric hydroxide sorbent A (Table 5-3). Using 0.5 M NaOH 

and 0.5 M HCl, 90 % of recoverable P was liberated in approximately 27 and 95 BVs, 

respectively. The resulting concentrations of the blended recovery solutions were 180 mg P/L 

(NaOH) and 80 mg P/L (HCl). The concentration of the HCl recovery solution effluent was 

below the 100 mg P/L concentration cut off needed for nutrient recovery technologies. 

Therefore, use of NaOH desorption solution on sorbent A produced a recovery effluent with a 

concentration suitable for nutrient recovery.  
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The concentrations resulting from NaOH and HCl desorption solutions were also examined for 

activated alumina sorbent B. During recovery of sorbent B (Table 5-3), 90 % of the recoverable 

P was desorbed in approximately 53 and 78 BVs using 0.5 M NaOH and 0.5 M HCl, 

respectively. The final P concentration of the blended NaOH and HCl recovery solutions 

corresponded to 124 and 65 mg P/L. The concentration of the HCl desorption solution after P 

recovery did not meet the concentration threshold for nutrient recovery technologies. Therefore, 

NaOH proved to produce the better desorption effluent for P recovery technologies from sorbent 

B. 

 

Concentration of the blended recovery effluents obtained using NaOH, HCl, NaCl and NaOH + 

NaCl desorption solutions on sorbent C were analyzed (Table 5-3).  The four desorption 

solutions recovered 90% of the P adsorbed to sorbent C with final P concentrations of the 

blended effluent ranged from 362 to 469 mg P/L. Desorption of 90 % recoverable P from sorbent 

C was collected in 29 and 17 BVs of NaOH and HCl desorption solutions, respectively. 

Desorption of 90 % recoverable P was achieved in 29 and 38 BVs for NaCl and NaOH + NaCl 

desorption solutions. All four desorption solutions produced an effluent that is a concentration 

suitable for nutrient recovery. 

 

The number of desorption BVs needed to recover 90 % P from the sorbents were examined in 

the desorption solutions that produced effluent concentrations that met the threshold for nutrient 

recovery technologies. The final concentration of the blended recovery solution is a result of the 

cumulative mass of P liberated and total volume of desorption solution used. A low volume 

requirement, low BVs, is beneficial as it will lower the chemical demand needed and thus, lower 
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the cost of the recovery process. Of the sorbents, sorbent B required the largest volume of 

desorption solution (53 BVs NaOH) to recover 90 % adsorbed P. Sorbent A (NaOH) and sorbent 

C (NaOH, NaCl, NaOH + NaCl) required desorption volumes between 27 and 38 BVs. Recovery 

from sorbent C using HCl required the smallest volume of desorption solution, desorbing 90 % 

of recoverable P in 17 BVs. 

 

Using the adsorption and recovery results for the three sorbents it is possible to identify which 

sorbent has the greatest potential for P recovery. From the initial SWW, IEX Sorbent C removed 

larger quantities of P (64.0 %) over metal oxide Sorbents A (43.44 %) and B (23.4 %). While P 

recoveries from the surface of sorbents A and B were > 90 % during recovery tests, initial P 

adsorption demonstrated by sorbent A and B were low, therefore overall P recoveries from the 

initial SWW test solution were approximately 39 % and 21 %, respectively. Sorbent C proved to 

be stable under all four desorption solutions tested. Phosphorus recoveries from sorbent C were > 

95 % in desorption solutions containing NaCl. Desorption of P from sorbent C using NaCl also 

required a low volume of desorption solution to recover ~90 % of the total desorbed P and 

produced a desorption effluent of a concentration suitable for P recovery. With its high 

adsorption capacity and the ability to recover > 95 % of P adsorbed, sorbent C recovered 

approximately 61 % from the initial SWW test solution. Of the three sorbents tested, sorbent C 

proved best suited for P recovery under the conditions tested.  

 

5.4.3 Real Wastewaters 

 

Phosphorus adsorption from two wastewater samples was investigated to evaluate the 

performance of sorbent C with a more complex water matrix. The performance of a sorbent 
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when treating real wastewater could change due to competition by higher concentrations of other 

species that could also adsorb onto the sorbent. Ion exchange resins, such as sorbent C, are non-

selective and will adsorb any anions available in the wastewater stream. The two municipal 

wastewater samples used for testing with sorbent C, consisted of a secondary effluent sample 

that was collected after the aeration basin and before chemical P removal, and a final effluent 

sample; the samples were collected from different wastewater treatment plants. The secondary 

effluent had an initial TP concentration of 0.81 ± 0.09 mg P/L with 0.54 ± 0.10 mg P/L in the 

reactive P (i.e. orthophosphate) form. The final effluent had an initial TP concentration of 0.21 ± 

0.02 mg P/L, which consisted entirely of reactive P as the measured TP and RP (0.18 ± 0.02 mg 

P/L) concentrations of the final effluent were not statistically different (t(8) = -1.299, p = 0.23). 

The results of P adsorption by sorbent C from the wastewater samples are presented and 

discussed in the subsequent text. 

 

Adsorption results from treating secondary effluent with sorbent C are presented in the 

breakthrough curve in Figure 5-3a. Phosphorus was detected in the effluent of the adsorption 

column immediately after the start of the adsorption phase; secondary effluent P concentrations 

did not go below 0.3Co (0.24 mg P/L). The column effluent P concentration slowly increased, 

reaching 0.5Co by 300 BVs and column exhaustion around 1200 BVs. Sorbent C removed 61.9 ± 

1.5% P when effluent concentrations were 0.5Co. The breakthrough profile of P adsorption from 

the secondary effluent fit well to the Clark model despite the high initial effluent concentrations 

(SSE = 0.0546, R2 = 0.940). When fitting the breakthrough curve of the secondary effluent, the 

Clark fitting parameters A and r were determined to be 1.30 and 2.1 x 10-3, respectively. Clark 

fitting parameter obtained in fitting the secondary effluent decreased when compared to the 
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fitting parameters obtained from treatment of SWW with sorbent C. The lower values of A and r 

are consistent with the low BVs of wastewater treated and a slower rate of mass transfer. The 

high initial P concentration in the adsorption column effluent suggests that approximately 30 % 

of P in the secondary effluent was not susceptible to adsorption. The secondary effluent had 0.27 

mg P/L which was non-reactive P, making up approximately 33 % of TP in the secondary 

effluent. Non-reactive P is made up of organic and condensed P species that might not have the 

properties (e.g. size, surface charge) which would favour adsorption on sorbent C. At saturation, 

sorbent C removed 39.6 ± 3.7 % of P from the secondary effluent.  

 

Figure 5-4b presents the adsorption results from treating the final effluent with Sorbent C. As 

shown in the breakthrough profile, the effluent P concentrations with the final effluent sample 

were low until the 0.1Co breakthrough concentration was met after approximately 260 BVs, 

removing 95.5 ± 1.2 % P. After breakthrough, the P concentrations continued to increase to 

0.5Co by approximately 440 BVs with 85.3 ± 0.1 % P removed. Column exhaustion occurred at 

1140 BVs. Results from treatment of the final effluent with sorbent C fit well to the Clark model 

(SSE = 0.0014, R2 = 0.989). When fitting the breakthrough curve of the final effluent, the Clark 

fitting parameters A and r were determined to be 26.57 and 7.7 x 10-3, respectively. The value of 

A was similar to the value obtained from fitting the breakthrough curve from treatment of SWW 

with sorbent C, while the value of r increased indicating a faster rate of mass transfer. Sorbent C 

adsorbed 46.5% P from the final effluent sample at saturation.   
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Figure 5-3: Breakthrough profiles fit with Clark Model (red dashed line) obtained through 

treatment of (a) secondary effluent (SSE = 0.055, R2 = 0.94) and (b) final effluent (SSE = 

0.0014, R2 = 0.99) with Sorbent C.   

 

Comparison of the adsorption performance of sorbent C in the two waste waters provides insight 

into potential application of adsorption in the wastewater treatment train. Sorbent C treated 440 

BVs of final effluent before the breakthrough concentration was met (0.1Co); P concentrations in 

the secondary effluent after adsorption by sorbent C did not go below 0.3Co during treatment. 

Adsorption by sorbent C removed P from the final effluent to lower levels than in the secondary 

effluent. During adsorption of P from final effluent, P concentrations were below the 

breakthrough (0.1Co) for 440 BVs. Sorbent C demonstrated higher removal in the final effluent 

(85 %) compared to the secondary effluent (61.9 %) when P concentrations after adsorption were 

0.5Co (t(2) = 21.697, p = 0.002). Sorbent C also treated a larger volume of final effluent (440 

BVs) compared to secondary effluent (300 BVs) (t(2) = 11.703, p = 0.007). The lower removal 

observed in secondary effluent is most likely due to the large fraction of nRP (~33 % TP) that 

was not prone to adsorption by sorbent C. Therefore, sorbent C demonstrated higher levels of P 

removal and treated larger volumes of wastewater during adsorption of P from final effluent.   
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For more insight into the P adsorption by sorbent C, the resulting P loadings from treatment of 

secondary and final effluents were compared. Phosphorus removed in secondary and final 

effluents resulted in P loadings of 0.46 ± 0.07 and 0.13 ± 0.01 mg P/g sorbent. The P loading on 

sorbent C after treatment with secondary effluent was higher than the P loading after treatment of 

final effluent (t(2) = -7.078, p = 0.01) and was most likely due to the difference in initial P 

concentration of the two wastewater effluents. Even though 30 % of the P in the secondary 

effluent was not susceptible to adsorption by Sorbent C, the concentrations of the remaining 

aqueous P were almost twice those of the final effluent. The increased P concentration leads to a 

larger concentration gradient between the solid and aqueous phase, increasing the driving force 

of mass loading onto the sorbent. The difference in initial P concentration has much to do with 

the degree of treatment in the two samples. Secondary effluent was collected upstream from 

chemical P removal and therefore will have a higher initial P concentration when compared to 

final effluent which has fully treated. Therefore, Sorbent C has demonstrated P adsorption in real 

wastewater samples however performance was dependent on initial P concentration and 

speciation of the wastewater stream.  

 

Desorption of P from the Sorbent C adsorption columns that were exhausted through treatment 

of secondary and final effluent was investigated using 0.5 M NaCl. For each trial, the desorption 

effluent was collected as one sample over the duration of the recovery phase due to the low 

initial P concentrations and the volume of waste water treated via adsorption. The final P 

concentrations of the desorption solutions used to recover P from the columns treating secondary 

and final effluent were 3.20 ± 0.07 and 0.30 ± 0.02 mg P/L, respectively. Hence desorption 
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recovered 0.99 ± 0.04 mg P from the secondary effluent and 0.10 ± 0.00 mg P from the final 

effluent. Therefore, the 0.5 M NaCl solution recovered 102 ± 4 and 38 ± 1 % P adsorbed by 

Sorbent C from the secondary and final effluent, respectively. The quantity of P recovered from 

the secondary effluent was almost 10 times greater than the P recovered from final effluent (t(6) 

= -47.73, p < 0.001). In desorption tests recovering P from SWW samples, desorption from 

Sorbent C was quick, occurring within the first 30 BVs. The composite sample collected during 

recovery from the wastewater samples was collected over 130 BVs which should have captured 

all recoverable P. Any P remaining on the sorbent after desorption phase is potentially 

irreversibly adsorbed to Sorbent C. Overall, Sorbent C recovered around 39.6 and 17.7 % P from 

secondary and final effluents, respectively. 

The desorption effluent concentrations obtained through NaCl desorption of the sorbent C 

adsorption columns were also examined. As mentioned above, the concentration of the 

desorption effluent from the secondary effluent after 130 BVs was 3.20 mg P/L, almost 4 times 

more concentrated than the initial wastewater. The concentration of the desorption effluent for 

the final effluent was 0.30 mg P/L, approximately 1.4 times more concentrated than the initial 

concentration. The concentrations of the blended desorption solution are much lower than the 

100 mg P/L threshold needed for struvite recovery technologies.  

The trends observed during desorption of the SWW were used to interpret the exhausted 

desorption columns. Trends observed for desorption from sorbent C when testing SWW 

predicted that 90 % of P recovered from the sorbent could be collected in approximately 30 BVs. 

Therefore, the maximum concentration of the desorption effluent was calculated by dividing the 

mass of P recovered from the sorbent at this point by the volume associated with 30 BVs. The 

resulting concentrations for the desorption effluents were estimated as 11.7 and 1.23 mg P/L for 
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secondary and final effluents, respectively. Hence, while the phosphorus concentrations were 

predicted to be higher than that of the initial wastewater streams, the estimated maximum 

concentrations of the desorption stream were still below the concentration required for nutrient 

recovery technologies.  

The results from treating the real wastewater effluents provide insight into the use of sorbents for 

P removal and recovery in wastewater treatment. Adsorption of P from the wastewater stream 

can be affected by several possible factors. Examples include initial phosphorus concentration, 

initial phosphorus speciation, presence of competing ions and possibly the presence of dissolved 

organic matter. Initial phosphorus concentration can help or hinder adsorption onto IEX sorbents 

depending on whether the concentration is high or low, respectively. A higher concentration in 

the aqueous phase provides a larger concentration gradient between the surface and solution, 

encouraging P adsorption onto the surface. Phosphorus speciation also may play a role as some 

forms of P are recalcitrant and may not be susceptible to adsorption, as was observed in this 

study, and thus, cannot be recovered. While not investigated in this study, the presence of 

dissolved organic matter could also reduce P adsorption through possible fouling of the sorbent 

surface (Bazri and Mohseni, 2016). The results of this study give evidence that P recovery in a 

concentrated P effluent through adsorption/desorption can be achieved however, further study 

into the factors mentioned above may provide useful information with regards to the wastewater 

stream to be treated.     

5.5 Conclusions 

 

The purpose of this study was to determine the phosphorus removal and recovery potential of 

three commercial sorbents through column testing. Once saturated, the granular ferric hydroxide 
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(sorbent A) removed 43.4 % P while activated alumina (sorbent B) removed 23.4 % P from the 

SWW test solution. The mass removed by sorbents A and B were similar and corresponded to a 

P loading of approximately 5 mg P/g sorbent. The ion exchange (sorbent C) removed the largest 

quantity of P from the SWW, removing 64.0 % P corresponding to a P loading of 19.7 mg P/g 

sorbent.  

All of the desorption solutions tested were found to desorb P from the exhausted adsorption 

columns.  Acidic (0.5 M HCl) and basic (0.5 M NaOH) desorption solutions both recovered over 

90 % of the adsorbed P from sorbent A. NaOH recovered more P (> 99 %) from sorbent B than 

HCl (~ 90 %). Of the four desorption solutions used on sorbent C, 0.5 M NaCl and 0.5M NaOH 

+ 0.5M NaCl both demonstrated the largest recoveries, desorbing over 95 % adsorbed P. 

