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ABSTRACT 

Many datasets can be expressed through the usage of frequency-based histograms that 

provide compact visualizations of large volumes of data. A motivating hypothesis of this work is 

that the relative frequency of measurements represents important information for characterizing 

causal relationships. The basis of this work is transforming discrete histograms into continuous 

probability density functions (PDFs) using conservation of probability. In essence, this thesis will 

investigate whether conservation of probability can be applied as a governing law that 

characterizes how both physical and abstract measurement histograms will evolve through time.  

The main application within this thesis involves transforming bimonthly residential water 

consumption histograms into parametric PDFs for 60 sequential billing periods. Consistent 

parameterization for each billing period allows for regression analysis to infer a causal relationship 

between the PDF statistics and ambient conditions such as price and weather. This method 

generates partial differential equations (PDEs) for each statistic that combine to reproduce 

measurement data PDFs for varying ambient conditions through time using an “advection-

dispersion” like relationship. The significance of this methodology is that parametric PDEs can 

describe the historical relationship between the measurement PDF and ambient conditions. This 

relationship may be exploited in future work to generate parametric PDEs that forecast the 

evolution of measurement PDFs through their location, scale, and shape with respect to influential 

ambient conditions.  

This thesis also demonstrates a relationship between measurement PDFs and the governing 

PDEs for the physical process of molecular diffusion. This outcome provides compelling evidence 

that conservation of probability applies to both abstract and physical systems, which suggests 

conservation of information is a unifying concept for modeling systemic response. Ultimately, 

conservation of probability provides a mechanism for reconciliation that ensures no information is 

either created or destroyed, while generating PDEs to reproduce measurement data as spatially- 

and temporally-continuous PDFs. 
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1. INTRODUCTION 

Advancements in water distribution have been a prerequisite for sociocultural evolution 

throughout history; from nomadic tribes, through irrigation and farming, to waterside villages and 

aqueduct-supplied cities, and finally piped home delivery. In general, these advances have 

consistently improved health, standard of living, and life expectancy by reducing exposure to 

disease and promoting hygiene. As a result of continual investment into these systems, potable 

water has never been as widely accessible as it is today. The need to sustain and extend modern 

potable water distribution systems should make the development of appropriate management 

practices an important priority. The sustainability of water distribution systems requires substantial 

investments into the maintenance and capital replacement of infrastructure. Water distribution 

systems have vastly expanded around the world into undeveloped areas, often with little 

forethought to the future necessity for maintenance of the system. For instance, a large proportion 

of water infrastructure developed in the post-World War II era is currently nearing the end of its 

service life and requires replacement (AWWA, 2012). The American Water Works Association 

report “Buried No Longer” estimated that at least $1 trillion dollars for maintenance and 

replacement would be required over the next 25 years in the United States to maintain current 

levels of water service. The increased costs of operating and maintaining these systems are 

expected to be passed onto the consumer through a “pay-as-you-go” approach whereby water 

prices will be increased to generate higher revenues with the expectation of matching these system 

expenses. 

Revenues within municipal utilities are subject to variability that can result from a number 

of factors: changing population, consumer demand changes, and water price structures (Eskaf  et 

al. 2014). Historically speaking, government policy levers such as the US Energy Policy Acts of 

1992 and 2005 and the US Energy Independence and Security Act of 2007 have been key drivers 

in reducing residential and commercial water consumption (Hunter et al. 2011). Beecher et al. 

(2012) state that flat or declining sales are affecting many utilities and the loss of revenues caught 

many utility managers and industry analysts off guard. With declining revenues, utilities have little 

choice but to raise their water rates or implement alternative water pricing structures. Pricing 

structures such as increasing block pricing (IBP), decreasing block pricing (DBP), and volume 
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constant pricing structures (fixed and variable components) are applied throughout North America. 

These pricing structures have been investigated to understand their influence on revenue 

sustainability and water affordability (Mayer et al., 2008; Beecher et al., 2010; Beecher et al., 

2012; Mehan III et al., 2012; Eskaf et al,, 2014).  

When water utilities are forced to increase their water rates beyond cost-of-living inflation, 

aggregate water consumption generally decreases. Under these conditions, consumers switch to 

low-flow appliances and limit unnecessary water use to reduce their water bills. Financial forecasts 

that fail to consider this effect on water demand will therefore overstate anticipated system 

revenues and potentially lead to realized shortfalls. In standard microeconomic theory, price 

elasticity of demand is used to describe the relationship between price and demand. Previous 

studies have attempted to provide insights into water distribution and wastewater services 

including the development of system dynamics models (Rehan et al., 2011; 2013; 2014a; 2014b; 

2014c), and studies on the price elasticity of domestic water demand (Boland et al., 1984; Espey 

et al., 1997; Dalhuisen et al., 2003; Brookeshire et al., 2002; Olmstead et al., 2007; Worthington 

et al., 2008; Serbi, 2014). These efforts have significantly contributed to understanding the 

intricacies of asset management and water price setting. Moreover, the need for utilities to balance 

revenues with expenditures has motived the systematic recording of water consumption data by 

residential, commercial and institutional account holders. This allows the utility to infer how 

utility-wide water consumption is responding to factors such as real price increases in the unit cost 

of water. 

Advancements in data collection techniques through automation and innovative 

technologies provide researchers with a wealth of information to develop, infer, and confirm 

theoretical inquiry. Many datasets can be expressed through the usage of frequency-based 

histograms that provide compact visualizations of large volumes of data. Some examples may 

include the residential income distribution, residential water consumption measurements, and 

stock market capitalization indices, among many more. Current data analysis techniques rely 

heavily on linear regression and the normal distribution to show correlation and infer causality 

between otherwise unconnected measurements. However, dataset histograms often do not conform 

to the normal distribution and current methodologies may be insufficient for explaining some 

observations and intuitive relationships. A motivating hypothesis of this work is that the relative 

frequency of measurements represents important information for characterizing causal 
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relationships. In this context, the normal distribution represents a specific shape, or relative 

frequency, that may not reflect real-world observations.  

The motivation for this thesis is to develop a methodology for parameterizing probability 

density functions (PDFs) that represent histograms of utility-wide residential water consumption, 

where these histograms exhibit asymmetry and heavy-tail shape attributes. These parametric PDFs 

include but also extend beyond the normal distribution in order to accurately reproduce 

measurement data histograms. This process involves measuring the median as an indicator of 

location, the standard deviation as a measure of scale, and a series of parameters that quantify the 

shape of the PDF.  Furthermore, it is the intent of this thesis to explore the possibility that PDFs 

representing real-world measurements are the solution to an “advective-dispersive” like process 

that continually evolve through time. This exploration proceeds by fitting experimental data with 

parametric PDFs and tracking the influence of ambient conditions on the statistics that describe 

the PDF. For instance, the influence of price and weather conditions on the location, scale and 

shape of the residential water consumption PDF. A hypothesis of this work is that the evolution of 

each statistic can be described by a partial differential equation (PDE), where the PDEs model the 

historical relationship between the statistic as a function of ambient conditions and time. 

Furthermore, these statistics and their representative PDE can then be combined to produce 

parametric PDFs that accurately model the probability of observing a prescribed magnitude of 

measurement data over anticipated ambient conditions at future dates. In the context of the water 

consumption problem, this relationship can be exploited to forecast the evolution of the water 

consumption PDF with respect to anticipated ambient water price and weather conditions.  

An outcome of this work is a series of software programs to execute the theory developed 

herein by reproducing discrete datasets as continuous PDFs and performing multivariate regression 

to understand the functional relationship between the statistics that combine to produce each PDF 

with respect to ambient conditions and time. This theory was initially tested using Excel® and 

validated with independent development in Matlab®. The complexity of the problem and sheer 

magnitude of water consumption data has motivated implementation of this theory using SQL 

database management software and the object-oriented Python environment. This thesis focuses 

on the theory behind the software development and only provides superficial details about software 

development. Each software approach produces the same analysis results within some margin of 

error as a consequence of using slightly different optimization algorithms, which are all ultimately 
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based on a mean-squared error approach. Notably, the Python implementation provides the most 

general algorithmic design, which has been tested using additional water consumption data, as well 

as with other applications including daily S&P500 data, daily NASDAQ data, patient health 

records, image analysis, and hydraulic permeability data. Figure 1.1 presents a schematic 

visualization for automation of data management and regression analysis. 

 

Figure 1.1 – Schematic visualization of data management approach. 

 

Although the algorithm developed is generally applicable, the motivation of this work is 

realized by specifically focusing on how residential water consumers respond to changes in price 

and weather. Forecasting models for water consumption that consider the influence of price and 

weather are important for helping water utilities to develop management strategies that promote 

financial and resource sustainability. The water utility within the City of Waterloo, Ontario, 

Canada provided this research opportunity with residential water consumption specified for 

individual accounts within the utility spanning a period of 10 years. The data is collected on 

bimonthly intervals, which provides a natural temporal grouping of measurements for this analysis. 

Combining bimonthly observations into frequency histograms reveals that the consumption 

datasets reflect asymmetric and shifted distributions with heavy tails. Each bimonthly period 
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represents a unimodal distribution that continuously changes its location, scale and shape as the 

ambient conditions of price and weather evolve through time. Notably, the mean statistic of water 

consumption can be estimated directly from these distributions; therefore, understanding how the 

distributions change may provide insight into the evolution of their mean statistic. Intuition may 

indicate that both price and weather should have a significant influence on how the water 

consumption distribution evolves and this expectation is supported when visualizing a time-series 

representation of the mean water consumption statistic. Figure 1.2 shows that the arithmetic mean 

water consumption statistic exhibits a wave-like response, similar to that of seasonal weather 

variations, superimposed upon a continual decline in water consumption that is presumed to 

correspond with annual water price increases.  

 

Figure 1.2 – Mean bimonthly residential water consumption for the City of Waterloo 2007-2016. 

 

The progression of this thesis is organized and articulated in the following three chapters. 

Chapter 2 focuses on transforming histogram data into a parametric PDF. Chapter 3 then follows 

with the development of an “advective-dispersive” like transport model describing residential 

water consumption. Finally, Chapter 4 involves a discussion on the relationship between 

conservation of probability and the resulting parametric PDEs. 
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The contributions of the second chapter largely focus on parameterizing a shape-

controlling function, through conservation of probability, that allows fitting histogram data as a 

continuously differentiable function. This methodology is generally consistent with standard 

kernel density estimation techniques. However, a hierarchical relationship between the shape-

controlling function, PDF, and its cumulative distribution function (CDF) are relied upon to 

generate the density estimate. An ordinary differential equation (ODE) transforms the shape-

controlling function into the PDF. A subsidiary but important contribution of this chapter is the 

development of the median-relative space to automate data culling and the parameterization of the 

shape-defining function for disparate datasets as shown in Figure 1.1. Finally, the intent of the 

second chapter is to demonstrate that the PDF and its associated mean statistic are solely a function 

of the median (location), scale (standard deviation), and shape-controlling function. As a result of 

this outcome, this thesis views both the PDF and mean statistic through the lens of an “advective-

dispersive” like process. Notably, changes to the median reflect bulk advection, whereas changes 

to the standard deviation and shape-controlling function constitute dispersion. 

The contributions of the third chapter follow the motivation of this thesis and demonstrate 

that the water consumption histogram data for all sampling time intervals can be transformed into 

PDFs using a consistently parameterized shape function. These PDFs exhibit asymmetry and 

heavy-tail shape attributes and hence do not conform to a normal distribution. Note that the 

parametric PDFs are derived from the entire population of residential consumers. Hence, the shape 

controlling functions capture important information representing the PDF, its mean statistic, and 

total water consumption trends. An outcome is that the parametric PDF changes location, scale 

and shape under the influence of temporal variability in the ambient conditions of price and 

weather. Performing curvilinear regression on the median, standard deviation, and shape 

parameters provides a statistically significant correlation with price and weather variables. 

Recombing the resulting regression relationships for each statistic into a transport model 

accurately reproduces the measurement histogram for most billing periods. Therefore, an outcome 

of this chapter is the development and parametrization of a regression function that describes the 

changing shape of the water consumption PDF. Specifically, multi-variate curvilinear regression 

is used to parameterize PDEs for each statistic as a function of ambient price and weather 

information. Therefore, this analysis provides empirical evidence of a parametric PDE-PDF 

relationship that may provide insight into other physical or abstract applications. 
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The fourth chapter investigates the relationship between a scaled normally distributed PDF 

as the solution to second-order homogeneous PDEs. This relationship is based on three key ideas: 

1) conservation of probability in a measurement space; 2) spatial-continuity of measurement data; 

and, 3) temporal-continuity of measurement data. The objective of this methodology is to build 

upon the current knowledge related to Brownian motion as being a representation of a second-

order homogeneous PDEs, thereby reinterpreting the experimental water consumption histogram 

data from Chapter 3 to being the solution to a probabilistic transport process. This chapter uses the 

Einsteinian diffusion PDE as the basis for investigating molecular diffusion relative to artificially-

generated molecular displacement data, under the premise that the measurement data conforms to 

a normal distribution. The analysis shows that the solution to the Fourier heat transfer equation in 

solids may also describe molecular diffusion in two dimensions. Furthermore, an extension of this 

solution is adapted to reproduce Fick’s Law as a result observing the probabilistic process of 

Einsteinian diffusion in two dimensions. The outcome of the fourth chapter is to demonstrate that 

the approach from Chapter 3, which generates a parametric PDE for an abstract economic system, 

yields coefficients that seem tangible in much the same manner as the diffusion coefficient in the 

context of the Einsteinian diffusion PDE.  

The outcome of this thesis provides compelling evidence that conservation of information 

is a unifying concept for modeling system response. This thesis concludes with a discussion on 

how PDFs the constitute the solution to PDEs of abstract and physical processes that reflect the 

interaction between three system components: 1) a source/sink term, 2) the measured property, 

and 3) a conduit that connects the source/sink to the measured property. Therefore, a conclusion 

is that the parameters within the governing PDE meaningfully describe and quantify the properties 

of the conduit. For the water consumption application, the conduit is the household-specific 

qualities that compel water consumption, the source term is the necessity to consume water to 

maintain standard of living conditions, and the measurement is the volume of water consumed in 

a billing period. Future work could exploit parameterization of the PDE to forecast pairs of 

source/sink terms and the resulting solution of a parametric PDF. In this context, evaluating 

parametric PDFs as a solution to PDEs may be a more general expression of systemic response 

than what could be achieved by constraining systemic response to be controlled by second-order 

homogeneous PDEs.  
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2. Transforming Histogram Data into Parametric PDFs 

Collectively, individual measurements obtained within a discrete sampling interval define 

the range of system conditions. In the context of this work, these measurements are non-zero and 

real-valued observations and are subject to measurement error.  Subsequently, evaluating the 

ordered frequency of these measurements constructs a histogram. Dividing the frequency at which 

measurements occur within a discrete sampling interval by the total number of measurements 

transforms the histogram into a probability mass function (PMF). The probability of observing a 

measurement within a range of discrete intervals is realized by summation, which results in the 

corresponding cumulative mass function (CMF). The utility of parametric probability density 

functions (PDFs) is that they provide an empirical mechanism to mathematically characterize the 

defining attributes of discrete datasets. These attributes include the location, scale, and shape of 

the histogram, which translate into statistics that combine to accurately express PMFs as 

continuous PDFs. 

Kernel density estimation (KDE) is a non-parametric approach to smoothly translate 

random sample data into a continuous PDF using additive normal distributions with smoothing 

parameters. Zambom and Dias (2012) provide a thorough review of the KDE methodology in the 

context of econometrics. KDE is sufficiently versatile to accurately reproduce many empirical 

datasets characterized by asymmetric, tail-heavy, or multi-modal PMFs. However, the KDE 

methodology does not provide a consistent parametrization when the measurement PMF changes 

its location, scale and shape in response to transient ambient conditions. Hence, it is impossible to 

regress this inconsistent parameterization and infer the functional relationship of casual influences 

that drive the response of the PMF. Attempts to address this shortcoming include applying 

modified conditional density estimators (Hyndman et al., 1996) and multivariate function 

estimation (Stone, 1994). The goal of Stone was to extend generalized linear modeling to handle 

multivariate data involving response variables and covariates that include a mixture of continuous 

and categorical variables. The intent is to consider the variables and covariates that reproduce the 

fitted PMF as an empirical treatment of some probabilistic process that evolves through time under 

the influence of ambient processes. Duda et al., (2017) introduce a methodology for fitting 

parametric PDFs to characterize asymmetric, tail-heavy, and multi-modal PMFs. Their 
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methodology uses polynomial and Fourier series that are multiplied by Gaussian distributions. 

However, the issue of consistency in parametrization remains. 

This work develops a general methodology to reproduce histogram data that are 

asymmetric, shifted, tail-weighted, or even multi-modal as parametric PDFs. The main 

contribution of this methodology relative to the existing body of non-parametric and parametric 

PDF estimators is that a single parametric function can fit many time-sequential experimental data 

sets representing the temporal evolution of a single probabilistic process. This addresses the 

consistency of parameterization issue identified above. The objective of this chapter is to introduce 

the methodology underpinning this framework which is based on conventional statistics and 

calculus, with its versatility illustrated by application to four disparate data sets from economics, 

engineering, finance, and image analysis. The histograms shown on Figure 2.1 comprise datasets 

that range from hundreds to thousands of measurements denoted as 𝑥𝑖, and vary in complexity 

from unimodal to multi-modal distributions. The discrete intervals on each histogram represent the 

probability of occurrence within the PMF when the histogram frequency is divided by the total 

number of measurements 𝑁𝑖. Equation 2.1 defines discrete intervals within a histogram and shows 

how these discrete bins relate to the PMF 𝑝𝑥,𝑘 and CMF 𝑐𝑥,𝑘1. 

ℎ𝑥𝑘−1<𝑥𝑖<𝑥𝑘 ≡ frequency within histogram bin 

PMF, 𝑝𝑥,𝑘 =
ℎ𝑥𝑘−1<𝑥𝑖<𝑥𝑘

𝑁𝑖
, 0 ≤ 𝑝𝑥,𝑘 

CMF, 𝑐𝑥,𝑘1 =∑𝑝𝑥,𝑘

𝑘1

𝑘=1

, 0 ≤ 𝑐𝑥,𝑘1 ≤ 1,   

 

(2.1) 

where ℎ𝑥,𝑘 represents the frequency of measurement values 𝑥𝑖 within the discrete sampling interval 

𝑥𝑘−1 < 𝑥𝑖 < 𝑥𝑘; the PMF 𝑝𝑥,𝑘 divides each histogram bin by the number of observations 𝑁𝑖; and, 

the CMF 𝑐𝑥,𝑘1 follows by summing over the bins from 𝑘 = 1 → 𝑘1. In fact, Figure 2.2 presents 

the associated PMF of each dataset. Notably, these representations also include the eventual 

outcome of this analysis, which is a parametric PDF that accurately reproduces each dataset as a 

continuously differentiable function that implies data compression. Here, data compression refers 

to the ability to reproduce the discrete dataset as a continuous function that contains the same 
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information as the measurement data, while using less parameters than number of measurement 

data. 

 

 

Figure 2.1: Histogram data for disparate datasets. Figure 2.1.a depicts single-family residential water 

consumption data from the July/August bimonthly billing period within the City of Waterloo, Ontario, 

Canada; Figure 2.1.b presents hydraulic conductivity measurements obtained from section cores drilled 

along a single cross-section within the Borden aquifer (Sudicky, 1986); Figure 2.1.c shows S&P 500 

market capitalization index values obtained from information collected by Stockwiz (2009) on August 21, 

2009; and, Figure 2.1.d illustrates light intensity data obtained from the classic “Lenna” photograph 

(Hutchinson, 2001). 

 

The parametric control function represents the foundation of the proposed framework 

because it generates continuously differentiable PDFs in the standard-score space (see Figure 2.2). 

The control function embodies parametrization that replicates the shape of the PMF and CMF; 

and, hence the probability of occurrence within any interval on the histogram. The relationship 

between the control function and PDF is specified by an ordinary differential equation (ODE), 

where the control function is the lognormal derivative of a PDF with respect to the standard-score 

variable 𝑧. This relationship defines how the shape of the distribution will change along the 

standard-score axis. The utility of the control function is that it defines the shape attribute and 

provides an empirical mechanism to reproduce discrete datasets as continuous functions. The 
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median and standard deviation project the standard-score 𝑧 PDF into the measurement 𝑥 and 

median-relative 𝑦 spatial orientations. Together, the median, standard deviation, and control 

function provide sufficient information to specify the hierarchical relationship between the control 

function, PDF, and CDF simultaneously in all spatial orientations; 𝑥, 𝑦 and 𝑧. The proposed 

framework provides efficient parametric compression of discrete datasets without assuming a 

predefined distribution shape. This ultimately reduces the possibility of information loss associated 

with statistics that describe non-Gaussian datasets, while simultaneously reducing the storage 

needs to maintain data fidelity.  

 

 

Figure 2.2: Raw data PMF and parametric PDF for disparate datasets. Figure 2.1.a depicts single-

family residential water consumption data; Figure 2.1.b presents hydraulic conductivity measurements; 

Figure 2.1.c shows S&P 500 market capitalization index values; and, Figure 2.1.d illustrates light 

intensity data. 

 

The outline for this work begins with the theoretical development of the framework. The 

utility of the framework is empirically demonstrated through its application to the PMFs shown 

on Figures 2.1 and 2.2. 
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2.1. THEORY 

This work combines statistics and calculus to reproduce discrete histogram data as a 

continuously differentiable parametric PDF. This section reimagines ubiquitous relationships in 

statistics and develops a framework for evaluating the shape of a discrete dataset as a mathematical 

function. Attributes of this work pertaining to statistics and calculus are organized into separate 

sections below. The outcome from this theory is fourfold. First, this work introduces the control 

function, which characterizes the slope of a continuously differentiable PDF in the standard-score 

space. Second, PDFs are wholly defined by their representative statistics: the median, standard 

deviation, and control function, which are measures of location, scale, and shape, respectively. 

Third, the hierarchical integral relationship between the control function, PDF, and CDF allows 

this theory to compress the information embodied by the discrete histogram data into minimal sets 

of information. Fourth, the mean value is entirely dependent upon the combination of the above 

statistics, which provides the basis for developing causative models that do not rely upon Gaussian 

distributions. This section progressively addresses these key outcomes.  

2.1.1. THE MEDIAN AND STANDARD DEVIATION STATISTICS 

The median is arguably the simplest statistic associated with a discrete dataset, and is a 

measure of its location or central tendency with no assumption regarding its shape. Equation 2.2 

introduces a heuristic to evaluate the median 𝑚𝑥,𝑖 of a discrete dataset as: 

𝑚𝑥,𝑖 = {
𝑁𝑖 + 1

2
}
𝑡ℎ

 value (2.2) 

Where, 𝑁𝑖 is the number of discrete measurements “𝑖” within the dataset. If a dataset has an even 

number of discrete measurements, the median will be the average of the two middle data points.  

The standard deviation is also a simple statistic associated with a discrete dataset, and 

defines its scale, also with no assumption about its shape. Equation 2.3 presents a modified version 

of the standard deviation 𝜎𝑥,𝑖 of a discrete dataset about its median value 𝑚𝑥,𝑖 as: 
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𝜎𝑥,𝑖 = √
1

(𝑁𝑖 − 1)
∑[𝑥𝑖 −𝑚𝑥,𝑖]

2

𝑁𝑖

𝑖=1

 (2.3) 

Where, 𝑥𝑖 is the magnitude of measurement “𝑖” obtained in the measurement and dimensional 𝑥 

space. Pearson (1894) first introduced the standard deviation of the dataset 𝑥𝑖 relative to the 

arithmetic mean 𝜇𝑥,𝑖. Equation 2.3 combines the median absolute deviation introduced by Gauss 

(1816) with the idea of squaring the deviation from Pearson (1894). Equation 2.3 is equivalent to 

Pearson’s interpretation of standard deviation for symmetric distributions where 𝑚𝑥,𝑖 = 𝜇𝑥,𝑖. The 

analysis proceeds with the above modification of the standard deviation being relative to the 

median given that both 𝑚𝑥,𝑖 and 𝜎𝑥,𝑖 operate on the discrete elements of the dataset 𝑥𝑖, while 𝜇𝑥,𝑖 

measures the scalar continuum condition of the system. Later, this chapter clearly demonstrate that 

the mean statistic is a function of the median, standard deviation, and control function. In this 

spirit, evaluating the standard deviation as a function of the median prevents a recursive 

relationship between the standard deviation and mean value for asymmetric datasets. 

The subsequent section on statistical transformations further illustrates the importance of 

the median and standard deviation. Specifically, the standard deviation transforms PMFs and PDFs 

between the measurement space 𝑥 and standard-score space 𝑧. Furthermore, this chapter introduces 

a new transformation, herein referred to as the median-relative space 𝑦, which normalizes PMFs 

and PDFs by dividing each measurement/position by the median statistic to produce a 

dimensionless dataset. While both 𝑦 and 𝑧 are non-dimensional representations of 𝑥, they have 

different implications in relating PMFs to PDFs. The following sections discuss the implications 

and merits of defining the shape of the PDF in the standard-score space through the control 

function. 

2.1.2. CONTINUOUSLY DIFFERENTIABLE PDFS 

Earlier, this analysis defines PMF intervals 𝑝𝑥,𝑘 to represent the probability of finding a 

discrete measurement 𝑥𝑖 within the 𝑘𝑡ℎ bin of the histogram. This section introduces the ideas and 

notation that transform PMFs 𝑝𝑥,𝑘 into continuously differentiable PDFs 𝑝𝑥 over the full range of 

the measurement space. To achieve this goal, this equivalence must first be expressed in the 

standard-score space as 𝑝𝑧,𝑘 which involves multiplication of 𝑝𝑥,𝑘 by 𝜎𝑥,𝑖: 𝑝𝑧,𝑘 = 𝜎𝑥,𝑖 𝑝𝑥,𝑘. 
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Evaluating the equivalence between the PMF and PDF 𝑝𝑧,𝑘 ≅ 𝑝𝑧 in the standard-score space 𝑧 is 

advantageous because its central-tendency is zero and it is therefore conducive to reproducing 

symmetry – for example, the normal distribution. This chapter contends that the standard-score 

space is the appropriate spatial reference for parametrizing the control function and the resulting 

PDF. Given its ubiquitous nature, the standard-score space 𝑧 is used here before it is explicitly 

defined in the following section.  

To begin, this section introduces a parametric control function 𝑔𝑧 that mathematically 

characterizes the slope of the PDF 𝑝𝑧 in the standard-score space 𝑧. The control function 𝑔𝑧 is 

simply a component of an ODE that is consistent with the derivative of Gauss’ maximum 

likelihood estimator for the error process (Gauss, 1809) and Stahl’s derivation of the normal 

distribution (Stahl, 2006). Equation 2.4 represents the relationship between the lognormal 

derivative of the PDF 
1

𝑝𝑧

𝑑𝑝𝑧

𝑑𝑧
= 𝑔𝑧  and its corresponding indefinite integral with respect to the 

standard score variable z. Appendix A.1 presents a step-by-step derivation from the concept of the 

control function 𝑔𝑧 to the general form of the PDF 𝑝𝑧 = exp(∫𝑔𝑧 𝑑𝑧) as: 

𝑑𝑝𝑧
𝑑𝑧

= 𝑔𝑧𝑝𝑧   ⟹   𝑝𝑧 = exp (∫𝑔𝑧 𝑑𝑧) (2.4) 

 The indefinite integral in Equation 2.4 solely serves the purpose of providing a consistent 

transformation between control function parameterization and the corresponding PDF 𝑝𝑧. While 

this integration has no influence on convergence of the PDF to unit area, it provides a functional 

form that is able to match the shape considerations of the empirical data being reproduced as a 

continuous function. Convergence of this relationship to unit area relies upon integration of the 

PDF 𝑝𝑧 on a definite interval within the standard-score space 𝑧. This process then adjusts the 

constant of integration from evaluating ∫𝑔𝑧 𝑑𝑧 to scale the definite integral to unit area. Equation 

2.5 introduces the relationship between the PDF 𝑝𝑧 and its corresponding CDF 𝑐𝑧 as: 

𝑝𝑧 = exp (∫𝑔𝑧 𝑑𝑧)   ⟹  𝑐𝑧 = ∫ 𝑝𝑧

𝑧1

𝑧0

𝑑𝑧 (2.5) 

where, the integration is defined on the interval of 𝑧0 ≤ 𝑧 ≤ 𝑧1, and 𝑧0 represents the standard-

score position pertaining to the origin of the discrete data in the measurement space 𝑥0. The 
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relationship between control function 𝑔𝑧, PDF 𝑝𝑧 and CDF 𝑐𝑧 projects into the measurement space 

yielding their measurement space equivalent PDF 𝑝𝑥 and CDF 𝑐𝑥 using the standard deviation 𝜎𝑥,𝑖. 

At this point, this analysis has generally qualified the attributes relating to the location, scale, and 

shape of PDFs through the median, standard deviation, and control function, respectively. The 

following sections fully define the statistical transformations between the measurement space 𝑥, 

median-relative space 𝑦, and standard-score space 𝑧, and expresses the control function as a 

parametric relationship that easily produces asymmetric, shifted, tail-weighted, and even multi-

modal distributions. 

2.1.3. STATISTICAL TRANSFORMATIONS 

The median and standard deviation statistics transform PDFs between the measurement 

space 𝑥, the median relative space 𝑦, and the standard-score space 𝑧. A key attribute of this relation 

is that the CDF is identical in each spatial representation, which ensures conservation of probability 

of occurrence for all spatial representations as:  

∫𝑝𝑥
∗ 𝑑𝑥 = ∫𝑝𝑦

∗ 𝑑𝑦 = ∫𝑝𝑧 𝑑𝑧 (2.6) 

Where, 𝑝𝑥
∗, 𝑝𝑦

∗, and 𝑝𝑧 represent the zero-centered PDFs in the measurement, median-

relative, and standard-score spatial representations, respectively. Notably, the * superscript centers 

the distribution at zero by subtracting the associated median value as, 𝑝𝑥
∗ = 𝑝𝑥 −𝑚𝑥  for each 

spatial representation. More importantly, Equation 2.6 ensures that the hierarchal relationship 

between control function 𝑔𝑧, PDF 𝑝𝑧 and CDF 𝑐𝑧 in the standard-score space consistently projects 

into the measurement space or median-relative space. Hence, while the control function only 

mathematically exists in the standard-score space, the projection of the resulting PDF 𝑝𝑧 

simultaneously defines the probability of occurrence in all spatial representations. 

Table 2.1 introduces the transformations for continuous zero-centered PDFs between each 

spatial representation. Transformations of the discrete data are accomplished using the median and 

standard deviation statistics and denoted in the “Magnitude” column of Table 2.1 where, 𝑥𝑖 , 𝑦𝑖 , 

and 𝑧𝑖 represent the discrete data measurements in their respective spatial representations. The 

“PDF” and “derivative” columns introduce variable transformations that ensure conservation of 

probability within the CDFs in each spatial representation.  
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Table 2.1: Data transformations between each spatial orientation. 

Space Magnitude PDF Derivative 

𝑥 𝑥𝑖 𝑝𝑥
∗ =

1

𝑚𝑥,𝑖
𝑝𝑦

∗ =
1

𝜎𝑥,𝑖
𝑝𝑧 𝑑𝑥 = 𝑚𝑥,𝑖𝑑𝑦 = 𝜎𝑥,𝑖𝑑𝑧 

𝑦 𝑦𝑖 =
𝑥𝑖
𝑚𝑥,𝑖

=
𝜎𝑥,𝑖
𝑚𝑥,𝑖

𝑧𝑖 + 1 𝑝𝑦
∗ =

𝑚𝑥,𝑖

𝜎𝑥,𝑖
𝑝𝑧 = 𝑚𝑥,𝑖𝑝𝑥

∗ 𝑑𝑦 =
𝜎𝑥,𝑖
𝑚𝑥,𝑖

𝑑𝑧 =
1

𝑚𝑥,𝑖
𝑑𝑥 

𝑧 
𝑧𝑖 =

𝑦𝑖 − 1
𝜎𝑥,𝑖
𝑚𝑥,𝑖

=
𝑥𝑖 −𝑚𝑥,𝑖

𝜎𝑥,𝑖
 𝑝𝑧 𝑑𝑧 =

𝑚𝑥,𝑖

𝜎𝑥,𝑖
𝑑𝑦 =

1

𝜎𝑥,𝑖
𝑑𝑥 

 

Table 2.2 introduces the lower bound, central-tendency, and upper bound for parametric 

PDFs in each spatial representation. To reiterate, the probability of occurrence between the lower, 

central, and upper bounds within each spatial representation is retained, which implies 

conservation of probability. There is a 50-percent chance that data exist between the lower bound 

and central tendency, ∫ 𝑝𝑥
𝑚𝑥

0
𝑑𝑥 = ∫ 𝑝𝑦

1

0
𝑑𝑦 = ∫ 𝑝𝑧

0

−
𝑚𝑥,𝑖
𝜎𝑥,𝑖

𝑑𝑧 =
1

2
; and there is 100-percent chance 

that data exist between the lower and upper bounds.  Note that the lower bound of the standard-

score space is dependent upon the median and standard deviation statistics and the central tendency 

of the measurement space is dependent upon the median. Therefore, evaluating the distribution 

solely in the standard-score space and projecting it into the measurement space could introduce 

measurement bias for processes where the median and standard deviation change with respect to 

time. In essence, the median-relative space evaluates the CDF using two constant reference points 

with a predefined probability, which alleviates this concern. This work identifies the median-

relative space as an unbiased estimate of probability that projects into the measurement space and 

standard-score space. Using this spatial representation to evaluate all aspects of a PDF, including 

the mean statistic, allows the median and standard deviation to change without recursively 

influencing this interpretation of the PDF.  
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Table 2.2: Data boundaries in each spatial orientation. 

 𝑥𝑖 𝑦𝑖 𝑧𝑖 

Lower Bound 𝑥0 = 0 𝑦0 = 0 𝑧0 = −
𝑚𝑥,𝑖

𝜎𝑥,𝑖
 

Central Tendency 𝑚𝑥 𝑚𝑦 = 1 𝑚𝑧 = 0 

Upper Bound 𝑥𝑚𝑎𝑥 = ∞ 𝑦𝑚𝑎𝑥 = ∞ 𝑧𝑚𝑎𝑥 = ∞ 

 

2.1.4. THE CONTROL FUNCTION  

Equation 2.4 introduces the control function as the lognormal derivative of a continuous 

PDF. The nature of the control function defines the shape, or relative frequency, of the PDF in the 

standard-score space. There exist specific conditions where the control function will enforce the 

PDF to converge to a finite area on an unbounded interval, where that area can be scaled to unity. 

Specifically, the control function has to: 1) approach positive infinity as ‘z’ approaches negative 

infinity, 𝑔𝑧 → +∞ as 𝑧 → −∞; and, 2) approach negative infinity as ‘z’ approaches positive 

infinity, 𝑔𝑧 → −∞ as 𝑧 → +∞. 

This work further qualifies the control function as a parametric representation that has the 

freedom and flexibility to match the shape of many discrete datasets. Parameterization of the 

control function such that it generally reproduces the shape of the histograms illustrated in Figure 

2.1 is largely the topic of this chapter. Notably, the ability for the control function to accurately 

capture the information of the dataset is controlled by the number of parameters selected. 

Specifically, for the “Lenna” data increasing the number of parameters should provide more 

accurate reproduction of the measurement data; however, this data and its parametric PDF are only 

included as a proof of concept. Here, this section reiterates the progression of information 

necessary to estimate the nature of the control function. Specifically, the discrete data are expressed 

as a PMFs in the measurement space, with the median and standard deviation progressively 

transforming them into the median-relative space 𝑦 and standard-score space 𝑧 (see Table 2.1). 