Desorption from sorbent A and B with NaOH produced a desorption effluent with a P 

concentration that met the threshold concentration for nutrient recovery technologies (100 mg 

P/L) while use of all four desorption solutions on sorbent C produced a desorption effluent with a 

P concentration greater than 100 mg P/L. With the use of the optimal desorption solution of each 

sorbent, the percent recoveries of P from the initial SWW were 39, 21 and 61 % P for sorbents 

A, B and C, respectively. 

Sorbent C proved to be the sorbent best suited for P recovery under the conditions tested and 

therefore was used for P removal and recovery from secondary and final wastewater treatment 

effluent. At exhaustion, sorbent C removed approximately 39.6 and 46.5 % P from secondary 

and final effluent, corresponding to P loadings of 0.46 and 0.13 mg P/g sorbent. Using 0.5 M 

NaCl, sorbent C recovered around 40 and 18 % P from secondary and final effluents, 

respectively. 
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6.1 Summary 
 

Non-reactive phosphorus (nRP) contains condensed phosphates and organic phosphorus (OP) 

species that are recalcitrant in secondary wastewater treatment and tend to remain in final 

effluents. To meet ultra-low effluent P discharge limits, persistent nRP must usually be removed. 

The objective of this study was to test an advanced oxidation process (AOP) which couples 

TiO2/UV photolysis with ultrafiltration (UF) to oxidize and remove nRP species. Initial tests 

utilized a simple mixture of two OP model compounds to determine the effect of TiO2/UV 

photolysis on them and to elucidate the mechanisms of phosphorus removal. The AOP was also 

tested for P removal from three municipal wastewaters and one automotive industry effluent. In 

all cases, phosphorus removal was found to occur through filtration, surface complexation onto 

the TiO2 and UV oxidation. Total phosphorus removal efficiencies between 90-97 % were 

observed for the municipal wastewater effluents and 44 % removal was observed in the industrial 

effluent after treatment using AOP. Conversion of nRP to reactive P (RP) was evident during 

TiO2/UV treatment of samples that had high concentrations of nRP.   In summary, the AOP 

effectively oxidized nRP to RP, achieving high levels of P removal in real wastewater effluents 

and retaining P on the TiO2 solids. 

Keywords:  Organic phosphorus, non-reactive phosphorus, phosphorus removal, advanced 

oxidation process, adsorption, UV/TiO2, ultrafiltration. 
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6.2 Introduction 
 

Total phosphorus (TP) in wastewater exists as two operationally defined fractions based on 

colourimetric P detection methods, termed reactive (RP) and non-reactive phosphorus (nRP) 

(Robards et al., 1994); soluble or particulate forms of TP are defined by whether they pass 

through or are retained by a 0.45 µm filter, respectively (Gu et al., 2011). Over 75 % of TP in 

wastewater is RP, an inorganic fraction made up of orthophosphate, that reacts directly to the 

reagents in colorimetry (Water Environment Federation, 2010). Alternatively, nRP contains 

condensed phosphates and organic phosphorus (OP) species which require digestion (e.g. 

persulfate oxidation) prior to being measured using colorimetric methods (Standard Methods, 

2005). Conventional wastewater treatment can usually achieve TP discharge limits of 1 mg P/L, 

with some plants able to meet limits of 0.3 mg P/L (US EPA, 2007). However, traditional 

biological and chemical treatments target the RP fraction more effectively than nRP and it has 

been reported that 26 – 81 % of TP in treated effluents is in the form of dissolved nRP (Qin et 

al., 2015).  

Areas with receiving waters more prone to hypertrophication are requiring stricter effluent 

standards to mitigate eutrophication (Clark et al., 2010). To meet the more demanding effluent 

quality standards, removal of only RP may not be sufficient and nRP must also be removed. 

Hence, industries with waste streams that have high concentrations of nRP will benefit from an 

effective and efficient nRP treatment technologies. It is expected that the need for these 

technologies will increase with time as the demand for organic phosphorus compounds in 

industrial uses is on the rise (i.e. herbicides/pesticides, chelating agents and in pharmaceuticals 

(Xing et al., 2017a; Mangat Echavia et al., 2009; Nowack, 2003; Kamel, 2015)). Further, while 

the goal of current wastewater treatment technologies is P removal, P is a valuable resource and 
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hence the implementation of nutrient recovery technologies is an emerging priority for treatment 

facilities. As of 2015, six water resource recovery facilities (WRRFs) in North America recover 

or will be recovering nutrients by implementing struvite (NH4MgPO4·6H2O) crystallization 

(Latimer et al., 2015).  Therefore, the potential benefits of developing a technology that 

transforms nRP to RP is two-fold; oxidation of nRP to RP will eliminate the refractory P in 

effluents and will increase the fraction of P available for recovery technologies. 

The types of non-reactive phosphorus in wastewater will depend on the wastewater source. 

Historically, nRP forms in domestic wastewater have included condensed phosphates (e.g. 

pyrophates) and phosphorus covalently bound to organic matter (e.g. adenosine 5’- triphosphate 

(ATP), phospholipids) (Maher and Woo, 1998). The characterization of nRP remaining in treated 

domestic waste waters has been limited, however the few studies that exist indicate that the 

organic P compounds mainly consist of esterized phosphorus and pyrophosphate species (Qin et 

al., 2015) that contain a covalent phosphorus to oxygen to carbon bond. The presence of organic 

phosphorus in industrial wastewaters has been well studied.  It has been found that many 

industries use phosphonates, a group of phosphorus compounds that contain a resilient covalent 

carbon to phosphorus bond (Nowack, 2003). An example of a phosphonate that is in high 

worldwide demand is glyphosate, a nonselective herbicide which has increased in usage due to 

the production of genetically modified crops that are tolerant to glyphosate (Xing et al., 2017a). 

Regardless of composition, the need to reduce the quantity of nRP in the effluents is expected to 

increase.    

In advanced oxidation processes (AOPs), organic compounds are non-selectively oxidized by 

highly reactive hydroxyl radicals that can be produced by photolysis (Legrini et al., 1993; 

Westeroff et al., 2009). Industrial wastewater streams that contain large quantities of 
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organophosphate pesticides (e.g. glyphosate) have been treated with AOP processes that couple 

UV and TiO2 to enhance photocatalysis (Chen and Liu, 2007; Mangat Echavia et al., 2009).  

Chen and Liu (2007) studied photocatalysis of glyphosate using a TiO2 powder and discovered 

15 and 92 % of glyphosate was degraded after 30 minutes and 3.5 hours, respectively. In another 

study the oxidation of the organophosphate pesticides acephate and dimethoate using TiO2 

immobilized onto silica gel was assessed (Mangat Echavia et al., 2009). In a clean water matrix, 

0.1 mM solutions of the pesticides acephate and dimethoate were both found to be degraded by 

photocatalysis after 60 and 105 min, respectively. Overall, the results indicate that AOPs are 

potentially effective at oxidizing OP compounds to form inorganic RP.  

Advanced oxidation processes which use TiO2 as a photocatalyst have the added benefit of the 

presence of a surface available for physical adsorption (Mayer et al., 2010); metal oxides are 

known to complex with P compounds in solution (Li et al., 2016). In both above-mentioned 

studies, glyphosate removal was determined to be due to adsorption onto TiO2 as well as 

photolysis. Chen and Liu (2007) observed glyphosate adsorption to the TiO2 surface under dark 

conditions; TiO2 adsorption capacity for glyphosate was 1.28 x 10-6 mol/g (216 µg glyphosate/g 

TiO2). Once exposed to UV light, RP was liberated from the TiO2 (Chen and Liu, 2007). Mangat 

Echavia et al. (2009) reported complete removal of 0.1 mM glyphosate after adsorption and 60 

minutes of UV exposure. RP release after oxidation of glyphosate was not observed suggesting 

that the liberated orthophosphate and other intermediate compounds were removed via 

adsorption.   

Most studies investigating the use of AOPs for organic phosphorus removal have focused on 

industrial chemicals while the treatment of nRP in municipal wastewater has not been reported.  

Hence, the current study sought to extend the use of AOPs to treat dilute mixtures of different 



157 

 

organic P compounds typical of those found in municipal wastewater effluents. In this study, two 

model compounds were tested in a mixture and individually, to evaluate the ability of a 

commercial UV/TiO2 AOP coupled with ultrafiltration to oxidize nRP species.  The model 

compounds were chosen on the basis of the similarity of their structures with those reported in 

municipal waste waters. ATP contains two phosphoanhydride bonds (condensed phosphorus) 

and a phosphoester bond that are common in the nRP present in wastewater effluent streams 

while 2-aminoethylphosphonate (AEP) has a similar structure to the phosphonates reported in 

industrial wastewaters.  The AOP unit was also used to treat real effluent samples to evaluate the 

ability to breakdown nRP species in a complex wastewater matrix. Based on the results obtained 

in this study, P removal mechanisms are proposed and the implications for phosphorus removal 

and recovery are discussed. 

 

6.3 Methodology 

6.3.1 Integrated Advanced Oxidation Process/Ultrafiltration System 

 

The experiments were completed using a lab-scale Photo-Cat® system from Purifics Water Inc. 

(London, Ontario, Canada). The Photo-Cat® system couples a UV/TiO2 photocatalysis unit with 

a ceramic ultrafiltration membrane. The Photo-Cat® system was run in batch mode with a 

maximum capacity of 16 L.  Reagent grade titanium dioxide (Degussa P25, Dusseldorf, 

Germany) was used in a slurry that was continuously circulated within the system.  Degussa P25 

consists of a mixture of anatase and rutile TiO2 nanoparticles in the ratio of 3:1; average particle 

size is 21-25 nm, however nanoparticles aggregate to form particles on the scale of hundreds of 

nanometers (Ohno et al., 2001; Gerrity et al., 2008). Additional information on the Photo-Cat® 

system has been reported by Westeroff et al. (2009). 
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6.3.2 Model Compounds and Test Solution Preparation 

Two model compounds were used in this study to evaluate nRP behaviour in the AOP; ATP was 

used in the form of adenosine 5’-triphosphate disodium salt hydrate while AEP was in form 2-

aminoethyl phosphonic acid. Both model compounds had 99 % purity and were purchased from 

Sigma Aldrich (St. Louis, MO).  The model compounds were tested together in a binary mixture 

(BM) as well as individually. The molar concentrations of ATP and AEP employed in the BM 

were maintained in individual tests apart from the control test where less AEP was added.  Test 

solutions were prepared as 1 L concentrates to add to the sample tank of the AOP which 

contained 16 L of tap water.  

 

6.3.3 Wastewater Samples 

Treated effluent samples were collected from three conventional activated sludge municipal 

wastewater treatment plants (WWTP) in Ontario, Canada prior to disinfection. The municipal 

wastewater treatment plants are referred to by an alphabetic code (A, B, C) to maintain 

anonymity. In addition, an untreated wastewater sample that was known to contain substantial 

nRP was collected directly from the outlet of the collection well of an automotive industrial 

facility and contained a mixture of industrial and domestic wastewaters. Apart from the samples 

obtained from WWTP A, the collected samples were stored at 4 ℃ until testing; samples from 

WWTP A were tested the same day as sampling.  

 

6.3.4 Experimental Method 

In tests with model compounds, the reaction tank of the AOP was filled with 16 L of tap water 

then dosed with 1 L of model compound concentrate and subsequently the system pump was 
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activated. When UV irradiation was being used, a known mass of TiO2 was added to the system 

and allowed to mix thoroughly for 10 minutes before UV activation occurred.  This approach 

was followed to allow the mercury lamps time to warm prior to testing. Samples were taken at 

each step and in 5 minute intervals up to 35 minutes once the UV lamps were on. In control tests, 

after TiO2 addition, the system was mixed continuously for 30 minutes without UV irradiation 

and samples were taken after 5, 15, 25 and 35 minutes of mixing. Between tests, the AOP system 

was cleaned out using the automatic purge settings in the control system. A similar protocol was 

used in experiments with wastewater samples. All experiments were completed in triplicate.  

 

6.3.5 Analysis 

Total P was measured using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-

OES). Intensities were measured in axial mode at a wavelength of 213.617 nm with the viewing 

height set to 15 mm above the induction coil; the flow rate of the sample pump was set to 2 

mL/min, argon was used as the plasma and auxiliary gas, set to 15 and 0.5 L/min, respectively.  

Reactive P concentrations were measured using ascorbic acid colorimetric determination at 660 

nm as per method G-103-93 Rev. 10 (Seal Analytical, WI) in accordance with Method 4500 P.E 

in Standard Methods (Standard Methods, 2005).  Reactive and total P were measured in all 

samples and nRP concentrations were calculated by difference between TP and RP. 

Calibration solutions were prepared each day of analysis using KH2PO4 in ultrapure water 

(18.2MΩ, MilliQ). A certified reference material (H3PO4, Lot BCBM9148V, 1002 ± 4 mg P/L) 

purchased from Sigma Aldrich was used to prepare P standards included in all runs for quality 

assurance. The method detection limits of the colorimetric and ICP-OES methods were 2 and 25 

µg P/L, respectively (Ateeq, 2015).  
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Organic carbon was measured in wastewater samples using a SHIMADZU TOC-LCPH Carbon 

and Nitrogen Analyzer. Total organic carbon (TOC) was measured on unfiltered samples, while 

dissolved organic carbon (DOC) was measured on filtered samples.  

 

6.3.6 Data Analysis 

Statistical analysis of the sorbents was conducted using ANOVA and T-tests. Results of 

ANOVA and T-tests are indicated by reporting the result of the F or t value, respectively, as well 

as the corresponding p value; degrees of freedom of the statistical test are reported in brackets. 

 

 

6.4 Results and Discussion 

6.4.1 Model Compounds 

The non-reactive phosphorus present in wastewaters typically represents a mixture of several 

compounds therefore ATP and AEP were used in a binary solution to simulate a simple mixture 

and test the AOP technology for organic P oxidation. Figure 6-1a shows the phosphorus 

concentrations in the BM tests throughout the treatment stages. Treatment stages included 

addition of TiO2 nanoparticles followed by subsequent UV exposure. A BM control test was also 

conducted, in which the test solution was mixed in the reactor for the length of UV exposure but 

without UV light. With TiO2 addition, 54.3 % P was removed from the solution via adsorption. 

Both RP and nRP were adsorbed onto TiO2 however 86 % of the adsorbed P was nRP. With UV 

exposure, a slow decrease in nRP was observed over 35 minutes, reducing nRP and RP 

concentrations by an additional 22 and 48 %, respectively. After treatment with the AOP, over 

83 % of TP was removed. Previous studies observed an increase in RP concentration as a result 

of the oxidation of organic P in pesticides (Chen and Liu, 2007). Although this was not observed 
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in the current study, the removal of TP during UV exposure suggests that nRP was being 

oxidized since removal was not observed in the control test without UV light. Therefore, while 

TP was reduced in the organic P mixture through adsorption onto TiO2 and photocatalysis in the 

AOP treatment, there was no direct evidence of nRP oxidation.  