The control function is only mathematically defined in the standard-score space, but it obviously 

embodies information related to the probability of occurrence on bounded intervals in the 
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measurement space 𝑥. In the next series of sections, this chapter introduces the parametric nature 

of the control function and progressively communicates the information necessary to parametrize 

it, starting with the ubiquitous normal distribution. 

2.1.4.1. The Normal Distribution 

Equation 2.7 introduces a first-order control function 𝑔𝑧 which produces a normal 

distribution for a specific parameterization: 

𝑔𝑧 = −[𝛼1 + 𝛼2𝑧] 

𝑝𝑧 = exp (−[𝛼0 + 𝛼1𝑧 +
𝛼2
2
𝑧2]) 

(2.7) 

Where, 𝛼0 is the constant of integration, and 𝛼1 and 𝛼2 represent the control function parameters. 

Note that the control function and PDF are essentially polynomial series with respect to the 

standard-score variable 𝑧. Moreover, the control function in Equation 2.7 has a negative slope 

given by −𝛼2 with intercept −𝛼1. Therefore, this relationship has the necessary properties of 𝑔𝑧 →

+∞ as 𝑧 → −∞ and 𝑔𝑧 → −∞ as 𝑧 → +∞ to enforce convergence to unit area. Appendix A.2 

shows that setting control function parameters to be 𝛼1 = 0 and 𝛼2 = 1 produces the normal 

distribution, which relegates the constant of integration to be 𝛼0 = − ln |√1 2𝜋⁄ |. Table 2.3 

summarizes the control function parametrization for the normal distribution and provides the 

definition of 𝑝𝑧 from Equation 2.7.  

The control function parameter 𝛼1 in Equation 2.7 serves to shift the PDF along the 𝑧-axis 

while maintaining unit area. Consequently, the general form of the linear control function 𝑔𝑧 =

−𝛼1 − 𝛼2𝑧 could present useful properties for fitting the shape of the histograms shown in Figure 

2.1. Hereafter, this root polynomial will serve as a basis for generating PDFs reminiscent of the 

normal distribution, but with shape attributes that more accurately reflect measurement data. In the 

next sections, this chapter extends this interpretation beyond the normal distribution to explore 

parametrization of the control function that has the freedom and flexibility to achieve this 

objective.  
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Table 2.3: Parametrization of the normal distribution and 𝜶𝟐 family of curves. 

Historical Solution 

(Polar Coordinates) 

General Parametric Solution 

(See Appendix A.2) 

𝛼0 = −ln |√
1

2𝜋
| 

𝛼1 = 0 

𝛼2 = 1 

𝛼0 = −ln |√
𝛼2
2𝜋
| 

𝛼1 = 0 

0 < 𝛼2 < ∞ 

𝑝𝑧 = exp(ln |√
1

2𝜋
|) exp (−

1

2
𝑧2) , the normal distribution 

 

2.1.4.2. 𝜶𝟐 Family of Curves 

This section examines how the shape of the PDF in the standard-score space is governed 

by a linear control function with a vertical intercept of zero given by 𝛼1 = 0, but with 0 < 𝛼2 <

∞. Using a change of variable, the tangent function transforms the 𝛼2 parameter into an angular 

slope measured in degrees. Given that 𝛼2 is the critical parameter allowing the control function to 

generate a PDF with unit area, this parameter can influence the resulting shape of the PDF resulting 

in the “𝛼2 family of curves.” Equation 2.8 introduces the root polynomial control function for the 

𝛼2 family of curves: 

𝑔𝑧 = − [𝛼1 + tan (
𝛼2𝜋

180
)𝑧] 

𝑝𝑧 = exp (− [𝛼0 + 𝛼1𝑧 +
1

2
tan (

𝛼2𝜋

180
) 𝑧2]) 

(2.8) 

Equation 2.8 purposefully uses degrees instead of radians for two reasons. First, it is more intuitive. 

Second, converting the slope into a measure of degrees constrains 𝛼2 to exist between 0° < 𝛼2 <

90°, instead of using radians which is unbounded.  

Figure 2.3 shows that the 𝛼2 family of PDFs are bounded by familiar functions, with the 

normal distribution being an intermediate case. Figure 2.4 depicts the corresponding control 
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functions for these PDFs with the following angular slopes: 𝛼2 = 0
° produces a uniform 

distribution; 𝛼2 = 45
° produces the normal distribution; and, 𝛼2 = 90

° produces a Dirac Delta 

function. By progressively increasing the angle 𝛼2 from 0° → 90°, both the left and right-hand 

side tails of the PDF become less prominent and the distribution becomes more peaked. Note that 

𝛼2 contributes to the symmetry of the PDF while 𝛼1 shifts it along the 𝑧 axis. To reiterate, these 

numerical examples enforce 𝛼1 = 0 to ensure the distribution is centered about the standard-score 

origin. Finally, Table 2.3 provides a general form defining the constant of integration for the 𝛼2 

family of curves to be 𝛼0 = − ln|√𝛼2 2𝜋⁄ |. 

In general, the 𝛼2 family of curves does not have enough freedom and flexibility to 

reproduce the histogram data shown in Figure 2.1, which exhibit attributes of being asymmetric, 

shifted, tail-weighted, and even multi-modal. Consequently, this approach extends the root 

polynomial control function in Equation 2.8 with additional polynomial or Fourier terms to 

adequately replicate the shape of these histograms. 

 

 

Figure 2.3: Bounding probability density functions for the 𝜶𝟐 family of curves. 
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Figure 2.4: Corresponding control functions for bounding PDFs of the 𝜶𝟐 family of curves. 

 

2.1.4.3. Polynomial Series Extension 

Figure 2.1 shows the water consumption, hydraulic conductivity, and S&P 500 

distributions that are unimodal, shifted, asymmetric, and tail-weighted. In order to replicate the 

shape of these histograms, this analysis extends the root polynomial control function to include 

additional terms in the series, as: 

𝑔𝑧 = −[𝛼1 + tan (
𝛼2𝜋

180
) 𝑧 + ∑ 𝛼𝑛𝑧+1𝑧

𝑛𝑧+1

𝑁𝑧

𝑛𝑧=1

] (2.9) 

Where, 𝛼𝑛𝑧 is the parametric constant, 𝑛𝑧 represents the order on the standard-score variable 𝑧, 

and 𝑁𝑧 is the total order of the control function in the standard-score space. As before, the 

distribution is primarily defined by 0° < 𝛼2 < 90°, which ultimately contributes to convergence. 

Experience suggests that terms subsequent to the root polynomial control function diminish in 

significance. Practical application of Equation 2.9 is limited to distributions that are unimodal but 

may be asymmetric, shifted, and tail-weighted. In general, odd polynomials 𝛼1,3,5,7… contribute to 

the asymmetry of the PDF, whereas even polynomials 𝛼2,4,6,8… contribute to the peakedness of the 

distribution. Finally, the integration constant 𝛼0 must be defined to ensure the PDF has unit area. 
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Analytical integration techniques to evaluate closed-form expressions of 𝛼0 for parametric PDFs 

may be intractable; therefore, numerical integration provides an alternative approach. 

2.1.4.4. Modified-Fourier Series Extension 

Figure 2.1 shows the Lenna light intensity histogram as a multi-modal distribution which 

clearly cannot be replicated by a simple polynomial series. To accommodate the wave-like nature 

of multiple peaks, this analysis extends the root polynomial of the 𝛼2 family of curves to include 

a modified-Fourier series, ℱ𝑛𝑧,𝑁ℱ , as: 

ℱ𝑛𝑧,𝑁ℱ = ∑ 𝜐𝑛𝑧,𝑛ℱ sin(𝜓𝑛𝑧,𝑛ℱ𝑧 + 𝜚𝑛𝑧,𝑛ℱ)

𝑁ℱ

𝑛ℱ=0

, ℱ𝑛𝑧,0 = 0 

𝑔𝑧 = −[𝛼1 + ℱ0,𝑁ℱ + tan (
𝛼2𝜋

180
) {1 + ℱ1,𝑁ℱ}𝑧 + ∑ ℱ𝑛𝑧,𝑁ℱ𝑧

𝑛𝑧

𝑁𝑧

𝑛𝑧=2

] 

(2.10) 

Where, 𝑁ℱ is the total number of modified-Fourier sinusoidal waves and 𝑛𝑧 represents the order 

of the standard-score variable 𝑧. In Equation 2.10, three constants, 𝜐𝑛𝑧,𝑛ℱ , 𝜓𝑛𝑧,𝑛ℱ  and 𝜚𝑛𝑧,𝑛ℱ , 

parameterize each modified-Fourier series wave. Similar to the polynomial series extension, the 

control function is primarily controlled by 0° < 𝛼2 < 90°. However, this approach allows for a 

period function to supplement the angular slope 𝛼2 along the horizontal axis. This permits the 

modified-Fourier series greater freedom for fitting oddly-shaped and even multi-modal datasets, 

as demonstrated in the application section. The implications of the polynomial and modified-

Fourier series extensions are described in the application section. 

2.1.5. MEDIAN-RELATIVE SPACE 

Previously, Table 2.1 introduced the dimensionless median-relative space that expresses 

the probability of occurrence for the discrete data and parametric PDFs without bias from the 

median and standard deviation statistics. This permits comparison of seemingly disparate datasets 

by transforming the shape of the distribution from the standard-score space to the median-relative 

space: 𝑝𝑦 =
𝑚𝑥,𝑖

𝜎𝑥,𝑖
𝑝𝑧. Minimizing the mean-squared error between the CDF 𝑐𝑦 and CMF 𝑐𝑦,𝑘1in the 

median-relative space provides this analysis with a robust objective function for parameterization 

of the control function. Clearly, the statistics, hierarchical integrations that promote conservation 
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of probability, and functional relationships between the 𝑥, 𝑦 and 𝑧 spatial orientations are 

prominent features of this work.  

2.1.5.1. Data Culling 

All data measurements naturally arise in the measurement space characterized as 𝑥𝑖. When 

transformed into median-relative 𝑦𝑖 or standard-score 𝑧𝑖 form, the natural upper bound remains an 

infinitely large measurement. However, very large magnitude measurements may be symptomatic 

of either excessive measurement error or perhaps observations from another distinct population. 

Population outliers can potentially bias this evaluation of the median and standard deviation, as 

well as the parameters within the control function given their reliance on the standard-score space. 

The focus of this section is to predefine a consistent upper bound in the median-relative space 

𝑦𝑚𝑎𝑥 that removes potential population outliers from discrete datasets and analogously applies to 

any dataset regardless of location or scale.  

This analysis only consider datasets that have discrete data within the range 𝑥0 < 𝑥 <

𝑥𝑚𝑎𝑥, and hence are comprised of real, non-zero, and positive measurements (See Figure 2.1). 

This range reflects values on the median-relative axis on the interval 𝑦0 < 𝑦 < 𝑦𝑚𝑎𝑥. The first 

position is the measurement-space origin denoted by a zero-magnitude measurement 𝑥0 = 𝑦0 =

0, which simply transforms into the origin of the median-relative space. Before parameterizing a 

PDF to reflect the shape of the histogram, this approach discards all data greater than the culling 

threshold 𝑦𝑖 > 𝑦𝑚𝑎𝑥. Herein, this approach applies a heuristic by selecting 𝑦𝑚𝑎𝑥 to be a multiple 

of “𝑚𝑦,𝑖 = 1” and then apply the same value to each histogram. A consistent data culling threshold 

𝑦𝑚𝑎𝑥 ensures data are retained to the same degree for the disparate datasets, regardless of their 

scale in the measurement space.  

Data culling can potentially introduce recursive adjustments in the median and culling 

threshold and hence mapping of 𝑥𝑖 ↔ 𝑦𝑖 ↔ 𝑧𝑖. However, the median is seemingly insensitive to 

the low frequency at which extremely large erroneous measurements occur, and hence datasets 

may require significant culling before observing changes to the median. In contrast, the standard 

deviation is quite sensitive to high magnitude outliers. Therefore, data culling is a necessary step 

to generate the correct estimation of 𝜎𝑥,𝑖  providing accurate and consistent mapping between the 

continuous representation of the discrete data between each spatial transformation 𝑥 ↔ 𝑦 ↔ 𝑧 as 

shown on Table 2.1.  
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2.1.5.2. Objective Function 

Upon culling population outliers, the framework minimizes an objective function using a 

MSE approach to estimate parameters within the polynomial and/or modified-Fourier series 

control functions. The objective function penalizes the difference between the CDF and CMF as: 

𝑀𝑆𝐸𝑐,𝑦 =
1

𝑁𝑘
∑[𝑐𝑦 − 𝑐𝑦,𝑘]

2

𝑁𝑘

𝑘=1

 (2.11) 

Where, 𝑁𝑘 represents the number of bins in the analysis. Minimizing the MSE in Equation 2.11 

creates a parametric PDF that reproduces the shape of the histogram data. This process relies on 

the hierarchal relationship between the control function, PDF, and CDF to ensure the parametric 

PDF correctly reproduces the PMF for all reasonable measurements along each spatial 

representation, concurrently.  

A key insight is that the median-relative space allows this analysis to produce equally-

spaced probability interval bins 𝑘, while supporting a general algorithm that allows application of 

the objective function to many datasets as disparate as those on Figure 2.1. Additionally, these bins 

are defined independent of, and prior to, the control function parametrization. 

2.1.5.3. The Mean Statistic 

This section demonstrates that the mean of the distribution is fully defined by a 

combination of median, standard deviation, and control function statistics. The probability-

weighted mean for a PDF 𝑝𝑧 in the standard-score space is defined on some interval as: 

𝜇𝑧 = ∫ 𝑧𝑝𝑧

𝑧𝑚𝑎𝑥

𝑧0

𝑑𝑧 (2.12) 

Where, 𝜇𝑧 represents the mean statistic in the standard-score space 𝑧, and 𝑧0 = −
𝑚𝑥,𝑖

𝜎𝑥,𝑖
 while 

𝑧𝑚𝑎𝑥 =
𝑦𝑚𝑎𝑥−1
𝜎𝑥,𝑖
𝑚𝑥,𝑖

 where 𝑧0 < 𝑧 < 𝑧𝑚𝑎𝑥, The mean statistic occupies a single position on the 

distribution and can be mapped through each spatial orientation. Equation 2.13 demonstrates this 

mapping of the mean statistic for the parametric PDF between 𝑥 ↔ 𝑦 ↔ 𝑧. Furthermore, the mean 
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is entirely defined by the median, standard deviation, and control function as follows and is derived 

in Appendix A.3. 

𝜇𝑥 = 𝑚𝑥,𝑖𝜇𝑦 = 𝑚𝑥,𝑖 + 𝜎𝑥,𝑖𝜇𝑧     ⟹    𝜇𝑥 = 𝑚𝑥,𝑖 + 𝜎𝑥,𝑖∫ [𝑧 exp (∫𝑔𝑧 𝑑𝑧)]
𝑧𝑚𝑎𝑥

𝑧0

𝑑𝑧 (2.13) 

The arithmetic mean of the discrete dataset can be compared to the probability-weighted 

mean of the corresponding parametric PDF to empirically evaluate its goodness of fit. The mean 

statistic on its own is not sufficient to characterize goodness of fit because there are an infinite 

number of distributions that could result in the same mean statistic but with varying shapes. 

Therefore, the mean statistic is not included in the objective function; however, the mean statistic 

of the parametric PDF will naturally gravitate toward the arithmetic mean of the discrete dataset 

as a consequence of minimizing the objective function in Equation 2.11. 

To proceed, this analysis considers a comparison of the mean statistic by first empirically 

defining the arithmetic mean of the dataset in the measurement space. Equation 2.14 relates the 

arithmetic mean in the measurement space 𝜇𝑥,𝑖 to an analogous value in the median-relative space 

𝜇𝑦,𝑖. 

𝜇𝑦,𝑖 =
1

𝑁𝑖
∑𝑦𝑖

𝑁𝑖

𝑖=1

=
1

𝑚𝑥,𝑖𝑁𝑖
∑𝑥𝑖

𝑁𝑖

𝑖=1

 

∵ 𝜇𝑥,𝑖 =
1

𝑁𝑖
∑𝑥𝑖

𝑁𝑖

𝑖=1

, ∴ 𝜇𝑦,𝑖 =
1

𝑚𝑥,𝑖
𝜇𝑥,𝑖 

(2.14) 

A novel contribution of this analysis defines the median-relative space arithmetic mean 𝜇𝑦,𝑖 to be 

a transformation of the measurement space arithmetic mean: 𝜇𝑦,𝑖 =
1

𝑚𝑥
𝜇𝑥,𝑖 . This ratio is unity for 

a normal distribution and increases in value as the distribution becomes progressively tail-heavy. 

Using a MSE approach, Equation 2.15 provides an independent measure to verify the 

parametrization of the control function fitting the CDF 𝑐𝑥 to the CMF 𝑐𝑥,𝑘1. 

𝑀𝑆𝐸𝜇,𝑦 = [𝜇𝑦,𝑖 − 𝜇𝑦]
2
 (2.15) 
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Equation 2.15 is analogous to the objective function, but instead constitutes how effectively 

the control function selection expresses the continuum behaviour of the collective data. 

Minimizing the objective function given by Equation 2.11 constrains the continuous PDF to be 

nearly identical to the PMF, given an appropriate control function. Notably, the objective function 

in Equation 2.11 does not guarantee nor even suggest that Equation 2.15 will represent a global 

minimum. The applications considered herein show that selecting an appropriate control function 

results in commensurate accuracy for the 𝑀𝑆𝐸𝑐,𝑦 and 𝑀𝑆𝐸𝜇,𝑦. 

At this point, it is apparent that the median, standard deviation, and control function 

parametrization embody all of the information necessary to reproduce the discrete dataset as a 

PDF. In other words, they compress all information pertaining to the distribution into a reduced 

set of scalar values. The median-relative space guarantees a constant frame of reference for 

evaluating the scale and shape of a PDF and provides the foundation for viewing the mean statistic 

as a solution to an advection-dispersion problem (see Equation 2.13). 

2.1.6. DEGREES OF FREEDOM ANALYSIS 

Here, a degrees of freedom analysis is used to evaluate the effectiveness of compressing 

the histogram data into a PDF using the median, standard deviation, and control function 

parametrization. Assuming these statistics represent one degree of freedom each, the parametric 

compression of many datasets can be evaluated in the median-relative space using the relationships 

in Table 2.4. A zero-centered distribution is an example where evaluating degrees of freedom 

within the median-relative space is not possible, because this requires division by zero.  
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Table 2.4: Degrees of freedom analysis.  

Description Measure Degrees of Freedom 

Arithmetic Mean 𝜇𝑦,𝑖 =
1

𝑁𝑖
∑𝑦𝑖

𝑁𝑖

𝑖=1

 

𝑁𝜇 = 1 

Probability-Weighted Mean 𝜇𝑦 = ∫ 𝑦𝑝𝑦

𝑦𝑚𝑎𝑥

𝑦0

𝑑𝑦 

Median 𝑚𝑦,𝑖 = 1 𝑁𝑚 = 1 

Standard Deviation 𝜎𝑦,𝑖 =
𝜎𝑥,𝑖
𝑚𝑥,𝑖

 𝑁𝜎 = 1 

Control Function 𝑔𝑧(𝛼, 𝜐, 𝜓, 𝜚 …𝑁𝐶𝐹) 𝑁𝐶𝐹 

PDF 𝑝𝑦 =
𝑚𝑥,𝑖

𝜎𝑥,𝑖
exp (∫𝑔𝑧 𝑑𝑧) 𝑁𝑃𝐷𝐹 = 𝑁𝜇 +𝑁𝑚 + 𝑁𝜎 + 𝑁𝐶𝐹 

Parametric Compression 𝛼, 𝜐, 𝜓, 𝜚 𝑁𝑃𝐶 = 𝑁𝑖 −𝑁𝑃𝐷𝐹  

Discrete Data 𝑥𝑖 𝑁𝑖 

Compression Efficiency 𝒞 
𝑁𝑖 −𝑁𝑃𝐷𝐹

𝑁𝑖
× 100% 

Note: 𝑁𝑖 represents the data remaining in the analysis after culling occurs. 

  



 28 

2.2. APPLICATION 

This section applies the methodology pertaining to control function theory to the four 

histograms shown on Figure 2.1, which represent datasets from economics, engineering, finance, 

and image analysis. The diversity of data sources is meant to strengthen this empirical 

demonstration and exhibit the generality of this approach. To begin, the heuristic approach can be 

summarized as: 

1. Evaluate the median 𝑚𝑥,𝑖 and standard deviation 𝜎𝑥,𝑖  of the discrete dataset 𝑥𝑖. 

2. Transform the discrete data 𝑥𝑖 into the median relative space using 𝑦𝑖 =
𝑥𝑖

𝑚𝑥,𝑖
. 

3. Perform data culling on 𝑦𝑖 for all datasets with the predefined threshold 𝑦𝑚𝑎𝑥. This threshold 

may be adjusted to balance the need to both minimize the amount of culled data, and also 

minimize the distortion of large magnitude outliers on 𝑚𝑥,𝑖 and 𝜎𝑥,𝑖. 

4. Finalize the standard deviation 𝜎𝑥,𝑖 and arithmetic mean 𝜇𝑥,𝑖 of the culled data. 

5. Create discrete bins 𝑘 within the culled dataset 𝑥𝑖 to generate histograms ℎ𝑥𝑘−1<𝑥𝑖<𝑥𝑘and the 

probability of occurrence 𝑝𝑥,𝑘 within each bin. 

6. Transform the PMF 𝑝𝑥,𝑘 into a CMF 𝑐𝑥,𝑘1and then map it into the median-relative space, 

𝑐𝑥,𝑘1 → 𝑐𝑦,𝑘1. 

7. Choose an appropriate control function to generate a CDF 𝑐𝑧 and then map 𝑐𝑧 → 𝑐𝑦.  

8. Incrementally add terms to the control function extension and use an optimization strategy that 

adjusts parameters within the control function 𝑔𝑧 to minimize the objective function such that 

𝑐𝑦,𝑘1 ≅ 𝑐𝑦. 

9. Evaluate the appropriateness of the control function by comparing the arithmetic mean 𝜇𝑦,𝑖  to 

the mean statistic 𝜇𝑦 in the median-relative space. 

Step 3 estimates the median and standard deviation, while culling data from the water 

consumption and S&P 500 datasets using 0 < 𝑦𝑖 < 4 as the range for inclusion, with all details of 

this data culling exercise summarized on Table 2.5.  Both the hydraulic conductivity and Lenna 

datasets require no culling as all data exist on the interval 0 < 𝑦𝑖 < 4. Note that 𝑦𝑖 is dimensionless 

and hence no units are reported for the various datasets. The water consumption data has 162 data 

points beyond the culling threshold 𝑦𝑚𝑎𝑥 = 4 that have a disproportionate influence on the 

standard deviation of the distribution. Including these data points increases the standard deviation 
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from 2.57x101 to 2.93x101, which is an increase of approximately 15% for data reflecting less than 

1% of the population. Failure to cull this data would bias the parameter estimation of the control 

function when enforcing 𝑐𝑦,𝑘1 ≅ 𝑐𝑦. The S&P 500 data has 8 points beyond the threshold 𝑦𝑚𝑎𝑥 =

4 that have a disproportionate influence on the arithmetic mean of the distribution. Including these 

data points increases the arithmetic mean from 3.40x101 to 3.77x101, which is an increase of 

approximately 11% for data reflecting less than 2% of the population. Variation in the mean 

statistic suggests the culled data has undue influence on the shape of the distribution, because the 

median and standard deviation remain relatively constant. 

 

Table 2.5: Summary of statistics for the four disparate datasets. 

 

Water 

Consumption 

Hydraulic 

Conductivity 

S&P 500 

08/21/2009 

Index 

Lenna Light 

Intensity 

Data and Statistics     

Total Measurements 22,509 720 499 262,144 

Data Points Culled 162 0 8 0 

Analysis Data Points (𝑁𝑖) 22,347 720 491 262,144 

     

Median (𝑚𝑥,𝑖) 4.00 x101 9.93 x10-3 3.07 x101 1.29 x102 

Standard deviation (𝜎𝑥,𝑖) 2.57 x101 5.64 x10-3 1.97 x101 4.81 x101 

Arithmetic Mean (𝜇𝑥,𝑖) 4.45 x101 1.11 x10-2 3.40 x101 1.23 x102 

Polynomial Series Extension 

PDF (𝑁𝑃𝐷𝐹) 8 8 8  

Parametric Compression (𝑁𝑃𝐶) 22,339 712 483 n/a 

Compression Efficiency (𝒞) 99.28% 98.89% 98.37%  

Modified-Fourier Series Extension 

PDF (𝑁𝑃𝐷𝐹) 8 8 8 17 

Parametric Compression (𝑁𝑃𝐶) 22,339 712 483 262,127 

Compression Efficiency (𝒞) 99.28% 98.89% 98.37% 99.99% 

 

The culled discrete data representing the water consumption, hydraulic conductivity, and 

S&P 500 index sources were arranged into 16 discrete bins of size ∆𝑦 = 0.25 within the median-

relative space over the interval 0 ≤ 𝑦 ≤ 4. Given the multi-modal nature of the Lenna histogram, 
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the analysis implements 86 discrete bins of size ∆𝑦 ≅ 0.0234 over the interval 0 ≤ 𝑦 ≤ 4 to 

resolve the PMF as a PDF. After culling the population outliers, the analysis calculates the 

probability of occurrence within the aforementioned ∆𝑦 intervals. Next, these probabilities were 

summed into a CMF 𝑐𝑥,𝑘1, and then mapped to 𝑐𝑦,𝑘1using the median statistic 𝑚𝑥,𝑖. The probability 

of occurrence for intervals within each application are itemized in Appendix A.4. 

Selecting a control function 𝑔𝑧(𝛼, 𝜐, 𝜓, 𝜚…𝑁𝐶𝐹) from Equations 2.8 and 2.9 allow this 

analysis to replicate the CMF 𝑐𝑦,𝑘1 of each dataset as a CDF 𝑐𝑦. This step requires parameter 

estimation of 𝛼, 𝜐, 𝜓, 𝜚 within the control function for either the polynomial or modified-Fourier 

series extensions. This application considers both the polynomial and modified-Fourier series 

extensions for the unimodal datasets and applies the modified-Fourier series extension for both the 

unimodal and multi-modal datasets. The parameter 𝛼0 in Equations 2.6 and 2.7 are similarly 

present in the standard-score PDFs for each application and numerical integration constrains 𝛼0 to 

ensure unit area beneath each PDF. This scaling process ensures conservation of probability for 

each application. To this end, Simpson’s Rule is applied within the standard-score space using a 

discretization of ∆𝑧 = 0.02 on the interval −
𝑚𝑥,𝑖

𝜎𝑥,𝑖
< 𝑧 <

𝑦𝑚𝑎𝑥−1
𝜎𝑥,𝑖
𝑚𝑥,𝑖

, while concurrently changing the 

control function parameters to minimize the objective function in Equation 2.10 for each 

application. Table 2.6 introduces characteristic control functions that parametrically reproduce 

each dataset.  

As mentioned earlier, the analysis applies the exponential polynomial and modified-

Fourier series parameterization for each of the water consumption, hydraulic conductivity, and 

S&P 500 index datasets. Notably, these parameterizations require the same number of terms to 

accurately reproduce the datasets through the polynomial and modified-Fourier series extensions 

of the control function. The polynomial series extension for these three datasets applies two 

additional terms beyond the root polynomial control function. Additionally, the modified-Fourier 

series extension for these three datasets applies one sinusoidal wave with three additional 

parameters beyond the root polynomial control function. The parametric compression 𝑁𝑃𝐶 for both 

the polynomial and modified-Fourier series extensions are identical and are listed on Table 2.5. 

Note that 𝜚0,1 for the water consumption, hydraulic conductivity, and S&P 500 index data is 

necessarily “zero” because the slope of the control function does not change from negative to 
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positive, thus there is no change in concavity. Hence, only 𝜐0,1 and 𝜓0,1 contribute to replicating 

discrete data as unimodal PDFs. This ensures that the compression efficiency 𝒞 is identical for 

both control function extensions as applied to these unimodal distributions (see Table 2.5). Later 

this chapter discusses how the modal nature of the distribution is inherently linked to changes in 

concavity.  

Figures 2.5 and 2.6 present results from the parameter estimation exercise for all four 

datasets. These figures depict the shape of the control function 𝑔𝑧 and resulting PDF 𝑝𝑧 in the 

standard score space. On Figure 2.5, note the stark difference between control functions that 

characterize unimodal and multi-modal distributions. Unimodal distributions express control 

functions that have a varying but negative slope across all 𝑧, but do not experience changes in 

concavity. In contrast, the modified-Fourier series control function for the Lenna dataset observes 

multiple changes in concavity, which roughly correspond to the peaks observed on the histogram 

in Figures 2.1.d and parametric PDF in Figures 2.2.d and 2.6. Qualitatively, this suggests that there 

is an innate link between control function concavity and the modal characteristics of the associated 

PDF. Notably, the functions 𝑔𝑧 and 𝑝𝑧 for the water consumption, S&P 500 and hydraulic 

conductivity datasets are visually indistinguishable between the polynomial and Fourier series 

approaches given the low 𝑀𝑆𝐸𝑐,𝑦 obtained when minimizing Equation 2.10 for both approaches. 

Control function parameters that result from minimizing Equation 2.10 for each application are 

itemized on Tables 2.7 and 2.8. 
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Table 2.6: Exponential polynomial and modified-Fourier series control functions for each 

application. 

Water Consumption, Hydraulic Conductivity, and S&P 500 Index Data 

Polynomial Series 𝑔𝑧 = − [𝑎1 + tan (
𝛼2𝜋

180
) 𝑧 + 𝛼3𝑧

2 + 𝛼4𝑧
3] 

Modified-Fourier Series 

ℱ0,1 = 𝜐0,1 sin(𝜓0,1𝑧 + 𝜚0,1) 

𝑔𝑧 = − [𝑎1 + ℱ0,1 + tan (
𝛼2𝜋

180
) 𝑧] 

Lenna Intensity Parametric Control Function 

 

Modified-Fourier Series 

ℱ0,2 = 𝜐0,1 sin(𝜓0,1𝑧 + 𝜚0,1) + 𝜐0,2 sin(𝜓0,2𝑧 + 𝜚0,2) 

ℱ1,2 = 𝜐1,1 sin(𝜓1,1𝑧 + 𝜚1,1) + 𝜐1,2 sin(𝜓1,2𝑧 + 𝜚1,2) 

𝑔𝑧 = −[𝛼1 +ℱ0,2 + tan (
𝛼2𝜋

180
) {1 + ℱ1,2}𝑧] 
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Figure 2.5: Control function visualization for each histogram. 

 

 

Figure 2.6: Standard-score PDF visualization for each histogram. 
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Table 2.7: Parameterization for the water consumption, hydraulic conductivity, and S&P 500 

datasets. 

 Water Consumption 

Hydraulic 

Conductivity  

S&P 500 

Index 

08/21/2009 

CDF Bins 16 16 16 

Polynomial Series Extension 

𝑀𝑆𝐸𝜇,𝑦 6.77 x10-5 2.24 x10-5 1.02 x10-4 

𝑀𝑆𝐸𝑐,𝑦 8.08 x10-6 2.61 x10-5 1.04 x10-5 
    

𝛼0 -0.7344 -0.8061 -0.8950 

𝛼1 0.3625 0.7014 0.3612 

𝛼2 57.2188° 50.7525° 43.3229° 
𝛼3 -0.8475 -1.7144 -0.6196 

𝛼4 0.1249 0.5502 0.1653 

Modified-Fourier Series Extension 

𝑀𝑆𝐸𝜇,𝑦 4.78 x10-6 3.40 x10-5 1.83 x10-4 

𝑀𝑆𝐸𝑐,𝑦 9.23 x10-5 3.12 x10-4 7.71 x10-5 
    

𝛼0 1.2730 1.1166 1.1111 
𝛼1 0.0584 0.0421 0.1048 
𝛼2 26.3296° 31.6049° 29.1762° 

    

𝜐0,1 0.9582 1.0539 0.4359 

𝜓0,1 1.6781 2.3394 1.7898 
𝜚0,1 0.0000 0.0000 0.0000 
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Table 2.8: Parameterization for the Lenna light intensity dataset. 

Control Function 

Parameter 

Lenna Light 

Intensity  

CDF Bins 86 

  

𝑀𝑆𝐸𝜇,𝑦 1.77 x10-5 

𝑀𝑆𝐸𝑐,𝑦 8.91 x10-6 

  
𝛼0 -2.1826 

𝛼1 0.4213 

𝛼2 82.0695 
 

 

𝜐0,1 5.2015 

𝜓0,1 4.0151 

𝜚0,1 0.2116 
 

 

𝜐0,2 -0.1827 

𝜓0,2 1.0838 

𝜚0,2 -2.8071 
 

 

𝜐1,1 -1.6093 

𝜓1,1 2.5347 

𝜚1,1 -1.4543 
 

 

𝜐1,2 -0.1561 

𝜓1,2 11.6571 

𝜚1,2 -5.1059 

 

Figure 2.7 provides a direct comparison between the discrete and continuous CDFs after 

achieving the minimum objective function in Equation 2.10. Low 𝑀𝑆𝐸𝑐,𝑦 values for each 

application suggest that the control function accurately replicates the shape of each dataset over 

the entire range of 0 ≤ 𝑦 ≤ 4. Figure 2.7 presents a comparison of the CDF and CMF in the 

measurement space. These parametric CDFs correspond to the parametric PDFs presented in 

Figure 2.2 for each application. 
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Figure 2.7: Visualization of the CMF and CDF for the optimally parameterized PDFs. This figure 

includes results from minimizing the objective function such that 𝑐𝑦,𝑘1 ≅ 𝑐𝑦 and 𝑐𝑥,𝑘1 ≅ 𝑐𝑥. 

 

Four issues merit discussion regarding the resulting fit between the discrete datasets and 

their continuous parametric counterparts. First, when conducting numerical integration to estimate 

𝛼0, numerical error may impact control function parameterization, and hence the ability to fit the 

shape of discrete data while minimizing 𝑀𝑆𝐸𝑐,𝑦. Second, additional control function terms could 

have more accurately reproduced each dataset. In particular, this would significantly improve 

parameterization of the Lenna light intensity CDF in order to replicate each individual peak shown 

on Figures 2.2.d and 2.6. The ability to preselect the number of Fourier terms in advance of 

minimizing the objective function requires additional conceptualization beyond what is presented 

in this framework. Third, the analysis estimates the median and standard deviation statistics 

directly from the discrete data, hence these statistics are subject to measurement error. 