 

It was unclear from the BM experiments if both forms of organic P were reacting to TiO2/UV 

treatment in the same way, hence solutions of ATP and AEP were treated with the AOP separately 

to obtain additional insight into the behaviour of the two compounds throughout treatment.  Results 

from individual treatment of ATP and AEP are shown in Figure 6-1b and 6-1c, respectively. Total 

P in the ATP tests was reduced by 93 % with the addition of TiO2 and this was followed by a 

further reduction of 5 % with 15 minutes of UV irradiation. No further removal was observed with 

continued UV exposure and the TP concentration of ATP remained around the detection limit of 

< 25 µg P/L. During treatment of AEP, adsorption removed 38 % of TP and an additional 48 % 

TP was removed with 35 minutes of UV exposure. In total, AOP treatment of the individual model 

compounds yielded TP removals of 98 and 86 % in the ATP and AEP test solutions, respectively. 

TiO2 adsorption had a large impact on nRP removal in the ATP trials while P adsorption in the 

AEP trials was low in comparison. The decreased adsorption may have been due to the AEP 

solutions having higher initial RP concentrations than ATP; initial RP concentrations in AEP and 

ATP trials were 540 and 84 µg P/L, respectively. RP and nRP were removed in similar proportions 

in the AEP sorption tests. Preferential adsorption of small phosphate anions over larger organic P 

species (i.e. glyphosate) onto metal oxide in soils has been observed in previous studies (Gimsing 

and Borggaard, 2007; Gimsing and Borggard, 2002). This behaviour may account for the reduced 

adsorption of nRP in treatment of AEP. Overall, AOP treatment of the two model compounds 
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yielded different results; while adsorption of nRP onto TiO2 was the main mechanism of removal 

for ATP both adsorption and oxidation contributed to the removal nRP when present as AEP. 

 

 

 

 

Figure 6-1: Phosphorus concentrations throughout AOP of (a) binary mixture (red), 

treatment of individual model compounds (b) AEP (green) and (c) ATP (blue). Total 

phosphorus (TP) concentrations indicated by closed circles, reactive phosphorus (RP) 

indicated by hatched circles. (d) Total phosphorus concentration measured for binary mix 

and individual model compounds as well as the sum of TP of the two individual model 

compounds is also shown (dashed line). Binary mixture comprised of adenosine triphosphate 

(ATP), aminoethylphosphonate (AEP). 
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The results obtained from treatment of the individual model compounds were compared with those 

from treatment of the BM to elucidate the mechanism of removal by the AOP. The predicted 

removal of a mixture of the two compounds, based on the individual compound tests (dashed line 

in Figure 6-1d) was found to be higher than the removals observed for the binary mixture 

suggesting that in the mixture ATP competitively binds to the TiO2 surface, effectively blocking 

surface binding sites from AEP. With UV irradiation, the ATP on the surface is oxidized to RP 

thereby clearing surface sites which became available for adsorption and oxidation of AEP. The 

two-step removal, adsorption and oxidation of ATP and AEP, was consistent with a mechanism 

proposed by Mangat Echavia et al. (2009) when studying photocatalytic degradation of 

phosphonate glyphosate using TiO2 immobilized on silica gel. In the current study RP was not 

observed to be released during oxidation of ATP or AEP, treated individually or in a mixture; thus, 

reactive P liberated from nRP was also adsorbed to the TiO2 consequently removing P from the 

aqueous phase. Overall, the AOP technology proved to be an effective method to oxidize nRP 

associated with the model compounds. 

 

6.4.2 Wastewater Effluents 

 

Following the successful oxidation of the model compounds in the AOP, it’s performance in 

treating P in real wastewater effluents was explored. Final effluent samples were collected prior 

to disinfection from three conventional activated sludge wastewater treatment plants (WWTPs) 

and one industrial effluent. The industrial waste water was from an automotive industry and 

included in this study due the large quantities of nRP that were present in the process 

wastewater. Some notable differences in the WWTPs include the rated average daily capacity, 

WWTP A has the largest capacity of approximately 27 000 m3/day while WWTP B and C had 
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capacities of around 9 300 and 5 400 m3/day; it should be noted that WWTP B does not have 

primary clarification and WWTP C includes tertiary cloth disk filtration.  

 

The AOP removed both nRP and RP fractions in treatment of model compounds, therefore total 

and reactive P were measured in the tests with wastewater effluents. The initial P speciation 

results for the effluents are summarized in Table 6-1. The samples ranged in TP concentrations 

from 1 900 to 198 µg P/L; the industrial sample and WWTP B had the highest and lowest TP 

concentrations; respectively. The total P of the industrial sample was approximately 98 % nRP. 

Of the three WWTP samples, the effluent from WWTP C had the highest nRP concentration of 

977 µg P/L, over 80 % of the TP. WWTPs A and B had lower nRP concentrations compared to 

WWTP C; total phosphorus in the two plants consisted of 6 and 30 % nRP, respectively.  

 

Table 6-1: Characterization of wastewater samples prior to treatment with AOP. Total 

organic carbon was not measured for the Industry sample. 

 

 WWTP A WWTP B WWTP C Industry 

Sample Date 07-06-2017 20-07-2017 28-07-2017 17-07-2017 

C
o

n
ce

n
tr

a
ti

o
n

 

µ
g
 P

/L
 [TP]o 346 ± 4 198 ± 49 1 190 ± 20 1 900 ± 100 

[RP]o 310 ± 1 141 ± 15 216 ± 3 35 ± 6 

[nRP]o 36 ± 3 58 ± 34 977 ± 17 1 860 ± 90 

[TOC] (mg C/L) 9.54 ± 2.05 10.74 ± 0.39 16.42 ± 0.37 -- 

 

 

Wastewater effluents contain organic matter, a component not included in the model compound 

trials therefore the effect of AOP treatment on organic matter was also evaluated in this study. 

The dissolved organic matter in wastewater effluents is known to be rich in P (Maizel and 
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Remucal, 2017), therefore it was anticipated that removal of DOC would coincide with nRP 

removal. The initial total organic carbon (TOC) of the of the wastewater samples are reported in 

Table 6-1; TOC was not measured on the industrial effluent due to the viscosity of the sample. 

The effluent from WWTP C had the highest average TOC concentration of 16.4 mg C/L while 

WWTPs A and B had concentrations of 9.5 and 10.7 mg C/L, respectively.  

 

In this portion of the study, phosphorus removal was evaluated after a series of steps that 

sequentially added ultrafiltration, TiO2 addition and UV irradiation since each step was 

hypothesized to remove P. Filtration was expected to have little effect on the RP concentration 

since orthophosphate could pass through the ceramic membrane while any nRP associated with 

particulate phosphorus species or organic matter would be removed from the effluent. It was 

expected that a small fraction of nRP might be adsorbed as observed in model compound trials 

however, it was expected that a majority of P removal through the addition of TiO2 would be due 

to RP adsorption. Finally, photocatalysis was anticipated to target and remove nRP. Results 

obtained in AOP treatment will be discussed with respect to these hypotheses.  Graphs of TP and 

RP concentrations throughout AOP treatment of the wastewater effluents are shown in Figure 6-

2. Figure 6-3 summarizes the percent removal of DOC observed in the wastewater effluents after 

filtration, adsorption and UV oxidation.   Results are presented and discussed below.   

 

In treated wastewaters, phosphorus exists in particulate and colloidal fractions which can be 

removed via filtration and hence, the removal of P species through filtration was evaluated in this 

study. Graphs of TP and RP concentrations throughout AOP treatment of the wastewater 

effluents are shown in Figure 6-2. Phosphorus concentrations obtained after ultrafiltration of 

wastewater effluent from are labelled UF. After filtration TP concentrations of 248, 34, 707 and 
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1630 µg P/L were measured in the effluents from WWTP A (Figure 6-2a), B (Figure 6-2b), C 

(Figure 6-2c) and Industry (Figure 6-2d), respectively. Hence, it is apparent that the TP 

concentrations were reduced with ultrafiltration of all the wastewater effluents. The largest 

quantity of TP removed was in WWTP C where approximately 480 µg P/L was removed. 

Filtration of the industrial sample reduced TP by roughly 270 µg P/L. WWTP A and B had the 

smallest quantities of TP removed; approximately 97 and 155 µg P/L was removed via filtration 

of WWTP A and B effluent, respectively. Therefore, TP was removed via ultrafiltration in all 

effluents and further investigation into which P fractions were removed is discussed 

subsequently.   

 

Filtration was expected to remove nRP thus changes in nRP concentrations through ultrafiltration 

were examined. The average concentrations of nRP in the filtered samples were 33, 25, 640 and 

1600 µg P/L in WWTPs A, B, C and the industrial sample, respectively. After UF, nRP 

concentrations decreased by 32, 337 and 260 µg P/L for WWTP B, WWTP C and the industrial 

sample, respectively. nRP removal was not observed in ultrafiltration of wastewater effluent 

from WWTPA. As expected, the decrease in nRP concentration in the industrial effluent 

accounted for the total removal observed however, nRP removal only partly explained the TP 

removals observed in WWTP B and C effluents. Additionally, TP in WWTP A was decreased 

via UF while no removal of nRP was observed. Thus, removal of nRP was observed in effluents 

from WWTP B, C and industry but did not account for total removals observed from filtration of 

the wastewater effluents. 

 

Examination of the TP and nRP removals obtained through UF inferred that RP fractions were 

also removed and hence, RP concentrations after filtration were evaluated. The reactive P 
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concentrations measured in WWTP A, B and C effluents after filtration were 216, 19 and 67 µg 

P/L, respectively; RP in the industrial effluent was not affected by UF. With filtration, the 

effluent from WWTP C exhibited an average reduction of 150 µg P/L while the effluent from 

WWTP A yielded a removal of 97 and 122 µg P/L was removed via filtration of WWTP B 

effluent. Therefore, RP was also removed through filtration of effluents from WWTP A, B and 

C. 

 

 

Figure 6-2: Phosphorus speciation after ultrafiltration (UF), with TiO2 addition and over 

UV exposure time of wastewater effluents from (a) WWTP A, (b) WWTP B, from (a) 

WWTP C and (b) Industry. 
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Conceptually, RP was predicted to pass through the ceramic membrane however RP removal 

was observed through UF of WWTP A, B and C. The quantities of RP removed from effluents 

from WWTP A, B and C were not statistically different (F (8) = 1.982, p = 0.218) despite the 

wastewater effluents having different P speciation. Also, effluents from WWTP C had higher 

concentrations of TOC than WWTP B (t(2) = 4.30, p < 0.01) which could suggest that waste 

water composition had little impact on RP removal. The observed reduction of RP may have 

occurred because of the composition of the membrane, which remained consistent in all tests. 

Ceramic membranes are known to be negatively charged at pH greater than the pH zero-point 

charge (pHzpc), the pH where the average surface charge is neutral; ceramic membranes have 

reported pHzpc in the range of 4.5 to 8 (Sarma and Mahiuddin, 2014; Elzo et al., 1998). When the 

membrane is negative, the surface will reject phosphate which is also negatively charged at 

circumneutral pH (Brandhuber and Amy, 2001). The pH of the wastewater effluents during 

treatment ranged from 7.4 to 8.2. With the pH of effluents measured in the high end of the 

reported pHzpc, it is likely that RP removal was due to rejection by the negatively charged 

ceramic membrane. 

 

Ultrafiltration has been reported to remove phosphorus associated with organic matter larger than 

10 µm (Benotti et al., 2009), therefore DOC concentrations after UF of WWTP effluents were 

examined in this study. The effects of UF on DOC in effluent from WWTP A will not be 

discussed as the sample was lost. Filtration yielded DOC concentrations of 5.8 and 9.7 mg C/L, 

in the effluents from WWTP B and C, respectively. Hence, filtration decreased the DOC 

concentrations by 4.9 and 6.7 mg C/L in WWTP B and C, respectively, corresponding to 

removals of 46 and 41%. Larger quantities of organic carbon were removed via ultrafiltration of 

WWTP C when compared to WWTP B (t(4) = -6.84, p = 0.02). Removal of organic carbon in 
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the effluents coincided with nRP removals in the two samples, where nRP removals in WWTP C 

were also higher than removals observed in WWTP B (t(4)=-12.96, p = 0.01). Therefore, organic 

matter was removed in WWTP B and C via ultrafiltration and this appeared to contribute to nRP 

removal.  

 

The impact of adsorption was assessed by examining the TP in response to the addition of TiO2 

in the four wastewater effluents. After dosing with TiO2, TP concentrations of 115, <25, 571 and 

1520 µg P/L were measured in effluents from the A, B, C and Industry effluents, respectively. 

The true extent of removal in WWTP B was not known as concentrations were consistently 

below the method detection limit (25 µg/L). Addition of TiO2 to WWTP A and C generated TP 

reductions of 133 and 136 µg P/L, respectively. While a decrease in the average TP 

concentrations were observed with adsorption in the industrial sample and WWTP B effluent, the 

TP concentrations were not significantly different from the concentrations obtained post 

filtration (WWTP B: t(4) = 1.41, p = 0.229; Industry: t(4)=1.10, p = 0.33); therefore phosphorus 

removal by adsorption from these effluents will not be discussed. Overall, adsorption removed 

TP in WWTP A and C while there was no significant effect on WWTP B and the industrial 

sample.  

 

Adsorption was expected to remove RP on the basis of the results obtained with the model 

compounds hence, RP concentrations after TiO2 addition to the WWTP A and C effluents were 

studied. TiO2 addition yielded RP concentrations of 96 µg P/L in WWTP A while RP 

concentrations were below detection (2 µg P/L) in the WWTP C effluent. Thus, RP was removed 

via adsorption, reducing RP concentrations by 119 and > 67 µg P/L for the WWTP A and C 

effluents, respectively.  
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Removal of nRP species in the wastewater effluents via adsorption was also investigated in 

WWTP A and C. With TiO2 addition, nRP concentrations of 19 and 571 µg P/L were detected in 

WWTP A and C, respectively. Higher removal was observed in WWTP C where 70 µg P/L was 

adsorbed onto TiO2 whilst adsorption yielded a removal of 15 µg P/L in WWTP A. Thus, nRP 

was adsorbed in both wastewater effluents.  

 

 

 

Figure 6-3: Percent removal of DOC obtained from AOP treatment of the four wastewater 

samples. Percent removal in WWTP A (hatched column) due to the combination of 

filtration and TiO2 adsorption (sample from filtration lost). 