Additionally, the parametric fit of the control may introduce further error from reproducing the 

discrete data as a smooth function. Fourth, while all CDFs have 𝑐𝑦 = 0 when 𝑦 = 0, the water 

consumption and S&P 500 CDFs rapidly rise to a non-zero value of 𝑐𝑦 upon the first bin 𝑘. This 

occurs because there is non-zero probability of recording the least non-zero measurement 

magnitude for these data sets. 
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A key outcome of this empirical assessment is that the arithmetic mean of each dataset  𝜇𝑥,𝑖 

is similar to the probability-weighted mean of the parametric PDF 𝜇𝑥 as established by small values 

of 𝑀𝑆𝐸𝜇,𝑦 (see Tables 2.7 and 2.8). To reiterate, minimizing Equation 2.10 indirectly enforces the 

arithmetic mean of the discrete dataset to be nearly equal to the probability-weighted mean of the 

PDF for an appropriate control function. The S&P 500 application produces the largest observed 

error, 𝑀𝑆𝐸𝜇,𝑦 = 1.83 x10
−4 while applying the modified-Fourier series control function. Given 

that data in the median-relative space is dimensionless, this error is only √1.83 × 10−4 as a 

percentage of the median 𝑚𝑥,𝑖. Additionally, and in reference to the exponential polynomial 

application of the water consumption distribution where 𝑚𝑥,𝑖 = 40 𝑚
3 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑⁄⁄ , the 

error of 6.77 × 10−5 amounts to approximately 0.80% of the median water consumption. This 

translates into a total error of 7,027 𝑚3 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑⁄⁄  during the July/August 2007 billing 

period for all 22,347-single-family residential accounts. In summary, this chapter concludes via 

this empirical application that the control function is able to delineate many PDFs using the median 

and standard deviation statistics as defined by each dataset. Furthermore, the mean statistic is 

entirely defined by the median, standard deviation, and control function. This work clearly 

demonstrates the reproducibility of this method through its ability to evaluate a wide variety of 

systems relevant to fields as disparate as economics, engineering, finance, and image analysis. 

Given that the four applications comprise hundreds to thousands of data points, the fact 

that the continuum-level information can be replicated with a few parameters in a continuously 

differentiable control function and PDF implies “data compression”. Table 2.5 itemizes the 

compression efficiency 𝒞 for each set of parameters, with a minimum value of 98.37% for the S&P 

500 dataset.  

Future application of this technique will serve to use concepts of probability, time-

dependence and spatial reference information to forecast how the evolution of the median, standard 

deviation, and control function predictably influence the mean statistic. This latter point is 

predicated on the idea that a consistent set of control function parameters can relate causality 

between influential processes and the shape of the distribution. The notion of combining 

probability, time-dependence, and ambient conditions provides the foundation for viewing both 

the PDF and its mean statistic, as expressed in Equation 2.12, as a solution to an advection-

dispersion problem. This realization allows provides motivation to reimagine the advective-
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dispersive process in the context of the statistical transformations in Table 2.1. Appendix A.5 

carefully describes the motivation for viewing PDFs as the solution to an advective-dispersive 

process that ultimately results in Equation 2.16. The median represents the central tendency or 

bulk location of the distribution, while the standard deviation and standard-score PDF combine to 

characterize the scale and shape of the distribution. Therefore, this analysis contends that changes 

to the median, standard deviation, and standard-score PDF through the control function are 

commensurate to advection and dispersion. This provides the motivation for investigating systems 

that observe a continuous shift in the distribution of empirical results through probabilistic 

advection and dispersion using the following relationship:   

      𝑝𝑥     ⏟    
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

    =     𝑚𝑥    ⏟    
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

+      
1

𝜎𝑥
   ×    𝑝𝑧    

⏟        
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐
𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑒
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

(2.16) 

This interpretation of advection and dispersion may provide a path to deconstruct complex 

probabilistic processes into the simple concepts of location, scale, and shape. The ultimate goal of 

this interpretation would be to individually model these statistics and recombine them to 

reproduce, model, and potentially forecast how these complex processes will evolve through time. 

2.3. CONCLUSIONS 

This work demonstrates how a combination of statistics and calculus can characterize the 

relationships between the CDF, PDF, and control function. A motivation for this work is to 

compress discrete datasets without assuming a predefined shape for the distribution of 

measurements as an alternative to kernel density estimation. This framework evaluates the control 

function and combines it with median and standard deviation statistics to produce a continuously 

differentiable function that can replicate discrete datasets. Collectively, individual measurements 

of a system are compressed and expressed through the median, standard deviation, and control 

function, while the mean statistic represents the ensemble system behaviour. Specifically, this 

chapter builds theoretical and empirical evidence to demonstrate the ubiquitous nature of the 

median, standard deviation, and control function, which reflect measures of location, scale, and 

shape that uniquely define a distribution. Understanding how these conditions change through time 



 39 

relative to ambient conditions, is paramount when forecasting how the mean statistic of a system 

will evolve. These revelations warrant future discussion to clearly identify the philosophical 

implications arising from this work. The following conclusions are drawn from this study: 

1. Control function theory represents a form of kernel density estimation that relies upon 

hierarchical relationships between control function, PDF, and CDF to produce a smooth 

representation of otherwise discontinuous data, thus capturing all the information of a discrete 

dataset in a compressed functional form. 

2. Histogram data representing water consumption, hydraulic conductivity, S&P 500, and photo 

light intensity are transformed between the measurement, median-relative, and standard-score 

spaces using the median and standard deviation statistics. The median-relative space divides 

the discrete data by its median value to produce a dimensionless dataset. 

3. Collectively, individual measurements define the continuum condition of any system. The 

median represents the continuum location of the dataset, whereas the standard deviation 

represents the continuum scale of the dataset. The parametric control function provides an 

unambiguous link between the PMF and its continuous representation as a PDF. Therefore, the 

control function is continuum condition that represents the shape of the distribution. 

4. A parametric control function results in a continuously differentiable PDF that can reproduce 

familiar distributions. The normal distribution is generated by a linear control function with a 

negative slope. Supplementary to the root polynomial control function, additional polynomial 

or Fourier terms can reproduce the attributes of asymmetric, tail-weighted, or multi-modal 

distributions.  

5. Control function theory facilitates highly effective compression of discrete datasets by 

evaluating the continuum statistics quantifying the location, scale, and shape of a distribution. 

Application to datasets from engineering, finance, economics, and image analysis show a 

compression efficiency in excess of 98%. 

This work provides a foundation for developing time-dependent, probabilistic relationships 

that characterize how the continuum statistics of a PDF and its resulting mean statistic will evolve 

through time and as a function of ambient conditions. The median-relative space guarantees a 

constant frame of reference for evaluating the scale and shape of the distribution, which in turn 

provides the foundation for viewing the PDF and its mean statistic as a solution to an advection-

dispersion problem. 
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3. Advective-Dispersive Transport of a Probability Density Function: 

Model Development and Water Consumption Application 

Water utilities need to accurately forecast residential water consumption so that they can 

adjust the unit price of water and balance revenues with expenses, enabling them to operate their 

system on a full-cost recovery basis. United States Environmental Protection Agency (EPA) 

documents a shift in policy goals over the past 20 years toward the financially sustainable operation 

and management of water utilities (EPA, 2003; 2005; 2006). In Ontario, Canada, the Water 

Opportunities and Conservation Act mandates that municipal water utilities develop sustainability 

plans for their water distribution services (MOE 2011). Hughes and Leurig (2013) suggest that 

changing water consumption habits has resulted in considerable revenue uncertainty, potentially 

sabotaging utility efforts to develop financially sustainable management practices. House-Peters 

and Chang (2011) and Donkor et al. (2011) provide a comprehensive review of the advances in 

methodologies for urban water forecasting and analysis that quantify trends in water consumption, 

such as: econometrics, agent-based, system dynamics, and artificial neural-network models. They 

conclude that the increased data richness has led to improved modeling techniques; however, they 

suggest that future work will need to develop novel techniques to incorporate this information and 

ultimately elucidate water consumption relationships at multiple scales. Furthermore, they identify 

three key characteristics that may lead to a generally-accepted water consumption modeling 

framework: 

• Development of water consumption models for practical application should focus on those 

models with input variables that can be easily collected, monitored, and used by the utility. 

• Water consumption models should be as parsimonious as possible without compromising the 

integrity of their forecasting quality. 

• Future development should focus on probabilistic forecasting methods that allow utilities to 

make decisions, while quantifying the level of uncertainty of the resulting water consumption 

forecasts. 

These authors acknowledge that there is no clear answer to the question: “Which model is best for 

water consumption forecasting?” and state that current water consumption modeling applications 

require specific parameterization and implementation for different geographic locations, water rate 

structures, historical data quality, and periodicity. Therefore, there is a need in this industry to 



 41 

develop a general water consumption forecasting approach that broadly applies by overcoming the 

specificity of the current models and methodologies. The objective of this analysis is to provide a 

methodology for quantifying the influence of ambient processes on the water consumption 

distribution discussed by Donkor et al. This distribution comprises the water consumption 

measurements from all residential accounts and allows the estimation of the arithmetic mean water 

consumption. Viewing consumption as a distribution may allow the water utility to better 

understand how the collective residential account holders are changing their consumption habits. 

Ambient processes include price, temperature, precipitation, as well as water conservation, 

education, and by-law enforcement.  

The foundation of this analysis is the set of residential water consumption data collected 

from the City of Waterloo, Ontario, Canada. Specifically, this data comprises water consumption 

meter readings representing 10 years consisting of 60 bimonthly billing periods between 

January/February 2007 and November/December 2016 for a total of 1,549,371 observations and 

51,291,348 𝑚3 of cumulative billed water. The pricing structure of the water utility is a volume-

constant rate and the utility services upwards of 27,000 residential accounts during each billing 

period. Summary data is provided in Appendix B.1. Figure 3.1 provides PMF data from the 

November/December bimonthly billing period for the years 2008, 2010, 2012 and 2014. PMF data 

is computed using a frequency histogram that counts the number of consumers in 1 𝑚3 water 

consumption bins and subsequently divides this number by the total measurements within a 

sampling interval. The utility has been annually increasing its real water price, with nearly a one-

real dollar per cubic meter (40-percent) increase between 2008 and 2014. This annual price 

increase coincides with declining water consumption characterized by a progressive compression 

of the water consumption PMF toward the origin. The smooth unimodal shape of these PMFs may 

indicate that residential water consumption is a continuum process, where the location, scale and 

shape is subject to ambient influences such as price and weather. 
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Figure 3.1: Select residential water consumption PMFs for November/December from the City of 

Waterloo, Ontario, Canada. Figure 3.1.a presents data from 2008; Figure 3.1.b presents data from 2010; 

Figure 3.1.c presents data from 2012; and Figure 3.1.d presents data from 2014. Note that weather 

conditions are generally consistent during the November/December billing periods presented on Figure 3.1. 

 

The methodology begins by transforming all of the discrete histograms for each of the 60 

bimonthly billing periods into smooth and continuously differentiable PDFs as outlined in Chapter 

2. This step involves measuring discrete statistics for each sampling period, and then choosing a 

representative but normalized parametric PDF 𝑝𝑧 in the standard-score space which has a 

consistent form throughout the analysis. All sampling periods are characterized by a unimodal 

PDF that is shifted and asymmetric with a heavy tail. The median of the dataset 𝑚𝑥 is used to 

measure the location of the water consumption PMF, the standard deviation 𝜎𝑥 measures its scale, 

while the control function parametrization for the standard-score PDF 𝑝𝑧 characterizes its shape.  

This methodology closely resembles that of kernel density estimation techniques for 

econometrics applications (Zambom and Dias 2012) with the following important differences. 

Zambom and Dias identify some drawbacks of kernel density estimation techniques and state that 

bounded data always produces a biased estimate near the data boundaries. For instance, spurious 

noise can occur within the tail of an estimation or important features of the distribution may be 
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lost due to over-smoothing when the underlying density has a characteristic long tail. The 

methodology applied to water consumption data herein addresses these shortcomings to reproduce 

long-tailed distributions as continuous functions that evolve through time. Strategic data culling 

paired with the objective function proposed in chapter 2 are designed to limit estimator bias, 

without sacrificing the ability to accurately reproduce the long-tailed nature of some datasets when 

fitting a parametric PDF. The consistent parametrization obtained via the control function theory 

is critical to assess how the shape of the water consumption PDF evolves through time as a 

continuous process. 

 The proposed water consumption framework involves formulating and parameterizing a 

model that has the mathematical structure of an “advection-dispersion” solution. This formulation 

results in a transport model to propagate the time-sequence of PDFs representing the continuum 

response of the residential water consumption to the ubiquitous, measurable, and regular (if not 

continuous) processes of price 𝑃 and weather 𝑊. Omitted ambient processes may include but are 

not limited to passive water conservation, education, and by-law enforcement. To begin, a model 

is proposed using the total differential of a set of statistics that inform the advective-dispersive 

process. These statistics include the median, standard deviation, control function parameterization 

as attributes that characterize both advection and dispersion. The functional relationship of each 

statistic is obtained by expanding the total differential with respect to ambient processes. This 

approach results in a formulation that is consistent with curvilinear regression. Regression serves 

as the basis for parametrizing a time-continuous advective-dispersion model using discrete 

observations of statistics derived by optimally fitting PDFs to the histogram and PMF data, as well 

as real water price and temperature/precipitation data, from each sequential sampling period. 

 Knowledge of how the mean statistic changes as a function of ambient processes such as 

price and weather is critical for the water utility to forecast future water consumption for financial 

sustainability. The mean statistic is a scalar measure that represents the magnitude of any 

continuum response observed in the water consumption PMF. In the case of the water utility, the 

forecasted mean statistic multiplied by the number of active accounts is the expected value of total 

water consumption. The proposed framework provides two independent estimates of the mean 

statistic. The first is derived by integrating the PDF from the advective-dispersion transport model 

and is denoted here as the “transport mean”. The second is obtained by application of a curvilinear 

regression model to the discrete arithmetic data as a function of price 𝑃 and weather 𝑊 and is 
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denoted as the “direct regression mean”. The key difference is that the direct regression mean is 

independent of the statistics that define the water consumption data as a PMF such as the median, 

standard deviation, and control function. An outcome of this analysis is to show that the transport 

mean provides unique information relative to the direct regression mean. The transport model 

performs regression on each of the median, standard deviation, and control function parameters 

and combines these models to reproduce the advective-dispersive characteristics of the water 

consumption PMF. The transport model then indirectly evaluates the resulting mean statistic. 

 A potential benefit of the proposed water consumption framework is that the influence of 

unmeasurable ambient processes can be observed in the PDF as a solution to the transport model. 

This analysis will show that implementation of that water conservation policy in the last two years 

for which data was available for this analysis created a significant departure in the location, scale 

and shape of the PDF relative to that which the advective-dispersive transport model could provide. 

However, the PMF data could be accurately fit with the control function approach implying that it 

reflected a continuum response of consumer water consumption behaviour. This work suggests 

that future inclusion of a “water conservation policy” as a quantified ambient process parameter 

within the advective-dispersive transport framework could remedy this issue. 

3.1. MODEL DEVELOPMENT 

Advective-dispersive transport is used to model the temporal evolution of utility-wide 

residential water consumption distribution as a function of changes in ambient process, such as the 

unit price of water and weather conditions. The water consumption response at any observation 

interval is represented by a histogram, which is then transformed into a PMF and finally a PDF 

which allows the mean statistic to be determined. Consequently, the temporal evolution of the PDF 

and mean statistic represent the solution to an advective-dispersive transport problem for a 

continuum system. Here, the continuum system represents the utility-wide residential water 

consumption. Chapter 2 develops the control function theory for quantifying the location, scale, 

and shape of a measurement space PDF 𝑝𝑥 using the median 𝑚𝑥, standard deviation 𝜎𝑥, and 

standard-score PDF 𝑝𝑧, respectively. In this context, the median represents the bulk translation 

(advection) of the distribution, while the standard deviation and standard-score PDF combine to 

characterize the relative frequency or spread (dispersion) of the data as: 
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      𝑝𝑥      ⏟    
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

    =      𝑚𝑥    ⏟    
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

+      
1

𝜎𝑥
    ×    𝑝𝑧     

⏟          
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐
𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑒
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

(3.1) 

Chapter 2 also demonstrates that the mean statistic of the measurement space data 𝜇𝑥 is a scalar 

value that describes the ensemble magnitude of the measurement space PDF 𝑝𝑥 as a continuum 

system. Using this premise, the mean statistic also represents an advective-dispersive process as: 

𝜇𝑥     =          𝑚𝑥     ⏟    
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

    

⏟        
𝑚𝑒𝑎𝑛

𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

+          𝜎𝑥     ⏟    
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑠𝑐𝑎𝑙𝑒

×      𝜇𝑧     ⏟    
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

    

⏟                  
𝑚𝑒𝑎𝑛

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑒
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

(3.2) 

Where the standard-score mean 𝜇𝑧 quantifies the symmetry of the distribution and has a value of 

𝜇𝑧 = 0 for symmetric distributions. The symmetry of the distribution is solely dependent upon the 

definite integral of the position-weighted standard-score PDF 𝑝𝑧 and the control function 

parameters that describe it. Given the conditional dependence of 𝜇𝑧 on 𝑝𝑧 in the context of 

advective-dispersive transport in Equation 3.2, we can present the mean statistic as a projection of 

the PDF symmetry through its location and scale as: 𝜇𝑧 = ∫𝑧𝑝𝑧 𝑑𝑧. Notably, a distribution has 

perfect symmetry for values of 𝜇𝑧 = 0 with this value growing as the distribution becomes 

increasingly asymmetric. Perfect symmetry results in the advective-dispersive process of the mean 

in Equation 3.2 being solely dependent upon the median  𝑚𝑥. 

Development of the advection-dispersion model for 𝑝𝑥 and 𝜇𝑥 in the sections below begins 

by evaluating the discrete statistics of the raw data from each sampling period and then 

transforming them into a time-continuous form. This results in a time-continuous PDF whose 

parametric values can be adjusted so as to be able to reproduce the entire sampling sequence of 

discrete histogram information. The parametric values allow the PDF to change location, scale and 

shape in response to a set of continuum ambient processes, which change as a function of time 𝑡 

over sequential sampling intervals. These ambient processes are denoted using the variable “𝕩𝑗”. 

Note that the following model development remains general with respect to the relationship 

between the statistics for the median 𝑚𝑥, standard deviation 𝜎𝑥, as well as the standard-score PDF 

𝑝𝑧 and the ambient processes 𝕩𝑗(𝑡). 
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3.1.1. DISCRETE STATISTICS  

The discrete statistics are scalar measures of the location 𝑚𝑥,𝑖,𝓉, scale 𝜎𝑥,𝑖,𝓉, and mean 

statistic 𝜇𝑥,𝑖,𝓉 of a “continuum system” because they reflect the aggregation of all of the active 

accounts within a sampling period 𝓉 into a single distribution. Notably, 𝓉 represents the sampling 

interval of the analysis described by each discrete statistic. The arithmetic mean characterizes the 

magnitude of the discrete data for some sampling interval 𝓉 and can be expressed as follows: 

𝜇𝑥,𝑖,𝓉 =
1

𝑁𝑖,𝓉
∑𝑥𝑖,𝓉

𝑁𝑖

𝑖=1

, 𝜇𝑧,𝑖,𝓉 =
𝜇𝑥,𝑖,𝓉 −𝑚𝑥,𝑖,𝓉

𝜎𝑥,𝑖,𝓉
 (3.3) 

Where, water consumption measured for any account 𝑖 in the discrete sampling interval (billing 

period) 𝓉 is denoted as 𝑥𝑖,𝓉 and 𝑁𝑖,𝓉 represents the number of active residential accounts within the 

utility at each sampling interval. Knowledge of the discrete median 𝑚𝑥,𝑖,𝓉 and standard deviation 

𝜎𝑥,𝑖,𝓉 allow for transformation of the mean 𝜇𝑥,𝑖,𝓉 into a representation of distribution symmetry 

𝜇𝑧,𝑖,𝓉  in the standard-score space. The discrete median 𝑚𝑥,𝑖,𝓉 and standard deviation 𝜎𝑥,𝑖,𝓉 are 

quantified for each billing period as: 

𝑚𝑥,𝑖,𝓉 = {
𝑁𝑖,𝓉 + 1

2
}
𝑡ℎ

 value 

𝜎𝑥,𝑖,𝓉 = √
1

(𝑁𝑖,𝓉 − 1)
∑[𝑥𝑖,𝓉 −𝑚𝑥,𝑖,𝓉]

2

𝑁𝑖,𝓉

𝑖=1

 

(3.4) 

Chapter 2 provides a thorough explanation of how the discrete median 𝑚𝑥,𝑖,𝓉 and standard 

deviation 𝜎𝑥,𝑖,𝓉 relate to the statistical transformations of the mean statistic between the 

measurement space 𝑥, median-relative space 𝑦, and standard-score space 𝑧.  

Upon evaluating the discrete statistics for each sampling interval, the analysis can 

hypothesize a formulation of the control function that will be adequate for reproducing the shape 

of the discrete histogram. This analysis applies a third-order exponential polynomial control 

function developed in chapter 2 as: 
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𝑝𝑧,𝓉 = exp (−∫𝑔𝑧,𝓉 𝑑𝑧) , 𝑔𝑧,𝓉 = [𝛼1,𝓉 + 𝛼2,𝓉𝑧 + 𝛼3,𝓉𝑧
2 + 𝛼4,𝓉𝑧

3] (3.5) 

Where, 𝑧 =
𝑥−𝑚𝑥,𝑖,𝓉

𝜎𝑥,𝑖,𝓉
 is the standard-score transformation from the measurement space 𝑥; 𝑝𝑧,𝑡 

represents the continuous standard-score PDF; 𝑔𝑧,𝓉 represents the control function; and, 𝛼𝑛𝑧,𝓉 

represent the control function parameters for each histogram at sampling interval 𝓉. Notably, the 

standard-score PDF 𝑝𝑧,𝓉 for each sampling interval transforms into the measurement space PDF 

𝑝𝑥,𝓉 using the discrete median 𝑚𝑥,𝑖,𝓉 and standard deviation 𝜎𝑥,𝑖,𝓉 using Equation 3.1 as: 𝑝𝑥,𝓉 =

𝑚𝑥,𝑖,𝓉 +
1

𝜎𝑥,𝑖,𝓉
 𝑝𝑧,𝓉 . 

The probability weighted mean 𝜇𝑧,𝓉  or symmetry of the distribution in the standard score 

space 𝑧 is derived from the parametric PDFs 𝑝𝑧,𝓉 at each sampling interval 𝓉 as: 

𝜇𝑧,𝓉 = ∫ 𝑧𝑝𝑧,𝓉

𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

𝑑𝑧 (3.6) 

Where, 𝑧𝑚𝑖𝑛 =
𝑥𝑚𝑖𝑛−𝑚𝑥,𝑖,𝓉

𝜎𝑥,𝑖,𝓉
 and 𝑥𝑚𝑖𝑛 = 0; and 𝑧𝑚𝑎𝑥 =

𝑥𝑚𝑎𝑥−𝑚𝑥,𝑖,𝓉

𝜎𝑥,𝑖,𝓉
 and 𝑥𝑚𝑎𝑥 = 4𝑚𝑥,𝑖,𝓉 from data 

culling. Equation 3.6 shows a relationship between symmetry 𝜇𝑧,𝓉 and the control function 𝑔𝑧,𝓉 

through the standard-score PDF 𝑝𝑧,𝓉 and is the discrete representation of the symmetry estimator 

for data within each sampling interval. Evaluating the discrete standard-score mean 𝜇𝑧,𝓉 for the 

corresponding PDF during each sampling interval 𝓉 requires numerical integration of Equation 

3.6. Finally, 𝜇𝑧,𝓉 can be transformed from the standard-score space 𝑧 into the measurement space 

𝑥 as 𝜇𝑥,𝓉 using the discrete median 𝑚𝑥,𝑖,𝓉 and standard deviation 𝜎𝑥,𝑖,𝓉 from Equation 3.2 as: 𝜇𝑥,𝓉 =

𝑚𝑥,𝑖,𝓉 + 𝜎𝑥,𝑖,𝓉  𝜇𝑧,𝓉 .  

3.1.2. TIME-CONTINUOUS STATISTICS 

Time-continuous statistics are an extension of the above discrete statistics in that they are 

a continuous function of an ambient process as well as time. The process of defining the continuous 

statistics begins with the total differential with respect to two independent variables 𝕩1 and 𝕩2 

using placeholder variable 𝑈 ∈ {𝜇𝑥, 𝑚𝑥, 𝜎𝑥, 𝛼𝑛𝑧}. Notably, 𝕩1 and 𝕩2 represent the relevant 

ambient processes of interest. The total differential of 𝑈 can be expressed as: 
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𝑑𝑈 ≡ 𝐹𝑈
′ 𝑑𝕩1 + 𝐹𝑈

∗𝑑𝕩2 (3.7) 

Where, 𝛼𝑛𝑧 ∈ {𝛼1…𝛼4} for a third-order control function. 𝐹𝑈
′  represents the partial derivative of 

𝑈 with respect to 𝕩1 as 𝐹𝑈
′ (𝕩1(𝑡), 𝕩2(𝑡)) ≡

𝜕𝑈

𝜕𝕩1
. Similarly, 𝐹𝑈

∗  represents the partial derivative of 

𝑈 with respect to 𝕩2 as 𝐹𝑈
∗(𝕩1(𝑡), 𝕩2(𝑡)) ≡

𝜕𝑈

𝜕𝕩2
. Note that “(𝑡)” denotes a time-dependent process. 

Then it follows that the statistics describing a PDF can inherit their time-dependence from these 

processes: 𝑈(𝕩1(𝑡), 𝕩2(𝑡)). Therefore, with knowledge of the time-ordered nature of 𝕩1 and 𝕩2, 

the influence of these ambient processes can be projected onto the progression of the statistics that 

describe the distribution and its mean. This results in an advective-dispersive representation of a 

PDF as it evolves through time from Equation 3.1. Similarly, Equation 3.2 describes the advective-

dispersive process controlling the evolution of the mean statistic. Equation 3.7 presents a model 

where 𝕩1 and 𝕩2 will correlate with the continuum statistics that describe the discrete histogram. 

What remains is a formal expansion of 𝐹𝑈
′  and 𝐹𝑈

∗  for each statistic with respect to each independent 

variable. Expand 𝐹𝑈
′  and 𝐹𝑈

∗  using a Taylor expansion around the point 𝕩1 = 0 and 𝕩2 = 0 as: 

𝐹𝑈
′ − 𝐹𝑈,0

′ =
𝜕𝐹𝑈

′

𝜕𝕩2
𝑑𝕩2 +

𝜕𝐹𝑈
′

𝜕𝕩1
𝑑𝕩1 + 2

𝜕2𝐹𝑈
′

𝜕𝕩1𝜕𝕩2
𝑑𝕩2𝑑𝕩1 +

1

2

𝜕2𝐹𝑈
′

𝜕𝕩1
2 𝑑𝕩1

2

+
1

2

𝜕3𝐹𝑈
′

𝜕𝕩1
2𝜕𝕩2

𝑑𝕩2𝑑𝕩1
2 +⋯ 

𝐹𝑈
∗ − 𝐹𝑈,0

∗ =
𝜕𝐹𝑈

∗

𝜕𝕩1
𝑑𝕩1 +

𝜕𝐹𝑈
∗

𝜕𝕩2
𝑑𝕩2 + 2

𝜕2𝐹𝑈
∗

𝜕𝕩1𝜕𝕩2
𝑑𝕩2𝑑𝕩1 +

1

2

𝜕2𝐹𝑈
∗

𝜕𝕩2
2 𝑑𝕩2

2

+
1

2

𝜕3𝐹𝑈
′

𝜕𝕩2
2𝜕𝕩1

𝑑𝕩1𝑑𝕩2
2 +⋯ 

(3.8) 

Then, substitute and integrate 𝐹𝑈
′  and 𝐹𝑈

∗  within the total differential to generate a curvilinear 

regression model for 𝑈(𝕩1(𝑡), 𝕩2(𝑡)). To compress notation let 𝐹𝑈
′′ =

𝜕𝐹𝑈
′

𝜕𝕩1
, 𝐹𝑈

′′′ =
𝜕2𝐹𝑈

′

𝜕𝕩1
2 ; 𝐹𝑈

∗∗ =
𝜕𝐹𝑈

∗

𝜕𝕩2
, 

𝐹𝑈
∗∗∗ =

𝜕2𝐹𝑈
∗

𝜕𝕩2
2 ; 𝐹𝑈

∗′ =
𝜕𝐹𝑈

′

𝜕𝕩2
, 𝐹𝑈

∗′′ =
𝜕2𝐹𝑈

′

𝜕𝕩1𝜕𝕩2
; 𝐹𝑈

∗′ =
𝜕𝐹𝑈

∗

𝜕𝕩1
, 𝐹𝑈

∗∗′ =
𝜕2𝐹𝑈

∗

𝜕𝕩1𝜕𝕩2
; and, 𝐹𝑈

∗′′′ =
𝜕3𝐹𝑈

′

𝜕𝕩1
2𝜕𝕩2

 and 𝐹𝑈
∗∗∗′ =

𝜕3𝐹𝑈
∗

𝜕𝕩2
2𝜕𝕩1

. Substitution into Equation 3.9 produces a general relationship that solves for 𝑑𝑈 as: 
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𝑑𝑈 ≡ [𝐹𝑈,0
′ + 𝐹𝑈

∗′𝑑𝕩2 + 𝐹𝑈
′′𝑑𝕩1 + 2𝐹𝑈

∗′′𝑑𝕩2𝑑𝕩1 +
1

2
𝐹𝑈
′′′𝑑𝕩1

2 +
1

2
𝐹𝑈
∗′′′𝑑𝕩2𝑑𝕩1

2

+⋯]𝑑𝕩1

+ [𝐹𝑈,0
∗ + 𝐹𝑈

∗′𝑑𝕩1 + 𝐹𝑈
∗∗𝑑𝕩2 + 2𝐹𝑈

∗∗′𝑑𝕩2𝑑𝕩1 +
1

2
𝐹𝑈
∗∗∗𝑑𝕩2

2

+
1

2
𝐹𝑈
∗∗∗′𝑑𝕩1𝑑𝕩2

2 +⋯] 𝑑𝕩2 

(3.9) 

This expression for 𝑑𝑈 can be used to forecast how the mean statistic 𝜇𝑥 changes as a function of 

𝕩1and 𝕩2. Moreover, 𝑑𝑈 can be adapted into the form of a transport model to forecast the median 

𝑚𝑥, standard deviation 𝜎𝑥, and control function parameters 𝛼𝑛𝑧,𝓉. The intent of the transport model 

is to reproduce the trends of the entire PDF and indirectly evaluate the mean statistic as a function 

of ambient processes 𝕩1and 𝕩2.  

3.1.3. ADVECTIVE-DISPERSIVE TRANSPORT WITH AMBIENT PROCESSES 

To proceed with adapting Equation 3.11 for curvilinear regression, first truncate the terms 

in Equation 3.9 at 𝐹𝑈
′′′ = 𝐹𝑈

∗∗∗ = 𝐹𝑈
∗∗∗′ = 𝐹𝑈

∗′′′ = 0 to an approximate value 𝑑𝑈 ≅ 𝑑𝑈̂. For the 

condition that 𝑑𝕩1 = 𝕩1 − 0 and 𝑑𝕩2 = 𝕩2 − 0 the relationship for 𝑈̂ simplifies as: 

∫ 𝑑𝑈̂
𝑈

𝑈0

= 𝐹𝑈,0
′ 𝕩1 + 𝐹𝑈

∗𝕩2 + 2𝐹𝑈
∗′𝕩2𝕩1 +

1

2
𝐹𝑈
∗∗𝕩2

2 + 𝐹𝑈
∗∗′𝕩2

2𝕩1 +
1

2
𝐹𝑈
′′𝕩1

2 + 𝐹𝑈
∗′′𝕩2𝕩1

2 (3.10) 

Next, all partial derivatives in Equation 3.10 are expressed as coefficients 𝑏𝑈,1…7 to succinctly 

express 𝑈̂ as a curvilinear regression model: 

𝑈̂ = 𝑏𝑈,0 + 𝑏𝑈,1𝕩1 + 𝑏𝑈,2𝕩2 + 𝑏𝑈,3𝕩2𝕩1 + 𝑏𝑈,4𝕩2
2 + 𝑏𝑈,5𝕩2

2𝕩1 + 𝑏𝑈,6𝕩1
2 + 𝑏𝑈,7𝕩2𝕩1

2 (3.11) 

where, 𝑈̂0 = 𝑏𝑈,0 and 𝑏𝑈,0…7 represent the curvilinear regression parameters.  

To proceed with a general representation of Equation 3.1 as an advective-dispersive 

transport model under the influence of ambient processes, first condense the notation in Equation 

3.11 with 𝑈̂ ∈ {𝑚𝑥, 𝜎𝑥, 𝛼1…4}. Next, re-express Equation 3.1 as: 
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 𝑝̂𝑥 = 𝑚̂𝑥 +
1

𝜎𝑥
exp (−∫[𝛼̂1 + 𝛼̂2𝑧 + 𝛼̂3𝑧

2 + 𝛼̂4𝑧
3] 𝑑𝑧) (3.12) 

Similarly, advective-dispersive transport of the mean statistic following Equation 3.2 is expressed 

as: 

𝜇̂𝑥|𝑝̂𝑥 = 𝑚̂𝑥 + 𝜎𝑥∫ 𝑧 exp (−∫[𝛼̂1 + 𝛼̂2𝑧 + 𝛼̂3𝑧
2 + 𝛼̂4𝑧

3] 𝑑𝑧)
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

𝑑𝑧 (3.13) 

where 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 is the range of the integration in accordance with Equation 3.6. Both 

Equations 3.12 and 3.13 indicate that advective-dispersive transport occurs as the location, scale, 

and shape of the continuum distribution of observed measurements respond to ambient processes. 

Note the subscript notation "|p̂x" is used to differentiate the transport model mean from the direct 

regression mean 𝜇̂𝑥. 

 Validation of advective-dispersive transport process for the mean statistic follows by using 

Equation 3.11 to directly regress the response of the mean statistic to ambient process. Notation 

for this process is given as: 

𝜇̂𝑥 = 𝑏𝜇,0 + 𝑏𝜇,1𝕩1 + 𝑏𝜇,2𝕩2 + 𝑏𝜇,3𝕩2𝕩1 + 𝑏𝜇,4𝕩2
2 + 𝑏𝜇,5𝕩2

2𝕩1 + 𝑏𝜇,6𝕩1
2 + 𝑏𝜇,7 𝕩2𝕩1

2 (3.14) 

Equation 3.13 is referred to as the “transport model mean”, while Equation 3.16 is referred to as 

the “direct regression mean”. Equivalence of 3.13 and 3.14 implies that the magnitude of the 

ensemble continuum response to ambient process can be inferred without knowledge of the 

location, scale and shape of the distribution of observations itself. However, this information 

obviously exists and serves to constrain the range of measurable data constituting the continuum 

response, as represented by the PMF. Moreover, the transport model 𝑝̂𝑥 guarantees a unique 

solution for the mean statistic 𝜇̂𝑥|𝑝̂𝑥 by replicating the PMF of the raw data. This is in contrast to 

the direct regression mean 𝜇̂𝑥 which does not constrain combinations of the location, scale, and 

shape of the distribution. Therefore, working with the direct regression mean 𝜇̂𝑥 ignores the 

availability of the location, scale, and shape information describing the PMF. This is important 

because there are infinite combinations of location, scale, and shape that can generate the same 

mean statistic for any continuum system. In contrast, the transport model guarantees a unique mean 

statistic solution for any set of ambient conditions. 
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3.2. RESIDENTIAL WATER CONSUMPTION APPLICATION 

Empirical evidence for the continuum response of utility-wide residential water 

consumption is presented in Figure 3.1 where the PMFs of measurement data changed location, 

scale and shape due to increases in the real unit price of water. The previous section develops an 

advective-dispersive transport model to quantify how the PDF 𝑝̂𝑥 represents the continuum 

response of residential water consumption to ambient processes such as price. In addition to real 

water price 𝑃, it is anticipated that weather 𝑊 as a representation of temperature and precipitation, 

water restriction by-law enforcement, water conservation, and education are key ambient processes 

impacting water consumption. While 𝑃 and 𝑊 are observable ambient processes that can be 

measured and recorded, public policy initiatives such as by-law enforcement and education are 

difficult to quantify in the same manner. However, the response of the water consumption 

histogram to changes in 𝑃, 𝑊 is tangible. It is expected that the impact of policy and education on 

water consumption can only be inferred via observed changes in the water consumption PDF 

beyond those that can be explained via tangible ambient processes. The development of the 

continuous statistics above culminating in Equation 3.13 shows that the advective-dispersive 

transport of 𝑝̂𝑥 is dependent on knowledge of the median, standard deviation, and control function 

statistics of the water consumption dataset. Appendix B.1 provides the discrete statistics 𝑚𝑥,𝑖,𝓉, 

𝜎𝑥,𝑖,𝓉, and 𝜇𝑥,𝑖,𝓉 for each sampling interval 𝓉 within the 60 bimonthly periods considered. Here, 

this analysis denotes the set of these continuum ambient processes that change during each 

sampling period 𝓉 using the variable 𝕩𝑗 ∈ {𝑃(𝓉),𝑊(𝓉)}.  