 

Since, non-reactive P removal was associated with removal of organic matter during filtration, 

the DOC concentrations were also examined after adsorption to assess whether similar responses 
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were obtained. After TiO2 addition, the DOC concentration in WWTP C effluent was 8.6 mg 

C/L. Adsorption reduced DOC in WWTP C by 1.1 mg C/L (t(4) = 7.19, p = 0.002). As observed 

during filtration, removal of DOC in WWTP C coincided with removal of nRP via adsorption. 

The concurrent removal of DOC and nRP in WWTP C provided further evidence that the nRP 

removed may be associated with the fraction of DOC also removed in treatment. Therefore, 

DOC was removed through adsorption in WWTP C and could potentially account for 

simultaneous nRP removal.   

 

The P speciation after adsorption was examined for possible trends with respect to phosphorus 

removal.  In summary, WWTP A and C both had reductions in TP, nRP and RP concentrations 

with TiO2 addition. While the amounts of TP removed from the two wastewater effluents were 

similar, WWTP C yielded higher nRP removal via adsorption (t(4) = -5.529, p = 0.005). The 

higher nRP removals in WWTP C were most likely due to the P speciation of the effluent prior 

to adsorption. Before TiO2 addition, nRP accounted for 90 % of the total P in WWTP C. When 

comparing the effluents, the nRP fraction in WWTP C was almost 20 times higher than that of 

WWTP A, while the initial RP concentration was more than 3x times lower. Adsorption of RP 

yielded concentrations in WWTP C below the method detection limit of 2 µg P/L, possibly 

exhausting the RP available for adsorption. The adsorption of RP to low levels when a large 

fraction of nRP was still available suggests that RP was adsorbed preferentially, and that 

remaining adsorption sites on the TiO2 nanoparticles were available for adsorption of nRP 

species.  

 

The total P concentrations after UV oxidation were evaluated to assess whether photolysis 

caused any change in concentrations. From Figure 6-2, it can be seen that the TP concentrations 
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in the WWTP A, C and industrial effluent samples slowly decreased after TiO2/UV photolysis 

was initiated. After 35 minutes of exposure, the TP concentrations in the WWTP A (Figure 6-

2a), WWTP C (Figure 6-2c) and industrial samples (Figure 6-2d) were 34, 29 and 1060 µg P/L, 

respectively. The total and reactive P concentrations in the WWTP B effluent were below 

detection prior to UV treatment and as such, will not be discussed. The removals during 

photolysis were found to be statistically significant, reducing TP concentrations by 81 µg P/L in 

WWTP A (t(4)=3.75, p = 0.02), 542 µg P/L in WWTP C (t(4) = 56.9, p < 0.001) and 460 µg P/L 

in the industrial sample (t(4) = 3.50, p = 0.02). The largest removals were observed in the 

WWTP C effluent and the industrial sample which had higher nRP concentrations than WWTP 

A. Overall, UV oxidation removed TP in effluents from the WWTP A, C effluents and the 

industry sample. The changes in nRP, RP and DOC that were associated with these tests are 

subsequently discussed.  

 

It was anticipated that UV oxidation would impact on the levels of organic P in the wastewater, 

therefore nRP concentrations were monitored. The oxidation of effluents from WWTP A, C and 

the industrial sample yielded nRP concentrations of 10, 8 and 930 µg P/L, respectively, 

corresponding to reductions of nRP of 8, 563 and 593 µg P/L. The decrease in nRP was 

statistically significant in all cases (WWTP A: t(4) = 4.11, p = 0.01; WWTP C: t(4) = 55.48, p 

<0.001; Industry: t(4) = 4.33, p = 0.01). Thus, nRP was removed in effluents from WWTP A, C 

and industry with TiO2/UV photolysis.  

 

Due to the concurring removals of nRP and organic removal observed during UF and adsorption 

phases of treatment, DOC concentrations were also examined in WWTP A, B and C after UV 

oxidation. The dissolved organic matter in the wastewater was expected to decrease during 
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TiO2/UV photolysis since oxidation of organic matter by hydroxyl radical formation is non-

selective and larger or more abundant fractions of organic matter may be targeted over 

mineralization of nRP (Gerrity et al., 2009). Concentrations of 6.8 and 7.7 mg C/L were 

measured in the WWTP A and C effluents, respectively, after 35 minutes of UV irradiation. 

Hence, oxidation reduced the DOC by 0.9 mg C/L in the WWTP C effluent (t(4) = 25.31, p = 

0.002), while there was no effect on DOC in WWTP A (t(4) = -0.87, p = 0.44). In WWTP C, a 

statistically significant decrease in DOC coincided with a large nRP removal (563 µg P/L) while 

there was no observed effect on DOC through oxidation of WWTP A, coinciding with low nRP 

removal (10 µg P/L); nRP removal in WWTP C was over 50 x larger then removal observed in 

WWTP A.  These results suggest that large quantities of nRP removed via oxidation may be the 

result of DOC oxidation. Therefore, DOC was removed via photolysis in WWTP C while there 

was no observed effect on DOC in WWTP A.  

 

Reactive P concentrations were examined in this study as evidence of oxidation of P-bearing 

organics by TiO2/UV photocatalysis as reported elsewhere (Chen and Liu, 2007). After 35 

minutes of UV oxidation, both WWTP A and C had RP concentrations of 24 µg P/L while the 

industrial sample had an RP concentration of 131 µg P/L. As a result of oxidation, the RP 

concentration in the WWTP A effluent underwent a statistically significant decrease of 73 µg 

P/L (t(4) = 3.56, p = 0.03). RP concentrations in the WWTP C effluent and the industry sample 

yielded RP concentrations above the detection limit with UV oxidation; RP concentrations in 

both samples were below detection prior to UV light activation.  The increase of approximately 

22 µg P/L observed in WWTP C was not statistically significant (t(4) = -1.97; p = 0.12) due to 

RP levels in one trial remaining below detection. The greater than 129 µg P/L increase in the 

industrial sample was significant (t(4) = -7.24, p = 0.002) and the RP concentration obtained 
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after 35 minutes of UV exposure was higher than the initial RP concentration of the industrial 

sample prior to any AOP treatment. The increased RP concentration provides evidence that RP 

was liberated by photolysis of nRP in the industrial sample. Overall, UV oxidation generated 

different responses in the treated effluents, with RP decreasing in WWTP A and increasing in the 

industrial sample; there was no significant change in RP concentrations during oxidation of 

WWTP C.  

 

In summary, phosphorus was found to be removed from the effluents via ultrafiltration, 

adsorption and oxidation. The responses to AOP differed between WWTPs and hence the 

fractions of total P removed by filtration, TiO2 addition and UV exposure were summarized in 

Figure 6-4 to facilitate overall comparisons.  The total removal in WWTB is indicated by a 

dashed line since the TP and RP concentrations were below the method detection limit. Viewed 

collectively, the AOP reduced both nRP and RP in the municipal WWTP effluents to low levels, 

retaining P in the TiO2 solids. Treatment of the effluent from WWTP B resulted in an overall 

removal of > 87 %; P concentrations after ultrafiltration were below the method detection limits 

and the effects of UV oxidation on the sample could not be studied. Treatment of WWTP A and 

C effluents resulted in overall phosphorus removals of 90 and 97 %, respectively The AOP also 

removed 44 % TP from the more recalcitrant automotive industry sample. Overall, the AOP 

effectively removed nRP in the wastewater samples treated, achieving high level removal of TP 

in real wastewater effluents. 

Overall, the results of this study indicate that the nature of the organic matter in the wastewater 

influenced the efficacy of the AOP treatment. Controlling for process step (i.e. filtration, 

adsorption, oxidation), nRP removal correlated to DOC removal throughout the AOP treatment 
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(df (14), r = 0.692, p = 0.003). This was expected since nRP is known to consist of organic P 

species which are covalently bound to organic matter such as humic substances (Mayer and 

Woo, 1998; Maizel and Remucal, 2017; Moran and Zepp, 1997). Organic matter larger than10 

µm will be removed, along with any associated P, via ultrafiltration (Benotti et al., 2009). There 

is also evidence in the literature that adsorption of large natural organic matter molecules, such 

as humic substances onto TiO2 nanoparticles occurs within minutes of addition (Gora and 

Andrews, 2016). Finally, the radicals formed in TiO2/UV photolysis are non-selective and will 

target large organic matter molecules over smaller, less abundant fractions (Gerrity et al., 2009). 

This may explain why higher nRP removal was not observed in WWTP A, which initially had 

low nRP concentrations (34 µg P/L), while TOC was relatively abundant (9.54 mg C/L). 

Therefore, nRP removal in waste waters with initially low nRP concentrations may be hindered 

due to organic matter out-competing the limited quantities of nRP for adsorption sites. 

The composition of nRP may also influence the efficacy of TiO2/UV photolysis, therefore nRP 

removals obtained from oxidation of WWTP C and industry effluents were compared since both 

contained high initial nRP concentrations. Initially, the WWTP C and industrial effluents had 

nRP concentrations of 977 and 1860 µg P/L, respectively. In both effluents, nRP was reduced 

after the filtration and adsorption steps to concentrations of 571 and 1600 µg P/L for WWTP C 

and industry, respectively. A comparison of P speciation in the WWTP C effluent (Figure 6-2c) 

and the industrial sample (Figure 6-2d) throughout UV exposure reveals that P removal from the 

WWTP C effluent was more rapid than that observed in the industrial sample. The WWTP C 

effluent demonstrated a significant decrease of 250 µg P/L in nRP concentration after 5 minutes 

of UV exposure (t(4) = 3.67, p = 0.02) while 5 minutes of UV exposure did not have a 

significant effect on the nRP concentration of the industrial sample (t(4) = 2.11, p = 0.10). The 
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industrial sample required 15 minutes of UV exposure for the nRP concentrations to decrease by 

316 µg P/L (t(4) = 2.68, p = 0.02). With 15 minutes of UV exposure in WWTP C, a total of 

approximately 520 µg P/L of nRP had been removed (t(4) = 22.98, p < 0.001). The delayed 

reduction of nRP in the industrial sample suggests that the nRP in WWTP C was more 

susceptible to UV oxidation while the nRP in the industrial sample was more recalcitrant.  

 

 

Figure 6-4: Total phosphorus percent removal obtained from AOP treatment of the four 

wastewater samples. Total phosphorus removal in WWTP B indicated by dashed line since 

TP and RP concentrations were below detection limits of the measurement methods used.   

 

 

These results highlight the importance of pilot testing to determine the appropriate treatment 

method to achieve effluent water quality. The AOP effectively removed P in WWTP A through 

filtration, adsorption and oxidation, reducing TP to 34 µg P/L. However, in a 2007 report 
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focusing on low effluent P, the U.S. EPA found that WWTPs that implement chemical P removal 

with tertiary filtration were able to achieve effluent P concentrations as low as 10 µg P/L. Almost 

90 % of the TP in WWTP A was RP which is known to be readily removed through chemical P 

removal. Treatment of waste water like that of WWTP A with the AOP could lead to wasting 

resources (e.g. TiO2 and energy). Application of AOP is best suited for waste water with large 

quantities and/or difficult to remove nRP fractions as seen in WWTP C and the industrial 

wastewater samples. 

 

Coupling TiO2 and UV light with ultrafiltration may prove to be beneficial for nutrient recovery 

technologies. Nutrient recovery technologies (e.g. struvite production) aim to make a product 

devoid of significant organic matter (Latimer et al., 2015). Treatment with the AOP led to 

oxidation of both nRP and DOC, increasing the quantity of RP available for recovery and 

producing an effluent low in residual phosphorus since the liberated RP was adsorbed onto the 

TiO2 solids. Ultrafiltration retains the phosphorus loaded solids which can be used for P 

recovery; P can be desorbed back into solution if phosphorus species are not irreversibly bound. 

Further information is needed to determine whether P can be recovered off the TiO2 solids. With 

an appropriate desorption method, ultrafiltration coupled with TiO2/UV photolysis has the 

potential to be a pre-treatment for nutrient recovery technologies. 

 

6.5 Conclusions  
 

Coupling ultrafiltration with TiO2/UV proved to be effective at removing both model compounds 

via adsorption onto the TiO2 as well as oxidation via UV irradiation. Tests with individual model 

compounds gave insight into the adsorption and oxidation behaviour of different model 
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compounds during treatment. The main mechanism of ATP removal was adsorption of nRP onto 

TiO2 while both adsorption and oxidation contributed to the removal of nRP in AEP. 

Phosphorus removal from the WWTP effluents and industrial samples was found to occur 

through ultrafiltration, adsorption and UV irradiation. After 35 minutes of UV irradiation, 90 %, 

> 87 % and 97 % total phosphorus removals were observed for effluents from WWTPs A, B and 

C, respectively. Treatment of the industrial sample yielded a total phosphorus removal of 44 % 

after UV irradiation.  It was evident in oxidation of the industrial sample that RP was being 

liberated through nRP oxidation as UV time elapsed. Throughout AOP treatment nRP reduction 

correlated with removal of dissolved organic matter. In summary, the commercial AOP 

effectively oxidized nRP to RP, achieving high level removal of TP in real wastewater effluents 

and since the generated reactive P was retained on the TiO2 solids. 
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7.1 Introduction 

 

The focus in wastewater treatment is shifting to resource recovery, especially with respect to 

nutrients in wastewater (i.e. phosphorus and nitrogen). Presently, the majority of wastewater 

treatment plants use chemical and biological treatment to remove P from the wastewater stream, 

collecting it in the biosolids for disposition (Valsami-Jones, 2001). This traditional form of 

treatment is slowly being replaced with nutrient recovery technologies and wastewater treatment 

plants (WWTPs) are being renamed as water resource recovery facilities (WRRFs). As of 2015, 

there were six functional WRRFs in North America which recover P using struvite 

crystallization (Latimer et al., 2015). Struvite (NH4MgPO4·6H2O), is a valuable, inorganic P 

mineral that acts as slow release fertilizer (Desmidt et al., 2015). One limitation of struvite-based 

recovery is that the concentration of P in the wastewater stream needs to be 100 mg P/L or higher 

for the technology to be effective (Xie et al., 2016). Phosphorus concentrations in domestic 

wastewater influents are low (< 10 mg P/L), limiting the implementation of struvite technologies 

to after enhanced biological phosphorus removal where P has been concentrated to suitable 

levels (Ye et al., 2017). Wastewater treatment plants which do not utilize EBPR will require a 

method to concentrate phosphorus into a stream which meets the high concentration 

requirements of nutrient recovery processes. 
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Adsorption processes have potential to concentrate P in wastewater. Recovery of the adsorbed P 

through use of chemical desorption solutions can concentrate P depending on total volume of 

recovery stream. In this regard, nanoparticles have the potential to be used in wastewater 

treatment.  Adsorbents which combine metal oxide nanoparticles have been of interest due to 

their high adsorption capacities and potential selectivity towards P adsorption (Hua et al., 2013). 

Hybrid anion exchange resins, which incorporate iron oxide nanoparticles, have been shown to 

recover over 90 % of P in source-separated urine using a NaCl/NaOH desorption solution, 

although concentration of the recovery stream was not discussed (O’Neal and Boyer, 2013). 

Zhang et al. (2013) used a proprietary hydrated ferric oxide nanocomposite to recover 97 % P 

from a dilute wastewater effluent (~ 2 mg P/L), also using a NaCl/NaOH binary solution; P in 

the recovery stream was 100x more concentrated than wastewater effluent tested. Nano-sized 

titanium dioxide has also been highlighted as a promising P adsorbent due to its high surface 

area. In solutions containing 50 mg P/L, TiO2 nanoparticles out performed Al2O3 and Fe3O4 

nanoparticles by having the highest maximum adsorption capacity of 28.3 mg P/g (Moharami 

and Jalali, 2014). However, little information is available about P recovery from TiO2 

nanoparticles, which is the focus of this study.  

TiO2 nanoparticles are currently used in advanced oxidation processes (AOPs) for wastewater 

treatment.  AOPs utilize TiO2 nanoparticles in combination with UV light (photolysis) to oxidize 

organic contaminants through the action of non-selective hydroxyl radicals (Westeroff et al., 

2009).  Studies have indicated that photocatalysis with TiO2-based AOPs can liberate a fraction 

of phosphorus from organic contaminants that would not originally be available for P recovery.  

The oxidation of organic phosphorus containing pesticides (e.g. glyphosate, acephate) via 

TiO2/UV photooxidation has been found to result in the liberation of phosphate, which can bind 



181 

 

to the TiO2 surface (Mangat-Echavia et al., 2009). Since liberated phosphate is retained on the 

TiO2 solids, total P in treated wastewater effluent decreases (Clark et al.,2010). Hence, not only 

can the AOP process increase P available for recovery, it also has the added benefit of oxidizing 

organic matter in wastewater which has an inhibitory effect on mineral precipitation, competing 

for active crystal growth sites or slowing reaction kinetics (Sindelar et al., 2015; Capdevielle et 

al., 2016).  For these reasons coupling photolysis and adsorption in wastewater treatment is an 

attractive method with respect to P recovery. 

Currently WRRFs typically use struvite precipitation for P recovery (Latimer et al., 2015) 

however there are other methods of P recovery that are considered preferential and should be 

investigated (Hao et al., 2013). Calcium phosphate (CaP) minerals are preferred P recovery 

products to struvite because it is the raw product (i.e. phosphate rock) used by industry (Valsami-

Jones, 2001). Studies have highlighted that TiO2 nanoparticles has been observed to enhance 

CaP precipitation. Although there is debate as to whether this effect is due to surface morphology 

versus chemistry, the presence of TiO2 particles with increased surface area was shown to 

accelerate CaP precipitation and this further improved when suspensions of anatase or rutile 

were added to solutions (Damen et al., 1991; Chusuei et al., 1999; Murphy et al., 2016). Calcium 

phosphate precipitation could also become the preferential P recovery method for wastewater 

streams which are known to have high concentrations of Ca; the presence of Ca is known to have 

a negative impact on struvite precipitation effecting crystal morphology and purity (LeCorre et 

al., 2015). 

Phosphorus adsorption by TiO2 nanoparticles was demonstrated during their use as a 

photocatalyst in the AOP studied in Chapter 6. This study further investigated P adsorption onto 

TiO2 and its potential for P recovery from wastewater.  The concentration of P in the recovery 
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stream through concentration of the P-loaded TiO2 solids, followed by pH adjustment was 

examined to optimize chemical use for recovery. A commercial ultrafiltration unit was employed 

to separate the TiO2 from the wastewater and to concentrate the TiO2 nanoparticles.  Adsorption 

and recovery experiments were completed at different calcium concentrations to observe the 

effects of Ca on P removal and recovery. The results are discussed with respect to implications 

for phosphorus removal and recovery. 

 

7.2 Methodology 

 

7.2.1 Ultrafiltration System  

 

Experiments were completed using a lab-scale Ceramic UltraFiltration (CUF®) system from 

Purifics Water Inc. (London, Ontario, Canada) that was operated in a batch mode. The CUF® 

system contains a proprietary silica carbide membrane with a pore size of < 1 µm. The CUF® 

system was run in batch mode and has a maximum reservoir capacity of approximately 60 L.  

 

7.2.2 Reagents  

 

Experimental stock solutions were prepared using calcium chloride (CaCl2·2H2O, Fisher 

Scientific, Fair Lawn, NJ) or potassium phosphate monobasic (KH2PO4) (BDH, VWR 

International LLC., West Chester, PA) in ultra pure water (18.2MΩ, MilliQ). Adjustments to pH 

were made using hydrochloric acid (HCl, EMD Chemicals Inc., Gibbstown, NJ) or sodium 

hydroxide (NaOH, Sigma-Aldrich, St. Louis, MO). All chemical reagents used in this study were 

reagent grade or higher. 
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In experiments with TiO2, reagent grade titanium dioxide (Degussa P25, Dusseldorf, Germany) 

was used in a slurry that was continuously circulated within the CUF® system.  Degussa P25 

consists of a mixture of anatase and rutile TiO2 nanoparticles in a 3:1 ratio.  The average particle 

size is 21-25 nm, however nanoparticles aggregate to form particles on the scale of hundreds of 

nanometers (Ohno et al., 2001; Gerrity et al., 2008).  

 

7.2.3 Calcium Concentrations 

 

Three initial calcium concentrations were used in the experiments. In trials using a low calcium 

concentration, a matrix of ultra-pure water was used, and the ionic strength of the ultra pure 

water test solution was adjusted to 0.01M with KNO3. Due to the configuration of the lab scale 

CUF® system, residual calcium remained in solution after rinsing and flushing the system with 

tap water and as such, the calcium concentrations of the ultra pure water trials were measured 

and are reported as low Ca conditions. In trials with medium calcium concentrations, a tap water 

matrix was used. In the high concentration trials, the initial calcium concentrations were 

achieved by starting with a tap water matrix and adding CaCl2. 

 

7.2.4 Experimental Method 

 

 

7.2.4.1 Phosphorus Adsorption versus pH 

 

Low Ca concentrations were used in experiments investigating pH effects on P adsorption onto 

TiO2. In the experiments, the reaction tank of the CUF® was filled with 41 L of water and dosed 

with 205 mL of P stock solution and the system pump was initiated. Once the pH of the P 

solution stabilized, a known mass of TiO2 was added to the system and was allowed to mix 
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thoroughly for 10 minutes before the pH was adjusted incrementally using HCl or NaOH 

solutions. After the pH had stabilized, permeate samples were taken from the sample port; all 

experiments were completed in duplicate. Samples were analyzed for total phosphorus and 

calcium concentrations. Experiments were completed in duplicate. 

 

7.2.4.2 Adsorption of P onto TiO2 at Circumneutral pH 

 

The adsorption of P onto TiO2 at circumneutral pH was tested under low, medium and high 

calcium concentrations. During the adsorption experiments, the CUF® reaction tank was filled 

with 41 L of water and dosed with 205 mL of P stock solution. Mixing was induced through 

activation of the system pump. Once the pH of the P solution stabilized, a known mass of TiO2 

was added to the system followed by four sequential additions of 100 mL P stock solution; after 

each addition the solution was mixed thoroughly, and the pH was allowed to stabilize. Permeate 

samples were taken after each experimental step and analyzed for P and Ca concentrations. 

Experiments were completed in triplicate for each Ca concentration tested. 

 

7.2.4.3 Recovery of P from TiO2 

 

The recovery of P adsorbed onto TiO2 was conducted at low and medium calcium 

concentrations. Under both conditions, P was adsorbed onto the TiO2 as described previously 

(Section 7.2.4.2). P recovery through incremental addition of NaOH and HCl, respectively was 

evaluated. In the recovery experiments conducted with the medium Ca concentration, the TiO2 

solids were concentrated by discharging effluent until final volumes of approximately 10 and 4 L 

remained in the system.  The final volumes of 10 and 4 L corresponded to concentrating the TiO2 
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solids by 4 and 11 times, respectively. The volume remaining in the reactor was determined from 

the read out of the CUF® system software.  The system pump was kept on throughout the 

duration of P recovery experiments and hence the reactor was well mixed at all time. Permeate 

samples were taken after each experimental step and analyzed for P and Ca concentrations. 

Replicate experiments were conducted for both Ca concentrations.  

 

7.2.4.4 Calcium Phosphate Precipitation without TiO2 

 

The precipitation of CaP without TiO2 was examined in solutions with low, medium and high 

calcium concentrations. During the precipitation experiments, the CUF® reaction tank was filled 

with 41 L of water and dosed with 205 mL of P stock solution. Mixing was induced through 

activation of the system pump. The pH of the test solution was adjusted incrementally using HCl 

or NaOH and the pH was allowed to stabilize at each target value. Permeate samples were taken 

after each experimental step and analyzed for P and Ca concentrations. Experiments were 

completed in duplicate for each Ca concentration. 

 

7.2.4.5 Calcium Phosphate Precipitation with TiO2 

 

The precipitation of CaP was examined in solutions with low, medium and high calcium 

concentrations; CaP was used as a descriptor for any calcium phosphate precipitates that could 

potentially form. Precipitation was induced by increasing the pH of the test solution to above 10 

with NaOH following adsorption of P at circumneutral pH as described in Section 7.2.4.2. 

Permeate samples were taken after the precipitation step and analyzed for P and Ca 

concentrations.  Experiments were completed in triplicate for each Ca concentration tested. 
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7.2.4.6 Recovery from CaP-Loaded TiO2 

 

Phosphorus recovery from CaP loaded TiO2 was completed under medium and high Ca 

concentrations. Prior to recovery, the experimental method followed the CaP experiments 

described in Section 7.2.4.4. After the CaP precipitation step, the TiO2 solids were concentrated 

by discharging effluent until the TiO2 solids were concentrated by either 4 and 11 times. After 

concentrating the solids, the pH was adjusted incrementally using HCl. The system pump was 

kept on throughout the duration of P recovery experiments to keep the reactor contents mixed. 

Permeate samples were taken after each experimental step and analyzed for P and Ca 

concentrations. Experiments were completed in duplicate for both Ca and solids concentrations. 

 

7.2.5 Analysis 

 

All samples were measured simultaneously for total P and Ca using Inductively Coupled Plasma 

Optical Emission Spectroscopy (ICP-OES). Phosphorus and calcium intensities were measured 

in axial mode at wavelengths 213.617 and 317.993 nm, respectively, with the viewing height set 

to 15 mm above the induction coil; the flow rate of the sample pump was set to 2 mL/min, argon 

was used as the plasma and auxiliary gas, set to 15 and 0.5 L/min, respectively.   

Calibration solutions were prepared each day of analysis using KH2PO4 in ultrapure water 

(18.2MΩ, MilliQ). A one-point calibration using a certified multielement standard was used for 

Ca analysis (PlasmaCAL Quality Control Standard No. 4, Lot S150326010, 100.2 ± 0.7 mg 

Ca/L) and certified A certified reference material (H3PO4, Lot BCBM9148V, 1002 ± 4 mg P/L) 

purchased from Sigma Aldrich was used to prepare P standards included in all runs for quality 
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assurance. The method detection limits of ICP-OES method for P and Ca were 25 and 240 µg P 

or Ca/L, respectively. 

 

7.2.6 Equilibrium Modelling 

 

Equilibrium modelling of the chemical speciation in the various tests was completed using 

MATLABTM. An equilibrium model was used in which speciation was calculated based on fixed 

P and Ca concentrations as well as pH. The speciation at equilibrium was determined by 

simultaneously solving for mass action (K and Ksp values) and mass balance expressions using 

the in-house MATLAB® script to solve the Newton Raphson optimization to minimize the 

residuals of the mass balance and saturation index (if solids were present). The method followed 

the general equations of Carrayrou et al. (2002). More information on the equilibrium model is 

provided by Smith (2013). Equilibrium constants for hydroxyapatite (HAP, Ksp = 10-8.42) and 

octacalcium phosphate (OCP, Ksp = 10-46.9) were taken from Stumm and Morgan (1995), an 

experimental equilibrium constant for OCP (Ksp = 10-48.7) was taken from Lu and Leng (2005) 

and finally an amorphous CaP precipitate (Ca3(PO4), Ksp = 10-28.92) was taken from the National 

Institute of Standards database (NIST, 2001).  Equilibrium constants for calcite were also 

included (Ksp = 10-8.42, Stumm and Morgan, 1995). 

 

7.2.7 Data Analysis 

Statistical analysis of the sorbents was conducted using linear regression, ANOVA and T-tests. 

Results of linear regression are reported as Pearson’s r values. Results of ANOVA and T-tests 
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are indicated by reporting the result of the F or t value, respectively, as well as the corresponding 

p value; degrees of freedom of the statistical test are reported in brackets. 

 

 

7.3 Results and Discussion 

 

7.3.1 Phosphorus Adsorption onto TiO2 and Recovery under Low Calcium Conditions 

 

Changes in phosphate adsorption onto TiO2 nanoparticles due to changing pH was investigated. 

Phosphate desorption from metal oxide sorbents is usually completed through the application of 

acidic or basic desorption solutions and thus, the change in P adsorption onto TiO2 nanoparticles 

due to varying pH will help determine if an acidic or basic desorption solution would increase P 

recovery. To study this effect, P was adsorbed onto TiO2 at circumneutral pH and then the pH 

was adjusted incrementally to pH values in the range 3 to 11. The result of P adsorption over pH 

are presented in Figure 7-1. To minimize the effects of potential interfering or competitive ions, 

the experiments were completed in the commercial ultrafiltration (UF) system with an ultra-pure 

water matrix; initial P ([P]o) and Ca ([Ca]o) concentrations were 4.53 mg P/L and 8.76 mg Ca/L, 

respectively. As pH increased, the adsorption of P onto TiO2 was observed to decrease (r = 

0.579, R2 = 0.355, p = 0.012). Phosphorus loading on the TiO2 nanoparticles ranged from 2.32 to 

0.92 mg P/g TiO2 over the pH range of 3.15 to 10.5. These results indicate that at high pH, the 

attraction between phosphate and the TiO2 surface decreased, causing P to be released into 

solution. Therefore, desorption from TiO2 may be accomplished using a basic desorption 

solution. 
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The literature was reviewed for insight into why P adsorption onto TiO2 decreased with 

increasing pH and how this could affect the recovery process. This behaviour has been observed 

in other studies and is attributed to the surface charge of the TiO2. With a zero point charge 

(pHzpc) of 6.3, the surface of the TiO2 nanoparticles is neutral around circumneutral pH (Luster et 

al., 2017). When the pH is below pHzpc, the TiO2 surface becomes positive and hence can attract 

negatively charged phosphate species leading to increased adsorption. When the pH increases 

above the pHzpc, the TiO2 surface becomes more negatively charged and phosphate anions are 

repelled (Moharami and Jalali, 2014; Kang et al., 2011). This behaviour suggests that to optimize 

recovery, P adsorption should be performed at low pH, TiO2 solids could then be concentrated 

and a basic desorption solution could be employed to recover the adsorbed P. The pH adjustment 

to basic values would lead to larger quantities of P recovered from the surface. The adjustments 

of pH for both adsorption and recovery processes may be impractical in many wastewater 

treatment applications as large volumes of wastewater would need to be pH adjusted, requiring 

large quantities of acid. Maintaining circumneutral pH for the P adsorption phase and then 

concentrating the P loaded TiO2 solids will lower the chemical demand of the recovery process. 