This analysis proceeds in three steps. First, it applies the methodology from Chapter 2 to 

transform water consumption histograms (see Figure 3.1) into optimally parameterized and 

continuous PDFs that are consistent with the advective-dispersive processes expressed in 

Equations 3.1 and 3.2. Second, the analysis performs curvilinear regression upon the median, 

standard deviation, and control function parameters with real water price and weather score. 

Statistically defensible correlation to ambient processes supports the contention that the water 

consumption PMF represents a continuum system that experiences advective-dispersive transport. 

Third, the analysis compares the direct regression model to the transport model estimates for the 

mean statistic. This section builds experimental evidence using the above advection-dispersive 

transport theory to justify the empirical observation that the water consumption PMFs exhibit a 
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continuum response to ambient processes. The outcome of the following analysis is that the 

transport model is at least as effective as the direct regression model for estimating the evolution 

of the mean statistic. 

3.2.1. PARAMETRIC PDFS AS A REPRESENTATION OF THE CONTINUUM RESPONSE 

Applying the control function theory from Chapter 2 to the PMF data shown on Figure 3.1 

produces optimally parameterized continuous functions that compress each sampling period 𝓉 

dataset into a median 𝑚𝑥,𝑖,𝓉, standard deviation 𝜎𝑥,𝑖,𝓉, and control function parameters 𝛼1,𝓉, 𝛼2,𝓉, 

𝛼3,𝓉, and 𝛼4,𝓉. The discrete statistics 𝑚𝑥,𝑖,𝓉  and 𝜎𝑥,𝑖,𝓉 provide scalar estimates of the location and 

scale of the observation data 𝑥𝑖,𝓉 while the shape of the CMF is captured by the “best fit” 

parametric PDF 𝑝𝑧,𝓉 (see Equation 3.5) through the control function 𝑔𝑧,𝓉. These statistics are 

estimated by matching cumulative distribution functions (CDFs) to the CMFs derived from the 

culled data. Appendix B.2 lists all control function parameters for each bimonthly period 𝓉 

between January/February 2007 through November/December 2016. The resulting CMFs are 

listed in Appendix B.3. As previously mentioned, this parametrization proceeds on the basis that 

limited data culling of the observation data 𝑥𝑖,𝓉 is necessary to remove measurements that are 

greater than four-times the median 𝑚𝑥,𝑖,𝓉 of each sampling period 𝓉. The remaining data reflect 

greater than 98-percent of the original data for all billing periods considered herein. Water 

consumption measurements beyond this threshold include multi-unit dwellings and extreme 

residential water consumers, which do not reflect the water consumption behaviour for the 

population of interest in this analysis. 

The control function parameterization is adjusted to ensure that the shape of the CDF 

matches that of the CMF for each sampling period. This proceeds by minimizing the objective 

function shown in Equation 2.10.  This process relies on the hierarchal relationship between the 

control function, PDF, and CDF to ensure that 𝑝𝑥,𝓉 correctly reproduces the PMF over the entire 

range of observation data 𝑥𝑖,𝓉. This step provides evidence that 𝑝𝑥,𝓉 reproduces the continuum 

process represented by the PMF for sampling period 𝓉, and that 𝜇𝑥,𝓉 is a unique representation of 

𝜇𝑥,𝑖,𝓉 . Table 3.1 presents the mean square error estimates 𝑀𝑆𝐸 = √[𝜇𝑥,𝓉 − 𝜇𝑥,𝑖,𝓉]
2
 for each 

sampling interval to quantify the departure of the continuous distribution from the raw data. MSE 

values of the mean water consumption are always less than 1 𝑚3/𝑏𝑝/𝑎𝑐𝑐𝑡 which is the 
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measurement accuracy for each meter reading 𝑥𝑖,𝓉, where "𝑏𝑝" denotes a billing period and "𝑎𝑐𝑐𝑡" 

denotes account. Figure 3.2 presents the PDF with the optimal parameterization for the 

July/August billing period during 2007, 2009, 2015 and 2016 superimposed onto its respective 

PMF to demonstrate the goodness of fit over the entire range of observation data 𝑥𝑖,𝓉. To varying 

degrees, each water consumption PMF is reproduced by PDFs that are asymmetric, shifted, and 

exhibit a heavy tail. 

 

Table 3.1: MSE values between observed and optimally parameterized mean statistic. Values 

represents MSE between arithmetic mean water consumption 𝜇𝑥,𝑖,𝓉 and 𝜇𝑥,𝓉 estimated from the fitted PDF. 

 𝑴𝑺𝑬  [𝒎𝟑/𝒃𝒑/𝒂𝒄𝒄𝒐𝒖𝒏𝒕] 

Year Jan/Feb Mar/Apr May/June July/Aug Sept/Oct Nov/Dec 

2007 5.14 × 10−3 9.00 × 10−8 1.28 × 10−1 1.00 × 10−1 1.15 × 10−1 1.02 × 10−3 

2008 4.76 × 10−4 1.14 × 10−1 1.38 × 10−1 8.93 × 10−3 1.09 × 10−1 1.83 × 10−3 

2009 4.00 × 10−3 1.45 × 10−5 1.06 × 10−3 5.22 × 10−3 1.03 × 10−2 6.74 × 10−3 

2010 2.63 × 10−3 4.48 × 10−4 2.67 × 10−2 2.54 × 10−2 1.23 × 10−2 1.61 × 10−2 

2011 1.70 × 10−2 5.21 × 10−3 1.99 × 10−2 1.47 × 10−1 5.01 × 10−4 5.81 × 10−3 

2012 5.10 × 10−3 1.70 × 10−1 2.04 × 10−1 1.21 × 10−2 1.94 × 10−4 1.49 × 10−1 

2013 2.96 × 10−3 1.53 × 10−1 8.42 × 10−3 3.80 × 10−3 1.52 × 10−1 1.95 × 10−1 

2014 1.41 × 10−1 4.26 × 10−4 1.40 × 10−3 2.17 × 10−1 1.03 × 10−3 1.21 × 10−4 

2015 7.96 × 10−1 5.12 × 10−1 4.39 × 10−3 9.28 × 10−2 3.89 × 10−1 3.89 × 10−1 

2016 1.09 × 10−2 2.48 × 10−2 5.16 × 10−2 4.34 × 10−2 4.73 × 10−2 6.08 × 10−3 
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Figure 3.2: Select water consumption data and optimal parametric fit. Residential water consumption 

PMFs and their corresponding best fit PDFs from July/August billing period in 3.2.a) 2007, 3.2.b) 2009, 

3.2.c) 2015, and 3.2.d) 2016. Also shown is the arithmetic mean 𝜇𝑥,𝑖,𝓉 of the raw data. 

 

Figure 3.3 qualitatively illustrates the impact of real water price on water consumption. 

Specifically, water consumption PMFs and corresponding best fit parametric PDFs are shown that 

span biannual increments of the November/December bimonthly periods from 2008, 2010, 2012 

to 2014. During this bimonthly period, outdoor water usage in Waterloo, Ontario, Canada is 

minimal due to the onset of cold winter weather and dormant vegetation. Therefore, it is assumed 

that variations in outdoor temperature and precipitation during this bimonthly period do not 

meaningfully impact residential water consumption. However, annual increases in the real water 

price over this eight-year period do impact the location, scale and shape of the water consumption 

PDF. Progressive increases in the real price of water have caused the water consumption 

distribution to compress toward the origin. This compression includes a shift of the mode as well 

as a reduction in the length and extent of the tail, thereby illustrating a continuum response of the 

water consumption PDF 𝑝𝑥,𝓉. Moreover, as the entire distribution or continuum shifts with price 

increases, then the mean statistic also changes with respect to price. As expected, the mean statistic 

𝜇𝑥,𝓉 for the November/December period decreases from 34.29, 33.76, 31.06, to 29.71 
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[𝑚3 𝑏𝑝⁄ 𝑎𝑐𝑐𝑡⁄ ] during 2008, 2010, 2012 to 2014, respectively. These results indicate that 

increasing the real water price negatively influences residential water consumption. It is 

worthwhile to note that there are many confounding variables that also negatively influence water 

consumption beyond real water price increases. These include: education, passive conservation, 

technological advances in water efficiency, and water policy. However, it is suspected that these 

influences are minimal when compared to the economic disincentive provided by real water price 

increases.  

 

  

Figure 3.3: Select optimally parameterized PDFs for November/December billing period. 

Continuum response of the water consumption PDF 𝑝𝑥,𝓉 to real water price using select parametric PDFs 

from the November/December billing period. 

 

Figure 3.4 demonstrates the co-dependence of consumer water consumption behaviour to 

changing weather conditions as well as the real water price. Optimally fit PDFs 𝑝𝑥,𝓉 for three 

bimonthly billing periods in 2007, 2009, 2015, and 2016 are presented. Note that the real price of 

water is constant throughout 2007, and progressively increases for each of 2009, 2015, and 2016. 

Waterloo experiences summer weather conditions between July and October each year that are 

characterized by warm to hot temperatures and intermittent precipitation, causing residents to have 

their greatest demand for outdoor water use, especially for irrigation. However, 
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September/October represents early fall and the end of the growing season with declining need for 

irrigation. Finally, January/February represents winter conditions with below-freezing 

temperatures where residents have limited need for outdoor water usage. Figure 3.4 shows that the 

water consumption PDF compresses toward the origin during the winter months and expands out 

from the origin during the summer months. However, consumers appear to be more sensitive to 

the influence of weather in 2007 than 2016, with their sensitivity to weather gradually decreasing 

through time as the real water price increases. In fact, water consumption behaviour appears 

seasonally stagnant in 2016. This observation qualitatively supports the above hypothesis that both 

price and weather influence water consumption. 

 

 

Figure 3.4: Select optimally parameterized PDFs showing seasonal influence on water consumption. 

Continuum response of the water consumption PDF to both real water price and weather using parametric 

PDFs from the January/February, July/August and September/October billing periods for 3.4.a) 2007, 

3.4.b) 2009, 3.4.c) 2015, and 3.4.d) 2016. 

 

The evolving co-dependence of consumer water consumption behaviour to changing 

weather conditions as well as the real water price within the City of Waterloo can be rationalized 

with two likely explanations. First, the economic disincentive for outdoor water use increases with 

an increase in the real water price, resulting in a diminished consumer response to weather 
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conditions. Second, the Region of Waterloo implemented their Water Efficiency Master Plan 

[2015-2025] (Region of Waterloo, 2014) influencing all billing periods in 2015 and onwards. This 

plan promotes water conservation through education, marketing, and controlling outdoor water 

usage through by law enforcement. Although the policy goals of the renewed master plan are 

consistent with the Water Efficiency Master Plan Update [2007-2015] (Region of Waterloo, 

2006a), the recent addition includes a Residential Water Savings Assistance Program (RWSAP). 

Figures 3.4.c and 3.4.d suggest that the combination of economic disincentive and policy initiatives 

have negated any perceivable difference between the winter and summer water consumption 

histograms. 

3.2.2. PRICE AND WEATHER AS AMBIENT PROCESSES 

Previously, this chapter established that the ensemble residential accounts behave as a 

continuum process replicated by the water consumption PDF 𝑝𝑥,𝓉. The next step is to quantify the 

correlation and infer causality in terms of how transient ambient processes influence the location 

𝑚𝑥,𝑖,𝓉, scale 𝜎𝑥,𝑖,𝓉, and shape parameters (𝛼1,𝓉, 𝛼2,𝓉, 𝛼3,𝓉, and 𝛼4,𝓉) of the water consumption PDF 

𝑝𝑥,𝓉 as well as the corresponding mean statistic 𝜇𝑥 during each sampling period 𝓉. Ambient 

processes can be either macroscopic or microscopic in terms of their influence on consumers. 

Macroscopic ambient processes are experienced equally by all consumers within the utility, and 

include temperature, precipitation, real water price, education, and by-law enforcement. 

Intuitively, macroscopic processes should drive advection of the water consumption PDF through 

scaling of the median statistic. Additionally, they could also influence the scale and shape of the 

PDF provided the population of residential accounts experiences a heterogeneous response to 

changes in these utility-wide macroscopic processes. Microscopic processes are only experienced 

by a subset of the population and may include changes in household income and number of 

occupants. Microscopic processes may not have influence on a sufficient number of consumers to 

cause advection of the water consumption PDF. However, changes experienced by a subset of the 

population could influence dispersion through adjustments to the scale and shape of the PDF.  

Price 𝑃𝓉 is measured at each sampling period 𝓉 and represents real water price as the 

depreciated variable unit cost of metered water. Prices are discounted using the annual consumer 

price index (CPI) inflation rate to a base year of 2004$. This analysis applies CPI under the 

assumption that it reflects increases in household income for all residential accounts, hence any 
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price increases above CPI represent real changes in water affordability relative to household 

income. The weather score 𝑊𝓉 at each sampling period 𝓉 is a function of rainfall 𝑅𝓉 and 

temperature 𝑇𝓉 measurements combined into a single process as: 

𝑊𝓉 = 𝑇𝓉 × 𝑅𝓉 (3.15) 

Where, 𝑇𝓉 represents the average of the daily high temperature in degrees Celsius for all days 

within sampling period 𝓉 (University of Waterloo Weather Station, 2017); and, 𝑅𝓉 represents the 

number of days with less than 2mm of rainfall during sampling interval 𝓉 (NASA, 2017; 

Environment Canada, 2017). The weather score is based on the hypothesis that temperature 𝑇𝓉 and 

rainfall 𝑅𝓉 are dependent variables that cannot be separated, and that changes in either cause a 

response in water consumption. Note that while the utility cannot control the weather score 𝑊𝓉, 

they are able to adjust the real water price 𝑃𝓉 to ensure revenues generated from the variable unit 

cost of water promote financial sustainability. However, utilities adjust their water price once per 

year in advance of unknown seasonal weather variations within the target billing year. This 

minimizes the inter-dependence between the utility-controlled water price and seasonal variation 

in the weather score. 

Figure 3.5 presents the discrete values for weather score and real water price for all billing 

periods between January/February 2007 and November/December 2016. The utility annually 

increases the real water price to boost their revenues, while the weather score changes periodically 

due to seasonal variability in temperature and precipitation. The troughs that appear along the 

weather score visualization represent the winter months, whereas the peaks represent summer 

months. Variability in the amplitude and width of the peaks are a consequence of seasonal weather 

variability that may include extreme weather events such as heavy rainfall in March/April and 

May/June or drought conditions in July/August and September/October billing periods. Appendix 

B.4 itemizes the ambient processes during each billing period. 
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Figure 3.5: Ambient conditions for water consumption during entire analysis period. Time series 

representation of price 𝑃𝓉  and weather score 𝑊𝓉 variables for each bimonthly sampling period 𝓉. 

 

3.2.3. ADVECTIVE-DISPERSIVE TRANSPORT MODEL PARAMETERIZATION 

Previously, water consumption data from the City of Waterloo were used to establish the 

idea that the resulting PMF could be replicated with a parametric PDF, and evolution of this PDF 

represents the continuum response of the utility-wide residential accounts to real water price and 

weather conditions. The next step is to parametrize the coefficients within Equations 3.12 and 3.14 

representing advective-dispersive transport of the PDF 𝑝̂𝑥 and the mean statistic 𝜇̂𝑥. Equations 

3.10 and 3.11 show that these coefficients are partial derivatives of the location 𝑚𝑥,𝑖,𝓉, scale 𝜎𝑥,𝑖,𝓉, 

and shape parameters (𝛼1,𝓉, 𝛼2,𝓉, 𝛼3,𝓉, and 𝛼4,𝓉) with respect to real water price 𝕩1~𝑃(𝓉) and 

weather score 𝕩2~𝑊(𝓉). Advective-dispersive transport along with its partial-derivate 

coefficients are time-continuous process. This requires 𝓉 → 𝑡 resulting in a water consumption 

PDF 𝑝𝑥(𝑥, 𝑃,𝑊) as well as its mean statistic 𝜇𝑥(𝑃,𝑊) representing a transient one-dimensional 

process along the axis of water consumption 𝑥 [𝑚3 𝑏𝑝⁄ 𝑎𝑐𝑐𝑡⁄ ]. The probability 𝒫 of any one 

residential consumer achieving a specified water consumption 𝑥̅ can be found as 𝒫 =

∫ 𝑝𝑥(𝑥, 𝑃,𝑊)
𝑥̅

0
𝑑𝑥 under predefined ambient conditions of 𝕩1 ≡ 𝑃(𝑡) and 𝕩2 ≡ 𝑊(𝑡) at time 𝑡.  
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Multi-variate curvilinear regression is used to estimate model parameters 𝑏0…7 within 

Equation 3.11 for the time-continuous statics  𝑈̂ ∈ {𝜇𝑥, 𝑚𝑥, 𝜎𝑥, 𝛼1…4} for 𝑈̂(𝑏𝑈,0…7, 𝑃,𝑊). 

Estimation of model parameters 𝑏0…7 parameterizes the advective-dispersive transport model for 

the water consumption PDF 𝑝̂𝑥(𝑥, 𝑃,𝑊) and its resulting mean statistic 𝜇̂𝑥|𝑝𝑥(𝑃,𝑊) given by 

Equation 3.12 and 3.13, respectively. Additionally, these model parameters also result in a 

description of the direct regression mean 𝜇̂𝑥(𝑃,𝑊) given by Equation 3.14. Table 3.2 summarizes 

results from the multi-variate curvilinear regression performed on the full suite of statistics listed 

in Appendix B.1 as well as the control function parameters 𝛼𝑛𝑧,𝓉 listed in Appendix B.2, with 

respect to the ambient conditions of real water price 𝑃𝓉 and weather score 𝑊𝓉 listed in Appendix 

B.4. Table 3.2 summarizes the curvilinear regression results of the general form of Equation 3.11 

for the dependence of 𝑈̂ ∈ {𝜇𝑥,𝑚𝑥 , 𝜎𝑥, 𝛼1…4} on 𝑃(𝑡) and 𝑊(𝑡), with model parameters 𝑏𝑈,0…7 

removed (set to “0.00”) when 𝑝-values were greater than a 10% significance level. 
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Table 3.2: Summary of model parameterization for Equation 3.12.  

𝑼 𝒃𝑼,𝟎 𝒃𝑼,𝟏 𝒃𝑼,𝟐 𝒃𝑼,𝟑 𝒃𝑼,𝟒 𝒃𝑼,𝟓 𝒃𝑼,𝟔 𝒃𝑼,𝟕 
Regression 

Analysis 

𝝁̂𝒙 
4.64 × 101 

‡ ( 2.36 × 10
1

8.71 × 10−31
) 

−5.45  

(
−7.54

4.38 × 10−10
) 

0.00 0.00 
8.30 × 10−6  

(
3.32

1.61 × 10−3
) 

−2.46 × 10−6 

(
−2.71

8.86 × 10−3
) 

0.00 0.00 † {
0.781 

6.67 × 101

1.77 × 10−18
 

𝒎̂𝒙 
4.35 × 101 

( 2.51 × 10
1

1.95 × 10−31
) 

−5.41 

(
8.43

2.04 × 10−11
) 

−1.38 × 10−2 

(
−1.83

7.32 × 10−2
) 

4.70 × 10−3  

(
1.70

9.44 × 10−2
) 

1.80 × 10−5 

(
2.70

9.30 × 10−3
) 

−5.79 × 10−6 

(
−2.40

1.97 × 10−2
) 

0.00 0.00 {
0.816 

4.80 × 101

1.16 × 10−18
 

𝝈̂𝒙 
2.32 × 101  

( 1.32 × 10
1

8.13 × 10−19
) 

−2.05 

(
−3.17

2.50 × 10−3
) 

0.00 0.00 
7.39 × 10−6 

(
3.30

1.68 × 10−3
) 

−2.19 × 10−6 

(
−2.70

9.13 × 10−3
) 0.00 0.00 {

0.571
2.48 × 101

2.37 × 10−10
 

𝜶̂𝟏 
3.29 × 10−1 

( 3.29 × 10
1

3.51 × 10−39
) 

0.00 
5.20 × 10−5 

(
3.90

2.51 × 10−4
) 

0.00 0.00 0.00 0.00 0.00 {
0.208 

1.52 × 101

2.51 × 10−4
 

𝜶̂𝟐 
3.94 × 101 

(
4.75

1.50 × 10−5
) 

1.47 × 10−1  

(
2.22

3.01  × 10−2
) 

0.00 
1.27 × 10−3  

(
2.99

4.10 × 10−3
) 0.00 

−8.27 × 10−7 

(
−2.32

2.43 × 10−2
) 

−3.24  

(
−2.50

1.53  × 10−2
) 0.00 {

0.359 
7.69

5.37 × 10−5
 

𝜶̂𝟑 
−0.658 

(−2.55 × 10
1

7.80 × 10−33
) 

0.00 0.00 
−2.12  × 10−4 

(
−2.99

4.09 × 10−3
) 0.00 0.00 0.00 

5.99 × 10−5 

(
2.48

1.60 × 10−2
) {

0.213 
7.71

1.09 × 10−3
 

𝜶̂𝟒 
7.89 × 10−2 

( 1.14 × 10
1

1.70 × 10−16
) 

0.00 0.00 
1.10 × 10−5 

(
3.15

2.57 × 10−3
) 0.00 0.00 0.00 0.00 {

0.146
9.93

2.57 × 10−3
 

Notes: Total degrees of freedom is 47 and residual degrees of freedom is 45. 

 

Regression Coefficient 

‡(
𝑡 statistic

𝑝‒ value for 𝑡 statistic)
 

†{
𝑅2

𝐹 statistic
𝑝‒value for 𝐹 statistic
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The curvilinear regression results show that each of the mean 𝜇̂𝑥, median 𝑚̂𝑥, standard 

deviation 𝜎̂𝑥, and control function parameters 𝛼̂1…4 statistically correlate with the observed 

changes to 𝑃 and 𝑊. The 𝑝-value on the 𝐹 statistic indicates that there is less than 1% chance that 

any one relationship is coincidental, with the mean, median, and standard deviation showing 

stronger correlation than the control function parameters. Contributing parameters 𝑏0…7 vary 

between each statistic, which may indicate that the mean value as well as the location, scale, and 

shape of the distribution are controlled by different processes. Table 3.3 summarizes the active 

model parameters for each statistic as well as their derivative representation from the total 

derivative and Taylor series expansion given by Equations 3.8 and 3.9. 

 

Table 3.3: Active model parameters for each statistic. 

 

parameter 𝝁̂𝒙 𝒎̂𝒙 𝝈̂𝒙 𝜶̂𝟏 𝜶̂𝟐 𝜶̂𝟑 𝜶̂𝟒 

𝑏𝑈,0 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡        

𝑏𝑈,1 
𝜕𝑈

𝜕𝑃
    −  − − 

𝑏𝑈,2 
𝜕𝑈

𝜕𝑊
 −  −  − − − 

𝑏𝑈,3 
𝜕2𝑈

𝜕𝑃𝜕𝑊
 −  − −    

𝑏𝑈,4 
𝜕2𝑈

𝜕𝑊2 
   − − − − 

𝑏𝑈,5 
𝜕3𝑈

𝜕𝑃𝜕𝑊2    −  − − 

𝑏𝑈,6 
𝜕2𝑈

𝜕𝑃2
 − − − −  − − 

𝑏𝑈,7 
𝜕3𝑈

𝜕𝑃2𝜕𝑊
 − − − − −  − 

 𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

− 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

 

The 𝑅2 value for the median statistic is larger than that for either the mean or the standard 

deviation, which indicates that the variance of the median is reproduced more accurately than for 

either the mean or standard deviation. Note that the standard deviation is dependent upon the of 

the median statistic (see Equation 3.5) and may inherit its estimation error. Contributing 
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coefficients 𝑏0…7 for the control function shape parameters (𝛼̂1, 𝛼̂2, 𝛼̂3, and 𝛼̂4) vary and exhibit 

low 𝑅2 values, which suggests that combinations of 𝑊 and 𝑃 only partially reflect observed 

variability. Three possible explanations exist for the inability of the curvilinear model to more 

accurately reproduce the observed variability in each statistic. First, unaccounted macroscopic 

ambient processes as well as microscopic household processes impact water consumption beyond 

that which can be explained by price and weather alone. These were itemized earlier as: passive 

water conservation, education, and by-law enforcement, as well as, household income and number 

of occupants. Second, imprecision of water consumption measurements recorded to within 1 𝑚3 

severely restrict accuracy in the discrete median statistic 𝑚𝑥,𝑖,𝓉. This may influence the sensitivity 

of the model given that the discrete median 𝑚𝑥,𝑖,𝓉 is used to estimate the standard deviation 𝜎𝑥,𝑖,𝓉 

and each control function parameter 𝛼𝑛𝑧,𝓉, and ultimately influences the transformation between 

the measurement space 𝑥, the median-relative space 𝑦, and the standard score space 𝑧. This seems 

to have the greatest impact on estimating parameters for the control function model with their 

characteristic low 𝑅2 values. Third, using time-averaged weather score data 𝑊𝓉 that span 

bimonthly sampling periods may restrict the sensitivity of the curvilinear model from expressing 

severe and localized weather events. It is expected that shorter sampling intervals could provide 

greater resolution in the water consumption response to extreme seasonal weather conditions. 

This advective-dispersive transport model (from Equation 3.12) representing the 

continuum response of the utility-wide residential water demand to the ambient process of real 

water price and weather score is now shown for the PDF solution  𝑝̂𝑥(𝑥, 𝑃,𝑊) as:  

𝑝̂𝑥(𝑥, 𝑃,𝑊) = 𝑚̂𝑥(𝑃,𝑊)

+
1

𝜎𝑥(𝑃,𝑊)
exp (−∫[𝛼̂1(𝑃,𝑊) + 𝛼̂2(𝑃,𝑊) 𝑧 + 𝛼̂3(𝑃,𝑊) 𝑧

2

+ 𝛼̂4(𝑃,𝑊) 𝑧
3]𝑑𝑧) 

(3.16) 

Similarly, the derived transport mean from Equation (3.13)  𝜇̂𝑥|𝑝̂𝑥(𝑃,𝑊) is expressed as: 
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𝜇̂𝑥|𝑝̂𝑥(𝑃,𝑊) = 𝑚̂𝑥(𝑃,𝑊)

+ 𝜎𝑥(𝑃,𝑊)∫ 𝑧 exp (−∫[𝛼̂1(𝑃,𝑊) + 𝛼̂2(𝑃,𝑊) 𝑧
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

+ 𝛼̂3(𝑃,𝑊) 𝑧
2 + 𝛼̂4(𝑃,𝑊) 𝑧

3]𝑑𝑧) 𝑑𝑧 

(3.17) 

where 

 𝑚̂𝑥(𝑃,𝑊) = 𝑏𝑚,0 + 𝑏𝑚,1 𝑃(𝑡) + 𝑏𝑚,2 𝑊(𝑡) + 𝑏𝑚,3 𝑊(𝑡) 𝑃(𝑡)

+ 𝑏𝑚,4 𝑊(𝑡)
2 + 𝑏𝑚,5 𝑊(𝑡)

2 𝑃(𝑡) 

𝜎𝑥(𝑃,𝑊) = 𝑏𝜎,0 + 𝑏𝜎,1 𝑃(𝑡) + 𝑏𝜎,4 𝑊(𝑡)
2 + 𝑏𝜎,5 𝑊(𝑡)

2 𝑃(𝑡) 

𝛼̂1(𝑃,𝑊) = 𝑏𝛼1,0 + 𝑏𝛼1,2 𝑊(𝑡) 

𝛼̂2(𝑃,𝑊) = 𝑏𝛼2,0 + 𝑏𝛼2,1 𝑃(𝑡) + 𝑏𝛼2,3 𝑊(𝑡) 𝑃(𝑡) + 𝑏𝛼2,5 𝑊(𝑡)
2 𝑃(𝑡)

+ 𝑏𝛼2,6 𝑃(𝑡)
2 

𝛼̂3(𝑃,𝑊) = 𝑏𝛼3,0 + 𝑏𝛼3,3 𝑊(𝑡) 𝑃(𝑡) + 𝑏𝛼3,7 𝑃(𝑡)
2 𝑊(𝑡) 

𝛼̂4(𝑃,𝑊) = 𝑏𝛼4,0 + 𝑏𝛼4,3 𝑊(𝑡) 𝑃(𝑡) 

(3.18) 

Finally, the direct regression mean from Equation (3.15) is now completed as: 

𝜇̂𝑥(𝑃,𝑊) = 𝑏𝜇,0 + 𝑏𝜇,1 𝑃(𝑡) + 𝑏𝜇,4 𝑊(𝑡)
2 + 𝑏𝜇,5 𝑊(𝑡)

2 𝑃(𝑡) (3.19) 

Substituting the partial derivatives from Table 3.3 representing the coefficients  𝑏0…7 into 

Equations 3.16, 3.17, 3.18, and 3.19 indicate that each statistic represents a partial differential 

equation. Moreover, the PDF 𝑝̂𝑥(𝑥, 𝑃,𝑊) itself is the solution to a partial differential equation 

representing the advective-dispersive transport of residential water demand in the three spatial 

dimensions 𝑥, 𝑃,𝑊 as well as time 𝑡. 

3.3. DISCUSSION 

Transport model regression results for the median 𝑚̂𝑥(𝑃,𝑊), standard deviation 𝜎̂𝑥(𝑃,𝑊), 

and transport mean 𝜇̂𝑥|𝑝̂𝑥(𝑃,𝑊) are itemized in Appendix B.5 on Table B.5.1. The direct mean 

regression results are presented in Appendix B.5 on Table B.5.2. Visualization of models proceed 
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in the following order. Figure 3.6 depicts regression model (𝑚̂𝑥 and 𝜎𝑥) versus discrete (𝑚𝑥,𝑖,𝓉 and 

𝜎𝑥,𝑖,𝓉) statics for the median and standard deviation as both time-series and in terms modeled versus 

actual values as a representation of model error. The issue of measurement accuracy of each water 

meter reading being restricted to 1 𝑚3 is clearly evident when viewing discrete measurements of 

the median 𝑚𝑥,𝑖,𝓉 . Visualization of the data show a reasonably accurate fit which reinforces the 

correlation between measurements and the ambient variables quantified in Table 3.2, although the 

model clearly does not have sufficient sensitivity to exactly match the measured discrete statics. 

Notable outliers typically occur during the summer months and in the final year of the analysis. It 

is possible that the outliers are a reflection of sampling bias from collecting more data during 

bimonthly periods with lower weather scores such as the winter, spring, and fall seasons than in 

the summer. Also, the implementation of water consumption by-laws in the final two years of the 

analysis may have influenced how the model matches observational results in this period. 

 

 

Figure 3.6: Curvilinear model results for the median and standard deviation. Visualization of the 

median 𝑚𝑥,𝑖,𝓉 and standard deviation 𝜎𝑥,𝑖,𝓉 measurements and corresponding model results for 𝑚̂𝑥 and 𝜎̂𝑥. 

Figures 3.6.a and 3.6.c present time-series visualizations of median and standard deviation model vs. 

measured values, while Figures 3.6.b and 3.6.d compare model to the realized median and standard 

deviation values, respectively. 
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Figure 3.7 depicts the late fall/winter November/December bimonthly histogram data from 

2008 (3.7.a), 2010 (3.7.b), 2012 (3.7.c) and 2014 (3.7.d) normalized into PMFs (see Figure 3.1). 

Additionally, the parametric PDF arising from the optimal parametrization 𝑝𝑥,𝓉 as well the 

advective-dispersive transport solution for  𝑝̂𝑥(𝑥, 𝑃,𝑊) given by Equation 3.16 are superimposed 

onto the PMFs. Finally, the transport mean 𝜇̂𝑥|𝑝𝑥(𝑃,𝑊) given by Equation 3.17 as well as the 

arithmetic mean of the raw data 𝜇𝑥,𝑖,𝓉 are also presented. Figure 3.8 shows the same sequence of 

information except for the summer July/August bimonthly periods from 2007 (3.8.a), 2009 (3.8.b), 

2011 (3.8.c) and 2013 (3.8.d). The advective-dispersive transport model for 𝑝̂𝑥(𝑥, 𝑃,𝑊) almost 

exactly reproduces the continuum response of residential water demand for the 

November/December periods which exhibits a low weather score, over the full range of real water 

price. The transport model becomes less accurate for the July/August summer months that 

correspond to a high weather score.  

 

 

Figure 3.7: Transport model results for select November/December periods. Residential water 

consumption PMFs and corresponding PDFs for a sequence of November/December billing periods, with 

the optimal PDF from fitting the data, and PDF 𝑝̂𝑥 obtained using the transport model. Also shown is the 

discrete mean 𝜇𝑥,𝑖,𝓉 as well as the estimated mean from the transport model 𝜇̂𝑥|𝑝𝑥 . 
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Figure 3.8: Transport model results for select July/August periods. Residential water consumption 

PMFs and corresponding PDFs for a sequence of July/August billing periods, with the optimal PDF from 

fitting the data, and the PDF 𝑝̂𝑥 obtained using the transport model. Also shown is the discrete mean 𝜇𝑥,𝑖,𝓉 

as well as the estimated mean from the transport model 𝜇̂𝑥|𝑝𝑥 . 

 

Figures 3.7 and 3.8 clearly indicate that as long as the continuum response of the entire 

system is adequately represented by 𝑝̂𝑥(𝑥, 𝑃,𝑊), then there is a unique representation for the 

transport mean 𝜇̂𝑥|𝑝𝑥(𝑃,𝑊) such that it reproduces the arithmetic mean of the raw data. The direct 

regression mean 𝜇̂𝑥(𝑃,𝑊) given by Equation 3.20 does not include any information regarding the 

shape of continuum response (using the control function parameters) and is derived by observing 

how the arithmetic mean of the raw data 𝜇𝑥,𝑖,𝓉 directly responds to 𝑃𝓉 and 𝑊𝓉. This independence 

to the control function provides an addition avenue for verification of the advective-dispersive 

transport process by comparing 𝜇̂𝑥|𝑝𝑥  with 𝜇̂𝑥, as well as against 𝜇𝑥,𝑖,𝓉 for all sampling periods 𝓉. 

Values of 𝜇̂𝑥|𝑝𝑥 and 𝜇̂𝑥 are itemized in Appendix B.5 on Tables B.5.1 and B.5.2, respectively. 