Therefore, for TiO2 to be useful in P recovery, suitable quantities of P would have to be adsorbed 

at circumneutral pH and recovered after concentration of the TiO2 solids.  

The adsorption of P by TiO2 was investigated under circumneutral pH. Experiments were 

completed in ultra pure water to reduce the effects of competing ions. The results from 

adsorption experiments are summarized in Table 7-1; initial P and Ca concentrations as well as 

TiO2 dose are also reported in Table 7-1. Adsorption onto TiO2 removed 26 % of P, resulting in a 

P loading of 4.79 mg P/g TiO2. The P loading obtained under low calcium concentrations and at 

circumneutral pH was higher than the P loading observed by Kang et al. (2011) where P loading 
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of approximately 2.5 mg P/g TiO2 at pH 7 and an ionic strength of 0.01 M were reported.  The P 

concentration used by Kang et al. (2011) was approximately 20 mg P/L. In another study 

investigating the effect of TiO2 nanoparticles on P removal (Moharami and Jalali, 2014), a P 

loading of 6.7 mg P/g TiO2 was reported and this was slightly higher than observed in this study. 

Viewed collective it can be concluded that TiO2 nanoparticles can achieve P adsorption at 

circumneutral pH in the absence of competing ions.   

 

 

 

Figure 7-1: Percent P removed via adsorption onto TiO2 with changing pH performed at 

low calcium concentrations (ultra-pure water). Solid line indicates the line of best fit, while 

dashed lines indicate the 95 % confidence intervals (r = 0.579, R2 = 0.355, p = 0.012). 
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Table 7-1: Percent P adsorbed onto TiO2 and P loading initial phosphorus ([P]o) and 

calcium ([Ca]o) concentrations as well as TiO2 dose and P loading onto TiO2 nanoparticles 

measured for experiments which examine P adsorption under different experimental 

conditions. 

 Low [Ca] Medium [Ca] High [Ca] 

 (ultra-pure water) (tap water) (tap water + Ca) 

N 4 4 4 

[P]o (mg P/L) 19.1 ± 0.2 20.8 ± 1.7 19.1 ± 1.4 

[Ca]o (mg Ca/L) 4.50 ± 2.67 34.0 ± 2.6 69.9 ± 5.8 

TiO2 dose (g/L) 1.03 ± 0.02 1.03 ± 0.01 1.03 ± 0.02 

pH 6.45 ± 0.49 7.52 ± 0.40 7.61 ± 0.04 

% Removed 26 ± 5 41 ± 6 50 ± 5 

P Loading  

(mg P/g TiO2) 
4.79 ± 0.84 8.38 ± 1.26 9.28 ± 4.87 

 

 

The recovery of P from the TiO2 nanoparticles was investigated by adjusting the solution pH. 

The TiO2 solids were not concentrated during recovery of P under low Ca conditions as a “proof-

of-concept” approach to avoid any complicating factors caused by concentrating the TiO2 solids.   

Prior to pH adjustment, the free P that was not adsorbed onto TiO2 had a concentration of 14.0 ± 

0.9 mg P/L. To recover P adsorbed onto the TiO2 nanoparticles, the pH was raised to 10.6 ± 0.4 

to liberate P adsorbed on the surface. The resulting P concentration in the aqueous phase was 

16.6 ± 1.6 mg P/L. On average, the aqueous P concentration was observed to increase, liberating 

13.4 % P from the TiO2 (t(3) = -2.416, p = 0.047). Hence, P was liberated by increasing pH to 

above 10.  

The limited P recovery could potentially have been due to the type of adsorption occurring 

between P and the TiO2 nanoparticles. A previous investigation into phosphate adsorption onto 

TiO2 revealed that the reversibility of P adsorption was dependent on the pH at which the P was 

initially adsorbed (Kang et al., 2011). Kang et al. noted that P uptake onto TiO2 at pH of 4.5 was 
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mostly irreversible due to inner sphere surface complexation. However, the results obtained with 

adsorption of P onto TiO2 at pH values of 7 and 9 showed the possibility for P desorption with 

increasing pH due to the increased heterogeneity of surface complexes forming. In the present 

study, adsorption under low calcium concentrations was conducted around a pH of 6.5, a pH that 

is on the lower end of circumneutral and may have resulted in the limited recovery from the 

TiO2. Kang et al. (2011) also found that adsorption of P onto TiO2 increased with increasing 

ionic strength; ionic strength was adjusted in the study using NaCl. The results of Kang et al.  

suggested that P uptake onto the TiO2 nanoparticles may be increased in a more complex water 

matrix and as such, may potentially increase the P recovery from the TiO2 nanoparticles.  Hence, 

higher calcium concentrations and a tap water matrix were investigated in the current work.     

7.3.2 Phosphorus Adsorption onto TiO2 and Recovery under Medium Calcium Conditions  

 

Phosphorus adsorption onto TiO2 in a tap water matrix was investigated to test the hypothesis 

that P adsorption will increase due to higher ion strength of the solution. The results from the 

adsorption experiments conducted in tap water are summarized in Table 7-1; initial P and Ca 

concentrations as well as TiO2 dose are also reported in Table 7-1. Initial P concentrations were 

kept consistent with the tests that were conducted in ultra-pure water (t(6) = 1.942; p = 0.10). It 

was found that in tap water, adsorption onto TiO2 removed 41 % of the P, resulting in a P 

loading of 8.38 mg P/g TiO2. Hence adsorption in the tap water matrix increased P removal by 

15 % (t(6) = 4.22; p = 0.006) and P loading by 3.59 mg P/g TiO2 (t(6) = 4.714, p = 0.003). It was 

concluded that in a more complex matrix (i.e. tap water) P adsorption onto TiO2 is increased. 

The increased P adsorption onto TiO2 may have been due to the presence of increased calcium 

concentrations in the tap water. Changing the water matrix from ultra pure water to tap water 
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increased the Ca concentration from 4.50 to 34 mg Ca/L (t(6) = 15.88, p < 0.001). As discussed 

previously, at pH values near the pHzpc and above, the surface of TiO2 is neutral or negative and 

would not be attracting negatively charged H2PO4
- and HPO4

2- species present in solution (Li et 

al., 2002). However, in the presence of calcium, phosphate will complex with Ca2+ to the TiO2 

surface through calcium ion bridging (Chusuei et al., 1999). Therefore, observing an increase in 

P adsorption in the presence of higher Ca concentrations was attributed to calcium bridging at 

the TiO2 surface. 

Changes in calcium concentrations with P adsorption were investigated to establish if there was 

evidence of Ca removal which could be attributed to the formation of Ca bridging. Figure 7-2 

plots the moles of Ca removed versus the moles of P removed via adsorption onto TiO2 in tap 

water. As shown in Figure 7-2, calcium was also removed as P was adsorbed onto TiO2 (r 

=0.693, R2 = 0.481, p < 0.001). This relationship supports the previously stated hypothesis that 

calcium bridging was occurring in tap water at circumneutral pH.   

With improved P adsorption under the medium Ca conditions, P was still detected in the aqueous 

phase after adsorption and hence, effluent P concentrations were analyzed during concentration 

of the TiO2 solids to determine if there was any change in mass adsorbed onto the TiO2. Two 

trials of P adsorption followed by concentration of solids were completed under medium Ca 

concentrations (tap water); the total P concentration of the two trials was 14.5 ± 0.1 mg P/L and 

TiO2 dose was 1.10 ± 0.02 g/L. Figure 7-3a presents the percent of total P that was adsorbed onto 

the TiO2 and remaining in the aqueous phase during the adsorption and concentration steps; pH 

at both experimental steps is also reported. Adsorption onto TiO2 removed approximately 66 ± 3 

% of the P that was added to the UF system, resulting in a P loading of 8.69 ± 0.22 mg P/g; the P 

loading on TiO2 was not statistically different from P loading obtained in previous tap water 
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experiments reported in Table 7-1 (t(3) = 0.488, p = 0.66). After adsorption, the P remaining in 

the aqueous phase had an average concentration of 4.46 ± 0.09 mg P/L. After the TiO2 

nanoparticles were loaded with P, the solids were concentrated by discharging effluent from the 

UF system until a final volume of 4 L remained in the system, concentrating the TiO2 solids by 

approximately 11 times. The removal of permeate resulted in approximately 29 ± 1 % of total P 

being removed from the system in the permeate. There was no observed change in the mass of 

adsorbed P during concentration of the TiO2 solids. 

 

 

 

Figure 7-2: Coinciding calcium (mmol) and phosphorus (mmol) removals via adsorption. 

Line of best fit indicated by solid red line (r = 0.693, R2 = 0.481, p ¸0.001); dashed lines 

indicate 95 % confidence intervals.   
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Figure 7-3: (a) Percent of total P adsorbed onto TiO2 and in the aqueous phase after 

adsorption and concentration of P-loaded TiO2 solids; pH at experimental steps are also 

reported. (b) Percent P recovery from the TiO2 solids over pH (r = 0.90, R2 = 0.81, p < 

0.001); solid line indicates line of best fit while dashed lines represent 95 % confidence 

intervals. 

The recovery of P from the concentrated TiO2 solids was investigated by altering the pH of the 

remaining volume of test solution in the UF system. The concentrations of P and Ca in the 

aqueous phase prior to recovery were 4.46 ± 0.09 mg P/L and 26.9 ± 5.6 mg Ca/L, respectively. 

The percent recoveries obtained from incremental changes in pH are presented in Figure 7-3b. 

Due to the presence of Ca, P recovery through HCl addition was tested as it has been known to 

be an effective method to recover P from metal oxide based sorbents (Chapter 5).  By contrast 

the use of a basic (NaOH) desorption method could improve conditions for calcium phosphate 

(CaP) precipitation which forms at high pH (Kunaschk et al., 2015), removing P from the 

aqueous phase instead of recovering it. Conceptually, as pH decreases with HCl addition, the 

calcium bridges which formed during adsorption would be disrupted as the surface charge of the 

TiO2 changes from negative to neutral, leading to the possible release of P. Incremental changes 

in pH were made to identify the peak P desorption prior to the TiO2 surface becoming positive 

and thus adsorb the liberated P. Phosphorus recovery was observed with decreasing pH (r = 0.90, 
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R2 = 0.81, p < 0.001). Adjustment of pH to below pH 4 resulted in higher percent P recovered 

from the TiO2 solids; recoveries obtained below pH 4 were not statistically different (F(4) = 

0.08, p = 0.796). Overall, the recovery from the TiO2 was low with only 3 % of P liberated from 

the TiO2 surface. 

 

7.3.3 High Calcium Conditions 

Phosphorus adsorption onto TiO2 was also investigated in a tap water matrix with additional 

CaCl2 added. The experiments investigating P adsorption at high Ca concentrations were 

conducted to assess Ca concentrations often found in wastewater; some wastewater effluents can 

have Ca concentrations upwards of 80 mg Ca/L (MetCalf and Eddy, 2003). The results obtained 

from P adsorption onto TiO2 with an average calcium concentration of approximately 70 mg 

Ca/L are reported in Table 7-1. Initial P concentrations were kept consistent with previous 

adsorption tests (t(10) = -0.939; p = 0.36). With the additional Ca, adsorption onto TiO2 removed 

50 % of the P, resulting in a P loading of 9.28 mg P/g TiO2. Increasing Ca concentrations from 

medium to high levels did not have a significant effect on P adsorption (t(6) = 0.884, p = 0.411) 

or P loading onto TiO2 (t(6) = 0.184, p = 0.369). The results suggest that the adsorption capacity 

of the TiO2 may have become saturated. Therefore, there was no significant difference in P 

adsorption or P loading on the TiO2 solids in the presence of high concentrations of calcium. 

 

7.3.4 Calcium Phosphate Precipitation 

It was hypothesized that the presence of the TiO2 nanoparticles may have enhanced CaP 

precipitation and hence, additional experiments investigating CaP precipitation with TiO2 were 

conducted. There is precedent for addition of hydrated lime (Ca(OH)2) in wastewater and water 
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treatment. Lime has been used in water treatment to remove iron and manganese ions in water, as 

well as non-carbonated hardness (Crittenden et al., 2012). In wastewater treatment, lime was 

used as an early method to remove biochemical oxygen demand before biological treatment was 

implemented however modern use of lime in wastewater treatment is used to remove P by 

promoting CaP precipitation (Yeoman et al., 1988; Metcalf & Eddy, 2003). Although pH 

adjustment of wastewater tends to be avoided in current wastewater treatment practice, the 

method may be more attractive if a valuable product is obtained post treatment.  

The effect of CaP precipitation on phosphorus removal in the UF system was investigated. 

Experiments combining adsorption with CaP precipitation were conducted to establish if the P 

associated with the TiO2 solids could be increased and thereby lessen P loss during the 

concentration step. Precipitation was initiated after P adsorption by TiO2 (Table 7-1) by adjusting 

the pH to 10.8 ± 0.4 after phosphorus adsorption onto TiO2. The percent of total P removed via 

adsorption and precipitation for the three calcium concentrations is presented in Figure 7-4. As 

mentioned previously, increasing pH above 10 in experiments with low Ca concentration ([Ca] < 

10 mg/L) did not have a significant effect on P in solution and therefore there was no 

precipitation observed (t(df=3) = -2.416, p = 0.09). In experiments with medium and high Ca 

concentrations, 45 and 49 % P was removed by increasing the pH to 10.8, the quantity of P 

precipitated at medium and high Ca concentrations were not significantly different (t(6) = 0.167, 

p = 0.87); the additional P removal at pH 10.8 was attributed to precipitation. The combination 

of adsorption and precipitation removed between 87 and 98 % P in experiments where calcium 

concentrations exceeded 30 mg Ca/L.  
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Figure 7-4: Percent P removed via adsorption (dark blue) and precipitation (light blue) at 

three calcium concentrations.  