Additionally, they are visualized as a time series on Figure 3.9. Notice that the mean water 

consumption for July/August 2007 is somewhat underestimated by the transport model, perhaps 
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due to the issue of averaging short-duration extreme summer weather events over a two-month 

period to quantify the ambient process of weather score 𝑊𝓉. This is also observed during the 2010, 

2012, and 2016 July/August bimonthly periods. However, both 𝜇̂𝑥|𝑝𝑥 and 𝜇̂𝑥 exhibit nearly 

identical behaviour for all sampling periods. The transport mean 𝜇̂𝑥|𝑝𝑥 is calculated by combining 

the location, scale, and shape of the continuum response as independent processes that all depend 

on 𝑃(𝑡) and 𝑊(𝑡). In contrast, the direct regression mean 𝜇̂𝑥 does not differentiate between the 

location, scale and shape as it reproduces only the magnitude of the continuum response as a 

function of 𝑃(𝑡) and 𝑊(𝑡). Therefore, an analysis that only considers the direct regression model 

to assess a systems response naturally implies a loss of information. 

 

Figure 3.9: Transport model results for mean water consumption. The measured mean statistics 

𝜇𝑥,𝑖,𝓉, direct regression model results 𝜇̂𝑥, and the corresponding transport model results 𝜇̂𝑥|𝑝𝑥  for the 

entire analysis period. 

 

PMFs from the summer billing periods of July/August 2015, May/June 2016, and 

July/August 2016 appear significantly different than previous years and suggest that omitted 

variables may be influencing water consumption. These are the only years where the measured 

mean water consumption in May/June (30.86 𝑚3/𝑏𝑝/𝑎𝑐𝑐𝑡 for 2015 and 32.88 𝑚3/𝑏𝑝/𝑎𝑐𝑐𝑡 for 

2016) is higher than the water consumption in July/August (28.96 𝑚3/𝑏𝑝/𝑎𝑐𝑐𝑡 for 2015 and 27.95 

𝑚3/𝑏𝑝/𝑎𝑐𝑐𝑡 for 2016) of the same year. Figure 3.10 shows that the transport model 𝑝̂𝑥(𝑥, 𝑃,𝑊) 
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over-estimates the water consumption for the July/August period in both 2015 and 2016 despite 

that fact that the optimal parametrization 𝑝𝑥,𝓉 is accurate. The hypothesis is that identifying and 

quantifying these potentially omitted variables could allow 𝑝̂𝑥(𝑥, 𝑃,𝑊) → 𝑝𝑥,𝓉. 

 

Figure 3.10: Transport model results for 2015-2016 May/June and July/August periods. Residential 

water consumption PMFs and corresponding PDFs for a sequence of May/June and July/August billing 

periods, with the optimal PDF from fitting the data, and the PDF 𝑝̂𝑥 obtained using the transport model. 

Also shown is the discrete mean 𝜇𝑥,𝑖,𝓉 as well as the estimated mean from the transport model 𝜇̂𝑥|𝑝𝑥 . 

 

Starting in 2006, The Region of Waterloo implemented a Water Efficiency Master Plan 

2007-2015 which prioritized mass media advertising and a water conservation by-law that 

included outdoor water usage restrictions between May 31st and September 30th (Region of 

Waterloo, 2006b). Then, in 2015, The Region of Waterloo extended their water conservation 

practice with the Water Efficiency Master Plan 2015-2025 including advertisement and 

enforcement. Additionally, they began to actively identify and target heavy water users through 

the RWSAP: 

“…who are known to have especially high household water use will be actively contacted 

and encouraged to participate in the program. This program will help address the challenge 
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shown frequently in market research that many residents are unaware that their 

consumption is markedly higher than the norm.” (Water Efficiency Master Plan, 2015) 

Beginning in May/June 2015, there appear to be tangible, yet unexplained, changes in 

residential water consumption habits that may indicate water conservation education and by-law 

enforcement act as ambient processes that significantly confound the influence of price and 

weather. For instance, the mean water consumption during the May/June billing period in 2015 

was the highest since 2011 and actually increased from 2015 to 2016. Also, both the median and 

standard deviation were higher in May/June 2016 and were lower in July/August of the same year 

relative to what the advective-dispersive transport model could predict. This suggests the model 

under-anticipated consumption in May/June and over-anticipated consumption in July/August. 

Therefore, additional ambient processes arising from RWASP could include water conservation 

arising from improved education, awareness through mass media advertising, and active 

enforcement of water restriction by-laws may have led individual residential accounts to decrease 

their water usage during the July/August billing period. However, residents also appear to have 

substituted their water usage by increasing their water consumption in advance of the May 31st 

water restriction deadline prior to decreasing their consumption in the July/August period. 

Thereafter, even though they are conforming to policy, residential consumers return to historical 

water consumption patterns for the fall and winter months. In the context of this advection-

dispersion analysis for the water consumption PDF and its mean statistic, it is seemingly 

impossible to measure policy as a continuum process in the same way as price 𝑃 and weather score 

𝑊. However, policy does appear to drive the continuum response of residential water consumption 

and this influence may be inferred through deviation from an otherwise accurate water 

consumption model. 

3.4. CONCLUSIONS 

The motivation for this study was to develop a methodology for water utilities to 

understand how changes to water price and weather patterns drive residential water consumption, 

and ultimately generate revenue to balance operational expenses in support of financial 

sustainability. This analysis involves histogram data representing residential water consumption 

within the City of Waterloo, Ontario, Canada over a 10-year period. The water consumption 

histograms are smooth, unimodal, asymmetric, shifted, with a heavy tail. They are transformed 
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into PMFs and shown to respond in a systemic manner to annual price increases as well as seasonal 

temperature and precipitation patterns. Following these observations, the premise of this analysis 

is that utility-wide residential water consumption of individual account holders exhibits a 

continuum response to changes in ambient variables such as price and weather. 

To replicate the observed continuum response of the water consumption histogram, this 

chapter individually fits a parametric PDF to each of the 60 bimonthly histograms using a third-

order exponential polynomial control function and reproduces the bimonthly data as a continuous 

function. The resulting PDFs as well their derived mean statistic represent the solution to an 

advection-dispersion transport equation, where: the median represents advection by locating the 

PDF and the standard deviation combined with the standard-score space PDF represents dispersion 

by virtue of giving the solution scale and shape. Optimally parameterizing the control function 

requires conservation of probability, which includes all water consumption measurements in the 

analysis to ensure the corresponding CDF is unity. Consequently, the advective-dispersive 

transport process is one-dimensional along the axis of water consumption 𝑥 [𝑚3 𝑏𝑝⁄ 𝑎𝑐𝑐𝑡⁄ ]. 

Therefore, the probability 𝒫 that an account will achieve a specified water consumption 𝑥̅ can be 

estimated numerically as 𝒫 = ∫ 𝑝𝑥(𝑥, 𝑃,𝑊)
𝑥̅

0
𝑑𝑥 under predefined ambient conditions of real 

water price 𝑃(𝑡) and weather score 𝑊(𝑡) at time 𝑡. 

The outcome of this analysis provides new possibilities for interpreting how the location, 

scale, and shape of a distribution of measurements respond to changes in ambient conditions. This 

analysis demonstrates that it is reasonable to disaggregate the data into “advection-dispersion” like 

components to characterize how a distribution will evolve through time. Furthermore, this 

approach guarantees a unique solution for the mean statistic and may provide more precision when 

forecasting how the solution will evolve for future known or anticipated ambient conditions. This 

could have positive implications for water utilities attempting to forecast their revenues under a 

strict water price increase schedules in the face of ever-increasing expenses. Furthermore, this 

approach could provide utilities with the ability to quantify the influence of policy implementation 

and enforcement such as summer water use restrictions. Additionally, this advective-dispersive 

transport framework for consumer behaviour could analogously apply to other industries such as 

electrical utilities and transportation services, as well as, social and health science applications 

with histogram data that exhibit non-Gaussian tendencies. 
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4. Conservation of Probability and Parametric PDEs 

 The first two main chapters of this thesis outline a methodology for transforming discrete 

data histograms into continuous probability density functions (PDFs) and evaluating how these 

functions evolve through time. The outcome of Chapter 3 is a governing partial differential 

equation (PDE) that describes how the water consumption PDF will evolve with respect to water 

price and weather conditions. The water consumption data provide a useful example for presenting 

any distribution of discrete measurements as a probabilistic process using the following concepts: 

conservation of probability, spatial-continuity, and temporal-continuity. Anecdotal application to 

water consumption data motivates the investigation of an overarching theory that describes how 

information evolves within both physical and abstract systems. This chapter attempts to articulate 

a general understanding from this specific application.  

The water utility application tracks the evolution of residential water consumption PDFs 

in bimonthly intervals over a 10-year period. Price and weather are identified as ambient conditions 

that likely influence the water consumption PDF. Curvilinear regression supports a statistically 

significant correlation between the median, standard deviation, and control function parameters 

that recombine to describe the evolution of the water consumption PDF. The curvilinear regression 

parameters represent partial derivatives that describe the relationship between the median, standard 

deviation, and control function with the ambient conditions. Therefore, the outcome of the water 

consumption application is a PDE for each statistic with respect to the ambient conditions of price 

and weather as they evolve through time. By combining the PDEs for each statistic in Equation 

3.1 the PDE resulting from the transport model solves to reproduce a PDF. This is consistent with 

the understanding that a normal distribution represents the solution to a second-order 

homogeneous PDE. Solving the transport model for alternative forms of PDEs may provide insight 

into systems that are not governed by the normal distribution. 

The goal of this investigation is to build an understanding of this overarching framework 

using probabilistic systems that are both simpler than the water consumption application and also 

well understood. Therefore, this framework we examine the concepts of probability, spatial-

continuity, and temporal-continuity in the context of mass transport through molecular diffusion. 

Using Einstein’s second order homogeneous PDE for molecular diffusion, this chapter provides a 

probabilistic derivation of molecular self-diffusion in two dimensions, which is consistent with the 
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Fourier solution. Fourier’s heat conduction equation is a PDE and its solution is constrained to be 

a scaled normal distribution. This solution is a versatile analytical relationship that analogously 

applies to disparate and seemingly unconnected disciplines. Narasimhan (1999) provides an 

insightful overview of the history, influence, and applications of this solution within contemporary 

science. The influence of Fourier’s solution is best described through advancement in the fields of 

electricity, flow in porous media, and molecular diffusion. Although these fields are seemingly 

disparate, historical modeling of experimental observations using the Fourier solution suggests 

that it mathematically describes specific processes within each field. Moreover, it may represent 

an overarching conservation law that governs how information flows within physical systems. A 

natural extension of this derivation produces Fick’s Law and reveals that the diffusion coefficient 

is inversely proportional to the component density of the fluid medium. 

This chapter provides compelling evidence that conservation of probability applies to 

disparate fields, which suggests conservation of information is a unifying concept for modeling 

systemic response. The generality of this approach to govern both societal and physical processes 

allows this analysis to conclude that second-order PDEs reflect interactions between three well-

defined system components: 1) a source/sink term, 2) the measured property, and 3) a conduit that 

connects the source/sink to the measured property. This realization indicates that parameters within 

the governing PDE meaningfully describe and quantify the properties of the conduit. For the water 

consumption application, the conduit is the household-specific qualities that compel water 

consumption, the source term is the necessity to consume water to maintain standard of living 

conditions, and the measurement is the volume of water consumed. Future work could exploit 

parameterization of the PDE to forecast pairs of source/sink terms and the resulting solution of a 

measurement PDF. 

4.1. THEORY 

Conservation of probability, spatial-continuity, and temporal-continuity provide the 

foundation for interpreting governing PDEs for various physical and abstract processes. 

Conservation of probability refers to the sum of probability not exceeding unity for all potential 

outcomes. Spatial-continuity refers to a continuous function that describes the probability for any 

discrete interval within the measurement space. Temporal-continuity refers to the spatially-

continuous PDF also being continuous with respect to time. This chapter largely focuses on 
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interpreting experimental results as the solution to a set of governing PDEs that describe how the 

distribution of experimental results will evolve through time as a function of ambient processes. 

In this context, experimental observations can be categorized as either intensive or extensive with 

respect to both space and time. According to the International Union of Pure and Applied 

Chemistry (IUPAC), intensive properties in space describe the governing system but do not depend 

on the amount of substance that they describe, while extensive properties in space are additive and 

correspond directly to the amount of substance they describe. This chapter discusses how the 

general concepts of intensive and extensive measurements relate to the water consumption 

application. 

Figure 4.1.a presents water consumption measurement data form July/August 2007 in 

extensive ℰ, intensive ℐ, parametric PDF, and parametric CDF representations. Figure 4.1.a shows 

a histogram where the vertical axis represents the number of accounts as an extensive measurement 

ℰ [𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] and the horizontal axis represents water consumption 𝑥 [𝑚3 𝑏𝑝⁄ ], where ‘bp’ is 

bimonthly period. The histogram bins in Figure 4.1.a represent the number of accounts that 

consume water within the time- and space-interval of  ℰ = ∫ ∫ ∫ ℐ𝑥,𝑡,𝒩 𝑑𝒩
𝑥2
𝑥1

𝑑𝑥
𝑡2
𝑡1

𝑑𝑡, where 𝒩 is 

the number of measurements, 𝑑𝑡 is a time-interval for measurement, and 𝑑𝑥 is the horizontal bin 

size. The number of extensive measurements is transformed into an intensive representation by 

𝑑ℰ

𝑑𝒩
= ∫ ∫ ℐ𝑥,𝑡,𝒩

𝑥2
𝑥1

𝑑𝑥
𝑡2
𝑡1

𝑑𝑡, which also converts the vertical axis of the histogram from account 

frequency to probability density. This is expressed in the transition from Figure 4.1.a to Figure 

4.1.b. 
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Figure 4.1: Water consumption data and parametric PDF for July/August 2007. 

 

The relationship between intensive and extensive data implies conservation of probability, 

because the intensive distribution accounts for all of the extensive measurements. Summing the 

probability bins of intensive data from 0 → ∞ in Figure 4.1.b naturally captures all possible 

measurements and results in a cumulative probability of unity. Figure 4.1.c shows the derived 

intensive PDF representation of the original extensive histogram data. Integrating the PDF over 

the range of 𝑥 over some sampling interval 𝑡 results in a CDF shown on Figure 4.1.d that conserves 

probability. Evaluating the position-weighted frequency of the intensive and extensive histogram 

data provide an estimate of the mean occurrence 𝜇𝑥 = ∫𝑥ℐ𝑥,𝑡,𝒩 𝑑𝑥 and 𝜇𝑥 = ∫𝑥ℰ𝑥,𝑡 𝑑𝑥. Further 

integrating the mean occurrence by the number of measurements estimates the total measure of 

the system as: ℳ𝑥 = ∫𝜇𝑥 𝑑𝒩. For the water consumption histogram, the total measure of the 

system is the utility-wide residential water consumption, which is important for developing 

sustainable utility management practices. This result is the culmination of conservation of 

probability, spatial-continuity, and temporal-continuity, which allows this theory to deconstruct a 

highly-complex water consumption problem into manageable concepts.  

Equation 4.1 generalizes the above principles and presents conservation laws in the context 

of intensive and extensive properties. Notably, the frequency representation of data from Figure 
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4.1 can be used to infer the properties of a PDF through conservation of probability, ∫ ℐ𝑥,𝑡,𝒩 𝑑𝑥 =

1  ⟺  ℐ𝑥,𝑡,𝒩 = 0. In this context, the intensive property ℐ𝑥,𝑡,𝒩 is simultaneously an expression of 

space 𝑥, time 𝑡, and frequency, normalized by the total number of measurements 𝒩 as: 

𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, ∫ℐ𝑥,𝑡,𝒩 𝑑𝑥 = 1  ⟺  ℐ𝑥,𝑡,𝒩 = 0 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 − 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦, ℰ𝑡 = ∬ℐ𝑥,𝑡,𝒩 𝑑𝑥𝑑𝒩  ⟺   ℐ𝑥,𝑡,𝒩 =
𝑑2ℰ𝑡
𝑑𝑥𝑑𝒩

 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 − 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦, ℰ =∭ℐ𝑥,𝑡,𝒩 𝑑𝑥𝑑𝒩𝑑𝑡  ⟺  ℐ𝑥,𝑡,𝒩 = ∫
𝑑

𝑑𝑡
[ℐ𝑥,𝑡,𝒩] 𝑑𝑡 

(4.1) 

Equation 4.1 provides a theoretical foundation for investigating the relationship between 

probabilistic PDEs and their associated PDF solutions. The relationships in Equation 4.1 specify 

subscript notation for both intensive ℐ and extensive ℰ measurements through differentiation and 

integration. Each subscript represents a derivative of the extensive measurements with respect to 

space 𝑥, time 𝑡, and total measurements 𝒩. This notation clearly communicates the relationship 

between extensive measurements, the resulting intensive PDF, and the parametric representation 

in Figure 4.1. The analysis in chapter 3 applies conservation of probability by comparing the CMF 

to a CDF (Figure 4.1.d) to fit a parametric PDF (Figure 4.1.c) to the intensive measurements 

(Figure 4.1.b). Thus, the analysis uses these foundational concepts to evaluate how the water 

consumption distribution evolves with time. The concept of time-continuity suggests that the 

measurement PDF can continuously transition from one steady-state condition to another. In this 

context, the results in Figure 4.1 provide a time-still snapshot of water consumption during the 

July/August 2007 bimonthly period. 

Conservation of probability ensures that all measurements are accounted for and allows the 

PDF of intensive properties to rescale itself accordingly as the system changes. This is especially 

important for evaluating the transition from one steady-state condition to another, to progressively 

account for the dynamic nature of a system. Spatial-continuity is important for interpreting 

measurements in the context of conservation of probability. Normalizing the frequency ℰ𝑥,𝑡 by the 

total number of measurements 𝒩 for defined space and time intervals naturally transforms 

empirical data to represent a percentage of total measurement – which provides a suitable 

definition for an intensive property ℐ𝑥,𝑡,𝒩. Summing the intensive properties over the entire 
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measurement space, for example the water consumption data in Figure 4.1, will always sum to 

unity through ∫ ℐ𝑥,𝑡,𝒩 𝑑𝑥 = 1. However, the intensive distribution may change with respect to 

time, implying 
𝑑ℐ𝑥,𝑡,𝒩

𝑑𝑡
 exists and is non-zero. 

The example data provided in Figure 4.1 do not have the characteristics of a normal 

distribution. Chapter 3 investigates the evolution of the water consumption PDF and develops a 

PDE that accurately reproduces this PDF over a 10-year period. This chapter contends that 

characterizing PDEs that can reproduce the distribution of observation data is a form of data 

compression. This chapter provides a general methodology interpreting a multitude of data 

measurements and storing them within PDE parameterization that solves for the measurement 

distribution. The context for data compression is the storage of many data point using less PDE 

parameters without losing data fidelity. Although the water consumption application provides an 

adequate example of the relationship between PDEs and PDFs, there is merit to showing this 

relationship for the normal distribution. The following sections continue from the basis second-

order homogeneous PDEs which solve to produce a normal distribution. This chapter considers 

the example process of molecular self-diffusion and its second-order homogeneous PDE. 

4.1.1. NORMALLY DISTRIBUTED MEASUREMENTS  

 It is well-understood that the normal distribution represents the solution to a second-order 

homogeneous PDE. Here, the analysis reimagines a PDE that uses the notation for intensive 

measurements, consistent with Figure 4.1.b, that combine to produce the shape of a normal 

distribution. Here, the intensive measurements ℐ𝑥,𝑡 represent a distribution in both space and time 

as: 

𝑑

𝑑𝑡
[ℐ𝑥,𝑡,𝒩] = 𝐷𝑥,𝑡,𝒩

𝑑2

𝑑𝑥2
[ℐ𝑥,𝑡,𝒩] (4.2) 

Where, 𝐷𝑥,𝑡,𝒩 is the space-time scaling coefficient, which is necessary to enforce dimensional 

consistency. Notably, Einstein (1905) uses this same form to characterize molecular diffusion in 

one dimension through a Taylor series approximation. As a second-order homogeneous PDE, the 

solution to Equation 4.2 is naturally defined as: 
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ℐ𝑥,𝑡,𝒩 =
1

√𝑠𝑥,𝑡,𝒩
2

𝑝̅𝑧   ⟹  
𝑑𝑝𝑥,𝑡

∗

𝑑𝒩
= ℐ𝑥,𝑡,𝒩 , ∴

𝑑𝑝𝑥,𝑡
∗

𝑑𝒩
=

1

√𝑠𝑥,𝑡,𝒩
2

𝑝̅𝑧 (4.3) 

Where, 
𝑑𝑝𝑥,𝑡

∗

𝑑𝒩
 represents the intensive distribution of measurements, the intensive property ℐ𝑥,𝑡,𝒩 is 

naturally a PDF due to its dependence on 𝑝𝑥,𝑡
∗  which in itself is a scaled PDF derived from the 

space- and time-invariant standard-score normal distribution 𝑝̅𝑧, 𝑠𝑥,𝑡,𝒩
2  is the variance of the 

intensive property. Note the bar notation ‘–‘ expresses the standard-score PDF as a normal 

distribution 𝑝̅𝑧. The solution to the PDE in Equation 4.2 is scaled by the inverse square-root of the 

variance 
1

√𝑠𝑥,𝑡,𝒩
2

 and the * superscript for the PDF 𝑝𝑥,𝑡
∗  represents a zero-centered distribution about 

the median 𝑚𝑥,𝑡,𝒩 in the measurement space 𝑥. Using ℰ𝑥,𝑡 = ∫ℐ𝑥,𝑡,𝒩 𝑑𝒩, this analysis can express 

the intensive property 
𝑑𝑝𝑥,𝑡

∗

𝑑𝒩
 as a distribution of extensive measurements by integrating over the 

total number of measurements 𝒩. The resulting dimensionality of the intensive property 
𝑑𝑝𝑥,𝑡

∗

𝑑𝒩
=

ℐ𝑥,𝑡,𝒩 is consistent with probability density, where it expresses the number of measurements within 

an infinitesimally small bin in the measurement interval 𝑑𝑥, over time-interval 𝑑𝑡, with respect to 

the total number of measurements 𝒩. 

Interpreting the measurements that describe physical systems is important in the context of 

developing and parameterizing PDEs. For instance, this investigation focuses on second-order 

homogeneous PDEs for diffusion as expressed in Einstein, which were experimentally confirmed 

by Perrin (1913) and also Fick’s Law, which is later proposed to be an extension of Einstein. Table 

4.1 introduces the second-order homogeneous PDEs for Einsteinian diffusion, and Fick’s Law, 

which produce solutions that reflect a scaled normal distribution through 
𝑑𝑝𝑥,𝑡

∗

𝑑𝒩
=

1

√𝑠𝑥,𝑡,𝒩
2

𝑝̅𝑧. 
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Table 4.1: Second-order Homogeneous PDEs for various physical processes. 

Application 

Time-derivative 

Intensive 

PDF 

Spatial-derivative 

Intensive 

PDF 

Scaling 

Coefficient 

Einsteinian 

Diffusion 

𝑑

𝑑𝑡
[
𝑑𝑝ℓ,𝑡

∗

𝑑𝓃
] 

𝑑2

𝑑ℓ2
[
𝑑𝑝ℓ,𝑡

∗

𝑑𝓃
] 𝐷ℓ,𝑡,𝓃 =

𝜕2ℓ

𝜕𝑡2
𝑑𝑡 

Fick’s Law 
𝑑

𝑑𝑡
[
𝑑𝓃

𝑑𝑉
] 

𝑑2

𝑑𝑟2
[
𝑑𝓃

𝑑𝑉
] 𝐷𝓃,𝑡,𝑉 =

𝜕2𝑟

𝜕𝑡2
𝑑𝑡 

 

Where, 𝑝ℓ,𝑡
∗  represents the distribution of molecular displacement [𝑙𝑒𝑛𝑔𝑡ℎ], 𝓃 represents 

molecules [𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠], ℓ represents displacement magnitude [𝑙𝑒𝑛𝑔𝑡ℎ], 𝐷ℓ,𝑡,𝓃 is the Einsteinian 

diffusion coefficient [𝑙𝑒𝑛𝑔𝑡ℎ2 𝑡𝑖𝑚𝑒⁄ ], 𝑉 represents volume [𝑙𝑒𝑛𝑔𝑡ℎ3], 𝑟 represents radial 

displacement [𝑙𝑒𝑛𝑔𝑡ℎ], 𝐷𝓃,𝑡,𝑉 is Fick’s Law diffusion coefficient [𝑙𝑒𝑛𝑔𝑡ℎ2 𝑡𝑖𝑚𝑒⁄ ]. 

From Table 4.1, notice that the “time-derivative intensive PDF” are located on the left-

hand side of Equation 4.2 as 
𝑑

𝑑𝑡
[ℐ𝑥,𝑡,𝒩]. The “spatial-derivative intensive PDF” are located on its 

right-hand side of this equation as 
𝑑2

𝑑𝑥2
[ℐ𝑥,𝑡,𝒩]. A time-dependent second-order homogeneous PDE 

implies the transient evolution of a spatial distribution. The processes in Table 4.1 require 

extensive measurements of displacement and moles to describe the PDEs for Einstein and Fick, 

respectively. However, the PDEs require intensive expressions of these measurements, which 

divide by additional extensive measurements of moles and volume. Dividing one extensive 

measurement by another produces a derived intensive property, known as a composite property, 

that applies to the PDEs in Table 4.1 as: ℐ𝑥,𝑡,𝒩 =
𝑑𝑝ℓ,𝑡

∗

𝑑𝓃
 and ℐ𝑥,𝑡,𝒩 =

𝑑𝓃

𝑑𝑉
.  

4.1.2. SCALING THE BROWNIAN MOTION DIFFUSION COEFFICIENT 

The intent of this section is to investigate the process of diffusion as a solution to Einstein’s 

probabilistic PDE through an interpretation of intensive and extensive properties. Perrin’s (1913) 

measurements of molecular diffusion provide motivation for this investigation to rescale Einstein’s 

PDE to reflect two-dimensional diffusion. Using the general form PDE from Equation 4.2, this 

investigation will show that transforming the molecular displacement PDF from linear-Cartesian 

to linear-polar coordinates requires rescaling of the diffusion coefficient to conserve probability. 
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In this spirit, this investigation proceeds to evaluate diffusion processes that conserve probability 

in two-dimensions. The outcome of this section is a probabilistic solution to two-dimensional 

diffusion that is consistent with the solution to the Fourier equation describing heat transfer in 

solids. Furthermore, this chapter shows that this interpretation may lead to a probabilistic 

derivation of Fick’s Law. 

4.1.2.1. One-Dimensional Diffusion 

Einstein shows that a scaled normal distribution is the solution to the physical process of 

molecular diffusion that results from a second-order homogeneous PDE. This solution provides a 

relationship between the diffusion coefficient and microscopic movement expressed through a 

nonzero, time-dependent variance of molecular displacement. Expressing the diffusion PDE 

through the general form in Equation 4.2 requires that the distribution of molecular displacement 

𝑑𝑝ℓ,𝑡
∗

𝑑𝓃
 is the intensive property as ℐ𝑥,𝑡,𝒩; total number of moles 𝓃 in a spatial and temporal interval 

is in the denominator of the intensive property as 𝒩; and, the diffusion coefficient 𝐷ℓ,𝑡,𝓃 is the 

space-time scaling coefficient as 𝐷𝑥,𝑡,𝒩. 

𝑑

𝑑𝑡
[
𝑑𝑝ℓ,𝑡

∗

𝑑𝓃
] = 𝐷ℓ,𝑡,𝓃

𝑑2

𝑑ℓ2
[
𝑑𝑝ℓ,𝑡

∗

𝑑𝓃
] ,

𝑑𝑝ℓ,𝑡
∗

𝑑𝓃
=

1

√𝑠ℓ,𝑡,𝓃
2

𝑝̅𝑧 , 𝑠ℓ,𝑡,𝓃
2 = 2𝐷ℓ,𝑡,𝓃𝑡 (4.4) 

Where, Equation 4.4 applies the Einstein-Smoluchowski equation to relate the diffusion coefficient 

to variance of molecular velocity; and, √𝑠ℓ,𝑡,𝓃
2  represents the standard displacement or square root 

of variance of linear displacement in one dimension. The zero-centered PDF 
𝑑𝑝ℓ,𝑡

∗

𝑑𝓃
 characterizes the 

frequency of displacement per molecule in a one-dimensional space. This interpretation represents 

one-dimensional diffusion at the microscopic level of magnitude ℓ in a positive or negative 

direction with respect to time 𝑡. Perrin (1913) confirmed that the time-dependent displacement of 

molecular movement is characterized by a normal distribution and supports Einstein’s solution to 

the diffusion PDE. When divided by the total number of measurements, Perrin’s experimental 

results are consistent with frequency of displacement per molecule per time  
𝑑

𝑑𝑡
[
𝑑𝑝ℓ,𝑡

∗

𝑑𝓃
] which is an 

expression of molecular velocity. However, Perrin measures molecular displacement of suspended 

solids in two spatial dimensions (i.e. a petri dish), which suggests there should be an analogous 
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two-dimensional solution to Einstein’s probabilistic PDE. Using this basis, the following sections 

use conservation of probability to rescale Einstein’s displacement PDF to reflect a two-

dimensional solution in polar coordinates. 

An example may help to visualize the link between Perrin’s experiment and the 

probabilistic solution to Einstein’s PDE. Ultimately, Perrin measures the magnitude and angle of 

displacement resulting from microscopic displacement of macro-particles that is consistent with 

Brownian motion while suspended in a liquid. Interpreting the displacements as either positive or 

negative while ignoring the angle of displacement produces a binomial normal distribution. 

However, the physical process of diffusion requires both a magnitude and direction to be consistent 

with the realized experimental results. Therefore, this section contends that combining a normal 

distribution of displacement ℓ and a uniform distribution of direction 𝜃 can recreate an example 

distribution that is consistent with Perrin’s results. Randomly selecting a step-size and direction 

from these distributions using a consistent interval of time produces a two-dimensional random 

walk. Figure 4.2 presents an example illustration of molecular velocity, which produces results 

that are consistent with those of Perrin.  

Representing a two-dimensional random walk using sequential steps in time (Figure 4.2.a) 

is analogous to the random walk envisioned by Einstein to develop his probabilistic PDE. 

However, Einstein effectively assumes radial symmetry for his derivation without explicitly 

stating this assumption. Grouping the velocity measurements by quadrant (++,−+,+−,− −), 

this analysis can interpret the example displacements from Figure 4.2 in one-dimension. This 

exercise groups steps taken within quadrants (++,− +) and considers them to represent positive 

displacements – these data points are positioned between 0 ≤ 𝜃 ≤ 𝜋 on Figure 4.2.a. Furthermore, 

this exercise groups steps taken within quadrants (+−,− −) and considers them to be negative 

displacements – these data points are positioned between 𝜋 ≤ 𝜃 ≤ 2𝜋 on Figure 4.2.a. Combining 

the positive and negative displacement values results in a binomial distribution that is equivalent 

to the one-dimensional distribution envisioned by Einstein. Given that Einstein’s one-dimensional 

PDF is supported by two-dimensional measurements, this suggests that there exists a two-

dimensional probabilistic solution for molecular diffusion that conserves probability. 
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Figure 4.2: A standard normal random walk in two-dimensions. Figure 4.2.a represents example 

random velocities of molecular displacement (normal distribution) and direction (uniform distribution), 

and Figure 4.2.b represents the path of a 500-step random walk, where the randomly selected velocities 

are ordered in time and presented in sequence.  

 

4.1.2.2. Radial Diffusion  

Transforming the one-dimensional linear solution into polar coordinates rescales the linear 

displacement PDF to more accurately reflect Perrin’s experimental results. To accomplish this, 

conservation of probability relates probabilistic diffusion for the linear and radial solutions. The 

next steps rely on ∫ ℐ𝑥,𝑡,𝒩 𝑑𝑥 = 1 from Equation 4.1 to ensure that rescaling the distribution will 

conserve probability. However, the one-dimensional linear solution must be reimagined to 

characterize the probability over the interval of an angular increment 𝑑𝜃. Assuming this 

reinterpretation also conserves probability, then ∬
𝑑𝑝ℓ,𝑡

∗

𝑑𝑛
𝑑𝜃𝑑ℓ = 1, where 𝑑𝜃𝑑ℓ = 𝑑𝑥 is an 

expression of an increment in the measurement space from Equation 4.1. 

If there exists an analogous radial PDF for molecular displacement 
𝑑𝑝𝑟,𝑡

∗

𝑑𝑛
 with unit area, 

∫
𝑑𝑝𝑟,𝑡

∗

𝑑𝑛
𝑑𝑟 = 1, then these relationships can be equated through conservation of probability as 

∫
𝑑𝑝𝑟,𝑡

∗

𝑑𝑛
𝑑𝑟 = ∬

𝑑𝑝ℓ,𝑡
∗

𝑑𝑛
𝑑𝜃𝑑ℓ. This equality allows us to infer a direct relationship between the linear 

and radial PDFs in one dimension as: 
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∵ 𝑑𝑟 = 𝑑ℓ , ∴
𝑑𝑝𝑟,𝑡

∗

𝑑𝑛
= ∫

𝑑𝑝ℓ,𝑡
∗

𝑑𝑛
𝑑𝜃   ⟹  

𝑑2𝑝𝑟,𝑡
∗

𝑑𝓃𝑑𝜃
=
𝑑𝑝ℓ,𝑡

∗

𝑑𝓃
 (4.5) 

Where, 
𝑑𝑝𝑟,𝑡

∗

𝑑𝓃
 is the zero-centered radial PDF that allows the random walk to travel in any direction 

while conserving probability. Substitution of the relationship 
𝑑𝑝ℓ,𝑡

∗

𝑑𝓃
=
𝑑2𝑝𝑟,𝑡

∗

𝑑𝓃𝑑𝜃
 into Equation 4.4 

implies an analogous diffusion PDE, where probability is conserved in polar coordinates as: 

𝑑

𝑑𝑡
[
𝑑2𝑝𝑟,𝑡

∗

𝑑𝓃𝑑𝜃
] = 𝐷ℓ,𝑡,𝓃

𝑑2

𝑑ℓ2
[
𝑑2𝑝𝑟,𝑡

∗

𝑑𝓃𝑑𝜃
]   ⟹   

𝑑2𝑝𝑟,𝑡
∗

𝑑𝓃𝑑𝜃
=

1

√𝑠ℓ,𝑡,𝓃
2

𝑝̅𝑧 (4.6) 

Where, 
𝑑2𝑝𝑟,𝑡

∗

𝑑𝓃𝑑𝜃
 is the intensive property ℐ𝑥,𝑡,𝒩 for the one-dimensional solution in polar coordinates. 

Although the PDE in Equation 4.6 still reflects a one-dimensional form of diffusion, it is a key 

intermediary step to interpret the solution to two-dimensional diffusion.  