The calcium phosphorus (Ca/P) molar ratios obtained at pH 7.5 and 10.8 under medium Ca 

concentrations ([Ca] ~ 30 mg/L) were compared to obtain insight into whether CaP precipitation 

was occurring. This approach has been used in prior studies to identify the mineral phase 

precipitating (Habraken et al., 2013; Luster et al., 2017; Seckler et al., 1996). The Ca/P ratio was 

calculated by dividing the moles of Ca removed by the moles of P removed during the treatment. 

At circumneutral pH when P removal was potentially due to calcium bridging, the Ca/P ratio 

obtained was 0.66 ± 0.14 while at high pH when precipitation was known to occur, the Ca/P ratio 

was calculated to be 1.23 ± 0.08. The Ca/P molar ratio at pH 10.8 was higher than the molar ratio 

of Ca/P removed at pH 7.5 (t(7) = -11.65, p < 0.001). The larger Ca/P molar ratio indicates that 

with increased pH, more P and Ca was removed to levels that were more than what could be due 
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to calcium bridging. Therefore, the Ca/P ratio determined for calcium and phosphorus removal at 

high pH suggested that the additional removals were most likely due to CaP precipitation. 

 

The changes in the Ca/P molar ratio during removal by TiO2 that were observed at high pH at 

medium and high Ca concentrations were also investigated. The average Ca/P ratio calculated for 

removal under high Ca conditions ([Ca] ~ 70 mg/L) was 1.74 ± 0.16. The Ca/P ratio calculated 

for the high Ca scenario was higher than the ratio obtained under medium Ca concentrations (t(6) 

= -5.842, p = 0.001). Hence, more Ca was removed under high Ca concentrations with similar 

quantities of P removed under both conditions; (t(6) = -3.925, p = 0.008). Therefore, in solutions 

with higher Ca concentrations ([Ca] ~ 70 mg/L), precipitation was occurring, and the mineral 

phase contained around 50 % more Ca than the precipitates form under medium Ca ([Ca] ~ 30 

mg/L) conditions.  

A comparison of the Ca/P ratios calculated for removals under medium and high calcium 

conditions was examined to assess which CaP mineral may have been precipitating. The Ca/P 

molar ratios of known CaP minerals include hydroxyapatite (HAP, Ca/P = 1.67), octacalcium 

phosphate (OCP, Ca4H(PO4)3, Ca/P = 1.33) and brushite (CaPO4
-, Ca/P = 1) (Stumm and 

Morgan, 1995). The Ca/P ratios determined under the medium and high calcium conditions were 

1.23 and 1.74, respectively. Hence, the Ca/P ratios were in the range of the CaP minerals 

reported in literature. Under the medium calcium conditions, the Ca/P ratio was most similar to 

that of OCP, while under high calcium conditions the Ca/P ratio was closer to HAP. Therefore, 

the results suggest that OCP and HAP may have been precipitating onto TiO2 under the medium 

(~30 mg/L) and high (~70 mg/L) Ca concentrations, respectively. 
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7.3.5 Experiments without TiO2 nanoparticles 

To further assess whether precipitation was occurring experiments were conducted in the UF 

system without the presence of TiO2. Initial phosphorus and calcium concentrations used in 

experiments are reported in Table 7-2. Figure 7-5a presents the fraction of total P in the aqueous 

phase as the pH was varied in the system. When calcium concentrations were low ([Ca] < 10 

mg/L), little to no P removal was observed until the pH increased to above 10.5, when 

approximately 30 % of P was removed. Under the medium Ca conditions ([Ca] ~ 38 mg/L), P in 

the aqueous phase began to decrease slowly from pH 6 until the pH was above 8 where there was 

a rapid decrease in soluble P to very low levels (at pH 10.5, [P] = 5% [P]o). This was also 

observed at high calcium concentrations however the transitional pH values were lower, shifting 

to pH values of 5 and 7 (pH 9.7, [P] = 5% [P]o). Overall, P removal increased with increasing pH 

under the various calcium concentrations.  

 

Table 7-2: Initial phosphorus (mg P/L) and calcium (mg Ca/L) concentrations in calcium 

phosphate precipitation experiments.  

 Low [Ca] Medium [Ca] High [Ca] 

 N 4 4 3 

[P]o (mg P/L) 4.8 ± 0.32 6.0 ± 1.20 5.2 ± 0.74 

[Ca]o (mg Ca/L) 7.3 ± 1.98 38.4 ± 4.80  73.3 ± 2.04 
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Figure 7-5: (a) Fraction of P in the aqueous phase and (b) percent P removed over pH 

measured in experiments with low (yellow), medium (blue) and high (red) calcium 

concentrations. Linear regression indicated by solid lines in corresponding colours (low 

[Ca]: r = 0.44, R2 = 0.194, p = 0.006; medium [Ca]: r = 0.884, R2 = 0.782, p < 0.001; high 

[Ca]: r = 0.904, R2 = 0.818, p < 0.001). 

 

The P removals were examined further to gain insight into the effect of the initial solution 

calcium concentration on P removal as pH was adjusted. Figure 7-5b plots the percent P removed 

over the range of pH values tested for the different initial Ca concentrations. Using linear 

regression, the relationship between P removal and pH was found to be significant for all Ca 

conditions. The relationship between pH and P removal was lowest under low Ca ([Ca] < 10 

mg/L) which was attributed to the limited Ca availability in solution (r = 0.44, R2 = 0.194, p = 

0.006). Medium ([Ca] ~ 38 mg/L) and high Ca ([Ca] ~ 70 mg/L) conditions resulted in strong 

relationships between pH and P removal (medium [Ca]: r = 0.884, R2 = 0.782, p < 0.001; high 

[Ca]: r = 0.904, R2 = 0.818, p < 0.001). A statistical analysis of the linear regression coefficients 

of medium and high Ca results shows that the two relationships were not different (t = -1.149, p 

= 0.254).  Hence, the relationship between P removal pH was similar when aqueous calcium 

concentrations were greater than 30 mg/L.  
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To develop more information on the possible mineral phases precipitating at medium and high 

Ca concentrations, the Ca/P molar removal ratios were determined. Figure 7-6 plots the 

millimoles of P removed versus millimoles Ca removed (blue data points) through precipitation 

under the different calcium conditions tested.  Using linear regression, the relationship between 

Ca and P removal was examined and the Ca/P molar ratio of removed was obtained from the 

slope of the regression lines. In experiments with low Ca (Figure 7.6a), the relationship between 

removals was not statistically significant (r= 0.442, p = 0.27) as CaP precipitation was minimal. 

In experiments where there was evidence of CaP precipitation, the correlations between Ca and P 

removals were greater. The Ca/P molar ratios for precipitates formed under medium (Figure 7-

6b) and high (Figure 7-6c) calcium conditions were determined to be 1.84 (r = 0.985, R2 = 0.969, 

p < 0.001) and 2.24 (r = 0.976, R2 = 0.951, p < 0.001), respectively.  

The Ca/P molar ratios obtained in experiments performed under medium and high calcium 

conditions were compared to assess whether Ca availability affected mineral formation. A 

statistical analysis of the regression coefficients indicated that the relationships were 

significantly different (t=6.09, p < 0.001). Similar quantities of P were removed under both 

calcium conditions therefore, the higher Ca/P ratio obtained in trials conducted under high Ca 

concentrations (~ 70 mg/L) suggests that more calcium was being precipitated from solution than 

that observed under medium Ca concentrations (~ 38 mg/L). Both Ca/P molar ratios obtained in 

experiments were higher than Ca/P ratios of known CaP mineral phases (Figure 7-6). The higher 

Ca/P ratios in the precipitates could be due to the formation of an amorphous CaP precipitates in 

solution.  

To obtain more insight into the possible mineral phases forming under the experimental 

conditions, the results of the experiments without TiO2 were compared to soluble and solid 
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speciation predicted by equilibrium modelling. Equilibrium modelling is a useful tool that can 

predict precipitation of minerals based on equilibrium association and solubility constants. The 

equilibrium model was employed to predict the CaP mineral phases on the basis of the initial P 

and Ca concentrations for the medium Ca scenario (Table 7-2). The modeling solved for one CaP 

mineral phase at a time and the results were compared against the experimental data.  

The equilibrium model was initially solved for HAP precipitation under low, medium and high 

initial Ca concentrations. Figure 7-7 presents the predicted fraction of P in the aqueous phase as 

predicted by the equilibrium model along with the experimental results obtained under the same 

conditions. The model predicted HAP precipitation would start to precipitate at pH values of 6.7, 

6.1 and 5.9 for the low, medium and high Ca concentrations, respectively. In the experiments, 

the shift in P removal to a lower pH when Ca increased from medium to high concentrations was 

not statistically different.  However, the model predicted that HAP would precipitate at lower pH 

under high Ca conditions. Therefore, the model predicted that at a fixed P concentration, 

increasing the initial Ca concentration increased the likelihood of CaP precipitation and 

potentially shifted the induction of precipitation to a lower pH which was generally consistent 

with the experimental results.   
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Figure 7-6: Corresponding phosphorus and calcium removals (blue) and recoveries 

(yellow) observed in solution with (a) low ([Ca] < 10 mg/L), (b) medium ([Ca] ~ 35 mg/L) 

and (c) high ([Ca] ~ 70 mg/L) calcium conditions. Dashed and dotted linear regression lines 

are shown for medium and high Ca, respectively. Solid coloured lines represent molar ratio 

lines for hydroxyapatite (blue), octacalcium phosphate (green) and brushite (red). 
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Figure 7-7: Fraction of total P in the aqueous phase over pH measured in experiments 

(data points) and predicted by equilibrium modelling (dashed lines) under low (yellow), 

medium (blue) and high (red) calcium concentrations. Equilibrium modelling was solving 

for hydroxyapatite (HAP) precipitation. 

 

The phosphorus concentrations obtained in the CaP experiments were compared to the model 

predictions to obtain insight into which CaP mineral phase was precipitating. For simplicity, only 

results from experiments examining CaP precipitation under medium Ca (~ 38 mg/L) are 

reported as the removals under medium and high Ca conditions were similar and CaP 

precipitation was limited under low Ca conditions (<10 mg/L). Figure 7-8a presents the fraction 

of total P in the aqueous phase observed versus pH in the experiments and predicted by the 

model. From Figure 7-8 it can be seen that the model predicted that four possible CaP 
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precipitates could form and would start to precipitate between pH 6 and 7 under medium Ca 

concentrations. On the basis of HAP precipitation, the model predicted that aqueous P 

concentrations decrease rapidly after HAP precipitation is initiated with over 95 % P removed at 

pH 6.8. On the basis of OCP precipitation (using 2 different literature Ksp values), the reduction 

of aqueous P was low between pH 7 and 8, but by pH 8.2 over 95 % of P is predicted to be 

removed. A small quantity of the amorphous CaP was predicted to precipitate under medium 

calcium conditions; a small reduction in aqueous P concentration was predicted around pH 7 but 

then declines to over 95 % removed by pH 8.2.  

In Figure 7-8, the decrease in P concentrations observed between pH 6 and 10 during 

experiments fell within the range of pH values where CaP was predicted to precipitate by the 

model. It was not possible to infer which mineral phase was forming as the observed P responses 

overlapped the predictions from all four mineral phases between pH 6 and 7 which did not match 

the predicted aqueous P concentrations when pH was above 7.  The lack of agreement was most 

likely due to the experimental system not being at equilibrium and hence the CaP precipitates did 

not have sufficient time to form completely. In summary, it was concluded that the equilibrium 

model predicted that CaP precipitation was expected under the experimental conditions, but the 

predictions did not quantitatively agree with the experimental results due to the experimental 

system not being at equilibrium.  
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Figure 7-8: (a) Fraction of total P and (b) fraction of total Ca in the aqueous phase over pH 

in experiments conducted under medium Ca conditions ([Ca] ~ 35 mg/L). Data points 

represent measured P (circle) and Ca (diamond) while dashed lines are predicted values for 

CaP and CaCO3 mineral phases that could potentially precipitate.   

 

The calcium responses were also predicted by the model under the medium Ca ([Ca] ~ 38 mg/L) 

conditions. Figure 7-8b presents the fraction of total Ca in the aqueous phase over pH measured 

in experiments (data points) and predicted by the model (dashed lines). The model was used to 

solve for calcite (CaCO3) precipitation at the P and Ca concentrations measured under medium 

Ca concentrations as shown in Table 7-2. When the model simulated calcite precipitation alone, 

Ca was not removed until pH was above 8 however when both CaP and calcite were included, 

Ca concentrations started to decrease around pH 6 where approximately 40 % of the Ca was 

precipitated as HAP. In this scenario the predicted aqueous Ca concentrations decrease above pH 

8 due to calcite formation. The experimental calcium concentrations were not described 

quantitatively by the model however, Ca was observed to decrease by 10 % above pH 6 and this 

was followed by a steeper decrease after pH 8. The trends observed in the experiments were 

generally consistent with Ca uptake with CaP formation, followed by Ca removal in calcite 

precipitation. Again, the difference between experimental and modeling results were attributed to 
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the system not being at equilibrium and CaP and calcite precipitates may not be fully formed; 

amorphous calcite has been found precipitate prior to the systems reaching equilibrium (Gebauer 

et al., 2008). Overall, the equilibrium model predicted that CaP and calcite precipitation could be 

expected under the experimental conditions.  This could account for the high Ca/P ratios 

observed under the medium and high Calcium conditions.  

The results obtained in experiments without TiO2 present were assessed to gain insight into the 

types of precipitates that were occurring on the TiO2 nanoparticles. The higher Ca/P ratios 

observed in the experiments without TiO2 indicated that amorphous CaP and amorphous calcite 

was precipitating in the experiments. Additionally, solutions with higher Ca concentrations 

showed evidence of increased amorphous calcite formation. The experiments with TiO2 had a 

similar duration as the experiments without TiO2, and hence it was expected that the system with 

TiO2 was also not at equilibrium. Overall, there was evidence supporting CaP precipitation in the 

UF system with and without TiO2.   

 

7.3.6 Recovery of P from Calcium Phosphate Precipitates from TiO2 

Experiments were conducted to determine whether the P that had precipitated onto TiO2 could be 

recovered from the solids. It was previously demonstrated that approximately 50 % of the P 

removed in experiments with TiO2 was precipitated onto the surface. It was anticipated that the P 

precipitated onto the surface could be recovered via dissolution of the CaP with acid. Further, 

concentrating the solids in a small volume could potentially make recovery for feasible as 

chemical use could be reduced and the recovered P may be more concentrated in the small 

volume; P recovery in a concentrated form is typically desirable for nutrient recovery 

technologies (Ye et al., 2017). Therefore, recovery experiments were conducted where the P 
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loaded TiO2 solids were concentrated in the UF system and reduced volumes of acid were added 

to the concentrated solids to recover the precipitated P.  