The probabilistic PDE from Equation 4.6 allows this analysis to reinterpret diffusion as a 

radial process. A single step within a random walk in polar coordinates is a scaled version of a 

single step from a binomial distribution. In polar coordinates, displacement can be both positive 

or negative with equal probability in all radial angles. Rotating the one-dimensional PDF by a half-

circle from 0 → 𝜋, while conserving unit area properly scales the diffusion coefficient in polar 

coordinates. Evaluating the integral of the intensive property 
𝑑2𝑝𝑟,𝑡

∗

𝑑𝓃𝑑𝜃
 from Equation 4.6 with respect 

to 𝑑𝜃 produces a zero-centered probabilistic PDF in polar coordinates 
𝑑𝑝𝑟,𝑡

∗

𝑑𝑛
 as: 

𝑑𝑝𝑟,𝑡
∗

𝑑𝓃
=
∫ 𝑑𝜃
𝜋

0

√𝑠ℓ,𝑡,𝓃
2

𝑝̅𝑧   ⟹   
𝑑𝑝𝑟,𝑡

∗

𝑑𝓃
=

1

√
𝑠ℓ,𝑡,𝓃
2

𝜋2

𝑝̅𝑧 
(4.7) 

The relationship in Equation 4.7 shows that the solution to the PDE in polar coordinates has the 

same form as Einstein with a scaled variance term. Assume there exists a radial variance such that 

Equation 4.7 is the solution to a second-order homogeneous PDE, then the linear and radial 

variance terms can be related as:  
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𝑠𝑟,𝑡,𝓃
2 =

𝑠ℓ,𝑡,𝓃
2

𝜋2
  ⟹  

𝑑𝑝𝑟,𝑡
∗

𝑑𝓃
=

1

√𝑠𝑟,𝑡,𝓃
2

𝑝̅𝑧 (4.8) 

Where, 𝑠𝑟,𝑡,𝓃
2  represents the variance of displacement for one dimension in polar coordinates. By 

considering the Einstein-Smoluchowski equation in polar coordinates, this analysis can relate the 

radial diffusion coefficient 𝐷𝑟,𝑡,𝓃 to the linear diffusion coefficient 𝐷ℓ,𝑡,𝓃 from Einstein. Rescaling 

the variance into polar coordinates relates the linear and radial diffusion coefficients as: 

𝑠𝑟,𝑡,𝓃
2 =

2

𝜋2
𝐷ℓ,𝑡,𝓃𝑡, 𝑠𝑟,𝑡,𝓃

2 = 2𝐷𝑟,𝑡,𝓃𝑡 ⟹  𝐷𝑟,𝑡,𝓃 =
1

𝜋2
𝐷ℓ,𝑡,𝓃 (4.9) 

Here, the radial diffusion coefficient is equated with the linear diffusion coefficient through a 

variance transformation, 𝑠𝑟,𝑡,𝓃
2 =

𝑠ℓ,𝑡,𝓃
2

𝜋2
. This allows evaluation of the radial diffusion coefficient for 

a random walk in polar coordinates using direction-independent measures of displacement ℓ, while 

assuming radial symmetry over a consistent time interval. 

This probabilistic interpretation of a random walk naturally breaks down when considering 

diffusion in two dimensions, because both the linear and radial diffusion coefficients are 

constrained to one dimension, as either 𝑟 or ℓ. As soon as the random walk moves in two or more 

directions, the linear analogy is no longer appropriate and requires an area interpretation to 

conserve probability. Sequential steps in different directions implies that the position of the 

random walk will exist within some area relative to the origin. The next section creates an 

analogous PDF that conserves probability and implies a governing PDE in two dimensions.  

4.1.2.3. Probabilistic Area-based Diffusion 

The primary goal of this section is to generate a PDE that conserves probability for 

diffusion in two dimensions. Previously, this analysis demonstrates an analogous solution to 

Einstein’s probabilistic PDE for one-dimensional diffusion in polar coordinates. However, this 

solution is a nonphysical representation of diffusion. The linear solution in polar coordinates 

applies to only the first step in the random walk before the origin resets to the center of the molecule 

(see Figure 4.2). Consider diffusion as a two-dimensional process and imagine a molecule tracing 

a path from an origin position to an end position (see Figure 4.2.b). The displacement of each 
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molecule can be either positive or negative at any angle between 0 ≤ 𝜃 ≤ 𝜋, in a two-dimensional 

plane, and hence generate a two-dimensional random walk. This section applies a unit circle 

interpretation to generate a probabilistic area and corresponding PDF that conserve probability for 

sequential steps in two dimensions. Starting from the foundation of Einstein’s probabilistic PDE, 

the following progression will apply a transformation into two dimensions to characterize a 

physical representation of diffusion. 

To begin, it is assumed that there exists some two-dimensional PDF 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
 that is consistent 

with its one-dimensional counterpart 
𝑑𝑝𝑟,𝑡

∗

𝑑𝓃
 that conserves probability for sequential steps in two-

dimensions. Notably, the measurement space reflects area displacement in two dimensions, where 

𝑑𝔸 ≡ 𝑑𝑥 for the general-form Equation 4.1. This implies a CDF that is a probabilistic volume ℙ, 

where the PDF 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
 is analogous to height as: 

ℙ = ∫
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
𝑑𝔸 (4.10) 

Where, ℙ is a probabilistic volume of an area-based PDF for one angular interval about the origin 

and 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
 is the intensive property ℐ𝑥,𝑡,𝒩 for two-dimensional molecular displacement. Notably, 

this analysis defines the intensive property 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
 to invoke conservation of probability through 

∫
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
𝑑𝔸 = 1, where 𝑑𝓃 ≡ 𝑑𝒩 from Equation 4.1. To proceed, the analysis uses the area of a 

unit circle to equate the area-based PDF that corresponds to the radial diffusion PDF from Equation 

4.8.  

Here, the area-based process is reimagined through a probabilistic radius, ℝ = ∫
𝑑𝑝𝑟,𝑡

∗

𝑑𝑛
𝑑𝑟, 

that approaches unity when evaluated over the entire measurement space: lim
𝑑𝑟→∞

ℝ = 1. By 

considering the area of a unit circle relative to the probabilistic radius 𝑅, this analysis can enforce 

conservation of probability for a two-dimensional process. Under these conditions, ℙ =

2∭𝑑ℝ𝑑ℝ𝑑𝜃 represents the area of the unit circle. This clearly states a relationship between 

probabilistic radius and volume per angular increment as 
𝑑ℙ

𝑑𝜃
= ℝ2. Upon substitution, the one- and 

two-dimensional diffusion PDFs can be related through the following:  
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∵ ℝ = ∫
𝑑𝑝𝑟,t

∗

𝑑𝑛
𝑑𝑟, ∴

𝑑ℙ

𝑑𝜃
= [∫

𝑑𝑝𝑟,t
∗

𝑑𝑛
𝑑𝑟]

2

 (4.11) 

To proceed, the progression applies a change of variable, substitutes Equation 4.10 into 

Equation 4.11, and evaluates the area-based PDF 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
. The probabilistic area is defined as 𝑑𝔸 =

𝑑𝑟𝑑𝑟𝑑𝜃, which then transforms Equation 4.10 into 
𝑑ℙ

𝑑𝜃
= ∬

𝑑2𝑝𝔸,𝑡
∗

𝑑𝓃𝑑𝜃
𝑑𝑟𝑑𝑟. 

∵
𝑑ℙ

𝑑𝜃
=∬

𝑑2𝑝𝔸,𝑡
∗

𝑑𝓃𝑑𝜃
𝑑𝑟𝑑𝑟, ∴ ∬

𝑑2𝑝𝔸,𝑡
∗

𝑑𝓃𝑑𝜃
𝑑𝑟𝑑𝑟 = [∫

𝑑𝑝𝑟,t
∗

𝑑𝑛
𝑑𝑟]

2

 (4.12) 

By assuming that there is some governing PDE for the area-based PDF, then this progression can 

infer that 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
 is an intensive property ℐ𝑥,𝑡,𝒩 from Equations 4.1 and 4.2. Figure 4.3 shows that 

probabilistic radius ℝ = ∫
𝑑𝑝𝑟,𝑡

∗

𝑑𝑛
𝑑𝑟 is equivalent to a radial CDF in one dimension.  

 

 

Figure 4.3: Geometric representation of area-based PDF. 
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As the radial increment increases from 𝑟0 → 𝑟1 → 𝑟∞, the probabilistic radius approaches unity 

as lim
𝑑𝑟→∞

ℝ = 1. Therefore, the area of the unit circle naturally conserves probability in two 

dimensions when evaluated indefinitely. 

To proceed, the analysis can evaluate derivatives of the probabilistic volume per angular 

interval 
𝑑ℙ

𝑑𝜃
 with respect to radial increment 𝑑𝑟 to directly relate the PDFs for one- and two-

dimensional diffusion. The resulting third-order derivative 
𝑑3ℙ

𝑑𝜃𝑑𝑟2
 provides an appropriate form to 

express the PDFs through 
𝑑ℝ

𝑑𝑟
=
𝑑𝑝𝑟,t

∗

𝑑𝑛
  ⟺   ℝ = ∫

𝑑𝑝𝑟,𝑡
∗

𝑑𝑛
𝑑𝑟. 

𝑑ℙ

𝑑𝜃
= ℝ2  ⟹   

𝑑2ℙ

𝑑𝜃𝑑𝑟
= 2

𝑑ℝ

𝑑𝑟
ℝ ⟹   

𝑑3ℙ

𝑑𝜃𝑑𝑟2
= 2

𝑑

𝑑𝑟
[
𝑑ℝ

𝑑𝑟
]ℝ + 2 [

𝑑ℝ

𝑑𝑟
]
2

 (4.13) 

By evaluating Equation 4.13 for a spatially-indefinite interval the probabilistic radius is 

constrained to unity as ℝ = 1. Upon substitution into Equation 4.13 and a derivation in Appendix 

C.1, this analysis demonstrates that 
𝑑3ℙ

𝑑𝜃𝑑𝑟𝑑𝑟
= 2 [

𝑑ℝ

𝑑𝑟
]
2
. This allows us to infer the following 

relationship: 

𝑑2𝑝𝔸,𝑡
∗

𝑑𝓃𝑑𝜃
= 2 [

𝑑𝑝𝑟,𝑡
∗

𝑑𝓃
]
2

 (4.14) 

Evaluating Equation 4.14 as the multiplication of two normal distributions [
𝑑𝑝𝑟,𝑡

∗

𝑑𝓃
]
2

=

[
1

√𝑠𝑟,𝑡,𝓃
2
𝑝̅𝑧]

2

 allows us to generalize this relationship in Appendix C.2. Using a similar approach as 

Bromiley (2003) to multiply normal distributions, the resulting distribution for a two-dimensional 

process is transformed back into an analogous one-dimensional PDF with proper scale. The 

solution can be generalized for the area-based PDF as: 
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1

2

𝑑2𝑝𝔸,𝑡
∗

𝑑𝓃𝑑𝜃
=

1

√2𝜋𝑠𝑟,𝑡,𝓃
2

𝑝̅𝑧   ⟹   
1

2

𝑑2𝑝𝔸,𝑡
∗

𝑑𝓃𝑑𝜃
=

1

4𝜋𝐷𝑟,𝑡,𝓃𝑡
exp (−

[𝑟 − 𝑚𝑟]
2

4𝐷𝑟,𝑡,𝓃𝑡
) 

1

2
∫
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
𝑑𝑡 = ∫

1

4𝜋𝐷𝑟,𝑡,𝓃𝑡
exp (−

[𝑟 − 𝑚𝑟]
2

4𝐷𝑟,𝑡,𝓃𝑡
)𝑑𝑡 

(4.15) 

Clearly, the time-integral of the intensive property 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
 from Equation 4.15 is consistent with the 

solution to the Fourier equation for heat conduction in solids (Carslaw, 1921). In fact, this 

probabilistic interpretation suggests that the solution presented in Carslaw may be the time-integral 

of an area-based PDF. Temporal-continuity from Equation 4.1 provides the rational for taking the 

time-integral of Equation 4.15 as ℰ𝑥,𝒩 = ∫ℐ𝑥,𝑡,𝒩 𝑑𝑡.  

Equation 4.15 represents a PDF solution for the area-based diffusion process as, 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
=

2 [
1

√2𝜋𝑠𝑟,𝑡,𝓃
2 𝑝̅𝑧]. The PDF 

𝑑2𝑝𝔸,𝑡
∗

𝑑𝓃𝑑𝜃
 needs to be interpreted in one-dimensional polar coordinates to 

relate this solution to Einstein’s one-dimensional diffusion process. Although this relationship is 

derived by scaling the standard normal PDF 𝑝̅𝑧 to conserve probability in two dimensions, this 

solution can project into one dimension as: 

∵
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
=

2

√2𝜋𝑠𝑟,𝑡,𝓃
2

𝑝̅𝑧 , ∴
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
=

[
 
 
 

1

√
𝜋
2 𝐷𝑟,𝑡,𝓃𝑡]

 
 
 

𝑝̅𝑧 

𝐼𝑚𝑝𝑙𝑖𝑒𝑠,
𝑑

𝑑𝑡
[
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
] =  𝐷𝔸,𝑡,𝓃

𝑑2

𝑑𝑟2
[
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
] 

(4.16) 

Where, the probabilistic solution to the PDE considers two-dimensional diffusion as an intensive 

process ℐ𝑥,𝑡,𝒩 =
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
. Reinterpreting this relationship as a solution to a second-order 

homogeneous PDE allows this analysis to infer an analogous variance measurement in two 

dimensions. Again, the Einstein-Smoluchowski equation is applied to develop a relationship 

between the area-based and radial diffusion coefficients.  
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𝑠𝔸,𝑡,𝓃
2 = √

𝜋

2
𝐷𝑟,𝑡,𝓃𝑡, 𝑠𝔸,𝑡,𝓃

2 = 2𝐷𝔸,𝑡,𝓃𝑡  ⟹  𝐷𝔸,𝑡,𝓃 = √
𝜋

8
𝐷𝑟,𝑡,𝓃 (4.17) 

The next section shows that Equation 4.16 leads directly to Fick’s Law of diffusion after 

evaluating the spatial- and temporal-integrals of the intensive property 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
. This interpretation 

provides a clear relationship between the one-dimensional linear, one-dimensional radial, and the 

area-based diffusion coefficients, which is shown to be consistent with the diffusion coefficient 

from Fick’s Law. Appendix C.3 presents numerical examples of two-dimensional random walks 

and appropriately-scaled probabilistic solutions following from 𝐷𝔸,𝑡,𝓃 = √
𝜋

8
𝐷𝑟,𝑡,𝓃. 

4.1.3. FICK’S LAW  

The area-based PDF 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝓃𝑑𝜃
 is an intensive property ℐ𝑥,𝑡,𝒩. The extensive counterpart can be 

evaluated by integrating the intensive property with respect to the number of measurements as 

ℰ𝑥,𝑡 = ∫ℐ𝑥,𝑡,𝒩 𝑑𝒩. For molecular diffusion, the number of measurements is equal to the number 

of molecules as 𝓃 ≡ 𝒩. Upon integration of the PDF from Equation 4.16, the extent of displaced 

molecules can be estimated as: 
𝑑2𝑝𝔸,𝑡

∗

𝑑𝜃
= ∫ [

1

√
𝜋

2
𝐷𝑟,𝑡,𝓃𝑡

𝑝̅𝑧] 𝑑𝓃.  In the context of diffusion, the new 

relationship reflects molecular displacement for some source 𝜆 as:  

𝑑𝑝𝔸,𝑡
∗

𝑑𝜃
=
∫ 𝑑𝓃
𝜆

0

√𝑠ℙ,𝑡,𝓃
2

𝑝̅𝑧   ⟹  
𝑑𝑝𝔸,𝑡

∗

𝑑𝜃
=

[
 
 
 

𝜆

√
𝜋
2 𝐷𝑟,𝑡,𝓃𝑡]

 
 
 

𝑝̅𝑧 (4.18) 

Where, 
𝑑𝑝𝔸,𝑡

∗

𝑑𝜃
 is an extensive PDF per angular increment with the molecular displacement of source 

𝜆 resulting from diffusion after time 𝑡. Integrating the PDF in Equation 4.18 by the measurement 

space 𝑑𝔸 ≡ 𝑑𝑥, estimates the total molecular displacement from the origin. In this context, the 

extensive PDF ℰ𝑥,𝑡 =
𝑑𝑝𝔸,𝑡

∗

𝑑𝜃
 estimates the frequency of displacement related to source 𝜆 and has 

units of length per angular increment. This interpretation provides a mathematical expression for 

the expected number of moles within probabilistic area 𝔸 due to diffusion after time 𝑡. The concept 
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of intensive and extensive properties provides a link between the probabilistic solution to 

Brownian motion and concentration-based diffusion according to Fick’s law. 

Here, integrating the diffusion PDF 𝑝𝔸,𝑡
∗  with respect to intervals of time 𝑑𝑡 and 

probabilistic area 𝑑𝔸 represents the probability that a molecule exists within some predefined 

volume 𝑉. Dividing the number of moles by the predefined volume derives the composite property 

of concentration as: 

𝐶 =
𝓃

𝑉
  ⟹   𝐶 =

𝜆

𝑉
∬𝑝𝔸,𝑡

∗ 𝑑𝔸𝑑𝑡  ⟹  
𝑑

𝑑𝑡
[
𝑑𝐶

𝑑𝔸
] =

𝜆

𝑉
𝑝𝔸,𝑡
∗  (4.19) 

Where, ∫𝑝𝔸,𝑡
∗ 𝑑𝔸 represents the probability that molecules from source 𝜆 are inside the area 

increment 𝑑𝔸. This relationship is a unique interpretation of concentration that relies upon both 

Einsteinian diffusion and the solution to the Fourier heat transfer equation from Equation 4.15. 

Integrating Equation 4.18 by angular increment 𝑑𝜃 and evaluating for a symmetric physical 

process over interval 0 ≤ 𝜃 ≤ 𝜋 defines how the concentration per probabilistic area 
𝑑2𝐶

𝑑𝔸𝑑𝑡
 will 

change with respect to time.  

𝑝𝔸,𝓃
∗ =

𝜆∫ 𝑑𝜃
𝜋

0

√
𝜋
2 𝐷𝑟,𝑡,𝓃𝑡

𝑝̅𝑧   ⟹  
𝑑

𝑑𝑡
[
𝑑𝐶

𝑑𝔸
] =

1

√ 1
2𝜋
𝑉
𝜆
𝐷𝑟,𝑡,𝓃𝑡

𝑝̅𝑧 (4.20) 

Note that 
𝑑

𝑑𝑡
[
𝑑𝐶

𝑑𝔸
] can be expanded on the basis that 

𝑑𝐶

𝑑𝔸
=

𝑑

𝑑𝔸
[
𝑑𝓃

𝑑𝑉
] =

𝑑2𝓃

𝑑𝔸𝑑𝑉
. Therefore, 

𝑑

𝑑𝑡
[
𝑑𝐶

𝑑𝔸
] =

𝑑

𝑑𝑡
[
𝑑2𝓃

𝑑𝔸𝑑𝑉
] is a representation of a PDF where 

𝑑2𝓃

𝑑𝔸𝑑𝑉
 is an intensive measurement ℐ𝑥,𝑡,𝒩. 

Under ideal conditions, the diffusion coefficient 𝐷𝑟,t,𝓃, source strength 𝜆, and volume 𝑉 are 

constants, which constrains the time-derivative to express a normal distribution. Under these 

circumstances, Equation 4.20 conforms to Fick’s Law PDE for a predefined probabilistic area 𝔸, 

and relate its diffusion coefficient 𝐷𝓃,t,𝑉 to the radial diffusion coefficient 𝐷𝑟,t,𝓃 through the 

Einstein-Smoluchowski equation. Given a predefined probabilistic area 𝔸, the number of moles 𝓃 

and the volume 𝑉 characterizes the diffusion coefficient 𝐷𝓃,t,𝑉 with respect to concentration. 
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𝑑

𝑑𝑡
[
𝑑2𝓃

𝑑𝔸𝑑𝑉
] = 𝐷𝓃,𝑡,𝑉

𝑑2

𝑑𝑟2
[
𝑑2𝓃

𝑑𝔸𝑑𝑉
] 

√
1

2𝜋

𝑉

𝜆
𝐷𝑟,𝑡,𝓃𝑡 = 2𝐷𝓃,𝑡,𝑉𝑡  ⟹   𝐷𝓃,𝑡,𝑉 = √

1

2𝜋

𝑉

𝜆
𝐷𝑟,𝑡,𝓃 

(4.21) 

This interpretation of Fick’s Law shows that 
𝑑2𝓃

𝑑𝔸𝑑𝑉
 integrates to an extensive property 

through ℰ𝑥,𝑡 = ∫
𝑑2𝓃

𝑑𝔸𝑑𝑉
𝑑𝑉. Note that 𝐷𝓃,𝑡,𝑉 is inversely proportional to the molar density 

𝜆

𝑉
 [
𝑚𝑜𝑙𝑒𝑠

𝑚3 ] 

consistent with the observation that the diffusion coefficient for gases is greater than that of liquids. 

The outcome of this derivation is that the general-form PDE from Equation 4.2 characterizes both 

one- and two-dimensional diffusion as well as Fick’s Law of diffusion. Table 4.2 summarizes the 

analogies for the linear diffusion coefficient through the radial diffusion coefficient, the Fourier 

equation analogy using an area-based diffusion coefficient, and finally to Fick’s Law. Moreover, 

it is clear that diffusive mass transport 𝐷𝓃,𝑡,𝑉 across space is entirely a function of the Brownian 

motion coefficient 𝐷ℓ,𝑡,𝓃 that proceeds independent of any measurable ambient process except 

time. Hence, Brownian motion epitomizes the essence of spatial- and temporal-continuity as 

discussed in Equation 4.1. 

 

Table 4.2: Scaled diffusion coefficients and PDEs for various dimensionality. 

Dimensionality Probabilistic PDE Diffusion Coefficient 

Linear-Magnitude (Einstein) 
𝑑

𝑑𝑡
[
𝑑𝑝ℓ,𝑡

∗

𝑑𝑛
] = 𝐷ℓ,𝑡,𝓃

𝑑2

𝑑ℓ2
[
𝑑𝑝ℓ,𝑡

∗

𝑑𝑛
] 𝐷ℓ,𝑡,𝓃 =

𝑠ℓ,𝑡,𝓃
2

2𝑡
 

Linear-Polar (Perrin) 
𝑑

𝑑𝑡
[
𝑑𝑝𝑟,𝑡

∗

𝑑𝑛
] = 𝐷𝑟,𝑡,𝓃

𝑑2

𝑑𝑟2
[
𝑑𝑝𝑟,𝑡

∗

𝑑𝑛
] 𝐷𝑟,𝑡,𝓃 =

𝐷ℓ,𝑡,𝓃
𝜋2

 

Two-dimensional (Fourier) 
𝑑

𝑑𝑡
[
𝑑𝑝𝔸,𝑡

∗

𝑑𝑛
] = 𝐷𝑟,𝑡,𝓃

𝑑2

𝑑𝑟2
[
𝑑𝑝𝔸,𝑡

∗

𝑑𝑛
] 𝐷𝔸,𝑡,𝓃 = √

𝜋

8
𝐷𝑟,𝑡,𝓃 

Fick’s Law 
𝑑

𝑑𝑡
[
𝑑2𝓃

𝑑𝔸𝑑𝑉
] = 𝐷𝓃,𝑡,𝑉

𝑑2

𝑑𝑟2
[
𝑑2𝓃

𝑑𝔸𝑑𝑉
] 𝐷𝓃,𝑡,𝑉 = √

1

2𝜋

𝑉

𝜆
𝐷𝑟,𝑡,𝓃 
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4.2. DISCUSSION 

The theory developed in this chapter attempts to bridge the gap between experimental 

results to develop governing PDEs that reproduce measurement distributions under non-ideal 

conditions that ensure conservation of probability, as well as spatial- and temporal-continuity. 

Chapter 3 shows that a general-form PDE produces parametric PDFs that are consistent with 

observation data and do not conform to a scaled normal distribution. There are some analogies 

between the water consumption and physical applications that suggest a broader generalization. 

These applications have temporal and spatial derivatives that are related through scaling 

coefficients. It is suspected that the scaling coefficients have a very specific meaning within a 

transient system. Here, this chapter contends that there are three general concepts which govern 

transient probabilistic systems: 1) a source/sink term, 2) the measured property, and 3) a conduit 

that connects the source/sink to the measured property. For the water consumption application, the 

necessity of water to maintain standard of living conditions is the source term, household-specific 

qualities that compel water consumption represents the conduit, and water consumption is the 

measured property. 

The conduit is the most interesting aspect of this metaphor because it connects the 

source/sink term to the measured property. In many cases, the properties of the conduit may be 

difficult to measure directly and may vary with time or system conditions. For instance, the conduit 

for water consumption may be the resistance of market participants to changing consumption 

habits as factors like price and weather change. Ultimately, pairs of source/sink terms and the 

measured property may provide the opportunity to quantify the conduit and even how it changes 

through time. This indirect evaluation may provide a predictive model to anticipate the resulting 

measured property for different source/sink terms. The water consumption analysis in Chapter 3 

is an application of this approach and motivates this discussion of the philosophical implications 

of quantifying the conduit. 

The virtue of the water consumption example from Figure 4.1 is that it exemplifies a spatial 

distribution for a specific interval of time. By evaluating sequential temporal groupings, the 

approach is able to infer the time-dependent evolution of the spatial distribution of measurements. 

The water consumption application required multiple temporal groupings of data to infer causality 

between ambient processes and the time-dependent evolution of the system. Here, the relationship 
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between the spatial- and temporal-evolution of the intensive property ℐ𝑥,𝑡,𝒩  can be expressed using 

a PDE in the context of a Taylor expansion as: 

       
𝑑

𝑑𝑡
[ℐ𝑥,𝑡,𝒩]      ⏟          

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

=       
𝜕𝑥

𝜕𝑡

𝜕

𝜕𝑥
[ℐ𝑥,𝑡,𝒩] +

𝜕2𝑥

𝜕𝑡2
𝜕2

𝜕𝑥2
[ℐ𝑥,𝑡,𝒩]𝑑𝑡 +⋯     ⏟                            

𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
𝑤𝑖𝑡ℎ

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠

 

(4.27) 

The PDE in Equation 4.27 is a general representation of the relationship between space, 

time, and the conduit that provides a medium for changes to the intensive property. Notably, 

additional terms beyond a homogeneous second-order PDE allow for a PDF solution ℐ𝑥,𝑡,𝒩 that 

does not necessarily conform to a normal distribution. Equation 4.27 shows that the intensive PDF 

ℐ𝑥,𝑡,𝒩 is simultaneously a distribution in both space and time. The case of a second-order 

homogeneous PDE, which generates a normal distribution for ℐ𝑥,𝑡,𝒩, relates to a specific 

parameterization of Equation 4.27, where 
𝜕𝑥

𝜕𝑡
= 0,

𝜕3𝑥

𝜕𝑡3
= 0,… and 𝐷𝑥,𝒩,𝑡 =

𝜕2𝑥

𝜕𝑡2
𝑑𝑡 to produce 

𝑑

𝑑𝑡
[ℐ𝑥,𝑡,𝒩] = 𝐷𝑥,𝒩,𝑡

𝑑2

𝑑𝑥2
[ℐ𝑥,𝑡,𝒩]. For the diffusion process, the molecules themselves represent the 

conduit of displacement through molecular interactions. Notably, the self-diffusion coefficient 

from Einstein of the form 𝐷𝑥,𝒩,𝑡 correlates with the size and shape of molecules that comprise the 

liquid. Likewise, this analogy allows for characterization of the conduit that connects the ambient 

processes of price and weather to water consumption. 

The water consumption application provides parameterization values for the right-hand 

side of Equation 4.27 for the specific influence of price and weather on the statistics that describe 

the water consumption PDF. Parameters within the water consumption PDE are an expression of 

consumer preference that result from the water consumption response to changes in price and 

weather. The high level of accuracy in reproducing the evolution of the water consumption PDF 

suggests that this approach could be extended as a forecasting tool, while considering additional 

ambient processes beyond price and weather. Although this parameterization potentially 

represents an over-simplification of a complex issue, the parameters of the water consumption 

PDE appear to capture the evolution of consumer preference. This theory is predicated on the 

relative stability of microscopic processes that contribute to water consumption. Chapter 3 

suggests that these processes include number of occupants, household and yard sizes, and 
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household income, among others. Assuming that these water consumption characteristics remain 

relatively stable, any changes to the water consumption PDF must be attributed to macroscopic, 

ambient conditions. Future work might parameterize a similar water consumption PDE for a 

different municipality and compare them to see if the parameterization, as a representation of 

consumer preference, is sensitive to these city-specific conditions. 

4.3. CONCLUSIONS 

This chapter applies conservation of probability as an all-encompassing conservation law 

that is demonstrated as a solution that applies to both physical and abstract processes. The water 

consumption application demonstrates the importance of collecting relative frequency 

measurements when quantifying the evolution of complicated systems dynamics. The outcome of 

this chapter presents a fundamental relationship between viewing observations as frequency 

histograms, and their associated PDFs, as the solution to governing parametric PDEs.  

This chapter demonstrates the importance of using dimensionally consistent scaling of a 

normal distribution to express diffusion as a two-dimensional process. The area of the unit circle 

provides the basis for transforming Einstein’s one-dimensional diffusion PDE into an area-based 

diffusion process. Furthermore, this solution is probabilistic representation that results in a solution 

that is consistent with that of the Fourier equation for heat conduction in solids. Subsequent spatial- 

and temporal-integration of the two-dimensional diffusion process yields a probabilistic derivation 

that is consistent with Fick’s Law. 

Finally, the generality of this approach to govern both abstract and physical processes 

allows this analysis to conclude that second-order PDEs reflect interactions between three well-

defined system components: 1) a source/sink term, 2) the measured property, and 3) a conduit that 

connects the source/sink term to the measured property. This realization motivates further 

investigation into how parameterization of a governing PDE can meaningfully describe and 

quantify the properties of the conduit. In conclusion, transient processes are shown to be 

characterized by the general flow of information, which can be used to describe both physical and 

abstract processes. 
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5. Thesis Conclusions 

Through automation and the advancements of information science, there exist large 

quantities of data that researches use to describe and quantify the world around them. This thesis 

considers measurement data from sources as disparate as economics, science and engineering, 

stock market indices, and digital photo processing, and demonstrates a general-form methodology 

for expressing these datasets as continuous probability density functions (PDFs). Moreover, this 

thesis demonstrates that asymmetric, shifted, heavy-tailed, albeit continuous PDFs are the solution 

to an “advective-dispersive” like transport process resulting from a governing parametric partial 

differential equation (PDE). Each technical chapter considers the following three foundational 

interpretations of measurement data histograms that allow for a smooth transition between steady-

state conditions through the transport process. These foundational themes are: 1) the hierarchal 

relationship between the parametric control function, standard-score PDF, and standard-score 

cumulative distribution function (CDF); 2) interpreting the measurement space PDF as the solution 

to a transport process, where the median represents advection and a combination of the standard 

deviation and standard-score PDF represent dispersion; and, 3) the relationship between extensive 

measurements and their corresponding intensive PDF; conservation of probability through the 

measurement space CDF; and the notion of spatial and temporal-continuity of measurement PDFs 

that result in a continuum representation of otherwise discrete data histograms. Clearly, 

conservation of probability is the predominant theme of this thesis and relates the three technical 

chapters through the standard-score PDF, evolution of the measurement space PDF, and finally 

the transient nature of the measurement space CDF. The foundational themes are demonstrated via 

application of residential water consumption, with the intent of providing water utilities with a 

methodology for parameterizing PDEs that can then be used to forecast transient residential water 

consumption PDFs under the influence of ambient processes of price and weather. 

The conclusion of this thesis is that conservation of probability appears to be an all-

encompassing conservation law for measurement information and may assist in describing the 

evolution of transient continuum systems. In this context, probability is used to relate frequency 

as being a relative measurement of information, where this information constitutes a set of 

measurements recording the instantaneous state of both physical and abstract systems alike. 

Specifically, this thesis demonstrates a relationship between measurement histograms, parametric 
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PDFs, and PDEs for the physical process of molecular diffusion and the abstract economic system 

of water consumption. The outcome of this work is to motivate further discussion of parametric 

“advective-dispersive” like transport PDEs as being a more general expression of a systems 

continuum response, relative to the established notion of second-order homogeneous PDEs in the 

context of Brownian motion. These parametric PDEs reflect interactions between three well-

defined system components: 1) a source/sink term, 2) the measured property, and 3) a conduit that 

connects the source/sink to the measured property. Finally, there is compelling evidence that 

parameters within the governing PDE meaningfully describe and quantify the properties of the 

conduit, much the same as the diffusion coefficient in the second-order homogeneous PDE 

representing Brownian motion is essentially a second-order partial derivative arising from a Taylor 

expansion. Ultimately, conservation of probability provides a mechanism for reconciliation that 

ensures no information is either created or destroyed, while generating PDEs to reproduce 

spatially- and temporally-continuous PDF solutions that coincide with measurement data 

histograms. 
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APPENDIX A.1 

The derivation of the general-form PDF 𝑝𝑧 begins with the characteristic ODE and 

rearranges this relationship to isolate the dependent of the PDF on the indefinite integral of the 

control function with respect to the standard-score variable 𝑧: 

𝑑𝑝𝑧

𝑑𝑧
= 𝑔𝑧𝑝𝑧 

1

𝑝𝑧

𝑑𝑝𝑧

𝑑𝑧
= 𝑔𝑧  ⟹   ∫

1

𝑝𝑧
𝑑𝑝𝑧 = ∫ 𝑔𝑧 𝑑𝑧 

ln|𝑝𝑧| + 𝐶1 = ∫ 𝑔𝑧 𝑑𝑧 ⟹  𝑒𝑥𝑝[𝑙𝑛|𝑝𝑧| + 𝐶1] = 𝑒𝑥𝑝 [∫ 𝑔𝑧 𝑑𝑧 ] 

𝑝𝑧 =
1

𝐶2
𝑒𝑥𝑝 [∫ 𝑔𝑧 𝑑𝑧 ] , 𝐶2 =

1

𝑒𝑥𝑝[𝐶1]
 

𝑝𝑧 = 𝑒𝑥𝑝 [∫ 𝑔𝑧 𝑑𝑧 ]  𝑓𝑜𝑟 𝐶2 = 1 

Notably, the constant of integration 𝐶2 from ∫
1

𝑝𝑧
𝑑𝑝𝑧 will be absorbed by the constant of 

integration from ∫ 𝑔𝑧 𝑑𝑧 to ensure the PDF 𝑝𝑧 reflects unit area on a definite interval within the 

standard-score space 𝑧. Therefore, assume that 𝐶1 = 0 and 𝐶2 = 1 to simplify this expression. 
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APPENDIX A.2 

Assume a linear control function 

𝑔(𝑧) = −(𝛼1 + 𝛼2𝑧) 

∫ 𝑔(𝑧) 𝑑𝑧 = − ∫(𝛼1 + 𝛼2𝑧) 𝑑𝑧 

𝑓(𝑧) = exp(−𝛼1 − 𝛼2𝑧 − 𝐶) , 𝑎𝑠𝑠𝑢𝑚𝑒 𝛼0 = 𝐶 

𝑓(𝑧) = 𝑒−𝛼0 exp (−𝛼1𝑧 −
𝛼2

2
𝑧2) 

Assume symmetry about 𝑧 = 0 → 𝛼1 = 0: 

𝑓(𝑧) = 𝑒−𝛼0 exp (−
𝛼2

2
𝑧2) 

Median-centered distribution implies ∫ 𝑓(𝑧)
∞

0
𝑑𝑧 ≡

1

2
 

∫ [𝑒−𝛼0 exp (−
𝛼2

2
𝑧2)]

∞

0

𝑑𝑧 =
1

2
 

𝑒−𝛼0 ∫ [exp (−
𝛼2

2
𝑧2)]

∞

0

𝑑𝑧 =
1

2
 

𝑒−𝛼0
√𝜋

2√
𝛼2
2

erf (√
𝛼2

2
𝑧)|

0

∞

=
1

2
 

𝑒−𝛼0
√2𝜋

2√𝛼2

(1 − 0) =
1

2
 

𝑒−𝛼0 = √
𝛼2

2𝜋
 

𝛼0 = −ln |√
𝛼2

2𝜋
| 

Consider 𝛼2 = 1, 𝛼0 = ln|√2𝜋| 

Normal Distribution, 𝑓(𝑧) =
1

√2𝜋
exp (−

1

2
𝑧2) 



 104 

APPENDIX A.3 

Assume the median 𝑚𝑥,𝑖 and standard deviation 𝜎𝑥,𝑖 are known statistics of the 

measurement data 𝑥𝑖. From Table 2.1, the continuous measurement 𝑥 can be related to the 

median-relative 𝑦 and standard-score variable 𝑧 as: 

𝑥 = 𝑚𝑥,𝑖𝑦 = 𝑚𝑥,𝑖 + 𝜎𝑥,𝑖𝑧 

Multiplying this relationship by the PDF 𝑝𝑥 and integrating over some definite interval in 

the measurement space: 

∫ 𝑥𝑝𝑥

𝑥1

𝑥0

𝑑𝑥 = 𝑚𝑥,𝑖 ∫ 𝑦𝑝𝑥

𝑥1

𝑥0

𝑑𝑥 = 𝑚𝑥,𝑖 ∫ 𝑝𝑥

𝑥1

𝑥0

𝑑𝑥 + 𝜎𝑥,𝑖 ∫ 𝑧𝑝𝑥

𝑥1

𝑥0

𝑑𝑥 

Next, transform this relationship by 𝑝𝑥𝑑𝑥 = 𝑝𝑦𝑑𝑦 = 𝑝𝑧𝑑𝑧 from Table 2.1: 

∫ 𝑥𝑝𝑥

𝑥1

𝑥0

𝑑𝑥 = 𝑚𝑥,𝑖 ∫ 𝑦𝑝𝑥

𝑥1

𝑥0

𝑑𝑦 = 𝑚𝑥,𝑖 ∫ 𝑝𝑧

𝑧1

𝑧0

𝑑𝑧 + 𝜎𝑥,𝑖 ∫ 𝑧𝑝𝑧

𝑧1

𝑧0

𝑑𝑧 

Evaluating the indefinite interval of the PDF to be ∫ 𝑝𝑧
𝑧1

𝑧0
𝑑𝑧 = 1: 

∫ 𝑥𝑝𝑥

𝑥1

𝑥0

𝑑𝑥 = 𝑚𝑥,𝑖 ∫ 𝑦𝑝𝑥

𝑥1

𝑥0

𝑑𝑦 = 𝑚𝑥,𝑖 + 𝜎𝑥,𝑖 ∫ 𝑧𝑝𝑧

𝑧1

𝑧0

𝑑𝑧 

Finally, substituting the probability-weighted mean from Equation 2.11: 

∫ 𝑥𝑝𝑥

𝑥1

𝑥0

𝑑𝑥 = 𝑚𝑥,𝑖 ∫ 𝑦𝑝𝑥

𝑥1

𝑥0

𝑑𝑦 = 𝑚𝑥,𝑖 + 𝜎𝑥,𝑖𝜇𝑧 

Following from our understanding that the mean statistic occupies a position on the PDF 

within each spatial representation, this progression applies the notation from Equation 2.11 for 

the measurement and median-relative spaces: 

𝜇𝑥 = ∫ 𝑥𝑝𝑥

𝑥1

𝑥0

𝑑𝑥, 𝜇𝑦 = ∫ 𝑦𝑝𝑥

𝑥1

𝑥0

𝑑𝑦 

which produces the following equalities: 

𝜇𝑥 = 𝑚𝑥,𝑖𝜇𝑦 = 𝑚𝑥,𝑖 + 𝜎𝑥,𝑖𝜇𝑧 

𝜇𝑥 = 𝑚𝑥,𝑖 + 𝜎𝑥,𝑖 ∫ 𝑧𝑝𝑧

𝑧1

𝑧0

𝑑𝑧 

𝜇𝑥 = 𝑚𝑥,𝑖 + 𝜎𝑥,𝑖 ∫ [𝑧 exp (∫ 𝑔𝑧 𝑑𝑧)]
𝑧1

𝑧0

𝑑𝑧 
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Table A.4.1: Binned histogram data for the water demand, hydraulic conductivity, and S&P 500 

index CDFs. 

Median-Relative 

Bins 

𝒚𝒌 
[−] 

Water 

Consumption 

𝒄𝒚,𝒌 

[−] 

Hydraulic 

Conductivity 

𝒄𝒚,𝒌 

[−] 

S&P 500 

Index 

08/21/2009 

𝒄𝒚,𝒌 

[−] 

0.00 0.0000 0.0000 0.0000 

0.25 0.0299 0.0264 0.0489 

0.50 0.1327 0.0903 0.1813 

0.75 0.2955 0.2806 0.3320 

1.00 0.4900 0.5000 0.4990 

1.25 0.6558 0.6764 0.6477 

1.50 0.7763 0.7708 0.7495 

1.75 0.8561 0.8528 0.8411 

2.00 0.9109 0.9083 0.9104 

2.25 0.9430 0.9597 0.9409 

2.50 0.9631 0.9903 0.9715 

2.75 0.9752 0.9944 0.9817 

3.00 0.9839 0.9958 0.9939 

3.25 0.9900 0.9986 0.9980 

3.50 0.9944 1.0000 0.9980 

3.75 0.9974 1.0000 0.9980 

4.00 1.0000 1.0000 1.0000 
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Table A.4.2: Binned data for the Lenna light intensity CDF. 

𝒙𝒌 = 𝒎𝒙,𝒊𝒚𝒌 

[intensity] 
𝒄𝒚,𝒌 

𝒙𝒌 = 𝒎𝒙,𝒊𝒚𝒌 

[intensity] 
𝒄𝒚,𝒌 

𝒙𝒌 = 𝒎𝒙,𝒊𝒚𝒌 

[intensity] 
𝒄𝒚,𝒌 

0 0.000000 90 0.255718 177 0.877136 

3 0.000000 93 0.269932 180 0.885868 

6 0.000000 96 0.287323 183 0.893051 

9 0.000000 99 0.309322 186 0.900589 

12 0.000000 102 0.331398 189 0.909611 

15 0.000000 105 0.351723 192 0.920383 

18 0.000000 108 0.369087 195 0.930569 

21 0.000000 111 0.384598 198 0.940460 

24 0.000000 114 0.400475 201 0.950504 

27 0.000103 117 0.416431 204 0.961990 

30 0.000809 120 0.434509 207 0.973686 

33 0.002872 123 0.455456 210 0.984375 

36 0.007526 126 0.480167 213 0.990974 

39 0.016357 129 0.507698 216 0.995003 

42 0.030720 132 0.533859 219 0.997517 

45 0.050907 135 0.556301 222 0.999004 

48 0.074230 138 0.578690 225 0.999706 

51 0.097958 141 0.604282 228 0.999897 

54 0.118965 144 0.631863 231 0.999977 

57 0.136944 147 0.658413 234 0.999981 

60 0.151184 150 0.684135 237 0.999985 

63 0.162281 153 0.712013 240 0.999992 

66 0.172062 156 0.743027 243 1.000000 

69 0.181019 159 0.770569 246 1.000000 

72 0.190571 162 0.792217 249 1.000000 

75 0.200386 165 0.809414 252 1.000000 

78 0.210571 168 0.824051   

81 0.221203 171 0.837688   

84 0.231625 174 0.852314   

87 0.243053 177 0.865932   
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APPENDIX A.5 

Characterizing PDFs as the solution to an advective-dispersive process is primarily based 

on the transformation from the standard-score space to the measurement space. The goal of this 

transformation is to deconstruct the measurement space distribution into components that 

characterize the location, scale, and shape of the distribution, while allowing each to evolve 

independently. From Equation 2.6, the premise of this interpretation is conservation of probability 

between the measurement space and standard-score space, which can be expressed using the 

following relationship: 

∫ 𝑝𝑥
∗

𝑥1

𝑥0

𝑑𝑥 = ∫ 𝑝𝑧

𝑧1

𝑧0

𝑑𝑧 

From this premise, the derivation of the advective-dispersive process proceeds from 

definition of the zero-centered PDF 𝑝𝑥
∗ ≡ 𝑝𝑥 − 𝑚𝑥. Upon substitution the conservation of 

probability relationship becomes: 

∫ [𝑝𝑥 − 𝑚𝑥]
𝑥1

𝑥0

𝑑𝑥 = ∫ 𝑝𝑧

𝑧1

𝑧0

𝑑𝑧 

Table 2.1 introduces the relationship between the standard-score variable 𝑧 and the 

measurement space variable 𝑥. Using a change of variable: 

𝑧 =
𝑚𝑥 − 𝑥

𝜎𝑥
, 𝑑𝑧 =

1

𝜎𝑥
𝑑𝑥 

The conservation of probability expression can be evaluated as: 

∫ [𝑝𝑥 − 𝑚𝑥]
𝑥1

𝑥0

𝑑𝑥 = ∫
1

𝜎𝑥
𝑝𝑧

𝑥1

𝑥0

𝑑𝑥 ⟹   𝑝𝑥 − 𝑚𝑥 =
1

𝜎𝑥
𝑝𝑧 

This results in the probabilistic interpretation of the solution to an advective-dispersive 

process as: 

𝑝𝑥 = 𝑚𝑥 +
1

𝜎𝑥
𝑝𝑧 
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Table B.1.1: Residential water consumption data statistics from the histogram data. Note that “𝑏𝑝” 

denotes billing period and “𝑎𝑐𝑐𝑡” denotes “per account”. Water is metered in increments of 1 𝑚3.  

  

Period 
[𝓉] 

Water 

Consumption 

𝑽𝓉 

[𝒎𝟑 𝒃𝒑⁄ ] 

Active 

Accounts 

𝑵𝓉  

[𝒂𝒄𝒄𝒕] 

Median 

Consumption 

𝒎𝒙,𝒊,𝓉 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

Standard 

Deviation 

𝝈𝒙,𝒊,𝓉 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

Mean 

Consumption 

𝝁𝒙,𝒊,𝓉 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

2
0
0
7

 

Jan/Feb 1 742,553 20,624 33.00 18.74 36.00 

Mar/Apr 2 700,344 20,681 31.00 18.05 33.86 

May/Jun 3 732,716 20,619 32.00 19.08 35.54 

July/Aug 4 950,893 21,347 40.00 25.65 44.54 

Sept/Oct 5 872,046 21,818 36.00 23.21 39.97 

Nov/Dec 6 781,801 21,497 33.00 19.62 36.37 

2
0
0
8

 

Jan/Feb 7 812,363 22,463 33.00 19.19 36.16 

Mar/Apr 8 812,603 22,526 32.00 20.56 36.07 

May/Jun 9 754,673 21,845 32.00 18.72 34.55 

July/Aug 10 872,729 22,861 34.00 21.90 38.18 

Sept/Oct 11 850,928 23,970 32.00 20.53 35.50 

Nov/Dec 12 802,580 23,408 31.00 18.53 34.29 

2
0
0
9
 

Jan/Feb 13 825,870 24,660 31.00 17.88 33.49 

Mar/Apr 14 832,962 24,687 31.00 18.75 33.74 

May/Jun 15 867,424 25,174 31.00 19.18 34.46 

July/Aug 16 874,294 24,264 33.00 20.45 36.03 

Sept/Oct 17 901,527 26,349 31.00 19.71 34.21 

Nov/Dec 18 897,834 26,799 31.00 18.28 33.50 

2
0
1
0
 

Jan/Feb 19 910,106 26,827 31.00 18.44 33.93 

Mar/Apr 20 913,710 26,650 31.00 19.89 34.29 

May/Jun 21 830,182 25,177 30.00 18.08 32.97 

July/Aug 22 972,815 26,531 33.00 21.93 36.67 

Sept/Oct 23 843,198 25,138 30.00 19.24 33.54 

Nov/Dec 24 907,576 26,882 30.00 19.43 33.76 

2
0
1
1
 

Jan/Feb 25 766,023 23,658 30.00 17.40 32.38 

Mar/Apr 26 867,095 26,830 29.00 18.23 32.32 

May/Jun 27 922,912 26,722 30.00 21.04 34.54 

July/Aug 28 943,924 26,706 32.00 20.72 35.35 

Sept/Oct 29 808,126 23,461 31.00 20.35 34.45 

Nov/Dec 30 877,882 26,848 29.00 18.99 32.70 
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Table B.1.1: continued 

  

Period 
[𝓉] 

Water 

Consumption 

𝑽𝓉 

[𝒎𝟑 𝒃𝒑⁄ ] 

Active 

Accounts 

𝑵𝓉  

[𝒂𝒄𝒄𝒕] 

Median 

Consumption 

𝒎𝒙,𝒊,𝓉 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

Standard 

Deviation 

𝝈𝒙,𝒊,𝓉 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

Mean 

Consumption 

𝝁𝒙,𝒊,𝓉 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

2
0
1
2

 

Jan/Feb 31 629,140 20,979 27.00 16.39 29.99 

Mar/Apr 32 833,927 26,866 28.00 17.50 31.04 

May/Jun 33 831,594 26,941 28.00 17.08 30.87 

July/Aug 34 987,313 26,648 33.00 22.47 37.05 

Sept/Oct 35 940,152 26,697 31.00 21.63 35.22 

Nov/Dec 36 839,011 27,014 28.00 17.56 31.06 

2
0
1
3
 

Jan/Feb 37 806,427 27,089 27.00 16.38 29.77 

Mar/Apr 38 814,578 26,960 28.00 16.79 30.21 

May/Jun 39 801,538 26,990 27.00 16.51 29.70 

July/Aug 40 861,573 26,891 29.00 18.83 32.04 

Sept/Oct 41 846,896 26,932 28.00 18.83 31.45 

Nov/Dec 42 836,494 27,225 28.00 17.27 30.73 

2
0
1
4
 

Jan/Feb 43 822,372 27,261 28.00 16.51 30.17 

Mar/Apr 44 787,439 27,049 27.00 16.14 29.11 

May/Jun 45 785,223 26,982 27.00 16.35 29.10 

July/Aug 46 845,542 26,907 28.00 18.57 31.42 

Sept/Oct 47 805,020 27,078 27.00 17.43 29.73 

Nov/Dec 48 810,132 27,268 27.00 16.76 29.71 

2
0
1
5
 

Jan/Feb 49 762,790 27,312 26.00 15.51 27.93 

Mar/Apr 50 782,828 27,142 27.00 16.09 28.84 

May/Jun 51 836,232 27,099 28.00 18.24 30.86 

July/Aug 52 786,989 27,179 27.00 16.24 28.96 

Sept/Oct 53 795,996 27,327 27.00 16.45 29.13 

Nov/Dec 54 814,381 27,145 27.00 17.95 30.00 

2
0
1
6
 

Jan/Feb 55 755,971 27,423 25.00 15.16 27.57 

Mar/Apr 56 742,793 27,297 25.00 14.91 27.21 

May/Jun 57 893,190 27,164 30.00 19.70 32.88 

July/Aug 58 765,496 27,389 26.00 15.34 27.95 

Sept/Oct 59 783,821 27,549 26.00 16.06 28.45 

Nov/Dec 60 831,540 27,207 27.00 18.48 30.56 
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Table B.2.1: Optimality fit control function parameters defining the shape of 𝑝𝑧,𝓉 . 

 
 

Period 

[𝓉] 
𝜶𝟎,𝓉 

[−] 
𝜶𝟏,𝓉 

[−] 
𝜶𝟐,𝓉 

[°] 
𝜶𝟑,𝓉 

[−] 
𝜶𝟒,𝓉 

[−] 

2
0
0
7

 

Jan/Feb 1 -0.7691 0.3037 58.27 -0.7429 0.0906 

Mar/Apr 2 -0.7729 0.2801 58.31 -0.6624 0.0639 

May/Jun 3 -0.7429 0.3263 58.38 -0.9118 0.1480 

July/Aug 4 -0.7343 0.3790 60.19 -1.0030 0.1642 

Sept/Oct 5 -0.7325 0.4879 63.15 -1.4010 0.2731 

Nov/Dec 6 -0.7681 0.3296 59.85 -0.8289 0.1045 

2
0
0
8
 

Jan/Feb 7 -0.7589 0.3161 59.07 -0.7835 0.0956 

Mar/Apr 8 -0.6935 0.3652 63.39 -1.1821 0.1839 

May/Jun 9 -0.7789 0.3749 57.84 -0.8504 0.1298 

July/Aug 10 -0.7304 0.3781 61.29 -1.0632 0.1685 

Sept/Oct 11 -0.7095 0.4200 61.86 -1.1166 0.1796 

Nov/Dec 12 -0.7538 0.2922 58.69 -0.7270 0.0822 

2
0
0
9
 

Jan/Feb 13 -0.7918 0.3457 58.53 -0.7430 0.0849 

Mar/Apr 14 -0.7468 0.4009 61.13 -0.9321 0.1201 

May/Jun 15 -0.7402 0.3737 61.78 -1.0471 0.1608 

July/Aug 16 -0.7442 0.4238 61.46 -1.0281 0.1510 

Sept/Oct 17 -0.7555 0.4824 62.98 -1.2716 0.2249 

Nov/Dec 18 -0.7879 0.3699 58.89 -0.7850 0.0941 

2
0
1
0
 

Jan/Feb 19 -0.7824 0.3279 58.88 -0.7384 0.0791 

Mar/Apr 20 0.0622 0.5038 63.41 -1.3298 0.2352 

May/Jun 21 -0.7622 0.3250 58.12 -0.8130 0.1192 

July/Aug 22 -0.7290 0.4853 62.26 -1.2204 0.2120 

Sept/Oct 23 -0.7325 0.4401 62.92 -1.3221 0.2566 

Nov/Dec 24 -0.7246 0.4621 63.76 -1.4259 0.2771 

2
0
1
1
 

Jan/Feb 25 -0.7808 0.3852 59.21 -0.8688 0.1194 

Mar/Apr 26 -0.7388 0.3478 62.28 -0.9823 0.1280 

May/Jun 27 -0.6972 0.5114 65.44 -1.6985 0.3541 

July/Aug 28 -0.7575 0.4712 61.90 -1.2789 0.2451 

Sept/Oct 29 -0.7528 0.5008 63.35 -1.3469 0.2463 

Nov/Dec 30 -0.7260 0.4486 63.12 -1.3182 0.2410 
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Table B.2.1: continued 

 
 

Period 

[𝓉] 
𝜶𝟎,𝓉 

[−] 
𝜶𝟏,𝓉 

[−] 
𝜶𝟐,𝓉 

[°] 
𝜶𝟑,𝓉 

[−] 
𝜶𝟒,𝓉 

[−] 
2
0
1
2
 

Jan/Feb 31 -0.7602 0.3007 58.72 -0.7975 0.1088 

Mar/Apr 32 -0.7485 0.3618 61.64 -1.0721 0.1724 

May/Jun 33 -0.7325 0.3008 58.39 -0.7794 0.1023 

July/Aug 34 -0.7289 0.4689 63.21 -1.2877 0.2290 

Sept/Oct 35 -0.7466 0.5146 63.98 -1.4837 0.2976 

Nov/Dec 36 -0.7391 0.3717 62.32 -1.1103 0.1774 

2
0
1
3
 

Jan/Feb 37 -0.7699 0.3458 57.97 -0.8304 0.1265 

Mar/Apr 38 -0.7700 0.3462 56.58 -0.7408 0.1029 

May/Jun 39 -0.7521 0.3140 57.64 -0.7209 0.0878 

July/Aug 40 -0.7614 0.3780 58.88 -0.8129 0.1021 

Sept/Oct 41 -0.7226 0.4621 64.67 -1.4570 0.2738 

Nov/Dec 42 -0.7315 0.3938 60.85 -1.0533 0.1735 

2
0
1
4

 

Jan/Feb 43 -0.7887 0.3716 57.05 -0.8385 0.1433 

Mar/Apr 44 -0.7798 0.3235 56.91 -0.5864 0.0411 

May/Jun 45 -0.7876 0.3624 56.41 -0.6889 0.0847 

July/Aug 46 -0.7219 0.3831 62.82 -1.1553 0.1890 

Sept/Oct 47 -0.7684 0.4741 61.16 -1.1494 0.2026 

Nov/Dec 48 -0.7585 0.3655 59.10 -0.8569 0.1197 

2
0
1
5

 

Jan/Feb 49 -0.7585 0.3361 55.45 -0.6681 0.0761 

Mar/Apr 50 -0.7896 0.2852 53.59 -0.5976 0.0767 

May/Jun 51 -0.7863 0.2684 53.50 -0.5246 0.0564 

July/Aug 52 -0.7583 0.4591 55.43 -0.8776 0.1467 

Sept/Oct 53 -0.7858 0.3524 53.36 -0.6478 0.0945 

Nov/Dec 54 -0.8001 0.3490 52.68 -0.6421 0.0924 

2
0
1
6
 

Jan/Feb 55 -0.7855 0.3865 53.73 -0.7608 0.1206 

Mar/Apr 56 -0.7917 0.2663 53.07 -0.5467 0.0662 

May/Jun 57 -0.7863 0.2683 53.50 -0.5246 0.0564 

July/Aug 58 -0.7601 0.4455 54.94 -0.8263 0.1342 

Sept/Oct 59 -0.7850 0.3480 53.47 -0.6358 0.0889 

Nov/Dec 60 -0.7505 0.3969 55.90 -0.8226 0.1307 
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APPENDIX B.3 

Table B.3.1: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2007. 

 2007 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0248 0.0245 0.0230 0.0299 0.0294 0.0264 

0.50 0.1182 0.1229 0.1121 0.1327 0.1343 0.1218 

0.75 0.2837 0.3020 0.2779 0.2955 0.2985 0.2902 

1.00 0.4834 0.4824 0.4773 0.4900 0.4954 0.4846 

1.25 0.6795 0.6706 0.6511 0.6558 0.6605 0.6753 

1.50 0.8026 0.8034 0.7845 0.7763 0.7778 0.7977 

1.75 0.8839 0.8837 0.8685 0.8562 0.8580 0.8741 

2.00 0.9320 0.9283 0.9204 0.9110 0.9097 0.9238 

2.25 0.9620 0.9569 0.9522 0.9431 0.9399 0.9556 

2.50 0.9769 0.9740 0.9708 0.9632 0.9599 0.9720 

2.75 0.9866 0.9849 0.9828 0.9753 0.9742 0.9824 

3.00 0.9923 0.9899 0.9897 0.9840 0.9841 0.9887 

3.25 0.9954 0.9944 0.9944 0.9901 0.9901 0.9932 

3.50 0.9975 0.9968 0.9967 0.9945 0.9941 0.9962 

3.75 0.9993 0.9989 0.9985 0.9975 0.9971 0.9982 

4.00 1.0000 1.0000 0.9995 1.0000 1.0000 1.0000 

 

Table B.3.2: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2008. 

 2008 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0256 0.0234 0.0262 0.0321 0.0253 0.0232 

0.50 0.1228 0.1159 0.1261 0.1248 0.1277 0.1216 

0.75 0.2870 0.2807 0.2972 0.3008 0.2975 0.2998 

1.00 0.4839 0.4765 0.4986 0.4788 0.4942 0.4795 

1.25 0.6778 0.6489 0.6730 0.6561 0.6624 0.6615 

1.50 0.8000 0.7783 0.7999 0.7746 0.7847 0.7946 

1.75 0.8801 0.8606 0.8778 0.8602 0.8624 0.8772 

2.00 0.9271 0.9111 0.9272 0.9096 0.9107 0.9221 

2.25 0.9577 0.9416 0.9566 0.9422 0.9402 0.9530 

2.50 0.9746 0.9606 0.9723 0.9618 0.9603 0.9722 

2.75 0.9844 0.9733 0.9839 0.9758 0.9743 0.9827 

3.00 0.9904 0.9818 0.9905 0.9841 0.9831 0.9887 

3.25 0.9948 0.9883 0.9944 0.9905 0.9892 0.9927 

3.50 0.9972 0.9925 0.9973 0.9942 0.9937 0.9957 

3.75 0.9988 0.9963 0.9989 0.9971 0.9974 0.9984 
4.00 1.0000 0.9990 1.0000 0.9993 1.0000 1.0000 
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Table B.3.3: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2009. 

 2009 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0247 0.0280 0.0284 0.0385 0.0314 0.0278 

0.50 0.1271 0.1328 0.1286 0.1393 0.1377 0.1337 

0.75 0.3077 0.3134 0.3010 0.3068 0.3166 0.3155 

1.00 0.4948 0.4971 0.4809 0.4973 0.4970 0.4985 

1.25 0.6822 0.6777 0.6610 0.6801 0.6682 0.6801 

1.50 0.8102 0.8047 0.7880 0.7955 0.7921 0.8063 

1.75 0.8898 0.8821 0.8710 0.8731 0.8689 0.8867 

2.00 0.9325 0.9245 0.9163 0.9178 0.9130 0.9280 
2.25 0.9591 0.9524 0.9474 0.9502 0.9438 0.9561 

2.50 0.9758 0.9695 0.9659 0.9671 0.9631 0.9728 

2.75 0.9853 0.9806 0.9789 0.9795 0.9764 0.9832 

3.00 0.9901 0.9865 0.9861 0.9866 0.9835 0.9888 

3.25 0.9938 0.9919 0.9918 0.9922 0.9896 0.9937 

3.50 0.9965 0.9951 0.9961 0.9957 0.9942 0.9965 

3.75 0.9985 0.9982 0.9987 0.9981 0.9978 0.9985 

4.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Table B.3.4: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2010. 

 2010 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0265 0.0306 0.0339 0.0441 0.0319 0.0284 

0.50 0.1265 0.1359 0.1228 0.1480 0.1259 0.1206 

0.75 0.3046 0.3169 0.2990 0.3144 0.3042 0.3016 

1.00 0.4895 0.4966 0.4844 0.4978 0.4826 0.4807 

1.25 0.6709 0.6691 0.6652 0.6714 0.6607 0.6592 

1.50 0.8008 0.7931 0.7848 0.7806 0.7737 0.7738 

1.75 0.8832 0.8699 0.8731 0.8534 0.8603 0.8600 

2.00 0.9246 0.9107 0.9217 0.9008 0.9083 0.9063 

2.25 0.9532 0.9405 0.9550 0.9370 0.9428 0.9393 

2.50 0.9711 0.9607 0.9717 0.9568 0.9624 0.9595 

2.75 0.9827 0.9739 0.9838 0.9716 0.9758 0.9741 

3.00 0.9888 0.9829 0.9888 0.9813 0.9846 0.9829 

3.25 0.9928 0.9896 0.9937 0.9894 0.9907 0.9900 

3.50 0.9962 0.9948 0.9965 0.9948 0.9945 0.9943 

3.75 0.9984 0.9977 0.9987 0.9979 0.9982 0.9975 

4.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table B.3.5: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2011. 

 2011 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0298 0.0345 0.0345 0.0358 0.0323 0.0330 

0.50 0.1175 0.1310 0.1269 0.1390 0.1440 0.1335 

0.75 0.3030 0.2917 0.3038 0.3055 0.3240 0.2960 

1.00 0.4948 0.4787 0.4831 0.4972 0.4976 0.4823 

1.25 0.6876 0.6702 0.6501 0.6594 0.6646 0.6620 

1.50 0.8015 0.7854 0.7584 0.7753 0.7822 0.7775 

1.75 0.8875 0.8648 0.8406 0.8567 0.8615 0.8542 

2.00 0.9292 0.9142 0.8877 0.9100 0.9049 0.9023 

2.25 0.9583 0.9461 0.9235 0.9415 0.9395 0.9385 

2.50 0.9739 0.9648 0.9453 0.9615 0.9595 0.9590 

2.75 0.9847 0.9773 0.9644 0.9745 0.9742 0.9724 

3.00 0.9904 0.9854 0.9763 0.9832 0.9823 0.9825 

3.25 0.9943 0.9919 0.9851 0.9896 0.9889 0.9895 

3.50 0.9967 0.9953 0.9916 0.9944 0.9930 0.9938 

3.75 0.9991 0.9984 0.9967 0.9978 0.9970 0.9975 

4.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Table B.3.6: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2012. 

 2012 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0278 0.0308 0.0278 0.0440 0.0353 0.0264 

0.50 0.1249 0.1283 0.1221 0.1532 0.1535 0.1240 

0.75 0.2945 0.2863 0.2875 0.3152 0.3257 0.2894 

1.00 0.4734 0.4825 0.4820 0.4916 0.4863 0.4840 

1.25 0.6584 0.6538 0.6567 0.6607 0.6499 0.6560 

1.50 0.7898 0.7791 0.7849 0.7701 0.7656 0.7785 

1.75 0.8713 0.8607 0.8674 0.8468 0.8441 0.8631 

2.00 0.9194 0.9139 0.9186 0.8973 0.8909 0.9158 

2.25 0.9517 0.9468 0.9498 0.9345 0.9264 0.9467 

2.50 0.9700 0.9650 0.9698 0.9552 0.9506 0.9649 

2.75 0.9816 0.9777 0.9803 0.9700 0.9673 0.9775 

3.00 0.9882 0.9862 0.9878 0.9800 0.9770 0.9852 

3.25 0.9927 0.9921 0.9930 0.9874 0.9863 0.9904 

3.50 0.9962 0.9956 0.9959 0.9928 0.9920 0.9946 

3.75 0.9984 0.9983 0.9984 0.9972 0.9964 0.9974 

4.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table B.3.7: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2013. 

 2013 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0286 0.0312 0.0314 0.0413 0.0328 0.0276 

0.50 0.1297 0.1318 0.1348 0.1469 0.1371 0.1251 

0.75 0.3053 0.3023 0.3067 0.3121 0.3021 0.2950 

1.00 0.4829 0.4991 0.4816 0.4949 0.4875 0.4912 

1.25 0.6618 0.6713 0.6627 0.6731 0.6490 0.6639 

1.50 0.7921 0.7951 0.7920 0.7832 0.7668 0.7878 

1.75 0.8750 0.8727 0.8773 0.8576 0.8500 0.8663 

2.00 0.9198 0.9242 0.9195 0.9089 0.8996 0.9172 

2.25 0.9507 0.9555 0.9519 0.9435 0.9333 0.9478 

2.50 0.9702 0.9719 0.9698 0.9626 0.9555 0.9670 

2.75 0.9820 0.9824 0.9814 0.9745 0.9709 0.9789 

3.00 0.9884 0.9893 0.9876 0.9832 0.9799 0.9865 

3.25 0.9931 0.9935 0.9923 0.9900 0.9867 0.9923 

3.50 0.9964 0.9964 0.9961 0.9948 0.9923 0.9958 

3.75 0.9986 0.9986 0.9983 0.9975 0.9965 0.9984 

4.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Table B.3.8: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2014. 

 2014 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0291 0.0344 0.0370 0.0346 0.0353 0.0292 

0.50 0.1279 0.1408 0.1479 0.1377 0.1475 0.1369 

0.75 0.2986 0.3211 0.3244 0.2958 0.3281 0.3150 

1.00 0.4992 0.4980 0.4977 0.4807 0.4971 0.4880 

1.25 0.6697 0.6760 0.6737 0.6467 0.6647 0.6654 

1.50 0.7975 0.8049 0.8010 0.7679 0.7884 0.7903 

1.75 0.8782 0.8847 0.8827 0.8500 0.8664 0.8736 

2.00 0.9256 0.9247 0.9249 0.9012 0.9105 0.9166 

2.25 0.9559 0.9567 0.9533 0.9357 0.9430 0.9485 

2.50 0.9741 0.9737 0.9719 0.9582 0.9628 0.9672 

2.75 0.9835 0.9824 0.9824 0.9719 0.9751 0.9791 

3.00 0.9899 0.9880 0.9882 0.9818 0.9827 0.9874 

3.25 0.9940 0.9930 0.9931 0.9887 0.9898 0.9919 

3.50 0.9971 0.9967 0.9963 0.9935 0.9944 0.9953 

3.75 0.9988 0.9987 0.9983 0.9973 0.9974 0.9980 

4.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table B.3.9: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2015. 

 2015 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0345 0.0371 0.0373 0.0354 0.0336 0.0383 

0.50 0.1306 0.1467 0.1410 0.1481 0.1445 0.1545 

0.75 0.3164 0.3302 0.3084 0.3289 0.3253 0.3279 

1.00 0.5010 0.5037 0.4925 0.5009 0.5036 0.4915 

1.25 0.6850 0.6795 0.6578 0.6805 0.6772 0.6586 

1.50 0.7991 0.8057 0.7760 0.8045 0.8022 0.7785 

1.75 0.8818 0.8859 0.8572 0.8838 0.8793 0.8591 

2.00 0.9241 0.9282 0.9080 0.9246 0.9218 0.9019 

2.25 0.9564 0.9560 0.9412 0.9545 0.9513 0.9360 

2.50 0.9722 0.9741 0.9609 0.9730 0.9702 0.9573 

2.75 0.9831 0.9842 0.9744 0.9829 0.9814 0.9724 

3.00 0.9885 0.9888 0.9831 0.9881 0.9874 0.9819 

3.25 0.9934 0.9934 0.9887 0.9931 0.9920 0.9890 

3.50 0.9963 0.9958 0.9935 0.9961 0.9959 0.9936 

3.75 0.9982 0.9984 0.9973 0.9983 0.9983 0.9976 

4.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Table B.3.10: The CDF of the raw data used to estimate the control function parameters for each 

bimonthly period in 2016. 

 2016 

𝒚𝒌[−] Jan/Feb Mar/Apr May/Jun Jul/Aug Sep/Oct Nov/Dec 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.25 0.0338 0.0400 0.0430 0.0350 0.0322 0.0348 

0.50 0.1330 0.1374 0.1481 0.1317 0.1285 0.1477 

0.75 0.2929 0.2971 0.3301 0.3157 0.3133 0.3242 

1.00 0.4780 0.4814 0.5043 0.4959 0.4931 0.4866 

1.25 0.6706 0.6795 0.6746 0.6827 0.6717 0.6478 

1.50 0.7892 0.7971 0.7776 0.7965 0.7863 0.7660 

1.75 0.8691 0.8761 0.8597 0.8818 0.8718 0.8478 

2.00 0.9178 0.9242 0.9075 0.9270 0.9182 0.8946 

2.25 0.9534 0.9569 0.9405 0.9580 0.9483 0.9295 

2.50 0.9714 0.9742 0.9594 0.9735 0.9670 0.9529 

2.75 0.9815 0.9845 0.9740 0.9842 0.9790 0.9683 

3.00 0.9892 0.9897 0.9830 0.9901 0.9868 0.9786 

3.25 0.9938 0.9940 0.9899 0.9940 0.9923 0.9868 

3.50 0.9964 0.9962 0.9940 0.9969 0.9949 0.9928 

3.75 0.9983 0.9983 0.9968 0.9987 0.9975 0.9967 

4.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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APPENDIX B.4 

Table B.4.1: Real water price and weather data. Price is discounted to 2004$ using CPI. 

Temperature is average daily temperature in each billing period. Rainfall is the number of days 

within the billing period with less than 2 mm precipitation. 