Dissolution of CaP precipitates liberates both Ca and P, increasing their concentration in solution 

which can potentially limit the amount of P that can be recovered due to reduced solubility. Due 

to this possible limitation, P recovery was investigated from TiO2 solids in which CaP had 

precipitated under medium and high Ca concentrations. In addition, the TiO2 solids were 

concentrated to two levels (4x and 11x concentrated) to observe the effects of increasing the 

TiO2 solids.  

Recovery of P from TiO2 that had precipitated at medium and high Ca concentrations were 

investigated (Figure 7-9) over a range of pH values. The recovery of P under both Ca conditions 

was found to increase as pH decreased (medium [Ca]: r = -0.687, p <0.001; high [Ca]: r = -0.876, 

p < 0.001).  The recovery under the medium Ca ([Ca]~30 mg/L) scenario was 36 % P at a pH of 

approximately 2.5 while a recovery of 35 % P was observed at around pH 2 in the high Ca ([Ca] 

~ 70 mg/L) scenario. Overall, the recoveries observed under medium and high Ca conditions 

were not statistically different (r = 0.217, p = 0.162).  Hence, approximately 35 % P was 

liberated from the TiO2 for Ca conditions that are typical of wastewaters. 

To obtain further insight into the dissolution response, the ratio of moles of P and Ca recovered 

from CaP precipitates formed on the TiO2 was investigated (Figures 7-6b and 7-6c).  The data 

points in Figure 7-6b fall along the same Ca/P line as the precipitates that were formed under 

medium Ca concentrations suggesting that dissolution of the CaP precipitates released similar 

proportions of P and Ca that were originally precipitated. Alternatively, the data points in Figure 

7-6c were slightly above the Ca/P line determined for precipitates that formed under high Ca 
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concentrations. This indicates that more calcium was released from precipitates as compared to  

P and provides more evidence of a calcite precipitate being present under high Ca conditions. In 

summary, while the same amount of P was recovered from the precipitates, higher quantities of 

Ca were released from precipitates that formed under high Ca concentrations ([Ca] ~70 mg/L). 

  

 

Figure 7-9: Percent P recovered over pH from precipitates that formed on TiO2 under 

medium (circle) and high (square) calcium concentrations. Blue and yellow data points 

indicate TiO2 solids that had been concentrated in the ultrafiltration system by 4x and 11x, 

respectively. 

 

During the recovery experiments, the P-loaded TiO2 nanoparticles were concentrated to two 

concentration factors to observe the effect of increasing the solids on recovery (Figure 7-9). TiO2 

that had been concentrated by 4x (TiO2 concentration 4.67 ± 0.72 g/L) liberated between 23 to 
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35 % P while recoveries ranging from 14 to 20 % were observed from TiO2 that had been 

concentrated by 11x (TiO2 concentration 12.30 ± 1.36 g/L). Overall, higher recoveries were 

obtained from TiO2 with lower solids concentrations (r = -0.658, p < 0.001). The limited 

recovery observed with higher TiO2 solids concentrations was possibly due to solubility limits 

and increased interactions between soluble CaP species and TiO2 nanoparticles. The latter 

mechanism has been employed when seed particles have been used to enhance precipitation 

(Valsami-Jones, 2001). Therefore, higher P recovery will occur when the TiO2 solids 

concentration is lower. 

The final concentration of P after recovery of P from CaP precipitates was investigated to 

establish if P could be recovered in a concentrated solution. The phosphorus concentrations in 

the final recovery effluents ranged from 22.2 to 34.0 mg P/L across both Ca conditions and 

solids concentrations. Higher recovery effluent concentrations were obtained at the higher CF 

even though less P was recovered; this was due to final volume of the recovery effluent being 

half of that of the higher CF. Final P concentrations did not meet the threshold concentrations 

desired for nutrient recovery. 

The results of this study highlight the advantages and disadvantages of using TiO2 nanoparticles 

for phosphorus recovery. While P adsorption on TiO2 was limited, TiO2 nanoparticles allowed 

calcium phosphate precipitation to occur displaying a potential for the use of TiO2 as a seed 

material to select for CaP precipitation. The system did not however reach equilibrium in this 

study suggesting that need for enhancement of the process to achieve equilibrium which could 

produce more valuable forms of CaP. Hao et al. (2013) suggested that forms of P recovery other 

than struvite should be investigated. The use of TiO2 for P recovery may be able to produce CaP 
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which is preferred over struvite as it is in a form that can be used directly in industry (Valsami-

Jones, 2001).  

 

7.4 Conclusions 

 

The potential to use TiO2 nanoparticles with ultrafiltration for P recovery was evaluated through 

a combination experimentation and equilibrium modelling.  Phosphorus adsorption onto TiO2 

nanoparticles was found to be dependent on solution pH and initial calcium concentrations. 

Adsorption onto TiO2 was observed to increase with decreasing pH in experiments where 

calcium concentrations were less than 10 mg/L suggesting that chemical desorption may occur at 

basic pH. The P loading onto TiO2 adsorbed at circumneutral pH with low Ca concentrations was 

approximately 4.8 mg P/g TiO2, consistent with values found in literature. Approximately 13 % 

P was recovered in chemical desorption tests at low pH with NaOH. Adsorption of P at 

circumneutral pH increased with increasing calcium concentrations due to the presence of 

calcium bridging resulting in a P loading of approximately 9 mg P/g TiO2. Recovery from 

concentrated TiO2 solids with HCl was low with only 3 % of P liberated from the TiO2 surface.  

Calcium phosphate was observed to precipitate onto TiO2 at pH values above 10. The CaP 

mineral appeared to be amorphous CaP when calcium concentrations were over 30 mg Ca/L; and 

increasing Ca concentrations lead to the precipitation of calcite. Phosphorus was recovered from 

the CaP loaded TiO2 nanoparticles via acid dissolution of the CaP precipitates. Concentration of 

the TiO2 solids was found to reduce P recovery. Approximately 35 % of P was recovered from 

CaP loaded TiO2.  
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8.0 Conclusions 

8.1 Conclusions 
 

This research provided insight into the use of adsorbents as a method for P removal and recovery 

from synthetic wastewater solutions and real wastewater effluents. This research also provided 

understanding on the potential to couple ultrafiltration with a TiO2/UV advanced oxidation 

process (AOP) to remove model organic P compounds and non-reactive P (nRP) from real 

wastewater effluents. From this research, the following conclusions were made: 

1. Surface complexation and ion exchange adsorption mechanisms are both beneficial 

for P removal and recovery from wastewater.  

 

A metal oxide sorbent and ion exchange resin (IEX) were identified as the top performing 

sorbents after screening of commercial sorbents for P adsorption and recovery from 

synthetic wastewater, recovering 17.6 and 23 %, respectively (Chapter 4). Overall, both 

IEX and metal oxide sorbents were proven to have potential for use in phosphorus 

recovery. Metal oxide sorbents were selective for P over IEX sorbents, which could help 

with P uptake by the sorbent in complex wastewater streams. Ion exchange sorbents were 

less selective for P but exhibited large adsorption capacities which was shown to be 

beneficial for the recovery process in adsorption columns. Although both sorbents are 

susceptible to competition, IEX sorbents were more prone to competition by 

opportunistic ions. This trait of IEX sorbents enhanced P recovery as IEX sorbents 

demonstrated desorption P in most solutions containing an appropriate counter-ion such 

as chloride.  
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2. The adsorbent characteristics determine the optimal desorption solution used for P 

recovery.  

 

Phosphorus recovery testing from sorbents using basic, acidic, salt and basic salt 

solutions was assessed during the screening of commercial sorbents for P recovery 

(Chapter 4). The most effective chemical desorption solution was dependent on the 

specific P adsorption mechanism. Metal oxides adsorb P through surface complexation 

and required a chemical desorption solution that alters the conditions of the surface 

thereby lessening the attraction between P and the surface site. Depending on pH, protons 

or hydroxide can compete with phosphate for surface sites on metal oxides. Thus, acidic 

or basic desorption solutions proved most effective at removing P from metal oxides. Ion 

exchange resins remove P by surface complexation or ion exchange and will desorb P 

from the surface when an appropriate counter ion is present and therefore chemical 

desorption solutions that contained chloride were more effective. Hybrid ion exchange 

resins are a combination of IEX and metal oxides and the optimal recovery was obtained 

with a chemical desorption solution that contained both components (pH change and 

counter-ion). 

 

3. The concentration of the chemical desorption recovery stream has the potential to 

meet target concentrations for nutrient recovery technologies.  

 

For recovery of P from wastewater, current technologies require elevated P 

concentrations to be economically feasible. The application of desorption solutions to P 

saturated metal oxide and IEX sorbents produced desorption effluent concentrations in 

excess of the 100 mg P/L target of some nutrient recovery technologies. In column 

testing (Chapter 5), phosphorus liberation from both metal oxide and IEX sorbents 
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peaked during the first 10 bed volumes of desorption solution. The final concentration of 

the blended recovery solution was dependent on the desorption solution used, as some 

chemical desorption solutions liberated adsorbed P more slowly and thus increased the 

total volume required for recovery.  The final P concentration of the blended recovery 

solution decreased with increasing volume after the initial peak of P had been recovered. 

 

4. Mechanism of nRP removal depends on the composition of the nRP present in the 

wastewater being tested. 

 

The mechanism of nRP removal was found to depend on whether it was particulate or 

dissolved in addition to the molecular size and surface charge. In experiments using the 

AOP to treat solutions with model compounds (Chapter 6), nRP was removed through 

adsorption onto the TiO2 and through the action of UV irradiation. Removal via 

adsorption was due to the attraction of nRP to the surface of the TiO2 which was 

enhanced by the surface charge of both the sorbate and surface. In experiments using the 

AOP to treat wastewater treatment effluents, nRP removal was observed to occur with 

ultrafiltration in addition to adsorption and UV irradiation. Removal via ultrafiltration 

was due to size exclusion of the nRP. 

 

5. Non-reactive P removal correlated with removal of dissolved organic matter 

throughout AOP treatment.  

 

As reported in Chapter 6, treatment with the AOP demonstrated removal of both nRP and 

DOC at each step during treatment. This was consistent with nRP being present as 

organic P species which are covalently bound to organic matter such as humic 

substances. Organic matter that was larger than the size cut off of the ultrafiltration 

membrane was retained by the filter, also retaining any associated nRP. Adsorption and 
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oxidation of organic matter was also observed in this study. Oxidation by hydroxyl 

radicals was non-selective and targeted larger organic matter which contained nRP.  

 

6. Production of a concentrated P stream suitable for nutrient recovery through 

concentrating P-loaded TiO2 nanoparticles was limited by calcium phosphate 

precipitation.  

 

Phosphorus adsorption onto TiO2 nanoparticles was found to be dependent on solution 

pH, with P adsorption increasing with decreasing pH (Chapter 7).  The recovery of 

adsorbed P was low in solutions with low calcium concentrations (< 10 mg Ca/L) due to 

irreversible binding. In solutions containing levels of calcium usually present in 

wastewater, P adsorption onto TiO2 increased due to calcium bridging at circumneutral 

pH. Recovery from concentrated TiO2 solids with HCl was low with only 3 % of P 

liberated from the TiO2 surface.  HCl was used to recover P to disrupt calcium bridging 

and avoid calcium phosphate precipitation observed to precipitate onto TiO2 at pH values 

above 10. Phosphorus was recovered from the CaP loaded TiO2 nanoparticles via acid 

dissolution of the CaP precipitates. Concentration of the TiO2 solids was found to reduce 

P recovery. Approximately 35 % of P was recovered from CaP loaded TiO2 due to low 

solubility of the precipitates.  

 

8.2 Implications for Non-Reactive Phosphorus Removal and Recovery  
 

A strategy to treat high nRP wastewater is proposed using the information gained from this 

research. The combination of UV/TiO2 photolysis followed by an adsorption column could 

decrease residual nRP and recover phosphate in a concentrated form. Photolysis will mineralize 

nRP to phosphate which will pass, along with unaltered phosphate from the original sample, into 
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the adsorption column and adsorb onto the solid phase. Once the adsorption column is saturated, 

P can be recovered through chemical desorption into a recovery solution where P is concentrated 

enough for nutrient recovery technologies (i.e. 100 mg P/L). Use of an ion exchange resin in the 

adsorption column would be beneficial as a salt solution could be used to recover P and no pH 

adjustment is necessary. In this proposed arrangement, positioning UV/TiO2 photolysis prior to 

the adsorption column is beneficial as photolysis will mineralize dissolved organic matter, 

reducing the potential of competition for adsorption sites on the column. As seen in Chapter 5, 

natural wastewater matrices do not perform as well as “cleaner” solutions. Thus, using oxidation 

prior to the column will enhance removal and ability to recover P.  

 

8.3 Recommendations for Future Work  
 

From this study, the following recommendations are suggested for future studies in P recovery. 

 

1. There is a need for a sorbent that has the high adsorption capacity and easy 

regeneration of an IEX resin and the selectivity of an iron oxide.  

Development of sorbents that include both materials (i.e. hybrid ion exchange resins) 

have started to improve P adsorption in more complex water matrices such as wastewater, 

however sorbent performance is still greatly variable in different situations. An example 

of this can be seen in a study that used a strong base hybrid exchange resin to remove 

phosphorus from grey water and reported adsorption capacities ranging from 1.5 to 10.1 

mg P/g sorbent (O’Neal and Boyer, 2013).  
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2. There is a need for investigations into using different catalysts and the possibility 

of using different light sources in advanced oxidation processes. 

Use of light-emitting diodes (LED) instead of mercury lamps will help decrease the 

energy requirements and operational costs of the advanced oxidation process. In addition, 

use of another catalyst that does not adsorb P will reduce any potential loss of 

recoverable P during the oxidation of nRP.  One example includes zinc oxide which has 

been highlighted in literature as a promising photocatalyst for water and wastewater 

treatment (Lee et al., 2016). Incorporation of the photocatalyst into an ion exchange resin 

could also help increase adsorption and recovery of phosphate liberated by 

photocatalysis.  

 

3. There is a need for investigations into using TiO2 nanoparticles as a seed for 

calcium phosphate precipitation. 

Further investigation into the calcium phosphate (CaP) mineral(s) that precipitate onto 

TiO2 nanoparticles will help determine if TiO2 can be used as a seed to recover P from 

wastewater. TiO2 nanoparticles are low in toxicity (Vela et al., 2018) and as such, could 

have potential for direct land application of calcium phosphate loaded TiO2 as a fertilizer 

if desirable CaP minerals can be encouraged to precipitate.   
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