 

 

Period 

[𝓽] 

Real 

Water 

Price 

𝑷𝓽 

[𝟐𝟎𝟎𝟒 − $] 

Average Daily 

High 

Temperature 

𝑻𝓽 

[℃] 

Days < 2mm 

Precipitation 

𝑹𝓽 

[𝒅𝒂𝒚𝒔] 

Weather 

Score 

𝑾𝓽 

[𝒅𝒂𝒚𝒔 ∙ ℃] 

2
0
0
7

 

Jan/Feb 1 1.91 -3.35 54 -180.90 

Mar/Apr 2 1.91 6.45 46 296.70 

May/Jun 3 1.91 23.05 44 1037.25 

July/Aug 4 1.91 25.35 45 1140.75 

Sept/Oct 5 1.91 20.55 52 1068.60 

Nov/Dec 6 1.91 2.20 56 121.00 

2
0
0
8
 

Jan/Feb 7 2.12 -1.35 55 -74.25 

Mar/Apr 8 2.12 7.40 52 384.80 

May/Jun 9 2.12 19.65 41 825.30 

July/Aug 10 2.12 24.90 48 1195.20 

Sept/Oct 11 2.12 17.55 46 807.30 

Nov/Dec 12 2.12 2.30 54 121.90 

2
0
0
9
 

Jan/Feb 13 2.43 -2.95 51 -150.45 

Mar/Apr 14 2.43 8.55 43 367.65 

May/Jun 15 2.43 20.10 41 844.20 

July/Aug 16 2.43 23.45 45 1031.80 

Sept/Oct 17 2.43 16.35 43 719.40 

Nov/Dec 18 2.43 4.30 46 193.50 

2
0
1
0
 

Jan/Feb 19 2.57 -2.65 28 -121.90 

Mar/Apr 20 2.57 11.80 46 542.80 

May/Jun 21 2.57 20.55 37 801.45 

July/Aug 22 2.57 27.10 39 1056.90 

Sept/Oct 23 2.57 17.20 42 722.40 

Nov/Dec 24 2.57 2.85 52 145.35 

2
0
1
1
 

Jan/Feb 25 2.69 -3.45 46 -169.05 

Mar/Apr 26 2.69 6.65 50 259.35 

May/Jun 27 2.69 20.70 38 890.10 

July/Aug 28 2.69 27.60 45 1269.60 

Sept/Oct 29 2.69 17.45 48 645.65 

Nov/Dec 30 2.69 6.25 48 293.75 
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Table B.4.1: continued 

 

 

Period 

[𝓽] 

Real 

Water 

Price 

𝑷𝓽 

[𝟐𝟎𝟎𝟒 − $] 

Average Daily 

High 

Temperature 

𝑻𝓽 

[℃] 

Days < 2mm 

Precipitation 

𝑹𝓽 

[𝒅𝒂𝒚𝒔] 

Weather 

Score 

𝑾𝓽 

[𝒅𝒂𝒚𝒔 ∙ ℃] 

2
0
1
2

 

Jan/Feb 31 2.81 0.80 51 37.60 

Mar/Apr 32 2.81 12.00 50 600.00 

May/Jun 33 2.81 23.65 39 1135.20 

July/Aug 34 2.81 27.55 49 1267.30 

Sept/Oct 35 2.81 17.05 51 613.80 

Nov/Dec 36 2.81 4.35 51 208.80 

2
0
1
3
 

Jan/Feb 37 2.95 -1.20 48 -55.20 

Mar/Apr 38 2.95 6.00 47 288.00 

May/Jun 39 2.95 21.45 43 879.45 

July/Aug 40 2.95 25.55 44 1251.95 

Sept/Oct 41 2.95 17.95 52 771.85 

Nov/Dec 42 2.95 1.25 55 62.50 

2
0
1
4
 

Jan/Feb 43 3.03 -5.95 44 -291.55 

Mar/Apr 44 3.03 4.80 44 206.40 

May/Jun 45 3.03 22.00 48 946.00 

July/Aug 46 3.03 24.15 51 1062.60 

Sept/Oct 47 3.03 17.20 43 705.20 

Nov/Dec 48 3.03 2.65 51 140.45 

2
0
1
5
 

Jan/Feb 49 3.11 -2.51 51 -128.14 

Mar/Apr 50 3.11 7.96 45 358.03 

May/Jun 51 3.11 21.39 47 1005.51 

July/Aug 52 3.11 25.71 55 1413.84 

Sept/Oct 53 3.11 17.66 47 830.14 

Nov/Dec 54 3.11 3.27 46 150.36 

2
0
1
6

 

Jan/Feb 55 3.15 -0.05 50 -2.50 

Mar/Apr 56 3.15 8.25 41 338.25 

May/Jun 57 3.15 22.55 47 1059.85 

July/Aug 58 3.15 28.20 45 1269.00 

Sept/Oct 59 3.15 20.10 45 904.50 

Nov/Dec 60 3.15 5.25 31 162.75 
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APPENDIX B.5 

Table B.5.1: Transport model results. 

  

Period 

[𝓽] 

 Transport Model Results 

 𝒎𝒙 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

𝝈𝒙 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

𝜇̂𝑥|𝑝𝑥
= 𝒎𝒙 + 𝝈𝒙 𝝁𝒛 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

2
0
0
7
 

Jan/Feb 1  34.3394 19.4993 37.1244 

Mar/Apr 2  32.3931 19.7397 35.2947 

May/Jun 3  35.6966 25.2660 39.2248 

July/Aug 4  36.7705 26.5374 40.4112 

Sept/Oct 5  36.0060 25.6381 39.5672 

Nov/Dec 6  32.7374 19.3482 35.5041 

2
0
0
8
 

Jan/Feb 7  32.3874 18.7059 35.1844 

Mar/Apr 8  31.4284 19.2316 34.4148 

May/Jun 9  32.7940 21.8090 36.0077 

July/Aug 10  35.6701 25.5413 39.2025 

Sept/Oct 11  32.6943 21.6639 35.8955 

Nov/Dec 12  31.6802 18.6608 34.4809 

2
0
0
9
 

Jan/Feb 13  30.8203 17.9453 33.5267 

Mar/Apr 14  30.0188 17.9623 32.8856 

May/Jun 15  31.1551 20.1228 34.2067 

July/Aug 16  32.0949 21.5371 35.2591 

Sept/Oct 17  30.6840 19.3584 33.6732 

Nov/Dec 18  30.0514 17.6856 32.8870 

2
0
1
0
 

Jan/Feb 19  29.8910 17.4934 32.5529 

Mar/Apr 20  29.6036 17.9055 32.4644 

May/Jun 21  30.2468 19.0731 33.2027 

July/Aug 22  31.2973 20.7801 34.3831 

Sept/Oct 23  30.0053 18.6564 32.9283 

Nov/Dec 24  29.4396 17.2111 32.2256 

2
0
1
1

 

Jan/Feb 25  29.2548 17.2692 32.0037 

Mar/Apr 26  28.8360 16.8502 31.5939 

May/Jun 27  29.8688 18.8709 32.7955 

July/Aug 28  31.4368 21.6003 34.5545 

Sept/Oct 29  29.2354 17.7149 32.0747 

Nov/Dec 30  28.8416 16.8794 31.6040 
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Table B.5.1: continued 

    Transport Model Results 

 
 

Period 
[𝓽] 

 𝒎𝒙 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 
𝝈𝒙 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 
𝜇̂𝑥|𝑝𝑥

= 𝒎𝒙 + 𝝈𝒙 𝝁𝒛 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

2
0
1
2
 

Jan/Feb 31  28.2909 28.2909 30.9941 

Mar/Apr 32  28.5713 28.5713 31.3430 

May/Jun 33  29.8681 29.8681 32.8170 

July/Aug 34  30.3427 30.3427 33.3522 

Sept/Oct 35  28.5921 28.5921 31.3670 

Nov/Dec 36  28.2588 28.2588 30.9701 

2
0
1

3
 

Jan/Feb 37  27.5722 27.5722 30.2321 

Mar/Apr 38  27.6573 27.6573 30.3288 

May/Jun 39  28.3352 28.3352 31.1064 

July/Aug 40  29.1071 29.1071 31.9930 

Sept/Oct 41  28.1618 28.1618 30.9074 

Nov/Dec 42  27.5759 27.5759 30.2359 

2
0
1
4
 

Jan/Feb 43  27.0660 27.0660 29.7102 

Mar/Apr 44  27.2432 27.2432 29.8825 

May/Jun 45  27.9643 27.9643 30.7035 

July/Aug 46  28.1279 28.1279 30.8946 

Sept/Oct 47  27.6694 27.6694 30.3620 

Nov/Dec 48  27.2055 27.2055 29.8420 

2
0
1
5
 

Jan/Feb 49  26.6081 26.6081 29.2184 

Mar/Apr 50  26.9888 26.9888 29.6092 

May/Jun 51  27.5231 27.5231 30.2232 

July/Aug 52  27.8761 27.8761 30.8379 

Sept/Oct 53  27.3753 27.3753 30.0463 

Nov/Dec 54  26.8240 26.8240 29.4349 

2
0
1
6
 

Jan/Feb 55  26.4878 26.4878 29.0839 

Mar/Apr 56  26.7936 26.7936 29.3984 

May/Jun 57  27.2921 27.2921 29.9744 

July/Aug 58  27.3988 27.3988 30.1184 

Sept/Oct 59  27.2019 27.2019 29.8607 

Nov/Dec 60  26.6417 26.6417 29.2399 
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Table B.5.2: Direct regression model results. 

 
 

Period 

[𝓽] 
𝝁̂𝒙 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

2
0
0
7
 

Jan/Feb 1 36.1357 

Mar/Apr 2 36.3357 

May/Jun 3 39.9083 

July/Aug 4 40.7235 

Sept/Oct 5 40.1470 

Nov/Dec 6 36.0703 

2
0
0
8
 

Jan/Feb 7 34.8673 

Mar/Apr 8 35.3078 

May/Jun 9 36.9553 

July/Aug 10 39.2652 

Sept/Oct 11 36.8645 

Nov/Dec 12 34.8961 

2
0
0
9

 

Jan/Feb 13 33.1917 

Mar/Apr 14 33.4527 

May/Jun 15 34.7924 

July/Aug 16 35.6087 

Sept/Oct 17 34.3397 

Nov/Dec 18 33.2260 

2
0
1
0

 

Jan/Feb 19 32.4234 

Mar/Apr 20 32.9784 

May/Jun 21 33.6682 

July/Aug 22 34.6100 

Sept/Oct 23 33.4292 

Nov/Dec 24 32.4358 

2
0
1

1
 

Jan/Feb 25 31.7897 

Mar/Apr 26 31.8550 

May/Jun 27 33.0802 

July/Aug 28 34.4652 

Sept/Oct 29 32.4458 

Nov/Dec 30 31.8872 
 

 
 

Period 

[𝓽] 
 𝝁̂𝒙 

[𝒎𝟑 𝒃𝒑⁄ 𝒂𝒄𝒄𝒕⁄ ] 

2
0
1
2
 

Jan/Feb 31  31.0688 

Mar/Apr 32  31.5658 

May/Jun 33  32.8528 

July/Aug 34  33.2926 

Sept/Oct 35  31.5890 

Nov/Dec 36  31.1273 

2
0
1
3

 

Jan/Feb 37  30.3236 

Mar/Apr 38  30.4074 

May/Jun 39  31.1321 

July/Aug 40  31.9654 

Sept/Oct 41  30.9456 

Nov/Dec 42  30.3245 

2
0
1
4

 
Jan/Feb 43  29.9588 

Mar/Apr 44  29.9226 

May/Jun 45  30.6504 

July/Aug 46  30.8504 

Sept/Oct 47  30.3109 

Nov/Dec 48  29.9031 

2
0
1
5
 

Jan/Feb 49  29.4609 

Mar/Apr 50  29.5344 

May/Jun 51  30.1147 

July/Aug 52  30.7642 

Sept/Oct 53  29.9031 

Nov/Dec 54  29.4650 

2
0
1
6
 

Jan/Feb 55  29.2320 

Mar/Apr 56  29.2960 

May/Jun 57  29.8601 

July/Aug 58  30.1324 

Sept/Oct 59  29.6895 

Nov/Dec 60  29.2468 
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APPENDIX C.1 

To begin, define the probabilistic radius ℝ to be equal to the one-dimensional radial CDF 

and the probabilistic area ℙ to be angle 𝜃 multiplied by the probabilistic area squared ℝ2 using a 

unit circle analogy as: 

∫
𝑑𝑝𝑟,t

∗

𝑑𝑛
𝑑𝑟 = 1, ℝ ≡ ∫

𝑑𝑝𝑟,t
∗

𝑑𝑛
𝑑𝑟, ℙ ≡ 𝜃ℝ2 

A third-order derivative of probabilistic area 𝑑ℙ results from taking the derivative twice 

with respect to change in radius 𝑑𝑟 and once with respect to change in angle 𝑑𝜃: 

 
𝑑2ℙ

𝑑𝜃𝑑𝑟
= 2

𝑑ℝ

𝑑𝑟
ℝ ⟹  

𝑑3ℙ

𝑑𝜃𝑑𝑟𝑑𝑟
= 2

𝑑

𝑑𝑟
[
𝑑ℝ

𝑑𝑟
]ℝ + 2 [

𝑑ℝ

𝑑𝑟
]
2

 

After evaluating the derivative of the probabilistic radius ℝ with respect to change in radius 

𝑑𝑟,  this progression makes a substitution to relate the area-based and radial PDFs. 

𝑑ℝ

𝑑𝑟
=
𝑑𝑝𝑟,t

∗

𝑑𝑛
,

𝑑

𝑑𝑟
[
𝑑ℝ

𝑑𝑟
] =

𝑑2𝑝𝑟,t
∗

𝑑𝑛𝑑𝑟
  ⟹  

𝑑3ℙ

𝑑𝜃𝑑𝑟𝑑𝑟
= 2

𝑑2𝑝𝑟,t
∗

𝑑𝑛𝑑𝑟
ℝ + 2 [

𝑑𝑝𝑟,t
∗

𝑑𝑛
]
2

 

 The only unknown in this relationship is the derivative 
𝑑2𝑝𝑟,t

∗

𝑑𝑛𝑑𝑟
, which is analogous to the rate 

of change of probability density along the radial axis. The progression transforms this relationship 

into the standard-score space as follow: 

𝑑𝑝𝑟,t
∗

𝑑𝑛
=

1

√𝑠𝑟,𝑡,𝓃
2

𝑝̅𝑧 ,
𝑑2𝑝𝑟,t

∗

𝑑𝑛𝑑𝑧
=

1

√𝑠𝑟,𝑡,𝓃
2

𝑑𝑝̅𝑧
𝑑𝑧

 

The PDF 
𝑑𝑝𝑟,t

∗

𝑑𝑛
 is a scaled normal distribution, which can be evaluated as a derivative with 

respect to the standard-score space 
𝑑2𝑝𝑟,t

∗

𝑑𝑛𝑑𝑧
. The derivative of the normal distribution in the standard-

score space is a well-known relationship as: 

∵
𝑑𝑝̅𝑧
𝑑𝑧

= −𝑧𝑝̅𝑧 , ∴
𝑑2𝑝𝑟,t

∗

𝑑𝑛𝑑𝑧
= −

𝑧

√𝑠𝑟,𝑡,𝓃
2

𝑝̅𝑧 
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Upon substitution of 
𝑑𝑝̅𝑧

𝑑𝑧
 into the relationship for 

𝑑2𝑝𝑟,t
∗

𝑑𝑛𝑑𝑧
, a change of variable allows 

determination of 
𝑑2𝑝𝑟,t

∗

𝑑𝓃𝑑𝑟
: 

𝑟 = 𝑚𝑟,𝑡,𝓃 +√𝑠𝑟,𝑡,𝓃
2 𝑧, 𝑑𝑟 = √𝑠𝑟,𝑡,𝓃

2 𝑑𝑧 

∵
𝑑2𝑝𝑟,t

∗

𝑑𝓃𝑑𝑟
=

1

√𝑠𝑟,𝑡,𝓃
2

𝑑2𝑝̅𝑧
𝑑𝓃𝑑𝑧

, ∴
𝑑2𝑝𝑟,t

∗

𝑑𝓃𝑑𝑟
= −

𝑧

𝑠𝑟,𝑡,𝓃
2 𝑝̅𝑧 

 Upon substitution of 
𝑑2𝑝𝑟,t

∗

𝑑𝓃𝑑𝑟
= −

𝑧

𝑠𝑟,𝑡,𝓃
2 𝑝̅𝑧, the resulting relationship can interpret the 

probabilistic area ℙ through integration as:  

ℙ = 2∭{−
𝑧

𝑠𝑟,𝓃,𝑡
2 𝑝̅𝑧ℝ+ [

𝑑𝑝𝑟,t
∗

𝑑𝑛
]
2

} 𝑑𝑟𝑑𝑟𝑑𝜃 

ℙ = −
2

𝑠𝑟,𝑡,𝓃
2 ∭[𝑧𝑝̅𝑧ℝ] 𝑑𝑧𝑑𝑧𝑑𝜃 + 2∭[

𝑑𝑝𝑟,t
∗

𝑑𝑛
]
2

𝑑𝑟𝑑𝑟𝑑𝜃 

Here, the progression can evaluate 2𝑠𝑟,𝑡,𝓃
2 ∭𝑧𝑝̅𝑧 𝑑𝑧𝑑𝑧𝑑𝜃 to be analogous to the arithmetic 

mean of the distribution in the standard-score space. Ultimately, when the distribution 
𝑑𝑝𝑟,t

∗

𝑑𝑛
 is 

symmetrical, such as the case when it is a scaled normal distribution, ∫ 𝑧𝑝̅𝑧 𝑑𝑧 will always be zero 

resulting in the following equality: 

ℝ = 1, ∫𝑧𝑝̅𝑧 𝑑𝑧 = 0  ⟹   ℙ = 2∭[
𝑑𝑝𝑟,t

∗

𝑑𝑛
]
2

𝑑𝑟𝑑𝑟𝑑𝜃 

𝑑𝔸 ≡ 𝑑𝑟𝑑𝑟𝑑𝜃  ⟹   ℙ = 2∫[
𝑑𝑝𝑟,t

∗

𝑑𝑛
]
2

𝑑𝔸 

 Upon substitution, the probabilistic area is twice the area integral of the squared radial 

PDF, ℙ = 2∫ [
𝑑𝑝𝑟,t

∗

𝑑𝑛
]
2

𝑑𝔸. 
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APPENDIX C.2 

To begin, the progression considers a normal distribution scaled by the square root of 

variance √𝑠1,𝑡,𝓃
2  as: 

𝑝1,𝑡
∗ =

1

√𝑠1,𝑡,𝓃
2

𝑝̅𝑧 

Upon substitution of the normal distribution: 

𝑝̅𝑧 =
1

√2𝜋
exp (−

1

2
𝑧2)   ⟹ 𝑝1,𝑡

∗ =
1

√2𝜋𝑠1,𝑡,𝓃
2

exp (−
1

2

[𝑟 −𝑚1,𝑡,𝓃]
2

𝑠1,𝑡,𝓃
2 ) 

Squaring this relationship allows this progression to estimate the resulting PDF from 

multiplying two normal distributions together: 

𝑝1,𝑡
∗ 𝑝2,𝑡

∗ =
1

2𝜋√𝑠1,𝑡,𝓃
2 𝑠2,𝑡,𝓃

2

exp (−
1

2
[𝑟 −𝑚1,𝑡,𝓃]

2 1

𝑠1,𝑡,𝓃
2  −

1

2
[𝑟 − 𝑚2,𝑡,𝓃]

2 1

𝑠2,𝑡,𝓃
2 ) 

Assuming the two normal distributions have the same center-point simplifies this 

relationship. 

𝑚1,𝑡,𝓃 = 𝑚2,𝑡,𝓃   ⟹   𝑝1,𝑡
∗ 𝑝2,𝑡

∗ =
1

2𝜋√𝑠1,𝑡,𝓃
2 𝑠2,𝑡,𝓃

2

exp (−
1

2
[𝑟 −𝑚1,𝑡,𝓃]

2
[
𝑠1,𝑡,𝓃
2 + 𝑠2,𝑡,𝓃

2

𝑠1,𝑡,𝓃
2 𝑠2,𝑡,𝓃

2 ]) 

𝑝1,𝑡
∗ 𝑝2,𝑡

∗ =
1

2𝜋√𝑠1,𝑡,𝓃
2 𝑠2,𝑡,𝓃

2

exp

(

 
 
−
1

2

[𝑟 − 𝑚1,𝑡,𝓃]
2

[
𝑠1,𝑡,𝓃
2 𝑠2,𝑡,𝓃

2

𝑠1,𝑡,𝓃
2 + 𝑠2,𝑡,𝓃

2 ]
)

 
 

 

Using the same argument as Bromiley (2003), this result can be interpreted in the context 

of a normal distribution as: 

𝑠1,2,𝑡,𝓃
2 =

𝑠1,𝑡,𝓃
2 𝑠2,𝑡,𝓃

2

𝑠1,𝑡,𝓃
2 + 𝑠2,𝑡,𝓃

2   ⟹  𝑝1,𝑡
∗ 𝑝2,𝑡

∗ =
1

2𝜋√𝑠1,𝑡,𝓃
2 𝑠2,𝑡,𝓃

2

exp (−
1

2

[𝑟 − 𝑚1,𝑡,𝓃]
2

𝑠1,2,𝑡,𝓃
2 ) 
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However, there is obviously a disconnect between the variance terms that scale the normal 

distribution, 
1

2𝜋√𝑠1,𝑡,𝓃
2 𝑠2,𝑡,𝓃

2
, and the variance term that gives the distribution its shape, −

1

2

[𝑟−𝑚1,𝑡,𝓃]
2

𝑠1,2,𝑡,𝓃
2 . 

The normal distribution in the standard-score space has the property that it is identical for all 

applications. This relationship ensures there is a translation between all variance terms relating to 

a normal distribution. 

𝐹𝑜𝑟 𝑚1,𝑡,𝓃 = 0, 𝑧 =
𝑟

√𝑠1,2,𝑡,𝓃
2

, 𝑧 =
𝑟

√𝑠1,𝑡,𝓃
2

 ⟹  
𝑟

√𝑠1,2,𝑡,𝓃
2

=
𝑟

√𝑠1,𝑡,𝓃
2

 

This transformation is notable because it represents a transformation from two-dimensional 

normal distribution into an analogous one-dimensional distribution. Effectively, the analysis needs 

to conserve probability for a two-dimensional random walk. This transformation provides a form 

that is conducive to Einstein’s diffusion PDE. Applying this interpretation and setting the variance 

terms of the original normal distributions to be equal produces a scaled normal distribution for a 

polar-coordinate system in two-dimensions: 

𝑠1,𝑡,𝓃
2 = 𝑠𝑟,𝑡,𝓃

2 , 𝑝1,𝑡
∗ 𝑝2,𝑡

∗ = [
𝑑𝑝𝑟,𝑡

∗

𝑑𝓃
]
2

  ⟹  [𝑝𝑟,𝑡
∗ ]

2
=

1

2𝜋𝑠𝑟,𝑡,𝓃
2 exp (−

1

2

[𝑟 − 𝑚𝑟,𝑡,𝓃]
2

𝑠𝑟,𝑡,𝓃
2 ) 

This exercise is completed by substituting the Einstein-Smoluchowski equation for the 

variance term and show that this approach produces a solution that is analogous to the Fourier heat 

equation from Carslaw (1921). 

𝑠1,𝑡,𝓃
2 = 2𝐷𝑟,𝑡,𝓃𝑡  ⟹  [

𝑑𝑝𝑟,𝑡
∗

𝑑𝓃
]
2

=
1

4𝜋𝐷𝑟,𝑡,𝓃𝑡
exp (−

[𝑟 −𝑚1,𝑡,𝓃]
2

4𝐷𝑟,𝑡,𝓃𝑡
) 

Taking the time-integral of this relationship produces the exact solution to the Fourier heat 

equation. 

∫[
𝑑𝑝𝑟,𝑡

∗

𝑑𝓃
]
2

𝑑𝑡 = ∫
1

4𝜋𝐷𝑟,𝑡,𝓃𝑡
exp (−

[𝑟 − 𝑚1,𝑡,𝓃]
2

4𝐷𝑟,𝑡,𝓃𝑡
) 𝑑𝑡 

This is the expected form of this solution to express the physical nature of diffusion. 
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APPENDIX C.3 

This analysis considers the time-derivative of the probabilistic solution to two-dimensional 

diffusion (Equation 9) and evaluates how the area-based PDF will change with respect to time 
𝑑𝑝ℙ,𝑡

𝑑𝑡
 

as: 

𝑑𝑝𝔸,𝑡,𝓃
𝑑𝑡

=    
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
   

⏟      
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

±     
𝑑

𝑑𝑡
[
1

𝜎𝔸,𝑡,𝓃
] 𝑝̅𝑧   

⏟          
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐
𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑒
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

,
𝑑𝑝̅𝑧
𝑑𝑡

= 0, 𝜎ℙ,𝑡,𝓃 = √𝑠𝔸,𝑡,𝓃
2  

Where, the notation for the standard deviation 𝜎𝔸,𝑡,𝓃  is consistent with Chapter 2 and characterizes 

the time-dependent dispersive process. The only notable difference is that the dispersive process 

is applied to the constant shape of a normal distribution 𝑝̅𝑧. Evaluating the time-derivative based 

on the square-root of variance value from the Einstein-Smoluchowski equation allows this 

progression to characterize how the two-dimensional diffusion PDF will evolve through time. 

Notice that the time-derivative of the inverse standard deviation is always non-zero, 
𝑑

𝑑𝑡
[

1

𝜎𝔸,𝑡,𝓃
] ≠ 0, 

because it is dependent upon the diffusion coefficient from as 𝜎𝔸,𝑡,𝓃 = √
𝜋

2
𝐷𝑟,𝑡,𝓃𝑡, as: 

1

𝜎𝔸,𝑡,𝓃
=

1

√
𝜋
2 𝐷𝑟,𝑡,𝓃 𝑡

  ⟹  
𝑑

𝑑𝑡
[
1

𝜎𝔸,𝑡,𝓃
] = ±

1

√
𝜋
2 𝐷𝑟,𝑡,𝓃𝑡

2

 

This relationship characterizes how the probabilistic solution in two dimensions will evolve 

with respect to some time-interval 𝒯 as: 

𝑝𝔸,𝑡,𝓃
∗ = 𝑝𝔸,0,𝓃

∗ +
𝑑𝑝𝔸,𝑡,𝓃

∗

𝑑𝑡
Δ𝑡  ⟹   𝑝𝔸,𝑡,𝓃 = 𝑚0 +∫

𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡

𝒯

0

𝑑𝑡 ±

[
 
 
 

∫
1

√
𝜋
2
𝐷𝑟,𝑡,𝓃𝑡2

𝒯

0

d𝑡

]
 
 
 

𝑝̅𝑧 

𝑝𝔸,𝑡,𝓃 = 𝑚𝔸,0,𝓃 +
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
𝒯 ±

[
 
 
 

1

√
𝜋
2 𝐷𝑟,𝑡,𝓃𝒯]

 
 
 

𝑝̅𝑧 
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 Defining the time-derivative for the advective-dispersive process fully characterizes how 

this probabilistic solution will evolve with respect to time. Plotting this relationship alongside 

iterations of a random walk can provide insight into the probabilistic solution to the advective-

dispersive process. The random walk numerical examples from Appendix C use this methodology 

for computing the corresponding probabilistic solutions. 

PROBABILISTIC TWO-DIMENSIONAL RANDOM WALK 

This section will develop a numerical example of Perrin’s suspended solids experiment to 

provide a discrete interpretation of the solution to the area-based probabilistic PDE. Here, the 

analysis considers a random walk as a discrete interpretation of the probabilistic solution for a 

single molecule. Plotting both the random walk and its probabilistic counterpart on the same figure 

illustrates how the PDE from Equation 9 actually predicts the probability that the random walk 

will exist within some radius of its origin solely from the influence of diffusion. Notably, a random 

walk governed by a normal distribution has an expected value of zero; however, the solution to 

the Fourier equation suggests that the probability the random walk will pass through the origin is 

continually decreasing. In this spirit, the expected value of the probabilistic advective-dispersive 

process can be evaluated, denoted with triangle brackets 〈 〉. Naturally, the expected value of a 

zero-centered normal distribution is constrained to be zero due to area-based symmetry, 〈
𝑑𝑝𝔸,𝑡,𝓃

∗

𝑑𝑛
〉 =

〈
1

√
1

2𝜋
𝐷𝑟,𝑡,𝓃𝑡

𝑝̅𝑧〉   ⟹   〈
𝑑𝑝𝔸,𝑡,𝓃

∗

𝑑𝑛
〉 = 0. Similarly, the expected value of a diffusive process 𝑝𝔸,𝑡,𝓃 with a 

nonzero central-tendency is equal to the initial position for a system at rest, 〈
𝑑𝑝𝔸,𝑡,𝓃

∗

𝑑𝑛
〉 = 𝑚0. 

This analysis considers two random variable to create a discrete random walk that is 

consistent with the probabilistic solution: Θ ∈ 𝒰(0, 𝜋) and ℒ ∈ N (0,√𝑠ℓ,𝑡,𝓃
2 ) – where, Θ is a 

uniform distribution that represents direction and ℒ is a normal distribution that represents the 

displacement of the random walk. Notably, it is assumed that each displacement occurs over some 

constant unit of time, such that the displacement variable ℒ represents of the relative speed of 

displacement. Therefore, the combination of displacement speed ℒ and direction Θ implies 

velocity. Although the random variables represent polar coordinates, this relationship projects onto 

a Cartesian plane for visualization. 
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𝑑𝑎

𝑑𝑡
=
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
cos(𝜃) +

𝑑ℒ

𝑑𝑡
cos(Θ) ,

𝑑𝑏

𝑑𝑡
=
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
sin(𝜃) +

𝑑ℒ

𝑑𝑡
sin(Θ),   

𝑥0 = 0, 𝑦0 = 0, 𝑐𝑜𝑜𝑟(𝑎, 𝑏) = 𝑐𝑜𝑜𝑟 ( 𝑎0 +
𝑑𝑎

𝑑𝑡
Δ𝑡, 𝑏0 +

𝑑𝑏

𝑑𝑡
Δ𝑡) 

Where, 
𝑑𝑎

𝑑𝑡
 and 

𝑑𝑏

𝑑𝑡
 represent the velocity of travel in the a- and b-directions, respectively (x, y, and 

z variables for the probabilistic interpretation); 
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
 represents a predefined deterministic step 

size in direction 𝜃. This numerical example of a random walk applies 250 time-steps from origin 

location 𝑐𝑜𝑜𝑟(0,0), while applying the uniform and Gaussian distributions that describe velocity. 

Notably, this example considers no deterministic contribution to the random walk, 
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
= 0. 

The numerical example presented in Figure C.3.1 reflects a standard normal random walk with 

equal chance of moving in a positive or negative direction 0 ≤ 𝜃 ≤ 𝜋. This example provides 

sufficient information to evaluate an Einsteinian diffusion coefficient 𝐷ℓ,𝑡,𝓃 and the resulting radial 

diffusion coefficient 𝐷𝑟,𝑡,𝓃. Upon evaluating the radial diffusion coefficient, this exercise can 

parameterize the dispersive process and visualize the resulting probabilistic area at time 𝒯 on the 

same figure as the random walk. 

 

 

Figure C.3.1: Standard normal random walk in two-dimensions. 
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Figure C.3.1. illustrates the relationship between the random walk and the probabilistic 

area that characterizes the macroscopic process of diffusion and reflects the probabilistic area for 

the transition from 100 steps (𝒯 = 100) to 250 steps (𝒯 = 250). The radial diffusion coefficient 

is estimated using the standard variance of the linear displacement, 𝐷𝑟,𝑡,𝓃 =
𝑠ℓ,𝑡,𝓃
2

2𝜋2Δ𝑡
  ⟹  𝑠ℓ,𝑡,𝓃

2 = 1. 

When considering a time-interval for each displacement of Δ𝑡 = 1, this reflects a radial diffusion 

coefficient of 𝐷𝑟,𝑡,𝓃 = 0.0507 
𝐿𝑒𝑛𝑔𝑡ℎ2

𝑡𝑖𝑚𝑒
. This diffusion coefficient characterizes the time-derivative 

of the dispersive process for a unit source to be, 
1

𝜎𝔸,𝑡,𝓃
= ±

1

√
𝜋

2
𝐷𝑟,𝑡𝓃𝒯

  ⟹  
1

𝜎𝔸,𝑡,𝓃
= ±

12.37

𝒯
. The 

probabilistic areas presented on Figure C.3.1 represent the probability that the random walk will 

land within one standard deviation of the expected position, which is the origin because this 

numerical example considers a zero-centered process with no active advection. 

A Random Walk with Active Advection 

This section introduces advection to the stationary random process and constitutes and 

advective-dispersive process with respect to time. Visualization of this process may reflect 

diffusion of molecules within a flowing stream or even a person haphazardly attempting to walk 

in a straight line. The advective process becomes active within the random walk when the time-

derivative of the median is assigned to be nonzero 
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
≠ 0 with direction 𝜃 =

𝜋

4
. Changing the 

position of the probabilistic distribution through the median will allow the random walk to drift in 

a particular direction. For instance, defining the advective drift to be 
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
= 1 for the same 

random walk presented in Figure C.3.1 produces a numerical example where the advective and 

dispersive processes have the same average step size. Figure C.3.2 presents the random walk from 

Figure C.3.1 with advective drift. 
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Figure C.3.2: Standard normal random walk with drift. 

 

 The advective drift term is a deterministic component of probabilistic solution that 

progresses the random walk in a consistent direction with a predefined step distribution. There is 

an associated probabilistic area for each step and the radius of this area grows with the standard 

deviation, 𝜎𝔸,𝑡,𝓃 = √
𝜋

2
𝐷𝑟,𝑡,𝓃𝒯. In this context, the accuracy of the advective process will be 

proportional to the product of the diffusion coefficient and the time-interval. For short time-

intervals, the random walk is not able to stray far away from the expected position; and, a small 

diffusion coefficient would cause the random walk to approximate the expected position for longer 

time intervals. Therefore, controlling the advective drift term 
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
, the diffusion coefficient 

𝐷𝑟,𝑡,𝓃, and the length of time between measurements 𝒯 could provide a predictive relationship 

between the random walk and the expected accuracy of the process. 

Guided Random Walk 

This section introduces a guided random walk, which allows the advective term to 

designate a direction that continually moves the distribution toward a predefined destination. 

Therefore, this form of random walk allows the advective term to compensate for deviation from 

the expected path toward the designated coordinates. Here, the progression considers a recursive 
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relationship between the direction of advection and some predefined destination that the advective 

process is attempting to achieve. The random walk can move the guided advection in a direction 

away from its destination, which could require the advective process to adjust its angle. This 

relationship can be expressed mathematically using the coordinates of the destination and the 

position of the random walk as: 

𝜃 = 𝐴𝑇𝐴𝑁 (
𝑎𝑔𝑜𝑎𝑙 − 𝑥𝑡
𝑏𝑔𝑜𝑎𝑙 − 𝑦𝑡

) 

Where, the direction of travel is always toward the goal position at 𝑐𝑜𝑜𝑟(𝑎, 𝑏) =

𝑐𝑜𝑜𝑟 ( 𝑎0 +
𝑑𝑎

𝑑𝑡
Δ𝑡, 𝑏0 +

𝑑𝑏

𝑑𝑡
Δ𝑡). This numerical example considers the speed of advection to be 

one-unit length per time interval, 
𝑑𝑚𝔸,𝑡,𝓃

𝑑𝑡
= 1. Figure C.3.3 presents a guided random walk towards 

a destination of 𝑐𝑜𝑜𝑟(𝑎𝑔𝑜𝑎𝑙 , 𝑏𝑔𝑜𝑎𝑙) = 𝑐𝑜𝑜𝑟(200, 200). The guided advection directs the walk to 

counteract the influence of the randomness moving the walk away from the destination of 

𝑐𝑜𝑜𝑟(200, 200). The result is a guided random walk that always approaches the goal, while using 

advective drift to counteract any randomness that causes movement away from the destination 

coordinates. 

 

Figure C.3.3: Advection-guided, standard normal random walk in two dimensions.
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